xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaExprCXX.cpp (revision 9dba64be9536c28e4800e06512b7f29b43ade345)
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TreeTransform.h"
16 #include "TypeLocBuilder.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/Basic/AlignedAllocation.h"
27 #include "clang/Basic/PartialDiagnostic.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/DeclSpec.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/ParsedTemplate.h"
34 #include "clang/Sema/Scope.h"
35 #include "clang/Sema/ScopeInfo.h"
36 #include "clang/Sema/SemaLambda.h"
37 #include "clang/Sema/TemplateDeduction.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace sema;
43 
44 /// Handle the result of the special case name lookup for inheriting
45 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
46 /// constructor names in member using declarations, even if 'X' is not the
47 /// name of the corresponding type.
48 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
49                                               SourceLocation NameLoc,
50                                               IdentifierInfo &Name) {
51   NestedNameSpecifier *NNS = SS.getScopeRep();
52 
53   // Convert the nested-name-specifier into a type.
54   QualType Type;
55   switch (NNS->getKind()) {
56   case NestedNameSpecifier::TypeSpec:
57   case NestedNameSpecifier::TypeSpecWithTemplate:
58     Type = QualType(NNS->getAsType(), 0);
59     break;
60 
61   case NestedNameSpecifier::Identifier:
62     // Strip off the last layer of the nested-name-specifier and build a
63     // typename type for it.
64     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
65     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
66                                         NNS->getAsIdentifier());
67     break;
68 
69   case NestedNameSpecifier::Global:
70   case NestedNameSpecifier::Super:
71   case NestedNameSpecifier::Namespace:
72   case NestedNameSpecifier::NamespaceAlias:
73     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
74   }
75 
76   // This reference to the type is located entirely at the location of the
77   // final identifier in the qualified-id.
78   return CreateParsedType(Type,
79                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
80 }
81 
82 ParsedType Sema::getConstructorName(IdentifierInfo &II,
83                                     SourceLocation NameLoc,
84                                     Scope *S, CXXScopeSpec &SS,
85                                     bool EnteringContext) {
86   CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
87   assert(CurClass && &II == CurClass->getIdentifier() &&
88          "not a constructor name");
89 
90   // When naming a constructor as a member of a dependent context (eg, in a
91   // friend declaration or an inherited constructor declaration), form an
92   // unresolved "typename" type.
93   if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
94     QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
95     return ParsedType::make(T);
96   }
97 
98   if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
99     return ParsedType();
100 
101   // Find the injected-class-name declaration. Note that we make no attempt to
102   // diagnose cases where the injected-class-name is shadowed: the only
103   // declaration that can validly shadow the injected-class-name is a
104   // non-static data member, and if the class contains both a non-static data
105   // member and a constructor then it is ill-formed (we check that in
106   // CheckCompletedCXXClass).
107   CXXRecordDecl *InjectedClassName = nullptr;
108   for (NamedDecl *ND : CurClass->lookup(&II)) {
109     auto *RD = dyn_cast<CXXRecordDecl>(ND);
110     if (RD && RD->isInjectedClassName()) {
111       InjectedClassName = RD;
112       break;
113     }
114   }
115   if (!InjectedClassName) {
116     if (!CurClass->isInvalidDecl()) {
117       // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
118       // properly. Work around it here for now.
119       Diag(SS.getLastQualifierNameLoc(),
120            diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
121     }
122     return ParsedType();
123   }
124 
125   QualType T = Context.getTypeDeclType(InjectedClassName);
126   DiagnoseUseOfDecl(InjectedClassName, NameLoc);
127   MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
128 
129   return ParsedType::make(T);
130 }
131 
132 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
133                                    IdentifierInfo &II,
134                                    SourceLocation NameLoc,
135                                    Scope *S, CXXScopeSpec &SS,
136                                    ParsedType ObjectTypePtr,
137                                    bool EnteringContext) {
138   // Determine where to perform name lookup.
139 
140   // FIXME: This area of the standard is very messy, and the current
141   // wording is rather unclear about which scopes we search for the
142   // destructor name; see core issues 399 and 555. Issue 399 in
143   // particular shows where the current description of destructor name
144   // lookup is completely out of line with existing practice, e.g.,
145   // this appears to be ill-formed:
146   //
147   //   namespace N {
148   //     template <typename T> struct S {
149   //       ~S();
150   //     };
151   //   }
152   //
153   //   void f(N::S<int>* s) {
154   //     s->N::S<int>::~S();
155   //   }
156   //
157   // See also PR6358 and PR6359.
158   // For this reason, we're currently only doing the C++03 version of this
159   // code; the C++0x version has to wait until we get a proper spec.
160   QualType SearchType;
161   DeclContext *LookupCtx = nullptr;
162   bool isDependent = false;
163   bool LookInScope = false;
164 
165   if (SS.isInvalid())
166     return nullptr;
167 
168   // If we have an object type, it's because we are in a
169   // pseudo-destructor-expression or a member access expression, and
170   // we know what type we're looking for.
171   if (ObjectTypePtr)
172     SearchType = GetTypeFromParser(ObjectTypePtr);
173 
174   if (SS.isSet()) {
175     NestedNameSpecifier *NNS = SS.getScopeRep();
176 
177     bool AlreadySearched = false;
178     bool LookAtPrefix = true;
179     // C++11 [basic.lookup.qual]p6:
180     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
181     //   the type-names are looked up as types in the scope designated by the
182     //   nested-name-specifier. Similarly, in a qualified-id of the form:
183     //
184     //     nested-name-specifier[opt] class-name :: ~ class-name
185     //
186     //   the second class-name is looked up in the same scope as the first.
187     //
188     // Here, we determine whether the code below is permitted to look at the
189     // prefix of the nested-name-specifier.
190     DeclContext *DC = computeDeclContext(SS, EnteringContext);
191     if (DC && DC->isFileContext()) {
192       AlreadySearched = true;
193       LookupCtx = DC;
194       isDependent = false;
195     } else if (DC && isa<CXXRecordDecl>(DC)) {
196       LookAtPrefix = false;
197       LookInScope = true;
198     }
199 
200     // The second case from the C++03 rules quoted further above.
201     NestedNameSpecifier *Prefix = nullptr;
202     if (AlreadySearched) {
203       // Nothing left to do.
204     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
205       CXXScopeSpec PrefixSS;
206       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
207       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
208       isDependent = isDependentScopeSpecifier(PrefixSS);
209     } else if (ObjectTypePtr) {
210       LookupCtx = computeDeclContext(SearchType);
211       isDependent = SearchType->isDependentType();
212     } else {
213       LookupCtx = computeDeclContext(SS, EnteringContext);
214       isDependent = LookupCtx && LookupCtx->isDependentContext();
215     }
216   } else if (ObjectTypePtr) {
217     // C++ [basic.lookup.classref]p3:
218     //   If the unqualified-id is ~type-name, the type-name is looked up
219     //   in the context of the entire postfix-expression. If the type T
220     //   of the object expression is of a class type C, the type-name is
221     //   also looked up in the scope of class C. At least one of the
222     //   lookups shall find a name that refers to (possibly
223     //   cv-qualified) T.
224     LookupCtx = computeDeclContext(SearchType);
225     isDependent = SearchType->isDependentType();
226     assert((isDependent || !SearchType->isIncompleteType()) &&
227            "Caller should have completed object type");
228 
229     LookInScope = true;
230   } else {
231     // Perform lookup into the current scope (only).
232     LookInScope = true;
233   }
234 
235   TypeDecl *NonMatchingTypeDecl = nullptr;
236   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
237   for (unsigned Step = 0; Step != 2; ++Step) {
238     // Look for the name first in the computed lookup context (if we
239     // have one) and, if that fails to find a match, in the scope (if
240     // we're allowed to look there).
241     Found.clear();
242     if (Step == 0 && LookupCtx) {
243       if (RequireCompleteDeclContext(SS, LookupCtx))
244         return nullptr;
245       LookupQualifiedName(Found, LookupCtx);
246     } else if (Step == 1 && LookInScope && S) {
247       LookupName(Found, S);
248     } else {
249       continue;
250     }
251 
252     // FIXME: Should we be suppressing ambiguities here?
253     if (Found.isAmbiguous())
254       return nullptr;
255 
256     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
257       QualType T = Context.getTypeDeclType(Type);
258       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
259 
260       if (SearchType.isNull() || SearchType->isDependentType() ||
261           Context.hasSameUnqualifiedType(T, SearchType)) {
262         // We found our type!
263 
264         return CreateParsedType(T,
265                                 Context.getTrivialTypeSourceInfo(T, NameLoc));
266       }
267 
268       if (!SearchType.isNull())
269         NonMatchingTypeDecl = Type;
270     }
271 
272     // If the name that we found is a class template name, and it is
273     // the same name as the template name in the last part of the
274     // nested-name-specifier (if present) or the object type, then
275     // this is the destructor for that class.
276     // FIXME: This is a workaround until we get real drafting for core
277     // issue 399, for which there isn't even an obvious direction.
278     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
279       QualType MemberOfType;
280       if (SS.isSet()) {
281         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
282           // Figure out the type of the context, if it has one.
283           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
284             MemberOfType = Context.getTypeDeclType(Record);
285         }
286       }
287       if (MemberOfType.isNull())
288         MemberOfType = SearchType;
289 
290       if (MemberOfType.isNull())
291         continue;
292 
293       // We're referring into a class template specialization. If the
294       // class template we found is the same as the template being
295       // specialized, we found what we are looking for.
296       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
297         if (ClassTemplateSpecializationDecl *Spec
298               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
299           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
300                 Template->getCanonicalDecl())
301             return CreateParsedType(
302                 MemberOfType,
303                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
304         }
305 
306         continue;
307       }
308 
309       // We're referring to an unresolved class template
310       // specialization. Determine whether we class template we found
311       // is the same as the template being specialized or, if we don't
312       // know which template is being specialized, that it at least
313       // has the same name.
314       if (const TemplateSpecializationType *SpecType
315             = MemberOfType->getAs<TemplateSpecializationType>()) {
316         TemplateName SpecName = SpecType->getTemplateName();
317 
318         // The class template we found is the same template being
319         // specialized.
320         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
321           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
322             return CreateParsedType(
323                 MemberOfType,
324                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
325 
326           continue;
327         }
328 
329         // The class template we found has the same name as the
330         // (dependent) template name being specialized.
331         if (DependentTemplateName *DepTemplate
332                                     = SpecName.getAsDependentTemplateName()) {
333           if (DepTemplate->isIdentifier() &&
334               DepTemplate->getIdentifier() == Template->getIdentifier())
335             return CreateParsedType(
336                 MemberOfType,
337                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
338 
339           continue;
340         }
341       }
342     }
343   }
344 
345   if (isDependent) {
346     // We didn't find our type, but that's okay: it's dependent
347     // anyway.
348 
349     // FIXME: What if we have no nested-name-specifier?
350     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
351                                    SS.getWithLocInContext(Context),
352                                    II, NameLoc);
353     return ParsedType::make(T);
354   }
355 
356   if (NonMatchingTypeDecl) {
357     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
358     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
359       << T << SearchType;
360     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
361       << T;
362   } else if (ObjectTypePtr)
363     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
364       << &II;
365   else {
366     SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
367                                           diag::err_destructor_class_name);
368     if (S) {
369       const DeclContext *Ctx = S->getEntity();
370       if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
371         DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
372                                                  Class->getNameAsString());
373     }
374   }
375 
376   return nullptr;
377 }
378 
379 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
380                                               ParsedType ObjectType) {
381   if (DS.getTypeSpecType() == DeclSpec::TST_error)
382     return nullptr;
383 
384   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
385     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
386     return nullptr;
387   }
388 
389   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
390          "unexpected type in getDestructorType");
391   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
392 
393   // If we know the type of the object, check that the correct destructor
394   // type was named now; we can give better diagnostics this way.
395   QualType SearchType = GetTypeFromParser(ObjectType);
396   if (!SearchType.isNull() && !SearchType->isDependentType() &&
397       !Context.hasSameUnqualifiedType(T, SearchType)) {
398     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
399       << T << SearchType;
400     return nullptr;
401   }
402 
403   return ParsedType::make(T);
404 }
405 
406 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
407                                   const UnqualifiedId &Name) {
408   assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
409 
410   if (!SS.isValid())
411     return false;
412 
413   switch (SS.getScopeRep()->getKind()) {
414   case NestedNameSpecifier::Identifier:
415   case NestedNameSpecifier::TypeSpec:
416   case NestedNameSpecifier::TypeSpecWithTemplate:
417     // Per C++11 [over.literal]p2, literal operators can only be declared at
418     // namespace scope. Therefore, this unqualified-id cannot name anything.
419     // Reject it early, because we have no AST representation for this in the
420     // case where the scope is dependent.
421     Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
422         << SS.getScopeRep();
423     return true;
424 
425   case NestedNameSpecifier::Global:
426   case NestedNameSpecifier::Super:
427   case NestedNameSpecifier::Namespace:
428   case NestedNameSpecifier::NamespaceAlias:
429     return false;
430   }
431 
432   llvm_unreachable("unknown nested name specifier kind");
433 }
434 
435 /// Build a C++ typeid expression with a type operand.
436 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
437                                 SourceLocation TypeidLoc,
438                                 TypeSourceInfo *Operand,
439                                 SourceLocation RParenLoc) {
440   // C++ [expr.typeid]p4:
441   //   The top-level cv-qualifiers of the lvalue expression or the type-id
442   //   that is the operand of typeid are always ignored.
443   //   If the type of the type-id is a class type or a reference to a class
444   //   type, the class shall be completely-defined.
445   Qualifiers Quals;
446   QualType T
447     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
448                                       Quals);
449   if (T->getAs<RecordType>() &&
450       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
451     return ExprError();
452 
453   if (T->isVariablyModifiedType())
454     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
455 
456   if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
457     return ExprError();
458 
459   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
460                                      SourceRange(TypeidLoc, RParenLoc));
461 }
462 
463 /// Build a C++ typeid expression with an expression operand.
464 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
465                                 SourceLocation TypeidLoc,
466                                 Expr *E,
467                                 SourceLocation RParenLoc) {
468   bool WasEvaluated = false;
469   if (E && !E->isTypeDependent()) {
470     if (E->getType()->isPlaceholderType()) {
471       ExprResult result = CheckPlaceholderExpr(E);
472       if (result.isInvalid()) return ExprError();
473       E = result.get();
474     }
475 
476     QualType T = E->getType();
477     if (const RecordType *RecordT = T->getAs<RecordType>()) {
478       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
479       // C++ [expr.typeid]p3:
480       //   [...] If the type of the expression is a class type, the class
481       //   shall be completely-defined.
482       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
483         return ExprError();
484 
485       // C++ [expr.typeid]p3:
486       //   When typeid is applied to an expression other than an glvalue of a
487       //   polymorphic class type [...] [the] expression is an unevaluated
488       //   operand. [...]
489       if (RecordD->isPolymorphic() && E->isGLValue()) {
490         // The subexpression is potentially evaluated; switch the context
491         // and recheck the subexpression.
492         ExprResult Result = TransformToPotentiallyEvaluated(E);
493         if (Result.isInvalid()) return ExprError();
494         E = Result.get();
495 
496         // We require a vtable to query the type at run time.
497         MarkVTableUsed(TypeidLoc, RecordD);
498         WasEvaluated = true;
499       }
500     }
501 
502     ExprResult Result = CheckUnevaluatedOperand(E);
503     if (Result.isInvalid())
504       return ExprError();
505     E = Result.get();
506 
507     // C++ [expr.typeid]p4:
508     //   [...] If the type of the type-id is a reference to a possibly
509     //   cv-qualified type, the result of the typeid expression refers to a
510     //   std::type_info object representing the cv-unqualified referenced
511     //   type.
512     Qualifiers Quals;
513     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
514     if (!Context.hasSameType(T, UnqualT)) {
515       T = UnqualT;
516       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
517     }
518   }
519 
520   if (E->getType()->isVariablyModifiedType())
521     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
522                      << E->getType());
523   else if (!inTemplateInstantiation() &&
524            E->HasSideEffects(Context, WasEvaluated)) {
525     // The expression operand for typeid is in an unevaluated expression
526     // context, so side effects could result in unintended consequences.
527     Diag(E->getExprLoc(), WasEvaluated
528                               ? diag::warn_side_effects_typeid
529                               : diag::warn_side_effects_unevaluated_context);
530   }
531 
532   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
533                                      SourceRange(TypeidLoc, RParenLoc));
534 }
535 
536 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
537 ExprResult
538 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
539                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
540   // typeid is not supported in OpenCL.
541   if (getLangOpts().OpenCLCPlusPlus) {
542     return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
543                      << "typeid");
544   }
545 
546   // Find the std::type_info type.
547   if (!getStdNamespace())
548     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
549 
550   if (!CXXTypeInfoDecl) {
551     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
552     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
553     LookupQualifiedName(R, getStdNamespace());
554     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
555     // Microsoft's typeinfo doesn't have type_info in std but in the global
556     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
557     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
558       LookupQualifiedName(R, Context.getTranslationUnitDecl());
559       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
560     }
561     if (!CXXTypeInfoDecl)
562       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
563   }
564 
565   if (!getLangOpts().RTTI) {
566     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
567   }
568 
569   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
570 
571   if (isType) {
572     // The operand is a type; handle it as such.
573     TypeSourceInfo *TInfo = nullptr;
574     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
575                                    &TInfo);
576     if (T.isNull())
577       return ExprError();
578 
579     if (!TInfo)
580       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
581 
582     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
583   }
584 
585   // The operand is an expression.
586   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
587 }
588 
589 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
590 /// a single GUID.
591 static void
592 getUuidAttrOfType(Sema &SemaRef, QualType QT,
593                   llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
594   // Optionally remove one level of pointer, reference or array indirection.
595   const Type *Ty = QT.getTypePtr();
596   if (QT->isPointerType() || QT->isReferenceType())
597     Ty = QT->getPointeeType().getTypePtr();
598   else if (QT->isArrayType())
599     Ty = Ty->getBaseElementTypeUnsafe();
600 
601   const auto *TD = Ty->getAsTagDecl();
602   if (!TD)
603     return;
604 
605   if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
606     UuidAttrs.insert(Uuid);
607     return;
608   }
609 
610   // __uuidof can grab UUIDs from template arguments.
611   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
612     const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
613     for (const TemplateArgument &TA : TAL.asArray()) {
614       const UuidAttr *UuidForTA = nullptr;
615       if (TA.getKind() == TemplateArgument::Type)
616         getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
617       else if (TA.getKind() == TemplateArgument::Declaration)
618         getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
619 
620       if (UuidForTA)
621         UuidAttrs.insert(UuidForTA);
622     }
623   }
624 }
625 
626 /// Build a Microsoft __uuidof expression with a type operand.
627 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
628                                 SourceLocation TypeidLoc,
629                                 TypeSourceInfo *Operand,
630                                 SourceLocation RParenLoc) {
631   StringRef UuidStr;
632   if (!Operand->getType()->isDependentType()) {
633     llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
634     getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
635     if (UuidAttrs.empty())
636       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
637     if (UuidAttrs.size() > 1)
638       return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
639     UuidStr = UuidAttrs.back()->getGuid();
640   }
641 
642   return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr,
643                                      SourceRange(TypeidLoc, RParenLoc));
644 }
645 
646 /// Build a Microsoft __uuidof expression with an expression operand.
647 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
648                                 SourceLocation TypeidLoc,
649                                 Expr *E,
650                                 SourceLocation RParenLoc) {
651   StringRef UuidStr;
652   if (!E->getType()->isDependentType()) {
653     if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
654       UuidStr = "00000000-0000-0000-0000-000000000000";
655     } else {
656       llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
657       getUuidAttrOfType(*this, E->getType(), UuidAttrs);
658       if (UuidAttrs.empty())
659         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
660       if (UuidAttrs.size() > 1)
661         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
662       UuidStr = UuidAttrs.back()->getGuid();
663     }
664   }
665 
666   return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr,
667                                      SourceRange(TypeidLoc, RParenLoc));
668 }
669 
670 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
671 ExprResult
672 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
673                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
674   // If MSVCGuidDecl has not been cached, do the lookup.
675   if (!MSVCGuidDecl) {
676     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
677     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
678     LookupQualifiedName(R, Context.getTranslationUnitDecl());
679     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
680     if (!MSVCGuidDecl)
681       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
682   }
683 
684   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
685 
686   if (isType) {
687     // The operand is a type; handle it as such.
688     TypeSourceInfo *TInfo = nullptr;
689     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
690                                    &TInfo);
691     if (T.isNull())
692       return ExprError();
693 
694     if (!TInfo)
695       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
696 
697     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
698   }
699 
700   // The operand is an expression.
701   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
702 }
703 
704 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
705 ExprResult
706 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
707   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
708          "Unknown C++ Boolean value!");
709   return new (Context)
710       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
711 }
712 
713 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
714 ExprResult
715 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
716   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
717 }
718 
719 /// ActOnCXXThrow - Parse throw expressions.
720 ExprResult
721 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
722   bool IsThrownVarInScope = false;
723   if (Ex) {
724     // C++0x [class.copymove]p31:
725     //   When certain criteria are met, an implementation is allowed to omit the
726     //   copy/move construction of a class object [...]
727     //
728     //     - in a throw-expression, when the operand is the name of a
729     //       non-volatile automatic object (other than a function or catch-
730     //       clause parameter) whose scope does not extend beyond the end of the
731     //       innermost enclosing try-block (if there is one), the copy/move
732     //       operation from the operand to the exception object (15.1) can be
733     //       omitted by constructing the automatic object directly into the
734     //       exception object
735     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
736       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
737         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
738           for( ; S; S = S->getParent()) {
739             if (S->isDeclScope(Var)) {
740               IsThrownVarInScope = true;
741               break;
742             }
743 
744             if (S->getFlags() &
745                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
746                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
747                  Scope::TryScope))
748               break;
749           }
750         }
751       }
752   }
753 
754   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
755 }
756 
757 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
758                                bool IsThrownVarInScope) {
759   // Don't report an error if 'throw' is used in system headers.
760   if (!getLangOpts().CXXExceptions &&
761       !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
762     // Delay error emission for the OpenMP device code.
763     targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
764   }
765 
766   // Exceptions aren't allowed in CUDA device code.
767   if (getLangOpts().CUDA)
768     CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
769         << "throw" << CurrentCUDATarget();
770 
771   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
772     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
773 
774   if (Ex && !Ex->isTypeDependent()) {
775     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
776     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
777       return ExprError();
778 
779     // Initialize the exception result.  This implicitly weeds out
780     // abstract types or types with inaccessible copy constructors.
781 
782     // C++0x [class.copymove]p31:
783     //   When certain criteria are met, an implementation is allowed to omit the
784     //   copy/move construction of a class object [...]
785     //
786     //     - in a throw-expression, when the operand is the name of a
787     //       non-volatile automatic object (other than a function or
788     //       catch-clause
789     //       parameter) whose scope does not extend beyond the end of the
790     //       innermost enclosing try-block (if there is one), the copy/move
791     //       operation from the operand to the exception object (15.1) can be
792     //       omitted by constructing the automatic object directly into the
793     //       exception object
794     const VarDecl *NRVOVariable = nullptr;
795     if (IsThrownVarInScope)
796       NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict);
797 
798     InitializedEntity Entity = InitializedEntity::InitializeException(
799         OpLoc, ExceptionObjectTy,
800         /*NRVO=*/NRVOVariable != nullptr);
801     ExprResult Res = PerformMoveOrCopyInitialization(
802         Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
803     if (Res.isInvalid())
804       return ExprError();
805     Ex = Res.get();
806   }
807 
808   return new (Context)
809       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
810 }
811 
812 static void
813 collectPublicBases(CXXRecordDecl *RD,
814                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
815                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
816                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
817                    bool ParentIsPublic) {
818   for (const CXXBaseSpecifier &BS : RD->bases()) {
819     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
820     bool NewSubobject;
821     // Virtual bases constitute the same subobject.  Non-virtual bases are
822     // always distinct subobjects.
823     if (BS.isVirtual())
824       NewSubobject = VBases.insert(BaseDecl).second;
825     else
826       NewSubobject = true;
827 
828     if (NewSubobject)
829       ++SubobjectsSeen[BaseDecl];
830 
831     // Only add subobjects which have public access throughout the entire chain.
832     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
833     if (PublicPath)
834       PublicSubobjectsSeen.insert(BaseDecl);
835 
836     // Recurse on to each base subobject.
837     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
838                        PublicPath);
839   }
840 }
841 
842 static void getUnambiguousPublicSubobjects(
843     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
844   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
845   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
846   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
847   SubobjectsSeen[RD] = 1;
848   PublicSubobjectsSeen.insert(RD);
849   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
850                      /*ParentIsPublic=*/true);
851 
852   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
853     // Skip ambiguous objects.
854     if (SubobjectsSeen[PublicSubobject] > 1)
855       continue;
856 
857     Objects.push_back(PublicSubobject);
858   }
859 }
860 
861 /// CheckCXXThrowOperand - Validate the operand of a throw.
862 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
863                                 QualType ExceptionObjectTy, Expr *E) {
864   //   If the type of the exception would be an incomplete type or a pointer
865   //   to an incomplete type other than (cv) void the program is ill-formed.
866   QualType Ty = ExceptionObjectTy;
867   bool isPointer = false;
868   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
869     Ty = Ptr->getPointeeType();
870     isPointer = true;
871   }
872   if (!isPointer || !Ty->isVoidType()) {
873     if (RequireCompleteType(ThrowLoc, Ty,
874                             isPointer ? diag::err_throw_incomplete_ptr
875                                       : diag::err_throw_incomplete,
876                             E->getSourceRange()))
877       return true;
878 
879     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
880                                diag::err_throw_abstract_type, E))
881       return true;
882   }
883 
884   // If the exception has class type, we need additional handling.
885   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
886   if (!RD)
887     return false;
888 
889   // If we are throwing a polymorphic class type or pointer thereof,
890   // exception handling will make use of the vtable.
891   MarkVTableUsed(ThrowLoc, RD);
892 
893   // If a pointer is thrown, the referenced object will not be destroyed.
894   if (isPointer)
895     return false;
896 
897   // If the class has a destructor, we must be able to call it.
898   if (!RD->hasIrrelevantDestructor()) {
899     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
900       MarkFunctionReferenced(E->getExprLoc(), Destructor);
901       CheckDestructorAccess(E->getExprLoc(), Destructor,
902                             PDiag(diag::err_access_dtor_exception) << Ty);
903       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
904         return true;
905     }
906   }
907 
908   // The MSVC ABI creates a list of all types which can catch the exception
909   // object.  This list also references the appropriate copy constructor to call
910   // if the object is caught by value and has a non-trivial copy constructor.
911   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
912     // We are only interested in the public, unambiguous bases contained within
913     // the exception object.  Bases which are ambiguous or otherwise
914     // inaccessible are not catchable types.
915     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
916     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
917 
918     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
919       // Attempt to lookup the copy constructor.  Various pieces of machinery
920       // will spring into action, like template instantiation, which means this
921       // cannot be a simple walk of the class's decls.  Instead, we must perform
922       // lookup and overload resolution.
923       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
924       if (!CD)
925         continue;
926 
927       // Mark the constructor referenced as it is used by this throw expression.
928       MarkFunctionReferenced(E->getExprLoc(), CD);
929 
930       // Skip this copy constructor if it is trivial, we don't need to record it
931       // in the catchable type data.
932       if (CD->isTrivial())
933         continue;
934 
935       // The copy constructor is non-trivial, create a mapping from this class
936       // type to this constructor.
937       // N.B.  The selection of copy constructor is not sensitive to this
938       // particular throw-site.  Lookup will be performed at the catch-site to
939       // ensure that the copy constructor is, in fact, accessible (via
940       // friendship or any other means).
941       Context.addCopyConstructorForExceptionObject(Subobject, CD);
942 
943       // We don't keep the instantiated default argument expressions around so
944       // we must rebuild them here.
945       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
946         if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
947           return true;
948       }
949     }
950   }
951 
952   // Under the Itanium C++ ABI, memory for the exception object is allocated by
953   // the runtime with no ability for the compiler to request additional
954   // alignment. Warn if the exception type requires alignment beyond the minimum
955   // guaranteed by the target C++ runtime.
956   if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
957     CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
958     CharUnits ExnObjAlign = Context.getExnObjectAlignment();
959     if (ExnObjAlign < TypeAlign) {
960       Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
961       Diag(ThrowLoc, diag::note_throw_underaligned_obj)
962           << Ty << (unsigned)TypeAlign.getQuantity()
963           << (unsigned)ExnObjAlign.getQuantity();
964     }
965   }
966 
967   return false;
968 }
969 
970 static QualType adjustCVQualifiersForCXXThisWithinLambda(
971     ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
972     DeclContext *CurSemaContext, ASTContext &ASTCtx) {
973 
974   QualType ClassType = ThisTy->getPointeeType();
975   LambdaScopeInfo *CurLSI = nullptr;
976   DeclContext *CurDC = CurSemaContext;
977 
978   // Iterate through the stack of lambdas starting from the innermost lambda to
979   // the outermost lambda, checking if '*this' is ever captured by copy - since
980   // that could change the cv-qualifiers of the '*this' object.
981   // The object referred to by '*this' starts out with the cv-qualifiers of its
982   // member function.  We then start with the innermost lambda and iterate
983   // outward checking to see if any lambda performs a by-copy capture of '*this'
984   // - and if so, any nested lambda must respect the 'constness' of that
985   // capturing lamdbda's call operator.
986   //
987 
988   // Since the FunctionScopeInfo stack is representative of the lexical
989   // nesting of the lambda expressions during initial parsing (and is the best
990   // place for querying information about captures about lambdas that are
991   // partially processed) and perhaps during instantiation of function templates
992   // that contain lambda expressions that need to be transformed BUT not
993   // necessarily during instantiation of a nested generic lambda's function call
994   // operator (which might even be instantiated at the end of the TU) - at which
995   // time the DeclContext tree is mature enough to query capture information
996   // reliably - we use a two pronged approach to walk through all the lexically
997   // enclosing lambda expressions:
998   //
999   //  1) Climb down the FunctionScopeInfo stack as long as each item represents
1000   //  a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1001   //  enclosed by the call-operator of the LSI below it on the stack (while
1002   //  tracking the enclosing DC for step 2 if needed).  Note the topmost LSI on
1003   //  the stack represents the innermost lambda.
1004   //
1005   //  2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1006   //  represents a lambda's call operator.  If it does, we must be instantiating
1007   //  a generic lambda's call operator (represented by the Current LSI, and
1008   //  should be the only scenario where an inconsistency between the LSI and the
1009   //  DeclContext should occur), so climb out the DeclContexts if they
1010   //  represent lambdas, while querying the corresponding closure types
1011   //  regarding capture information.
1012 
1013   // 1) Climb down the function scope info stack.
1014   for (int I = FunctionScopes.size();
1015        I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1016        (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1017                        cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1018        CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1019     CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1020 
1021     if (!CurLSI->isCXXThisCaptured())
1022         continue;
1023 
1024     auto C = CurLSI->getCXXThisCapture();
1025 
1026     if (C.isCopyCapture()) {
1027       ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1028       if (CurLSI->CallOperator->isConst())
1029         ClassType.addConst();
1030       return ASTCtx.getPointerType(ClassType);
1031     }
1032   }
1033 
1034   // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
1035   // happen during instantiation of its nested generic lambda call operator)
1036   if (isLambdaCallOperator(CurDC)) {
1037     assert(CurLSI && "While computing 'this' capture-type for a generic "
1038                      "lambda, we must have a corresponding LambdaScopeInfo");
1039     assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1040            "While computing 'this' capture-type for a generic lambda, when we "
1041            "run out of enclosing LSI's, yet the enclosing DC is a "
1042            "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1043            "lambda call oeprator");
1044     assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1045 
1046     auto IsThisCaptured =
1047         [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1048       IsConst = false;
1049       IsByCopy = false;
1050       for (auto &&C : Closure->captures()) {
1051         if (C.capturesThis()) {
1052           if (C.getCaptureKind() == LCK_StarThis)
1053             IsByCopy = true;
1054           if (Closure->getLambdaCallOperator()->isConst())
1055             IsConst = true;
1056           return true;
1057         }
1058       }
1059       return false;
1060     };
1061 
1062     bool IsByCopyCapture = false;
1063     bool IsConstCapture = false;
1064     CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1065     while (Closure &&
1066            IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1067       if (IsByCopyCapture) {
1068         ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1069         if (IsConstCapture)
1070           ClassType.addConst();
1071         return ASTCtx.getPointerType(ClassType);
1072       }
1073       Closure = isLambdaCallOperator(Closure->getParent())
1074                     ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1075                     : nullptr;
1076     }
1077   }
1078   return ASTCtx.getPointerType(ClassType);
1079 }
1080 
1081 QualType Sema::getCurrentThisType() {
1082   DeclContext *DC = getFunctionLevelDeclContext();
1083   QualType ThisTy = CXXThisTypeOverride;
1084 
1085   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1086     if (method && method->isInstance())
1087       ThisTy = method->getThisType();
1088   }
1089 
1090   if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1091       inTemplateInstantiation()) {
1092 
1093     assert(isa<CXXRecordDecl>(DC) &&
1094            "Trying to get 'this' type from static method?");
1095 
1096     // This is a lambda call operator that is being instantiated as a default
1097     // initializer. DC must point to the enclosing class type, so we can recover
1098     // the 'this' type from it.
1099 
1100     QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1101     // There are no cv-qualifiers for 'this' within default initializers,
1102     // per [expr.prim.general]p4.
1103     ThisTy = Context.getPointerType(ClassTy);
1104   }
1105 
1106   // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1107   // might need to be adjusted if the lambda or any of its enclosing lambda's
1108   // captures '*this' by copy.
1109   if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1110     return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1111                                                     CurContext, Context);
1112   return ThisTy;
1113 }
1114 
1115 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1116                                          Decl *ContextDecl,
1117                                          Qualifiers CXXThisTypeQuals,
1118                                          bool Enabled)
1119   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1120 {
1121   if (!Enabled || !ContextDecl)
1122     return;
1123 
1124   CXXRecordDecl *Record = nullptr;
1125   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1126     Record = Template->getTemplatedDecl();
1127   else
1128     Record = cast<CXXRecordDecl>(ContextDecl);
1129 
1130   QualType T = S.Context.getRecordType(Record);
1131   T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1132 
1133   S.CXXThisTypeOverride = S.Context.getPointerType(T);
1134 
1135   this->Enabled = true;
1136 }
1137 
1138 
1139 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1140   if (Enabled) {
1141     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1142   }
1143 }
1144 
1145 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1146     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1147     const bool ByCopy) {
1148   // We don't need to capture this in an unevaluated context.
1149   if (isUnevaluatedContext() && !Explicit)
1150     return true;
1151 
1152   assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1153 
1154   const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1155                                          ? *FunctionScopeIndexToStopAt
1156                                          : FunctionScopes.size() - 1;
1157 
1158   // Check that we can capture the *enclosing object* (referred to by '*this')
1159   // by the capturing-entity/closure (lambda/block/etc) at
1160   // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1161 
1162   // Note: The *enclosing object* can only be captured by-value by a
1163   // closure that is a lambda, using the explicit notation:
1164   //    [*this] { ... }.
1165   // Every other capture of the *enclosing object* results in its by-reference
1166   // capture.
1167 
1168   // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1169   // stack), we can capture the *enclosing object* only if:
1170   // - 'L' has an explicit byref or byval capture of the *enclosing object*
1171   // -  or, 'L' has an implicit capture.
1172   // AND
1173   //   -- there is no enclosing closure
1174   //   -- or, there is some enclosing closure 'E' that has already captured the
1175   //      *enclosing object*, and every intervening closure (if any) between 'E'
1176   //      and 'L' can implicitly capture the *enclosing object*.
1177   //   -- or, every enclosing closure can implicitly capture the
1178   //      *enclosing object*
1179 
1180 
1181   unsigned NumCapturingClosures = 0;
1182   for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1183     if (CapturingScopeInfo *CSI =
1184             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1185       if (CSI->CXXThisCaptureIndex != 0) {
1186         // 'this' is already being captured; there isn't anything more to do.
1187         CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1188         break;
1189       }
1190       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1191       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1192         // This context can't implicitly capture 'this'; fail out.
1193         if (BuildAndDiagnose)
1194           Diag(Loc, diag::err_this_capture)
1195               << (Explicit && idx == MaxFunctionScopesIndex);
1196         return true;
1197       }
1198       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1199           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1200           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1201           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1202           (Explicit && idx == MaxFunctionScopesIndex)) {
1203         // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1204         // iteration through can be an explicit capture, all enclosing closures,
1205         // if any, must perform implicit captures.
1206 
1207         // This closure can capture 'this'; continue looking upwards.
1208         NumCapturingClosures++;
1209         continue;
1210       }
1211       // This context can't implicitly capture 'this'; fail out.
1212       if (BuildAndDiagnose)
1213         Diag(Loc, diag::err_this_capture)
1214             << (Explicit && idx == MaxFunctionScopesIndex);
1215       return true;
1216     }
1217     break;
1218   }
1219   if (!BuildAndDiagnose) return false;
1220 
1221   // If we got here, then the closure at MaxFunctionScopesIndex on the
1222   // FunctionScopes stack, can capture the *enclosing object*, so capture it
1223   // (including implicit by-reference captures in any enclosing closures).
1224 
1225   // In the loop below, respect the ByCopy flag only for the closure requesting
1226   // the capture (i.e. first iteration through the loop below).  Ignore it for
1227   // all enclosing closure's up to NumCapturingClosures (since they must be
1228   // implicitly capturing the *enclosing  object* by reference (see loop
1229   // above)).
1230   assert((!ByCopy ||
1231           dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1232          "Only a lambda can capture the enclosing object (referred to by "
1233          "*this) by copy");
1234   QualType ThisTy = getCurrentThisType();
1235   for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1236        --idx, --NumCapturingClosures) {
1237     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1238 
1239     // The type of the corresponding data member (not a 'this' pointer if 'by
1240     // copy').
1241     QualType CaptureType = ThisTy;
1242     if (ByCopy) {
1243       // If we are capturing the object referred to by '*this' by copy, ignore
1244       // any cv qualifiers inherited from the type of the member function for
1245       // the type of the closure-type's corresponding data member and any use
1246       // of 'this'.
1247       CaptureType = ThisTy->getPointeeType();
1248       CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1249     }
1250 
1251     bool isNested = NumCapturingClosures > 1;
1252     CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1253   }
1254   return false;
1255 }
1256 
1257 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1258   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1259   /// is a non-lvalue expression whose value is the address of the object for
1260   /// which the function is called.
1261 
1262   QualType ThisTy = getCurrentThisType();
1263   if (ThisTy.isNull())
1264     return Diag(Loc, diag::err_invalid_this_use);
1265   return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1266 }
1267 
1268 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1269                              bool IsImplicit) {
1270   auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1271   MarkThisReferenced(This);
1272   return This;
1273 }
1274 
1275 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1276   CheckCXXThisCapture(This->getExprLoc());
1277 }
1278 
1279 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1280   // If we're outside the body of a member function, then we'll have a specified
1281   // type for 'this'.
1282   if (CXXThisTypeOverride.isNull())
1283     return false;
1284 
1285   // Determine whether we're looking into a class that's currently being
1286   // defined.
1287   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1288   return Class && Class->isBeingDefined();
1289 }
1290 
1291 /// Parse construction of a specified type.
1292 /// Can be interpreted either as function-style casting ("int(x)")
1293 /// or class type construction ("ClassType(x,y,z)")
1294 /// or creation of a value-initialized type ("int()").
1295 ExprResult
1296 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1297                                 SourceLocation LParenOrBraceLoc,
1298                                 MultiExprArg exprs,
1299                                 SourceLocation RParenOrBraceLoc,
1300                                 bool ListInitialization) {
1301   if (!TypeRep)
1302     return ExprError();
1303 
1304   TypeSourceInfo *TInfo;
1305   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1306   if (!TInfo)
1307     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1308 
1309   auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1310                                           RParenOrBraceLoc, ListInitialization);
1311   // Avoid creating a non-type-dependent expression that contains typos.
1312   // Non-type-dependent expressions are liable to be discarded without
1313   // checking for embedded typos.
1314   if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1315       !Result.get()->isTypeDependent())
1316     Result = CorrectDelayedTyposInExpr(Result.get());
1317   return Result;
1318 }
1319 
1320 ExprResult
1321 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1322                                 SourceLocation LParenOrBraceLoc,
1323                                 MultiExprArg Exprs,
1324                                 SourceLocation RParenOrBraceLoc,
1325                                 bool ListInitialization) {
1326   QualType Ty = TInfo->getType();
1327   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1328 
1329   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1330     // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1331     // directly. We work around this by dropping the locations of the braces.
1332     SourceRange Locs = ListInitialization
1333                            ? SourceRange()
1334                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1335     return CXXUnresolvedConstructExpr::Create(Context, TInfo, Locs.getBegin(),
1336                                               Exprs, Locs.getEnd());
1337   }
1338 
1339   assert((!ListInitialization ||
1340           (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&
1341          "List initialization must have initializer list as expression.");
1342   SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1343 
1344   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1345   InitializationKind Kind =
1346       Exprs.size()
1347           ? ListInitialization
1348                 ? InitializationKind::CreateDirectList(
1349                       TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1350                 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1351                                                    RParenOrBraceLoc)
1352           : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1353                                             RParenOrBraceLoc);
1354 
1355   // C++1z [expr.type.conv]p1:
1356   //   If the type is a placeholder for a deduced class type, [...perform class
1357   //   template argument deduction...]
1358   DeducedType *Deduced = Ty->getContainedDeducedType();
1359   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1360     Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1361                                                      Kind, Exprs);
1362     if (Ty.isNull())
1363       return ExprError();
1364     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1365   }
1366 
1367   // C++ [expr.type.conv]p1:
1368   // If the expression list is a parenthesized single expression, the type
1369   // conversion expression is equivalent (in definedness, and if defined in
1370   // meaning) to the corresponding cast expression.
1371   if (Exprs.size() == 1 && !ListInitialization &&
1372       !isa<InitListExpr>(Exprs[0])) {
1373     Expr *Arg = Exprs[0];
1374     return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1375                                       RParenOrBraceLoc);
1376   }
1377 
1378   //   For an expression of the form T(), T shall not be an array type.
1379   QualType ElemTy = Ty;
1380   if (Ty->isArrayType()) {
1381     if (!ListInitialization)
1382       return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1383                          << FullRange);
1384     ElemTy = Context.getBaseElementType(Ty);
1385   }
1386 
1387   // There doesn't seem to be an explicit rule against this but sanity demands
1388   // we only construct objects with object types.
1389   if (Ty->isFunctionType())
1390     return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1391                        << Ty << FullRange);
1392 
1393   // C++17 [expr.type.conv]p2:
1394   //   If the type is cv void and the initializer is (), the expression is a
1395   //   prvalue of the specified type that performs no initialization.
1396   if (!Ty->isVoidType() &&
1397       RequireCompleteType(TyBeginLoc, ElemTy,
1398                           diag::err_invalid_incomplete_type_use, FullRange))
1399     return ExprError();
1400 
1401   //   Otherwise, the expression is a prvalue of the specified type whose
1402   //   result object is direct-initialized (11.6) with the initializer.
1403   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1404   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1405 
1406   if (Result.isInvalid())
1407     return Result;
1408 
1409   Expr *Inner = Result.get();
1410   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1411     Inner = BTE->getSubExpr();
1412   if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1413       !isa<CXXScalarValueInitExpr>(Inner)) {
1414     // If we created a CXXTemporaryObjectExpr, that node also represents the
1415     // functional cast. Otherwise, create an explicit cast to represent
1416     // the syntactic form of a functional-style cast that was used here.
1417     //
1418     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1419     // would give a more consistent AST representation than using a
1420     // CXXTemporaryObjectExpr. It's also weird that the functional cast
1421     // is sometimes handled by initialization and sometimes not.
1422     QualType ResultType = Result.get()->getType();
1423     SourceRange Locs = ListInitialization
1424                            ? SourceRange()
1425                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1426     Result = CXXFunctionalCastExpr::Create(
1427         Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1428         Result.get(), /*Path=*/nullptr, Locs.getBegin(), Locs.getEnd());
1429   }
1430 
1431   return Result;
1432 }
1433 
1434 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1435   // [CUDA] Ignore this function, if we can't call it.
1436   const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1437   if (getLangOpts().CUDA &&
1438       IdentifyCUDAPreference(Caller, Method) <= CFP_WrongSide)
1439     return false;
1440 
1441   SmallVector<const FunctionDecl*, 4> PreventedBy;
1442   bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1443 
1444   if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1445     return Result;
1446 
1447   // In case of CUDA, return true if none of the 1-argument deallocator
1448   // functions are actually callable.
1449   return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1450     assert(FD->getNumParams() == 1 &&
1451            "Only single-operand functions should be in PreventedBy");
1452     return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1453   });
1454 }
1455 
1456 /// Determine whether the given function is a non-placement
1457 /// deallocation function.
1458 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1459   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1460     return S.isUsualDeallocationFunction(Method);
1461 
1462   if (FD->getOverloadedOperator() != OO_Delete &&
1463       FD->getOverloadedOperator() != OO_Array_Delete)
1464     return false;
1465 
1466   unsigned UsualParams = 1;
1467 
1468   if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1469       S.Context.hasSameUnqualifiedType(
1470           FD->getParamDecl(UsualParams)->getType(),
1471           S.Context.getSizeType()))
1472     ++UsualParams;
1473 
1474   if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1475       S.Context.hasSameUnqualifiedType(
1476           FD->getParamDecl(UsualParams)->getType(),
1477           S.Context.getTypeDeclType(S.getStdAlignValT())))
1478     ++UsualParams;
1479 
1480   return UsualParams == FD->getNumParams();
1481 }
1482 
1483 namespace {
1484   struct UsualDeallocFnInfo {
1485     UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1486     UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1487         : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1488           Destroying(false), HasSizeT(false), HasAlignValT(false),
1489           CUDAPref(Sema::CFP_Native) {
1490       // A function template declaration is never a usual deallocation function.
1491       if (!FD)
1492         return;
1493       unsigned NumBaseParams = 1;
1494       if (FD->isDestroyingOperatorDelete()) {
1495         Destroying = true;
1496         ++NumBaseParams;
1497       }
1498 
1499       if (NumBaseParams < FD->getNumParams() &&
1500           S.Context.hasSameUnqualifiedType(
1501               FD->getParamDecl(NumBaseParams)->getType(),
1502               S.Context.getSizeType())) {
1503         ++NumBaseParams;
1504         HasSizeT = true;
1505       }
1506 
1507       if (NumBaseParams < FD->getNumParams() &&
1508           FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1509         ++NumBaseParams;
1510         HasAlignValT = true;
1511       }
1512 
1513       // In CUDA, determine how much we'd like / dislike to call this.
1514       if (S.getLangOpts().CUDA)
1515         if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1516           CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1517     }
1518 
1519     explicit operator bool() const { return FD; }
1520 
1521     bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1522                       bool WantAlign) const {
1523       // C++ P0722:
1524       //   A destroying operator delete is preferred over a non-destroying
1525       //   operator delete.
1526       if (Destroying != Other.Destroying)
1527         return Destroying;
1528 
1529       // C++17 [expr.delete]p10:
1530       //   If the type has new-extended alignment, a function with a parameter
1531       //   of type std::align_val_t is preferred; otherwise a function without
1532       //   such a parameter is preferred
1533       if (HasAlignValT != Other.HasAlignValT)
1534         return HasAlignValT == WantAlign;
1535 
1536       if (HasSizeT != Other.HasSizeT)
1537         return HasSizeT == WantSize;
1538 
1539       // Use CUDA call preference as a tiebreaker.
1540       return CUDAPref > Other.CUDAPref;
1541     }
1542 
1543     DeclAccessPair Found;
1544     FunctionDecl *FD;
1545     bool Destroying, HasSizeT, HasAlignValT;
1546     Sema::CUDAFunctionPreference CUDAPref;
1547   };
1548 }
1549 
1550 /// Determine whether a type has new-extended alignment. This may be called when
1551 /// the type is incomplete (for a delete-expression with an incomplete pointee
1552 /// type), in which case it will conservatively return false if the alignment is
1553 /// not known.
1554 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1555   return S.getLangOpts().AlignedAllocation &&
1556          S.getASTContext().getTypeAlignIfKnown(AllocType) >
1557              S.getASTContext().getTargetInfo().getNewAlign();
1558 }
1559 
1560 /// Select the correct "usual" deallocation function to use from a selection of
1561 /// deallocation functions (either global or class-scope).
1562 static UsualDeallocFnInfo resolveDeallocationOverload(
1563     Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1564     llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1565   UsualDeallocFnInfo Best;
1566 
1567   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1568     UsualDeallocFnInfo Info(S, I.getPair());
1569     if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1570         Info.CUDAPref == Sema::CFP_Never)
1571       continue;
1572 
1573     if (!Best) {
1574       Best = Info;
1575       if (BestFns)
1576         BestFns->push_back(Info);
1577       continue;
1578     }
1579 
1580     if (Best.isBetterThan(Info, WantSize, WantAlign))
1581       continue;
1582 
1583     //   If more than one preferred function is found, all non-preferred
1584     //   functions are eliminated from further consideration.
1585     if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1586       BestFns->clear();
1587 
1588     Best = Info;
1589     if (BestFns)
1590       BestFns->push_back(Info);
1591   }
1592 
1593   return Best;
1594 }
1595 
1596 /// Determine whether a given type is a class for which 'delete[]' would call
1597 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1598 /// we need to store the array size (even if the type is
1599 /// trivially-destructible).
1600 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1601                                          QualType allocType) {
1602   const RecordType *record =
1603     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1604   if (!record) return false;
1605 
1606   // Try to find an operator delete[] in class scope.
1607 
1608   DeclarationName deleteName =
1609     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1610   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1611   S.LookupQualifiedName(ops, record->getDecl());
1612 
1613   // We're just doing this for information.
1614   ops.suppressDiagnostics();
1615 
1616   // Very likely: there's no operator delete[].
1617   if (ops.empty()) return false;
1618 
1619   // If it's ambiguous, it should be illegal to call operator delete[]
1620   // on this thing, so it doesn't matter if we allocate extra space or not.
1621   if (ops.isAmbiguous()) return false;
1622 
1623   // C++17 [expr.delete]p10:
1624   //   If the deallocation functions have class scope, the one without a
1625   //   parameter of type std::size_t is selected.
1626   auto Best = resolveDeallocationOverload(
1627       S, ops, /*WantSize*/false,
1628       /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1629   return Best && Best.HasSizeT;
1630 }
1631 
1632 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1633 ///
1634 /// E.g.:
1635 /// @code new (memory) int[size][4] @endcode
1636 /// or
1637 /// @code ::new Foo(23, "hello") @endcode
1638 ///
1639 /// \param StartLoc The first location of the expression.
1640 /// \param UseGlobal True if 'new' was prefixed with '::'.
1641 /// \param PlacementLParen Opening paren of the placement arguments.
1642 /// \param PlacementArgs Placement new arguments.
1643 /// \param PlacementRParen Closing paren of the placement arguments.
1644 /// \param TypeIdParens If the type is in parens, the source range.
1645 /// \param D The type to be allocated, as well as array dimensions.
1646 /// \param Initializer The initializing expression or initializer-list, or null
1647 ///   if there is none.
1648 ExprResult
1649 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1650                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1651                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
1652                   Declarator &D, Expr *Initializer) {
1653   Optional<Expr *> ArraySize;
1654   // If the specified type is an array, unwrap it and save the expression.
1655   if (D.getNumTypeObjects() > 0 &&
1656       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1657     DeclaratorChunk &Chunk = D.getTypeObject(0);
1658     if (D.getDeclSpec().hasAutoTypeSpec())
1659       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1660         << D.getSourceRange());
1661     if (Chunk.Arr.hasStatic)
1662       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1663         << D.getSourceRange());
1664     if (!Chunk.Arr.NumElts && !Initializer)
1665       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1666         << D.getSourceRange());
1667 
1668     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1669     D.DropFirstTypeObject();
1670   }
1671 
1672   // Every dimension shall be of constant size.
1673   if (ArraySize) {
1674     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1675       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1676         break;
1677 
1678       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1679       if (Expr *NumElts = (Expr *)Array.NumElts) {
1680         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1681           if (getLangOpts().CPlusPlus14) {
1682             // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1683             //   shall be a converted constant expression (5.19) of type std::size_t
1684             //   and shall evaluate to a strictly positive value.
1685             unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1686             assert(IntWidth && "Builtin type of size 0?");
1687             llvm::APSInt Value(IntWidth);
1688             Array.NumElts
1689              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1690                                                 CCEK_NewExpr)
1691                  .get();
1692           } else {
1693             Array.NumElts
1694               = VerifyIntegerConstantExpression(NumElts, nullptr,
1695                                                 diag::err_new_array_nonconst)
1696                   .get();
1697           }
1698           if (!Array.NumElts)
1699             return ExprError();
1700         }
1701       }
1702     }
1703   }
1704 
1705   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1706   QualType AllocType = TInfo->getType();
1707   if (D.isInvalidType())
1708     return ExprError();
1709 
1710   SourceRange DirectInitRange;
1711   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1712     DirectInitRange = List->getSourceRange();
1713 
1714   return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1715                      PlacementLParen, PlacementArgs, PlacementRParen,
1716                      TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1717                      Initializer);
1718 }
1719 
1720 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1721                                        Expr *Init) {
1722   if (!Init)
1723     return true;
1724   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1725     return PLE->getNumExprs() == 0;
1726   if (isa<ImplicitValueInitExpr>(Init))
1727     return true;
1728   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1729     return !CCE->isListInitialization() &&
1730            CCE->getConstructor()->isDefaultConstructor();
1731   else if (Style == CXXNewExpr::ListInit) {
1732     assert(isa<InitListExpr>(Init) &&
1733            "Shouldn't create list CXXConstructExprs for arrays.");
1734     return true;
1735   }
1736   return false;
1737 }
1738 
1739 bool
1740 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1741   if (!getLangOpts().AlignedAllocationUnavailable)
1742     return false;
1743   if (FD.isDefined())
1744     return false;
1745   bool IsAligned = false;
1746   if (FD.isReplaceableGlobalAllocationFunction(&IsAligned) && IsAligned)
1747     return true;
1748   return false;
1749 }
1750 
1751 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1752 // implemented in the standard library is selected.
1753 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1754                                                 SourceLocation Loc) {
1755   if (isUnavailableAlignedAllocationFunction(FD)) {
1756     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1757     StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1758         getASTContext().getTargetInfo().getPlatformName());
1759 
1760     OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1761     bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1762     Diag(Loc, diag::err_aligned_allocation_unavailable)
1763         << IsDelete << FD.getType().getAsString() << OSName
1764         << alignedAllocMinVersion(T.getOS()).getAsString();
1765     Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1766   }
1767 }
1768 
1769 ExprResult
1770 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1771                   SourceLocation PlacementLParen,
1772                   MultiExprArg PlacementArgs,
1773                   SourceLocation PlacementRParen,
1774                   SourceRange TypeIdParens,
1775                   QualType AllocType,
1776                   TypeSourceInfo *AllocTypeInfo,
1777                   Optional<Expr *> ArraySize,
1778                   SourceRange DirectInitRange,
1779                   Expr *Initializer) {
1780   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1781   SourceLocation StartLoc = Range.getBegin();
1782 
1783   CXXNewExpr::InitializationStyle initStyle;
1784   if (DirectInitRange.isValid()) {
1785     assert(Initializer && "Have parens but no initializer.");
1786     initStyle = CXXNewExpr::CallInit;
1787   } else if (Initializer && isa<InitListExpr>(Initializer))
1788     initStyle = CXXNewExpr::ListInit;
1789   else {
1790     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1791             isa<CXXConstructExpr>(Initializer)) &&
1792            "Initializer expression that cannot have been implicitly created.");
1793     initStyle = CXXNewExpr::NoInit;
1794   }
1795 
1796   Expr **Inits = &Initializer;
1797   unsigned NumInits = Initializer ? 1 : 0;
1798   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1799     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1800     Inits = List->getExprs();
1801     NumInits = List->getNumExprs();
1802   }
1803 
1804   // C++11 [expr.new]p15:
1805   //   A new-expression that creates an object of type T initializes that
1806   //   object as follows:
1807   InitializationKind Kind
1808       //     - If the new-initializer is omitted, the object is default-
1809       //       initialized (8.5); if no initialization is performed,
1810       //       the object has indeterminate value
1811       = initStyle == CXXNewExpr::NoInit
1812             ? InitializationKind::CreateDefault(TypeRange.getBegin())
1813             //     - Otherwise, the new-initializer is interpreted according to
1814             //     the
1815             //       initialization rules of 8.5 for direct-initialization.
1816             : initStyle == CXXNewExpr::ListInit
1817                   ? InitializationKind::CreateDirectList(
1818                         TypeRange.getBegin(), Initializer->getBeginLoc(),
1819                         Initializer->getEndLoc())
1820                   : InitializationKind::CreateDirect(TypeRange.getBegin(),
1821                                                      DirectInitRange.getBegin(),
1822                                                      DirectInitRange.getEnd());
1823 
1824   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1825   auto *Deduced = AllocType->getContainedDeducedType();
1826   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1827     if (ArraySize)
1828       return ExprError(
1829           Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
1830                diag::err_deduced_class_template_compound_type)
1831           << /*array*/ 2
1832           << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
1833 
1834     InitializedEntity Entity
1835       = InitializedEntity::InitializeNew(StartLoc, AllocType);
1836     AllocType = DeduceTemplateSpecializationFromInitializer(
1837         AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1838     if (AllocType.isNull())
1839       return ExprError();
1840   } else if (Deduced) {
1841     bool Braced = (initStyle == CXXNewExpr::ListInit);
1842     if (NumInits == 1) {
1843       if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1844         Inits = p->getInits();
1845         NumInits = p->getNumInits();
1846         Braced = true;
1847       }
1848     }
1849 
1850     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1851       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1852                        << AllocType << TypeRange);
1853     if (NumInits > 1) {
1854       Expr *FirstBad = Inits[1];
1855       return ExprError(Diag(FirstBad->getBeginLoc(),
1856                             diag::err_auto_new_ctor_multiple_expressions)
1857                        << AllocType << TypeRange);
1858     }
1859     if (Braced && !getLangOpts().CPlusPlus17)
1860       Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
1861           << AllocType << TypeRange;
1862     Expr *Deduce = Inits[0];
1863     QualType DeducedType;
1864     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1865       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1866                        << AllocType << Deduce->getType()
1867                        << TypeRange << Deduce->getSourceRange());
1868     if (DeducedType.isNull())
1869       return ExprError();
1870     AllocType = DeducedType;
1871   }
1872 
1873   // Per C++0x [expr.new]p5, the type being constructed may be a
1874   // typedef of an array type.
1875   if (!ArraySize) {
1876     if (const ConstantArrayType *Array
1877                               = Context.getAsConstantArrayType(AllocType)) {
1878       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1879                                          Context.getSizeType(),
1880                                          TypeRange.getEnd());
1881       AllocType = Array->getElementType();
1882     }
1883   }
1884 
1885   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1886     return ExprError();
1887 
1888   // In ARC, infer 'retaining' for the allocated
1889   if (getLangOpts().ObjCAutoRefCount &&
1890       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1891       AllocType->isObjCLifetimeType()) {
1892     AllocType = Context.getLifetimeQualifiedType(AllocType,
1893                                     AllocType->getObjCARCImplicitLifetime());
1894   }
1895 
1896   QualType ResultType = Context.getPointerType(AllocType);
1897 
1898   if (ArraySize && *ArraySize &&
1899       (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
1900     ExprResult result = CheckPlaceholderExpr(*ArraySize);
1901     if (result.isInvalid()) return ExprError();
1902     ArraySize = result.get();
1903   }
1904   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1905   //   integral or enumeration type with a non-negative value."
1906   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1907   //   enumeration type, or a class type for which a single non-explicit
1908   //   conversion function to integral or unscoped enumeration type exists.
1909   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1910   //   std::size_t.
1911   llvm::Optional<uint64_t> KnownArraySize;
1912   if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
1913     ExprResult ConvertedSize;
1914     if (getLangOpts().CPlusPlus14) {
1915       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
1916 
1917       ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
1918                                                 AA_Converting);
1919 
1920       if (!ConvertedSize.isInvalid() &&
1921           (*ArraySize)->getType()->getAs<RecordType>())
1922         // Diagnose the compatibility of this conversion.
1923         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1924           << (*ArraySize)->getType() << 0 << "'size_t'";
1925     } else {
1926       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1927       protected:
1928         Expr *ArraySize;
1929 
1930       public:
1931         SizeConvertDiagnoser(Expr *ArraySize)
1932             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1933               ArraySize(ArraySize) {}
1934 
1935         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1936                                              QualType T) override {
1937           return S.Diag(Loc, diag::err_array_size_not_integral)
1938                    << S.getLangOpts().CPlusPlus11 << T;
1939         }
1940 
1941         SemaDiagnosticBuilder diagnoseIncomplete(
1942             Sema &S, SourceLocation Loc, QualType T) override {
1943           return S.Diag(Loc, diag::err_array_size_incomplete_type)
1944                    << T << ArraySize->getSourceRange();
1945         }
1946 
1947         SemaDiagnosticBuilder diagnoseExplicitConv(
1948             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1949           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1950         }
1951 
1952         SemaDiagnosticBuilder noteExplicitConv(
1953             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1954           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1955                    << ConvTy->isEnumeralType() << ConvTy;
1956         }
1957 
1958         SemaDiagnosticBuilder diagnoseAmbiguous(
1959             Sema &S, SourceLocation Loc, QualType T) override {
1960           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1961         }
1962 
1963         SemaDiagnosticBuilder noteAmbiguous(
1964             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1965           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1966                    << ConvTy->isEnumeralType() << ConvTy;
1967         }
1968 
1969         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1970                                                  QualType T,
1971                                                  QualType ConvTy) override {
1972           return S.Diag(Loc,
1973                         S.getLangOpts().CPlusPlus11
1974                           ? diag::warn_cxx98_compat_array_size_conversion
1975                           : diag::ext_array_size_conversion)
1976                    << T << ConvTy->isEnumeralType() << ConvTy;
1977         }
1978       } SizeDiagnoser(*ArraySize);
1979 
1980       ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
1981                                                           SizeDiagnoser);
1982     }
1983     if (ConvertedSize.isInvalid())
1984       return ExprError();
1985 
1986     ArraySize = ConvertedSize.get();
1987     QualType SizeType = (*ArraySize)->getType();
1988 
1989     if (!SizeType->isIntegralOrUnscopedEnumerationType())
1990       return ExprError();
1991 
1992     // C++98 [expr.new]p7:
1993     //   The expression in a direct-new-declarator shall have integral type
1994     //   with a non-negative value.
1995     //
1996     // Let's see if this is a constant < 0. If so, we reject it out of hand,
1997     // per CWG1464. Otherwise, if it's not a constant, we must have an
1998     // unparenthesized array type.
1999     if (!(*ArraySize)->isValueDependent()) {
2000       llvm::APSInt Value;
2001       // We've already performed any required implicit conversion to integer or
2002       // unscoped enumeration type.
2003       // FIXME: Per CWG1464, we are required to check the value prior to
2004       // converting to size_t. This will never find a negative array size in
2005       // C++14 onwards, because Value is always unsigned here!
2006       if ((*ArraySize)->isIntegerConstantExpr(Value, Context)) {
2007         if (Value.isSigned() && Value.isNegative()) {
2008           return ExprError(Diag((*ArraySize)->getBeginLoc(),
2009                                 diag::err_typecheck_negative_array_size)
2010                            << (*ArraySize)->getSourceRange());
2011         }
2012 
2013         if (!AllocType->isDependentType()) {
2014           unsigned ActiveSizeBits =
2015             ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
2016           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2017             return ExprError(
2018                 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2019                 << Value.toString(10) << (*ArraySize)->getSourceRange());
2020         }
2021 
2022         KnownArraySize = Value.getZExtValue();
2023       } else if (TypeIdParens.isValid()) {
2024         // Can't have dynamic array size when the type-id is in parentheses.
2025         Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2026             << (*ArraySize)->getSourceRange()
2027             << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2028             << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2029 
2030         TypeIdParens = SourceRange();
2031       }
2032     }
2033 
2034     // Note that we do *not* convert the argument in any way.  It can
2035     // be signed, larger than size_t, whatever.
2036   }
2037 
2038   FunctionDecl *OperatorNew = nullptr;
2039   FunctionDecl *OperatorDelete = nullptr;
2040   unsigned Alignment =
2041       AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2042   unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2043   bool PassAlignment = getLangOpts().AlignedAllocation &&
2044                        Alignment > NewAlignment;
2045 
2046   AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2047   if (!AllocType->isDependentType() &&
2048       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2049       FindAllocationFunctions(
2050           StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2051           AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs,
2052           OperatorNew, OperatorDelete))
2053     return ExprError();
2054 
2055   // If this is an array allocation, compute whether the usual array
2056   // deallocation function for the type has a size_t parameter.
2057   bool UsualArrayDeleteWantsSize = false;
2058   if (ArraySize && !AllocType->isDependentType())
2059     UsualArrayDeleteWantsSize =
2060         doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2061 
2062   SmallVector<Expr *, 8> AllPlaceArgs;
2063   if (OperatorNew) {
2064     const FunctionProtoType *Proto =
2065         OperatorNew->getType()->getAs<FunctionProtoType>();
2066     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2067                                                     : VariadicDoesNotApply;
2068 
2069     // We've already converted the placement args, just fill in any default
2070     // arguments. Skip the first parameter because we don't have a corresponding
2071     // argument. Skip the second parameter too if we're passing in the
2072     // alignment; we've already filled it in.
2073     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2074                                PassAlignment ? 2 : 1, PlacementArgs,
2075                                AllPlaceArgs, CallType))
2076       return ExprError();
2077 
2078     if (!AllPlaceArgs.empty())
2079       PlacementArgs = AllPlaceArgs;
2080 
2081     // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
2082     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
2083 
2084     // FIXME: Missing call to CheckFunctionCall or equivalent
2085 
2086     // Warn if the type is over-aligned and is being allocated by (unaligned)
2087     // global operator new.
2088     if (PlacementArgs.empty() && !PassAlignment &&
2089         (OperatorNew->isImplicit() ||
2090          (OperatorNew->getBeginLoc().isValid() &&
2091           getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2092       if (Alignment > NewAlignment)
2093         Diag(StartLoc, diag::warn_overaligned_type)
2094             << AllocType
2095             << unsigned(Alignment / Context.getCharWidth())
2096             << unsigned(NewAlignment / Context.getCharWidth());
2097     }
2098   }
2099 
2100   // Array 'new' can't have any initializers except empty parentheses.
2101   // Initializer lists are also allowed, in C++11. Rely on the parser for the
2102   // dialect distinction.
2103   if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2104     SourceRange InitRange(Inits[0]->getBeginLoc(),
2105                           Inits[NumInits - 1]->getEndLoc());
2106     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2107     return ExprError();
2108   }
2109 
2110   // If we can perform the initialization, and we've not already done so,
2111   // do it now.
2112   if (!AllocType->isDependentType() &&
2113       !Expr::hasAnyTypeDependentArguments(
2114           llvm::makeArrayRef(Inits, NumInits))) {
2115     // The type we initialize is the complete type, including the array bound.
2116     QualType InitType;
2117     if (KnownArraySize)
2118       InitType = Context.getConstantArrayType(
2119           AllocType,
2120           llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2121                       *KnownArraySize),
2122           *ArraySize, ArrayType::Normal, 0);
2123     else if (ArraySize)
2124       InitType =
2125           Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2126     else
2127       InitType = AllocType;
2128 
2129     InitializedEntity Entity
2130       = InitializedEntity::InitializeNew(StartLoc, InitType);
2131     InitializationSequence InitSeq(*this, Entity, Kind,
2132                                    MultiExprArg(Inits, NumInits));
2133     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2134                                           MultiExprArg(Inits, NumInits));
2135     if (FullInit.isInvalid())
2136       return ExprError();
2137 
2138     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2139     // we don't want the initialized object to be destructed.
2140     // FIXME: We should not create these in the first place.
2141     if (CXXBindTemporaryExpr *Binder =
2142             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2143       FullInit = Binder->getSubExpr();
2144 
2145     Initializer = FullInit.get();
2146 
2147     // FIXME: If we have a KnownArraySize, check that the array bound of the
2148     // initializer is no greater than that constant value.
2149 
2150     if (ArraySize && !*ArraySize) {
2151       auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2152       if (CAT) {
2153         // FIXME: Track that the array size was inferred rather than explicitly
2154         // specified.
2155         ArraySize = IntegerLiteral::Create(
2156             Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2157       } else {
2158         Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2159             << Initializer->getSourceRange();
2160       }
2161     }
2162   }
2163 
2164   // Mark the new and delete operators as referenced.
2165   if (OperatorNew) {
2166     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2167       return ExprError();
2168     MarkFunctionReferenced(StartLoc, OperatorNew);
2169   }
2170   if (OperatorDelete) {
2171     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2172       return ExprError();
2173     MarkFunctionReferenced(StartLoc, OperatorDelete);
2174   }
2175 
2176   return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2177                             PassAlignment, UsualArrayDeleteWantsSize,
2178                             PlacementArgs, TypeIdParens, ArraySize, initStyle,
2179                             Initializer, ResultType, AllocTypeInfo, Range,
2180                             DirectInitRange);
2181 }
2182 
2183 /// Checks that a type is suitable as the allocated type
2184 /// in a new-expression.
2185 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2186                               SourceRange R) {
2187   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2188   //   abstract class type or array thereof.
2189   if (AllocType->isFunctionType())
2190     return Diag(Loc, diag::err_bad_new_type)
2191       << AllocType << 0 << R;
2192   else if (AllocType->isReferenceType())
2193     return Diag(Loc, diag::err_bad_new_type)
2194       << AllocType << 1 << R;
2195   else if (!AllocType->isDependentType() &&
2196            RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
2197     return true;
2198   else if (RequireNonAbstractType(Loc, AllocType,
2199                                   diag::err_allocation_of_abstract_type))
2200     return true;
2201   else if (AllocType->isVariablyModifiedType())
2202     return Diag(Loc, diag::err_variably_modified_new_type)
2203              << AllocType;
2204   else if (AllocType.getAddressSpace() != LangAS::Default &&
2205            !getLangOpts().OpenCLCPlusPlus)
2206     return Diag(Loc, diag::err_address_space_qualified_new)
2207       << AllocType.getUnqualifiedType()
2208       << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2209   else if (getLangOpts().ObjCAutoRefCount) {
2210     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2211       QualType BaseAllocType = Context.getBaseElementType(AT);
2212       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2213           BaseAllocType->isObjCLifetimeType())
2214         return Diag(Loc, diag::err_arc_new_array_without_ownership)
2215           << BaseAllocType;
2216     }
2217   }
2218 
2219   return false;
2220 }
2221 
2222 static bool resolveAllocationOverload(
2223     Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2224     bool &PassAlignment, FunctionDecl *&Operator,
2225     OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2226   OverloadCandidateSet Candidates(R.getNameLoc(),
2227                                   OverloadCandidateSet::CSK_Normal);
2228   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2229        Alloc != AllocEnd; ++Alloc) {
2230     // Even member operator new/delete are implicitly treated as
2231     // static, so don't use AddMemberCandidate.
2232     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2233 
2234     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2235       S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2236                                      /*ExplicitTemplateArgs=*/nullptr, Args,
2237                                      Candidates,
2238                                      /*SuppressUserConversions=*/false);
2239       continue;
2240     }
2241 
2242     FunctionDecl *Fn = cast<FunctionDecl>(D);
2243     S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2244                            /*SuppressUserConversions=*/false);
2245   }
2246 
2247   // Do the resolution.
2248   OverloadCandidateSet::iterator Best;
2249   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2250   case OR_Success: {
2251     // Got one!
2252     FunctionDecl *FnDecl = Best->Function;
2253     if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2254                                 Best->FoundDecl) == Sema::AR_inaccessible)
2255       return true;
2256 
2257     Operator = FnDecl;
2258     return false;
2259   }
2260 
2261   case OR_No_Viable_Function:
2262     // C++17 [expr.new]p13:
2263     //   If no matching function is found and the allocated object type has
2264     //   new-extended alignment, the alignment argument is removed from the
2265     //   argument list, and overload resolution is performed again.
2266     if (PassAlignment) {
2267       PassAlignment = false;
2268       AlignArg = Args[1];
2269       Args.erase(Args.begin() + 1);
2270       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2271                                        Operator, &Candidates, AlignArg,
2272                                        Diagnose);
2273     }
2274 
2275     // MSVC will fall back on trying to find a matching global operator new
2276     // if operator new[] cannot be found.  Also, MSVC will leak by not
2277     // generating a call to operator delete or operator delete[], but we
2278     // will not replicate that bug.
2279     // FIXME: Find out how this interacts with the std::align_val_t fallback
2280     // once MSVC implements it.
2281     if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2282         S.Context.getLangOpts().MSVCCompat) {
2283       R.clear();
2284       R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2285       S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2286       // FIXME: This will give bad diagnostics pointing at the wrong functions.
2287       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2288                                        Operator, /*Candidates=*/nullptr,
2289                                        /*AlignArg=*/nullptr, Diagnose);
2290     }
2291 
2292     if (Diagnose) {
2293       PartialDiagnosticAt PD(R.getNameLoc(), S.PDiag(diag::err_ovl_no_viable_function_in_call)
2294           << R.getLookupName() << Range);
2295 
2296       // If we have aligned candidates, only note the align_val_t candidates
2297       // from AlignedCandidates and the non-align_val_t candidates from
2298       // Candidates.
2299       if (AlignedCandidates) {
2300         auto IsAligned = [](OverloadCandidate &C) {
2301           return C.Function->getNumParams() > 1 &&
2302                  C.Function->getParamDecl(1)->getType()->isAlignValT();
2303         };
2304         auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2305 
2306         // This was an overaligned allocation, so list the aligned candidates
2307         // first.
2308         Args.insert(Args.begin() + 1, AlignArg);
2309         AlignedCandidates->NoteCandidates(PD, S, OCD_AllCandidates, Args, "",
2310                                           R.getNameLoc(), IsAligned);
2311         Args.erase(Args.begin() + 1);
2312         Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args, "", R.getNameLoc(),
2313                                   IsUnaligned);
2314       } else {
2315         Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args);
2316       }
2317     }
2318     return true;
2319 
2320   case OR_Ambiguous:
2321     if (Diagnose) {
2322       Candidates.NoteCandidates(
2323           PartialDiagnosticAt(R.getNameLoc(),
2324                               S.PDiag(diag::err_ovl_ambiguous_call)
2325                                   << R.getLookupName() << Range),
2326           S, OCD_ViableCandidates, Args);
2327     }
2328     return true;
2329 
2330   case OR_Deleted: {
2331     if (Diagnose) {
2332       Candidates.NoteCandidates(
2333           PartialDiagnosticAt(R.getNameLoc(),
2334                               S.PDiag(diag::err_ovl_deleted_call)
2335                                   << R.getLookupName() << Range),
2336           S, OCD_AllCandidates, Args);
2337     }
2338     return true;
2339   }
2340   }
2341   llvm_unreachable("Unreachable, bad result from BestViableFunction");
2342 }
2343 
2344 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2345                                    AllocationFunctionScope NewScope,
2346                                    AllocationFunctionScope DeleteScope,
2347                                    QualType AllocType, bool IsArray,
2348                                    bool &PassAlignment, MultiExprArg PlaceArgs,
2349                                    FunctionDecl *&OperatorNew,
2350                                    FunctionDecl *&OperatorDelete,
2351                                    bool Diagnose) {
2352   // --- Choosing an allocation function ---
2353   // C++ 5.3.4p8 - 14 & 18
2354   // 1) If looking in AFS_Global scope for allocation functions, only look in
2355   //    the global scope. Else, if AFS_Class, only look in the scope of the
2356   //    allocated class. If AFS_Both, look in both.
2357   // 2) If an array size is given, look for operator new[], else look for
2358   //   operator new.
2359   // 3) The first argument is always size_t. Append the arguments from the
2360   //   placement form.
2361 
2362   SmallVector<Expr*, 8> AllocArgs;
2363   AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2364 
2365   // We don't care about the actual value of these arguments.
2366   // FIXME: Should the Sema create the expression and embed it in the syntax
2367   // tree? Or should the consumer just recalculate the value?
2368   // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2369   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2370                       Context.getTargetInfo().getPointerWidth(0)),
2371                       Context.getSizeType(),
2372                       SourceLocation());
2373   AllocArgs.push_back(&Size);
2374 
2375   QualType AlignValT = Context.VoidTy;
2376   if (PassAlignment) {
2377     DeclareGlobalNewDelete();
2378     AlignValT = Context.getTypeDeclType(getStdAlignValT());
2379   }
2380   CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2381   if (PassAlignment)
2382     AllocArgs.push_back(&Align);
2383 
2384   AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2385 
2386   // C++ [expr.new]p8:
2387   //   If the allocated type is a non-array type, the allocation
2388   //   function's name is operator new and the deallocation function's
2389   //   name is operator delete. If the allocated type is an array
2390   //   type, the allocation function's name is operator new[] and the
2391   //   deallocation function's name is operator delete[].
2392   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2393       IsArray ? OO_Array_New : OO_New);
2394 
2395   QualType AllocElemType = Context.getBaseElementType(AllocType);
2396 
2397   // Find the allocation function.
2398   {
2399     LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2400 
2401     // C++1z [expr.new]p9:
2402     //   If the new-expression begins with a unary :: operator, the allocation
2403     //   function's name is looked up in the global scope. Otherwise, if the
2404     //   allocated type is a class type T or array thereof, the allocation
2405     //   function's name is looked up in the scope of T.
2406     if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2407       LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2408 
2409     // We can see ambiguity here if the allocation function is found in
2410     // multiple base classes.
2411     if (R.isAmbiguous())
2412       return true;
2413 
2414     //   If this lookup fails to find the name, or if the allocated type is not
2415     //   a class type, the allocation function's name is looked up in the
2416     //   global scope.
2417     if (R.empty()) {
2418       if (NewScope == AFS_Class)
2419         return true;
2420 
2421       LookupQualifiedName(R, Context.getTranslationUnitDecl());
2422     }
2423 
2424     if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2425       if (PlaceArgs.empty()) {
2426         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2427       } else {
2428         Diag(StartLoc, diag::err_openclcxx_placement_new);
2429       }
2430       return true;
2431     }
2432 
2433     assert(!R.empty() && "implicitly declared allocation functions not found");
2434     assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2435 
2436     // We do our own custom access checks below.
2437     R.suppressDiagnostics();
2438 
2439     if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2440                                   OperatorNew, /*Candidates=*/nullptr,
2441                                   /*AlignArg=*/nullptr, Diagnose))
2442       return true;
2443   }
2444 
2445   // We don't need an operator delete if we're running under -fno-exceptions.
2446   if (!getLangOpts().Exceptions) {
2447     OperatorDelete = nullptr;
2448     return false;
2449   }
2450 
2451   // Note, the name of OperatorNew might have been changed from array to
2452   // non-array by resolveAllocationOverload.
2453   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2454       OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2455           ? OO_Array_Delete
2456           : OO_Delete);
2457 
2458   // C++ [expr.new]p19:
2459   //
2460   //   If the new-expression begins with a unary :: operator, the
2461   //   deallocation function's name is looked up in the global
2462   //   scope. Otherwise, if the allocated type is a class type T or an
2463   //   array thereof, the deallocation function's name is looked up in
2464   //   the scope of T. If this lookup fails to find the name, or if
2465   //   the allocated type is not a class type or array thereof, the
2466   //   deallocation function's name is looked up in the global scope.
2467   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2468   if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2469     auto *RD =
2470         cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2471     LookupQualifiedName(FoundDelete, RD);
2472   }
2473   if (FoundDelete.isAmbiguous())
2474     return true; // FIXME: clean up expressions?
2475 
2476   bool FoundGlobalDelete = FoundDelete.empty();
2477   if (FoundDelete.empty()) {
2478     if (DeleteScope == AFS_Class)
2479       return true;
2480 
2481     DeclareGlobalNewDelete();
2482     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2483   }
2484 
2485   FoundDelete.suppressDiagnostics();
2486 
2487   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2488 
2489   // Whether we're looking for a placement operator delete is dictated
2490   // by whether we selected a placement operator new, not by whether
2491   // we had explicit placement arguments.  This matters for things like
2492   //   struct A { void *operator new(size_t, int = 0); ... };
2493   //   A *a = new A()
2494   //
2495   // We don't have any definition for what a "placement allocation function"
2496   // is, but we assume it's any allocation function whose
2497   // parameter-declaration-clause is anything other than (size_t).
2498   //
2499   // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2500   // This affects whether an exception from the constructor of an overaligned
2501   // type uses the sized or non-sized form of aligned operator delete.
2502   bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2503                         OperatorNew->isVariadic();
2504 
2505   if (isPlacementNew) {
2506     // C++ [expr.new]p20:
2507     //   A declaration of a placement deallocation function matches the
2508     //   declaration of a placement allocation function if it has the
2509     //   same number of parameters and, after parameter transformations
2510     //   (8.3.5), all parameter types except the first are
2511     //   identical. [...]
2512     //
2513     // To perform this comparison, we compute the function type that
2514     // the deallocation function should have, and use that type both
2515     // for template argument deduction and for comparison purposes.
2516     QualType ExpectedFunctionType;
2517     {
2518       const FunctionProtoType *Proto
2519         = OperatorNew->getType()->getAs<FunctionProtoType>();
2520 
2521       SmallVector<QualType, 4> ArgTypes;
2522       ArgTypes.push_back(Context.VoidPtrTy);
2523       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2524         ArgTypes.push_back(Proto->getParamType(I));
2525 
2526       FunctionProtoType::ExtProtoInfo EPI;
2527       // FIXME: This is not part of the standard's rule.
2528       EPI.Variadic = Proto->isVariadic();
2529 
2530       ExpectedFunctionType
2531         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2532     }
2533 
2534     for (LookupResult::iterator D = FoundDelete.begin(),
2535                              DEnd = FoundDelete.end();
2536          D != DEnd; ++D) {
2537       FunctionDecl *Fn = nullptr;
2538       if (FunctionTemplateDecl *FnTmpl =
2539               dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2540         // Perform template argument deduction to try to match the
2541         // expected function type.
2542         TemplateDeductionInfo Info(StartLoc);
2543         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2544                                     Info))
2545           continue;
2546       } else
2547         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2548 
2549       if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2550                                                   ExpectedFunctionType,
2551                                                   /*AdjustExcpetionSpec*/true),
2552                               ExpectedFunctionType))
2553         Matches.push_back(std::make_pair(D.getPair(), Fn));
2554     }
2555 
2556     if (getLangOpts().CUDA)
2557       EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2558   } else {
2559     // C++1y [expr.new]p22:
2560     //   For a non-placement allocation function, the normal deallocation
2561     //   function lookup is used
2562     //
2563     // Per [expr.delete]p10, this lookup prefers a member operator delete
2564     // without a size_t argument, but prefers a non-member operator delete
2565     // with a size_t where possible (which it always is in this case).
2566     llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2567     UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2568         *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2569         /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2570         &BestDeallocFns);
2571     if (Selected)
2572       Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2573     else {
2574       // If we failed to select an operator, all remaining functions are viable
2575       // but ambiguous.
2576       for (auto Fn : BestDeallocFns)
2577         Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2578     }
2579   }
2580 
2581   // C++ [expr.new]p20:
2582   //   [...] If the lookup finds a single matching deallocation
2583   //   function, that function will be called; otherwise, no
2584   //   deallocation function will be called.
2585   if (Matches.size() == 1) {
2586     OperatorDelete = Matches[0].second;
2587 
2588     // C++1z [expr.new]p23:
2589     //   If the lookup finds a usual deallocation function (3.7.4.2)
2590     //   with a parameter of type std::size_t and that function, considered
2591     //   as a placement deallocation function, would have been
2592     //   selected as a match for the allocation function, the program
2593     //   is ill-formed.
2594     if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2595         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2596       UsualDeallocFnInfo Info(*this,
2597                               DeclAccessPair::make(OperatorDelete, AS_public));
2598       // Core issue, per mail to core reflector, 2016-10-09:
2599       //   If this is a member operator delete, and there is a corresponding
2600       //   non-sized member operator delete, this isn't /really/ a sized
2601       //   deallocation function, it just happens to have a size_t parameter.
2602       bool IsSizedDelete = Info.HasSizeT;
2603       if (IsSizedDelete && !FoundGlobalDelete) {
2604         auto NonSizedDelete =
2605             resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2606                                         /*WantAlign*/Info.HasAlignValT);
2607         if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2608             NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2609           IsSizedDelete = false;
2610       }
2611 
2612       if (IsSizedDelete) {
2613         SourceRange R = PlaceArgs.empty()
2614                             ? SourceRange()
2615                             : SourceRange(PlaceArgs.front()->getBeginLoc(),
2616                                           PlaceArgs.back()->getEndLoc());
2617         Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2618         if (!OperatorDelete->isImplicit())
2619           Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2620               << DeleteName;
2621       }
2622     }
2623 
2624     CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2625                           Matches[0].first);
2626   } else if (!Matches.empty()) {
2627     // We found multiple suitable operators. Per [expr.new]p20, that means we
2628     // call no 'operator delete' function, but we should at least warn the user.
2629     // FIXME: Suppress this warning if the construction cannot throw.
2630     Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2631       << DeleteName << AllocElemType;
2632 
2633     for (auto &Match : Matches)
2634       Diag(Match.second->getLocation(),
2635            diag::note_member_declared_here) << DeleteName;
2636   }
2637 
2638   return false;
2639 }
2640 
2641 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2642 /// delete. These are:
2643 /// @code
2644 ///   // C++03:
2645 ///   void* operator new(std::size_t) throw(std::bad_alloc);
2646 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
2647 ///   void operator delete(void *) throw();
2648 ///   void operator delete[](void *) throw();
2649 ///   // C++11:
2650 ///   void* operator new(std::size_t);
2651 ///   void* operator new[](std::size_t);
2652 ///   void operator delete(void *) noexcept;
2653 ///   void operator delete[](void *) noexcept;
2654 ///   // C++1y:
2655 ///   void* operator new(std::size_t);
2656 ///   void* operator new[](std::size_t);
2657 ///   void operator delete(void *) noexcept;
2658 ///   void operator delete[](void *) noexcept;
2659 ///   void operator delete(void *, std::size_t) noexcept;
2660 ///   void operator delete[](void *, std::size_t) noexcept;
2661 /// @endcode
2662 /// Note that the placement and nothrow forms of new are *not* implicitly
2663 /// declared. Their use requires including \<new\>.
2664 void Sema::DeclareGlobalNewDelete() {
2665   if (GlobalNewDeleteDeclared)
2666     return;
2667 
2668   // The implicitly declared new and delete operators
2669   // are not supported in OpenCL.
2670   if (getLangOpts().OpenCLCPlusPlus)
2671     return;
2672 
2673   // C++ [basic.std.dynamic]p2:
2674   //   [...] The following allocation and deallocation functions (18.4) are
2675   //   implicitly declared in global scope in each translation unit of a
2676   //   program
2677   //
2678   //     C++03:
2679   //     void* operator new(std::size_t) throw(std::bad_alloc);
2680   //     void* operator new[](std::size_t) throw(std::bad_alloc);
2681   //     void  operator delete(void*) throw();
2682   //     void  operator delete[](void*) throw();
2683   //     C++11:
2684   //     void* operator new(std::size_t);
2685   //     void* operator new[](std::size_t);
2686   //     void  operator delete(void*) noexcept;
2687   //     void  operator delete[](void*) noexcept;
2688   //     C++1y:
2689   //     void* operator new(std::size_t);
2690   //     void* operator new[](std::size_t);
2691   //     void  operator delete(void*) noexcept;
2692   //     void  operator delete[](void*) noexcept;
2693   //     void  operator delete(void*, std::size_t) noexcept;
2694   //     void  operator delete[](void*, std::size_t) noexcept;
2695   //
2696   //   These implicit declarations introduce only the function names operator
2697   //   new, operator new[], operator delete, operator delete[].
2698   //
2699   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2700   // "std" or "bad_alloc" as necessary to form the exception specification.
2701   // However, we do not make these implicit declarations visible to name
2702   // lookup.
2703   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2704     // The "std::bad_alloc" class has not yet been declared, so build it
2705     // implicitly.
2706     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2707                                         getOrCreateStdNamespace(),
2708                                         SourceLocation(), SourceLocation(),
2709                                       &PP.getIdentifierTable().get("bad_alloc"),
2710                                         nullptr);
2711     getStdBadAlloc()->setImplicit(true);
2712   }
2713   if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2714     // The "std::align_val_t" enum class has not yet been declared, so build it
2715     // implicitly.
2716     auto *AlignValT = EnumDecl::Create(
2717         Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2718         &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2719     AlignValT->setIntegerType(Context.getSizeType());
2720     AlignValT->setPromotionType(Context.getSizeType());
2721     AlignValT->setImplicit(true);
2722     StdAlignValT = AlignValT;
2723   }
2724 
2725   GlobalNewDeleteDeclared = true;
2726 
2727   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2728   QualType SizeT = Context.getSizeType();
2729 
2730   auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2731                                               QualType Return, QualType Param) {
2732     llvm::SmallVector<QualType, 3> Params;
2733     Params.push_back(Param);
2734 
2735     // Create up to four variants of the function (sized/aligned).
2736     bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2737                            (Kind == OO_Delete || Kind == OO_Array_Delete);
2738     bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2739 
2740     int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2741     int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2742     for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2743       if (Sized)
2744         Params.push_back(SizeT);
2745 
2746       for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2747         if (Aligned)
2748           Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2749 
2750         DeclareGlobalAllocationFunction(
2751             Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2752 
2753         if (Aligned)
2754           Params.pop_back();
2755       }
2756     }
2757   };
2758 
2759   DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
2760   DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
2761   DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
2762   DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
2763 }
2764 
2765 /// DeclareGlobalAllocationFunction - Declares a single implicit global
2766 /// allocation function if it doesn't already exist.
2767 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2768                                            QualType Return,
2769                                            ArrayRef<QualType> Params) {
2770   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2771 
2772   // Check if this function is already declared.
2773   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2774   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2775        Alloc != AllocEnd; ++Alloc) {
2776     // Only look at non-template functions, as it is the predefined,
2777     // non-templated allocation function we are trying to declare here.
2778     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2779       if (Func->getNumParams() == Params.size()) {
2780         llvm::SmallVector<QualType, 3> FuncParams;
2781         for (auto *P : Func->parameters())
2782           FuncParams.push_back(
2783               Context.getCanonicalType(P->getType().getUnqualifiedType()));
2784         if (llvm::makeArrayRef(FuncParams) == Params) {
2785           // Make the function visible to name lookup, even if we found it in
2786           // an unimported module. It either is an implicitly-declared global
2787           // allocation function, or is suppressing that function.
2788           Func->setVisibleDespiteOwningModule();
2789           return;
2790         }
2791       }
2792     }
2793   }
2794 
2795   FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
2796       /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
2797 
2798   QualType BadAllocType;
2799   bool HasBadAllocExceptionSpec
2800     = (Name.getCXXOverloadedOperator() == OO_New ||
2801        Name.getCXXOverloadedOperator() == OO_Array_New);
2802   if (HasBadAllocExceptionSpec) {
2803     if (!getLangOpts().CPlusPlus11) {
2804       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2805       assert(StdBadAlloc && "Must have std::bad_alloc declared");
2806       EPI.ExceptionSpec.Type = EST_Dynamic;
2807       EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2808     }
2809   } else {
2810     EPI.ExceptionSpec =
2811         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2812   }
2813 
2814   auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
2815     QualType FnType = Context.getFunctionType(Return, Params, EPI);
2816     FunctionDecl *Alloc = FunctionDecl::Create(
2817         Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
2818         FnType, /*TInfo=*/nullptr, SC_None, false, true);
2819     Alloc->setImplicit();
2820     // Global allocation functions should always be visible.
2821     Alloc->setVisibleDespiteOwningModule();
2822 
2823     Alloc->addAttr(VisibilityAttr::CreateImplicit(
2824         Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
2825                      ? VisibilityAttr::Hidden
2826                      : VisibilityAttr::Default));
2827 
2828     llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
2829     for (QualType T : Params) {
2830       ParamDecls.push_back(ParmVarDecl::Create(
2831           Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
2832           /*TInfo=*/nullptr, SC_None, nullptr));
2833       ParamDecls.back()->setImplicit();
2834     }
2835     Alloc->setParams(ParamDecls);
2836     if (ExtraAttr)
2837       Alloc->addAttr(ExtraAttr);
2838     Context.getTranslationUnitDecl()->addDecl(Alloc);
2839     IdResolver.tryAddTopLevelDecl(Alloc, Name);
2840   };
2841 
2842   if (!LangOpts.CUDA)
2843     CreateAllocationFunctionDecl(nullptr);
2844   else {
2845     // Host and device get their own declaration so each can be
2846     // defined or re-declared independently.
2847     CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
2848     CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
2849   }
2850 }
2851 
2852 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2853                                                   bool CanProvideSize,
2854                                                   bool Overaligned,
2855                                                   DeclarationName Name) {
2856   DeclareGlobalNewDelete();
2857 
2858   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2859   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2860 
2861   // FIXME: It's possible for this to result in ambiguity, through a
2862   // user-declared variadic operator delete or the enable_if attribute. We
2863   // should probably not consider those cases to be usual deallocation
2864   // functions. But for now we just make an arbitrary choice in that case.
2865   auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
2866                                             Overaligned);
2867   assert(Result.FD && "operator delete missing from global scope?");
2868   return Result.FD;
2869 }
2870 
2871 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
2872                                                           CXXRecordDecl *RD) {
2873   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2874 
2875   FunctionDecl *OperatorDelete = nullptr;
2876   if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2877     return nullptr;
2878   if (OperatorDelete)
2879     return OperatorDelete;
2880 
2881   // If there's no class-specific operator delete, look up the global
2882   // non-array delete.
2883   return FindUsualDeallocationFunction(
2884       Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
2885       Name);
2886 }
2887 
2888 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2889                                     DeclarationName Name,
2890                                     FunctionDecl *&Operator, bool Diagnose) {
2891   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2892   // Try to find operator delete/operator delete[] in class scope.
2893   LookupQualifiedName(Found, RD);
2894 
2895   if (Found.isAmbiguous())
2896     return true;
2897 
2898   Found.suppressDiagnostics();
2899 
2900   bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
2901 
2902   // C++17 [expr.delete]p10:
2903   //   If the deallocation functions have class scope, the one without a
2904   //   parameter of type std::size_t is selected.
2905   llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
2906   resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
2907                               /*WantAlign*/ Overaligned, &Matches);
2908 
2909   // If we could find an overload, use it.
2910   if (Matches.size() == 1) {
2911     Operator = cast<CXXMethodDecl>(Matches[0].FD);
2912 
2913     // FIXME: DiagnoseUseOfDecl?
2914     if (Operator->isDeleted()) {
2915       if (Diagnose) {
2916         Diag(StartLoc, diag::err_deleted_function_use);
2917         NoteDeletedFunction(Operator);
2918       }
2919       return true;
2920     }
2921 
2922     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2923                               Matches[0].Found, Diagnose) == AR_inaccessible)
2924       return true;
2925 
2926     return false;
2927   }
2928 
2929   // We found multiple suitable operators; complain about the ambiguity.
2930   // FIXME: The standard doesn't say to do this; it appears that the intent
2931   // is that this should never happen.
2932   if (!Matches.empty()) {
2933     if (Diagnose) {
2934       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2935         << Name << RD;
2936       for (auto &Match : Matches)
2937         Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
2938     }
2939     return true;
2940   }
2941 
2942   // We did find operator delete/operator delete[] declarations, but
2943   // none of them were suitable.
2944   if (!Found.empty()) {
2945     if (Diagnose) {
2946       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2947         << Name << RD;
2948 
2949       for (NamedDecl *D : Found)
2950         Diag(D->getUnderlyingDecl()->getLocation(),
2951              diag::note_member_declared_here) << Name;
2952     }
2953     return true;
2954   }
2955 
2956   Operator = nullptr;
2957   return false;
2958 }
2959 
2960 namespace {
2961 /// Checks whether delete-expression, and new-expression used for
2962 ///  initializing deletee have the same array form.
2963 class MismatchingNewDeleteDetector {
2964 public:
2965   enum MismatchResult {
2966     /// Indicates that there is no mismatch or a mismatch cannot be proven.
2967     NoMismatch,
2968     /// Indicates that variable is initialized with mismatching form of \a new.
2969     VarInitMismatches,
2970     /// Indicates that member is initialized with mismatching form of \a new.
2971     MemberInitMismatches,
2972     /// Indicates that 1 or more constructors' definitions could not been
2973     /// analyzed, and they will be checked again at the end of translation unit.
2974     AnalyzeLater
2975   };
2976 
2977   /// \param EndOfTU True, if this is the final analysis at the end of
2978   /// translation unit. False, if this is the initial analysis at the point
2979   /// delete-expression was encountered.
2980   explicit MismatchingNewDeleteDetector(bool EndOfTU)
2981       : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
2982         HasUndefinedConstructors(false) {}
2983 
2984   /// Checks whether pointee of a delete-expression is initialized with
2985   /// matching form of new-expression.
2986   ///
2987   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2988   /// point where delete-expression is encountered, then a warning will be
2989   /// issued immediately. If return value is \c AnalyzeLater at the point where
2990   /// delete-expression is seen, then member will be analyzed at the end of
2991   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2992   /// couldn't be analyzed. If at least one constructor initializes the member
2993   /// with matching type of new, the return value is \c NoMismatch.
2994   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
2995   /// Analyzes a class member.
2996   /// \param Field Class member to analyze.
2997   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
2998   /// for deleting the \p Field.
2999   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3000   FieldDecl *Field;
3001   /// List of mismatching new-expressions used for initialization of the pointee
3002   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3003   /// Indicates whether delete-expression was in array form.
3004   bool IsArrayForm;
3005 
3006 private:
3007   const bool EndOfTU;
3008   /// Indicates that there is at least one constructor without body.
3009   bool HasUndefinedConstructors;
3010   /// Returns \c CXXNewExpr from given initialization expression.
3011   /// \param E Expression used for initializing pointee in delete-expression.
3012   /// E can be a single-element \c InitListExpr consisting of new-expression.
3013   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3014   /// Returns whether member is initialized with mismatching form of
3015   /// \c new either by the member initializer or in-class initialization.
3016   ///
3017   /// If bodies of all constructors are not visible at the end of translation
3018   /// unit or at least one constructor initializes member with the matching
3019   /// form of \c new, mismatch cannot be proven, and this function will return
3020   /// \c NoMismatch.
3021   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3022   /// Returns whether variable is initialized with mismatching form of
3023   /// \c new.
3024   ///
3025   /// If variable is initialized with matching form of \c new or variable is not
3026   /// initialized with a \c new expression, this function will return true.
3027   /// If variable is initialized with mismatching form of \c new, returns false.
3028   /// \param D Variable to analyze.
3029   bool hasMatchingVarInit(const DeclRefExpr *D);
3030   /// Checks whether the constructor initializes pointee with mismatching
3031   /// form of \c new.
3032   ///
3033   /// Returns true, if member is initialized with matching form of \c new in
3034   /// member initializer list. Returns false, if member is initialized with the
3035   /// matching form of \c new in this constructor's initializer or given
3036   /// constructor isn't defined at the point where delete-expression is seen, or
3037   /// member isn't initialized by the constructor.
3038   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3039   /// Checks whether member is initialized with matching form of
3040   /// \c new in member initializer list.
3041   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3042   /// Checks whether member is initialized with mismatching form of \c new by
3043   /// in-class initializer.
3044   MismatchResult analyzeInClassInitializer();
3045 };
3046 }
3047 
3048 MismatchingNewDeleteDetector::MismatchResult
3049 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3050   NewExprs.clear();
3051   assert(DE && "Expected delete-expression");
3052   IsArrayForm = DE->isArrayForm();
3053   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3054   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3055     return analyzeMemberExpr(ME);
3056   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3057     if (!hasMatchingVarInit(D))
3058       return VarInitMismatches;
3059   }
3060   return NoMismatch;
3061 }
3062 
3063 const CXXNewExpr *
3064 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3065   assert(E != nullptr && "Expected a valid initializer expression");
3066   E = E->IgnoreParenImpCasts();
3067   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3068     if (ILE->getNumInits() == 1)
3069       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3070   }
3071 
3072   return dyn_cast_or_null<const CXXNewExpr>(E);
3073 }
3074 
3075 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3076     const CXXCtorInitializer *CI) {
3077   const CXXNewExpr *NE = nullptr;
3078   if (Field == CI->getMember() &&
3079       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3080     if (NE->isArray() == IsArrayForm)
3081       return true;
3082     else
3083       NewExprs.push_back(NE);
3084   }
3085   return false;
3086 }
3087 
3088 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3089     const CXXConstructorDecl *CD) {
3090   if (CD->isImplicit())
3091     return false;
3092   const FunctionDecl *Definition = CD;
3093   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3094     HasUndefinedConstructors = true;
3095     return EndOfTU;
3096   }
3097   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3098     if (hasMatchingNewInCtorInit(CI))
3099       return true;
3100   }
3101   return false;
3102 }
3103 
3104 MismatchingNewDeleteDetector::MismatchResult
3105 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3106   assert(Field != nullptr && "This should be called only for members");
3107   const Expr *InitExpr = Field->getInClassInitializer();
3108   if (!InitExpr)
3109     return EndOfTU ? NoMismatch : AnalyzeLater;
3110   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3111     if (NE->isArray() != IsArrayForm) {
3112       NewExprs.push_back(NE);
3113       return MemberInitMismatches;
3114     }
3115   }
3116   return NoMismatch;
3117 }
3118 
3119 MismatchingNewDeleteDetector::MismatchResult
3120 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3121                                            bool DeleteWasArrayForm) {
3122   assert(Field != nullptr && "Analysis requires a valid class member.");
3123   this->Field = Field;
3124   IsArrayForm = DeleteWasArrayForm;
3125   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3126   for (const auto *CD : RD->ctors()) {
3127     if (hasMatchingNewInCtor(CD))
3128       return NoMismatch;
3129   }
3130   if (HasUndefinedConstructors)
3131     return EndOfTU ? NoMismatch : AnalyzeLater;
3132   if (!NewExprs.empty())
3133     return MemberInitMismatches;
3134   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3135                                         : NoMismatch;
3136 }
3137 
3138 MismatchingNewDeleteDetector::MismatchResult
3139 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3140   assert(ME != nullptr && "Expected a member expression");
3141   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3142     return analyzeField(F, IsArrayForm);
3143   return NoMismatch;
3144 }
3145 
3146 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3147   const CXXNewExpr *NE = nullptr;
3148   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3149     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3150         NE->isArray() != IsArrayForm) {
3151       NewExprs.push_back(NE);
3152     }
3153   }
3154   return NewExprs.empty();
3155 }
3156 
3157 static void
3158 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3159                             const MismatchingNewDeleteDetector &Detector) {
3160   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3161   FixItHint H;
3162   if (!Detector.IsArrayForm)
3163     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3164   else {
3165     SourceLocation RSquare = Lexer::findLocationAfterToken(
3166         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3167         SemaRef.getLangOpts(), true);
3168     if (RSquare.isValid())
3169       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3170   }
3171   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3172       << Detector.IsArrayForm << H;
3173 
3174   for (const auto *NE : Detector.NewExprs)
3175     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3176         << Detector.IsArrayForm;
3177 }
3178 
3179 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3180   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3181     return;
3182   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3183   switch (Detector.analyzeDeleteExpr(DE)) {
3184   case MismatchingNewDeleteDetector::VarInitMismatches:
3185   case MismatchingNewDeleteDetector::MemberInitMismatches: {
3186     DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3187     break;
3188   }
3189   case MismatchingNewDeleteDetector::AnalyzeLater: {
3190     DeleteExprs[Detector.Field].push_back(
3191         std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3192     break;
3193   }
3194   case MismatchingNewDeleteDetector::NoMismatch:
3195     break;
3196   }
3197 }
3198 
3199 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3200                                      bool DeleteWasArrayForm) {
3201   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3202   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3203   case MismatchingNewDeleteDetector::VarInitMismatches:
3204     llvm_unreachable("This analysis should have been done for class members.");
3205   case MismatchingNewDeleteDetector::AnalyzeLater:
3206     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3207                      "translation unit.");
3208   case MismatchingNewDeleteDetector::MemberInitMismatches:
3209     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3210     break;
3211   case MismatchingNewDeleteDetector::NoMismatch:
3212     break;
3213   }
3214 }
3215 
3216 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3217 /// @code ::delete ptr; @endcode
3218 /// or
3219 /// @code delete [] ptr; @endcode
3220 ExprResult
3221 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3222                      bool ArrayForm, Expr *ExE) {
3223   // C++ [expr.delete]p1:
3224   //   The operand shall have a pointer type, or a class type having a single
3225   //   non-explicit conversion function to a pointer type. The result has type
3226   //   void.
3227   //
3228   // DR599 amends "pointer type" to "pointer to object type" in both cases.
3229 
3230   ExprResult Ex = ExE;
3231   FunctionDecl *OperatorDelete = nullptr;
3232   bool ArrayFormAsWritten = ArrayForm;
3233   bool UsualArrayDeleteWantsSize = false;
3234 
3235   if (!Ex.get()->isTypeDependent()) {
3236     // Perform lvalue-to-rvalue cast, if needed.
3237     Ex = DefaultLvalueConversion(Ex.get());
3238     if (Ex.isInvalid())
3239       return ExprError();
3240 
3241     QualType Type = Ex.get()->getType();
3242 
3243     class DeleteConverter : public ContextualImplicitConverter {
3244     public:
3245       DeleteConverter() : ContextualImplicitConverter(false, true) {}
3246 
3247       bool match(QualType ConvType) override {
3248         // FIXME: If we have an operator T* and an operator void*, we must pick
3249         // the operator T*.
3250         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3251           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3252             return true;
3253         return false;
3254       }
3255 
3256       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3257                                             QualType T) override {
3258         return S.Diag(Loc, diag::err_delete_operand) << T;
3259       }
3260 
3261       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3262                                                QualType T) override {
3263         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3264       }
3265 
3266       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3267                                                  QualType T,
3268                                                  QualType ConvTy) override {
3269         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3270       }
3271 
3272       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3273                                              QualType ConvTy) override {
3274         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3275           << ConvTy;
3276       }
3277 
3278       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3279                                               QualType T) override {
3280         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3281       }
3282 
3283       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3284                                           QualType ConvTy) override {
3285         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3286           << ConvTy;
3287       }
3288 
3289       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3290                                                QualType T,
3291                                                QualType ConvTy) override {
3292         llvm_unreachable("conversion functions are permitted");
3293       }
3294     } Converter;
3295 
3296     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3297     if (Ex.isInvalid())
3298       return ExprError();
3299     Type = Ex.get()->getType();
3300     if (!Converter.match(Type))
3301       // FIXME: PerformContextualImplicitConversion should return ExprError
3302       //        itself in this case.
3303       return ExprError();
3304 
3305     QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3306     QualType PointeeElem = Context.getBaseElementType(Pointee);
3307 
3308     if (Pointee.getAddressSpace() != LangAS::Default &&
3309         !getLangOpts().OpenCLCPlusPlus)
3310       return Diag(Ex.get()->getBeginLoc(),
3311                   diag::err_address_space_qualified_delete)
3312              << Pointee.getUnqualifiedType()
3313              << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3314 
3315     CXXRecordDecl *PointeeRD = nullptr;
3316     if (Pointee->isVoidType() && !isSFINAEContext()) {
3317       // The C++ standard bans deleting a pointer to a non-object type, which
3318       // effectively bans deletion of "void*". However, most compilers support
3319       // this, so we treat it as a warning unless we're in a SFINAE context.
3320       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3321         << Type << Ex.get()->getSourceRange();
3322     } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
3323       return ExprError(Diag(StartLoc, diag::err_delete_operand)
3324         << Type << Ex.get()->getSourceRange());
3325     } else if (!Pointee->isDependentType()) {
3326       // FIXME: This can result in errors if the definition was imported from a
3327       // module but is hidden.
3328       if (!RequireCompleteType(StartLoc, Pointee,
3329                                diag::warn_delete_incomplete, Ex.get())) {
3330         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3331           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3332       }
3333     }
3334 
3335     if (Pointee->isArrayType() && !ArrayForm) {
3336       Diag(StartLoc, diag::warn_delete_array_type)
3337           << Type << Ex.get()->getSourceRange()
3338           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3339       ArrayForm = true;
3340     }
3341 
3342     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3343                                       ArrayForm ? OO_Array_Delete : OO_Delete);
3344 
3345     if (PointeeRD) {
3346       if (!UseGlobal &&
3347           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3348                                    OperatorDelete))
3349         return ExprError();
3350 
3351       // If we're allocating an array of records, check whether the
3352       // usual operator delete[] has a size_t parameter.
3353       if (ArrayForm) {
3354         // If the user specifically asked to use the global allocator,
3355         // we'll need to do the lookup into the class.
3356         if (UseGlobal)
3357           UsualArrayDeleteWantsSize =
3358             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3359 
3360         // Otherwise, the usual operator delete[] should be the
3361         // function we just found.
3362         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3363           UsualArrayDeleteWantsSize =
3364             UsualDeallocFnInfo(*this,
3365                                DeclAccessPair::make(OperatorDelete, AS_public))
3366               .HasSizeT;
3367       }
3368 
3369       if (!PointeeRD->hasIrrelevantDestructor())
3370         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3371           MarkFunctionReferenced(StartLoc,
3372                                     const_cast<CXXDestructorDecl*>(Dtor));
3373           if (DiagnoseUseOfDecl(Dtor, StartLoc))
3374             return ExprError();
3375         }
3376 
3377       CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3378                            /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3379                            /*WarnOnNonAbstractTypes=*/!ArrayForm,
3380                            SourceLocation());
3381     }
3382 
3383     if (!OperatorDelete) {
3384       if (getLangOpts().OpenCLCPlusPlus) {
3385         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3386         return ExprError();
3387       }
3388 
3389       bool IsComplete = isCompleteType(StartLoc, Pointee);
3390       bool CanProvideSize =
3391           IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3392                          Pointee.isDestructedType());
3393       bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3394 
3395       // Look for a global declaration.
3396       OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3397                                                      Overaligned, DeleteName);
3398     }
3399 
3400     MarkFunctionReferenced(StartLoc, OperatorDelete);
3401 
3402     // Check access and ambiguity of destructor if we're going to call it.
3403     // Note that this is required even for a virtual delete.
3404     bool IsVirtualDelete = false;
3405     if (PointeeRD) {
3406       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3407         CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3408                               PDiag(diag::err_access_dtor) << PointeeElem);
3409         IsVirtualDelete = Dtor->isVirtual();
3410       }
3411     }
3412 
3413     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3414 
3415     // Convert the operand to the type of the first parameter of operator
3416     // delete. This is only necessary if we selected a destroying operator
3417     // delete that we are going to call (non-virtually); converting to void*
3418     // is trivial and left to AST consumers to handle.
3419     QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3420     if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3421       Qualifiers Qs = Pointee.getQualifiers();
3422       if (Qs.hasCVRQualifiers()) {
3423         // Qualifiers are irrelevant to this conversion; we're only looking
3424         // for access and ambiguity.
3425         Qs.removeCVRQualifiers();
3426         QualType Unqual = Context.getPointerType(
3427             Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3428         Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3429       }
3430       Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3431       if (Ex.isInvalid())
3432         return ExprError();
3433     }
3434   }
3435 
3436   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3437       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3438       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3439   AnalyzeDeleteExprMismatch(Result);
3440   return Result;
3441 }
3442 
3443 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3444                                             bool IsDelete,
3445                                             FunctionDecl *&Operator) {
3446 
3447   DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3448       IsDelete ? OO_Delete : OO_New);
3449 
3450   LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3451   S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3452   assert(!R.empty() && "implicitly declared allocation functions not found");
3453   assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3454 
3455   // We do our own custom access checks below.
3456   R.suppressDiagnostics();
3457 
3458   SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3459   OverloadCandidateSet Candidates(R.getNameLoc(),
3460                                   OverloadCandidateSet::CSK_Normal);
3461   for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3462        FnOvl != FnOvlEnd; ++FnOvl) {
3463     // Even member operator new/delete are implicitly treated as
3464     // static, so don't use AddMemberCandidate.
3465     NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3466 
3467     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3468       S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3469                                      /*ExplicitTemplateArgs=*/nullptr, Args,
3470                                      Candidates,
3471                                      /*SuppressUserConversions=*/false);
3472       continue;
3473     }
3474 
3475     FunctionDecl *Fn = cast<FunctionDecl>(D);
3476     S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3477                            /*SuppressUserConversions=*/false);
3478   }
3479 
3480   SourceRange Range = TheCall->getSourceRange();
3481 
3482   // Do the resolution.
3483   OverloadCandidateSet::iterator Best;
3484   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3485   case OR_Success: {
3486     // Got one!
3487     FunctionDecl *FnDecl = Best->Function;
3488     assert(R.getNamingClass() == nullptr &&
3489            "class members should not be considered");
3490 
3491     if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3492       S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3493           << (IsDelete ? 1 : 0) << Range;
3494       S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3495           << R.getLookupName() << FnDecl->getSourceRange();
3496       return true;
3497     }
3498 
3499     Operator = FnDecl;
3500     return false;
3501   }
3502 
3503   case OR_No_Viable_Function:
3504     Candidates.NoteCandidates(
3505         PartialDiagnosticAt(R.getNameLoc(),
3506                             S.PDiag(diag::err_ovl_no_viable_function_in_call)
3507                                 << R.getLookupName() << Range),
3508         S, OCD_AllCandidates, Args);
3509     return true;
3510 
3511   case OR_Ambiguous:
3512     Candidates.NoteCandidates(
3513         PartialDiagnosticAt(R.getNameLoc(),
3514                             S.PDiag(diag::err_ovl_ambiguous_call)
3515                                 << R.getLookupName() << Range),
3516         S, OCD_ViableCandidates, Args);
3517     return true;
3518 
3519   case OR_Deleted: {
3520     Candidates.NoteCandidates(
3521         PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3522                                                 << R.getLookupName() << Range),
3523         S, OCD_AllCandidates, Args);
3524     return true;
3525   }
3526   }
3527   llvm_unreachable("Unreachable, bad result from BestViableFunction");
3528 }
3529 
3530 ExprResult
3531 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3532                                              bool IsDelete) {
3533   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3534   if (!getLangOpts().CPlusPlus) {
3535     Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3536         << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3537         << "C++";
3538     return ExprError();
3539   }
3540   // CodeGen assumes it can find the global new and delete to call,
3541   // so ensure that they are declared.
3542   DeclareGlobalNewDelete();
3543 
3544   FunctionDecl *OperatorNewOrDelete = nullptr;
3545   if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3546                                       OperatorNewOrDelete))
3547     return ExprError();
3548   assert(OperatorNewOrDelete && "should be found");
3549 
3550   DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3551   MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3552 
3553   TheCall->setType(OperatorNewOrDelete->getReturnType());
3554   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3555     QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3556     InitializedEntity Entity =
3557         InitializedEntity::InitializeParameter(Context, ParamTy, false);
3558     ExprResult Arg = PerformCopyInitialization(
3559         Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3560     if (Arg.isInvalid())
3561       return ExprError();
3562     TheCall->setArg(i, Arg.get());
3563   }
3564   auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3565   assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3566          "Callee expected to be implicit cast to a builtin function pointer");
3567   Callee->setType(OperatorNewOrDelete->getType());
3568 
3569   return TheCallResult;
3570 }
3571 
3572 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3573                                 bool IsDelete, bool CallCanBeVirtual,
3574                                 bool WarnOnNonAbstractTypes,
3575                                 SourceLocation DtorLoc) {
3576   if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3577     return;
3578 
3579   // C++ [expr.delete]p3:
3580   //   In the first alternative (delete object), if the static type of the
3581   //   object to be deleted is different from its dynamic type, the static
3582   //   type shall be a base class of the dynamic type of the object to be
3583   //   deleted and the static type shall have a virtual destructor or the
3584   //   behavior is undefined.
3585   //
3586   const CXXRecordDecl *PointeeRD = dtor->getParent();
3587   // Note: a final class cannot be derived from, no issue there
3588   if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3589     return;
3590 
3591   // If the superclass is in a system header, there's nothing that can be done.
3592   // The `delete` (where we emit the warning) can be in a system header,
3593   // what matters for this warning is where the deleted type is defined.
3594   if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3595     return;
3596 
3597   QualType ClassType = dtor->getThisType()->getPointeeType();
3598   if (PointeeRD->isAbstract()) {
3599     // If the class is abstract, we warn by default, because we're
3600     // sure the code has undefined behavior.
3601     Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3602                                                            << ClassType;
3603   } else if (WarnOnNonAbstractTypes) {
3604     // Otherwise, if this is not an array delete, it's a bit suspect,
3605     // but not necessarily wrong.
3606     Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3607                                                   << ClassType;
3608   }
3609   if (!IsDelete) {
3610     std::string TypeStr;
3611     ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3612     Diag(DtorLoc, diag::note_delete_non_virtual)
3613         << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3614   }
3615 }
3616 
3617 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3618                                                    SourceLocation StmtLoc,
3619                                                    ConditionKind CK) {
3620   ExprResult E =
3621       CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3622   if (E.isInvalid())
3623     return ConditionError();
3624   return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3625                          CK == ConditionKind::ConstexprIf);
3626 }
3627 
3628 /// Check the use of the given variable as a C++ condition in an if,
3629 /// while, do-while, or switch statement.
3630 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3631                                         SourceLocation StmtLoc,
3632                                         ConditionKind CK) {
3633   if (ConditionVar->isInvalidDecl())
3634     return ExprError();
3635 
3636   QualType T = ConditionVar->getType();
3637 
3638   // C++ [stmt.select]p2:
3639   //   The declarator shall not specify a function or an array.
3640   if (T->isFunctionType())
3641     return ExprError(Diag(ConditionVar->getLocation(),
3642                           diag::err_invalid_use_of_function_type)
3643                        << ConditionVar->getSourceRange());
3644   else if (T->isArrayType())
3645     return ExprError(Diag(ConditionVar->getLocation(),
3646                           diag::err_invalid_use_of_array_type)
3647                      << ConditionVar->getSourceRange());
3648 
3649   ExprResult Condition = BuildDeclRefExpr(
3650       ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3651       ConditionVar->getLocation());
3652 
3653   switch (CK) {
3654   case ConditionKind::Boolean:
3655     return CheckBooleanCondition(StmtLoc, Condition.get());
3656 
3657   case ConditionKind::ConstexprIf:
3658     return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3659 
3660   case ConditionKind::Switch:
3661     return CheckSwitchCondition(StmtLoc, Condition.get());
3662   }
3663 
3664   llvm_unreachable("unexpected condition kind");
3665 }
3666 
3667 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3668 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3669   // C++ 6.4p4:
3670   // The value of a condition that is an initialized declaration in a statement
3671   // other than a switch statement is the value of the declared variable
3672   // implicitly converted to type bool. If that conversion is ill-formed, the
3673   // program is ill-formed.
3674   // The value of a condition that is an expression is the value of the
3675   // expression, implicitly converted to bool.
3676   //
3677   // FIXME: Return this value to the caller so they don't need to recompute it.
3678   llvm::APSInt Value(/*BitWidth*/1);
3679   return (IsConstexpr && !CondExpr->isValueDependent())
3680              ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
3681                                                 CCEK_ConstexprIf)
3682              : PerformContextuallyConvertToBool(CondExpr);
3683 }
3684 
3685 /// Helper function to determine whether this is the (deprecated) C++
3686 /// conversion from a string literal to a pointer to non-const char or
3687 /// non-const wchar_t (for narrow and wide string literals,
3688 /// respectively).
3689 bool
3690 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3691   // Look inside the implicit cast, if it exists.
3692   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3693     From = Cast->getSubExpr();
3694 
3695   // A string literal (2.13.4) that is not a wide string literal can
3696   // be converted to an rvalue of type "pointer to char"; a wide
3697   // string literal can be converted to an rvalue of type "pointer
3698   // to wchar_t" (C++ 4.2p2).
3699   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3700     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3701       if (const BuiltinType *ToPointeeType
3702           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3703         // This conversion is considered only when there is an
3704         // explicit appropriate pointer target type (C++ 4.2p2).
3705         if (!ToPtrType->getPointeeType().hasQualifiers()) {
3706           switch (StrLit->getKind()) {
3707             case StringLiteral::UTF8:
3708             case StringLiteral::UTF16:
3709             case StringLiteral::UTF32:
3710               // We don't allow UTF literals to be implicitly converted
3711               break;
3712             case StringLiteral::Ascii:
3713               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3714                       ToPointeeType->getKind() == BuiltinType::Char_S);
3715             case StringLiteral::Wide:
3716               return Context.typesAreCompatible(Context.getWideCharType(),
3717                                                 QualType(ToPointeeType, 0));
3718           }
3719         }
3720       }
3721 
3722   return false;
3723 }
3724 
3725 static ExprResult BuildCXXCastArgument(Sema &S,
3726                                        SourceLocation CastLoc,
3727                                        QualType Ty,
3728                                        CastKind Kind,
3729                                        CXXMethodDecl *Method,
3730                                        DeclAccessPair FoundDecl,
3731                                        bool HadMultipleCandidates,
3732                                        Expr *From) {
3733   switch (Kind) {
3734   default: llvm_unreachable("Unhandled cast kind!");
3735   case CK_ConstructorConversion: {
3736     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3737     SmallVector<Expr*, 8> ConstructorArgs;
3738 
3739     if (S.RequireNonAbstractType(CastLoc, Ty,
3740                                  diag::err_allocation_of_abstract_type))
3741       return ExprError();
3742 
3743     if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
3744       return ExprError();
3745 
3746     S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
3747                              InitializedEntity::InitializeTemporary(Ty));
3748     if (S.DiagnoseUseOfDecl(Method, CastLoc))
3749       return ExprError();
3750 
3751     ExprResult Result = S.BuildCXXConstructExpr(
3752         CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
3753         ConstructorArgs, HadMultipleCandidates,
3754         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3755         CXXConstructExpr::CK_Complete, SourceRange());
3756     if (Result.isInvalid())
3757       return ExprError();
3758 
3759     return S.MaybeBindToTemporary(Result.getAs<Expr>());
3760   }
3761 
3762   case CK_UserDefinedConversion: {
3763     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
3764 
3765     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
3766     if (S.DiagnoseUseOfDecl(Method, CastLoc))
3767       return ExprError();
3768 
3769     // Create an implicit call expr that calls it.
3770     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
3771     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
3772                                                  HadMultipleCandidates);
3773     if (Result.isInvalid())
3774       return ExprError();
3775     // Record usage of conversion in an implicit cast.
3776     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
3777                                       CK_UserDefinedConversion, Result.get(),
3778                                       nullptr, Result.get()->getValueKind());
3779 
3780     return S.MaybeBindToTemporary(Result.get());
3781   }
3782   }
3783 }
3784 
3785 /// PerformImplicitConversion - Perform an implicit conversion of the
3786 /// expression From to the type ToType using the pre-computed implicit
3787 /// conversion sequence ICS. Returns the converted
3788 /// expression. Action is the kind of conversion we're performing,
3789 /// used in the error message.
3790 ExprResult
3791 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3792                                 const ImplicitConversionSequence &ICS,
3793                                 AssignmentAction Action,
3794                                 CheckedConversionKind CCK) {
3795   // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
3796   if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
3797     return From;
3798 
3799   switch (ICS.getKind()) {
3800   case ImplicitConversionSequence::StandardConversion: {
3801     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
3802                                                Action, CCK);
3803     if (Res.isInvalid())
3804       return ExprError();
3805     From = Res.get();
3806     break;
3807   }
3808 
3809   case ImplicitConversionSequence::UserDefinedConversion: {
3810 
3811       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
3812       CastKind CastKind;
3813       QualType BeforeToType;
3814       assert(FD && "no conversion function for user-defined conversion seq");
3815       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
3816         CastKind = CK_UserDefinedConversion;
3817 
3818         // If the user-defined conversion is specified by a conversion function,
3819         // the initial standard conversion sequence converts the source type to
3820         // the implicit object parameter of the conversion function.
3821         BeforeToType = Context.getTagDeclType(Conv->getParent());
3822       } else {
3823         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3824         CastKind = CK_ConstructorConversion;
3825         // Do no conversion if dealing with ... for the first conversion.
3826         if (!ICS.UserDefined.EllipsisConversion) {
3827           // If the user-defined conversion is specified by a constructor, the
3828           // initial standard conversion sequence converts the source type to
3829           // the type required by the argument of the constructor
3830           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3831         }
3832       }
3833       // Watch out for ellipsis conversion.
3834       if (!ICS.UserDefined.EllipsisConversion) {
3835         ExprResult Res =
3836           PerformImplicitConversion(From, BeforeToType,
3837                                     ICS.UserDefined.Before, AA_Converting,
3838                                     CCK);
3839         if (Res.isInvalid())
3840           return ExprError();
3841         From = Res.get();
3842       }
3843 
3844       ExprResult CastArg = BuildCXXCastArgument(
3845           *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
3846           cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
3847           ICS.UserDefined.HadMultipleCandidates, From);
3848 
3849       if (CastArg.isInvalid())
3850         return ExprError();
3851 
3852       From = CastArg.get();
3853 
3854       // C++ [over.match.oper]p7:
3855       //   [...] the second standard conversion sequence of a user-defined
3856       //   conversion sequence is not applied.
3857       if (CCK == CCK_ForBuiltinOverloadedOp)
3858         return From;
3859 
3860       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3861                                        AA_Converting, CCK);
3862   }
3863 
3864   case ImplicitConversionSequence::AmbiguousConversion:
3865     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3866                           PDiag(diag::err_typecheck_ambiguous_condition)
3867                             << From->getSourceRange());
3868      return ExprError();
3869 
3870   case ImplicitConversionSequence::EllipsisConversion:
3871     llvm_unreachable("Cannot perform an ellipsis conversion");
3872 
3873   case ImplicitConversionSequence::BadConversion:
3874     bool Diagnosed =
3875         DiagnoseAssignmentResult(Incompatible, From->getExprLoc(), ToType,
3876                                  From->getType(), From, Action);
3877     assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
3878     return ExprError();
3879   }
3880 
3881   // Everything went well.
3882   return From;
3883 }
3884 
3885 /// PerformImplicitConversion - Perform an implicit conversion of the
3886 /// expression From to the type ToType by following the standard
3887 /// conversion sequence SCS. Returns the converted
3888 /// expression. Flavor is the context in which we're performing this
3889 /// conversion, for use in error messages.
3890 ExprResult
3891 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3892                                 const StandardConversionSequence& SCS,
3893                                 AssignmentAction Action,
3894                                 CheckedConversionKind CCK) {
3895   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3896 
3897   // Overall FIXME: we are recomputing too many types here and doing far too
3898   // much extra work. What this means is that we need to keep track of more
3899   // information that is computed when we try the implicit conversion initially,
3900   // so that we don't need to recompute anything here.
3901   QualType FromType = From->getType();
3902 
3903   if (SCS.CopyConstructor) {
3904     // FIXME: When can ToType be a reference type?
3905     assert(!ToType->isReferenceType());
3906     if (SCS.Second == ICK_Derived_To_Base) {
3907       SmallVector<Expr*, 8> ConstructorArgs;
3908       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3909                                   From, /*FIXME:ConstructLoc*/SourceLocation(),
3910                                   ConstructorArgs))
3911         return ExprError();
3912       return BuildCXXConstructExpr(
3913           /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3914           SCS.FoundCopyConstructor, SCS.CopyConstructor,
3915           ConstructorArgs, /*HadMultipleCandidates*/ false,
3916           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3917           CXXConstructExpr::CK_Complete, SourceRange());
3918     }
3919     return BuildCXXConstructExpr(
3920         /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3921         SCS.FoundCopyConstructor, SCS.CopyConstructor,
3922         From, /*HadMultipleCandidates*/ false,
3923         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3924         CXXConstructExpr::CK_Complete, SourceRange());
3925   }
3926 
3927   // Resolve overloaded function references.
3928   if (Context.hasSameType(FromType, Context.OverloadTy)) {
3929     DeclAccessPair Found;
3930     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
3931                                                           true, Found);
3932     if (!Fn)
3933       return ExprError();
3934 
3935     if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
3936       return ExprError();
3937 
3938     From = FixOverloadedFunctionReference(From, Found, Fn);
3939     FromType = From->getType();
3940   }
3941 
3942   // If we're converting to an atomic type, first convert to the corresponding
3943   // non-atomic type.
3944   QualType ToAtomicType;
3945   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3946     ToAtomicType = ToType;
3947     ToType = ToAtomic->getValueType();
3948   }
3949 
3950   QualType InitialFromType = FromType;
3951   // Perform the first implicit conversion.
3952   switch (SCS.First) {
3953   case ICK_Identity:
3954     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3955       FromType = FromAtomic->getValueType().getUnqualifiedType();
3956       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3957                                       From, /*BasePath=*/nullptr, VK_RValue);
3958     }
3959     break;
3960 
3961   case ICK_Lvalue_To_Rvalue: {
3962     assert(From->getObjectKind() != OK_ObjCProperty);
3963     ExprResult FromRes = DefaultLvalueConversion(From);
3964     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
3965     From = FromRes.get();
3966     FromType = From->getType();
3967     break;
3968   }
3969 
3970   case ICK_Array_To_Pointer:
3971     FromType = Context.getArrayDecayedType(FromType);
3972     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
3973                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
3974     break;
3975 
3976   case ICK_Function_To_Pointer:
3977     FromType = Context.getPointerType(FromType);
3978     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
3979                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
3980     break;
3981 
3982   default:
3983     llvm_unreachable("Improper first standard conversion");
3984   }
3985 
3986   // Perform the second implicit conversion
3987   switch (SCS.Second) {
3988   case ICK_Identity:
3989     // C++ [except.spec]p5:
3990     //   [For] assignment to and initialization of pointers to functions,
3991     //   pointers to member functions, and references to functions: the
3992     //   target entity shall allow at least the exceptions allowed by the
3993     //   source value in the assignment or initialization.
3994     switch (Action) {
3995     case AA_Assigning:
3996     case AA_Initializing:
3997       // Note, function argument passing and returning are initialization.
3998     case AA_Passing:
3999     case AA_Returning:
4000     case AA_Sending:
4001     case AA_Passing_CFAudited:
4002       if (CheckExceptionSpecCompatibility(From, ToType))
4003         return ExprError();
4004       break;
4005 
4006     case AA_Casting:
4007     case AA_Converting:
4008       // Casts and implicit conversions are not initialization, so are not
4009       // checked for exception specification mismatches.
4010       break;
4011     }
4012     // Nothing else to do.
4013     break;
4014 
4015   case ICK_Integral_Promotion:
4016   case ICK_Integral_Conversion:
4017     if (ToType->isBooleanType()) {
4018       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4019              SCS.Second == ICK_Integral_Promotion &&
4020              "only enums with fixed underlying type can promote to bool");
4021       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
4022                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4023     } else {
4024       From = ImpCastExprToType(From, ToType, CK_IntegralCast,
4025                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4026     }
4027     break;
4028 
4029   case ICK_Floating_Promotion:
4030   case ICK_Floating_Conversion:
4031     From = ImpCastExprToType(From, ToType, CK_FloatingCast,
4032                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4033     break;
4034 
4035   case ICK_Complex_Promotion:
4036   case ICK_Complex_Conversion: {
4037     QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4038     QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4039     CastKind CK;
4040     if (FromEl->isRealFloatingType()) {
4041       if (ToEl->isRealFloatingType())
4042         CK = CK_FloatingComplexCast;
4043       else
4044         CK = CK_FloatingComplexToIntegralComplex;
4045     } else if (ToEl->isRealFloatingType()) {
4046       CK = CK_IntegralComplexToFloatingComplex;
4047     } else {
4048       CK = CK_IntegralComplexCast;
4049     }
4050     From = ImpCastExprToType(From, ToType, CK,
4051                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4052     break;
4053   }
4054 
4055   case ICK_Floating_Integral:
4056     if (ToType->isRealFloatingType())
4057       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
4058                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4059     else
4060       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
4061                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4062     break;
4063 
4064   case ICK_Compatible_Conversion:
4065       From = ImpCastExprToType(From, ToType, CK_NoOp,
4066                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4067     break;
4068 
4069   case ICK_Writeback_Conversion:
4070   case ICK_Pointer_Conversion: {
4071     if (SCS.IncompatibleObjC && Action != AA_Casting) {
4072       // Diagnose incompatible Objective-C conversions
4073       if (Action == AA_Initializing || Action == AA_Assigning)
4074         Diag(From->getBeginLoc(),
4075              diag::ext_typecheck_convert_incompatible_pointer)
4076             << ToType << From->getType() << Action << From->getSourceRange()
4077             << 0;
4078       else
4079         Diag(From->getBeginLoc(),
4080              diag::ext_typecheck_convert_incompatible_pointer)
4081             << From->getType() << ToType << Action << From->getSourceRange()
4082             << 0;
4083 
4084       if (From->getType()->isObjCObjectPointerType() &&
4085           ToType->isObjCObjectPointerType())
4086         EmitRelatedResultTypeNote(From);
4087     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4088                !CheckObjCARCUnavailableWeakConversion(ToType,
4089                                                       From->getType())) {
4090       if (Action == AA_Initializing)
4091         Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4092       else
4093         Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4094             << (Action == AA_Casting) << From->getType() << ToType
4095             << From->getSourceRange();
4096     }
4097 
4098     CastKind Kind;
4099     CXXCastPath BasePath;
4100     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
4101       return ExprError();
4102 
4103     // Make sure we extend blocks if necessary.
4104     // FIXME: doing this here is really ugly.
4105     if (Kind == CK_BlockPointerToObjCPointerCast) {
4106       ExprResult E = From;
4107       (void) PrepareCastToObjCObjectPointer(E);
4108       From = E.get();
4109     }
4110     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4111       CheckObjCConversion(SourceRange(), ToType, From, CCK);
4112     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4113              .get();
4114     break;
4115   }
4116 
4117   case ICK_Pointer_Member: {
4118     CastKind Kind;
4119     CXXCastPath BasePath;
4120     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4121       return ExprError();
4122     if (CheckExceptionSpecCompatibility(From, ToType))
4123       return ExprError();
4124 
4125     // We may not have been able to figure out what this member pointer resolved
4126     // to up until this exact point.  Attempt to lock-in it's inheritance model.
4127     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4128       (void)isCompleteType(From->getExprLoc(), From->getType());
4129       (void)isCompleteType(From->getExprLoc(), ToType);
4130     }
4131 
4132     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4133              .get();
4134     break;
4135   }
4136 
4137   case ICK_Boolean_Conversion:
4138     // Perform half-to-boolean conversion via float.
4139     if (From->getType()->isHalfType()) {
4140       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4141       FromType = Context.FloatTy;
4142     }
4143 
4144     From = ImpCastExprToType(From, Context.BoolTy,
4145                              ScalarTypeToBooleanCastKind(FromType),
4146                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4147     break;
4148 
4149   case ICK_Derived_To_Base: {
4150     CXXCastPath BasePath;
4151     if (CheckDerivedToBaseConversion(
4152             From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4153             From->getSourceRange(), &BasePath, CStyle))
4154       return ExprError();
4155 
4156     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4157                       CK_DerivedToBase, From->getValueKind(),
4158                       &BasePath, CCK).get();
4159     break;
4160   }
4161 
4162   case ICK_Vector_Conversion:
4163     From = ImpCastExprToType(From, ToType, CK_BitCast,
4164                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4165     break;
4166 
4167   case ICK_Vector_Splat: {
4168     // Vector splat from any arithmetic type to a vector.
4169     Expr *Elem = prepareVectorSplat(ToType, From).get();
4170     From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue,
4171                              /*BasePath=*/nullptr, CCK).get();
4172     break;
4173   }
4174 
4175   case ICK_Complex_Real:
4176     // Case 1.  x -> _Complex y
4177     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4178       QualType ElType = ToComplex->getElementType();
4179       bool isFloatingComplex = ElType->isRealFloatingType();
4180 
4181       // x -> y
4182       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4183         // do nothing
4184       } else if (From->getType()->isRealFloatingType()) {
4185         From = ImpCastExprToType(From, ElType,
4186                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4187       } else {
4188         assert(From->getType()->isIntegerType());
4189         From = ImpCastExprToType(From, ElType,
4190                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4191       }
4192       // y -> _Complex y
4193       From = ImpCastExprToType(From, ToType,
4194                    isFloatingComplex ? CK_FloatingRealToComplex
4195                                      : CK_IntegralRealToComplex).get();
4196 
4197     // Case 2.  _Complex x -> y
4198     } else {
4199       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
4200       assert(FromComplex);
4201 
4202       QualType ElType = FromComplex->getElementType();
4203       bool isFloatingComplex = ElType->isRealFloatingType();
4204 
4205       // _Complex x -> x
4206       From = ImpCastExprToType(From, ElType,
4207                    isFloatingComplex ? CK_FloatingComplexToReal
4208                                      : CK_IntegralComplexToReal,
4209                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4210 
4211       // x -> y
4212       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4213         // do nothing
4214       } else if (ToType->isRealFloatingType()) {
4215         From = ImpCastExprToType(From, ToType,
4216                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
4217                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4218       } else {
4219         assert(ToType->isIntegerType());
4220         From = ImpCastExprToType(From, ToType,
4221                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
4222                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4223       }
4224     }
4225     break;
4226 
4227   case ICK_Block_Pointer_Conversion: {
4228     LangAS AddrSpaceL =
4229         ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4230     LangAS AddrSpaceR =
4231         FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4232     assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4233            "Invalid cast");
4234     CastKind Kind =
4235         AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4236     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4237                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4238     break;
4239   }
4240 
4241   case ICK_TransparentUnionConversion: {
4242     ExprResult FromRes = From;
4243     Sema::AssignConvertType ConvTy =
4244       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4245     if (FromRes.isInvalid())
4246       return ExprError();
4247     From = FromRes.get();
4248     assert ((ConvTy == Sema::Compatible) &&
4249             "Improper transparent union conversion");
4250     (void)ConvTy;
4251     break;
4252   }
4253 
4254   case ICK_Zero_Event_Conversion:
4255   case ICK_Zero_Queue_Conversion:
4256     From = ImpCastExprToType(From, ToType,
4257                              CK_ZeroToOCLOpaqueType,
4258                              From->getValueKind()).get();
4259     break;
4260 
4261   case ICK_Lvalue_To_Rvalue:
4262   case ICK_Array_To_Pointer:
4263   case ICK_Function_To_Pointer:
4264   case ICK_Function_Conversion:
4265   case ICK_Qualification:
4266   case ICK_Num_Conversion_Kinds:
4267   case ICK_C_Only_Conversion:
4268   case ICK_Incompatible_Pointer_Conversion:
4269     llvm_unreachable("Improper second standard conversion");
4270   }
4271 
4272   switch (SCS.Third) {
4273   case ICK_Identity:
4274     // Nothing to do.
4275     break;
4276 
4277   case ICK_Function_Conversion:
4278     // If both sides are functions (or pointers/references to them), there could
4279     // be incompatible exception declarations.
4280     if (CheckExceptionSpecCompatibility(From, ToType))
4281       return ExprError();
4282 
4283     From = ImpCastExprToType(From, ToType, CK_NoOp,
4284                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4285     break;
4286 
4287   case ICK_Qualification: {
4288     // The qualification keeps the category of the inner expression, unless the
4289     // target type isn't a reference.
4290     ExprValueKind VK =
4291         ToType->isReferenceType() ? From->getValueKind() : VK_RValue;
4292 
4293     CastKind CK = CK_NoOp;
4294 
4295     if (ToType->isReferenceType() &&
4296         ToType->getPointeeType().getAddressSpace() !=
4297             From->getType().getAddressSpace())
4298       CK = CK_AddressSpaceConversion;
4299 
4300     if (ToType->isPointerType() &&
4301         ToType->getPointeeType().getAddressSpace() !=
4302             From->getType()->getPointeeType().getAddressSpace())
4303       CK = CK_AddressSpaceConversion;
4304 
4305     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4306                              /*BasePath=*/nullptr, CCK)
4307                .get();
4308 
4309     if (SCS.DeprecatedStringLiteralToCharPtr &&
4310         !getLangOpts().WritableStrings) {
4311       Diag(From->getBeginLoc(),
4312            getLangOpts().CPlusPlus11
4313                ? diag::ext_deprecated_string_literal_conversion
4314                : diag::warn_deprecated_string_literal_conversion)
4315           << ToType.getNonReferenceType();
4316     }
4317 
4318     break;
4319   }
4320 
4321   default:
4322     llvm_unreachable("Improper third standard conversion");
4323   }
4324 
4325   // If this conversion sequence involved a scalar -> atomic conversion, perform
4326   // that conversion now.
4327   if (!ToAtomicType.isNull()) {
4328     assert(Context.hasSameType(
4329         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4330     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4331                              VK_RValue, nullptr, CCK).get();
4332   }
4333 
4334   // If this conversion sequence succeeded and involved implicitly converting a
4335   // _Nullable type to a _Nonnull one, complain.
4336   if (!isCast(CCK))
4337     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4338                                         From->getBeginLoc());
4339 
4340   return From;
4341 }
4342 
4343 /// Check the completeness of a type in a unary type trait.
4344 ///
4345 /// If the particular type trait requires a complete type, tries to complete
4346 /// it. If completing the type fails, a diagnostic is emitted and false
4347 /// returned. If completing the type succeeds or no completion was required,
4348 /// returns true.
4349 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4350                                                 SourceLocation Loc,
4351                                                 QualType ArgTy) {
4352   // C++0x [meta.unary.prop]p3:
4353   //   For all of the class templates X declared in this Clause, instantiating
4354   //   that template with a template argument that is a class template
4355   //   specialization may result in the implicit instantiation of the template
4356   //   argument if and only if the semantics of X require that the argument
4357   //   must be a complete type.
4358   // We apply this rule to all the type trait expressions used to implement
4359   // these class templates. We also try to follow any GCC documented behavior
4360   // in these expressions to ensure portability of standard libraries.
4361   switch (UTT) {
4362   default: llvm_unreachable("not a UTT");
4363     // is_complete_type somewhat obviously cannot require a complete type.
4364   case UTT_IsCompleteType:
4365     // Fall-through
4366 
4367     // These traits are modeled on the type predicates in C++0x
4368     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4369     // requiring a complete type, as whether or not they return true cannot be
4370     // impacted by the completeness of the type.
4371   case UTT_IsVoid:
4372   case UTT_IsIntegral:
4373   case UTT_IsFloatingPoint:
4374   case UTT_IsArray:
4375   case UTT_IsPointer:
4376   case UTT_IsLvalueReference:
4377   case UTT_IsRvalueReference:
4378   case UTT_IsMemberFunctionPointer:
4379   case UTT_IsMemberObjectPointer:
4380   case UTT_IsEnum:
4381   case UTT_IsUnion:
4382   case UTT_IsClass:
4383   case UTT_IsFunction:
4384   case UTT_IsReference:
4385   case UTT_IsArithmetic:
4386   case UTT_IsFundamental:
4387   case UTT_IsObject:
4388   case UTT_IsScalar:
4389   case UTT_IsCompound:
4390   case UTT_IsMemberPointer:
4391     // Fall-through
4392 
4393     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4394     // which requires some of its traits to have the complete type. However,
4395     // the completeness of the type cannot impact these traits' semantics, and
4396     // so they don't require it. This matches the comments on these traits in
4397     // Table 49.
4398   case UTT_IsConst:
4399   case UTT_IsVolatile:
4400   case UTT_IsSigned:
4401   case UTT_IsUnsigned:
4402 
4403   // This type trait always returns false, checking the type is moot.
4404   case UTT_IsInterfaceClass:
4405     return true;
4406 
4407   // C++14 [meta.unary.prop]:
4408   //   If T is a non-union class type, T shall be a complete type.
4409   case UTT_IsEmpty:
4410   case UTT_IsPolymorphic:
4411   case UTT_IsAbstract:
4412     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4413       if (!RD->isUnion())
4414         return !S.RequireCompleteType(
4415             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4416     return true;
4417 
4418   // C++14 [meta.unary.prop]:
4419   //   If T is a class type, T shall be a complete type.
4420   case UTT_IsFinal:
4421   case UTT_IsSealed:
4422     if (ArgTy->getAsCXXRecordDecl())
4423       return !S.RequireCompleteType(
4424           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4425     return true;
4426 
4427   // C++1z [meta.unary.prop]:
4428   //   remove_all_extents_t<T> shall be a complete type or cv void.
4429   case UTT_IsAggregate:
4430   case UTT_IsTrivial:
4431   case UTT_IsTriviallyCopyable:
4432   case UTT_IsStandardLayout:
4433   case UTT_IsPOD:
4434   case UTT_IsLiteral:
4435   // Per the GCC type traits documentation, T shall be a complete type, cv void,
4436   // or an array of unknown bound. But GCC actually imposes the same constraints
4437   // as above.
4438   case UTT_HasNothrowAssign:
4439   case UTT_HasNothrowMoveAssign:
4440   case UTT_HasNothrowConstructor:
4441   case UTT_HasNothrowCopy:
4442   case UTT_HasTrivialAssign:
4443   case UTT_HasTrivialMoveAssign:
4444   case UTT_HasTrivialDefaultConstructor:
4445   case UTT_HasTrivialMoveConstructor:
4446   case UTT_HasTrivialCopy:
4447   case UTT_HasTrivialDestructor:
4448   case UTT_HasVirtualDestructor:
4449     ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4450     LLVM_FALLTHROUGH;
4451 
4452   // C++1z [meta.unary.prop]:
4453   //   T shall be a complete type, cv void, or an array of unknown bound.
4454   case UTT_IsDestructible:
4455   case UTT_IsNothrowDestructible:
4456   case UTT_IsTriviallyDestructible:
4457   case UTT_HasUniqueObjectRepresentations:
4458     if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4459       return true;
4460 
4461     return !S.RequireCompleteType(
4462         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4463   }
4464 }
4465 
4466 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4467                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4468                                bool (CXXRecordDecl::*HasTrivial)() const,
4469                                bool (CXXRecordDecl::*HasNonTrivial)() const,
4470                                bool (CXXMethodDecl::*IsDesiredOp)() const)
4471 {
4472   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4473   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4474     return true;
4475 
4476   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4477   DeclarationNameInfo NameInfo(Name, KeyLoc);
4478   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4479   if (Self.LookupQualifiedName(Res, RD)) {
4480     bool FoundOperator = false;
4481     Res.suppressDiagnostics();
4482     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4483          Op != OpEnd; ++Op) {
4484       if (isa<FunctionTemplateDecl>(*Op))
4485         continue;
4486 
4487       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4488       if((Operator->*IsDesiredOp)()) {
4489         FoundOperator = true;
4490         const FunctionProtoType *CPT =
4491           Operator->getType()->getAs<FunctionProtoType>();
4492         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4493         if (!CPT || !CPT->isNothrow())
4494           return false;
4495       }
4496     }
4497     return FoundOperator;
4498   }
4499   return false;
4500 }
4501 
4502 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4503                                    SourceLocation KeyLoc, QualType T) {
4504   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4505 
4506   ASTContext &C = Self.Context;
4507   switch(UTT) {
4508   default: llvm_unreachable("not a UTT");
4509     // Type trait expressions corresponding to the primary type category
4510     // predicates in C++0x [meta.unary.cat].
4511   case UTT_IsVoid:
4512     return T->isVoidType();
4513   case UTT_IsIntegral:
4514     return T->isIntegralType(C);
4515   case UTT_IsFloatingPoint:
4516     return T->isFloatingType();
4517   case UTT_IsArray:
4518     return T->isArrayType();
4519   case UTT_IsPointer:
4520     return T->isPointerType();
4521   case UTT_IsLvalueReference:
4522     return T->isLValueReferenceType();
4523   case UTT_IsRvalueReference:
4524     return T->isRValueReferenceType();
4525   case UTT_IsMemberFunctionPointer:
4526     return T->isMemberFunctionPointerType();
4527   case UTT_IsMemberObjectPointer:
4528     return T->isMemberDataPointerType();
4529   case UTT_IsEnum:
4530     return T->isEnumeralType();
4531   case UTT_IsUnion:
4532     return T->isUnionType();
4533   case UTT_IsClass:
4534     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4535   case UTT_IsFunction:
4536     return T->isFunctionType();
4537 
4538     // Type trait expressions which correspond to the convenient composition
4539     // predicates in C++0x [meta.unary.comp].
4540   case UTT_IsReference:
4541     return T->isReferenceType();
4542   case UTT_IsArithmetic:
4543     return T->isArithmeticType() && !T->isEnumeralType();
4544   case UTT_IsFundamental:
4545     return T->isFundamentalType();
4546   case UTT_IsObject:
4547     return T->isObjectType();
4548   case UTT_IsScalar:
4549     // Note: semantic analysis depends on Objective-C lifetime types to be
4550     // considered scalar types. However, such types do not actually behave
4551     // like scalar types at run time (since they may require retain/release
4552     // operations), so we report them as non-scalar.
4553     if (T->isObjCLifetimeType()) {
4554       switch (T.getObjCLifetime()) {
4555       case Qualifiers::OCL_None:
4556       case Qualifiers::OCL_ExplicitNone:
4557         return true;
4558 
4559       case Qualifiers::OCL_Strong:
4560       case Qualifiers::OCL_Weak:
4561       case Qualifiers::OCL_Autoreleasing:
4562         return false;
4563       }
4564     }
4565 
4566     return T->isScalarType();
4567   case UTT_IsCompound:
4568     return T->isCompoundType();
4569   case UTT_IsMemberPointer:
4570     return T->isMemberPointerType();
4571 
4572     // Type trait expressions which correspond to the type property predicates
4573     // in C++0x [meta.unary.prop].
4574   case UTT_IsConst:
4575     return T.isConstQualified();
4576   case UTT_IsVolatile:
4577     return T.isVolatileQualified();
4578   case UTT_IsTrivial:
4579     return T.isTrivialType(C);
4580   case UTT_IsTriviallyCopyable:
4581     return T.isTriviallyCopyableType(C);
4582   case UTT_IsStandardLayout:
4583     return T->isStandardLayoutType();
4584   case UTT_IsPOD:
4585     return T.isPODType(C);
4586   case UTT_IsLiteral:
4587     return T->isLiteralType(C);
4588   case UTT_IsEmpty:
4589     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4590       return !RD->isUnion() && RD->isEmpty();
4591     return false;
4592   case UTT_IsPolymorphic:
4593     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4594       return !RD->isUnion() && RD->isPolymorphic();
4595     return false;
4596   case UTT_IsAbstract:
4597     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4598       return !RD->isUnion() && RD->isAbstract();
4599     return false;
4600   case UTT_IsAggregate:
4601     // Report vector extensions and complex types as aggregates because they
4602     // support aggregate initialization. GCC mirrors this behavior for vectors
4603     // but not _Complex.
4604     return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4605            T->isAnyComplexType();
4606   // __is_interface_class only returns true when CL is invoked in /CLR mode and
4607   // even then only when it is used with the 'interface struct ...' syntax
4608   // Clang doesn't support /CLR which makes this type trait moot.
4609   case UTT_IsInterfaceClass:
4610     return false;
4611   case UTT_IsFinal:
4612   case UTT_IsSealed:
4613     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4614       return RD->hasAttr<FinalAttr>();
4615     return false;
4616   case UTT_IsSigned:
4617     // Enum types should always return false.
4618     // Floating points should always return true.
4619     return !T->isEnumeralType() && (T->isFloatingType() || T->isSignedIntegerType());
4620   case UTT_IsUnsigned:
4621     return T->isUnsignedIntegerType();
4622 
4623     // Type trait expressions which query classes regarding their construction,
4624     // destruction, and copying. Rather than being based directly on the
4625     // related type predicates in the standard, they are specified by both
4626     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4627     // specifications.
4628     //
4629     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4630     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4631     //
4632     // Note that these builtins do not behave as documented in g++: if a class
4633     // has both a trivial and a non-trivial special member of a particular kind,
4634     // they return false! For now, we emulate this behavior.
4635     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4636     // does not correctly compute triviality in the presence of multiple special
4637     // members of the same kind. Revisit this once the g++ bug is fixed.
4638   case UTT_HasTrivialDefaultConstructor:
4639     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4640     //   If __is_pod (type) is true then the trait is true, else if type is
4641     //   a cv class or union type (or array thereof) with a trivial default
4642     //   constructor ([class.ctor]) then the trait is true, else it is false.
4643     if (T.isPODType(C))
4644       return true;
4645     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4646       return RD->hasTrivialDefaultConstructor() &&
4647              !RD->hasNonTrivialDefaultConstructor();
4648     return false;
4649   case UTT_HasTrivialMoveConstructor:
4650     //  This trait is implemented by MSVC 2012 and needed to parse the
4651     //  standard library headers. Specifically this is used as the logic
4652     //  behind std::is_trivially_move_constructible (20.9.4.3).
4653     if (T.isPODType(C))
4654       return true;
4655     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4656       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4657     return false;
4658   case UTT_HasTrivialCopy:
4659     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4660     //   If __is_pod (type) is true or type is a reference type then
4661     //   the trait is true, else if type is a cv class or union type
4662     //   with a trivial copy constructor ([class.copy]) then the trait
4663     //   is true, else it is false.
4664     if (T.isPODType(C) || T->isReferenceType())
4665       return true;
4666     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4667       return RD->hasTrivialCopyConstructor() &&
4668              !RD->hasNonTrivialCopyConstructor();
4669     return false;
4670   case UTT_HasTrivialMoveAssign:
4671     //  This trait is implemented by MSVC 2012 and needed to parse the
4672     //  standard library headers. Specifically it is used as the logic
4673     //  behind std::is_trivially_move_assignable (20.9.4.3)
4674     if (T.isPODType(C))
4675       return true;
4676     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4677       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4678     return false;
4679   case UTT_HasTrivialAssign:
4680     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4681     //   If type is const qualified or is a reference type then the
4682     //   trait is false. Otherwise if __is_pod (type) is true then the
4683     //   trait is true, else if type is a cv class or union type with
4684     //   a trivial copy assignment ([class.copy]) then the trait is
4685     //   true, else it is false.
4686     // Note: the const and reference restrictions are interesting,
4687     // given that const and reference members don't prevent a class
4688     // from having a trivial copy assignment operator (but do cause
4689     // errors if the copy assignment operator is actually used, q.v.
4690     // [class.copy]p12).
4691 
4692     if (T.isConstQualified())
4693       return false;
4694     if (T.isPODType(C))
4695       return true;
4696     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4697       return RD->hasTrivialCopyAssignment() &&
4698              !RD->hasNonTrivialCopyAssignment();
4699     return false;
4700   case UTT_IsDestructible:
4701   case UTT_IsTriviallyDestructible:
4702   case UTT_IsNothrowDestructible:
4703     // C++14 [meta.unary.prop]:
4704     //   For reference types, is_destructible<T>::value is true.
4705     if (T->isReferenceType())
4706       return true;
4707 
4708     // Objective-C++ ARC: autorelease types don't require destruction.
4709     if (T->isObjCLifetimeType() &&
4710         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4711       return true;
4712 
4713     // C++14 [meta.unary.prop]:
4714     //   For incomplete types and function types, is_destructible<T>::value is
4715     //   false.
4716     if (T->isIncompleteType() || T->isFunctionType())
4717       return false;
4718 
4719     // A type that requires destruction (via a non-trivial destructor or ARC
4720     // lifetime semantics) is not trivially-destructible.
4721     if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
4722       return false;
4723 
4724     // C++14 [meta.unary.prop]:
4725     //   For object types and given U equal to remove_all_extents_t<T>, if the
4726     //   expression std::declval<U&>().~U() is well-formed when treated as an
4727     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
4728     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4729       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
4730       if (!Destructor)
4731         return false;
4732       //  C++14 [dcl.fct.def.delete]p2:
4733       //    A program that refers to a deleted function implicitly or
4734       //    explicitly, other than to declare it, is ill-formed.
4735       if (Destructor->isDeleted())
4736         return false;
4737       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
4738         return false;
4739       if (UTT == UTT_IsNothrowDestructible) {
4740         const FunctionProtoType *CPT =
4741             Destructor->getType()->getAs<FunctionProtoType>();
4742         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4743         if (!CPT || !CPT->isNothrow())
4744           return false;
4745       }
4746     }
4747     return true;
4748 
4749   case UTT_HasTrivialDestructor:
4750     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4751     //   If __is_pod (type) is true or type is a reference type
4752     //   then the trait is true, else if type is a cv class or union
4753     //   type (or array thereof) with a trivial destructor
4754     //   ([class.dtor]) then the trait is true, else it is
4755     //   false.
4756     if (T.isPODType(C) || T->isReferenceType())
4757       return true;
4758 
4759     // Objective-C++ ARC: autorelease types don't require destruction.
4760     if (T->isObjCLifetimeType() &&
4761         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4762       return true;
4763 
4764     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4765       return RD->hasTrivialDestructor();
4766     return false;
4767   // TODO: Propagate nothrowness for implicitly declared special members.
4768   case UTT_HasNothrowAssign:
4769     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4770     //   If type is const qualified or is a reference type then the
4771     //   trait is false. Otherwise if __has_trivial_assign (type)
4772     //   is true then the trait is true, else if type is a cv class
4773     //   or union type with copy assignment operators that are known
4774     //   not to throw an exception then the trait is true, else it is
4775     //   false.
4776     if (C.getBaseElementType(T).isConstQualified())
4777       return false;
4778     if (T->isReferenceType())
4779       return false;
4780     if (T.isPODType(C) || T->isObjCLifetimeType())
4781       return true;
4782 
4783     if (const RecordType *RT = T->getAs<RecordType>())
4784       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4785                                 &CXXRecordDecl::hasTrivialCopyAssignment,
4786                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
4787                                 &CXXMethodDecl::isCopyAssignmentOperator);
4788     return false;
4789   case UTT_HasNothrowMoveAssign:
4790     //  This trait is implemented by MSVC 2012 and needed to parse the
4791     //  standard library headers. Specifically this is used as the logic
4792     //  behind std::is_nothrow_move_assignable (20.9.4.3).
4793     if (T.isPODType(C))
4794       return true;
4795 
4796     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
4797       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4798                                 &CXXRecordDecl::hasTrivialMoveAssignment,
4799                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
4800                                 &CXXMethodDecl::isMoveAssignmentOperator);
4801     return false;
4802   case UTT_HasNothrowCopy:
4803     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4804     //   If __has_trivial_copy (type) is true then the trait is true, else
4805     //   if type is a cv class or union type with copy constructors that are
4806     //   known not to throw an exception then the trait is true, else it is
4807     //   false.
4808     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
4809       return true;
4810     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
4811       if (RD->hasTrivialCopyConstructor() &&
4812           !RD->hasNonTrivialCopyConstructor())
4813         return true;
4814 
4815       bool FoundConstructor = false;
4816       unsigned FoundTQs;
4817       for (const auto *ND : Self.LookupConstructors(RD)) {
4818         // A template constructor is never a copy constructor.
4819         // FIXME: However, it may actually be selected at the actual overload
4820         // resolution point.
4821         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4822           continue;
4823         // UsingDecl itself is not a constructor
4824         if (isa<UsingDecl>(ND))
4825           continue;
4826         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4827         if (Constructor->isCopyConstructor(FoundTQs)) {
4828           FoundConstructor = true;
4829           const FunctionProtoType *CPT
4830               = Constructor->getType()->getAs<FunctionProtoType>();
4831           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4832           if (!CPT)
4833             return false;
4834           // TODO: check whether evaluating default arguments can throw.
4835           // For now, we'll be conservative and assume that they can throw.
4836           if (!CPT->isNothrow() || CPT->getNumParams() > 1)
4837             return false;
4838         }
4839       }
4840 
4841       return FoundConstructor;
4842     }
4843     return false;
4844   case UTT_HasNothrowConstructor:
4845     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4846     //   If __has_trivial_constructor (type) is true then the trait is
4847     //   true, else if type is a cv class or union type (or array
4848     //   thereof) with a default constructor that is known not to
4849     //   throw an exception then the trait is true, else it is false.
4850     if (T.isPODType(C) || T->isObjCLifetimeType())
4851       return true;
4852     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4853       if (RD->hasTrivialDefaultConstructor() &&
4854           !RD->hasNonTrivialDefaultConstructor())
4855         return true;
4856 
4857       bool FoundConstructor = false;
4858       for (const auto *ND : Self.LookupConstructors(RD)) {
4859         // FIXME: In C++0x, a constructor template can be a default constructor.
4860         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4861           continue;
4862         // UsingDecl itself is not a constructor
4863         if (isa<UsingDecl>(ND))
4864           continue;
4865         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4866         if (Constructor->isDefaultConstructor()) {
4867           FoundConstructor = true;
4868           const FunctionProtoType *CPT
4869               = Constructor->getType()->getAs<FunctionProtoType>();
4870           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4871           if (!CPT)
4872             return false;
4873           // FIXME: check whether evaluating default arguments can throw.
4874           // For now, we'll be conservative and assume that they can throw.
4875           if (!CPT->isNothrow() || CPT->getNumParams() > 0)
4876             return false;
4877         }
4878       }
4879       return FoundConstructor;
4880     }
4881     return false;
4882   case UTT_HasVirtualDestructor:
4883     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4884     //   If type is a class type with a virtual destructor ([class.dtor])
4885     //   then the trait is true, else it is false.
4886     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4887       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4888         return Destructor->isVirtual();
4889     return false;
4890 
4891     // These type trait expressions are modeled on the specifications for the
4892     // Embarcadero C++0x type trait functions:
4893     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4894   case UTT_IsCompleteType:
4895     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4896     //   Returns True if and only if T is a complete type at the point of the
4897     //   function call.
4898     return !T->isIncompleteType();
4899   case UTT_HasUniqueObjectRepresentations:
4900     return C.hasUniqueObjectRepresentations(T);
4901   }
4902 }
4903 
4904 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4905                                     QualType RhsT, SourceLocation KeyLoc);
4906 
4907 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
4908                               ArrayRef<TypeSourceInfo *> Args,
4909                               SourceLocation RParenLoc) {
4910   if (Kind <= UTT_Last)
4911     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4912 
4913   // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
4914   // traits to avoid duplication.
4915   if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
4916     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4917                                    Args[1]->getType(), RParenLoc);
4918 
4919   switch (Kind) {
4920   case clang::BTT_ReferenceBindsToTemporary:
4921   case clang::TT_IsConstructible:
4922   case clang::TT_IsNothrowConstructible:
4923   case clang::TT_IsTriviallyConstructible: {
4924     // C++11 [meta.unary.prop]:
4925     //   is_trivially_constructible is defined as:
4926     //
4927     //     is_constructible<T, Args...>::value is true and the variable
4928     //     definition for is_constructible, as defined below, is known to call
4929     //     no operation that is not trivial.
4930     //
4931     //   The predicate condition for a template specialization
4932     //   is_constructible<T, Args...> shall be satisfied if and only if the
4933     //   following variable definition would be well-formed for some invented
4934     //   variable t:
4935     //
4936     //     T t(create<Args>()...);
4937     assert(!Args.empty());
4938 
4939     // Precondition: T and all types in the parameter pack Args shall be
4940     // complete types, (possibly cv-qualified) void, or arrays of
4941     // unknown bound.
4942     for (const auto *TSI : Args) {
4943       QualType ArgTy = TSI->getType();
4944       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4945         continue;
4946 
4947       if (S.RequireCompleteType(KWLoc, ArgTy,
4948           diag::err_incomplete_type_used_in_type_trait_expr))
4949         return false;
4950     }
4951 
4952     // Make sure the first argument is not incomplete nor a function type.
4953     QualType T = Args[0]->getType();
4954     if (T->isIncompleteType() || T->isFunctionType())
4955       return false;
4956 
4957     // Make sure the first argument is not an abstract type.
4958     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4959     if (RD && RD->isAbstract())
4960       return false;
4961 
4962     SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4963     SmallVector<Expr *, 2> ArgExprs;
4964     ArgExprs.reserve(Args.size() - 1);
4965     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4966       QualType ArgTy = Args[I]->getType();
4967       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4968         ArgTy = S.Context.getRValueReferenceType(ArgTy);
4969       OpaqueArgExprs.push_back(
4970           OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
4971                           ArgTy.getNonLValueExprType(S.Context),
4972                           Expr::getValueKindForType(ArgTy)));
4973     }
4974     for (Expr &E : OpaqueArgExprs)
4975       ArgExprs.push_back(&E);
4976 
4977     // Perform the initialization in an unevaluated context within a SFINAE
4978     // trap at translation unit scope.
4979     EnterExpressionEvaluationContext Unevaluated(
4980         S, Sema::ExpressionEvaluationContext::Unevaluated);
4981     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4982     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
4983     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
4984     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
4985                                                                  RParenLoc));
4986     InitializationSequence Init(S, To, InitKind, ArgExprs);
4987     if (Init.Failed())
4988       return false;
4989 
4990     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4991     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4992       return false;
4993 
4994     if (Kind == clang::TT_IsConstructible)
4995       return true;
4996 
4997     if (Kind == clang::BTT_ReferenceBindsToTemporary) {
4998       if (!T->isReferenceType())
4999         return false;
5000 
5001       return !Init.isDirectReferenceBinding();
5002     }
5003 
5004     if (Kind == clang::TT_IsNothrowConstructible)
5005       return S.canThrow(Result.get()) == CT_Cannot;
5006 
5007     if (Kind == clang::TT_IsTriviallyConstructible) {
5008       // Under Objective-C ARC and Weak, if the destination has non-trivial
5009       // Objective-C lifetime, this is a non-trivial construction.
5010       if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5011         return false;
5012 
5013       // The initialization succeeded; now make sure there are no non-trivial
5014       // calls.
5015       return !Result.get()->hasNonTrivialCall(S.Context);
5016     }
5017 
5018     llvm_unreachable("unhandled type trait");
5019     return false;
5020   }
5021     default: llvm_unreachable("not a TT");
5022   }
5023 
5024   return false;
5025 }
5026 
5027 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5028                                 ArrayRef<TypeSourceInfo *> Args,
5029                                 SourceLocation RParenLoc) {
5030   QualType ResultType = Context.getLogicalOperationType();
5031 
5032   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5033                                *this, Kind, KWLoc, Args[0]->getType()))
5034     return ExprError();
5035 
5036   bool Dependent = false;
5037   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5038     if (Args[I]->getType()->isDependentType()) {
5039       Dependent = true;
5040       break;
5041     }
5042   }
5043 
5044   bool Result = false;
5045   if (!Dependent)
5046     Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5047 
5048   return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5049                                RParenLoc, Result);
5050 }
5051 
5052 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5053                                 ArrayRef<ParsedType> Args,
5054                                 SourceLocation RParenLoc) {
5055   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5056   ConvertedArgs.reserve(Args.size());
5057 
5058   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5059     TypeSourceInfo *TInfo;
5060     QualType T = GetTypeFromParser(Args[I], &TInfo);
5061     if (!TInfo)
5062       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5063 
5064     ConvertedArgs.push_back(TInfo);
5065   }
5066 
5067   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5068 }
5069 
5070 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5071                                     QualType RhsT, SourceLocation KeyLoc) {
5072   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5073          "Cannot evaluate traits of dependent types");
5074 
5075   switch(BTT) {
5076   case BTT_IsBaseOf: {
5077     // C++0x [meta.rel]p2
5078     // Base is a base class of Derived without regard to cv-qualifiers or
5079     // Base and Derived are not unions and name the same class type without
5080     // regard to cv-qualifiers.
5081 
5082     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5083     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5084     if (!rhsRecord || !lhsRecord) {
5085       const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5086       const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5087       if (!LHSObjTy || !RHSObjTy)
5088         return false;
5089 
5090       ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5091       ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5092       if (!BaseInterface || !DerivedInterface)
5093         return false;
5094 
5095       if (Self.RequireCompleteType(
5096               KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5097         return false;
5098 
5099       return BaseInterface->isSuperClassOf(DerivedInterface);
5100     }
5101 
5102     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5103              == (lhsRecord == rhsRecord));
5104 
5105     // Unions are never base classes, and never have base classes.
5106     // It doesn't matter if they are complete or not. See PR#41843
5107     if (lhsRecord && lhsRecord->getDecl()->isUnion())
5108       return false;
5109     if (rhsRecord && rhsRecord->getDecl()->isUnion())
5110       return false;
5111 
5112     if (lhsRecord == rhsRecord)
5113       return true;
5114 
5115     // C++0x [meta.rel]p2:
5116     //   If Base and Derived are class types and are different types
5117     //   (ignoring possible cv-qualifiers) then Derived shall be a
5118     //   complete type.
5119     if (Self.RequireCompleteType(KeyLoc, RhsT,
5120                           diag::err_incomplete_type_used_in_type_trait_expr))
5121       return false;
5122 
5123     return cast<CXXRecordDecl>(rhsRecord->getDecl())
5124       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5125   }
5126   case BTT_IsSame:
5127     return Self.Context.hasSameType(LhsT, RhsT);
5128   case BTT_TypeCompatible: {
5129     // GCC ignores cv-qualifiers on arrays for this builtin.
5130     Qualifiers LhsQuals, RhsQuals;
5131     QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5132     QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5133     return Self.Context.typesAreCompatible(Lhs, Rhs);
5134   }
5135   case BTT_IsConvertible:
5136   case BTT_IsConvertibleTo: {
5137     // C++0x [meta.rel]p4:
5138     //   Given the following function prototype:
5139     //
5140     //     template <class T>
5141     //       typename add_rvalue_reference<T>::type create();
5142     //
5143     //   the predicate condition for a template specialization
5144     //   is_convertible<From, To> shall be satisfied if and only if
5145     //   the return expression in the following code would be
5146     //   well-formed, including any implicit conversions to the return
5147     //   type of the function:
5148     //
5149     //     To test() {
5150     //       return create<From>();
5151     //     }
5152     //
5153     //   Access checking is performed as if in a context unrelated to To and
5154     //   From. Only the validity of the immediate context of the expression
5155     //   of the return-statement (including conversions to the return type)
5156     //   is considered.
5157     //
5158     // We model the initialization as a copy-initialization of a temporary
5159     // of the appropriate type, which for this expression is identical to the
5160     // return statement (since NRVO doesn't apply).
5161 
5162     // Functions aren't allowed to return function or array types.
5163     if (RhsT->isFunctionType() || RhsT->isArrayType())
5164       return false;
5165 
5166     // A return statement in a void function must have void type.
5167     if (RhsT->isVoidType())
5168       return LhsT->isVoidType();
5169 
5170     // A function definition requires a complete, non-abstract return type.
5171     if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5172       return false;
5173 
5174     // Compute the result of add_rvalue_reference.
5175     if (LhsT->isObjectType() || LhsT->isFunctionType())
5176       LhsT = Self.Context.getRValueReferenceType(LhsT);
5177 
5178     // Build a fake source and destination for initialization.
5179     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5180     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5181                          Expr::getValueKindForType(LhsT));
5182     Expr *FromPtr = &From;
5183     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5184                                                            SourceLocation()));
5185 
5186     // Perform the initialization in an unevaluated context within a SFINAE
5187     // trap at translation unit scope.
5188     EnterExpressionEvaluationContext Unevaluated(
5189         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5190     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5191     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5192     InitializationSequence Init(Self, To, Kind, FromPtr);
5193     if (Init.Failed())
5194       return false;
5195 
5196     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5197     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5198   }
5199 
5200   case BTT_IsAssignable:
5201   case BTT_IsNothrowAssignable:
5202   case BTT_IsTriviallyAssignable: {
5203     // C++11 [meta.unary.prop]p3:
5204     //   is_trivially_assignable is defined as:
5205     //     is_assignable<T, U>::value is true and the assignment, as defined by
5206     //     is_assignable, is known to call no operation that is not trivial
5207     //
5208     //   is_assignable is defined as:
5209     //     The expression declval<T>() = declval<U>() is well-formed when
5210     //     treated as an unevaluated operand (Clause 5).
5211     //
5212     //   For both, T and U shall be complete types, (possibly cv-qualified)
5213     //   void, or arrays of unknown bound.
5214     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5215         Self.RequireCompleteType(KeyLoc, LhsT,
5216           diag::err_incomplete_type_used_in_type_trait_expr))
5217       return false;
5218     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5219         Self.RequireCompleteType(KeyLoc, RhsT,
5220           diag::err_incomplete_type_used_in_type_trait_expr))
5221       return false;
5222 
5223     // cv void is never assignable.
5224     if (LhsT->isVoidType() || RhsT->isVoidType())
5225       return false;
5226 
5227     // Build expressions that emulate the effect of declval<T>() and
5228     // declval<U>().
5229     if (LhsT->isObjectType() || LhsT->isFunctionType())
5230       LhsT = Self.Context.getRValueReferenceType(LhsT);
5231     if (RhsT->isObjectType() || RhsT->isFunctionType())
5232       RhsT = Self.Context.getRValueReferenceType(RhsT);
5233     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5234                         Expr::getValueKindForType(LhsT));
5235     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5236                         Expr::getValueKindForType(RhsT));
5237 
5238     // Attempt the assignment in an unevaluated context within a SFINAE
5239     // trap at translation unit scope.
5240     EnterExpressionEvaluationContext Unevaluated(
5241         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5242     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5243     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5244     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5245                                         &Rhs);
5246     if (Result.isInvalid())
5247       return false;
5248 
5249     // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5250     Self.CheckUnusedVolatileAssignment(Result.get());
5251 
5252     if (SFINAE.hasErrorOccurred())
5253       return false;
5254 
5255     if (BTT == BTT_IsAssignable)
5256       return true;
5257 
5258     if (BTT == BTT_IsNothrowAssignable)
5259       return Self.canThrow(Result.get()) == CT_Cannot;
5260 
5261     if (BTT == BTT_IsTriviallyAssignable) {
5262       // Under Objective-C ARC and Weak, if the destination has non-trivial
5263       // Objective-C lifetime, this is a non-trivial assignment.
5264       if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5265         return false;
5266 
5267       return !Result.get()->hasNonTrivialCall(Self.Context);
5268     }
5269 
5270     llvm_unreachable("unhandled type trait");
5271     return false;
5272   }
5273     default: llvm_unreachable("not a BTT");
5274   }
5275   llvm_unreachable("Unknown type trait or not implemented");
5276 }
5277 
5278 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5279                                      SourceLocation KWLoc,
5280                                      ParsedType Ty,
5281                                      Expr* DimExpr,
5282                                      SourceLocation RParen) {
5283   TypeSourceInfo *TSInfo;
5284   QualType T = GetTypeFromParser(Ty, &TSInfo);
5285   if (!TSInfo)
5286     TSInfo = Context.getTrivialTypeSourceInfo(T);
5287 
5288   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5289 }
5290 
5291 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5292                                            QualType T, Expr *DimExpr,
5293                                            SourceLocation KeyLoc) {
5294   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5295 
5296   switch(ATT) {
5297   case ATT_ArrayRank:
5298     if (T->isArrayType()) {
5299       unsigned Dim = 0;
5300       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5301         ++Dim;
5302         T = AT->getElementType();
5303       }
5304       return Dim;
5305     }
5306     return 0;
5307 
5308   case ATT_ArrayExtent: {
5309     llvm::APSInt Value;
5310     uint64_t Dim;
5311     if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
5312           diag::err_dimension_expr_not_constant_integer,
5313           false).isInvalid())
5314       return 0;
5315     if (Value.isSigned() && Value.isNegative()) {
5316       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5317         << DimExpr->getSourceRange();
5318       return 0;
5319     }
5320     Dim = Value.getLimitedValue();
5321 
5322     if (T->isArrayType()) {
5323       unsigned D = 0;
5324       bool Matched = false;
5325       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5326         if (Dim == D) {
5327           Matched = true;
5328           break;
5329         }
5330         ++D;
5331         T = AT->getElementType();
5332       }
5333 
5334       if (Matched && T->isArrayType()) {
5335         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5336           return CAT->getSize().getLimitedValue();
5337       }
5338     }
5339     return 0;
5340   }
5341   }
5342   llvm_unreachable("Unknown type trait or not implemented");
5343 }
5344 
5345 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5346                                      SourceLocation KWLoc,
5347                                      TypeSourceInfo *TSInfo,
5348                                      Expr* DimExpr,
5349                                      SourceLocation RParen) {
5350   QualType T = TSInfo->getType();
5351 
5352   // FIXME: This should likely be tracked as an APInt to remove any host
5353   // assumptions about the width of size_t on the target.
5354   uint64_t Value = 0;
5355   if (!T->isDependentType())
5356     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5357 
5358   // While the specification for these traits from the Embarcadero C++
5359   // compiler's documentation says the return type is 'unsigned int', Clang
5360   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5361   // compiler, there is no difference. On several other platforms this is an
5362   // important distinction.
5363   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5364                                           RParen, Context.getSizeType());
5365 }
5366 
5367 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5368                                       SourceLocation KWLoc,
5369                                       Expr *Queried,
5370                                       SourceLocation RParen) {
5371   // If error parsing the expression, ignore.
5372   if (!Queried)
5373     return ExprError();
5374 
5375   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5376 
5377   return Result;
5378 }
5379 
5380 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5381   switch (ET) {
5382   case ET_IsLValueExpr: return E->isLValue();
5383   case ET_IsRValueExpr: return E->isRValue();
5384   }
5385   llvm_unreachable("Expression trait not covered by switch");
5386 }
5387 
5388 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5389                                       SourceLocation KWLoc,
5390                                       Expr *Queried,
5391                                       SourceLocation RParen) {
5392   if (Queried->isTypeDependent()) {
5393     // Delay type-checking for type-dependent expressions.
5394   } else if (Queried->getType()->isPlaceholderType()) {
5395     ExprResult PE = CheckPlaceholderExpr(Queried);
5396     if (PE.isInvalid()) return ExprError();
5397     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5398   }
5399 
5400   bool Value = EvaluateExpressionTrait(ET, Queried);
5401 
5402   return new (Context)
5403       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5404 }
5405 
5406 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5407                                             ExprValueKind &VK,
5408                                             SourceLocation Loc,
5409                                             bool isIndirect) {
5410   assert(!LHS.get()->getType()->isPlaceholderType() &&
5411          !RHS.get()->getType()->isPlaceholderType() &&
5412          "placeholders should have been weeded out by now");
5413 
5414   // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5415   // temporary materialization conversion otherwise.
5416   if (isIndirect)
5417     LHS = DefaultLvalueConversion(LHS.get());
5418   else if (LHS.get()->isRValue())
5419     LHS = TemporaryMaterializationConversion(LHS.get());
5420   if (LHS.isInvalid())
5421     return QualType();
5422 
5423   // The RHS always undergoes lvalue conversions.
5424   RHS = DefaultLvalueConversion(RHS.get());
5425   if (RHS.isInvalid()) return QualType();
5426 
5427   const char *OpSpelling = isIndirect ? "->*" : ".*";
5428   // C++ 5.5p2
5429   //   The binary operator .* [p3: ->*] binds its second operand, which shall
5430   //   be of type "pointer to member of T" (where T is a completely-defined
5431   //   class type) [...]
5432   QualType RHSType = RHS.get()->getType();
5433   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5434   if (!MemPtr) {
5435     Diag(Loc, diag::err_bad_memptr_rhs)
5436       << OpSpelling << RHSType << RHS.get()->getSourceRange();
5437     return QualType();
5438   }
5439 
5440   QualType Class(MemPtr->getClass(), 0);
5441 
5442   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5443   // member pointer points must be completely-defined. However, there is no
5444   // reason for this semantic distinction, and the rule is not enforced by
5445   // other compilers. Therefore, we do not check this property, as it is
5446   // likely to be considered a defect.
5447 
5448   // C++ 5.5p2
5449   //   [...] to its first operand, which shall be of class T or of a class of
5450   //   which T is an unambiguous and accessible base class. [p3: a pointer to
5451   //   such a class]
5452   QualType LHSType = LHS.get()->getType();
5453   if (isIndirect) {
5454     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5455       LHSType = Ptr->getPointeeType();
5456     else {
5457       Diag(Loc, diag::err_bad_memptr_lhs)
5458         << OpSpelling << 1 << LHSType
5459         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5460       return QualType();
5461     }
5462   }
5463 
5464   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5465     // If we want to check the hierarchy, we need a complete type.
5466     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5467                             OpSpelling, (int)isIndirect)) {
5468       return QualType();
5469     }
5470 
5471     if (!IsDerivedFrom(Loc, LHSType, Class)) {
5472       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5473         << (int)isIndirect << LHS.get()->getType();
5474       return QualType();
5475     }
5476 
5477     CXXCastPath BasePath;
5478     if (CheckDerivedToBaseConversion(
5479             LHSType, Class, Loc,
5480             SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5481             &BasePath))
5482       return QualType();
5483 
5484     // Cast LHS to type of use.
5485     QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5486     if (isIndirect)
5487       UseType = Context.getPointerType(UseType);
5488     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
5489     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5490                             &BasePath);
5491   }
5492 
5493   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5494     // Diagnose use of pointer-to-member type which when used as
5495     // the functional cast in a pointer-to-member expression.
5496     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5497      return QualType();
5498   }
5499 
5500   // C++ 5.5p2
5501   //   The result is an object or a function of the type specified by the
5502   //   second operand.
5503   // The cv qualifiers are the union of those in the pointer and the left side,
5504   // in accordance with 5.5p5 and 5.2.5.
5505   QualType Result = MemPtr->getPointeeType();
5506   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5507 
5508   // C++0x [expr.mptr.oper]p6:
5509   //   In a .* expression whose object expression is an rvalue, the program is
5510   //   ill-formed if the second operand is a pointer to member function with
5511   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
5512   //   expression is an lvalue, the program is ill-formed if the second operand
5513   //   is a pointer to member function with ref-qualifier &&.
5514   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5515     switch (Proto->getRefQualifier()) {
5516     case RQ_None:
5517       // Do nothing
5518       break;
5519 
5520     case RQ_LValue:
5521       if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5522         // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
5523         // is (exactly) 'const'.
5524         if (Proto->isConst() && !Proto->isVolatile())
5525           Diag(Loc, getLangOpts().CPlusPlus2a
5526                         ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5527                         : diag::ext_pointer_to_const_ref_member_on_rvalue);
5528         else
5529           Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5530               << RHSType << 1 << LHS.get()->getSourceRange();
5531       }
5532       break;
5533 
5534     case RQ_RValue:
5535       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5536         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5537           << RHSType << 0 << LHS.get()->getSourceRange();
5538       break;
5539     }
5540   }
5541 
5542   // C++ [expr.mptr.oper]p6:
5543   //   The result of a .* expression whose second operand is a pointer
5544   //   to a data member is of the same value category as its
5545   //   first operand. The result of a .* expression whose second
5546   //   operand is a pointer to a member function is a prvalue. The
5547   //   result of an ->* expression is an lvalue if its second operand
5548   //   is a pointer to data member and a prvalue otherwise.
5549   if (Result->isFunctionType()) {
5550     VK = VK_RValue;
5551     return Context.BoundMemberTy;
5552   } else if (isIndirect) {
5553     VK = VK_LValue;
5554   } else {
5555     VK = LHS.get()->getValueKind();
5556   }
5557 
5558   return Result;
5559 }
5560 
5561 /// Try to convert a type to another according to C++11 5.16p3.
5562 ///
5563 /// This is part of the parameter validation for the ? operator. If either
5564 /// value operand is a class type, the two operands are attempted to be
5565 /// converted to each other. This function does the conversion in one direction.
5566 /// It returns true if the program is ill-formed and has already been diagnosed
5567 /// as such.
5568 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5569                                 SourceLocation QuestionLoc,
5570                                 bool &HaveConversion,
5571                                 QualType &ToType) {
5572   HaveConversion = false;
5573   ToType = To->getType();
5574 
5575   InitializationKind Kind =
5576       InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
5577   // C++11 5.16p3
5578   //   The process for determining whether an operand expression E1 of type T1
5579   //   can be converted to match an operand expression E2 of type T2 is defined
5580   //   as follows:
5581   //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5582   //      implicitly converted to type "lvalue reference to T2", subject to the
5583   //      constraint that in the conversion the reference must bind directly to
5584   //      an lvalue.
5585   //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5586   //      implicitly converted to the type "rvalue reference to R2", subject to
5587   //      the constraint that the reference must bind directly.
5588   if (To->isLValue() || To->isXValue()) {
5589     QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType)
5590                                 : Self.Context.getRValueReferenceType(ToType);
5591 
5592     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5593 
5594     InitializationSequence InitSeq(Self, Entity, Kind, From);
5595     if (InitSeq.isDirectReferenceBinding()) {
5596       ToType = T;
5597       HaveConversion = true;
5598       return false;
5599     }
5600 
5601     if (InitSeq.isAmbiguous())
5602       return InitSeq.Diagnose(Self, Entity, Kind, From);
5603   }
5604 
5605   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
5606   //      -- if E1 and E2 have class type, and the underlying class types are
5607   //         the same or one is a base class of the other:
5608   QualType FTy = From->getType();
5609   QualType TTy = To->getType();
5610   const RecordType *FRec = FTy->getAs<RecordType>();
5611   const RecordType *TRec = TTy->getAs<RecordType>();
5612   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5613                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5614   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5615                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5616     //         E1 can be converted to match E2 if the class of T2 is the
5617     //         same type as, or a base class of, the class of T1, and
5618     //         [cv2 > cv1].
5619     if (FRec == TRec || FDerivedFromT) {
5620       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5621         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5622         InitializationSequence InitSeq(Self, Entity, Kind, From);
5623         if (InitSeq) {
5624           HaveConversion = true;
5625           return false;
5626         }
5627 
5628         if (InitSeq.isAmbiguous())
5629           return InitSeq.Diagnose(Self, Entity, Kind, From);
5630       }
5631     }
5632 
5633     return false;
5634   }
5635 
5636   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
5637   //        implicitly converted to the type that expression E2 would have
5638   //        if E2 were converted to an rvalue (or the type it has, if E2 is
5639   //        an rvalue).
5640   //
5641   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5642   // to the array-to-pointer or function-to-pointer conversions.
5643   TTy = TTy.getNonLValueExprType(Self.Context);
5644 
5645   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5646   InitializationSequence InitSeq(Self, Entity, Kind, From);
5647   HaveConversion = !InitSeq.Failed();
5648   ToType = TTy;
5649   if (InitSeq.isAmbiguous())
5650     return InitSeq.Diagnose(Self, Entity, Kind, From);
5651 
5652   return false;
5653 }
5654 
5655 /// Try to find a common type for two according to C++0x 5.16p5.
5656 ///
5657 /// This is part of the parameter validation for the ? operator. If either
5658 /// value operand is a class type, overload resolution is used to find a
5659 /// conversion to a common type.
5660 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5661                                     SourceLocation QuestionLoc) {
5662   Expr *Args[2] = { LHS.get(), RHS.get() };
5663   OverloadCandidateSet CandidateSet(QuestionLoc,
5664                                     OverloadCandidateSet::CSK_Operator);
5665   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5666                                     CandidateSet);
5667 
5668   OverloadCandidateSet::iterator Best;
5669   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5670     case OR_Success: {
5671       // We found a match. Perform the conversions on the arguments and move on.
5672       ExprResult LHSRes = Self.PerformImplicitConversion(
5673           LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
5674           Sema::AA_Converting);
5675       if (LHSRes.isInvalid())
5676         break;
5677       LHS = LHSRes;
5678 
5679       ExprResult RHSRes = Self.PerformImplicitConversion(
5680           RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
5681           Sema::AA_Converting);
5682       if (RHSRes.isInvalid())
5683         break;
5684       RHS = RHSRes;
5685       if (Best->Function)
5686         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5687       return false;
5688     }
5689 
5690     case OR_No_Viable_Function:
5691 
5692       // Emit a better diagnostic if one of the expressions is a null pointer
5693       // constant and the other is a pointer type. In this case, the user most
5694       // likely forgot to take the address of the other expression.
5695       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5696         return true;
5697 
5698       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5699         << LHS.get()->getType() << RHS.get()->getType()
5700         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5701       return true;
5702 
5703     case OR_Ambiguous:
5704       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
5705         << LHS.get()->getType() << RHS.get()->getType()
5706         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5707       // FIXME: Print the possible common types by printing the return types of
5708       // the viable candidates.
5709       break;
5710 
5711     case OR_Deleted:
5712       llvm_unreachable("Conditional operator has only built-in overloads");
5713   }
5714   return true;
5715 }
5716 
5717 /// Perform an "extended" implicit conversion as returned by
5718 /// TryClassUnification.
5719 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
5720   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5721   InitializationKind Kind =
5722       InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
5723   Expr *Arg = E.get();
5724   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
5725   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
5726   if (Result.isInvalid())
5727     return true;
5728 
5729   E = Result;
5730   return false;
5731 }
5732 
5733 /// Check the operands of ?: under C++ semantics.
5734 ///
5735 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
5736 /// extension. In this case, LHS == Cond. (But they're not aliases.)
5737 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5738                                            ExprResult &RHS, ExprValueKind &VK,
5739                                            ExprObjectKind &OK,
5740                                            SourceLocation QuestionLoc) {
5741   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
5742   // interface pointers.
5743 
5744   // C++11 [expr.cond]p1
5745   //   The first expression is contextually converted to bool.
5746   //
5747   // FIXME; GCC's vector extension permits the use of a?b:c where the type of
5748   //        a is that of a integer vector with the same number of elements and
5749   //        size as the vectors of b and c. If one of either b or c is a scalar
5750   //        it is implicitly converted to match the type of the vector.
5751   //        Otherwise the expression is ill-formed. If both b and c are scalars,
5752   //        then b and c are checked and converted to the type of a if possible.
5753   //        Unlike the OpenCL ?: operator, the expression is evaluated as
5754   //        (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
5755   if (!Cond.get()->isTypeDependent()) {
5756     ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
5757     if (CondRes.isInvalid())
5758       return QualType();
5759     Cond = CondRes;
5760   }
5761 
5762   // Assume r-value.
5763   VK = VK_RValue;
5764   OK = OK_Ordinary;
5765 
5766   // Either of the arguments dependent?
5767   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
5768     return Context.DependentTy;
5769 
5770   // C++11 [expr.cond]p2
5771   //   If either the second or the third operand has type (cv) void, ...
5772   QualType LTy = LHS.get()->getType();
5773   QualType RTy = RHS.get()->getType();
5774   bool LVoid = LTy->isVoidType();
5775   bool RVoid = RTy->isVoidType();
5776   if (LVoid || RVoid) {
5777     //   ... one of the following shall hold:
5778     //   -- The second or the third operand (but not both) is a (possibly
5779     //      parenthesized) throw-expression; the result is of the type
5780     //      and value category of the other.
5781     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
5782     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
5783     if (LThrow != RThrow) {
5784       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
5785       VK = NonThrow->getValueKind();
5786       // DR (no number yet): the result is a bit-field if the
5787       // non-throw-expression operand is a bit-field.
5788       OK = NonThrow->getObjectKind();
5789       return NonThrow->getType();
5790     }
5791 
5792     //   -- Both the second and third operands have type void; the result is of
5793     //      type void and is a prvalue.
5794     if (LVoid && RVoid)
5795       return Context.VoidTy;
5796 
5797     // Neither holds, error.
5798     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
5799       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
5800       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5801     return QualType();
5802   }
5803 
5804   // Neither is void.
5805 
5806   // C++11 [expr.cond]p3
5807   //   Otherwise, if the second and third operand have different types, and
5808   //   either has (cv) class type [...] an attempt is made to convert each of
5809   //   those operands to the type of the other.
5810   if (!Context.hasSameType(LTy, RTy) &&
5811       (LTy->isRecordType() || RTy->isRecordType())) {
5812     // These return true if a single direction is already ambiguous.
5813     QualType L2RType, R2LType;
5814     bool HaveL2R, HaveR2L;
5815     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
5816       return QualType();
5817     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
5818       return QualType();
5819 
5820     //   If both can be converted, [...] the program is ill-formed.
5821     if (HaveL2R && HaveR2L) {
5822       Diag(QuestionLoc, diag::err_conditional_ambiguous)
5823         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5824       return QualType();
5825     }
5826 
5827     //   If exactly one conversion is possible, that conversion is applied to
5828     //   the chosen operand and the converted operands are used in place of the
5829     //   original operands for the remainder of this section.
5830     if (HaveL2R) {
5831       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
5832         return QualType();
5833       LTy = LHS.get()->getType();
5834     } else if (HaveR2L) {
5835       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
5836         return QualType();
5837       RTy = RHS.get()->getType();
5838     }
5839   }
5840 
5841   // C++11 [expr.cond]p3
5842   //   if both are glvalues of the same value category and the same type except
5843   //   for cv-qualification, an attempt is made to convert each of those
5844   //   operands to the type of the other.
5845   // FIXME:
5846   //   Resolving a defect in P0012R1: we extend this to cover all cases where
5847   //   one of the operands is reference-compatible with the other, in order
5848   //   to support conditionals between functions differing in noexcept.
5849   ExprValueKind LVK = LHS.get()->getValueKind();
5850   ExprValueKind RVK = RHS.get()->getValueKind();
5851   if (!Context.hasSameType(LTy, RTy) &&
5852       LVK == RVK && LVK != VK_RValue) {
5853     // DerivedToBase was already handled by the class-specific case above.
5854     // FIXME: Should we allow ObjC conversions here?
5855     bool DerivedToBase, ObjCConversion, ObjCLifetimeConversion,
5856         FunctionConversion;
5857     if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, DerivedToBase,
5858                                      ObjCConversion, ObjCLifetimeConversion,
5859                                      FunctionConversion) == Ref_Compatible &&
5860         !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5861         // [...] subject to the constraint that the reference must bind
5862         // directly [...]
5863         !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
5864       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
5865       RTy = RHS.get()->getType();
5866     } else if (CompareReferenceRelationship(
5867                    QuestionLoc, RTy, LTy, DerivedToBase, ObjCConversion,
5868                    ObjCLifetimeConversion,
5869                    FunctionConversion) == Ref_Compatible &&
5870                !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5871                !LHS.get()->refersToBitField() &&
5872                !LHS.get()->refersToVectorElement()) {
5873       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
5874       LTy = LHS.get()->getType();
5875     }
5876   }
5877 
5878   // C++11 [expr.cond]p4
5879   //   If the second and third operands are glvalues of the same value
5880   //   category and have the same type, the result is of that type and
5881   //   value category and it is a bit-field if the second or the third
5882   //   operand is a bit-field, or if both are bit-fields.
5883   // We only extend this to bitfields, not to the crazy other kinds of
5884   // l-values.
5885   bool Same = Context.hasSameType(LTy, RTy);
5886   if (Same && LVK == RVK && LVK != VK_RValue &&
5887       LHS.get()->isOrdinaryOrBitFieldObject() &&
5888       RHS.get()->isOrdinaryOrBitFieldObject()) {
5889     VK = LHS.get()->getValueKind();
5890     if (LHS.get()->getObjectKind() == OK_BitField ||
5891         RHS.get()->getObjectKind() == OK_BitField)
5892       OK = OK_BitField;
5893 
5894     // If we have function pointer types, unify them anyway to unify their
5895     // exception specifications, if any.
5896     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5897       Qualifiers Qs = LTy.getQualifiers();
5898       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
5899                                      /*ConvertArgs*/false);
5900       LTy = Context.getQualifiedType(LTy, Qs);
5901 
5902       assert(!LTy.isNull() && "failed to find composite pointer type for "
5903                               "canonically equivalent function ptr types");
5904       assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type");
5905     }
5906 
5907     return LTy;
5908   }
5909 
5910   // C++11 [expr.cond]p5
5911   //   Otherwise, the result is a prvalue. If the second and third operands
5912   //   do not have the same type, and either has (cv) class type, ...
5913   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
5914     //   ... overload resolution is used to determine the conversions (if any)
5915     //   to be applied to the operands. If the overload resolution fails, the
5916     //   program is ill-formed.
5917     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
5918       return QualType();
5919   }
5920 
5921   // C++11 [expr.cond]p6
5922   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
5923   //   conversions are performed on the second and third operands.
5924   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
5925   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
5926   if (LHS.isInvalid() || RHS.isInvalid())
5927     return QualType();
5928   LTy = LHS.get()->getType();
5929   RTy = RHS.get()->getType();
5930 
5931   //   After those conversions, one of the following shall hold:
5932   //   -- The second and third operands have the same type; the result
5933   //      is of that type. If the operands have class type, the result
5934   //      is a prvalue temporary of the result type, which is
5935   //      copy-initialized from either the second operand or the third
5936   //      operand depending on the value of the first operand.
5937   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
5938     if (LTy->isRecordType()) {
5939       // The operands have class type. Make a temporary copy.
5940       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
5941 
5942       ExprResult LHSCopy = PerformCopyInitialization(Entity,
5943                                                      SourceLocation(),
5944                                                      LHS);
5945       if (LHSCopy.isInvalid())
5946         return QualType();
5947 
5948       ExprResult RHSCopy = PerformCopyInitialization(Entity,
5949                                                      SourceLocation(),
5950                                                      RHS);
5951       if (RHSCopy.isInvalid())
5952         return QualType();
5953 
5954       LHS = LHSCopy;
5955       RHS = RHSCopy;
5956     }
5957 
5958     // If we have function pointer types, unify them anyway to unify their
5959     // exception specifications, if any.
5960     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5961       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
5962       assert(!LTy.isNull() && "failed to find composite pointer type for "
5963                               "canonically equivalent function ptr types");
5964     }
5965 
5966     return LTy;
5967   }
5968 
5969   // Extension: conditional operator involving vector types.
5970   if (LTy->isVectorType() || RTy->isVectorType())
5971     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
5972                                /*AllowBothBool*/true,
5973                                /*AllowBoolConversions*/false);
5974 
5975   //   -- The second and third operands have arithmetic or enumeration type;
5976   //      the usual arithmetic conversions are performed to bring them to a
5977   //      common type, and the result is of that type.
5978   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
5979     QualType ResTy = UsualArithmeticConversions(LHS, RHS);
5980     if (LHS.isInvalid() || RHS.isInvalid())
5981       return QualType();
5982     if (ResTy.isNull()) {
5983       Diag(QuestionLoc,
5984            diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
5985         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5986       return QualType();
5987     }
5988 
5989     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
5990     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
5991 
5992     return ResTy;
5993   }
5994 
5995   //   -- The second and third operands have pointer type, or one has pointer
5996   //      type and the other is a null pointer constant, or both are null
5997   //      pointer constants, at least one of which is non-integral; pointer
5998   //      conversions and qualification conversions are performed to bring them
5999   //      to their composite pointer type. The result is of the composite
6000   //      pointer type.
6001   //   -- The second and third operands have pointer to member type, or one has
6002   //      pointer to member type and the other is a null pointer constant;
6003   //      pointer to member conversions and qualification conversions are
6004   //      performed to bring them to a common type, whose cv-qualification
6005   //      shall match the cv-qualification of either the second or the third
6006   //      operand. The result is of the common type.
6007   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6008   if (!Composite.isNull())
6009     return Composite;
6010 
6011   // Similarly, attempt to find composite type of two objective-c pointers.
6012   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6013   if (!Composite.isNull())
6014     return Composite;
6015 
6016   // Check if we are using a null with a non-pointer type.
6017   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6018     return QualType();
6019 
6020   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6021     << LHS.get()->getType() << RHS.get()->getType()
6022     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6023   return QualType();
6024 }
6025 
6026 static FunctionProtoType::ExceptionSpecInfo
6027 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
6028                     FunctionProtoType::ExceptionSpecInfo ESI2,
6029                     SmallVectorImpl<QualType> &ExceptionTypeStorage) {
6030   ExceptionSpecificationType EST1 = ESI1.Type;
6031   ExceptionSpecificationType EST2 = ESI2.Type;
6032 
6033   // If either of them can throw anything, that is the result.
6034   if (EST1 == EST_None) return ESI1;
6035   if (EST2 == EST_None) return ESI2;
6036   if (EST1 == EST_MSAny) return ESI1;
6037   if (EST2 == EST_MSAny) return ESI2;
6038   if (EST1 == EST_NoexceptFalse) return ESI1;
6039   if (EST2 == EST_NoexceptFalse) return ESI2;
6040 
6041   // If either of them is non-throwing, the result is the other.
6042   if (EST1 == EST_NoThrow) return ESI2;
6043   if (EST2 == EST_NoThrow) return ESI1;
6044   if (EST1 == EST_DynamicNone) return ESI2;
6045   if (EST2 == EST_DynamicNone) return ESI1;
6046   if (EST1 == EST_BasicNoexcept) return ESI2;
6047   if (EST2 == EST_BasicNoexcept) return ESI1;
6048   if (EST1 == EST_NoexceptTrue) return ESI2;
6049   if (EST2 == EST_NoexceptTrue) return ESI1;
6050 
6051   // If we're left with value-dependent computed noexcept expressions, we're
6052   // stuck. Before C++17, we can just drop the exception specification entirely,
6053   // since it's not actually part of the canonical type. And this should never
6054   // happen in C++17, because it would mean we were computing the composite
6055   // pointer type of dependent types, which should never happen.
6056   if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
6057     assert(!S.getLangOpts().CPlusPlus17 &&
6058            "computing composite pointer type of dependent types");
6059     return FunctionProtoType::ExceptionSpecInfo();
6060   }
6061 
6062   // Switch over the possibilities so that people adding new values know to
6063   // update this function.
6064   switch (EST1) {
6065   case EST_None:
6066   case EST_DynamicNone:
6067   case EST_MSAny:
6068   case EST_BasicNoexcept:
6069   case EST_DependentNoexcept:
6070   case EST_NoexceptFalse:
6071   case EST_NoexceptTrue:
6072   case EST_NoThrow:
6073     llvm_unreachable("handled above");
6074 
6075   case EST_Dynamic: {
6076     // This is the fun case: both exception specifications are dynamic. Form
6077     // the union of the two lists.
6078     assert(EST2 == EST_Dynamic && "other cases should already be handled");
6079     llvm::SmallPtrSet<QualType, 8> Found;
6080     for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
6081       for (QualType E : Exceptions)
6082         if (Found.insert(S.Context.getCanonicalType(E)).second)
6083           ExceptionTypeStorage.push_back(E);
6084 
6085     FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
6086     Result.Exceptions = ExceptionTypeStorage;
6087     return Result;
6088   }
6089 
6090   case EST_Unevaluated:
6091   case EST_Uninstantiated:
6092   case EST_Unparsed:
6093     llvm_unreachable("shouldn't see unresolved exception specifications here");
6094   }
6095 
6096   llvm_unreachable("invalid ExceptionSpecificationType");
6097 }
6098 
6099 /// Find a merged pointer type and convert the two expressions to it.
6100 ///
6101 /// This finds the composite pointer type (or member pointer type) for @p E1
6102 /// and @p E2 according to C++1z 5p14. It converts both expressions to this
6103 /// type and returns it.
6104 /// It does not emit diagnostics.
6105 ///
6106 /// \param Loc The location of the operator requiring these two expressions to
6107 /// be converted to the composite pointer type.
6108 ///
6109 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6110 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6111                                         Expr *&E1, Expr *&E2,
6112                                         bool ConvertArgs) {
6113   assert(getLangOpts().CPlusPlus && "This function assumes C++");
6114 
6115   // C++1z [expr]p14:
6116   //   The composite pointer type of two operands p1 and p2 having types T1
6117   //   and T2
6118   QualType T1 = E1->getType(), T2 = E2->getType();
6119 
6120   //   where at least one is a pointer or pointer to member type or
6121   //   std::nullptr_t is:
6122   bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6123                          T1->isNullPtrType();
6124   bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6125                          T2->isNullPtrType();
6126   if (!T1IsPointerLike && !T2IsPointerLike)
6127     return QualType();
6128 
6129   //   - if both p1 and p2 are null pointer constants, std::nullptr_t;
6130   // This can't actually happen, following the standard, but we also use this
6131   // to implement the end of [expr.conv], which hits this case.
6132   //
6133   //   - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6134   if (T1IsPointerLike &&
6135       E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6136     if (ConvertArgs)
6137       E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6138                                          ? CK_NullToMemberPointer
6139                                          : CK_NullToPointer).get();
6140     return T1;
6141   }
6142   if (T2IsPointerLike &&
6143       E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6144     if (ConvertArgs)
6145       E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6146                                          ? CK_NullToMemberPointer
6147                                          : CK_NullToPointer).get();
6148     return T2;
6149   }
6150 
6151   // Now both have to be pointers or member pointers.
6152   if (!T1IsPointerLike || !T2IsPointerLike)
6153     return QualType();
6154   assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6155          "nullptr_t should be a null pointer constant");
6156 
6157   //  - if T1 or T2 is "pointer to cv1 void" and the other type is
6158   //    "pointer to cv2 T", "pointer to cv12 void", where cv12 is
6159   //    the union of cv1 and cv2;
6160   //  - if T1 or T2 is "pointer to noexcept function" and the other type is
6161   //    "pointer to function", where the function types are otherwise the same,
6162   //    "pointer to function";
6163   //     FIXME: This rule is defective: it should also permit removing noexcept
6164   //     from a pointer to member function.  As a Clang extension, we also
6165   //     permit removing 'noreturn', so we generalize this rule to;
6166   //     - [Clang] If T1 and T2 are both of type "pointer to function" or
6167   //       "pointer to member function" and the pointee types can be unified
6168   //       by a function pointer conversion, that conversion is applied
6169   //       before checking the following rules.
6170   //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6171   //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6172   //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6173   //    respectively;
6174   //  - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6175   //    to member of C2 of type cv2 U2" where C1 is reference-related to C2 or
6176   //    C2 is reference-related to C1 (8.6.3), the cv-combined type of T2 and
6177   //    T1 or the cv-combined type of T1 and T2, respectively;
6178   //  - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6179   //    T2;
6180   //
6181   // If looked at in the right way, these bullets all do the same thing.
6182   // What we do here is, we build the two possible cv-combined types, and try
6183   // the conversions in both directions. If only one works, or if the two
6184   // composite types are the same, we have succeeded.
6185   // FIXME: extended qualifiers?
6186   //
6187   // Note that this will fail to find a composite pointer type for "pointer
6188   // to void" and "pointer to function". We can't actually perform the final
6189   // conversion in this case, even though a composite pointer type formally
6190   // exists.
6191   SmallVector<unsigned, 4> QualifierUnion;
6192   SmallVector<std::pair<const Type *, const Type *>, 4> MemberOfClass;
6193   QualType Composite1 = T1;
6194   QualType Composite2 = T2;
6195   unsigned NeedConstBefore = 0;
6196   while (true) {
6197     const PointerType *Ptr1, *Ptr2;
6198     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
6199         (Ptr2 = Composite2->getAs<PointerType>())) {
6200       Composite1 = Ptr1->getPointeeType();
6201       Composite2 = Ptr2->getPointeeType();
6202 
6203       // If we're allowed to create a non-standard composite type, keep track
6204       // of where we need to fill in additional 'const' qualifiers.
6205       if (Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
6206         NeedConstBefore = QualifierUnion.size();
6207 
6208       QualifierUnion.push_back(
6209                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
6210       MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
6211       continue;
6212     }
6213 
6214     const MemberPointerType *MemPtr1, *MemPtr2;
6215     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
6216         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
6217       Composite1 = MemPtr1->getPointeeType();
6218       Composite2 = MemPtr2->getPointeeType();
6219 
6220       // If we're allowed to create a non-standard composite type, keep track
6221       // of where we need to fill in additional 'const' qualifiers.
6222       if (Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
6223         NeedConstBefore = QualifierUnion.size();
6224 
6225       QualifierUnion.push_back(
6226                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
6227       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
6228                                              MemPtr2->getClass()));
6229       continue;
6230     }
6231 
6232     // FIXME: block pointer types?
6233 
6234     // Cannot unwrap any more types.
6235     break;
6236   }
6237 
6238   // Apply the function pointer conversion to unify the types. We've already
6239   // unwrapped down to the function types, and we want to merge rather than
6240   // just convert, so do this ourselves rather than calling
6241   // IsFunctionConversion.
6242   //
6243   // FIXME: In order to match the standard wording as closely as possible, we
6244   // currently only do this under a single level of pointers. Ideally, we would
6245   // allow this in general, and set NeedConstBefore to the relevant depth on
6246   // the side(s) where we changed anything.
6247   if (QualifierUnion.size() == 1) {
6248     if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
6249       if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
6250         FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
6251         FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
6252 
6253         // The result is noreturn if both operands are.
6254         bool Noreturn =
6255             EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
6256         EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
6257         EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
6258 
6259         // The result is nothrow if both operands are.
6260         SmallVector<QualType, 8> ExceptionTypeStorage;
6261         EPI1.ExceptionSpec = EPI2.ExceptionSpec =
6262             mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec,
6263                                 ExceptionTypeStorage);
6264 
6265         Composite1 = Context.getFunctionType(FPT1->getReturnType(),
6266                                              FPT1->getParamTypes(), EPI1);
6267         Composite2 = Context.getFunctionType(FPT2->getReturnType(),
6268                                              FPT2->getParamTypes(), EPI2);
6269       }
6270     }
6271   }
6272 
6273   if (NeedConstBefore) {
6274     // Extension: Add 'const' to qualifiers that come before the first qualifier
6275     // mismatch, so that our (non-standard!) composite type meets the
6276     // requirements of C++ [conv.qual]p4 bullet 3.
6277     for (unsigned I = 0; I != NeedConstBefore; ++I)
6278       if ((QualifierUnion[I] & Qualifiers::Const) == 0)
6279         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
6280   }
6281 
6282   // Rewrap the composites as pointers or member pointers with the union CVRs.
6283   auto MOC = MemberOfClass.rbegin();
6284   for (unsigned CVR : llvm::reverse(QualifierUnion)) {
6285     Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
6286     auto Classes = *MOC++;
6287     if (Classes.first && Classes.second) {
6288       // Rebuild member pointer type
6289       Composite1 = Context.getMemberPointerType(
6290           Context.getQualifiedType(Composite1, Quals), Classes.first);
6291       Composite2 = Context.getMemberPointerType(
6292           Context.getQualifiedType(Composite2, Quals), Classes.second);
6293     } else {
6294       // Rebuild pointer type
6295       Composite1 =
6296           Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
6297       Composite2 =
6298           Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
6299     }
6300   }
6301 
6302   struct Conversion {
6303     Sema &S;
6304     Expr *&E1, *&E2;
6305     QualType Composite;
6306     InitializedEntity Entity;
6307     InitializationKind Kind;
6308     InitializationSequence E1ToC, E2ToC;
6309     bool Viable;
6310 
6311     Conversion(Sema &S, SourceLocation Loc, Expr *&E1, Expr *&E2,
6312                QualType Composite)
6313         : S(S), E1(E1), E2(E2), Composite(Composite),
6314           Entity(InitializedEntity::InitializeTemporary(Composite)),
6315           Kind(InitializationKind::CreateCopy(Loc, SourceLocation())),
6316           E1ToC(S, Entity, Kind, E1), E2ToC(S, Entity, Kind, E2),
6317           Viable(E1ToC && E2ToC) {}
6318 
6319     bool perform() {
6320       ExprResult E1Result = E1ToC.Perform(S, Entity, Kind, E1);
6321       if (E1Result.isInvalid())
6322         return true;
6323       E1 = E1Result.getAs<Expr>();
6324 
6325       ExprResult E2Result = E2ToC.Perform(S, Entity, Kind, E2);
6326       if (E2Result.isInvalid())
6327         return true;
6328       E2 = E2Result.getAs<Expr>();
6329 
6330       return false;
6331     }
6332   };
6333 
6334   // Try to convert to each composite pointer type.
6335   Conversion C1(*this, Loc, E1, E2, Composite1);
6336   if (C1.Viable && Context.hasSameType(Composite1, Composite2)) {
6337     if (ConvertArgs && C1.perform())
6338       return QualType();
6339     return C1.Composite;
6340   }
6341   Conversion C2(*this, Loc, E1, E2, Composite2);
6342 
6343   if (C1.Viable == C2.Viable) {
6344     // Either Composite1 and Composite2 are viable and are different, or
6345     // neither is viable.
6346     // FIXME: How both be viable and different?
6347     return QualType();
6348   }
6349 
6350   // Convert to the chosen type.
6351   if (ConvertArgs && (C1.Viable ? C1 : C2).perform())
6352     return QualType();
6353 
6354   return C1.Viable ? C1.Composite : C2.Composite;
6355 }
6356 
6357 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
6358   if (!E)
6359     return ExprError();
6360 
6361   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
6362 
6363   // If the result is a glvalue, we shouldn't bind it.
6364   if (!E->isRValue())
6365     return E;
6366 
6367   // In ARC, calls that return a retainable type can return retained,
6368   // in which case we have to insert a consuming cast.
6369   if (getLangOpts().ObjCAutoRefCount &&
6370       E->getType()->isObjCRetainableType()) {
6371 
6372     bool ReturnsRetained;
6373 
6374     // For actual calls, we compute this by examining the type of the
6375     // called value.
6376     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
6377       Expr *Callee = Call->getCallee()->IgnoreParens();
6378       QualType T = Callee->getType();
6379 
6380       if (T == Context.BoundMemberTy) {
6381         // Handle pointer-to-members.
6382         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
6383           T = BinOp->getRHS()->getType();
6384         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
6385           T = Mem->getMemberDecl()->getType();
6386       }
6387 
6388       if (const PointerType *Ptr = T->getAs<PointerType>())
6389         T = Ptr->getPointeeType();
6390       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
6391         T = Ptr->getPointeeType();
6392       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
6393         T = MemPtr->getPointeeType();
6394 
6395       const FunctionType *FTy = T->getAs<FunctionType>();
6396       assert(FTy && "call to value not of function type?");
6397       ReturnsRetained = FTy->getExtInfo().getProducesResult();
6398 
6399     // ActOnStmtExpr arranges things so that StmtExprs of retainable
6400     // type always produce a +1 object.
6401     } else if (isa<StmtExpr>(E)) {
6402       ReturnsRetained = true;
6403 
6404     // We hit this case with the lambda conversion-to-block optimization;
6405     // we don't want any extra casts here.
6406     } else if (isa<CastExpr>(E) &&
6407                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
6408       return E;
6409 
6410     // For message sends and property references, we try to find an
6411     // actual method.  FIXME: we should infer retention by selector in
6412     // cases where we don't have an actual method.
6413     } else {
6414       ObjCMethodDecl *D = nullptr;
6415       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
6416         D = Send->getMethodDecl();
6417       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
6418         D = BoxedExpr->getBoxingMethod();
6419       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
6420         // Don't do reclaims if we're using the zero-element array
6421         // constant.
6422         if (ArrayLit->getNumElements() == 0 &&
6423             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6424           return E;
6425 
6426         D = ArrayLit->getArrayWithObjectsMethod();
6427       } else if (ObjCDictionaryLiteral *DictLit
6428                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
6429         // Don't do reclaims if we're using the zero-element dictionary
6430         // constant.
6431         if (DictLit->getNumElements() == 0 &&
6432             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6433           return E;
6434 
6435         D = DictLit->getDictWithObjectsMethod();
6436       }
6437 
6438       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
6439 
6440       // Don't do reclaims on performSelector calls; despite their
6441       // return type, the invoked method doesn't necessarily actually
6442       // return an object.
6443       if (!ReturnsRetained &&
6444           D && D->getMethodFamily() == OMF_performSelector)
6445         return E;
6446     }
6447 
6448     // Don't reclaim an object of Class type.
6449     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
6450       return E;
6451 
6452     Cleanup.setExprNeedsCleanups(true);
6453 
6454     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
6455                                    : CK_ARCReclaimReturnedObject);
6456     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
6457                                     VK_RValue);
6458   }
6459 
6460   if (!getLangOpts().CPlusPlus)
6461     return E;
6462 
6463   // Search for the base element type (cf. ASTContext::getBaseElementType) with
6464   // a fast path for the common case that the type is directly a RecordType.
6465   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
6466   const RecordType *RT = nullptr;
6467   while (!RT) {
6468     switch (T->getTypeClass()) {
6469     case Type::Record:
6470       RT = cast<RecordType>(T);
6471       break;
6472     case Type::ConstantArray:
6473     case Type::IncompleteArray:
6474     case Type::VariableArray:
6475     case Type::DependentSizedArray:
6476       T = cast<ArrayType>(T)->getElementType().getTypePtr();
6477       break;
6478     default:
6479       return E;
6480     }
6481   }
6482 
6483   // That should be enough to guarantee that this type is complete, if we're
6484   // not processing a decltype expression.
6485   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
6486   if (RD->isInvalidDecl() || RD->isDependentContext())
6487     return E;
6488 
6489   bool IsDecltype = ExprEvalContexts.back().ExprContext ==
6490                     ExpressionEvaluationContextRecord::EK_Decltype;
6491   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
6492 
6493   if (Destructor) {
6494     MarkFunctionReferenced(E->getExprLoc(), Destructor);
6495     CheckDestructorAccess(E->getExprLoc(), Destructor,
6496                           PDiag(diag::err_access_dtor_temp)
6497                             << E->getType());
6498     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
6499       return ExprError();
6500 
6501     // If destructor is trivial, we can avoid the extra copy.
6502     if (Destructor->isTrivial())
6503       return E;
6504 
6505     // We need a cleanup, but we don't need to remember the temporary.
6506     Cleanup.setExprNeedsCleanups(true);
6507   }
6508 
6509   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
6510   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
6511 
6512   if (IsDecltype)
6513     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
6514 
6515   return Bind;
6516 }
6517 
6518 ExprResult
6519 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
6520   if (SubExpr.isInvalid())
6521     return ExprError();
6522 
6523   return MaybeCreateExprWithCleanups(SubExpr.get());
6524 }
6525 
6526 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
6527   assert(SubExpr && "subexpression can't be null!");
6528 
6529   CleanupVarDeclMarking();
6530 
6531   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
6532   assert(ExprCleanupObjects.size() >= FirstCleanup);
6533   assert(Cleanup.exprNeedsCleanups() ||
6534          ExprCleanupObjects.size() == FirstCleanup);
6535   if (!Cleanup.exprNeedsCleanups())
6536     return SubExpr;
6537 
6538   auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
6539                                      ExprCleanupObjects.size() - FirstCleanup);
6540 
6541   auto *E = ExprWithCleanups::Create(
6542       Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
6543   DiscardCleanupsInEvaluationContext();
6544 
6545   return E;
6546 }
6547 
6548 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
6549   assert(SubStmt && "sub-statement can't be null!");
6550 
6551   CleanupVarDeclMarking();
6552 
6553   if (!Cleanup.exprNeedsCleanups())
6554     return SubStmt;
6555 
6556   // FIXME: In order to attach the temporaries, wrap the statement into
6557   // a StmtExpr; currently this is only used for asm statements.
6558   // This is hacky, either create a new CXXStmtWithTemporaries statement or
6559   // a new AsmStmtWithTemporaries.
6560   CompoundStmt *CompStmt = CompoundStmt::Create(
6561       Context, SubStmt, SourceLocation(), SourceLocation());
6562   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
6563                                    SourceLocation());
6564   return MaybeCreateExprWithCleanups(E);
6565 }
6566 
6567 /// Process the expression contained within a decltype. For such expressions,
6568 /// certain semantic checks on temporaries are delayed until this point, and
6569 /// are omitted for the 'topmost' call in the decltype expression. If the
6570 /// topmost call bound a temporary, strip that temporary off the expression.
6571 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
6572   assert(ExprEvalContexts.back().ExprContext ==
6573              ExpressionEvaluationContextRecord::EK_Decltype &&
6574          "not in a decltype expression");
6575 
6576   ExprResult Result = CheckPlaceholderExpr(E);
6577   if (Result.isInvalid())
6578     return ExprError();
6579   E = Result.get();
6580 
6581   // C++11 [expr.call]p11:
6582   //   If a function call is a prvalue of object type,
6583   // -- if the function call is either
6584   //   -- the operand of a decltype-specifier, or
6585   //   -- the right operand of a comma operator that is the operand of a
6586   //      decltype-specifier,
6587   //   a temporary object is not introduced for the prvalue.
6588 
6589   // Recursively rebuild ParenExprs and comma expressions to strip out the
6590   // outermost CXXBindTemporaryExpr, if any.
6591   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6592     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
6593     if (SubExpr.isInvalid())
6594       return ExprError();
6595     if (SubExpr.get() == PE->getSubExpr())
6596       return E;
6597     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
6598   }
6599   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6600     if (BO->getOpcode() == BO_Comma) {
6601       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
6602       if (RHS.isInvalid())
6603         return ExprError();
6604       if (RHS.get() == BO->getRHS())
6605         return E;
6606       return new (Context) BinaryOperator(
6607           BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
6608           BO->getObjectKind(), BO->getOperatorLoc(), BO->getFPFeatures());
6609     }
6610   }
6611 
6612   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
6613   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
6614                               : nullptr;
6615   if (TopCall)
6616     E = TopCall;
6617   else
6618     TopBind = nullptr;
6619 
6620   // Disable the special decltype handling now.
6621   ExprEvalContexts.back().ExprContext =
6622       ExpressionEvaluationContextRecord::EK_Other;
6623 
6624   Result = CheckUnevaluatedOperand(E);
6625   if (Result.isInvalid())
6626     return ExprError();
6627   E = Result.get();
6628 
6629   // In MS mode, don't perform any extra checking of call return types within a
6630   // decltype expression.
6631   if (getLangOpts().MSVCCompat)
6632     return E;
6633 
6634   // Perform the semantic checks we delayed until this point.
6635   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
6636        I != N; ++I) {
6637     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
6638     if (Call == TopCall)
6639       continue;
6640 
6641     if (CheckCallReturnType(Call->getCallReturnType(Context),
6642                             Call->getBeginLoc(), Call, Call->getDirectCallee()))
6643       return ExprError();
6644   }
6645 
6646   // Now all relevant types are complete, check the destructors are accessible
6647   // and non-deleted, and annotate them on the temporaries.
6648   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
6649        I != N; ++I) {
6650     CXXBindTemporaryExpr *Bind =
6651       ExprEvalContexts.back().DelayedDecltypeBinds[I];
6652     if (Bind == TopBind)
6653       continue;
6654 
6655     CXXTemporary *Temp = Bind->getTemporary();
6656 
6657     CXXRecordDecl *RD =
6658       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6659     CXXDestructorDecl *Destructor = LookupDestructor(RD);
6660     Temp->setDestructor(Destructor);
6661 
6662     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
6663     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
6664                           PDiag(diag::err_access_dtor_temp)
6665                             << Bind->getType());
6666     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
6667       return ExprError();
6668 
6669     // We need a cleanup, but we don't need to remember the temporary.
6670     Cleanup.setExprNeedsCleanups(true);
6671   }
6672 
6673   // Possibly strip off the top CXXBindTemporaryExpr.
6674   return E;
6675 }
6676 
6677 /// Note a set of 'operator->' functions that were used for a member access.
6678 static void noteOperatorArrows(Sema &S,
6679                                ArrayRef<FunctionDecl *> OperatorArrows) {
6680   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
6681   // FIXME: Make this configurable?
6682   unsigned Limit = 9;
6683   if (OperatorArrows.size() > Limit) {
6684     // Produce Limit-1 normal notes and one 'skipping' note.
6685     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
6686     SkipCount = OperatorArrows.size() - (Limit - 1);
6687   }
6688 
6689   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
6690     if (I == SkipStart) {
6691       S.Diag(OperatorArrows[I]->getLocation(),
6692              diag::note_operator_arrows_suppressed)
6693           << SkipCount;
6694       I += SkipCount;
6695     } else {
6696       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
6697           << OperatorArrows[I]->getCallResultType();
6698       ++I;
6699     }
6700   }
6701 }
6702 
6703 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
6704                                               SourceLocation OpLoc,
6705                                               tok::TokenKind OpKind,
6706                                               ParsedType &ObjectType,
6707                                               bool &MayBePseudoDestructor) {
6708   // Since this might be a postfix expression, get rid of ParenListExprs.
6709   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
6710   if (Result.isInvalid()) return ExprError();
6711   Base = Result.get();
6712 
6713   Result = CheckPlaceholderExpr(Base);
6714   if (Result.isInvalid()) return ExprError();
6715   Base = Result.get();
6716 
6717   QualType BaseType = Base->getType();
6718   MayBePseudoDestructor = false;
6719   if (BaseType->isDependentType()) {
6720     // If we have a pointer to a dependent type and are using the -> operator,
6721     // the object type is the type that the pointer points to. We might still
6722     // have enough information about that type to do something useful.
6723     if (OpKind == tok::arrow)
6724       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
6725         BaseType = Ptr->getPointeeType();
6726 
6727     ObjectType = ParsedType::make(BaseType);
6728     MayBePseudoDestructor = true;
6729     return Base;
6730   }
6731 
6732   // C++ [over.match.oper]p8:
6733   //   [...] When operator->returns, the operator-> is applied  to the value
6734   //   returned, with the original second operand.
6735   if (OpKind == tok::arrow) {
6736     QualType StartingType = BaseType;
6737     bool NoArrowOperatorFound = false;
6738     bool FirstIteration = true;
6739     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
6740     // The set of types we've considered so far.
6741     llvm::SmallPtrSet<CanQualType,8> CTypes;
6742     SmallVector<FunctionDecl*, 8> OperatorArrows;
6743     CTypes.insert(Context.getCanonicalType(BaseType));
6744 
6745     while (BaseType->isRecordType()) {
6746       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
6747         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
6748           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
6749         noteOperatorArrows(*this, OperatorArrows);
6750         Diag(OpLoc, diag::note_operator_arrow_depth)
6751           << getLangOpts().ArrowDepth;
6752         return ExprError();
6753       }
6754 
6755       Result = BuildOverloadedArrowExpr(
6756           S, Base, OpLoc,
6757           // When in a template specialization and on the first loop iteration,
6758           // potentially give the default diagnostic (with the fixit in a
6759           // separate note) instead of having the error reported back to here
6760           // and giving a diagnostic with a fixit attached to the error itself.
6761           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
6762               ? nullptr
6763               : &NoArrowOperatorFound);
6764       if (Result.isInvalid()) {
6765         if (NoArrowOperatorFound) {
6766           if (FirstIteration) {
6767             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6768               << BaseType << 1 << Base->getSourceRange()
6769               << FixItHint::CreateReplacement(OpLoc, ".");
6770             OpKind = tok::period;
6771             break;
6772           }
6773           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6774             << BaseType << Base->getSourceRange();
6775           CallExpr *CE = dyn_cast<CallExpr>(Base);
6776           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
6777             Diag(CD->getBeginLoc(),
6778                  diag::note_member_reference_arrow_from_operator_arrow);
6779           }
6780         }
6781         return ExprError();
6782       }
6783       Base = Result.get();
6784       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
6785         OperatorArrows.push_back(OpCall->getDirectCallee());
6786       BaseType = Base->getType();
6787       CanQualType CBaseType = Context.getCanonicalType(BaseType);
6788       if (!CTypes.insert(CBaseType).second) {
6789         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
6790         noteOperatorArrows(*this, OperatorArrows);
6791         return ExprError();
6792       }
6793       FirstIteration = false;
6794     }
6795 
6796     if (OpKind == tok::arrow) {
6797       if (BaseType->isPointerType())
6798         BaseType = BaseType->getPointeeType();
6799       else if (auto *AT = Context.getAsArrayType(BaseType))
6800         BaseType = AT->getElementType();
6801     }
6802   }
6803 
6804   // Objective-C properties allow "." access on Objective-C pointer types,
6805   // so adjust the base type to the object type itself.
6806   if (BaseType->isObjCObjectPointerType())
6807     BaseType = BaseType->getPointeeType();
6808 
6809   // C++ [basic.lookup.classref]p2:
6810   //   [...] If the type of the object expression is of pointer to scalar
6811   //   type, the unqualified-id is looked up in the context of the complete
6812   //   postfix-expression.
6813   //
6814   // This also indicates that we could be parsing a pseudo-destructor-name.
6815   // Note that Objective-C class and object types can be pseudo-destructor
6816   // expressions or normal member (ivar or property) access expressions, and
6817   // it's legal for the type to be incomplete if this is a pseudo-destructor
6818   // call.  We'll do more incomplete-type checks later in the lookup process,
6819   // so just skip this check for ObjC types.
6820   if (!BaseType->isRecordType()) {
6821     ObjectType = ParsedType::make(BaseType);
6822     MayBePseudoDestructor = true;
6823     return Base;
6824   }
6825 
6826   // The object type must be complete (or dependent), or
6827   // C++11 [expr.prim.general]p3:
6828   //   Unlike the object expression in other contexts, *this is not required to
6829   //   be of complete type for purposes of class member access (5.2.5) outside
6830   //   the member function body.
6831   if (!BaseType->isDependentType() &&
6832       !isThisOutsideMemberFunctionBody(BaseType) &&
6833       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
6834     return ExprError();
6835 
6836   // C++ [basic.lookup.classref]p2:
6837   //   If the id-expression in a class member access (5.2.5) is an
6838   //   unqualified-id, and the type of the object expression is of a class
6839   //   type C (or of pointer to a class type C), the unqualified-id is looked
6840   //   up in the scope of class C. [...]
6841   ObjectType = ParsedType::make(BaseType);
6842   return Base;
6843 }
6844 
6845 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
6846                    tok::TokenKind& OpKind, SourceLocation OpLoc) {
6847   if (Base->hasPlaceholderType()) {
6848     ExprResult result = S.CheckPlaceholderExpr(Base);
6849     if (result.isInvalid()) return true;
6850     Base = result.get();
6851   }
6852   ObjectType = Base->getType();
6853 
6854   // C++ [expr.pseudo]p2:
6855   //   The left-hand side of the dot operator shall be of scalar type. The
6856   //   left-hand side of the arrow operator shall be of pointer to scalar type.
6857   //   This scalar type is the object type.
6858   // Note that this is rather different from the normal handling for the
6859   // arrow operator.
6860   if (OpKind == tok::arrow) {
6861     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
6862       ObjectType = Ptr->getPointeeType();
6863     } else if (!Base->isTypeDependent()) {
6864       // The user wrote "p->" when they probably meant "p."; fix it.
6865       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6866         << ObjectType << true
6867         << FixItHint::CreateReplacement(OpLoc, ".");
6868       if (S.isSFINAEContext())
6869         return true;
6870 
6871       OpKind = tok::period;
6872     }
6873   }
6874 
6875   return false;
6876 }
6877 
6878 /// Check if it's ok to try and recover dot pseudo destructor calls on
6879 /// pointer objects.
6880 static bool
6881 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
6882                                                    QualType DestructedType) {
6883   // If this is a record type, check if its destructor is callable.
6884   if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
6885     if (RD->hasDefinition())
6886       if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
6887         return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
6888     return false;
6889   }
6890 
6891   // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
6892   return DestructedType->isDependentType() || DestructedType->isScalarType() ||
6893          DestructedType->isVectorType();
6894 }
6895 
6896 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
6897                                            SourceLocation OpLoc,
6898                                            tok::TokenKind OpKind,
6899                                            const CXXScopeSpec &SS,
6900                                            TypeSourceInfo *ScopeTypeInfo,
6901                                            SourceLocation CCLoc,
6902                                            SourceLocation TildeLoc,
6903                                          PseudoDestructorTypeStorage Destructed) {
6904   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
6905 
6906   QualType ObjectType;
6907   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
6908     return ExprError();
6909 
6910   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
6911       !ObjectType->isVectorType()) {
6912     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
6913       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
6914     else {
6915       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
6916         << ObjectType << Base->getSourceRange();
6917       return ExprError();
6918     }
6919   }
6920 
6921   // C++ [expr.pseudo]p2:
6922   //   [...] The cv-unqualified versions of the object type and of the type
6923   //   designated by the pseudo-destructor-name shall be the same type.
6924   if (DestructedTypeInfo) {
6925     QualType DestructedType = DestructedTypeInfo->getType();
6926     SourceLocation DestructedTypeStart
6927       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
6928     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
6929       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
6930         // Detect dot pseudo destructor calls on pointer objects, e.g.:
6931         //   Foo *foo;
6932         //   foo.~Foo();
6933         if (OpKind == tok::period && ObjectType->isPointerType() &&
6934             Context.hasSameUnqualifiedType(DestructedType,
6935                                            ObjectType->getPointeeType())) {
6936           auto Diagnostic =
6937               Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6938               << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
6939 
6940           // Issue a fixit only when the destructor is valid.
6941           if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
6942                   *this, DestructedType))
6943             Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
6944 
6945           // Recover by setting the object type to the destructed type and the
6946           // operator to '->'.
6947           ObjectType = DestructedType;
6948           OpKind = tok::arrow;
6949         } else {
6950           Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
6951               << ObjectType << DestructedType << Base->getSourceRange()
6952               << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
6953 
6954           // Recover by setting the destructed type to the object type.
6955           DestructedType = ObjectType;
6956           DestructedTypeInfo =
6957               Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
6958           Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6959         }
6960       } else if (DestructedType.getObjCLifetime() !=
6961                                                 ObjectType.getObjCLifetime()) {
6962 
6963         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
6964           // Okay: just pretend that the user provided the correctly-qualified
6965           // type.
6966         } else {
6967           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
6968             << ObjectType << DestructedType << Base->getSourceRange()
6969             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
6970         }
6971 
6972         // Recover by setting the destructed type to the object type.
6973         DestructedType = ObjectType;
6974         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
6975                                                            DestructedTypeStart);
6976         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6977       }
6978     }
6979   }
6980 
6981   // C++ [expr.pseudo]p2:
6982   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
6983   //   form
6984   //
6985   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
6986   //
6987   //   shall designate the same scalar type.
6988   if (ScopeTypeInfo) {
6989     QualType ScopeType = ScopeTypeInfo->getType();
6990     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
6991         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
6992 
6993       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
6994            diag::err_pseudo_dtor_type_mismatch)
6995         << ObjectType << ScopeType << Base->getSourceRange()
6996         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
6997 
6998       ScopeType = QualType();
6999       ScopeTypeInfo = nullptr;
7000     }
7001   }
7002 
7003   Expr *Result
7004     = new (Context) CXXPseudoDestructorExpr(Context, Base,
7005                                             OpKind == tok::arrow, OpLoc,
7006                                             SS.getWithLocInContext(Context),
7007                                             ScopeTypeInfo,
7008                                             CCLoc,
7009                                             TildeLoc,
7010                                             Destructed);
7011 
7012   return Result;
7013 }
7014 
7015 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7016                                            SourceLocation OpLoc,
7017                                            tok::TokenKind OpKind,
7018                                            CXXScopeSpec &SS,
7019                                            UnqualifiedId &FirstTypeName,
7020                                            SourceLocation CCLoc,
7021                                            SourceLocation TildeLoc,
7022                                            UnqualifiedId &SecondTypeName) {
7023   assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7024           FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7025          "Invalid first type name in pseudo-destructor");
7026   assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7027           SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7028          "Invalid second type name in pseudo-destructor");
7029 
7030   QualType ObjectType;
7031   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7032     return ExprError();
7033 
7034   // Compute the object type that we should use for name lookup purposes. Only
7035   // record types and dependent types matter.
7036   ParsedType ObjectTypePtrForLookup;
7037   if (!SS.isSet()) {
7038     if (ObjectType->isRecordType())
7039       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7040     else if (ObjectType->isDependentType())
7041       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7042   }
7043 
7044   // Convert the name of the type being destructed (following the ~) into a
7045   // type (with source-location information).
7046   QualType DestructedType;
7047   TypeSourceInfo *DestructedTypeInfo = nullptr;
7048   PseudoDestructorTypeStorage Destructed;
7049   if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7050     ParsedType T = getTypeName(*SecondTypeName.Identifier,
7051                                SecondTypeName.StartLocation,
7052                                S, &SS, true, false, ObjectTypePtrForLookup,
7053                                /*IsCtorOrDtorName*/true);
7054     if (!T &&
7055         ((SS.isSet() && !computeDeclContext(SS, false)) ||
7056          (!SS.isSet() && ObjectType->isDependentType()))) {
7057       // The name of the type being destroyed is a dependent name, and we
7058       // couldn't find anything useful in scope. Just store the identifier and
7059       // it's location, and we'll perform (qualified) name lookup again at
7060       // template instantiation time.
7061       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7062                                                SecondTypeName.StartLocation);
7063     } else if (!T) {
7064       Diag(SecondTypeName.StartLocation,
7065            diag::err_pseudo_dtor_destructor_non_type)
7066         << SecondTypeName.Identifier << ObjectType;
7067       if (isSFINAEContext())
7068         return ExprError();
7069 
7070       // Recover by assuming we had the right type all along.
7071       DestructedType = ObjectType;
7072     } else
7073       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7074   } else {
7075     // Resolve the template-id to a type.
7076     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7077     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7078                                        TemplateId->NumArgs);
7079     TypeResult T = ActOnTemplateIdType(S,
7080                                        TemplateId->SS,
7081                                        TemplateId->TemplateKWLoc,
7082                                        TemplateId->Template,
7083                                        TemplateId->Name,
7084                                        TemplateId->TemplateNameLoc,
7085                                        TemplateId->LAngleLoc,
7086                                        TemplateArgsPtr,
7087                                        TemplateId->RAngleLoc,
7088                                        /*IsCtorOrDtorName*/true);
7089     if (T.isInvalid() || !T.get()) {
7090       // Recover by assuming we had the right type all along.
7091       DestructedType = ObjectType;
7092     } else
7093       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7094   }
7095 
7096   // If we've performed some kind of recovery, (re-)build the type source
7097   // information.
7098   if (!DestructedType.isNull()) {
7099     if (!DestructedTypeInfo)
7100       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7101                                                   SecondTypeName.StartLocation);
7102     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7103   }
7104 
7105   // Convert the name of the scope type (the type prior to '::') into a type.
7106   TypeSourceInfo *ScopeTypeInfo = nullptr;
7107   QualType ScopeType;
7108   if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7109       FirstTypeName.Identifier) {
7110     if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7111       ParsedType T = getTypeName(*FirstTypeName.Identifier,
7112                                  FirstTypeName.StartLocation,
7113                                  S, &SS, true, false, ObjectTypePtrForLookup,
7114                                  /*IsCtorOrDtorName*/true);
7115       if (!T) {
7116         Diag(FirstTypeName.StartLocation,
7117              diag::err_pseudo_dtor_destructor_non_type)
7118           << FirstTypeName.Identifier << ObjectType;
7119 
7120         if (isSFINAEContext())
7121           return ExprError();
7122 
7123         // Just drop this type. It's unnecessary anyway.
7124         ScopeType = QualType();
7125       } else
7126         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7127     } else {
7128       // Resolve the template-id to a type.
7129       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7130       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7131                                          TemplateId->NumArgs);
7132       TypeResult T = ActOnTemplateIdType(S,
7133                                          TemplateId->SS,
7134                                          TemplateId->TemplateKWLoc,
7135                                          TemplateId->Template,
7136                                          TemplateId->Name,
7137                                          TemplateId->TemplateNameLoc,
7138                                          TemplateId->LAngleLoc,
7139                                          TemplateArgsPtr,
7140                                          TemplateId->RAngleLoc,
7141                                          /*IsCtorOrDtorName*/true);
7142       if (T.isInvalid() || !T.get()) {
7143         // Recover by dropping this type.
7144         ScopeType = QualType();
7145       } else
7146         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
7147     }
7148   }
7149 
7150   if (!ScopeType.isNull() && !ScopeTypeInfo)
7151     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
7152                                                   FirstTypeName.StartLocation);
7153 
7154 
7155   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
7156                                    ScopeTypeInfo, CCLoc, TildeLoc,
7157                                    Destructed);
7158 }
7159 
7160 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7161                                            SourceLocation OpLoc,
7162                                            tok::TokenKind OpKind,
7163                                            SourceLocation TildeLoc,
7164                                            const DeclSpec& DS) {
7165   QualType ObjectType;
7166   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7167     return ExprError();
7168 
7169   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
7170                                  false);
7171 
7172   TypeLocBuilder TLB;
7173   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
7174   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
7175   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
7176   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
7177 
7178   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
7179                                    nullptr, SourceLocation(), TildeLoc,
7180                                    Destructed);
7181 }
7182 
7183 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
7184                                         CXXConversionDecl *Method,
7185                                         bool HadMultipleCandidates) {
7186   // Convert the expression to match the conversion function's implicit object
7187   // parameter.
7188   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
7189                                           FoundDecl, Method);
7190   if (Exp.isInvalid())
7191     return true;
7192 
7193   if (Method->getParent()->isLambda() &&
7194       Method->getConversionType()->isBlockPointerType()) {
7195     // This is a lambda conversion to block pointer; check if the argument
7196     // was a LambdaExpr.
7197     Expr *SubE = E;
7198     CastExpr *CE = dyn_cast<CastExpr>(SubE);
7199     if (CE && CE->getCastKind() == CK_NoOp)
7200       SubE = CE->getSubExpr();
7201     SubE = SubE->IgnoreParens();
7202     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
7203       SubE = BE->getSubExpr();
7204     if (isa<LambdaExpr>(SubE)) {
7205       // For the conversion to block pointer on a lambda expression, we
7206       // construct a special BlockLiteral instead; this doesn't really make
7207       // a difference in ARC, but outside of ARC the resulting block literal
7208       // follows the normal lifetime rules for block literals instead of being
7209       // autoreleased.
7210       DiagnosticErrorTrap Trap(Diags);
7211       PushExpressionEvaluationContext(
7212           ExpressionEvaluationContext::PotentiallyEvaluated);
7213       ExprResult BlockExp = BuildBlockForLambdaConversion(
7214           Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
7215       PopExpressionEvaluationContext();
7216 
7217       if (BlockExp.isInvalid())
7218         Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
7219       return BlockExp;
7220     }
7221   }
7222 
7223   MemberExpr *ME =
7224       BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
7225                       NestedNameSpecifierLoc(), SourceLocation(), Method,
7226                       DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
7227                       HadMultipleCandidates, DeclarationNameInfo(),
7228                       Context.BoundMemberTy, VK_RValue, OK_Ordinary);
7229 
7230   QualType ResultType = Method->getReturnType();
7231   ExprValueKind VK = Expr::getValueKindForType(ResultType);
7232   ResultType = ResultType.getNonLValueExprType(Context);
7233 
7234   CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
7235       Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc());
7236 
7237   if (CheckFunctionCall(Method, CE,
7238                         Method->getType()->castAs<FunctionProtoType>()))
7239     return ExprError();
7240 
7241   return CE;
7242 }
7243 
7244 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
7245                                       SourceLocation RParen) {
7246   // If the operand is an unresolved lookup expression, the expression is ill-
7247   // formed per [over.over]p1, because overloaded function names cannot be used
7248   // without arguments except in explicit contexts.
7249   ExprResult R = CheckPlaceholderExpr(Operand);
7250   if (R.isInvalid())
7251     return R;
7252 
7253   R = CheckUnevaluatedOperand(R.get());
7254   if (R.isInvalid())
7255     return ExprError();
7256 
7257   Operand = R.get();
7258 
7259   if (!inTemplateInstantiation() && Operand->HasSideEffects(Context, false)) {
7260     // The expression operand for noexcept is in an unevaluated expression
7261     // context, so side effects could result in unintended consequences.
7262     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
7263   }
7264 
7265   CanThrowResult CanThrow = canThrow(Operand);
7266   return new (Context)
7267       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
7268 }
7269 
7270 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
7271                                    Expr *Operand, SourceLocation RParen) {
7272   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
7273 }
7274 
7275 static bool IsSpecialDiscardedValue(Expr *E) {
7276   // In C++11, discarded-value expressions of a certain form are special,
7277   // according to [expr]p10:
7278   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
7279   //   expression is an lvalue of volatile-qualified type and it has
7280   //   one of the following forms:
7281   E = E->IgnoreParens();
7282 
7283   //   - id-expression (5.1.1),
7284   if (isa<DeclRefExpr>(E))
7285     return true;
7286 
7287   //   - subscripting (5.2.1),
7288   if (isa<ArraySubscriptExpr>(E))
7289     return true;
7290 
7291   //   - class member access (5.2.5),
7292   if (isa<MemberExpr>(E))
7293     return true;
7294 
7295   //   - indirection (5.3.1),
7296   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
7297     if (UO->getOpcode() == UO_Deref)
7298       return true;
7299 
7300   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7301     //   - pointer-to-member operation (5.5),
7302     if (BO->isPtrMemOp())
7303       return true;
7304 
7305     //   - comma expression (5.18) where the right operand is one of the above.
7306     if (BO->getOpcode() == BO_Comma)
7307       return IsSpecialDiscardedValue(BO->getRHS());
7308   }
7309 
7310   //   - conditional expression (5.16) where both the second and the third
7311   //     operands are one of the above, or
7312   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
7313     return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
7314            IsSpecialDiscardedValue(CO->getFalseExpr());
7315   // The related edge case of "*x ?: *x".
7316   if (BinaryConditionalOperator *BCO =
7317           dyn_cast<BinaryConditionalOperator>(E)) {
7318     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
7319       return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
7320              IsSpecialDiscardedValue(BCO->getFalseExpr());
7321   }
7322 
7323   // Objective-C++ extensions to the rule.
7324   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
7325     return true;
7326 
7327   return false;
7328 }
7329 
7330 /// Perform the conversions required for an expression used in a
7331 /// context that ignores the result.
7332 ExprResult Sema::IgnoredValueConversions(Expr *E) {
7333   if (E->hasPlaceholderType()) {
7334     ExprResult result = CheckPlaceholderExpr(E);
7335     if (result.isInvalid()) return E;
7336     E = result.get();
7337   }
7338 
7339   // C99 6.3.2.1:
7340   //   [Except in specific positions,] an lvalue that does not have
7341   //   array type is converted to the value stored in the
7342   //   designated object (and is no longer an lvalue).
7343   if (E->isRValue()) {
7344     // In C, function designators (i.e. expressions of function type)
7345     // are r-values, but we still want to do function-to-pointer decay
7346     // on them.  This is both technically correct and convenient for
7347     // some clients.
7348     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
7349       return DefaultFunctionArrayConversion(E);
7350 
7351     return E;
7352   }
7353 
7354   if (getLangOpts().CPlusPlus)  {
7355     // The C++11 standard defines the notion of a discarded-value expression;
7356     // normally, we don't need to do anything to handle it, but if it is a
7357     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
7358     // conversion.
7359     if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
7360         E->getType().isVolatileQualified()) {
7361        if (IsSpecialDiscardedValue(E)) {
7362         ExprResult Res = DefaultLvalueConversion(E);
7363         if (Res.isInvalid())
7364           return E;
7365         E = Res.get();
7366       } else {
7367         // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7368         // it occurs as a discarded-value expression.
7369         CheckUnusedVolatileAssignment(E);
7370       }
7371     }
7372 
7373     // C++1z:
7374     //   If the expression is a prvalue after this optional conversion, the
7375     //   temporary materialization conversion is applied.
7376     //
7377     // We skip this step: IR generation is able to synthesize the storage for
7378     // itself in the aggregate case, and adding the extra node to the AST is
7379     // just clutter.
7380     // FIXME: We don't emit lifetime markers for the temporaries due to this.
7381     // FIXME: Do any other AST consumers care about this?
7382     return E;
7383   }
7384 
7385   // GCC seems to also exclude expressions of incomplete enum type.
7386   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
7387     if (!T->getDecl()->isComplete()) {
7388       // FIXME: stupid workaround for a codegen bug!
7389       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
7390       return E;
7391     }
7392   }
7393 
7394   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
7395   if (Res.isInvalid())
7396     return E;
7397   E = Res.get();
7398 
7399   if (!E->getType()->isVoidType())
7400     RequireCompleteType(E->getExprLoc(), E->getType(),
7401                         diag::err_incomplete_type);
7402   return E;
7403 }
7404 
7405 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
7406   // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7407   // it occurs as an unevaluated operand.
7408   CheckUnusedVolatileAssignment(E);
7409 
7410   return E;
7411 }
7412 
7413 // If we can unambiguously determine whether Var can never be used
7414 // in a constant expression, return true.
7415 //  - if the variable and its initializer are non-dependent, then
7416 //    we can unambiguously check if the variable is a constant expression.
7417 //  - if the initializer is not value dependent - we can determine whether
7418 //    it can be used to initialize a constant expression.  If Init can not
7419 //    be used to initialize a constant expression we conclude that Var can
7420 //    never be a constant expression.
7421 //  - FXIME: if the initializer is dependent, we can still do some analysis and
7422 //    identify certain cases unambiguously as non-const by using a Visitor:
7423 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
7424 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
7425 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
7426     ASTContext &Context) {
7427   if (isa<ParmVarDecl>(Var)) return true;
7428   const VarDecl *DefVD = nullptr;
7429 
7430   // If there is no initializer - this can not be a constant expression.
7431   if (!Var->getAnyInitializer(DefVD)) return true;
7432   assert(DefVD);
7433   if (DefVD->isWeak()) return false;
7434   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
7435 
7436   Expr *Init = cast<Expr>(Eval->Value);
7437 
7438   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
7439     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
7440     // of value-dependent expressions, and use it here to determine whether the
7441     // initializer is a potential constant expression.
7442     return false;
7443   }
7444 
7445   return !Var->isUsableInConstantExpressions(Context);
7446 }
7447 
7448 /// Check if the current lambda has any potential captures
7449 /// that must be captured by any of its enclosing lambdas that are ready to
7450 /// capture. If there is a lambda that can capture a nested
7451 /// potential-capture, go ahead and do so.  Also, check to see if any
7452 /// variables are uncaptureable or do not involve an odr-use so do not
7453 /// need to be captured.
7454 
7455 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
7456     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
7457 
7458   assert(!S.isUnevaluatedContext());
7459   assert(S.CurContext->isDependentContext());
7460 #ifndef NDEBUG
7461   DeclContext *DC = S.CurContext;
7462   while (DC && isa<CapturedDecl>(DC))
7463     DC = DC->getParent();
7464   assert(
7465       CurrentLSI->CallOperator == DC &&
7466       "The current call operator must be synchronized with Sema's CurContext");
7467 #endif // NDEBUG
7468 
7469   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
7470 
7471   // All the potentially captureable variables in the current nested
7472   // lambda (within a generic outer lambda), must be captured by an
7473   // outer lambda that is enclosed within a non-dependent context.
7474   CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) {
7475     // If the variable is clearly identified as non-odr-used and the full
7476     // expression is not instantiation dependent, only then do we not
7477     // need to check enclosing lambda's for speculative captures.
7478     // For e.g.:
7479     // Even though 'x' is not odr-used, it should be captured.
7480     // int test() {
7481     //   const int x = 10;
7482     //   auto L = [=](auto a) {
7483     //     (void) +x + a;
7484     //   };
7485     // }
7486     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
7487         !IsFullExprInstantiationDependent)
7488       return;
7489 
7490     // If we have a capture-capable lambda for the variable, go ahead and
7491     // capture the variable in that lambda (and all its enclosing lambdas).
7492     if (const Optional<unsigned> Index =
7493             getStackIndexOfNearestEnclosingCaptureCapableLambda(
7494                 S.FunctionScopes, Var, S))
7495       S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(),
7496                                           Index.getValue());
7497     const bool IsVarNeverAConstantExpression =
7498         VariableCanNeverBeAConstantExpression(Var, S.Context);
7499     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
7500       // This full expression is not instantiation dependent or the variable
7501       // can not be used in a constant expression - which means
7502       // this variable must be odr-used here, so diagnose a
7503       // capture violation early, if the variable is un-captureable.
7504       // This is purely for diagnosing errors early.  Otherwise, this
7505       // error would get diagnosed when the lambda becomes capture ready.
7506       QualType CaptureType, DeclRefType;
7507       SourceLocation ExprLoc = VarExpr->getExprLoc();
7508       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
7509                           /*EllipsisLoc*/ SourceLocation(),
7510                           /*BuildAndDiagnose*/false, CaptureType,
7511                           DeclRefType, nullptr)) {
7512         // We will never be able to capture this variable, and we need
7513         // to be able to in any and all instantiations, so diagnose it.
7514         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
7515                           /*EllipsisLoc*/ SourceLocation(),
7516                           /*BuildAndDiagnose*/true, CaptureType,
7517                           DeclRefType, nullptr);
7518       }
7519     }
7520   });
7521 
7522   // Check if 'this' needs to be captured.
7523   if (CurrentLSI->hasPotentialThisCapture()) {
7524     // If we have a capture-capable lambda for 'this', go ahead and capture
7525     // 'this' in that lambda (and all its enclosing lambdas).
7526     if (const Optional<unsigned> Index =
7527             getStackIndexOfNearestEnclosingCaptureCapableLambda(
7528                 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
7529       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
7530       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
7531                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
7532                             &FunctionScopeIndexOfCapturableLambda);
7533     }
7534   }
7535 
7536   // Reset all the potential captures at the end of each full-expression.
7537   CurrentLSI->clearPotentialCaptures();
7538 }
7539 
7540 static ExprResult attemptRecovery(Sema &SemaRef,
7541                                   const TypoCorrectionConsumer &Consumer,
7542                                   const TypoCorrection &TC) {
7543   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
7544                  Consumer.getLookupResult().getLookupKind());
7545   const CXXScopeSpec *SS = Consumer.getSS();
7546   CXXScopeSpec NewSS;
7547 
7548   // Use an approprate CXXScopeSpec for building the expr.
7549   if (auto *NNS = TC.getCorrectionSpecifier())
7550     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
7551   else if (SS && !TC.WillReplaceSpecifier())
7552     NewSS = *SS;
7553 
7554   if (auto *ND = TC.getFoundDecl()) {
7555     R.setLookupName(ND->getDeclName());
7556     R.addDecl(ND);
7557     if (ND->isCXXClassMember()) {
7558       // Figure out the correct naming class to add to the LookupResult.
7559       CXXRecordDecl *Record = nullptr;
7560       if (auto *NNS = TC.getCorrectionSpecifier())
7561         Record = NNS->getAsType()->getAsCXXRecordDecl();
7562       if (!Record)
7563         Record =
7564             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
7565       if (Record)
7566         R.setNamingClass(Record);
7567 
7568       // Detect and handle the case where the decl might be an implicit
7569       // member.
7570       bool MightBeImplicitMember;
7571       if (!Consumer.isAddressOfOperand())
7572         MightBeImplicitMember = true;
7573       else if (!NewSS.isEmpty())
7574         MightBeImplicitMember = false;
7575       else if (R.isOverloadedResult())
7576         MightBeImplicitMember = false;
7577       else if (R.isUnresolvableResult())
7578         MightBeImplicitMember = true;
7579       else
7580         MightBeImplicitMember = isa<FieldDecl>(ND) ||
7581                                 isa<IndirectFieldDecl>(ND) ||
7582                                 isa<MSPropertyDecl>(ND);
7583 
7584       if (MightBeImplicitMember)
7585         return SemaRef.BuildPossibleImplicitMemberExpr(
7586             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
7587             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
7588     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
7589       return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
7590                                         Ivar->getIdentifier());
7591     }
7592   }
7593 
7594   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
7595                                           /*AcceptInvalidDecl*/ true);
7596 }
7597 
7598 namespace {
7599 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
7600   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
7601 
7602 public:
7603   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
7604       : TypoExprs(TypoExprs) {}
7605   bool VisitTypoExpr(TypoExpr *TE) {
7606     TypoExprs.insert(TE);
7607     return true;
7608   }
7609 };
7610 
7611 class TransformTypos : public TreeTransform<TransformTypos> {
7612   typedef TreeTransform<TransformTypos> BaseTransform;
7613 
7614   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
7615                      // process of being initialized.
7616   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
7617   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
7618   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
7619   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
7620 
7621   /// Emit diagnostics for all of the TypoExprs encountered.
7622   ///
7623   /// If the TypoExprs were successfully corrected, then the diagnostics should
7624   /// suggest the corrections. Otherwise the diagnostics will not suggest
7625   /// anything (having been passed an empty TypoCorrection).
7626   ///
7627   /// If we've failed to correct due to ambiguous corrections, we need to
7628   /// be sure to pass empty corrections and replacements. Otherwise it's
7629   /// possible that the Consumer has a TypoCorrection that failed to ambiguity
7630   /// and we don't want to report those diagnostics.
7631   void EmitAllDiagnostics(bool IsAmbiguous) {
7632     for (TypoExpr *TE : TypoExprs) {
7633       auto &State = SemaRef.getTypoExprState(TE);
7634       if (State.DiagHandler) {
7635         TypoCorrection TC = IsAmbiguous
7636             ? TypoCorrection() : State.Consumer->getCurrentCorrection();
7637         ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
7638 
7639         // Extract the NamedDecl from the transformed TypoExpr and add it to the
7640         // TypoCorrection, replacing the existing decls. This ensures the right
7641         // NamedDecl is used in diagnostics e.g. in the case where overload
7642         // resolution was used to select one from several possible decls that
7643         // had been stored in the TypoCorrection.
7644         if (auto *ND = getDeclFromExpr(
7645                 Replacement.isInvalid() ? nullptr : Replacement.get()))
7646           TC.setCorrectionDecl(ND);
7647 
7648         State.DiagHandler(TC);
7649       }
7650       SemaRef.clearDelayedTypo(TE);
7651     }
7652   }
7653 
7654   /// If corrections for the first TypoExpr have been exhausted for a
7655   /// given combination of the other TypoExprs, retry those corrections against
7656   /// the next combination of substitutions for the other TypoExprs by advancing
7657   /// to the next potential correction of the second TypoExpr. For the second
7658   /// and subsequent TypoExprs, if its stream of corrections has been exhausted,
7659   /// the stream is reset and the next TypoExpr's stream is advanced by one (a
7660   /// TypoExpr's correction stream is advanced by removing the TypoExpr from the
7661   /// TransformCache). Returns true if there is still any untried combinations
7662   /// of corrections.
7663   bool CheckAndAdvanceTypoExprCorrectionStreams() {
7664     for (auto TE : TypoExprs) {
7665       auto &State = SemaRef.getTypoExprState(TE);
7666       TransformCache.erase(TE);
7667       if (!State.Consumer->finished())
7668         return true;
7669       State.Consumer->resetCorrectionStream();
7670     }
7671     return false;
7672   }
7673 
7674   NamedDecl *getDeclFromExpr(Expr *E) {
7675     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
7676       E = OverloadResolution[OE];
7677 
7678     if (!E)
7679       return nullptr;
7680     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
7681       return DRE->getFoundDecl();
7682     if (auto *ME = dyn_cast<MemberExpr>(E))
7683       return ME->getFoundDecl();
7684     // FIXME: Add any other expr types that could be be seen by the delayed typo
7685     // correction TreeTransform for which the corresponding TypoCorrection could
7686     // contain multiple decls.
7687     return nullptr;
7688   }
7689 
7690   ExprResult TryTransform(Expr *E) {
7691     Sema::SFINAETrap Trap(SemaRef);
7692     ExprResult Res = TransformExpr(E);
7693     if (Trap.hasErrorOccurred() || Res.isInvalid())
7694       return ExprError();
7695 
7696     return ExprFilter(Res.get());
7697   }
7698 
7699   // Since correcting typos may intoduce new TypoExprs, this function
7700   // checks for new TypoExprs and recurses if it finds any. Note that it will
7701   // only succeed if it is able to correct all typos in the given expression.
7702   ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
7703     if (Res.isInvalid()) {
7704       return Res;
7705     }
7706     // Check to see if any new TypoExprs were created. If so, we need to recurse
7707     // to check their validity.
7708     Expr *FixedExpr = Res.get();
7709 
7710     auto SavedTypoExprs = std::move(TypoExprs);
7711     auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
7712     TypoExprs.clear();
7713     AmbiguousTypoExprs.clear();
7714 
7715     FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
7716     if (!TypoExprs.empty()) {
7717       // Recurse to handle newly created TypoExprs. If we're not able to
7718       // handle them, discard these TypoExprs.
7719       ExprResult RecurResult =
7720           RecursiveTransformLoop(FixedExpr, IsAmbiguous);
7721       if (RecurResult.isInvalid()) {
7722         Res = ExprError();
7723         // Recursive corrections didn't work, wipe them away and don't add
7724         // them to the TypoExprs set. Remove them from Sema's TypoExpr list
7725         // since we don't want to clear them twice. Note: it's possible the
7726         // TypoExprs were created recursively and thus won't be in our
7727         // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
7728         auto &SemaTypoExprs = SemaRef.TypoExprs;
7729         for (auto TE : TypoExprs) {
7730           TransformCache.erase(TE);
7731           SemaRef.clearDelayedTypo(TE);
7732 
7733           auto SI = find(SemaTypoExprs, TE);
7734           if (SI != SemaTypoExprs.end()) {
7735             SemaTypoExprs.erase(SI);
7736           }
7737         }
7738       } else {
7739         // TypoExpr is valid: add newly created TypoExprs since we were
7740         // able to correct them.
7741         Res = RecurResult;
7742         SavedTypoExprs.set_union(TypoExprs);
7743       }
7744     }
7745 
7746     TypoExprs = std::move(SavedTypoExprs);
7747     AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
7748 
7749     return Res;
7750   }
7751 
7752   // Try to transform the given expression, looping through the correction
7753   // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
7754   //
7755   // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
7756   // true and this method immediately will return an `ExprError`.
7757   ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
7758     ExprResult Res;
7759     auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
7760     SemaRef.TypoExprs.clear();
7761 
7762     while (true) {
7763       Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
7764 
7765       // Recursion encountered an ambiguous correction. This means that our
7766       // correction itself is ambiguous, so stop now.
7767       if (IsAmbiguous)
7768         break;
7769 
7770       // If the transform is still valid after checking for any new typos,
7771       // it's good to go.
7772       if (!Res.isInvalid())
7773         break;
7774 
7775       // The transform was invalid, see if we have any TypoExprs with untried
7776       // correction candidates.
7777       if (!CheckAndAdvanceTypoExprCorrectionStreams())
7778         break;
7779     }
7780 
7781     // If we found a valid result, double check to make sure it's not ambiguous.
7782     if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
7783       auto SavedTransformCache = std::move(TransformCache);
7784       TransformCache.clear();
7785       // Ensure none of the TypoExprs have multiple typo correction candidates
7786       // with the same edit length that pass all the checks and filters.
7787       while (!AmbiguousTypoExprs.empty()) {
7788         auto TE  = AmbiguousTypoExprs.back();
7789 
7790         // TryTransform itself can create new Typos, adding them to the TypoExpr map
7791         // and invalidating our TypoExprState, so always fetch it instead of storing.
7792         SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
7793 
7794         TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
7795         TypoCorrection Next;
7796         do {
7797           // Fetch the next correction by erasing the typo from the cache and calling
7798           // `TryTransform` which will iterate through corrections in
7799           // `TransformTypoExpr`.
7800           TransformCache.erase(TE);
7801           ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
7802 
7803           if (!AmbigRes.isInvalid() || IsAmbiguous) {
7804             SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
7805             SavedTransformCache.erase(TE);
7806             Res = ExprError();
7807             IsAmbiguous = true;
7808             break;
7809           }
7810         } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
7811                  Next.getEditDistance(false) == TC.getEditDistance(false));
7812 
7813         if (IsAmbiguous)
7814           break;
7815 
7816         AmbiguousTypoExprs.remove(TE);
7817         SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
7818       }
7819       TransformCache = std::move(SavedTransformCache);
7820     }
7821 
7822     // Wipe away any newly created TypoExprs that we don't know about. Since we
7823     // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
7824     // possible if a `TypoExpr` is created during a transformation but then
7825     // fails before we can discover it.
7826     auto &SemaTypoExprs = SemaRef.TypoExprs;
7827     for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
7828       auto TE = *Iterator;
7829       auto FI = find(TypoExprs, TE);
7830       if (FI != TypoExprs.end()) {
7831         Iterator++;
7832         continue;
7833       }
7834       SemaRef.clearDelayedTypo(TE);
7835       Iterator = SemaTypoExprs.erase(Iterator);
7836     }
7837     SemaRef.TypoExprs = std::move(SavedTypoExprs);
7838 
7839     return Res;
7840   }
7841 
7842 public:
7843   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
7844       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
7845 
7846   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
7847                                    MultiExprArg Args,
7848                                    SourceLocation RParenLoc,
7849                                    Expr *ExecConfig = nullptr) {
7850     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
7851                                                  RParenLoc, ExecConfig);
7852     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
7853       if (Result.isUsable()) {
7854         Expr *ResultCall = Result.get();
7855         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
7856           ResultCall = BE->getSubExpr();
7857         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
7858           OverloadResolution[OE] = CE->getCallee();
7859       }
7860     }
7861     return Result;
7862   }
7863 
7864   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
7865 
7866   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
7867 
7868   ExprResult Transform(Expr *E) {
7869     bool IsAmbiguous = false;
7870     ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
7871 
7872     if (!Res.isUsable())
7873       FindTypoExprs(TypoExprs).TraverseStmt(E);
7874 
7875     EmitAllDiagnostics(IsAmbiguous);
7876 
7877     return Res;
7878   }
7879 
7880   ExprResult TransformTypoExpr(TypoExpr *E) {
7881     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
7882     // cached transformation result if there is one and the TypoExpr isn't the
7883     // first one that was encountered.
7884     auto &CacheEntry = TransformCache[E];
7885     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
7886       return CacheEntry;
7887     }
7888 
7889     auto &State = SemaRef.getTypoExprState(E);
7890     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
7891 
7892     // For the first TypoExpr and an uncached TypoExpr, find the next likely
7893     // typo correction and return it.
7894     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
7895       if (InitDecl && TC.getFoundDecl() == InitDecl)
7896         continue;
7897       // FIXME: If we would typo-correct to an invalid declaration, it's
7898       // probably best to just suppress all errors from this typo correction.
7899       ExprResult NE = State.RecoveryHandler ?
7900           State.RecoveryHandler(SemaRef, E, TC) :
7901           attemptRecovery(SemaRef, *State.Consumer, TC);
7902       if (!NE.isInvalid()) {
7903         // Check whether there may be a second viable correction with the same
7904         // edit distance; if so, remember this TypoExpr may have an ambiguous
7905         // correction so it can be more thoroughly vetted later.
7906         TypoCorrection Next;
7907         if ((Next = State.Consumer->peekNextCorrection()) &&
7908             Next.getEditDistance(false) == TC.getEditDistance(false)) {
7909           AmbiguousTypoExprs.insert(E);
7910         } else {
7911           AmbiguousTypoExprs.remove(E);
7912         }
7913         assert(!NE.isUnset() &&
7914                "Typo was transformed into a valid-but-null ExprResult");
7915         return CacheEntry = NE;
7916       }
7917     }
7918     return CacheEntry = ExprError();
7919   }
7920 };
7921 }
7922 
7923 ExprResult
7924 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
7925                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
7926   // If the current evaluation context indicates there are uncorrected typos
7927   // and the current expression isn't guaranteed to not have typos, try to
7928   // resolve any TypoExpr nodes that might be in the expression.
7929   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
7930       (E->isTypeDependent() || E->isValueDependent() ||
7931        E->isInstantiationDependent())) {
7932     auto TyposResolved = DelayedTypos.size();
7933     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
7934     TyposResolved -= DelayedTypos.size();
7935     if (Result.isInvalid() || Result.get() != E) {
7936       ExprEvalContexts.back().NumTypos -= TyposResolved;
7937       return Result;
7938     }
7939     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
7940   }
7941   return E;
7942 }
7943 
7944 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
7945                                      bool DiscardedValue,
7946                                      bool IsConstexpr) {
7947   ExprResult FullExpr = FE;
7948 
7949   if (!FullExpr.get())
7950     return ExprError();
7951 
7952   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
7953     return ExprError();
7954 
7955   if (DiscardedValue) {
7956     // Top-level expressions default to 'id' when we're in a debugger.
7957     if (getLangOpts().DebuggerCastResultToId &&
7958         FullExpr.get()->getType() == Context.UnknownAnyTy) {
7959       FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
7960       if (FullExpr.isInvalid())
7961         return ExprError();
7962     }
7963 
7964     FullExpr = CheckPlaceholderExpr(FullExpr.get());
7965     if (FullExpr.isInvalid())
7966       return ExprError();
7967 
7968     FullExpr = IgnoredValueConversions(FullExpr.get());
7969     if (FullExpr.isInvalid())
7970       return ExprError();
7971 
7972     DiagnoseUnusedExprResult(FullExpr.get());
7973   }
7974 
7975   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get());
7976   if (FullExpr.isInvalid())
7977     return ExprError();
7978 
7979   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
7980 
7981   // At the end of this full expression (which could be a deeply nested
7982   // lambda), if there is a potential capture within the nested lambda,
7983   // have the outer capture-able lambda try and capture it.
7984   // Consider the following code:
7985   // void f(int, int);
7986   // void f(const int&, double);
7987   // void foo() {
7988   //  const int x = 10, y = 20;
7989   //  auto L = [=](auto a) {
7990   //      auto M = [=](auto b) {
7991   //         f(x, b); <-- requires x to be captured by L and M
7992   //         f(y, a); <-- requires y to be captured by L, but not all Ms
7993   //      };
7994   //   };
7995   // }
7996 
7997   // FIXME: Also consider what happens for something like this that involves
7998   // the gnu-extension statement-expressions or even lambda-init-captures:
7999   //   void f() {
8000   //     const int n = 0;
8001   //     auto L =  [&](auto a) {
8002   //       +n + ({ 0; a; });
8003   //     };
8004   //   }
8005   //
8006   // Here, we see +n, and then the full-expression 0; ends, so we don't
8007   // capture n (and instead remove it from our list of potential captures),
8008   // and then the full-expression +n + ({ 0; }); ends, but it's too late
8009   // for us to see that we need to capture n after all.
8010 
8011   LambdaScopeInfo *const CurrentLSI =
8012       getCurLambda(/*IgnoreCapturedRegions=*/true);
8013   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8014   // even if CurContext is not a lambda call operator. Refer to that Bug Report
8015   // for an example of the code that might cause this asynchrony.
8016   // By ensuring we are in the context of a lambda's call operator
8017   // we can fix the bug (we only need to check whether we need to capture
8018   // if we are within a lambda's body); but per the comments in that
8019   // PR, a proper fix would entail :
8020   //   "Alternative suggestion:
8021   //   - Add to Sema an integer holding the smallest (outermost) scope
8022   //     index that we are *lexically* within, and save/restore/set to
8023   //     FunctionScopes.size() in InstantiatingTemplate's
8024   //     constructor/destructor.
8025   //  - Teach the handful of places that iterate over FunctionScopes to
8026   //    stop at the outermost enclosing lexical scope."
8027   DeclContext *DC = CurContext;
8028   while (DC && isa<CapturedDecl>(DC))
8029     DC = DC->getParent();
8030   const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8031   if (IsInLambdaDeclContext && CurrentLSI &&
8032       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8033     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8034                                                               *this);
8035   return MaybeCreateExprWithCleanups(FullExpr);
8036 }
8037 
8038 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8039   if (!FullStmt) return StmtError();
8040 
8041   return MaybeCreateStmtWithCleanups(FullStmt);
8042 }
8043 
8044 Sema::IfExistsResult
8045 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8046                                    CXXScopeSpec &SS,
8047                                    const DeclarationNameInfo &TargetNameInfo) {
8048   DeclarationName TargetName = TargetNameInfo.getName();
8049   if (!TargetName)
8050     return IER_DoesNotExist;
8051 
8052   // If the name itself is dependent, then the result is dependent.
8053   if (TargetName.isDependentName())
8054     return IER_Dependent;
8055 
8056   // Do the redeclaration lookup in the current scope.
8057   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8058                  Sema::NotForRedeclaration);
8059   LookupParsedName(R, S, &SS);
8060   R.suppressDiagnostics();
8061 
8062   switch (R.getResultKind()) {
8063   case LookupResult::Found:
8064   case LookupResult::FoundOverloaded:
8065   case LookupResult::FoundUnresolvedValue:
8066   case LookupResult::Ambiguous:
8067     return IER_Exists;
8068 
8069   case LookupResult::NotFound:
8070     return IER_DoesNotExist;
8071 
8072   case LookupResult::NotFoundInCurrentInstantiation:
8073     return IER_Dependent;
8074   }
8075 
8076   llvm_unreachable("Invalid LookupResult Kind!");
8077 }
8078 
8079 Sema::IfExistsResult
8080 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8081                                    bool IsIfExists, CXXScopeSpec &SS,
8082                                    UnqualifiedId &Name) {
8083   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8084 
8085   // Check for an unexpanded parameter pack.
8086   auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8087   if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8088       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8089     return IER_Error;
8090 
8091   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8092 }
8093