xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaExprCXX.cpp (revision 7fdf597e96a02165cfe22ff357b857d5fa15ed8a)
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprConcepts.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/Type.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/DiagnosticSema.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/TokenKinds.h"
32 #include "clang/Basic/TypeTraits.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/EnterExpressionEvaluationContext.h"
36 #include "clang/Sema/Initialization.h"
37 #include "clang/Sema/Lookup.h"
38 #include "clang/Sema/ParsedTemplate.h"
39 #include "clang/Sema/Scope.h"
40 #include "clang/Sema/ScopeInfo.h"
41 #include "clang/Sema/SemaCUDA.h"
42 #include "clang/Sema/SemaInternal.h"
43 #include "clang/Sema/SemaLambda.h"
44 #include "clang/Sema/SemaObjC.h"
45 #include "clang/Sema/SemaPPC.h"
46 #include "clang/Sema/Template.h"
47 #include "clang/Sema/TemplateDeduction.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/STLForwardCompat.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/TypeSize.h"
54 #include <optional>
55 using namespace clang;
56 using namespace sema;
57 
58 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
59                                               SourceLocation NameLoc,
60                                               const IdentifierInfo &Name) {
61   NestedNameSpecifier *NNS = SS.getScopeRep();
62 
63   // Convert the nested-name-specifier into a type.
64   QualType Type;
65   switch (NNS->getKind()) {
66   case NestedNameSpecifier::TypeSpec:
67   case NestedNameSpecifier::TypeSpecWithTemplate:
68     Type = QualType(NNS->getAsType(), 0);
69     break;
70 
71   case NestedNameSpecifier::Identifier:
72     // Strip off the last layer of the nested-name-specifier and build a
73     // typename type for it.
74     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
75     Type = Context.getDependentNameType(
76         ElaboratedTypeKeyword::None, NNS->getPrefix(), NNS->getAsIdentifier());
77     break;
78 
79   case NestedNameSpecifier::Global:
80   case NestedNameSpecifier::Super:
81   case NestedNameSpecifier::Namespace:
82   case NestedNameSpecifier::NamespaceAlias:
83     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
84   }
85 
86   // This reference to the type is located entirely at the location of the
87   // final identifier in the qualified-id.
88   return CreateParsedType(Type,
89                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
90 }
91 
92 ParsedType Sema::getConstructorName(const IdentifierInfo &II,
93                                     SourceLocation NameLoc, Scope *S,
94                                     CXXScopeSpec &SS, bool EnteringContext) {
95   CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
96   assert(CurClass && &II == CurClass->getIdentifier() &&
97          "not a constructor name");
98 
99   // When naming a constructor as a member of a dependent context (eg, in a
100   // friend declaration or an inherited constructor declaration), form an
101   // unresolved "typename" type.
102   if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
103     QualType T = Context.getDependentNameType(ElaboratedTypeKeyword::None,
104                                               SS.getScopeRep(), &II);
105     return ParsedType::make(T);
106   }
107 
108   if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
109     return ParsedType();
110 
111   // Find the injected-class-name declaration. Note that we make no attempt to
112   // diagnose cases where the injected-class-name is shadowed: the only
113   // declaration that can validly shadow the injected-class-name is a
114   // non-static data member, and if the class contains both a non-static data
115   // member and a constructor then it is ill-formed (we check that in
116   // CheckCompletedCXXClass).
117   CXXRecordDecl *InjectedClassName = nullptr;
118   for (NamedDecl *ND : CurClass->lookup(&II)) {
119     auto *RD = dyn_cast<CXXRecordDecl>(ND);
120     if (RD && RD->isInjectedClassName()) {
121       InjectedClassName = RD;
122       break;
123     }
124   }
125   if (!InjectedClassName) {
126     if (!CurClass->isInvalidDecl()) {
127       // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
128       // properly. Work around it here for now.
129       Diag(SS.getLastQualifierNameLoc(),
130            diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
131     }
132     return ParsedType();
133   }
134 
135   QualType T = Context.getTypeDeclType(InjectedClassName);
136   DiagnoseUseOfDecl(InjectedClassName, NameLoc);
137   MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
138 
139   return ParsedType::make(T);
140 }
141 
142 ParsedType Sema::getDestructorName(const IdentifierInfo &II,
143                                    SourceLocation NameLoc, Scope *S,
144                                    CXXScopeSpec &SS, ParsedType ObjectTypePtr,
145                                    bool EnteringContext) {
146   // Determine where to perform name lookup.
147 
148   // FIXME: This area of the standard is very messy, and the current
149   // wording is rather unclear about which scopes we search for the
150   // destructor name; see core issues 399 and 555. Issue 399 in
151   // particular shows where the current description of destructor name
152   // lookup is completely out of line with existing practice, e.g.,
153   // this appears to be ill-formed:
154   //
155   //   namespace N {
156   //     template <typename T> struct S {
157   //       ~S();
158   //     };
159   //   }
160   //
161   //   void f(N::S<int>* s) {
162   //     s->N::S<int>::~S();
163   //   }
164   //
165   // See also PR6358 and PR6359.
166   //
167   // For now, we accept all the cases in which the name given could plausibly
168   // be interpreted as a correct destructor name, issuing off-by-default
169   // extension diagnostics on the cases that don't strictly conform to the
170   // C++20 rules. This basically means we always consider looking in the
171   // nested-name-specifier prefix, the complete nested-name-specifier, and
172   // the scope, and accept if we find the expected type in any of the three
173   // places.
174 
175   if (SS.isInvalid())
176     return nullptr;
177 
178   // Whether we've failed with a diagnostic already.
179   bool Failed = false;
180 
181   llvm::SmallVector<NamedDecl*, 8> FoundDecls;
182   llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
183 
184   // If we have an object type, it's because we are in a
185   // pseudo-destructor-expression or a member access expression, and
186   // we know what type we're looking for.
187   QualType SearchType =
188       ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
189 
190   auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
191     auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
192       auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
193       if (!Type)
194         return false;
195 
196       if (SearchType.isNull() || SearchType->isDependentType())
197         return true;
198 
199       QualType T = Context.getTypeDeclType(Type);
200       return Context.hasSameUnqualifiedType(T, SearchType);
201     };
202 
203     unsigned NumAcceptableResults = 0;
204     for (NamedDecl *D : Found) {
205       if (IsAcceptableResult(D))
206         ++NumAcceptableResults;
207 
208       // Don't list a class twice in the lookup failure diagnostic if it's
209       // found by both its injected-class-name and by the name in the enclosing
210       // scope.
211       if (auto *RD = dyn_cast<CXXRecordDecl>(D))
212         if (RD->isInjectedClassName())
213           D = cast<NamedDecl>(RD->getParent());
214 
215       if (FoundDeclSet.insert(D).second)
216         FoundDecls.push_back(D);
217     }
218 
219     // As an extension, attempt to "fix" an ambiguity by erasing all non-type
220     // results, and all non-matching results if we have a search type. It's not
221     // clear what the right behavior is if destructor lookup hits an ambiguity,
222     // but other compilers do generally accept at least some kinds of
223     // ambiguity.
224     if (Found.isAmbiguous() && NumAcceptableResults == 1) {
225       Diag(NameLoc, diag::ext_dtor_name_ambiguous);
226       LookupResult::Filter F = Found.makeFilter();
227       while (F.hasNext()) {
228         NamedDecl *D = F.next();
229         if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
230           Diag(D->getLocation(), diag::note_destructor_type_here)
231               << Context.getTypeDeclType(TD);
232         else
233           Diag(D->getLocation(), diag::note_destructor_nontype_here);
234 
235         if (!IsAcceptableResult(D))
236           F.erase();
237       }
238       F.done();
239     }
240 
241     if (Found.isAmbiguous())
242       Failed = true;
243 
244     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
245       if (IsAcceptableResult(Type)) {
246         QualType T = Context.getTypeDeclType(Type);
247         MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
248         return CreateParsedType(
249             Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, T),
250             Context.getTrivialTypeSourceInfo(T, NameLoc));
251       }
252     }
253 
254     return nullptr;
255   };
256 
257   bool IsDependent = false;
258 
259   auto LookupInObjectType = [&]() -> ParsedType {
260     if (Failed || SearchType.isNull())
261       return nullptr;
262 
263     IsDependent |= SearchType->isDependentType();
264 
265     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
266     DeclContext *LookupCtx = computeDeclContext(SearchType);
267     if (!LookupCtx)
268       return nullptr;
269     LookupQualifiedName(Found, LookupCtx);
270     return CheckLookupResult(Found);
271   };
272 
273   auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
274     if (Failed)
275       return nullptr;
276 
277     IsDependent |= isDependentScopeSpecifier(LookupSS);
278     DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
279     if (!LookupCtx)
280       return nullptr;
281 
282     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
283     if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
284       Failed = true;
285       return nullptr;
286     }
287     LookupQualifiedName(Found, LookupCtx);
288     return CheckLookupResult(Found);
289   };
290 
291   auto LookupInScope = [&]() -> ParsedType {
292     if (Failed || !S)
293       return nullptr;
294 
295     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
296     LookupName(Found, S);
297     return CheckLookupResult(Found);
298   };
299 
300   // C++2a [basic.lookup.qual]p6:
301   //   In a qualified-id of the form
302   //
303   //     nested-name-specifier[opt] type-name :: ~ type-name
304   //
305   //   the second type-name is looked up in the same scope as the first.
306   //
307   // We interpret this as meaning that if you do a dual-scope lookup for the
308   // first name, you also do a dual-scope lookup for the second name, per
309   // C++ [basic.lookup.classref]p4:
310   //
311   //   If the id-expression in a class member access is a qualified-id of the
312   //   form
313   //
314   //     class-name-or-namespace-name :: ...
315   //
316   //   the class-name-or-namespace-name following the . or -> is first looked
317   //   up in the class of the object expression and the name, if found, is used.
318   //   Otherwise, it is looked up in the context of the entire
319   //   postfix-expression.
320   //
321   // This looks in the same scopes as for an unqualified destructor name:
322   //
323   // C++ [basic.lookup.classref]p3:
324   //   If the unqualified-id is ~ type-name, the type-name is looked up
325   //   in the context of the entire postfix-expression. If the type T
326   //   of the object expression is of a class type C, the type-name is
327   //   also looked up in the scope of class C. At least one of the
328   //   lookups shall find a name that refers to cv T.
329   //
330   // FIXME: The intent is unclear here. Should type-name::~type-name look in
331   // the scope anyway if it finds a non-matching name declared in the class?
332   // If both lookups succeed and find a dependent result, which result should
333   // we retain? (Same question for p->~type-name().)
334 
335   if (NestedNameSpecifier *Prefix =
336       SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
337     // This is
338     //
339     //   nested-name-specifier type-name :: ~ type-name
340     //
341     // Look for the second type-name in the nested-name-specifier.
342     CXXScopeSpec PrefixSS;
343     PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
344     if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
345       return T;
346   } else {
347     // This is one of
348     //
349     //   type-name :: ~ type-name
350     //   ~ type-name
351     //
352     // Look in the scope and (if any) the object type.
353     if (ParsedType T = LookupInScope())
354       return T;
355     if (ParsedType T = LookupInObjectType())
356       return T;
357   }
358 
359   if (Failed)
360     return nullptr;
361 
362   if (IsDependent) {
363     // We didn't find our type, but that's OK: it's dependent anyway.
364 
365     // FIXME: What if we have no nested-name-specifier?
366     QualType T =
367         CheckTypenameType(ElaboratedTypeKeyword::None, SourceLocation(),
368                           SS.getWithLocInContext(Context), II, NameLoc);
369     return ParsedType::make(T);
370   }
371 
372   // The remaining cases are all non-standard extensions imitating the behavior
373   // of various other compilers.
374   unsigned NumNonExtensionDecls = FoundDecls.size();
375 
376   if (SS.isSet()) {
377     // For compatibility with older broken C++ rules and existing code,
378     //
379     //   nested-name-specifier :: ~ type-name
380     //
381     // also looks for type-name within the nested-name-specifier.
382     if (ParsedType T = LookupInNestedNameSpec(SS)) {
383       Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
384           << SS.getRange()
385           << FixItHint::CreateInsertion(SS.getEndLoc(),
386                                         ("::" + II.getName()).str());
387       return T;
388     }
389 
390     // For compatibility with other compilers and older versions of Clang,
391     //
392     //   nested-name-specifier type-name :: ~ type-name
393     //
394     // also looks for type-name in the scope. Unfortunately, we can't
395     // reasonably apply this fallback for dependent nested-name-specifiers.
396     if (SS.isValid() && SS.getScopeRep()->getPrefix()) {
397       if (ParsedType T = LookupInScope()) {
398         Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
399             << FixItHint::CreateRemoval(SS.getRange());
400         Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
401             << GetTypeFromParser(T);
402         return T;
403       }
404     }
405   }
406 
407   // We didn't find anything matching; tell the user what we did find (if
408   // anything).
409 
410   // Don't tell the user about declarations we shouldn't have found.
411   FoundDecls.resize(NumNonExtensionDecls);
412 
413   // List types before non-types.
414   std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
415                    [](NamedDecl *A, NamedDecl *B) {
416                      return isa<TypeDecl>(A->getUnderlyingDecl()) >
417                             isa<TypeDecl>(B->getUnderlyingDecl());
418                    });
419 
420   // Suggest a fixit to properly name the destroyed type.
421   auto MakeFixItHint = [&]{
422     const CXXRecordDecl *Destroyed = nullptr;
423     // FIXME: If we have a scope specifier, suggest its last component?
424     if (!SearchType.isNull())
425       Destroyed = SearchType->getAsCXXRecordDecl();
426     else if (S)
427       Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
428     if (Destroyed)
429       return FixItHint::CreateReplacement(SourceRange(NameLoc),
430                                           Destroyed->getNameAsString());
431     return FixItHint();
432   };
433 
434   if (FoundDecls.empty()) {
435     // FIXME: Attempt typo-correction?
436     Diag(NameLoc, diag::err_undeclared_destructor_name)
437       << &II << MakeFixItHint();
438   } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
439     if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
440       assert(!SearchType.isNull() &&
441              "should only reject a type result if we have a search type");
442       QualType T = Context.getTypeDeclType(TD);
443       Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
444           << T << SearchType << MakeFixItHint();
445     } else {
446       Diag(NameLoc, diag::err_destructor_expr_nontype)
447           << &II << MakeFixItHint();
448     }
449   } else {
450     Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
451                                       : diag::err_destructor_expr_mismatch)
452         << &II << SearchType << MakeFixItHint();
453   }
454 
455   for (NamedDecl *FoundD : FoundDecls) {
456     if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
457       Diag(FoundD->getLocation(), diag::note_destructor_type_here)
458           << Context.getTypeDeclType(TD);
459     else
460       Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
461           << FoundD;
462   }
463 
464   return nullptr;
465 }
466 
467 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
468                                               ParsedType ObjectType) {
469   if (DS.getTypeSpecType() == DeclSpec::TST_error)
470     return nullptr;
471 
472   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
473     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
474     return nullptr;
475   }
476 
477   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
478          "unexpected type in getDestructorType");
479   QualType T = BuildDecltypeType(DS.getRepAsExpr());
480 
481   // If we know the type of the object, check that the correct destructor
482   // type was named now; we can give better diagnostics this way.
483   QualType SearchType = GetTypeFromParser(ObjectType);
484   if (!SearchType.isNull() && !SearchType->isDependentType() &&
485       !Context.hasSameUnqualifiedType(T, SearchType)) {
486     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
487       << T << SearchType;
488     return nullptr;
489   }
490 
491   return ParsedType::make(T);
492 }
493 
494 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
495                                   const UnqualifiedId &Name, bool IsUDSuffix) {
496   assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
497   if (!IsUDSuffix) {
498     // [over.literal] p8
499     //
500     // double operator""_Bq(long double);  // OK: not a reserved identifier
501     // double operator"" _Bq(long double); // ill-formed, no diagnostic required
502     const IdentifierInfo *II = Name.Identifier;
503     ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
504     SourceLocation Loc = Name.getEndLoc();
505     if (!PP.getSourceManager().isInSystemHeader(Loc)) {
506       if (auto Hint = FixItHint::CreateReplacement(
507               Name.getSourceRange(),
508               (StringRef("operator\"\"") + II->getName()).str());
509           isReservedInAllContexts(Status)) {
510         Diag(Loc, diag::warn_reserved_extern_symbol)
511             << II << static_cast<int>(Status) << Hint;
512       } else {
513         Diag(Loc, diag::warn_deprecated_literal_operator_id) << II << Hint;
514       }
515     }
516   }
517 
518   if (!SS.isValid())
519     return false;
520 
521   switch (SS.getScopeRep()->getKind()) {
522   case NestedNameSpecifier::Identifier:
523   case NestedNameSpecifier::TypeSpec:
524   case NestedNameSpecifier::TypeSpecWithTemplate:
525     // Per C++11 [over.literal]p2, literal operators can only be declared at
526     // namespace scope. Therefore, this unqualified-id cannot name anything.
527     // Reject it early, because we have no AST representation for this in the
528     // case where the scope is dependent.
529     Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
530         << SS.getScopeRep();
531     return true;
532 
533   case NestedNameSpecifier::Global:
534   case NestedNameSpecifier::Super:
535   case NestedNameSpecifier::Namespace:
536   case NestedNameSpecifier::NamespaceAlias:
537     return false;
538   }
539 
540   llvm_unreachable("unknown nested name specifier kind");
541 }
542 
543 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
544                                 SourceLocation TypeidLoc,
545                                 TypeSourceInfo *Operand,
546                                 SourceLocation RParenLoc) {
547   // C++ [expr.typeid]p4:
548   //   The top-level cv-qualifiers of the lvalue expression or the type-id
549   //   that is the operand of typeid are always ignored.
550   //   If the type of the type-id is a class type or a reference to a class
551   //   type, the class shall be completely-defined.
552   Qualifiers Quals;
553   QualType T
554     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
555                                       Quals);
556   if (T->getAs<RecordType>() &&
557       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
558     return ExprError();
559 
560   if (T->isVariablyModifiedType())
561     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
562 
563   if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
564     return ExprError();
565 
566   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
567                                      SourceRange(TypeidLoc, RParenLoc));
568 }
569 
570 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
571                                 SourceLocation TypeidLoc,
572                                 Expr *E,
573                                 SourceLocation RParenLoc) {
574   bool WasEvaluated = false;
575   if (E && !E->isTypeDependent()) {
576     if (E->hasPlaceholderType()) {
577       ExprResult result = CheckPlaceholderExpr(E);
578       if (result.isInvalid()) return ExprError();
579       E = result.get();
580     }
581 
582     QualType T = E->getType();
583     if (const RecordType *RecordT = T->getAs<RecordType>()) {
584       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
585       // C++ [expr.typeid]p3:
586       //   [...] If the type of the expression is a class type, the class
587       //   shall be completely-defined.
588       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
589         return ExprError();
590 
591       // C++ [expr.typeid]p3:
592       //   When typeid is applied to an expression other than an glvalue of a
593       //   polymorphic class type [...] [the] expression is an unevaluated
594       //   operand. [...]
595       if (RecordD->isPolymorphic() && E->isGLValue()) {
596         if (isUnevaluatedContext()) {
597           // The operand was processed in unevaluated context, switch the
598           // context and recheck the subexpression.
599           ExprResult Result = TransformToPotentiallyEvaluated(E);
600           if (Result.isInvalid())
601             return ExprError();
602           E = Result.get();
603         }
604 
605         // We require a vtable to query the type at run time.
606         MarkVTableUsed(TypeidLoc, RecordD);
607         WasEvaluated = true;
608       }
609     }
610 
611     ExprResult Result = CheckUnevaluatedOperand(E);
612     if (Result.isInvalid())
613       return ExprError();
614     E = Result.get();
615 
616     // C++ [expr.typeid]p4:
617     //   [...] If the type of the type-id is a reference to a possibly
618     //   cv-qualified type, the result of the typeid expression refers to a
619     //   std::type_info object representing the cv-unqualified referenced
620     //   type.
621     Qualifiers Quals;
622     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
623     if (!Context.hasSameType(T, UnqualT)) {
624       T = UnqualT;
625       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
626     }
627   }
628 
629   if (E->getType()->isVariablyModifiedType())
630     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
631                      << E->getType());
632   else if (!inTemplateInstantiation() &&
633            E->HasSideEffects(Context, WasEvaluated)) {
634     // The expression operand for typeid is in an unevaluated expression
635     // context, so side effects could result in unintended consequences.
636     Diag(E->getExprLoc(), WasEvaluated
637                               ? diag::warn_side_effects_typeid
638                               : diag::warn_side_effects_unevaluated_context);
639   }
640 
641   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
642                                      SourceRange(TypeidLoc, RParenLoc));
643 }
644 
645 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
646 ExprResult
647 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
648                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
649   // typeid is not supported in OpenCL.
650   if (getLangOpts().OpenCLCPlusPlus) {
651     return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
652                      << "typeid");
653   }
654 
655   // Find the std::type_info type.
656   if (!getStdNamespace())
657     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
658 
659   if (!CXXTypeInfoDecl) {
660     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
661     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
662     LookupQualifiedName(R, getStdNamespace());
663     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
664     // Microsoft's typeinfo doesn't have type_info in std but in the global
665     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
666     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
667       LookupQualifiedName(R, Context.getTranslationUnitDecl());
668       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
669     }
670     if (!CXXTypeInfoDecl)
671       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
672   }
673 
674   if (!getLangOpts().RTTI) {
675     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
676   }
677 
678   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
679 
680   if (isType) {
681     // The operand is a type; handle it as such.
682     TypeSourceInfo *TInfo = nullptr;
683     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
684                                    &TInfo);
685     if (T.isNull())
686       return ExprError();
687 
688     if (!TInfo)
689       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
690 
691     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
692   }
693 
694   // The operand is an expression.
695   ExprResult Result =
696       BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
697 
698   if (!getLangOpts().RTTIData && !Result.isInvalid())
699     if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
700       if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
701         Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
702             << (getDiagnostics().getDiagnosticOptions().getFormat() ==
703                 DiagnosticOptions::MSVC);
704   return Result;
705 }
706 
707 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
708 /// a single GUID.
709 static void
710 getUuidAttrOfType(Sema &SemaRef, QualType QT,
711                   llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
712   // Optionally remove one level of pointer, reference or array indirection.
713   const Type *Ty = QT.getTypePtr();
714   if (QT->isPointerType() || QT->isReferenceType())
715     Ty = QT->getPointeeType().getTypePtr();
716   else if (QT->isArrayType())
717     Ty = Ty->getBaseElementTypeUnsafe();
718 
719   const auto *TD = Ty->getAsTagDecl();
720   if (!TD)
721     return;
722 
723   if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
724     UuidAttrs.insert(Uuid);
725     return;
726   }
727 
728   // __uuidof can grab UUIDs from template arguments.
729   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
730     const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
731     for (const TemplateArgument &TA : TAL.asArray()) {
732       const UuidAttr *UuidForTA = nullptr;
733       if (TA.getKind() == TemplateArgument::Type)
734         getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
735       else if (TA.getKind() == TemplateArgument::Declaration)
736         getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
737 
738       if (UuidForTA)
739         UuidAttrs.insert(UuidForTA);
740     }
741   }
742 }
743 
744 ExprResult Sema::BuildCXXUuidof(QualType Type,
745                                 SourceLocation TypeidLoc,
746                                 TypeSourceInfo *Operand,
747                                 SourceLocation RParenLoc) {
748   MSGuidDecl *Guid = nullptr;
749   if (!Operand->getType()->isDependentType()) {
750     llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
751     getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
752     if (UuidAttrs.empty())
753       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
754     if (UuidAttrs.size() > 1)
755       return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
756     Guid = UuidAttrs.back()->getGuidDecl();
757   }
758 
759   return new (Context)
760       CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
761 }
762 
763 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
764                                 Expr *E, SourceLocation RParenLoc) {
765   MSGuidDecl *Guid = nullptr;
766   if (!E->getType()->isDependentType()) {
767     if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
768       // A null pointer results in {00000000-0000-0000-0000-000000000000}.
769       Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
770     } else {
771       llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
772       getUuidAttrOfType(*this, E->getType(), UuidAttrs);
773       if (UuidAttrs.empty())
774         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
775       if (UuidAttrs.size() > 1)
776         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
777       Guid = UuidAttrs.back()->getGuidDecl();
778     }
779   }
780 
781   return new (Context)
782       CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
783 }
784 
785 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
786 ExprResult
787 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
788                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
789   QualType GuidType = Context.getMSGuidType();
790   GuidType.addConst();
791 
792   if (isType) {
793     // The operand is a type; handle it as such.
794     TypeSourceInfo *TInfo = nullptr;
795     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
796                                    &TInfo);
797     if (T.isNull())
798       return ExprError();
799 
800     if (!TInfo)
801       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
802 
803     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
804   }
805 
806   // The operand is an expression.
807   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
808 }
809 
810 ExprResult
811 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
812   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
813          "Unknown C++ Boolean value!");
814   return new (Context)
815       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
816 }
817 
818 ExprResult
819 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
820   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
821 }
822 
823 ExprResult
824 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
825   bool IsThrownVarInScope = false;
826   if (Ex) {
827     // C++0x [class.copymove]p31:
828     //   When certain criteria are met, an implementation is allowed to omit the
829     //   copy/move construction of a class object [...]
830     //
831     //     - in a throw-expression, when the operand is the name of a
832     //       non-volatile automatic object (other than a function or catch-
833     //       clause parameter) whose scope does not extend beyond the end of the
834     //       innermost enclosing try-block (if there is one), the copy/move
835     //       operation from the operand to the exception object (15.1) can be
836     //       omitted by constructing the automatic object directly into the
837     //       exception object
838     if (const auto *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
839       if (const auto *Var = dyn_cast<VarDecl>(DRE->getDecl());
840           Var && Var->hasLocalStorage() &&
841           !Var->getType().isVolatileQualified()) {
842         for (; S; S = S->getParent()) {
843           if (S->isDeclScope(Var)) {
844             IsThrownVarInScope = true;
845             break;
846           }
847 
848           // FIXME: Many of the scope checks here seem incorrect.
849           if (S->getFlags() &
850               (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
851                Scope::ObjCMethodScope | Scope::TryScope))
852             break;
853         }
854       }
855   }
856 
857   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
858 }
859 
860 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
861                                bool IsThrownVarInScope) {
862   const llvm::Triple &T = Context.getTargetInfo().getTriple();
863   const bool IsOpenMPGPUTarget =
864       getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN());
865   // Don't report an error if 'throw' is used in system headers or in an OpenMP
866   // target region compiled for a GPU architecture.
867   if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions &&
868       !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
869     // Delay error emission for the OpenMP device code.
870     targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
871   }
872 
873   // In OpenMP target regions, we replace 'throw' with a trap on GPU targets.
874   if (IsOpenMPGPUTarget)
875     targetDiag(OpLoc, diag::warn_throw_not_valid_on_target) << T.str();
876 
877   // Exceptions aren't allowed in CUDA device code.
878   if (getLangOpts().CUDA)
879     CUDA().DiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
880         << "throw" << llvm::to_underlying(CUDA().CurrentTarget());
881 
882   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
883     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
884 
885   // Exceptions that escape a compute construct are ill-formed.
886   if (getLangOpts().OpenACC && getCurScope() &&
887       getCurScope()->isInOpenACCComputeConstructScope(Scope::TryScope))
888     Diag(OpLoc, diag::err_acc_branch_in_out_compute_construct)
889         << /*throw*/ 2 << /*out of*/ 0;
890 
891   if (Ex && !Ex->isTypeDependent()) {
892     // Initialize the exception result.  This implicitly weeds out
893     // abstract types or types with inaccessible copy constructors.
894 
895     // C++0x [class.copymove]p31:
896     //   When certain criteria are met, an implementation is allowed to omit the
897     //   copy/move construction of a class object [...]
898     //
899     //     - in a throw-expression, when the operand is the name of a
900     //       non-volatile automatic object (other than a function or
901     //       catch-clause
902     //       parameter) whose scope does not extend beyond the end of the
903     //       innermost enclosing try-block (if there is one), the copy/move
904     //       operation from the operand to the exception object (15.1) can be
905     //       omitted by constructing the automatic object directly into the
906     //       exception object
907     NamedReturnInfo NRInfo =
908         IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
909 
910     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
911     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
912       return ExprError();
913 
914     InitializedEntity Entity =
915         InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
916     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
917     if (Res.isInvalid())
918       return ExprError();
919     Ex = Res.get();
920   }
921 
922   // PPC MMA non-pointer types are not allowed as throw expr types.
923   if (Ex && Context.getTargetInfo().getTriple().isPPC64())
924     PPC().CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
925 
926   return new (Context)
927       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
928 }
929 
930 static void
931 collectPublicBases(CXXRecordDecl *RD,
932                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
933                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
934                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
935                    bool ParentIsPublic) {
936   for (const CXXBaseSpecifier &BS : RD->bases()) {
937     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
938     bool NewSubobject;
939     // Virtual bases constitute the same subobject.  Non-virtual bases are
940     // always distinct subobjects.
941     if (BS.isVirtual())
942       NewSubobject = VBases.insert(BaseDecl).second;
943     else
944       NewSubobject = true;
945 
946     if (NewSubobject)
947       ++SubobjectsSeen[BaseDecl];
948 
949     // Only add subobjects which have public access throughout the entire chain.
950     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
951     if (PublicPath)
952       PublicSubobjectsSeen.insert(BaseDecl);
953 
954     // Recurse on to each base subobject.
955     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
956                        PublicPath);
957   }
958 }
959 
960 static void getUnambiguousPublicSubobjects(
961     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
962   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
963   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
964   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
965   SubobjectsSeen[RD] = 1;
966   PublicSubobjectsSeen.insert(RD);
967   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
968                      /*ParentIsPublic=*/true);
969 
970   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
971     // Skip ambiguous objects.
972     if (SubobjectsSeen[PublicSubobject] > 1)
973       continue;
974 
975     Objects.push_back(PublicSubobject);
976   }
977 }
978 
979 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
980                                 QualType ExceptionObjectTy, Expr *E) {
981   //   If the type of the exception would be an incomplete type or a pointer
982   //   to an incomplete type other than (cv) void the program is ill-formed.
983   QualType Ty = ExceptionObjectTy;
984   bool isPointer = false;
985   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
986     Ty = Ptr->getPointeeType();
987     isPointer = true;
988   }
989 
990   // Cannot throw WebAssembly reference type.
991   if (Ty.isWebAssemblyReferenceType()) {
992     Diag(ThrowLoc, diag::err_wasm_reftype_tc) << 0 << E->getSourceRange();
993     return true;
994   }
995 
996   // Cannot throw WebAssembly table.
997   if (isPointer && Ty.isWebAssemblyReferenceType()) {
998     Diag(ThrowLoc, diag::err_wasm_table_art) << 2 << E->getSourceRange();
999     return true;
1000   }
1001 
1002   if (!isPointer || !Ty->isVoidType()) {
1003     if (RequireCompleteType(ThrowLoc, Ty,
1004                             isPointer ? diag::err_throw_incomplete_ptr
1005                                       : diag::err_throw_incomplete,
1006                             E->getSourceRange()))
1007       return true;
1008 
1009     if (!isPointer && Ty->isSizelessType()) {
1010       Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
1011       return true;
1012     }
1013 
1014     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
1015                                diag::err_throw_abstract_type, E))
1016       return true;
1017   }
1018 
1019   // If the exception has class type, we need additional handling.
1020   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1021   if (!RD)
1022     return false;
1023 
1024   // If we are throwing a polymorphic class type or pointer thereof,
1025   // exception handling will make use of the vtable.
1026   MarkVTableUsed(ThrowLoc, RD);
1027 
1028   // If a pointer is thrown, the referenced object will not be destroyed.
1029   if (isPointer)
1030     return false;
1031 
1032   // If the class has a destructor, we must be able to call it.
1033   if (!RD->hasIrrelevantDestructor()) {
1034     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1035       MarkFunctionReferenced(E->getExprLoc(), Destructor);
1036       CheckDestructorAccess(E->getExprLoc(), Destructor,
1037                             PDiag(diag::err_access_dtor_exception) << Ty);
1038       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1039         return true;
1040     }
1041   }
1042 
1043   // The MSVC ABI creates a list of all types which can catch the exception
1044   // object.  This list also references the appropriate copy constructor to call
1045   // if the object is caught by value and has a non-trivial copy constructor.
1046   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1047     // We are only interested in the public, unambiguous bases contained within
1048     // the exception object.  Bases which are ambiguous or otherwise
1049     // inaccessible are not catchable types.
1050     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1051     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1052 
1053     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1054       // Attempt to lookup the copy constructor.  Various pieces of machinery
1055       // will spring into action, like template instantiation, which means this
1056       // cannot be a simple walk of the class's decls.  Instead, we must perform
1057       // lookup and overload resolution.
1058       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1059       if (!CD || CD->isDeleted())
1060         continue;
1061 
1062       // Mark the constructor referenced as it is used by this throw expression.
1063       MarkFunctionReferenced(E->getExprLoc(), CD);
1064 
1065       // Skip this copy constructor if it is trivial, we don't need to record it
1066       // in the catchable type data.
1067       if (CD->isTrivial())
1068         continue;
1069 
1070       // The copy constructor is non-trivial, create a mapping from this class
1071       // type to this constructor.
1072       // N.B.  The selection of copy constructor is not sensitive to this
1073       // particular throw-site.  Lookup will be performed at the catch-site to
1074       // ensure that the copy constructor is, in fact, accessible (via
1075       // friendship or any other means).
1076       Context.addCopyConstructorForExceptionObject(Subobject, CD);
1077 
1078       // We don't keep the instantiated default argument expressions around so
1079       // we must rebuild them here.
1080       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1081         if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1082           return true;
1083       }
1084     }
1085   }
1086 
1087   // Under the Itanium C++ ABI, memory for the exception object is allocated by
1088   // the runtime with no ability for the compiler to request additional
1089   // alignment. Warn if the exception type requires alignment beyond the minimum
1090   // guaranteed by the target C++ runtime.
1091   if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1092     CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1093     CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1094     if (ExnObjAlign < TypeAlign) {
1095       Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1096       Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1097           << Ty << (unsigned)TypeAlign.getQuantity()
1098           << (unsigned)ExnObjAlign.getQuantity();
1099     }
1100   }
1101   if (!isPointer && getLangOpts().AssumeNothrowExceptionDtor) {
1102     if (CXXDestructorDecl *Dtor = RD->getDestructor()) {
1103       auto Ty = Dtor->getType();
1104       if (auto *FT = Ty.getTypePtr()->getAs<FunctionProtoType>()) {
1105         if (!isUnresolvedExceptionSpec(FT->getExceptionSpecType()) &&
1106             !FT->isNothrow())
1107           Diag(ThrowLoc, diag::err_throw_object_throwing_dtor) << RD;
1108       }
1109     }
1110   }
1111 
1112   return false;
1113 }
1114 
1115 static QualType adjustCVQualifiersForCXXThisWithinLambda(
1116     ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1117     DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1118 
1119   QualType ClassType = ThisTy->getPointeeType();
1120   LambdaScopeInfo *CurLSI = nullptr;
1121   DeclContext *CurDC = CurSemaContext;
1122 
1123   // Iterate through the stack of lambdas starting from the innermost lambda to
1124   // the outermost lambda, checking if '*this' is ever captured by copy - since
1125   // that could change the cv-qualifiers of the '*this' object.
1126   // The object referred to by '*this' starts out with the cv-qualifiers of its
1127   // member function.  We then start with the innermost lambda and iterate
1128   // outward checking to see if any lambda performs a by-copy capture of '*this'
1129   // - and if so, any nested lambda must respect the 'constness' of that
1130   // capturing lamdbda's call operator.
1131   //
1132 
1133   // Since the FunctionScopeInfo stack is representative of the lexical
1134   // nesting of the lambda expressions during initial parsing (and is the best
1135   // place for querying information about captures about lambdas that are
1136   // partially processed) and perhaps during instantiation of function templates
1137   // that contain lambda expressions that need to be transformed BUT not
1138   // necessarily during instantiation of a nested generic lambda's function call
1139   // operator (which might even be instantiated at the end of the TU) - at which
1140   // time the DeclContext tree is mature enough to query capture information
1141   // reliably - we use a two pronged approach to walk through all the lexically
1142   // enclosing lambda expressions:
1143   //
1144   //  1) Climb down the FunctionScopeInfo stack as long as each item represents
1145   //  a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1146   //  enclosed by the call-operator of the LSI below it on the stack (while
1147   //  tracking the enclosing DC for step 2 if needed).  Note the topmost LSI on
1148   //  the stack represents the innermost lambda.
1149   //
1150   //  2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1151   //  represents a lambda's call operator.  If it does, we must be instantiating
1152   //  a generic lambda's call operator (represented by the Current LSI, and
1153   //  should be the only scenario where an inconsistency between the LSI and the
1154   //  DeclContext should occur), so climb out the DeclContexts if they
1155   //  represent lambdas, while querying the corresponding closure types
1156   //  regarding capture information.
1157 
1158   // 1) Climb down the function scope info stack.
1159   for (int I = FunctionScopes.size();
1160        I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1161        (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1162                        cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1163        CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1164     CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1165 
1166     if (!CurLSI->isCXXThisCaptured())
1167         continue;
1168 
1169     auto C = CurLSI->getCXXThisCapture();
1170 
1171     if (C.isCopyCapture()) {
1172       if (CurLSI->lambdaCaptureShouldBeConst())
1173         ClassType.addConst();
1174       return ASTCtx.getPointerType(ClassType);
1175     }
1176   }
1177 
1178   // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1179   //    can happen during instantiation of its nested generic lambda call
1180   //    operator); 2. if we're in a lambda scope (lambda body).
1181   if (CurLSI && isLambdaCallOperator(CurDC)) {
1182     assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1183            "While computing 'this' capture-type for a generic lambda, when we "
1184            "run out of enclosing LSI's, yet the enclosing DC is a "
1185            "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1186            "lambda call oeprator");
1187     assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1188 
1189     auto IsThisCaptured =
1190         [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1191       IsConst = false;
1192       IsByCopy = false;
1193       for (auto &&C : Closure->captures()) {
1194         if (C.capturesThis()) {
1195           if (C.getCaptureKind() == LCK_StarThis)
1196             IsByCopy = true;
1197           if (Closure->getLambdaCallOperator()->isConst())
1198             IsConst = true;
1199           return true;
1200         }
1201       }
1202       return false;
1203     };
1204 
1205     bool IsByCopyCapture = false;
1206     bool IsConstCapture = false;
1207     CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1208     while (Closure &&
1209            IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1210       if (IsByCopyCapture) {
1211         if (IsConstCapture)
1212           ClassType.addConst();
1213         return ASTCtx.getPointerType(ClassType);
1214       }
1215       Closure = isLambdaCallOperator(Closure->getParent())
1216                     ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1217                     : nullptr;
1218     }
1219   }
1220   return ThisTy;
1221 }
1222 
1223 QualType Sema::getCurrentThisType() {
1224   DeclContext *DC = getFunctionLevelDeclContext();
1225   QualType ThisTy = CXXThisTypeOverride;
1226 
1227   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1228     if (method && method->isImplicitObjectMemberFunction())
1229       ThisTy = method->getThisType().getNonReferenceType();
1230   }
1231 
1232   if (ThisTy.isNull() && isLambdaCallWithImplicitObjectParameter(CurContext) &&
1233       inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1234 
1235     // This is a lambda call operator that is being instantiated as a default
1236     // initializer. DC must point to the enclosing class type, so we can recover
1237     // the 'this' type from it.
1238     QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1239     // There are no cv-qualifiers for 'this' within default initializers,
1240     // per [expr.prim.general]p4.
1241     ThisTy = Context.getPointerType(ClassTy);
1242   }
1243 
1244   // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1245   // might need to be adjusted if the lambda or any of its enclosing lambda's
1246   // captures '*this' by copy.
1247   if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1248     return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1249                                                     CurContext, Context);
1250   return ThisTy;
1251 }
1252 
1253 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1254                                          Decl *ContextDecl,
1255                                          Qualifiers CXXThisTypeQuals,
1256                                          bool Enabled)
1257   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1258 {
1259   if (!Enabled || !ContextDecl)
1260     return;
1261 
1262   CXXRecordDecl *Record = nullptr;
1263   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1264     Record = Template->getTemplatedDecl();
1265   else
1266     Record = cast<CXXRecordDecl>(ContextDecl);
1267 
1268   QualType T = S.Context.getRecordType(Record);
1269   T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1270 
1271   S.CXXThisTypeOverride =
1272       S.Context.getLangOpts().HLSL ? T : S.Context.getPointerType(T);
1273 
1274   this->Enabled = true;
1275 }
1276 
1277 
1278 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1279   if (Enabled) {
1280     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1281   }
1282 }
1283 
1284 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1285   SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1286   assert(!LSI->isCXXThisCaptured());
1287   //  [=, this] {};   // until C++20: Error: this when = is the default
1288   if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1289       !Sema.getLangOpts().CPlusPlus20)
1290     return;
1291   Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1292       << FixItHint::CreateInsertion(
1293              DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1294 }
1295 
1296 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1297     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1298     const bool ByCopy) {
1299   // We don't need to capture this in an unevaluated context.
1300   if (isUnevaluatedContext() && !Explicit)
1301     return true;
1302 
1303   assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1304 
1305   const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1306                                          ? *FunctionScopeIndexToStopAt
1307                                          : FunctionScopes.size() - 1;
1308 
1309   // Check that we can capture the *enclosing object* (referred to by '*this')
1310   // by the capturing-entity/closure (lambda/block/etc) at
1311   // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1312 
1313   // Note: The *enclosing object* can only be captured by-value by a
1314   // closure that is a lambda, using the explicit notation:
1315   //    [*this] { ... }.
1316   // Every other capture of the *enclosing object* results in its by-reference
1317   // capture.
1318 
1319   // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1320   // stack), we can capture the *enclosing object* only if:
1321   // - 'L' has an explicit byref or byval capture of the *enclosing object*
1322   // -  or, 'L' has an implicit capture.
1323   // AND
1324   //   -- there is no enclosing closure
1325   //   -- or, there is some enclosing closure 'E' that has already captured the
1326   //      *enclosing object*, and every intervening closure (if any) between 'E'
1327   //      and 'L' can implicitly capture the *enclosing object*.
1328   //   -- or, every enclosing closure can implicitly capture the
1329   //      *enclosing object*
1330 
1331 
1332   unsigned NumCapturingClosures = 0;
1333   for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1334     if (CapturingScopeInfo *CSI =
1335             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1336       if (CSI->CXXThisCaptureIndex != 0) {
1337         // 'this' is already being captured; there isn't anything more to do.
1338         CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1339         break;
1340       }
1341       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1342       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1343         // This context can't implicitly capture 'this'; fail out.
1344         if (BuildAndDiagnose) {
1345           LSI->CallOperator->setInvalidDecl();
1346           Diag(Loc, diag::err_this_capture)
1347               << (Explicit && idx == MaxFunctionScopesIndex);
1348           if (!Explicit)
1349             buildLambdaThisCaptureFixit(*this, LSI);
1350         }
1351         return true;
1352       }
1353       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1354           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1355           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1356           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1357           (Explicit && idx == MaxFunctionScopesIndex)) {
1358         // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1359         // iteration through can be an explicit capture, all enclosing closures,
1360         // if any, must perform implicit captures.
1361 
1362         // This closure can capture 'this'; continue looking upwards.
1363         NumCapturingClosures++;
1364         continue;
1365       }
1366       // This context can't implicitly capture 'this'; fail out.
1367       if (BuildAndDiagnose) {
1368         LSI->CallOperator->setInvalidDecl();
1369         Diag(Loc, diag::err_this_capture)
1370             << (Explicit && idx == MaxFunctionScopesIndex);
1371       }
1372       if (!Explicit)
1373         buildLambdaThisCaptureFixit(*this, LSI);
1374       return true;
1375     }
1376     break;
1377   }
1378   if (!BuildAndDiagnose) return false;
1379 
1380   // If we got here, then the closure at MaxFunctionScopesIndex on the
1381   // FunctionScopes stack, can capture the *enclosing object*, so capture it
1382   // (including implicit by-reference captures in any enclosing closures).
1383 
1384   // In the loop below, respect the ByCopy flag only for the closure requesting
1385   // the capture (i.e. first iteration through the loop below).  Ignore it for
1386   // all enclosing closure's up to NumCapturingClosures (since they must be
1387   // implicitly capturing the *enclosing  object* by reference (see loop
1388   // above)).
1389   assert((!ByCopy ||
1390           isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1391          "Only a lambda can capture the enclosing object (referred to by "
1392          "*this) by copy");
1393   QualType ThisTy = getCurrentThisType();
1394   for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1395        --idx, --NumCapturingClosures) {
1396     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1397 
1398     // The type of the corresponding data member (not a 'this' pointer if 'by
1399     // copy').
1400     QualType CaptureType = ByCopy ? ThisTy->getPointeeType() : ThisTy;
1401 
1402     bool isNested = NumCapturingClosures > 1;
1403     CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1404   }
1405   return false;
1406 }
1407 
1408 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1409   // C++20 [expr.prim.this]p1:
1410   //   The keyword this names a pointer to the object for which an
1411   //   implicit object member function is invoked or a non-static
1412   //   data member's initializer is evaluated.
1413   QualType ThisTy = getCurrentThisType();
1414 
1415   if (CheckCXXThisType(Loc, ThisTy))
1416     return ExprError();
1417 
1418   return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1419 }
1420 
1421 bool Sema::CheckCXXThisType(SourceLocation Loc, QualType Type) {
1422   if (!Type.isNull())
1423     return false;
1424 
1425   // C++20 [expr.prim.this]p3:
1426   //   If a declaration declares a member function or member function template
1427   //   of a class X, the expression this is a prvalue of type
1428   //   "pointer to cv-qualifier-seq X" wherever X is the current class between
1429   //   the optional cv-qualifier-seq and the end of the function-definition,
1430   //   member-declarator, or declarator. It shall not appear within the
1431   //   declaration of either a static member function or an explicit object
1432   //   member function of the current class (although its type and value
1433   //   category are defined within such member functions as they are within
1434   //   an implicit object member function).
1435   DeclContext *DC = getFunctionLevelDeclContext();
1436   const auto *Method = dyn_cast<CXXMethodDecl>(DC);
1437   if (Method && Method->isExplicitObjectMemberFunction()) {
1438     Diag(Loc, diag::err_invalid_this_use) << 1;
1439   } else if (Method && isLambdaCallWithExplicitObjectParameter(CurContext)) {
1440     Diag(Loc, diag::err_invalid_this_use) << 1;
1441   } else {
1442     Diag(Loc, diag::err_invalid_this_use) << 0;
1443   }
1444   return true;
1445 }
1446 
1447 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1448                              bool IsImplicit) {
1449   auto *This = CXXThisExpr::Create(Context, Loc, Type, IsImplicit);
1450   MarkThisReferenced(This);
1451   return This;
1452 }
1453 
1454 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1455   CheckCXXThisCapture(This->getExprLoc());
1456   if (This->isTypeDependent())
1457     return;
1458 
1459   // Check if 'this' is captured by value in a lambda with a dependent explicit
1460   // object parameter, and mark it as type-dependent as well if so.
1461   auto IsDependent = [&]() {
1462     for (auto *Scope : llvm::reverse(FunctionScopes)) {
1463       auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Scope);
1464       if (!LSI)
1465         continue;
1466 
1467       if (LSI->Lambda && !LSI->Lambda->Encloses(CurContext) &&
1468           LSI->AfterParameterList)
1469         return false;
1470 
1471       // If this lambda captures 'this' by value, then 'this' is dependent iff
1472       // this lambda has a dependent explicit object parameter. If we can't
1473       // determine whether it does (e.g. because the CXXMethodDecl's type is
1474       // null), assume it doesn't.
1475       if (LSI->isCXXThisCaptured()) {
1476         if (!LSI->getCXXThisCapture().isCopyCapture())
1477           continue;
1478 
1479         const auto *MD = LSI->CallOperator;
1480         if (MD->getType().isNull())
1481           return false;
1482 
1483         const auto *Ty = MD->getType()->getAs<FunctionProtoType>();
1484         return Ty && MD->isExplicitObjectMemberFunction() &&
1485                Ty->getParamType(0)->isDependentType();
1486       }
1487     }
1488     return false;
1489   }();
1490 
1491   This->setCapturedByCopyInLambdaWithExplicitObjectParameter(IsDependent);
1492 }
1493 
1494 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1495   // If we're outside the body of a member function, then we'll have a specified
1496   // type for 'this'.
1497   if (CXXThisTypeOverride.isNull())
1498     return false;
1499 
1500   // Determine whether we're looking into a class that's currently being
1501   // defined.
1502   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1503   return Class && Class->isBeingDefined();
1504 }
1505 
1506 ExprResult
1507 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1508                                 SourceLocation LParenOrBraceLoc,
1509                                 MultiExprArg exprs,
1510                                 SourceLocation RParenOrBraceLoc,
1511                                 bool ListInitialization) {
1512   if (!TypeRep)
1513     return ExprError();
1514 
1515   TypeSourceInfo *TInfo;
1516   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1517   if (!TInfo)
1518     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1519 
1520   auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1521                                           RParenOrBraceLoc, ListInitialization);
1522   // Avoid creating a non-type-dependent expression that contains typos.
1523   // Non-type-dependent expressions are liable to be discarded without
1524   // checking for embedded typos.
1525   if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1526       !Result.get()->isTypeDependent())
1527     Result = CorrectDelayedTyposInExpr(Result.get());
1528   else if (Result.isInvalid())
1529     Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1530                                 RParenOrBraceLoc, exprs, Ty);
1531   return Result;
1532 }
1533 
1534 ExprResult
1535 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1536                                 SourceLocation LParenOrBraceLoc,
1537                                 MultiExprArg Exprs,
1538                                 SourceLocation RParenOrBraceLoc,
1539                                 bool ListInitialization) {
1540   QualType Ty = TInfo->getType();
1541   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1542 
1543   assert((!ListInitialization || Exprs.size() == 1) &&
1544          "List initialization must have exactly one expression.");
1545   SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1546 
1547   InitializedEntity Entity =
1548       InitializedEntity::InitializeTemporary(Context, TInfo);
1549   InitializationKind Kind =
1550       Exprs.size()
1551           ? ListInitialization
1552                 ? InitializationKind::CreateDirectList(
1553                       TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1554                 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1555                                                    RParenOrBraceLoc)
1556           : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1557                                             RParenOrBraceLoc);
1558 
1559   // C++17 [expr.type.conv]p1:
1560   //   If the type is a placeholder for a deduced class type, [...perform class
1561   //   template argument deduction...]
1562   // C++23:
1563   //   Otherwise, if the type contains a placeholder type, it is replaced by the
1564   //   type determined by placeholder type deduction.
1565   DeducedType *Deduced = Ty->getContainedDeducedType();
1566   if (Deduced && !Deduced->isDeduced() &&
1567       isa<DeducedTemplateSpecializationType>(Deduced)) {
1568     Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1569                                                      Kind, Exprs);
1570     if (Ty.isNull())
1571       return ExprError();
1572     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1573   } else if (Deduced && !Deduced->isDeduced()) {
1574     MultiExprArg Inits = Exprs;
1575     if (ListInitialization) {
1576       auto *ILE = cast<InitListExpr>(Exprs[0]);
1577       Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
1578     }
1579 
1580     if (Inits.empty())
1581       return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
1582                        << Ty << FullRange);
1583     if (Inits.size() > 1) {
1584       Expr *FirstBad = Inits[1];
1585       return ExprError(Diag(FirstBad->getBeginLoc(),
1586                             diag::err_auto_expr_init_multiple_expressions)
1587                        << Ty << FullRange);
1588     }
1589     if (getLangOpts().CPlusPlus23) {
1590       if (Ty->getAs<AutoType>())
1591         Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
1592     }
1593     Expr *Deduce = Inits[0];
1594     if (isa<InitListExpr>(Deduce))
1595       return ExprError(
1596           Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
1597           << ListInitialization << Ty << FullRange);
1598     QualType DeducedType;
1599     TemplateDeductionInfo Info(Deduce->getExprLoc());
1600     TemplateDeductionResult Result =
1601         DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info);
1602     if (Result != TemplateDeductionResult::Success &&
1603         Result != TemplateDeductionResult::AlreadyDiagnosed)
1604       return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
1605                        << Ty << Deduce->getType() << FullRange
1606                        << Deduce->getSourceRange());
1607     if (DeducedType.isNull()) {
1608       assert(Result == TemplateDeductionResult::AlreadyDiagnosed);
1609       return ExprError();
1610     }
1611 
1612     Ty = DeducedType;
1613     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1614   }
1615 
1616   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs))
1617     return CXXUnresolvedConstructExpr::Create(
1618         Context, Ty.getNonReferenceType(), TInfo, LParenOrBraceLoc, Exprs,
1619         RParenOrBraceLoc, ListInitialization);
1620 
1621   // C++ [expr.type.conv]p1:
1622   // If the expression list is a parenthesized single expression, the type
1623   // conversion expression is equivalent (in definedness, and if defined in
1624   // meaning) to the corresponding cast expression.
1625   if (Exprs.size() == 1 && !ListInitialization &&
1626       !isa<InitListExpr>(Exprs[0])) {
1627     Expr *Arg = Exprs[0];
1628     return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1629                                       RParenOrBraceLoc);
1630   }
1631 
1632   //   For an expression of the form T(), T shall not be an array type.
1633   QualType ElemTy = Ty;
1634   if (Ty->isArrayType()) {
1635     if (!ListInitialization)
1636       return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1637                          << FullRange);
1638     ElemTy = Context.getBaseElementType(Ty);
1639   }
1640 
1641   // Only construct objects with object types.
1642   // The standard doesn't explicitly forbid function types here, but that's an
1643   // obvious oversight, as there's no way to dynamically construct a function
1644   // in general.
1645   if (Ty->isFunctionType())
1646     return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1647                        << Ty << FullRange);
1648 
1649   // C++17 [expr.type.conv]p2:
1650   //   If the type is cv void and the initializer is (), the expression is a
1651   //   prvalue of the specified type that performs no initialization.
1652   if (!Ty->isVoidType() &&
1653       RequireCompleteType(TyBeginLoc, ElemTy,
1654                           diag::err_invalid_incomplete_type_use, FullRange))
1655     return ExprError();
1656 
1657   //   Otherwise, the expression is a prvalue of the specified type whose
1658   //   result object is direct-initialized (11.6) with the initializer.
1659   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1660   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1661 
1662   if (Result.isInvalid())
1663     return Result;
1664 
1665   Expr *Inner = Result.get();
1666   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1667     Inner = BTE->getSubExpr();
1668   if (auto *CE = dyn_cast<ConstantExpr>(Inner);
1669       CE && CE->isImmediateInvocation())
1670     Inner = CE->getSubExpr();
1671   if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1672       !isa<CXXScalarValueInitExpr>(Inner)) {
1673     // If we created a CXXTemporaryObjectExpr, that node also represents the
1674     // functional cast. Otherwise, create an explicit cast to represent
1675     // the syntactic form of a functional-style cast that was used here.
1676     //
1677     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1678     // would give a more consistent AST representation than using a
1679     // CXXTemporaryObjectExpr. It's also weird that the functional cast
1680     // is sometimes handled by initialization and sometimes not.
1681     QualType ResultType = Result.get()->getType();
1682     SourceRange Locs = ListInitialization
1683                            ? SourceRange()
1684                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1685     Result = CXXFunctionalCastExpr::Create(
1686         Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1687         Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1688         Locs.getBegin(), Locs.getEnd());
1689   }
1690 
1691   return Result;
1692 }
1693 
1694 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1695   // [CUDA] Ignore this function, if we can't call it.
1696   const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
1697   if (getLangOpts().CUDA) {
1698     auto CallPreference = CUDA().IdentifyPreference(Caller, Method);
1699     // If it's not callable at all, it's not the right function.
1700     if (CallPreference < SemaCUDA::CFP_WrongSide)
1701       return false;
1702     if (CallPreference == SemaCUDA::CFP_WrongSide) {
1703       // Maybe. We have to check if there are better alternatives.
1704       DeclContext::lookup_result R =
1705           Method->getDeclContext()->lookup(Method->getDeclName());
1706       for (const auto *D : R) {
1707         if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1708           if (CUDA().IdentifyPreference(Caller, FD) > SemaCUDA::CFP_WrongSide)
1709             return false;
1710         }
1711       }
1712       // We've found no better variants.
1713     }
1714   }
1715 
1716   SmallVector<const FunctionDecl*, 4> PreventedBy;
1717   bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1718 
1719   if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1720     return Result;
1721 
1722   // In case of CUDA, return true if none of the 1-argument deallocator
1723   // functions are actually callable.
1724   return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1725     assert(FD->getNumParams() == 1 &&
1726            "Only single-operand functions should be in PreventedBy");
1727     return CUDA().IdentifyPreference(Caller, FD) >= SemaCUDA::CFP_HostDevice;
1728   });
1729 }
1730 
1731 /// Determine whether the given function is a non-placement
1732 /// deallocation function.
1733 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1734   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1735     return S.isUsualDeallocationFunction(Method);
1736 
1737   if (FD->getOverloadedOperator() != OO_Delete &&
1738       FD->getOverloadedOperator() != OO_Array_Delete)
1739     return false;
1740 
1741   unsigned UsualParams = 1;
1742 
1743   if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1744       S.Context.hasSameUnqualifiedType(
1745           FD->getParamDecl(UsualParams)->getType(),
1746           S.Context.getSizeType()))
1747     ++UsualParams;
1748 
1749   if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1750       S.Context.hasSameUnqualifiedType(
1751           FD->getParamDecl(UsualParams)->getType(),
1752           S.Context.getTypeDeclType(S.getStdAlignValT())))
1753     ++UsualParams;
1754 
1755   return UsualParams == FD->getNumParams();
1756 }
1757 
1758 namespace {
1759   struct UsualDeallocFnInfo {
1760     UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1761     UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1762         : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1763           Destroying(false), HasSizeT(false), HasAlignValT(false),
1764           CUDAPref(SemaCUDA::CFP_Native) {
1765       // A function template declaration is never a usual deallocation function.
1766       if (!FD)
1767         return;
1768       unsigned NumBaseParams = 1;
1769       if (FD->isDestroyingOperatorDelete()) {
1770         Destroying = true;
1771         ++NumBaseParams;
1772       }
1773 
1774       if (NumBaseParams < FD->getNumParams() &&
1775           S.Context.hasSameUnqualifiedType(
1776               FD->getParamDecl(NumBaseParams)->getType(),
1777               S.Context.getSizeType())) {
1778         ++NumBaseParams;
1779         HasSizeT = true;
1780       }
1781 
1782       if (NumBaseParams < FD->getNumParams() &&
1783           FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1784         ++NumBaseParams;
1785         HasAlignValT = true;
1786       }
1787 
1788       // In CUDA, determine how much we'd like / dislike to call this.
1789       if (S.getLangOpts().CUDA)
1790         CUDAPref = S.CUDA().IdentifyPreference(
1791             S.getCurFunctionDecl(/*AllowLambda=*/true), FD);
1792     }
1793 
1794     explicit operator bool() const { return FD; }
1795 
1796     bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1797                       bool WantAlign) const {
1798       // C++ P0722:
1799       //   A destroying operator delete is preferred over a non-destroying
1800       //   operator delete.
1801       if (Destroying != Other.Destroying)
1802         return Destroying;
1803 
1804       // C++17 [expr.delete]p10:
1805       //   If the type has new-extended alignment, a function with a parameter
1806       //   of type std::align_val_t is preferred; otherwise a function without
1807       //   such a parameter is preferred
1808       if (HasAlignValT != Other.HasAlignValT)
1809         return HasAlignValT == WantAlign;
1810 
1811       if (HasSizeT != Other.HasSizeT)
1812         return HasSizeT == WantSize;
1813 
1814       // Use CUDA call preference as a tiebreaker.
1815       return CUDAPref > Other.CUDAPref;
1816     }
1817 
1818     DeclAccessPair Found;
1819     FunctionDecl *FD;
1820     bool Destroying, HasSizeT, HasAlignValT;
1821     SemaCUDA::CUDAFunctionPreference CUDAPref;
1822   };
1823 }
1824 
1825 /// Determine whether a type has new-extended alignment. This may be called when
1826 /// the type is incomplete (for a delete-expression with an incomplete pointee
1827 /// type), in which case it will conservatively return false if the alignment is
1828 /// not known.
1829 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1830   return S.getLangOpts().AlignedAllocation &&
1831          S.getASTContext().getTypeAlignIfKnown(AllocType) >
1832              S.getASTContext().getTargetInfo().getNewAlign();
1833 }
1834 
1835 /// Select the correct "usual" deallocation function to use from a selection of
1836 /// deallocation functions (either global or class-scope).
1837 static UsualDeallocFnInfo resolveDeallocationOverload(
1838     Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1839     llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1840   UsualDeallocFnInfo Best;
1841 
1842   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1843     UsualDeallocFnInfo Info(S, I.getPair());
1844     if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1845         Info.CUDAPref == SemaCUDA::CFP_Never)
1846       continue;
1847 
1848     if (!Best) {
1849       Best = Info;
1850       if (BestFns)
1851         BestFns->push_back(Info);
1852       continue;
1853     }
1854 
1855     if (Best.isBetterThan(Info, WantSize, WantAlign))
1856       continue;
1857 
1858     //   If more than one preferred function is found, all non-preferred
1859     //   functions are eliminated from further consideration.
1860     if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1861       BestFns->clear();
1862 
1863     Best = Info;
1864     if (BestFns)
1865       BestFns->push_back(Info);
1866   }
1867 
1868   return Best;
1869 }
1870 
1871 /// Determine whether a given type is a class for which 'delete[]' would call
1872 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1873 /// we need to store the array size (even if the type is
1874 /// trivially-destructible).
1875 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1876                                          QualType allocType) {
1877   const RecordType *record =
1878     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1879   if (!record) return false;
1880 
1881   // Try to find an operator delete[] in class scope.
1882 
1883   DeclarationName deleteName =
1884     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1885   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1886   S.LookupQualifiedName(ops, record->getDecl());
1887 
1888   // We're just doing this for information.
1889   ops.suppressDiagnostics();
1890 
1891   // Very likely: there's no operator delete[].
1892   if (ops.empty()) return false;
1893 
1894   // If it's ambiguous, it should be illegal to call operator delete[]
1895   // on this thing, so it doesn't matter if we allocate extra space or not.
1896   if (ops.isAmbiguous()) return false;
1897 
1898   // C++17 [expr.delete]p10:
1899   //   If the deallocation functions have class scope, the one without a
1900   //   parameter of type std::size_t is selected.
1901   auto Best = resolveDeallocationOverload(
1902       S, ops, /*WantSize*/false,
1903       /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1904   return Best && Best.HasSizeT;
1905 }
1906 
1907 ExprResult
1908 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1909                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1910                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
1911                   Declarator &D, Expr *Initializer) {
1912   std::optional<Expr *> ArraySize;
1913   // If the specified type is an array, unwrap it and save the expression.
1914   if (D.getNumTypeObjects() > 0 &&
1915       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1916     DeclaratorChunk &Chunk = D.getTypeObject(0);
1917     if (D.getDeclSpec().hasAutoTypeSpec())
1918       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1919         << D.getSourceRange());
1920     if (Chunk.Arr.hasStatic)
1921       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1922         << D.getSourceRange());
1923     if (!Chunk.Arr.NumElts && !Initializer)
1924       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1925         << D.getSourceRange());
1926 
1927     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1928     D.DropFirstTypeObject();
1929   }
1930 
1931   // Every dimension shall be of constant size.
1932   if (ArraySize) {
1933     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1934       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1935         break;
1936 
1937       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1938       if (Expr *NumElts = (Expr *)Array.NumElts) {
1939         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1940           // FIXME: GCC permits constant folding here. We should either do so consistently
1941           // or not do so at all, rather than changing behavior in C++14 onwards.
1942           if (getLangOpts().CPlusPlus14) {
1943             // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1944             //   shall be a converted constant expression (5.19) of type std::size_t
1945             //   and shall evaluate to a strictly positive value.
1946             llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1947             Array.NumElts
1948              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1949                                                 CCEK_ArrayBound)
1950                  .get();
1951           } else {
1952             Array.NumElts =
1953                 VerifyIntegerConstantExpression(
1954                     NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1955                     .get();
1956           }
1957           if (!Array.NumElts)
1958             return ExprError();
1959         }
1960       }
1961     }
1962   }
1963 
1964   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
1965   QualType AllocType = TInfo->getType();
1966   if (D.isInvalidType())
1967     return ExprError();
1968 
1969   SourceRange DirectInitRange;
1970   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1971     DirectInitRange = List->getSourceRange();
1972 
1973   return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1974                      PlacementLParen, PlacementArgs, PlacementRParen,
1975                      TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1976                      Initializer);
1977 }
1978 
1979 static bool isLegalArrayNewInitializer(CXXNewInitializationStyle Style,
1980                                        Expr *Init, bool IsCPlusPlus20) {
1981   if (!Init)
1982     return true;
1983   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1984     return IsCPlusPlus20 || PLE->getNumExprs() == 0;
1985   if (isa<ImplicitValueInitExpr>(Init))
1986     return true;
1987   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1988     return !CCE->isListInitialization() &&
1989            CCE->getConstructor()->isDefaultConstructor();
1990   else if (Style == CXXNewInitializationStyle::Braces) {
1991     assert(isa<InitListExpr>(Init) &&
1992            "Shouldn't create list CXXConstructExprs for arrays.");
1993     return true;
1994   }
1995   return false;
1996 }
1997 
1998 bool
1999 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
2000   if (!getLangOpts().AlignedAllocationUnavailable)
2001     return false;
2002   if (FD.isDefined())
2003     return false;
2004   std::optional<unsigned> AlignmentParam;
2005   if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
2006       AlignmentParam)
2007     return true;
2008   return false;
2009 }
2010 
2011 // Emit a diagnostic if an aligned allocation/deallocation function that is not
2012 // implemented in the standard library is selected.
2013 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
2014                                                 SourceLocation Loc) {
2015   if (isUnavailableAlignedAllocationFunction(FD)) {
2016     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
2017     StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
2018         getASTContext().getTargetInfo().getPlatformName());
2019     VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
2020 
2021     OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
2022     bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
2023     Diag(Loc, diag::err_aligned_allocation_unavailable)
2024         << IsDelete << FD.getType().getAsString() << OSName
2025         << OSVersion.getAsString() << OSVersion.empty();
2026     Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
2027   }
2028 }
2029 
2030 ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
2031                              SourceLocation PlacementLParen,
2032                              MultiExprArg PlacementArgs,
2033                              SourceLocation PlacementRParen,
2034                              SourceRange TypeIdParens, QualType AllocType,
2035                              TypeSourceInfo *AllocTypeInfo,
2036                              std::optional<Expr *> ArraySize,
2037                              SourceRange DirectInitRange, Expr *Initializer) {
2038   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
2039   SourceLocation StartLoc = Range.getBegin();
2040 
2041   CXXNewInitializationStyle InitStyle;
2042   if (DirectInitRange.isValid()) {
2043     assert(Initializer && "Have parens but no initializer.");
2044     InitStyle = CXXNewInitializationStyle::Parens;
2045   } else if (isa_and_nonnull<InitListExpr>(Initializer))
2046     InitStyle = CXXNewInitializationStyle::Braces;
2047   else {
2048     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
2049             isa<CXXConstructExpr>(Initializer)) &&
2050            "Initializer expression that cannot have been implicitly created.");
2051     InitStyle = CXXNewInitializationStyle::None;
2052   }
2053 
2054   MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0);
2055   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
2056     assert(InitStyle == CXXNewInitializationStyle::Parens &&
2057            "paren init for non-call init");
2058     Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
2059   }
2060 
2061   // C++11 [expr.new]p15:
2062   //   A new-expression that creates an object of type T initializes that
2063   //   object as follows:
2064   InitializationKind Kind = [&] {
2065     switch (InitStyle) {
2066     //     - If the new-initializer is omitted, the object is default-
2067     //       initialized (8.5); if no initialization is performed,
2068     //       the object has indeterminate value
2069     case CXXNewInitializationStyle::None:
2070       return InitializationKind::CreateDefault(TypeRange.getBegin());
2071     //     - Otherwise, the new-initializer is interpreted according to the
2072     //       initialization rules of 8.5 for direct-initialization.
2073     case CXXNewInitializationStyle::Parens:
2074       return InitializationKind::CreateDirect(TypeRange.getBegin(),
2075                                               DirectInitRange.getBegin(),
2076                                               DirectInitRange.getEnd());
2077     case CXXNewInitializationStyle::Braces:
2078       return InitializationKind::CreateDirectList(TypeRange.getBegin(),
2079                                                   Initializer->getBeginLoc(),
2080                                                   Initializer->getEndLoc());
2081     }
2082     llvm_unreachable("Unknown initialization kind");
2083   }();
2084 
2085   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2086   auto *Deduced = AllocType->getContainedDeducedType();
2087   if (Deduced && !Deduced->isDeduced() &&
2088       isa<DeducedTemplateSpecializationType>(Deduced)) {
2089     if (ArraySize)
2090       return ExprError(
2091           Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
2092                diag::err_deduced_class_template_compound_type)
2093           << /*array*/ 2
2094           << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
2095 
2096     InitializedEntity Entity
2097       = InitializedEntity::InitializeNew(StartLoc, AllocType);
2098     AllocType = DeduceTemplateSpecializationFromInitializer(
2099         AllocTypeInfo, Entity, Kind, Exprs);
2100     if (AllocType.isNull())
2101       return ExprError();
2102   } else if (Deduced && !Deduced->isDeduced()) {
2103     MultiExprArg Inits = Exprs;
2104     bool Braced = (InitStyle == CXXNewInitializationStyle::Braces);
2105     if (Braced) {
2106       auto *ILE = cast<InitListExpr>(Exprs[0]);
2107       Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2108     }
2109 
2110     if (InitStyle == CXXNewInitializationStyle::None || Inits.empty())
2111       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
2112                        << AllocType << TypeRange);
2113     if (Inits.size() > 1) {
2114       Expr *FirstBad = Inits[1];
2115       return ExprError(Diag(FirstBad->getBeginLoc(),
2116                             diag::err_auto_new_ctor_multiple_expressions)
2117                        << AllocType << TypeRange);
2118     }
2119     if (Braced && !getLangOpts().CPlusPlus17)
2120       Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2121           << AllocType << TypeRange;
2122     Expr *Deduce = Inits[0];
2123     if (isa<InitListExpr>(Deduce))
2124       return ExprError(
2125           Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
2126           << Braced << AllocType << TypeRange);
2127     QualType DeducedType;
2128     TemplateDeductionInfo Info(Deduce->getExprLoc());
2129     TemplateDeductionResult Result =
2130         DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info);
2131     if (Result != TemplateDeductionResult::Success &&
2132         Result != TemplateDeductionResult::AlreadyDiagnosed)
2133       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2134                        << AllocType << Deduce->getType() << TypeRange
2135                        << Deduce->getSourceRange());
2136     if (DeducedType.isNull()) {
2137       assert(Result == TemplateDeductionResult::AlreadyDiagnosed);
2138       return ExprError();
2139     }
2140     AllocType = DeducedType;
2141   }
2142 
2143   // Per C++0x [expr.new]p5, the type being constructed may be a
2144   // typedef of an array type.
2145   if (!ArraySize) {
2146     if (const ConstantArrayType *Array
2147                               = Context.getAsConstantArrayType(AllocType)) {
2148       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2149                                          Context.getSizeType(),
2150                                          TypeRange.getEnd());
2151       AllocType = Array->getElementType();
2152     }
2153   }
2154 
2155   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2156     return ExprError();
2157 
2158   if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin()))
2159     return ExprError();
2160 
2161   // In ARC, infer 'retaining' for the allocated
2162   if (getLangOpts().ObjCAutoRefCount &&
2163       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2164       AllocType->isObjCLifetimeType()) {
2165     AllocType = Context.getLifetimeQualifiedType(AllocType,
2166                                     AllocType->getObjCARCImplicitLifetime());
2167   }
2168 
2169   QualType ResultType = Context.getPointerType(AllocType);
2170 
2171   if (ArraySize && *ArraySize &&
2172       (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2173     ExprResult result = CheckPlaceholderExpr(*ArraySize);
2174     if (result.isInvalid()) return ExprError();
2175     ArraySize = result.get();
2176   }
2177   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2178   //   integral or enumeration type with a non-negative value."
2179   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2180   //   enumeration type, or a class type for which a single non-explicit
2181   //   conversion function to integral or unscoped enumeration type exists.
2182   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2183   //   std::size_t.
2184   std::optional<uint64_t> KnownArraySize;
2185   if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2186     ExprResult ConvertedSize;
2187     if (getLangOpts().CPlusPlus14) {
2188       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2189 
2190       ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2191                                                 AA_Converting);
2192 
2193       if (!ConvertedSize.isInvalid() &&
2194           (*ArraySize)->getType()->getAs<RecordType>())
2195         // Diagnose the compatibility of this conversion.
2196         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2197           << (*ArraySize)->getType() << 0 << "'size_t'";
2198     } else {
2199       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2200       protected:
2201         Expr *ArraySize;
2202 
2203       public:
2204         SizeConvertDiagnoser(Expr *ArraySize)
2205             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2206               ArraySize(ArraySize) {}
2207 
2208         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2209                                              QualType T) override {
2210           return S.Diag(Loc, diag::err_array_size_not_integral)
2211                    << S.getLangOpts().CPlusPlus11 << T;
2212         }
2213 
2214         SemaDiagnosticBuilder diagnoseIncomplete(
2215             Sema &S, SourceLocation Loc, QualType T) override {
2216           return S.Diag(Loc, diag::err_array_size_incomplete_type)
2217                    << T << ArraySize->getSourceRange();
2218         }
2219 
2220         SemaDiagnosticBuilder diagnoseExplicitConv(
2221             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2222           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2223         }
2224 
2225         SemaDiagnosticBuilder noteExplicitConv(
2226             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2227           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2228                    << ConvTy->isEnumeralType() << ConvTy;
2229         }
2230 
2231         SemaDiagnosticBuilder diagnoseAmbiguous(
2232             Sema &S, SourceLocation Loc, QualType T) override {
2233           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2234         }
2235 
2236         SemaDiagnosticBuilder noteAmbiguous(
2237             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2238           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2239                    << ConvTy->isEnumeralType() << ConvTy;
2240         }
2241 
2242         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2243                                                  QualType T,
2244                                                  QualType ConvTy) override {
2245           return S.Diag(Loc,
2246                         S.getLangOpts().CPlusPlus11
2247                           ? diag::warn_cxx98_compat_array_size_conversion
2248                           : diag::ext_array_size_conversion)
2249                    << T << ConvTy->isEnumeralType() << ConvTy;
2250         }
2251       } SizeDiagnoser(*ArraySize);
2252 
2253       ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2254                                                           SizeDiagnoser);
2255     }
2256     if (ConvertedSize.isInvalid())
2257       return ExprError();
2258 
2259     ArraySize = ConvertedSize.get();
2260     QualType SizeType = (*ArraySize)->getType();
2261 
2262     if (!SizeType->isIntegralOrUnscopedEnumerationType())
2263       return ExprError();
2264 
2265     // C++98 [expr.new]p7:
2266     //   The expression in a direct-new-declarator shall have integral type
2267     //   with a non-negative value.
2268     //
2269     // Let's see if this is a constant < 0. If so, we reject it out of hand,
2270     // per CWG1464. Otherwise, if it's not a constant, we must have an
2271     // unparenthesized array type.
2272 
2273     // We've already performed any required implicit conversion to integer or
2274     // unscoped enumeration type.
2275     // FIXME: Per CWG1464, we are required to check the value prior to
2276     // converting to size_t. This will never find a negative array size in
2277     // C++14 onwards, because Value is always unsigned here!
2278     if (std::optional<llvm::APSInt> Value =
2279             (*ArraySize)->getIntegerConstantExpr(Context)) {
2280       if (Value->isSigned() && Value->isNegative()) {
2281         return ExprError(Diag((*ArraySize)->getBeginLoc(),
2282                               diag::err_typecheck_negative_array_size)
2283                          << (*ArraySize)->getSourceRange());
2284       }
2285 
2286       if (!AllocType->isDependentType()) {
2287         unsigned ActiveSizeBits =
2288             ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2289         if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2290           return ExprError(
2291               Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2292               << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2293       }
2294 
2295       KnownArraySize = Value->getZExtValue();
2296     } else if (TypeIdParens.isValid()) {
2297       // Can't have dynamic array size when the type-id is in parentheses.
2298       Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2299           << (*ArraySize)->getSourceRange()
2300           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2301           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2302 
2303       TypeIdParens = SourceRange();
2304     }
2305 
2306     // Note that we do *not* convert the argument in any way.  It can
2307     // be signed, larger than size_t, whatever.
2308   }
2309 
2310   FunctionDecl *OperatorNew = nullptr;
2311   FunctionDecl *OperatorDelete = nullptr;
2312   unsigned Alignment =
2313       AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2314   unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2315   bool PassAlignment = getLangOpts().AlignedAllocation &&
2316                        Alignment > NewAlignment;
2317 
2318   if (CheckArgsForPlaceholders(PlacementArgs))
2319     return ExprError();
2320 
2321   AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2322   if (!AllocType->isDependentType() &&
2323       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2324       FindAllocationFunctions(
2325           StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2326           AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs,
2327           OperatorNew, OperatorDelete))
2328     return ExprError();
2329 
2330   // If this is an array allocation, compute whether the usual array
2331   // deallocation function for the type has a size_t parameter.
2332   bool UsualArrayDeleteWantsSize = false;
2333   if (ArraySize && !AllocType->isDependentType())
2334     UsualArrayDeleteWantsSize =
2335         doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2336 
2337   SmallVector<Expr *, 8> AllPlaceArgs;
2338   if (OperatorNew) {
2339     auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2340     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2341                                                     : VariadicDoesNotApply;
2342 
2343     // We've already converted the placement args, just fill in any default
2344     // arguments. Skip the first parameter because we don't have a corresponding
2345     // argument. Skip the second parameter too if we're passing in the
2346     // alignment; we've already filled it in.
2347     unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2348     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2349                                NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2350                                CallType))
2351       return ExprError();
2352 
2353     if (!AllPlaceArgs.empty())
2354       PlacementArgs = AllPlaceArgs;
2355 
2356     // We would like to perform some checking on the given `operator new` call,
2357     // but the PlacementArgs does not contain the implicit arguments,
2358     // namely allocation size and maybe allocation alignment,
2359     // so we need to conjure them.
2360 
2361     QualType SizeTy = Context.getSizeType();
2362     unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2363 
2364     llvm::APInt SingleEltSize(
2365         SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2366 
2367     // How many bytes do we want to allocate here?
2368     std::optional<llvm::APInt> AllocationSize;
2369     if (!ArraySize && !AllocType->isDependentType()) {
2370       // For non-array operator new, we only want to allocate one element.
2371       AllocationSize = SingleEltSize;
2372     } else if (KnownArraySize && !AllocType->isDependentType()) {
2373       // For array operator new, only deal with static array size case.
2374       bool Overflow;
2375       AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2376                            .umul_ov(SingleEltSize, Overflow);
2377       (void)Overflow;
2378       assert(
2379           !Overflow &&
2380           "Expected that all the overflows would have been handled already.");
2381     }
2382 
2383     IntegerLiteral AllocationSizeLiteral(
2384         Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)),
2385         SizeTy, SourceLocation());
2386     // Otherwise, if we failed to constant-fold the allocation size, we'll
2387     // just give up and pass-in something opaque, that isn't a null pointer.
2388     OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2389                                          OK_Ordinary, /*SourceExpr=*/nullptr);
2390 
2391     // Let's synthesize the alignment argument in case we will need it.
2392     // Since we *really* want to allocate these on stack, this is slightly ugly
2393     // because there might not be a `std::align_val_t` type.
2394     EnumDecl *StdAlignValT = getStdAlignValT();
2395     QualType AlignValT =
2396         StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2397     IntegerLiteral AlignmentLiteral(
2398         Context,
2399         llvm::APInt(Context.getTypeSize(SizeTy),
2400                     Alignment / Context.getCharWidth()),
2401         SizeTy, SourceLocation());
2402     ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2403                                       CK_IntegralCast, &AlignmentLiteral,
2404                                       VK_PRValue, FPOptionsOverride());
2405 
2406     // Adjust placement args by prepending conjured size and alignment exprs.
2407     llvm::SmallVector<Expr *, 8> CallArgs;
2408     CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2409     CallArgs.emplace_back(AllocationSize
2410                               ? static_cast<Expr *>(&AllocationSizeLiteral)
2411                               : &OpaqueAllocationSize);
2412     if (PassAlignment)
2413       CallArgs.emplace_back(&DesiredAlignment);
2414     CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2415 
2416     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2417 
2418     checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2419               /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2420 
2421     // Warn if the type is over-aligned and is being allocated by (unaligned)
2422     // global operator new.
2423     if (PlacementArgs.empty() && !PassAlignment &&
2424         (OperatorNew->isImplicit() ||
2425          (OperatorNew->getBeginLoc().isValid() &&
2426           getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2427       if (Alignment > NewAlignment)
2428         Diag(StartLoc, diag::warn_overaligned_type)
2429             << AllocType
2430             << unsigned(Alignment / Context.getCharWidth())
2431             << unsigned(NewAlignment / Context.getCharWidth());
2432     }
2433   }
2434 
2435   // Array 'new' can't have any initializers except empty parentheses.
2436   // Initializer lists are also allowed, in C++11. Rely on the parser for the
2437   // dialect distinction.
2438   if (ArraySize && !isLegalArrayNewInitializer(InitStyle, Initializer,
2439                                                getLangOpts().CPlusPlus20)) {
2440     SourceRange InitRange(Exprs.front()->getBeginLoc(),
2441                           Exprs.back()->getEndLoc());
2442     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2443     return ExprError();
2444   }
2445 
2446   // If we can perform the initialization, and we've not already done so,
2447   // do it now.
2448   if (!AllocType->isDependentType() &&
2449       !Expr::hasAnyTypeDependentArguments(Exprs)) {
2450     // The type we initialize is the complete type, including the array bound.
2451     QualType InitType;
2452     if (KnownArraySize)
2453       InitType = Context.getConstantArrayType(
2454           AllocType,
2455           llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2456                       *KnownArraySize),
2457           *ArraySize, ArraySizeModifier::Normal, 0);
2458     else if (ArraySize)
2459       InitType = Context.getIncompleteArrayType(AllocType,
2460                                                 ArraySizeModifier::Normal, 0);
2461     else
2462       InitType = AllocType;
2463 
2464     InitializedEntity Entity
2465       = InitializedEntity::InitializeNew(StartLoc, InitType);
2466     InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
2467     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs);
2468     if (FullInit.isInvalid())
2469       return ExprError();
2470 
2471     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2472     // we don't want the initialized object to be destructed.
2473     // FIXME: We should not create these in the first place.
2474     if (CXXBindTemporaryExpr *Binder =
2475             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2476       FullInit = Binder->getSubExpr();
2477 
2478     Initializer = FullInit.get();
2479 
2480     // FIXME: If we have a KnownArraySize, check that the array bound of the
2481     // initializer is no greater than that constant value.
2482 
2483     if (ArraySize && !*ArraySize) {
2484       auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2485       if (CAT) {
2486         // FIXME: Track that the array size was inferred rather than explicitly
2487         // specified.
2488         ArraySize = IntegerLiteral::Create(
2489             Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2490       } else {
2491         Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2492             << Initializer->getSourceRange();
2493       }
2494     }
2495   }
2496 
2497   // Mark the new and delete operators as referenced.
2498   if (OperatorNew) {
2499     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2500       return ExprError();
2501     MarkFunctionReferenced(StartLoc, OperatorNew);
2502   }
2503   if (OperatorDelete) {
2504     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2505       return ExprError();
2506     MarkFunctionReferenced(StartLoc, OperatorDelete);
2507   }
2508 
2509   return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2510                             PassAlignment, UsualArrayDeleteWantsSize,
2511                             PlacementArgs, TypeIdParens, ArraySize, InitStyle,
2512                             Initializer, ResultType, AllocTypeInfo, Range,
2513                             DirectInitRange);
2514 }
2515 
2516 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2517                               SourceRange R) {
2518   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2519   //   abstract class type or array thereof.
2520   if (AllocType->isFunctionType())
2521     return Diag(Loc, diag::err_bad_new_type)
2522       << AllocType << 0 << R;
2523   else if (AllocType->isReferenceType())
2524     return Diag(Loc, diag::err_bad_new_type)
2525       << AllocType << 1 << R;
2526   else if (!AllocType->isDependentType() &&
2527            RequireCompleteSizedType(
2528                Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2529     return true;
2530   else if (RequireNonAbstractType(Loc, AllocType,
2531                                   diag::err_allocation_of_abstract_type))
2532     return true;
2533   else if (AllocType->isVariablyModifiedType())
2534     return Diag(Loc, diag::err_variably_modified_new_type)
2535              << AllocType;
2536   else if (AllocType.getAddressSpace() != LangAS::Default &&
2537            !getLangOpts().OpenCLCPlusPlus)
2538     return Diag(Loc, diag::err_address_space_qualified_new)
2539       << AllocType.getUnqualifiedType()
2540       << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2541   else if (getLangOpts().ObjCAutoRefCount) {
2542     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2543       QualType BaseAllocType = Context.getBaseElementType(AT);
2544       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2545           BaseAllocType->isObjCLifetimeType())
2546         return Diag(Loc, diag::err_arc_new_array_without_ownership)
2547           << BaseAllocType;
2548     }
2549   }
2550 
2551   return false;
2552 }
2553 
2554 static bool resolveAllocationOverload(
2555     Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2556     bool &PassAlignment, FunctionDecl *&Operator,
2557     OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2558   OverloadCandidateSet Candidates(R.getNameLoc(),
2559                                   OverloadCandidateSet::CSK_Normal);
2560   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2561        Alloc != AllocEnd; ++Alloc) {
2562     // Even member operator new/delete are implicitly treated as
2563     // static, so don't use AddMemberCandidate.
2564     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2565 
2566     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2567       S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2568                                      /*ExplicitTemplateArgs=*/nullptr, Args,
2569                                      Candidates,
2570                                      /*SuppressUserConversions=*/false);
2571       continue;
2572     }
2573 
2574     FunctionDecl *Fn = cast<FunctionDecl>(D);
2575     S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2576                            /*SuppressUserConversions=*/false);
2577   }
2578 
2579   // Do the resolution.
2580   OverloadCandidateSet::iterator Best;
2581   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2582   case OR_Success: {
2583     // Got one!
2584     FunctionDecl *FnDecl = Best->Function;
2585     if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2586                                 Best->FoundDecl) == Sema::AR_inaccessible)
2587       return true;
2588 
2589     Operator = FnDecl;
2590     return false;
2591   }
2592 
2593   case OR_No_Viable_Function:
2594     // C++17 [expr.new]p13:
2595     //   If no matching function is found and the allocated object type has
2596     //   new-extended alignment, the alignment argument is removed from the
2597     //   argument list, and overload resolution is performed again.
2598     if (PassAlignment) {
2599       PassAlignment = false;
2600       AlignArg = Args[1];
2601       Args.erase(Args.begin() + 1);
2602       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2603                                        Operator, &Candidates, AlignArg,
2604                                        Diagnose);
2605     }
2606 
2607     // MSVC will fall back on trying to find a matching global operator new
2608     // if operator new[] cannot be found.  Also, MSVC will leak by not
2609     // generating a call to operator delete or operator delete[], but we
2610     // will not replicate that bug.
2611     // FIXME: Find out how this interacts with the std::align_val_t fallback
2612     // once MSVC implements it.
2613     if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2614         S.Context.getLangOpts().MSVCCompat) {
2615       R.clear();
2616       R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2617       S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2618       // FIXME: This will give bad diagnostics pointing at the wrong functions.
2619       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2620                                        Operator, /*Candidates=*/nullptr,
2621                                        /*AlignArg=*/nullptr, Diagnose);
2622     }
2623 
2624     if (Diagnose) {
2625       // If this is an allocation of the form 'new (p) X' for some object
2626       // pointer p (or an expression that will decay to such a pointer),
2627       // diagnose the missing inclusion of <new>.
2628       if (!R.isClassLookup() && Args.size() == 2 &&
2629           (Args[1]->getType()->isObjectPointerType() ||
2630            Args[1]->getType()->isArrayType())) {
2631         S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2632             << R.getLookupName() << Range;
2633         // Listing the candidates is unlikely to be useful; skip it.
2634         return true;
2635       }
2636 
2637       // Finish checking all candidates before we note any. This checking can
2638       // produce additional diagnostics so can't be interleaved with our
2639       // emission of notes.
2640       //
2641       // For an aligned allocation, separately check the aligned and unaligned
2642       // candidates with their respective argument lists.
2643       SmallVector<OverloadCandidate*, 32> Cands;
2644       SmallVector<OverloadCandidate*, 32> AlignedCands;
2645       llvm::SmallVector<Expr*, 4> AlignedArgs;
2646       if (AlignedCandidates) {
2647         auto IsAligned = [](OverloadCandidate &C) {
2648           return C.Function->getNumParams() > 1 &&
2649                  C.Function->getParamDecl(1)->getType()->isAlignValT();
2650         };
2651         auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2652 
2653         AlignedArgs.reserve(Args.size() + 1);
2654         AlignedArgs.push_back(Args[0]);
2655         AlignedArgs.push_back(AlignArg);
2656         AlignedArgs.append(Args.begin() + 1, Args.end());
2657         AlignedCands = AlignedCandidates->CompleteCandidates(
2658             S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2659 
2660         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2661                                               R.getNameLoc(), IsUnaligned);
2662       } else {
2663         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2664                                               R.getNameLoc());
2665       }
2666 
2667       S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2668           << R.getLookupName() << Range;
2669       if (AlignedCandidates)
2670         AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2671                                           R.getNameLoc());
2672       Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2673     }
2674     return true;
2675 
2676   case OR_Ambiguous:
2677     if (Diagnose) {
2678       Candidates.NoteCandidates(
2679           PartialDiagnosticAt(R.getNameLoc(),
2680                               S.PDiag(diag::err_ovl_ambiguous_call)
2681                                   << R.getLookupName() << Range),
2682           S, OCD_AmbiguousCandidates, Args);
2683     }
2684     return true;
2685 
2686   case OR_Deleted: {
2687     if (Diagnose)
2688       S.DiagnoseUseOfDeletedFunction(R.getNameLoc(), Range, R.getLookupName(),
2689                                      Candidates, Best->Function, Args);
2690     return true;
2691   }
2692   }
2693   llvm_unreachable("Unreachable, bad result from BestViableFunction");
2694 }
2695 
2696 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2697                                    AllocationFunctionScope NewScope,
2698                                    AllocationFunctionScope DeleteScope,
2699                                    QualType AllocType, bool IsArray,
2700                                    bool &PassAlignment, MultiExprArg PlaceArgs,
2701                                    FunctionDecl *&OperatorNew,
2702                                    FunctionDecl *&OperatorDelete,
2703                                    bool Diagnose) {
2704   // --- Choosing an allocation function ---
2705   // C++ 5.3.4p8 - 14 & 18
2706   // 1) If looking in AFS_Global scope for allocation functions, only look in
2707   //    the global scope. Else, if AFS_Class, only look in the scope of the
2708   //    allocated class. If AFS_Both, look in both.
2709   // 2) If an array size is given, look for operator new[], else look for
2710   //   operator new.
2711   // 3) The first argument is always size_t. Append the arguments from the
2712   //   placement form.
2713 
2714   SmallVector<Expr*, 8> AllocArgs;
2715   AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2716 
2717   // We don't care about the actual value of these arguments.
2718   // FIXME: Should the Sema create the expression and embed it in the syntax
2719   // tree? Or should the consumer just recalculate the value?
2720   // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2721   QualType SizeTy = Context.getSizeType();
2722   unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2723   IntegerLiteral Size(Context, llvm::APInt::getZero(SizeTyWidth), SizeTy,
2724                       SourceLocation());
2725   AllocArgs.push_back(&Size);
2726 
2727   QualType AlignValT = Context.VoidTy;
2728   if (PassAlignment) {
2729     DeclareGlobalNewDelete();
2730     AlignValT = Context.getTypeDeclType(getStdAlignValT());
2731   }
2732   CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2733   if (PassAlignment)
2734     AllocArgs.push_back(&Align);
2735 
2736   AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2737 
2738   // C++ [expr.new]p8:
2739   //   If the allocated type is a non-array type, the allocation
2740   //   function's name is operator new and the deallocation function's
2741   //   name is operator delete. If the allocated type is an array
2742   //   type, the allocation function's name is operator new[] and the
2743   //   deallocation function's name is operator delete[].
2744   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2745       IsArray ? OO_Array_New : OO_New);
2746 
2747   QualType AllocElemType = Context.getBaseElementType(AllocType);
2748 
2749   // Find the allocation function.
2750   {
2751     LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2752 
2753     // C++1z [expr.new]p9:
2754     //   If the new-expression begins with a unary :: operator, the allocation
2755     //   function's name is looked up in the global scope. Otherwise, if the
2756     //   allocated type is a class type T or array thereof, the allocation
2757     //   function's name is looked up in the scope of T.
2758     if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2759       LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2760 
2761     // We can see ambiguity here if the allocation function is found in
2762     // multiple base classes.
2763     if (R.isAmbiguous())
2764       return true;
2765 
2766     //   If this lookup fails to find the name, or if the allocated type is not
2767     //   a class type, the allocation function's name is looked up in the
2768     //   global scope.
2769     if (R.empty()) {
2770       if (NewScope == AFS_Class)
2771         return true;
2772 
2773       LookupQualifiedName(R, Context.getTranslationUnitDecl());
2774     }
2775 
2776     if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2777       if (PlaceArgs.empty()) {
2778         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2779       } else {
2780         Diag(StartLoc, diag::err_openclcxx_placement_new);
2781       }
2782       return true;
2783     }
2784 
2785     assert(!R.empty() && "implicitly declared allocation functions not found");
2786     assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2787 
2788     // We do our own custom access checks below.
2789     R.suppressDiagnostics();
2790 
2791     if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2792                                   OperatorNew, /*Candidates=*/nullptr,
2793                                   /*AlignArg=*/nullptr, Diagnose))
2794       return true;
2795   }
2796 
2797   // We don't need an operator delete if we're running under -fno-exceptions.
2798   if (!getLangOpts().Exceptions) {
2799     OperatorDelete = nullptr;
2800     return false;
2801   }
2802 
2803   // Note, the name of OperatorNew might have been changed from array to
2804   // non-array by resolveAllocationOverload.
2805   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2806       OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2807           ? OO_Array_Delete
2808           : OO_Delete);
2809 
2810   // C++ [expr.new]p19:
2811   //
2812   //   If the new-expression begins with a unary :: operator, the
2813   //   deallocation function's name is looked up in the global
2814   //   scope. Otherwise, if the allocated type is a class type T or an
2815   //   array thereof, the deallocation function's name is looked up in
2816   //   the scope of T. If this lookup fails to find the name, or if
2817   //   the allocated type is not a class type or array thereof, the
2818   //   deallocation function's name is looked up in the global scope.
2819   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2820   if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2821     auto *RD =
2822         cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2823     LookupQualifiedName(FoundDelete, RD);
2824   }
2825   if (FoundDelete.isAmbiguous())
2826     return true; // FIXME: clean up expressions?
2827 
2828   // Filter out any destroying operator deletes. We can't possibly call such a
2829   // function in this context, because we're handling the case where the object
2830   // was not successfully constructed.
2831   // FIXME: This is not covered by the language rules yet.
2832   {
2833     LookupResult::Filter Filter = FoundDelete.makeFilter();
2834     while (Filter.hasNext()) {
2835       auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2836       if (FD && FD->isDestroyingOperatorDelete())
2837         Filter.erase();
2838     }
2839     Filter.done();
2840   }
2841 
2842   bool FoundGlobalDelete = FoundDelete.empty();
2843   if (FoundDelete.empty()) {
2844     FoundDelete.clear(LookupOrdinaryName);
2845 
2846     if (DeleteScope == AFS_Class)
2847       return true;
2848 
2849     DeclareGlobalNewDelete();
2850     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2851   }
2852 
2853   FoundDelete.suppressDiagnostics();
2854 
2855   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2856 
2857   // Whether we're looking for a placement operator delete is dictated
2858   // by whether we selected a placement operator new, not by whether
2859   // we had explicit placement arguments.  This matters for things like
2860   //   struct A { void *operator new(size_t, int = 0); ... };
2861   //   A *a = new A()
2862   //
2863   // We don't have any definition for what a "placement allocation function"
2864   // is, but we assume it's any allocation function whose
2865   // parameter-declaration-clause is anything other than (size_t).
2866   //
2867   // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2868   // This affects whether an exception from the constructor of an overaligned
2869   // type uses the sized or non-sized form of aligned operator delete.
2870   bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2871                         OperatorNew->isVariadic();
2872 
2873   if (isPlacementNew) {
2874     // C++ [expr.new]p20:
2875     //   A declaration of a placement deallocation function matches the
2876     //   declaration of a placement allocation function if it has the
2877     //   same number of parameters and, after parameter transformations
2878     //   (8.3.5), all parameter types except the first are
2879     //   identical. [...]
2880     //
2881     // To perform this comparison, we compute the function type that
2882     // the deallocation function should have, and use that type both
2883     // for template argument deduction and for comparison purposes.
2884     QualType ExpectedFunctionType;
2885     {
2886       auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2887 
2888       SmallVector<QualType, 4> ArgTypes;
2889       ArgTypes.push_back(Context.VoidPtrTy);
2890       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2891         ArgTypes.push_back(Proto->getParamType(I));
2892 
2893       FunctionProtoType::ExtProtoInfo EPI;
2894       // FIXME: This is not part of the standard's rule.
2895       EPI.Variadic = Proto->isVariadic();
2896 
2897       ExpectedFunctionType
2898         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2899     }
2900 
2901     for (LookupResult::iterator D = FoundDelete.begin(),
2902                              DEnd = FoundDelete.end();
2903          D != DEnd; ++D) {
2904       FunctionDecl *Fn = nullptr;
2905       if (FunctionTemplateDecl *FnTmpl =
2906               dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2907         // Perform template argument deduction to try to match the
2908         // expected function type.
2909         TemplateDeductionInfo Info(StartLoc);
2910         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2911                                     Info) != TemplateDeductionResult::Success)
2912           continue;
2913       } else
2914         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2915 
2916       if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2917                                                   ExpectedFunctionType,
2918                                                   /*AdjustExcpetionSpec*/true),
2919                               ExpectedFunctionType))
2920         Matches.push_back(std::make_pair(D.getPair(), Fn));
2921     }
2922 
2923     if (getLangOpts().CUDA)
2924       CUDA().EraseUnwantedMatches(getCurFunctionDecl(/*AllowLambda=*/true),
2925                                   Matches);
2926   } else {
2927     // C++1y [expr.new]p22:
2928     //   For a non-placement allocation function, the normal deallocation
2929     //   function lookup is used
2930     //
2931     // Per [expr.delete]p10, this lookup prefers a member operator delete
2932     // without a size_t argument, but prefers a non-member operator delete
2933     // with a size_t where possible (which it always is in this case).
2934     llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2935     UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2936         *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2937         /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2938         &BestDeallocFns);
2939     if (Selected)
2940       Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2941     else {
2942       // If we failed to select an operator, all remaining functions are viable
2943       // but ambiguous.
2944       for (auto Fn : BestDeallocFns)
2945         Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2946     }
2947   }
2948 
2949   // C++ [expr.new]p20:
2950   //   [...] If the lookup finds a single matching deallocation
2951   //   function, that function will be called; otherwise, no
2952   //   deallocation function will be called.
2953   if (Matches.size() == 1) {
2954     OperatorDelete = Matches[0].second;
2955 
2956     // C++1z [expr.new]p23:
2957     //   If the lookup finds a usual deallocation function (3.7.4.2)
2958     //   with a parameter of type std::size_t and that function, considered
2959     //   as a placement deallocation function, would have been
2960     //   selected as a match for the allocation function, the program
2961     //   is ill-formed.
2962     if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2963         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2964       UsualDeallocFnInfo Info(*this,
2965                               DeclAccessPair::make(OperatorDelete, AS_public));
2966       // Core issue, per mail to core reflector, 2016-10-09:
2967       //   If this is a member operator delete, and there is a corresponding
2968       //   non-sized member operator delete, this isn't /really/ a sized
2969       //   deallocation function, it just happens to have a size_t parameter.
2970       bool IsSizedDelete = Info.HasSizeT;
2971       if (IsSizedDelete && !FoundGlobalDelete) {
2972         auto NonSizedDelete =
2973             resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2974                                         /*WantAlign*/Info.HasAlignValT);
2975         if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2976             NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2977           IsSizedDelete = false;
2978       }
2979 
2980       if (IsSizedDelete) {
2981         SourceRange R = PlaceArgs.empty()
2982                             ? SourceRange()
2983                             : SourceRange(PlaceArgs.front()->getBeginLoc(),
2984                                           PlaceArgs.back()->getEndLoc());
2985         Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2986         if (!OperatorDelete->isImplicit())
2987           Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2988               << DeleteName;
2989       }
2990     }
2991 
2992     CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2993                           Matches[0].first);
2994   } else if (!Matches.empty()) {
2995     // We found multiple suitable operators. Per [expr.new]p20, that means we
2996     // call no 'operator delete' function, but we should at least warn the user.
2997     // FIXME: Suppress this warning if the construction cannot throw.
2998     Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2999       << DeleteName << AllocElemType;
3000 
3001     for (auto &Match : Matches)
3002       Diag(Match.second->getLocation(),
3003            diag::note_member_declared_here) << DeleteName;
3004   }
3005 
3006   return false;
3007 }
3008 
3009 void Sema::DeclareGlobalNewDelete() {
3010   if (GlobalNewDeleteDeclared)
3011     return;
3012 
3013   // The implicitly declared new and delete operators
3014   // are not supported in OpenCL.
3015   if (getLangOpts().OpenCLCPlusPlus)
3016     return;
3017 
3018   // C++ [basic.stc.dynamic.general]p2:
3019   //   The library provides default definitions for the global allocation
3020   //   and deallocation functions. Some global allocation and deallocation
3021   //   functions are replaceable ([new.delete]); these are attached to the
3022   //   global module ([module.unit]).
3023   if (getLangOpts().CPlusPlusModules && getCurrentModule())
3024     PushGlobalModuleFragment(SourceLocation());
3025 
3026   // C++ [basic.std.dynamic]p2:
3027   //   [...] The following allocation and deallocation functions (18.4) are
3028   //   implicitly declared in global scope in each translation unit of a
3029   //   program
3030   //
3031   //     C++03:
3032   //     void* operator new(std::size_t) throw(std::bad_alloc);
3033   //     void* operator new[](std::size_t) throw(std::bad_alloc);
3034   //     void  operator delete(void*) throw();
3035   //     void  operator delete[](void*) throw();
3036   //     C++11:
3037   //     void* operator new(std::size_t);
3038   //     void* operator new[](std::size_t);
3039   //     void  operator delete(void*) noexcept;
3040   //     void  operator delete[](void*) noexcept;
3041   //     C++1y:
3042   //     void* operator new(std::size_t);
3043   //     void* operator new[](std::size_t);
3044   //     void  operator delete(void*) noexcept;
3045   //     void  operator delete[](void*) noexcept;
3046   //     void  operator delete(void*, std::size_t) noexcept;
3047   //     void  operator delete[](void*, std::size_t) noexcept;
3048   //
3049   //   These implicit declarations introduce only the function names operator
3050   //   new, operator new[], operator delete, operator delete[].
3051   //
3052   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
3053   // "std" or "bad_alloc" as necessary to form the exception specification.
3054   // However, we do not make these implicit declarations visible to name
3055   // lookup.
3056   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
3057     // The "std::bad_alloc" class has not yet been declared, so build it
3058     // implicitly.
3059     StdBadAlloc = CXXRecordDecl::Create(
3060         Context, TagTypeKind::Class, getOrCreateStdNamespace(),
3061         SourceLocation(), SourceLocation(),
3062         &PP.getIdentifierTable().get("bad_alloc"), nullptr);
3063     getStdBadAlloc()->setImplicit(true);
3064 
3065     // The implicitly declared "std::bad_alloc" should live in global module
3066     // fragment.
3067     if (TheGlobalModuleFragment) {
3068       getStdBadAlloc()->setModuleOwnershipKind(
3069           Decl::ModuleOwnershipKind::ReachableWhenImported);
3070       getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment);
3071     }
3072   }
3073   if (!StdAlignValT && getLangOpts().AlignedAllocation) {
3074     // The "std::align_val_t" enum class has not yet been declared, so build it
3075     // implicitly.
3076     auto *AlignValT = EnumDecl::Create(
3077         Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
3078         &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
3079 
3080     // The implicitly declared "std::align_val_t" should live in global module
3081     // fragment.
3082     if (TheGlobalModuleFragment) {
3083       AlignValT->setModuleOwnershipKind(
3084           Decl::ModuleOwnershipKind::ReachableWhenImported);
3085       AlignValT->setLocalOwningModule(TheGlobalModuleFragment);
3086     }
3087 
3088     AlignValT->setIntegerType(Context.getSizeType());
3089     AlignValT->setPromotionType(Context.getSizeType());
3090     AlignValT->setImplicit(true);
3091 
3092     StdAlignValT = AlignValT;
3093   }
3094 
3095   GlobalNewDeleteDeclared = true;
3096 
3097   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
3098   QualType SizeT = Context.getSizeType();
3099 
3100   auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
3101                                               QualType Return, QualType Param) {
3102     llvm::SmallVector<QualType, 3> Params;
3103     Params.push_back(Param);
3104 
3105     // Create up to four variants of the function (sized/aligned).
3106     bool HasSizedVariant = getLangOpts().SizedDeallocation &&
3107                            (Kind == OO_Delete || Kind == OO_Array_Delete);
3108     bool HasAlignedVariant = getLangOpts().AlignedAllocation;
3109 
3110     int NumSizeVariants = (HasSizedVariant ? 2 : 1);
3111     int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
3112     for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
3113       if (Sized)
3114         Params.push_back(SizeT);
3115 
3116       for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
3117         if (Aligned)
3118           Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
3119 
3120         DeclareGlobalAllocationFunction(
3121             Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
3122 
3123         if (Aligned)
3124           Params.pop_back();
3125       }
3126     }
3127   };
3128 
3129   DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3130   DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3131   DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3132   DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3133 
3134   if (getLangOpts().CPlusPlusModules && getCurrentModule())
3135     PopGlobalModuleFragment();
3136 }
3137 
3138 /// DeclareGlobalAllocationFunction - Declares a single implicit global
3139 /// allocation function if it doesn't already exist.
3140 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3141                                            QualType Return,
3142                                            ArrayRef<QualType> Params) {
3143   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3144 
3145   // Check if this function is already declared.
3146   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3147   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3148        Alloc != AllocEnd; ++Alloc) {
3149     // Only look at non-template functions, as it is the predefined,
3150     // non-templated allocation function we are trying to declare here.
3151     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3152       if (Func->getNumParams() == Params.size()) {
3153         llvm::SmallVector<QualType, 3> FuncParams;
3154         for (auto *P : Func->parameters())
3155           FuncParams.push_back(
3156               Context.getCanonicalType(P->getType().getUnqualifiedType()));
3157         if (llvm::ArrayRef(FuncParams) == Params) {
3158           // Make the function visible to name lookup, even if we found it in
3159           // an unimported module. It either is an implicitly-declared global
3160           // allocation function, or is suppressing that function.
3161           Func->setVisibleDespiteOwningModule();
3162           return;
3163         }
3164       }
3165     }
3166   }
3167 
3168   FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3169       /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3170 
3171   QualType BadAllocType;
3172   bool HasBadAllocExceptionSpec
3173     = (Name.getCXXOverloadedOperator() == OO_New ||
3174        Name.getCXXOverloadedOperator() == OO_Array_New);
3175   if (HasBadAllocExceptionSpec) {
3176     if (!getLangOpts().CPlusPlus11) {
3177       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3178       assert(StdBadAlloc && "Must have std::bad_alloc declared");
3179       EPI.ExceptionSpec.Type = EST_Dynamic;
3180       EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType);
3181     }
3182     if (getLangOpts().NewInfallible) {
3183       EPI.ExceptionSpec.Type = EST_DynamicNone;
3184     }
3185   } else {
3186     EPI.ExceptionSpec =
3187         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3188   }
3189 
3190   auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3191     QualType FnType = Context.getFunctionType(Return, Params, EPI);
3192     FunctionDecl *Alloc = FunctionDecl::Create(
3193         Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3194         /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3195         true);
3196     Alloc->setImplicit();
3197     // Global allocation functions should always be visible.
3198     Alloc->setVisibleDespiteOwningModule();
3199 
3200     if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible &&
3201         !getLangOpts().CheckNew)
3202       Alloc->addAttr(
3203           ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3204 
3205     // C++ [basic.stc.dynamic.general]p2:
3206     //   The library provides default definitions for the global allocation
3207     //   and deallocation functions. Some global allocation and deallocation
3208     //   functions are replaceable ([new.delete]); these are attached to the
3209     //   global module ([module.unit]).
3210     //
3211     // In the language wording, these functions are attched to the global
3212     // module all the time. But in the implementation, the global module
3213     // is only meaningful when we're in a module unit. So here we attach
3214     // these allocation functions to global module conditionally.
3215     if (TheGlobalModuleFragment) {
3216       Alloc->setModuleOwnershipKind(
3217           Decl::ModuleOwnershipKind::ReachableWhenImported);
3218       Alloc->setLocalOwningModule(TheGlobalModuleFragment);
3219     }
3220 
3221     if (LangOpts.hasGlobalAllocationFunctionVisibility())
3222       Alloc->addAttr(VisibilityAttr::CreateImplicit(
3223           Context, LangOpts.hasHiddenGlobalAllocationFunctionVisibility()
3224                        ? VisibilityAttr::Hidden
3225                    : LangOpts.hasProtectedGlobalAllocationFunctionVisibility()
3226                        ? VisibilityAttr::Protected
3227                        : VisibilityAttr::Default));
3228 
3229     llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3230     for (QualType T : Params) {
3231       ParamDecls.push_back(ParmVarDecl::Create(
3232           Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3233           /*TInfo=*/nullptr, SC_None, nullptr));
3234       ParamDecls.back()->setImplicit();
3235     }
3236     Alloc->setParams(ParamDecls);
3237     if (ExtraAttr)
3238       Alloc->addAttr(ExtraAttr);
3239     AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3240     Context.getTranslationUnitDecl()->addDecl(Alloc);
3241     IdResolver.tryAddTopLevelDecl(Alloc, Name);
3242   };
3243 
3244   if (!LangOpts.CUDA)
3245     CreateAllocationFunctionDecl(nullptr);
3246   else {
3247     // Host and device get their own declaration so each can be
3248     // defined or re-declared independently.
3249     CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3250     CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3251   }
3252 }
3253 
3254 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3255                                                   bool CanProvideSize,
3256                                                   bool Overaligned,
3257                                                   DeclarationName Name) {
3258   DeclareGlobalNewDelete();
3259 
3260   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3261   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3262 
3263   // FIXME: It's possible for this to result in ambiguity, through a
3264   // user-declared variadic operator delete or the enable_if attribute. We
3265   // should probably not consider those cases to be usual deallocation
3266   // functions. But for now we just make an arbitrary choice in that case.
3267   auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3268                                             Overaligned);
3269   assert(Result.FD && "operator delete missing from global scope?");
3270   return Result.FD;
3271 }
3272 
3273 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3274                                                           CXXRecordDecl *RD) {
3275   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3276 
3277   FunctionDecl *OperatorDelete = nullptr;
3278   if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3279     return nullptr;
3280   if (OperatorDelete)
3281     return OperatorDelete;
3282 
3283   // If there's no class-specific operator delete, look up the global
3284   // non-array delete.
3285   return FindUsualDeallocationFunction(
3286       Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3287       Name);
3288 }
3289 
3290 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3291                                     DeclarationName Name,
3292                                     FunctionDecl *&Operator, bool Diagnose,
3293                                     bool WantSize, bool WantAligned) {
3294   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3295   // Try to find operator delete/operator delete[] in class scope.
3296   LookupQualifiedName(Found, RD);
3297 
3298   if (Found.isAmbiguous())
3299     return true;
3300 
3301   Found.suppressDiagnostics();
3302 
3303   bool Overaligned =
3304       WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3305 
3306   // C++17 [expr.delete]p10:
3307   //   If the deallocation functions have class scope, the one without a
3308   //   parameter of type std::size_t is selected.
3309   llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3310   resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize,
3311                               /*WantAlign*/ Overaligned, &Matches);
3312 
3313   // If we could find an overload, use it.
3314   if (Matches.size() == 1) {
3315     Operator = cast<CXXMethodDecl>(Matches[0].FD);
3316 
3317     // FIXME: DiagnoseUseOfDecl?
3318     if (Operator->isDeleted()) {
3319       if (Diagnose) {
3320         StringLiteral *Msg = Operator->getDeletedMessage();
3321         Diag(StartLoc, diag::err_deleted_function_use)
3322             << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef());
3323         NoteDeletedFunction(Operator);
3324       }
3325       return true;
3326     }
3327 
3328     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3329                               Matches[0].Found, Diagnose) == AR_inaccessible)
3330       return true;
3331 
3332     return false;
3333   }
3334 
3335   // We found multiple suitable operators; complain about the ambiguity.
3336   // FIXME: The standard doesn't say to do this; it appears that the intent
3337   // is that this should never happen.
3338   if (!Matches.empty()) {
3339     if (Diagnose) {
3340       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3341         << Name << RD;
3342       for (auto &Match : Matches)
3343         Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3344     }
3345     return true;
3346   }
3347 
3348   // We did find operator delete/operator delete[] declarations, but
3349   // none of them were suitable.
3350   if (!Found.empty()) {
3351     if (Diagnose) {
3352       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3353         << Name << RD;
3354 
3355       for (NamedDecl *D : Found)
3356         Diag(D->getUnderlyingDecl()->getLocation(),
3357              diag::note_member_declared_here) << Name;
3358     }
3359     return true;
3360   }
3361 
3362   Operator = nullptr;
3363   return false;
3364 }
3365 
3366 namespace {
3367 /// Checks whether delete-expression, and new-expression used for
3368 ///  initializing deletee have the same array form.
3369 class MismatchingNewDeleteDetector {
3370 public:
3371   enum MismatchResult {
3372     /// Indicates that there is no mismatch or a mismatch cannot be proven.
3373     NoMismatch,
3374     /// Indicates that variable is initialized with mismatching form of \a new.
3375     VarInitMismatches,
3376     /// Indicates that member is initialized with mismatching form of \a new.
3377     MemberInitMismatches,
3378     /// Indicates that 1 or more constructors' definitions could not been
3379     /// analyzed, and they will be checked again at the end of translation unit.
3380     AnalyzeLater
3381   };
3382 
3383   /// \param EndOfTU True, if this is the final analysis at the end of
3384   /// translation unit. False, if this is the initial analysis at the point
3385   /// delete-expression was encountered.
3386   explicit MismatchingNewDeleteDetector(bool EndOfTU)
3387       : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3388         HasUndefinedConstructors(false) {}
3389 
3390   /// Checks whether pointee of a delete-expression is initialized with
3391   /// matching form of new-expression.
3392   ///
3393   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3394   /// point where delete-expression is encountered, then a warning will be
3395   /// issued immediately. If return value is \c AnalyzeLater at the point where
3396   /// delete-expression is seen, then member will be analyzed at the end of
3397   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3398   /// couldn't be analyzed. If at least one constructor initializes the member
3399   /// with matching type of new, the return value is \c NoMismatch.
3400   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3401   /// Analyzes a class member.
3402   /// \param Field Class member to analyze.
3403   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3404   /// for deleting the \p Field.
3405   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3406   FieldDecl *Field;
3407   /// List of mismatching new-expressions used for initialization of the pointee
3408   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3409   /// Indicates whether delete-expression was in array form.
3410   bool IsArrayForm;
3411 
3412 private:
3413   const bool EndOfTU;
3414   /// Indicates that there is at least one constructor without body.
3415   bool HasUndefinedConstructors;
3416   /// Returns \c CXXNewExpr from given initialization expression.
3417   /// \param E Expression used for initializing pointee in delete-expression.
3418   /// E can be a single-element \c InitListExpr consisting of new-expression.
3419   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3420   /// Returns whether member is initialized with mismatching form of
3421   /// \c new either by the member initializer or in-class initialization.
3422   ///
3423   /// If bodies of all constructors are not visible at the end of translation
3424   /// unit or at least one constructor initializes member with the matching
3425   /// form of \c new, mismatch cannot be proven, and this function will return
3426   /// \c NoMismatch.
3427   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3428   /// Returns whether variable is initialized with mismatching form of
3429   /// \c new.
3430   ///
3431   /// If variable is initialized with matching form of \c new or variable is not
3432   /// initialized with a \c new expression, this function will return true.
3433   /// If variable is initialized with mismatching form of \c new, returns false.
3434   /// \param D Variable to analyze.
3435   bool hasMatchingVarInit(const DeclRefExpr *D);
3436   /// Checks whether the constructor initializes pointee with mismatching
3437   /// form of \c new.
3438   ///
3439   /// Returns true, if member is initialized with matching form of \c new in
3440   /// member initializer list. Returns false, if member is initialized with the
3441   /// matching form of \c new in this constructor's initializer or given
3442   /// constructor isn't defined at the point where delete-expression is seen, or
3443   /// member isn't initialized by the constructor.
3444   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3445   /// Checks whether member is initialized with matching form of
3446   /// \c new in member initializer list.
3447   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3448   /// Checks whether member is initialized with mismatching form of \c new by
3449   /// in-class initializer.
3450   MismatchResult analyzeInClassInitializer();
3451 };
3452 }
3453 
3454 MismatchingNewDeleteDetector::MismatchResult
3455 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3456   NewExprs.clear();
3457   assert(DE && "Expected delete-expression");
3458   IsArrayForm = DE->isArrayForm();
3459   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3460   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3461     return analyzeMemberExpr(ME);
3462   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3463     if (!hasMatchingVarInit(D))
3464       return VarInitMismatches;
3465   }
3466   return NoMismatch;
3467 }
3468 
3469 const CXXNewExpr *
3470 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3471   assert(E != nullptr && "Expected a valid initializer expression");
3472   E = E->IgnoreParenImpCasts();
3473   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3474     if (ILE->getNumInits() == 1)
3475       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3476   }
3477 
3478   return dyn_cast_or_null<const CXXNewExpr>(E);
3479 }
3480 
3481 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3482     const CXXCtorInitializer *CI) {
3483   const CXXNewExpr *NE = nullptr;
3484   if (Field == CI->getMember() &&
3485       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3486     if (NE->isArray() == IsArrayForm)
3487       return true;
3488     else
3489       NewExprs.push_back(NE);
3490   }
3491   return false;
3492 }
3493 
3494 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3495     const CXXConstructorDecl *CD) {
3496   if (CD->isImplicit())
3497     return false;
3498   const FunctionDecl *Definition = CD;
3499   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3500     HasUndefinedConstructors = true;
3501     return EndOfTU;
3502   }
3503   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3504     if (hasMatchingNewInCtorInit(CI))
3505       return true;
3506   }
3507   return false;
3508 }
3509 
3510 MismatchingNewDeleteDetector::MismatchResult
3511 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3512   assert(Field != nullptr && "This should be called only for members");
3513   const Expr *InitExpr = Field->getInClassInitializer();
3514   if (!InitExpr)
3515     return EndOfTU ? NoMismatch : AnalyzeLater;
3516   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3517     if (NE->isArray() != IsArrayForm) {
3518       NewExprs.push_back(NE);
3519       return MemberInitMismatches;
3520     }
3521   }
3522   return NoMismatch;
3523 }
3524 
3525 MismatchingNewDeleteDetector::MismatchResult
3526 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3527                                            bool DeleteWasArrayForm) {
3528   assert(Field != nullptr && "Analysis requires a valid class member.");
3529   this->Field = Field;
3530   IsArrayForm = DeleteWasArrayForm;
3531   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3532   for (const auto *CD : RD->ctors()) {
3533     if (hasMatchingNewInCtor(CD))
3534       return NoMismatch;
3535   }
3536   if (HasUndefinedConstructors)
3537     return EndOfTU ? NoMismatch : AnalyzeLater;
3538   if (!NewExprs.empty())
3539     return MemberInitMismatches;
3540   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3541                                         : NoMismatch;
3542 }
3543 
3544 MismatchingNewDeleteDetector::MismatchResult
3545 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3546   assert(ME != nullptr && "Expected a member expression");
3547   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3548     return analyzeField(F, IsArrayForm);
3549   return NoMismatch;
3550 }
3551 
3552 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3553   const CXXNewExpr *NE = nullptr;
3554   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3555     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3556         NE->isArray() != IsArrayForm) {
3557       NewExprs.push_back(NE);
3558     }
3559   }
3560   return NewExprs.empty();
3561 }
3562 
3563 static void
3564 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3565                             const MismatchingNewDeleteDetector &Detector) {
3566   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3567   FixItHint H;
3568   if (!Detector.IsArrayForm)
3569     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3570   else {
3571     SourceLocation RSquare = Lexer::findLocationAfterToken(
3572         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3573         SemaRef.getLangOpts(), true);
3574     if (RSquare.isValid())
3575       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3576   }
3577   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3578       << Detector.IsArrayForm << H;
3579 
3580   for (const auto *NE : Detector.NewExprs)
3581     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3582         << Detector.IsArrayForm;
3583 }
3584 
3585 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3586   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3587     return;
3588   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3589   switch (Detector.analyzeDeleteExpr(DE)) {
3590   case MismatchingNewDeleteDetector::VarInitMismatches:
3591   case MismatchingNewDeleteDetector::MemberInitMismatches: {
3592     DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3593     break;
3594   }
3595   case MismatchingNewDeleteDetector::AnalyzeLater: {
3596     DeleteExprs[Detector.Field].push_back(
3597         std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3598     break;
3599   }
3600   case MismatchingNewDeleteDetector::NoMismatch:
3601     break;
3602   }
3603 }
3604 
3605 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3606                                      bool DeleteWasArrayForm) {
3607   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3608   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3609   case MismatchingNewDeleteDetector::VarInitMismatches:
3610     llvm_unreachable("This analysis should have been done for class members.");
3611   case MismatchingNewDeleteDetector::AnalyzeLater:
3612     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3613                      "translation unit.");
3614   case MismatchingNewDeleteDetector::MemberInitMismatches:
3615     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3616     break;
3617   case MismatchingNewDeleteDetector::NoMismatch:
3618     break;
3619   }
3620 }
3621 
3622 ExprResult
3623 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3624                      bool ArrayForm, Expr *ExE) {
3625   // C++ [expr.delete]p1:
3626   //   The operand shall have a pointer type, or a class type having a single
3627   //   non-explicit conversion function to a pointer type. The result has type
3628   //   void.
3629   //
3630   // DR599 amends "pointer type" to "pointer to object type" in both cases.
3631 
3632   ExprResult Ex = ExE;
3633   FunctionDecl *OperatorDelete = nullptr;
3634   bool ArrayFormAsWritten = ArrayForm;
3635   bool UsualArrayDeleteWantsSize = false;
3636 
3637   if (!Ex.get()->isTypeDependent()) {
3638     // Perform lvalue-to-rvalue cast, if needed.
3639     Ex = DefaultLvalueConversion(Ex.get());
3640     if (Ex.isInvalid())
3641       return ExprError();
3642 
3643     QualType Type = Ex.get()->getType();
3644 
3645     class DeleteConverter : public ContextualImplicitConverter {
3646     public:
3647       DeleteConverter() : ContextualImplicitConverter(false, true) {}
3648 
3649       bool match(QualType ConvType) override {
3650         // FIXME: If we have an operator T* and an operator void*, we must pick
3651         // the operator T*.
3652         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3653           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3654             return true;
3655         return false;
3656       }
3657 
3658       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3659                                             QualType T) override {
3660         return S.Diag(Loc, diag::err_delete_operand) << T;
3661       }
3662 
3663       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3664                                                QualType T) override {
3665         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3666       }
3667 
3668       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3669                                                  QualType T,
3670                                                  QualType ConvTy) override {
3671         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3672       }
3673 
3674       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3675                                              QualType ConvTy) override {
3676         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3677           << ConvTy;
3678       }
3679 
3680       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3681                                               QualType T) override {
3682         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3683       }
3684 
3685       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3686                                           QualType ConvTy) override {
3687         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3688           << ConvTy;
3689       }
3690 
3691       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3692                                                QualType T,
3693                                                QualType ConvTy) override {
3694         llvm_unreachable("conversion functions are permitted");
3695       }
3696     } Converter;
3697 
3698     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3699     if (Ex.isInvalid())
3700       return ExprError();
3701     Type = Ex.get()->getType();
3702     if (!Converter.match(Type))
3703       // FIXME: PerformContextualImplicitConversion should return ExprError
3704       //        itself in this case.
3705       return ExprError();
3706 
3707     QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3708     QualType PointeeElem = Context.getBaseElementType(Pointee);
3709 
3710     if (Pointee.getAddressSpace() != LangAS::Default &&
3711         !getLangOpts().OpenCLCPlusPlus)
3712       return Diag(Ex.get()->getBeginLoc(),
3713                   diag::err_address_space_qualified_delete)
3714              << Pointee.getUnqualifiedType()
3715              << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3716 
3717     CXXRecordDecl *PointeeRD = nullptr;
3718     if (Pointee->isVoidType() && !isSFINAEContext()) {
3719       // The C++ standard bans deleting a pointer to a non-object type, which
3720       // effectively bans deletion of "void*". However, most compilers support
3721       // this, so we treat it as a warning unless we're in a SFINAE context.
3722       // But we still prohibit this since C++26.
3723       Diag(StartLoc, LangOpts.CPlusPlus26 ? diag::err_delete_incomplete
3724                                           : diag::ext_delete_void_ptr_operand)
3725           << (LangOpts.CPlusPlus26 ? Pointee : Type)
3726           << Ex.get()->getSourceRange();
3727     } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3728                Pointee->isSizelessType()) {
3729       return ExprError(Diag(StartLoc, diag::err_delete_operand)
3730         << Type << Ex.get()->getSourceRange());
3731     } else if (!Pointee->isDependentType()) {
3732       // FIXME: This can result in errors if the definition was imported from a
3733       // module but is hidden.
3734       if (!RequireCompleteType(StartLoc, Pointee,
3735                                LangOpts.CPlusPlus26
3736                                    ? diag::err_delete_incomplete
3737                                    : diag::warn_delete_incomplete,
3738                                Ex.get())) {
3739         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3740           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3741       }
3742     }
3743 
3744     if (Pointee->isArrayType() && !ArrayForm) {
3745       Diag(StartLoc, diag::warn_delete_array_type)
3746           << Type << Ex.get()->getSourceRange()
3747           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3748       ArrayForm = true;
3749     }
3750 
3751     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3752                                       ArrayForm ? OO_Array_Delete : OO_Delete);
3753 
3754     if (PointeeRD) {
3755       if (!UseGlobal &&
3756           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3757                                    OperatorDelete))
3758         return ExprError();
3759 
3760       // If we're allocating an array of records, check whether the
3761       // usual operator delete[] has a size_t parameter.
3762       if (ArrayForm) {
3763         // If the user specifically asked to use the global allocator,
3764         // we'll need to do the lookup into the class.
3765         if (UseGlobal)
3766           UsualArrayDeleteWantsSize =
3767             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3768 
3769         // Otherwise, the usual operator delete[] should be the
3770         // function we just found.
3771         else if (isa_and_nonnull<CXXMethodDecl>(OperatorDelete))
3772           UsualArrayDeleteWantsSize =
3773             UsualDeallocFnInfo(*this,
3774                                DeclAccessPair::make(OperatorDelete, AS_public))
3775               .HasSizeT;
3776       }
3777 
3778       if (!PointeeRD->hasIrrelevantDestructor())
3779         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3780           MarkFunctionReferenced(StartLoc,
3781                                     const_cast<CXXDestructorDecl*>(Dtor));
3782           if (DiagnoseUseOfDecl(Dtor, StartLoc))
3783             return ExprError();
3784         }
3785 
3786       CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3787                            /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3788                            /*WarnOnNonAbstractTypes=*/!ArrayForm,
3789                            SourceLocation());
3790     }
3791 
3792     if (!OperatorDelete) {
3793       if (getLangOpts().OpenCLCPlusPlus) {
3794         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3795         return ExprError();
3796       }
3797 
3798       bool IsComplete = isCompleteType(StartLoc, Pointee);
3799       bool CanProvideSize =
3800           IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3801                          Pointee.isDestructedType());
3802       bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3803 
3804       // Look for a global declaration.
3805       OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3806                                                      Overaligned, DeleteName);
3807     }
3808 
3809     MarkFunctionReferenced(StartLoc, OperatorDelete);
3810 
3811     // Check access and ambiguity of destructor if we're going to call it.
3812     // Note that this is required even for a virtual delete.
3813     bool IsVirtualDelete = false;
3814     if (PointeeRD) {
3815       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3816         CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3817                               PDiag(diag::err_access_dtor) << PointeeElem);
3818         IsVirtualDelete = Dtor->isVirtual();
3819       }
3820     }
3821 
3822     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3823 
3824     // Convert the operand to the type of the first parameter of operator
3825     // delete. This is only necessary if we selected a destroying operator
3826     // delete that we are going to call (non-virtually); converting to void*
3827     // is trivial and left to AST consumers to handle.
3828     QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3829     if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3830       Qualifiers Qs = Pointee.getQualifiers();
3831       if (Qs.hasCVRQualifiers()) {
3832         // Qualifiers are irrelevant to this conversion; we're only looking
3833         // for access and ambiguity.
3834         Qs.removeCVRQualifiers();
3835         QualType Unqual = Context.getPointerType(
3836             Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3837         Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3838       }
3839       Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3840       if (Ex.isInvalid())
3841         return ExprError();
3842     }
3843   }
3844 
3845   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3846       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3847       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3848   AnalyzeDeleteExprMismatch(Result);
3849   return Result;
3850 }
3851 
3852 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3853                                             bool IsDelete,
3854                                             FunctionDecl *&Operator) {
3855 
3856   DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3857       IsDelete ? OO_Delete : OO_New);
3858 
3859   LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3860   S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3861   assert(!R.empty() && "implicitly declared allocation functions not found");
3862   assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3863 
3864   // We do our own custom access checks below.
3865   R.suppressDiagnostics();
3866 
3867   SmallVector<Expr *, 8> Args(TheCall->arguments());
3868   OverloadCandidateSet Candidates(R.getNameLoc(),
3869                                   OverloadCandidateSet::CSK_Normal);
3870   for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3871        FnOvl != FnOvlEnd; ++FnOvl) {
3872     // Even member operator new/delete are implicitly treated as
3873     // static, so don't use AddMemberCandidate.
3874     NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3875 
3876     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3877       S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3878                                      /*ExplicitTemplateArgs=*/nullptr, Args,
3879                                      Candidates,
3880                                      /*SuppressUserConversions=*/false);
3881       continue;
3882     }
3883 
3884     FunctionDecl *Fn = cast<FunctionDecl>(D);
3885     S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3886                            /*SuppressUserConversions=*/false);
3887   }
3888 
3889   SourceRange Range = TheCall->getSourceRange();
3890 
3891   // Do the resolution.
3892   OverloadCandidateSet::iterator Best;
3893   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3894   case OR_Success: {
3895     // Got one!
3896     FunctionDecl *FnDecl = Best->Function;
3897     assert(R.getNamingClass() == nullptr &&
3898            "class members should not be considered");
3899 
3900     if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3901       S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3902           << (IsDelete ? 1 : 0) << Range;
3903       S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3904           << R.getLookupName() << FnDecl->getSourceRange();
3905       return true;
3906     }
3907 
3908     Operator = FnDecl;
3909     return false;
3910   }
3911 
3912   case OR_No_Viable_Function:
3913     Candidates.NoteCandidates(
3914         PartialDiagnosticAt(R.getNameLoc(),
3915                             S.PDiag(diag::err_ovl_no_viable_function_in_call)
3916                                 << R.getLookupName() << Range),
3917         S, OCD_AllCandidates, Args);
3918     return true;
3919 
3920   case OR_Ambiguous:
3921     Candidates.NoteCandidates(
3922         PartialDiagnosticAt(R.getNameLoc(),
3923                             S.PDiag(diag::err_ovl_ambiguous_call)
3924                                 << R.getLookupName() << Range),
3925         S, OCD_AmbiguousCandidates, Args);
3926     return true;
3927 
3928   case OR_Deleted:
3929     S.DiagnoseUseOfDeletedFunction(R.getNameLoc(), Range, R.getLookupName(),
3930                                    Candidates, Best->Function, Args);
3931     return true;
3932   }
3933   llvm_unreachable("Unreachable, bad result from BestViableFunction");
3934 }
3935 
3936 ExprResult Sema::BuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3937                                                     bool IsDelete) {
3938   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3939   if (!getLangOpts().CPlusPlus) {
3940     Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3941         << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3942         << "C++";
3943     return ExprError();
3944   }
3945   // CodeGen assumes it can find the global new and delete to call,
3946   // so ensure that they are declared.
3947   DeclareGlobalNewDelete();
3948 
3949   FunctionDecl *OperatorNewOrDelete = nullptr;
3950   if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3951                                       OperatorNewOrDelete))
3952     return ExprError();
3953   assert(OperatorNewOrDelete && "should be found");
3954 
3955   DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3956   MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3957 
3958   TheCall->setType(OperatorNewOrDelete->getReturnType());
3959   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3960     QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3961     InitializedEntity Entity =
3962         InitializedEntity::InitializeParameter(Context, ParamTy, false);
3963     ExprResult Arg = PerformCopyInitialization(
3964         Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3965     if (Arg.isInvalid())
3966       return ExprError();
3967     TheCall->setArg(i, Arg.get());
3968   }
3969   auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3970   assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3971          "Callee expected to be implicit cast to a builtin function pointer");
3972   Callee->setType(OperatorNewOrDelete->getType());
3973 
3974   return TheCallResult;
3975 }
3976 
3977 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3978                                 bool IsDelete, bool CallCanBeVirtual,
3979                                 bool WarnOnNonAbstractTypes,
3980                                 SourceLocation DtorLoc) {
3981   if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3982     return;
3983 
3984   // C++ [expr.delete]p3:
3985   //   In the first alternative (delete object), if the static type of the
3986   //   object to be deleted is different from its dynamic type, the static
3987   //   type shall be a base class of the dynamic type of the object to be
3988   //   deleted and the static type shall have a virtual destructor or the
3989   //   behavior is undefined.
3990   //
3991   const CXXRecordDecl *PointeeRD = dtor->getParent();
3992   // Note: a final class cannot be derived from, no issue there
3993   if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3994     return;
3995 
3996   // If the superclass is in a system header, there's nothing that can be done.
3997   // The `delete` (where we emit the warning) can be in a system header,
3998   // what matters for this warning is where the deleted type is defined.
3999   if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
4000     return;
4001 
4002   QualType ClassType = dtor->getFunctionObjectParameterType();
4003   if (PointeeRD->isAbstract()) {
4004     // If the class is abstract, we warn by default, because we're
4005     // sure the code has undefined behavior.
4006     Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
4007                                                            << ClassType;
4008   } else if (WarnOnNonAbstractTypes) {
4009     // Otherwise, if this is not an array delete, it's a bit suspect,
4010     // but not necessarily wrong.
4011     Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
4012                                                   << ClassType;
4013   }
4014   if (!IsDelete) {
4015     std::string TypeStr;
4016     ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
4017     Diag(DtorLoc, diag::note_delete_non_virtual)
4018         << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
4019   }
4020 }
4021 
4022 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
4023                                                    SourceLocation StmtLoc,
4024                                                    ConditionKind CK) {
4025   ExprResult E =
4026       CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
4027   if (E.isInvalid())
4028     return ConditionError();
4029   return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
4030                          CK == ConditionKind::ConstexprIf);
4031 }
4032 
4033 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
4034                                         SourceLocation StmtLoc,
4035                                         ConditionKind CK) {
4036   if (ConditionVar->isInvalidDecl())
4037     return ExprError();
4038 
4039   QualType T = ConditionVar->getType();
4040 
4041   // C++ [stmt.select]p2:
4042   //   The declarator shall not specify a function or an array.
4043   if (T->isFunctionType())
4044     return ExprError(Diag(ConditionVar->getLocation(),
4045                           diag::err_invalid_use_of_function_type)
4046                        << ConditionVar->getSourceRange());
4047   else if (T->isArrayType())
4048     return ExprError(Diag(ConditionVar->getLocation(),
4049                           diag::err_invalid_use_of_array_type)
4050                      << ConditionVar->getSourceRange());
4051 
4052   ExprResult Condition = BuildDeclRefExpr(
4053       ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
4054       ConditionVar->getLocation());
4055 
4056   switch (CK) {
4057   case ConditionKind::Boolean:
4058     return CheckBooleanCondition(StmtLoc, Condition.get());
4059 
4060   case ConditionKind::ConstexprIf:
4061     return CheckBooleanCondition(StmtLoc, Condition.get(), true);
4062 
4063   case ConditionKind::Switch:
4064     return CheckSwitchCondition(StmtLoc, Condition.get());
4065   }
4066 
4067   llvm_unreachable("unexpected condition kind");
4068 }
4069 
4070 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
4071   // C++11 6.4p4:
4072   // The value of a condition that is an initialized declaration in a statement
4073   // other than a switch statement is the value of the declared variable
4074   // implicitly converted to type bool. If that conversion is ill-formed, the
4075   // program is ill-formed.
4076   // The value of a condition that is an expression is the value of the
4077   // expression, implicitly converted to bool.
4078   //
4079   // C++23 8.5.2p2
4080   // If the if statement is of the form if constexpr, the value of the condition
4081   // is contextually converted to bool and the converted expression shall be
4082   // a constant expression.
4083   //
4084 
4085   ExprResult E = PerformContextuallyConvertToBool(CondExpr);
4086   if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
4087     return E;
4088 
4089   // FIXME: Return this value to the caller so they don't need to recompute it.
4090   llvm::APSInt Cond;
4091   E = VerifyIntegerConstantExpression(
4092       E.get(), &Cond,
4093       diag::err_constexpr_if_condition_expression_is_not_constant);
4094   return E;
4095 }
4096 
4097 bool
4098 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
4099   // Look inside the implicit cast, if it exists.
4100   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
4101     From = Cast->getSubExpr();
4102 
4103   // A string literal (2.13.4) that is not a wide string literal can
4104   // be converted to an rvalue of type "pointer to char"; a wide
4105   // string literal can be converted to an rvalue of type "pointer
4106   // to wchar_t" (C++ 4.2p2).
4107   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
4108     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
4109       if (const BuiltinType *ToPointeeType
4110           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
4111         // This conversion is considered only when there is an
4112         // explicit appropriate pointer target type (C++ 4.2p2).
4113         if (!ToPtrType->getPointeeType().hasQualifiers()) {
4114           switch (StrLit->getKind()) {
4115           case StringLiteralKind::UTF8:
4116           case StringLiteralKind::UTF16:
4117           case StringLiteralKind::UTF32:
4118             // We don't allow UTF literals to be implicitly converted
4119             break;
4120           case StringLiteralKind::Ordinary:
4121             return (ToPointeeType->getKind() == BuiltinType::Char_U ||
4122                     ToPointeeType->getKind() == BuiltinType::Char_S);
4123           case StringLiteralKind::Wide:
4124             return Context.typesAreCompatible(Context.getWideCharType(),
4125                                               QualType(ToPointeeType, 0));
4126           case StringLiteralKind::Unevaluated:
4127             assert(false && "Unevaluated string literal in expression");
4128             break;
4129           }
4130         }
4131       }
4132 
4133   return false;
4134 }
4135 
4136 static ExprResult BuildCXXCastArgument(Sema &S,
4137                                        SourceLocation CastLoc,
4138                                        QualType Ty,
4139                                        CastKind Kind,
4140                                        CXXMethodDecl *Method,
4141                                        DeclAccessPair FoundDecl,
4142                                        bool HadMultipleCandidates,
4143                                        Expr *From) {
4144   switch (Kind) {
4145   default: llvm_unreachable("Unhandled cast kind!");
4146   case CK_ConstructorConversion: {
4147     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
4148     SmallVector<Expr*, 8> ConstructorArgs;
4149 
4150     if (S.RequireNonAbstractType(CastLoc, Ty,
4151                                  diag::err_allocation_of_abstract_type))
4152       return ExprError();
4153 
4154     if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4155                                   ConstructorArgs))
4156       return ExprError();
4157 
4158     S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4159                              InitializedEntity::InitializeTemporary(Ty));
4160     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4161       return ExprError();
4162 
4163     ExprResult Result = S.BuildCXXConstructExpr(
4164         CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4165         ConstructorArgs, HadMultipleCandidates,
4166         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4167         CXXConstructionKind::Complete, SourceRange());
4168     if (Result.isInvalid())
4169       return ExprError();
4170 
4171     return S.MaybeBindToTemporary(Result.getAs<Expr>());
4172   }
4173 
4174   case CK_UserDefinedConversion: {
4175     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
4176 
4177     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4178     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4179       return ExprError();
4180 
4181     // Create an implicit call expr that calls it.
4182     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4183     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4184                                                  HadMultipleCandidates);
4185     if (Result.isInvalid())
4186       return ExprError();
4187     // Record usage of conversion in an implicit cast.
4188     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4189                                       CK_UserDefinedConversion, Result.get(),
4190                                       nullptr, Result.get()->getValueKind(),
4191                                       S.CurFPFeatureOverrides());
4192 
4193     return S.MaybeBindToTemporary(Result.get());
4194   }
4195   }
4196 }
4197 
4198 ExprResult
4199 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4200                                 const ImplicitConversionSequence &ICS,
4201                                 AssignmentAction Action,
4202                                 CheckedConversionKind CCK) {
4203   // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4204   if (CCK == CheckedConversionKind::ForBuiltinOverloadedOp &&
4205       !From->getType()->isRecordType())
4206     return From;
4207 
4208   switch (ICS.getKind()) {
4209   case ImplicitConversionSequence::StandardConversion: {
4210     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4211                                                Action, CCK);
4212     if (Res.isInvalid())
4213       return ExprError();
4214     From = Res.get();
4215     break;
4216   }
4217 
4218   case ImplicitConversionSequence::UserDefinedConversion: {
4219 
4220       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4221       CastKind CastKind;
4222       QualType BeforeToType;
4223       assert(FD && "no conversion function for user-defined conversion seq");
4224       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4225         CastKind = CK_UserDefinedConversion;
4226 
4227         // If the user-defined conversion is specified by a conversion function,
4228         // the initial standard conversion sequence converts the source type to
4229         // the implicit object parameter of the conversion function.
4230         BeforeToType = Context.getTagDeclType(Conv->getParent());
4231       } else {
4232         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4233         CastKind = CK_ConstructorConversion;
4234         // Do no conversion if dealing with ... for the first conversion.
4235         if (!ICS.UserDefined.EllipsisConversion) {
4236           // If the user-defined conversion is specified by a constructor, the
4237           // initial standard conversion sequence converts the source type to
4238           // the type required by the argument of the constructor
4239           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4240         }
4241       }
4242       // Watch out for ellipsis conversion.
4243       if (!ICS.UserDefined.EllipsisConversion) {
4244         ExprResult Res =
4245           PerformImplicitConversion(From, BeforeToType,
4246                                     ICS.UserDefined.Before, AA_Converting,
4247                                     CCK);
4248         if (Res.isInvalid())
4249           return ExprError();
4250         From = Res.get();
4251       }
4252 
4253       ExprResult CastArg = BuildCXXCastArgument(
4254           *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4255           cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4256           ICS.UserDefined.HadMultipleCandidates, From);
4257 
4258       if (CastArg.isInvalid())
4259         return ExprError();
4260 
4261       From = CastArg.get();
4262 
4263       // C++ [over.match.oper]p7:
4264       //   [...] the second standard conversion sequence of a user-defined
4265       //   conversion sequence is not applied.
4266       if (CCK == CheckedConversionKind::ForBuiltinOverloadedOp)
4267         return From;
4268 
4269       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4270                                        AA_Converting, CCK);
4271   }
4272 
4273   case ImplicitConversionSequence::AmbiguousConversion:
4274     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4275                           PDiag(diag::err_typecheck_ambiguous_condition)
4276                             << From->getSourceRange());
4277     return ExprError();
4278 
4279   case ImplicitConversionSequence::EllipsisConversion:
4280   case ImplicitConversionSequence::StaticObjectArgumentConversion:
4281     llvm_unreachable("bad conversion");
4282 
4283   case ImplicitConversionSequence::BadConversion:
4284     Sema::AssignConvertType ConvTy =
4285         CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4286     bool Diagnosed = DiagnoseAssignmentResult(
4287         ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4288         ToType, From->getType(), From, Action);
4289     assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4290     return ExprError();
4291   }
4292 
4293   // Everything went well.
4294   return From;
4295 }
4296 
4297 // adjustVectorType - Compute the intermediate cast type casting elements of the
4298 // from type to the elements of the to type without resizing the vector.
4299 static QualType adjustVectorType(ASTContext &Context, QualType FromTy,
4300                                  QualType ToType, QualType *ElTy = nullptr) {
4301   auto *ToVec = ToType->castAs<VectorType>();
4302   QualType ElType = ToVec->getElementType();
4303   if (ElTy)
4304     *ElTy = ElType;
4305   if (!FromTy->isVectorType())
4306     return ElType;
4307   auto *FromVec = FromTy->castAs<VectorType>();
4308   return Context.getExtVectorType(ElType, FromVec->getNumElements());
4309 }
4310 
4311 ExprResult
4312 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4313                                 const StandardConversionSequence& SCS,
4314                                 AssignmentAction Action,
4315                                 CheckedConversionKind CCK) {
4316   bool CStyle = (CCK == CheckedConversionKind::CStyleCast ||
4317                  CCK == CheckedConversionKind::FunctionalCast);
4318 
4319   // Overall FIXME: we are recomputing too many types here and doing far too
4320   // much extra work. What this means is that we need to keep track of more
4321   // information that is computed when we try the implicit conversion initially,
4322   // so that we don't need to recompute anything here.
4323   QualType FromType = From->getType();
4324 
4325   if (SCS.CopyConstructor) {
4326     // FIXME: When can ToType be a reference type?
4327     assert(!ToType->isReferenceType());
4328     if (SCS.Second == ICK_Derived_To_Base) {
4329       SmallVector<Expr*, 8> ConstructorArgs;
4330       if (CompleteConstructorCall(
4331               cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4332               /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4333         return ExprError();
4334       return BuildCXXConstructExpr(
4335           /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4336           SCS.FoundCopyConstructor, SCS.CopyConstructor, ConstructorArgs,
4337           /*HadMultipleCandidates*/ false,
4338           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4339           CXXConstructionKind::Complete, SourceRange());
4340     }
4341     return BuildCXXConstructExpr(
4342         /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4343         SCS.FoundCopyConstructor, SCS.CopyConstructor, From,
4344         /*HadMultipleCandidates*/ false,
4345         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4346         CXXConstructionKind::Complete, SourceRange());
4347   }
4348 
4349   // Resolve overloaded function references.
4350   if (Context.hasSameType(FromType, Context.OverloadTy)) {
4351     DeclAccessPair Found;
4352     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4353                                                           true, Found);
4354     if (!Fn)
4355       return ExprError();
4356 
4357     if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4358       return ExprError();
4359 
4360     ExprResult Res = FixOverloadedFunctionReference(From, Found, Fn);
4361     if (Res.isInvalid())
4362       return ExprError();
4363 
4364     // We might get back another placeholder expression if we resolved to a
4365     // builtin.
4366     Res = CheckPlaceholderExpr(Res.get());
4367     if (Res.isInvalid())
4368       return ExprError();
4369 
4370     From = Res.get();
4371     FromType = From->getType();
4372   }
4373 
4374   // If we're converting to an atomic type, first convert to the corresponding
4375   // non-atomic type.
4376   QualType ToAtomicType;
4377   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4378     ToAtomicType = ToType;
4379     ToType = ToAtomic->getValueType();
4380   }
4381 
4382   QualType InitialFromType = FromType;
4383   // Perform the first implicit conversion.
4384   switch (SCS.First) {
4385   case ICK_Identity:
4386     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4387       FromType = FromAtomic->getValueType().getUnqualifiedType();
4388       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4389                                       From, /*BasePath=*/nullptr, VK_PRValue,
4390                                       FPOptionsOverride());
4391     }
4392     break;
4393 
4394   case ICK_Lvalue_To_Rvalue: {
4395     assert(From->getObjectKind() != OK_ObjCProperty);
4396     ExprResult FromRes = DefaultLvalueConversion(From);
4397     if (FromRes.isInvalid())
4398       return ExprError();
4399 
4400     From = FromRes.get();
4401     FromType = From->getType();
4402     break;
4403   }
4404 
4405   case ICK_Array_To_Pointer:
4406     FromType = Context.getArrayDecayedType(FromType);
4407     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4408                              /*BasePath=*/nullptr, CCK)
4409                .get();
4410     break;
4411 
4412   case ICK_HLSL_Array_RValue:
4413     FromType = Context.getArrayParameterType(FromType);
4414     From = ImpCastExprToType(From, FromType, CK_HLSLArrayRValue, VK_PRValue,
4415                              /*BasePath=*/nullptr, CCK)
4416                .get();
4417     break;
4418 
4419   case ICK_Function_To_Pointer:
4420     FromType = Context.getPointerType(FromType);
4421     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4422                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4423                .get();
4424     break;
4425 
4426   default:
4427     llvm_unreachable("Improper first standard conversion");
4428   }
4429 
4430   // Perform the second implicit conversion
4431   switch (SCS.Second) {
4432   case ICK_Identity:
4433     // C++ [except.spec]p5:
4434     //   [For] assignment to and initialization of pointers to functions,
4435     //   pointers to member functions, and references to functions: the
4436     //   target entity shall allow at least the exceptions allowed by the
4437     //   source value in the assignment or initialization.
4438     switch (Action) {
4439     case AA_Assigning:
4440     case AA_Initializing:
4441       // Note, function argument passing and returning are initialization.
4442     case AA_Passing:
4443     case AA_Returning:
4444     case AA_Sending:
4445     case AA_Passing_CFAudited:
4446       if (CheckExceptionSpecCompatibility(From, ToType))
4447         return ExprError();
4448       break;
4449 
4450     case AA_Casting:
4451     case AA_Converting:
4452       // Casts and implicit conversions are not initialization, so are not
4453       // checked for exception specification mismatches.
4454       break;
4455     }
4456     // Nothing else to do.
4457     break;
4458 
4459   case ICK_Integral_Promotion:
4460   case ICK_Integral_Conversion: {
4461     QualType ElTy = ToType;
4462     QualType StepTy = ToType;
4463     if (ToType->isVectorType())
4464       StepTy = adjustVectorType(Context, FromType, ToType, &ElTy);
4465     if (ElTy->isBooleanType()) {
4466       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4467              SCS.Second == ICK_Integral_Promotion &&
4468              "only enums with fixed underlying type can promote to bool");
4469       From = ImpCastExprToType(From, StepTy, CK_IntegralToBoolean, VK_PRValue,
4470                                /*BasePath=*/nullptr, CCK)
4471                  .get();
4472     } else {
4473       From = ImpCastExprToType(From, StepTy, CK_IntegralCast, VK_PRValue,
4474                                /*BasePath=*/nullptr, CCK)
4475                  .get();
4476     }
4477     break;
4478   }
4479 
4480   case ICK_Floating_Promotion:
4481   case ICK_Floating_Conversion: {
4482     QualType StepTy = ToType;
4483     if (ToType->isVectorType())
4484       StepTy = adjustVectorType(Context, FromType, ToType);
4485     From = ImpCastExprToType(From, StepTy, CK_FloatingCast, VK_PRValue,
4486                              /*BasePath=*/nullptr, CCK)
4487                .get();
4488     break;
4489   }
4490 
4491   case ICK_Complex_Promotion:
4492   case ICK_Complex_Conversion: {
4493     QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4494     QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4495     CastKind CK;
4496     if (FromEl->isRealFloatingType()) {
4497       if (ToEl->isRealFloatingType())
4498         CK = CK_FloatingComplexCast;
4499       else
4500         CK = CK_FloatingComplexToIntegralComplex;
4501     } else if (ToEl->isRealFloatingType()) {
4502       CK = CK_IntegralComplexToFloatingComplex;
4503     } else {
4504       CK = CK_IntegralComplexCast;
4505     }
4506     From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4507                              CCK)
4508                .get();
4509     break;
4510   }
4511 
4512   case ICK_Floating_Integral: {
4513     QualType ElTy = ToType;
4514     QualType StepTy = ToType;
4515     if (ToType->isVectorType())
4516       StepTy = adjustVectorType(Context, FromType, ToType, &ElTy);
4517     if (ElTy->isRealFloatingType())
4518       From = ImpCastExprToType(From, StepTy, CK_IntegralToFloating, VK_PRValue,
4519                                /*BasePath=*/nullptr, CCK)
4520                  .get();
4521     else
4522       From = ImpCastExprToType(From, StepTy, CK_FloatingToIntegral, VK_PRValue,
4523                                /*BasePath=*/nullptr, CCK)
4524                  .get();
4525     break;
4526   }
4527 
4528   case ICK_Fixed_Point_Conversion:
4529     assert((FromType->isFixedPointType() || ToType->isFixedPointType()) &&
4530            "Attempting implicit fixed point conversion without a fixed "
4531            "point operand");
4532     if (FromType->isFloatingType())
4533       From = ImpCastExprToType(From, ToType, CK_FloatingToFixedPoint,
4534                                VK_PRValue,
4535                                /*BasePath=*/nullptr, CCK).get();
4536     else if (ToType->isFloatingType())
4537       From = ImpCastExprToType(From, ToType, CK_FixedPointToFloating,
4538                                VK_PRValue,
4539                                /*BasePath=*/nullptr, CCK).get();
4540     else if (FromType->isIntegralType(Context))
4541       From = ImpCastExprToType(From, ToType, CK_IntegralToFixedPoint,
4542                                VK_PRValue,
4543                                /*BasePath=*/nullptr, CCK).get();
4544     else if (ToType->isIntegralType(Context))
4545       From = ImpCastExprToType(From, ToType, CK_FixedPointToIntegral,
4546                                VK_PRValue,
4547                                /*BasePath=*/nullptr, CCK).get();
4548     else if (ToType->isBooleanType())
4549       From = ImpCastExprToType(From, ToType, CK_FixedPointToBoolean,
4550                                VK_PRValue,
4551                                /*BasePath=*/nullptr, CCK).get();
4552     else
4553       From = ImpCastExprToType(From, ToType, CK_FixedPointCast,
4554                                VK_PRValue,
4555                                /*BasePath=*/nullptr, CCK).get();
4556     break;
4557 
4558   case ICK_Compatible_Conversion:
4559     From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4560                              /*BasePath=*/nullptr, CCK).get();
4561     break;
4562 
4563   case ICK_Writeback_Conversion:
4564   case ICK_Pointer_Conversion: {
4565     if (SCS.IncompatibleObjC && Action != AA_Casting) {
4566       // Diagnose incompatible Objective-C conversions
4567       if (Action == AA_Initializing || Action == AA_Assigning)
4568         Diag(From->getBeginLoc(),
4569              diag::ext_typecheck_convert_incompatible_pointer)
4570             << ToType << From->getType() << Action << From->getSourceRange()
4571             << 0;
4572       else
4573         Diag(From->getBeginLoc(),
4574              diag::ext_typecheck_convert_incompatible_pointer)
4575             << From->getType() << ToType << Action << From->getSourceRange()
4576             << 0;
4577 
4578       if (From->getType()->isObjCObjectPointerType() &&
4579           ToType->isObjCObjectPointerType())
4580         ObjC().EmitRelatedResultTypeNote(From);
4581     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4582                !ObjC().CheckObjCARCUnavailableWeakConversion(ToType,
4583                                                              From->getType())) {
4584       if (Action == AA_Initializing)
4585         Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4586       else
4587         Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4588             << (Action == AA_Casting) << From->getType() << ToType
4589             << From->getSourceRange();
4590     }
4591 
4592     // Defer address space conversion to the third conversion.
4593     QualType FromPteeType = From->getType()->getPointeeType();
4594     QualType ToPteeType = ToType->getPointeeType();
4595     QualType NewToType = ToType;
4596     if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4597         FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4598       NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4599       NewToType = Context.getAddrSpaceQualType(NewToType,
4600                                                FromPteeType.getAddressSpace());
4601       if (ToType->isObjCObjectPointerType())
4602         NewToType = Context.getObjCObjectPointerType(NewToType);
4603       else if (ToType->isBlockPointerType())
4604         NewToType = Context.getBlockPointerType(NewToType);
4605       else
4606         NewToType = Context.getPointerType(NewToType);
4607     }
4608 
4609     CastKind Kind;
4610     CXXCastPath BasePath;
4611     if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4612       return ExprError();
4613 
4614     // Make sure we extend blocks if necessary.
4615     // FIXME: doing this here is really ugly.
4616     if (Kind == CK_BlockPointerToObjCPointerCast) {
4617       ExprResult E = From;
4618       (void)ObjC().PrepareCastToObjCObjectPointer(E);
4619       From = E.get();
4620     }
4621     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4622       ObjC().CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4623     From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4624                .get();
4625     break;
4626   }
4627 
4628   case ICK_Pointer_Member: {
4629     CastKind Kind;
4630     CXXCastPath BasePath;
4631     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4632       return ExprError();
4633     if (CheckExceptionSpecCompatibility(From, ToType))
4634       return ExprError();
4635 
4636     // We may not have been able to figure out what this member pointer resolved
4637     // to up until this exact point.  Attempt to lock-in it's inheritance model.
4638     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4639       (void)isCompleteType(From->getExprLoc(), From->getType());
4640       (void)isCompleteType(From->getExprLoc(), ToType);
4641     }
4642 
4643     From =
4644         ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4645     break;
4646   }
4647 
4648   case ICK_Boolean_Conversion: {
4649     // Perform half-to-boolean conversion via float.
4650     if (From->getType()->isHalfType()) {
4651       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4652       FromType = Context.FloatTy;
4653     }
4654     QualType ElTy = FromType;
4655     QualType StepTy = ToType;
4656     if (FromType->isVectorType()) {
4657       if (getLangOpts().HLSL)
4658         StepTy = adjustVectorType(Context, FromType, ToType);
4659       ElTy = FromType->castAs<VectorType>()->getElementType();
4660     }
4661 
4662     From = ImpCastExprToType(From, StepTy, ScalarTypeToBooleanCastKind(ElTy),
4663                              VK_PRValue,
4664                              /*BasePath=*/nullptr, CCK)
4665                .get();
4666     break;
4667   }
4668 
4669   case ICK_Derived_To_Base: {
4670     CXXCastPath BasePath;
4671     if (CheckDerivedToBaseConversion(
4672             From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4673             From->getSourceRange(), &BasePath, CStyle))
4674       return ExprError();
4675 
4676     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4677                       CK_DerivedToBase, From->getValueKind(),
4678                       &BasePath, CCK).get();
4679     break;
4680   }
4681 
4682   case ICK_Vector_Conversion:
4683     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4684                              /*BasePath=*/nullptr, CCK)
4685                .get();
4686     break;
4687 
4688   case ICK_SVE_Vector_Conversion:
4689   case ICK_RVV_Vector_Conversion:
4690     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4691                              /*BasePath=*/nullptr, CCK)
4692                .get();
4693     break;
4694 
4695   case ICK_Vector_Splat: {
4696     // Vector splat from any arithmetic type to a vector.
4697     Expr *Elem = prepareVectorSplat(ToType, From).get();
4698     From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4699                              /*BasePath=*/nullptr, CCK)
4700                .get();
4701     break;
4702   }
4703 
4704   case ICK_Complex_Real:
4705     // Case 1.  x -> _Complex y
4706     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4707       QualType ElType = ToComplex->getElementType();
4708       bool isFloatingComplex = ElType->isRealFloatingType();
4709 
4710       // x -> y
4711       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4712         // do nothing
4713       } else if (From->getType()->isRealFloatingType()) {
4714         From = ImpCastExprToType(From, ElType,
4715                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4716       } else {
4717         assert(From->getType()->isIntegerType());
4718         From = ImpCastExprToType(From, ElType,
4719                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4720       }
4721       // y -> _Complex y
4722       From = ImpCastExprToType(From, ToType,
4723                    isFloatingComplex ? CK_FloatingRealToComplex
4724                                      : CK_IntegralRealToComplex).get();
4725 
4726     // Case 2.  _Complex x -> y
4727     } else {
4728       auto *FromComplex = From->getType()->castAs<ComplexType>();
4729       QualType ElType = FromComplex->getElementType();
4730       bool isFloatingComplex = ElType->isRealFloatingType();
4731 
4732       // _Complex x -> x
4733       From = ImpCastExprToType(From, ElType,
4734                                isFloatingComplex ? CK_FloatingComplexToReal
4735                                                  : CK_IntegralComplexToReal,
4736                                VK_PRValue, /*BasePath=*/nullptr, CCK)
4737                  .get();
4738 
4739       // x -> y
4740       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4741         // do nothing
4742       } else if (ToType->isRealFloatingType()) {
4743         From = ImpCastExprToType(From, ToType,
4744                                  isFloatingComplex ? CK_FloatingCast
4745                                                    : CK_IntegralToFloating,
4746                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4747                    .get();
4748       } else {
4749         assert(ToType->isIntegerType());
4750         From = ImpCastExprToType(From, ToType,
4751                                  isFloatingComplex ? CK_FloatingToIntegral
4752                                                    : CK_IntegralCast,
4753                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4754                    .get();
4755       }
4756     }
4757     break;
4758 
4759   case ICK_Block_Pointer_Conversion: {
4760     LangAS AddrSpaceL =
4761         ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4762     LangAS AddrSpaceR =
4763         FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4764     assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4765            "Invalid cast");
4766     CastKind Kind =
4767         AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4768     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4769                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4770                .get();
4771     break;
4772   }
4773 
4774   case ICK_TransparentUnionConversion: {
4775     ExprResult FromRes = From;
4776     Sema::AssignConvertType ConvTy =
4777       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4778     if (FromRes.isInvalid())
4779       return ExprError();
4780     From = FromRes.get();
4781     assert ((ConvTy == Sema::Compatible) &&
4782             "Improper transparent union conversion");
4783     (void)ConvTy;
4784     break;
4785   }
4786 
4787   case ICK_Zero_Event_Conversion:
4788   case ICK_Zero_Queue_Conversion:
4789     From = ImpCastExprToType(From, ToType,
4790                              CK_ZeroToOCLOpaqueType,
4791                              From->getValueKind()).get();
4792     break;
4793 
4794   case ICK_Lvalue_To_Rvalue:
4795   case ICK_Array_To_Pointer:
4796   case ICK_Function_To_Pointer:
4797   case ICK_Function_Conversion:
4798   case ICK_Qualification:
4799   case ICK_Num_Conversion_Kinds:
4800   case ICK_C_Only_Conversion:
4801   case ICK_Incompatible_Pointer_Conversion:
4802   case ICK_HLSL_Array_RValue:
4803   case ICK_HLSL_Vector_Truncation:
4804   case ICK_HLSL_Vector_Splat:
4805     llvm_unreachable("Improper second standard conversion");
4806   }
4807 
4808   if (SCS.Dimension != ICK_Identity) {
4809     // If SCS.Element is not ICK_Identity the To and From types must be HLSL
4810     // vectors or matrices.
4811 
4812     // TODO: Support HLSL matrices.
4813     assert((!From->getType()->isMatrixType() && !ToType->isMatrixType()) &&
4814            "Dimension conversion for matrix types is not implemented yet.");
4815     assert(ToType->isVectorType() &&
4816            "Dimension conversion is only supported for vector types.");
4817     switch (SCS.Dimension) {
4818     case ICK_HLSL_Vector_Splat: {
4819       // Vector splat from any arithmetic type to a vector.
4820       Expr *Elem = prepareVectorSplat(ToType, From).get();
4821       From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4822                                /*BasePath=*/nullptr, CCK)
4823                  .get();
4824       break;
4825     }
4826     case ICK_HLSL_Vector_Truncation: {
4827       // Note: HLSL built-in vectors are ExtVectors. Since this truncates a
4828       // vector to a smaller vector, this can only operate on arguments where
4829       // the source and destination types are ExtVectors.
4830       assert(From->getType()->isExtVectorType() && ToType->isExtVectorType() &&
4831              "HLSL vector truncation should only apply to ExtVectors");
4832       auto *FromVec = From->getType()->castAs<VectorType>();
4833       auto *ToVec = ToType->castAs<VectorType>();
4834       QualType ElType = FromVec->getElementType();
4835       QualType TruncTy =
4836           Context.getExtVectorType(ElType, ToVec->getNumElements());
4837       From = ImpCastExprToType(From, TruncTy, CK_HLSLVectorTruncation,
4838                                From->getValueKind())
4839                  .get();
4840       break;
4841     }
4842     case ICK_Identity:
4843     default:
4844       llvm_unreachable("Improper element standard conversion");
4845     }
4846   }
4847 
4848   switch (SCS.Third) {
4849   case ICK_Identity:
4850     // Nothing to do.
4851     break;
4852 
4853   case ICK_Function_Conversion:
4854     // If both sides are functions (or pointers/references to them), there could
4855     // be incompatible exception declarations.
4856     if (CheckExceptionSpecCompatibility(From, ToType))
4857       return ExprError();
4858 
4859     From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4860                              /*BasePath=*/nullptr, CCK)
4861                .get();
4862     break;
4863 
4864   case ICK_Qualification: {
4865     ExprValueKind VK = From->getValueKind();
4866     CastKind CK = CK_NoOp;
4867 
4868     if (ToType->isReferenceType() &&
4869         ToType->getPointeeType().getAddressSpace() !=
4870             From->getType().getAddressSpace())
4871       CK = CK_AddressSpaceConversion;
4872 
4873     if (ToType->isPointerType() &&
4874         ToType->getPointeeType().getAddressSpace() !=
4875             From->getType()->getPointeeType().getAddressSpace())
4876       CK = CK_AddressSpaceConversion;
4877 
4878     if (!isCast(CCK) &&
4879         !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
4880         From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4881       Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
4882           << InitialFromType << ToType;
4883     }
4884 
4885     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4886                              /*BasePath=*/nullptr, CCK)
4887                .get();
4888 
4889     if (SCS.DeprecatedStringLiteralToCharPtr &&
4890         !getLangOpts().WritableStrings) {
4891       Diag(From->getBeginLoc(),
4892            getLangOpts().CPlusPlus11
4893                ? diag::ext_deprecated_string_literal_conversion
4894                : diag::warn_deprecated_string_literal_conversion)
4895           << ToType.getNonReferenceType();
4896     }
4897 
4898     break;
4899   }
4900 
4901   default:
4902     llvm_unreachable("Improper third standard conversion");
4903   }
4904 
4905   // If this conversion sequence involved a scalar -> atomic conversion, perform
4906   // that conversion now.
4907   if (!ToAtomicType.isNull()) {
4908     assert(Context.hasSameType(
4909         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4910     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4911                              VK_PRValue, nullptr, CCK)
4912                .get();
4913   }
4914 
4915   // Materialize a temporary if we're implicitly converting to a reference
4916   // type. This is not required by the C++ rules but is necessary to maintain
4917   // AST invariants.
4918   if (ToType->isReferenceType() && From->isPRValue()) {
4919     ExprResult Res = TemporaryMaterializationConversion(From);
4920     if (Res.isInvalid())
4921       return ExprError();
4922     From = Res.get();
4923   }
4924 
4925   // If this conversion sequence succeeded and involved implicitly converting a
4926   // _Nullable type to a _Nonnull one, complain.
4927   if (!isCast(CCK))
4928     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4929                                         From->getBeginLoc());
4930 
4931   return From;
4932 }
4933 
4934 /// Checks that type T is not a VLA.
4935 ///
4936 /// @returns @c true if @p T is VLA and a diagnostic was emitted,
4937 /// @c false otherwise.
4938 static bool DiagnoseVLAInCXXTypeTrait(Sema &S, const TypeSourceInfo *T,
4939                                       clang::tok::TokenKind TypeTraitID) {
4940   if (!T->getType()->isVariableArrayType())
4941     return false;
4942 
4943   S.Diag(T->getTypeLoc().getBeginLoc(), diag::err_vla_unsupported)
4944       << 1 << TypeTraitID;
4945   return true;
4946 }
4947 
4948 /// Check the completeness of a type in a unary type trait.
4949 ///
4950 /// If the particular type trait requires a complete type, tries to complete
4951 /// it. If completing the type fails, a diagnostic is emitted and false
4952 /// returned. If completing the type succeeds or no completion was required,
4953 /// returns true.
4954 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4955                                                 SourceLocation Loc,
4956                                                 QualType ArgTy) {
4957   // C++0x [meta.unary.prop]p3:
4958   //   For all of the class templates X declared in this Clause, instantiating
4959   //   that template with a template argument that is a class template
4960   //   specialization may result in the implicit instantiation of the template
4961   //   argument if and only if the semantics of X require that the argument
4962   //   must be a complete type.
4963   // We apply this rule to all the type trait expressions used to implement
4964   // these class templates. We also try to follow any GCC documented behavior
4965   // in these expressions to ensure portability of standard libraries.
4966   switch (UTT) {
4967   default: llvm_unreachable("not a UTT");
4968     // is_complete_type somewhat obviously cannot require a complete type.
4969   case UTT_IsCompleteType:
4970     // Fall-through
4971 
4972     // These traits are modeled on the type predicates in C++0x
4973     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4974     // requiring a complete type, as whether or not they return true cannot be
4975     // impacted by the completeness of the type.
4976   case UTT_IsVoid:
4977   case UTT_IsIntegral:
4978   case UTT_IsFloatingPoint:
4979   case UTT_IsArray:
4980   case UTT_IsBoundedArray:
4981   case UTT_IsPointer:
4982   case UTT_IsNullPointer:
4983   case UTT_IsReferenceable:
4984   case UTT_IsLvalueReference:
4985   case UTT_IsRvalueReference:
4986   case UTT_IsMemberFunctionPointer:
4987   case UTT_IsMemberObjectPointer:
4988   case UTT_IsEnum:
4989   case UTT_IsScopedEnum:
4990   case UTT_IsUnion:
4991   case UTT_IsClass:
4992   case UTT_IsFunction:
4993   case UTT_IsReference:
4994   case UTT_IsArithmetic:
4995   case UTT_IsFundamental:
4996   case UTT_IsObject:
4997   case UTT_IsScalar:
4998   case UTT_IsCompound:
4999   case UTT_IsMemberPointer:
5000     // Fall-through
5001 
5002     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
5003     // which requires some of its traits to have the complete type. However,
5004     // the completeness of the type cannot impact these traits' semantics, and
5005     // so they don't require it. This matches the comments on these traits in
5006     // Table 49.
5007   case UTT_IsConst:
5008   case UTT_IsVolatile:
5009   case UTT_IsSigned:
5010   case UTT_IsUnboundedArray:
5011   case UTT_IsUnsigned:
5012 
5013   // This type trait always returns false, checking the type is moot.
5014   case UTT_IsInterfaceClass:
5015     return true;
5016 
5017   // C++14 [meta.unary.prop]:
5018   //   If T is a non-union class type, T shall be a complete type.
5019   case UTT_IsEmpty:
5020   case UTT_IsPolymorphic:
5021   case UTT_IsAbstract:
5022     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
5023       if (!RD->isUnion())
5024         return !S.RequireCompleteType(
5025             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
5026     return true;
5027 
5028   // C++14 [meta.unary.prop]:
5029   //   If T is a class type, T shall be a complete type.
5030   case UTT_IsFinal:
5031   case UTT_IsSealed:
5032     if (ArgTy->getAsCXXRecordDecl())
5033       return !S.RequireCompleteType(
5034           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
5035     return true;
5036 
5037   // LWG3823: T shall be an array type, a complete type, or cv void.
5038   case UTT_IsAggregate:
5039     if (ArgTy->isArrayType() || ArgTy->isVoidType())
5040       return true;
5041 
5042     return !S.RequireCompleteType(
5043         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
5044 
5045   // C++1z [meta.unary.prop]:
5046   //   remove_all_extents_t<T> shall be a complete type or cv void.
5047   case UTT_IsTrivial:
5048   case UTT_IsTriviallyCopyable:
5049   case UTT_IsStandardLayout:
5050   case UTT_IsPOD:
5051   case UTT_IsLiteral:
5052   case UTT_IsBitwiseCloneable:
5053   // By analogy, is_trivially_relocatable and is_trivially_equality_comparable
5054   // impose the same constraints.
5055   case UTT_IsTriviallyRelocatable:
5056   case UTT_IsTriviallyEqualityComparable:
5057   case UTT_CanPassInRegs:
5058   // Per the GCC type traits documentation, T shall be a complete type, cv void,
5059   // or an array of unknown bound. But GCC actually imposes the same constraints
5060   // as above.
5061   case UTT_HasNothrowAssign:
5062   case UTT_HasNothrowMoveAssign:
5063   case UTT_HasNothrowConstructor:
5064   case UTT_HasNothrowCopy:
5065   case UTT_HasTrivialAssign:
5066   case UTT_HasTrivialMoveAssign:
5067   case UTT_HasTrivialDefaultConstructor:
5068   case UTT_HasTrivialMoveConstructor:
5069   case UTT_HasTrivialCopy:
5070   case UTT_HasTrivialDestructor:
5071   case UTT_HasVirtualDestructor:
5072   // has_unique_object_representations<T> when T is an array is defined in terms
5073   // of has_unique_object_representations<remove_all_extents_t<T>>, so the base
5074   // type needs to be complete even if the type is an incomplete array type.
5075   case UTT_HasUniqueObjectRepresentations:
5076     ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
5077     [[fallthrough]];
5078 
5079   // C++1z [meta.unary.prop]:
5080   //   T shall be a complete type, cv void, or an array of unknown bound.
5081   case UTT_IsDestructible:
5082   case UTT_IsNothrowDestructible:
5083   case UTT_IsTriviallyDestructible:
5084     if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
5085       return true;
5086 
5087     return !S.RequireCompleteType(
5088         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
5089   }
5090 }
5091 
5092 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
5093                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
5094                                bool (CXXRecordDecl::*HasTrivial)() const,
5095                                bool (CXXRecordDecl::*HasNonTrivial)() const,
5096                                bool (CXXMethodDecl::*IsDesiredOp)() const)
5097 {
5098   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5099   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
5100     return true;
5101 
5102   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
5103   DeclarationNameInfo NameInfo(Name, KeyLoc);
5104   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
5105   if (Self.LookupQualifiedName(Res, RD)) {
5106     bool FoundOperator = false;
5107     Res.suppressDiagnostics();
5108     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
5109          Op != OpEnd; ++Op) {
5110       if (isa<FunctionTemplateDecl>(*Op))
5111         continue;
5112 
5113       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
5114       if((Operator->*IsDesiredOp)()) {
5115         FoundOperator = true;
5116         auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
5117         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5118         if (!CPT || !CPT->isNothrow())
5119           return false;
5120       }
5121     }
5122     return FoundOperator;
5123   }
5124   return false;
5125 }
5126 
5127 static bool HasNonDeletedDefaultedEqualityComparison(Sema &S,
5128                                                      const CXXRecordDecl *Decl,
5129                                                      SourceLocation KeyLoc) {
5130   if (Decl->isUnion())
5131     return false;
5132   if (Decl->isLambda())
5133     return Decl->isCapturelessLambda();
5134 
5135   {
5136     EnterExpressionEvaluationContext UnevaluatedContext(
5137         S, Sema::ExpressionEvaluationContext::Unevaluated);
5138     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5139     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5140 
5141     // const ClassT& obj;
5142     OpaqueValueExpr Operand(
5143         KeyLoc,
5144         Decl->getTypeForDecl()->getCanonicalTypeUnqualified().withConst(),
5145         ExprValueKind::VK_LValue);
5146     UnresolvedSet<16> Functions;
5147     // obj == obj;
5148     S.LookupBinOp(S.TUScope, {}, BinaryOperatorKind::BO_EQ, Functions);
5149 
5150     auto Result = S.CreateOverloadedBinOp(KeyLoc, BinaryOperatorKind::BO_EQ,
5151                                           Functions, &Operand, &Operand);
5152     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5153       return false;
5154 
5155     const auto *CallExpr = dyn_cast<CXXOperatorCallExpr>(Result.get());
5156     if (!CallExpr)
5157       return false;
5158     const auto *Callee = CallExpr->getDirectCallee();
5159     auto ParamT = Callee->getParamDecl(0)->getType();
5160     if (!Callee->isDefaulted())
5161       return false;
5162     if (!ParamT->isReferenceType() && !Decl->isTriviallyCopyable())
5163       return false;
5164     if (ParamT.getNonReferenceType()->getUnqualifiedDesugaredType() !=
5165         Decl->getTypeForDecl())
5166       return false;
5167   }
5168 
5169   return llvm::all_of(Decl->bases(),
5170                       [&](const CXXBaseSpecifier &BS) {
5171                         if (const auto *RD = BS.getType()->getAsCXXRecordDecl())
5172                           return HasNonDeletedDefaultedEqualityComparison(
5173                               S, RD, KeyLoc);
5174                         return true;
5175                       }) &&
5176          llvm::all_of(Decl->fields(), [&](const FieldDecl *FD) {
5177            auto Type = FD->getType();
5178            if (Type->isArrayType())
5179              Type = Type->getBaseElementTypeUnsafe()
5180                         ->getCanonicalTypeUnqualified();
5181 
5182            if (Type->isReferenceType() || Type->isEnumeralType())
5183              return false;
5184            if (const auto *RD = Type->getAsCXXRecordDecl())
5185              return HasNonDeletedDefaultedEqualityComparison(S, RD, KeyLoc);
5186            return true;
5187          });
5188 }
5189 
5190 static bool isTriviallyEqualityComparableType(Sema &S, QualType Type, SourceLocation KeyLoc) {
5191   QualType CanonicalType = Type.getCanonicalType();
5192   if (CanonicalType->isIncompleteType() || CanonicalType->isDependentType() ||
5193       CanonicalType->isEnumeralType() || CanonicalType->isArrayType())
5194     return false;
5195 
5196   if (const auto *RD = CanonicalType->getAsCXXRecordDecl()) {
5197     if (!HasNonDeletedDefaultedEqualityComparison(S, RD, KeyLoc))
5198       return false;
5199   }
5200 
5201   return S.getASTContext().hasUniqueObjectRepresentations(
5202       CanonicalType, /*CheckIfTriviallyCopyable=*/false);
5203 }
5204 
5205 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
5206                                    SourceLocation KeyLoc,
5207                                    TypeSourceInfo *TInfo) {
5208   QualType T = TInfo->getType();
5209   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5210 
5211   ASTContext &C = Self.Context;
5212   switch(UTT) {
5213   default: llvm_unreachable("not a UTT");
5214     // Type trait expressions corresponding to the primary type category
5215     // predicates in C++0x [meta.unary.cat].
5216   case UTT_IsVoid:
5217     return T->isVoidType();
5218   case UTT_IsIntegral:
5219     return T->isIntegralType(C);
5220   case UTT_IsFloatingPoint:
5221     return T->isFloatingType();
5222   case UTT_IsArray:
5223     // Zero-sized arrays aren't considered arrays in partial specializations,
5224     // so __is_array shouldn't consider them arrays either.
5225     if (const auto *CAT = C.getAsConstantArrayType(T))
5226       return CAT->getSize() != 0;
5227     return T->isArrayType();
5228   case UTT_IsBoundedArray:
5229     if (DiagnoseVLAInCXXTypeTrait(Self, TInfo, tok::kw___is_bounded_array))
5230       return false;
5231     // Zero-sized arrays aren't considered arrays in partial specializations,
5232     // so __is_bounded_array shouldn't consider them arrays either.
5233     if (const auto *CAT = C.getAsConstantArrayType(T))
5234       return CAT->getSize() != 0;
5235     return T->isArrayType() && !T->isIncompleteArrayType();
5236   case UTT_IsUnboundedArray:
5237     if (DiagnoseVLAInCXXTypeTrait(Self, TInfo, tok::kw___is_unbounded_array))
5238       return false;
5239     return T->isIncompleteArrayType();
5240   case UTT_IsPointer:
5241     return T->isAnyPointerType();
5242   case UTT_IsNullPointer:
5243     return T->isNullPtrType();
5244   case UTT_IsLvalueReference:
5245     return T->isLValueReferenceType();
5246   case UTT_IsRvalueReference:
5247     return T->isRValueReferenceType();
5248   case UTT_IsMemberFunctionPointer:
5249     return T->isMemberFunctionPointerType();
5250   case UTT_IsMemberObjectPointer:
5251     return T->isMemberDataPointerType();
5252   case UTT_IsEnum:
5253     return T->isEnumeralType();
5254   case UTT_IsScopedEnum:
5255     return T->isScopedEnumeralType();
5256   case UTT_IsUnion:
5257     return T->isUnionType();
5258   case UTT_IsClass:
5259     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
5260   case UTT_IsFunction:
5261     return T->isFunctionType();
5262 
5263     // Type trait expressions which correspond to the convenient composition
5264     // predicates in C++0x [meta.unary.comp].
5265   case UTT_IsReference:
5266     return T->isReferenceType();
5267   case UTT_IsArithmetic:
5268     return T->isArithmeticType() && !T->isEnumeralType();
5269   case UTT_IsFundamental:
5270     return T->isFundamentalType();
5271   case UTT_IsObject:
5272     return T->isObjectType();
5273   case UTT_IsScalar:
5274     // Note: semantic analysis depends on Objective-C lifetime types to be
5275     // considered scalar types. However, such types do not actually behave
5276     // like scalar types at run time (since they may require retain/release
5277     // operations), so we report them as non-scalar.
5278     if (T->isObjCLifetimeType()) {
5279       switch (T.getObjCLifetime()) {
5280       case Qualifiers::OCL_None:
5281       case Qualifiers::OCL_ExplicitNone:
5282         return true;
5283 
5284       case Qualifiers::OCL_Strong:
5285       case Qualifiers::OCL_Weak:
5286       case Qualifiers::OCL_Autoreleasing:
5287         return false;
5288       }
5289     }
5290 
5291     return T->isScalarType();
5292   case UTT_IsCompound:
5293     return T->isCompoundType();
5294   case UTT_IsMemberPointer:
5295     return T->isMemberPointerType();
5296 
5297     // Type trait expressions which correspond to the type property predicates
5298     // in C++0x [meta.unary.prop].
5299   case UTT_IsConst:
5300     return T.isConstQualified();
5301   case UTT_IsVolatile:
5302     return T.isVolatileQualified();
5303   case UTT_IsTrivial:
5304     return T.isTrivialType(C);
5305   case UTT_IsTriviallyCopyable:
5306     return T.isTriviallyCopyableType(C);
5307   case UTT_IsStandardLayout:
5308     return T->isStandardLayoutType();
5309   case UTT_IsPOD:
5310     return T.isPODType(C);
5311   case UTT_IsLiteral:
5312     return T->isLiteralType(C);
5313   case UTT_IsEmpty:
5314     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5315       return !RD->isUnion() && RD->isEmpty();
5316     return false;
5317   case UTT_IsPolymorphic:
5318     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5319       return !RD->isUnion() && RD->isPolymorphic();
5320     return false;
5321   case UTT_IsAbstract:
5322     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5323       return !RD->isUnion() && RD->isAbstract();
5324     return false;
5325   case UTT_IsAggregate:
5326     // Report vector extensions and complex types as aggregates because they
5327     // support aggregate initialization. GCC mirrors this behavior for vectors
5328     // but not _Complex.
5329     return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
5330            T->isAnyComplexType();
5331   // __is_interface_class only returns true when CL is invoked in /CLR mode and
5332   // even then only when it is used with the 'interface struct ...' syntax
5333   // Clang doesn't support /CLR which makes this type trait moot.
5334   case UTT_IsInterfaceClass:
5335     return false;
5336   case UTT_IsFinal:
5337   case UTT_IsSealed:
5338     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5339       return RD->hasAttr<FinalAttr>();
5340     return false;
5341   case UTT_IsSigned:
5342     // Enum types should always return false.
5343     // Floating points should always return true.
5344     return T->isFloatingType() ||
5345            (T->isSignedIntegerType() && !T->isEnumeralType());
5346   case UTT_IsUnsigned:
5347     // Enum types should always return false.
5348     return T->isUnsignedIntegerType() && !T->isEnumeralType();
5349 
5350     // Type trait expressions which query classes regarding their construction,
5351     // destruction, and copying. Rather than being based directly on the
5352     // related type predicates in the standard, they are specified by both
5353     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
5354     // specifications.
5355     //
5356     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
5357     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5358     //
5359     // Note that these builtins do not behave as documented in g++: if a class
5360     // has both a trivial and a non-trivial special member of a particular kind,
5361     // they return false! For now, we emulate this behavior.
5362     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5363     // does not correctly compute triviality in the presence of multiple special
5364     // members of the same kind. Revisit this once the g++ bug is fixed.
5365   case UTT_HasTrivialDefaultConstructor:
5366     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5367     //   If __is_pod (type) is true then the trait is true, else if type is
5368     //   a cv class or union type (or array thereof) with a trivial default
5369     //   constructor ([class.ctor]) then the trait is true, else it is false.
5370     if (T.isPODType(C))
5371       return true;
5372     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5373       return RD->hasTrivialDefaultConstructor() &&
5374              !RD->hasNonTrivialDefaultConstructor();
5375     return false;
5376   case UTT_HasTrivialMoveConstructor:
5377     //  This trait is implemented by MSVC 2012 and needed to parse the
5378     //  standard library headers. Specifically this is used as the logic
5379     //  behind std::is_trivially_move_constructible (20.9.4.3).
5380     if (T.isPODType(C))
5381       return true;
5382     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5383       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
5384     return false;
5385   case UTT_HasTrivialCopy:
5386     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5387     //   If __is_pod (type) is true or type is a reference type then
5388     //   the trait is true, else if type is a cv class or union type
5389     //   with a trivial copy constructor ([class.copy]) then the trait
5390     //   is true, else it is false.
5391     if (T.isPODType(C) || T->isReferenceType())
5392       return true;
5393     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5394       return RD->hasTrivialCopyConstructor() &&
5395              !RD->hasNonTrivialCopyConstructor();
5396     return false;
5397   case UTT_HasTrivialMoveAssign:
5398     //  This trait is implemented by MSVC 2012 and needed to parse the
5399     //  standard library headers. Specifically it is used as the logic
5400     //  behind std::is_trivially_move_assignable (20.9.4.3)
5401     if (T.isPODType(C))
5402       return true;
5403     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5404       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
5405     return false;
5406   case UTT_HasTrivialAssign:
5407     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5408     //   If type is const qualified or is a reference type then the
5409     //   trait is false. Otherwise if __is_pod (type) is true then the
5410     //   trait is true, else if type is a cv class or union type with
5411     //   a trivial copy assignment ([class.copy]) then the trait is
5412     //   true, else it is false.
5413     // Note: the const and reference restrictions are interesting,
5414     // given that const and reference members don't prevent a class
5415     // from having a trivial copy assignment operator (but do cause
5416     // errors if the copy assignment operator is actually used, q.v.
5417     // [class.copy]p12).
5418 
5419     if (T.isConstQualified())
5420       return false;
5421     if (T.isPODType(C))
5422       return true;
5423     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5424       return RD->hasTrivialCopyAssignment() &&
5425              !RD->hasNonTrivialCopyAssignment();
5426     return false;
5427   case UTT_IsDestructible:
5428   case UTT_IsTriviallyDestructible:
5429   case UTT_IsNothrowDestructible:
5430     // C++14 [meta.unary.prop]:
5431     //   For reference types, is_destructible<T>::value is true.
5432     if (T->isReferenceType())
5433       return true;
5434 
5435     // Objective-C++ ARC: autorelease types don't require destruction.
5436     if (T->isObjCLifetimeType() &&
5437         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5438       return true;
5439 
5440     // C++14 [meta.unary.prop]:
5441     //   For incomplete types and function types, is_destructible<T>::value is
5442     //   false.
5443     if (T->isIncompleteType() || T->isFunctionType())
5444       return false;
5445 
5446     // A type that requires destruction (via a non-trivial destructor or ARC
5447     // lifetime semantics) is not trivially-destructible.
5448     if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5449       return false;
5450 
5451     // C++14 [meta.unary.prop]:
5452     //   For object types and given U equal to remove_all_extents_t<T>, if the
5453     //   expression std::declval<U&>().~U() is well-formed when treated as an
5454     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
5455     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5456       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5457       if (!Destructor)
5458         return false;
5459       //  C++14 [dcl.fct.def.delete]p2:
5460       //    A program that refers to a deleted function implicitly or
5461       //    explicitly, other than to declare it, is ill-formed.
5462       if (Destructor->isDeleted())
5463         return false;
5464       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5465         return false;
5466       if (UTT == UTT_IsNothrowDestructible) {
5467         auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5468         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5469         if (!CPT || !CPT->isNothrow())
5470           return false;
5471       }
5472     }
5473     return true;
5474 
5475   case UTT_HasTrivialDestructor:
5476     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5477     //   If __is_pod (type) is true or type is a reference type
5478     //   then the trait is true, else if type is a cv class or union
5479     //   type (or array thereof) with a trivial destructor
5480     //   ([class.dtor]) then the trait is true, else it is
5481     //   false.
5482     if (T.isPODType(C) || T->isReferenceType())
5483       return true;
5484 
5485     // Objective-C++ ARC: autorelease types don't require destruction.
5486     if (T->isObjCLifetimeType() &&
5487         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5488       return true;
5489 
5490     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5491       return RD->hasTrivialDestructor();
5492     return false;
5493   // TODO: Propagate nothrowness for implicitly declared special members.
5494   case UTT_HasNothrowAssign:
5495     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5496     //   If type is const qualified or is a reference type then the
5497     //   trait is false. Otherwise if __has_trivial_assign (type)
5498     //   is true then the trait is true, else if type is a cv class
5499     //   or union type with copy assignment operators that are known
5500     //   not to throw an exception then the trait is true, else it is
5501     //   false.
5502     if (C.getBaseElementType(T).isConstQualified())
5503       return false;
5504     if (T->isReferenceType())
5505       return false;
5506     if (T.isPODType(C) || T->isObjCLifetimeType())
5507       return true;
5508 
5509     if (const RecordType *RT = T->getAs<RecordType>())
5510       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5511                                 &CXXRecordDecl::hasTrivialCopyAssignment,
5512                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5513                                 &CXXMethodDecl::isCopyAssignmentOperator);
5514     return false;
5515   case UTT_HasNothrowMoveAssign:
5516     //  This trait is implemented by MSVC 2012 and needed to parse the
5517     //  standard library headers. Specifically this is used as the logic
5518     //  behind std::is_nothrow_move_assignable (20.9.4.3).
5519     if (T.isPODType(C))
5520       return true;
5521 
5522     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5523       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5524                                 &CXXRecordDecl::hasTrivialMoveAssignment,
5525                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5526                                 &CXXMethodDecl::isMoveAssignmentOperator);
5527     return false;
5528   case UTT_HasNothrowCopy:
5529     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5530     //   If __has_trivial_copy (type) is true then the trait is true, else
5531     //   if type is a cv class or union type with copy constructors that are
5532     //   known not to throw an exception then the trait is true, else it is
5533     //   false.
5534     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5535       return true;
5536     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5537       if (RD->hasTrivialCopyConstructor() &&
5538           !RD->hasNonTrivialCopyConstructor())
5539         return true;
5540 
5541       bool FoundConstructor = false;
5542       unsigned FoundTQs;
5543       for (const auto *ND : Self.LookupConstructors(RD)) {
5544         // A template constructor is never a copy constructor.
5545         // FIXME: However, it may actually be selected at the actual overload
5546         // resolution point.
5547         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5548           continue;
5549         // UsingDecl itself is not a constructor
5550         if (isa<UsingDecl>(ND))
5551           continue;
5552         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5553         if (Constructor->isCopyConstructor(FoundTQs)) {
5554           FoundConstructor = true;
5555           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5556           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5557           if (!CPT)
5558             return false;
5559           // TODO: check whether evaluating default arguments can throw.
5560           // For now, we'll be conservative and assume that they can throw.
5561           if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5562             return false;
5563         }
5564       }
5565 
5566       return FoundConstructor;
5567     }
5568     return false;
5569   case UTT_HasNothrowConstructor:
5570     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5571     //   If __has_trivial_constructor (type) is true then the trait is
5572     //   true, else if type is a cv class or union type (or array
5573     //   thereof) with a default constructor that is known not to
5574     //   throw an exception then the trait is true, else it is false.
5575     if (T.isPODType(C) || T->isObjCLifetimeType())
5576       return true;
5577     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5578       if (RD->hasTrivialDefaultConstructor() &&
5579           !RD->hasNonTrivialDefaultConstructor())
5580         return true;
5581 
5582       bool FoundConstructor = false;
5583       for (const auto *ND : Self.LookupConstructors(RD)) {
5584         // FIXME: In C++0x, a constructor template can be a default constructor.
5585         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5586           continue;
5587         // UsingDecl itself is not a constructor
5588         if (isa<UsingDecl>(ND))
5589           continue;
5590         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5591         if (Constructor->isDefaultConstructor()) {
5592           FoundConstructor = true;
5593           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5594           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5595           if (!CPT)
5596             return false;
5597           // FIXME: check whether evaluating default arguments can throw.
5598           // For now, we'll be conservative and assume that they can throw.
5599           if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5600             return false;
5601         }
5602       }
5603       return FoundConstructor;
5604     }
5605     return false;
5606   case UTT_HasVirtualDestructor:
5607     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5608     //   If type is a class type with a virtual destructor ([class.dtor])
5609     //   then the trait is true, else it is false.
5610     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5611       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5612         return Destructor->isVirtual();
5613     return false;
5614 
5615     // These type trait expressions are modeled on the specifications for the
5616     // Embarcadero C++0x type trait functions:
5617     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5618   case UTT_IsCompleteType:
5619     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5620     //   Returns True if and only if T is a complete type at the point of the
5621     //   function call.
5622     return !T->isIncompleteType();
5623   case UTT_HasUniqueObjectRepresentations:
5624     return C.hasUniqueObjectRepresentations(T);
5625   case UTT_IsTriviallyRelocatable:
5626     return T.isTriviallyRelocatableType(C);
5627   case UTT_IsBitwiseCloneable:
5628     return T.isBitwiseCloneableType(C);
5629   case UTT_IsReferenceable:
5630     return T.isReferenceable();
5631   case UTT_CanPassInRegs:
5632     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl(); RD && !T.hasQualifiers())
5633       return RD->canPassInRegisters();
5634     Self.Diag(KeyLoc, diag::err_builtin_pass_in_regs_non_class) << T;
5635     return false;
5636   case UTT_IsTriviallyEqualityComparable:
5637     return isTriviallyEqualityComparableType(Self, T, KeyLoc);
5638   }
5639 }
5640 
5641 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, const TypeSourceInfo *Lhs,
5642                                     const TypeSourceInfo *Rhs, SourceLocation KeyLoc);
5643 
5644 static ExprResult CheckConvertibilityForTypeTraits(
5645     Sema &Self, const TypeSourceInfo *Lhs, const TypeSourceInfo *Rhs,
5646     SourceLocation KeyLoc, llvm::BumpPtrAllocator &OpaqueExprAllocator) {
5647 
5648   QualType LhsT = Lhs->getType();
5649   QualType RhsT = Rhs->getType();
5650 
5651   // C++0x [meta.rel]p4:
5652   //   Given the following function prototype:
5653   //
5654   //     template <class T>
5655   //       typename add_rvalue_reference<T>::type create();
5656   //
5657   //   the predicate condition for a template specialization
5658   //   is_convertible<From, To> shall be satisfied if and only if
5659   //   the return expression in the following code would be
5660   //   well-formed, including any implicit conversions to the return
5661   //   type of the function:
5662   //
5663   //     To test() {
5664   //       return create<From>();
5665   //     }
5666   //
5667   //   Access checking is performed as if in a context unrelated to To and
5668   //   From. Only the validity of the immediate context of the expression
5669   //   of the return-statement (including conversions to the return type)
5670   //   is considered.
5671   //
5672   // We model the initialization as a copy-initialization of a temporary
5673   // of the appropriate type, which for this expression is identical to the
5674   // return statement (since NRVO doesn't apply).
5675 
5676   // Functions aren't allowed to return function or array types.
5677   if (RhsT->isFunctionType() || RhsT->isArrayType())
5678     return ExprError();
5679 
5680   // A function definition requires a complete, non-abstract return type.
5681   if (!Self.isCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT) ||
5682       Self.isAbstractType(Rhs->getTypeLoc().getBeginLoc(), RhsT))
5683     return ExprError();
5684 
5685   // Compute the result of add_rvalue_reference.
5686   if (LhsT->isObjectType() || LhsT->isFunctionType())
5687     LhsT = Self.Context.getRValueReferenceType(LhsT);
5688 
5689   // Build a fake source and destination for initialization.
5690   InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5691   Expr *From = new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5692       OpaqueValueExpr(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5693                       Expr::getValueKindForType(LhsT));
5694   InitializationKind Kind =
5695       InitializationKind::CreateCopy(KeyLoc, SourceLocation());
5696 
5697   // Perform the initialization in an unevaluated context within a SFINAE
5698   // trap at translation unit scope.
5699   EnterExpressionEvaluationContext Unevaluated(
5700       Self, Sema::ExpressionEvaluationContext::Unevaluated);
5701   Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5702   Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5703   InitializationSequence Init(Self, To, Kind, From);
5704   if (Init.Failed())
5705     return ExprError();
5706 
5707   ExprResult Result = Init.Perform(Self, To, Kind, From);
5708   if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5709     return ExprError();
5710 
5711   return Result;
5712 }
5713 
5714 static bool EvaluateBooleanTypeTrait(Sema &S, TypeTrait Kind,
5715                                      SourceLocation KWLoc,
5716                                      ArrayRef<TypeSourceInfo *> Args,
5717                                      SourceLocation RParenLoc,
5718                                      bool IsDependent) {
5719   if (IsDependent)
5720     return false;
5721 
5722   if (Kind <= UTT_Last)
5723     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]);
5724 
5725   // Evaluate ReferenceBindsToTemporary and ReferenceConstructsFromTemporary
5726   // alongside the IsConstructible traits to avoid duplication.
5727   if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary &&
5728       Kind != BTT_ReferenceConstructsFromTemporary &&
5729       Kind != BTT_ReferenceConvertsFromTemporary)
5730     return EvaluateBinaryTypeTrait(S, Kind, Args[0],
5731                                    Args[1], RParenLoc);
5732 
5733   switch (Kind) {
5734   case clang::BTT_ReferenceBindsToTemporary:
5735   case clang::BTT_ReferenceConstructsFromTemporary:
5736   case clang::BTT_ReferenceConvertsFromTemporary:
5737   case clang::TT_IsConstructible:
5738   case clang::TT_IsNothrowConstructible:
5739   case clang::TT_IsTriviallyConstructible: {
5740     // C++11 [meta.unary.prop]:
5741     //   is_trivially_constructible is defined as:
5742     //
5743     //     is_constructible<T, Args...>::value is true and the variable
5744     //     definition for is_constructible, as defined below, is known to call
5745     //     no operation that is not trivial.
5746     //
5747     //   The predicate condition for a template specialization
5748     //   is_constructible<T, Args...> shall be satisfied if and only if the
5749     //   following variable definition would be well-formed for some invented
5750     //   variable t:
5751     //
5752     //     T t(create<Args>()...);
5753     assert(!Args.empty());
5754 
5755     // Precondition: T and all types in the parameter pack Args shall be
5756     // complete types, (possibly cv-qualified) void, or arrays of
5757     // unknown bound.
5758     for (const auto *TSI : Args) {
5759       QualType ArgTy = TSI->getType();
5760       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5761         continue;
5762 
5763       if (S.RequireCompleteType(KWLoc, ArgTy,
5764           diag::err_incomplete_type_used_in_type_trait_expr))
5765         return false;
5766     }
5767 
5768     // Make sure the first argument is not incomplete nor a function type.
5769     QualType T = Args[0]->getType();
5770     if (T->isIncompleteType() || T->isFunctionType())
5771       return false;
5772 
5773     // Make sure the first argument is not an abstract type.
5774     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5775     if (RD && RD->isAbstract())
5776       return false;
5777 
5778     llvm::BumpPtrAllocator OpaqueExprAllocator;
5779     SmallVector<Expr *, 2> ArgExprs;
5780     ArgExprs.reserve(Args.size() - 1);
5781     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5782       QualType ArgTy = Args[I]->getType();
5783       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5784         ArgTy = S.Context.getRValueReferenceType(ArgTy);
5785       ArgExprs.push_back(
5786           new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5787               OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5788                               ArgTy.getNonLValueExprType(S.Context),
5789                               Expr::getValueKindForType(ArgTy)));
5790     }
5791 
5792     // Perform the initialization in an unevaluated context within a SFINAE
5793     // trap at translation unit scope.
5794     EnterExpressionEvaluationContext Unevaluated(
5795         S, Sema::ExpressionEvaluationContext::Unevaluated);
5796     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5797     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5798     InitializedEntity To(
5799         InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5800     InitializationKind InitKind(
5801         Kind == clang::BTT_ReferenceConvertsFromTemporary
5802             ? InitializationKind::CreateCopy(KWLoc, KWLoc)
5803             : InitializationKind::CreateDirect(KWLoc, KWLoc, RParenLoc));
5804     InitializationSequence Init(S, To, InitKind, ArgExprs);
5805     if (Init.Failed())
5806       return false;
5807 
5808     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5809     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5810       return false;
5811 
5812     if (Kind == clang::TT_IsConstructible)
5813       return true;
5814 
5815     if (Kind == clang::BTT_ReferenceBindsToTemporary ||
5816         Kind == clang::BTT_ReferenceConstructsFromTemporary ||
5817         Kind == clang::BTT_ReferenceConvertsFromTemporary) {
5818       if (!T->isReferenceType())
5819         return false;
5820 
5821       if (!Init.isDirectReferenceBinding())
5822         return true;
5823 
5824       if (Kind == clang::BTT_ReferenceBindsToTemporary)
5825         return false;
5826 
5827       QualType U = Args[1]->getType();
5828       if (U->isReferenceType())
5829         return false;
5830 
5831       TypeSourceInfo *TPtr = S.Context.CreateTypeSourceInfo(
5832           S.Context.getPointerType(T.getNonReferenceType()));
5833       TypeSourceInfo *UPtr = S.Context.CreateTypeSourceInfo(
5834           S.Context.getPointerType(U.getNonReferenceType()));
5835       return !CheckConvertibilityForTypeTraits(S, UPtr, TPtr, RParenLoc,
5836                                                OpaqueExprAllocator)
5837                   .isInvalid();
5838     }
5839 
5840     if (Kind == clang::TT_IsNothrowConstructible)
5841       return S.canThrow(Result.get()) == CT_Cannot;
5842 
5843     if (Kind == clang::TT_IsTriviallyConstructible) {
5844       // Under Objective-C ARC and Weak, if the destination has non-trivial
5845       // Objective-C lifetime, this is a non-trivial construction.
5846       if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5847         return false;
5848 
5849       // The initialization succeeded; now make sure there are no non-trivial
5850       // calls.
5851       return !Result.get()->hasNonTrivialCall(S.Context);
5852     }
5853 
5854     llvm_unreachable("unhandled type trait");
5855     return false;
5856   }
5857     default: llvm_unreachable("not a TT");
5858   }
5859 
5860   return false;
5861 }
5862 
5863 namespace {
5864 void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind,
5865                                 SourceLocation KWLoc) {
5866   TypeTrait Replacement;
5867   switch (Kind) {
5868     case UTT_HasNothrowAssign:
5869     case UTT_HasNothrowMoveAssign:
5870       Replacement = BTT_IsNothrowAssignable;
5871       break;
5872     case UTT_HasNothrowCopy:
5873     case UTT_HasNothrowConstructor:
5874       Replacement = TT_IsNothrowConstructible;
5875       break;
5876     case UTT_HasTrivialAssign:
5877     case UTT_HasTrivialMoveAssign:
5878       Replacement = BTT_IsTriviallyAssignable;
5879       break;
5880     case UTT_HasTrivialCopy:
5881       Replacement = UTT_IsTriviallyCopyable;
5882       break;
5883     case UTT_HasTrivialDefaultConstructor:
5884     case UTT_HasTrivialMoveConstructor:
5885       Replacement = TT_IsTriviallyConstructible;
5886       break;
5887     case UTT_HasTrivialDestructor:
5888       Replacement = UTT_IsTriviallyDestructible;
5889       break;
5890     default:
5891       return;
5892   }
5893   S.Diag(KWLoc, diag::warn_deprecated_builtin)
5894     << getTraitSpelling(Kind) << getTraitSpelling(Replacement);
5895 }
5896 }
5897 
5898 bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) {
5899   if (Arity && N != Arity) {
5900     Diag(Loc, diag::err_type_trait_arity)
5901         << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc);
5902     return false;
5903   }
5904 
5905   if (!Arity && N == 0) {
5906     Diag(Loc, diag::err_type_trait_arity)
5907         << 1 << 1 << 1 << (int)N << SourceRange(Loc);
5908     return false;
5909   }
5910   return true;
5911 }
5912 
5913 enum class TypeTraitReturnType {
5914   Bool,
5915 };
5916 
5917 static TypeTraitReturnType GetReturnType(TypeTrait Kind) {
5918   return TypeTraitReturnType::Bool;
5919 }
5920 
5921 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5922                                 ArrayRef<TypeSourceInfo *> Args,
5923                                 SourceLocation RParenLoc) {
5924   if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size()))
5925     return ExprError();
5926 
5927   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5928                                *this, Kind, KWLoc, Args[0]->getType()))
5929     return ExprError();
5930 
5931   DiagnoseBuiltinDeprecation(*this, Kind, KWLoc);
5932 
5933   bool Dependent = false;
5934   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5935     if (Args[I]->getType()->isDependentType()) {
5936       Dependent = true;
5937       break;
5938     }
5939   }
5940 
5941   switch (GetReturnType(Kind)) {
5942   case TypeTraitReturnType::Bool: {
5943     bool Result = EvaluateBooleanTypeTrait(*this, Kind, KWLoc, Args, RParenLoc,
5944                                            Dependent);
5945     return TypeTraitExpr::Create(Context, Context.getLogicalOperationType(),
5946                                  KWLoc, Kind, Args, RParenLoc, Result);
5947   }
5948   }
5949   llvm_unreachable("unhandled type trait return type");
5950 }
5951 
5952 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5953                                 ArrayRef<ParsedType> Args,
5954                                 SourceLocation RParenLoc) {
5955   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5956   ConvertedArgs.reserve(Args.size());
5957 
5958   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5959     TypeSourceInfo *TInfo;
5960     QualType T = GetTypeFromParser(Args[I], &TInfo);
5961     if (!TInfo)
5962       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5963 
5964     ConvertedArgs.push_back(TInfo);
5965   }
5966 
5967   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5968 }
5969 
5970 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, const TypeSourceInfo *Lhs,
5971                                     const TypeSourceInfo *Rhs, SourceLocation KeyLoc) {
5972   QualType LhsT = Lhs->getType();
5973   QualType RhsT = Rhs->getType();
5974 
5975   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5976          "Cannot evaluate traits of dependent types");
5977 
5978   switch(BTT) {
5979   case BTT_IsBaseOf: {
5980     // C++0x [meta.rel]p2
5981     // Base is a base class of Derived without regard to cv-qualifiers or
5982     // Base and Derived are not unions and name the same class type without
5983     // regard to cv-qualifiers.
5984 
5985     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5986     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5987     if (!rhsRecord || !lhsRecord) {
5988       const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5989       const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5990       if (!LHSObjTy || !RHSObjTy)
5991         return false;
5992 
5993       ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5994       ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5995       if (!BaseInterface || !DerivedInterface)
5996         return false;
5997 
5998       if (Self.RequireCompleteType(
5999               Rhs->getTypeLoc().getBeginLoc(), RhsT,
6000               diag::err_incomplete_type_used_in_type_trait_expr))
6001         return false;
6002 
6003       return BaseInterface->isSuperClassOf(DerivedInterface);
6004     }
6005 
6006     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
6007              == (lhsRecord == rhsRecord));
6008 
6009     // Unions are never base classes, and never have base classes.
6010     // It doesn't matter if they are complete or not. See PR#41843
6011     if (lhsRecord && lhsRecord->getDecl()->isUnion())
6012       return false;
6013     if (rhsRecord && rhsRecord->getDecl()->isUnion())
6014       return false;
6015 
6016     if (lhsRecord == rhsRecord)
6017       return true;
6018 
6019     // C++0x [meta.rel]p2:
6020     //   If Base and Derived are class types and are different types
6021     //   (ignoring possible cv-qualifiers) then Derived shall be a
6022     //   complete type.
6023     if (Self.RequireCompleteType(
6024             Rhs->getTypeLoc().getBeginLoc(), RhsT,
6025             diag::err_incomplete_type_used_in_type_trait_expr))
6026       return false;
6027 
6028     return cast<CXXRecordDecl>(rhsRecord->getDecl())
6029       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
6030   }
6031   case BTT_IsSame:
6032     return Self.Context.hasSameType(LhsT, RhsT);
6033   case BTT_TypeCompatible: {
6034     // GCC ignores cv-qualifiers on arrays for this builtin.
6035     Qualifiers LhsQuals, RhsQuals;
6036     QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
6037     QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
6038     return Self.Context.typesAreCompatible(Lhs, Rhs);
6039   }
6040   case BTT_IsConvertible:
6041   case BTT_IsConvertibleTo:
6042   case BTT_IsNothrowConvertible: {
6043     if (RhsT->isVoidType())
6044       return LhsT->isVoidType();
6045     llvm::BumpPtrAllocator OpaqueExprAllocator;
6046     ExprResult Result = CheckConvertibilityForTypeTraits(Self, Lhs, Rhs, KeyLoc,
6047                                                          OpaqueExprAllocator);
6048     if (Result.isInvalid())
6049       return false;
6050 
6051     if (BTT != BTT_IsNothrowConvertible)
6052       return true;
6053 
6054     return Self.canThrow(Result.get()) == CT_Cannot;
6055   }
6056 
6057   case BTT_IsAssignable:
6058   case BTT_IsNothrowAssignable:
6059   case BTT_IsTriviallyAssignable: {
6060     // C++11 [meta.unary.prop]p3:
6061     //   is_trivially_assignable is defined as:
6062     //     is_assignable<T, U>::value is true and the assignment, as defined by
6063     //     is_assignable, is known to call no operation that is not trivial
6064     //
6065     //   is_assignable is defined as:
6066     //     The expression declval<T>() = declval<U>() is well-formed when
6067     //     treated as an unevaluated operand (Clause 5).
6068     //
6069     //   For both, T and U shall be complete types, (possibly cv-qualified)
6070     //   void, or arrays of unknown bound.
6071     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
6072         Self.RequireCompleteType(
6073             Lhs->getTypeLoc().getBeginLoc(), LhsT,
6074             diag::err_incomplete_type_used_in_type_trait_expr))
6075       return false;
6076     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
6077         Self.RequireCompleteType(
6078             Rhs->getTypeLoc().getBeginLoc(), RhsT,
6079             diag::err_incomplete_type_used_in_type_trait_expr))
6080       return false;
6081 
6082     // cv void is never assignable.
6083     if (LhsT->isVoidType() || RhsT->isVoidType())
6084       return false;
6085 
6086     // Build expressions that emulate the effect of declval<T>() and
6087     // declval<U>().
6088     if (LhsT->isObjectType() || LhsT->isFunctionType())
6089       LhsT = Self.Context.getRValueReferenceType(LhsT);
6090     if (RhsT->isObjectType() || RhsT->isFunctionType())
6091       RhsT = Self.Context.getRValueReferenceType(RhsT);
6092     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
6093                         Expr::getValueKindForType(LhsT));
6094     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
6095                         Expr::getValueKindForType(RhsT));
6096 
6097     // Attempt the assignment in an unevaluated context within a SFINAE
6098     // trap at translation unit scope.
6099     EnterExpressionEvaluationContext Unevaluated(
6100         Self, Sema::ExpressionEvaluationContext::Unevaluated);
6101     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
6102     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
6103     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
6104                                         &Rhs);
6105     if (Result.isInvalid())
6106       return false;
6107 
6108     // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
6109     Self.CheckUnusedVolatileAssignment(Result.get());
6110 
6111     if (SFINAE.hasErrorOccurred())
6112       return false;
6113 
6114     if (BTT == BTT_IsAssignable)
6115       return true;
6116 
6117     if (BTT == BTT_IsNothrowAssignable)
6118       return Self.canThrow(Result.get()) == CT_Cannot;
6119 
6120     if (BTT == BTT_IsTriviallyAssignable) {
6121       // Under Objective-C ARC and Weak, if the destination has non-trivial
6122       // Objective-C lifetime, this is a non-trivial assignment.
6123       if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
6124         return false;
6125 
6126       return !Result.get()->hasNonTrivialCall(Self.Context);
6127     }
6128 
6129     llvm_unreachable("unhandled type trait");
6130     return false;
6131   }
6132   case BTT_IsLayoutCompatible: {
6133     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType())
6134       Self.RequireCompleteType(Lhs->getTypeLoc().getBeginLoc(), LhsT,
6135                                diag::err_incomplete_type);
6136     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType())
6137       Self.RequireCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT,
6138                                diag::err_incomplete_type);
6139 
6140     DiagnoseVLAInCXXTypeTrait(Self, Lhs, tok::kw___is_layout_compatible);
6141     DiagnoseVLAInCXXTypeTrait(Self, Rhs, tok::kw___is_layout_compatible);
6142 
6143     return Self.IsLayoutCompatible(LhsT, RhsT);
6144   }
6145   case BTT_IsPointerInterconvertibleBaseOf: {
6146     if (LhsT->isStructureOrClassType() && RhsT->isStructureOrClassType() &&
6147         !Self.getASTContext().hasSameUnqualifiedType(LhsT, RhsT)) {
6148       Self.RequireCompleteType(Rhs->getTypeLoc().getBeginLoc(), RhsT,
6149                                diag::err_incomplete_type);
6150     }
6151 
6152     DiagnoseVLAInCXXTypeTrait(Self, Lhs,
6153                               tok::kw___is_pointer_interconvertible_base_of);
6154     DiagnoseVLAInCXXTypeTrait(Self, Rhs,
6155                               tok::kw___is_pointer_interconvertible_base_of);
6156 
6157     return Self.IsPointerInterconvertibleBaseOf(Lhs, Rhs);
6158   }
6159   case BTT_IsDeducible: {
6160     const auto *TSTToBeDeduced = cast<DeducedTemplateSpecializationType>(LhsT);
6161     sema::TemplateDeductionInfo Info(KeyLoc);
6162     return Self.DeduceTemplateArgumentsFromType(
6163                TSTToBeDeduced->getTemplateName().getAsTemplateDecl(), RhsT,
6164                Info) == TemplateDeductionResult::Success;
6165   }
6166   default:
6167     llvm_unreachable("not a BTT");
6168   }
6169   llvm_unreachable("Unknown type trait or not implemented");
6170 }
6171 
6172 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
6173                                      SourceLocation KWLoc,
6174                                      ParsedType Ty,
6175                                      Expr* DimExpr,
6176                                      SourceLocation RParen) {
6177   TypeSourceInfo *TSInfo;
6178   QualType T = GetTypeFromParser(Ty, &TSInfo);
6179   if (!TSInfo)
6180     TSInfo = Context.getTrivialTypeSourceInfo(T);
6181 
6182   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
6183 }
6184 
6185 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
6186                                            QualType T, Expr *DimExpr,
6187                                            SourceLocation KeyLoc) {
6188   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
6189 
6190   switch(ATT) {
6191   case ATT_ArrayRank:
6192     if (T->isArrayType()) {
6193       unsigned Dim = 0;
6194       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
6195         ++Dim;
6196         T = AT->getElementType();
6197       }
6198       return Dim;
6199     }
6200     return 0;
6201 
6202   case ATT_ArrayExtent: {
6203     llvm::APSInt Value;
6204     uint64_t Dim;
6205     if (Self.VerifyIntegerConstantExpression(
6206                 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
6207             .isInvalid())
6208       return 0;
6209     if (Value.isSigned() && Value.isNegative()) {
6210       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
6211         << DimExpr->getSourceRange();
6212       return 0;
6213     }
6214     Dim = Value.getLimitedValue();
6215 
6216     if (T->isArrayType()) {
6217       unsigned D = 0;
6218       bool Matched = false;
6219       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
6220         if (Dim == D) {
6221           Matched = true;
6222           break;
6223         }
6224         ++D;
6225         T = AT->getElementType();
6226       }
6227 
6228       if (Matched && T->isArrayType()) {
6229         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
6230           return CAT->getLimitedSize();
6231       }
6232     }
6233     return 0;
6234   }
6235   }
6236   llvm_unreachable("Unknown type trait or not implemented");
6237 }
6238 
6239 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
6240                                      SourceLocation KWLoc,
6241                                      TypeSourceInfo *TSInfo,
6242                                      Expr* DimExpr,
6243                                      SourceLocation RParen) {
6244   QualType T = TSInfo->getType();
6245 
6246   // FIXME: This should likely be tracked as an APInt to remove any host
6247   // assumptions about the width of size_t on the target.
6248   uint64_t Value = 0;
6249   if (!T->isDependentType())
6250     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
6251 
6252   // While the specification for these traits from the Embarcadero C++
6253   // compiler's documentation says the return type is 'unsigned int', Clang
6254   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
6255   // compiler, there is no difference. On several other platforms this is an
6256   // important distinction.
6257   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
6258                                           RParen, Context.getSizeType());
6259 }
6260 
6261 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
6262                                       SourceLocation KWLoc,
6263                                       Expr *Queried,
6264                                       SourceLocation RParen) {
6265   // If error parsing the expression, ignore.
6266   if (!Queried)
6267     return ExprError();
6268 
6269   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
6270 
6271   return Result;
6272 }
6273 
6274 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
6275   switch (ET) {
6276   case ET_IsLValueExpr: return E->isLValue();
6277   case ET_IsRValueExpr:
6278     return E->isPRValue();
6279   }
6280   llvm_unreachable("Expression trait not covered by switch");
6281 }
6282 
6283 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
6284                                       SourceLocation KWLoc,
6285                                       Expr *Queried,
6286                                       SourceLocation RParen) {
6287   if (Queried->isTypeDependent()) {
6288     // Delay type-checking for type-dependent expressions.
6289   } else if (Queried->hasPlaceholderType()) {
6290     ExprResult PE = CheckPlaceholderExpr(Queried);
6291     if (PE.isInvalid()) return ExprError();
6292     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
6293   }
6294 
6295   bool Value = EvaluateExpressionTrait(ET, Queried);
6296 
6297   return new (Context)
6298       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
6299 }
6300 
6301 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
6302                                             ExprValueKind &VK,
6303                                             SourceLocation Loc,
6304                                             bool isIndirect) {
6305   assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&
6306          "placeholders should have been weeded out by now");
6307 
6308   // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
6309   // temporary materialization conversion otherwise.
6310   if (isIndirect)
6311     LHS = DefaultLvalueConversion(LHS.get());
6312   else if (LHS.get()->isPRValue())
6313     LHS = TemporaryMaterializationConversion(LHS.get());
6314   if (LHS.isInvalid())
6315     return QualType();
6316 
6317   // The RHS always undergoes lvalue conversions.
6318   RHS = DefaultLvalueConversion(RHS.get());
6319   if (RHS.isInvalid()) return QualType();
6320 
6321   const char *OpSpelling = isIndirect ? "->*" : ".*";
6322   // C++ 5.5p2
6323   //   The binary operator .* [p3: ->*] binds its second operand, which shall
6324   //   be of type "pointer to member of T" (where T is a completely-defined
6325   //   class type) [...]
6326   QualType RHSType = RHS.get()->getType();
6327   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
6328   if (!MemPtr) {
6329     Diag(Loc, diag::err_bad_memptr_rhs)
6330       << OpSpelling << RHSType << RHS.get()->getSourceRange();
6331     return QualType();
6332   }
6333 
6334   QualType Class(MemPtr->getClass(), 0);
6335 
6336   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
6337   // member pointer points must be completely-defined. However, there is no
6338   // reason for this semantic distinction, and the rule is not enforced by
6339   // other compilers. Therefore, we do not check this property, as it is
6340   // likely to be considered a defect.
6341 
6342   // C++ 5.5p2
6343   //   [...] to its first operand, which shall be of class T or of a class of
6344   //   which T is an unambiguous and accessible base class. [p3: a pointer to
6345   //   such a class]
6346   QualType LHSType = LHS.get()->getType();
6347   if (isIndirect) {
6348     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
6349       LHSType = Ptr->getPointeeType();
6350     else {
6351       Diag(Loc, diag::err_bad_memptr_lhs)
6352         << OpSpelling << 1 << LHSType
6353         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
6354       return QualType();
6355     }
6356   }
6357 
6358   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
6359     // If we want to check the hierarchy, we need a complete type.
6360     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
6361                             OpSpelling, (int)isIndirect)) {
6362       return QualType();
6363     }
6364 
6365     if (!IsDerivedFrom(Loc, LHSType, Class)) {
6366       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
6367         << (int)isIndirect << LHS.get()->getType();
6368       return QualType();
6369     }
6370 
6371     CXXCastPath BasePath;
6372     if (CheckDerivedToBaseConversion(
6373             LHSType, Class, Loc,
6374             SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
6375             &BasePath))
6376       return QualType();
6377 
6378     // Cast LHS to type of use.
6379     QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
6380     if (isIndirect)
6381       UseType = Context.getPointerType(UseType);
6382     ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
6383     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
6384                             &BasePath);
6385   }
6386 
6387   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
6388     // Diagnose use of pointer-to-member type which when used as
6389     // the functional cast in a pointer-to-member expression.
6390     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
6391      return QualType();
6392   }
6393 
6394   // C++ 5.5p2
6395   //   The result is an object or a function of the type specified by the
6396   //   second operand.
6397   // The cv qualifiers are the union of those in the pointer and the left side,
6398   // in accordance with 5.5p5 and 5.2.5.
6399   QualType Result = MemPtr->getPointeeType();
6400   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
6401 
6402   // C++0x [expr.mptr.oper]p6:
6403   //   In a .* expression whose object expression is an rvalue, the program is
6404   //   ill-formed if the second operand is a pointer to member function with
6405   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
6406   //   expression is an lvalue, the program is ill-formed if the second operand
6407   //   is a pointer to member function with ref-qualifier &&.
6408   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
6409     switch (Proto->getRefQualifier()) {
6410     case RQ_None:
6411       // Do nothing
6412       break;
6413 
6414     case RQ_LValue:
6415       if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
6416         // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
6417         // is (exactly) 'const'.
6418         if (Proto->isConst() && !Proto->isVolatile())
6419           Diag(Loc, getLangOpts().CPlusPlus20
6420                         ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
6421                         : diag::ext_pointer_to_const_ref_member_on_rvalue);
6422         else
6423           Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6424               << RHSType << 1 << LHS.get()->getSourceRange();
6425       }
6426       break;
6427 
6428     case RQ_RValue:
6429       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
6430         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6431           << RHSType << 0 << LHS.get()->getSourceRange();
6432       break;
6433     }
6434   }
6435 
6436   // C++ [expr.mptr.oper]p6:
6437   //   The result of a .* expression whose second operand is a pointer
6438   //   to a data member is of the same value category as its
6439   //   first operand. The result of a .* expression whose second
6440   //   operand is a pointer to a member function is a prvalue. The
6441   //   result of an ->* expression is an lvalue if its second operand
6442   //   is a pointer to data member and a prvalue otherwise.
6443   if (Result->isFunctionType()) {
6444     VK = VK_PRValue;
6445     return Context.BoundMemberTy;
6446   } else if (isIndirect) {
6447     VK = VK_LValue;
6448   } else {
6449     VK = LHS.get()->getValueKind();
6450   }
6451 
6452   return Result;
6453 }
6454 
6455 /// Try to convert a type to another according to C++11 5.16p3.
6456 ///
6457 /// This is part of the parameter validation for the ? operator. If either
6458 /// value operand is a class type, the two operands are attempted to be
6459 /// converted to each other. This function does the conversion in one direction.
6460 /// It returns true if the program is ill-formed and has already been diagnosed
6461 /// as such.
6462 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
6463                                 SourceLocation QuestionLoc,
6464                                 bool &HaveConversion,
6465                                 QualType &ToType) {
6466   HaveConversion = false;
6467   ToType = To->getType();
6468 
6469   InitializationKind Kind =
6470       InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
6471   // C++11 5.16p3
6472   //   The process for determining whether an operand expression E1 of type T1
6473   //   can be converted to match an operand expression E2 of type T2 is defined
6474   //   as follows:
6475   //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
6476   //      implicitly converted to type "lvalue reference to T2", subject to the
6477   //      constraint that in the conversion the reference must bind directly to
6478   //      an lvalue.
6479   //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
6480   //      implicitly converted to the type "rvalue reference to R2", subject to
6481   //      the constraint that the reference must bind directly.
6482   if (To->isGLValue()) {
6483     QualType T = Self.Context.getReferenceQualifiedType(To);
6484     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6485 
6486     InitializationSequence InitSeq(Self, Entity, Kind, From);
6487     if (InitSeq.isDirectReferenceBinding()) {
6488       ToType = T;
6489       HaveConversion = true;
6490       return false;
6491     }
6492 
6493     if (InitSeq.isAmbiguous())
6494       return InitSeq.Diagnose(Self, Entity, Kind, From);
6495   }
6496 
6497   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
6498   //      -- if E1 and E2 have class type, and the underlying class types are
6499   //         the same or one is a base class of the other:
6500   QualType FTy = From->getType();
6501   QualType TTy = To->getType();
6502   const RecordType *FRec = FTy->getAs<RecordType>();
6503   const RecordType *TRec = TTy->getAs<RecordType>();
6504   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
6505                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
6506   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
6507                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
6508     //         E1 can be converted to match E2 if the class of T2 is the
6509     //         same type as, or a base class of, the class of T1, and
6510     //         [cv2 > cv1].
6511     if (FRec == TRec || FDerivedFromT) {
6512       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
6513         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6514         InitializationSequence InitSeq(Self, Entity, Kind, From);
6515         if (InitSeq) {
6516           HaveConversion = true;
6517           return false;
6518         }
6519 
6520         if (InitSeq.isAmbiguous())
6521           return InitSeq.Diagnose(Self, Entity, Kind, From);
6522       }
6523     }
6524 
6525     return false;
6526   }
6527 
6528   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
6529   //        implicitly converted to the type that expression E2 would have
6530   //        if E2 were converted to an rvalue (or the type it has, if E2 is
6531   //        an rvalue).
6532   //
6533   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
6534   // to the array-to-pointer or function-to-pointer conversions.
6535   TTy = TTy.getNonLValueExprType(Self.Context);
6536 
6537   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6538   InitializationSequence InitSeq(Self, Entity, Kind, From);
6539   HaveConversion = !InitSeq.Failed();
6540   ToType = TTy;
6541   if (InitSeq.isAmbiguous())
6542     return InitSeq.Diagnose(Self, Entity, Kind, From);
6543 
6544   return false;
6545 }
6546 
6547 /// Try to find a common type for two according to C++0x 5.16p5.
6548 ///
6549 /// This is part of the parameter validation for the ? operator. If either
6550 /// value operand is a class type, overload resolution is used to find a
6551 /// conversion to a common type.
6552 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
6553                                     SourceLocation QuestionLoc) {
6554   Expr *Args[2] = { LHS.get(), RHS.get() };
6555   OverloadCandidateSet CandidateSet(QuestionLoc,
6556                                     OverloadCandidateSet::CSK_Operator);
6557   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
6558                                     CandidateSet);
6559 
6560   OverloadCandidateSet::iterator Best;
6561   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
6562     case OR_Success: {
6563       // We found a match. Perform the conversions on the arguments and move on.
6564       ExprResult LHSRes = Self.PerformImplicitConversion(
6565           LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
6566           Sema::AA_Converting);
6567       if (LHSRes.isInvalid())
6568         break;
6569       LHS = LHSRes;
6570 
6571       ExprResult RHSRes = Self.PerformImplicitConversion(
6572           RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
6573           Sema::AA_Converting);
6574       if (RHSRes.isInvalid())
6575         break;
6576       RHS = RHSRes;
6577       if (Best->Function)
6578         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
6579       return false;
6580     }
6581 
6582     case OR_No_Viable_Function:
6583 
6584       // Emit a better diagnostic if one of the expressions is a null pointer
6585       // constant and the other is a pointer type. In this case, the user most
6586       // likely forgot to take the address of the other expression.
6587       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6588         return true;
6589 
6590       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6591         << LHS.get()->getType() << RHS.get()->getType()
6592         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6593       return true;
6594 
6595     case OR_Ambiguous:
6596       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6597         << LHS.get()->getType() << RHS.get()->getType()
6598         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6599       // FIXME: Print the possible common types by printing the return types of
6600       // the viable candidates.
6601       break;
6602 
6603     case OR_Deleted:
6604       llvm_unreachable("Conditional operator has only built-in overloads");
6605   }
6606   return true;
6607 }
6608 
6609 /// Perform an "extended" implicit conversion as returned by
6610 /// TryClassUnification.
6611 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6612   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6613   InitializationKind Kind =
6614       InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6615   Expr *Arg = E.get();
6616   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6617   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6618   if (Result.isInvalid())
6619     return true;
6620 
6621   E = Result;
6622   return false;
6623 }
6624 
6625 // Check the condition operand of ?: to see if it is valid for the GCC
6626 // extension.
6627 static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6628                                                  QualType CondTy) {
6629   if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6630     return false;
6631   const QualType EltTy =
6632       cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6633   assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6634   return EltTy->isIntegralType(Ctx);
6635 }
6636 
6637 static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx,
6638                                                          QualType CondTy) {
6639   if (!CondTy->isSveVLSBuiltinType())
6640     return false;
6641   const QualType EltTy =
6642       cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx);
6643   assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6644   return EltTy->isIntegralType(Ctx);
6645 }
6646 
6647 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6648                                            ExprResult &RHS,
6649                                            SourceLocation QuestionLoc) {
6650   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6651   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6652 
6653   QualType CondType = Cond.get()->getType();
6654   const auto *CondVT = CondType->castAs<VectorType>();
6655   QualType CondElementTy = CondVT->getElementType();
6656   unsigned CondElementCount = CondVT->getNumElements();
6657   QualType LHSType = LHS.get()->getType();
6658   const auto *LHSVT = LHSType->getAs<VectorType>();
6659   QualType RHSType = RHS.get()->getType();
6660   const auto *RHSVT = RHSType->getAs<VectorType>();
6661 
6662   QualType ResultType;
6663 
6664 
6665   if (LHSVT && RHSVT) {
6666     if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6667       Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6668           << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6669       return {};
6670     }
6671 
6672     // If both are vector types, they must be the same type.
6673     if (!Context.hasSameType(LHSType, RHSType)) {
6674       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6675           << LHSType << RHSType;
6676       return {};
6677     }
6678     ResultType = Context.getCommonSugaredType(LHSType, RHSType);
6679   } else if (LHSVT || RHSVT) {
6680     ResultType = CheckVectorOperands(
6681         LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6682         /*AllowBoolConversions*/ false,
6683         /*AllowBoolOperation*/ true,
6684         /*ReportInvalid*/ true);
6685     if (ResultType.isNull())
6686       return {};
6687   } else {
6688     // Both are scalar.
6689     LHSType = LHSType.getUnqualifiedType();
6690     RHSType = RHSType.getUnqualifiedType();
6691     QualType ResultElementTy =
6692         Context.hasSameType(LHSType, RHSType)
6693             ? Context.getCommonSugaredType(LHSType, RHSType)
6694             : UsualArithmeticConversions(LHS, RHS, QuestionLoc,
6695                                          ACK_Conditional);
6696 
6697     if (ResultElementTy->isEnumeralType()) {
6698       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6699           << ResultElementTy;
6700       return {};
6701     }
6702     if (CondType->isExtVectorType())
6703       ResultType =
6704           Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6705     else
6706       ResultType = Context.getVectorType(
6707           ResultElementTy, CondVT->getNumElements(), VectorKind::Generic);
6708 
6709     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6710     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6711   }
6712 
6713   assert(!ResultType.isNull() && ResultType->isVectorType() &&
6714          (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6715          "Result should have been a vector type");
6716   auto *ResultVectorTy = ResultType->castAs<VectorType>();
6717   QualType ResultElementTy = ResultVectorTy->getElementType();
6718   unsigned ResultElementCount = ResultVectorTy->getNumElements();
6719 
6720   if (ResultElementCount != CondElementCount) {
6721     Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6722                                                          << ResultType;
6723     return {};
6724   }
6725 
6726   if (Context.getTypeSize(ResultElementTy) !=
6727       Context.getTypeSize(CondElementTy)) {
6728     Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6729                                                                  << ResultType;
6730     return {};
6731   }
6732 
6733   return ResultType;
6734 }
6735 
6736 QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond,
6737                                                    ExprResult &LHS,
6738                                                    ExprResult &RHS,
6739                                                    SourceLocation QuestionLoc) {
6740   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6741   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6742 
6743   QualType CondType = Cond.get()->getType();
6744   const auto *CondBT = CondType->castAs<BuiltinType>();
6745   QualType CondElementTy = CondBT->getSveEltType(Context);
6746   llvm::ElementCount CondElementCount =
6747       Context.getBuiltinVectorTypeInfo(CondBT).EC;
6748 
6749   QualType LHSType = LHS.get()->getType();
6750   const auto *LHSBT =
6751       LHSType->isSveVLSBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr;
6752   QualType RHSType = RHS.get()->getType();
6753   const auto *RHSBT =
6754       RHSType->isSveVLSBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr;
6755 
6756   QualType ResultType;
6757 
6758   if (LHSBT && RHSBT) {
6759     // If both are sizeless vector types, they must be the same type.
6760     if (!Context.hasSameType(LHSType, RHSType)) {
6761       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6762           << LHSType << RHSType;
6763       return QualType();
6764     }
6765     ResultType = LHSType;
6766   } else if (LHSBT || RHSBT) {
6767     ResultType = CheckSizelessVectorOperands(
6768         LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional);
6769     if (ResultType.isNull())
6770       return QualType();
6771   } else {
6772     // Both are scalar so splat
6773     QualType ResultElementTy;
6774     LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6775     RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6776 
6777     if (Context.hasSameType(LHSType, RHSType))
6778       ResultElementTy = LHSType;
6779     else
6780       ResultElementTy =
6781           UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6782 
6783     if (ResultElementTy->isEnumeralType()) {
6784       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6785           << ResultElementTy;
6786       return QualType();
6787     }
6788 
6789     ResultType = Context.getScalableVectorType(
6790         ResultElementTy, CondElementCount.getKnownMinValue());
6791 
6792     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6793     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6794   }
6795 
6796   assert(!ResultType.isNull() && ResultType->isSveVLSBuiltinType() &&
6797          "Result should have been a vector type");
6798   auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>();
6799   QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context);
6800   llvm::ElementCount ResultElementCount =
6801       Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC;
6802 
6803   if (ResultElementCount != CondElementCount) {
6804     Diag(QuestionLoc, diag::err_conditional_vector_size)
6805         << CondType << ResultType;
6806     return QualType();
6807   }
6808 
6809   if (Context.getTypeSize(ResultElementTy) !=
6810       Context.getTypeSize(CondElementTy)) {
6811     Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6812         << CondType << ResultType;
6813     return QualType();
6814   }
6815 
6816   return ResultType;
6817 }
6818 
6819 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6820                                            ExprResult &RHS, ExprValueKind &VK,
6821                                            ExprObjectKind &OK,
6822                                            SourceLocation QuestionLoc) {
6823   // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6824   // pointers.
6825 
6826   // Assume r-value.
6827   VK = VK_PRValue;
6828   OK = OK_Ordinary;
6829   bool IsVectorConditional =
6830       isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6831 
6832   bool IsSizelessVectorConditional =
6833       isValidSizelessVectorForConditionalCondition(Context,
6834                                                    Cond.get()->getType());
6835 
6836   // C++11 [expr.cond]p1
6837   //   The first expression is contextually converted to bool.
6838   if (!Cond.get()->isTypeDependent()) {
6839     ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional
6840                              ? DefaultFunctionArrayLvalueConversion(Cond.get())
6841                              : CheckCXXBooleanCondition(Cond.get());
6842     if (CondRes.isInvalid())
6843       return QualType();
6844     Cond = CondRes;
6845   } else {
6846     // To implement C++, the first expression typically doesn't alter the result
6847     // type of the conditional, however the GCC compatible vector extension
6848     // changes the result type to be that of the conditional. Since we cannot
6849     // know if this is a vector extension here, delay the conversion of the
6850     // LHS/RHS below until later.
6851     return Context.DependentTy;
6852   }
6853 
6854 
6855   // Either of the arguments dependent?
6856   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6857     return Context.DependentTy;
6858 
6859   // C++11 [expr.cond]p2
6860   //   If either the second or the third operand has type (cv) void, ...
6861   QualType LTy = LHS.get()->getType();
6862   QualType RTy = RHS.get()->getType();
6863   bool LVoid = LTy->isVoidType();
6864   bool RVoid = RTy->isVoidType();
6865   if (LVoid || RVoid) {
6866     //   ... one of the following shall hold:
6867     //   -- The second or the third operand (but not both) is a (possibly
6868     //      parenthesized) throw-expression; the result is of the type
6869     //      and value category of the other.
6870     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6871     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6872 
6873     // Void expressions aren't legal in the vector-conditional expressions.
6874     if (IsVectorConditional) {
6875       SourceRange DiagLoc =
6876           LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6877       bool IsThrow = LVoid ? LThrow : RThrow;
6878       Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6879           << DiagLoc << IsThrow;
6880       return QualType();
6881     }
6882 
6883     if (LThrow != RThrow) {
6884       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6885       VK = NonThrow->getValueKind();
6886       // DR (no number yet): the result is a bit-field if the
6887       // non-throw-expression operand is a bit-field.
6888       OK = NonThrow->getObjectKind();
6889       return NonThrow->getType();
6890     }
6891 
6892     //   -- Both the second and third operands have type void; the result is of
6893     //      type void and is a prvalue.
6894     if (LVoid && RVoid)
6895       return Context.getCommonSugaredType(LTy, RTy);
6896 
6897     // Neither holds, error.
6898     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6899       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6900       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6901     return QualType();
6902   }
6903 
6904   // Neither is void.
6905   if (IsVectorConditional)
6906     return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6907 
6908   if (IsSizelessVectorConditional)
6909     return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6910 
6911   // WebAssembly tables are not allowed as conditional LHS or RHS.
6912   if (LTy->isWebAssemblyTableType() || RTy->isWebAssemblyTableType()) {
6913     Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
6914         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6915     return QualType();
6916   }
6917 
6918   // C++11 [expr.cond]p3
6919   //   Otherwise, if the second and third operand have different types, and
6920   //   either has (cv) class type [...] an attempt is made to convert each of
6921   //   those operands to the type of the other.
6922   if (!Context.hasSameType(LTy, RTy) &&
6923       (LTy->isRecordType() || RTy->isRecordType())) {
6924     // These return true if a single direction is already ambiguous.
6925     QualType L2RType, R2LType;
6926     bool HaveL2R, HaveR2L;
6927     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6928       return QualType();
6929     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6930       return QualType();
6931 
6932     //   If both can be converted, [...] the program is ill-formed.
6933     if (HaveL2R && HaveR2L) {
6934       Diag(QuestionLoc, diag::err_conditional_ambiguous)
6935         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6936       return QualType();
6937     }
6938 
6939     //   If exactly one conversion is possible, that conversion is applied to
6940     //   the chosen operand and the converted operands are used in place of the
6941     //   original operands for the remainder of this section.
6942     if (HaveL2R) {
6943       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6944         return QualType();
6945       LTy = LHS.get()->getType();
6946     } else if (HaveR2L) {
6947       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6948         return QualType();
6949       RTy = RHS.get()->getType();
6950     }
6951   }
6952 
6953   // C++11 [expr.cond]p3
6954   //   if both are glvalues of the same value category and the same type except
6955   //   for cv-qualification, an attempt is made to convert each of those
6956   //   operands to the type of the other.
6957   // FIXME:
6958   //   Resolving a defect in P0012R1: we extend this to cover all cases where
6959   //   one of the operands is reference-compatible with the other, in order
6960   //   to support conditionals between functions differing in noexcept. This
6961   //   will similarly cover difference in array bounds after P0388R4.
6962   // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6963   //   that instead?
6964   ExprValueKind LVK = LHS.get()->getValueKind();
6965   ExprValueKind RVK = RHS.get()->getValueKind();
6966   if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
6967     // DerivedToBase was already handled by the class-specific case above.
6968     // FIXME: Should we allow ObjC conversions here?
6969     const ReferenceConversions AllowedConversions =
6970         ReferenceConversions::Qualification |
6971         ReferenceConversions::NestedQualification |
6972         ReferenceConversions::Function;
6973 
6974     ReferenceConversions RefConv;
6975     if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6976             Ref_Compatible &&
6977         !(RefConv & ~AllowedConversions) &&
6978         // [...] subject to the constraint that the reference must bind
6979         // directly [...]
6980         !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6981       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6982       RTy = RHS.get()->getType();
6983     } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6984                    Ref_Compatible &&
6985                !(RefConv & ~AllowedConversions) &&
6986                !LHS.get()->refersToBitField() &&
6987                !LHS.get()->refersToVectorElement()) {
6988       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6989       LTy = LHS.get()->getType();
6990     }
6991   }
6992 
6993   // C++11 [expr.cond]p4
6994   //   If the second and third operands are glvalues of the same value
6995   //   category and have the same type, the result is of that type and
6996   //   value category and it is a bit-field if the second or the third
6997   //   operand is a bit-field, or if both are bit-fields.
6998   // We only extend this to bitfields, not to the crazy other kinds of
6999   // l-values.
7000   bool Same = Context.hasSameType(LTy, RTy);
7001   if (Same && LVK == RVK && LVK != VK_PRValue &&
7002       LHS.get()->isOrdinaryOrBitFieldObject() &&
7003       RHS.get()->isOrdinaryOrBitFieldObject()) {
7004     VK = LHS.get()->getValueKind();
7005     if (LHS.get()->getObjectKind() == OK_BitField ||
7006         RHS.get()->getObjectKind() == OK_BitField)
7007       OK = OK_BitField;
7008     return Context.getCommonSugaredType(LTy, RTy);
7009   }
7010 
7011   // C++11 [expr.cond]p5
7012   //   Otherwise, the result is a prvalue. If the second and third operands
7013   //   do not have the same type, and either has (cv) class type, ...
7014   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
7015     //   ... overload resolution is used to determine the conversions (if any)
7016     //   to be applied to the operands. If the overload resolution fails, the
7017     //   program is ill-formed.
7018     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
7019       return QualType();
7020   }
7021 
7022   // C++11 [expr.cond]p6
7023   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
7024   //   conversions are performed on the second and third operands.
7025   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
7026   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
7027   if (LHS.isInvalid() || RHS.isInvalid())
7028     return QualType();
7029   LTy = LHS.get()->getType();
7030   RTy = RHS.get()->getType();
7031 
7032   //   After those conversions, one of the following shall hold:
7033   //   -- The second and third operands have the same type; the result
7034   //      is of that type. If the operands have class type, the result
7035   //      is a prvalue temporary of the result type, which is
7036   //      copy-initialized from either the second operand or the third
7037   //      operand depending on the value of the first operand.
7038   if (Context.hasSameType(LTy, RTy)) {
7039     if (LTy->isRecordType()) {
7040       // The operands have class type. Make a temporary copy.
7041       ExprResult LHSCopy = PerformCopyInitialization(
7042           InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS);
7043       if (LHSCopy.isInvalid())
7044         return QualType();
7045 
7046       ExprResult RHSCopy = PerformCopyInitialization(
7047           InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS);
7048       if (RHSCopy.isInvalid())
7049         return QualType();
7050 
7051       LHS = LHSCopy;
7052       RHS = RHSCopy;
7053     }
7054     return Context.getCommonSugaredType(LTy, RTy);
7055   }
7056 
7057   // Extension: conditional operator involving vector types.
7058   if (LTy->isVectorType() || RTy->isVectorType())
7059     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
7060                                /*AllowBothBool*/ true,
7061                                /*AllowBoolConversions*/ false,
7062                                /*AllowBoolOperation*/ false,
7063                                /*ReportInvalid*/ true);
7064 
7065   //   -- The second and third operands have arithmetic or enumeration type;
7066   //      the usual arithmetic conversions are performed to bring them to a
7067   //      common type, and the result is of that type.
7068   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
7069     QualType ResTy =
7070         UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
7071     if (LHS.isInvalid() || RHS.isInvalid())
7072       return QualType();
7073     if (ResTy.isNull()) {
7074       Diag(QuestionLoc,
7075            diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
7076         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7077       return QualType();
7078     }
7079 
7080     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
7081     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
7082 
7083     return ResTy;
7084   }
7085 
7086   //   -- The second and third operands have pointer type, or one has pointer
7087   //      type and the other is a null pointer constant, or both are null
7088   //      pointer constants, at least one of which is non-integral; pointer
7089   //      conversions and qualification conversions are performed to bring them
7090   //      to their composite pointer type. The result is of the composite
7091   //      pointer type.
7092   //   -- The second and third operands have pointer to member type, or one has
7093   //      pointer to member type and the other is a null pointer constant;
7094   //      pointer to member conversions and qualification conversions are
7095   //      performed to bring them to a common type, whose cv-qualification
7096   //      shall match the cv-qualification of either the second or the third
7097   //      operand. The result is of the common type.
7098   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
7099   if (!Composite.isNull())
7100     return Composite;
7101 
7102   // Similarly, attempt to find composite type of two objective-c pointers.
7103   Composite = ObjC().FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
7104   if (LHS.isInvalid() || RHS.isInvalid())
7105     return QualType();
7106   if (!Composite.isNull())
7107     return Composite;
7108 
7109   // Check if we are using a null with a non-pointer type.
7110   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
7111     return QualType();
7112 
7113   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
7114     << LHS.get()->getType() << RHS.get()->getType()
7115     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7116   return QualType();
7117 }
7118 
7119 QualType Sema::FindCompositePointerType(SourceLocation Loc,
7120                                         Expr *&E1, Expr *&E2,
7121                                         bool ConvertArgs) {
7122   assert(getLangOpts().CPlusPlus && "This function assumes C++");
7123 
7124   // C++1z [expr]p14:
7125   //   The composite pointer type of two operands p1 and p2 having types T1
7126   //   and T2
7127   QualType T1 = E1->getType(), T2 = E2->getType();
7128 
7129   //   where at least one is a pointer or pointer to member type or
7130   //   std::nullptr_t is:
7131   bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
7132                          T1->isNullPtrType();
7133   bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
7134                          T2->isNullPtrType();
7135   if (!T1IsPointerLike && !T2IsPointerLike)
7136     return QualType();
7137 
7138   //   - if both p1 and p2 are null pointer constants, std::nullptr_t;
7139   // This can't actually happen, following the standard, but we also use this
7140   // to implement the end of [expr.conv], which hits this case.
7141   //
7142   //   - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
7143   if (T1IsPointerLike &&
7144       E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
7145     if (ConvertArgs)
7146       E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
7147                                          ? CK_NullToMemberPointer
7148                                          : CK_NullToPointer).get();
7149     return T1;
7150   }
7151   if (T2IsPointerLike &&
7152       E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
7153     if (ConvertArgs)
7154       E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
7155                                          ? CK_NullToMemberPointer
7156                                          : CK_NullToPointer).get();
7157     return T2;
7158   }
7159 
7160   // Now both have to be pointers or member pointers.
7161   if (!T1IsPointerLike || !T2IsPointerLike)
7162     return QualType();
7163   assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
7164          "nullptr_t should be a null pointer constant");
7165 
7166   struct Step {
7167     enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
7168     // Qualifiers to apply under the step kind.
7169     Qualifiers Quals;
7170     /// The class for a pointer-to-member; a constant array type with a bound
7171     /// (if any) for an array.
7172     const Type *ClassOrBound;
7173 
7174     Step(Kind K, const Type *ClassOrBound = nullptr)
7175         : K(K), ClassOrBound(ClassOrBound) {}
7176     QualType rebuild(ASTContext &Ctx, QualType T) const {
7177       T = Ctx.getQualifiedType(T, Quals);
7178       switch (K) {
7179       case Pointer:
7180         return Ctx.getPointerType(T);
7181       case MemberPointer:
7182         return Ctx.getMemberPointerType(T, ClassOrBound);
7183       case ObjCPointer:
7184         return Ctx.getObjCObjectPointerType(T);
7185       case Array:
7186         if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
7187           return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
7188                                           ArraySizeModifier::Normal, 0);
7189         else
7190           return Ctx.getIncompleteArrayType(T, ArraySizeModifier::Normal, 0);
7191       }
7192       llvm_unreachable("unknown step kind");
7193     }
7194   };
7195 
7196   SmallVector<Step, 8> Steps;
7197 
7198   //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7199   //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7200   //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
7201   //    respectively;
7202   //  - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
7203   //    to member of C2 of type cv2 U2" for some non-function type U, where
7204   //    C1 is reference-related to C2 or C2 is reference-related to C1, the
7205   //    cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
7206   //    respectively;
7207   //  - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
7208   //    T2;
7209   //
7210   // Dismantle T1 and T2 to simultaneously determine whether they are similar
7211   // and to prepare to form the cv-combined type if so.
7212   QualType Composite1 = T1;
7213   QualType Composite2 = T2;
7214   unsigned NeedConstBefore = 0;
7215   while (true) {
7216     assert(!Composite1.isNull() && !Composite2.isNull());
7217 
7218     Qualifiers Q1, Q2;
7219     Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
7220     Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
7221 
7222     // Top-level qualifiers are ignored. Merge at all lower levels.
7223     if (!Steps.empty()) {
7224       // Find the qualifier union: (approximately) the unique minimal set of
7225       // qualifiers that is compatible with both types.
7226       Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
7227                                                   Q2.getCVRUQualifiers());
7228 
7229       // Under one level of pointer or pointer-to-member, we can change to an
7230       // unambiguous compatible address space.
7231       if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
7232         Quals.setAddressSpace(Q1.getAddressSpace());
7233       } else if (Steps.size() == 1) {
7234         bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
7235         bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
7236         if (MaybeQ1 == MaybeQ2) {
7237           // Exception for ptr size address spaces. Should be able to choose
7238           // either address space during comparison.
7239           if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
7240               isPtrSizeAddressSpace(Q2.getAddressSpace()))
7241             MaybeQ1 = true;
7242           else
7243             return QualType(); // No unique best address space.
7244         }
7245         Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
7246                                       : Q2.getAddressSpace());
7247       } else {
7248         return QualType();
7249       }
7250 
7251       // FIXME: In C, we merge __strong and none to __strong at the top level.
7252       if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
7253         Quals.setObjCGCAttr(Q1.getObjCGCAttr());
7254       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
7255         assert(Steps.size() == 1);
7256       else
7257         return QualType();
7258 
7259       // Mismatched lifetime qualifiers never compatibly include each other.
7260       if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
7261         Quals.setObjCLifetime(Q1.getObjCLifetime());
7262       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
7263         assert(Steps.size() == 1);
7264       else
7265         return QualType();
7266 
7267       Steps.back().Quals = Quals;
7268       if (Q1 != Quals || Q2 != Quals)
7269         NeedConstBefore = Steps.size() - 1;
7270     }
7271 
7272     // FIXME: Can we unify the following with UnwrapSimilarTypes?
7273 
7274     const ArrayType *Arr1, *Arr2;
7275     if ((Arr1 = Context.getAsArrayType(Composite1)) &&
7276         (Arr2 = Context.getAsArrayType(Composite2))) {
7277       auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
7278       auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
7279       if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
7280         Composite1 = Arr1->getElementType();
7281         Composite2 = Arr2->getElementType();
7282         Steps.emplace_back(Step::Array, CAT1);
7283         continue;
7284       }
7285       bool IAT1 = isa<IncompleteArrayType>(Arr1);
7286       bool IAT2 = isa<IncompleteArrayType>(Arr2);
7287       if ((IAT1 && IAT2) ||
7288           (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
7289            ((bool)CAT1 != (bool)CAT2) &&
7290            (Steps.empty() || Steps.back().K != Step::Array))) {
7291         // In C++20 onwards, we can unify an array of N T with an array of
7292         // a different or unknown bound. But we can't form an array whose
7293         // element type is an array of unknown bound by doing so.
7294         Composite1 = Arr1->getElementType();
7295         Composite2 = Arr2->getElementType();
7296         Steps.emplace_back(Step::Array);
7297         if (CAT1 || CAT2)
7298           NeedConstBefore = Steps.size();
7299         continue;
7300       }
7301     }
7302 
7303     const PointerType *Ptr1, *Ptr2;
7304     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
7305         (Ptr2 = Composite2->getAs<PointerType>())) {
7306       Composite1 = Ptr1->getPointeeType();
7307       Composite2 = Ptr2->getPointeeType();
7308       Steps.emplace_back(Step::Pointer);
7309       continue;
7310     }
7311 
7312     const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
7313     if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
7314         (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
7315       Composite1 = ObjPtr1->getPointeeType();
7316       Composite2 = ObjPtr2->getPointeeType();
7317       Steps.emplace_back(Step::ObjCPointer);
7318       continue;
7319     }
7320 
7321     const MemberPointerType *MemPtr1, *MemPtr2;
7322     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
7323         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
7324       Composite1 = MemPtr1->getPointeeType();
7325       Composite2 = MemPtr2->getPointeeType();
7326 
7327       // At the top level, we can perform a base-to-derived pointer-to-member
7328       // conversion:
7329       //
7330       //  - [...] where C1 is reference-related to C2 or C2 is
7331       //    reference-related to C1
7332       //
7333       // (Note that the only kinds of reference-relatedness in scope here are
7334       // "same type or derived from".) At any other level, the class must
7335       // exactly match.
7336       const Type *Class = nullptr;
7337       QualType Cls1(MemPtr1->getClass(), 0);
7338       QualType Cls2(MemPtr2->getClass(), 0);
7339       if (Context.hasSameType(Cls1, Cls2))
7340         Class = MemPtr1->getClass();
7341       else if (Steps.empty())
7342         Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
7343                 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
7344       if (!Class)
7345         return QualType();
7346 
7347       Steps.emplace_back(Step::MemberPointer, Class);
7348       continue;
7349     }
7350 
7351     // Special case: at the top level, we can decompose an Objective-C pointer
7352     // and a 'cv void *'. Unify the qualifiers.
7353     if (Steps.empty() && ((Composite1->isVoidPointerType() &&
7354                            Composite2->isObjCObjectPointerType()) ||
7355                           (Composite1->isObjCObjectPointerType() &&
7356                            Composite2->isVoidPointerType()))) {
7357       Composite1 = Composite1->getPointeeType();
7358       Composite2 = Composite2->getPointeeType();
7359       Steps.emplace_back(Step::Pointer);
7360       continue;
7361     }
7362 
7363     // FIXME: block pointer types?
7364 
7365     // Cannot unwrap any more types.
7366     break;
7367   }
7368 
7369   //  - if T1 or T2 is "pointer to noexcept function" and the other type is
7370   //    "pointer to function", where the function types are otherwise the same,
7371   //    "pointer to function";
7372   //  - if T1 or T2 is "pointer to member of C1 of type function", the other
7373   //    type is "pointer to member of C2 of type noexcept function", and C1
7374   //    is reference-related to C2 or C2 is reference-related to C1, where
7375   //    the function types are otherwise the same, "pointer to member of C2 of
7376   //    type function" or "pointer to member of C1 of type function",
7377   //    respectively;
7378   //
7379   // We also support 'noreturn' here, so as a Clang extension we generalize the
7380   // above to:
7381   //
7382   //  - [Clang] If T1 and T2 are both of type "pointer to function" or
7383   //    "pointer to member function" and the pointee types can be unified
7384   //    by a function pointer conversion, that conversion is applied
7385   //    before checking the following rules.
7386   //
7387   // We've already unwrapped down to the function types, and we want to merge
7388   // rather than just convert, so do this ourselves rather than calling
7389   // IsFunctionConversion.
7390   //
7391   // FIXME: In order to match the standard wording as closely as possible, we
7392   // currently only do this under a single level of pointers. Ideally, we would
7393   // allow this in general, and set NeedConstBefore to the relevant depth on
7394   // the side(s) where we changed anything. If we permit that, we should also
7395   // consider this conversion when determining type similarity and model it as
7396   // a qualification conversion.
7397   if (Steps.size() == 1) {
7398     if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
7399       if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
7400         FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
7401         FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
7402 
7403         // The result is noreturn if both operands are.
7404         bool Noreturn =
7405             EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
7406         EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
7407         EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
7408 
7409         // The result is nothrow if both operands are.
7410         SmallVector<QualType, 8> ExceptionTypeStorage;
7411         EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs(
7412             EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage,
7413             getLangOpts().CPlusPlus17);
7414 
7415         Composite1 = Context.getFunctionType(FPT1->getReturnType(),
7416                                              FPT1->getParamTypes(), EPI1);
7417         Composite2 = Context.getFunctionType(FPT2->getReturnType(),
7418                                              FPT2->getParamTypes(), EPI2);
7419       }
7420     }
7421   }
7422 
7423   // There are some more conversions we can perform under exactly one pointer.
7424   if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
7425       !Context.hasSameType(Composite1, Composite2)) {
7426     //  - if T1 or T2 is "pointer to cv1 void" and the other type is
7427     //    "pointer to cv2 T", where T is an object type or void,
7428     //    "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
7429     if (Composite1->isVoidType() && Composite2->isObjectType())
7430       Composite2 = Composite1;
7431     else if (Composite2->isVoidType() && Composite1->isObjectType())
7432       Composite1 = Composite2;
7433     //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7434     //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7435     //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and
7436     //    T1, respectively;
7437     //
7438     // The "similar type" handling covers all of this except for the "T1 is a
7439     // base class of T2" case in the definition of reference-related.
7440     else if (IsDerivedFrom(Loc, Composite1, Composite2))
7441       Composite1 = Composite2;
7442     else if (IsDerivedFrom(Loc, Composite2, Composite1))
7443       Composite2 = Composite1;
7444   }
7445 
7446   // At this point, either the inner types are the same or we have failed to
7447   // find a composite pointer type.
7448   if (!Context.hasSameType(Composite1, Composite2))
7449     return QualType();
7450 
7451   // Per C++ [conv.qual]p3, add 'const' to every level before the last
7452   // differing qualifier.
7453   for (unsigned I = 0; I != NeedConstBefore; ++I)
7454     Steps[I].Quals.addConst();
7455 
7456   // Rebuild the composite type.
7457   QualType Composite = Context.getCommonSugaredType(Composite1, Composite2);
7458   for (auto &S : llvm::reverse(Steps))
7459     Composite = S.rebuild(Context, Composite);
7460 
7461   if (ConvertArgs) {
7462     // Convert the expressions to the composite pointer type.
7463     InitializedEntity Entity =
7464         InitializedEntity::InitializeTemporary(Composite);
7465     InitializationKind Kind =
7466         InitializationKind::CreateCopy(Loc, SourceLocation());
7467 
7468     InitializationSequence E1ToC(*this, Entity, Kind, E1);
7469     if (!E1ToC)
7470       return QualType();
7471 
7472     InitializationSequence E2ToC(*this, Entity, Kind, E2);
7473     if (!E2ToC)
7474       return QualType();
7475 
7476     // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
7477     ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
7478     if (E1Result.isInvalid())
7479       return QualType();
7480     E1 = E1Result.get();
7481 
7482     ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
7483     if (E2Result.isInvalid())
7484       return QualType();
7485     E2 = E2Result.get();
7486   }
7487 
7488   return Composite;
7489 }
7490 
7491 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
7492   if (!E)
7493     return ExprError();
7494 
7495   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
7496 
7497   // If the result is a glvalue, we shouldn't bind it.
7498   if (E->isGLValue())
7499     return E;
7500 
7501   // In ARC, calls that return a retainable type can return retained,
7502   // in which case we have to insert a consuming cast.
7503   if (getLangOpts().ObjCAutoRefCount &&
7504       E->getType()->isObjCRetainableType()) {
7505 
7506     bool ReturnsRetained;
7507 
7508     // For actual calls, we compute this by examining the type of the
7509     // called value.
7510     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
7511       Expr *Callee = Call->getCallee()->IgnoreParens();
7512       QualType T = Callee->getType();
7513 
7514       if (T == Context.BoundMemberTy) {
7515         // Handle pointer-to-members.
7516         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
7517           T = BinOp->getRHS()->getType();
7518         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
7519           T = Mem->getMemberDecl()->getType();
7520       }
7521 
7522       if (const PointerType *Ptr = T->getAs<PointerType>())
7523         T = Ptr->getPointeeType();
7524       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
7525         T = Ptr->getPointeeType();
7526       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
7527         T = MemPtr->getPointeeType();
7528 
7529       auto *FTy = T->castAs<FunctionType>();
7530       ReturnsRetained = FTy->getExtInfo().getProducesResult();
7531 
7532     // ActOnStmtExpr arranges things so that StmtExprs of retainable
7533     // type always produce a +1 object.
7534     } else if (isa<StmtExpr>(E)) {
7535       ReturnsRetained = true;
7536 
7537     // We hit this case with the lambda conversion-to-block optimization;
7538     // we don't want any extra casts here.
7539     } else if (isa<CastExpr>(E) &&
7540                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
7541       return E;
7542 
7543     // For message sends and property references, we try to find an
7544     // actual method.  FIXME: we should infer retention by selector in
7545     // cases where we don't have an actual method.
7546     } else {
7547       ObjCMethodDecl *D = nullptr;
7548       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
7549         D = Send->getMethodDecl();
7550       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
7551         D = BoxedExpr->getBoxingMethod();
7552       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
7553         // Don't do reclaims if we're using the zero-element array
7554         // constant.
7555         if (ArrayLit->getNumElements() == 0 &&
7556             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7557           return E;
7558 
7559         D = ArrayLit->getArrayWithObjectsMethod();
7560       } else if (ObjCDictionaryLiteral *DictLit
7561                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
7562         // Don't do reclaims if we're using the zero-element dictionary
7563         // constant.
7564         if (DictLit->getNumElements() == 0 &&
7565             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7566           return E;
7567 
7568         D = DictLit->getDictWithObjectsMethod();
7569       }
7570 
7571       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7572 
7573       // Don't do reclaims on performSelector calls; despite their
7574       // return type, the invoked method doesn't necessarily actually
7575       // return an object.
7576       if (!ReturnsRetained &&
7577           D && D->getMethodFamily() == OMF_performSelector)
7578         return E;
7579     }
7580 
7581     // Don't reclaim an object of Class type.
7582     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7583       return E;
7584 
7585     Cleanup.setExprNeedsCleanups(true);
7586 
7587     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7588                                    : CK_ARCReclaimReturnedObject);
7589     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
7590                                     VK_PRValue, FPOptionsOverride());
7591   }
7592 
7593   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7594     Cleanup.setExprNeedsCleanups(true);
7595 
7596   if (!getLangOpts().CPlusPlus)
7597     return E;
7598 
7599   // Search for the base element type (cf. ASTContext::getBaseElementType) with
7600   // a fast path for the common case that the type is directly a RecordType.
7601   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7602   const RecordType *RT = nullptr;
7603   while (!RT) {
7604     switch (T->getTypeClass()) {
7605     case Type::Record:
7606       RT = cast<RecordType>(T);
7607       break;
7608     case Type::ConstantArray:
7609     case Type::IncompleteArray:
7610     case Type::VariableArray:
7611     case Type::DependentSizedArray:
7612       T = cast<ArrayType>(T)->getElementType().getTypePtr();
7613       break;
7614     default:
7615       return E;
7616     }
7617   }
7618 
7619   // That should be enough to guarantee that this type is complete, if we're
7620   // not processing a decltype expression.
7621   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7622   if (RD->isInvalidDecl() || RD->isDependentContext())
7623     return E;
7624 
7625   bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7626                     ExpressionEvaluationContextRecord::EK_Decltype;
7627   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7628 
7629   if (Destructor) {
7630     MarkFunctionReferenced(E->getExprLoc(), Destructor);
7631     CheckDestructorAccess(E->getExprLoc(), Destructor,
7632                           PDiag(diag::err_access_dtor_temp)
7633                             << E->getType());
7634     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7635       return ExprError();
7636 
7637     // If destructor is trivial, we can avoid the extra copy.
7638     if (Destructor->isTrivial())
7639       return E;
7640 
7641     // We need a cleanup, but we don't need to remember the temporary.
7642     Cleanup.setExprNeedsCleanups(true);
7643   }
7644 
7645   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7646   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7647 
7648   if (IsDecltype)
7649     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7650 
7651   return Bind;
7652 }
7653 
7654 ExprResult
7655 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7656   if (SubExpr.isInvalid())
7657     return ExprError();
7658 
7659   return MaybeCreateExprWithCleanups(SubExpr.get());
7660 }
7661 
7662 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7663   assert(SubExpr && "subexpression can't be null!");
7664 
7665   CleanupVarDeclMarking();
7666 
7667   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7668   assert(ExprCleanupObjects.size() >= FirstCleanup);
7669   assert(Cleanup.exprNeedsCleanups() ||
7670          ExprCleanupObjects.size() == FirstCleanup);
7671   if (!Cleanup.exprNeedsCleanups())
7672     return SubExpr;
7673 
7674   auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7675                                  ExprCleanupObjects.size() - FirstCleanup);
7676 
7677   auto *E = ExprWithCleanups::Create(
7678       Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7679   DiscardCleanupsInEvaluationContext();
7680 
7681   return E;
7682 }
7683 
7684 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7685   assert(SubStmt && "sub-statement can't be null!");
7686 
7687   CleanupVarDeclMarking();
7688 
7689   if (!Cleanup.exprNeedsCleanups())
7690     return SubStmt;
7691 
7692   // FIXME: In order to attach the temporaries, wrap the statement into
7693   // a StmtExpr; currently this is only used for asm statements.
7694   // This is hacky, either create a new CXXStmtWithTemporaries statement or
7695   // a new AsmStmtWithTemporaries.
7696   CompoundStmt *CompStmt =
7697       CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(),
7698                            SourceLocation(), SourceLocation());
7699   Expr *E = new (Context)
7700       StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7701                /*FIXME TemplateDepth=*/0);
7702   return MaybeCreateExprWithCleanups(E);
7703 }
7704 
7705 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7706   assert(ExprEvalContexts.back().ExprContext ==
7707              ExpressionEvaluationContextRecord::EK_Decltype &&
7708          "not in a decltype expression");
7709 
7710   ExprResult Result = CheckPlaceholderExpr(E);
7711   if (Result.isInvalid())
7712     return ExprError();
7713   E = Result.get();
7714 
7715   // C++11 [expr.call]p11:
7716   //   If a function call is a prvalue of object type,
7717   // -- if the function call is either
7718   //   -- the operand of a decltype-specifier, or
7719   //   -- the right operand of a comma operator that is the operand of a
7720   //      decltype-specifier,
7721   //   a temporary object is not introduced for the prvalue.
7722 
7723   // Recursively rebuild ParenExprs and comma expressions to strip out the
7724   // outermost CXXBindTemporaryExpr, if any.
7725   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7726     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7727     if (SubExpr.isInvalid())
7728       return ExprError();
7729     if (SubExpr.get() == PE->getSubExpr())
7730       return E;
7731     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7732   }
7733   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7734     if (BO->getOpcode() == BO_Comma) {
7735       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7736       if (RHS.isInvalid())
7737         return ExprError();
7738       if (RHS.get() == BO->getRHS())
7739         return E;
7740       return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7741                                     BO->getType(), BO->getValueKind(),
7742                                     BO->getObjectKind(), BO->getOperatorLoc(),
7743                                     BO->getFPFeatures());
7744     }
7745   }
7746 
7747   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7748   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7749                               : nullptr;
7750   if (TopCall)
7751     E = TopCall;
7752   else
7753     TopBind = nullptr;
7754 
7755   // Disable the special decltype handling now.
7756   ExprEvalContexts.back().ExprContext =
7757       ExpressionEvaluationContextRecord::EK_Other;
7758 
7759   Result = CheckUnevaluatedOperand(E);
7760   if (Result.isInvalid())
7761     return ExprError();
7762   E = Result.get();
7763 
7764   // In MS mode, don't perform any extra checking of call return types within a
7765   // decltype expression.
7766   if (getLangOpts().MSVCCompat)
7767     return E;
7768 
7769   // Perform the semantic checks we delayed until this point.
7770   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7771        I != N; ++I) {
7772     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7773     if (Call == TopCall)
7774       continue;
7775 
7776     if (CheckCallReturnType(Call->getCallReturnType(Context),
7777                             Call->getBeginLoc(), Call, Call->getDirectCallee()))
7778       return ExprError();
7779   }
7780 
7781   // Now all relevant types are complete, check the destructors are accessible
7782   // and non-deleted, and annotate them on the temporaries.
7783   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7784        I != N; ++I) {
7785     CXXBindTemporaryExpr *Bind =
7786       ExprEvalContexts.back().DelayedDecltypeBinds[I];
7787     if (Bind == TopBind)
7788       continue;
7789 
7790     CXXTemporary *Temp = Bind->getTemporary();
7791 
7792     CXXRecordDecl *RD =
7793       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7794     CXXDestructorDecl *Destructor = LookupDestructor(RD);
7795     Temp->setDestructor(Destructor);
7796 
7797     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7798     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7799                           PDiag(diag::err_access_dtor_temp)
7800                             << Bind->getType());
7801     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7802       return ExprError();
7803 
7804     // We need a cleanup, but we don't need to remember the temporary.
7805     Cleanup.setExprNeedsCleanups(true);
7806   }
7807 
7808   // Possibly strip off the top CXXBindTemporaryExpr.
7809   return E;
7810 }
7811 
7812 /// Note a set of 'operator->' functions that were used for a member access.
7813 static void noteOperatorArrows(Sema &S,
7814                                ArrayRef<FunctionDecl *> OperatorArrows) {
7815   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7816   // FIXME: Make this configurable?
7817   unsigned Limit = 9;
7818   if (OperatorArrows.size() > Limit) {
7819     // Produce Limit-1 normal notes and one 'skipping' note.
7820     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7821     SkipCount = OperatorArrows.size() - (Limit - 1);
7822   }
7823 
7824   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7825     if (I == SkipStart) {
7826       S.Diag(OperatorArrows[I]->getLocation(),
7827              diag::note_operator_arrows_suppressed)
7828           << SkipCount;
7829       I += SkipCount;
7830     } else {
7831       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7832           << OperatorArrows[I]->getCallResultType();
7833       ++I;
7834     }
7835   }
7836 }
7837 
7838 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7839                                               SourceLocation OpLoc,
7840                                               tok::TokenKind OpKind,
7841                                               ParsedType &ObjectType,
7842                                               bool &MayBePseudoDestructor) {
7843   // Since this might be a postfix expression, get rid of ParenListExprs.
7844   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7845   if (Result.isInvalid()) return ExprError();
7846   Base = Result.get();
7847 
7848   Result = CheckPlaceholderExpr(Base);
7849   if (Result.isInvalid()) return ExprError();
7850   Base = Result.get();
7851 
7852   QualType BaseType = Base->getType();
7853   MayBePseudoDestructor = false;
7854   if (BaseType->isDependentType()) {
7855     // If we have a pointer to a dependent type and are using the -> operator,
7856     // the object type is the type that the pointer points to. We might still
7857     // have enough information about that type to do something useful.
7858     if (OpKind == tok::arrow)
7859       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7860         BaseType = Ptr->getPointeeType();
7861 
7862     ObjectType = ParsedType::make(BaseType);
7863     MayBePseudoDestructor = true;
7864     return Base;
7865   }
7866 
7867   // C++ [over.match.oper]p8:
7868   //   [...] When operator->returns, the operator-> is applied  to the value
7869   //   returned, with the original second operand.
7870   if (OpKind == tok::arrow) {
7871     QualType StartingType = BaseType;
7872     bool NoArrowOperatorFound = false;
7873     bool FirstIteration = true;
7874     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7875     // The set of types we've considered so far.
7876     llvm::SmallPtrSet<CanQualType,8> CTypes;
7877     SmallVector<FunctionDecl*, 8> OperatorArrows;
7878     CTypes.insert(Context.getCanonicalType(BaseType));
7879 
7880     while (BaseType->isRecordType()) {
7881       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7882         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7883           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7884         noteOperatorArrows(*this, OperatorArrows);
7885         Diag(OpLoc, diag::note_operator_arrow_depth)
7886           << getLangOpts().ArrowDepth;
7887         return ExprError();
7888       }
7889 
7890       Result = BuildOverloadedArrowExpr(
7891           S, Base, OpLoc,
7892           // When in a template specialization and on the first loop iteration,
7893           // potentially give the default diagnostic (with the fixit in a
7894           // separate note) instead of having the error reported back to here
7895           // and giving a diagnostic with a fixit attached to the error itself.
7896           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7897               ? nullptr
7898               : &NoArrowOperatorFound);
7899       if (Result.isInvalid()) {
7900         if (NoArrowOperatorFound) {
7901           if (FirstIteration) {
7902             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7903               << BaseType << 1 << Base->getSourceRange()
7904               << FixItHint::CreateReplacement(OpLoc, ".");
7905             OpKind = tok::period;
7906             break;
7907           }
7908           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7909             << BaseType << Base->getSourceRange();
7910           CallExpr *CE = dyn_cast<CallExpr>(Base);
7911           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7912             Diag(CD->getBeginLoc(),
7913                  diag::note_member_reference_arrow_from_operator_arrow);
7914           }
7915         }
7916         return ExprError();
7917       }
7918       Base = Result.get();
7919       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7920         OperatorArrows.push_back(OpCall->getDirectCallee());
7921       BaseType = Base->getType();
7922       CanQualType CBaseType = Context.getCanonicalType(BaseType);
7923       if (!CTypes.insert(CBaseType).second) {
7924         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7925         noteOperatorArrows(*this, OperatorArrows);
7926         return ExprError();
7927       }
7928       FirstIteration = false;
7929     }
7930 
7931     if (OpKind == tok::arrow) {
7932       if (BaseType->isPointerType())
7933         BaseType = BaseType->getPointeeType();
7934       else if (auto *AT = Context.getAsArrayType(BaseType))
7935         BaseType = AT->getElementType();
7936     }
7937   }
7938 
7939   // Objective-C properties allow "." access on Objective-C pointer types,
7940   // so adjust the base type to the object type itself.
7941   if (BaseType->isObjCObjectPointerType())
7942     BaseType = BaseType->getPointeeType();
7943 
7944   // C++ [basic.lookup.classref]p2:
7945   //   [...] If the type of the object expression is of pointer to scalar
7946   //   type, the unqualified-id is looked up in the context of the complete
7947   //   postfix-expression.
7948   //
7949   // This also indicates that we could be parsing a pseudo-destructor-name.
7950   // Note that Objective-C class and object types can be pseudo-destructor
7951   // expressions or normal member (ivar or property) access expressions, and
7952   // it's legal for the type to be incomplete if this is a pseudo-destructor
7953   // call.  We'll do more incomplete-type checks later in the lookup process,
7954   // so just skip this check for ObjC types.
7955   if (!BaseType->isRecordType()) {
7956     ObjectType = ParsedType::make(BaseType);
7957     MayBePseudoDestructor = true;
7958     return Base;
7959   }
7960 
7961   // The object type must be complete (or dependent), or
7962   // C++11 [expr.prim.general]p3:
7963   //   Unlike the object expression in other contexts, *this is not required to
7964   //   be of complete type for purposes of class member access (5.2.5) outside
7965   //   the member function body.
7966   if (!BaseType->isDependentType() &&
7967       !isThisOutsideMemberFunctionBody(BaseType) &&
7968       RequireCompleteType(OpLoc, BaseType,
7969                           diag::err_incomplete_member_access)) {
7970     return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base});
7971   }
7972 
7973   // C++ [basic.lookup.classref]p2:
7974   //   If the id-expression in a class member access (5.2.5) is an
7975   //   unqualified-id, and the type of the object expression is of a class
7976   //   type C (or of pointer to a class type C), the unqualified-id is looked
7977   //   up in the scope of class C. [...]
7978   ObjectType = ParsedType::make(BaseType);
7979   return Base;
7980 }
7981 
7982 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7983                        tok::TokenKind &OpKind, SourceLocation OpLoc) {
7984   if (Base->hasPlaceholderType()) {
7985     ExprResult result = S.CheckPlaceholderExpr(Base);
7986     if (result.isInvalid()) return true;
7987     Base = result.get();
7988   }
7989   ObjectType = Base->getType();
7990 
7991   // C++ [expr.pseudo]p2:
7992   //   The left-hand side of the dot operator shall be of scalar type. The
7993   //   left-hand side of the arrow operator shall be of pointer to scalar type.
7994   //   This scalar type is the object type.
7995   // Note that this is rather different from the normal handling for the
7996   // arrow operator.
7997   if (OpKind == tok::arrow) {
7998     // The operator requires a prvalue, so perform lvalue conversions.
7999     // Only do this if we might plausibly end with a pointer, as otherwise
8000     // this was likely to be intended to be a '.'.
8001     if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
8002         ObjectType->isFunctionType()) {
8003       ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
8004       if (BaseResult.isInvalid())
8005         return true;
8006       Base = BaseResult.get();
8007       ObjectType = Base->getType();
8008     }
8009 
8010     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
8011       ObjectType = Ptr->getPointeeType();
8012     } else if (!Base->isTypeDependent()) {
8013       // The user wrote "p->" when they probably meant "p."; fix it.
8014       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
8015         << ObjectType << true
8016         << FixItHint::CreateReplacement(OpLoc, ".");
8017       if (S.isSFINAEContext())
8018         return true;
8019 
8020       OpKind = tok::period;
8021     }
8022   }
8023 
8024   return false;
8025 }
8026 
8027 /// Check if it's ok to try and recover dot pseudo destructor calls on
8028 /// pointer objects.
8029 static bool
8030 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
8031                                                    QualType DestructedType) {
8032   // If this is a record type, check if its destructor is callable.
8033   if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
8034     if (RD->hasDefinition())
8035       if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
8036         return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
8037     return false;
8038   }
8039 
8040   // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
8041   return DestructedType->isDependentType() || DestructedType->isScalarType() ||
8042          DestructedType->isVectorType();
8043 }
8044 
8045 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
8046                                            SourceLocation OpLoc,
8047                                            tok::TokenKind OpKind,
8048                                            const CXXScopeSpec &SS,
8049                                            TypeSourceInfo *ScopeTypeInfo,
8050                                            SourceLocation CCLoc,
8051                                            SourceLocation TildeLoc,
8052                                          PseudoDestructorTypeStorage Destructed) {
8053   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
8054 
8055   QualType ObjectType;
8056   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
8057     return ExprError();
8058 
8059   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
8060       !ObjectType->isVectorType()) {
8061     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
8062       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
8063     else {
8064       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
8065         << ObjectType << Base->getSourceRange();
8066       return ExprError();
8067     }
8068   }
8069 
8070   // C++ [expr.pseudo]p2:
8071   //   [...] The cv-unqualified versions of the object type and of the type
8072   //   designated by the pseudo-destructor-name shall be the same type.
8073   if (DestructedTypeInfo) {
8074     QualType DestructedType = DestructedTypeInfo->getType();
8075     SourceLocation DestructedTypeStart =
8076         DestructedTypeInfo->getTypeLoc().getBeginLoc();
8077     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
8078       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
8079         // Detect dot pseudo destructor calls on pointer objects, e.g.:
8080         //   Foo *foo;
8081         //   foo.~Foo();
8082         if (OpKind == tok::period && ObjectType->isPointerType() &&
8083             Context.hasSameUnqualifiedType(DestructedType,
8084                                            ObjectType->getPointeeType())) {
8085           auto Diagnostic =
8086               Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
8087               << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
8088 
8089           // Issue a fixit only when the destructor is valid.
8090           if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
8091                   *this, DestructedType))
8092             Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
8093 
8094           // Recover by setting the object type to the destructed type and the
8095           // operator to '->'.
8096           ObjectType = DestructedType;
8097           OpKind = tok::arrow;
8098         } else {
8099           Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
8100               << ObjectType << DestructedType << Base->getSourceRange()
8101               << DestructedTypeInfo->getTypeLoc().getSourceRange();
8102 
8103           // Recover by setting the destructed type to the object type.
8104           DestructedType = ObjectType;
8105           DestructedTypeInfo =
8106               Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
8107           Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
8108         }
8109       } else if (DestructedType.getObjCLifetime() !=
8110                                                 ObjectType.getObjCLifetime()) {
8111 
8112         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
8113           // Okay: just pretend that the user provided the correctly-qualified
8114           // type.
8115         } else {
8116           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
8117               << ObjectType << DestructedType << Base->getSourceRange()
8118               << DestructedTypeInfo->getTypeLoc().getSourceRange();
8119         }
8120 
8121         // Recover by setting the destructed type to the object type.
8122         DestructedType = ObjectType;
8123         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
8124                                                            DestructedTypeStart);
8125         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
8126       }
8127     }
8128   }
8129 
8130   // C++ [expr.pseudo]p2:
8131   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
8132   //   form
8133   //
8134   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
8135   //
8136   //   shall designate the same scalar type.
8137   if (ScopeTypeInfo) {
8138     QualType ScopeType = ScopeTypeInfo->getType();
8139     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
8140         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
8141 
8142       Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(),
8143            diag::err_pseudo_dtor_type_mismatch)
8144           << ObjectType << ScopeType << Base->getSourceRange()
8145           << ScopeTypeInfo->getTypeLoc().getSourceRange();
8146 
8147       ScopeType = QualType();
8148       ScopeTypeInfo = nullptr;
8149     }
8150   }
8151 
8152   Expr *Result
8153     = new (Context) CXXPseudoDestructorExpr(Context, Base,
8154                                             OpKind == tok::arrow, OpLoc,
8155                                             SS.getWithLocInContext(Context),
8156                                             ScopeTypeInfo,
8157                                             CCLoc,
8158                                             TildeLoc,
8159                                             Destructed);
8160 
8161   return Result;
8162 }
8163 
8164 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
8165                                            SourceLocation OpLoc,
8166                                            tok::TokenKind OpKind,
8167                                            CXXScopeSpec &SS,
8168                                            UnqualifiedId &FirstTypeName,
8169                                            SourceLocation CCLoc,
8170                                            SourceLocation TildeLoc,
8171                                            UnqualifiedId &SecondTypeName) {
8172   assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
8173           FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
8174          "Invalid first type name in pseudo-destructor");
8175   assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
8176           SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
8177          "Invalid second type name in pseudo-destructor");
8178 
8179   QualType ObjectType;
8180   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
8181     return ExprError();
8182 
8183   // Compute the object type that we should use for name lookup purposes. Only
8184   // record types and dependent types matter.
8185   ParsedType ObjectTypePtrForLookup;
8186   if (!SS.isSet()) {
8187     if (ObjectType->isRecordType())
8188       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
8189     else if (ObjectType->isDependentType())
8190       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
8191   }
8192 
8193   // Convert the name of the type being destructed (following the ~) into a
8194   // type (with source-location information).
8195   QualType DestructedType;
8196   TypeSourceInfo *DestructedTypeInfo = nullptr;
8197   PseudoDestructorTypeStorage Destructed;
8198   if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
8199     ParsedType T = getTypeName(*SecondTypeName.Identifier,
8200                                SecondTypeName.StartLocation,
8201                                S, &SS, true, false, ObjectTypePtrForLookup,
8202                                /*IsCtorOrDtorName*/true);
8203     if (!T &&
8204         ((SS.isSet() && !computeDeclContext(SS, false)) ||
8205          (!SS.isSet() && ObjectType->isDependentType()))) {
8206       // The name of the type being destroyed is a dependent name, and we
8207       // couldn't find anything useful in scope. Just store the identifier and
8208       // it's location, and we'll perform (qualified) name lookup again at
8209       // template instantiation time.
8210       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
8211                                                SecondTypeName.StartLocation);
8212     } else if (!T) {
8213       Diag(SecondTypeName.StartLocation,
8214            diag::err_pseudo_dtor_destructor_non_type)
8215         << SecondTypeName.Identifier << ObjectType;
8216       if (isSFINAEContext())
8217         return ExprError();
8218 
8219       // Recover by assuming we had the right type all along.
8220       DestructedType = ObjectType;
8221     } else
8222       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
8223   } else {
8224     // Resolve the template-id to a type.
8225     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
8226     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8227                                        TemplateId->NumArgs);
8228     TypeResult T = ActOnTemplateIdType(S,
8229                                        SS,
8230                                        TemplateId->TemplateKWLoc,
8231                                        TemplateId->Template,
8232                                        TemplateId->Name,
8233                                        TemplateId->TemplateNameLoc,
8234                                        TemplateId->LAngleLoc,
8235                                        TemplateArgsPtr,
8236                                        TemplateId->RAngleLoc,
8237                                        /*IsCtorOrDtorName*/true);
8238     if (T.isInvalid() || !T.get()) {
8239       // Recover by assuming we had the right type all along.
8240       DestructedType = ObjectType;
8241     } else
8242       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
8243   }
8244 
8245   // If we've performed some kind of recovery, (re-)build the type source
8246   // information.
8247   if (!DestructedType.isNull()) {
8248     if (!DestructedTypeInfo)
8249       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
8250                                                   SecondTypeName.StartLocation);
8251     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
8252   }
8253 
8254   // Convert the name of the scope type (the type prior to '::') into a type.
8255   TypeSourceInfo *ScopeTypeInfo = nullptr;
8256   QualType ScopeType;
8257   if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
8258       FirstTypeName.Identifier) {
8259     if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
8260       ParsedType T = getTypeName(*FirstTypeName.Identifier,
8261                                  FirstTypeName.StartLocation,
8262                                  S, &SS, true, false, ObjectTypePtrForLookup,
8263                                  /*IsCtorOrDtorName*/true);
8264       if (!T) {
8265         Diag(FirstTypeName.StartLocation,
8266              diag::err_pseudo_dtor_destructor_non_type)
8267           << FirstTypeName.Identifier << ObjectType;
8268 
8269         if (isSFINAEContext())
8270           return ExprError();
8271 
8272         // Just drop this type. It's unnecessary anyway.
8273         ScopeType = QualType();
8274       } else
8275         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
8276     } else {
8277       // Resolve the template-id to a type.
8278       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
8279       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8280                                          TemplateId->NumArgs);
8281       TypeResult T = ActOnTemplateIdType(S,
8282                                          SS,
8283                                          TemplateId->TemplateKWLoc,
8284                                          TemplateId->Template,
8285                                          TemplateId->Name,
8286                                          TemplateId->TemplateNameLoc,
8287                                          TemplateId->LAngleLoc,
8288                                          TemplateArgsPtr,
8289                                          TemplateId->RAngleLoc,
8290                                          /*IsCtorOrDtorName*/true);
8291       if (T.isInvalid() || !T.get()) {
8292         // Recover by dropping this type.
8293         ScopeType = QualType();
8294       } else
8295         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
8296     }
8297   }
8298 
8299   if (!ScopeType.isNull() && !ScopeTypeInfo)
8300     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
8301                                                   FirstTypeName.StartLocation);
8302 
8303 
8304   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
8305                                    ScopeTypeInfo, CCLoc, TildeLoc,
8306                                    Destructed);
8307 }
8308 
8309 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
8310                                            SourceLocation OpLoc,
8311                                            tok::TokenKind OpKind,
8312                                            SourceLocation TildeLoc,
8313                                            const DeclSpec& DS) {
8314   QualType ObjectType;
8315   QualType T;
8316   TypeLocBuilder TLB;
8317   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
8318     return ExprError();
8319 
8320   switch (DS.getTypeSpecType()) {
8321   case DeclSpec::TST_decltype_auto: {
8322     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
8323     return true;
8324   }
8325   case DeclSpec::TST_decltype: {
8326     T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false);
8327     DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
8328     DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
8329     DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
8330     break;
8331   }
8332   case DeclSpec::TST_typename_pack_indexing: {
8333     T = ActOnPackIndexingType(DS.getRepAsType().get(), DS.getPackIndexingExpr(),
8334                               DS.getBeginLoc(), DS.getEllipsisLoc());
8335     TLB.pushTrivial(getASTContext(),
8336                     cast<PackIndexingType>(T.getTypePtr())->getPattern(),
8337                     DS.getBeginLoc());
8338     PackIndexingTypeLoc PITL = TLB.push<PackIndexingTypeLoc>(T);
8339     PITL.setEllipsisLoc(DS.getEllipsisLoc());
8340     break;
8341   }
8342   default:
8343     llvm_unreachable("Unsupported type in pseudo destructor");
8344   }
8345   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
8346   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
8347 
8348   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
8349                                    nullptr, SourceLocation(), TildeLoc,
8350                                    Destructed);
8351 }
8352 
8353 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
8354                                       SourceLocation RParen) {
8355   // If the operand is an unresolved lookup expression, the expression is ill-
8356   // formed per [over.over]p1, because overloaded function names cannot be used
8357   // without arguments except in explicit contexts.
8358   ExprResult R = CheckPlaceholderExpr(Operand);
8359   if (R.isInvalid())
8360     return R;
8361 
8362   R = CheckUnevaluatedOperand(R.get());
8363   if (R.isInvalid())
8364     return ExprError();
8365 
8366   Operand = R.get();
8367 
8368   if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
8369       Operand->HasSideEffects(Context, false)) {
8370     // The expression operand for noexcept is in an unevaluated expression
8371     // context, so side effects could result in unintended consequences.
8372     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8373   }
8374 
8375   CanThrowResult CanThrow = canThrow(Operand);
8376   return new (Context)
8377       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
8378 }
8379 
8380 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
8381                                    Expr *Operand, SourceLocation RParen) {
8382   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
8383 }
8384 
8385 static void MaybeDecrementCount(
8386     Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
8387   DeclRefExpr *LHS = nullptr;
8388   bool IsCompoundAssign = false;
8389   bool isIncrementDecrementUnaryOp = false;
8390   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8391     if (BO->getLHS()->getType()->isDependentType() ||
8392         BO->getRHS()->getType()->isDependentType()) {
8393       if (BO->getOpcode() != BO_Assign)
8394         return;
8395     } else if (!BO->isAssignmentOp())
8396       return;
8397     else
8398       IsCompoundAssign = BO->isCompoundAssignmentOp();
8399     LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
8400   } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
8401     if (COCE->getOperator() != OO_Equal)
8402       return;
8403     LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
8404   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
8405     if (!UO->isIncrementDecrementOp())
8406       return;
8407     isIncrementDecrementUnaryOp = true;
8408     LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr());
8409   }
8410   if (!LHS)
8411     return;
8412   VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
8413   if (!VD)
8414     return;
8415   // Don't decrement RefsMinusAssignments if volatile variable with compound
8416   // assignment (+=, ...) or increment/decrement unary operator to avoid
8417   // potential unused-but-set-variable warning.
8418   if ((IsCompoundAssign || isIncrementDecrementUnaryOp) &&
8419       VD->getType().isVolatileQualified())
8420     return;
8421   auto iter = RefsMinusAssignments.find(VD);
8422   if (iter == RefsMinusAssignments.end())
8423     return;
8424   iter->getSecond()--;
8425 }
8426 
8427 /// Perform the conversions required for an expression used in a
8428 /// context that ignores the result.
8429 ExprResult Sema::IgnoredValueConversions(Expr *E) {
8430   MaybeDecrementCount(E, RefsMinusAssignments);
8431 
8432   if (E->hasPlaceholderType()) {
8433     ExprResult result = CheckPlaceholderExpr(E);
8434     if (result.isInvalid()) return E;
8435     E = result.get();
8436   }
8437 
8438   if (getLangOpts().CPlusPlus) {
8439     // The C++11 standard defines the notion of a discarded-value expression;
8440     // normally, we don't need to do anything to handle it, but if it is a
8441     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
8442     // conversion.
8443     if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
8444       ExprResult Res = DefaultLvalueConversion(E);
8445       if (Res.isInvalid())
8446         return E;
8447       E = Res.get();
8448     } else {
8449       // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8450       // it occurs as a discarded-value expression.
8451       CheckUnusedVolatileAssignment(E);
8452     }
8453 
8454     // C++1z:
8455     //   If the expression is a prvalue after this optional conversion, the
8456     //   temporary materialization conversion is applied.
8457     //
8458     // We do not materialize temporaries by default in order to avoid creating
8459     // unnecessary temporary objects. If we skip this step, IR generation is
8460     // able to synthesize the storage for itself in the aggregate case, and
8461     // adding the extra node to the AST is just clutter.
8462     if (isInLifetimeExtendingContext() && getLangOpts().CPlusPlus17 &&
8463         E->isPRValue() && !E->getType()->isVoidType()) {
8464       ExprResult Res = TemporaryMaterializationConversion(E);
8465       if (Res.isInvalid())
8466         return E;
8467       E = Res.get();
8468     }
8469     return E;
8470   }
8471 
8472   // C99 6.3.2.1:
8473   //   [Except in specific positions,] an lvalue that does not have
8474   //   array type is converted to the value stored in the
8475   //   designated object (and is no longer an lvalue).
8476   if (E->isPRValue()) {
8477     // In C, function designators (i.e. expressions of function type)
8478     // are r-values, but we still want to do function-to-pointer decay
8479     // on them.  This is both technically correct and convenient for
8480     // some clients.
8481     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
8482       return DefaultFunctionArrayConversion(E);
8483 
8484     return E;
8485   }
8486 
8487   // GCC seems to also exclude expressions of incomplete enum type.
8488   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
8489     if (!T->getDecl()->isComplete()) {
8490       // FIXME: stupid workaround for a codegen bug!
8491       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
8492       return E;
8493     }
8494   }
8495 
8496   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
8497   if (Res.isInvalid())
8498     return E;
8499   E = Res.get();
8500 
8501   if (!E->getType()->isVoidType())
8502     RequireCompleteType(E->getExprLoc(), E->getType(),
8503                         diag::err_incomplete_type);
8504   return E;
8505 }
8506 
8507 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
8508   // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8509   // it occurs as an unevaluated operand.
8510   CheckUnusedVolatileAssignment(E);
8511 
8512   return E;
8513 }
8514 
8515 // If we can unambiguously determine whether Var can never be used
8516 // in a constant expression, return true.
8517 //  - if the variable and its initializer are non-dependent, then
8518 //    we can unambiguously check if the variable is a constant expression.
8519 //  - if the initializer is not value dependent - we can determine whether
8520 //    it can be used to initialize a constant expression.  If Init can not
8521 //    be used to initialize a constant expression we conclude that Var can
8522 //    never be a constant expression.
8523 //  - FXIME: if the initializer is dependent, we can still do some analysis and
8524 //    identify certain cases unambiguously as non-const by using a Visitor:
8525 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
8526 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
8527 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
8528     ASTContext &Context) {
8529   if (isa<ParmVarDecl>(Var)) return true;
8530   const VarDecl *DefVD = nullptr;
8531 
8532   // If there is no initializer - this can not be a constant expression.
8533   const Expr *Init = Var->getAnyInitializer(DefVD);
8534   if (!Init)
8535     return true;
8536   assert(DefVD);
8537   if (DefVD->isWeak())
8538     return false;
8539 
8540   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8541     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8542     // of value-dependent expressions, and use it here to determine whether the
8543     // initializer is a potential constant expression.
8544     return false;
8545   }
8546 
8547   return !Var->isUsableInConstantExpressions(Context);
8548 }
8549 
8550 /// Check if the current lambda has any potential captures
8551 /// that must be captured by any of its enclosing lambdas that are ready to
8552 /// capture. If there is a lambda that can capture a nested
8553 /// potential-capture, go ahead and do so.  Also, check to see if any
8554 /// variables are uncaptureable or do not involve an odr-use so do not
8555 /// need to be captured.
8556 
8557 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8558     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8559 
8560   assert(!S.isUnevaluatedContext());
8561   assert(S.CurContext->isDependentContext());
8562 #ifndef NDEBUG
8563   DeclContext *DC = S.CurContext;
8564   while (isa_and_nonnull<CapturedDecl>(DC))
8565     DC = DC->getParent();
8566   assert(
8567       CurrentLSI->CallOperator == DC &&
8568       "The current call operator must be synchronized with Sema's CurContext");
8569 #endif // NDEBUG
8570 
8571   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8572 
8573   // All the potentially captureable variables in the current nested
8574   // lambda (within a generic outer lambda), must be captured by an
8575   // outer lambda that is enclosed within a non-dependent context.
8576   CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) {
8577     // If the variable is clearly identified as non-odr-used and the full
8578     // expression is not instantiation dependent, only then do we not
8579     // need to check enclosing lambda's for speculative captures.
8580     // For e.g.:
8581     // Even though 'x' is not odr-used, it should be captured.
8582     // int test() {
8583     //   const int x = 10;
8584     //   auto L = [=](auto a) {
8585     //     (void) +x + a;
8586     //   };
8587     // }
8588     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8589         !IsFullExprInstantiationDependent)
8590       return;
8591 
8592     VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl();
8593     if (!UnderlyingVar)
8594       return;
8595 
8596     // If we have a capture-capable lambda for the variable, go ahead and
8597     // capture the variable in that lambda (and all its enclosing lambdas).
8598     if (const std::optional<unsigned> Index =
8599             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8600                 S.FunctionScopes, Var, S))
8601       S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index);
8602     const bool IsVarNeverAConstantExpression =
8603         VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context);
8604     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8605       // This full expression is not instantiation dependent or the variable
8606       // can not be used in a constant expression - which means
8607       // this variable must be odr-used here, so diagnose a
8608       // capture violation early, if the variable is un-captureable.
8609       // This is purely for diagnosing errors early.  Otherwise, this
8610       // error would get diagnosed when the lambda becomes capture ready.
8611       QualType CaptureType, DeclRefType;
8612       SourceLocation ExprLoc = VarExpr->getExprLoc();
8613       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8614                           /*EllipsisLoc*/ SourceLocation(),
8615                           /*BuildAndDiagnose*/false, CaptureType,
8616                           DeclRefType, nullptr)) {
8617         // We will never be able to capture this variable, and we need
8618         // to be able to in any and all instantiations, so diagnose it.
8619         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8620                           /*EllipsisLoc*/ SourceLocation(),
8621                           /*BuildAndDiagnose*/true, CaptureType,
8622                           DeclRefType, nullptr);
8623       }
8624     }
8625   });
8626 
8627   // Check if 'this' needs to be captured.
8628   if (CurrentLSI->hasPotentialThisCapture()) {
8629     // If we have a capture-capable lambda for 'this', go ahead and capture
8630     // 'this' in that lambda (and all its enclosing lambdas).
8631     if (const std::optional<unsigned> Index =
8632             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8633                 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8634       const unsigned FunctionScopeIndexOfCapturableLambda = *Index;
8635       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8636                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8637                             &FunctionScopeIndexOfCapturableLambda);
8638     }
8639   }
8640 
8641   // Reset all the potential captures at the end of each full-expression.
8642   CurrentLSI->clearPotentialCaptures();
8643 }
8644 
8645 static ExprResult attemptRecovery(Sema &SemaRef,
8646                                   const TypoCorrectionConsumer &Consumer,
8647                                   const TypoCorrection &TC) {
8648   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8649                  Consumer.getLookupResult().getLookupKind());
8650   const CXXScopeSpec *SS = Consumer.getSS();
8651   CXXScopeSpec NewSS;
8652 
8653   // Use an approprate CXXScopeSpec for building the expr.
8654   if (auto *NNS = TC.getCorrectionSpecifier())
8655     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8656   else if (SS && !TC.WillReplaceSpecifier())
8657     NewSS = *SS;
8658 
8659   if (auto *ND = TC.getFoundDecl()) {
8660     R.setLookupName(ND->getDeclName());
8661     R.addDecl(ND);
8662     if (ND->isCXXClassMember()) {
8663       // Figure out the correct naming class to add to the LookupResult.
8664       CXXRecordDecl *Record = nullptr;
8665       if (auto *NNS = TC.getCorrectionSpecifier())
8666         Record = NNS->getAsType()->getAsCXXRecordDecl();
8667       if (!Record)
8668         Record =
8669             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8670       if (Record)
8671         R.setNamingClass(Record);
8672 
8673       // Detect and handle the case where the decl might be an implicit
8674       // member.
8675       if (SemaRef.isPotentialImplicitMemberAccess(
8676               NewSS, R, Consumer.isAddressOfOperand()))
8677         return SemaRef.BuildPossibleImplicitMemberExpr(
8678             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8679             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8680     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8681       return SemaRef.ObjC().LookupInObjCMethod(R, Consumer.getScope(),
8682                                                Ivar->getIdentifier());
8683     }
8684   }
8685 
8686   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8687                                           /*AcceptInvalidDecl*/ true);
8688 }
8689 
8690 namespace {
8691 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8692   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8693 
8694 public:
8695   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8696       : TypoExprs(TypoExprs) {}
8697   bool VisitTypoExpr(TypoExpr *TE) {
8698     TypoExprs.insert(TE);
8699     return true;
8700   }
8701 };
8702 
8703 class TransformTypos : public TreeTransform<TransformTypos> {
8704   typedef TreeTransform<TransformTypos> BaseTransform;
8705 
8706   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8707                      // process of being initialized.
8708   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8709   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8710   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8711   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8712 
8713   /// Emit diagnostics for all of the TypoExprs encountered.
8714   ///
8715   /// If the TypoExprs were successfully corrected, then the diagnostics should
8716   /// suggest the corrections. Otherwise the diagnostics will not suggest
8717   /// anything (having been passed an empty TypoCorrection).
8718   ///
8719   /// If we've failed to correct due to ambiguous corrections, we need to
8720   /// be sure to pass empty corrections and replacements. Otherwise it's
8721   /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8722   /// and we don't want to report those diagnostics.
8723   void EmitAllDiagnostics(bool IsAmbiguous) {
8724     for (TypoExpr *TE : TypoExprs) {
8725       auto &State = SemaRef.getTypoExprState(TE);
8726       if (State.DiagHandler) {
8727         TypoCorrection TC = IsAmbiguous
8728             ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8729         ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8730 
8731         // Extract the NamedDecl from the transformed TypoExpr and add it to the
8732         // TypoCorrection, replacing the existing decls. This ensures the right
8733         // NamedDecl is used in diagnostics e.g. in the case where overload
8734         // resolution was used to select one from several possible decls that
8735         // had been stored in the TypoCorrection.
8736         if (auto *ND = getDeclFromExpr(
8737                 Replacement.isInvalid() ? nullptr : Replacement.get()))
8738           TC.setCorrectionDecl(ND);
8739 
8740         State.DiagHandler(TC);
8741       }
8742       SemaRef.clearDelayedTypo(TE);
8743     }
8744   }
8745 
8746   /// Try to advance the typo correction state of the first unfinished TypoExpr.
8747   /// We allow advancement of the correction stream by removing it from the
8748   /// TransformCache which allows `TransformTypoExpr` to advance during the
8749   /// next transformation attempt.
8750   ///
8751   /// Any substitution attempts for the previous TypoExprs (which must have been
8752   /// finished) will need to be retried since it's possible that they will now
8753   /// be invalid given the latest advancement.
8754   ///
8755   /// We need to be sure that we're making progress - it's possible that the
8756   /// tree is so malformed that the transform never makes it to the
8757   /// `TransformTypoExpr`.
8758   ///
8759   /// Returns true if there are any untried correction combinations.
8760   bool CheckAndAdvanceTypoExprCorrectionStreams() {
8761     for (auto *TE : TypoExprs) {
8762       auto &State = SemaRef.getTypoExprState(TE);
8763       TransformCache.erase(TE);
8764       if (!State.Consumer->hasMadeAnyCorrectionProgress())
8765         return false;
8766       if (!State.Consumer->finished())
8767         return true;
8768       State.Consumer->resetCorrectionStream();
8769     }
8770     return false;
8771   }
8772 
8773   NamedDecl *getDeclFromExpr(Expr *E) {
8774     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8775       E = OverloadResolution[OE];
8776 
8777     if (!E)
8778       return nullptr;
8779     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8780       return DRE->getFoundDecl();
8781     if (auto *ME = dyn_cast<MemberExpr>(E))
8782       return ME->getFoundDecl();
8783     // FIXME: Add any other expr types that could be seen by the delayed typo
8784     // correction TreeTransform for which the corresponding TypoCorrection could
8785     // contain multiple decls.
8786     return nullptr;
8787   }
8788 
8789   ExprResult TryTransform(Expr *E) {
8790     Sema::SFINAETrap Trap(SemaRef);
8791     ExprResult Res = TransformExpr(E);
8792     if (Trap.hasErrorOccurred() || Res.isInvalid())
8793       return ExprError();
8794 
8795     return ExprFilter(Res.get());
8796   }
8797 
8798   // Since correcting typos may intoduce new TypoExprs, this function
8799   // checks for new TypoExprs and recurses if it finds any. Note that it will
8800   // only succeed if it is able to correct all typos in the given expression.
8801   ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8802     if (Res.isInvalid()) {
8803       return Res;
8804     }
8805     // Check to see if any new TypoExprs were created. If so, we need to recurse
8806     // to check their validity.
8807     Expr *FixedExpr = Res.get();
8808 
8809     auto SavedTypoExprs = std::move(TypoExprs);
8810     auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8811     TypoExprs.clear();
8812     AmbiguousTypoExprs.clear();
8813 
8814     FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8815     if (!TypoExprs.empty()) {
8816       // Recurse to handle newly created TypoExprs. If we're not able to
8817       // handle them, discard these TypoExprs.
8818       ExprResult RecurResult =
8819           RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8820       if (RecurResult.isInvalid()) {
8821         Res = ExprError();
8822         // Recursive corrections didn't work, wipe them away and don't add
8823         // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8824         // since we don't want to clear them twice. Note: it's possible the
8825         // TypoExprs were created recursively and thus won't be in our
8826         // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8827         auto &SemaTypoExprs = SemaRef.TypoExprs;
8828         for (auto *TE : TypoExprs) {
8829           TransformCache.erase(TE);
8830           SemaRef.clearDelayedTypo(TE);
8831 
8832           auto SI = find(SemaTypoExprs, TE);
8833           if (SI != SemaTypoExprs.end()) {
8834             SemaTypoExprs.erase(SI);
8835           }
8836         }
8837       } else {
8838         // TypoExpr is valid: add newly created TypoExprs since we were
8839         // able to correct them.
8840         Res = RecurResult;
8841         SavedTypoExprs.set_union(TypoExprs);
8842       }
8843     }
8844 
8845     TypoExprs = std::move(SavedTypoExprs);
8846     AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8847 
8848     return Res;
8849   }
8850 
8851   // Try to transform the given expression, looping through the correction
8852   // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8853   //
8854   // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8855   // true and this method immediately will return an `ExprError`.
8856   ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8857     ExprResult Res;
8858     auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8859     SemaRef.TypoExprs.clear();
8860 
8861     while (true) {
8862       Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8863 
8864       // Recursion encountered an ambiguous correction. This means that our
8865       // correction itself is ambiguous, so stop now.
8866       if (IsAmbiguous)
8867         break;
8868 
8869       // If the transform is still valid after checking for any new typos,
8870       // it's good to go.
8871       if (!Res.isInvalid())
8872         break;
8873 
8874       // The transform was invalid, see if we have any TypoExprs with untried
8875       // correction candidates.
8876       if (!CheckAndAdvanceTypoExprCorrectionStreams())
8877         break;
8878     }
8879 
8880     // If we found a valid result, double check to make sure it's not ambiguous.
8881     if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8882       auto SavedTransformCache =
8883           llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8884 
8885       // Ensure none of the TypoExprs have multiple typo correction candidates
8886       // with the same edit length that pass all the checks and filters.
8887       while (!AmbiguousTypoExprs.empty()) {
8888         auto TE  = AmbiguousTypoExprs.back();
8889 
8890         // TryTransform itself can create new Typos, adding them to the TypoExpr map
8891         // and invalidating our TypoExprState, so always fetch it instead of storing.
8892         SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8893 
8894         TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8895         TypoCorrection Next;
8896         do {
8897           // Fetch the next correction by erasing the typo from the cache and calling
8898           // `TryTransform` which will iterate through corrections in
8899           // `TransformTypoExpr`.
8900           TransformCache.erase(TE);
8901           ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8902 
8903           if (!AmbigRes.isInvalid() || IsAmbiguous) {
8904             SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8905             SavedTransformCache.erase(TE);
8906             Res = ExprError();
8907             IsAmbiguous = true;
8908             break;
8909           }
8910         } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8911                  Next.getEditDistance(false) == TC.getEditDistance(false));
8912 
8913         if (IsAmbiguous)
8914           break;
8915 
8916         AmbiguousTypoExprs.remove(TE);
8917         SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8918         TransformCache[TE] = SavedTransformCache[TE];
8919       }
8920       TransformCache = std::move(SavedTransformCache);
8921     }
8922 
8923     // Wipe away any newly created TypoExprs that we don't know about. Since we
8924     // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8925     // possible if a `TypoExpr` is created during a transformation but then
8926     // fails before we can discover it.
8927     auto &SemaTypoExprs = SemaRef.TypoExprs;
8928     for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8929       auto TE = *Iterator;
8930       auto FI = find(TypoExprs, TE);
8931       if (FI != TypoExprs.end()) {
8932         Iterator++;
8933         continue;
8934       }
8935       SemaRef.clearDelayedTypo(TE);
8936       Iterator = SemaTypoExprs.erase(Iterator);
8937     }
8938     SemaRef.TypoExprs = std::move(SavedTypoExprs);
8939 
8940     return Res;
8941   }
8942 
8943 public:
8944   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8945       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8946 
8947   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8948                                    MultiExprArg Args,
8949                                    SourceLocation RParenLoc,
8950                                    Expr *ExecConfig = nullptr) {
8951     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8952                                                  RParenLoc, ExecConfig);
8953     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8954       if (Result.isUsable()) {
8955         Expr *ResultCall = Result.get();
8956         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8957           ResultCall = BE->getSubExpr();
8958         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8959           OverloadResolution[OE] = CE->getCallee();
8960       }
8961     }
8962     return Result;
8963   }
8964 
8965   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8966 
8967   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8968 
8969   ExprResult Transform(Expr *E) {
8970     bool IsAmbiguous = false;
8971     ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8972 
8973     if (!Res.isUsable())
8974       FindTypoExprs(TypoExprs).TraverseStmt(E);
8975 
8976     EmitAllDiagnostics(IsAmbiguous);
8977 
8978     return Res;
8979   }
8980 
8981   ExprResult TransformTypoExpr(TypoExpr *E) {
8982     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8983     // cached transformation result if there is one and the TypoExpr isn't the
8984     // first one that was encountered.
8985     auto &CacheEntry = TransformCache[E];
8986     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8987       return CacheEntry;
8988     }
8989 
8990     auto &State = SemaRef.getTypoExprState(E);
8991     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
8992 
8993     // For the first TypoExpr and an uncached TypoExpr, find the next likely
8994     // typo correction and return it.
8995     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8996       if (InitDecl && TC.getFoundDecl() == InitDecl)
8997         continue;
8998       // FIXME: If we would typo-correct to an invalid declaration, it's
8999       // probably best to just suppress all errors from this typo correction.
9000       ExprResult NE = State.RecoveryHandler ?
9001           State.RecoveryHandler(SemaRef, E, TC) :
9002           attemptRecovery(SemaRef, *State.Consumer, TC);
9003       if (!NE.isInvalid()) {
9004         // Check whether there may be a second viable correction with the same
9005         // edit distance; if so, remember this TypoExpr may have an ambiguous
9006         // correction so it can be more thoroughly vetted later.
9007         TypoCorrection Next;
9008         if ((Next = State.Consumer->peekNextCorrection()) &&
9009             Next.getEditDistance(false) == TC.getEditDistance(false)) {
9010           AmbiguousTypoExprs.insert(E);
9011         } else {
9012           AmbiguousTypoExprs.remove(E);
9013         }
9014         assert(!NE.isUnset() &&
9015                "Typo was transformed into a valid-but-null ExprResult");
9016         return CacheEntry = NE;
9017       }
9018     }
9019     return CacheEntry = ExprError();
9020   }
9021 };
9022 }
9023 
9024 ExprResult
9025 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
9026                                 bool RecoverUncorrectedTypos,
9027                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
9028   // If the current evaluation context indicates there are uncorrected typos
9029   // and the current expression isn't guaranteed to not have typos, try to
9030   // resolve any TypoExpr nodes that might be in the expression.
9031   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
9032       (E->isTypeDependent() || E->isValueDependent() ||
9033        E->isInstantiationDependent())) {
9034     auto TyposResolved = DelayedTypos.size();
9035     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
9036     TyposResolved -= DelayedTypos.size();
9037     if (Result.isInvalid() || Result.get() != E) {
9038       ExprEvalContexts.back().NumTypos -= TyposResolved;
9039       if (Result.isInvalid() && RecoverUncorrectedTypos) {
9040         struct TyposReplace : TreeTransform<TyposReplace> {
9041           TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
9042           ExprResult TransformTypoExpr(clang::TypoExpr *E) {
9043             return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
9044                                                     E->getEndLoc(), {});
9045           }
9046         } TT(*this);
9047         return TT.TransformExpr(E);
9048       }
9049       return Result;
9050     }
9051     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
9052   }
9053   return E;
9054 }
9055 
9056 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
9057                                      bool DiscardedValue, bool IsConstexpr,
9058                                      bool IsTemplateArgument) {
9059   ExprResult FullExpr = FE;
9060 
9061   if (!FullExpr.get())
9062     return ExprError();
9063 
9064   if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get()))
9065     return ExprError();
9066 
9067   if (DiscardedValue) {
9068     // Top-level expressions default to 'id' when we're in a debugger.
9069     if (getLangOpts().DebuggerCastResultToId &&
9070         FullExpr.get()->getType() == Context.UnknownAnyTy) {
9071       FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
9072       if (FullExpr.isInvalid())
9073         return ExprError();
9074     }
9075 
9076     FullExpr = CheckPlaceholderExpr(FullExpr.get());
9077     if (FullExpr.isInvalid())
9078       return ExprError();
9079 
9080     FullExpr = IgnoredValueConversions(FullExpr.get());
9081     if (FullExpr.isInvalid())
9082       return ExprError();
9083 
9084     DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
9085   }
9086 
9087   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
9088                                        /*RecoverUncorrectedTypos=*/true);
9089   if (FullExpr.isInvalid())
9090     return ExprError();
9091 
9092   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
9093 
9094   // At the end of this full expression (which could be a deeply nested
9095   // lambda), if there is a potential capture within the nested lambda,
9096   // have the outer capture-able lambda try and capture it.
9097   // Consider the following code:
9098   // void f(int, int);
9099   // void f(const int&, double);
9100   // void foo() {
9101   //  const int x = 10, y = 20;
9102   //  auto L = [=](auto a) {
9103   //      auto M = [=](auto b) {
9104   //         f(x, b); <-- requires x to be captured by L and M
9105   //         f(y, a); <-- requires y to be captured by L, but not all Ms
9106   //      };
9107   //   };
9108   // }
9109 
9110   // FIXME: Also consider what happens for something like this that involves
9111   // the gnu-extension statement-expressions or even lambda-init-captures:
9112   //   void f() {
9113   //     const int n = 0;
9114   //     auto L =  [&](auto a) {
9115   //       +n + ({ 0; a; });
9116   //     };
9117   //   }
9118   //
9119   // Here, we see +n, and then the full-expression 0; ends, so we don't
9120   // capture n (and instead remove it from our list of potential captures),
9121   // and then the full-expression +n + ({ 0; }); ends, but it's too late
9122   // for us to see that we need to capture n after all.
9123 
9124   LambdaScopeInfo *const CurrentLSI =
9125       getCurLambda(/*IgnoreCapturedRegions=*/true);
9126   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
9127   // even if CurContext is not a lambda call operator. Refer to that Bug Report
9128   // for an example of the code that might cause this asynchrony.
9129   // By ensuring we are in the context of a lambda's call operator
9130   // we can fix the bug (we only need to check whether we need to capture
9131   // if we are within a lambda's body); but per the comments in that
9132   // PR, a proper fix would entail :
9133   //   "Alternative suggestion:
9134   //   - Add to Sema an integer holding the smallest (outermost) scope
9135   //     index that we are *lexically* within, and save/restore/set to
9136   //     FunctionScopes.size() in InstantiatingTemplate's
9137   //     constructor/destructor.
9138   //  - Teach the handful of places that iterate over FunctionScopes to
9139   //    stop at the outermost enclosing lexical scope."
9140   DeclContext *DC = CurContext;
9141   while (isa_and_nonnull<CapturedDecl>(DC))
9142     DC = DC->getParent();
9143   const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
9144   if (IsInLambdaDeclContext && CurrentLSI &&
9145       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
9146     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
9147                                                               *this);
9148   return MaybeCreateExprWithCleanups(FullExpr);
9149 }
9150 
9151 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
9152   if (!FullStmt) return StmtError();
9153 
9154   return MaybeCreateStmtWithCleanups(FullStmt);
9155 }
9156 
9157 Sema::IfExistsResult
9158 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
9159                                    CXXScopeSpec &SS,
9160                                    const DeclarationNameInfo &TargetNameInfo) {
9161   DeclarationName TargetName = TargetNameInfo.getName();
9162   if (!TargetName)
9163     return IER_DoesNotExist;
9164 
9165   // If the name itself is dependent, then the result is dependent.
9166   if (TargetName.isDependentName())
9167     return IER_Dependent;
9168 
9169   // Do the redeclaration lookup in the current scope.
9170   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
9171                  RedeclarationKind::NotForRedeclaration);
9172   LookupParsedName(R, S, &SS, /*ObjectType=*/QualType());
9173   R.suppressDiagnostics();
9174 
9175   switch (R.getResultKind()) {
9176   case LookupResult::Found:
9177   case LookupResult::FoundOverloaded:
9178   case LookupResult::FoundUnresolvedValue:
9179   case LookupResult::Ambiguous:
9180     return IER_Exists;
9181 
9182   case LookupResult::NotFound:
9183     return IER_DoesNotExist;
9184 
9185   case LookupResult::NotFoundInCurrentInstantiation:
9186     return IER_Dependent;
9187   }
9188 
9189   llvm_unreachable("Invalid LookupResult Kind!");
9190 }
9191 
9192 Sema::IfExistsResult
9193 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
9194                                    bool IsIfExists, CXXScopeSpec &SS,
9195                                    UnqualifiedId &Name) {
9196   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
9197 
9198   // Check for an unexpanded parameter pack.
9199   auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
9200   if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
9201       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
9202     return IER_Error;
9203 
9204   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
9205 }
9206 
9207 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
9208   return BuildExprRequirement(E, /*IsSimple=*/true,
9209                               /*NoexceptLoc=*/SourceLocation(),
9210                               /*ReturnTypeRequirement=*/{});
9211 }
9212 
9213 concepts::Requirement *Sema::ActOnTypeRequirement(
9214     SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc,
9215     const IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId) {
9216   assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
9217          "Exactly one of TypeName and TemplateId must be specified.");
9218   TypeSourceInfo *TSI = nullptr;
9219   if (TypeName) {
9220     QualType T =
9221         CheckTypenameType(ElaboratedTypeKeyword::Typename, TypenameKWLoc,
9222                           SS.getWithLocInContext(Context), *TypeName, NameLoc,
9223                           &TSI, /*DeducedTSTContext=*/false);
9224     if (T.isNull())
9225       return nullptr;
9226   } else {
9227     ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
9228                                TemplateId->NumArgs);
9229     TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
9230                                      TemplateId->TemplateKWLoc,
9231                                      TemplateId->Template, TemplateId->Name,
9232                                      TemplateId->TemplateNameLoc,
9233                                      TemplateId->LAngleLoc, ArgsPtr,
9234                                      TemplateId->RAngleLoc);
9235     if (T.isInvalid())
9236       return nullptr;
9237     if (GetTypeFromParser(T.get(), &TSI).isNull())
9238       return nullptr;
9239   }
9240   return BuildTypeRequirement(TSI);
9241 }
9242 
9243 concepts::Requirement *
9244 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
9245   return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
9246                               /*ReturnTypeRequirement=*/{});
9247 }
9248 
9249 concepts::Requirement *
9250 Sema::ActOnCompoundRequirement(
9251     Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
9252     TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
9253   // C++2a [expr.prim.req.compound] p1.3.3
9254   //   [..] the expression is deduced against an invented function template
9255   //   F [...] F is a void function template with a single type template
9256   //   parameter T declared with the constrained-parameter. Form a new
9257   //   cv-qualifier-seq cv by taking the union of const and volatile specifiers
9258   //   around the constrained-parameter. F has a single parameter whose
9259   //   type-specifier is cv T followed by the abstract-declarator. [...]
9260   //
9261   // The cv part is done in the calling function - we get the concept with
9262   // arguments and the abstract declarator with the correct CV qualification and
9263   // have to synthesize T and the single parameter of F.
9264   auto &II = Context.Idents.get("expr-type");
9265   auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
9266                                               SourceLocation(),
9267                                               SourceLocation(), Depth,
9268                                               /*Index=*/0, &II,
9269                                               /*Typename=*/true,
9270                                               /*ParameterPack=*/false,
9271                                               /*HasTypeConstraint=*/true);
9272 
9273   if (BuildTypeConstraint(SS, TypeConstraint, TParam,
9274                           /*EllipsisLoc=*/SourceLocation(),
9275                           /*AllowUnexpandedPack=*/true))
9276     // Just produce a requirement with no type requirements.
9277     return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
9278 
9279   auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
9280                                             SourceLocation(),
9281                                             ArrayRef<NamedDecl *>(TParam),
9282                                             SourceLocation(),
9283                                             /*RequiresClause=*/nullptr);
9284   return BuildExprRequirement(
9285       E, /*IsSimple=*/false, NoexceptLoc,
9286       concepts::ExprRequirement::ReturnTypeRequirement(TPL));
9287 }
9288 
9289 concepts::ExprRequirement *
9290 Sema::BuildExprRequirement(
9291     Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
9292     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9293   auto Status = concepts::ExprRequirement::SS_Satisfied;
9294   ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
9295   if (E->isInstantiationDependent() || E->getType()->isPlaceholderType() ||
9296       ReturnTypeRequirement.isDependent())
9297     Status = concepts::ExprRequirement::SS_Dependent;
9298   else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
9299     Status = concepts::ExprRequirement::SS_NoexceptNotMet;
9300   else if (ReturnTypeRequirement.isSubstitutionFailure())
9301     Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
9302   else if (ReturnTypeRequirement.isTypeConstraint()) {
9303     // C++2a [expr.prim.req]p1.3.3
9304     //     The immediately-declared constraint ([temp]) of decltype((E)) shall
9305     //     be satisfied.
9306     TemplateParameterList *TPL =
9307         ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
9308     QualType MatchedType =
9309         Context.getReferenceQualifiedType(E).getCanonicalType();
9310     llvm::SmallVector<TemplateArgument, 1> Args;
9311     Args.push_back(TemplateArgument(MatchedType));
9312 
9313     auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0));
9314 
9315     MultiLevelTemplateArgumentList MLTAL(Param, Args, /*Final=*/false);
9316     MLTAL.addOuterRetainedLevels(TPL->getDepth());
9317     const TypeConstraint *TC = Param->getTypeConstraint();
9318     assert(TC && "Type Constraint cannot be null here");
9319     auto *IDC = TC->getImmediatelyDeclaredConstraint();
9320     assert(IDC && "ImmediatelyDeclaredConstraint can't be null here.");
9321     ExprResult Constraint = SubstExpr(IDC, MLTAL);
9322     if (Constraint.isInvalid()) {
9323       return new (Context) concepts::ExprRequirement(
9324           concepts::createSubstDiagAt(*this, IDC->getExprLoc(),
9325                                       [&](llvm::raw_ostream &OS) {
9326                                         IDC->printPretty(OS, /*Helper=*/nullptr,
9327                                                          getPrintingPolicy());
9328                                       }),
9329           IsSimple, NoexceptLoc, ReturnTypeRequirement);
9330     }
9331     SubstitutedConstraintExpr =
9332         cast<ConceptSpecializationExpr>(Constraint.get());
9333     if (!SubstitutedConstraintExpr->isSatisfied())
9334       Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
9335   }
9336   return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
9337                                                  ReturnTypeRequirement, Status,
9338                                                  SubstitutedConstraintExpr);
9339 }
9340 
9341 concepts::ExprRequirement *
9342 Sema::BuildExprRequirement(
9343     concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
9344     bool IsSimple, SourceLocation NoexceptLoc,
9345     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9346   return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
9347                                                  IsSimple, NoexceptLoc,
9348                                                  ReturnTypeRequirement);
9349 }
9350 
9351 concepts::TypeRequirement *
9352 Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
9353   return new (Context) concepts::TypeRequirement(Type);
9354 }
9355 
9356 concepts::TypeRequirement *
9357 Sema::BuildTypeRequirement(
9358     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
9359   return new (Context) concepts::TypeRequirement(SubstDiag);
9360 }
9361 
9362 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
9363   return BuildNestedRequirement(Constraint);
9364 }
9365 
9366 concepts::NestedRequirement *
9367 Sema::BuildNestedRequirement(Expr *Constraint) {
9368   ConstraintSatisfaction Satisfaction;
9369   if (!Constraint->isInstantiationDependent() &&
9370       CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
9371                                   Constraint->getSourceRange(), Satisfaction))
9372     return nullptr;
9373   return new (Context) concepts::NestedRequirement(Context, Constraint,
9374                                                    Satisfaction);
9375 }
9376 
9377 concepts::NestedRequirement *
9378 Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity,
9379                        const ASTConstraintSatisfaction &Satisfaction) {
9380   return new (Context) concepts::NestedRequirement(
9381       InvalidConstraintEntity,
9382       ASTConstraintSatisfaction::Rebuild(Context, Satisfaction));
9383 }
9384 
9385 RequiresExprBodyDecl *
9386 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
9387                              ArrayRef<ParmVarDecl *> LocalParameters,
9388                              Scope *BodyScope) {
9389   assert(BodyScope);
9390 
9391   RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
9392                                                             RequiresKWLoc);
9393 
9394   PushDeclContext(BodyScope, Body);
9395 
9396   for (ParmVarDecl *Param : LocalParameters) {
9397     if (Param->hasDefaultArg())
9398       // C++2a [expr.prim.req] p4
9399       //     [...] A local parameter of a requires-expression shall not have a
9400       //     default argument. [...]
9401       Diag(Param->getDefaultArgRange().getBegin(),
9402            diag::err_requires_expr_local_parameter_default_argument);
9403     // Ignore default argument and move on
9404 
9405     Param->setDeclContext(Body);
9406     // If this has an identifier, add it to the scope stack.
9407     if (Param->getIdentifier()) {
9408       CheckShadow(BodyScope, Param);
9409       PushOnScopeChains(Param, BodyScope);
9410     }
9411   }
9412   return Body;
9413 }
9414 
9415 void Sema::ActOnFinishRequiresExpr() {
9416   assert(CurContext && "DeclContext imbalance!");
9417   CurContext = CurContext->getLexicalParent();
9418   assert(CurContext && "Popped translation unit!");
9419 }
9420 
9421 ExprResult Sema::ActOnRequiresExpr(
9422     SourceLocation RequiresKWLoc, RequiresExprBodyDecl *Body,
9423     SourceLocation LParenLoc, ArrayRef<ParmVarDecl *> LocalParameters,
9424     SourceLocation RParenLoc, ArrayRef<concepts::Requirement *> Requirements,
9425     SourceLocation ClosingBraceLoc) {
9426   auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LParenLoc,
9427                                   LocalParameters, RParenLoc, Requirements,
9428                                   ClosingBraceLoc);
9429   if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
9430     return ExprError();
9431   return RE;
9432 }
9433