1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Implements semantic analysis for C++ expressions. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "TreeTransform.h" 15 #include "TypeLocBuilder.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/CXXInheritance.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/ExprConcepts.h" 23 #include "clang/AST/ExprObjC.h" 24 #include "clang/AST/RecursiveASTVisitor.h" 25 #include "clang/AST/Type.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/Basic/AlignedAllocation.h" 28 #include "clang/Basic/DiagnosticSema.h" 29 #include "clang/Basic/PartialDiagnostic.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Basic/TokenKinds.h" 32 #include "clang/Basic/TypeTraits.h" 33 #include "clang/Lex/Preprocessor.h" 34 #include "clang/Sema/DeclSpec.h" 35 #include "clang/Sema/EnterExpressionEvaluationContext.h" 36 #include "clang/Sema/Initialization.h" 37 #include "clang/Sema/Lookup.h" 38 #include "clang/Sema/ParsedTemplate.h" 39 #include "clang/Sema/Scope.h" 40 #include "clang/Sema/ScopeInfo.h" 41 #include "clang/Sema/SemaCUDA.h" 42 #include "clang/Sema/SemaInternal.h" 43 #include "clang/Sema/SemaLambda.h" 44 #include "clang/Sema/SemaObjC.h" 45 #include "clang/Sema/SemaPPC.h" 46 #include "clang/Sema/Template.h" 47 #include "clang/Sema/TemplateDeduction.h" 48 #include "llvm/ADT/APInt.h" 49 #include "llvm/ADT/STLExtras.h" 50 #include "llvm/ADT/STLForwardCompat.h" 51 #include "llvm/ADT/StringExtras.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/TypeSize.h" 54 #include <optional> 55 using namespace clang; 56 using namespace sema; 57 58 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, 59 SourceLocation NameLoc, 60 const IdentifierInfo &Name) { 61 NestedNameSpecifier *NNS = SS.getScopeRep(); 62 63 // Convert the nested-name-specifier into a type. 64 QualType Type; 65 switch (NNS->getKind()) { 66 case NestedNameSpecifier::TypeSpec: 67 case NestedNameSpecifier::TypeSpecWithTemplate: 68 Type = QualType(NNS->getAsType(), 0); 69 break; 70 71 case NestedNameSpecifier::Identifier: 72 // Strip off the last layer of the nested-name-specifier and build a 73 // typename type for it. 74 assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); 75 Type = Context.getDependentNameType( 76 ElaboratedTypeKeyword::None, NNS->getPrefix(), NNS->getAsIdentifier()); 77 break; 78 79 case NestedNameSpecifier::Global: 80 case NestedNameSpecifier::Super: 81 case NestedNameSpecifier::Namespace: 82 case NestedNameSpecifier::NamespaceAlias: 83 llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); 84 } 85 86 // This reference to the type is located entirely at the location of the 87 // final identifier in the qualified-id. 88 return CreateParsedType(Type, 89 Context.getTrivialTypeSourceInfo(Type, NameLoc)); 90 } 91 92 ParsedType Sema::getConstructorName(const IdentifierInfo &II, 93 SourceLocation NameLoc, Scope *S, 94 CXXScopeSpec &SS, bool EnteringContext) { 95 CXXRecordDecl *CurClass = getCurrentClass(S, &SS); 96 assert(CurClass && &II == CurClass->getIdentifier() && 97 "not a constructor name"); 98 99 // When naming a constructor as a member of a dependent context (eg, in a 100 // friend declaration or an inherited constructor declaration), form an 101 // unresolved "typename" type. 102 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) { 103 QualType T = Context.getDependentNameType(ElaboratedTypeKeyword::None, 104 SS.getScopeRep(), &II); 105 return ParsedType::make(T); 106 } 107 108 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass)) 109 return ParsedType(); 110 111 // Find the injected-class-name declaration. Note that we make no attempt to 112 // diagnose cases where the injected-class-name is shadowed: the only 113 // declaration that can validly shadow the injected-class-name is a 114 // non-static data member, and if the class contains both a non-static data 115 // member and a constructor then it is ill-formed (we check that in 116 // CheckCompletedCXXClass). 117 CXXRecordDecl *InjectedClassName = nullptr; 118 for (NamedDecl *ND : CurClass->lookup(&II)) { 119 auto *RD = dyn_cast<CXXRecordDecl>(ND); 120 if (RD && RD->isInjectedClassName()) { 121 InjectedClassName = RD; 122 break; 123 } 124 } 125 if (!InjectedClassName) { 126 if (!CurClass->isInvalidDecl()) { 127 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts 128 // properly. Work around it here for now. 129 Diag(SS.getLastQualifierNameLoc(), 130 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange(); 131 } 132 return ParsedType(); 133 } 134 135 QualType T = Context.getTypeDeclType(InjectedClassName); 136 DiagnoseUseOfDecl(InjectedClassName, NameLoc); 137 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false); 138 139 return ParsedType::make(T); 140 } 141 142 ParsedType Sema::getDestructorName(const IdentifierInfo &II, 143 SourceLocation NameLoc, Scope *S, 144 CXXScopeSpec &SS, ParsedType ObjectTypePtr, 145 bool EnteringContext) { 146 // Determine where to perform name lookup. 147 148 // FIXME: This area of the standard is very messy, and the current 149 // wording is rather unclear about which scopes we search for the 150 // destructor name; see core issues 399 and 555. Issue 399 in 151 // particular shows where the current description of destructor name 152 // lookup is completely out of line with existing practice, e.g., 153 // this appears to be ill-formed: 154 // 155 // namespace N { 156 // template <typename T> struct S { 157 // ~S(); 158 // }; 159 // } 160 // 161 // void f(N::S<int>* s) { 162 // s->N::S<int>::~S(); 163 // } 164 // 165 // See also PR6358 and PR6359. 166 // 167 // For now, we accept all the cases in which the name given could plausibly 168 // be interpreted as a correct destructor name, issuing off-by-default 169 // extension diagnostics on the cases that don't strictly conform to the 170 // C++20 rules. This basically means we always consider looking in the 171 // nested-name-specifier prefix, the complete nested-name-specifier, and 172 // the scope, and accept if we find the expected type in any of the three 173 // places. 174 175 if (SS.isInvalid()) 176 return nullptr; 177 178 // Whether we've failed with a diagnostic already. 179 bool Failed = false; 180 181 llvm::SmallVector<NamedDecl*, 8> FoundDecls; 182 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet; 183 184 // If we have an object type, it's because we are in a 185 // pseudo-destructor-expression or a member access expression, and 186 // we know what type we're looking for. 187 QualType SearchType = 188 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType(); 189 190 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType { 191 auto IsAcceptableResult = [&](NamedDecl *D) -> bool { 192 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl()); 193 if (!Type) 194 return false; 195 196 if (SearchType.isNull() || SearchType->isDependentType()) 197 return true; 198 199 QualType T = Context.getTypeDeclType(Type); 200 return Context.hasSameUnqualifiedType(T, SearchType); 201 }; 202 203 unsigned NumAcceptableResults = 0; 204 for (NamedDecl *D : Found) { 205 if (IsAcceptableResult(D)) 206 ++NumAcceptableResults; 207 208 // Don't list a class twice in the lookup failure diagnostic if it's 209 // found by both its injected-class-name and by the name in the enclosing 210 // scope. 211 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 212 if (RD->isInjectedClassName()) 213 D = cast<NamedDecl>(RD->getParent()); 214 215 if (FoundDeclSet.insert(D).second) 216 FoundDecls.push_back(D); 217 } 218 219 // As an extension, attempt to "fix" an ambiguity by erasing all non-type 220 // results, and all non-matching results if we have a search type. It's not 221 // clear what the right behavior is if destructor lookup hits an ambiguity, 222 // but other compilers do generally accept at least some kinds of 223 // ambiguity. 224 if (Found.isAmbiguous() && NumAcceptableResults == 1) { 225 Diag(NameLoc, diag::ext_dtor_name_ambiguous); 226 LookupResult::Filter F = Found.makeFilter(); 227 while (F.hasNext()) { 228 NamedDecl *D = F.next(); 229 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 230 Diag(D->getLocation(), diag::note_destructor_type_here) 231 << Context.getTypeDeclType(TD); 232 else 233 Diag(D->getLocation(), diag::note_destructor_nontype_here); 234 235 if (!IsAcceptableResult(D)) 236 F.erase(); 237 } 238 F.done(); 239 } 240 241 if (Found.isAmbiguous()) 242 Failed = true; 243 244 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { 245 if (IsAcceptableResult(Type)) { 246 QualType T = Context.getTypeDeclType(Type); 247 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 248 return CreateParsedType( 249 Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, T), 250 Context.getTrivialTypeSourceInfo(T, NameLoc)); 251 } 252 } 253 254 return nullptr; 255 }; 256 257 bool IsDependent = false; 258 259 auto LookupInObjectType = [&]() -> ParsedType { 260 if (Failed || SearchType.isNull()) 261 return nullptr; 262 263 IsDependent |= SearchType->isDependentType(); 264 265 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 266 DeclContext *LookupCtx = computeDeclContext(SearchType); 267 if (!LookupCtx) 268 return nullptr; 269 LookupQualifiedName(Found, LookupCtx); 270 return CheckLookupResult(Found); 271 }; 272 273 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType { 274 if (Failed) 275 return nullptr; 276 277 IsDependent |= isDependentScopeSpecifier(LookupSS); 278 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext); 279 if (!LookupCtx) 280 return nullptr; 281 282 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 283 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) { 284 Failed = true; 285 return nullptr; 286 } 287 LookupQualifiedName(Found, LookupCtx); 288 return CheckLookupResult(Found); 289 }; 290 291 auto LookupInScope = [&]() -> ParsedType { 292 if (Failed || !S) 293 return nullptr; 294 295 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 296 LookupName(Found, S); 297 return CheckLookupResult(Found); 298 }; 299 300 // C++2a [basic.lookup.qual]p6: 301 // In a qualified-id of the form 302 // 303 // nested-name-specifier[opt] type-name :: ~ type-name 304 // 305 // the second type-name is looked up in the same scope as the first. 306 // 307 // We interpret this as meaning that if you do a dual-scope lookup for the 308 // first name, you also do a dual-scope lookup for the second name, per 309 // C++ [basic.lookup.classref]p4: 310 // 311 // If the id-expression in a class member access is a qualified-id of the 312 // form 313 // 314 // class-name-or-namespace-name :: ... 315 // 316 // the class-name-or-namespace-name following the . or -> is first looked 317 // up in the class of the object expression and the name, if found, is used. 318 // Otherwise, it is looked up in the context of the entire 319 // postfix-expression. 320 // 321 // This looks in the same scopes as for an unqualified destructor name: 322 // 323 // C++ [basic.lookup.classref]p3: 324 // If the unqualified-id is ~ type-name, the type-name is looked up 325 // in the context of the entire postfix-expression. If the type T 326 // of the object expression is of a class type C, the type-name is 327 // also looked up in the scope of class C. At least one of the 328 // lookups shall find a name that refers to cv T. 329 // 330 // FIXME: The intent is unclear here. Should type-name::~type-name look in 331 // the scope anyway if it finds a non-matching name declared in the class? 332 // If both lookups succeed and find a dependent result, which result should 333 // we retain? (Same question for p->~type-name().) 334 335 if (NestedNameSpecifier *Prefix = 336 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) { 337 // This is 338 // 339 // nested-name-specifier type-name :: ~ type-name 340 // 341 // Look for the second type-name in the nested-name-specifier. 342 CXXScopeSpec PrefixSS; 343 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); 344 if (ParsedType T = LookupInNestedNameSpec(PrefixSS)) 345 return T; 346 } else { 347 // This is one of 348 // 349 // type-name :: ~ type-name 350 // ~ type-name 351 // 352 // Look in the scope and (if any) the object type. 353 if (ParsedType T = LookupInScope()) 354 return T; 355 if (ParsedType T = LookupInObjectType()) 356 return T; 357 } 358 359 if (Failed) 360 return nullptr; 361 362 if (IsDependent) { 363 // We didn't find our type, but that's OK: it's dependent anyway. 364 365 // FIXME: What if we have no nested-name-specifier? 366 QualType T = 367 CheckTypenameType(ElaboratedTypeKeyword::None, SourceLocation(), 368 SS.getWithLocInContext(Context), II, NameLoc); 369 return ParsedType::make(T); 370 } 371 372 // The remaining cases are all non-standard extensions imitating the behavior 373 // of various other compilers. 374 unsigned NumNonExtensionDecls = FoundDecls.size(); 375 376 if (SS.isSet()) { 377 // For compatibility with older broken C++ rules and existing code, 378 // 379 // nested-name-specifier :: ~ type-name 380 // 381 // also looks for type-name within the nested-name-specifier. 382 if (ParsedType T = LookupInNestedNameSpec(SS)) { 383 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope) 384 << SS.getRange() 385 << FixItHint::CreateInsertion(SS.getEndLoc(), 386 ("::" + II.getName()).str()); 387 return T; 388 } 389 390 // For compatibility with other compilers and older versions of Clang, 391 // 392 // nested-name-specifier type-name :: ~ type-name 393 // 394 // also looks for type-name in the scope. Unfortunately, we can't 395 // reasonably apply this fallback for dependent nested-name-specifiers. 396 if (SS.isValid() && SS.getScopeRep()->getPrefix()) { 397 if (ParsedType T = LookupInScope()) { 398 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope) 399 << FixItHint::CreateRemoval(SS.getRange()); 400 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here) 401 << GetTypeFromParser(T); 402 return T; 403 } 404 } 405 } 406 407 // We didn't find anything matching; tell the user what we did find (if 408 // anything). 409 410 // Don't tell the user about declarations we shouldn't have found. 411 FoundDecls.resize(NumNonExtensionDecls); 412 413 // List types before non-types. 414 std::stable_sort(FoundDecls.begin(), FoundDecls.end(), 415 [](NamedDecl *A, NamedDecl *B) { 416 return isa<TypeDecl>(A->getUnderlyingDecl()) > 417 isa<TypeDecl>(B->getUnderlyingDecl()); 418 }); 419 420 // Suggest a fixit to properly name the destroyed type. 421 auto MakeFixItHint = [&]{ 422 const CXXRecordDecl *Destroyed = nullptr; 423 // FIXME: If we have a scope specifier, suggest its last component? 424 if (!SearchType.isNull()) 425 Destroyed = SearchType->getAsCXXRecordDecl(); 426 else if (S) 427 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity()); 428 if (Destroyed) 429 return FixItHint::CreateReplacement(SourceRange(NameLoc), 430 Destroyed->getNameAsString()); 431 return FixItHint(); 432 }; 433 434 if (FoundDecls.empty()) { 435 // FIXME: Attempt typo-correction? 436 Diag(NameLoc, diag::err_undeclared_destructor_name) 437 << &II << MakeFixItHint(); 438 } else if (!SearchType.isNull() && FoundDecls.size() == 1) { 439 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) { 440 assert(!SearchType.isNull() && 441 "should only reject a type result if we have a search type"); 442 QualType T = Context.getTypeDeclType(TD); 443 Diag(NameLoc, diag::err_destructor_expr_type_mismatch) 444 << T << SearchType << MakeFixItHint(); 445 } else { 446 Diag(NameLoc, diag::err_destructor_expr_nontype) 447 << &II << MakeFixItHint(); 448 } 449 } else { 450 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype 451 : diag::err_destructor_expr_mismatch) 452 << &II << SearchType << MakeFixItHint(); 453 } 454 455 for (NamedDecl *FoundD : FoundDecls) { 456 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl())) 457 Diag(FoundD->getLocation(), diag::note_destructor_type_here) 458 << Context.getTypeDeclType(TD); 459 else 460 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here) 461 << FoundD; 462 } 463 464 return nullptr; 465 } 466 467 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS, 468 ParsedType ObjectType) { 469 if (DS.getTypeSpecType() == DeclSpec::TST_error) 470 return nullptr; 471 472 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 473 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 474 return nullptr; 475 } 476 477 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype && 478 "unexpected type in getDestructorType"); 479 QualType T = BuildDecltypeType(DS.getRepAsExpr()); 480 481 // If we know the type of the object, check that the correct destructor 482 // type was named now; we can give better diagnostics this way. 483 QualType SearchType = GetTypeFromParser(ObjectType); 484 if (!SearchType.isNull() && !SearchType->isDependentType() && 485 !Context.hasSameUnqualifiedType(T, SearchType)) { 486 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) 487 << T << SearchType; 488 return nullptr; 489 } 490 491 return ParsedType::make(T); 492 } 493 494 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, 495 const UnqualifiedId &Name, bool IsUDSuffix) { 496 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId); 497 if (!IsUDSuffix) { 498 // [over.literal] p8 499 // 500 // double operator""_Bq(long double); // OK: not a reserved identifier 501 // double operator"" _Bq(long double); // ill-formed, no diagnostic required 502 const IdentifierInfo *II = Name.Identifier; 503 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts()); 504 SourceLocation Loc = Name.getEndLoc(); 505 if (!PP.getSourceManager().isInSystemHeader(Loc)) { 506 if (auto Hint = FixItHint::CreateReplacement( 507 Name.getSourceRange(), 508 (StringRef("operator\"\"") + II->getName()).str()); 509 isReservedInAllContexts(Status)) { 510 Diag(Loc, diag::warn_reserved_extern_symbol) 511 << II << static_cast<int>(Status) << Hint; 512 } else { 513 Diag(Loc, diag::warn_deprecated_literal_operator_id) << II << Hint; 514 } 515 } 516 } 517 518 if (!SS.isValid()) 519 return false; 520 521 switch (SS.getScopeRep()->getKind()) { 522 case NestedNameSpecifier::Identifier: 523 case NestedNameSpecifier::TypeSpec: 524 case NestedNameSpecifier::TypeSpecWithTemplate: 525 // Per C++11 [over.literal]p2, literal operators can only be declared at 526 // namespace scope. Therefore, this unqualified-id cannot name anything. 527 // Reject it early, because we have no AST representation for this in the 528 // case where the scope is dependent. 529 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace) 530 << SS.getScopeRep(); 531 return true; 532 533 case NestedNameSpecifier::Global: 534 case NestedNameSpecifier::Super: 535 case NestedNameSpecifier::Namespace: 536 case NestedNameSpecifier::NamespaceAlias: 537 return false; 538 } 539 540 llvm_unreachable("unknown nested name specifier kind"); 541 } 542 543 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 544 SourceLocation TypeidLoc, 545 TypeSourceInfo *Operand, 546 SourceLocation RParenLoc) { 547 // C++ [expr.typeid]p4: 548 // The top-level cv-qualifiers of the lvalue expression or the type-id 549 // that is the operand of typeid are always ignored. 550 // If the type of the type-id is a class type or a reference to a class 551 // type, the class shall be completely-defined. 552 Qualifiers Quals; 553 QualType T 554 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), 555 Quals); 556 if (T->getAs<RecordType>() && 557 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 558 return ExprError(); 559 560 if (T->isVariablyModifiedType()) 561 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); 562 563 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc)) 564 return ExprError(); 565 566 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, 567 SourceRange(TypeidLoc, RParenLoc)); 568 } 569 570 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 571 SourceLocation TypeidLoc, 572 Expr *E, 573 SourceLocation RParenLoc) { 574 bool WasEvaluated = false; 575 if (E && !E->isTypeDependent()) { 576 if (E->hasPlaceholderType()) { 577 ExprResult result = CheckPlaceholderExpr(E); 578 if (result.isInvalid()) return ExprError(); 579 E = result.get(); 580 } 581 582 QualType T = E->getType(); 583 if (const RecordType *RecordT = T->getAs<RecordType>()) { 584 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); 585 // C++ [expr.typeid]p3: 586 // [...] If the type of the expression is a class type, the class 587 // shall be completely-defined. 588 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 589 return ExprError(); 590 591 // C++ [expr.typeid]p3: 592 // When typeid is applied to an expression other than an glvalue of a 593 // polymorphic class type [...] [the] expression is an unevaluated 594 // operand. [...] 595 if (RecordD->isPolymorphic() && E->isGLValue()) { 596 if (isUnevaluatedContext()) { 597 // The operand was processed in unevaluated context, switch the 598 // context and recheck the subexpression. 599 ExprResult Result = TransformToPotentiallyEvaluated(E); 600 if (Result.isInvalid()) 601 return ExprError(); 602 E = Result.get(); 603 } 604 605 // We require a vtable to query the type at run time. 606 MarkVTableUsed(TypeidLoc, RecordD); 607 WasEvaluated = true; 608 } 609 } 610 611 ExprResult Result = CheckUnevaluatedOperand(E); 612 if (Result.isInvalid()) 613 return ExprError(); 614 E = Result.get(); 615 616 // C++ [expr.typeid]p4: 617 // [...] If the type of the type-id is a reference to a possibly 618 // cv-qualified type, the result of the typeid expression refers to a 619 // std::type_info object representing the cv-unqualified referenced 620 // type. 621 Qualifiers Quals; 622 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); 623 if (!Context.hasSameType(T, UnqualT)) { 624 T = UnqualT; 625 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); 626 } 627 } 628 629 if (E->getType()->isVariablyModifiedType()) 630 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) 631 << E->getType()); 632 else if (!inTemplateInstantiation() && 633 E->HasSideEffects(Context, WasEvaluated)) { 634 // The expression operand for typeid is in an unevaluated expression 635 // context, so side effects could result in unintended consequences. 636 Diag(E->getExprLoc(), WasEvaluated 637 ? diag::warn_side_effects_typeid 638 : diag::warn_side_effects_unevaluated_context); 639 } 640 641 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, 642 SourceRange(TypeidLoc, RParenLoc)); 643 } 644 645 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); 646 ExprResult 647 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, 648 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 649 // typeid is not supported in OpenCL. 650 if (getLangOpts().OpenCLCPlusPlus) { 651 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) 652 << "typeid"); 653 } 654 655 // Find the std::type_info type. 656 if (!getStdNamespace()) 657 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 658 659 if (!CXXTypeInfoDecl) { 660 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); 661 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); 662 LookupQualifiedName(R, getStdNamespace()); 663 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 664 // Microsoft's typeinfo doesn't have type_info in std but in the global 665 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. 666 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { 667 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 668 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 669 } 670 if (!CXXTypeInfoDecl) 671 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 672 } 673 674 if (!getLangOpts().RTTI) { 675 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); 676 } 677 678 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); 679 680 if (isType) { 681 // The operand is a type; handle it as such. 682 TypeSourceInfo *TInfo = nullptr; 683 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 684 &TInfo); 685 if (T.isNull()) 686 return ExprError(); 687 688 if (!TInfo) 689 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 690 691 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); 692 } 693 694 // The operand is an expression. 695 ExprResult Result = 696 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc); 697 698 if (!getLangOpts().RTTIData && !Result.isInvalid()) 699 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get())) 700 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context)) 701 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled) 702 << (getDiagnostics().getDiagnosticOptions().getFormat() == 703 DiagnosticOptions::MSVC); 704 return Result; 705 } 706 707 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to 708 /// a single GUID. 709 static void 710 getUuidAttrOfType(Sema &SemaRef, QualType QT, 711 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) { 712 // Optionally remove one level of pointer, reference or array indirection. 713 const Type *Ty = QT.getTypePtr(); 714 if (QT->isPointerType() || QT->isReferenceType()) 715 Ty = QT->getPointeeType().getTypePtr(); 716 else if (QT->isArrayType()) 717 Ty = Ty->getBaseElementTypeUnsafe(); 718 719 const auto *TD = Ty->getAsTagDecl(); 720 if (!TD) 721 return; 722 723 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) { 724 UuidAttrs.insert(Uuid); 725 return; 726 } 727 728 // __uuidof can grab UUIDs from template arguments. 729 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) { 730 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 731 for (const TemplateArgument &TA : TAL.asArray()) { 732 const UuidAttr *UuidForTA = nullptr; 733 if (TA.getKind() == TemplateArgument::Type) 734 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs); 735 else if (TA.getKind() == TemplateArgument::Declaration) 736 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs); 737 738 if (UuidForTA) 739 UuidAttrs.insert(UuidForTA); 740 } 741 } 742 } 743 744 ExprResult Sema::BuildCXXUuidof(QualType Type, 745 SourceLocation TypeidLoc, 746 TypeSourceInfo *Operand, 747 SourceLocation RParenLoc) { 748 MSGuidDecl *Guid = nullptr; 749 if (!Operand->getType()->isDependentType()) { 750 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 751 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs); 752 if (UuidAttrs.empty()) 753 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 754 if (UuidAttrs.size() > 1) 755 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 756 Guid = UuidAttrs.back()->getGuidDecl(); 757 } 758 759 return new (Context) 760 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc)); 761 } 762 763 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc, 764 Expr *E, SourceLocation RParenLoc) { 765 MSGuidDecl *Guid = nullptr; 766 if (!E->getType()->isDependentType()) { 767 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 768 // A null pointer results in {00000000-0000-0000-0000-000000000000}. 769 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{}); 770 } else { 771 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 772 getUuidAttrOfType(*this, E->getType(), UuidAttrs); 773 if (UuidAttrs.empty()) 774 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 775 if (UuidAttrs.size() > 1) 776 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 777 Guid = UuidAttrs.back()->getGuidDecl(); 778 } 779 } 780 781 return new (Context) 782 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc)); 783 } 784 785 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); 786 ExprResult 787 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, 788 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 789 QualType GuidType = Context.getMSGuidType(); 790 GuidType.addConst(); 791 792 if (isType) { 793 // The operand is a type; handle it as such. 794 TypeSourceInfo *TInfo = nullptr; 795 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 796 &TInfo); 797 if (T.isNull()) 798 return ExprError(); 799 800 if (!TInfo) 801 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 802 803 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); 804 } 805 806 // The operand is an expression. 807 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 808 } 809 810 ExprResult 811 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { 812 assert((Kind == tok::kw_true || Kind == tok::kw_false) && 813 "Unknown C++ Boolean value!"); 814 return new (Context) 815 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); 816 } 817 818 ExprResult 819 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { 820 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 821 } 822 823 ExprResult 824 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { 825 bool IsThrownVarInScope = false; 826 if (Ex) { 827 // C++0x [class.copymove]p31: 828 // When certain criteria are met, an implementation is allowed to omit the 829 // copy/move construction of a class object [...] 830 // 831 // - in a throw-expression, when the operand is the name of a 832 // non-volatile automatic object (other than a function or catch- 833 // clause parameter) whose scope does not extend beyond the end of the 834 // innermost enclosing try-block (if there is one), the copy/move 835 // operation from the operand to the exception object (15.1) can be 836 // omitted by constructing the automatic object directly into the 837 // exception object 838 if (const auto *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) 839 if (const auto *Var = dyn_cast<VarDecl>(DRE->getDecl()); 840 Var && Var->hasLocalStorage() && 841 !Var->getType().isVolatileQualified()) { 842 for (; S; S = S->getParent()) { 843 if (S->isDeclScope(Var)) { 844 IsThrownVarInScope = true; 845 break; 846 } 847 848 // FIXME: Many of the scope checks here seem incorrect. 849 if (S->getFlags() & 850 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | 851 Scope::ObjCMethodScope | Scope::TryScope)) 852 break; 853 } 854 } 855 } 856 857 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); 858 } 859 860 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 861 bool IsThrownVarInScope) { 862 const llvm::Triple &T = Context.getTargetInfo().getTriple(); 863 const bool IsOpenMPGPUTarget = 864 getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN()); 865 // Don't report an error if 'throw' is used in system headers or in an OpenMP 866 // target region compiled for a GPU architecture. 867 if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions && 868 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) { 869 // Delay error emission for the OpenMP device code. 870 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw"; 871 } 872 873 // In OpenMP target regions, we replace 'throw' with a trap on GPU targets. 874 if (IsOpenMPGPUTarget) 875 targetDiag(OpLoc, diag::warn_throw_not_valid_on_target) << T.str(); 876 877 // Exceptions aren't allowed in CUDA device code. 878 if (getLangOpts().CUDA) 879 CUDA().DiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions) 880 << "throw" << llvm::to_underlying(CUDA().CurrentTarget()); 881 882 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 883 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; 884 885 // Exceptions that escape a compute construct are ill-formed. 886 if (getLangOpts().OpenACC && getCurScope() && 887 getCurScope()->isInOpenACCComputeConstructScope(Scope::TryScope)) 888 Diag(OpLoc, diag::err_acc_branch_in_out_compute_construct) 889 << /*throw*/ 2 << /*out of*/ 0; 890 891 if (Ex && !Ex->isTypeDependent()) { 892 // Initialize the exception result. This implicitly weeds out 893 // abstract types or types with inaccessible copy constructors. 894 895 // C++0x [class.copymove]p31: 896 // When certain criteria are met, an implementation is allowed to omit the 897 // copy/move construction of a class object [...] 898 // 899 // - in a throw-expression, when the operand is the name of a 900 // non-volatile automatic object (other than a function or 901 // catch-clause 902 // parameter) whose scope does not extend beyond the end of the 903 // innermost enclosing try-block (if there is one), the copy/move 904 // operation from the operand to the exception object (15.1) can be 905 // omitted by constructing the automatic object directly into the 906 // exception object 907 NamedReturnInfo NRInfo = 908 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo(); 909 910 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); 911 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) 912 return ExprError(); 913 914 InitializedEntity Entity = 915 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy); 916 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex); 917 if (Res.isInvalid()) 918 return ExprError(); 919 Ex = Res.get(); 920 } 921 922 // PPC MMA non-pointer types are not allowed as throw expr types. 923 if (Ex && Context.getTargetInfo().getTriple().isPPC64()) 924 PPC().CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc()); 925 926 return new (Context) 927 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); 928 } 929 930 static void 931 collectPublicBases(CXXRecordDecl *RD, 932 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, 933 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, 934 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, 935 bool ParentIsPublic) { 936 for (const CXXBaseSpecifier &BS : RD->bases()) { 937 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 938 bool NewSubobject; 939 // Virtual bases constitute the same subobject. Non-virtual bases are 940 // always distinct subobjects. 941 if (BS.isVirtual()) 942 NewSubobject = VBases.insert(BaseDecl).second; 943 else 944 NewSubobject = true; 945 946 if (NewSubobject) 947 ++SubobjectsSeen[BaseDecl]; 948 949 // Only add subobjects which have public access throughout the entire chain. 950 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; 951 if (PublicPath) 952 PublicSubobjectsSeen.insert(BaseDecl); 953 954 // Recurse on to each base subobject. 955 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, 956 PublicPath); 957 } 958 } 959 960 static void getUnambiguousPublicSubobjects( 961 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { 962 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; 963 llvm::SmallSet<CXXRecordDecl *, 2> VBases; 964 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; 965 SubobjectsSeen[RD] = 1; 966 PublicSubobjectsSeen.insert(RD); 967 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, 968 /*ParentIsPublic=*/true); 969 970 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { 971 // Skip ambiguous objects. 972 if (SubobjectsSeen[PublicSubobject] > 1) 973 continue; 974 975 Objects.push_back(PublicSubobject); 976 } 977 } 978 979 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, 980 QualType ExceptionObjectTy, Expr *E) { 981 // If the type of the exception would be an incomplete type or a pointer 982 // to an incomplete type other than (cv) void the program is ill-formed. 983 QualType Ty = ExceptionObjectTy; 984 bool isPointer = false; 985 if (const PointerType* Ptr = Ty->getAs<PointerType>()) { 986 Ty = Ptr->getPointeeType(); 987 isPointer = true; 988 } 989 990 // Cannot throw WebAssembly reference type. 991 if (Ty.isWebAssemblyReferenceType()) { 992 Diag(ThrowLoc, diag::err_wasm_reftype_tc) << 0 << E->getSourceRange(); 993 return true; 994 } 995 996 // Cannot throw WebAssembly table. 997 if (isPointer && Ty.isWebAssemblyReferenceType()) { 998 Diag(ThrowLoc, diag::err_wasm_table_art) << 2 << E->getSourceRange(); 999 return true; 1000 } 1001 1002 if (!isPointer || !Ty->isVoidType()) { 1003 if (RequireCompleteType(ThrowLoc, Ty, 1004 isPointer ? diag::err_throw_incomplete_ptr 1005 : diag::err_throw_incomplete, 1006 E->getSourceRange())) 1007 return true; 1008 1009 if (!isPointer && Ty->isSizelessType()) { 1010 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange(); 1011 return true; 1012 } 1013 1014 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, 1015 diag::err_throw_abstract_type, E)) 1016 return true; 1017 } 1018 1019 // If the exception has class type, we need additional handling. 1020 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 1021 if (!RD) 1022 return false; 1023 1024 // If we are throwing a polymorphic class type or pointer thereof, 1025 // exception handling will make use of the vtable. 1026 MarkVTableUsed(ThrowLoc, RD); 1027 1028 // If a pointer is thrown, the referenced object will not be destroyed. 1029 if (isPointer) 1030 return false; 1031 1032 // If the class has a destructor, we must be able to call it. 1033 if (!RD->hasIrrelevantDestructor()) { 1034 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 1035 MarkFunctionReferenced(E->getExprLoc(), Destructor); 1036 CheckDestructorAccess(E->getExprLoc(), Destructor, 1037 PDiag(diag::err_access_dtor_exception) << Ty); 1038 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 1039 return true; 1040 } 1041 } 1042 1043 // The MSVC ABI creates a list of all types which can catch the exception 1044 // object. This list also references the appropriate copy constructor to call 1045 // if the object is caught by value and has a non-trivial copy constructor. 1046 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1047 // We are only interested in the public, unambiguous bases contained within 1048 // the exception object. Bases which are ambiguous or otherwise 1049 // inaccessible are not catchable types. 1050 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; 1051 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); 1052 1053 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { 1054 // Attempt to lookup the copy constructor. Various pieces of machinery 1055 // will spring into action, like template instantiation, which means this 1056 // cannot be a simple walk of the class's decls. Instead, we must perform 1057 // lookup and overload resolution. 1058 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); 1059 if (!CD || CD->isDeleted()) 1060 continue; 1061 1062 // Mark the constructor referenced as it is used by this throw expression. 1063 MarkFunctionReferenced(E->getExprLoc(), CD); 1064 1065 // Skip this copy constructor if it is trivial, we don't need to record it 1066 // in the catchable type data. 1067 if (CD->isTrivial()) 1068 continue; 1069 1070 // The copy constructor is non-trivial, create a mapping from this class 1071 // type to this constructor. 1072 // N.B. The selection of copy constructor is not sensitive to this 1073 // particular throw-site. Lookup will be performed at the catch-site to 1074 // ensure that the copy constructor is, in fact, accessible (via 1075 // friendship or any other means). 1076 Context.addCopyConstructorForExceptionObject(Subobject, CD); 1077 1078 // We don't keep the instantiated default argument expressions around so 1079 // we must rebuild them here. 1080 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { 1081 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I))) 1082 return true; 1083 } 1084 } 1085 } 1086 1087 // Under the Itanium C++ ABI, memory for the exception object is allocated by 1088 // the runtime with no ability for the compiler to request additional 1089 // alignment. Warn if the exception type requires alignment beyond the minimum 1090 // guaranteed by the target C++ runtime. 1091 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) { 1092 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty); 1093 CharUnits ExnObjAlign = Context.getExnObjectAlignment(); 1094 if (ExnObjAlign < TypeAlign) { 1095 Diag(ThrowLoc, diag::warn_throw_underaligned_obj); 1096 Diag(ThrowLoc, diag::note_throw_underaligned_obj) 1097 << Ty << (unsigned)TypeAlign.getQuantity() 1098 << (unsigned)ExnObjAlign.getQuantity(); 1099 } 1100 } 1101 if (!isPointer && getLangOpts().AssumeNothrowExceptionDtor) { 1102 if (CXXDestructorDecl *Dtor = RD->getDestructor()) { 1103 auto Ty = Dtor->getType(); 1104 if (auto *FT = Ty.getTypePtr()->getAs<FunctionProtoType>()) { 1105 if (!isUnresolvedExceptionSpec(FT->getExceptionSpecType()) && 1106 !FT->isNothrow()) 1107 Diag(ThrowLoc, diag::err_throw_object_throwing_dtor) << RD; 1108 } 1109 } 1110 } 1111 1112 return false; 1113 } 1114 1115 static QualType adjustCVQualifiersForCXXThisWithinLambda( 1116 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy, 1117 DeclContext *CurSemaContext, ASTContext &ASTCtx) { 1118 1119 QualType ClassType = ThisTy->getPointeeType(); 1120 LambdaScopeInfo *CurLSI = nullptr; 1121 DeclContext *CurDC = CurSemaContext; 1122 1123 // Iterate through the stack of lambdas starting from the innermost lambda to 1124 // the outermost lambda, checking if '*this' is ever captured by copy - since 1125 // that could change the cv-qualifiers of the '*this' object. 1126 // The object referred to by '*this' starts out with the cv-qualifiers of its 1127 // member function. We then start with the innermost lambda and iterate 1128 // outward checking to see if any lambda performs a by-copy capture of '*this' 1129 // - and if so, any nested lambda must respect the 'constness' of that 1130 // capturing lamdbda's call operator. 1131 // 1132 1133 // Since the FunctionScopeInfo stack is representative of the lexical 1134 // nesting of the lambda expressions during initial parsing (and is the best 1135 // place for querying information about captures about lambdas that are 1136 // partially processed) and perhaps during instantiation of function templates 1137 // that contain lambda expressions that need to be transformed BUT not 1138 // necessarily during instantiation of a nested generic lambda's function call 1139 // operator (which might even be instantiated at the end of the TU) - at which 1140 // time the DeclContext tree is mature enough to query capture information 1141 // reliably - we use a two pronged approach to walk through all the lexically 1142 // enclosing lambda expressions: 1143 // 1144 // 1) Climb down the FunctionScopeInfo stack as long as each item represents 1145 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically 1146 // enclosed by the call-operator of the LSI below it on the stack (while 1147 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on 1148 // the stack represents the innermost lambda. 1149 // 1150 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext 1151 // represents a lambda's call operator. If it does, we must be instantiating 1152 // a generic lambda's call operator (represented by the Current LSI, and 1153 // should be the only scenario where an inconsistency between the LSI and the 1154 // DeclContext should occur), so climb out the DeclContexts if they 1155 // represent lambdas, while querying the corresponding closure types 1156 // regarding capture information. 1157 1158 // 1) Climb down the function scope info stack. 1159 for (int I = FunctionScopes.size(); 1160 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) && 1161 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() == 1162 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator); 1163 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) { 1164 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]); 1165 1166 if (!CurLSI->isCXXThisCaptured()) 1167 continue; 1168 1169 auto C = CurLSI->getCXXThisCapture(); 1170 1171 if (C.isCopyCapture()) { 1172 if (CurLSI->lambdaCaptureShouldBeConst()) 1173 ClassType.addConst(); 1174 return ASTCtx.getPointerType(ClassType); 1175 } 1176 } 1177 1178 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which 1179 // can happen during instantiation of its nested generic lambda call 1180 // operator); 2. if we're in a lambda scope (lambda body). 1181 if (CurLSI && isLambdaCallOperator(CurDC)) { 1182 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && 1183 "While computing 'this' capture-type for a generic lambda, when we " 1184 "run out of enclosing LSI's, yet the enclosing DC is a " 1185 "lambda-call-operator we must be (i.e. Current LSI) in a generic " 1186 "lambda call oeprator"); 1187 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)); 1188 1189 auto IsThisCaptured = 1190 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) { 1191 IsConst = false; 1192 IsByCopy = false; 1193 for (auto &&C : Closure->captures()) { 1194 if (C.capturesThis()) { 1195 if (C.getCaptureKind() == LCK_StarThis) 1196 IsByCopy = true; 1197 if (Closure->getLambdaCallOperator()->isConst()) 1198 IsConst = true; 1199 return true; 1200 } 1201 } 1202 return false; 1203 }; 1204 1205 bool IsByCopyCapture = false; 1206 bool IsConstCapture = false; 1207 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent()); 1208 while (Closure && 1209 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) { 1210 if (IsByCopyCapture) { 1211 if (IsConstCapture) 1212 ClassType.addConst(); 1213 return ASTCtx.getPointerType(ClassType); 1214 } 1215 Closure = isLambdaCallOperator(Closure->getParent()) 1216 ? cast<CXXRecordDecl>(Closure->getParent()->getParent()) 1217 : nullptr; 1218 } 1219 } 1220 return ThisTy; 1221 } 1222 1223 QualType Sema::getCurrentThisType() { 1224 DeclContext *DC = getFunctionLevelDeclContext(); 1225 QualType ThisTy = CXXThisTypeOverride; 1226 1227 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { 1228 if (method && method->isImplicitObjectMemberFunction()) 1229 ThisTy = method->getThisType().getNonReferenceType(); 1230 } 1231 1232 if (ThisTy.isNull() && isLambdaCallWithImplicitObjectParameter(CurContext) && 1233 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) { 1234 1235 // This is a lambda call operator that is being instantiated as a default 1236 // initializer. DC must point to the enclosing class type, so we can recover 1237 // the 'this' type from it. 1238 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC)); 1239 // There are no cv-qualifiers for 'this' within default initializers, 1240 // per [expr.prim.general]p4. 1241 ThisTy = Context.getPointerType(ClassTy); 1242 } 1243 1244 // If we are within a lambda's call operator, the cv-qualifiers of 'this' 1245 // might need to be adjusted if the lambda or any of its enclosing lambda's 1246 // captures '*this' by copy. 1247 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext)) 1248 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy, 1249 CurContext, Context); 1250 return ThisTy; 1251 } 1252 1253 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 1254 Decl *ContextDecl, 1255 Qualifiers CXXThisTypeQuals, 1256 bool Enabled) 1257 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) 1258 { 1259 if (!Enabled || !ContextDecl) 1260 return; 1261 1262 CXXRecordDecl *Record = nullptr; 1263 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) 1264 Record = Template->getTemplatedDecl(); 1265 else 1266 Record = cast<CXXRecordDecl>(ContextDecl); 1267 1268 QualType T = S.Context.getRecordType(Record); 1269 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals); 1270 1271 S.CXXThisTypeOverride = 1272 S.Context.getLangOpts().HLSL ? T : S.Context.getPointerType(T); 1273 1274 this->Enabled = true; 1275 } 1276 1277 1278 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { 1279 if (Enabled) { 1280 S.CXXThisTypeOverride = OldCXXThisTypeOverride; 1281 } 1282 } 1283 1284 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) { 1285 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd(); 1286 assert(!LSI->isCXXThisCaptured()); 1287 // [=, this] {}; // until C++20: Error: this when = is the default 1288 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval && 1289 !Sema.getLangOpts().CPlusPlus20) 1290 return; 1291 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit) 1292 << FixItHint::CreateInsertion( 1293 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this"); 1294 } 1295 1296 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit, 1297 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt, 1298 const bool ByCopy) { 1299 // We don't need to capture this in an unevaluated context. 1300 if (isUnevaluatedContext() && !Explicit) 1301 return true; 1302 1303 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value"); 1304 1305 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt 1306 ? *FunctionScopeIndexToStopAt 1307 : FunctionScopes.size() - 1; 1308 1309 // Check that we can capture the *enclosing object* (referred to by '*this') 1310 // by the capturing-entity/closure (lambda/block/etc) at 1311 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1312 1313 // Note: The *enclosing object* can only be captured by-value by a 1314 // closure that is a lambda, using the explicit notation: 1315 // [*this] { ... }. 1316 // Every other capture of the *enclosing object* results in its by-reference 1317 // capture. 1318 1319 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1320 // stack), we can capture the *enclosing object* only if: 1321 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1322 // - or, 'L' has an implicit capture. 1323 // AND 1324 // -- there is no enclosing closure 1325 // -- or, there is some enclosing closure 'E' that has already captured the 1326 // *enclosing object*, and every intervening closure (if any) between 'E' 1327 // and 'L' can implicitly capture the *enclosing object*. 1328 // -- or, every enclosing closure can implicitly capture the 1329 // *enclosing object* 1330 1331 1332 unsigned NumCapturingClosures = 0; 1333 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) { 1334 if (CapturingScopeInfo *CSI = 1335 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { 1336 if (CSI->CXXThisCaptureIndex != 0) { 1337 // 'this' is already being captured; there isn't anything more to do. 1338 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1339 break; 1340 } 1341 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); 1342 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1343 // This context can't implicitly capture 'this'; fail out. 1344 if (BuildAndDiagnose) { 1345 LSI->CallOperator->setInvalidDecl(); 1346 Diag(Loc, diag::err_this_capture) 1347 << (Explicit && idx == MaxFunctionScopesIndex); 1348 if (!Explicit) 1349 buildLambdaThisCaptureFixit(*this, LSI); 1350 } 1351 return true; 1352 } 1353 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || 1354 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || 1355 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || 1356 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || 1357 (Explicit && idx == MaxFunctionScopesIndex)) { 1358 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1359 // iteration through can be an explicit capture, all enclosing closures, 1360 // if any, must perform implicit captures. 1361 1362 // This closure can capture 'this'; continue looking upwards. 1363 NumCapturingClosures++; 1364 continue; 1365 } 1366 // This context can't implicitly capture 'this'; fail out. 1367 if (BuildAndDiagnose) { 1368 LSI->CallOperator->setInvalidDecl(); 1369 Diag(Loc, diag::err_this_capture) 1370 << (Explicit && idx == MaxFunctionScopesIndex); 1371 } 1372 if (!Explicit) 1373 buildLambdaThisCaptureFixit(*this, LSI); 1374 return true; 1375 } 1376 break; 1377 } 1378 if (!BuildAndDiagnose) return false; 1379 1380 // If we got here, then the closure at MaxFunctionScopesIndex on the 1381 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1382 // (including implicit by-reference captures in any enclosing closures). 1383 1384 // In the loop below, respect the ByCopy flag only for the closure requesting 1385 // the capture (i.e. first iteration through the loop below). Ignore it for 1386 // all enclosing closure's up to NumCapturingClosures (since they must be 1387 // implicitly capturing the *enclosing object* by reference (see loop 1388 // above)). 1389 assert((!ByCopy || 1390 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && 1391 "Only a lambda can capture the enclosing object (referred to by " 1392 "*this) by copy"); 1393 QualType ThisTy = getCurrentThisType(); 1394 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1395 --idx, --NumCapturingClosures) { 1396 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1397 1398 // The type of the corresponding data member (not a 'this' pointer if 'by 1399 // copy'). 1400 QualType CaptureType = ByCopy ? ThisTy->getPointeeType() : ThisTy; 1401 1402 bool isNested = NumCapturingClosures > 1; 1403 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1404 } 1405 return false; 1406 } 1407 1408 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1409 // C++20 [expr.prim.this]p1: 1410 // The keyword this names a pointer to the object for which an 1411 // implicit object member function is invoked or a non-static 1412 // data member's initializer is evaluated. 1413 QualType ThisTy = getCurrentThisType(); 1414 1415 if (CheckCXXThisType(Loc, ThisTy)) 1416 return ExprError(); 1417 1418 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false); 1419 } 1420 1421 bool Sema::CheckCXXThisType(SourceLocation Loc, QualType Type) { 1422 if (!Type.isNull()) 1423 return false; 1424 1425 // C++20 [expr.prim.this]p3: 1426 // If a declaration declares a member function or member function template 1427 // of a class X, the expression this is a prvalue of type 1428 // "pointer to cv-qualifier-seq X" wherever X is the current class between 1429 // the optional cv-qualifier-seq and the end of the function-definition, 1430 // member-declarator, or declarator. It shall not appear within the 1431 // declaration of either a static member function or an explicit object 1432 // member function of the current class (although its type and value 1433 // category are defined within such member functions as they are within 1434 // an implicit object member function). 1435 DeclContext *DC = getFunctionLevelDeclContext(); 1436 const auto *Method = dyn_cast<CXXMethodDecl>(DC); 1437 if (Method && Method->isExplicitObjectMemberFunction()) { 1438 Diag(Loc, diag::err_invalid_this_use) << 1; 1439 } else if (Method && isLambdaCallWithExplicitObjectParameter(CurContext)) { 1440 Diag(Loc, diag::err_invalid_this_use) << 1; 1441 } else { 1442 Diag(Loc, diag::err_invalid_this_use) << 0; 1443 } 1444 return true; 1445 } 1446 1447 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1448 bool IsImplicit) { 1449 auto *This = CXXThisExpr::Create(Context, Loc, Type, IsImplicit); 1450 MarkThisReferenced(This); 1451 return This; 1452 } 1453 1454 void Sema::MarkThisReferenced(CXXThisExpr *This) { 1455 CheckCXXThisCapture(This->getExprLoc()); 1456 if (This->isTypeDependent()) 1457 return; 1458 1459 // Check if 'this' is captured by value in a lambda with a dependent explicit 1460 // object parameter, and mark it as type-dependent as well if so. 1461 auto IsDependent = [&]() { 1462 for (auto *Scope : llvm::reverse(FunctionScopes)) { 1463 auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Scope); 1464 if (!LSI) 1465 continue; 1466 1467 if (LSI->Lambda && !LSI->Lambda->Encloses(CurContext) && 1468 LSI->AfterParameterList) 1469 return false; 1470 1471 // If this lambda captures 'this' by value, then 'this' is dependent iff 1472 // this lambda has a dependent explicit object parameter. If we can't 1473 // determine whether it does (e.g. because the CXXMethodDecl's type is 1474 // null), assume it doesn't. 1475 if (LSI->isCXXThisCaptured()) { 1476 if (!LSI->getCXXThisCapture().isCopyCapture()) 1477 continue; 1478 1479 const auto *MD = LSI->CallOperator; 1480 if (MD->getType().isNull()) 1481 return false; 1482 1483 const auto *Ty = MD->getType()->getAs<FunctionProtoType>(); 1484 return Ty && MD->isExplicitObjectMemberFunction() && 1485 Ty->getParamType(0)->isDependentType(); 1486 } 1487 } 1488 return false; 1489 }(); 1490 1491 This->setCapturedByCopyInLambdaWithExplicitObjectParameter(IsDependent); 1492 } 1493 1494 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1495 // If we're outside the body of a member function, then we'll have a specified 1496 // type for 'this'. 1497 if (CXXThisTypeOverride.isNull()) 1498 return false; 1499 1500 // Determine whether we're looking into a class that's currently being 1501 // defined. 1502 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1503 return Class && Class->isBeingDefined(); 1504 } 1505 1506 ExprResult 1507 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1508 SourceLocation LParenOrBraceLoc, 1509 MultiExprArg exprs, 1510 SourceLocation RParenOrBraceLoc, 1511 bool ListInitialization) { 1512 if (!TypeRep) 1513 return ExprError(); 1514 1515 TypeSourceInfo *TInfo; 1516 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1517 if (!TInfo) 1518 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1519 1520 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1521 RParenOrBraceLoc, ListInitialization); 1522 // Avoid creating a non-type-dependent expression that contains typos. 1523 // Non-type-dependent expressions are liable to be discarded without 1524 // checking for embedded typos. 1525 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1526 !Result.get()->isTypeDependent()) 1527 Result = CorrectDelayedTyposInExpr(Result.get()); 1528 else if (Result.isInvalid()) 1529 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), 1530 RParenOrBraceLoc, exprs, Ty); 1531 return Result; 1532 } 1533 1534 ExprResult 1535 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1536 SourceLocation LParenOrBraceLoc, 1537 MultiExprArg Exprs, 1538 SourceLocation RParenOrBraceLoc, 1539 bool ListInitialization) { 1540 QualType Ty = TInfo->getType(); 1541 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1542 1543 assert((!ListInitialization || Exprs.size() == 1) && 1544 "List initialization must have exactly one expression."); 1545 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1546 1547 InitializedEntity Entity = 1548 InitializedEntity::InitializeTemporary(Context, TInfo); 1549 InitializationKind Kind = 1550 Exprs.size() 1551 ? ListInitialization 1552 ? InitializationKind::CreateDirectList( 1553 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1554 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1555 RParenOrBraceLoc) 1556 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1557 RParenOrBraceLoc); 1558 1559 // C++17 [expr.type.conv]p1: 1560 // If the type is a placeholder for a deduced class type, [...perform class 1561 // template argument deduction...] 1562 // C++23: 1563 // Otherwise, if the type contains a placeholder type, it is replaced by the 1564 // type determined by placeholder type deduction. 1565 DeducedType *Deduced = Ty->getContainedDeducedType(); 1566 if (Deduced && !Deduced->isDeduced() && 1567 isa<DeducedTemplateSpecializationType>(Deduced)) { 1568 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1569 Kind, Exprs); 1570 if (Ty.isNull()) 1571 return ExprError(); 1572 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1573 } else if (Deduced && !Deduced->isDeduced()) { 1574 MultiExprArg Inits = Exprs; 1575 if (ListInitialization) { 1576 auto *ILE = cast<InitListExpr>(Exprs[0]); 1577 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 1578 } 1579 1580 if (Inits.empty()) 1581 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression) 1582 << Ty << FullRange); 1583 if (Inits.size() > 1) { 1584 Expr *FirstBad = Inits[1]; 1585 return ExprError(Diag(FirstBad->getBeginLoc(), 1586 diag::err_auto_expr_init_multiple_expressions) 1587 << Ty << FullRange); 1588 } 1589 if (getLangOpts().CPlusPlus23) { 1590 if (Ty->getAs<AutoType>()) 1591 Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange; 1592 } 1593 Expr *Deduce = Inits[0]; 1594 if (isa<InitListExpr>(Deduce)) 1595 return ExprError( 1596 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) 1597 << ListInitialization << Ty << FullRange); 1598 QualType DeducedType; 1599 TemplateDeductionInfo Info(Deduce->getExprLoc()); 1600 TemplateDeductionResult Result = 1601 DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info); 1602 if (Result != TemplateDeductionResult::Success && 1603 Result != TemplateDeductionResult::AlreadyDiagnosed) 1604 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure) 1605 << Ty << Deduce->getType() << FullRange 1606 << Deduce->getSourceRange()); 1607 if (DeducedType.isNull()) { 1608 assert(Result == TemplateDeductionResult::AlreadyDiagnosed); 1609 return ExprError(); 1610 } 1611 1612 Ty = DeducedType; 1613 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1614 } 1615 1616 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) 1617 return CXXUnresolvedConstructExpr::Create( 1618 Context, Ty.getNonReferenceType(), TInfo, LParenOrBraceLoc, Exprs, 1619 RParenOrBraceLoc, ListInitialization); 1620 1621 // C++ [expr.type.conv]p1: 1622 // If the expression list is a parenthesized single expression, the type 1623 // conversion expression is equivalent (in definedness, and if defined in 1624 // meaning) to the corresponding cast expression. 1625 if (Exprs.size() == 1 && !ListInitialization && 1626 !isa<InitListExpr>(Exprs[0])) { 1627 Expr *Arg = Exprs[0]; 1628 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1629 RParenOrBraceLoc); 1630 } 1631 1632 // For an expression of the form T(), T shall not be an array type. 1633 QualType ElemTy = Ty; 1634 if (Ty->isArrayType()) { 1635 if (!ListInitialization) 1636 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1637 << FullRange); 1638 ElemTy = Context.getBaseElementType(Ty); 1639 } 1640 1641 // Only construct objects with object types. 1642 // The standard doesn't explicitly forbid function types here, but that's an 1643 // obvious oversight, as there's no way to dynamically construct a function 1644 // in general. 1645 if (Ty->isFunctionType()) 1646 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1647 << Ty << FullRange); 1648 1649 // C++17 [expr.type.conv]p2: 1650 // If the type is cv void and the initializer is (), the expression is a 1651 // prvalue of the specified type that performs no initialization. 1652 if (!Ty->isVoidType() && 1653 RequireCompleteType(TyBeginLoc, ElemTy, 1654 diag::err_invalid_incomplete_type_use, FullRange)) 1655 return ExprError(); 1656 1657 // Otherwise, the expression is a prvalue of the specified type whose 1658 // result object is direct-initialized (11.6) with the initializer. 1659 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1660 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1661 1662 if (Result.isInvalid()) 1663 return Result; 1664 1665 Expr *Inner = Result.get(); 1666 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1667 Inner = BTE->getSubExpr(); 1668 if (auto *CE = dyn_cast<ConstantExpr>(Inner); 1669 CE && CE->isImmediateInvocation()) 1670 Inner = CE->getSubExpr(); 1671 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1672 !isa<CXXScalarValueInitExpr>(Inner)) { 1673 // If we created a CXXTemporaryObjectExpr, that node also represents the 1674 // functional cast. Otherwise, create an explicit cast to represent 1675 // the syntactic form of a functional-style cast that was used here. 1676 // 1677 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1678 // would give a more consistent AST representation than using a 1679 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1680 // is sometimes handled by initialization and sometimes not. 1681 QualType ResultType = Result.get()->getType(); 1682 SourceRange Locs = ListInitialization 1683 ? SourceRange() 1684 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1685 Result = CXXFunctionalCastExpr::Create( 1686 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1687 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), 1688 Locs.getBegin(), Locs.getEnd()); 1689 } 1690 1691 return Result; 1692 } 1693 1694 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1695 // [CUDA] Ignore this function, if we can't call it. 1696 const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); 1697 if (getLangOpts().CUDA) { 1698 auto CallPreference = CUDA().IdentifyPreference(Caller, Method); 1699 // If it's not callable at all, it's not the right function. 1700 if (CallPreference < SemaCUDA::CFP_WrongSide) 1701 return false; 1702 if (CallPreference == SemaCUDA::CFP_WrongSide) { 1703 // Maybe. We have to check if there are better alternatives. 1704 DeclContext::lookup_result R = 1705 Method->getDeclContext()->lookup(Method->getDeclName()); 1706 for (const auto *D : R) { 1707 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1708 if (CUDA().IdentifyPreference(Caller, FD) > SemaCUDA::CFP_WrongSide) 1709 return false; 1710 } 1711 } 1712 // We've found no better variants. 1713 } 1714 } 1715 1716 SmallVector<const FunctionDecl*, 4> PreventedBy; 1717 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1718 1719 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1720 return Result; 1721 1722 // In case of CUDA, return true if none of the 1-argument deallocator 1723 // functions are actually callable. 1724 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1725 assert(FD->getNumParams() == 1 && 1726 "Only single-operand functions should be in PreventedBy"); 1727 return CUDA().IdentifyPreference(Caller, FD) >= SemaCUDA::CFP_HostDevice; 1728 }); 1729 } 1730 1731 /// Determine whether the given function is a non-placement 1732 /// deallocation function. 1733 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1734 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1735 return S.isUsualDeallocationFunction(Method); 1736 1737 if (FD->getOverloadedOperator() != OO_Delete && 1738 FD->getOverloadedOperator() != OO_Array_Delete) 1739 return false; 1740 1741 unsigned UsualParams = 1; 1742 1743 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1744 S.Context.hasSameUnqualifiedType( 1745 FD->getParamDecl(UsualParams)->getType(), 1746 S.Context.getSizeType())) 1747 ++UsualParams; 1748 1749 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1750 S.Context.hasSameUnqualifiedType( 1751 FD->getParamDecl(UsualParams)->getType(), 1752 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1753 ++UsualParams; 1754 1755 return UsualParams == FD->getNumParams(); 1756 } 1757 1758 namespace { 1759 struct UsualDeallocFnInfo { 1760 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1761 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1762 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1763 Destroying(false), HasSizeT(false), HasAlignValT(false), 1764 CUDAPref(SemaCUDA::CFP_Native) { 1765 // A function template declaration is never a usual deallocation function. 1766 if (!FD) 1767 return; 1768 unsigned NumBaseParams = 1; 1769 if (FD->isDestroyingOperatorDelete()) { 1770 Destroying = true; 1771 ++NumBaseParams; 1772 } 1773 1774 if (NumBaseParams < FD->getNumParams() && 1775 S.Context.hasSameUnqualifiedType( 1776 FD->getParamDecl(NumBaseParams)->getType(), 1777 S.Context.getSizeType())) { 1778 ++NumBaseParams; 1779 HasSizeT = true; 1780 } 1781 1782 if (NumBaseParams < FD->getNumParams() && 1783 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1784 ++NumBaseParams; 1785 HasAlignValT = true; 1786 } 1787 1788 // In CUDA, determine how much we'd like / dislike to call this. 1789 if (S.getLangOpts().CUDA) 1790 CUDAPref = S.CUDA().IdentifyPreference( 1791 S.getCurFunctionDecl(/*AllowLambda=*/true), FD); 1792 } 1793 1794 explicit operator bool() const { return FD; } 1795 1796 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1797 bool WantAlign) const { 1798 // C++ P0722: 1799 // A destroying operator delete is preferred over a non-destroying 1800 // operator delete. 1801 if (Destroying != Other.Destroying) 1802 return Destroying; 1803 1804 // C++17 [expr.delete]p10: 1805 // If the type has new-extended alignment, a function with a parameter 1806 // of type std::align_val_t is preferred; otherwise a function without 1807 // such a parameter is preferred 1808 if (HasAlignValT != Other.HasAlignValT) 1809 return HasAlignValT == WantAlign; 1810 1811 if (HasSizeT != Other.HasSizeT) 1812 return HasSizeT == WantSize; 1813 1814 // Use CUDA call preference as a tiebreaker. 1815 return CUDAPref > Other.CUDAPref; 1816 } 1817 1818 DeclAccessPair Found; 1819 FunctionDecl *FD; 1820 bool Destroying, HasSizeT, HasAlignValT; 1821 SemaCUDA::CUDAFunctionPreference CUDAPref; 1822 }; 1823 } 1824 1825 /// Determine whether a type has new-extended alignment. This may be called when 1826 /// the type is incomplete (for a delete-expression with an incomplete pointee 1827 /// type), in which case it will conservatively return false if the alignment is 1828 /// not known. 1829 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1830 return S.getLangOpts().AlignedAllocation && 1831 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1832 S.getASTContext().getTargetInfo().getNewAlign(); 1833 } 1834 1835 /// Select the correct "usual" deallocation function to use from a selection of 1836 /// deallocation functions (either global or class-scope). 1837 static UsualDeallocFnInfo resolveDeallocationOverload( 1838 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1839 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1840 UsualDeallocFnInfo Best; 1841 1842 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1843 UsualDeallocFnInfo Info(S, I.getPair()); 1844 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1845 Info.CUDAPref == SemaCUDA::CFP_Never) 1846 continue; 1847 1848 if (!Best) { 1849 Best = Info; 1850 if (BestFns) 1851 BestFns->push_back(Info); 1852 continue; 1853 } 1854 1855 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1856 continue; 1857 1858 // If more than one preferred function is found, all non-preferred 1859 // functions are eliminated from further consideration. 1860 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1861 BestFns->clear(); 1862 1863 Best = Info; 1864 if (BestFns) 1865 BestFns->push_back(Info); 1866 } 1867 1868 return Best; 1869 } 1870 1871 /// Determine whether a given type is a class for which 'delete[]' would call 1872 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1873 /// we need to store the array size (even if the type is 1874 /// trivially-destructible). 1875 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1876 QualType allocType) { 1877 const RecordType *record = 1878 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1879 if (!record) return false; 1880 1881 // Try to find an operator delete[] in class scope. 1882 1883 DeclarationName deleteName = 1884 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1885 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1886 S.LookupQualifiedName(ops, record->getDecl()); 1887 1888 // We're just doing this for information. 1889 ops.suppressDiagnostics(); 1890 1891 // Very likely: there's no operator delete[]. 1892 if (ops.empty()) return false; 1893 1894 // If it's ambiguous, it should be illegal to call operator delete[] 1895 // on this thing, so it doesn't matter if we allocate extra space or not. 1896 if (ops.isAmbiguous()) return false; 1897 1898 // C++17 [expr.delete]p10: 1899 // If the deallocation functions have class scope, the one without a 1900 // parameter of type std::size_t is selected. 1901 auto Best = resolveDeallocationOverload( 1902 S, ops, /*WantSize*/false, 1903 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1904 return Best && Best.HasSizeT; 1905 } 1906 1907 ExprResult 1908 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1909 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1910 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1911 Declarator &D, Expr *Initializer) { 1912 std::optional<Expr *> ArraySize; 1913 // If the specified type is an array, unwrap it and save the expression. 1914 if (D.getNumTypeObjects() > 0 && 1915 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1916 DeclaratorChunk &Chunk = D.getTypeObject(0); 1917 if (D.getDeclSpec().hasAutoTypeSpec()) 1918 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1919 << D.getSourceRange()); 1920 if (Chunk.Arr.hasStatic) 1921 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1922 << D.getSourceRange()); 1923 if (!Chunk.Arr.NumElts && !Initializer) 1924 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1925 << D.getSourceRange()); 1926 1927 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1928 D.DropFirstTypeObject(); 1929 } 1930 1931 // Every dimension shall be of constant size. 1932 if (ArraySize) { 1933 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1934 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1935 break; 1936 1937 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1938 if (Expr *NumElts = (Expr *)Array.NumElts) { 1939 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1940 // FIXME: GCC permits constant folding here. We should either do so consistently 1941 // or not do so at all, rather than changing behavior in C++14 onwards. 1942 if (getLangOpts().CPlusPlus14) { 1943 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1944 // shall be a converted constant expression (5.19) of type std::size_t 1945 // and shall evaluate to a strictly positive value. 1946 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); 1947 Array.NumElts 1948 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1949 CCEK_ArrayBound) 1950 .get(); 1951 } else { 1952 Array.NumElts = 1953 VerifyIntegerConstantExpression( 1954 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) 1955 .get(); 1956 } 1957 if (!Array.NumElts) 1958 return ExprError(); 1959 } 1960 } 1961 } 1962 } 1963 1964 TypeSourceInfo *TInfo = GetTypeForDeclarator(D); 1965 QualType AllocType = TInfo->getType(); 1966 if (D.isInvalidType()) 1967 return ExprError(); 1968 1969 SourceRange DirectInitRange; 1970 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1971 DirectInitRange = List->getSourceRange(); 1972 1973 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1974 PlacementLParen, PlacementArgs, PlacementRParen, 1975 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1976 Initializer); 1977 } 1978 1979 static bool isLegalArrayNewInitializer(CXXNewInitializationStyle Style, 1980 Expr *Init, bool IsCPlusPlus20) { 1981 if (!Init) 1982 return true; 1983 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1984 return IsCPlusPlus20 || PLE->getNumExprs() == 0; 1985 if (isa<ImplicitValueInitExpr>(Init)) 1986 return true; 1987 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1988 return !CCE->isListInitialization() && 1989 CCE->getConstructor()->isDefaultConstructor(); 1990 else if (Style == CXXNewInitializationStyle::Braces) { 1991 assert(isa<InitListExpr>(Init) && 1992 "Shouldn't create list CXXConstructExprs for arrays."); 1993 return true; 1994 } 1995 return false; 1996 } 1997 1998 bool 1999 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 2000 if (!getLangOpts().AlignedAllocationUnavailable) 2001 return false; 2002 if (FD.isDefined()) 2003 return false; 2004 std::optional<unsigned> AlignmentParam; 2005 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 2006 AlignmentParam) 2007 return true; 2008 return false; 2009 } 2010 2011 // Emit a diagnostic if an aligned allocation/deallocation function that is not 2012 // implemented in the standard library is selected. 2013 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 2014 SourceLocation Loc) { 2015 if (isUnavailableAlignedAllocationFunction(FD)) { 2016 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 2017 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 2018 getASTContext().getTargetInfo().getPlatformName()); 2019 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); 2020 2021 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 2022 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 2023 Diag(Loc, diag::err_aligned_allocation_unavailable) 2024 << IsDelete << FD.getType().getAsString() << OSName 2025 << OSVersion.getAsString() << OSVersion.empty(); 2026 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 2027 } 2028 } 2029 2030 ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 2031 SourceLocation PlacementLParen, 2032 MultiExprArg PlacementArgs, 2033 SourceLocation PlacementRParen, 2034 SourceRange TypeIdParens, QualType AllocType, 2035 TypeSourceInfo *AllocTypeInfo, 2036 std::optional<Expr *> ArraySize, 2037 SourceRange DirectInitRange, Expr *Initializer) { 2038 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 2039 SourceLocation StartLoc = Range.getBegin(); 2040 2041 CXXNewInitializationStyle InitStyle; 2042 if (DirectInitRange.isValid()) { 2043 assert(Initializer && "Have parens but no initializer."); 2044 InitStyle = CXXNewInitializationStyle::Parens; 2045 } else if (isa_and_nonnull<InitListExpr>(Initializer)) 2046 InitStyle = CXXNewInitializationStyle::Braces; 2047 else { 2048 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || 2049 isa<CXXConstructExpr>(Initializer)) && 2050 "Initializer expression that cannot have been implicitly created."); 2051 InitStyle = CXXNewInitializationStyle::None; 2052 } 2053 2054 MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0); 2055 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 2056 assert(InitStyle == CXXNewInitializationStyle::Parens && 2057 "paren init for non-call init"); 2058 Exprs = MultiExprArg(List->getExprs(), List->getNumExprs()); 2059 } 2060 2061 // C++11 [expr.new]p15: 2062 // A new-expression that creates an object of type T initializes that 2063 // object as follows: 2064 InitializationKind Kind = [&] { 2065 switch (InitStyle) { 2066 // - If the new-initializer is omitted, the object is default- 2067 // initialized (8.5); if no initialization is performed, 2068 // the object has indeterminate value 2069 case CXXNewInitializationStyle::None: 2070 return InitializationKind::CreateDefault(TypeRange.getBegin()); 2071 // - Otherwise, the new-initializer is interpreted according to the 2072 // initialization rules of 8.5 for direct-initialization. 2073 case CXXNewInitializationStyle::Parens: 2074 return InitializationKind::CreateDirect(TypeRange.getBegin(), 2075 DirectInitRange.getBegin(), 2076 DirectInitRange.getEnd()); 2077 case CXXNewInitializationStyle::Braces: 2078 return InitializationKind::CreateDirectList(TypeRange.getBegin(), 2079 Initializer->getBeginLoc(), 2080 Initializer->getEndLoc()); 2081 } 2082 llvm_unreachable("Unknown initialization kind"); 2083 }(); 2084 2085 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 2086 auto *Deduced = AllocType->getContainedDeducedType(); 2087 if (Deduced && !Deduced->isDeduced() && 2088 isa<DeducedTemplateSpecializationType>(Deduced)) { 2089 if (ArraySize) 2090 return ExprError( 2091 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 2092 diag::err_deduced_class_template_compound_type) 2093 << /*array*/ 2 2094 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 2095 2096 InitializedEntity Entity 2097 = InitializedEntity::InitializeNew(StartLoc, AllocType); 2098 AllocType = DeduceTemplateSpecializationFromInitializer( 2099 AllocTypeInfo, Entity, Kind, Exprs); 2100 if (AllocType.isNull()) 2101 return ExprError(); 2102 } else if (Deduced && !Deduced->isDeduced()) { 2103 MultiExprArg Inits = Exprs; 2104 bool Braced = (InitStyle == CXXNewInitializationStyle::Braces); 2105 if (Braced) { 2106 auto *ILE = cast<InitListExpr>(Exprs[0]); 2107 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 2108 } 2109 2110 if (InitStyle == CXXNewInitializationStyle::None || Inits.empty()) 2111 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 2112 << AllocType << TypeRange); 2113 if (Inits.size() > 1) { 2114 Expr *FirstBad = Inits[1]; 2115 return ExprError(Diag(FirstBad->getBeginLoc(), 2116 diag::err_auto_new_ctor_multiple_expressions) 2117 << AllocType << TypeRange); 2118 } 2119 if (Braced && !getLangOpts().CPlusPlus17) 2120 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 2121 << AllocType << TypeRange; 2122 Expr *Deduce = Inits[0]; 2123 if (isa<InitListExpr>(Deduce)) 2124 return ExprError( 2125 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) 2126 << Braced << AllocType << TypeRange); 2127 QualType DeducedType; 2128 TemplateDeductionInfo Info(Deduce->getExprLoc()); 2129 TemplateDeductionResult Result = 2130 DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info); 2131 if (Result != TemplateDeductionResult::Success && 2132 Result != TemplateDeductionResult::AlreadyDiagnosed) 2133 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 2134 << AllocType << Deduce->getType() << TypeRange 2135 << Deduce->getSourceRange()); 2136 if (DeducedType.isNull()) { 2137 assert(Result == TemplateDeductionResult::AlreadyDiagnosed); 2138 return ExprError(); 2139 } 2140 AllocType = DeducedType; 2141 } 2142 2143 // Per C++0x [expr.new]p5, the type being constructed may be a 2144 // typedef of an array type. 2145 if (!ArraySize) { 2146 if (const ConstantArrayType *Array 2147 = Context.getAsConstantArrayType(AllocType)) { 2148 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 2149 Context.getSizeType(), 2150 TypeRange.getEnd()); 2151 AllocType = Array->getElementType(); 2152 } 2153 } 2154 2155 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 2156 return ExprError(); 2157 2158 if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin())) 2159 return ExprError(); 2160 2161 // In ARC, infer 'retaining' for the allocated 2162 if (getLangOpts().ObjCAutoRefCount && 2163 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 2164 AllocType->isObjCLifetimeType()) { 2165 AllocType = Context.getLifetimeQualifiedType(AllocType, 2166 AllocType->getObjCARCImplicitLifetime()); 2167 } 2168 2169 QualType ResultType = Context.getPointerType(AllocType); 2170 2171 if (ArraySize && *ArraySize && 2172 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 2173 ExprResult result = CheckPlaceholderExpr(*ArraySize); 2174 if (result.isInvalid()) return ExprError(); 2175 ArraySize = result.get(); 2176 } 2177 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 2178 // integral or enumeration type with a non-negative value." 2179 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 2180 // enumeration type, or a class type for which a single non-explicit 2181 // conversion function to integral or unscoped enumeration type exists. 2182 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 2183 // std::size_t. 2184 std::optional<uint64_t> KnownArraySize; 2185 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 2186 ExprResult ConvertedSize; 2187 if (getLangOpts().CPlusPlus14) { 2188 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); 2189 2190 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 2191 AA_Converting); 2192 2193 if (!ConvertedSize.isInvalid() && 2194 (*ArraySize)->getType()->getAs<RecordType>()) 2195 // Diagnose the compatibility of this conversion. 2196 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2197 << (*ArraySize)->getType() << 0 << "'size_t'"; 2198 } else { 2199 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2200 protected: 2201 Expr *ArraySize; 2202 2203 public: 2204 SizeConvertDiagnoser(Expr *ArraySize) 2205 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2206 ArraySize(ArraySize) {} 2207 2208 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2209 QualType T) override { 2210 return S.Diag(Loc, diag::err_array_size_not_integral) 2211 << S.getLangOpts().CPlusPlus11 << T; 2212 } 2213 2214 SemaDiagnosticBuilder diagnoseIncomplete( 2215 Sema &S, SourceLocation Loc, QualType T) override { 2216 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2217 << T << ArraySize->getSourceRange(); 2218 } 2219 2220 SemaDiagnosticBuilder diagnoseExplicitConv( 2221 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2222 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2223 } 2224 2225 SemaDiagnosticBuilder noteExplicitConv( 2226 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2227 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2228 << ConvTy->isEnumeralType() << ConvTy; 2229 } 2230 2231 SemaDiagnosticBuilder diagnoseAmbiguous( 2232 Sema &S, SourceLocation Loc, QualType T) override { 2233 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2234 } 2235 2236 SemaDiagnosticBuilder noteAmbiguous( 2237 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2238 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2239 << ConvTy->isEnumeralType() << ConvTy; 2240 } 2241 2242 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2243 QualType T, 2244 QualType ConvTy) override { 2245 return S.Diag(Loc, 2246 S.getLangOpts().CPlusPlus11 2247 ? diag::warn_cxx98_compat_array_size_conversion 2248 : diag::ext_array_size_conversion) 2249 << T << ConvTy->isEnumeralType() << ConvTy; 2250 } 2251 } SizeDiagnoser(*ArraySize); 2252 2253 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2254 SizeDiagnoser); 2255 } 2256 if (ConvertedSize.isInvalid()) 2257 return ExprError(); 2258 2259 ArraySize = ConvertedSize.get(); 2260 QualType SizeType = (*ArraySize)->getType(); 2261 2262 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2263 return ExprError(); 2264 2265 // C++98 [expr.new]p7: 2266 // The expression in a direct-new-declarator shall have integral type 2267 // with a non-negative value. 2268 // 2269 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2270 // per CWG1464. Otherwise, if it's not a constant, we must have an 2271 // unparenthesized array type. 2272 2273 // We've already performed any required implicit conversion to integer or 2274 // unscoped enumeration type. 2275 // FIXME: Per CWG1464, we are required to check the value prior to 2276 // converting to size_t. This will never find a negative array size in 2277 // C++14 onwards, because Value is always unsigned here! 2278 if (std::optional<llvm::APSInt> Value = 2279 (*ArraySize)->getIntegerConstantExpr(Context)) { 2280 if (Value->isSigned() && Value->isNegative()) { 2281 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2282 diag::err_typecheck_negative_array_size) 2283 << (*ArraySize)->getSourceRange()); 2284 } 2285 2286 if (!AllocType->isDependentType()) { 2287 unsigned ActiveSizeBits = 2288 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value); 2289 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2290 return ExprError( 2291 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2292 << toString(*Value, 10) << (*ArraySize)->getSourceRange()); 2293 } 2294 2295 KnownArraySize = Value->getZExtValue(); 2296 } else if (TypeIdParens.isValid()) { 2297 // Can't have dynamic array size when the type-id is in parentheses. 2298 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2299 << (*ArraySize)->getSourceRange() 2300 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2301 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2302 2303 TypeIdParens = SourceRange(); 2304 } 2305 2306 // Note that we do *not* convert the argument in any way. It can 2307 // be signed, larger than size_t, whatever. 2308 } 2309 2310 FunctionDecl *OperatorNew = nullptr; 2311 FunctionDecl *OperatorDelete = nullptr; 2312 unsigned Alignment = 2313 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2314 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2315 bool PassAlignment = getLangOpts().AlignedAllocation && 2316 Alignment > NewAlignment; 2317 2318 if (CheckArgsForPlaceholders(PlacementArgs)) 2319 return ExprError(); 2320 2321 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2322 if (!AllocType->isDependentType() && 2323 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2324 FindAllocationFunctions( 2325 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2326 AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs, 2327 OperatorNew, OperatorDelete)) 2328 return ExprError(); 2329 2330 // If this is an array allocation, compute whether the usual array 2331 // deallocation function for the type has a size_t parameter. 2332 bool UsualArrayDeleteWantsSize = false; 2333 if (ArraySize && !AllocType->isDependentType()) 2334 UsualArrayDeleteWantsSize = 2335 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2336 2337 SmallVector<Expr *, 8> AllPlaceArgs; 2338 if (OperatorNew) { 2339 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2340 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2341 : VariadicDoesNotApply; 2342 2343 // We've already converted the placement args, just fill in any default 2344 // arguments. Skip the first parameter because we don't have a corresponding 2345 // argument. Skip the second parameter too if we're passing in the 2346 // alignment; we've already filled it in. 2347 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2348 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2349 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2350 CallType)) 2351 return ExprError(); 2352 2353 if (!AllPlaceArgs.empty()) 2354 PlacementArgs = AllPlaceArgs; 2355 2356 // We would like to perform some checking on the given `operator new` call, 2357 // but the PlacementArgs does not contain the implicit arguments, 2358 // namely allocation size and maybe allocation alignment, 2359 // so we need to conjure them. 2360 2361 QualType SizeTy = Context.getSizeType(); 2362 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2363 2364 llvm::APInt SingleEltSize( 2365 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2366 2367 // How many bytes do we want to allocate here? 2368 std::optional<llvm::APInt> AllocationSize; 2369 if (!ArraySize && !AllocType->isDependentType()) { 2370 // For non-array operator new, we only want to allocate one element. 2371 AllocationSize = SingleEltSize; 2372 } else if (KnownArraySize && !AllocType->isDependentType()) { 2373 // For array operator new, only deal with static array size case. 2374 bool Overflow; 2375 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2376 .umul_ov(SingleEltSize, Overflow); 2377 (void)Overflow; 2378 assert( 2379 !Overflow && 2380 "Expected that all the overflows would have been handled already."); 2381 } 2382 2383 IntegerLiteral AllocationSizeLiteral( 2384 Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)), 2385 SizeTy, SourceLocation()); 2386 // Otherwise, if we failed to constant-fold the allocation size, we'll 2387 // just give up and pass-in something opaque, that isn't a null pointer. 2388 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue, 2389 OK_Ordinary, /*SourceExpr=*/nullptr); 2390 2391 // Let's synthesize the alignment argument in case we will need it. 2392 // Since we *really* want to allocate these on stack, this is slightly ugly 2393 // because there might not be a `std::align_val_t` type. 2394 EnumDecl *StdAlignValT = getStdAlignValT(); 2395 QualType AlignValT = 2396 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2397 IntegerLiteral AlignmentLiteral( 2398 Context, 2399 llvm::APInt(Context.getTypeSize(SizeTy), 2400 Alignment / Context.getCharWidth()), 2401 SizeTy, SourceLocation()); 2402 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2403 CK_IntegralCast, &AlignmentLiteral, 2404 VK_PRValue, FPOptionsOverride()); 2405 2406 // Adjust placement args by prepending conjured size and alignment exprs. 2407 llvm::SmallVector<Expr *, 8> CallArgs; 2408 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2409 CallArgs.emplace_back(AllocationSize 2410 ? static_cast<Expr *>(&AllocationSizeLiteral) 2411 : &OpaqueAllocationSize); 2412 if (PassAlignment) 2413 CallArgs.emplace_back(&DesiredAlignment); 2414 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2415 2416 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2417 2418 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2419 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2420 2421 // Warn if the type is over-aligned and is being allocated by (unaligned) 2422 // global operator new. 2423 if (PlacementArgs.empty() && !PassAlignment && 2424 (OperatorNew->isImplicit() || 2425 (OperatorNew->getBeginLoc().isValid() && 2426 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2427 if (Alignment > NewAlignment) 2428 Diag(StartLoc, diag::warn_overaligned_type) 2429 << AllocType 2430 << unsigned(Alignment / Context.getCharWidth()) 2431 << unsigned(NewAlignment / Context.getCharWidth()); 2432 } 2433 } 2434 2435 // Array 'new' can't have any initializers except empty parentheses. 2436 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2437 // dialect distinction. 2438 if (ArraySize && !isLegalArrayNewInitializer(InitStyle, Initializer, 2439 getLangOpts().CPlusPlus20)) { 2440 SourceRange InitRange(Exprs.front()->getBeginLoc(), 2441 Exprs.back()->getEndLoc()); 2442 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2443 return ExprError(); 2444 } 2445 2446 // If we can perform the initialization, and we've not already done so, 2447 // do it now. 2448 if (!AllocType->isDependentType() && 2449 !Expr::hasAnyTypeDependentArguments(Exprs)) { 2450 // The type we initialize is the complete type, including the array bound. 2451 QualType InitType; 2452 if (KnownArraySize) 2453 InitType = Context.getConstantArrayType( 2454 AllocType, 2455 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2456 *KnownArraySize), 2457 *ArraySize, ArraySizeModifier::Normal, 0); 2458 else if (ArraySize) 2459 InitType = Context.getIncompleteArrayType(AllocType, 2460 ArraySizeModifier::Normal, 0); 2461 else 2462 InitType = AllocType; 2463 2464 InitializedEntity Entity 2465 = InitializedEntity::InitializeNew(StartLoc, InitType); 2466 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 2467 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs); 2468 if (FullInit.isInvalid()) 2469 return ExprError(); 2470 2471 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2472 // we don't want the initialized object to be destructed. 2473 // FIXME: We should not create these in the first place. 2474 if (CXXBindTemporaryExpr *Binder = 2475 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2476 FullInit = Binder->getSubExpr(); 2477 2478 Initializer = FullInit.get(); 2479 2480 // FIXME: If we have a KnownArraySize, check that the array bound of the 2481 // initializer is no greater than that constant value. 2482 2483 if (ArraySize && !*ArraySize) { 2484 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2485 if (CAT) { 2486 // FIXME: Track that the array size was inferred rather than explicitly 2487 // specified. 2488 ArraySize = IntegerLiteral::Create( 2489 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2490 } else { 2491 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2492 << Initializer->getSourceRange(); 2493 } 2494 } 2495 } 2496 2497 // Mark the new and delete operators as referenced. 2498 if (OperatorNew) { 2499 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2500 return ExprError(); 2501 MarkFunctionReferenced(StartLoc, OperatorNew); 2502 } 2503 if (OperatorDelete) { 2504 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2505 return ExprError(); 2506 MarkFunctionReferenced(StartLoc, OperatorDelete); 2507 } 2508 2509 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2510 PassAlignment, UsualArrayDeleteWantsSize, 2511 PlacementArgs, TypeIdParens, ArraySize, InitStyle, 2512 Initializer, ResultType, AllocTypeInfo, Range, 2513 DirectInitRange); 2514 } 2515 2516 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2517 SourceRange R) { 2518 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2519 // abstract class type or array thereof. 2520 if (AllocType->isFunctionType()) 2521 return Diag(Loc, diag::err_bad_new_type) 2522 << AllocType << 0 << R; 2523 else if (AllocType->isReferenceType()) 2524 return Diag(Loc, diag::err_bad_new_type) 2525 << AllocType << 1 << R; 2526 else if (!AllocType->isDependentType() && 2527 RequireCompleteSizedType( 2528 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2529 return true; 2530 else if (RequireNonAbstractType(Loc, AllocType, 2531 diag::err_allocation_of_abstract_type)) 2532 return true; 2533 else if (AllocType->isVariablyModifiedType()) 2534 return Diag(Loc, diag::err_variably_modified_new_type) 2535 << AllocType; 2536 else if (AllocType.getAddressSpace() != LangAS::Default && 2537 !getLangOpts().OpenCLCPlusPlus) 2538 return Diag(Loc, diag::err_address_space_qualified_new) 2539 << AllocType.getUnqualifiedType() 2540 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2541 else if (getLangOpts().ObjCAutoRefCount) { 2542 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2543 QualType BaseAllocType = Context.getBaseElementType(AT); 2544 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2545 BaseAllocType->isObjCLifetimeType()) 2546 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2547 << BaseAllocType; 2548 } 2549 } 2550 2551 return false; 2552 } 2553 2554 static bool resolveAllocationOverload( 2555 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2556 bool &PassAlignment, FunctionDecl *&Operator, 2557 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2558 OverloadCandidateSet Candidates(R.getNameLoc(), 2559 OverloadCandidateSet::CSK_Normal); 2560 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2561 Alloc != AllocEnd; ++Alloc) { 2562 // Even member operator new/delete are implicitly treated as 2563 // static, so don't use AddMemberCandidate. 2564 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2565 2566 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2567 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2568 /*ExplicitTemplateArgs=*/nullptr, Args, 2569 Candidates, 2570 /*SuppressUserConversions=*/false); 2571 continue; 2572 } 2573 2574 FunctionDecl *Fn = cast<FunctionDecl>(D); 2575 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2576 /*SuppressUserConversions=*/false); 2577 } 2578 2579 // Do the resolution. 2580 OverloadCandidateSet::iterator Best; 2581 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2582 case OR_Success: { 2583 // Got one! 2584 FunctionDecl *FnDecl = Best->Function; 2585 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2586 Best->FoundDecl) == Sema::AR_inaccessible) 2587 return true; 2588 2589 Operator = FnDecl; 2590 return false; 2591 } 2592 2593 case OR_No_Viable_Function: 2594 // C++17 [expr.new]p13: 2595 // If no matching function is found and the allocated object type has 2596 // new-extended alignment, the alignment argument is removed from the 2597 // argument list, and overload resolution is performed again. 2598 if (PassAlignment) { 2599 PassAlignment = false; 2600 AlignArg = Args[1]; 2601 Args.erase(Args.begin() + 1); 2602 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2603 Operator, &Candidates, AlignArg, 2604 Diagnose); 2605 } 2606 2607 // MSVC will fall back on trying to find a matching global operator new 2608 // if operator new[] cannot be found. Also, MSVC will leak by not 2609 // generating a call to operator delete or operator delete[], but we 2610 // will not replicate that bug. 2611 // FIXME: Find out how this interacts with the std::align_val_t fallback 2612 // once MSVC implements it. 2613 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2614 S.Context.getLangOpts().MSVCCompat) { 2615 R.clear(); 2616 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2617 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2618 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2619 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2620 Operator, /*Candidates=*/nullptr, 2621 /*AlignArg=*/nullptr, Diagnose); 2622 } 2623 2624 if (Diagnose) { 2625 // If this is an allocation of the form 'new (p) X' for some object 2626 // pointer p (or an expression that will decay to such a pointer), 2627 // diagnose the missing inclusion of <new>. 2628 if (!R.isClassLookup() && Args.size() == 2 && 2629 (Args[1]->getType()->isObjectPointerType() || 2630 Args[1]->getType()->isArrayType())) { 2631 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) 2632 << R.getLookupName() << Range; 2633 // Listing the candidates is unlikely to be useful; skip it. 2634 return true; 2635 } 2636 2637 // Finish checking all candidates before we note any. This checking can 2638 // produce additional diagnostics so can't be interleaved with our 2639 // emission of notes. 2640 // 2641 // For an aligned allocation, separately check the aligned and unaligned 2642 // candidates with their respective argument lists. 2643 SmallVector<OverloadCandidate*, 32> Cands; 2644 SmallVector<OverloadCandidate*, 32> AlignedCands; 2645 llvm::SmallVector<Expr*, 4> AlignedArgs; 2646 if (AlignedCandidates) { 2647 auto IsAligned = [](OverloadCandidate &C) { 2648 return C.Function->getNumParams() > 1 && 2649 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2650 }; 2651 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2652 2653 AlignedArgs.reserve(Args.size() + 1); 2654 AlignedArgs.push_back(Args[0]); 2655 AlignedArgs.push_back(AlignArg); 2656 AlignedArgs.append(Args.begin() + 1, Args.end()); 2657 AlignedCands = AlignedCandidates->CompleteCandidates( 2658 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); 2659 2660 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2661 R.getNameLoc(), IsUnaligned); 2662 } else { 2663 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2664 R.getNameLoc()); 2665 } 2666 2667 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) 2668 << R.getLookupName() << Range; 2669 if (AlignedCandidates) 2670 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", 2671 R.getNameLoc()); 2672 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); 2673 } 2674 return true; 2675 2676 case OR_Ambiguous: 2677 if (Diagnose) { 2678 Candidates.NoteCandidates( 2679 PartialDiagnosticAt(R.getNameLoc(), 2680 S.PDiag(diag::err_ovl_ambiguous_call) 2681 << R.getLookupName() << Range), 2682 S, OCD_AmbiguousCandidates, Args); 2683 } 2684 return true; 2685 2686 case OR_Deleted: { 2687 if (Diagnose) 2688 S.DiagnoseUseOfDeletedFunction(R.getNameLoc(), Range, R.getLookupName(), 2689 Candidates, Best->Function, Args); 2690 return true; 2691 } 2692 } 2693 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 2694 } 2695 2696 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2697 AllocationFunctionScope NewScope, 2698 AllocationFunctionScope DeleteScope, 2699 QualType AllocType, bool IsArray, 2700 bool &PassAlignment, MultiExprArg PlaceArgs, 2701 FunctionDecl *&OperatorNew, 2702 FunctionDecl *&OperatorDelete, 2703 bool Diagnose) { 2704 // --- Choosing an allocation function --- 2705 // C++ 5.3.4p8 - 14 & 18 2706 // 1) If looking in AFS_Global scope for allocation functions, only look in 2707 // the global scope. Else, if AFS_Class, only look in the scope of the 2708 // allocated class. If AFS_Both, look in both. 2709 // 2) If an array size is given, look for operator new[], else look for 2710 // operator new. 2711 // 3) The first argument is always size_t. Append the arguments from the 2712 // placement form. 2713 2714 SmallVector<Expr*, 8> AllocArgs; 2715 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2716 2717 // We don't care about the actual value of these arguments. 2718 // FIXME: Should the Sema create the expression and embed it in the syntax 2719 // tree? Or should the consumer just recalculate the value? 2720 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2721 QualType SizeTy = Context.getSizeType(); 2722 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2723 IntegerLiteral Size(Context, llvm::APInt::getZero(SizeTyWidth), SizeTy, 2724 SourceLocation()); 2725 AllocArgs.push_back(&Size); 2726 2727 QualType AlignValT = Context.VoidTy; 2728 if (PassAlignment) { 2729 DeclareGlobalNewDelete(); 2730 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2731 } 2732 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2733 if (PassAlignment) 2734 AllocArgs.push_back(&Align); 2735 2736 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2737 2738 // C++ [expr.new]p8: 2739 // If the allocated type is a non-array type, the allocation 2740 // function's name is operator new and the deallocation function's 2741 // name is operator delete. If the allocated type is an array 2742 // type, the allocation function's name is operator new[] and the 2743 // deallocation function's name is operator delete[]. 2744 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2745 IsArray ? OO_Array_New : OO_New); 2746 2747 QualType AllocElemType = Context.getBaseElementType(AllocType); 2748 2749 // Find the allocation function. 2750 { 2751 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2752 2753 // C++1z [expr.new]p9: 2754 // If the new-expression begins with a unary :: operator, the allocation 2755 // function's name is looked up in the global scope. Otherwise, if the 2756 // allocated type is a class type T or array thereof, the allocation 2757 // function's name is looked up in the scope of T. 2758 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2759 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2760 2761 // We can see ambiguity here if the allocation function is found in 2762 // multiple base classes. 2763 if (R.isAmbiguous()) 2764 return true; 2765 2766 // If this lookup fails to find the name, or if the allocated type is not 2767 // a class type, the allocation function's name is looked up in the 2768 // global scope. 2769 if (R.empty()) { 2770 if (NewScope == AFS_Class) 2771 return true; 2772 2773 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2774 } 2775 2776 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2777 if (PlaceArgs.empty()) { 2778 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2779 } else { 2780 Diag(StartLoc, diag::err_openclcxx_placement_new); 2781 } 2782 return true; 2783 } 2784 2785 assert(!R.empty() && "implicitly declared allocation functions not found"); 2786 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 2787 2788 // We do our own custom access checks below. 2789 R.suppressDiagnostics(); 2790 2791 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2792 OperatorNew, /*Candidates=*/nullptr, 2793 /*AlignArg=*/nullptr, Diagnose)) 2794 return true; 2795 } 2796 2797 // We don't need an operator delete if we're running under -fno-exceptions. 2798 if (!getLangOpts().Exceptions) { 2799 OperatorDelete = nullptr; 2800 return false; 2801 } 2802 2803 // Note, the name of OperatorNew might have been changed from array to 2804 // non-array by resolveAllocationOverload. 2805 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2806 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2807 ? OO_Array_Delete 2808 : OO_Delete); 2809 2810 // C++ [expr.new]p19: 2811 // 2812 // If the new-expression begins with a unary :: operator, the 2813 // deallocation function's name is looked up in the global 2814 // scope. Otherwise, if the allocated type is a class type T or an 2815 // array thereof, the deallocation function's name is looked up in 2816 // the scope of T. If this lookup fails to find the name, or if 2817 // the allocated type is not a class type or array thereof, the 2818 // deallocation function's name is looked up in the global scope. 2819 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2820 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2821 auto *RD = 2822 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2823 LookupQualifiedName(FoundDelete, RD); 2824 } 2825 if (FoundDelete.isAmbiguous()) 2826 return true; // FIXME: clean up expressions? 2827 2828 // Filter out any destroying operator deletes. We can't possibly call such a 2829 // function in this context, because we're handling the case where the object 2830 // was not successfully constructed. 2831 // FIXME: This is not covered by the language rules yet. 2832 { 2833 LookupResult::Filter Filter = FoundDelete.makeFilter(); 2834 while (Filter.hasNext()) { 2835 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); 2836 if (FD && FD->isDestroyingOperatorDelete()) 2837 Filter.erase(); 2838 } 2839 Filter.done(); 2840 } 2841 2842 bool FoundGlobalDelete = FoundDelete.empty(); 2843 if (FoundDelete.empty()) { 2844 FoundDelete.clear(LookupOrdinaryName); 2845 2846 if (DeleteScope == AFS_Class) 2847 return true; 2848 2849 DeclareGlobalNewDelete(); 2850 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2851 } 2852 2853 FoundDelete.suppressDiagnostics(); 2854 2855 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2856 2857 // Whether we're looking for a placement operator delete is dictated 2858 // by whether we selected a placement operator new, not by whether 2859 // we had explicit placement arguments. This matters for things like 2860 // struct A { void *operator new(size_t, int = 0); ... }; 2861 // A *a = new A() 2862 // 2863 // We don't have any definition for what a "placement allocation function" 2864 // is, but we assume it's any allocation function whose 2865 // parameter-declaration-clause is anything other than (size_t). 2866 // 2867 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2868 // This affects whether an exception from the constructor of an overaligned 2869 // type uses the sized or non-sized form of aligned operator delete. 2870 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2871 OperatorNew->isVariadic(); 2872 2873 if (isPlacementNew) { 2874 // C++ [expr.new]p20: 2875 // A declaration of a placement deallocation function matches the 2876 // declaration of a placement allocation function if it has the 2877 // same number of parameters and, after parameter transformations 2878 // (8.3.5), all parameter types except the first are 2879 // identical. [...] 2880 // 2881 // To perform this comparison, we compute the function type that 2882 // the deallocation function should have, and use that type both 2883 // for template argument deduction and for comparison purposes. 2884 QualType ExpectedFunctionType; 2885 { 2886 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2887 2888 SmallVector<QualType, 4> ArgTypes; 2889 ArgTypes.push_back(Context.VoidPtrTy); 2890 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2891 ArgTypes.push_back(Proto->getParamType(I)); 2892 2893 FunctionProtoType::ExtProtoInfo EPI; 2894 // FIXME: This is not part of the standard's rule. 2895 EPI.Variadic = Proto->isVariadic(); 2896 2897 ExpectedFunctionType 2898 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2899 } 2900 2901 for (LookupResult::iterator D = FoundDelete.begin(), 2902 DEnd = FoundDelete.end(); 2903 D != DEnd; ++D) { 2904 FunctionDecl *Fn = nullptr; 2905 if (FunctionTemplateDecl *FnTmpl = 2906 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2907 // Perform template argument deduction to try to match the 2908 // expected function type. 2909 TemplateDeductionInfo Info(StartLoc); 2910 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2911 Info) != TemplateDeductionResult::Success) 2912 continue; 2913 } else 2914 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2915 2916 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2917 ExpectedFunctionType, 2918 /*AdjustExcpetionSpec*/true), 2919 ExpectedFunctionType)) 2920 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2921 } 2922 2923 if (getLangOpts().CUDA) 2924 CUDA().EraseUnwantedMatches(getCurFunctionDecl(/*AllowLambda=*/true), 2925 Matches); 2926 } else { 2927 // C++1y [expr.new]p22: 2928 // For a non-placement allocation function, the normal deallocation 2929 // function lookup is used 2930 // 2931 // Per [expr.delete]p10, this lookup prefers a member operator delete 2932 // without a size_t argument, but prefers a non-member operator delete 2933 // with a size_t where possible (which it always is in this case). 2934 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2935 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2936 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2937 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2938 &BestDeallocFns); 2939 if (Selected) 2940 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2941 else { 2942 // If we failed to select an operator, all remaining functions are viable 2943 // but ambiguous. 2944 for (auto Fn : BestDeallocFns) 2945 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2946 } 2947 } 2948 2949 // C++ [expr.new]p20: 2950 // [...] If the lookup finds a single matching deallocation 2951 // function, that function will be called; otherwise, no 2952 // deallocation function will be called. 2953 if (Matches.size() == 1) { 2954 OperatorDelete = Matches[0].second; 2955 2956 // C++1z [expr.new]p23: 2957 // If the lookup finds a usual deallocation function (3.7.4.2) 2958 // with a parameter of type std::size_t and that function, considered 2959 // as a placement deallocation function, would have been 2960 // selected as a match for the allocation function, the program 2961 // is ill-formed. 2962 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2963 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2964 UsualDeallocFnInfo Info(*this, 2965 DeclAccessPair::make(OperatorDelete, AS_public)); 2966 // Core issue, per mail to core reflector, 2016-10-09: 2967 // If this is a member operator delete, and there is a corresponding 2968 // non-sized member operator delete, this isn't /really/ a sized 2969 // deallocation function, it just happens to have a size_t parameter. 2970 bool IsSizedDelete = Info.HasSizeT; 2971 if (IsSizedDelete && !FoundGlobalDelete) { 2972 auto NonSizedDelete = 2973 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2974 /*WantAlign*/Info.HasAlignValT); 2975 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2976 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2977 IsSizedDelete = false; 2978 } 2979 2980 if (IsSizedDelete) { 2981 SourceRange R = PlaceArgs.empty() 2982 ? SourceRange() 2983 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2984 PlaceArgs.back()->getEndLoc()); 2985 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2986 if (!OperatorDelete->isImplicit()) 2987 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2988 << DeleteName; 2989 } 2990 } 2991 2992 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2993 Matches[0].first); 2994 } else if (!Matches.empty()) { 2995 // We found multiple suitable operators. Per [expr.new]p20, that means we 2996 // call no 'operator delete' function, but we should at least warn the user. 2997 // FIXME: Suppress this warning if the construction cannot throw. 2998 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2999 << DeleteName << AllocElemType; 3000 3001 for (auto &Match : Matches) 3002 Diag(Match.second->getLocation(), 3003 diag::note_member_declared_here) << DeleteName; 3004 } 3005 3006 return false; 3007 } 3008 3009 void Sema::DeclareGlobalNewDelete() { 3010 if (GlobalNewDeleteDeclared) 3011 return; 3012 3013 // The implicitly declared new and delete operators 3014 // are not supported in OpenCL. 3015 if (getLangOpts().OpenCLCPlusPlus) 3016 return; 3017 3018 // C++ [basic.stc.dynamic.general]p2: 3019 // The library provides default definitions for the global allocation 3020 // and deallocation functions. Some global allocation and deallocation 3021 // functions are replaceable ([new.delete]); these are attached to the 3022 // global module ([module.unit]). 3023 if (getLangOpts().CPlusPlusModules && getCurrentModule()) 3024 PushGlobalModuleFragment(SourceLocation()); 3025 3026 // C++ [basic.std.dynamic]p2: 3027 // [...] The following allocation and deallocation functions (18.4) are 3028 // implicitly declared in global scope in each translation unit of a 3029 // program 3030 // 3031 // C++03: 3032 // void* operator new(std::size_t) throw(std::bad_alloc); 3033 // void* operator new[](std::size_t) throw(std::bad_alloc); 3034 // void operator delete(void*) throw(); 3035 // void operator delete[](void*) throw(); 3036 // C++11: 3037 // void* operator new(std::size_t); 3038 // void* operator new[](std::size_t); 3039 // void operator delete(void*) noexcept; 3040 // void operator delete[](void*) noexcept; 3041 // C++1y: 3042 // void* operator new(std::size_t); 3043 // void* operator new[](std::size_t); 3044 // void operator delete(void*) noexcept; 3045 // void operator delete[](void*) noexcept; 3046 // void operator delete(void*, std::size_t) noexcept; 3047 // void operator delete[](void*, std::size_t) noexcept; 3048 // 3049 // These implicit declarations introduce only the function names operator 3050 // new, operator new[], operator delete, operator delete[]. 3051 // 3052 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 3053 // "std" or "bad_alloc" as necessary to form the exception specification. 3054 // However, we do not make these implicit declarations visible to name 3055 // lookup. 3056 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 3057 // The "std::bad_alloc" class has not yet been declared, so build it 3058 // implicitly. 3059 StdBadAlloc = CXXRecordDecl::Create( 3060 Context, TagTypeKind::Class, getOrCreateStdNamespace(), 3061 SourceLocation(), SourceLocation(), 3062 &PP.getIdentifierTable().get("bad_alloc"), nullptr); 3063 getStdBadAlloc()->setImplicit(true); 3064 3065 // The implicitly declared "std::bad_alloc" should live in global module 3066 // fragment. 3067 if (TheGlobalModuleFragment) { 3068 getStdBadAlloc()->setModuleOwnershipKind( 3069 Decl::ModuleOwnershipKind::ReachableWhenImported); 3070 getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment); 3071 } 3072 } 3073 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 3074 // The "std::align_val_t" enum class has not yet been declared, so build it 3075 // implicitly. 3076 auto *AlignValT = EnumDecl::Create( 3077 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 3078 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 3079 3080 // The implicitly declared "std::align_val_t" should live in global module 3081 // fragment. 3082 if (TheGlobalModuleFragment) { 3083 AlignValT->setModuleOwnershipKind( 3084 Decl::ModuleOwnershipKind::ReachableWhenImported); 3085 AlignValT->setLocalOwningModule(TheGlobalModuleFragment); 3086 } 3087 3088 AlignValT->setIntegerType(Context.getSizeType()); 3089 AlignValT->setPromotionType(Context.getSizeType()); 3090 AlignValT->setImplicit(true); 3091 3092 StdAlignValT = AlignValT; 3093 } 3094 3095 GlobalNewDeleteDeclared = true; 3096 3097 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 3098 QualType SizeT = Context.getSizeType(); 3099 3100 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 3101 QualType Return, QualType Param) { 3102 llvm::SmallVector<QualType, 3> Params; 3103 Params.push_back(Param); 3104 3105 // Create up to four variants of the function (sized/aligned). 3106 bool HasSizedVariant = getLangOpts().SizedDeallocation && 3107 (Kind == OO_Delete || Kind == OO_Array_Delete); 3108 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 3109 3110 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 3111 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 3112 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 3113 if (Sized) 3114 Params.push_back(SizeT); 3115 3116 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 3117 if (Aligned) 3118 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 3119 3120 DeclareGlobalAllocationFunction( 3121 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 3122 3123 if (Aligned) 3124 Params.pop_back(); 3125 } 3126 } 3127 }; 3128 3129 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 3130 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 3131 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 3132 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 3133 3134 if (getLangOpts().CPlusPlusModules && getCurrentModule()) 3135 PopGlobalModuleFragment(); 3136 } 3137 3138 /// DeclareGlobalAllocationFunction - Declares a single implicit global 3139 /// allocation function if it doesn't already exist. 3140 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 3141 QualType Return, 3142 ArrayRef<QualType> Params) { 3143 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 3144 3145 // Check if this function is already declared. 3146 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 3147 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 3148 Alloc != AllocEnd; ++Alloc) { 3149 // Only look at non-template functions, as it is the predefined, 3150 // non-templated allocation function we are trying to declare here. 3151 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 3152 if (Func->getNumParams() == Params.size()) { 3153 llvm::SmallVector<QualType, 3> FuncParams; 3154 for (auto *P : Func->parameters()) 3155 FuncParams.push_back( 3156 Context.getCanonicalType(P->getType().getUnqualifiedType())); 3157 if (llvm::ArrayRef(FuncParams) == Params) { 3158 // Make the function visible to name lookup, even if we found it in 3159 // an unimported module. It either is an implicitly-declared global 3160 // allocation function, or is suppressing that function. 3161 Func->setVisibleDespiteOwningModule(); 3162 return; 3163 } 3164 } 3165 } 3166 } 3167 3168 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 3169 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 3170 3171 QualType BadAllocType; 3172 bool HasBadAllocExceptionSpec 3173 = (Name.getCXXOverloadedOperator() == OO_New || 3174 Name.getCXXOverloadedOperator() == OO_Array_New); 3175 if (HasBadAllocExceptionSpec) { 3176 if (!getLangOpts().CPlusPlus11) { 3177 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 3178 assert(StdBadAlloc && "Must have std::bad_alloc declared"); 3179 EPI.ExceptionSpec.Type = EST_Dynamic; 3180 EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType); 3181 } 3182 if (getLangOpts().NewInfallible) { 3183 EPI.ExceptionSpec.Type = EST_DynamicNone; 3184 } 3185 } else { 3186 EPI.ExceptionSpec = 3187 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 3188 } 3189 3190 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 3191 QualType FnType = Context.getFunctionType(Return, Params, EPI); 3192 FunctionDecl *Alloc = FunctionDecl::Create( 3193 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType, 3194 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false, 3195 true); 3196 Alloc->setImplicit(); 3197 // Global allocation functions should always be visible. 3198 Alloc->setVisibleDespiteOwningModule(); 3199 3200 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible && 3201 !getLangOpts().CheckNew) 3202 Alloc->addAttr( 3203 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation())); 3204 3205 // C++ [basic.stc.dynamic.general]p2: 3206 // The library provides default definitions for the global allocation 3207 // and deallocation functions. Some global allocation and deallocation 3208 // functions are replaceable ([new.delete]); these are attached to the 3209 // global module ([module.unit]). 3210 // 3211 // In the language wording, these functions are attched to the global 3212 // module all the time. But in the implementation, the global module 3213 // is only meaningful when we're in a module unit. So here we attach 3214 // these allocation functions to global module conditionally. 3215 if (TheGlobalModuleFragment) { 3216 Alloc->setModuleOwnershipKind( 3217 Decl::ModuleOwnershipKind::ReachableWhenImported); 3218 Alloc->setLocalOwningModule(TheGlobalModuleFragment); 3219 } 3220 3221 if (LangOpts.hasGlobalAllocationFunctionVisibility()) 3222 Alloc->addAttr(VisibilityAttr::CreateImplicit( 3223 Context, LangOpts.hasHiddenGlobalAllocationFunctionVisibility() 3224 ? VisibilityAttr::Hidden 3225 : LangOpts.hasProtectedGlobalAllocationFunctionVisibility() 3226 ? VisibilityAttr::Protected 3227 : VisibilityAttr::Default)); 3228 3229 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 3230 for (QualType T : Params) { 3231 ParamDecls.push_back(ParmVarDecl::Create( 3232 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 3233 /*TInfo=*/nullptr, SC_None, nullptr)); 3234 ParamDecls.back()->setImplicit(); 3235 } 3236 Alloc->setParams(ParamDecls); 3237 if (ExtraAttr) 3238 Alloc->addAttr(ExtraAttr); 3239 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 3240 Context.getTranslationUnitDecl()->addDecl(Alloc); 3241 IdResolver.tryAddTopLevelDecl(Alloc, Name); 3242 }; 3243 3244 if (!LangOpts.CUDA) 3245 CreateAllocationFunctionDecl(nullptr); 3246 else { 3247 // Host and device get their own declaration so each can be 3248 // defined or re-declared independently. 3249 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 3250 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 3251 } 3252 } 3253 3254 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 3255 bool CanProvideSize, 3256 bool Overaligned, 3257 DeclarationName Name) { 3258 DeclareGlobalNewDelete(); 3259 3260 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 3261 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 3262 3263 // FIXME: It's possible for this to result in ambiguity, through a 3264 // user-declared variadic operator delete or the enable_if attribute. We 3265 // should probably not consider those cases to be usual deallocation 3266 // functions. But for now we just make an arbitrary choice in that case. 3267 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3268 Overaligned); 3269 assert(Result.FD && "operator delete missing from global scope?"); 3270 return Result.FD; 3271 } 3272 3273 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3274 CXXRecordDecl *RD) { 3275 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3276 3277 FunctionDecl *OperatorDelete = nullptr; 3278 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3279 return nullptr; 3280 if (OperatorDelete) 3281 return OperatorDelete; 3282 3283 // If there's no class-specific operator delete, look up the global 3284 // non-array delete. 3285 return FindUsualDeallocationFunction( 3286 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3287 Name); 3288 } 3289 3290 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3291 DeclarationName Name, 3292 FunctionDecl *&Operator, bool Diagnose, 3293 bool WantSize, bool WantAligned) { 3294 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3295 // Try to find operator delete/operator delete[] in class scope. 3296 LookupQualifiedName(Found, RD); 3297 3298 if (Found.isAmbiguous()) 3299 return true; 3300 3301 Found.suppressDiagnostics(); 3302 3303 bool Overaligned = 3304 WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3305 3306 // C++17 [expr.delete]p10: 3307 // If the deallocation functions have class scope, the one without a 3308 // parameter of type std::size_t is selected. 3309 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3310 resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize, 3311 /*WantAlign*/ Overaligned, &Matches); 3312 3313 // If we could find an overload, use it. 3314 if (Matches.size() == 1) { 3315 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3316 3317 // FIXME: DiagnoseUseOfDecl? 3318 if (Operator->isDeleted()) { 3319 if (Diagnose) { 3320 StringLiteral *Msg = Operator->getDeletedMessage(); 3321 Diag(StartLoc, diag::err_deleted_function_use) 3322 << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef()); 3323 NoteDeletedFunction(Operator); 3324 } 3325 return true; 3326 } 3327 3328 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3329 Matches[0].Found, Diagnose) == AR_inaccessible) 3330 return true; 3331 3332 return false; 3333 } 3334 3335 // We found multiple suitable operators; complain about the ambiguity. 3336 // FIXME: The standard doesn't say to do this; it appears that the intent 3337 // is that this should never happen. 3338 if (!Matches.empty()) { 3339 if (Diagnose) { 3340 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3341 << Name << RD; 3342 for (auto &Match : Matches) 3343 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3344 } 3345 return true; 3346 } 3347 3348 // We did find operator delete/operator delete[] declarations, but 3349 // none of them were suitable. 3350 if (!Found.empty()) { 3351 if (Diagnose) { 3352 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3353 << Name << RD; 3354 3355 for (NamedDecl *D : Found) 3356 Diag(D->getUnderlyingDecl()->getLocation(), 3357 diag::note_member_declared_here) << Name; 3358 } 3359 return true; 3360 } 3361 3362 Operator = nullptr; 3363 return false; 3364 } 3365 3366 namespace { 3367 /// Checks whether delete-expression, and new-expression used for 3368 /// initializing deletee have the same array form. 3369 class MismatchingNewDeleteDetector { 3370 public: 3371 enum MismatchResult { 3372 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3373 NoMismatch, 3374 /// Indicates that variable is initialized with mismatching form of \a new. 3375 VarInitMismatches, 3376 /// Indicates that member is initialized with mismatching form of \a new. 3377 MemberInitMismatches, 3378 /// Indicates that 1 or more constructors' definitions could not been 3379 /// analyzed, and they will be checked again at the end of translation unit. 3380 AnalyzeLater 3381 }; 3382 3383 /// \param EndOfTU True, if this is the final analysis at the end of 3384 /// translation unit. False, if this is the initial analysis at the point 3385 /// delete-expression was encountered. 3386 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3387 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3388 HasUndefinedConstructors(false) {} 3389 3390 /// Checks whether pointee of a delete-expression is initialized with 3391 /// matching form of new-expression. 3392 /// 3393 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3394 /// point where delete-expression is encountered, then a warning will be 3395 /// issued immediately. If return value is \c AnalyzeLater at the point where 3396 /// delete-expression is seen, then member will be analyzed at the end of 3397 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3398 /// couldn't be analyzed. If at least one constructor initializes the member 3399 /// with matching type of new, the return value is \c NoMismatch. 3400 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3401 /// Analyzes a class member. 3402 /// \param Field Class member to analyze. 3403 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3404 /// for deleting the \p Field. 3405 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3406 FieldDecl *Field; 3407 /// List of mismatching new-expressions used for initialization of the pointee 3408 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3409 /// Indicates whether delete-expression was in array form. 3410 bool IsArrayForm; 3411 3412 private: 3413 const bool EndOfTU; 3414 /// Indicates that there is at least one constructor without body. 3415 bool HasUndefinedConstructors; 3416 /// Returns \c CXXNewExpr from given initialization expression. 3417 /// \param E Expression used for initializing pointee in delete-expression. 3418 /// E can be a single-element \c InitListExpr consisting of new-expression. 3419 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3420 /// Returns whether member is initialized with mismatching form of 3421 /// \c new either by the member initializer or in-class initialization. 3422 /// 3423 /// If bodies of all constructors are not visible at the end of translation 3424 /// unit or at least one constructor initializes member with the matching 3425 /// form of \c new, mismatch cannot be proven, and this function will return 3426 /// \c NoMismatch. 3427 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3428 /// Returns whether variable is initialized with mismatching form of 3429 /// \c new. 3430 /// 3431 /// If variable is initialized with matching form of \c new or variable is not 3432 /// initialized with a \c new expression, this function will return true. 3433 /// If variable is initialized with mismatching form of \c new, returns false. 3434 /// \param D Variable to analyze. 3435 bool hasMatchingVarInit(const DeclRefExpr *D); 3436 /// Checks whether the constructor initializes pointee with mismatching 3437 /// form of \c new. 3438 /// 3439 /// Returns true, if member is initialized with matching form of \c new in 3440 /// member initializer list. Returns false, if member is initialized with the 3441 /// matching form of \c new in this constructor's initializer or given 3442 /// constructor isn't defined at the point where delete-expression is seen, or 3443 /// member isn't initialized by the constructor. 3444 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3445 /// Checks whether member is initialized with matching form of 3446 /// \c new in member initializer list. 3447 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3448 /// Checks whether member is initialized with mismatching form of \c new by 3449 /// in-class initializer. 3450 MismatchResult analyzeInClassInitializer(); 3451 }; 3452 } 3453 3454 MismatchingNewDeleteDetector::MismatchResult 3455 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3456 NewExprs.clear(); 3457 assert(DE && "Expected delete-expression"); 3458 IsArrayForm = DE->isArrayForm(); 3459 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3460 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3461 return analyzeMemberExpr(ME); 3462 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3463 if (!hasMatchingVarInit(D)) 3464 return VarInitMismatches; 3465 } 3466 return NoMismatch; 3467 } 3468 3469 const CXXNewExpr * 3470 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3471 assert(E != nullptr && "Expected a valid initializer expression"); 3472 E = E->IgnoreParenImpCasts(); 3473 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3474 if (ILE->getNumInits() == 1) 3475 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3476 } 3477 3478 return dyn_cast_or_null<const CXXNewExpr>(E); 3479 } 3480 3481 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3482 const CXXCtorInitializer *CI) { 3483 const CXXNewExpr *NE = nullptr; 3484 if (Field == CI->getMember() && 3485 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3486 if (NE->isArray() == IsArrayForm) 3487 return true; 3488 else 3489 NewExprs.push_back(NE); 3490 } 3491 return false; 3492 } 3493 3494 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3495 const CXXConstructorDecl *CD) { 3496 if (CD->isImplicit()) 3497 return false; 3498 const FunctionDecl *Definition = CD; 3499 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3500 HasUndefinedConstructors = true; 3501 return EndOfTU; 3502 } 3503 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3504 if (hasMatchingNewInCtorInit(CI)) 3505 return true; 3506 } 3507 return false; 3508 } 3509 3510 MismatchingNewDeleteDetector::MismatchResult 3511 MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3512 assert(Field != nullptr && "This should be called only for members"); 3513 const Expr *InitExpr = Field->getInClassInitializer(); 3514 if (!InitExpr) 3515 return EndOfTU ? NoMismatch : AnalyzeLater; 3516 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3517 if (NE->isArray() != IsArrayForm) { 3518 NewExprs.push_back(NE); 3519 return MemberInitMismatches; 3520 } 3521 } 3522 return NoMismatch; 3523 } 3524 3525 MismatchingNewDeleteDetector::MismatchResult 3526 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3527 bool DeleteWasArrayForm) { 3528 assert(Field != nullptr && "Analysis requires a valid class member."); 3529 this->Field = Field; 3530 IsArrayForm = DeleteWasArrayForm; 3531 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3532 for (const auto *CD : RD->ctors()) { 3533 if (hasMatchingNewInCtor(CD)) 3534 return NoMismatch; 3535 } 3536 if (HasUndefinedConstructors) 3537 return EndOfTU ? NoMismatch : AnalyzeLater; 3538 if (!NewExprs.empty()) 3539 return MemberInitMismatches; 3540 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3541 : NoMismatch; 3542 } 3543 3544 MismatchingNewDeleteDetector::MismatchResult 3545 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3546 assert(ME != nullptr && "Expected a member expression"); 3547 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3548 return analyzeField(F, IsArrayForm); 3549 return NoMismatch; 3550 } 3551 3552 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3553 const CXXNewExpr *NE = nullptr; 3554 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3555 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3556 NE->isArray() != IsArrayForm) { 3557 NewExprs.push_back(NE); 3558 } 3559 } 3560 return NewExprs.empty(); 3561 } 3562 3563 static void 3564 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3565 const MismatchingNewDeleteDetector &Detector) { 3566 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3567 FixItHint H; 3568 if (!Detector.IsArrayForm) 3569 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3570 else { 3571 SourceLocation RSquare = Lexer::findLocationAfterToken( 3572 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3573 SemaRef.getLangOpts(), true); 3574 if (RSquare.isValid()) 3575 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3576 } 3577 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3578 << Detector.IsArrayForm << H; 3579 3580 for (const auto *NE : Detector.NewExprs) 3581 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3582 << Detector.IsArrayForm; 3583 } 3584 3585 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3586 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3587 return; 3588 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3589 switch (Detector.analyzeDeleteExpr(DE)) { 3590 case MismatchingNewDeleteDetector::VarInitMismatches: 3591 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3592 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3593 break; 3594 } 3595 case MismatchingNewDeleteDetector::AnalyzeLater: { 3596 DeleteExprs[Detector.Field].push_back( 3597 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3598 break; 3599 } 3600 case MismatchingNewDeleteDetector::NoMismatch: 3601 break; 3602 } 3603 } 3604 3605 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3606 bool DeleteWasArrayForm) { 3607 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3608 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3609 case MismatchingNewDeleteDetector::VarInitMismatches: 3610 llvm_unreachable("This analysis should have been done for class members."); 3611 case MismatchingNewDeleteDetector::AnalyzeLater: 3612 llvm_unreachable("Analysis cannot be postponed any point beyond end of " 3613 "translation unit."); 3614 case MismatchingNewDeleteDetector::MemberInitMismatches: 3615 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3616 break; 3617 case MismatchingNewDeleteDetector::NoMismatch: 3618 break; 3619 } 3620 } 3621 3622 ExprResult 3623 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3624 bool ArrayForm, Expr *ExE) { 3625 // C++ [expr.delete]p1: 3626 // The operand shall have a pointer type, or a class type having a single 3627 // non-explicit conversion function to a pointer type. The result has type 3628 // void. 3629 // 3630 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3631 3632 ExprResult Ex = ExE; 3633 FunctionDecl *OperatorDelete = nullptr; 3634 bool ArrayFormAsWritten = ArrayForm; 3635 bool UsualArrayDeleteWantsSize = false; 3636 3637 if (!Ex.get()->isTypeDependent()) { 3638 // Perform lvalue-to-rvalue cast, if needed. 3639 Ex = DefaultLvalueConversion(Ex.get()); 3640 if (Ex.isInvalid()) 3641 return ExprError(); 3642 3643 QualType Type = Ex.get()->getType(); 3644 3645 class DeleteConverter : public ContextualImplicitConverter { 3646 public: 3647 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3648 3649 bool match(QualType ConvType) override { 3650 // FIXME: If we have an operator T* and an operator void*, we must pick 3651 // the operator T*. 3652 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3653 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3654 return true; 3655 return false; 3656 } 3657 3658 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3659 QualType T) override { 3660 return S.Diag(Loc, diag::err_delete_operand) << T; 3661 } 3662 3663 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3664 QualType T) override { 3665 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3666 } 3667 3668 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3669 QualType T, 3670 QualType ConvTy) override { 3671 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3672 } 3673 3674 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3675 QualType ConvTy) override { 3676 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3677 << ConvTy; 3678 } 3679 3680 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3681 QualType T) override { 3682 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3683 } 3684 3685 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3686 QualType ConvTy) override { 3687 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3688 << ConvTy; 3689 } 3690 3691 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3692 QualType T, 3693 QualType ConvTy) override { 3694 llvm_unreachable("conversion functions are permitted"); 3695 } 3696 } Converter; 3697 3698 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3699 if (Ex.isInvalid()) 3700 return ExprError(); 3701 Type = Ex.get()->getType(); 3702 if (!Converter.match(Type)) 3703 // FIXME: PerformContextualImplicitConversion should return ExprError 3704 // itself in this case. 3705 return ExprError(); 3706 3707 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3708 QualType PointeeElem = Context.getBaseElementType(Pointee); 3709 3710 if (Pointee.getAddressSpace() != LangAS::Default && 3711 !getLangOpts().OpenCLCPlusPlus) 3712 return Diag(Ex.get()->getBeginLoc(), 3713 diag::err_address_space_qualified_delete) 3714 << Pointee.getUnqualifiedType() 3715 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3716 3717 CXXRecordDecl *PointeeRD = nullptr; 3718 if (Pointee->isVoidType() && !isSFINAEContext()) { 3719 // The C++ standard bans deleting a pointer to a non-object type, which 3720 // effectively bans deletion of "void*". However, most compilers support 3721 // this, so we treat it as a warning unless we're in a SFINAE context. 3722 // But we still prohibit this since C++26. 3723 Diag(StartLoc, LangOpts.CPlusPlus26 ? diag::err_delete_incomplete 3724 : diag::ext_delete_void_ptr_operand) 3725 << (LangOpts.CPlusPlus26 ? Pointee : Type) 3726 << Ex.get()->getSourceRange(); 3727 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3728 Pointee->isSizelessType()) { 3729 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3730 << Type << Ex.get()->getSourceRange()); 3731 } else if (!Pointee->isDependentType()) { 3732 // FIXME: This can result in errors if the definition was imported from a 3733 // module but is hidden. 3734 if (!RequireCompleteType(StartLoc, Pointee, 3735 LangOpts.CPlusPlus26 3736 ? diag::err_delete_incomplete 3737 : diag::warn_delete_incomplete, 3738 Ex.get())) { 3739 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3740 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3741 } 3742 } 3743 3744 if (Pointee->isArrayType() && !ArrayForm) { 3745 Diag(StartLoc, diag::warn_delete_array_type) 3746 << Type << Ex.get()->getSourceRange() 3747 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3748 ArrayForm = true; 3749 } 3750 3751 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3752 ArrayForm ? OO_Array_Delete : OO_Delete); 3753 3754 if (PointeeRD) { 3755 if (!UseGlobal && 3756 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3757 OperatorDelete)) 3758 return ExprError(); 3759 3760 // If we're allocating an array of records, check whether the 3761 // usual operator delete[] has a size_t parameter. 3762 if (ArrayForm) { 3763 // If the user specifically asked to use the global allocator, 3764 // we'll need to do the lookup into the class. 3765 if (UseGlobal) 3766 UsualArrayDeleteWantsSize = 3767 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3768 3769 // Otherwise, the usual operator delete[] should be the 3770 // function we just found. 3771 else if (isa_and_nonnull<CXXMethodDecl>(OperatorDelete)) 3772 UsualArrayDeleteWantsSize = 3773 UsualDeallocFnInfo(*this, 3774 DeclAccessPair::make(OperatorDelete, AS_public)) 3775 .HasSizeT; 3776 } 3777 3778 if (!PointeeRD->hasIrrelevantDestructor()) 3779 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3780 MarkFunctionReferenced(StartLoc, 3781 const_cast<CXXDestructorDecl*>(Dtor)); 3782 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3783 return ExprError(); 3784 } 3785 3786 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3787 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3788 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3789 SourceLocation()); 3790 } 3791 3792 if (!OperatorDelete) { 3793 if (getLangOpts().OpenCLCPlusPlus) { 3794 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3795 return ExprError(); 3796 } 3797 3798 bool IsComplete = isCompleteType(StartLoc, Pointee); 3799 bool CanProvideSize = 3800 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3801 Pointee.isDestructedType()); 3802 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3803 3804 // Look for a global declaration. 3805 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3806 Overaligned, DeleteName); 3807 } 3808 3809 MarkFunctionReferenced(StartLoc, OperatorDelete); 3810 3811 // Check access and ambiguity of destructor if we're going to call it. 3812 // Note that this is required even for a virtual delete. 3813 bool IsVirtualDelete = false; 3814 if (PointeeRD) { 3815 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3816 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3817 PDiag(diag::err_access_dtor) << PointeeElem); 3818 IsVirtualDelete = Dtor->isVirtual(); 3819 } 3820 } 3821 3822 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3823 3824 // Convert the operand to the type of the first parameter of operator 3825 // delete. This is only necessary if we selected a destroying operator 3826 // delete that we are going to call (non-virtually); converting to void* 3827 // is trivial and left to AST consumers to handle. 3828 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3829 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3830 Qualifiers Qs = Pointee.getQualifiers(); 3831 if (Qs.hasCVRQualifiers()) { 3832 // Qualifiers are irrelevant to this conversion; we're only looking 3833 // for access and ambiguity. 3834 Qs.removeCVRQualifiers(); 3835 QualType Unqual = Context.getPointerType( 3836 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3837 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3838 } 3839 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3840 if (Ex.isInvalid()) 3841 return ExprError(); 3842 } 3843 } 3844 3845 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3846 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3847 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3848 AnalyzeDeleteExprMismatch(Result); 3849 return Result; 3850 } 3851 3852 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3853 bool IsDelete, 3854 FunctionDecl *&Operator) { 3855 3856 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3857 IsDelete ? OO_Delete : OO_New); 3858 3859 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3860 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3861 assert(!R.empty() && "implicitly declared allocation functions not found"); 3862 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 3863 3864 // We do our own custom access checks below. 3865 R.suppressDiagnostics(); 3866 3867 SmallVector<Expr *, 8> Args(TheCall->arguments()); 3868 OverloadCandidateSet Candidates(R.getNameLoc(), 3869 OverloadCandidateSet::CSK_Normal); 3870 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3871 FnOvl != FnOvlEnd; ++FnOvl) { 3872 // Even member operator new/delete are implicitly treated as 3873 // static, so don't use AddMemberCandidate. 3874 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3875 3876 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3877 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3878 /*ExplicitTemplateArgs=*/nullptr, Args, 3879 Candidates, 3880 /*SuppressUserConversions=*/false); 3881 continue; 3882 } 3883 3884 FunctionDecl *Fn = cast<FunctionDecl>(D); 3885 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3886 /*SuppressUserConversions=*/false); 3887 } 3888 3889 SourceRange Range = TheCall->getSourceRange(); 3890 3891 // Do the resolution. 3892 OverloadCandidateSet::iterator Best; 3893 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3894 case OR_Success: { 3895 // Got one! 3896 FunctionDecl *FnDecl = Best->Function; 3897 assert(R.getNamingClass() == nullptr && 3898 "class members should not be considered"); 3899 3900 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3901 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3902 << (IsDelete ? 1 : 0) << Range; 3903 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3904 << R.getLookupName() << FnDecl->getSourceRange(); 3905 return true; 3906 } 3907 3908 Operator = FnDecl; 3909 return false; 3910 } 3911 3912 case OR_No_Viable_Function: 3913 Candidates.NoteCandidates( 3914 PartialDiagnosticAt(R.getNameLoc(), 3915 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3916 << R.getLookupName() << Range), 3917 S, OCD_AllCandidates, Args); 3918 return true; 3919 3920 case OR_Ambiguous: 3921 Candidates.NoteCandidates( 3922 PartialDiagnosticAt(R.getNameLoc(), 3923 S.PDiag(diag::err_ovl_ambiguous_call) 3924 << R.getLookupName() << Range), 3925 S, OCD_AmbiguousCandidates, Args); 3926 return true; 3927 3928 case OR_Deleted: 3929 S.DiagnoseUseOfDeletedFunction(R.getNameLoc(), Range, R.getLookupName(), 3930 Candidates, Best->Function, Args); 3931 return true; 3932 } 3933 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 3934 } 3935 3936 ExprResult Sema::BuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3937 bool IsDelete) { 3938 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3939 if (!getLangOpts().CPlusPlus) { 3940 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3941 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3942 << "C++"; 3943 return ExprError(); 3944 } 3945 // CodeGen assumes it can find the global new and delete to call, 3946 // so ensure that they are declared. 3947 DeclareGlobalNewDelete(); 3948 3949 FunctionDecl *OperatorNewOrDelete = nullptr; 3950 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3951 OperatorNewOrDelete)) 3952 return ExprError(); 3953 assert(OperatorNewOrDelete && "should be found"); 3954 3955 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3956 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3957 3958 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3959 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3960 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3961 InitializedEntity Entity = 3962 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3963 ExprResult Arg = PerformCopyInitialization( 3964 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3965 if (Arg.isInvalid()) 3966 return ExprError(); 3967 TheCall->setArg(i, Arg.get()); 3968 } 3969 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3970 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && 3971 "Callee expected to be implicit cast to a builtin function pointer"); 3972 Callee->setType(OperatorNewOrDelete->getType()); 3973 3974 return TheCallResult; 3975 } 3976 3977 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3978 bool IsDelete, bool CallCanBeVirtual, 3979 bool WarnOnNonAbstractTypes, 3980 SourceLocation DtorLoc) { 3981 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3982 return; 3983 3984 // C++ [expr.delete]p3: 3985 // In the first alternative (delete object), if the static type of the 3986 // object to be deleted is different from its dynamic type, the static 3987 // type shall be a base class of the dynamic type of the object to be 3988 // deleted and the static type shall have a virtual destructor or the 3989 // behavior is undefined. 3990 // 3991 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3992 // Note: a final class cannot be derived from, no issue there 3993 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3994 return; 3995 3996 // If the superclass is in a system header, there's nothing that can be done. 3997 // The `delete` (where we emit the warning) can be in a system header, 3998 // what matters for this warning is where the deleted type is defined. 3999 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 4000 return; 4001 4002 QualType ClassType = dtor->getFunctionObjectParameterType(); 4003 if (PointeeRD->isAbstract()) { 4004 // If the class is abstract, we warn by default, because we're 4005 // sure the code has undefined behavior. 4006 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 4007 << ClassType; 4008 } else if (WarnOnNonAbstractTypes) { 4009 // Otherwise, if this is not an array delete, it's a bit suspect, 4010 // but not necessarily wrong. 4011 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 4012 << ClassType; 4013 } 4014 if (!IsDelete) { 4015 std::string TypeStr; 4016 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 4017 Diag(DtorLoc, diag::note_delete_non_virtual) 4018 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 4019 } 4020 } 4021 4022 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 4023 SourceLocation StmtLoc, 4024 ConditionKind CK) { 4025 ExprResult E = 4026 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 4027 if (E.isInvalid()) 4028 return ConditionError(); 4029 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 4030 CK == ConditionKind::ConstexprIf); 4031 } 4032 4033 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 4034 SourceLocation StmtLoc, 4035 ConditionKind CK) { 4036 if (ConditionVar->isInvalidDecl()) 4037 return ExprError(); 4038 4039 QualType T = ConditionVar->getType(); 4040 4041 // C++ [stmt.select]p2: 4042 // The declarator shall not specify a function or an array. 4043 if (T->isFunctionType()) 4044 return ExprError(Diag(ConditionVar->getLocation(), 4045 diag::err_invalid_use_of_function_type) 4046 << ConditionVar->getSourceRange()); 4047 else if (T->isArrayType()) 4048 return ExprError(Diag(ConditionVar->getLocation(), 4049 diag::err_invalid_use_of_array_type) 4050 << ConditionVar->getSourceRange()); 4051 4052 ExprResult Condition = BuildDeclRefExpr( 4053 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 4054 ConditionVar->getLocation()); 4055 4056 switch (CK) { 4057 case ConditionKind::Boolean: 4058 return CheckBooleanCondition(StmtLoc, Condition.get()); 4059 4060 case ConditionKind::ConstexprIf: 4061 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 4062 4063 case ConditionKind::Switch: 4064 return CheckSwitchCondition(StmtLoc, Condition.get()); 4065 } 4066 4067 llvm_unreachable("unexpected condition kind"); 4068 } 4069 4070 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 4071 // C++11 6.4p4: 4072 // The value of a condition that is an initialized declaration in a statement 4073 // other than a switch statement is the value of the declared variable 4074 // implicitly converted to type bool. If that conversion is ill-formed, the 4075 // program is ill-formed. 4076 // The value of a condition that is an expression is the value of the 4077 // expression, implicitly converted to bool. 4078 // 4079 // C++23 8.5.2p2 4080 // If the if statement is of the form if constexpr, the value of the condition 4081 // is contextually converted to bool and the converted expression shall be 4082 // a constant expression. 4083 // 4084 4085 ExprResult E = PerformContextuallyConvertToBool(CondExpr); 4086 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) 4087 return E; 4088 4089 // FIXME: Return this value to the caller so they don't need to recompute it. 4090 llvm::APSInt Cond; 4091 E = VerifyIntegerConstantExpression( 4092 E.get(), &Cond, 4093 diag::err_constexpr_if_condition_expression_is_not_constant); 4094 return E; 4095 } 4096 4097 bool 4098 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 4099 // Look inside the implicit cast, if it exists. 4100 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 4101 From = Cast->getSubExpr(); 4102 4103 // A string literal (2.13.4) that is not a wide string literal can 4104 // be converted to an rvalue of type "pointer to char"; a wide 4105 // string literal can be converted to an rvalue of type "pointer 4106 // to wchar_t" (C++ 4.2p2). 4107 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 4108 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 4109 if (const BuiltinType *ToPointeeType 4110 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 4111 // This conversion is considered only when there is an 4112 // explicit appropriate pointer target type (C++ 4.2p2). 4113 if (!ToPtrType->getPointeeType().hasQualifiers()) { 4114 switch (StrLit->getKind()) { 4115 case StringLiteralKind::UTF8: 4116 case StringLiteralKind::UTF16: 4117 case StringLiteralKind::UTF32: 4118 // We don't allow UTF literals to be implicitly converted 4119 break; 4120 case StringLiteralKind::Ordinary: 4121 return (ToPointeeType->getKind() == BuiltinType::Char_U || 4122 ToPointeeType->getKind() == BuiltinType::Char_S); 4123 case StringLiteralKind::Wide: 4124 return Context.typesAreCompatible(Context.getWideCharType(), 4125 QualType(ToPointeeType, 0)); 4126 case StringLiteralKind::Unevaluated: 4127 assert(false && "Unevaluated string literal in expression"); 4128 break; 4129 } 4130 } 4131 } 4132 4133 return false; 4134 } 4135 4136 static ExprResult BuildCXXCastArgument(Sema &S, 4137 SourceLocation CastLoc, 4138 QualType Ty, 4139 CastKind Kind, 4140 CXXMethodDecl *Method, 4141 DeclAccessPair FoundDecl, 4142 bool HadMultipleCandidates, 4143 Expr *From) { 4144 switch (Kind) { 4145 default: llvm_unreachable("Unhandled cast kind!"); 4146 case CK_ConstructorConversion: { 4147 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 4148 SmallVector<Expr*, 8> ConstructorArgs; 4149 4150 if (S.RequireNonAbstractType(CastLoc, Ty, 4151 diag::err_allocation_of_abstract_type)) 4152 return ExprError(); 4153 4154 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, 4155 ConstructorArgs)) 4156 return ExprError(); 4157 4158 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 4159 InitializedEntity::InitializeTemporary(Ty)); 4160 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4161 return ExprError(); 4162 4163 ExprResult Result = S.BuildCXXConstructExpr( 4164 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 4165 ConstructorArgs, HadMultipleCandidates, 4166 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4167 CXXConstructionKind::Complete, SourceRange()); 4168 if (Result.isInvalid()) 4169 return ExprError(); 4170 4171 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 4172 } 4173 4174 case CK_UserDefinedConversion: { 4175 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); 4176 4177 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 4178 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4179 return ExprError(); 4180 4181 // Create an implicit call expr that calls it. 4182 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 4183 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 4184 HadMultipleCandidates); 4185 if (Result.isInvalid()) 4186 return ExprError(); 4187 // Record usage of conversion in an implicit cast. 4188 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 4189 CK_UserDefinedConversion, Result.get(), 4190 nullptr, Result.get()->getValueKind(), 4191 S.CurFPFeatureOverrides()); 4192 4193 return S.MaybeBindToTemporary(Result.get()); 4194 } 4195 } 4196 } 4197 4198 ExprResult 4199 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4200 const ImplicitConversionSequence &ICS, 4201 AssignmentAction Action, 4202 CheckedConversionKind CCK) { 4203 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 4204 if (CCK == CheckedConversionKind::ForBuiltinOverloadedOp && 4205 !From->getType()->isRecordType()) 4206 return From; 4207 4208 switch (ICS.getKind()) { 4209 case ImplicitConversionSequence::StandardConversion: { 4210 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 4211 Action, CCK); 4212 if (Res.isInvalid()) 4213 return ExprError(); 4214 From = Res.get(); 4215 break; 4216 } 4217 4218 case ImplicitConversionSequence::UserDefinedConversion: { 4219 4220 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 4221 CastKind CastKind; 4222 QualType BeforeToType; 4223 assert(FD && "no conversion function for user-defined conversion seq"); 4224 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 4225 CastKind = CK_UserDefinedConversion; 4226 4227 // If the user-defined conversion is specified by a conversion function, 4228 // the initial standard conversion sequence converts the source type to 4229 // the implicit object parameter of the conversion function. 4230 BeforeToType = Context.getTagDeclType(Conv->getParent()); 4231 } else { 4232 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 4233 CastKind = CK_ConstructorConversion; 4234 // Do no conversion if dealing with ... for the first conversion. 4235 if (!ICS.UserDefined.EllipsisConversion) { 4236 // If the user-defined conversion is specified by a constructor, the 4237 // initial standard conversion sequence converts the source type to 4238 // the type required by the argument of the constructor 4239 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 4240 } 4241 } 4242 // Watch out for ellipsis conversion. 4243 if (!ICS.UserDefined.EllipsisConversion) { 4244 ExprResult Res = 4245 PerformImplicitConversion(From, BeforeToType, 4246 ICS.UserDefined.Before, AA_Converting, 4247 CCK); 4248 if (Res.isInvalid()) 4249 return ExprError(); 4250 From = Res.get(); 4251 } 4252 4253 ExprResult CastArg = BuildCXXCastArgument( 4254 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 4255 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 4256 ICS.UserDefined.HadMultipleCandidates, From); 4257 4258 if (CastArg.isInvalid()) 4259 return ExprError(); 4260 4261 From = CastArg.get(); 4262 4263 // C++ [over.match.oper]p7: 4264 // [...] the second standard conversion sequence of a user-defined 4265 // conversion sequence is not applied. 4266 if (CCK == CheckedConversionKind::ForBuiltinOverloadedOp) 4267 return From; 4268 4269 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4270 AA_Converting, CCK); 4271 } 4272 4273 case ImplicitConversionSequence::AmbiguousConversion: 4274 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4275 PDiag(diag::err_typecheck_ambiguous_condition) 4276 << From->getSourceRange()); 4277 return ExprError(); 4278 4279 case ImplicitConversionSequence::EllipsisConversion: 4280 case ImplicitConversionSequence::StaticObjectArgumentConversion: 4281 llvm_unreachable("bad conversion"); 4282 4283 case ImplicitConversionSequence::BadConversion: 4284 Sema::AssignConvertType ConvTy = 4285 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4286 bool Diagnosed = DiagnoseAssignmentResult( 4287 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4288 ToType, From->getType(), From, Action); 4289 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed; 4290 return ExprError(); 4291 } 4292 4293 // Everything went well. 4294 return From; 4295 } 4296 4297 // adjustVectorType - Compute the intermediate cast type casting elements of the 4298 // from type to the elements of the to type without resizing the vector. 4299 static QualType adjustVectorType(ASTContext &Context, QualType FromTy, 4300 QualType ToType, QualType *ElTy = nullptr) { 4301 auto *ToVec = ToType->castAs<VectorType>(); 4302 QualType ElType = ToVec->getElementType(); 4303 if (ElTy) 4304 *ElTy = ElType; 4305 if (!FromTy->isVectorType()) 4306 return ElType; 4307 auto *FromVec = FromTy->castAs<VectorType>(); 4308 return Context.getExtVectorType(ElType, FromVec->getNumElements()); 4309 } 4310 4311 ExprResult 4312 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4313 const StandardConversionSequence& SCS, 4314 AssignmentAction Action, 4315 CheckedConversionKind CCK) { 4316 bool CStyle = (CCK == CheckedConversionKind::CStyleCast || 4317 CCK == CheckedConversionKind::FunctionalCast); 4318 4319 // Overall FIXME: we are recomputing too many types here and doing far too 4320 // much extra work. What this means is that we need to keep track of more 4321 // information that is computed when we try the implicit conversion initially, 4322 // so that we don't need to recompute anything here. 4323 QualType FromType = From->getType(); 4324 4325 if (SCS.CopyConstructor) { 4326 // FIXME: When can ToType be a reference type? 4327 assert(!ToType->isReferenceType()); 4328 if (SCS.Second == ICK_Derived_To_Base) { 4329 SmallVector<Expr*, 8> ConstructorArgs; 4330 if (CompleteConstructorCall( 4331 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, 4332 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) 4333 return ExprError(); 4334 return BuildCXXConstructExpr( 4335 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4336 SCS.FoundCopyConstructor, SCS.CopyConstructor, ConstructorArgs, 4337 /*HadMultipleCandidates*/ false, 4338 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4339 CXXConstructionKind::Complete, SourceRange()); 4340 } 4341 return BuildCXXConstructExpr( 4342 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4343 SCS.FoundCopyConstructor, SCS.CopyConstructor, From, 4344 /*HadMultipleCandidates*/ false, 4345 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4346 CXXConstructionKind::Complete, SourceRange()); 4347 } 4348 4349 // Resolve overloaded function references. 4350 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4351 DeclAccessPair Found; 4352 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4353 true, Found); 4354 if (!Fn) 4355 return ExprError(); 4356 4357 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4358 return ExprError(); 4359 4360 ExprResult Res = FixOverloadedFunctionReference(From, Found, Fn); 4361 if (Res.isInvalid()) 4362 return ExprError(); 4363 4364 // We might get back another placeholder expression if we resolved to a 4365 // builtin. 4366 Res = CheckPlaceholderExpr(Res.get()); 4367 if (Res.isInvalid()) 4368 return ExprError(); 4369 4370 From = Res.get(); 4371 FromType = From->getType(); 4372 } 4373 4374 // If we're converting to an atomic type, first convert to the corresponding 4375 // non-atomic type. 4376 QualType ToAtomicType; 4377 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4378 ToAtomicType = ToType; 4379 ToType = ToAtomic->getValueType(); 4380 } 4381 4382 QualType InitialFromType = FromType; 4383 // Perform the first implicit conversion. 4384 switch (SCS.First) { 4385 case ICK_Identity: 4386 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4387 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4388 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4389 From, /*BasePath=*/nullptr, VK_PRValue, 4390 FPOptionsOverride()); 4391 } 4392 break; 4393 4394 case ICK_Lvalue_To_Rvalue: { 4395 assert(From->getObjectKind() != OK_ObjCProperty); 4396 ExprResult FromRes = DefaultLvalueConversion(From); 4397 if (FromRes.isInvalid()) 4398 return ExprError(); 4399 4400 From = FromRes.get(); 4401 FromType = From->getType(); 4402 break; 4403 } 4404 4405 case ICK_Array_To_Pointer: 4406 FromType = Context.getArrayDecayedType(FromType); 4407 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue, 4408 /*BasePath=*/nullptr, CCK) 4409 .get(); 4410 break; 4411 4412 case ICK_HLSL_Array_RValue: 4413 FromType = Context.getArrayParameterType(FromType); 4414 From = ImpCastExprToType(From, FromType, CK_HLSLArrayRValue, VK_PRValue, 4415 /*BasePath=*/nullptr, CCK) 4416 .get(); 4417 break; 4418 4419 case ICK_Function_To_Pointer: 4420 FromType = Context.getPointerType(FromType); 4421 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4422 VK_PRValue, /*BasePath=*/nullptr, CCK) 4423 .get(); 4424 break; 4425 4426 default: 4427 llvm_unreachable("Improper first standard conversion"); 4428 } 4429 4430 // Perform the second implicit conversion 4431 switch (SCS.Second) { 4432 case ICK_Identity: 4433 // C++ [except.spec]p5: 4434 // [For] assignment to and initialization of pointers to functions, 4435 // pointers to member functions, and references to functions: the 4436 // target entity shall allow at least the exceptions allowed by the 4437 // source value in the assignment or initialization. 4438 switch (Action) { 4439 case AA_Assigning: 4440 case AA_Initializing: 4441 // Note, function argument passing and returning are initialization. 4442 case AA_Passing: 4443 case AA_Returning: 4444 case AA_Sending: 4445 case AA_Passing_CFAudited: 4446 if (CheckExceptionSpecCompatibility(From, ToType)) 4447 return ExprError(); 4448 break; 4449 4450 case AA_Casting: 4451 case AA_Converting: 4452 // Casts and implicit conversions are not initialization, so are not 4453 // checked for exception specification mismatches. 4454 break; 4455 } 4456 // Nothing else to do. 4457 break; 4458 4459 case ICK_Integral_Promotion: 4460 case ICK_Integral_Conversion: { 4461 QualType ElTy = ToType; 4462 QualType StepTy = ToType; 4463 if (ToType->isVectorType()) 4464 StepTy = adjustVectorType(Context, FromType, ToType, &ElTy); 4465 if (ElTy->isBooleanType()) { 4466 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && 4467 SCS.Second == ICK_Integral_Promotion && 4468 "only enums with fixed underlying type can promote to bool"); 4469 From = ImpCastExprToType(From, StepTy, CK_IntegralToBoolean, VK_PRValue, 4470 /*BasePath=*/nullptr, CCK) 4471 .get(); 4472 } else { 4473 From = ImpCastExprToType(From, StepTy, CK_IntegralCast, VK_PRValue, 4474 /*BasePath=*/nullptr, CCK) 4475 .get(); 4476 } 4477 break; 4478 } 4479 4480 case ICK_Floating_Promotion: 4481 case ICK_Floating_Conversion: { 4482 QualType StepTy = ToType; 4483 if (ToType->isVectorType()) 4484 StepTy = adjustVectorType(Context, FromType, ToType); 4485 From = ImpCastExprToType(From, StepTy, CK_FloatingCast, VK_PRValue, 4486 /*BasePath=*/nullptr, CCK) 4487 .get(); 4488 break; 4489 } 4490 4491 case ICK_Complex_Promotion: 4492 case ICK_Complex_Conversion: { 4493 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4494 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4495 CastKind CK; 4496 if (FromEl->isRealFloatingType()) { 4497 if (ToEl->isRealFloatingType()) 4498 CK = CK_FloatingComplexCast; 4499 else 4500 CK = CK_FloatingComplexToIntegralComplex; 4501 } else if (ToEl->isRealFloatingType()) { 4502 CK = CK_IntegralComplexToFloatingComplex; 4503 } else { 4504 CK = CK_IntegralComplexCast; 4505 } 4506 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr, 4507 CCK) 4508 .get(); 4509 break; 4510 } 4511 4512 case ICK_Floating_Integral: { 4513 QualType ElTy = ToType; 4514 QualType StepTy = ToType; 4515 if (ToType->isVectorType()) 4516 StepTy = adjustVectorType(Context, FromType, ToType, &ElTy); 4517 if (ElTy->isRealFloatingType()) 4518 From = ImpCastExprToType(From, StepTy, CK_IntegralToFloating, VK_PRValue, 4519 /*BasePath=*/nullptr, CCK) 4520 .get(); 4521 else 4522 From = ImpCastExprToType(From, StepTy, CK_FloatingToIntegral, VK_PRValue, 4523 /*BasePath=*/nullptr, CCK) 4524 .get(); 4525 break; 4526 } 4527 4528 case ICK_Fixed_Point_Conversion: 4529 assert((FromType->isFixedPointType() || ToType->isFixedPointType()) && 4530 "Attempting implicit fixed point conversion without a fixed " 4531 "point operand"); 4532 if (FromType->isFloatingType()) 4533 From = ImpCastExprToType(From, ToType, CK_FloatingToFixedPoint, 4534 VK_PRValue, 4535 /*BasePath=*/nullptr, CCK).get(); 4536 else if (ToType->isFloatingType()) 4537 From = ImpCastExprToType(From, ToType, CK_FixedPointToFloating, 4538 VK_PRValue, 4539 /*BasePath=*/nullptr, CCK).get(); 4540 else if (FromType->isIntegralType(Context)) 4541 From = ImpCastExprToType(From, ToType, CK_IntegralToFixedPoint, 4542 VK_PRValue, 4543 /*BasePath=*/nullptr, CCK).get(); 4544 else if (ToType->isIntegralType(Context)) 4545 From = ImpCastExprToType(From, ToType, CK_FixedPointToIntegral, 4546 VK_PRValue, 4547 /*BasePath=*/nullptr, CCK).get(); 4548 else if (ToType->isBooleanType()) 4549 From = ImpCastExprToType(From, ToType, CK_FixedPointToBoolean, 4550 VK_PRValue, 4551 /*BasePath=*/nullptr, CCK).get(); 4552 else 4553 From = ImpCastExprToType(From, ToType, CK_FixedPointCast, 4554 VK_PRValue, 4555 /*BasePath=*/nullptr, CCK).get(); 4556 break; 4557 4558 case ICK_Compatible_Conversion: 4559 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4560 /*BasePath=*/nullptr, CCK).get(); 4561 break; 4562 4563 case ICK_Writeback_Conversion: 4564 case ICK_Pointer_Conversion: { 4565 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4566 // Diagnose incompatible Objective-C conversions 4567 if (Action == AA_Initializing || Action == AA_Assigning) 4568 Diag(From->getBeginLoc(), 4569 diag::ext_typecheck_convert_incompatible_pointer) 4570 << ToType << From->getType() << Action << From->getSourceRange() 4571 << 0; 4572 else 4573 Diag(From->getBeginLoc(), 4574 diag::ext_typecheck_convert_incompatible_pointer) 4575 << From->getType() << ToType << Action << From->getSourceRange() 4576 << 0; 4577 4578 if (From->getType()->isObjCObjectPointerType() && 4579 ToType->isObjCObjectPointerType()) 4580 ObjC().EmitRelatedResultTypeNote(From); 4581 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4582 !ObjC().CheckObjCARCUnavailableWeakConversion(ToType, 4583 From->getType())) { 4584 if (Action == AA_Initializing) 4585 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4586 else 4587 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4588 << (Action == AA_Casting) << From->getType() << ToType 4589 << From->getSourceRange(); 4590 } 4591 4592 // Defer address space conversion to the third conversion. 4593 QualType FromPteeType = From->getType()->getPointeeType(); 4594 QualType ToPteeType = ToType->getPointeeType(); 4595 QualType NewToType = ToType; 4596 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4597 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4598 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4599 NewToType = Context.getAddrSpaceQualType(NewToType, 4600 FromPteeType.getAddressSpace()); 4601 if (ToType->isObjCObjectPointerType()) 4602 NewToType = Context.getObjCObjectPointerType(NewToType); 4603 else if (ToType->isBlockPointerType()) 4604 NewToType = Context.getBlockPointerType(NewToType); 4605 else 4606 NewToType = Context.getPointerType(NewToType); 4607 } 4608 4609 CastKind Kind; 4610 CXXCastPath BasePath; 4611 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4612 return ExprError(); 4613 4614 // Make sure we extend blocks if necessary. 4615 // FIXME: doing this here is really ugly. 4616 if (Kind == CK_BlockPointerToObjCPointerCast) { 4617 ExprResult E = From; 4618 (void)ObjC().PrepareCastToObjCObjectPointer(E); 4619 From = E.get(); 4620 } 4621 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4622 ObjC().CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4623 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK) 4624 .get(); 4625 break; 4626 } 4627 4628 case ICK_Pointer_Member: { 4629 CastKind Kind; 4630 CXXCastPath BasePath; 4631 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4632 return ExprError(); 4633 if (CheckExceptionSpecCompatibility(From, ToType)) 4634 return ExprError(); 4635 4636 // We may not have been able to figure out what this member pointer resolved 4637 // to up until this exact point. Attempt to lock-in it's inheritance model. 4638 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4639 (void)isCompleteType(From->getExprLoc(), From->getType()); 4640 (void)isCompleteType(From->getExprLoc(), ToType); 4641 } 4642 4643 From = 4644 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get(); 4645 break; 4646 } 4647 4648 case ICK_Boolean_Conversion: { 4649 // Perform half-to-boolean conversion via float. 4650 if (From->getType()->isHalfType()) { 4651 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4652 FromType = Context.FloatTy; 4653 } 4654 QualType ElTy = FromType; 4655 QualType StepTy = ToType; 4656 if (FromType->isVectorType()) { 4657 if (getLangOpts().HLSL) 4658 StepTy = adjustVectorType(Context, FromType, ToType); 4659 ElTy = FromType->castAs<VectorType>()->getElementType(); 4660 } 4661 4662 From = ImpCastExprToType(From, StepTy, ScalarTypeToBooleanCastKind(ElTy), 4663 VK_PRValue, 4664 /*BasePath=*/nullptr, CCK) 4665 .get(); 4666 break; 4667 } 4668 4669 case ICK_Derived_To_Base: { 4670 CXXCastPath BasePath; 4671 if (CheckDerivedToBaseConversion( 4672 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4673 From->getSourceRange(), &BasePath, CStyle)) 4674 return ExprError(); 4675 4676 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4677 CK_DerivedToBase, From->getValueKind(), 4678 &BasePath, CCK).get(); 4679 break; 4680 } 4681 4682 case ICK_Vector_Conversion: 4683 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4684 /*BasePath=*/nullptr, CCK) 4685 .get(); 4686 break; 4687 4688 case ICK_SVE_Vector_Conversion: 4689 case ICK_RVV_Vector_Conversion: 4690 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4691 /*BasePath=*/nullptr, CCK) 4692 .get(); 4693 break; 4694 4695 case ICK_Vector_Splat: { 4696 // Vector splat from any arithmetic type to a vector. 4697 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4698 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, 4699 /*BasePath=*/nullptr, CCK) 4700 .get(); 4701 break; 4702 } 4703 4704 case ICK_Complex_Real: 4705 // Case 1. x -> _Complex y 4706 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4707 QualType ElType = ToComplex->getElementType(); 4708 bool isFloatingComplex = ElType->isRealFloatingType(); 4709 4710 // x -> y 4711 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4712 // do nothing 4713 } else if (From->getType()->isRealFloatingType()) { 4714 From = ImpCastExprToType(From, ElType, 4715 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4716 } else { 4717 assert(From->getType()->isIntegerType()); 4718 From = ImpCastExprToType(From, ElType, 4719 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4720 } 4721 // y -> _Complex y 4722 From = ImpCastExprToType(From, ToType, 4723 isFloatingComplex ? CK_FloatingRealToComplex 4724 : CK_IntegralRealToComplex).get(); 4725 4726 // Case 2. _Complex x -> y 4727 } else { 4728 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4729 QualType ElType = FromComplex->getElementType(); 4730 bool isFloatingComplex = ElType->isRealFloatingType(); 4731 4732 // _Complex x -> x 4733 From = ImpCastExprToType(From, ElType, 4734 isFloatingComplex ? CK_FloatingComplexToReal 4735 : CK_IntegralComplexToReal, 4736 VK_PRValue, /*BasePath=*/nullptr, CCK) 4737 .get(); 4738 4739 // x -> y 4740 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4741 // do nothing 4742 } else if (ToType->isRealFloatingType()) { 4743 From = ImpCastExprToType(From, ToType, 4744 isFloatingComplex ? CK_FloatingCast 4745 : CK_IntegralToFloating, 4746 VK_PRValue, /*BasePath=*/nullptr, CCK) 4747 .get(); 4748 } else { 4749 assert(ToType->isIntegerType()); 4750 From = ImpCastExprToType(From, ToType, 4751 isFloatingComplex ? CK_FloatingToIntegral 4752 : CK_IntegralCast, 4753 VK_PRValue, /*BasePath=*/nullptr, CCK) 4754 .get(); 4755 } 4756 } 4757 break; 4758 4759 case ICK_Block_Pointer_Conversion: { 4760 LangAS AddrSpaceL = 4761 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4762 LangAS AddrSpaceR = 4763 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4764 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && 4765 "Invalid cast"); 4766 CastKind Kind = 4767 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4768 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4769 VK_PRValue, /*BasePath=*/nullptr, CCK) 4770 .get(); 4771 break; 4772 } 4773 4774 case ICK_TransparentUnionConversion: { 4775 ExprResult FromRes = From; 4776 Sema::AssignConvertType ConvTy = 4777 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4778 if (FromRes.isInvalid()) 4779 return ExprError(); 4780 From = FromRes.get(); 4781 assert ((ConvTy == Sema::Compatible) && 4782 "Improper transparent union conversion"); 4783 (void)ConvTy; 4784 break; 4785 } 4786 4787 case ICK_Zero_Event_Conversion: 4788 case ICK_Zero_Queue_Conversion: 4789 From = ImpCastExprToType(From, ToType, 4790 CK_ZeroToOCLOpaqueType, 4791 From->getValueKind()).get(); 4792 break; 4793 4794 case ICK_Lvalue_To_Rvalue: 4795 case ICK_Array_To_Pointer: 4796 case ICK_Function_To_Pointer: 4797 case ICK_Function_Conversion: 4798 case ICK_Qualification: 4799 case ICK_Num_Conversion_Kinds: 4800 case ICK_C_Only_Conversion: 4801 case ICK_Incompatible_Pointer_Conversion: 4802 case ICK_HLSL_Array_RValue: 4803 case ICK_HLSL_Vector_Truncation: 4804 case ICK_HLSL_Vector_Splat: 4805 llvm_unreachable("Improper second standard conversion"); 4806 } 4807 4808 if (SCS.Dimension != ICK_Identity) { 4809 // If SCS.Element is not ICK_Identity the To and From types must be HLSL 4810 // vectors or matrices. 4811 4812 // TODO: Support HLSL matrices. 4813 assert((!From->getType()->isMatrixType() && !ToType->isMatrixType()) && 4814 "Dimension conversion for matrix types is not implemented yet."); 4815 assert(ToType->isVectorType() && 4816 "Dimension conversion is only supported for vector types."); 4817 switch (SCS.Dimension) { 4818 case ICK_HLSL_Vector_Splat: { 4819 // Vector splat from any arithmetic type to a vector. 4820 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4821 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, 4822 /*BasePath=*/nullptr, CCK) 4823 .get(); 4824 break; 4825 } 4826 case ICK_HLSL_Vector_Truncation: { 4827 // Note: HLSL built-in vectors are ExtVectors. Since this truncates a 4828 // vector to a smaller vector, this can only operate on arguments where 4829 // the source and destination types are ExtVectors. 4830 assert(From->getType()->isExtVectorType() && ToType->isExtVectorType() && 4831 "HLSL vector truncation should only apply to ExtVectors"); 4832 auto *FromVec = From->getType()->castAs<VectorType>(); 4833 auto *ToVec = ToType->castAs<VectorType>(); 4834 QualType ElType = FromVec->getElementType(); 4835 QualType TruncTy = 4836 Context.getExtVectorType(ElType, ToVec->getNumElements()); 4837 From = ImpCastExprToType(From, TruncTy, CK_HLSLVectorTruncation, 4838 From->getValueKind()) 4839 .get(); 4840 break; 4841 } 4842 case ICK_Identity: 4843 default: 4844 llvm_unreachable("Improper element standard conversion"); 4845 } 4846 } 4847 4848 switch (SCS.Third) { 4849 case ICK_Identity: 4850 // Nothing to do. 4851 break; 4852 4853 case ICK_Function_Conversion: 4854 // If both sides are functions (or pointers/references to them), there could 4855 // be incompatible exception declarations. 4856 if (CheckExceptionSpecCompatibility(From, ToType)) 4857 return ExprError(); 4858 4859 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue, 4860 /*BasePath=*/nullptr, CCK) 4861 .get(); 4862 break; 4863 4864 case ICK_Qualification: { 4865 ExprValueKind VK = From->getValueKind(); 4866 CastKind CK = CK_NoOp; 4867 4868 if (ToType->isReferenceType() && 4869 ToType->getPointeeType().getAddressSpace() != 4870 From->getType().getAddressSpace()) 4871 CK = CK_AddressSpaceConversion; 4872 4873 if (ToType->isPointerType() && 4874 ToType->getPointeeType().getAddressSpace() != 4875 From->getType()->getPointeeType().getAddressSpace()) 4876 CK = CK_AddressSpaceConversion; 4877 4878 if (!isCast(CCK) && 4879 !ToType->getPointeeType().getQualifiers().hasUnaligned() && 4880 From->getType()->getPointeeType().getQualifiers().hasUnaligned()) { 4881 Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned) 4882 << InitialFromType << ToType; 4883 } 4884 4885 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4886 /*BasePath=*/nullptr, CCK) 4887 .get(); 4888 4889 if (SCS.DeprecatedStringLiteralToCharPtr && 4890 !getLangOpts().WritableStrings) { 4891 Diag(From->getBeginLoc(), 4892 getLangOpts().CPlusPlus11 4893 ? diag::ext_deprecated_string_literal_conversion 4894 : diag::warn_deprecated_string_literal_conversion) 4895 << ToType.getNonReferenceType(); 4896 } 4897 4898 break; 4899 } 4900 4901 default: 4902 llvm_unreachable("Improper third standard conversion"); 4903 } 4904 4905 // If this conversion sequence involved a scalar -> atomic conversion, perform 4906 // that conversion now. 4907 if (!ToAtomicType.isNull()) { 4908 assert(Context.hasSameType( 4909 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); 4910 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4911 VK_PRValue, nullptr, CCK) 4912 .get(); 4913 } 4914 4915 // Materialize a temporary if we're implicitly converting to a reference 4916 // type. This is not required by the C++ rules but is necessary to maintain 4917 // AST invariants. 4918 if (ToType->isReferenceType() && From->isPRValue()) { 4919 ExprResult Res = TemporaryMaterializationConversion(From); 4920 if (Res.isInvalid()) 4921 return ExprError(); 4922 From = Res.get(); 4923 } 4924 4925 // If this conversion sequence succeeded and involved implicitly converting a 4926 // _Nullable type to a _Nonnull one, complain. 4927 if (!isCast(CCK)) 4928 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4929 From->getBeginLoc()); 4930 4931 return From; 4932 } 4933 4934 /// Checks that type T is not a VLA. 4935 /// 4936 /// @returns @c true if @p T is VLA and a diagnostic was emitted, 4937 /// @c false otherwise. 4938 static bool DiagnoseVLAInCXXTypeTrait(Sema &S, const TypeSourceInfo *T, 4939 clang::tok::TokenKind TypeTraitID) { 4940 if (!T->getType()->isVariableArrayType()) 4941 return false; 4942 4943 S.Diag(T->getTypeLoc().getBeginLoc(), diag::err_vla_unsupported) 4944 << 1 << TypeTraitID; 4945 return true; 4946 } 4947 4948 /// Check the completeness of a type in a unary type trait. 4949 /// 4950 /// If the particular type trait requires a complete type, tries to complete 4951 /// it. If completing the type fails, a diagnostic is emitted and false 4952 /// returned. If completing the type succeeds or no completion was required, 4953 /// returns true. 4954 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4955 SourceLocation Loc, 4956 QualType ArgTy) { 4957 // C++0x [meta.unary.prop]p3: 4958 // For all of the class templates X declared in this Clause, instantiating 4959 // that template with a template argument that is a class template 4960 // specialization may result in the implicit instantiation of the template 4961 // argument if and only if the semantics of X require that the argument 4962 // must be a complete type. 4963 // We apply this rule to all the type trait expressions used to implement 4964 // these class templates. We also try to follow any GCC documented behavior 4965 // in these expressions to ensure portability of standard libraries. 4966 switch (UTT) { 4967 default: llvm_unreachable("not a UTT"); 4968 // is_complete_type somewhat obviously cannot require a complete type. 4969 case UTT_IsCompleteType: 4970 // Fall-through 4971 4972 // These traits are modeled on the type predicates in C++0x 4973 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4974 // requiring a complete type, as whether or not they return true cannot be 4975 // impacted by the completeness of the type. 4976 case UTT_IsVoid: 4977 case UTT_IsIntegral: 4978 case UTT_IsFloatingPoint: 4979 case UTT_IsArray: 4980 case UTT_IsBoundedArray: 4981 case UTT_IsPointer: 4982 case UTT_IsNullPointer: 4983 case UTT_IsReferenceable: 4984 case UTT_IsLvalueReference: 4985 case UTT_IsRvalueReference: 4986 case UTT_IsMemberFunctionPointer: 4987 case UTT_IsMemberObjectPointer: 4988 case UTT_IsEnum: 4989 case UTT_IsScopedEnum: 4990 case UTT_IsUnion: 4991 case UTT_IsClass: 4992 case UTT_IsFunction: 4993 case UTT_IsReference: 4994 case UTT_IsArithmetic: 4995 case UTT_IsFundamental: 4996 case UTT_IsObject: 4997 case UTT_IsScalar: 4998 case UTT_IsCompound: 4999 case UTT_IsMemberPointer: 5000 // Fall-through 5001 5002 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 5003 // which requires some of its traits to have the complete type. However, 5004 // the completeness of the type cannot impact these traits' semantics, and 5005 // so they don't require it. This matches the comments on these traits in 5006 // Table 49. 5007 case UTT_IsConst: 5008 case UTT_IsVolatile: 5009 case UTT_IsSigned: 5010 case UTT_IsUnboundedArray: 5011 case UTT_IsUnsigned: 5012 5013 // This type trait always returns false, checking the type is moot. 5014 case UTT_IsInterfaceClass: 5015 return true; 5016 5017 // C++14 [meta.unary.prop]: 5018 // If T is a non-union class type, T shall be a complete type. 5019 case UTT_IsEmpty: 5020 case UTT_IsPolymorphic: 5021 case UTT_IsAbstract: 5022 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 5023 if (!RD->isUnion()) 5024 return !S.RequireCompleteType( 5025 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 5026 return true; 5027 5028 // C++14 [meta.unary.prop]: 5029 // If T is a class type, T shall be a complete type. 5030 case UTT_IsFinal: 5031 case UTT_IsSealed: 5032 if (ArgTy->getAsCXXRecordDecl()) 5033 return !S.RequireCompleteType( 5034 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 5035 return true; 5036 5037 // LWG3823: T shall be an array type, a complete type, or cv void. 5038 case UTT_IsAggregate: 5039 if (ArgTy->isArrayType() || ArgTy->isVoidType()) 5040 return true; 5041 5042 return !S.RequireCompleteType( 5043 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 5044 5045 // C++1z [meta.unary.prop]: 5046 // remove_all_extents_t<T> shall be a complete type or cv void. 5047 case UTT_IsTrivial: 5048 case UTT_IsTriviallyCopyable: 5049 case UTT_IsStandardLayout: 5050 case UTT_IsPOD: 5051 case UTT_IsLiteral: 5052 case UTT_IsBitwiseCloneable: 5053 // By analogy, is_trivially_relocatable and is_trivially_equality_comparable 5054 // impose the same constraints. 5055 case UTT_IsTriviallyRelocatable: 5056 case UTT_IsTriviallyEqualityComparable: 5057 case UTT_CanPassInRegs: 5058 // Per the GCC type traits documentation, T shall be a complete type, cv void, 5059 // or an array of unknown bound. But GCC actually imposes the same constraints 5060 // as above. 5061 case UTT_HasNothrowAssign: 5062 case UTT_HasNothrowMoveAssign: 5063 case UTT_HasNothrowConstructor: 5064 case UTT_HasNothrowCopy: 5065 case UTT_HasTrivialAssign: 5066 case UTT_HasTrivialMoveAssign: 5067 case UTT_HasTrivialDefaultConstructor: 5068 case UTT_HasTrivialMoveConstructor: 5069 case UTT_HasTrivialCopy: 5070 case UTT_HasTrivialDestructor: 5071 case UTT_HasVirtualDestructor: 5072 // has_unique_object_representations<T> when T is an array is defined in terms 5073 // of has_unique_object_representations<remove_all_extents_t<T>>, so the base 5074 // type needs to be complete even if the type is an incomplete array type. 5075 case UTT_HasUniqueObjectRepresentations: 5076 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 5077 [[fallthrough]]; 5078 5079 // C++1z [meta.unary.prop]: 5080 // T shall be a complete type, cv void, or an array of unknown bound. 5081 case UTT_IsDestructible: 5082 case UTT_IsNothrowDestructible: 5083 case UTT_IsTriviallyDestructible: 5084 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 5085 return true; 5086 5087 return !S.RequireCompleteType( 5088 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 5089 } 5090 } 5091 5092 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 5093 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 5094 bool (CXXRecordDecl::*HasTrivial)() const, 5095 bool (CXXRecordDecl::*HasNonTrivial)() const, 5096 bool (CXXMethodDecl::*IsDesiredOp)() const) 5097 { 5098 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 5099 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 5100 return true; 5101 5102 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 5103 DeclarationNameInfo NameInfo(Name, KeyLoc); 5104 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 5105 if (Self.LookupQualifiedName(Res, RD)) { 5106 bool FoundOperator = false; 5107 Res.suppressDiagnostics(); 5108 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 5109 Op != OpEnd; ++Op) { 5110 if (isa<FunctionTemplateDecl>(*Op)) 5111 continue; 5112 5113 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 5114 if((Operator->*IsDesiredOp)()) { 5115 FoundOperator = true; 5116 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 5117 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5118 if (!CPT || !CPT->isNothrow()) 5119 return false; 5120 } 5121 } 5122 return FoundOperator; 5123 } 5124 return false; 5125 } 5126 5127 static bool HasNonDeletedDefaultedEqualityComparison(Sema &S, 5128 const CXXRecordDecl *Decl, 5129 SourceLocation KeyLoc) { 5130 if (Decl->isUnion()) 5131 return false; 5132 if (Decl->isLambda()) 5133 return Decl->isCapturelessLambda(); 5134 5135 { 5136 EnterExpressionEvaluationContext UnevaluatedContext( 5137 S, Sema::ExpressionEvaluationContext::Unevaluated); 5138 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5139 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5140 5141 // const ClassT& obj; 5142 OpaqueValueExpr Operand( 5143 KeyLoc, 5144 Decl->getTypeForDecl()->getCanonicalTypeUnqualified().withConst(), 5145 ExprValueKind::VK_LValue); 5146 UnresolvedSet<16> Functions; 5147 // obj == obj; 5148 S.LookupBinOp(S.TUScope, {}, BinaryOperatorKind::BO_EQ, Functions); 5149 5150 auto Result = S.CreateOverloadedBinOp(KeyLoc, BinaryOperatorKind::BO_EQ, 5151 Functions, &Operand, &Operand); 5152 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5153 return false; 5154 5155 const auto *CallExpr = dyn_cast<CXXOperatorCallExpr>(Result.get()); 5156 if (!CallExpr) 5157 return false; 5158 const auto *Callee = CallExpr->getDirectCallee(); 5159 auto ParamT = Callee->getParamDecl(0)->getType(); 5160 if (!Callee->isDefaulted()) 5161 return false; 5162 if (!ParamT->isReferenceType() && !Decl->isTriviallyCopyable()) 5163 return false; 5164 if (ParamT.getNonReferenceType()->getUnqualifiedDesugaredType() != 5165 Decl->getTypeForDecl()) 5166 return false; 5167 } 5168 5169 return llvm::all_of(Decl->bases(), 5170 [&](const CXXBaseSpecifier &BS) { 5171 if (const auto *RD = BS.getType()->getAsCXXRecordDecl()) 5172 return HasNonDeletedDefaultedEqualityComparison( 5173 S, RD, KeyLoc); 5174 return true; 5175 }) && 5176 llvm::all_of(Decl->fields(), [&](const FieldDecl *FD) { 5177 auto Type = FD->getType(); 5178 if (Type->isArrayType()) 5179 Type = Type->getBaseElementTypeUnsafe() 5180 ->getCanonicalTypeUnqualified(); 5181 5182 if (Type->isReferenceType() || Type->isEnumeralType()) 5183 return false; 5184 if (const auto *RD = Type->getAsCXXRecordDecl()) 5185 return HasNonDeletedDefaultedEqualityComparison(S, RD, KeyLoc); 5186 return true; 5187 }); 5188 } 5189 5190 static bool isTriviallyEqualityComparableType(Sema &S, QualType Type, SourceLocation KeyLoc) { 5191 QualType CanonicalType = Type.getCanonicalType(); 5192 if (CanonicalType->isIncompleteType() || CanonicalType->isDependentType() || 5193 CanonicalType->isEnumeralType() || CanonicalType->isArrayType()) 5194 return false; 5195 5196 if (const auto *RD = CanonicalType->getAsCXXRecordDecl()) { 5197 if (!HasNonDeletedDefaultedEqualityComparison(S, RD, KeyLoc)) 5198 return false; 5199 } 5200 5201 return S.getASTContext().hasUniqueObjectRepresentations( 5202 CanonicalType, /*CheckIfTriviallyCopyable=*/false); 5203 } 5204 5205 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 5206 SourceLocation KeyLoc, 5207 TypeSourceInfo *TInfo) { 5208 QualType T = TInfo->getType(); 5209 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 5210 5211 ASTContext &C = Self.Context; 5212 switch(UTT) { 5213 default: llvm_unreachable("not a UTT"); 5214 // Type trait expressions corresponding to the primary type category 5215 // predicates in C++0x [meta.unary.cat]. 5216 case UTT_IsVoid: 5217 return T->isVoidType(); 5218 case UTT_IsIntegral: 5219 return T->isIntegralType(C); 5220 case UTT_IsFloatingPoint: 5221 return T->isFloatingType(); 5222 case UTT_IsArray: 5223 // Zero-sized arrays aren't considered arrays in partial specializations, 5224 // so __is_array shouldn't consider them arrays either. 5225 if (const auto *CAT = C.getAsConstantArrayType(T)) 5226 return CAT->getSize() != 0; 5227 return T->isArrayType(); 5228 case UTT_IsBoundedArray: 5229 if (DiagnoseVLAInCXXTypeTrait(Self, TInfo, tok::kw___is_bounded_array)) 5230 return false; 5231 // Zero-sized arrays aren't considered arrays in partial specializations, 5232 // so __is_bounded_array shouldn't consider them arrays either. 5233 if (const auto *CAT = C.getAsConstantArrayType(T)) 5234 return CAT->getSize() != 0; 5235 return T->isArrayType() && !T->isIncompleteArrayType(); 5236 case UTT_IsUnboundedArray: 5237 if (DiagnoseVLAInCXXTypeTrait(Self, TInfo, tok::kw___is_unbounded_array)) 5238 return false; 5239 return T->isIncompleteArrayType(); 5240 case UTT_IsPointer: 5241 return T->isAnyPointerType(); 5242 case UTT_IsNullPointer: 5243 return T->isNullPtrType(); 5244 case UTT_IsLvalueReference: 5245 return T->isLValueReferenceType(); 5246 case UTT_IsRvalueReference: 5247 return T->isRValueReferenceType(); 5248 case UTT_IsMemberFunctionPointer: 5249 return T->isMemberFunctionPointerType(); 5250 case UTT_IsMemberObjectPointer: 5251 return T->isMemberDataPointerType(); 5252 case UTT_IsEnum: 5253 return T->isEnumeralType(); 5254 case UTT_IsScopedEnum: 5255 return T->isScopedEnumeralType(); 5256 case UTT_IsUnion: 5257 return T->isUnionType(); 5258 case UTT_IsClass: 5259 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 5260 case UTT_IsFunction: 5261 return T->isFunctionType(); 5262 5263 // Type trait expressions which correspond to the convenient composition 5264 // predicates in C++0x [meta.unary.comp]. 5265 case UTT_IsReference: 5266 return T->isReferenceType(); 5267 case UTT_IsArithmetic: 5268 return T->isArithmeticType() && !T->isEnumeralType(); 5269 case UTT_IsFundamental: 5270 return T->isFundamentalType(); 5271 case UTT_IsObject: 5272 return T->isObjectType(); 5273 case UTT_IsScalar: 5274 // Note: semantic analysis depends on Objective-C lifetime types to be 5275 // considered scalar types. However, such types do not actually behave 5276 // like scalar types at run time (since they may require retain/release 5277 // operations), so we report them as non-scalar. 5278 if (T->isObjCLifetimeType()) { 5279 switch (T.getObjCLifetime()) { 5280 case Qualifiers::OCL_None: 5281 case Qualifiers::OCL_ExplicitNone: 5282 return true; 5283 5284 case Qualifiers::OCL_Strong: 5285 case Qualifiers::OCL_Weak: 5286 case Qualifiers::OCL_Autoreleasing: 5287 return false; 5288 } 5289 } 5290 5291 return T->isScalarType(); 5292 case UTT_IsCompound: 5293 return T->isCompoundType(); 5294 case UTT_IsMemberPointer: 5295 return T->isMemberPointerType(); 5296 5297 // Type trait expressions which correspond to the type property predicates 5298 // in C++0x [meta.unary.prop]. 5299 case UTT_IsConst: 5300 return T.isConstQualified(); 5301 case UTT_IsVolatile: 5302 return T.isVolatileQualified(); 5303 case UTT_IsTrivial: 5304 return T.isTrivialType(C); 5305 case UTT_IsTriviallyCopyable: 5306 return T.isTriviallyCopyableType(C); 5307 case UTT_IsStandardLayout: 5308 return T->isStandardLayoutType(); 5309 case UTT_IsPOD: 5310 return T.isPODType(C); 5311 case UTT_IsLiteral: 5312 return T->isLiteralType(C); 5313 case UTT_IsEmpty: 5314 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5315 return !RD->isUnion() && RD->isEmpty(); 5316 return false; 5317 case UTT_IsPolymorphic: 5318 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5319 return !RD->isUnion() && RD->isPolymorphic(); 5320 return false; 5321 case UTT_IsAbstract: 5322 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5323 return !RD->isUnion() && RD->isAbstract(); 5324 return false; 5325 case UTT_IsAggregate: 5326 // Report vector extensions and complex types as aggregates because they 5327 // support aggregate initialization. GCC mirrors this behavior for vectors 5328 // but not _Complex. 5329 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 5330 T->isAnyComplexType(); 5331 // __is_interface_class only returns true when CL is invoked in /CLR mode and 5332 // even then only when it is used with the 'interface struct ...' syntax 5333 // Clang doesn't support /CLR which makes this type trait moot. 5334 case UTT_IsInterfaceClass: 5335 return false; 5336 case UTT_IsFinal: 5337 case UTT_IsSealed: 5338 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5339 return RD->hasAttr<FinalAttr>(); 5340 return false; 5341 case UTT_IsSigned: 5342 // Enum types should always return false. 5343 // Floating points should always return true. 5344 return T->isFloatingType() || 5345 (T->isSignedIntegerType() && !T->isEnumeralType()); 5346 case UTT_IsUnsigned: 5347 // Enum types should always return false. 5348 return T->isUnsignedIntegerType() && !T->isEnumeralType(); 5349 5350 // Type trait expressions which query classes regarding their construction, 5351 // destruction, and copying. Rather than being based directly on the 5352 // related type predicates in the standard, they are specified by both 5353 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 5354 // specifications. 5355 // 5356 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 5357 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5358 // 5359 // Note that these builtins do not behave as documented in g++: if a class 5360 // has both a trivial and a non-trivial special member of a particular kind, 5361 // they return false! For now, we emulate this behavior. 5362 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 5363 // does not correctly compute triviality in the presence of multiple special 5364 // members of the same kind. Revisit this once the g++ bug is fixed. 5365 case UTT_HasTrivialDefaultConstructor: 5366 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5367 // If __is_pod (type) is true then the trait is true, else if type is 5368 // a cv class or union type (or array thereof) with a trivial default 5369 // constructor ([class.ctor]) then the trait is true, else it is false. 5370 if (T.isPODType(C)) 5371 return true; 5372 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5373 return RD->hasTrivialDefaultConstructor() && 5374 !RD->hasNonTrivialDefaultConstructor(); 5375 return false; 5376 case UTT_HasTrivialMoveConstructor: 5377 // This trait is implemented by MSVC 2012 and needed to parse the 5378 // standard library headers. Specifically this is used as the logic 5379 // behind std::is_trivially_move_constructible (20.9.4.3). 5380 if (T.isPODType(C)) 5381 return true; 5382 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5383 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 5384 return false; 5385 case UTT_HasTrivialCopy: 5386 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5387 // If __is_pod (type) is true or type is a reference type then 5388 // the trait is true, else if type is a cv class or union type 5389 // with a trivial copy constructor ([class.copy]) then the trait 5390 // is true, else it is false. 5391 if (T.isPODType(C) || T->isReferenceType()) 5392 return true; 5393 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5394 return RD->hasTrivialCopyConstructor() && 5395 !RD->hasNonTrivialCopyConstructor(); 5396 return false; 5397 case UTT_HasTrivialMoveAssign: 5398 // This trait is implemented by MSVC 2012 and needed to parse the 5399 // standard library headers. Specifically it is used as the logic 5400 // behind std::is_trivially_move_assignable (20.9.4.3) 5401 if (T.isPODType(C)) 5402 return true; 5403 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5404 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 5405 return false; 5406 case UTT_HasTrivialAssign: 5407 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5408 // If type is const qualified or is a reference type then the 5409 // trait is false. Otherwise if __is_pod (type) is true then the 5410 // trait is true, else if type is a cv class or union type with 5411 // a trivial copy assignment ([class.copy]) then the trait is 5412 // true, else it is false. 5413 // Note: the const and reference restrictions are interesting, 5414 // given that const and reference members don't prevent a class 5415 // from having a trivial copy assignment operator (but do cause 5416 // errors if the copy assignment operator is actually used, q.v. 5417 // [class.copy]p12). 5418 5419 if (T.isConstQualified()) 5420 return false; 5421 if (T.isPODType(C)) 5422 return true; 5423 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5424 return RD->hasTrivialCopyAssignment() && 5425 !RD->hasNonTrivialCopyAssignment(); 5426 return false; 5427 case UTT_IsDestructible: 5428 case UTT_IsTriviallyDestructible: 5429 case UTT_IsNothrowDestructible: 5430 // C++14 [meta.unary.prop]: 5431 // For reference types, is_destructible<T>::value is true. 5432 if (T->isReferenceType()) 5433 return true; 5434 5435 // Objective-C++ ARC: autorelease types don't require destruction. 5436 if (T->isObjCLifetimeType() && 5437 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5438 return true; 5439 5440 // C++14 [meta.unary.prop]: 5441 // For incomplete types and function types, is_destructible<T>::value is 5442 // false. 5443 if (T->isIncompleteType() || T->isFunctionType()) 5444 return false; 5445 5446 // A type that requires destruction (via a non-trivial destructor or ARC 5447 // lifetime semantics) is not trivially-destructible. 5448 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 5449 return false; 5450 5451 // C++14 [meta.unary.prop]: 5452 // For object types and given U equal to remove_all_extents_t<T>, if the 5453 // expression std::declval<U&>().~U() is well-formed when treated as an 5454 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 5455 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5456 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 5457 if (!Destructor) 5458 return false; 5459 // C++14 [dcl.fct.def.delete]p2: 5460 // A program that refers to a deleted function implicitly or 5461 // explicitly, other than to declare it, is ill-formed. 5462 if (Destructor->isDeleted()) 5463 return false; 5464 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 5465 return false; 5466 if (UTT == UTT_IsNothrowDestructible) { 5467 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 5468 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5469 if (!CPT || !CPT->isNothrow()) 5470 return false; 5471 } 5472 } 5473 return true; 5474 5475 case UTT_HasTrivialDestructor: 5476 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5477 // If __is_pod (type) is true or type is a reference type 5478 // then the trait is true, else if type is a cv class or union 5479 // type (or array thereof) with a trivial destructor 5480 // ([class.dtor]) then the trait is true, else it is 5481 // false. 5482 if (T.isPODType(C) || T->isReferenceType()) 5483 return true; 5484 5485 // Objective-C++ ARC: autorelease types don't require destruction. 5486 if (T->isObjCLifetimeType() && 5487 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5488 return true; 5489 5490 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5491 return RD->hasTrivialDestructor(); 5492 return false; 5493 // TODO: Propagate nothrowness for implicitly declared special members. 5494 case UTT_HasNothrowAssign: 5495 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5496 // If type is const qualified or is a reference type then the 5497 // trait is false. Otherwise if __has_trivial_assign (type) 5498 // is true then the trait is true, else if type is a cv class 5499 // or union type with copy assignment operators that are known 5500 // not to throw an exception then the trait is true, else it is 5501 // false. 5502 if (C.getBaseElementType(T).isConstQualified()) 5503 return false; 5504 if (T->isReferenceType()) 5505 return false; 5506 if (T.isPODType(C) || T->isObjCLifetimeType()) 5507 return true; 5508 5509 if (const RecordType *RT = T->getAs<RecordType>()) 5510 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5511 &CXXRecordDecl::hasTrivialCopyAssignment, 5512 &CXXRecordDecl::hasNonTrivialCopyAssignment, 5513 &CXXMethodDecl::isCopyAssignmentOperator); 5514 return false; 5515 case UTT_HasNothrowMoveAssign: 5516 // This trait is implemented by MSVC 2012 and needed to parse the 5517 // standard library headers. Specifically this is used as the logic 5518 // behind std::is_nothrow_move_assignable (20.9.4.3). 5519 if (T.isPODType(C)) 5520 return true; 5521 5522 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 5523 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5524 &CXXRecordDecl::hasTrivialMoveAssignment, 5525 &CXXRecordDecl::hasNonTrivialMoveAssignment, 5526 &CXXMethodDecl::isMoveAssignmentOperator); 5527 return false; 5528 case UTT_HasNothrowCopy: 5529 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5530 // If __has_trivial_copy (type) is true then the trait is true, else 5531 // if type is a cv class or union type with copy constructors that are 5532 // known not to throw an exception then the trait is true, else it is 5533 // false. 5534 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 5535 return true; 5536 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 5537 if (RD->hasTrivialCopyConstructor() && 5538 !RD->hasNonTrivialCopyConstructor()) 5539 return true; 5540 5541 bool FoundConstructor = false; 5542 unsigned FoundTQs; 5543 for (const auto *ND : Self.LookupConstructors(RD)) { 5544 // A template constructor is never a copy constructor. 5545 // FIXME: However, it may actually be selected at the actual overload 5546 // resolution point. 5547 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5548 continue; 5549 // UsingDecl itself is not a constructor 5550 if (isa<UsingDecl>(ND)) 5551 continue; 5552 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5553 if (Constructor->isCopyConstructor(FoundTQs)) { 5554 FoundConstructor = true; 5555 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5556 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5557 if (!CPT) 5558 return false; 5559 // TODO: check whether evaluating default arguments can throw. 5560 // For now, we'll be conservative and assume that they can throw. 5561 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 5562 return false; 5563 } 5564 } 5565 5566 return FoundConstructor; 5567 } 5568 return false; 5569 case UTT_HasNothrowConstructor: 5570 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5571 // If __has_trivial_constructor (type) is true then the trait is 5572 // true, else if type is a cv class or union type (or array 5573 // thereof) with a default constructor that is known not to 5574 // throw an exception then the trait is true, else it is false. 5575 if (T.isPODType(C) || T->isObjCLifetimeType()) 5576 return true; 5577 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5578 if (RD->hasTrivialDefaultConstructor() && 5579 !RD->hasNonTrivialDefaultConstructor()) 5580 return true; 5581 5582 bool FoundConstructor = false; 5583 for (const auto *ND : Self.LookupConstructors(RD)) { 5584 // FIXME: In C++0x, a constructor template can be a default constructor. 5585 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5586 continue; 5587 // UsingDecl itself is not a constructor 5588 if (isa<UsingDecl>(ND)) 5589 continue; 5590 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5591 if (Constructor->isDefaultConstructor()) { 5592 FoundConstructor = true; 5593 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5594 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5595 if (!CPT) 5596 return false; 5597 // FIXME: check whether evaluating default arguments can throw. 5598 // For now, we'll be conservative and assume that they can throw. 5599 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5600 return false; 5601 } 5602 } 5603 return FoundConstructor; 5604 } 5605 return false; 5606 case UTT_HasVirtualDestructor: 5607 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5608 // If type is a class type with a virtual destructor ([class.dtor]) 5609 // then the trait is true, else it is false. 5610 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5611 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5612 return Destructor->isVirtual(); 5613 return false; 5614 5615 // These type trait expressions are modeled on the specifications for the 5616 // Embarcadero C++0x type trait functions: 5617 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5618 case UTT_IsCompleteType: 5619 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5620 // Returns True if and only if T is a complete type at the point of the 5621 // function call. 5622 return !T->isIncompleteType(); 5623 case UTT_HasUniqueObjectRepresentations: 5624 return C.hasUniqueObjectRepresentations(T); 5625 case UTT_IsTriviallyRelocatable: 5626 return T.isTriviallyRelocatableType(C); 5627 case UTT_IsBitwiseCloneable: 5628 return T.isBitwiseCloneableType(C); 5629 case UTT_IsReferenceable: 5630 return T.isReferenceable(); 5631 case UTT_CanPassInRegs: 5632 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl(); RD && !T.hasQualifiers()) 5633 return RD->canPassInRegisters(); 5634 Self.Diag(KeyLoc, diag::err_builtin_pass_in_regs_non_class) << T; 5635 return false; 5636 case UTT_IsTriviallyEqualityComparable: 5637 return isTriviallyEqualityComparableType(Self, T, KeyLoc); 5638 } 5639 } 5640 5641 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, const TypeSourceInfo *Lhs, 5642 const TypeSourceInfo *Rhs, SourceLocation KeyLoc); 5643 5644 static ExprResult CheckConvertibilityForTypeTraits( 5645 Sema &Self, const TypeSourceInfo *Lhs, const TypeSourceInfo *Rhs, 5646 SourceLocation KeyLoc, llvm::BumpPtrAllocator &OpaqueExprAllocator) { 5647 5648 QualType LhsT = Lhs->getType(); 5649 QualType RhsT = Rhs->getType(); 5650 5651 // C++0x [meta.rel]p4: 5652 // Given the following function prototype: 5653 // 5654 // template <class T> 5655 // typename add_rvalue_reference<T>::type create(); 5656 // 5657 // the predicate condition for a template specialization 5658 // is_convertible<From, To> shall be satisfied if and only if 5659 // the return expression in the following code would be 5660 // well-formed, including any implicit conversions to the return 5661 // type of the function: 5662 // 5663 // To test() { 5664 // return create<From>(); 5665 // } 5666 // 5667 // Access checking is performed as if in a context unrelated to To and 5668 // From. Only the validity of the immediate context of the expression 5669 // of the return-statement (including conversions to the return type) 5670 // is considered. 5671 // 5672 // We model the initialization as a copy-initialization of a temporary 5673 // of the appropriate type, which for this expression is identical to the 5674 // return statement (since NRVO doesn't apply). 5675 5676 // Functions aren't allowed to return function or array types. 5677 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5678 return ExprError(); 5679 5680 // A function definition requires a complete, non-abstract return type. 5681 if (!Self.isCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT) || 5682 Self.isAbstractType(Rhs->getTypeLoc().getBeginLoc(), RhsT)) 5683 return ExprError(); 5684 5685 // Compute the result of add_rvalue_reference. 5686 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5687 LhsT = Self.Context.getRValueReferenceType(LhsT); 5688 5689 // Build a fake source and destination for initialization. 5690 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5691 Expr *From = new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5692 OpaqueValueExpr(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5693 Expr::getValueKindForType(LhsT)); 5694 InitializationKind Kind = 5695 InitializationKind::CreateCopy(KeyLoc, SourceLocation()); 5696 5697 // Perform the initialization in an unevaluated context within a SFINAE 5698 // trap at translation unit scope. 5699 EnterExpressionEvaluationContext Unevaluated( 5700 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5701 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5702 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5703 InitializationSequence Init(Self, To, Kind, From); 5704 if (Init.Failed()) 5705 return ExprError(); 5706 5707 ExprResult Result = Init.Perform(Self, To, Kind, From); 5708 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5709 return ExprError(); 5710 5711 return Result; 5712 } 5713 5714 static bool EvaluateBooleanTypeTrait(Sema &S, TypeTrait Kind, 5715 SourceLocation KWLoc, 5716 ArrayRef<TypeSourceInfo *> Args, 5717 SourceLocation RParenLoc, 5718 bool IsDependent) { 5719 if (IsDependent) 5720 return false; 5721 5722 if (Kind <= UTT_Last) 5723 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]); 5724 5725 // Evaluate ReferenceBindsToTemporary and ReferenceConstructsFromTemporary 5726 // alongside the IsConstructible traits to avoid duplication. 5727 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary && 5728 Kind != BTT_ReferenceConstructsFromTemporary && 5729 Kind != BTT_ReferenceConvertsFromTemporary) 5730 return EvaluateBinaryTypeTrait(S, Kind, Args[0], 5731 Args[1], RParenLoc); 5732 5733 switch (Kind) { 5734 case clang::BTT_ReferenceBindsToTemporary: 5735 case clang::BTT_ReferenceConstructsFromTemporary: 5736 case clang::BTT_ReferenceConvertsFromTemporary: 5737 case clang::TT_IsConstructible: 5738 case clang::TT_IsNothrowConstructible: 5739 case clang::TT_IsTriviallyConstructible: { 5740 // C++11 [meta.unary.prop]: 5741 // is_trivially_constructible is defined as: 5742 // 5743 // is_constructible<T, Args...>::value is true and the variable 5744 // definition for is_constructible, as defined below, is known to call 5745 // no operation that is not trivial. 5746 // 5747 // The predicate condition for a template specialization 5748 // is_constructible<T, Args...> shall be satisfied if and only if the 5749 // following variable definition would be well-formed for some invented 5750 // variable t: 5751 // 5752 // T t(create<Args>()...); 5753 assert(!Args.empty()); 5754 5755 // Precondition: T and all types in the parameter pack Args shall be 5756 // complete types, (possibly cv-qualified) void, or arrays of 5757 // unknown bound. 5758 for (const auto *TSI : Args) { 5759 QualType ArgTy = TSI->getType(); 5760 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5761 continue; 5762 5763 if (S.RequireCompleteType(KWLoc, ArgTy, 5764 diag::err_incomplete_type_used_in_type_trait_expr)) 5765 return false; 5766 } 5767 5768 // Make sure the first argument is not incomplete nor a function type. 5769 QualType T = Args[0]->getType(); 5770 if (T->isIncompleteType() || T->isFunctionType()) 5771 return false; 5772 5773 // Make sure the first argument is not an abstract type. 5774 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5775 if (RD && RD->isAbstract()) 5776 return false; 5777 5778 llvm::BumpPtrAllocator OpaqueExprAllocator; 5779 SmallVector<Expr *, 2> ArgExprs; 5780 ArgExprs.reserve(Args.size() - 1); 5781 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5782 QualType ArgTy = Args[I]->getType(); 5783 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5784 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5785 ArgExprs.push_back( 5786 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5787 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5788 ArgTy.getNonLValueExprType(S.Context), 5789 Expr::getValueKindForType(ArgTy))); 5790 } 5791 5792 // Perform the initialization in an unevaluated context within a SFINAE 5793 // trap at translation unit scope. 5794 EnterExpressionEvaluationContext Unevaluated( 5795 S, Sema::ExpressionEvaluationContext::Unevaluated); 5796 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5797 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5798 InitializedEntity To( 5799 InitializedEntity::InitializeTemporary(S.Context, Args[0])); 5800 InitializationKind InitKind( 5801 Kind == clang::BTT_ReferenceConvertsFromTemporary 5802 ? InitializationKind::CreateCopy(KWLoc, KWLoc) 5803 : InitializationKind::CreateDirect(KWLoc, KWLoc, RParenLoc)); 5804 InitializationSequence Init(S, To, InitKind, ArgExprs); 5805 if (Init.Failed()) 5806 return false; 5807 5808 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5809 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5810 return false; 5811 5812 if (Kind == clang::TT_IsConstructible) 5813 return true; 5814 5815 if (Kind == clang::BTT_ReferenceBindsToTemporary || 5816 Kind == clang::BTT_ReferenceConstructsFromTemporary || 5817 Kind == clang::BTT_ReferenceConvertsFromTemporary) { 5818 if (!T->isReferenceType()) 5819 return false; 5820 5821 if (!Init.isDirectReferenceBinding()) 5822 return true; 5823 5824 if (Kind == clang::BTT_ReferenceBindsToTemporary) 5825 return false; 5826 5827 QualType U = Args[1]->getType(); 5828 if (U->isReferenceType()) 5829 return false; 5830 5831 TypeSourceInfo *TPtr = S.Context.CreateTypeSourceInfo( 5832 S.Context.getPointerType(T.getNonReferenceType())); 5833 TypeSourceInfo *UPtr = S.Context.CreateTypeSourceInfo( 5834 S.Context.getPointerType(U.getNonReferenceType())); 5835 return !CheckConvertibilityForTypeTraits(S, UPtr, TPtr, RParenLoc, 5836 OpaqueExprAllocator) 5837 .isInvalid(); 5838 } 5839 5840 if (Kind == clang::TT_IsNothrowConstructible) 5841 return S.canThrow(Result.get()) == CT_Cannot; 5842 5843 if (Kind == clang::TT_IsTriviallyConstructible) { 5844 // Under Objective-C ARC and Weak, if the destination has non-trivial 5845 // Objective-C lifetime, this is a non-trivial construction. 5846 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5847 return false; 5848 5849 // The initialization succeeded; now make sure there are no non-trivial 5850 // calls. 5851 return !Result.get()->hasNonTrivialCall(S.Context); 5852 } 5853 5854 llvm_unreachable("unhandled type trait"); 5855 return false; 5856 } 5857 default: llvm_unreachable("not a TT"); 5858 } 5859 5860 return false; 5861 } 5862 5863 namespace { 5864 void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind, 5865 SourceLocation KWLoc) { 5866 TypeTrait Replacement; 5867 switch (Kind) { 5868 case UTT_HasNothrowAssign: 5869 case UTT_HasNothrowMoveAssign: 5870 Replacement = BTT_IsNothrowAssignable; 5871 break; 5872 case UTT_HasNothrowCopy: 5873 case UTT_HasNothrowConstructor: 5874 Replacement = TT_IsNothrowConstructible; 5875 break; 5876 case UTT_HasTrivialAssign: 5877 case UTT_HasTrivialMoveAssign: 5878 Replacement = BTT_IsTriviallyAssignable; 5879 break; 5880 case UTT_HasTrivialCopy: 5881 Replacement = UTT_IsTriviallyCopyable; 5882 break; 5883 case UTT_HasTrivialDefaultConstructor: 5884 case UTT_HasTrivialMoveConstructor: 5885 Replacement = TT_IsTriviallyConstructible; 5886 break; 5887 case UTT_HasTrivialDestructor: 5888 Replacement = UTT_IsTriviallyDestructible; 5889 break; 5890 default: 5891 return; 5892 } 5893 S.Diag(KWLoc, diag::warn_deprecated_builtin) 5894 << getTraitSpelling(Kind) << getTraitSpelling(Replacement); 5895 } 5896 } 5897 5898 bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) { 5899 if (Arity && N != Arity) { 5900 Diag(Loc, diag::err_type_trait_arity) 5901 << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc); 5902 return false; 5903 } 5904 5905 if (!Arity && N == 0) { 5906 Diag(Loc, diag::err_type_trait_arity) 5907 << 1 << 1 << 1 << (int)N << SourceRange(Loc); 5908 return false; 5909 } 5910 return true; 5911 } 5912 5913 enum class TypeTraitReturnType { 5914 Bool, 5915 }; 5916 5917 static TypeTraitReturnType GetReturnType(TypeTrait Kind) { 5918 return TypeTraitReturnType::Bool; 5919 } 5920 5921 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5922 ArrayRef<TypeSourceInfo *> Args, 5923 SourceLocation RParenLoc) { 5924 if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size())) 5925 return ExprError(); 5926 5927 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5928 *this, Kind, KWLoc, Args[0]->getType())) 5929 return ExprError(); 5930 5931 DiagnoseBuiltinDeprecation(*this, Kind, KWLoc); 5932 5933 bool Dependent = false; 5934 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5935 if (Args[I]->getType()->isDependentType()) { 5936 Dependent = true; 5937 break; 5938 } 5939 } 5940 5941 switch (GetReturnType(Kind)) { 5942 case TypeTraitReturnType::Bool: { 5943 bool Result = EvaluateBooleanTypeTrait(*this, Kind, KWLoc, Args, RParenLoc, 5944 Dependent); 5945 return TypeTraitExpr::Create(Context, Context.getLogicalOperationType(), 5946 KWLoc, Kind, Args, RParenLoc, Result); 5947 } 5948 } 5949 llvm_unreachable("unhandled type trait return type"); 5950 } 5951 5952 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5953 ArrayRef<ParsedType> Args, 5954 SourceLocation RParenLoc) { 5955 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5956 ConvertedArgs.reserve(Args.size()); 5957 5958 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5959 TypeSourceInfo *TInfo; 5960 QualType T = GetTypeFromParser(Args[I], &TInfo); 5961 if (!TInfo) 5962 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5963 5964 ConvertedArgs.push_back(TInfo); 5965 } 5966 5967 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5968 } 5969 5970 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, const TypeSourceInfo *Lhs, 5971 const TypeSourceInfo *Rhs, SourceLocation KeyLoc) { 5972 QualType LhsT = Lhs->getType(); 5973 QualType RhsT = Rhs->getType(); 5974 5975 assert(!LhsT->isDependentType() && !RhsT->isDependentType() && 5976 "Cannot evaluate traits of dependent types"); 5977 5978 switch(BTT) { 5979 case BTT_IsBaseOf: { 5980 // C++0x [meta.rel]p2 5981 // Base is a base class of Derived without regard to cv-qualifiers or 5982 // Base and Derived are not unions and name the same class type without 5983 // regard to cv-qualifiers. 5984 5985 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5986 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5987 if (!rhsRecord || !lhsRecord) { 5988 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5989 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5990 if (!LHSObjTy || !RHSObjTy) 5991 return false; 5992 5993 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5994 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5995 if (!BaseInterface || !DerivedInterface) 5996 return false; 5997 5998 if (Self.RequireCompleteType( 5999 Rhs->getTypeLoc().getBeginLoc(), RhsT, 6000 diag::err_incomplete_type_used_in_type_trait_expr)) 6001 return false; 6002 6003 return BaseInterface->isSuperClassOf(DerivedInterface); 6004 } 6005 6006 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) 6007 == (lhsRecord == rhsRecord)); 6008 6009 // Unions are never base classes, and never have base classes. 6010 // It doesn't matter if they are complete or not. See PR#41843 6011 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 6012 return false; 6013 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 6014 return false; 6015 6016 if (lhsRecord == rhsRecord) 6017 return true; 6018 6019 // C++0x [meta.rel]p2: 6020 // If Base and Derived are class types and are different types 6021 // (ignoring possible cv-qualifiers) then Derived shall be a 6022 // complete type. 6023 if (Self.RequireCompleteType( 6024 Rhs->getTypeLoc().getBeginLoc(), RhsT, 6025 diag::err_incomplete_type_used_in_type_trait_expr)) 6026 return false; 6027 6028 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 6029 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 6030 } 6031 case BTT_IsSame: 6032 return Self.Context.hasSameType(LhsT, RhsT); 6033 case BTT_TypeCompatible: { 6034 // GCC ignores cv-qualifiers on arrays for this builtin. 6035 Qualifiers LhsQuals, RhsQuals; 6036 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 6037 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 6038 return Self.Context.typesAreCompatible(Lhs, Rhs); 6039 } 6040 case BTT_IsConvertible: 6041 case BTT_IsConvertibleTo: 6042 case BTT_IsNothrowConvertible: { 6043 if (RhsT->isVoidType()) 6044 return LhsT->isVoidType(); 6045 llvm::BumpPtrAllocator OpaqueExprAllocator; 6046 ExprResult Result = CheckConvertibilityForTypeTraits(Self, Lhs, Rhs, KeyLoc, 6047 OpaqueExprAllocator); 6048 if (Result.isInvalid()) 6049 return false; 6050 6051 if (BTT != BTT_IsNothrowConvertible) 6052 return true; 6053 6054 return Self.canThrow(Result.get()) == CT_Cannot; 6055 } 6056 6057 case BTT_IsAssignable: 6058 case BTT_IsNothrowAssignable: 6059 case BTT_IsTriviallyAssignable: { 6060 // C++11 [meta.unary.prop]p3: 6061 // is_trivially_assignable is defined as: 6062 // is_assignable<T, U>::value is true and the assignment, as defined by 6063 // is_assignable, is known to call no operation that is not trivial 6064 // 6065 // is_assignable is defined as: 6066 // The expression declval<T>() = declval<U>() is well-formed when 6067 // treated as an unevaluated operand (Clause 5). 6068 // 6069 // For both, T and U shall be complete types, (possibly cv-qualified) 6070 // void, or arrays of unknown bound. 6071 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 6072 Self.RequireCompleteType( 6073 Lhs->getTypeLoc().getBeginLoc(), LhsT, 6074 diag::err_incomplete_type_used_in_type_trait_expr)) 6075 return false; 6076 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 6077 Self.RequireCompleteType( 6078 Rhs->getTypeLoc().getBeginLoc(), RhsT, 6079 diag::err_incomplete_type_used_in_type_trait_expr)) 6080 return false; 6081 6082 // cv void is never assignable. 6083 if (LhsT->isVoidType() || RhsT->isVoidType()) 6084 return false; 6085 6086 // Build expressions that emulate the effect of declval<T>() and 6087 // declval<U>(). 6088 if (LhsT->isObjectType() || LhsT->isFunctionType()) 6089 LhsT = Self.Context.getRValueReferenceType(LhsT); 6090 if (RhsT->isObjectType() || RhsT->isFunctionType()) 6091 RhsT = Self.Context.getRValueReferenceType(RhsT); 6092 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 6093 Expr::getValueKindForType(LhsT)); 6094 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 6095 Expr::getValueKindForType(RhsT)); 6096 6097 // Attempt the assignment in an unevaluated context within a SFINAE 6098 // trap at translation unit scope. 6099 EnterExpressionEvaluationContext Unevaluated( 6100 Self, Sema::ExpressionEvaluationContext::Unevaluated); 6101 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 6102 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 6103 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 6104 &Rhs); 6105 if (Result.isInvalid()) 6106 return false; 6107 6108 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. 6109 Self.CheckUnusedVolatileAssignment(Result.get()); 6110 6111 if (SFINAE.hasErrorOccurred()) 6112 return false; 6113 6114 if (BTT == BTT_IsAssignable) 6115 return true; 6116 6117 if (BTT == BTT_IsNothrowAssignable) 6118 return Self.canThrow(Result.get()) == CT_Cannot; 6119 6120 if (BTT == BTT_IsTriviallyAssignable) { 6121 // Under Objective-C ARC and Weak, if the destination has non-trivial 6122 // Objective-C lifetime, this is a non-trivial assignment. 6123 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 6124 return false; 6125 6126 return !Result.get()->hasNonTrivialCall(Self.Context); 6127 } 6128 6129 llvm_unreachable("unhandled type trait"); 6130 return false; 6131 } 6132 case BTT_IsLayoutCompatible: { 6133 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType()) 6134 Self.RequireCompleteType(Lhs->getTypeLoc().getBeginLoc(), LhsT, 6135 diag::err_incomplete_type); 6136 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType()) 6137 Self.RequireCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT, 6138 diag::err_incomplete_type); 6139 6140 DiagnoseVLAInCXXTypeTrait(Self, Lhs, tok::kw___is_layout_compatible); 6141 DiagnoseVLAInCXXTypeTrait(Self, Rhs, tok::kw___is_layout_compatible); 6142 6143 return Self.IsLayoutCompatible(LhsT, RhsT); 6144 } 6145 case BTT_IsPointerInterconvertibleBaseOf: { 6146 if (LhsT->isStructureOrClassType() && RhsT->isStructureOrClassType() && 6147 !Self.getASTContext().hasSameUnqualifiedType(LhsT, RhsT)) { 6148 Self.RequireCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT, 6149 diag::err_incomplete_type); 6150 } 6151 6152 DiagnoseVLAInCXXTypeTrait(Self, Lhs, 6153 tok::kw___is_pointer_interconvertible_base_of); 6154 DiagnoseVLAInCXXTypeTrait(Self, Rhs, 6155 tok::kw___is_pointer_interconvertible_base_of); 6156 6157 return Self.IsPointerInterconvertibleBaseOf(Lhs, Rhs); 6158 } 6159 case BTT_IsDeducible: { 6160 const auto *TSTToBeDeduced = cast<DeducedTemplateSpecializationType>(LhsT); 6161 sema::TemplateDeductionInfo Info(KeyLoc); 6162 return Self.DeduceTemplateArgumentsFromType( 6163 TSTToBeDeduced->getTemplateName().getAsTemplateDecl(), RhsT, 6164 Info) == TemplateDeductionResult::Success; 6165 } 6166 default: 6167 llvm_unreachable("not a BTT"); 6168 } 6169 llvm_unreachable("Unknown type trait or not implemented"); 6170 } 6171 6172 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 6173 SourceLocation KWLoc, 6174 ParsedType Ty, 6175 Expr* DimExpr, 6176 SourceLocation RParen) { 6177 TypeSourceInfo *TSInfo; 6178 QualType T = GetTypeFromParser(Ty, &TSInfo); 6179 if (!TSInfo) 6180 TSInfo = Context.getTrivialTypeSourceInfo(T); 6181 6182 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 6183 } 6184 6185 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 6186 QualType T, Expr *DimExpr, 6187 SourceLocation KeyLoc) { 6188 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 6189 6190 switch(ATT) { 6191 case ATT_ArrayRank: 6192 if (T->isArrayType()) { 6193 unsigned Dim = 0; 6194 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 6195 ++Dim; 6196 T = AT->getElementType(); 6197 } 6198 return Dim; 6199 } 6200 return 0; 6201 6202 case ATT_ArrayExtent: { 6203 llvm::APSInt Value; 6204 uint64_t Dim; 6205 if (Self.VerifyIntegerConstantExpression( 6206 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) 6207 .isInvalid()) 6208 return 0; 6209 if (Value.isSigned() && Value.isNegative()) { 6210 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 6211 << DimExpr->getSourceRange(); 6212 return 0; 6213 } 6214 Dim = Value.getLimitedValue(); 6215 6216 if (T->isArrayType()) { 6217 unsigned D = 0; 6218 bool Matched = false; 6219 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 6220 if (Dim == D) { 6221 Matched = true; 6222 break; 6223 } 6224 ++D; 6225 T = AT->getElementType(); 6226 } 6227 6228 if (Matched && T->isArrayType()) { 6229 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 6230 return CAT->getLimitedSize(); 6231 } 6232 } 6233 return 0; 6234 } 6235 } 6236 llvm_unreachable("Unknown type trait or not implemented"); 6237 } 6238 6239 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 6240 SourceLocation KWLoc, 6241 TypeSourceInfo *TSInfo, 6242 Expr* DimExpr, 6243 SourceLocation RParen) { 6244 QualType T = TSInfo->getType(); 6245 6246 // FIXME: This should likely be tracked as an APInt to remove any host 6247 // assumptions about the width of size_t on the target. 6248 uint64_t Value = 0; 6249 if (!T->isDependentType()) 6250 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 6251 6252 // While the specification for these traits from the Embarcadero C++ 6253 // compiler's documentation says the return type is 'unsigned int', Clang 6254 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 6255 // compiler, there is no difference. On several other platforms this is an 6256 // important distinction. 6257 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 6258 RParen, Context.getSizeType()); 6259 } 6260 6261 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 6262 SourceLocation KWLoc, 6263 Expr *Queried, 6264 SourceLocation RParen) { 6265 // If error parsing the expression, ignore. 6266 if (!Queried) 6267 return ExprError(); 6268 6269 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 6270 6271 return Result; 6272 } 6273 6274 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 6275 switch (ET) { 6276 case ET_IsLValueExpr: return E->isLValue(); 6277 case ET_IsRValueExpr: 6278 return E->isPRValue(); 6279 } 6280 llvm_unreachable("Expression trait not covered by switch"); 6281 } 6282 6283 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 6284 SourceLocation KWLoc, 6285 Expr *Queried, 6286 SourceLocation RParen) { 6287 if (Queried->isTypeDependent()) { 6288 // Delay type-checking for type-dependent expressions. 6289 } else if (Queried->hasPlaceholderType()) { 6290 ExprResult PE = CheckPlaceholderExpr(Queried); 6291 if (PE.isInvalid()) return ExprError(); 6292 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 6293 } 6294 6295 bool Value = EvaluateExpressionTrait(ET, Queried); 6296 6297 return new (Context) 6298 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 6299 } 6300 6301 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 6302 ExprValueKind &VK, 6303 SourceLocation Loc, 6304 bool isIndirect) { 6305 assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && 6306 "placeholders should have been weeded out by now"); 6307 6308 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the 6309 // temporary materialization conversion otherwise. 6310 if (isIndirect) 6311 LHS = DefaultLvalueConversion(LHS.get()); 6312 else if (LHS.get()->isPRValue()) 6313 LHS = TemporaryMaterializationConversion(LHS.get()); 6314 if (LHS.isInvalid()) 6315 return QualType(); 6316 6317 // The RHS always undergoes lvalue conversions. 6318 RHS = DefaultLvalueConversion(RHS.get()); 6319 if (RHS.isInvalid()) return QualType(); 6320 6321 const char *OpSpelling = isIndirect ? "->*" : ".*"; 6322 // C++ 5.5p2 6323 // The binary operator .* [p3: ->*] binds its second operand, which shall 6324 // be of type "pointer to member of T" (where T is a completely-defined 6325 // class type) [...] 6326 QualType RHSType = RHS.get()->getType(); 6327 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 6328 if (!MemPtr) { 6329 Diag(Loc, diag::err_bad_memptr_rhs) 6330 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 6331 return QualType(); 6332 } 6333 6334 QualType Class(MemPtr->getClass(), 0); 6335 6336 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 6337 // member pointer points must be completely-defined. However, there is no 6338 // reason for this semantic distinction, and the rule is not enforced by 6339 // other compilers. Therefore, we do not check this property, as it is 6340 // likely to be considered a defect. 6341 6342 // C++ 5.5p2 6343 // [...] to its first operand, which shall be of class T or of a class of 6344 // which T is an unambiguous and accessible base class. [p3: a pointer to 6345 // such a class] 6346 QualType LHSType = LHS.get()->getType(); 6347 if (isIndirect) { 6348 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 6349 LHSType = Ptr->getPointeeType(); 6350 else { 6351 Diag(Loc, diag::err_bad_memptr_lhs) 6352 << OpSpelling << 1 << LHSType 6353 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 6354 return QualType(); 6355 } 6356 } 6357 6358 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 6359 // If we want to check the hierarchy, we need a complete type. 6360 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 6361 OpSpelling, (int)isIndirect)) { 6362 return QualType(); 6363 } 6364 6365 if (!IsDerivedFrom(Loc, LHSType, Class)) { 6366 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 6367 << (int)isIndirect << LHS.get()->getType(); 6368 return QualType(); 6369 } 6370 6371 CXXCastPath BasePath; 6372 if (CheckDerivedToBaseConversion( 6373 LHSType, Class, Loc, 6374 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), 6375 &BasePath)) 6376 return QualType(); 6377 6378 // Cast LHS to type of use. 6379 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); 6380 if (isIndirect) 6381 UseType = Context.getPointerType(UseType); 6382 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind(); 6383 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 6384 &BasePath); 6385 } 6386 6387 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 6388 // Diagnose use of pointer-to-member type which when used as 6389 // the functional cast in a pointer-to-member expression. 6390 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 6391 return QualType(); 6392 } 6393 6394 // C++ 5.5p2 6395 // The result is an object or a function of the type specified by the 6396 // second operand. 6397 // The cv qualifiers are the union of those in the pointer and the left side, 6398 // in accordance with 5.5p5 and 5.2.5. 6399 QualType Result = MemPtr->getPointeeType(); 6400 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 6401 6402 // C++0x [expr.mptr.oper]p6: 6403 // In a .* expression whose object expression is an rvalue, the program is 6404 // ill-formed if the second operand is a pointer to member function with 6405 // ref-qualifier &. In a ->* expression or in a .* expression whose object 6406 // expression is an lvalue, the program is ill-formed if the second operand 6407 // is a pointer to member function with ref-qualifier &&. 6408 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 6409 switch (Proto->getRefQualifier()) { 6410 case RQ_None: 6411 // Do nothing 6412 break; 6413 6414 case RQ_LValue: 6415 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { 6416 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq 6417 // is (exactly) 'const'. 6418 if (Proto->isConst() && !Proto->isVolatile()) 6419 Diag(Loc, getLangOpts().CPlusPlus20 6420 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue 6421 : diag::ext_pointer_to_const_ref_member_on_rvalue); 6422 else 6423 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 6424 << RHSType << 1 << LHS.get()->getSourceRange(); 6425 } 6426 break; 6427 6428 case RQ_RValue: 6429 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 6430 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 6431 << RHSType << 0 << LHS.get()->getSourceRange(); 6432 break; 6433 } 6434 } 6435 6436 // C++ [expr.mptr.oper]p6: 6437 // The result of a .* expression whose second operand is a pointer 6438 // to a data member is of the same value category as its 6439 // first operand. The result of a .* expression whose second 6440 // operand is a pointer to a member function is a prvalue. The 6441 // result of an ->* expression is an lvalue if its second operand 6442 // is a pointer to data member and a prvalue otherwise. 6443 if (Result->isFunctionType()) { 6444 VK = VK_PRValue; 6445 return Context.BoundMemberTy; 6446 } else if (isIndirect) { 6447 VK = VK_LValue; 6448 } else { 6449 VK = LHS.get()->getValueKind(); 6450 } 6451 6452 return Result; 6453 } 6454 6455 /// Try to convert a type to another according to C++11 5.16p3. 6456 /// 6457 /// This is part of the parameter validation for the ? operator. If either 6458 /// value operand is a class type, the two operands are attempted to be 6459 /// converted to each other. This function does the conversion in one direction. 6460 /// It returns true if the program is ill-formed and has already been diagnosed 6461 /// as such. 6462 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 6463 SourceLocation QuestionLoc, 6464 bool &HaveConversion, 6465 QualType &ToType) { 6466 HaveConversion = false; 6467 ToType = To->getType(); 6468 6469 InitializationKind Kind = 6470 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); 6471 // C++11 5.16p3 6472 // The process for determining whether an operand expression E1 of type T1 6473 // can be converted to match an operand expression E2 of type T2 is defined 6474 // as follows: 6475 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be 6476 // implicitly converted to type "lvalue reference to T2", subject to the 6477 // constraint that in the conversion the reference must bind directly to 6478 // an lvalue. 6479 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be 6480 // implicitly converted to the type "rvalue reference to R2", subject to 6481 // the constraint that the reference must bind directly. 6482 if (To->isGLValue()) { 6483 QualType T = Self.Context.getReferenceQualifiedType(To); 6484 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 6485 6486 InitializationSequence InitSeq(Self, Entity, Kind, From); 6487 if (InitSeq.isDirectReferenceBinding()) { 6488 ToType = T; 6489 HaveConversion = true; 6490 return false; 6491 } 6492 6493 if (InitSeq.isAmbiguous()) 6494 return InitSeq.Diagnose(Self, Entity, Kind, From); 6495 } 6496 6497 // -- If E2 is an rvalue, or if the conversion above cannot be done: 6498 // -- if E1 and E2 have class type, and the underlying class types are 6499 // the same or one is a base class of the other: 6500 QualType FTy = From->getType(); 6501 QualType TTy = To->getType(); 6502 const RecordType *FRec = FTy->getAs<RecordType>(); 6503 const RecordType *TRec = TTy->getAs<RecordType>(); 6504 bool FDerivedFromT = FRec && TRec && FRec != TRec && 6505 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 6506 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 6507 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 6508 // E1 can be converted to match E2 if the class of T2 is the 6509 // same type as, or a base class of, the class of T1, and 6510 // [cv2 > cv1]. 6511 if (FRec == TRec || FDerivedFromT) { 6512 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 6513 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 6514 InitializationSequence InitSeq(Self, Entity, Kind, From); 6515 if (InitSeq) { 6516 HaveConversion = true; 6517 return false; 6518 } 6519 6520 if (InitSeq.isAmbiguous()) 6521 return InitSeq.Diagnose(Self, Entity, Kind, From); 6522 } 6523 } 6524 6525 return false; 6526 } 6527 6528 // -- Otherwise: E1 can be converted to match E2 if E1 can be 6529 // implicitly converted to the type that expression E2 would have 6530 // if E2 were converted to an rvalue (or the type it has, if E2 is 6531 // an rvalue). 6532 // 6533 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 6534 // to the array-to-pointer or function-to-pointer conversions. 6535 TTy = TTy.getNonLValueExprType(Self.Context); 6536 6537 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 6538 InitializationSequence InitSeq(Self, Entity, Kind, From); 6539 HaveConversion = !InitSeq.Failed(); 6540 ToType = TTy; 6541 if (InitSeq.isAmbiguous()) 6542 return InitSeq.Diagnose(Self, Entity, Kind, From); 6543 6544 return false; 6545 } 6546 6547 /// Try to find a common type for two according to C++0x 5.16p5. 6548 /// 6549 /// This is part of the parameter validation for the ? operator. If either 6550 /// value operand is a class type, overload resolution is used to find a 6551 /// conversion to a common type. 6552 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 6553 SourceLocation QuestionLoc) { 6554 Expr *Args[2] = { LHS.get(), RHS.get() }; 6555 OverloadCandidateSet CandidateSet(QuestionLoc, 6556 OverloadCandidateSet::CSK_Operator); 6557 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 6558 CandidateSet); 6559 6560 OverloadCandidateSet::iterator Best; 6561 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 6562 case OR_Success: { 6563 // We found a match. Perform the conversions on the arguments and move on. 6564 ExprResult LHSRes = Self.PerformImplicitConversion( 6565 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], 6566 Sema::AA_Converting); 6567 if (LHSRes.isInvalid()) 6568 break; 6569 LHS = LHSRes; 6570 6571 ExprResult RHSRes = Self.PerformImplicitConversion( 6572 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], 6573 Sema::AA_Converting); 6574 if (RHSRes.isInvalid()) 6575 break; 6576 RHS = RHSRes; 6577 if (Best->Function) 6578 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 6579 return false; 6580 } 6581 6582 case OR_No_Viable_Function: 6583 6584 // Emit a better diagnostic if one of the expressions is a null pointer 6585 // constant and the other is a pointer type. In this case, the user most 6586 // likely forgot to take the address of the other expression. 6587 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6588 return true; 6589 6590 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6591 << LHS.get()->getType() << RHS.get()->getType() 6592 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6593 return true; 6594 6595 case OR_Ambiguous: 6596 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 6597 << LHS.get()->getType() << RHS.get()->getType() 6598 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6599 // FIXME: Print the possible common types by printing the return types of 6600 // the viable candidates. 6601 break; 6602 6603 case OR_Deleted: 6604 llvm_unreachable("Conditional operator has only built-in overloads"); 6605 } 6606 return true; 6607 } 6608 6609 /// Perform an "extended" implicit conversion as returned by 6610 /// TryClassUnification. 6611 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 6612 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 6613 InitializationKind Kind = 6614 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); 6615 Expr *Arg = E.get(); 6616 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 6617 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 6618 if (Result.isInvalid()) 6619 return true; 6620 6621 E = Result; 6622 return false; 6623 } 6624 6625 // Check the condition operand of ?: to see if it is valid for the GCC 6626 // extension. 6627 static bool isValidVectorForConditionalCondition(ASTContext &Ctx, 6628 QualType CondTy) { 6629 if (!CondTy->isVectorType() && !CondTy->isExtVectorType()) 6630 return false; 6631 const QualType EltTy = 6632 cast<VectorType>(CondTy.getCanonicalType())->getElementType(); 6633 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types"); 6634 return EltTy->isIntegralType(Ctx); 6635 } 6636 6637 static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx, 6638 QualType CondTy) { 6639 if (!CondTy->isSveVLSBuiltinType()) 6640 return false; 6641 const QualType EltTy = 6642 cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx); 6643 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types"); 6644 return EltTy->isIntegralType(Ctx); 6645 } 6646 6647 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, 6648 ExprResult &RHS, 6649 SourceLocation QuestionLoc) { 6650 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6651 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6652 6653 QualType CondType = Cond.get()->getType(); 6654 const auto *CondVT = CondType->castAs<VectorType>(); 6655 QualType CondElementTy = CondVT->getElementType(); 6656 unsigned CondElementCount = CondVT->getNumElements(); 6657 QualType LHSType = LHS.get()->getType(); 6658 const auto *LHSVT = LHSType->getAs<VectorType>(); 6659 QualType RHSType = RHS.get()->getType(); 6660 const auto *RHSVT = RHSType->getAs<VectorType>(); 6661 6662 QualType ResultType; 6663 6664 6665 if (LHSVT && RHSVT) { 6666 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) { 6667 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch) 6668 << /*isExtVector*/ isa<ExtVectorType>(CondVT); 6669 return {}; 6670 } 6671 6672 // If both are vector types, they must be the same type. 6673 if (!Context.hasSameType(LHSType, RHSType)) { 6674 Diag(QuestionLoc, diag::err_conditional_vector_mismatched) 6675 << LHSType << RHSType; 6676 return {}; 6677 } 6678 ResultType = Context.getCommonSugaredType(LHSType, RHSType); 6679 } else if (LHSVT || RHSVT) { 6680 ResultType = CheckVectorOperands( 6681 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, 6682 /*AllowBoolConversions*/ false, 6683 /*AllowBoolOperation*/ true, 6684 /*ReportInvalid*/ true); 6685 if (ResultType.isNull()) 6686 return {}; 6687 } else { 6688 // Both are scalar. 6689 LHSType = LHSType.getUnqualifiedType(); 6690 RHSType = RHSType.getUnqualifiedType(); 6691 QualType ResultElementTy = 6692 Context.hasSameType(LHSType, RHSType) 6693 ? Context.getCommonSugaredType(LHSType, RHSType) 6694 : UsualArithmeticConversions(LHS, RHS, QuestionLoc, 6695 ACK_Conditional); 6696 6697 if (ResultElementTy->isEnumeralType()) { 6698 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 6699 << ResultElementTy; 6700 return {}; 6701 } 6702 if (CondType->isExtVectorType()) 6703 ResultType = 6704 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements()); 6705 else 6706 ResultType = Context.getVectorType( 6707 ResultElementTy, CondVT->getNumElements(), VectorKind::Generic); 6708 6709 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 6710 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 6711 } 6712 6713 assert(!ResultType.isNull() && ResultType->isVectorType() && 6714 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && 6715 "Result should have been a vector type"); 6716 auto *ResultVectorTy = ResultType->castAs<VectorType>(); 6717 QualType ResultElementTy = ResultVectorTy->getElementType(); 6718 unsigned ResultElementCount = ResultVectorTy->getNumElements(); 6719 6720 if (ResultElementCount != CondElementCount) { 6721 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType 6722 << ResultType; 6723 return {}; 6724 } 6725 6726 if (Context.getTypeSize(ResultElementTy) != 6727 Context.getTypeSize(CondElementTy)) { 6728 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType 6729 << ResultType; 6730 return {}; 6731 } 6732 6733 return ResultType; 6734 } 6735 6736 QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond, 6737 ExprResult &LHS, 6738 ExprResult &RHS, 6739 SourceLocation QuestionLoc) { 6740 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6741 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6742 6743 QualType CondType = Cond.get()->getType(); 6744 const auto *CondBT = CondType->castAs<BuiltinType>(); 6745 QualType CondElementTy = CondBT->getSveEltType(Context); 6746 llvm::ElementCount CondElementCount = 6747 Context.getBuiltinVectorTypeInfo(CondBT).EC; 6748 6749 QualType LHSType = LHS.get()->getType(); 6750 const auto *LHSBT = 6751 LHSType->isSveVLSBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr; 6752 QualType RHSType = RHS.get()->getType(); 6753 const auto *RHSBT = 6754 RHSType->isSveVLSBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr; 6755 6756 QualType ResultType; 6757 6758 if (LHSBT && RHSBT) { 6759 // If both are sizeless vector types, they must be the same type. 6760 if (!Context.hasSameType(LHSType, RHSType)) { 6761 Diag(QuestionLoc, diag::err_conditional_vector_mismatched) 6762 << LHSType << RHSType; 6763 return QualType(); 6764 } 6765 ResultType = LHSType; 6766 } else if (LHSBT || RHSBT) { 6767 ResultType = CheckSizelessVectorOperands( 6768 LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional); 6769 if (ResultType.isNull()) 6770 return QualType(); 6771 } else { 6772 // Both are scalar so splat 6773 QualType ResultElementTy; 6774 LHSType = LHSType.getCanonicalType().getUnqualifiedType(); 6775 RHSType = RHSType.getCanonicalType().getUnqualifiedType(); 6776 6777 if (Context.hasSameType(LHSType, RHSType)) 6778 ResultElementTy = LHSType; 6779 else 6780 ResultElementTy = 6781 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6782 6783 if (ResultElementTy->isEnumeralType()) { 6784 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 6785 << ResultElementTy; 6786 return QualType(); 6787 } 6788 6789 ResultType = Context.getScalableVectorType( 6790 ResultElementTy, CondElementCount.getKnownMinValue()); 6791 6792 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 6793 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 6794 } 6795 6796 assert(!ResultType.isNull() && ResultType->isSveVLSBuiltinType() && 6797 "Result should have been a vector type"); 6798 auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>(); 6799 QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context); 6800 llvm::ElementCount ResultElementCount = 6801 Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC; 6802 6803 if (ResultElementCount != CondElementCount) { 6804 Diag(QuestionLoc, diag::err_conditional_vector_size) 6805 << CondType << ResultType; 6806 return QualType(); 6807 } 6808 6809 if (Context.getTypeSize(ResultElementTy) != 6810 Context.getTypeSize(CondElementTy)) { 6811 Diag(QuestionLoc, diag::err_conditional_vector_element_size) 6812 << CondType << ResultType; 6813 return QualType(); 6814 } 6815 6816 return ResultType; 6817 } 6818 6819 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 6820 ExprResult &RHS, ExprValueKind &VK, 6821 ExprObjectKind &OK, 6822 SourceLocation QuestionLoc) { 6823 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface 6824 // pointers. 6825 6826 // Assume r-value. 6827 VK = VK_PRValue; 6828 OK = OK_Ordinary; 6829 bool IsVectorConditional = 6830 isValidVectorForConditionalCondition(Context, Cond.get()->getType()); 6831 6832 bool IsSizelessVectorConditional = 6833 isValidSizelessVectorForConditionalCondition(Context, 6834 Cond.get()->getType()); 6835 6836 // C++11 [expr.cond]p1 6837 // The first expression is contextually converted to bool. 6838 if (!Cond.get()->isTypeDependent()) { 6839 ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional 6840 ? DefaultFunctionArrayLvalueConversion(Cond.get()) 6841 : CheckCXXBooleanCondition(Cond.get()); 6842 if (CondRes.isInvalid()) 6843 return QualType(); 6844 Cond = CondRes; 6845 } else { 6846 // To implement C++, the first expression typically doesn't alter the result 6847 // type of the conditional, however the GCC compatible vector extension 6848 // changes the result type to be that of the conditional. Since we cannot 6849 // know if this is a vector extension here, delay the conversion of the 6850 // LHS/RHS below until later. 6851 return Context.DependentTy; 6852 } 6853 6854 6855 // Either of the arguments dependent? 6856 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 6857 return Context.DependentTy; 6858 6859 // C++11 [expr.cond]p2 6860 // If either the second or the third operand has type (cv) void, ... 6861 QualType LTy = LHS.get()->getType(); 6862 QualType RTy = RHS.get()->getType(); 6863 bool LVoid = LTy->isVoidType(); 6864 bool RVoid = RTy->isVoidType(); 6865 if (LVoid || RVoid) { 6866 // ... one of the following shall hold: 6867 // -- The second or the third operand (but not both) is a (possibly 6868 // parenthesized) throw-expression; the result is of the type 6869 // and value category of the other. 6870 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 6871 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 6872 6873 // Void expressions aren't legal in the vector-conditional expressions. 6874 if (IsVectorConditional) { 6875 SourceRange DiagLoc = 6876 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange(); 6877 bool IsThrow = LVoid ? LThrow : RThrow; 6878 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void) 6879 << DiagLoc << IsThrow; 6880 return QualType(); 6881 } 6882 6883 if (LThrow != RThrow) { 6884 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 6885 VK = NonThrow->getValueKind(); 6886 // DR (no number yet): the result is a bit-field if the 6887 // non-throw-expression operand is a bit-field. 6888 OK = NonThrow->getObjectKind(); 6889 return NonThrow->getType(); 6890 } 6891 6892 // -- Both the second and third operands have type void; the result is of 6893 // type void and is a prvalue. 6894 if (LVoid && RVoid) 6895 return Context.getCommonSugaredType(LTy, RTy); 6896 6897 // Neither holds, error. 6898 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 6899 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 6900 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6901 return QualType(); 6902 } 6903 6904 // Neither is void. 6905 if (IsVectorConditional) 6906 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6907 6908 if (IsSizelessVectorConditional) 6909 return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6910 6911 // WebAssembly tables are not allowed as conditional LHS or RHS. 6912 if (LTy->isWebAssemblyTableType() || RTy->isWebAssemblyTableType()) { 6913 Diag(QuestionLoc, diag::err_wasm_table_conditional_expression) 6914 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6915 return QualType(); 6916 } 6917 6918 // C++11 [expr.cond]p3 6919 // Otherwise, if the second and third operand have different types, and 6920 // either has (cv) class type [...] an attempt is made to convert each of 6921 // those operands to the type of the other. 6922 if (!Context.hasSameType(LTy, RTy) && 6923 (LTy->isRecordType() || RTy->isRecordType())) { 6924 // These return true if a single direction is already ambiguous. 6925 QualType L2RType, R2LType; 6926 bool HaveL2R, HaveR2L; 6927 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 6928 return QualType(); 6929 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 6930 return QualType(); 6931 6932 // If both can be converted, [...] the program is ill-formed. 6933 if (HaveL2R && HaveR2L) { 6934 Diag(QuestionLoc, diag::err_conditional_ambiguous) 6935 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6936 return QualType(); 6937 } 6938 6939 // If exactly one conversion is possible, that conversion is applied to 6940 // the chosen operand and the converted operands are used in place of the 6941 // original operands for the remainder of this section. 6942 if (HaveL2R) { 6943 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 6944 return QualType(); 6945 LTy = LHS.get()->getType(); 6946 } else if (HaveR2L) { 6947 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 6948 return QualType(); 6949 RTy = RHS.get()->getType(); 6950 } 6951 } 6952 6953 // C++11 [expr.cond]p3 6954 // if both are glvalues of the same value category and the same type except 6955 // for cv-qualification, an attempt is made to convert each of those 6956 // operands to the type of the other. 6957 // FIXME: 6958 // Resolving a defect in P0012R1: we extend this to cover all cases where 6959 // one of the operands is reference-compatible with the other, in order 6960 // to support conditionals between functions differing in noexcept. This 6961 // will similarly cover difference in array bounds after P0388R4. 6962 // FIXME: If LTy and RTy have a composite pointer type, should we convert to 6963 // that instead? 6964 ExprValueKind LVK = LHS.get()->getValueKind(); 6965 ExprValueKind RVK = RHS.get()->getValueKind(); 6966 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) { 6967 // DerivedToBase was already handled by the class-specific case above. 6968 // FIXME: Should we allow ObjC conversions here? 6969 const ReferenceConversions AllowedConversions = 6970 ReferenceConversions::Qualification | 6971 ReferenceConversions::NestedQualification | 6972 ReferenceConversions::Function; 6973 6974 ReferenceConversions RefConv; 6975 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) == 6976 Ref_Compatible && 6977 !(RefConv & ~AllowedConversions) && 6978 // [...] subject to the constraint that the reference must bind 6979 // directly [...] 6980 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) { 6981 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 6982 RTy = RHS.get()->getType(); 6983 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) == 6984 Ref_Compatible && 6985 !(RefConv & ~AllowedConversions) && 6986 !LHS.get()->refersToBitField() && 6987 !LHS.get()->refersToVectorElement()) { 6988 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 6989 LTy = LHS.get()->getType(); 6990 } 6991 } 6992 6993 // C++11 [expr.cond]p4 6994 // If the second and third operands are glvalues of the same value 6995 // category and have the same type, the result is of that type and 6996 // value category and it is a bit-field if the second or the third 6997 // operand is a bit-field, or if both are bit-fields. 6998 // We only extend this to bitfields, not to the crazy other kinds of 6999 // l-values. 7000 bool Same = Context.hasSameType(LTy, RTy); 7001 if (Same && LVK == RVK && LVK != VK_PRValue && 7002 LHS.get()->isOrdinaryOrBitFieldObject() && 7003 RHS.get()->isOrdinaryOrBitFieldObject()) { 7004 VK = LHS.get()->getValueKind(); 7005 if (LHS.get()->getObjectKind() == OK_BitField || 7006 RHS.get()->getObjectKind() == OK_BitField) 7007 OK = OK_BitField; 7008 return Context.getCommonSugaredType(LTy, RTy); 7009 } 7010 7011 // C++11 [expr.cond]p5 7012 // Otherwise, the result is a prvalue. If the second and third operands 7013 // do not have the same type, and either has (cv) class type, ... 7014 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 7015 // ... overload resolution is used to determine the conversions (if any) 7016 // to be applied to the operands. If the overload resolution fails, the 7017 // program is ill-formed. 7018 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 7019 return QualType(); 7020 } 7021 7022 // C++11 [expr.cond]p6 7023 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 7024 // conversions are performed on the second and third operands. 7025 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 7026 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 7027 if (LHS.isInvalid() || RHS.isInvalid()) 7028 return QualType(); 7029 LTy = LHS.get()->getType(); 7030 RTy = RHS.get()->getType(); 7031 7032 // After those conversions, one of the following shall hold: 7033 // -- The second and third operands have the same type; the result 7034 // is of that type. If the operands have class type, the result 7035 // is a prvalue temporary of the result type, which is 7036 // copy-initialized from either the second operand or the third 7037 // operand depending on the value of the first operand. 7038 if (Context.hasSameType(LTy, RTy)) { 7039 if (LTy->isRecordType()) { 7040 // The operands have class type. Make a temporary copy. 7041 ExprResult LHSCopy = PerformCopyInitialization( 7042 InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS); 7043 if (LHSCopy.isInvalid()) 7044 return QualType(); 7045 7046 ExprResult RHSCopy = PerformCopyInitialization( 7047 InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS); 7048 if (RHSCopy.isInvalid()) 7049 return QualType(); 7050 7051 LHS = LHSCopy; 7052 RHS = RHSCopy; 7053 } 7054 return Context.getCommonSugaredType(LTy, RTy); 7055 } 7056 7057 // Extension: conditional operator involving vector types. 7058 if (LTy->isVectorType() || RTy->isVectorType()) 7059 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false, 7060 /*AllowBothBool*/ true, 7061 /*AllowBoolConversions*/ false, 7062 /*AllowBoolOperation*/ false, 7063 /*ReportInvalid*/ true); 7064 7065 // -- The second and third operands have arithmetic or enumeration type; 7066 // the usual arithmetic conversions are performed to bring them to a 7067 // common type, and the result is of that type. 7068 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 7069 QualType ResTy = 7070 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 7071 if (LHS.isInvalid() || RHS.isInvalid()) 7072 return QualType(); 7073 if (ResTy.isNull()) { 7074 Diag(QuestionLoc, 7075 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy 7076 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 7077 return QualType(); 7078 } 7079 7080 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 7081 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 7082 7083 return ResTy; 7084 } 7085 7086 // -- The second and third operands have pointer type, or one has pointer 7087 // type and the other is a null pointer constant, or both are null 7088 // pointer constants, at least one of which is non-integral; pointer 7089 // conversions and qualification conversions are performed to bring them 7090 // to their composite pointer type. The result is of the composite 7091 // pointer type. 7092 // -- The second and third operands have pointer to member type, or one has 7093 // pointer to member type and the other is a null pointer constant; 7094 // pointer to member conversions and qualification conversions are 7095 // performed to bring them to a common type, whose cv-qualification 7096 // shall match the cv-qualification of either the second or the third 7097 // operand. The result is of the common type. 7098 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS); 7099 if (!Composite.isNull()) 7100 return Composite; 7101 7102 // Similarly, attempt to find composite type of two objective-c pointers. 7103 Composite = ObjC().FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 7104 if (LHS.isInvalid() || RHS.isInvalid()) 7105 return QualType(); 7106 if (!Composite.isNull()) 7107 return Composite; 7108 7109 // Check if we are using a null with a non-pointer type. 7110 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 7111 return QualType(); 7112 7113 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 7114 << LHS.get()->getType() << RHS.get()->getType() 7115 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 7116 return QualType(); 7117 } 7118 7119 QualType Sema::FindCompositePointerType(SourceLocation Loc, 7120 Expr *&E1, Expr *&E2, 7121 bool ConvertArgs) { 7122 assert(getLangOpts().CPlusPlus && "This function assumes C++"); 7123 7124 // C++1z [expr]p14: 7125 // The composite pointer type of two operands p1 and p2 having types T1 7126 // and T2 7127 QualType T1 = E1->getType(), T2 = E2->getType(); 7128 7129 // where at least one is a pointer or pointer to member type or 7130 // std::nullptr_t is: 7131 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || 7132 T1->isNullPtrType(); 7133 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || 7134 T2->isNullPtrType(); 7135 if (!T1IsPointerLike && !T2IsPointerLike) 7136 return QualType(); 7137 7138 // - if both p1 and p2 are null pointer constants, std::nullptr_t; 7139 // This can't actually happen, following the standard, but we also use this 7140 // to implement the end of [expr.conv], which hits this case. 7141 // 7142 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; 7143 if (T1IsPointerLike && 7144 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 7145 if (ConvertArgs) 7146 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType() 7147 ? CK_NullToMemberPointer 7148 : CK_NullToPointer).get(); 7149 return T1; 7150 } 7151 if (T2IsPointerLike && 7152 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 7153 if (ConvertArgs) 7154 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType() 7155 ? CK_NullToMemberPointer 7156 : CK_NullToPointer).get(); 7157 return T2; 7158 } 7159 7160 // Now both have to be pointers or member pointers. 7161 if (!T1IsPointerLike || !T2IsPointerLike) 7162 return QualType(); 7163 assert(!T1->isNullPtrType() && !T2->isNullPtrType() && 7164 "nullptr_t should be a null pointer constant"); 7165 7166 struct Step { 7167 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K; 7168 // Qualifiers to apply under the step kind. 7169 Qualifiers Quals; 7170 /// The class for a pointer-to-member; a constant array type with a bound 7171 /// (if any) for an array. 7172 const Type *ClassOrBound; 7173 7174 Step(Kind K, const Type *ClassOrBound = nullptr) 7175 : K(K), ClassOrBound(ClassOrBound) {} 7176 QualType rebuild(ASTContext &Ctx, QualType T) const { 7177 T = Ctx.getQualifiedType(T, Quals); 7178 switch (K) { 7179 case Pointer: 7180 return Ctx.getPointerType(T); 7181 case MemberPointer: 7182 return Ctx.getMemberPointerType(T, ClassOrBound); 7183 case ObjCPointer: 7184 return Ctx.getObjCObjectPointerType(T); 7185 case Array: 7186 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound)) 7187 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr, 7188 ArraySizeModifier::Normal, 0); 7189 else 7190 return Ctx.getIncompleteArrayType(T, ArraySizeModifier::Normal, 0); 7191 } 7192 llvm_unreachable("unknown step kind"); 7193 } 7194 }; 7195 7196 SmallVector<Step, 8> Steps; 7197 7198 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 7199 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 7200 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, 7201 // respectively; 7202 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer 7203 // to member of C2 of type cv2 U2" for some non-function type U, where 7204 // C1 is reference-related to C2 or C2 is reference-related to C1, the 7205 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2, 7206 // respectively; 7207 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and 7208 // T2; 7209 // 7210 // Dismantle T1 and T2 to simultaneously determine whether they are similar 7211 // and to prepare to form the cv-combined type if so. 7212 QualType Composite1 = T1; 7213 QualType Composite2 = T2; 7214 unsigned NeedConstBefore = 0; 7215 while (true) { 7216 assert(!Composite1.isNull() && !Composite2.isNull()); 7217 7218 Qualifiers Q1, Q2; 7219 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1); 7220 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2); 7221 7222 // Top-level qualifiers are ignored. Merge at all lower levels. 7223 if (!Steps.empty()) { 7224 // Find the qualifier union: (approximately) the unique minimal set of 7225 // qualifiers that is compatible with both types. 7226 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() | 7227 Q2.getCVRUQualifiers()); 7228 7229 // Under one level of pointer or pointer-to-member, we can change to an 7230 // unambiguous compatible address space. 7231 if (Q1.getAddressSpace() == Q2.getAddressSpace()) { 7232 Quals.setAddressSpace(Q1.getAddressSpace()); 7233 } else if (Steps.size() == 1) { 7234 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2); 7235 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1); 7236 if (MaybeQ1 == MaybeQ2) { 7237 // Exception for ptr size address spaces. Should be able to choose 7238 // either address space during comparison. 7239 if (isPtrSizeAddressSpace(Q1.getAddressSpace()) || 7240 isPtrSizeAddressSpace(Q2.getAddressSpace())) 7241 MaybeQ1 = true; 7242 else 7243 return QualType(); // No unique best address space. 7244 } 7245 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace() 7246 : Q2.getAddressSpace()); 7247 } else { 7248 return QualType(); 7249 } 7250 7251 // FIXME: In C, we merge __strong and none to __strong at the top level. 7252 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr()) 7253 Quals.setObjCGCAttr(Q1.getObjCGCAttr()); 7254 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 7255 assert(Steps.size() == 1); 7256 else 7257 return QualType(); 7258 7259 // Mismatched lifetime qualifiers never compatibly include each other. 7260 if (Q1.getObjCLifetime() == Q2.getObjCLifetime()) 7261 Quals.setObjCLifetime(Q1.getObjCLifetime()); 7262 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 7263 assert(Steps.size() == 1); 7264 else 7265 return QualType(); 7266 7267 Steps.back().Quals = Quals; 7268 if (Q1 != Quals || Q2 != Quals) 7269 NeedConstBefore = Steps.size() - 1; 7270 } 7271 7272 // FIXME: Can we unify the following with UnwrapSimilarTypes? 7273 7274 const ArrayType *Arr1, *Arr2; 7275 if ((Arr1 = Context.getAsArrayType(Composite1)) && 7276 (Arr2 = Context.getAsArrayType(Composite2))) { 7277 auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1); 7278 auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2); 7279 if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) { 7280 Composite1 = Arr1->getElementType(); 7281 Composite2 = Arr2->getElementType(); 7282 Steps.emplace_back(Step::Array, CAT1); 7283 continue; 7284 } 7285 bool IAT1 = isa<IncompleteArrayType>(Arr1); 7286 bool IAT2 = isa<IncompleteArrayType>(Arr2); 7287 if ((IAT1 && IAT2) || 7288 (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) && 7289 ((bool)CAT1 != (bool)CAT2) && 7290 (Steps.empty() || Steps.back().K != Step::Array))) { 7291 // In C++20 onwards, we can unify an array of N T with an array of 7292 // a different or unknown bound. But we can't form an array whose 7293 // element type is an array of unknown bound by doing so. 7294 Composite1 = Arr1->getElementType(); 7295 Composite2 = Arr2->getElementType(); 7296 Steps.emplace_back(Step::Array); 7297 if (CAT1 || CAT2) 7298 NeedConstBefore = Steps.size(); 7299 continue; 7300 } 7301 } 7302 7303 const PointerType *Ptr1, *Ptr2; 7304 if ((Ptr1 = Composite1->getAs<PointerType>()) && 7305 (Ptr2 = Composite2->getAs<PointerType>())) { 7306 Composite1 = Ptr1->getPointeeType(); 7307 Composite2 = Ptr2->getPointeeType(); 7308 Steps.emplace_back(Step::Pointer); 7309 continue; 7310 } 7311 7312 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2; 7313 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) && 7314 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) { 7315 Composite1 = ObjPtr1->getPointeeType(); 7316 Composite2 = ObjPtr2->getPointeeType(); 7317 Steps.emplace_back(Step::ObjCPointer); 7318 continue; 7319 } 7320 7321 const MemberPointerType *MemPtr1, *MemPtr2; 7322 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 7323 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 7324 Composite1 = MemPtr1->getPointeeType(); 7325 Composite2 = MemPtr2->getPointeeType(); 7326 7327 // At the top level, we can perform a base-to-derived pointer-to-member 7328 // conversion: 7329 // 7330 // - [...] where C1 is reference-related to C2 or C2 is 7331 // reference-related to C1 7332 // 7333 // (Note that the only kinds of reference-relatedness in scope here are 7334 // "same type or derived from".) At any other level, the class must 7335 // exactly match. 7336 const Type *Class = nullptr; 7337 QualType Cls1(MemPtr1->getClass(), 0); 7338 QualType Cls2(MemPtr2->getClass(), 0); 7339 if (Context.hasSameType(Cls1, Cls2)) 7340 Class = MemPtr1->getClass(); 7341 else if (Steps.empty()) 7342 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() : 7343 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr; 7344 if (!Class) 7345 return QualType(); 7346 7347 Steps.emplace_back(Step::MemberPointer, Class); 7348 continue; 7349 } 7350 7351 // Special case: at the top level, we can decompose an Objective-C pointer 7352 // and a 'cv void *'. Unify the qualifiers. 7353 if (Steps.empty() && ((Composite1->isVoidPointerType() && 7354 Composite2->isObjCObjectPointerType()) || 7355 (Composite1->isObjCObjectPointerType() && 7356 Composite2->isVoidPointerType()))) { 7357 Composite1 = Composite1->getPointeeType(); 7358 Composite2 = Composite2->getPointeeType(); 7359 Steps.emplace_back(Step::Pointer); 7360 continue; 7361 } 7362 7363 // FIXME: block pointer types? 7364 7365 // Cannot unwrap any more types. 7366 break; 7367 } 7368 7369 // - if T1 or T2 is "pointer to noexcept function" and the other type is 7370 // "pointer to function", where the function types are otherwise the same, 7371 // "pointer to function"; 7372 // - if T1 or T2 is "pointer to member of C1 of type function", the other 7373 // type is "pointer to member of C2 of type noexcept function", and C1 7374 // is reference-related to C2 or C2 is reference-related to C1, where 7375 // the function types are otherwise the same, "pointer to member of C2 of 7376 // type function" or "pointer to member of C1 of type function", 7377 // respectively; 7378 // 7379 // We also support 'noreturn' here, so as a Clang extension we generalize the 7380 // above to: 7381 // 7382 // - [Clang] If T1 and T2 are both of type "pointer to function" or 7383 // "pointer to member function" and the pointee types can be unified 7384 // by a function pointer conversion, that conversion is applied 7385 // before checking the following rules. 7386 // 7387 // We've already unwrapped down to the function types, and we want to merge 7388 // rather than just convert, so do this ourselves rather than calling 7389 // IsFunctionConversion. 7390 // 7391 // FIXME: In order to match the standard wording as closely as possible, we 7392 // currently only do this under a single level of pointers. Ideally, we would 7393 // allow this in general, and set NeedConstBefore to the relevant depth on 7394 // the side(s) where we changed anything. If we permit that, we should also 7395 // consider this conversion when determining type similarity and model it as 7396 // a qualification conversion. 7397 if (Steps.size() == 1) { 7398 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { 7399 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { 7400 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); 7401 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); 7402 7403 // The result is noreturn if both operands are. 7404 bool Noreturn = 7405 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); 7406 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn); 7407 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn); 7408 7409 // The result is nothrow if both operands are. 7410 SmallVector<QualType, 8> ExceptionTypeStorage; 7411 EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs( 7412 EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage, 7413 getLangOpts().CPlusPlus17); 7414 7415 Composite1 = Context.getFunctionType(FPT1->getReturnType(), 7416 FPT1->getParamTypes(), EPI1); 7417 Composite2 = Context.getFunctionType(FPT2->getReturnType(), 7418 FPT2->getParamTypes(), EPI2); 7419 } 7420 } 7421 } 7422 7423 // There are some more conversions we can perform under exactly one pointer. 7424 if (Steps.size() == 1 && Steps.front().K == Step::Pointer && 7425 !Context.hasSameType(Composite1, Composite2)) { 7426 // - if T1 or T2 is "pointer to cv1 void" and the other type is 7427 // "pointer to cv2 T", where T is an object type or void, 7428 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2; 7429 if (Composite1->isVoidType() && Composite2->isObjectType()) 7430 Composite2 = Composite1; 7431 else if (Composite2->isVoidType() && Composite1->isObjectType()) 7432 Composite1 = Composite2; 7433 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 7434 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 7435 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and 7436 // T1, respectively; 7437 // 7438 // The "similar type" handling covers all of this except for the "T1 is a 7439 // base class of T2" case in the definition of reference-related. 7440 else if (IsDerivedFrom(Loc, Composite1, Composite2)) 7441 Composite1 = Composite2; 7442 else if (IsDerivedFrom(Loc, Composite2, Composite1)) 7443 Composite2 = Composite1; 7444 } 7445 7446 // At this point, either the inner types are the same or we have failed to 7447 // find a composite pointer type. 7448 if (!Context.hasSameType(Composite1, Composite2)) 7449 return QualType(); 7450 7451 // Per C++ [conv.qual]p3, add 'const' to every level before the last 7452 // differing qualifier. 7453 for (unsigned I = 0; I != NeedConstBefore; ++I) 7454 Steps[I].Quals.addConst(); 7455 7456 // Rebuild the composite type. 7457 QualType Composite = Context.getCommonSugaredType(Composite1, Composite2); 7458 for (auto &S : llvm::reverse(Steps)) 7459 Composite = S.rebuild(Context, Composite); 7460 7461 if (ConvertArgs) { 7462 // Convert the expressions to the composite pointer type. 7463 InitializedEntity Entity = 7464 InitializedEntity::InitializeTemporary(Composite); 7465 InitializationKind Kind = 7466 InitializationKind::CreateCopy(Loc, SourceLocation()); 7467 7468 InitializationSequence E1ToC(*this, Entity, Kind, E1); 7469 if (!E1ToC) 7470 return QualType(); 7471 7472 InitializationSequence E2ToC(*this, Entity, Kind, E2); 7473 if (!E2ToC) 7474 return QualType(); 7475 7476 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics. 7477 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1); 7478 if (E1Result.isInvalid()) 7479 return QualType(); 7480 E1 = E1Result.get(); 7481 7482 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2); 7483 if (E2Result.isInvalid()) 7484 return QualType(); 7485 E2 = E2Result.get(); 7486 } 7487 7488 return Composite; 7489 } 7490 7491 ExprResult Sema::MaybeBindToTemporary(Expr *E) { 7492 if (!E) 7493 return ExprError(); 7494 7495 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); 7496 7497 // If the result is a glvalue, we shouldn't bind it. 7498 if (E->isGLValue()) 7499 return E; 7500 7501 // In ARC, calls that return a retainable type can return retained, 7502 // in which case we have to insert a consuming cast. 7503 if (getLangOpts().ObjCAutoRefCount && 7504 E->getType()->isObjCRetainableType()) { 7505 7506 bool ReturnsRetained; 7507 7508 // For actual calls, we compute this by examining the type of the 7509 // called value. 7510 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 7511 Expr *Callee = Call->getCallee()->IgnoreParens(); 7512 QualType T = Callee->getType(); 7513 7514 if (T == Context.BoundMemberTy) { 7515 // Handle pointer-to-members. 7516 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 7517 T = BinOp->getRHS()->getType(); 7518 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 7519 T = Mem->getMemberDecl()->getType(); 7520 } 7521 7522 if (const PointerType *Ptr = T->getAs<PointerType>()) 7523 T = Ptr->getPointeeType(); 7524 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 7525 T = Ptr->getPointeeType(); 7526 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 7527 T = MemPtr->getPointeeType(); 7528 7529 auto *FTy = T->castAs<FunctionType>(); 7530 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 7531 7532 // ActOnStmtExpr arranges things so that StmtExprs of retainable 7533 // type always produce a +1 object. 7534 } else if (isa<StmtExpr>(E)) { 7535 ReturnsRetained = true; 7536 7537 // We hit this case with the lambda conversion-to-block optimization; 7538 // we don't want any extra casts here. 7539 } else if (isa<CastExpr>(E) && 7540 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 7541 return E; 7542 7543 // For message sends and property references, we try to find an 7544 // actual method. FIXME: we should infer retention by selector in 7545 // cases where we don't have an actual method. 7546 } else { 7547 ObjCMethodDecl *D = nullptr; 7548 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 7549 D = Send->getMethodDecl(); 7550 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 7551 D = BoxedExpr->getBoxingMethod(); 7552 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 7553 // Don't do reclaims if we're using the zero-element array 7554 // constant. 7555 if (ArrayLit->getNumElements() == 0 && 7556 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 7557 return E; 7558 7559 D = ArrayLit->getArrayWithObjectsMethod(); 7560 } else if (ObjCDictionaryLiteral *DictLit 7561 = dyn_cast<ObjCDictionaryLiteral>(E)) { 7562 // Don't do reclaims if we're using the zero-element dictionary 7563 // constant. 7564 if (DictLit->getNumElements() == 0 && 7565 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 7566 return E; 7567 7568 D = DictLit->getDictWithObjectsMethod(); 7569 } 7570 7571 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 7572 7573 // Don't do reclaims on performSelector calls; despite their 7574 // return type, the invoked method doesn't necessarily actually 7575 // return an object. 7576 if (!ReturnsRetained && 7577 D && D->getMethodFamily() == OMF_performSelector) 7578 return E; 7579 } 7580 7581 // Don't reclaim an object of Class type. 7582 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 7583 return E; 7584 7585 Cleanup.setExprNeedsCleanups(true); 7586 7587 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 7588 : CK_ARCReclaimReturnedObject); 7589 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 7590 VK_PRValue, FPOptionsOverride()); 7591 } 7592 7593 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 7594 Cleanup.setExprNeedsCleanups(true); 7595 7596 if (!getLangOpts().CPlusPlus) 7597 return E; 7598 7599 // Search for the base element type (cf. ASTContext::getBaseElementType) with 7600 // a fast path for the common case that the type is directly a RecordType. 7601 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 7602 const RecordType *RT = nullptr; 7603 while (!RT) { 7604 switch (T->getTypeClass()) { 7605 case Type::Record: 7606 RT = cast<RecordType>(T); 7607 break; 7608 case Type::ConstantArray: 7609 case Type::IncompleteArray: 7610 case Type::VariableArray: 7611 case Type::DependentSizedArray: 7612 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 7613 break; 7614 default: 7615 return E; 7616 } 7617 } 7618 7619 // That should be enough to guarantee that this type is complete, if we're 7620 // not processing a decltype expression. 7621 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 7622 if (RD->isInvalidDecl() || RD->isDependentContext()) 7623 return E; 7624 7625 bool IsDecltype = ExprEvalContexts.back().ExprContext == 7626 ExpressionEvaluationContextRecord::EK_Decltype; 7627 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 7628 7629 if (Destructor) { 7630 MarkFunctionReferenced(E->getExprLoc(), Destructor); 7631 CheckDestructorAccess(E->getExprLoc(), Destructor, 7632 PDiag(diag::err_access_dtor_temp) 7633 << E->getType()); 7634 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 7635 return ExprError(); 7636 7637 // If destructor is trivial, we can avoid the extra copy. 7638 if (Destructor->isTrivial()) 7639 return E; 7640 7641 // We need a cleanup, but we don't need to remember the temporary. 7642 Cleanup.setExprNeedsCleanups(true); 7643 } 7644 7645 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 7646 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 7647 7648 if (IsDecltype) 7649 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 7650 7651 return Bind; 7652 } 7653 7654 ExprResult 7655 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 7656 if (SubExpr.isInvalid()) 7657 return ExprError(); 7658 7659 return MaybeCreateExprWithCleanups(SubExpr.get()); 7660 } 7661 7662 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 7663 assert(SubExpr && "subexpression can't be null!"); 7664 7665 CleanupVarDeclMarking(); 7666 7667 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 7668 assert(ExprCleanupObjects.size() >= FirstCleanup); 7669 assert(Cleanup.exprNeedsCleanups() || 7670 ExprCleanupObjects.size() == FirstCleanup); 7671 if (!Cleanup.exprNeedsCleanups()) 7672 return SubExpr; 7673 7674 auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 7675 ExprCleanupObjects.size() - FirstCleanup); 7676 7677 auto *E = ExprWithCleanups::Create( 7678 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); 7679 DiscardCleanupsInEvaluationContext(); 7680 7681 return E; 7682 } 7683 7684 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 7685 assert(SubStmt && "sub-statement can't be null!"); 7686 7687 CleanupVarDeclMarking(); 7688 7689 if (!Cleanup.exprNeedsCleanups()) 7690 return SubStmt; 7691 7692 // FIXME: In order to attach the temporaries, wrap the statement into 7693 // a StmtExpr; currently this is only used for asm statements. 7694 // This is hacky, either create a new CXXStmtWithTemporaries statement or 7695 // a new AsmStmtWithTemporaries. 7696 CompoundStmt *CompStmt = 7697 CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(), 7698 SourceLocation(), SourceLocation()); 7699 Expr *E = new (Context) 7700 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(), 7701 /*FIXME TemplateDepth=*/0); 7702 return MaybeCreateExprWithCleanups(E); 7703 } 7704 7705 ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 7706 assert(ExprEvalContexts.back().ExprContext == 7707 ExpressionEvaluationContextRecord::EK_Decltype && 7708 "not in a decltype expression"); 7709 7710 ExprResult Result = CheckPlaceholderExpr(E); 7711 if (Result.isInvalid()) 7712 return ExprError(); 7713 E = Result.get(); 7714 7715 // C++11 [expr.call]p11: 7716 // If a function call is a prvalue of object type, 7717 // -- if the function call is either 7718 // -- the operand of a decltype-specifier, or 7719 // -- the right operand of a comma operator that is the operand of a 7720 // decltype-specifier, 7721 // a temporary object is not introduced for the prvalue. 7722 7723 // Recursively rebuild ParenExprs and comma expressions to strip out the 7724 // outermost CXXBindTemporaryExpr, if any. 7725 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7726 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 7727 if (SubExpr.isInvalid()) 7728 return ExprError(); 7729 if (SubExpr.get() == PE->getSubExpr()) 7730 return E; 7731 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 7732 } 7733 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7734 if (BO->getOpcode() == BO_Comma) { 7735 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 7736 if (RHS.isInvalid()) 7737 return ExprError(); 7738 if (RHS.get() == BO->getRHS()) 7739 return E; 7740 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma, 7741 BO->getType(), BO->getValueKind(), 7742 BO->getObjectKind(), BO->getOperatorLoc(), 7743 BO->getFPFeatures()); 7744 } 7745 } 7746 7747 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 7748 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 7749 : nullptr; 7750 if (TopCall) 7751 E = TopCall; 7752 else 7753 TopBind = nullptr; 7754 7755 // Disable the special decltype handling now. 7756 ExprEvalContexts.back().ExprContext = 7757 ExpressionEvaluationContextRecord::EK_Other; 7758 7759 Result = CheckUnevaluatedOperand(E); 7760 if (Result.isInvalid()) 7761 return ExprError(); 7762 E = Result.get(); 7763 7764 // In MS mode, don't perform any extra checking of call return types within a 7765 // decltype expression. 7766 if (getLangOpts().MSVCCompat) 7767 return E; 7768 7769 // Perform the semantic checks we delayed until this point. 7770 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 7771 I != N; ++I) { 7772 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 7773 if (Call == TopCall) 7774 continue; 7775 7776 if (CheckCallReturnType(Call->getCallReturnType(Context), 7777 Call->getBeginLoc(), Call, Call->getDirectCallee())) 7778 return ExprError(); 7779 } 7780 7781 // Now all relevant types are complete, check the destructors are accessible 7782 // and non-deleted, and annotate them on the temporaries. 7783 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 7784 I != N; ++I) { 7785 CXXBindTemporaryExpr *Bind = 7786 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 7787 if (Bind == TopBind) 7788 continue; 7789 7790 CXXTemporary *Temp = Bind->getTemporary(); 7791 7792 CXXRecordDecl *RD = 7793 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 7794 CXXDestructorDecl *Destructor = LookupDestructor(RD); 7795 Temp->setDestructor(Destructor); 7796 7797 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 7798 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 7799 PDiag(diag::err_access_dtor_temp) 7800 << Bind->getType()); 7801 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 7802 return ExprError(); 7803 7804 // We need a cleanup, but we don't need to remember the temporary. 7805 Cleanup.setExprNeedsCleanups(true); 7806 } 7807 7808 // Possibly strip off the top CXXBindTemporaryExpr. 7809 return E; 7810 } 7811 7812 /// Note a set of 'operator->' functions that were used for a member access. 7813 static void noteOperatorArrows(Sema &S, 7814 ArrayRef<FunctionDecl *> OperatorArrows) { 7815 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 7816 // FIXME: Make this configurable? 7817 unsigned Limit = 9; 7818 if (OperatorArrows.size() > Limit) { 7819 // Produce Limit-1 normal notes and one 'skipping' note. 7820 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 7821 SkipCount = OperatorArrows.size() - (Limit - 1); 7822 } 7823 7824 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 7825 if (I == SkipStart) { 7826 S.Diag(OperatorArrows[I]->getLocation(), 7827 diag::note_operator_arrows_suppressed) 7828 << SkipCount; 7829 I += SkipCount; 7830 } else { 7831 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 7832 << OperatorArrows[I]->getCallResultType(); 7833 ++I; 7834 } 7835 } 7836 } 7837 7838 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 7839 SourceLocation OpLoc, 7840 tok::TokenKind OpKind, 7841 ParsedType &ObjectType, 7842 bool &MayBePseudoDestructor) { 7843 // Since this might be a postfix expression, get rid of ParenListExprs. 7844 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 7845 if (Result.isInvalid()) return ExprError(); 7846 Base = Result.get(); 7847 7848 Result = CheckPlaceholderExpr(Base); 7849 if (Result.isInvalid()) return ExprError(); 7850 Base = Result.get(); 7851 7852 QualType BaseType = Base->getType(); 7853 MayBePseudoDestructor = false; 7854 if (BaseType->isDependentType()) { 7855 // If we have a pointer to a dependent type and are using the -> operator, 7856 // the object type is the type that the pointer points to. We might still 7857 // have enough information about that type to do something useful. 7858 if (OpKind == tok::arrow) 7859 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 7860 BaseType = Ptr->getPointeeType(); 7861 7862 ObjectType = ParsedType::make(BaseType); 7863 MayBePseudoDestructor = true; 7864 return Base; 7865 } 7866 7867 // C++ [over.match.oper]p8: 7868 // [...] When operator->returns, the operator-> is applied to the value 7869 // returned, with the original second operand. 7870 if (OpKind == tok::arrow) { 7871 QualType StartingType = BaseType; 7872 bool NoArrowOperatorFound = false; 7873 bool FirstIteration = true; 7874 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 7875 // The set of types we've considered so far. 7876 llvm::SmallPtrSet<CanQualType,8> CTypes; 7877 SmallVector<FunctionDecl*, 8> OperatorArrows; 7878 CTypes.insert(Context.getCanonicalType(BaseType)); 7879 7880 while (BaseType->isRecordType()) { 7881 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 7882 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 7883 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 7884 noteOperatorArrows(*this, OperatorArrows); 7885 Diag(OpLoc, diag::note_operator_arrow_depth) 7886 << getLangOpts().ArrowDepth; 7887 return ExprError(); 7888 } 7889 7890 Result = BuildOverloadedArrowExpr( 7891 S, Base, OpLoc, 7892 // When in a template specialization and on the first loop iteration, 7893 // potentially give the default diagnostic (with the fixit in a 7894 // separate note) instead of having the error reported back to here 7895 // and giving a diagnostic with a fixit attached to the error itself. 7896 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 7897 ? nullptr 7898 : &NoArrowOperatorFound); 7899 if (Result.isInvalid()) { 7900 if (NoArrowOperatorFound) { 7901 if (FirstIteration) { 7902 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7903 << BaseType << 1 << Base->getSourceRange() 7904 << FixItHint::CreateReplacement(OpLoc, "."); 7905 OpKind = tok::period; 7906 break; 7907 } 7908 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7909 << BaseType << Base->getSourceRange(); 7910 CallExpr *CE = dyn_cast<CallExpr>(Base); 7911 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 7912 Diag(CD->getBeginLoc(), 7913 diag::note_member_reference_arrow_from_operator_arrow); 7914 } 7915 } 7916 return ExprError(); 7917 } 7918 Base = Result.get(); 7919 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 7920 OperatorArrows.push_back(OpCall->getDirectCallee()); 7921 BaseType = Base->getType(); 7922 CanQualType CBaseType = Context.getCanonicalType(BaseType); 7923 if (!CTypes.insert(CBaseType).second) { 7924 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 7925 noteOperatorArrows(*this, OperatorArrows); 7926 return ExprError(); 7927 } 7928 FirstIteration = false; 7929 } 7930 7931 if (OpKind == tok::arrow) { 7932 if (BaseType->isPointerType()) 7933 BaseType = BaseType->getPointeeType(); 7934 else if (auto *AT = Context.getAsArrayType(BaseType)) 7935 BaseType = AT->getElementType(); 7936 } 7937 } 7938 7939 // Objective-C properties allow "." access on Objective-C pointer types, 7940 // so adjust the base type to the object type itself. 7941 if (BaseType->isObjCObjectPointerType()) 7942 BaseType = BaseType->getPointeeType(); 7943 7944 // C++ [basic.lookup.classref]p2: 7945 // [...] If the type of the object expression is of pointer to scalar 7946 // type, the unqualified-id is looked up in the context of the complete 7947 // postfix-expression. 7948 // 7949 // This also indicates that we could be parsing a pseudo-destructor-name. 7950 // Note that Objective-C class and object types can be pseudo-destructor 7951 // expressions or normal member (ivar or property) access expressions, and 7952 // it's legal for the type to be incomplete if this is a pseudo-destructor 7953 // call. We'll do more incomplete-type checks later in the lookup process, 7954 // so just skip this check for ObjC types. 7955 if (!BaseType->isRecordType()) { 7956 ObjectType = ParsedType::make(BaseType); 7957 MayBePseudoDestructor = true; 7958 return Base; 7959 } 7960 7961 // The object type must be complete (or dependent), or 7962 // C++11 [expr.prim.general]p3: 7963 // Unlike the object expression in other contexts, *this is not required to 7964 // be of complete type for purposes of class member access (5.2.5) outside 7965 // the member function body. 7966 if (!BaseType->isDependentType() && 7967 !isThisOutsideMemberFunctionBody(BaseType) && 7968 RequireCompleteType(OpLoc, BaseType, 7969 diag::err_incomplete_member_access)) { 7970 return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base}); 7971 } 7972 7973 // C++ [basic.lookup.classref]p2: 7974 // If the id-expression in a class member access (5.2.5) is an 7975 // unqualified-id, and the type of the object expression is of a class 7976 // type C (or of pointer to a class type C), the unqualified-id is looked 7977 // up in the scope of class C. [...] 7978 ObjectType = ParsedType::make(BaseType); 7979 return Base; 7980 } 7981 7982 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base, 7983 tok::TokenKind &OpKind, SourceLocation OpLoc) { 7984 if (Base->hasPlaceholderType()) { 7985 ExprResult result = S.CheckPlaceholderExpr(Base); 7986 if (result.isInvalid()) return true; 7987 Base = result.get(); 7988 } 7989 ObjectType = Base->getType(); 7990 7991 // C++ [expr.pseudo]p2: 7992 // The left-hand side of the dot operator shall be of scalar type. The 7993 // left-hand side of the arrow operator shall be of pointer to scalar type. 7994 // This scalar type is the object type. 7995 // Note that this is rather different from the normal handling for the 7996 // arrow operator. 7997 if (OpKind == tok::arrow) { 7998 // The operator requires a prvalue, so perform lvalue conversions. 7999 // Only do this if we might plausibly end with a pointer, as otherwise 8000 // this was likely to be intended to be a '.'. 8001 if (ObjectType->isPointerType() || ObjectType->isArrayType() || 8002 ObjectType->isFunctionType()) { 8003 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base); 8004 if (BaseResult.isInvalid()) 8005 return true; 8006 Base = BaseResult.get(); 8007 ObjectType = Base->getType(); 8008 } 8009 8010 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 8011 ObjectType = Ptr->getPointeeType(); 8012 } else if (!Base->isTypeDependent()) { 8013 // The user wrote "p->" when they probably meant "p."; fix it. 8014 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 8015 << ObjectType << true 8016 << FixItHint::CreateReplacement(OpLoc, "."); 8017 if (S.isSFINAEContext()) 8018 return true; 8019 8020 OpKind = tok::period; 8021 } 8022 } 8023 8024 return false; 8025 } 8026 8027 /// Check if it's ok to try and recover dot pseudo destructor calls on 8028 /// pointer objects. 8029 static bool 8030 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, 8031 QualType DestructedType) { 8032 // If this is a record type, check if its destructor is callable. 8033 if (auto *RD = DestructedType->getAsCXXRecordDecl()) { 8034 if (RD->hasDefinition()) 8035 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD)) 8036 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); 8037 return false; 8038 } 8039 8040 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. 8041 return DestructedType->isDependentType() || DestructedType->isScalarType() || 8042 DestructedType->isVectorType(); 8043 } 8044 8045 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 8046 SourceLocation OpLoc, 8047 tok::TokenKind OpKind, 8048 const CXXScopeSpec &SS, 8049 TypeSourceInfo *ScopeTypeInfo, 8050 SourceLocation CCLoc, 8051 SourceLocation TildeLoc, 8052 PseudoDestructorTypeStorage Destructed) { 8053 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 8054 8055 QualType ObjectType; 8056 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 8057 return ExprError(); 8058 8059 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 8060 !ObjectType->isVectorType()) { 8061 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 8062 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 8063 else { 8064 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 8065 << ObjectType << Base->getSourceRange(); 8066 return ExprError(); 8067 } 8068 } 8069 8070 // C++ [expr.pseudo]p2: 8071 // [...] The cv-unqualified versions of the object type and of the type 8072 // designated by the pseudo-destructor-name shall be the same type. 8073 if (DestructedTypeInfo) { 8074 QualType DestructedType = DestructedTypeInfo->getType(); 8075 SourceLocation DestructedTypeStart = 8076 DestructedTypeInfo->getTypeLoc().getBeginLoc(); 8077 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 8078 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 8079 // Detect dot pseudo destructor calls on pointer objects, e.g.: 8080 // Foo *foo; 8081 // foo.~Foo(); 8082 if (OpKind == tok::period && ObjectType->isPointerType() && 8083 Context.hasSameUnqualifiedType(DestructedType, 8084 ObjectType->getPointeeType())) { 8085 auto Diagnostic = 8086 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 8087 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); 8088 8089 // Issue a fixit only when the destructor is valid. 8090 if (canRecoverDotPseudoDestructorCallsOnPointerObjects( 8091 *this, DestructedType)) 8092 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->"); 8093 8094 // Recover by setting the object type to the destructed type and the 8095 // operator to '->'. 8096 ObjectType = DestructedType; 8097 OpKind = tok::arrow; 8098 } else { 8099 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 8100 << ObjectType << DestructedType << Base->getSourceRange() 8101 << DestructedTypeInfo->getTypeLoc().getSourceRange(); 8102 8103 // Recover by setting the destructed type to the object type. 8104 DestructedType = ObjectType; 8105 DestructedTypeInfo = 8106 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); 8107 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 8108 } 8109 } else if (DestructedType.getObjCLifetime() != 8110 ObjectType.getObjCLifetime()) { 8111 8112 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 8113 // Okay: just pretend that the user provided the correctly-qualified 8114 // type. 8115 } else { 8116 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 8117 << ObjectType << DestructedType << Base->getSourceRange() 8118 << DestructedTypeInfo->getTypeLoc().getSourceRange(); 8119 } 8120 8121 // Recover by setting the destructed type to the object type. 8122 DestructedType = ObjectType; 8123 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 8124 DestructedTypeStart); 8125 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 8126 } 8127 } 8128 } 8129 8130 // C++ [expr.pseudo]p2: 8131 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 8132 // form 8133 // 8134 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 8135 // 8136 // shall designate the same scalar type. 8137 if (ScopeTypeInfo) { 8138 QualType ScopeType = ScopeTypeInfo->getType(); 8139 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 8140 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 8141 8142 Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(), 8143 diag::err_pseudo_dtor_type_mismatch) 8144 << ObjectType << ScopeType << Base->getSourceRange() 8145 << ScopeTypeInfo->getTypeLoc().getSourceRange(); 8146 8147 ScopeType = QualType(); 8148 ScopeTypeInfo = nullptr; 8149 } 8150 } 8151 8152 Expr *Result 8153 = new (Context) CXXPseudoDestructorExpr(Context, Base, 8154 OpKind == tok::arrow, OpLoc, 8155 SS.getWithLocInContext(Context), 8156 ScopeTypeInfo, 8157 CCLoc, 8158 TildeLoc, 8159 Destructed); 8160 8161 return Result; 8162 } 8163 8164 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 8165 SourceLocation OpLoc, 8166 tok::TokenKind OpKind, 8167 CXXScopeSpec &SS, 8168 UnqualifiedId &FirstTypeName, 8169 SourceLocation CCLoc, 8170 SourceLocation TildeLoc, 8171 UnqualifiedId &SecondTypeName) { 8172 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 8173 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 8174 "Invalid first type name in pseudo-destructor"); 8175 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 8176 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 8177 "Invalid second type name in pseudo-destructor"); 8178 8179 QualType ObjectType; 8180 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 8181 return ExprError(); 8182 8183 // Compute the object type that we should use for name lookup purposes. Only 8184 // record types and dependent types matter. 8185 ParsedType ObjectTypePtrForLookup; 8186 if (!SS.isSet()) { 8187 if (ObjectType->isRecordType()) 8188 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 8189 else if (ObjectType->isDependentType()) 8190 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 8191 } 8192 8193 // Convert the name of the type being destructed (following the ~) into a 8194 // type (with source-location information). 8195 QualType DestructedType; 8196 TypeSourceInfo *DestructedTypeInfo = nullptr; 8197 PseudoDestructorTypeStorage Destructed; 8198 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 8199 ParsedType T = getTypeName(*SecondTypeName.Identifier, 8200 SecondTypeName.StartLocation, 8201 S, &SS, true, false, ObjectTypePtrForLookup, 8202 /*IsCtorOrDtorName*/true); 8203 if (!T && 8204 ((SS.isSet() && !computeDeclContext(SS, false)) || 8205 (!SS.isSet() && ObjectType->isDependentType()))) { 8206 // The name of the type being destroyed is a dependent name, and we 8207 // couldn't find anything useful in scope. Just store the identifier and 8208 // it's location, and we'll perform (qualified) name lookup again at 8209 // template instantiation time. 8210 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 8211 SecondTypeName.StartLocation); 8212 } else if (!T) { 8213 Diag(SecondTypeName.StartLocation, 8214 diag::err_pseudo_dtor_destructor_non_type) 8215 << SecondTypeName.Identifier << ObjectType; 8216 if (isSFINAEContext()) 8217 return ExprError(); 8218 8219 // Recover by assuming we had the right type all along. 8220 DestructedType = ObjectType; 8221 } else 8222 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 8223 } else { 8224 // Resolve the template-id to a type. 8225 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 8226 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 8227 TemplateId->NumArgs); 8228 TypeResult T = ActOnTemplateIdType(S, 8229 SS, 8230 TemplateId->TemplateKWLoc, 8231 TemplateId->Template, 8232 TemplateId->Name, 8233 TemplateId->TemplateNameLoc, 8234 TemplateId->LAngleLoc, 8235 TemplateArgsPtr, 8236 TemplateId->RAngleLoc, 8237 /*IsCtorOrDtorName*/true); 8238 if (T.isInvalid() || !T.get()) { 8239 // Recover by assuming we had the right type all along. 8240 DestructedType = ObjectType; 8241 } else 8242 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 8243 } 8244 8245 // If we've performed some kind of recovery, (re-)build the type source 8246 // information. 8247 if (!DestructedType.isNull()) { 8248 if (!DestructedTypeInfo) 8249 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 8250 SecondTypeName.StartLocation); 8251 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 8252 } 8253 8254 // Convert the name of the scope type (the type prior to '::') into a type. 8255 TypeSourceInfo *ScopeTypeInfo = nullptr; 8256 QualType ScopeType; 8257 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 8258 FirstTypeName.Identifier) { 8259 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 8260 ParsedType T = getTypeName(*FirstTypeName.Identifier, 8261 FirstTypeName.StartLocation, 8262 S, &SS, true, false, ObjectTypePtrForLookup, 8263 /*IsCtorOrDtorName*/true); 8264 if (!T) { 8265 Diag(FirstTypeName.StartLocation, 8266 diag::err_pseudo_dtor_destructor_non_type) 8267 << FirstTypeName.Identifier << ObjectType; 8268 8269 if (isSFINAEContext()) 8270 return ExprError(); 8271 8272 // Just drop this type. It's unnecessary anyway. 8273 ScopeType = QualType(); 8274 } else 8275 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 8276 } else { 8277 // Resolve the template-id to a type. 8278 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 8279 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 8280 TemplateId->NumArgs); 8281 TypeResult T = ActOnTemplateIdType(S, 8282 SS, 8283 TemplateId->TemplateKWLoc, 8284 TemplateId->Template, 8285 TemplateId->Name, 8286 TemplateId->TemplateNameLoc, 8287 TemplateId->LAngleLoc, 8288 TemplateArgsPtr, 8289 TemplateId->RAngleLoc, 8290 /*IsCtorOrDtorName*/true); 8291 if (T.isInvalid() || !T.get()) { 8292 // Recover by dropping this type. 8293 ScopeType = QualType(); 8294 } else 8295 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 8296 } 8297 } 8298 8299 if (!ScopeType.isNull() && !ScopeTypeInfo) 8300 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 8301 FirstTypeName.StartLocation); 8302 8303 8304 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 8305 ScopeTypeInfo, CCLoc, TildeLoc, 8306 Destructed); 8307 } 8308 8309 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 8310 SourceLocation OpLoc, 8311 tok::TokenKind OpKind, 8312 SourceLocation TildeLoc, 8313 const DeclSpec& DS) { 8314 QualType ObjectType; 8315 QualType T; 8316 TypeLocBuilder TLB; 8317 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 8318 return ExprError(); 8319 8320 switch (DS.getTypeSpecType()) { 8321 case DeclSpec::TST_decltype_auto: { 8322 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 8323 return true; 8324 } 8325 case DeclSpec::TST_decltype: { 8326 T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false); 8327 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 8328 DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc()); 8329 DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd()); 8330 break; 8331 } 8332 case DeclSpec::TST_typename_pack_indexing: { 8333 T = ActOnPackIndexingType(DS.getRepAsType().get(), DS.getPackIndexingExpr(), 8334 DS.getBeginLoc(), DS.getEllipsisLoc()); 8335 TLB.pushTrivial(getASTContext(), 8336 cast<PackIndexingType>(T.getTypePtr())->getPattern(), 8337 DS.getBeginLoc()); 8338 PackIndexingTypeLoc PITL = TLB.push<PackIndexingTypeLoc>(T); 8339 PITL.setEllipsisLoc(DS.getEllipsisLoc()); 8340 break; 8341 } 8342 default: 8343 llvm_unreachable("Unsupported type in pseudo destructor"); 8344 } 8345 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 8346 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 8347 8348 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 8349 nullptr, SourceLocation(), TildeLoc, 8350 Destructed); 8351 } 8352 8353 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 8354 SourceLocation RParen) { 8355 // If the operand is an unresolved lookup expression, the expression is ill- 8356 // formed per [over.over]p1, because overloaded function names cannot be used 8357 // without arguments except in explicit contexts. 8358 ExprResult R = CheckPlaceholderExpr(Operand); 8359 if (R.isInvalid()) 8360 return R; 8361 8362 R = CheckUnevaluatedOperand(R.get()); 8363 if (R.isInvalid()) 8364 return ExprError(); 8365 8366 Operand = R.get(); 8367 8368 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() && 8369 Operand->HasSideEffects(Context, false)) { 8370 // The expression operand for noexcept is in an unevaluated expression 8371 // context, so side effects could result in unintended consequences. 8372 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 8373 } 8374 8375 CanThrowResult CanThrow = canThrow(Operand); 8376 return new (Context) 8377 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 8378 } 8379 8380 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 8381 Expr *Operand, SourceLocation RParen) { 8382 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 8383 } 8384 8385 static void MaybeDecrementCount( 8386 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { 8387 DeclRefExpr *LHS = nullptr; 8388 bool IsCompoundAssign = false; 8389 bool isIncrementDecrementUnaryOp = false; 8390 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 8391 if (BO->getLHS()->getType()->isDependentType() || 8392 BO->getRHS()->getType()->isDependentType()) { 8393 if (BO->getOpcode() != BO_Assign) 8394 return; 8395 } else if (!BO->isAssignmentOp()) 8396 return; 8397 else 8398 IsCompoundAssign = BO->isCompoundAssignmentOp(); 8399 LHS = dyn_cast<DeclRefExpr>(BO->getLHS()); 8400 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) { 8401 if (COCE->getOperator() != OO_Equal) 8402 return; 8403 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0)); 8404 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 8405 if (!UO->isIncrementDecrementOp()) 8406 return; 8407 isIncrementDecrementUnaryOp = true; 8408 LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr()); 8409 } 8410 if (!LHS) 8411 return; 8412 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl()); 8413 if (!VD) 8414 return; 8415 // Don't decrement RefsMinusAssignments if volatile variable with compound 8416 // assignment (+=, ...) or increment/decrement unary operator to avoid 8417 // potential unused-but-set-variable warning. 8418 if ((IsCompoundAssign || isIncrementDecrementUnaryOp) && 8419 VD->getType().isVolatileQualified()) 8420 return; 8421 auto iter = RefsMinusAssignments.find(VD); 8422 if (iter == RefsMinusAssignments.end()) 8423 return; 8424 iter->getSecond()--; 8425 } 8426 8427 /// Perform the conversions required for an expression used in a 8428 /// context that ignores the result. 8429 ExprResult Sema::IgnoredValueConversions(Expr *E) { 8430 MaybeDecrementCount(E, RefsMinusAssignments); 8431 8432 if (E->hasPlaceholderType()) { 8433 ExprResult result = CheckPlaceholderExpr(E); 8434 if (result.isInvalid()) return E; 8435 E = result.get(); 8436 } 8437 8438 if (getLangOpts().CPlusPlus) { 8439 // The C++11 standard defines the notion of a discarded-value expression; 8440 // normally, we don't need to do anything to handle it, but if it is a 8441 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 8442 // conversion. 8443 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) { 8444 ExprResult Res = DefaultLvalueConversion(E); 8445 if (Res.isInvalid()) 8446 return E; 8447 E = Res.get(); 8448 } else { 8449 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 8450 // it occurs as a discarded-value expression. 8451 CheckUnusedVolatileAssignment(E); 8452 } 8453 8454 // C++1z: 8455 // If the expression is a prvalue after this optional conversion, the 8456 // temporary materialization conversion is applied. 8457 // 8458 // We do not materialize temporaries by default in order to avoid creating 8459 // unnecessary temporary objects. If we skip this step, IR generation is 8460 // able to synthesize the storage for itself in the aggregate case, and 8461 // adding the extra node to the AST is just clutter. 8462 if (isInLifetimeExtendingContext() && getLangOpts().CPlusPlus17 && 8463 E->isPRValue() && !E->getType()->isVoidType()) { 8464 ExprResult Res = TemporaryMaterializationConversion(E); 8465 if (Res.isInvalid()) 8466 return E; 8467 E = Res.get(); 8468 } 8469 return E; 8470 } 8471 8472 // C99 6.3.2.1: 8473 // [Except in specific positions,] an lvalue that does not have 8474 // array type is converted to the value stored in the 8475 // designated object (and is no longer an lvalue). 8476 if (E->isPRValue()) { 8477 // In C, function designators (i.e. expressions of function type) 8478 // are r-values, but we still want to do function-to-pointer decay 8479 // on them. This is both technically correct and convenient for 8480 // some clients. 8481 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 8482 return DefaultFunctionArrayConversion(E); 8483 8484 return E; 8485 } 8486 8487 // GCC seems to also exclude expressions of incomplete enum type. 8488 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 8489 if (!T->getDecl()->isComplete()) { 8490 // FIXME: stupid workaround for a codegen bug! 8491 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 8492 return E; 8493 } 8494 } 8495 8496 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 8497 if (Res.isInvalid()) 8498 return E; 8499 E = Res.get(); 8500 8501 if (!E->getType()->isVoidType()) 8502 RequireCompleteType(E->getExprLoc(), E->getType(), 8503 diag::err_incomplete_type); 8504 return E; 8505 } 8506 8507 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) { 8508 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 8509 // it occurs as an unevaluated operand. 8510 CheckUnusedVolatileAssignment(E); 8511 8512 return E; 8513 } 8514 8515 // If we can unambiguously determine whether Var can never be used 8516 // in a constant expression, return true. 8517 // - if the variable and its initializer are non-dependent, then 8518 // we can unambiguously check if the variable is a constant expression. 8519 // - if the initializer is not value dependent - we can determine whether 8520 // it can be used to initialize a constant expression. If Init can not 8521 // be used to initialize a constant expression we conclude that Var can 8522 // never be a constant expression. 8523 // - FXIME: if the initializer is dependent, we can still do some analysis and 8524 // identify certain cases unambiguously as non-const by using a Visitor: 8525 // - such as those that involve odr-use of a ParmVarDecl, involve a new 8526 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 8527 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 8528 ASTContext &Context) { 8529 if (isa<ParmVarDecl>(Var)) return true; 8530 const VarDecl *DefVD = nullptr; 8531 8532 // If there is no initializer - this can not be a constant expression. 8533 const Expr *Init = Var->getAnyInitializer(DefVD); 8534 if (!Init) 8535 return true; 8536 assert(DefVD); 8537 if (DefVD->isWeak()) 8538 return false; 8539 8540 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 8541 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 8542 // of value-dependent expressions, and use it here to determine whether the 8543 // initializer is a potential constant expression. 8544 return false; 8545 } 8546 8547 return !Var->isUsableInConstantExpressions(Context); 8548 } 8549 8550 /// Check if the current lambda has any potential captures 8551 /// that must be captured by any of its enclosing lambdas that are ready to 8552 /// capture. If there is a lambda that can capture a nested 8553 /// potential-capture, go ahead and do so. Also, check to see if any 8554 /// variables are uncaptureable or do not involve an odr-use so do not 8555 /// need to be captured. 8556 8557 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 8558 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 8559 8560 assert(!S.isUnevaluatedContext()); 8561 assert(S.CurContext->isDependentContext()); 8562 #ifndef NDEBUG 8563 DeclContext *DC = S.CurContext; 8564 while (isa_and_nonnull<CapturedDecl>(DC)) 8565 DC = DC->getParent(); 8566 assert( 8567 CurrentLSI->CallOperator == DC && 8568 "The current call operator must be synchronized with Sema's CurContext"); 8569 #endif // NDEBUG 8570 8571 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 8572 8573 // All the potentially captureable variables in the current nested 8574 // lambda (within a generic outer lambda), must be captured by an 8575 // outer lambda that is enclosed within a non-dependent context. 8576 CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) { 8577 // If the variable is clearly identified as non-odr-used and the full 8578 // expression is not instantiation dependent, only then do we not 8579 // need to check enclosing lambda's for speculative captures. 8580 // For e.g.: 8581 // Even though 'x' is not odr-used, it should be captured. 8582 // int test() { 8583 // const int x = 10; 8584 // auto L = [=](auto a) { 8585 // (void) +x + a; 8586 // }; 8587 // } 8588 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 8589 !IsFullExprInstantiationDependent) 8590 return; 8591 8592 VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl(); 8593 if (!UnderlyingVar) 8594 return; 8595 8596 // If we have a capture-capable lambda for the variable, go ahead and 8597 // capture the variable in that lambda (and all its enclosing lambdas). 8598 if (const std::optional<unsigned> Index = 8599 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8600 S.FunctionScopes, Var, S)) 8601 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index); 8602 const bool IsVarNeverAConstantExpression = 8603 VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context); 8604 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 8605 // This full expression is not instantiation dependent or the variable 8606 // can not be used in a constant expression - which means 8607 // this variable must be odr-used here, so diagnose a 8608 // capture violation early, if the variable is un-captureable. 8609 // This is purely for diagnosing errors early. Otherwise, this 8610 // error would get diagnosed when the lambda becomes capture ready. 8611 QualType CaptureType, DeclRefType; 8612 SourceLocation ExprLoc = VarExpr->getExprLoc(); 8613 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8614 /*EllipsisLoc*/ SourceLocation(), 8615 /*BuildAndDiagnose*/false, CaptureType, 8616 DeclRefType, nullptr)) { 8617 // We will never be able to capture this variable, and we need 8618 // to be able to in any and all instantiations, so diagnose it. 8619 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8620 /*EllipsisLoc*/ SourceLocation(), 8621 /*BuildAndDiagnose*/true, CaptureType, 8622 DeclRefType, nullptr); 8623 } 8624 } 8625 }); 8626 8627 // Check if 'this' needs to be captured. 8628 if (CurrentLSI->hasPotentialThisCapture()) { 8629 // If we have a capture-capable lambda for 'this', go ahead and capture 8630 // 'this' in that lambda (and all its enclosing lambdas). 8631 if (const std::optional<unsigned> Index = 8632 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8633 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) { 8634 const unsigned FunctionScopeIndexOfCapturableLambda = *Index; 8635 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 8636 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 8637 &FunctionScopeIndexOfCapturableLambda); 8638 } 8639 } 8640 8641 // Reset all the potential captures at the end of each full-expression. 8642 CurrentLSI->clearPotentialCaptures(); 8643 } 8644 8645 static ExprResult attemptRecovery(Sema &SemaRef, 8646 const TypoCorrectionConsumer &Consumer, 8647 const TypoCorrection &TC) { 8648 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 8649 Consumer.getLookupResult().getLookupKind()); 8650 const CXXScopeSpec *SS = Consumer.getSS(); 8651 CXXScopeSpec NewSS; 8652 8653 // Use an approprate CXXScopeSpec for building the expr. 8654 if (auto *NNS = TC.getCorrectionSpecifier()) 8655 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 8656 else if (SS && !TC.WillReplaceSpecifier()) 8657 NewSS = *SS; 8658 8659 if (auto *ND = TC.getFoundDecl()) { 8660 R.setLookupName(ND->getDeclName()); 8661 R.addDecl(ND); 8662 if (ND->isCXXClassMember()) { 8663 // Figure out the correct naming class to add to the LookupResult. 8664 CXXRecordDecl *Record = nullptr; 8665 if (auto *NNS = TC.getCorrectionSpecifier()) 8666 Record = NNS->getAsType()->getAsCXXRecordDecl(); 8667 if (!Record) 8668 Record = 8669 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 8670 if (Record) 8671 R.setNamingClass(Record); 8672 8673 // Detect and handle the case where the decl might be an implicit 8674 // member. 8675 if (SemaRef.isPotentialImplicitMemberAccess( 8676 NewSS, R, Consumer.isAddressOfOperand())) 8677 return SemaRef.BuildPossibleImplicitMemberExpr( 8678 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 8679 /*TemplateArgs*/ nullptr, /*S*/ nullptr); 8680 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 8681 return SemaRef.ObjC().LookupInObjCMethod(R, Consumer.getScope(), 8682 Ivar->getIdentifier()); 8683 } 8684 } 8685 8686 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 8687 /*AcceptInvalidDecl*/ true); 8688 } 8689 8690 namespace { 8691 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 8692 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 8693 8694 public: 8695 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 8696 : TypoExprs(TypoExprs) {} 8697 bool VisitTypoExpr(TypoExpr *TE) { 8698 TypoExprs.insert(TE); 8699 return true; 8700 } 8701 }; 8702 8703 class TransformTypos : public TreeTransform<TransformTypos> { 8704 typedef TreeTransform<TransformTypos> BaseTransform; 8705 8706 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the 8707 // process of being initialized. 8708 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 8709 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 8710 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 8711 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 8712 8713 /// Emit diagnostics for all of the TypoExprs encountered. 8714 /// 8715 /// If the TypoExprs were successfully corrected, then the diagnostics should 8716 /// suggest the corrections. Otherwise the diagnostics will not suggest 8717 /// anything (having been passed an empty TypoCorrection). 8718 /// 8719 /// If we've failed to correct due to ambiguous corrections, we need to 8720 /// be sure to pass empty corrections and replacements. Otherwise it's 8721 /// possible that the Consumer has a TypoCorrection that failed to ambiguity 8722 /// and we don't want to report those diagnostics. 8723 void EmitAllDiagnostics(bool IsAmbiguous) { 8724 for (TypoExpr *TE : TypoExprs) { 8725 auto &State = SemaRef.getTypoExprState(TE); 8726 if (State.DiagHandler) { 8727 TypoCorrection TC = IsAmbiguous 8728 ? TypoCorrection() : State.Consumer->getCurrentCorrection(); 8729 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE]; 8730 8731 // Extract the NamedDecl from the transformed TypoExpr and add it to the 8732 // TypoCorrection, replacing the existing decls. This ensures the right 8733 // NamedDecl is used in diagnostics e.g. in the case where overload 8734 // resolution was used to select one from several possible decls that 8735 // had been stored in the TypoCorrection. 8736 if (auto *ND = getDeclFromExpr( 8737 Replacement.isInvalid() ? nullptr : Replacement.get())) 8738 TC.setCorrectionDecl(ND); 8739 8740 State.DiagHandler(TC); 8741 } 8742 SemaRef.clearDelayedTypo(TE); 8743 } 8744 } 8745 8746 /// Try to advance the typo correction state of the first unfinished TypoExpr. 8747 /// We allow advancement of the correction stream by removing it from the 8748 /// TransformCache which allows `TransformTypoExpr` to advance during the 8749 /// next transformation attempt. 8750 /// 8751 /// Any substitution attempts for the previous TypoExprs (which must have been 8752 /// finished) will need to be retried since it's possible that they will now 8753 /// be invalid given the latest advancement. 8754 /// 8755 /// We need to be sure that we're making progress - it's possible that the 8756 /// tree is so malformed that the transform never makes it to the 8757 /// `TransformTypoExpr`. 8758 /// 8759 /// Returns true if there are any untried correction combinations. 8760 bool CheckAndAdvanceTypoExprCorrectionStreams() { 8761 for (auto *TE : TypoExprs) { 8762 auto &State = SemaRef.getTypoExprState(TE); 8763 TransformCache.erase(TE); 8764 if (!State.Consumer->hasMadeAnyCorrectionProgress()) 8765 return false; 8766 if (!State.Consumer->finished()) 8767 return true; 8768 State.Consumer->resetCorrectionStream(); 8769 } 8770 return false; 8771 } 8772 8773 NamedDecl *getDeclFromExpr(Expr *E) { 8774 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 8775 E = OverloadResolution[OE]; 8776 8777 if (!E) 8778 return nullptr; 8779 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 8780 return DRE->getFoundDecl(); 8781 if (auto *ME = dyn_cast<MemberExpr>(E)) 8782 return ME->getFoundDecl(); 8783 // FIXME: Add any other expr types that could be seen by the delayed typo 8784 // correction TreeTransform for which the corresponding TypoCorrection could 8785 // contain multiple decls. 8786 return nullptr; 8787 } 8788 8789 ExprResult TryTransform(Expr *E) { 8790 Sema::SFINAETrap Trap(SemaRef); 8791 ExprResult Res = TransformExpr(E); 8792 if (Trap.hasErrorOccurred() || Res.isInvalid()) 8793 return ExprError(); 8794 8795 return ExprFilter(Res.get()); 8796 } 8797 8798 // Since correcting typos may intoduce new TypoExprs, this function 8799 // checks for new TypoExprs and recurses if it finds any. Note that it will 8800 // only succeed if it is able to correct all typos in the given expression. 8801 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) { 8802 if (Res.isInvalid()) { 8803 return Res; 8804 } 8805 // Check to see if any new TypoExprs were created. If so, we need to recurse 8806 // to check their validity. 8807 Expr *FixedExpr = Res.get(); 8808 8809 auto SavedTypoExprs = std::move(TypoExprs); 8810 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs); 8811 TypoExprs.clear(); 8812 AmbiguousTypoExprs.clear(); 8813 8814 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr); 8815 if (!TypoExprs.empty()) { 8816 // Recurse to handle newly created TypoExprs. If we're not able to 8817 // handle them, discard these TypoExprs. 8818 ExprResult RecurResult = 8819 RecursiveTransformLoop(FixedExpr, IsAmbiguous); 8820 if (RecurResult.isInvalid()) { 8821 Res = ExprError(); 8822 // Recursive corrections didn't work, wipe them away and don't add 8823 // them to the TypoExprs set. Remove them from Sema's TypoExpr list 8824 // since we don't want to clear them twice. Note: it's possible the 8825 // TypoExprs were created recursively and thus won't be in our 8826 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`. 8827 auto &SemaTypoExprs = SemaRef.TypoExprs; 8828 for (auto *TE : TypoExprs) { 8829 TransformCache.erase(TE); 8830 SemaRef.clearDelayedTypo(TE); 8831 8832 auto SI = find(SemaTypoExprs, TE); 8833 if (SI != SemaTypoExprs.end()) { 8834 SemaTypoExprs.erase(SI); 8835 } 8836 } 8837 } else { 8838 // TypoExpr is valid: add newly created TypoExprs since we were 8839 // able to correct them. 8840 Res = RecurResult; 8841 SavedTypoExprs.set_union(TypoExprs); 8842 } 8843 } 8844 8845 TypoExprs = std::move(SavedTypoExprs); 8846 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs); 8847 8848 return Res; 8849 } 8850 8851 // Try to transform the given expression, looping through the correction 8852 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`. 8853 // 8854 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to 8855 // true and this method immediately will return an `ExprError`. 8856 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) { 8857 ExprResult Res; 8858 auto SavedTypoExprs = std::move(SemaRef.TypoExprs); 8859 SemaRef.TypoExprs.clear(); 8860 8861 while (true) { 8862 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8863 8864 // Recursion encountered an ambiguous correction. This means that our 8865 // correction itself is ambiguous, so stop now. 8866 if (IsAmbiguous) 8867 break; 8868 8869 // If the transform is still valid after checking for any new typos, 8870 // it's good to go. 8871 if (!Res.isInvalid()) 8872 break; 8873 8874 // The transform was invalid, see if we have any TypoExprs with untried 8875 // correction candidates. 8876 if (!CheckAndAdvanceTypoExprCorrectionStreams()) 8877 break; 8878 } 8879 8880 // If we found a valid result, double check to make sure it's not ambiguous. 8881 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) { 8882 auto SavedTransformCache = 8883 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache); 8884 8885 // Ensure none of the TypoExprs have multiple typo correction candidates 8886 // with the same edit length that pass all the checks and filters. 8887 while (!AmbiguousTypoExprs.empty()) { 8888 auto TE = AmbiguousTypoExprs.back(); 8889 8890 // TryTransform itself can create new Typos, adding them to the TypoExpr map 8891 // and invalidating our TypoExprState, so always fetch it instead of storing. 8892 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition(); 8893 8894 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection(); 8895 TypoCorrection Next; 8896 do { 8897 // Fetch the next correction by erasing the typo from the cache and calling 8898 // `TryTransform` which will iterate through corrections in 8899 // `TransformTypoExpr`. 8900 TransformCache.erase(TE); 8901 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8902 8903 if (!AmbigRes.isInvalid() || IsAmbiguous) { 8904 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream(); 8905 SavedTransformCache.erase(TE); 8906 Res = ExprError(); 8907 IsAmbiguous = true; 8908 break; 8909 } 8910 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) && 8911 Next.getEditDistance(false) == TC.getEditDistance(false)); 8912 8913 if (IsAmbiguous) 8914 break; 8915 8916 AmbiguousTypoExprs.remove(TE); 8917 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition(); 8918 TransformCache[TE] = SavedTransformCache[TE]; 8919 } 8920 TransformCache = std::move(SavedTransformCache); 8921 } 8922 8923 // Wipe away any newly created TypoExprs that we don't know about. Since we 8924 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only 8925 // possible if a `TypoExpr` is created during a transformation but then 8926 // fails before we can discover it. 8927 auto &SemaTypoExprs = SemaRef.TypoExprs; 8928 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) { 8929 auto TE = *Iterator; 8930 auto FI = find(TypoExprs, TE); 8931 if (FI != TypoExprs.end()) { 8932 Iterator++; 8933 continue; 8934 } 8935 SemaRef.clearDelayedTypo(TE); 8936 Iterator = SemaTypoExprs.erase(Iterator); 8937 } 8938 SemaRef.TypoExprs = std::move(SavedTypoExprs); 8939 8940 return Res; 8941 } 8942 8943 public: 8944 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) 8945 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} 8946 8947 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 8948 MultiExprArg Args, 8949 SourceLocation RParenLoc, 8950 Expr *ExecConfig = nullptr) { 8951 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 8952 RParenLoc, ExecConfig); 8953 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 8954 if (Result.isUsable()) { 8955 Expr *ResultCall = Result.get(); 8956 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 8957 ResultCall = BE->getSubExpr(); 8958 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 8959 OverloadResolution[OE] = CE->getCallee(); 8960 } 8961 } 8962 return Result; 8963 } 8964 8965 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 8966 8967 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } 8968 8969 ExprResult Transform(Expr *E) { 8970 bool IsAmbiguous = false; 8971 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous); 8972 8973 if (!Res.isUsable()) 8974 FindTypoExprs(TypoExprs).TraverseStmt(E); 8975 8976 EmitAllDiagnostics(IsAmbiguous); 8977 8978 return Res; 8979 } 8980 8981 ExprResult TransformTypoExpr(TypoExpr *E) { 8982 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 8983 // cached transformation result if there is one and the TypoExpr isn't the 8984 // first one that was encountered. 8985 auto &CacheEntry = TransformCache[E]; 8986 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 8987 return CacheEntry; 8988 } 8989 8990 auto &State = SemaRef.getTypoExprState(E); 8991 assert(State.Consumer && "Cannot transform a cleared TypoExpr"); 8992 8993 // For the first TypoExpr and an uncached TypoExpr, find the next likely 8994 // typo correction and return it. 8995 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 8996 if (InitDecl && TC.getFoundDecl() == InitDecl) 8997 continue; 8998 // FIXME: If we would typo-correct to an invalid declaration, it's 8999 // probably best to just suppress all errors from this typo correction. 9000 ExprResult NE = State.RecoveryHandler ? 9001 State.RecoveryHandler(SemaRef, E, TC) : 9002 attemptRecovery(SemaRef, *State.Consumer, TC); 9003 if (!NE.isInvalid()) { 9004 // Check whether there may be a second viable correction with the same 9005 // edit distance; if so, remember this TypoExpr may have an ambiguous 9006 // correction so it can be more thoroughly vetted later. 9007 TypoCorrection Next; 9008 if ((Next = State.Consumer->peekNextCorrection()) && 9009 Next.getEditDistance(false) == TC.getEditDistance(false)) { 9010 AmbiguousTypoExprs.insert(E); 9011 } else { 9012 AmbiguousTypoExprs.remove(E); 9013 } 9014 assert(!NE.isUnset() && 9015 "Typo was transformed into a valid-but-null ExprResult"); 9016 return CacheEntry = NE; 9017 } 9018 } 9019 return CacheEntry = ExprError(); 9020 } 9021 }; 9022 } 9023 9024 ExprResult 9025 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, 9026 bool RecoverUncorrectedTypos, 9027 llvm::function_ref<ExprResult(Expr *)> Filter) { 9028 // If the current evaluation context indicates there are uncorrected typos 9029 // and the current expression isn't guaranteed to not have typos, try to 9030 // resolve any TypoExpr nodes that might be in the expression. 9031 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 9032 (E->isTypeDependent() || E->isValueDependent() || 9033 E->isInstantiationDependent())) { 9034 auto TyposResolved = DelayedTypos.size(); 9035 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); 9036 TyposResolved -= DelayedTypos.size(); 9037 if (Result.isInvalid() || Result.get() != E) { 9038 ExprEvalContexts.back().NumTypos -= TyposResolved; 9039 if (Result.isInvalid() && RecoverUncorrectedTypos) { 9040 struct TyposReplace : TreeTransform<TyposReplace> { 9041 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {} 9042 ExprResult TransformTypoExpr(clang::TypoExpr *E) { 9043 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(), 9044 E->getEndLoc(), {}); 9045 } 9046 } TT(*this); 9047 return TT.TransformExpr(E); 9048 } 9049 return Result; 9050 } 9051 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); 9052 } 9053 return E; 9054 } 9055 9056 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 9057 bool DiscardedValue, bool IsConstexpr, 9058 bool IsTemplateArgument) { 9059 ExprResult FullExpr = FE; 9060 9061 if (!FullExpr.get()) 9062 return ExprError(); 9063 9064 if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get())) 9065 return ExprError(); 9066 9067 if (DiscardedValue) { 9068 // Top-level expressions default to 'id' when we're in a debugger. 9069 if (getLangOpts().DebuggerCastResultToId && 9070 FullExpr.get()->getType() == Context.UnknownAnyTy) { 9071 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 9072 if (FullExpr.isInvalid()) 9073 return ExprError(); 9074 } 9075 9076 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 9077 if (FullExpr.isInvalid()) 9078 return ExprError(); 9079 9080 FullExpr = IgnoredValueConversions(FullExpr.get()); 9081 if (FullExpr.isInvalid()) 9082 return ExprError(); 9083 9084 DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr); 9085 } 9086 9087 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr, 9088 /*RecoverUncorrectedTypos=*/true); 9089 if (FullExpr.isInvalid()) 9090 return ExprError(); 9091 9092 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 9093 9094 // At the end of this full expression (which could be a deeply nested 9095 // lambda), if there is a potential capture within the nested lambda, 9096 // have the outer capture-able lambda try and capture it. 9097 // Consider the following code: 9098 // void f(int, int); 9099 // void f(const int&, double); 9100 // void foo() { 9101 // const int x = 10, y = 20; 9102 // auto L = [=](auto a) { 9103 // auto M = [=](auto b) { 9104 // f(x, b); <-- requires x to be captured by L and M 9105 // f(y, a); <-- requires y to be captured by L, but not all Ms 9106 // }; 9107 // }; 9108 // } 9109 9110 // FIXME: Also consider what happens for something like this that involves 9111 // the gnu-extension statement-expressions or even lambda-init-captures: 9112 // void f() { 9113 // const int n = 0; 9114 // auto L = [&](auto a) { 9115 // +n + ({ 0; a; }); 9116 // }; 9117 // } 9118 // 9119 // Here, we see +n, and then the full-expression 0; ends, so we don't 9120 // capture n (and instead remove it from our list of potential captures), 9121 // and then the full-expression +n + ({ 0; }); ends, but it's too late 9122 // for us to see that we need to capture n after all. 9123 9124 LambdaScopeInfo *const CurrentLSI = 9125 getCurLambda(/*IgnoreCapturedRegions=*/true); 9126 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 9127 // even if CurContext is not a lambda call operator. Refer to that Bug Report 9128 // for an example of the code that might cause this asynchrony. 9129 // By ensuring we are in the context of a lambda's call operator 9130 // we can fix the bug (we only need to check whether we need to capture 9131 // if we are within a lambda's body); but per the comments in that 9132 // PR, a proper fix would entail : 9133 // "Alternative suggestion: 9134 // - Add to Sema an integer holding the smallest (outermost) scope 9135 // index that we are *lexically* within, and save/restore/set to 9136 // FunctionScopes.size() in InstantiatingTemplate's 9137 // constructor/destructor. 9138 // - Teach the handful of places that iterate over FunctionScopes to 9139 // stop at the outermost enclosing lexical scope." 9140 DeclContext *DC = CurContext; 9141 while (isa_and_nonnull<CapturedDecl>(DC)) 9142 DC = DC->getParent(); 9143 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); 9144 if (IsInLambdaDeclContext && CurrentLSI && 9145 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 9146 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 9147 *this); 9148 return MaybeCreateExprWithCleanups(FullExpr); 9149 } 9150 9151 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 9152 if (!FullStmt) return StmtError(); 9153 9154 return MaybeCreateStmtWithCleanups(FullStmt); 9155 } 9156 9157 Sema::IfExistsResult 9158 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 9159 CXXScopeSpec &SS, 9160 const DeclarationNameInfo &TargetNameInfo) { 9161 DeclarationName TargetName = TargetNameInfo.getName(); 9162 if (!TargetName) 9163 return IER_DoesNotExist; 9164 9165 // If the name itself is dependent, then the result is dependent. 9166 if (TargetName.isDependentName()) 9167 return IER_Dependent; 9168 9169 // Do the redeclaration lookup in the current scope. 9170 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 9171 RedeclarationKind::NotForRedeclaration); 9172 LookupParsedName(R, S, &SS, /*ObjectType=*/QualType()); 9173 R.suppressDiagnostics(); 9174 9175 switch (R.getResultKind()) { 9176 case LookupResult::Found: 9177 case LookupResult::FoundOverloaded: 9178 case LookupResult::FoundUnresolvedValue: 9179 case LookupResult::Ambiguous: 9180 return IER_Exists; 9181 9182 case LookupResult::NotFound: 9183 return IER_DoesNotExist; 9184 9185 case LookupResult::NotFoundInCurrentInstantiation: 9186 return IER_Dependent; 9187 } 9188 9189 llvm_unreachable("Invalid LookupResult Kind!"); 9190 } 9191 9192 Sema::IfExistsResult 9193 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 9194 bool IsIfExists, CXXScopeSpec &SS, 9195 UnqualifiedId &Name) { 9196 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 9197 9198 // Check for an unexpanded parameter pack. 9199 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; 9200 if (DiagnoseUnexpandedParameterPack(SS, UPPC) || 9201 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC)) 9202 return IER_Error; 9203 9204 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 9205 } 9206 9207 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) { 9208 return BuildExprRequirement(E, /*IsSimple=*/true, 9209 /*NoexceptLoc=*/SourceLocation(), 9210 /*ReturnTypeRequirement=*/{}); 9211 } 9212 9213 concepts::Requirement *Sema::ActOnTypeRequirement( 9214 SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc, 9215 const IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId) { 9216 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) && 9217 "Exactly one of TypeName and TemplateId must be specified."); 9218 TypeSourceInfo *TSI = nullptr; 9219 if (TypeName) { 9220 QualType T = 9221 CheckTypenameType(ElaboratedTypeKeyword::Typename, TypenameKWLoc, 9222 SS.getWithLocInContext(Context), *TypeName, NameLoc, 9223 &TSI, /*DeducedTSTContext=*/false); 9224 if (T.isNull()) 9225 return nullptr; 9226 } else { 9227 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(), 9228 TemplateId->NumArgs); 9229 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS, 9230 TemplateId->TemplateKWLoc, 9231 TemplateId->Template, TemplateId->Name, 9232 TemplateId->TemplateNameLoc, 9233 TemplateId->LAngleLoc, ArgsPtr, 9234 TemplateId->RAngleLoc); 9235 if (T.isInvalid()) 9236 return nullptr; 9237 if (GetTypeFromParser(T.get(), &TSI).isNull()) 9238 return nullptr; 9239 } 9240 return BuildTypeRequirement(TSI); 9241 } 9242 9243 concepts::Requirement * 9244 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) { 9245 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, 9246 /*ReturnTypeRequirement=*/{}); 9247 } 9248 9249 concepts::Requirement * 9250 Sema::ActOnCompoundRequirement( 9251 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, 9252 TemplateIdAnnotation *TypeConstraint, unsigned Depth) { 9253 // C++2a [expr.prim.req.compound] p1.3.3 9254 // [..] the expression is deduced against an invented function template 9255 // F [...] F is a void function template with a single type template 9256 // parameter T declared with the constrained-parameter. Form a new 9257 // cv-qualifier-seq cv by taking the union of const and volatile specifiers 9258 // around the constrained-parameter. F has a single parameter whose 9259 // type-specifier is cv T followed by the abstract-declarator. [...] 9260 // 9261 // The cv part is done in the calling function - we get the concept with 9262 // arguments and the abstract declarator with the correct CV qualification and 9263 // have to synthesize T and the single parameter of F. 9264 auto &II = Context.Idents.get("expr-type"); 9265 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext, 9266 SourceLocation(), 9267 SourceLocation(), Depth, 9268 /*Index=*/0, &II, 9269 /*Typename=*/true, 9270 /*ParameterPack=*/false, 9271 /*HasTypeConstraint=*/true); 9272 9273 if (BuildTypeConstraint(SS, TypeConstraint, TParam, 9274 /*EllipsisLoc=*/SourceLocation(), 9275 /*AllowUnexpandedPack=*/true)) 9276 // Just produce a requirement with no type requirements. 9277 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {}); 9278 9279 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(), 9280 SourceLocation(), 9281 ArrayRef<NamedDecl *>(TParam), 9282 SourceLocation(), 9283 /*RequiresClause=*/nullptr); 9284 return BuildExprRequirement( 9285 E, /*IsSimple=*/false, NoexceptLoc, 9286 concepts::ExprRequirement::ReturnTypeRequirement(TPL)); 9287 } 9288 9289 concepts::ExprRequirement * 9290 Sema::BuildExprRequirement( 9291 Expr *E, bool IsSimple, SourceLocation NoexceptLoc, 9292 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 9293 auto Status = concepts::ExprRequirement::SS_Satisfied; 9294 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr; 9295 if (E->isInstantiationDependent() || E->getType()->isPlaceholderType() || 9296 ReturnTypeRequirement.isDependent()) 9297 Status = concepts::ExprRequirement::SS_Dependent; 9298 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can) 9299 Status = concepts::ExprRequirement::SS_NoexceptNotMet; 9300 else if (ReturnTypeRequirement.isSubstitutionFailure()) 9301 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure; 9302 else if (ReturnTypeRequirement.isTypeConstraint()) { 9303 // C++2a [expr.prim.req]p1.3.3 9304 // The immediately-declared constraint ([temp]) of decltype((E)) shall 9305 // be satisfied. 9306 TemplateParameterList *TPL = 9307 ReturnTypeRequirement.getTypeConstraintTemplateParameterList(); 9308 QualType MatchedType = 9309 Context.getReferenceQualifiedType(E).getCanonicalType(); 9310 llvm::SmallVector<TemplateArgument, 1> Args; 9311 Args.push_back(TemplateArgument(MatchedType)); 9312 9313 auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0)); 9314 9315 MultiLevelTemplateArgumentList MLTAL(Param, Args, /*Final=*/false); 9316 MLTAL.addOuterRetainedLevels(TPL->getDepth()); 9317 const TypeConstraint *TC = Param->getTypeConstraint(); 9318 assert(TC && "Type Constraint cannot be null here"); 9319 auto *IDC = TC->getImmediatelyDeclaredConstraint(); 9320 assert(IDC && "ImmediatelyDeclaredConstraint can't be null here."); 9321 ExprResult Constraint = SubstExpr(IDC, MLTAL); 9322 if (Constraint.isInvalid()) { 9323 return new (Context) concepts::ExprRequirement( 9324 concepts::createSubstDiagAt(*this, IDC->getExprLoc(), 9325 [&](llvm::raw_ostream &OS) { 9326 IDC->printPretty(OS, /*Helper=*/nullptr, 9327 getPrintingPolicy()); 9328 }), 9329 IsSimple, NoexceptLoc, ReturnTypeRequirement); 9330 } 9331 SubstitutedConstraintExpr = 9332 cast<ConceptSpecializationExpr>(Constraint.get()); 9333 if (!SubstitutedConstraintExpr->isSatisfied()) 9334 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied; 9335 } 9336 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc, 9337 ReturnTypeRequirement, Status, 9338 SubstitutedConstraintExpr); 9339 } 9340 9341 concepts::ExprRequirement * 9342 Sema::BuildExprRequirement( 9343 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic, 9344 bool IsSimple, SourceLocation NoexceptLoc, 9345 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 9346 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic, 9347 IsSimple, NoexceptLoc, 9348 ReturnTypeRequirement); 9349 } 9350 9351 concepts::TypeRequirement * 9352 Sema::BuildTypeRequirement(TypeSourceInfo *Type) { 9353 return new (Context) concepts::TypeRequirement(Type); 9354 } 9355 9356 concepts::TypeRequirement * 9357 Sema::BuildTypeRequirement( 9358 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 9359 return new (Context) concepts::TypeRequirement(SubstDiag); 9360 } 9361 9362 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) { 9363 return BuildNestedRequirement(Constraint); 9364 } 9365 9366 concepts::NestedRequirement * 9367 Sema::BuildNestedRequirement(Expr *Constraint) { 9368 ConstraintSatisfaction Satisfaction; 9369 if (!Constraint->isInstantiationDependent() && 9370 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{}, 9371 Constraint->getSourceRange(), Satisfaction)) 9372 return nullptr; 9373 return new (Context) concepts::NestedRequirement(Context, Constraint, 9374 Satisfaction); 9375 } 9376 9377 concepts::NestedRequirement * 9378 Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity, 9379 const ASTConstraintSatisfaction &Satisfaction) { 9380 return new (Context) concepts::NestedRequirement( 9381 InvalidConstraintEntity, 9382 ASTConstraintSatisfaction::Rebuild(Context, Satisfaction)); 9383 } 9384 9385 RequiresExprBodyDecl * 9386 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, 9387 ArrayRef<ParmVarDecl *> LocalParameters, 9388 Scope *BodyScope) { 9389 assert(BodyScope); 9390 9391 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext, 9392 RequiresKWLoc); 9393 9394 PushDeclContext(BodyScope, Body); 9395 9396 for (ParmVarDecl *Param : LocalParameters) { 9397 if (Param->hasDefaultArg()) 9398 // C++2a [expr.prim.req] p4 9399 // [...] A local parameter of a requires-expression shall not have a 9400 // default argument. [...] 9401 Diag(Param->getDefaultArgRange().getBegin(), 9402 diag::err_requires_expr_local_parameter_default_argument); 9403 // Ignore default argument and move on 9404 9405 Param->setDeclContext(Body); 9406 // If this has an identifier, add it to the scope stack. 9407 if (Param->getIdentifier()) { 9408 CheckShadow(BodyScope, Param); 9409 PushOnScopeChains(Param, BodyScope); 9410 } 9411 } 9412 return Body; 9413 } 9414 9415 void Sema::ActOnFinishRequiresExpr() { 9416 assert(CurContext && "DeclContext imbalance!"); 9417 CurContext = CurContext->getLexicalParent(); 9418 assert(CurContext && "Popped translation unit!"); 9419 } 9420 9421 ExprResult Sema::ActOnRequiresExpr( 9422 SourceLocation RequiresKWLoc, RequiresExprBodyDecl *Body, 9423 SourceLocation LParenLoc, ArrayRef<ParmVarDecl *> LocalParameters, 9424 SourceLocation RParenLoc, ArrayRef<concepts::Requirement *> Requirements, 9425 SourceLocation ClosingBraceLoc) { 9426 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LParenLoc, 9427 LocalParameters, RParenLoc, Requirements, 9428 ClosingBraceLoc); 9429 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE)) 9430 return ExprError(); 9431 return RE; 9432 } 9433