1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Implements semantic analysis for C++ expressions. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/Template.h" 15 #include "clang/Sema/SemaInternal.h" 16 #include "TreeTransform.h" 17 #include "TypeLocBuilder.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/ASTLambda.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/ExprObjC.h" 25 #include "clang/AST/RecursiveASTVisitor.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/Basic/AlignedAllocation.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Sema/DeclSpec.h" 32 #include "clang/Sema/Initialization.h" 33 #include "clang/Sema/Lookup.h" 34 #include "clang/Sema/ParsedTemplate.h" 35 #include "clang/Sema/Scope.h" 36 #include "clang/Sema/ScopeInfo.h" 37 #include "clang/Sema/SemaLambda.h" 38 #include "clang/Sema/TemplateDeduction.h" 39 #include "llvm/ADT/APInt.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include "llvm/Support/ErrorHandling.h" 42 using namespace clang; 43 using namespace sema; 44 45 /// Handle the result of the special case name lookup for inheriting 46 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as 47 /// constructor names in member using declarations, even if 'X' is not the 48 /// name of the corresponding type. 49 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, 50 SourceLocation NameLoc, 51 IdentifierInfo &Name) { 52 NestedNameSpecifier *NNS = SS.getScopeRep(); 53 54 // Convert the nested-name-specifier into a type. 55 QualType Type; 56 switch (NNS->getKind()) { 57 case NestedNameSpecifier::TypeSpec: 58 case NestedNameSpecifier::TypeSpecWithTemplate: 59 Type = QualType(NNS->getAsType(), 0); 60 break; 61 62 case NestedNameSpecifier::Identifier: 63 // Strip off the last layer of the nested-name-specifier and build a 64 // typename type for it. 65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); 66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(), 67 NNS->getAsIdentifier()); 68 break; 69 70 case NestedNameSpecifier::Global: 71 case NestedNameSpecifier::Super: 72 case NestedNameSpecifier::Namespace: 73 case NestedNameSpecifier::NamespaceAlias: 74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); 75 } 76 77 // This reference to the type is located entirely at the location of the 78 // final identifier in the qualified-id. 79 return CreateParsedType(Type, 80 Context.getTrivialTypeSourceInfo(Type, NameLoc)); 81 } 82 83 ParsedType Sema::getConstructorName(IdentifierInfo &II, 84 SourceLocation NameLoc, 85 Scope *S, CXXScopeSpec &SS, 86 bool EnteringContext) { 87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS); 88 assert(CurClass && &II == CurClass->getIdentifier() && 89 "not a constructor name"); 90 91 // When naming a constructor as a member of a dependent context (eg, in a 92 // friend declaration or an inherited constructor declaration), form an 93 // unresolved "typename" type. 94 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) { 95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II); 96 return ParsedType::make(T); 97 } 98 99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass)) 100 return ParsedType(); 101 102 // Find the injected-class-name declaration. Note that we make no attempt to 103 // diagnose cases where the injected-class-name is shadowed: the only 104 // declaration that can validly shadow the injected-class-name is a 105 // non-static data member, and if the class contains both a non-static data 106 // member and a constructor then it is ill-formed (we check that in 107 // CheckCompletedCXXClass). 108 CXXRecordDecl *InjectedClassName = nullptr; 109 for (NamedDecl *ND : CurClass->lookup(&II)) { 110 auto *RD = dyn_cast<CXXRecordDecl>(ND); 111 if (RD && RD->isInjectedClassName()) { 112 InjectedClassName = RD; 113 break; 114 } 115 } 116 if (!InjectedClassName) { 117 if (!CurClass->isInvalidDecl()) { 118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts 119 // properly. Work around it here for now. 120 Diag(SS.getLastQualifierNameLoc(), 121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange(); 122 } 123 return ParsedType(); 124 } 125 126 QualType T = Context.getTypeDeclType(InjectedClassName); 127 DiagnoseUseOfDecl(InjectedClassName, NameLoc); 128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false); 129 130 return ParsedType::make(T); 131 } 132 133 ParsedType Sema::getDestructorName(SourceLocation TildeLoc, 134 IdentifierInfo &II, 135 SourceLocation NameLoc, 136 Scope *S, CXXScopeSpec &SS, 137 ParsedType ObjectTypePtr, 138 bool EnteringContext) { 139 // Determine where to perform name lookup. 140 141 // FIXME: This area of the standard is very messy, and the current 142 // wording is rather unclear about which scopes we search for the 143 // destructor name; see core issues 399 and 555. Issue 399 in 144 // particular shows where the current description of destructor name 145 // lookup is completely out of line with existing practice, e.g., 146 // this appears to be ill-formed: 147 // 148 // namespace N { 149 // template <typename T> struct S { 150 // ~S(); 151 // }; 152 // } 153 // 154 // void f(N::S<int>* s) { 155 // s->N::S<int>::~S(); 156 // } 157 // 158 // See also PR6358 and PR6359. 159 // 160 // For now, we accept all the cases in which the name given could plausibly 161 // be interpreted as a correct destructor name, issuing off-by-default 162 // extension diagnostics on the cases that don't strictly conform to the 163 // C++20 rules. This basically means we always consider looking in the 164 // nested-name-specifier prefix, the complete nested-name-specifier, and 165 // the scope, and accept if we find the expected type in any of the three 166 // places. 167 168 if (SS.isInvalid()) 169 return nullptr; 170 171 // Whether we've failed with a diagnostic already. 172 bool Failed = false; 173 174 llvm::SmallVector<NamedDecl*, 8> FoundDecls; 175 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet; 176 177 // If we have an object type, it's because we are in a 178 // pseudo-destructor-expression or a member access expression, and 179 // we know what type we're looking for. 180 QualType SearchType = 181 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType(); 182 183 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType { 184 auto IsAcceptableResult = [&](NamedDecl *D) -> bool { 185 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl()); 186 if (!Type) 187 return false; 188 189 if (SearchType.isNull() || SearchType->isDependentType()) 190 return true; 191 192 QualType T = Context.getTypeDeclType(Type); 193 return Context.hasSameUnqualifiedType(T, SearchType); 194 }; 195 196 unsigned NumAcceptableResults = 0; 197 for (NamedDecl *D : Found) { 198 if (IsAcceptableResult(D)) 199 ++NumAcceptableResults; 200 201 // Don't list a class twice in the lookup failure diagnostic if it's 202 // found by both its injected-class-name and by the name in the enclosing 203 // scope. 204 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 205 if (RD->isInjectedClassName()) 206 D = cast<NamedDecl>(RD->getParent()); 207 208 if (FoundDeclSet.insert(D).second) 209 FoundDecls.push_back(D); 210 } 211 212 // As an extension, attempt to "fix" an ambiguity by erasing all non-type 213 // results, and all non-matching results if we have a search type. It's not 214 // clear what the right behavior is if destructor lookup hits an ambiguity, 215 // but other compilers do generally accept at least some kinds of 216 // ambiguity. 217 if (Found.isAmbiguous() && NumAcceptableResults == 1) { 218 Diag(NameLoc, diag::ext_dtor_name_ambiguous); 219 LookupResult::Filter F = Found.makeFilter(); 220 while (F.hasNext()) { 221 NamedDecl *D = F.next(); 222 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 223 Diag(D->getLocation(), diag::note_destructor_type_here) 224 << Context.getTypeDeclType(TD); 225 else 226 Diag(D->getLocation(), diag::note_destructor_nontype_here); 227 228 if (!IsAcceptableResult(D)) 229 F.erase(); 230 } 231 F.done(); 232 } 233 234 if (Found.isAmbiguous()) 235 Failed = true; 236 237 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { 238 if (IsAcceptableResult(Type)) { 239 QualType T = Context.getTypeDeclType(Type); 240 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 241 return CreateParsedType(T, 242 Context.getTrivialTypeSourceInfo(T, NameLoc)); 243 } 244 } 245 246 return nullptr; 247 }; 248 249 bool IsDependent = false; 250 251 auto LookupInObjectType = [&]() -> ParsedType { 252 if (Failed || SearchType.isNull()) 253 return nullptr; 254 255 IsDependent |= SearchType->isDependentType(); 256 257 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 258 DeclContext *LookupCtx = computeDeclContext(SearchType); 259 if (!LookupCtx) 260 return nullptr; 261 LookupQualifiedName(Found, LookupCtx); 262 return CheckLookupResult(Found); 263 }; 264 265 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType { 266 if (Failed) 267 return nullptr; 268 269 IsDependent |= isDependentScopeSpecifier(LookupSS); 270 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext); 271 if (!LookupCtx) 272 return nullptr; 273 274 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 275 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) { 276 Failed = true; 277 return nullptr; 278 } 279 LookupQualifiedName(Found, LookupCtx); 280 return CheckLookupResult(Found); 281 }; 282 283 auto LookupInScope = [&]() -> ParsedType { 284 if (Failed || !S) 285 return nullptr; 286 287 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 288 LookupName(Found, S); 289 return CheckLookupResult(Found); 290 }; 291 292 // C++2a [basic.lookup.qual]p6: 293 // In a qualified-id of the form 294 // 295 // nested-name-specifier[opt] type-name :: ~ type-name 296 // 297 // the second type-name is looked up in the same scope as the first. 298 // 299 // We interpret this as meaning that if you do a dual-scope lookup for the 300 // first name, you also do a dual-scope lookup for the second name, per 301 // C++ [basic.lookup.classref]p4: 302 // 303 // If the id-expression in a class member access is a qualified-id of the 304 // form 305 // 306 // class-name-or-namespace-name :: ... 307 // 308 // the class-name-or-namespace-name following the . or -> is first looked 309 // up in the class of the object expression and the name, if found, is used. 310 // Otherwise, it is looked up in the context of the entire 311 // postfix-expression. 312 // 313 // This looks in the same scopes as for an unqualified destructor name: 314 // 315 // C++ [basic.lookup.classref]p3: 316 // If the unqualified-id is ~ type-name, the type-name is looked up 317 // in the context of the entire postfix-expression. If the type T 318 // of the object expression is of a class type C, the type-name is 319 // also looked up in the scope of class C. At least one of the 320 // lookups shall find a name that refers to cv T. 321 // 322 // FIXME: The intent is unclear here. Should type-name::~type-name look in 323 // the scope anyway if it finds a non-matching name declared in the class? 324 // If both lookups succeed and find a dependent result, which result should 325 // we retain? (Same question for p->~type-name().) 326 327 if (NestedNameSpecifier *Prefix = 328 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) { 329 // This is 330 // 331 // nested-name-specifier type-name :: ~ type-name 332 // 333 // Look for the second type-name in the nested-name-specifier. 334 CXXScopeSpec PrefixSS; 335 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); 336 if (ParsedType T = LookupInNestedNameSpec(PrefixSS)) 337 return T; 338 } else { 339 // This is one of 340 // 341 // type-name :: ~ type-name 342 // ~ type-name 343 // 344 // Look in the scope and (if any) the object type. 345 if (ParsedType T = LookupInScope()) 346 return T; 347 if (ParsedType T = LookupInObjectType()) 348 return T; 349 } 350 351 if (Failed) 352 return nullptr; 353 354 if (IsDependent) { 355 // We didn't find our type, but that's OK: it's dependent anyway. 356 357 // FIXME: What if we have no nested-name-specifier? 358 QualType T = CheckTypenameType(ETK_None, SourceLocation(), 359 SS.getWithLocInContext(Context), 360 II, NameLoc); 361 return ParsedType::make(T); 362 } 363 364 // The remaining cases are all non-standard extensions imitating the behavior 365 // of various other compilers. 366 unsigned NumNonExtensionDecls = FoundDecls.size(); 367 368 if (SS.isSet()) { 369 // For compatibility with older broken C++ rules and existing code, 370 // 371 // nested-name-specifier :: ~ type-name 372 // 373 // also looks for type-name within the nested-name-specifier. 374 if (ParsedType T = LookupInNestedNameSpec(SS)) { 375 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope) 376 << SS.getRange() 377 << FixItHint::CreateInsertion(SS.getEndLoc(), 378 ("::" + II.getName()).str()); 379 return T; 380 } 381 382 // For compatibility with other compilers and older versions of Clang, 383 // 384 // nested-name-specifier type-name :: ~ type-name 385 // 386 // also looks for type-name in the scope. Unfortunately, we can't 387 // reasonably apply this fallback for dependent nested-name-specifiers. 388 if (SS.getScopeRep()->getPrefix()) { 389 if (ParsedType T = LookupInScope()) { 390 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope) 391 << FixItHint::CreateRemoval(SS.getRange()); 392 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here) 393 << GetTypeFromParser(T); 394 return T; 395 } 396 } 397 } 398 399 // We didn't find anything matching; tell the user what we did find (if 400 // anything). 401 402 // Don't tell the user about declarations we shouldn't have found. 403 FoundDecls.resize(NumNonExtensionDecls); 404 405 // List types before non-types. 406 std::stable_sort(FoundDecls.begin(), FoundDecls.end(), 407 [](NamedDecl *A, NamedDecl *B) { 408 return isa<TypeDecl>(A->getUnderlyingDecl()) > 409 isa<TypeDecl>(B->getUnderlyingDecl()); 410 }); 411 412 // Suggest a fixit to properly name the destroyed type. 413 auto MakeFixItHint = [&]{ 414 const CXXRecordDecl *Destroyed = nullptr; 415 // FIXME: If we have a scope specifier, suggest its last component? 416 if (!SearchType.isNull()) 417 Destroyed = SearchType->getAsCXXRecordDecl(); 418 else if (S) 419 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity()); 420 if (Destroyed) 421 return FixItHint::CreateReplacement(SourceRange(NameLoc), 422 Destroyed->getNameAsString()); 423 return FixItHint(); 424 }; 425 426 if (FoundDecls.empty()) { 427 // FIXME: Attempt typo-correction? 428 Diag(NameLoc, diag::err_undeclared_destructor_name) 429 << &II << MakeFixItHint(); 430 } else if (!SearchType.isNull() && FoundDecls.size() == 1) { 431 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) { 432 assert(!SearchType.isNull() && 433 "should only reject a type result if we have a search type"); 434 QualType T = Context.getTypeDeclType(TD); 435 Diag(NameLoc, diag::err_destructor_expr_type_mismatch) 436 << T << SearchType << MakeFixItHint(); 437 } else { 438 Diag(NameLoc, diag::err_destructor_expr_nontype) 439 << &II << MakeFixItHint(); 440 } 441 } else { 442 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype 443 : diag::err_destructor_expr_mismatch) 444 << &II << SearchType << MakeFixItHint(); 445 } 446 447 for (NamedDecl *FoundD : FoundDecls) { 448 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl())) 449 Diag(FoundD->getLocation(), diag::note_destructor_type_here) 450 << Context.getTypeDeclType(TD); 451 else 452 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here) 453 << FoundD; 454 } 455 456 return nullptr; 457 } 458 459 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS, 460 ParsedType ObjectType) { 461 if (DS.getTypeSpecType() == DeclSpec::TST_error) 462 return nullptr; 463 464 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 465 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 466 return nullptr; 467 } 468 469 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype && 470 "unexpected type in getDestructorType"); 471 QualType T = BuildDecltypeType(DS.getRepAsExpr()); 472 473 // If we know the type of the object, check that the correct destructor 474 // type was named now; we can give better diagnostics this way. 475 QualType SearchType = GetTypeFromParser(ObjectType); 476 if (!SearchType.isNull() && !SearchType->isDependentType() && 477 !Context.hasSameUnqualifiedType(T, SearchType)) { 478 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) 479 << T << SearchType; 480 return nullptr; 481 } 482 483 return ParsedType::make(T); 484 } 485 486 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, 487 const UnqualifiedId &Name, bool IsUDSuffix) { 488 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId); 489 if (!IsUDSuffix) { 490 // [over.literal] p8 491 // 492 // double operator""_Bq(long double); // OK: not a reserved identifier 493 // double operator"" _Bq(long double); // ill-formed, no diagnostic required 494 IdentifierInfo *II = Name.Identifier; 495 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts()); 496 SourceLocation Loc = Name.getEndLoc(); 497 if (isReservedInAllContexts(Status) && 498 !PP.getSourceManager().isInSystemHeader(Loc)) { 499 Diag(Loc, diag::warn_reserved_extern_symbol) 500 << II << static_cast<int>(Status) 501 << FixItHint::CreateReplacement( 502 Name.getSourceRange(), 503 (StringRef("operator\"\"") + II->getName()).str()); 504 } 505 } 506 507 if (!SS.isValid()) 508 return false; 509 510 switch (SS.getScopeRep()->getKind()) { 511 case NestedNameSpecifier::Identifier: 512 case NestedNameSpecifier::TypeSpec: 513 case NestedNameSpecifier::TypeSpecWithTemplate: 514 // Per C++11 [over.literal]p2, literal operators can only be declared at 515 // namespace scope. Therefore, this unqualified-id cannot name anything. 516 // Reject it early, because we have no AST representation for this in the 517 // case where the scope is dependent. 518 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace) 519 << SS.getScopeRep(); 520 return true; 521 522 case NestedNameSpecifier::Global: 523 case NestedNameSpecifier::Super: 524 case NestedNameSpecifier::Namespace: 525 case NestedNameSpecifier::NamespaceAlias: 526 return false; 527 } 528 529 llvm_unreachable("unknown nested name specifier kind"); 530 } 531 532 /// Build a C++ typeid expression with a type operand. 533 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 534 SourceLocation TypeidLoc, 535 TypeSourceInfo *Operand, 536 SourceLocation RParenLoc) { 537 // C++ [expr.typeid]p4: 538 // The top-level cv-qualifiers of the lvalue expression or the type-id 539 // that is the operand of typeid are always ignored. 540 // If the type of the type-id is a class type or a reference to a class 541 // type, the class shall be completely-defined. 542 Qualifiers Quals; 543 QualType T 544 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), 545 Quals); 546 if (T->getAs<RecordType>() && 547 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 548 return ExprError(); 549 550 if (T->isVariablyModifiedType()) 551 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); 552 553 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc)) 554 return ExprError(); 555 556 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, 557 SourceRange(TypeidLoc, RParenLoc)); 558 } 559 560 /// Build a C++ typeid expression with an expression operand. 561 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 562 SourceLocation TypeidLoc, 563 Expr *E, 564 SourceLocation RParenLoc) { 565 bool WasEvaluated = false; 566 if (E && !E->isTypeDependent()) { 567 if (E->hasPlaceholderType()) { 568 ExprResult result = CheckPlaceholderExpr(E); 569 if (result.isInvalid()) return ExprError(); 570 E = result.get(); 571 } 572 573 QualType T = E->getType(); 574 if (const RecordType *RecordT = T->getAs<RecordType>()) { 575 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); 576 // C++ [expr.typeid]p3: 577 // [...] If the type of the expression is a class type, the class 578 // shall be completely-defined. 579 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 580 return ExprError(); 581 582 // C++ [expr.typeid]p3: 583 // When typeid is applied to an expression other than an glvalue of a 584 // polymorphic class type [...] [the] expression is an unevaluated 585 // operand. [...] 586 if (RecordD->isPolymorphic() && E->isGLValue()) { 587 if (isUnevaluatedContext()) { 588 // The operand was processed in unevaluated context, switch the 589 // context and recheck the subexpression. 590 ExprResult Result = TransformToPotentiallyEvaluated(E); 591 if (Result.isInvalid()) 592 return ExprError(); 593 E = Result.get(); 594 } 595 596 // We require a vtable to query the type at run time. 597 MarkVTableUsed(TypeidLoc, RecordD); 598 WasEvaluated = true; 599 } 600 } 601 602 ExprResult Result = CheckUnevaluatedOperand(E); 603 if (Result.isInvalid()) 604 return ExprError(); 605 E = Result.get(); 606 607 // C++ [expr.typeid]p4: 608 // [...] If the type of the type-id is a reference to a possibly 609 // cv-qualified type, the result of the typeid expression refers to a 610 // std::type_info object representing the cv-unqualified referenced 611 // type. 612 Qualifiers Quals; 613 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); 614 if (!Context.hasSameType(T, UnqualT)) { 615 T = UnqualT; 616 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); 617 } 618 } 619 620 if (E->getType()->isVariablyModifiedType()) 621 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) 622 << E->getType()); 623 else if (!inTemplateInstantiation() && 624 E->HasSideEffects(Context, WasEvaluated)) { 625 // The expression operand for typeid is in an unevaluated expression 626 // context, so side effects could result in unintended consequences. 627 Diag(E->getExprLoc(), WasEvaluated 628 ? diag::warn_side_effects_typeid 629 : diag::warn_side_effects_unevaluated_context); 630 } 631 632 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, 633 SourceRange(TypeidLoc, RParenLoc)); 634 } 635 636 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); 637 ExprResult 638 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, 639 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 640 // typeid is not supported in OpenCL. 641 if (getLangOpts().OpenCLCPlusPlus) { 642 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) 643 << "typeid"); 644 } 645 646 // Find the std::type_info type. 647 if (!getStdNamespace()) 648 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 649 650 if (!CXXTypeInfoDecl) { 651 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); 652 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); 653 LookupQualifiedName(R, getStdNamespace()); 654 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 655 // Microsoft's typeinfo doesn't have type_info in std but in the global 656 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. 657 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { 658 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 659 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 660 } 661 if (!CXXTypeInfoDecl) 662 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 663 } 664 665 if (!getLangOpts().RTTI) { 666 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); 667 } 668 669 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); 670 671 if (isType) { 672 // The operand is a type; handle it as such. 673 TypeSourceInfo *TInfo = nullptr; 674 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 675 &TInfo); 676 if (T.isNull()) 677 return ExprError(); 678 679 if (!TInfo) 680 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 681 682 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); 683 } 684 685 // The operand is an expression. 686 ExprResult Result = 687 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc); 688 689 if (!getLangOpts().RTTIData && !Result.isInvalid()) 690 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get())) 691 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context)) 692 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled) 693 << (getDiagnostics().getDiagnosticOptions().getFormat() == 694 DiagnosticOptions::MSVC); 695 return Result; 696 } 697 698 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to 699 /// a single GUID. 700 static void 701 getUuidAttrOfType(Sema &SemaRef, QualType QT, 702 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) { 703 // Optionally remove one level of pointer, reference or array indirection. 704 const Type *Ty = QT.getTypePtr(); 705 if (QT->isPointerType() || QT->isReferenceType()) 706 Ty = QT->getPointeeType().getTypePtr(); 707 else if (QT->isArrayType()) 708 Ty = Ty->getBaseElementTypeUnsafe(); 709 710 const auto *TD = Ty->getAsTagDecl(); 711 if (!TD) 712 return; 713 714 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) { 715 UuidAttrs.insert(Uuid); 716 return; 717 } 718 719 // __uuidof can grab UUIDs from template arguments. 720 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) { 721 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 722 for (const TemplateArgument &TA : TAL.asArray()) { 723 const UuidAttr *UuidForTA = nullptr; 724 if (TA.getKind() == TemplateArgument::Type) 725 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs); 726 else if (TA.getKind() == TemplateArgument::Declaration) 727 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs); 728 729 if (UuidForTA) 730 UuidAttrs.insert(UuidForTA); 731 } 732 } 733 } 734 735 /// Build a Microsoft __uuidof expression with a type operand. 736 ExprResult Sema::BuildCXXUuidof(QualType Type, 737 SourceLocation TypeidLoc, 738 TypeSourceInfo *Operand, 739 SourceLocation RParenLoc) { 740 MSGuidDecl *Guid = nullptr; 741 if (!Operand->getType()->isDependentType()) { 742 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 743 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs); 744 if (UuidAttrs.empty()) 745 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 746 if (UuidAttrs.size() > 1) 747 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 748 Guid = UuidAttrs.back()->getGuidDecl(); 749 } 750 751 return new (Context) 752 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc)); 753 } 754 755 /// Build a Microsoft __uuidof expression with an expression operand. 756 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc, 757 Expr *E, SourceLocation RParenLoc) { 758 MSGuidDecl *Guid = nullptr; 759 if (!E->getType()->isDependentType()) { 760 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 761 // A null pointer results in {00000000-0000-0000-0000-000000000000}. 762 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{}); 763 } else { 764 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 765 getUuidAttrOfType(*this, E->getType(), UuidAttrs); 766 if (UuidAttrs.empty()) 767 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 768 if (UuidAttrs.size() > 1) 769 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 770 Guid = UuidAttrs.back()->getGuidDecl(); 771 } 772 } 773 774 return new (Context) 775 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc)); 776 } 777 778 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); 779 ExprResult 780 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, 781 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 782 QualType GuidType = Context.getMSGuidType(); 783 GuidType.addConst(); 784 785 if (isType) { 786 // The operand is a type; handle it as such. 787 TypeSourceInfo *TInfo = nullptr; 788 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 789 &TInfo); 790 if (T.isNull()) 791 return ExprError(); 792 793 if (!TInfo) 794 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 795 796 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); 797 } 798 799 // The operand is an expression. 800 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 801 } 802 803 /// ActOnCXXBoolLiteral - Parse {true,false} literals. 804 ExprResult 805 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { 806 assert((Kind == tok::kw_true || Kind == tok::kw_false) && 807 "Unknown C++ Boolean value!"); 808 return new (Context) 809 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); 810 } 811 812 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. 813 ExprResult 814 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { 815 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 816 } 817 818 /// ActOnCXXThrow - Parse throw expressions. 819 ExprResult 820 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { 821 bool IsThrownVarInScope = false; 822 if (Ex) { 823 // C++0x [class.copymove]p31: 824 // When certain criteria are met, an implementation is allowed to omit the 825 // copy/move construction of a class object [...] 826 // 827 // - in a throw-expression, when the operand is the name of a 828 // non-volatile automatic object (other than a function or catch- 829 // clause parameter) whose scope does not extend beyond the end of the 830 // innermost enclosing try-block (if there is one), the copy/move 831 // operation from the operand to the exception object (15.1) can be 832 // omitted by constructing the automatic object directly into the 833 // exception object 834 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) 835 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 836 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { 837 for( ; S; S = S->getParent()) { 838 if (S->isDeclScope(Var)) { 839 IsThrownVarInScope = true; 840 break; 841 } 842 843 if (S->getFlags() & 844 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | 845 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope | 846 Scope::TryScope)) 847 break; 848 } 849 } 850 } 851 } 852 853 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); 854 } 855 856 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 857 bool IsThrownVarInScope) { 858 // Don't report an error if 'throw' is used in system headers. 859 if (!getLangOpts().CXXExceptions && 860 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) { 861 // Delay error emission for the OpenMP device code. 862 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw"; 863 } 864 865 // Exceptions aren't allowed in CUDA device code. 866 if (getLangOpts().CUDA) 867 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions) 868 << "throw" << CurrentCUDATarget(); 869 870 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 871 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; 872 873 if (Ex && !Ex->isTypeDependent()) { 874 // Initialize the exception result. This implicitly weeds out 875 // abstract types or types with inaccessible copy constructors. 876 877 // C++0x [class.copymove]p31: 878 // When certain criteria are met, an implementation is allowed to omit the 879 // copy/move construction of a class object [...] 880 // 881 // - in a throw-expression, when the operand is the name of a 882 // non-volatile automatic object (other than a function or 883 // catch-clause 884 // parameter) whose scope does not extend beyond the end of the 885 // innermost enclosing try-block (if there is one), the copy/move 886 // operation from the operand to the exception object (15.1) can be 887 // omitted by constructing the automatic object directly into the 888 // exception object 889 NamedReturnInfo NRInfo = 890 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo(); 891 892 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); 893 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) 894 return ExprError(); 895 896 InitializedEntity Entity = 897 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy); 898 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex); 899 if (Res.isInvalid()) 900 return ExprError(); 901 Ex = Res.get(); 902 } 903 904 // PPC MMA non-pointer types are not allowed as throw expr types. 905 if (Ex && Context.getTargetInfo().getTriple().isPPC64()) 906 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc()); 907 908 return new (Context) 909 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); 910 } 911 912 static void 913 collectPublicBases(CXXRecordDecl *RD, 914 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, 915 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, 916 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, 917 bool ParentIsPublic) { 918 for (const CXXBaseSpecifier &BS : RD->bases()) { 919 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 920 bool NewSubobject; 921 // Virtual bases constitute the same subobject. Non-virtual bases are 922 // always distinct subobjects. 923 if (BS.isVirtual()) 924 NewSubobject = VBases.insert(BaseDecl).second; 925 else 926 NewSubobject = true; 927 928 if (NewSubobject) 929 ++SubobjectsSeen[BaseDecl]; 930 931 // Only add subobjects which have public access throughout the entire chain. 932 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; 933 if (PublicPath) 934 PublicSubobjectsSeen.insert(BaseDecl); 935 936 // Recurse on to each base subobject. 937 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, 938 PublicPath); 939 } 940 } 941 942 static void getUnambiguousPublicSubobjects( 943 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { 944 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; 945 llvm::SmallSet<CXXRecordDecl *, 2> VBases; 946 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; 947 SubobjectsSeen[RD] = 1; 948 PublicSubobjectsSeen.insert(RD); 949 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, 950 /*ParentIsPublic=*/true); 951 952 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { 953 // Skip ambiguous objects. 954 if (SubobjectsSeen[PublicSubobject] > 1) 955 continue; 956 957 Objects.push_back(PublicSubobject); 958 } 959 } 960 961 /// CheckCXXThrowOperand - Validate the operand of a throw. 962 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, 963 QualType ExceptionObjectTy, Expr *E) { 964 // If the type of the exception would be an incomplete type or a pointer 965 // to an incomplete type other than (cv) void the program is ill-formed. 966 QualType Ty = ExceptionObjectTy; 967 bool isPointer = false; 968 if (const PointerType* Ptr = Ty->getAs<PointerType>()) { 969 Ty = Ptr->getPointeeType(); 970 isPointer = true; 971 } 972 if (!isPointer || !Ty->isVoidType()) { 973 if (RequireCompleteType(ThrowLoc, Ty, 974 isPointer ? diag::err_throw_incomplete_ptr 975 : diag::err_throw_incomplete, 976 E->getSourceRange())) 977 return true; 978 979 if (!isPointer && Ty->isSizelessType()) { 980 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange(); 981 return true; 982 } 983 984 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, 985 diag::err_throw_abstract_type, E)) 986 return true; 987 } 988 989 // If the exception has class type, we need additional handling. 990 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 991 if (!RD) 992 return false; 993 994 // If we are throwing a polymorphic class type or pointer thereof, 995 // exception handling will make use of the vtable. 996 MarkVTableUsed(ThrowLoc, RD); 997 998 // If a pointer is thrown, the referenced object will not be destroyed. 999 if (isPointer) 1000 return false; 1001 1002 // If the class has a destructor, we must be able to call it. 1003 if (!RD->hasIrrelevantDestructor()) { 1004 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 1005 MarkFunctionReferenced(E->getExprLoc(), Destructor); 1006 CheckDestructorAccess(E->getExprLoc(), Destructor, 1007 PDiag(diag::err_access_dtor_exception) << Ty); 1008 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 1009 return true; 1010 } 1011 } 1012 1013 // The MSVC ABI creates a list of all types which can catch the exception 1014 // object. This list also references the appropriate copy constructor to call 1015 // if the object is caught by value and has a non-trivial copy constructor. 1016 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1017 // We are only interested in the public, unambiguous bases contained within 1018 // the exception object. Bases which are ambiguous or otherwise 1019 // inaccessible are not catchable types. 1020 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; 1021 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); 1022 1023 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { 1024 // Attempt to lookup the copy constructor. Various pieces of machinery 1025 // will spring into action, like template instantiation, which means this 1026 // cannot be a simple walk of the class's decls. Instead, we must perform 1027 // lookup and overload resolution. 1028 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); 1029 if (!CD || CD->isDeleted()) 1030 continue; 1031 1032 // Mark the constructor referenced as it is used by this throw expression. 1033 MarkFunctionReferenced(E->getExprLoc(), CD); 1034 1035 // Skip this copy constructor if it is trivial, we don't need to record it 1036 // in the catchable type data. 1037 if (CD->isTrivial()) 1038 continue; 1039 1040 // The copy constructor is non-trivial, create a mapping from this class 1041 // type to this constructor. 1042 // N.B. The selection of copy constructor is not sensitive to this 1043 // particular throw-site. Lookup will be performed at the catch-site to 1044 // ensure that the copy constructor is, in fact, accessible (via 1045 // friendship or any other means). 1046 Context.addCopyConstructorForExceptionObject(Subobject, CD); 1047 1048 // We don't keep the instantiated default argument expressions around so 1049 // we must rebuild them here. 1050 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { 1051 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I))) 1052 return true; 1053 } 1054 } 1055 } 1056 1057 // Under the Itanium C++ ABI, memory for the exception object is allocated by 1058 // the runtime with no ability for the compiler to request additional 1059 // alignment. Warn if the exception type requires alignment beyond the minimum 1060 // guaranteed by the target C++ runtime. 1061 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) { 1062 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty); 1063 CharUnits ExnObjAlign = Context.getExnObjectAlignment(); 1064 if (ExnObjAlign < TypeAlign) { 1065 Diag(ThrowLoc, diag::warn_throw_underaligned_obj); 1066 Diag(ThrowLoc, diag::note_throw_underaligned_obj) 1067 << Ty << (unsigned)TypeAlign.getQuantity() 1068 << (unsigned)ExnObjAlign.getQuantity(); 1069 } 1070 } 1071 1072 return false; 1073 } 1074 1075 static QualType adjustCVQualifiersForCXXThisWithinLambda( 1076 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy, 1077 DeclContext *CurSemaContext, ASTContext &ASTCtx) { 1078 1079 QualType ClassType = ThisTy->getPointeeType(); 1080 LambdaScopeInfo *CurLSI = nullptr; 1081 DeclContext *CurDC = CurSemaContext; 1082 1083 // Iterate through the stack of lambdas starting from the innermost lambda to 1084 // the outermost lambda, checking if '*this' is ever captured by copy - since 1085 // that could change the cv-qualifiers of the '*this' object. 1086 // The object referred to by '*this' starts out with the cv-qualifiers of its 1087 // member function. We then start with the innermost lambda and iterate 1088 // outward checking to see if any lambda performs a by-copy capture of '*this' 1089 // - and if so, any nested lambda must respect the 'constness' of that 1090 // capturing lamdbda's call operator. 1091 // 1092 1093 // Since the FunctionScopeInfo stack is representative of the lexical 1094 // nesting of the lambda expressions during initial parsing (and is the best 1095 // place for querying information about captures about lambdas that are 1096 // partially processed) and perhaps during instantiation of function templates 1097 // that contain lambda expressions that need to be transformed BUT not 1098 // necessarily during instantiation of a nested generic lambda's function call 1099 // operator (which might even be instantiated at the end of the TU) - at which 1100 // time the DeclContext tree is mature enough to query capture information 1101 // reliably - we use a two pronged approach to walk through all the lexically 1102 // enclosing lambda expressions: 1103 // 1104 // 1) Climb down the FunctionScopeInfo stack as long as each item represents 1105 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically 1106 // enclosed by the call-operator of the LSI below it on the stack (while 1107 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on 1108 // the stack represents the innermost lambda. 1109 // 1110 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext 1111 // represents a lambda's call operator. If it does, we must be instantiating 1112 // a generic lambda's call operator (represented by the Current LSI, and 1113 // should be the only scenario where an inconsistency between the LSI and the 1114 // DeclContext should occur), so climb out the DeclContexts if they 1115 // represent lambdas, while querying the corresponding closure types 1116 // regarding capture information. 1117 1118 // 1) Climb down the function scope info stack. 1119 for (int I = FunctionScopes.size(); 1120 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) && 1121 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() == 1122 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator); 1123 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) { 1124 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]); 1125 1126 if (!CurLSI->isCXXThisCaptured()) 1127 continue; 1128 1129 auto C = CurLSI->getCXXThisCapture(); 1130 1131 if (C.isCopyCapture()) { 1132 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1133 if (CurLSI->CallOperator->isConst()) 1134 ClassType.addConst(); 1135 return ASTCtx.getPointerType(ClassType); 1136 } 1137 } 1138 1139 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which 1140 // can happen during instantiation of its nested generic lambda call 1141 // operator); 2. if we're in a lambda scope (lambda body). 1142 if (CurLSI && isLambdaCallOperator(CurDC)) { 1143 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && 1144 "While computing 'this' capture-type for a generic lambda, when we " 1145 "run out of enclosing LSI's, yet the enclosing DC is a " 1146 "lambda-call-operator we must be (i.e. Current LSI) in a generic " 1147 "lambda call oeprator"); 1148 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)); 1149 1150 auto IsThisCaptured = 1151 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) { 1152 IsConst = false; 1153 IsByCopy = false; 1154 for (auto &&C : Closure->captures()) { 1155 if (C.capturesThis()) { 1156 if (C.getCaptureKind() == LCK_StarThis) 1157 IsByCopy = true; 1158 if (Closure->getLambdaCallOperator()->isConst()) 1159 IsConst = true; 1160 return true; 1161 } 1162 } 1163 return false; 1164 }; 1165 1166 bool IsByCopyCapture = false; 1167 bool IsConstCapture = false; 1168 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent()); 1169 while (Closure && 1170 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) { 1171 if (IsByCopyCapture) { 1172 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1173 if (IsConstCapture) 1174 ClassType.addConst(); 1175 return ASTCtx.getPointerType(ClassType); 1176 } 1177 Closure = isLambdaCallOperator(Closure->getParent()) 1178 ? cast<CXXRecordDecl>(Closure->getParent()->getParent()) 1179 : nullptr; 1180 } 1181 } 1182 return ASTCtx.getPointerType(ClassType); 1183 } 1184 1185 QualType Sema::getCurrentThisType() { 1186 DeclContext *DC = getFunctionLevelDeclContext(); 1187 QualType ThisTy = CXXThisTypeOverride; 1188 1189 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { 1190 if (method && method->isInstance()) 1191 ThisTy = method->getThisType(); 1192 } 1193 1194 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) && 1195 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) { 1196 1197 // This is a lambda call operator that is being instantiated as a default 1198 // initializer. DC must point to the enclosing class type, so we can recover 1199 // the 'this' type from it. 1200 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC)); 1201 // There are no cv-qualifiers for 'this' within default initializers, 1202 // per [expr.prim.general]p4. 1203 ThisTy = Context.getPointerType(ClassTy); 1204 } 1205 1206 // If we are within a lambda's call operator, the cv-qualifiers of 'this' 1207 // might need to be adjusted if the lambda or any of its enclosing lambda's 1208 // captures '*this' by copy. 1209 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext)) 1210 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy, 1211 CurContext, Context); 1212 return ThisTy; 1213 } 1214 1215 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 1216 Decl *ContextDecl, 1217 Qualifiers CXXThisTypeQuals, 1218 bool Enabled) 1219 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) 1220 { 1221 if (!Enabled || !ContextDecl) 1222 return; 1223 1224 CXXRecordDecl *Record = nullptr; 1225 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) 1226 Record = Template->getTemplatedDecl(); 1227 else 1228 Record = cast<CXXRecordDecl>(ContextDecl); 1229 1230 QualType T = S.Context.getRecordType(Record); 1231 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals); 1232 1233 S.CXXThisTypeOverride = S.Context.getPointerType(T); 1234 1235 this->Enabled = true; 1236 } 1237 1238 1239 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { 1240 if (Enabled) { 1241 S.CXXThisTypeOverride = OldCXXThisTypeOverride; 1242 } 1243 } 1244 1245 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) { 1246 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd(); 1247 assert(!LSI->isCXXThisCaptured()); 1248 // [=, this] {}; // until C++20: Error: this when = is the default 1249 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval && 1250 !Sema.getLangOpts().CPlusPlus20) 1251 return; 1252 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit) 1253 << FixItHint::CreateInsertion( 1254 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this"); 1255 } 1256 1257 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit, 1258 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt, 1259 const bool ByCopy) { 1260 // We don't need to capture this in an unevaluated context. 1261 if (isUnevaluatedContext() && !Explicit) 1262 return true; 1263 1264 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value"); 1265 1266 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt 1267 ? *FunctionScopeIndexToStopAt 1268 : FunctionScopes.size() - 1; 1269 1270 // Check that we can capture the *enclosing object* (referred to by '*this') 1271 // by the capturing-entity/closure (lambda/block/etc) at 1272 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1273 1274 // Note: The *enclosing object* can only be captured by-value by a 1275 // closure that is a lambda, using the explicit notation: 1276 // [*this] { ... }. 1277 // Every other capture of the *enclosing object* results in its by-reference 1278 // capture. 1279 1280 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1281 // stack), we can capture the *enclosing object* only if: 1282 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1283 // - or, 'L' has an implicit capture. 1284 // AND 1285 // -- there is no enclosing closure 1286 // -- or, there is some enclosing closure 'E' that has already captured the 1287 // *enclosing object*, and every intervening closure (if any) between 'E' 1288 // and 'L' can implicitly capture the *enclosing object*. 1289 // -- or, every enclosing closure can implicitly capture the 1290 // *enclosing object* 1291 1292 1293 unsigned NumCapturingClosures = 0; 1294 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) { 1295 if (CapturingScopeInfo *CSI = 1296 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { 1297 if (CSI->CXXThisCaptureIndex != 0) { 1298 // 'this' is already being captured; there isn't anything more to do. 1299 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1300 break; 1301 } 1302 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); 1303 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1304 // This context can't implicitly capture 'this'; fail out. 1305 if (BuildAndDiagnose) { 1306 Diag(Loc, diag::err_this_capture) 1307 << (Explicit && idx == MaxFunctionScopesIndex); 1308 if (!Explicit) 1309 buildLambdaThisCaptureFixit(*this, LSI); 1310 } 1311 return true; 1312 } 1313 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || 1314 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || 1315 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || 1316 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || 1317 (Explicit && idx == MaxFunctionScopesIndex)) { 1318 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1319 // iteration through can be an explicit capture, all enclosing closures, 1320 // if any, must perform implicit captures. 1321 1322 // This closure can capture 'this'; continue looking upwards. 1323 NumCapturingClosures++; 1324 continue; 1325 } 1326 // This context can't implicitly capture 'this'; fail out. 1327 if (BuildAndDiagnose) 1328 Diag(Loc, diag::err_this_capture) 1329 << (Explicit && idx == MaxFunctionScopesIndex); 1330 1331 if (!Explicit) 1332 buildLambdaThisCaptureFixit(*this, LSI); 1333 return true; 1334 } 1335 break; 1336 } 1337 if (!BuildAndDiagnose) return false; 1338 1339 // If we got here, then the closure at MaxFunctionScopesIndex on the 1340 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1341 // (including implicit by-reference captures in any enclosing closures). 1342 1343 // In the loop below, respect the ByCopy flag only for the closure requesting 1344 // the capture (i.e. first iteration through the loop below). Ignore it for 1345 // all enclosing closure's up to NumCapturingClosures (since they must be 1346 // implicitly capturing the *enclosing object* by reference (see loop 1347 // above)). 1348 assert((!ByCopy || 1349 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && 1350 "Only a lambda can capture the enclosing object (referred to by " 1351 "*this) by copy"); 1352 QualType ThisTy = getCurrentThisType(); 1353 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1354 --idx, --NumCapturingClosures) { 1355 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1356 1357 // The type of the corresponding data member (not a 'this' pointer if 'by 1358 // copy'). 1359 QualType CaptureType = ThisTy; 1360 if (ByCopy) { 1361 // If we are capturing the object referred to by '*this' by copy, ignore 1362 // any cv qualifiers inherited from the type of the member function for 1363 // the type of the closure-type's corresponding data member and any use 1364 // of 'this'. 1365 CaptureType = ThisTy->getPointeeType(); 1366 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1367 } 1368 1369 bool isNested = NumCapturingClosures > 1; 1370 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1371 } 1372 return false; 1373 } 1374 1375 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1376 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1377 /// is a non-lvalue expression whose value is the address of the object for 1378 /// which the function is called. 1379 1380 QualType ThisTy = getCurrentThisType(); 1381 if (ThisTy.isNull()) 1382 return Diag(Loc, diag::err_invalid_this_use); 1383 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false); 1384 } 1385 1386 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1387 bool IsImplicit) { 1388 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); 1389 MarkThisReferenced(This); 1390 return This; 1391 } 1392 1393 void Sema::MarkThisReferenced(CXXThisExpr *This) { 1394 CheckCXXThisCapture(This->getExprLoc()); 1395 } 1396 1397 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1398 // If we're outside the body of a member function, then we'll have a specified 1399 // type for 'this'. 1400 if (CXXThisTypeOverride.isNull()) 1401 return false; 1402 1403 // Determine whether we're looking into a class that's currently being 1404 // defined. 1405 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1406 return Class && Class->isBeingDefined(); 1407 } 1408 1409 /// Parse construction of a specified type. 1410 /// Can be interpreted either as function-style casting ("int(x)") 1411 /// or class type construction ("ClassType(x,y,z)") 1412 /// or creation of a value-initialized type ("int()"). 1413 ExprResult 1414 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1415 SourceLocation LParenOrBraceLoc, 1416 MultiExprArg exprs, 1417 SourceLocation RParenOrBraceLoc, 1418 bool ListInitialization) { 1419 if (!TypeRep) 1420 return ExprError(); 1421 1422 TypeSourceInfo *TInfo; 1423 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1424 if (!TInfo) 1425 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1426 1427 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1428 RParenOrBraceLoc, ListInitialization); 1429 // Avoid creating a non-type-dependent expression that contains typos. 1430 // Non-type-dependent expressions are liable to be discarded without 1431 // checking for embedded typos. 1432 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1433 !Result.get()->isTypeDependent()) 1434 Result = CorrectDelayedTyposInExpr(Result.get()); 1435 else if (Result.isInvalid()) 1436 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), 1437 RParenOrBraceLoc, exprs, Ty); 1438 return Result; 1439 } 1440 1441 ExprResult 1442 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1443 SourceLocation LParenOrBraceLoc, 1444 MultiExprArg Exprs, 1445 SourceLocation RParenOrBraceLoc, 1446 bool ListInitialization) { 1447 QualType Ty = TInfo->getType(); 1448 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1449 1450 assert((!ListInitialization || 1451 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && 1452 "List initialization must have initializer list as expression."); 1453 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1454 1455 InitializedEntity Entity = 1456 InitializedEntity::InitializeTemporary(Context, TInfo); 1457 InitializationKind Kind = 1458 Exprs.size() 1459 ? ListInitialization 1460 ? InitializationKind::CreateDirectList( 1461 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1462 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1463 RParenOrBraceLoc) 1464 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1465 RParenOrBraceLoc); 1466 1467 // C++1z [expr.type.conv]p1: 1468 // If the type is a placeholder for a deduced class type, [...perform class 1469 // template argument deduction...] 1470 DeducedType *Deduced = Ty->getContainedDeducedType(); 1471 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1472 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1473 Kind, Exprs); 1474 if (Ty.isNull()) 1475 return ExprError(); 1476 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1477 } 1478 1479 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1480 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization 1481 // directly. We work around this by dropping the locations of the braces. 1482 SourceRange Locs = ListInitialization 1483 ? SourceRange() 1484 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1485 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(), 1486 TInfo, Locs.getBegin(), Exprs, 1487 Locs.getEnd()); 1488 } 1489 1490 // C++ [expr.type.conv]p1: 1491 // If the expression list is a parenthesized single expression, the type 1492 // conversion expression is equivalent (in definedness, and if defined in 1493 // meaning) to the corresponding cast expression. 1494 if (Exprs.size() == 1 && !ListInitialization && 1495 !isa<InitListExpr>(Exprs[0])) { 1496 Expr *Arg = Exprs[0]; 1497 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1498 RParenOrBraceLoc); 1499 } 1500 1501 // For an expression of the form T(), T shall not be an array type. 1502 QualType ElemTy = Ty; 1503 if (Ty->isArrayType()) { 1504 if (!ListInitialization) 1505 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1506 << FullRange); 1507 ElemTy = Context.getBaseElementType(Ty); 1508 } 1509 1510 // Only construct objects with object types. 1511 // The standard doesn't explicitly forbid function types here, but that's an 1512 // obvious oversight, as there's no way to dynamically construct a function 1513 // in general. 1514 if (Ty->isFunctionType()) 1515 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1516 << Ty << FullRange); 1517 1518 // C++17 [expr.type.conv]p2: 1519 // If the type is cv void and the initializer is (), the expression is a 1520 // prvalue of the specified type that performs no initialization. 1521 if (!Ty->isVoidType() && 1522 RequireCompleteType(TyBeginLoc, ElemTy, 1523 diag::err_invalid_incomplete_type_use, FullRange)) 1524 return ExprError(); 1525 1526 // Otherwise, the expression is a prvalue of the specified type whose 1527 // result object is direct-initialized (11.6) with the initializer. 1528 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1529 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1530 1531 if (Result.isInvalid()) 1532 return Result; 1533 1534 Expr *Inner = Result.get(); 1535 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1536 Inner = BTE->getSubExpr(); 1537 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1538 !isa<CXXScalarValueInitExpr>(Inner)) { 1539 // If we created a CXXTemporaryObjectExpr, that node also represents the 1540 // functional cast. Otherwise, create an explicit cast to represent 1541 // the syntactic form of a functional-style cast that was used here. 1542 // 1543 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1544 // would give a more consistent AST representation than using a 1545 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1546 // is sometimes handled by initialization and sometimes not. 1547 QualType ResultType = Result.get()->getType(); 1548 SourceRange Locs = ListInitialization 1549 ? SourceRange() 1550 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1551 Result = CXXFunctionalCastExpr::Create( 1552 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1553 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), 1554 Locs.getBegin(), Locs.getEnd()); 1555 } 1556 1557 return Result; 1558 } 1559 1560 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1561 // [CUDA] Ignore this function, if we can't call it. 1562 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext); 1563 if (getLangOpts().CUDA) { 1564 auto CallPreference = IdentifyCUDAPreference(Caller, Method); 1565 // If it's not callable at all, it's not the right function. 1566 if (CallPreference < CFP_WrongSide) 1567 return false; 1568 if (CallPreference == CFP_WrongSide) { 1569 // Maybe. We have to check if there are better alternatives. 1570 DeclContext::lookup_result R = 1571 Method->getDeclContext()->lookup(Method->getDeclName()); 1572 for (const auto *D : R) { 1573 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1574 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) 1575 return false; 1576 } 1577 } 1578 // We've found no better variants. 1579 } 1580 } 1581 1582 SmallVector<const FunctionDecl*, 4> PreventedBy; 1583 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1584 1585 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1586 return Result; 1587 1588 // In case of CUDA, return true if none of the 1-argument deallocator 1589 // functions are actually callable. 1590 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1591 assert(FD->getNumParams() == 1 && 1592 "Only single-operand functions should be in PreventedBy"); 1593 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1594 }); 1595 } 1596 1597 /// Determine whether the given function is a non-placement 1598 /// deallocation function. 1599 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1600 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1601 return S.isUsualDeallocationFunction(Method); 1602 1603 if (FD->getOverloadedOperator() != OO_Delete && 1604 FD->getOverloadedOperator() != OO_Array_Delete) 1605 return false; 1606 1607 unsigned UsualParams = 1; 1608 1609 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1610 S.Context.hasSameUnqualifiedType( 1611 FD->getParamDecl(UsualParams)->getType(), 1612 S.Context.getSizeType())) 1613 ++UsualParams; 1614 1615 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1616 S.Context.hasSameUnqualifiedType( 1617 FD->getParamDecl(UsualParams)->getType(), 1618 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1619 ++UsualParams; 1620 1621 return UsualParams == FD->getNumParams(); 1622 } 1623 1624 namespace { 1625 struct UsualDeallocFnInfo { 1626 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1627 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1628 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1629 Destroying(false), HasSizeT(false), HasAlignValT(false), 1630 CUDAPref(Sema::CFP_Native) { 1631 // A function template declaration is never a usual deallocation function. 1632 if (!FD) 1633 return; 1634 unsigned NumBaseParams = 1; 1635 if (FD->isDestroyingOperatorDelete()) { 1636 Destroying = true; 1637 ++NumBaseParams; 1638 } 1639 1640 if (NumBaseParams < FD->getNumParams() && 1641 S.Context.hasSameUnqualifiedType( 1642 FD->getParamDecl(NumBaseParams)->getType(), 1643 S.Context.getSizeType())) { 1644 ++NumBaseParams; 1645 HasSizeT = true; 1646 } 1647 1648 if (NumBaseParams < FD->getNumParams() && 1649 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1650 ++NumBaseParams; 1651 HasAlignValT = true; 1652 } 1653 1654 // In CUDA, determine how much we'd like / dislike to call this. 1655 if (S.getLangOpts().CUDA) 1656 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 1657 CUDAPref = S.IdentifyCUDAPreference(Caller, FD); 1658 } 1659 1660 explicit operator bool() const { return FD; } 1661 1662 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1663 bool WantAlign) const { 1664 // C++ P0722: 1665 // A destroying operator delete is preferred over a non-destroying 1666 // operator delete. 1667 if (Destroying != Other.Destroying) 1668 return Destroying; 1669 1670 // C++17 [expr.delete]p10: 1671 // If the type has new-extended alignment, a function with a parameter 1672 // of type std::align_val_t is preferred; otherwise a function without 1673 // such a parameter is preferred 1674 if (HasAlignValT != Other.HasAlignValT) 1675 return HasAlignValT == WantAlign; 1676 1677 if (HasSizeT != Other.HasSizeT) 1678 return HasSizeT == WantSize; 1679 1680 // Use CUDA call preference as a tiebreaker. 1681 return CUDAPref > Other.CUDAPref; 1682 } 1683 1684 DeclAccessPair Found; 1685 FunctionDecl *FD; 1686 bool Destroying, HasSizeT, HasAlignValT; 1687 Sema::CUDAFunctionPreference CUDAPref; 1688 }; 1689 } 1690 1691 /// Determine whether a type has new-extended alignment. This may be called when 1692 /// the type is incomplete (for a delete-expression with an incomplete pointee 1693 /// type), in which case it will conservatively return false if the alignment is 1694 /// not known. 1695 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1696 return S.getLangOpts().AlignedAllocation && 1697 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1698 S.getASTContext().getTargetInfo().getNewAlign(); 1699 } 1700 1701 /// Select the correct "usual" deallocation function to use from a selection of 1702 /// deallocation functions (either global or class-scope). 1703 static UsualDeallocFnInfo resolveDeallocationOverload( 1704 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1705 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1706 UsualDeallocFnInfo Best; 1707 1708 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1709 UsualDeallocFnInfo Info(S, I.getPair()); 1710 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1711 Info.CUDAPref == Sema::CFP_Never) 1712 continue; 1713 1714 if (!Best) { 1715 Best = Info; 1716 if (BestFns) 1717 BestFns->push_back(Info); 1718 continue; 1719 } 1720 1721 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1722 continue; 1723 1724 // If more than one preferred function is found, all non-preferred 1725 // functions are eliminated from further consideration. 1726 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1727 BestFns->clear(); 1728 1729 Best = Info; 1730 if (BestFns) 1731 BestFns->push_back(Info); 1732 } 1733 1734 return Best; 1735 } 1736 1737 /// Determine whether a given type is a class for which 'delete[]' would call 1738 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1739 /// we need to store the array size (even if the type is 1740 /// trivially-destructible). 1741 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1742 QualType allocType) { 1743 const RecordType *record = 1744 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1745 if (!record) return false; 1746 1747 // Try to find an operator delete[] in class scope. 1748 1749 DeclarationName deleteName = 1750 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1751 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1752 S.LookupQualifiedName(ops, record->getDecl()); 1753 1754 // We're just doing this for information. 1755 ops.suppressDiagnostics(); 1756 1757 // Very likely: there's no operator delete[]. 1758 if (ops.empty()) return false; 1759 1760 // If it's ambiguous, it should be illegal to call operator delete[] 1761 // on this thing, so it doesn't matter if we allocate extra space or not. 1762 if (ops.isAmbiguous()) return false; 1763 1764 // C++17 [expr.delete]p10: 1765 // If the deallocation functions have class scope, the one without a 1766 // parameter of type std::size_t is selected. 1767 auto Best = resolveDeallocationOverload( 1768 S, ops, /*WantSize*/false, 1769 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1770 return Best && Best.HasSizeT; 1771 } 1772 1773 /// Parsed a C++ 'new' expression (C++ 5.3.4). 1774 /// 1775 /// E.g.: 1776 /// @code new (memory) int[size][4] @endcode 1777 /// or 1778 /// @code ::new Foo(23, "hello") @endcode 1779 /// 1780 /// \param StartLoc The first location of the expression. 1781 /// \param UseGlobal True if 'new' was prefixed with '::'. 1782 /// \param PlacementLParen Opening paren of the placement arguments. 1783 /// \param PlacementArgs Placement new arguments. 1784 /// \param PlacementRParen Closing paren of the placement arguments. 1785 /// \param TypeIdParens If the type is in parens, the source range. 1786 /// \param D The type to be allocated, as well as array dimensions. 1787 /// \param Initializer The initializing expression or initializer-list, or null 1788 /// if there is none. 1789 ExprResult 1790 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1791 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1792 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1793 Declarator &D, Expr *Initializer) { 1794 Optional<Expr *> ArraySize; 1795 // If the specified type is an array, unwrap it and save the expression. 1796 if (D.getNumTypeObjects() > 0 && 1797 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1798 DeclaratorChunk &Chunk = D.getTypeObject(0); 1799 if (D.getDeclSpec().hasAutoTypeSpec()) 1800 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1801 << D.getSourceRange()); 1802 if (Chunk.Arr.hasStatic) 1803 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1804 << D.getSourceRange()); 1805 if (!Chunk.Arr.NumElts && !Initializer) 1806 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1807 << D.getSourceRange()); 1808 1809 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1810 D.DropFirstTypeObject(); 1811 } 1812 1813 // Every dimension shall be of constant size. 1814 if (ArraySize) { 1815 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1816 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1817 break; 1818 1819 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1820 if (Expr *NumElts = (Expr *)Array.NumElts) { 1821 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1822 // FIXME: GCC permits constant folding here. We should either do so consistently 1823 // or not do so at all, rather than changing behavior in C++14 onwards. 1824 if (getLangOpts().CPlusPlus14) { 1825 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1826 // shall be a converted constant expression (5.19) of type std::size_t 1827 // and shall evaluate to a strictly positive value. 1828 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); 1829 Array.NumElts 1830 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1831 CCEK_ArrayBound) 1832 .get(); 1833 } else { 1834 Array.NumElts = 1835 VerifyIntegerConstantExpression( 1836 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) 1837 .get(); 1838 } 1839 if (!Array.NumElts) 1840 return ExprError(); 1841 } 1842 } 1843 } 1844 } 1845 1846 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1847 QualType AllocType = TInfo->getType(); 1848 if (D.isInvalidType()) 1849 return ExprError(); 1850 1851 SourceRange DirectInitRange; 1852 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1853 DirectInitRange = List->getSourceRange(); 1854 1855 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1856 PlacementLParen, PlacementArgs, PlacementRParen, 1857 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1858 Initializer); 1859 } 1860 1861 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1862 Expr *Init) { 1863 if (!Init) 1864 return true; 1865 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1866 return PLE->getNumExprs() == 0; 1867 if (isa<ImplicitValueInitExpr>(Init)) 1868 return true; 1869 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1870 return !CCE->isListInitialization() && 1871 CCE->getConstructor()->isDefaultConstructor(); 1872 else if (Style == CXXNewExpr::ListInit) { 1873 assert(isa<InitListExpr>(Init) && 1874 "Shouldn't create list CXXConstructExprs for arrays."); 1875 return true; 1876 } 1877 return false; 1878 } 1879 1880 bool 1881 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1882 if (!getLangOpts().AlignedAllocationUnavailable) 1883 return false; 1884 if (FD.isDefined()) 1885 return false; 1886 Optional<unsigned> AlignmentParam; 1887 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 1888 AlignmentParam.hasValue()) 1889 return true; 1890 return false; 1891 } 1892 1893 // Emit a diagnostic if an aligned allocation/deallocation function that is not 1894 // implemented in the standard library is selected. 1895 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1896 SourceLocation Loc) { 1897 if (isUnavailableAlignedAllocationFunction(FD)) { 1898 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1899 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1900 getASTContext().getTargetInfo().getPlatformName()); 1901 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); 1902 1903 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1904 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1905 Diag(Loc, diag::err_aligned_allocation_unavailable) 1906 << IsDelete << FD.getType().getAsString() << OSName 1907 << OSVersion.getAsString() << OSVersion.empty(); 1908 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1909 } 1910 } 1911 1912 ExprResult 1913 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1914 SourceLocation PlacementLParen, 1915 MultiExprArg PlacementArgs, 1916 SourceLocation PlacementRParen, 1917 SourceRange TypeIdParens, 1918 QualType AllocType, 1919 TypeSourceInfo *AllocTypeInfo, 1920 Optional<Expr *> ArraySize, 1921 SourceRange DirectInitRange, 1922 Expr *Initializer) { 1923 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1924 SourceLocation StartLoc = Range.getBegin(); 1925 1926 CXXNewExpr::InitializationStyle initStyle; 1927 if (DirectInitRange.isValid()) { 1928 assert(Initializer && "Have parens but no initializer."); 1929 initStyle = CXXNewExpr::CallInit; 1930 } else if (Initializer && isa<InitListExpr>(Initializer)) 1931 initStyle = CXXNewExpr::ListInit; 1932 else { 1933 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || 1934 isa<CXXConstructExpr>(Initializer)) && 1935 "Initializer expression that cannot have been implicitly created."); 1936 initStyle = CXXNewExpr::NoInit; 1937 } 1938 1939 Expr **Inits = &Initializer; 1940 unsigned NumInits = Initializer ? 1 : 0; 1941 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1942 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init"); 1943 Inits = List->getExprs(); 1944 NumInits = List->getNumExprs(); 1945 } 1946 1947 // C++11 [expr.new]p15: 1948 // A new-expression that creates an object of type T initializes that 1949 // object as follows: 1950 InitializationKind Kind 1951 // - If the new-initializer is omitted, the object is default- 1952 // initialized (8.5); if no initialization is performed, 1953 // the object has indeterminate value 1954 = initStyle == CXXNewExpr::NoInit 1955 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1956 // - Otherwise, the new-initializer is interpreted according to 1957 // the 1958 // initialization rules of 8.5 for direct-initialization. 1959 : initStyle == CXXNewExpr::ListInit 1960 ? InitializationKind::CreateDirectList( 1961 TypeRange.getBegin(), Initializer->getBeginLoc(), 1962 Initializer->getEndLoc()) 1963 : InitializationKind::CreateDirect(TypeRange.getBegin(), 1964 DirectInitRange.getBegin(), 1965 DirectInitRange.getEnd()); 1966 1967 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 1968 auto *Deduced = AllocType->getContainedDeducedType(); 1969 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1970 if (ArraySize) 1971 return ExprError( 1972 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 1973 diag::err_deduced_class_template_compound_type) 1974 << /*array*/ 2 1975 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 1976 1977 InitializedEntity Entity 1978 = InitializedEntity::InitializeNew(StartLoc, AllocType); 1979 AllocType = DeduceTemplateSpecializationFromInitializer( 1980 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits)); 1981 if (AllocType.isNull()) 1982 return ExprError(); 1983 } else if (Deduced) { 1984 bool Braced = (initStyle == CXXNewExpr::ListInit); 1985 if (NumInits == 1) { 1986 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) { 1987 Inits = p->getInits(); 1988 NumInits = p->getNumInits(); 1989 Braced = true; 1990 } 1991 } 1992 1993 if (initStyle == CXXNewExpr::NoInit || NumInits == 0) 1994 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 1995 << AllocType << TypeRange); 1996 if (NumInits > 1) { 1997 Expr *FirstBad = Inits[1]; 1998 return ExprError(Diag(FirstBad->getBeginLoc(), 1999 diag::err_auto_new_ctor_multiple_expressions) 2000 << AllocType << TypeRange); 2001 } 2002 if (Braced && !getLangOpts().CPlusPlus17) 2003 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 2004 << AllocType << TypeRange; 2005 Expr *Deduce = Inits[0]; 2006 QualType DeducedType; 2007 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 2008 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 2009 << AllocType << Deduce->getType() 2010 << TypeRange << Deduce->getSourceRange()); 2011 if (DeducedType.isNull()) 2012 return ExprError(); 2013 AllocType = DeducedType; 2014 } 2015 2016 // Per C++0x [expr.new]p5, the type being constructed may be a 2017 // typedef of an array type. 2018 if (!ArraySize) { 2019 if (const ConstantArrayType *Array 2020 = Context.getAsConstantArrayType(AllocType)) { 2021 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 2022 Context.getSizeType(), 2023 TypeRange.getEnd()); 2024 AllocType = Array->getElementType(); 2025 } 2026 } 2027 2028 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 2029 return ExprError(); 2030 2031 // In ARC, infer 'retaining' for the allocated 2032 if (getLangOpts().ObjCAutoRefCount && 2033 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 2034 AllocType->isObjCLifetimeType()) { 2035 AllocType = Context.getLifetimeQualifiedType(AllocType, 2036 AllocType->getObjCARCImplicitLifetime()); 2037 } 2038 2039 QualType ResultType = Context.getPointerType(AllocType); 2040 2041 if (ArraySize && *ArraySize && 2042 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 2043 ExprResult result = CheckPlaceholderExpr(*ArraySize); 2044 if (result.isInvalid()) return ExprError(); 2045 ArraySize = result.get(); 2046 } 2047 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 2048 // integral or enumeration type with a non-negative value." 2049 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 2050 // enumeration type, or a class type for which a single non-explicit 2051 // conversion function to integral or unscoped enumeration type exists. 2052 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 2053 // std::size_t. 2054 llvm::Optional<uint64_t> KnownArraySize; 2055 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 2056 ExprResult ConvertedSize; 2057 if (getLangOpts().CPlusPlus14) { 2058 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); 2059 2060 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 2061 AA_Converting); 2062 2063 if (!ConvertedSize.isInvalid() && 2064 (*ArraySize)->getType()->getAs<RecordType>()) 2065 // Diagnose the compatibility of this conversion. 2066 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2067 << (*ArraySize)->getType() << 0 << "'size_t'"; 2068 } else { 2069 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2070 protected: 2071 Expr *ArraySize; 2072 2073 public: 2074 SizeConvertDiagnoser(Expr *ArraySize) 2075 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2076 ArraySize(ArraySize) {} 2077 2078 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2079 QualType T) override { 2080 return S.Diag(Loc, diag::err_array_size_not_integral) 2081 << S.getLangOpts().CPlusPlus11 << T; 2082 } 2083 2084 SemaDiagnosticBuilder diagnoseIncomplete( 2085 Sema &S, SourceLocation Loc, QualType T) override { 2086 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2087 << T << ArraySize->getSourceRange(); 2088 } 2089 2090 SemaDiagnosticBuilder diagnoseExplicitConv( 2091 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2092 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2093 } 2094 2095 SemaDiagnosticBuilder noteExplicitConv( 2096 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2097 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2098 << ConvTy->isEnumeralType() << ConvTy; 2099 } 2100 2101 SemaDiagnosticBuilder diagnoseAmbiguous( 2102 Sema &S, SourceLocation Loc, QualType T) override { 2103 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2104 } 2105 2106 SemaDiagnosticBuilder noteAmbiguous( 2107 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2108 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2109 << ConvTy->isEnumeralType() << ConvTy; 2110 } 2111 2112 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2113 QualType T, 2114 QualType ConvTy) override { 2115 return S.Diag(Loc, 2116 S.getLangOpts().CPlusPlus11 2117 ? diag::warn_cxx98_compat_array_size_conversion 2118 : diag::ext_array_size_conversion) 2119 << T << ConvTy->isEnumeralType() << ConvTy; 2120 } 2121 } SizeDiagnoser(*ArraySize); 2122 2123 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2124 SizeDiagnoser); 2125 } 2126 if (ConvertedSize.isInvalid()) 2127 return ExprError(); 2128 2129 ArraySize = ConvertedSize.get(); 2130 QualType SizeType = (*ArraySize)->getType(); 2131 2132 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2133 return ExprError(); 2134 2135 // C++98 [expr.new]p7: 2136 // The expression in a direct-new-declarator shall have integral type 2137 // with a non-negative value. 2138 // 2139 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2140 // per CWG1464. Otherwise, if it's not a constant, we must have an 2141 // unparenthesized array type. 2142 2143 // We've already performed any required implicit conversion to integer or 2144 // unscoped enumeration type. 2145 // FIXME: Per CWG1464, we are required to check the value prior to 2146 // converting to size_t. This will never find a negative array size in 2147 // C++14 onwards, because Value is always unsigned here! 2148 if (Optional<llvm::APSInt> Value = 2149 (*ArraySize)->getIntegerConstantExpr(Context)) { 2150 if (Value->isSigned() && Value->isNegative()) { 2151 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2152 diag::err_typecheck_negative_array_size) 2153 << (*ArraySize)->getSourceRange()); 2154 } 2155 2156 if (!AllocType->isDependentType()) { 2157 unsigned ActiveSizeBits = 2158 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value); 2159 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2160 return ExprError( 2161 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2162 << toString(*Value, 10) << (*ArraySize)->getSourceRange()); 2163 } 2164 2165 KnownArraySize = Value->getZExtValue(); 2166 } else if (TypeIdParens.isValid()) { 2167 // Can't have dynamic array size when the type-id is in parentheses. 2168 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2169 << (*ArraySize)->getSourceRange() 2170 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2171 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2172 2173 TypeIdParens = SourceRange(); 2174 } 2175 2176 // Note that we do *not* convert the argument in any way. It can 2177 // be signed, larger than size_t, whatever. 2178 } 2179 2180 FunctionDecl *OperatorNew = nullptr; 2181 FunctionDecl *OperatorDelete = nullptr; 2182 unsigned Alignment = 2183 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2184 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2185 bool PassAlignment = getLangOpts().AlignedAllocation && 2186 Alignment > NewAlignment; 2187 2188 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2189 if (!AllocType->isDependentType() && 2190 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2191 FindAllocationFunctions( 2192 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2193 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs, 2194 OperatorNew, OperatorDelete)) 2195 return ExprError(); 2196 2197 // If this is an array allocation, compute whether the usual array 2198 // deallocation function for the type has a size_t parameter. 2199 bool UsualArrayDeleteWantsSize = false; 2200 if (ArraySize && !AllocType->isDependentType()) 2201 UsualArrayDeleteWantsSize = 2202 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2203 2204 SmallVector<Expr *, 8> AllPlaceArgs; 2205 if (OperatorNew) { 2206 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2207 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2208 : VariadicDoesNotApply; 2209 2210 // We've already converted the placement args, just fill in any default 2211 // arguments. Skip the first parameter because we don't have a corresponding 2212 // argument. Skip the second parameter too if we're passing in the 2213 // alignment; we've already filled it in. 2214 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2215 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2216 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2217 CallType)) 2218 return ExprError(); 2219 2220 if (!AllPlaceArgs.empty()) 2221 PlacementArgs = AllPlaceArgs; 2222 2223 // We would like to perform some checking on the given `operator new` call, 2224 // but the PlacementArgs does not contain the implicit arguments, 2225 // namely allocation size and maybe allocation alignment, 2226 // so we need to conjure them. 2227 2228 QualType SizeTy = Context.getSizeType(); 2229 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2230 2231 llvm::APInt SingleEltSize( 2232 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2233 2234 // How many bytes do we want to allocate here? 2235 llvm::Optional<llvm::APInt> AllocationSize; 2236 if (!ArraySize.hasValue() && !AllocType->isDependentType()) { 2237 // For non-array operator new, we only want to allocate one element. 2238 AllocationSize = SingleEltSize; 2239 } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) { 2240 // For array operator new, only deal with static array size case. 2241 bool Overflow; 2242 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2243 .umul_ov(SingleEltSize, Overflow); 2244 (void)Overflow; 2245 assert( 2246 !Overflow && 2247 "Expected that all the overflows would have been handled already."); 2248 } 2249 2250 IntegerLiteral AllocationSizeLiteral( 2251 Context, AllocationSize.getValueOr(llvm::APInt::getZero(SizeTyWidth)), 2252 SizeTy, SourceLocation()); 2253 // Otherwise, if we failed to constant-fold the allocation size, we'll 2254 // just give up and pass-in something opaque, that isn't a null pointer. 2255 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue, 2256 OK_Ordinary, /*SourceExpr=*/nullptr); 2257 2258 // Let's synthesize the alignment argument in case we will need it. 2259 // Since we *really* want to allocate these on stack, this is slightly ugly 2260 // because there might not be a `std::align_val_t` type. 2261 EnumDecl *StdAlignValT = getStdAlignValT(); 2262 QualType AlignValT = 2263 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2264 IntegerLiteral AlignmentLiteral( 2265 Context, 2266 llvm::APInt(Context.getTypeSize(SizeTy), 2267 Alignment / Context.getCharWidth()), 2268 SizeTy, SourceLocation()); 2269 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2270 CK_IntegralCast, &AlignmentLiteral, 2271 VK_PRValue, FPOptionsOverride()); 2272 2273 // Adjust placement args by prepending conjured size and alignment exprs. 2274 llvm::SmallVector<Expr *, 8> CallArgs; 2275 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2276 CallArgs.emplace_back(AllocationSize.hasValue() 2277 ? static_cast<Expr *>(&AllocationSizeLiteral) 2278 : &OpaqueAllocationSize); 2279 if (PassAlignment) 2280 CallArgs.emplace_back(&DesiredAlignment); 2281 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2282 2283 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2284 2285 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2286 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2287 2288 // Warn if the type is over-aligned and is being allocated by (unaligned) 2289 // global operator new. 2290 if (PlacementArgs.empty() && !PassAlignment && 2291 (OperatorNew->isImplicit() || 2292 (OperatorNew->getBeginLoc().isValid() && 2293 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2294 if (Alignment > NewAlignment) 2295 Diag(StartLoc, diag::warn_overaligned_type) 2296 << AllocType 2297 << unsigned(Alignment / Context.getCharWidth()) 2298 << unsigned(NewAlignment / Context.getCharWidth()); 2299 } 2300 } 2301 2302 // Array 'new' can't have any initializers except empty parentheses. 2303 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2304 // dialect distinction. 2305 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { 2306 SourceRange InitRange(Inits[0]->getBeginLoc(), 2307 Inits[NumInits - 1]->getEndLoc()); 2308 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2309 return ExprError(); 2310 } 2311 2312 // If we can perform the initialization, and we've not already done so, 2313 // do it now. 2314 if (!AllocType->isDependentType() && 2315 !Expr::hasAnyTypeDependentArguments( 2316 llvm::makeArrayRef(Inits, NumInits))) { 2317 // The type we initialize is the complete type, including the array bound. 2318 QualType InitType; 2319 if (KnownArraySize) 2320 InitType = Context.getConstantArrayType( 2321 AllocType, 2322 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2323 *KnownArraySize), 2324 *ArraySize, ArrayType::Normal, 0); 2325 else if (ArraySize) 2326 InitType = 2327 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); 2328 else 2329 InitType = AllocType; 2330 2331 InitializedEntity Entity 2332 = InitializedEntity::InitializeNew(StartLoc, InitType); 2333 InitializationSequence InitSeq(*this, Entity, Kind, 2334 MultiExprArg(Inits, NumInits)); 2335 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 2336 MultiExprArg(Inits, NumInits)); 2337 if (FullInit.isInvalid()) 2338 return ExprError(); 2339 2340 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2341 // we don't want the initialized object to be destructed. 2342 // FIXME: We should not create these in the first place. 2343 if (CXXBindTemporaryExpr *Binder = 2344 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2345 FullInit = Binder->getSubExpr(); 2346 2347 Initializer = FullInit.get(); 2348 2349 // FIXME: If we have a KnownArraySize, check that the array bound of the 2350 // initializer is no greater than that constant value. 2351 2352 if (ArraySize && !*ArraySize) { 2353 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2354 if (CAT) { 2355 // FIXME: Track that the array size was inferred rather than explicitly 2356 // specified. 2357 ArraySize = IntegerLiteral::Create( 2358 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2359 } else { 2360 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2361 << Initializer->getSourceRange(); 2362 } 2363 } 2364 } 2365 2366 // Mark the new and delete operators as referenced. 2367 if (OperatorNew) { 2368 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2369 return ExprError(); 2370 MarkFunctionReferenced(StartLoc, OperatorNew); 2371 } 2372 if (OperatorDelete) { 2373 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2374 return ExprError(); 2375 MarkFunctionReferenced(StartLoc, OperatorDelete); 2376 } 2377 2378 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2379 PassAlignment, UsualArrayDeleteWantsSize, 2380 PlacementArgs, TypeIdParens, ArraySize, initStyle, 2381 Initializer, ResultType, AllocTypeInfo, Range, 2382 DirectInitRange); 2383 } 2384 2385 /// Checks that a type is suitable as the allocated type 2386 /// in a new-expression. 2387 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2388 SourceRange R) { 2389 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2390 // abstract class type or array thereof. 2391 if (AllocType->isFunctionType()) 2392 return Diag(Loc, diag::err_bad_new_type) 2393 << AllocType << 0 << R; 2394 else if (AllocType->isReferenceType()) 2395 return Diag(Loc, diag::err_bad_new_type) 2396 << AllocType << 1 << R; 2397 else if (!AllocType->isDependentType() && 2398 RequireCompleteSizedType( 2399 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2400 return true; 2401 else if (RequireNonAbstractType(Loc, AllocType, 2402 diag::err_allocation_of_abstract_type)) 2403 return true; 2404 else if (AllocType->isVariablyModifiedType()) 2405 return Diag(Loc, diag::err_variably_modified_new_type) 2406 << AllocType; 2407 else if (AllocType.getAddressSpace() != LangAS::Default && 2408 !getLangOpts().OpenCLCPlusPlus) 2409 return Diag(Loc, diag::err_address_space_qualified_new) 2410 << AllocType.getUnqualifiedType() 2411 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2412 else if (getLangOpts().ObjCAutoRefCount) { 2413 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2414 QualType BaseAllocType = Context.getBaseElementType(AT); 2415 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2416 BaseAllocType->isObjCLifetimeType()) 2417 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2418 << BaseAllocType; 2419 } 2420 } 2421 2422 return false; 2423 } 2424 2425 static bool resolveAllocationOverload( 2426 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2427 bool &PassAlignment, FunctionDecl *&Operator, 2428 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2429 OverloadCandidateSet Candidates(R.getNameLoc(), 2430 OverloadCandidateSet::CSK_Normal); 2431 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2432 Alloc != AllocEnd; ++Alloc) { 2433 // Even member operator new/delete are implicitly treated as 2434 // static, so don't use AddMemberCandidate. 2435 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2436 2437 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2438 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2439 /*ExplicitTemplateArgs=*/nullptr, Args, 2440 Candidates, 2441 /*SuppressUserConversions=*/false); 2442 continue; 2443 } 2444 2445 FunctionDecl *Fn = cast<FunctionDecl>(D); 2446 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2447 /*SuppressUserConversions=*/false); 2448 } 2449 2450 // Do the resolution. 2451 OverloadCandidateSet::iterator Best; 2452 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2453 case OR_Success: { 2454 // Got one! 2455 FunctionDecl *FnDecl = Best->Function; 2456 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2457 Best->FoundDecl) == Sema::AR_inaccessible) 2458 return true; 2459 2460 Operator = FnDecl; 2461 return false; 2462 } 2463 2464 case OR_No_Viable_Function: 2465 // C++17 [expr.new]p13: 2466 // If no matching function is found and the allocated object type has 2467 // new-extended alignment, the alignment argument is removed from the 2468 // argument list, and overload resolution is performed again. 2469 if (PassAlignment) { 2470 PassAlignment = false; 2471 AlignArg = Args[1]; 2472 Args.erase(Args.begin() + 1); 2473 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2474 Operator, &Candidates, AlignArg, 2475 Diagnose); 2476 } 2477 2478 // MSVC will fall back on trying to find a matching global operator new 2479 // if operator new[] cannot be found. Also, MSVC will leak by not 2480 // generating a call to operator delete or operator delete[], but we 2481 // will not replicate that bug. 2482 // FIXME: Find out how this interacts with the std::align_val_t fallback 2483 // once MSVC implements it. 2484 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2485 S.Context.getLangOpts().MSVCCompat) { 2486 R.clear(); 2487 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2488 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2489 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2490 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2491 Operator, /*Candidates=*/nullptr, 2492 /*AlignArg=*/nullptr, Diagnose); 2493 } 2494 2495 if (Diagnose) { 2496 // If this is an allocation of the form 'new (p) X' for some object 2497 // pointer p (or an expression that will decay to such a pointer), 2498 // diagnose the missing inclusion of <new>. 2499 if (!R.isClassLookup() && Args.size() == 2 && 2500 (Args[1]->getType()->isObjectPointerType() || 2501 Args[1]->getType()->isArrayType())) { 2502 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) 2503 << R.getLookupName() << Range; 2504 // Listing the candidates is unlikely to be useful; skip it. 2505 return true; 2506 } 2507 2508 // Finish checking all candidates before we note any. This checking can 2509 // produce additional diagnostics so can't be interleaved with our 2510 // emission of notes. 2511 // 2512 // For an aligned allocation, separately check the aligned and unaligned 2513 // candidates with their respective argument lists. 2514 SmallVector<OverloadCandidate*, 32> Cands; 2515 SmallVector<OverloadCandidate*, 32> AlignedCands; 2516 llvm::SmallVector<Expr*, 4> AlignedArgs; 2517 if (AlignedCandidates) { 2518 auto IsAligned = [](OverloadCandidate &C) { 2519 return C.Function->getNumParams() > 1 && 2520 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2521 }; 2522 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2523 2524 AlignedArgs.reserve(Args.size() + 1); 2525 AlignedArgs.push_back(Args[0]); 2526 AlignedArgs.push_back(AlignArg); 2527 AlignedArgs.append(Args.begin() + 1, Args.end()); 2528 AlignedCands = AlignedCandidates->CompleteCandidates( 2529 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); 2530 2531 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2532 R.getNameLoc(), IsUnaligned); 2533 } else { 2534 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2535 R.getNameLoc()); 2536 } 2537 2538 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) 2539 << R.getLookupName() << Range; 2540 if (AlignedCandidates) 2541 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", 2542 R.getNameLoc()); 2543 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); 2544 } 2545 return true; 2546 2547 case OR_Ambiguous: 2548 if (Diagnose) { 2549 Candidates.NoteCandidates( 2550 PartialDiagnosticAt(R.getNameLoc(), 2551 S.PDiag(diag::err_ovl_ambiguous_call) 2552 << R.getLookupName() << Range), 2553 S, OCD_AmbiguousCandidates, Args); 2554 } 2555 return true; 2556 2557 case OR_Deleted: { 2558 if (Diagnose) { 2559 Candidates.NoteCandidates( 2560 PartialDiagnosticAt(R.getNameLoc(), 2561 S.PDiag(diag::err_ovl_deleted_call) 2562 << R.getLookupName() << Range), 2563 S, OCD_AllCandidates, Args); 2564 } 2565 return true; 2566 } 2567 } 2568 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 2569 } 2570 2571 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2572 AllocationFunctionScope NewScope, 2573 AllocationFunctionScope DeleteScope, 2574 QualType AllocType, bool IsArray, 2575 bool &PassAlignment, MultiExprArg PlaceArgs, 2576 FunctionDecl *&OperatorNew, 2577 FunctionDecl *&OperatorDelete, 2578 bool Diagnose) { 2579 // --- Choosing an allocation function --- 2580 // C++ 5.3.4p8 - 14 & 18 2581 // 1) If looking in AFS_Global scope for allocation functions, only look in 2582 // the global scope. Else, if AFS_Class, only look in the scope of the 2583 // allocated class. If AFS_Both, look in both. 2584 // 2) If an array size is given, look for operator new[], else look for 2585 // operator new. 2586 // 3) The first argument is always size_t. Append the arguments from the 2587 // placement form. 2588 2589 SmallVector<Expr*, 8> AllocArgs; 2590 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2591 2592 // We don't care about the actual value of these arguments. 2593 // FIXME: Should the Sema create the expression and embed it in the syntax 2594 // tree? Or should the consumer just recalculate the value? 2595 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2596 IntegerLiteral Size( 2597 Context, llvm::APInt::getZero(Context.getTargetInfo().getPointerWidth(0)), 2598 Context.getSizeType(), SourceLocation()); 2599 AllocArgs.push_back(&Size); 2600 2601 QualType AlignValT = Context.VoidTy; 2602 if (PassAlignment) { 2603 DeclareGlobalNewDelete(); 2604 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2605 } 2606 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2607 if (PassAlignment) 2608 AllocArgs.push_back(&Align); 2609 2610 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2611 2612 // C++ [expr.new]p8: 2613 // If the allocated type is a non-array type, the allocation 2614 // function's name is operator new and the deallocation function's 2615 // name is operator delete. If the allocated type is an array 2616 // type, the allocation function's name is operator new[] and the 2617 // deallocation function's name is operator delete[]. 2618 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2619 IsArray ? OO_Array_New : OO_New); 2620 2621 QualType AllocElemType = Context.getBaseElementType(AllocType); 2622 2623 // Find the allocation function. 2624 { 2625 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2626 2627 // C++1z [expr.new]p9: 2628 // If the new-expression begins with a unary :: operator, the allocation 2629 // function's name is looked up in the global scope. Otherwise, if the 2630 // allocated type is a class type T or array thereof, the allocation 2631 // function's name is looked up in the scope of T. 2632 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2633 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2634 2635 // We can see ambiguity here if the allocation function is found in 2636 // multiple base classes. 2637 if (R.isAmbiguous()) 2638 return true; 2639 2640 // If this lookup fails to find the name, or if the allocated type is not 2641 // a class type, the allocation function's name is looked up in the 2642 // global scope. 2643 if (R.empty()) { 2644 if (NewScope == AFS_Class) 2645 return true; 2646 2647 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2648 } 2649 2650 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2651 if (PlaceArgs.empty()) { 2652 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2653 } else { 2654 Diag(StartLoc, diag::err_openclcxx_placement_new); 2655 } 2656 return true; 2657 } 2658 2659 assert(!R.empty() && "implicitly declared allocation functions not found"); 2660 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 2661 2662 // We do our own custom access checks below. 2663 R.suppressDiagnostics(); 2664 2665 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2666 OperatorNew, /*Candidates=*/nullptr, 2667 /*AlignArg=*/nullptr, Diagnose)) 2668 return true; 2669 } 2670 2671 // We don't need an operator delete if we're running under -fno-exceptions. 2672 if (!getLangOpts().Exceptions) { 2673 OperatorDelete = nullptr; 2674 return false; 2675 } 2676 2677 // Note, the name of OperatorNew might have been changed from array to 2678 // non-array by resolveAllocationOverload. 2679 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2680 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2681 ? OO_Array_Delete 2682 : OO_Delete); 2683 2684 // C++ [expr.new]p19: 2685 // 2686 // If the new-expression begins with a unary :: operator, the 2687 // deallocation function's name is looked up in the global 2688 // scope. Otherwise, if the allocated type is a class type T or an 2689 // array thereof, the deallocation function's name is looked up in 2690 // the scope of T. If this lookup fails to find the name, or if 2691 // the allocated type is not a class type or array thereof, the 2692 // deallocation function's name is looked up in the global scope. 2693 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2694 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2695 auto *RD = 2696 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2697 LookupQualifiedName(FoundDelete, RD); 2698 } 2699 if (FoundDelete.isAmbiguous()) 2700 return true; // FIXME: clean up expressions? 2701 2702 // Filter out any destroying operator deletes. We can't possibly call such a 2703 // function in this context, because we're handling the case where the object 2704 // was not successfully constructed. 2705 // FIXME: This is not covered by the language rules yet. 2706 { 2707 LookupResult::Filter Filter = FoundDelete.makeFilter(); 2708 while (Filter.hasNext()) { 2709 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); 2710 if (FD && FD->isDestroyingOperatorDelete()) 2711 Filter.erase(); 2712 } 2713 Filter.done(); 2714 } 2715 2716 bool FoundGlobalDelete = FoundDelete.empty(); 2717 if (FoundDelete.empty()) { 2718 FoundDelete.clear(LookupOrdinaryName); 2719 2720 if (DeleteScope == AFS_Class) 2721 return true; 2722 2723 DeclareGlobalNewDelete(); 2724 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2725 } 2726 2727 FoundDelete.suppressDiagnostics(); 2728 2729 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2730 2731 // Whether we're looking for a placement operator delete is dictated 2732 // by whether we selected a placement operator new, not by whether 2733 // we had explicit placement arguments. This matters for things like 2734 // struct A { void *operator new(size_t, int = 0); ... }; 2735 // A *a = new A() 2736 // 2737 // We don't have any definition for what a "placement allocation function" 2738 // is, but we assume it's any allocation function whose 2739 // parameter-declaration-clause is anything other than (size_t). 2740 // 2741 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2742 // This affects whether an exception from the constructor of an overaligned 2743 // type uses the sized or non-sized form of aligned operator delete. 2744 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2745 OperatorNew->isVariadic(); 2746 2747 if (isPlacementNew) { 2748 // C++ [expr.new]p20: 2749 // A declaration of a placement deallocation function matches the 2750 // declaration of a placement allocation function if it has the 2751 // same number of parameters and, after parameter transformations 2752 // (8.3.5), all parameter types except the first are 2753 // identical. [...] 2754 // 2755 // To perform this comparison, we compute the function type that 2756 // the deallocation function should have, and use that type both 2757 // for template argument deduction and for comparison purposes. 2758 QualType ExpectedFunctionType; 2759 { 2760 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2761 2762 SmallVector<QualType, 4> ArgTypes; 2763 ArgTypes.push_back(Context.VoidPtrTy); 2764 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2765 ArgTypes.push_back(Proto->getParamType(I)); 2766 2767 FunctionProtoType::ExtProtoInfo EPI; 2768 // FIXME: This is not part of the standard's rule. 2769 EPI.Variadic = Proto->isVariadic(); 2770 2771 ExpectedFunctionType 2772 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2773 } 2774 2775 for (LookupResult::iterator D = FoundDelete.begin(), 2776 DEnd = FoundDelete.end(); 2777 D != DEnd; ++D) { 2778 FunctionDecl *Fn = nullptr; 2779 if (FunctionTemplateDecl *FnTmpl = 2780 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2781 // Perform template argument deduction to try to match the 2782 // expected function type. 2783 TemplateDeductionInfo Info(StartLoc); 2784 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2785 Info)) 2786 continue; 2787 } else 2788 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2789 2790 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2791 ExpectedFunctionType, 2792 /*AdjustExcpetionSpec*/true), 2793 ExpectedFunctionType)) 2794 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2795 } 2796 2797 if (getLangOpts().CUDA) 2798 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches); 2799 } else { 2800 // C++1y [expr.new]p22: 2801 // For a non-placement allocation function, the normal deallocation 2802 // function lookup is used 2803 // 2804 // Per [expr.delete]p10, this lookup prefers a member operator delete 2805 // without a size_t argument, but prefers a non-member operator delete 2806 // with a size_t where possible (which it always is in this case). 2807 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2808 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2809 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2810 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2811 &BestDeallocFns); 2812 if (Selected) 2813 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2814 else { 2815 // If we failed to select an operator, all remaining functions are viable 2816 // but ambiguous. 2817 for (auto Fn : BestDeallocFns) 2818 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2819 } 2820 } 2821 2822 // C++ [expr.new]p20: 2823 // [...] If the lookup finds a single matching deallocation 2824 // function, that function will be called; otherwise, no 2825 // deallocation function will be called. 2826 if (Matches.size() == 1) { 2827 OperatorDelete = Matches[0].second; 2828 2829 // C++1z [expr.new]p23: 2830 // If the lookup finds a usual deallocation function (3.7.4.2) 2831 // with a parameter of type std::size_t and that function, considered 2832 // as a placement deallocation function, would have been 2833 // selected as a match for the allocation function, the program 2834 // is ill-formed. 2835 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2836 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2837 UsualDeallocFnInfo Info(*this, 2838 DeclAccessPair::make(OperatorDelete, AS_public)); 2839 // Core issue, per mail to core reflector, 2016-10-09: 2840 // If this is a member operator delete, and there is a corresponding 2841 // non-sized member operator delete, this isn't /really/ a sized 2842 // deallocation function, it just happens to have a size_t parameter. 2843 bool IsSizedDelete = Info.HasSizeT; 2844 if (IsSizedDelete && !FoundGlobalDelete) { 2845 auto NonSizedDelete = 2846 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2847 /*WantAlign*/Info.HasAlignValT); 2848 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2849 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2850 IsSizedDelete = false; 2851 } 2852 2853 if (IsSizedDelete) { 2854 SourceRange R = PlaceArgs.empty() 2855 ? SourceRange() 2856 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2857 PlaceArgs.back()->getEndLoc()); 2858 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2859 if (!OperatorDelete->isImplicit()) 2860 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2861 << DeleteName; 2862 } 2863 } 2864 2865 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2866 Matches[0].first); 2867 } else if (!Matches.empty()) { 2868 // We found multiple suitable operators. Per [expr.new]p20, that means we 2869 // call no 'operator delete' function, but we should at least warn the user. 2870 // FIXME: Suppress this warning if the construction cannot throw. 2871 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2872 << DeleteName << AllocElemType; 2873 2874 for (auto &Match : Matches) 2875 Diag(Match.second->getLocation(), 2876 diag::note_member_declared_here) << DeleteName; 2877 } 2878 2879 return false; 2880 } 2881 2882 /// DeclareGlobalNewDelete - Declare the global forms of operator new and 2883 /// delete. These are: 2884 /// @code 2885 /// // C++03: 2886 /// void* operator new(std::size_t) throw(std::bad_alloc); 2887 /// void* operator new[](std::size_t) throw(std::bad_alloc); 2888 /// void operator delete(void *) throw(); 2889 /// void operator delete[](void *) throw(); 2890 /// // C++11: 2891 /// void* operator new(std::size_t); 2892 /// void* operator new[](std::size_t); 2893 /// void operator delete(void *) noexcept; 2894 /// void operator delete[](void *) noexcept; 2895 /// // C++1y: 2896 /// void* operator new(std::size_t); 2897 /// void* operator new[](std::size_t); 2898 /// void operator delete(void *) noexcept; 2899 /// void operator delete[](void *) noexcept; 2900 /// void operator delete(void *, std::size_t) noexcept; 2901 /// void operator delete[](void *, std::size_t) noexcept; 2902 /// @endcode 2903 /// Note that the placement and nothrow forms of new are *not* implicitly 2904 /// declared. Their use requires including \<new\>. 2905 void Sema::DeclareGlobalNewDelete() { 2906 if (GlobalNewDeleteDeclared) 2907 return; 2908 2909 // The implicitly declared new and delete operators 2910 // are not supported in OpenCL. 2911 if (getLangOpts().OpenCLCPlusPlus) 2912 return; 2913 2914 // C++ [basic.std.dynamic]p2: 2915 // [...] The following allocation and deallocation functions (18.4) are 2916 // implicitly declared in global scope in each translation unit of a 2917 // program 2918 // 2919 // C++03: 2920 // void* operator new(std::size_t) throw(std::bad_alloc); 2921 // void* operator new[](std::size_t) throw(std::bad_alloc); 2922 // void operator delete(void*) throw(); 2923 // void operator delete[](void*) throw(); 2924 // C++11: 2925 // void* operator new(std::size_t); 2926 // void* operator new[](std::size_t); 2927 // void operator delete(void*) noexcept; 2928 // void operator delete[](void*) noexcept; 2929 // C++1y: 2930 // void* operator new(std::size_t); 2931 // void* operator new[](std::size_t); 2932 // void operator delete(void*) noexcept; 2933 // void operator delete[](void*) noexcept; 2934 // void operator delete(void*, std::size_t) noexcept; 2935 // void operator delete[](void*, std::size_t) noexcept; 2936 // 2937 // These implicit declarations introduce only the function names operator 2938 // new, operator new[], operator delete, operator delete[]. 2939 // 2940 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2941 // "std" or "bad_alloc" as necessary to form the exception specification. 2942 // However, we do not make these implicit declarations visible to name 2943 // lookup. 2944 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2945 // The "std::bad_alloc" class has not yet been declared, so build it 2946 // implicitly. 2947 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2948 getOrCreateStdNamespace(), 2949 SourceLocation(), SourceLocation(), 2950 &PP.getIdentifierTable().get("bad_alloc"), 2951 nullptr); 2952 getStdBadAlloc()->setImplicit(true); 2953 } 2954 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 2955 // The "std::align_val_t" enum class has not yet been declared, so build it 2956 // implicitly. 2957 auto *AlignValT = EnumDecl::Create( 2958 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 2959 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 2960 AlignValT->setIntegerType(Context.getSizeType()); 2961 AlignValT->setPromotionType(Context.getSizeType()); 2962 AlignValT->setImplicit(true); 2963 StdAlignValT = AlignValT; 2964 } 2965 2966 GlobalNewDeleteDeclared = true; 2967 2968 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 2969 QualType SizeT = Context.getSizeType(); 2970 2971 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 2972 QualType Return, QualType Param) { 2973 llvm::SmallVector<QualType, 3> Params; 2974 Params.push_back(Param); 2975 2976 // Create up to four variants of the function (sized/aligned). 2977 bool HasSizedVariant = getLangOpts().SizedDeallocation && 2978 (Kind == OO_Delete || Kind == OO_Array_Delete); 2979 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 2980 2981 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 2982 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 2983 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 2984 if (Sized) 2985 Params.push_back(SizeT); 2986 2987 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 2988 if (Aligned) 2989 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 2990 2991 DeclareGlobalAllocationFunction( 2992 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 2993 2994 if (Aligned) 2995 Params.pop_back(); 2996 } 2997 } 2998 }; 2999 3000 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 3001 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 3002 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 3003 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 3004 } 3005 3006 /// DeclareGlobalAllocationFunction - Declares a single implicit global 3007 /// allocation function if it doesn't already exist. 3008 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 3009 QualType Return, 3010 ArrayRef<QualType> Params) { 3011 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 3012 3013 // Check if this function is already declared. 3014 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 3015 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 3016 Alloc != AllocEnd; ++Alloc) { 3017 // Only look at non-template functions, as it is the predefined, 3018 // non-templated allocation function we are trying to declare here. 3019 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 3020 if (Func->getNumParams() == Params.size()) { 3021 llvm::SmallVector<QualType, 3> FuncParams; 3022 for (auto *P : Func->parameters()) 3023 FuncParams.push_back( 3024 Context.getCanonicalType(P->getType().getUnqualifiedType())); 3025 if (llvm::makeArrayRef(FuncParams) == Params) { 3026 // Make the function visible to name lookup, even if we found it in 3027 // an unimported module. It either is an implicitly-declared global 3028 // allocation function, or is suppressing that function. 3029 Func->setVisibleDespiteOwningModule(); 3030 return; 3031 } 3032 } 3033 } 3034 } 3035 3036 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 3037 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 3038 3039 QualType BadAllocType; 3040 bool HasBadAllocExceptionSpec 3041 = (Name.getCXXOverloadedOperator() == OO_New || 3042 Name.getCXXOverloadedOperator() == OO_Array_New); 3043 if (HasBadAllocExceptionSpec) { 3044 if (!getLangOpts().CPlusPlus11) { 3045 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 3046 assert(StdBadAlloc && "Must have std::bad_alloc declared"); 3047 EPI.ExceptionSpec.Type = EST_Dynamic; 3048 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 3049 } 3050 if (getLangOpts().NewInfallible) { 3051 EPI.ExceptionSpec.Type = EST_DynamicNone; 3052 } 3053 } else { 3054 EPI.ExceptionSpec = 3055 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 3056 } 3057 3058 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 3059 QualType FnType = Context.getFunctionType(Return, Params, EPI); 3060 FunctionDecl *Alloc = FunctionDecl::Create( 3061 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType, 3062 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false, 3063 true); 3064 Alloc->setImplicit(); 3065 // Global allocation functions should always be visible. 3066 Alloc->setVisibleDespiteOwningModule(); 3067 3068 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible) 3069 Alloc->addAttr( 3070 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation())); 3071 3072 Alloc->addAttr(VisibilityAttr::CreateImplicit( 3073 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden 3074 ? VisibilityAttr::Hidden 3075 : VisibilityAttr::Default)); 3076 3077 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 3078 for (QualType T : Params) { 3079 ParamDecls.push_back(ParmVarDecl::Create( 3080 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 3081 /*TInfo=*/nullptr, SC_None, nullptr)); 3082 ParamDecls.back()->setImplicit(); 3083 } 3084 Alloc->setParams(ParamDecls); 3085 if (ExtraAttr) 3086 Alloc->addAttr(ExtraAttr); 3087 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 3088 Context.getTranslationUnitDecl()->addDecl(Alloc); 3089 IdResolver.tryAddTopLevelDecl(Alloc, Name); 3090 }; 3091 3092 if (!LangOpts.CUDA) 3093 CreateAllocationFunctionDecl(nullptr); 3094 else { 3095 // Host and device get their own declaration so each can be 3096 // defined or re-declared independently. 3097 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 3098 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 3099 } 3100 } 3101 3102 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 3103 bool CanProvideSize, 3104 bool Overaligned, 3105 DeclarationName Name) { 3106 DeclareGlobalNewDelete(); 3107 3108 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 3109 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 3110 3111 // FIXME: It's possible for this to result in ambiguity, through a 3112 // user-declared variadic operator delete or the enable_if attribute. We 3113 // should probably not consider those cases to be usual deallocation 3114 // functions. But for now we just make an arbitrary choice in that case. 3115 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3116 Overaligned); 3117 assert(Result.FD && "operator delete missing from global scope?"); 3118 return Result.FD; 3119 } 3120 3121 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3122 CXXRecordDecl *RD) { 3123 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3124 3125 FunctionDecl *OperatorDelete = nullptr; 3126 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3127 return nullptr; 3128 if (OperatorDelete) 3129 return OperatorDelete; 3130 3131 // If there's no class-specific operator delete, look up the global 3132 // non-array delete. 3133 return FindUsualDeallocationFunction( 3134 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3135 Name); 3136 } 3137 3138 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3139 DeclarationName Name, 3140 FunctionDecl *&Operator, bool Diagnose) { 3141 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3142 // Try to find operator delete/operator delete[] in class scope. 3143 LookupQualifiedName(Found, RD); 3144 3145 if (Found.isAmbiguous()) 3146 return true; 3147 3148 Found.suppressDiagnostics(); 3149 3150 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3151 3152 // C++17 [expr.delete]p10: 3153 // If the deallocation functions have class scope, the one without a 3154 // parameter of type std::size_t is selected. 3155 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3156 resolveDeallocationOverload(*this, Found, /*WantSize*/ false, 3157 /*WantAlign*/ Overaligned, &Matches); 3158 3159 // If we could find an overload, use it. 3160 if (Matches.size() == 1) { 3161 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3162 3163 // FIXME: DiagnoseUseOfDecl? 3164 if (Operator->isDeleted()) { 3165 if (Diagnose) { 3166 Diag(StartLoc, diag::err_deleted_function_use); 3167 NoteDeletedFunction(Operator); 3168 } 3169 return true; 3170 } 3171 3172 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3173 Matches[0].Found, Diagnose) == AR_inaccessible) 3174 return true; 3175 3176 return false; 3177 } 3178 3179 // We found multiple suitable operators; complain about the ambiguity. 3180 // FIXME: The standard doesn't say to do this; it appears that the intent 3181 // is that this should never happen. 3182 if (!Matches.empty()) { 3183 if (Diagnose) { 3184 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3185 << Name << RD; 3186 for (auto &Match : Matches) 3187 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3188 } 3189 return true; 3190 } 3191 3192 // We did find operator delete/operator delete[] declarations, but 3193 // none of them were suitable. 3194 if (!Found.empty()) { 3195 if (Diagnose) { 3196 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3197 << Name << RD; 3198 3199 for (NamedDecl *D : Found) 3200 Diag(D->getUnderlyingDecl()->getLocation(), 3201 diag::note_member_declared_here) << Name; 3202 } 3203 return true; 3204 } 3205 3206 Operator = nullptr; 3207 return false; 3208 } 3209 3210 namespace { 3211 /// Checks whether delete-expression, and new-expression used for 3212 /// initializing deletee have the same array form. 3213 class MismatchingNewDeleteDetector { 3214 public: 3215 enum MismatchResult { 3216 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3217 NoMismatch, 3218 /// Indicates that variable is initialized with mismatching form of \a new. 3219 VarInitMismatches, 3220 /// Indicates that member is initialized with mismatching form of \a new. 3221 MemberInitMismatches, 3222 /// Indicates that 1 or more constructors' definitions could not been 3223 /// analyzed, and they will be checked again at the end of translation unit. 3224 AnalyzeLater 3225 }; 3226 3227 /// \param EndOfTU True, if this is the final analysis at the end of 3228 /// translation unit. False, if this is the initial analysis at the point 3229 /// delete-expression was encountered. 3230 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3231 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3232 HasUndefinedConstructors(false) {} 3233 3234 /// Checks whether pointee of a delete-expression is initialized with 3235 /// matching form of new-expression. 3236 /// 3237 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3238 /// point where delete-expression is encountered, then a warning will be 3239 /// issued immediately. If return value is \c AnalyzeLater at the point where 3240 /// delete-expression is seen, then member will be analyzed at the end of 3241 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3242 /// couldn't be analyzed. If at least one constructor initializes the member 3243 /// with matching type of new, the return value is \c NoMismatch. 3244 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3245 /// Analyzes a class member. 3246 /// \param Field Class member to analyze. 3247 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3248 /// for deleting the \p Field. 3249 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3250 FieldDecl *Field; 3251 /// List of mismatching new-expressions used for initialization of the pointee 3252 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3253 /// Indicates whether delete-expression was in array form. 3254 bool IsArrayForm; 3255 3256 private: 3257 const bool EndOfTU; 3258 /// Indicates that there is at least one constructor without body. 3259 bool HasUndefinedConstructors; 3260 /// Returns \c CXXNewExpr from given initialization expression. 3261 /// \param E Expression used for initializing pointee in delete-expression. 3262 /// E can be a single-element \c InitListExpr consisting of new-expression. 3263 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3264 /// Returns whether member is initialized with mismatching form of 3265 /// \c new either by the member initializer or in-class initialization. 3266 /// 3267 /// If bodies of all constructors are not visible at the end of translation 3268 /// unit or at least one constructor initializes member with the matching 3269 /// form of \c new, mismatch cannot be proven, and this function will return 3270 /// \c NoMismatch. 3271 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3272 /// Returns whether variable is initialized with mismatching form of 3273 /// \c new. 3274 /// 3275 /// If variable is initialized with matching form of \c new or variable is not 3276 /// initialized with a \c new expression, this function will return true. 3277 /// If variable is initialized with mismatching form of \c new, returns false. 3278 /// \param D Variable to analyze. 3279 bool hasMatchingVarInit(const DeclRefExpr *D); 3280 /// Checks whether the constructor initializes pointee with mismatching 3281 /// form of \c new. 3282 /// 3283 /// Returns true, if member is initialized with matching form of \c new in 3284 /// member initializer list. Returns false, if member is initialized with the 3285 /// matching form of \c new in this constructor's initializer or given 3286 /// constructor isn't defined at the point where delete-expression is seen, or 3287 /// member isn't initialized by the constructor. 3288 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3289 /// Checks whether member is initialized with matching form of 3290 /// \c new in member initializer list. 3291 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3292 /// Checks whether member is initialized with mismatching form of \c new by 3293 /// in-class initializer. 3294 MismatchResult analyzeInClassInitializer(); 3295 }; 3296 } 3297 3298 MismatchingNewDeleteDetector::MismatchResult 3299 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3300 NewExprs.clear(); 3301 assert(DE && "Expected delete-expression"); 3302 IsArrayForm = DE->isArrayForm(); 3303 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3304 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3305 return analyzeMemberExpr(ME); 3306 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3307 if (!hasMatchingVarInit(D)) 3308 return VarInitMismatches; 3309 } 3310 return NoMismatch; 3311 } 3312 3313 const CXXNewExpr * 3314 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3315 assert(E != nullptr && "Expected a valid initializer expression"); 3316 E = E->IgnoreParenImpCasts(); 3317 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3318 if (ILE->getNumInits() == 1) 3319 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3320 } 3321 3322 return dyn_cast_or_null<const CXXNewExpr>(E); 3323 } 3324 3325 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3326 const CXXCtorInitializer *CI) { 3327 const CXXNewExpr *NE = nullptr; 3328 if (Field == CI->getMember() && 3329 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3330 if (NE->isArray() == IsArrayForm) 3331 return true; 3332 else 3333 NewExprs.push_back(NE); 3334 } 3335 return false; 3336 } 3337 3338 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3339 const CXXConstructorDecl *CD) { 3340 if (CD->isImplicit()) 3341 return false; 3342 const FunctionDecl *Definition = CD; 3343 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3344 HasUndefinedConstructors = true; 3345 return EndOfTU; 3346 } 3347 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3348 if (hasMatchingNewInCtorInit(CI)) 3349 return true; 3350 } 3351 return false; 3352 } 3353 3354 MismatchingNewDeleteDetector::MismatchResult 3355 MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3356 assert(Field != nullptr && "This should be called only for members"); 3357 const Expr *InitExpr = Field->getInClassInitializer(); 3358 if (!InitExpr) 3359 return EndOfTU ? NoMismatch : AnalyzeLater; 3360 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3361 if (NE->isArray() != IsArrayForm) { 3362 NewExprs.push_back(NE); 3363 return MemberInitMismatches; 3364 } 3365 } 3366 return NoMismatch; 3367 } 3368 3369 MismatchingNewDeleteDetector::MismatchResult 3370 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3371 bool DeleteWasArrayForm) { 3372 assert(Field != nullptr && "Analysis requires a valid class member."); 3373 this->Field = Field; 3374 IsArrayForm = DeleteWasArrayForm; 3375 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3376 for (const auto *CD : RD->ctors()) { 3377 if (hasMatchingNewInCtor(CD)) 3378 return NoMismatch; 3379 } 3380 if (HasUndefinedConstructors) 3381 return EndOfTU ? NoMismatch : AnalyzeLater; 3382 if (!NewExprs.empty()) 3383 return MemberInitMismatches; 3384 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3385 : NoMismatch; 3386 } 3387 3388 MismatchingNewDeleteDetector::MismatchResult 3389 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3390 assert(ME != nullptr && "Expected a member expression"); 3391 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3392 return analyzeField(F, IsArrayForm); 3393 return NoMismatch; 3394 } 3395 3396 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3397 const CXXNewExpr *NE = nullptr; 3398 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3399 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3400 NE->isArray() != IsArrayForm) { 3401 NewExprs.push_back(NE); 3402 } 3403 } 3404 return NewExprs.empty(); 3405 } 3406 3407 static void 3408 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3409 const MismatchingNewDeleteDetector &Detector) { 3410 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3411 FixItHint H; 3412 if (!Detector.IsArrayForm) 3413 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3414 else { 3415 SourceLocation RSquare = Lexer::findLocationAfterToken( 3416 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3417 SemaRef.getLangOpts(), true); 3418 if (RSquare.isValid()) 3419 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3420 } 3421 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3422 << Detector.IsArrayForm << H; 3423 3424 for (const auto *NE : Detector.NewExprs) 3425 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3426 << Detector.IsArrayForm; 3427 } 3428 3429 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3430 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3431 return; 3432 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3433 switch (Detector.analyzeDeleteExpr(DE)) { 3434 case MismatchingNewDeleteDetector::VarInitMismatches: 3435 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3436 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3437 break; 3438 } 3439 case MismatchingNewDeleteDetector::AnalyzeLater: { 3440 DeleteExprs[Detector.Field].push_back( 3441 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3442 break; 3443 } 3444 case MismatchingNewDeleteDetector::NoMismatch: 3445 break; 3446 } 3447 } 3448 3449 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3450 bool DeleteWasArrayForm) { 3451 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3452 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3453 case MismatchingNewDeleteDetector::VarInitMismatches: 3454 llvm_unreachable("This analysis should have been done for class members."); 3455 case MismatchingNewDeleteDetector::AnalyzeLater: 3456 llvm_unreachable("Analysis cannot be postponed any point beyond end of " 3457 "translation unit."); 3458 case MismatchingNewDeleteDetector::MemberInitMismatches: 3459 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3460 break; 3461 case MismatchingNewDeleteDetector::NoMismatch: 3462 break; 3463 } 3464 } 3465 3466 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3467 /// @code ::delete ptr; @endcode 3468 /// or 3469 /// @code delete [] ptr; @endcode 3470 ExprResult 3471 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3472 bool ArrayForm, Expr *ExE) { 3473 // C++ [expr.delete]p1: 3474 // The operand shall have a pointer type, or a class type having a single 3475 // non-explicit conversion function to a pointer type. The result has type 3476 // void. 3477 // 3478 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3479 3480 ExprResult Ex = ExE; 3481 FunctionDecl *OperatorDelete = nullptr; 3482 bool ArrayFormAsWritten = ArrayForm; 3483 bool UsualArrayDeleteWantsSize = false; 3484 3485 if (!Ex.get()->isTypeDependent()) { 3486 // Perform lvalue-to-rvalue cast, if needed. 3487 Ex = DefaultLvalueConversion(Ex.get()); 3488 if (Ex.isInvalid()) 3489 return ExprError(); 3490 3491 QualType Type = Ex.get()->getType(); 3492 3493 class DeleteConverter : public ContextualImplicitConverter { 3494 public: 3495 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3496 3497 bool match(QualType ConvType) override { 3498 // FIXME: If we have an operator T* and an operator void*, we must pick 3499 // the operator T*. 3500 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3501 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3502 return true; 3503 return false; 3504 } 3505 3506 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3507 QualType T) override { 3508 return S.Diag(Loc, diag::err_delete_operand) << T; 3509 } 3510 3511 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3512 QualType T) override { 3513 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3514 } 3515 3516 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3517 QualType T, 3518 QualType ConvTy) override { 3519 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3520 } 3521 3522 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3523 QualType ConvTy) override { 3524 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3525 << ConvTy; 3526 } 3527 3528 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3529 QualType T) override { 3530 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3531 } 3532 3533 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3534 QualType ConvTy) override { 3535 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3536 << ConvTy; 3537 } 3538 3539 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3540 QualType T, 3541 QualType ConvTy) override { 3542 llvm_unreachable("conversion functions are permitted"); 3543 } 3544 } Converter; 3545 3546 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3547 if (Ex.isInvalid()) 3548 return ExprError(); 3549 Type = Ex.get()->getType(); 3550 if (!Converter.match(Type)) 3551 // FIXME: PerformContextualImplicitConversion should return ExprError 3552 // itself in this case. 3553 return ExprError(); 3554 3555 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3556 QualType PointeeElem = Context.getBaseElementType(Pointee); 3557 3558 if (Pointee.getAddressSpace() != LangAS::Default && 3559 !getLangOpts().OpenCLCPlusPlus) 3560 return Diag(Ex.get()->getBeginLoc(), 3561 diag::err_address_space_qualified_delete) 3562 << Pointee.getUnqualifiedType() 3563 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3564 3565 CXXRecordDecl *PointeeRD = nullptr; 3566 if (Pointee->isVoidType() && !isSFINAEContext()) { 3567 // The C++ standard bans deleting a pointer to a non-object type, which 3568 // effectively bans deletion of "void*". However, most compilers support 3569 // this, so we treat it as a warning unless we're in a SFINAE context. 3570 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3571 << Type << Ex.get()->getSourceRange(); 3572 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3573 Pointee->isSizelessType()) { 3574 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3575 << Type << Ex.get()->getSourceRange()); 3576 } else if (!Pointee->isDependentType()) { 3577 // FIXME: This can result in errors if the definition was imported from a 3578 // module but is hidden. 3579 if (!RequireCompleteType(StartLoc, Pointee, 3580 diag::warn_delete_incomplete, Ex.get())) { 3581 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3582 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3583 } 3584 } 3585 3586 if (Pointee->isArrayType() && !ArrayForm) { 3587 Diag(StartLoc, diag::warn_delete_array_type) 3588 << Type << Ex.get()->getSourceRange() 3589 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3590 ArrayForm = true; 3591 } 3592 3593 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3594 ArrayForm ? OO_Array_Delete : OO_Delete); 3595 3596 if (PointeeRD) { 3597 if (!UseGlobal && 3598 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3599 OperatorDelete)) 3600 return ExprError(); 3601 3602 // If we're allocating an array of records, check whether the 3603 // usual operator delete[] has a size_t parameter. 3604 if (ArrayForm) { 3605 // If the user specifically asked to use the global allocator, 3606 // we'll need to do the lookup into the class. 3607 if (UseGlobal) 3608 UsualArrayDeleteWantsSize = 3609 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3610 3611 // Otherwise, the usual operator delete[] should be the 3612 // function we just found. 3613 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3614 UsualArrayDeleteWantsSize = 3615 UsualDeallocFnInfo(*this, 3616 DeclAccessPair::make(OperatorDelete, AS_public)) 3617 .HasSizeT; 3618 } 3619 3620 if (!PointeeRD->hasIrrelevantDestructor()) 3621 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3622 MarkFunctionReferenced(StartLoc, 3623 const_cast<CXXDestructorDecl*>(Dtor)); 3624 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3625 return ExprError(); 3626 } 3627 3628 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3629 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3630 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3631 SourceLocation()); 3632 } 3633 3634 if (!OperatorDelete) { 3635 if (getLangOpts().OpenCLCPlusPlus) { 3636 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3637 return ExprError(); 3638 } 3639 3640 bool IsComplete = isCompleteType(StartLoc, Pointee); 3641 bool CanProvideSize = 3642 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3643 Pointee.isDestructedType()); 3644 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3645 3646 // Look for a global declaration. 3647 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3648 Overaligned, DeleteName); 3649 } 3650 3651 MarkFunctionReferenced(StartLoc, OperatorDelete); 3652 3653 // Check access and ambiguity of destructor if we're going to call it. 3654 // Note that this is required even for a virtual delete. 3655 bool IsVirtualDelete = false; 3656 if (PointeeRD) { 3657 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3658 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3659 PDiag(diag::err_access_dtor) << PointeeElem); 3660 IsVirtualDelete = Dtor->isVirtual(); 3661 } 3662 } 3663 3664 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3665 3666 // Convert the operand to the type of the first parameter of operator 3667 // delete. This is only necessary if we selected a destroying operator 3668 // delete that we are going to call (non-virtually); converting to void* 3669 // is trivial and left to AST consumers to handle. 3670 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3671 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3672 Qualifiers Qs = Pointee.getQualifiers(); 3673 if (Qs.hasCVRQualifiers()) { 3674 // Qualifiers are irrelevant to this conversion; we're only looking 3675 // for access and ambiguity. 3676 Qs.removeCVRQualifiers(); 3677 QualType Unqual = Context.getPointerType( 3678 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3679 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3680 } 3681 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3682 if (Ex.isInvalid()) 3683 return ExprError(); 3684 } 3685 } 3686 3687 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3688 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3689 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3690 AnalyzeDeleteExprMismatch(Result); 3691 return Result; 3692 } 3693 3694 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3695 bool IsDelete, 3696 FunctionDecl *&Operator) { 3697 3698 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3699 IsDelete ? OO_Delete : OO_New); 3700 3701 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3702 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3703 assert(!R.empty() && "implicitly declared allocation functions not found"); 3704 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 3705 3706 // We do our own custom access checks below. 3707 R.suppressDiagnostics(); 3708 3709 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end()); 3710 OverloadCandidateSet Candidates(R.getNameLoc(), 3711 OverloadCandidateSet::CSK_Normal); 3712 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3713 FnOvl != FnOvlEnd; ++FnOvl) { 3714 // Even member operator new/delete are implicitly treated as 3715 // static, so don't use AddMemberCandidate. 3716 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3717 3718 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3719 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3720 /*ExplicitTemplateArgs=*/nullptr, Args, 3721 Candidates, 3722 /*SuppressUserConversions=*/false); 3723 continue; 3724 } 3725 3726 FunctionDecl *Fn = cast<FunctionDecl>(D); 3727 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3728 /*SuppressUserConversions=*/false); 3729 } 3730 3731 SourceRange Range = TheCall->getSourceRange(); 3732 3733 // Do the resolution. 3734 OverloadCandidateSet::iterator Best; 3735 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3736 case OR_Success: { 3737 // Got one! 3738 FunctionDecl *FnDecl = Best->Function; 3739 assert(R.getNamingClass() == nullptr && 3740 "class members should not be considered"); 3741 3742 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3743 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3744 << (IsDelete ? 1 : 0) << Range; 3745 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3746 << R.getLookupName() << FnDecl->getSourceRange(); 3747 return true; 3748 } 3749 3750 Operator = FnDecl; 3751 return false; 3752 } 3753 3754 case OR_No_Viable_Function: 3755 Candidates.NoteCandidates( 3756 PartialDiagnosticAt(R.getNameLoc(), 3757 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3758 << R.getLookupName() << Range), 3759 S, OCD_AllCandidates, Args); 3760 return true; 3761 3762 case OR_Ambiguous: 3763 Candidates.NoteCandidates( 3764 PartialDiagnosticAt(R.getNameLoc(), 3765 S.PDiag(diag::err_ovl_ambiguous_call) 3766 << R.getLookupName() << Range), 3767 S, OCD_AmbiguousCandidates, Args); 3768 return true; 3769 3770 case OR_Deleted: { 3771 Candidates.NoteCandidates( 3772 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3773 << R.getLookupName() << Range), 3774 S, OCD_AllCandidates, Args); 3775 return true; 3776 } 3777 } 3778 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 3779 } 3780 3781 ExprResult 3782 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3783 bool IsDelete) { 3784 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3785 if (!getLangOpts().CPlusPlus) { 3786 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3787 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3788 << "C++"; 3789 return ExprError(); 3790 } 3791 // CodeGen assumes it can find the global new and delete to call, 3792 // so ensure that they are declared. 3793 DeclareGlobalNewDelete(); 3794 3795 FunctionDecl *OperatorNewOrDelete = nullptr; 3796 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3797 OperatorNewOrDelete)) 3798 return ExprError(); 3799 assert(OperatorNewOrDelete && "should be found"); 3800 3801 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3802 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3803 3804 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3805 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3806 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3807 InitializedEntity Entity = 3808 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3809 ExprResult Arg = PerformCopyInitialization( 3810 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3811 if (Arg.isInvalid()) 3812 return ExprError(); 3813 TheCall->setArg(i, Arg.get()); 3814 } 3815 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3816 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && 3817 "Callee expected to be implicit cast to a builtin function pointer"); 3818 Callee->setType(OperatorNewOrDelete->getType()); 3819 3820 return TheCallResult; 3821 } 3822 3823 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3824 bool IsDelete, bool CallCanBeVirtual, 3825 bool WarnOnNonAbstractTypes, 3826 SourceLocation DtorLoc) { 3827 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3828 return; 3829 3830 // C++ [expr.delete]p3: 3831 // In the first alternative (delete object), if the static type of the 3832 // object to be deleted is different from its dynamic type, the static 3833 // type shall be a base class of the dynamic type of the object to be 3834 // deleted and the static type shall have a virtual destructor or the 3835 // behavior is undefined. 3836 // 3837 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3838 // Note: a final class cannot be derived from, no issue there 3839 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3840 return; 3841 3842 // If the superclass is in a system header, there's nothing that can be done. 3843 // The `delete` (where we emit the warning) can be in a system header, 3844 // what matters for this warning is where the deleted type is defined. 3845 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3846 return; 3847 3848 QualType ClassType = dtor->getThisType()->getPointeeType(); 3849 if (PointeeRD->isAbstract()) { 3850 // If the class is abstract, we warn by default, because we're 3851 // sure the code has undefined behavior. 3852 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3853 << ClassType; 3854 } else if (WarnOnNonAbstractTypes) { 3855 // Otherwise, if this is not an array delete, it's a bit suspect, 3856 // but not necessarily wrong. 3857 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3858 << ClassType; 3859 } 3860 if (!IsDelete) { 3861 std::string TypeStr; 3862 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3863 Diag(DtorLoc, diag::note_delete_non_virtual) 3864 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3865 } 3866 } 3867 3868 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3869 SourceLocation StmtLoc, 3870 ConditionKind CK) { 3871 ExprResult E = 3872 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3873 if (E.isInvalid()) 3874 return ConditionError(); 3875 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3876 CK == ConditionKind::ConstexprIf); 3877 } 3878 3879 /// Check the use of the given variable as a C++ condition in an if, 3880 /// while, do-while, or switch statement. 3881 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3882 SourceLocation StmtLoc, 3883 ConditionKind CK) { 3884 if (ConditionVar->isInvalidDecl()) 3885 return ExprError(); 3886 3887 QualType T = ConditionVar->getType(); 3888 3889 // C++ [stmt.select]p2: 3890 // The declarator shall not specify a function or an array. 3891 if (T->isFunctionType()) 3892 return ExprError(Diag(ConditionVar->getLocation(), 3893 diag::err_invalid_use_of_function_type) 3894 << ConditionVar->getSourceRange()); 3895 else if (T->isArrayType()) 3896 return ExprError(Diag(ConditionVar->getLocation(), 3897 diag::err_invalid_use_of_array_type) 3898 << ConditionVar->getSourceRange()); 3899 3900 ExprResult Condition = BuildDeclRefExpr( 3901 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 3902 ConditionVar->getLocation()); 3903 3904 switch (CK) { 3905 case ConditionKind::Boolean: 3906 return CheckBooleanCondition(StmtLoc, Condition.get()); 3907 3908 case ConditionKind::ConstexprIf: 3909 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 3910 3911 case ConditionKind::Switch: 3912 return CheckSwitchCondition(StmtLoc, Condition.get()); 3913 } 3914 3915 llvm_unreachable("unexpected condition kind"); 3916 } 3917 3918 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 3919 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 3920 // C++11 6.4p4: 3921 // The value of a condition that is an initialized declaration in a statement 3922 // other than a switch statement is the value of the declared variable 3923 // implicitly converted to type bool. If that conversion is ill-formed, the 3924 // program is ill-formed. 3925 // The value of a condition that is an expression is the value of the 3926 // expression, implicitly converted to bool. 3927 // 3928 // C++2b 8.5.2p2 3929 // If the if statement is of the form if constexpr, the value of the condition 3930 // is contextually converted to bool and the converted expression shall be 3931 // a constant expression. 3932 // 3933 3934 ExprResult E = PerformContextuallyConvertToBool(CondExpr); 3935 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) 3936 return E; 3937 3938 // FIXME: Return this value to the caller so they don't need to recompute it. 3939 llvm::APSInt Cond; 3940 E = VerifyIntegerConstantExpression( 3941 E.get(), &Cond, 3942 diag::err_constexpr_if_condition_expression_is_not_constant); 3943 return E; 3944 } 3945 3946 /// Helper function to determine whether this is the (deprecated) C++ 3947 /// conversion from a string literal to a pointer to non-const char or 3948 /// non-const wchar_t (for narrow and wide string literals, 3949 /// respectively). 3950 bool 3951 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 3952 // Look inside the implicit cast, if it exists. 3953 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 3954 From = Cast->getSubExpr(); 3955 3956 // A string literal (2.13.4) that is not a wide string literal can 3957 // be converted to an rvalue of type "pointer to char"; a wide 3958 // string literal can be converted to an rvalue of type "pointer 3959 // to wchar_t" (C++ 4.2p2). 3960 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 3961 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 3962 if (const BuiltinType *ToPointeeType 3963 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 3964 // This conversion is considered only when there is an 3965 // explicit appropriate pointer target type (C++ 4.2p2). 3966 if (!ToPtrType->getPointeeType().hasQualifiers()) { 3967 switch (StrLit->getKind()) { 3968 case StringLiteral::UTF8: 3969 case StringLiteral::UTF16: 3970 case StringLiteral::UTF32: 3971 // We don't allow UTF literals to be implicitly converted 3972 break; 3973 case StringLiteral::Ascii: 3974 return (ToPointeeType->getKind() == BuiltinType::Char_U || 3975 ToPointeeType->getKind() == BuiltinType::Char_S); 3976 case StringLiteral::Wide: 3977 return Context.typesAreCompatible(Context.getWideCharType(), 3978 QualType(ToPointeeType, 0)); 3979 } 3980 } 3981 } 3982 3983 return false; 3984 } 3985 3986 static ExprResult BuildCXXCastArgument(Sema &S, 3987 SourceLocation CastLoc, 3988 QualType Ty, 3989 CastKind Kind, 3990 CXXMethodDecl *Method, 3991 DeclAccessPair FoundDecl, 3992 bool HadMultipleCandidates, 3993 Expr *From) { 3994 switch (Kind) { 3995 default: llvm_unreachable("Unhandled cast kind!"); 3996 case CK_ConstructorConversion: { 3997 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 3998 SmallVector<Expr*, 8> ConstructorArgs; 3999 4000 if (S.RequireNonAbstractType(CastLoc, Ty, 4001 diag::err_allocation_of_abstract_type)) 4002 return ExprError(); 4003 4004 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, 4005 ConstructorArgs)) 4006 return ExprError(); 4007 4008 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 4009 InitializedEntity::InitializeTemporary(Ty)); 4010 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4011 return ExprError(); 4012 4013 ExprResult Result = S.BuildCXXConstructExpr( 4014 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 4015 ConstructorArgs, HadMultipleCandidates, 4016 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4017 CXXConstructExpr::CK_Complete, SourceRange()); 4018 if (Result.isInvalid()) 4019 return ExprError(); 4020 4021 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 4022 } 4023 4024 case CK_UserDefinedConversion: { 4025 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); 4026 4027 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 4028 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4029 return ExprError(); 4030 4031 // Create an implicit call expr that calls it. 4032 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 4033 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 4034 HadMultipleCandidates); 4035 if (Result.isInvalid()) 4036 return ExprError(); 4037 // Record usage of conversion in an implicit cast. 4038 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 4039 CK_UserDefinedConversion, Result.get(), 4040 nullptr, Result.get()->getValueKind(), 4041 S.CurFPFeatureOverrides()); 4042 4043 return S.MaybeBindToTemporary(Result.get()); 4044 } 4045 } 4046 } 4047 4048 /// PerformImplicitConversion - Perform an implicit conversion of the 4049 /// expression From to the type ToType using the pre-computed implicit 4050 /// conversion sequence ICS. Returns the converted 4051 /// expression. Action is the kind of conversion we're performing, 4052 /// used in the error message. 4053 ExprResult 4054 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4055 const ImplicitConversionSequence &ICS, 4056 AssignmentAction Action, 4057 CheckedConversionKind CCK) { 4058 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 4059 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 4060 return From; 4061 4062 switch (ICS.getKind()) { 4063 case ImplicitConversionSequence::StandardConversion: { 4064 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 4065 Action, CCK); 4066 if (Res.isInvalid()) 4067 return ExprError(); 4068 From = Res.get(); 4069 break; 4070 } 4071 4072 case ImplicitConversionSequence::UserDefinedConversion: { 4073 4074 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 4075 CastKind CastKind; 4076 QualType BeforeToType; 4077 assert(FD && "no conversion function for user-defined conversion seq"); 4078 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 4079 CastKind = CK_UserDefinedConversion; 4080 4081 // If the user-defined conversion is specified by a conversion function, 4082 // the initial standard conversion sequence converts the source type to 4083 // the implicit object parameter of the conversion function. 4084 BeforeToType = Context.getTagDeclType(Conv->getParent()); 4085 } else { 4086 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 4087 CastKind = CK_ConstructorConversion; 4088 // Do no conversion if dealing with ... for the first conversion. 4089 if (!ICS.UserDefined.EllipsisConversion) { 4090 // If the user-defined conversion is specified by a constructor, the 4091 // initial standard conversion sequence converts the source type to 4092 // the type required by the argument of the constructor 4093 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 4094 } 4095 } 4096 // Watch out for ellipsis conversion. 4097 if (!ICS.UserDefined.EllipsisConversion) { 4098 ExprResult Res = 4099 PerformImplicitConversion(From, BeforeToType, 4100 ICS.UserDefined.Before, AA_Converting, 4101 CCK); 4102 if (Res.isInvalid()) 4103 return ExprError(); 4104 From = Res.get(); 4105 } 4106 4107 ExprResult CastArg = BuildCXXCastArgument( 4108 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 4109 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 4110 ICS.UserDefined.HadMultipleCandidates, From); 4111 4112 if (CastArg.isInvalid()) 4113 return ExprError(); 4114 4115 From = CastArg.get(); 4116 4117 // C++ [over.match.oper]p7: 4118 // [...] the second standard conversion sequence of a user-defined 4119 // conversion sequence is not applied. 4120 if (CCK == CCK_ForBuiltinOverloadedOp) 4121 return From; 4122 4123 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4124 AA_Converting, CCK); 4125 } 4126 4127 case ImplicitConversionSequence::AmbiguousConversion: 4128 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4129 PDiag(diag::err_typecheck_ambiguous_condition) 4130 << From->getSourceRange()); 4131 return ExprError(); 4132 4133 case ImplicitConversionSequence::EllipsisConversion: 4134 llvm_unreachable("Cannot perform an ellipsis conversion"); 4135 4136 case ImplicitConversionSequence::BadConversion: 4137 Sema::AssignConvertType ConvTy = 4138 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4139 bool Diagnosed = DiagnoseAssignmentResult( 4140 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4141 ToType, From->getType(), From, Action); 4142 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed; 4143 return ExprError(); 4144 } 4145 4146 // Everything went well. 4147 return From; 4148 } 4149 4150 /// PerformImplicitConversion - Perform an implicit conversion of the 4151 /// expression From to the type ToType by following the standard 4152 /// conversion sequence SCS. Returns the converted 4153 /// expression. Flavor is the context in which we're performing this 4154 /// conversion, for use in error messages. 4155 ExprResult 4156 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4157 const StandardConversionSequence& SCS, 4158 AssignmentAction Action, 4159 CheckedConversionKind CCK) { 4160 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 4161 4162 // Overall FIXME: we are recomputing too many types here and doing far too 4163 // much extra work. What this means is that we need to keep track of more 4164 // information that is computed when we try the implicit conversion initially, 4165 // so that we don't need to recompute anything here. 4166 QualType FromType = From->getType(); 4167 4168 if (SCS.CopyConstructor) { 4169 // FIXME: When can ToType be a reference type? 4170 assert(!ToType->isReferenceType()); 4171 if (SCS.Second == ICK_Derived_To_Base) { 4172 SmallVector<Expr*, 8> ConstructorArgs; 4173 if (CompleteConstructorCall( 4174 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, 4175 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) 4176 return ExprError(); 4177 return BuildCXXConstructExpr( 4178 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4179 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4180 ConstructorArgs, /*HadMultipleCandidates*/ false, 4181 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4182 CXXConstructExpr::CK_Complete, SourceRange()); 4183 } 4184 return BuildCXXConstructExpr( 4185 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4186 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4187 From, /*HadMultipleCandidates*/ false, 4188 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4189 CXXConstructExpr::CK_Complete, SourceRange()); 4190 } 4191 4192 // Resolve overloaded function references. 4193 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4194 DeclAccessPair Found; 4195 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4196 true, Found); 4197 if (!Fn) 4198 return ExprError(); 4199 4200 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4201 return ExprError(); 4202 4203 From = FixOverloadedFunctionReference(From, Found, Fn); 4204 FromType = From->getType(); 4205 } 4206 4207 // If we're converting to an atomic type, first convert to the corresponding 4208 // non-atomic type. 4209 QualType ToAtomicType; 4210 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4211 ToAtomicType = ToType; 4212 ToType = ToAtomic->getValueType(); 4213 } 4214 4215 QualType InitialFromType = FromType; 4216 // Perform the first implicit conversion. 4217 switch (SCS.First) { 4218 case ICK_Identity: 4219 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4220 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4221 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4222 From, /*BasePath=*/nullptr, VK_PRValue, 4223 FPOptionsOverride()); 4224 } 4225 break; 4226 4227 case ICK_Lvalue_To_Rvalue: { 4228 assert(From->getObjectKind() != OK_ObjCProperty); 4229 ExprResult FromRes = DefaultLvalueConversion(From); 4230 if (FromRes.isInvalid()) 4231 return ExprError(); 4232 4233 From = FromRes.get(); 4234 FromType = From->getType(); 4235 break; 4236 } 4237 4238 case ICK_Array_To_Pointer: 4239 FromType = Context.getArrayDecayedType(FromType); 4240 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue, 4241 /*BasePath=*/nullptr, CCK) 4242 .get(); 4243 break; 4244 4245 case ICK_Function_To_Pointer: 4246 FromType = Context.getPointerType(FromType); 4247 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4248 VK_PRValue, /*BasePath=*/nullptr, CCK) 4249 .get(); 4250 break; 4251 4252 default: 4253 llvm_unreachable("Improper first standard conversion"); 4254 } 4255 4256 // Perform the second implicit conversion 4257 switch (SCS.Second) { 4258 case ICK_Identity: 4259 // C++ [except.spec]p5: 4260 // [For] assignment to and initialization of pointers to functions, 4261 // pointers to member functions, and references to functions: the 4262 // target entity shall allow at least the exceptions allowed by the 4263 // source value in the assignment or initialization. 4264 switch (Action) { 4265 case AA_Assigning: 4266 case AA_Initializing: 4267 // Note, function argument passing and returning are initialization. 4268 case AA_Passing: 4269 case AA_Returning: 4270 case AA_Sending: 4271 case AA_Passing_CFAudited: 4272 if (CheckExceptionSpecCompatibility(From, ToType)) 4273 return ExprError(); 4274 break; 4275 4276 case AA_Casting: 4277 case AA_Converting: 4278 // Casts and implicit conversions are not initialization, so are not 4279 // checked for exception specification mismatches. 4280 break; 4281 } 4282 // Nothing else to do. 4283 break; 4284 4285 case ICK_Integral_Promotion: 4286 case ICK_Integral_Conversion: 4287 if (ToType->isBooleanType()) { 4288 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && 4289 SCS.Second == ICK_Integral_Promotion && 4290 "only enums with fixed underlying type can promote to bool"); 4291 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue, 4292 /*BasePath=*/nullptr, CCK) 4293 .get(); 4294 } else { 4295 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue, 4296 /*BasePath=*/nullptr, CCK) 4297 .get(); 4298 } 4299 break; 4300 4301 case ICK_Floating_Promotion: 4302 case ICK_Floating_Conversion: 4303 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue, 4304 /*BasePath=*/nullptr, CCK) 4305 .get(); 4306 break; 4307 4308 case ICK_Complex_Promotion: 4309 case ICK_Complex_Conversion: { 4310 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4311 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4312 CastKind CK; 4313 if (FromEl->isRealFloatingType()) { 4314 if (ToEl->isRealFloatingType()) 4315 CK = CK_FloatingComplexCast; 4316 else 4317 CK = CK_FloatingComplexToIntegralComplex; 4318 } else if (ToEl->isRealFloatingType()) { 4319 CK = CK_IntegralComplexToFloatingComplex; 4320 } else { 4321 CK = CK_IntegralComplexCast; 4322 } 4323 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr, 4324 CCK) 4325 .get(); 4326 break; 4327 } 4328 4329 case ICK_Floating_Integral: 4330 if (ToType->isRealFloatingType()) 4331 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue, 4332 /*BasePath=*/nullptr, CCK) 4333 .get(); 4334 else 4335 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue, 4336 /*BasePath=*/nullptr, CCK) 4337 .get(); 4338 break; 4339 4340 case ICK_Compatible_Conversion: 4341 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4342 /*BasePath=*/nullptr, CCK).get(); 4343 break; 4344 4345 case ICK_Writeback_Conversion: 4346 case ICK_Pointer_Conversion: { 4347 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4348 // Diagnose incompatible Objective-C conversions 4349 if (Action == AA_Initializing || Action == AA_Assigning) 4350 Diag(From->getBeginLoc(), 4351 diag::ext_typecheck_convert_incompatible_pointer) 4352 << ToType << From->getType() << Action << From->getSourceRange() 4353 << 0; 4354 else 4355 Diag(From->getBeginLoc(), 4356 diag::ext_typecheck_convert_incompatible_pointer) 4357 << From->getType() << ToType << Action << From->getSourceRange() 4358 << 0; 4359 4360 if (From->getType()->isObjCObjectPointerType() && 4361 ToType->isObjCObjectPointerType()) 4362 EmitRelatedResultTypeNote(From); 4363 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4364 !CheckObjCARCUnavailableWeakConversion(ToType, 4365 From->getType())) { 4366 if (Action == AA_Initializing) 4367 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4368 else 4369 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4370 << (Action == AA_Casting) << From->getType() << ToType 4371 << From->getSourceRange(); 4372 } 4373 4374 // Defer address space conversion to the third conversion. 4375 QualType FromPteeType = From->getType()->getPointeeType(); 4376 QualType ToPteeType = ToType->getPointeeType(); 4377 QualType NewToType = ToType; 4378 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4379 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4380 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4381 NewToType = Context.getAddrSpaceQualType(NewToType, 4382 FromPteeType.getAddressSpace()); 4383 if (ToType->isObjCObjectPointerType()) 4384 NewToType = Context.getObjCObjectPointerType(NewToType); 4385 else if (ToType->isBlockPointerType()) 4386 NewToType = Context.getBlockPointerType(NewToType); 4387 else 4388 NewToType = Context.getPointerType(NewToType); 4389 } 4390 4391 CastKind Kind; 4392 CXXCastPath BasePath; 4393 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4394 return ExprError(); 4395 4396 // Make sure we extend blocks if necessary. 4397 // FIXME: doing this here is really ugly. 4398 if (Kind == CK_BlockPointerToObjCPointerCast) { 4399 ExprResult E = From; 4400 (void) PrepareCastToObjCObjectPointer(E); 4401 From = E.get(); 4402 } 4403 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4404 CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4405 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK) 4406 .get(); 4407 break; 4408 } 4409 4410 case ICK_Pointer_Member: { 4411 CastKind Kind; 4412 CXXCastPath BasePath; 4413 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4414 return ExprError(); 4415 if (CheckExceptionSpecCompatibility(From, ToType)) 4416 return ExprError(); 4417 4418 // We may not have been able to figure out what this member pointer resolved 4419 // to up until this exact point. Attempt to lock-in it's inheritance model. 4420 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4421 (void)isCompleteType(From->getExprLoc(), From->getType()); 4422 (void)isCompleteType(From->getExprLoc(), ToType); 4423 } 4424 4425 From = 4426 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get(); 4427 break; 4428 } 4429 4430 case ICK_Boolean_Conversion: 4431 // Perform half-to-boolean conversion via float. 4432 if (From->getType()->isHalfType()) { 4433 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4434 FromType = Context.FloatTy; 4435 } 4436 4437 From = ImpCastExprToType(From, Context.BoolTy, 4438 ScalarTypeToBooleanCastKind(FromType), VK_PRValue, 4439 /*BasePath=*/nullptr, CCK) 4440 .get(); 4441 break; 4442 4443 case ICK_Derived_To_Base: { 4444 CXXCastPath BasePath; 4445 if (CheckDerivedToBaseConversion( 4446 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4447 From->getSourceRange(), &BasePath, CStyle)) 4448 return ExprError(); 4449 4450 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4451 CK_DerivedToBase, From->getValueKind(), 4452 &BasePath, CCK).get(); 4453 break; 4454 } 4455 4456 case ICK_Vector_Conversion: 4457 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4458 /*BasePath=*/nullptr, CCK) 4459 .get(); 4460 break; 4461 4462 case ICK_SVE_Vector_Conversion: 4463 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4464 /*BasePath=*/nullptr, CCK) 4465 .get(); 4466 break; 4467 4468 case ICK_Vector_Splat: { 4469 // Vector splat from any arithmetic type to a vector. 4470 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4471 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, 4472 /*BasePath=*/nullptr, CCK) 4473 .get(); 4474 break; 4475 } 4476 4477 case ICK_Complex_Real: 4478 // Case 1. x -> _Complex y 4479 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4480 QualType ElType = ToComplex->getElementType(); 4481 bool isFloatingComplex = ElType->isRealFloatingType(); 4482 4483 // x -> y 4484 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4485 // do nothing 4486 } else if (From->getType()->isRealFloatingType()) { 4487 From = ImpCastExprToType(From, ElType, 4488 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4489 } else { 4490 assert(From->getType()->isIntegerType()); 4491 From = ImpCastExprToType(From, ElType, 4492 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4493 } 4494 // y -> _Complex y 4495 From = ImpCastExprToType(From, ToType, 4496 isFloatingComplex ? CK_FloatingRealToComplex 4497 : CK_IntegralRealToComplex).get(); 4498 4499 // Case 2. _Complex x -> y 4500 } else { 4501 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4502 QualType ElType = FromComplex->getElementType(); 4503 bool isFloatingComplex = ElType->isRealFloatingType(); 4504 4505 // _Complex x -> x 4506 From = ImpCastExprToType(From, ElType, 4507 isFloatingComplex ? CK_FloatingComplexToReal 4508 : CK_IntegralComplexToReal, 4509 VK_PRValue, /*BasePath=*/nullptr, CCK) 4510 .get(); 4511 4512 // x -> y 4513 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4514 // do nothing 4515 } else if (ToType->isRealFloatingType()) { 4516 From = ImpCastExprToType(From, ToType, 4517 isFloatingComplex ? CK_FloatingCast 4518 : CK_IntegralToFloating, 4519 VK_PRValue, /*BasePath=*/nullptr, CCK) 4520 .get(); 4521 } else { 4522 assert(ToType->isIntegerType()); 4523 From = ImpCastExprToType(From, ToType, 4524 isFloatingComplex ? CK_FloatingToIntegral 4525 : CK_IntegralCast, 4526 VK_PRValue, /*BasePath=*/nullptr, CCK) 4527 .get(); 4528 } 4529 } 4530 break; 4531 4532 case ICK_Block_Pointer_Conversion: { 4533 LangAS AddrSpaceL = 4534 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4535 LangAS AddrSpaceR = 4536 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4537 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && 4538 "Invalid cast"); 4539 CastKind Kind = 4540 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4541 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4542 VK_PRValue, /*BasePath=*/nullptr, CCK) 4543 .get(); 4544 break; 4545 } 4546 4547 case ICK_TransparentUnionConversion: { 4548 ExprResult FromRes = From; 4549 Sema::AssignConvertType ConvTy = 4550 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4551 if (FromRes.isInvalid()) 4552 return ExprError(); 4553 From = FromRes.get(); 4554 assert ((ConvTy == Sema::Compatible) && 4555 "Improper transparent union conversion"); 4556 (void)ConvTy; 4557 break; 4558 } 4559 4560 case ICK_Zero_Event_Conversion: 4561 case ICK_Zero_Queue_Conversion: 4562 From = ImpCastExprToType(From, ToType, 4563 CK_ZeroToOCLOpaqueType, 4564 From->getValueKind()).get(); 4565 break; 4566 4567 case ICK_Lvalue_To_Rvalue: 4568 case ICK_Array_To_Pointer: 4569 case ICK_Function_To_Pointer: 4570 case ICK_Function_Conversion: 4571 case ICK_Qualification: 4572 case ICK_Num_Conversion_Kinds: 4573 case ICK_C_Only_Conversion: 4574 case ICK_Incompatible_Pointer_Conversion: 4575 llvm_unreachable("Improper second standard conversion"); 4576 } 4577 4578 switch (SCS.Third) { 4579 case ICK_Identity: 4580 // Nothing to do. 4581 break; 4582 4583 case ICK_Function_Conversion: 4584 // If both sides are functions (or pointers/references to them), there could 4585 // be incompatible exception declarations. 4586 if (CheckExceptionSpecCompatibility(From, ToType)) 4587 return ExprError(); 4588 4589 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue, 4590 /*BasePath=*/nullptr, CCK) 4591 .get(); 4592 break; 4593 4594 case ICK_Qualification: { 4595 ExprValueKind VK = From->getValueKind(); 4596 CastKind CK = CK_NoOp; 4597 4598 if (ToType->isReferenceType() && 4599 ToType->getPointeeType().getAddressSpace() != 4600 From->getType().getAddressSpace()) 4601 CK = CK_AddressSpaceConversion; 4602 4603 if (ToType->isPointerType() && 4604 ToType->getPointeeType().getAddressSpace() != 4605 From->getType()->getPointeeType().getAddressSpace()) 4606 CK = CK_AddressSpaceConversion; 4607 4608 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4609 /*BasePath=*/nullptr, CCK) 4610 .get(); 4611 4612 if (SCS.DeprecatedStringLiteralToCharPtr && 4613 !getLangOpts().WritableStrings) { 4614 Diag(From->getBeginLoc(), 4615 getLangOpts().CPlusPlus11 4616 ? diag::ext_deprecated_string_literal_conversion 4617 : diag::warn_deprecated_string_literal_conversion) 4618 << ToType.getNonReferenceType(); 4619 } 4620 4621 break; 4622 } 4623 4624 default: 4625 llvm_unreachable("Improper third standard conversion"); 4626 } 4627 4628 // If this conversion sequence involved a scalar -> atomic conversion, perform 4629 // that conversion now. 4630 if (!ToAtomicType.isNull()) { 4631 assert(Context.hasSameType( 4632 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); 4633 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4634 VK_PRValue, nullptr, CCK) 4635 .get(); 4636 } 4637 4638 // Materialize a temporary if we're implicitly converting to a reference 4639 // type. This is not required by the C++ rules but is necessary to maintain 4640 // AST invariants. 4641 if (ToType->isReferenceType() && From->isPRValue()) { 4642 ExprResult Res = TemporaryMaterializationConversion(From); 4643 if (Res.isInvalid()) 4644 return ExprError(); 4645 From = Res.get(); 4646 } 4647 4648 // If this conversion sequence succeeded and involved implicitly converting a 4649 // _Nullable type to a _Nonnull one, complain. 4650 if (!isCast(CCK)) 4651 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4652 From->getBeginLoc()); 4653 4654 return From; 4655 } 4656 4657 /// Check the completeness of a type in a unary type trait. 4658 /// 4659 /// If the particular type trait requires a complete type, tries to complete 4660 /// it. If completing the type fails, a diagnostic is emitted and false 4661 /// returned. If completing the type succeeds or no completion was required, 4662 /// returns true. 4663 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4664 SourceLocation Loc, 4665 QualType ArgTy) { 4666 // C++0x [meta.unary.prop]p3: 4667 // For all of the class templates X declared in this Clause, instantiating 4668 // that template with a template argument that is a class template 4669 // specialization may result in the implicit instantiation of the template 4670 // argument if and only if the semantics of X require that the argument 4671 // must be a complete type. 4672 // We apply this rule to all the type trait expressions used to implement 4673 // these class templates. We also try to follow any GCC documented behavior 4674 // in these expressions to ensure portability of standard libraries. 4675 switch (UTT) { 4676 default: llvm_unreachable("not a UTT"); 4677 // is_complete_type somewhat obviously cannot require a complete type. 4678 case UTT_IsCompleteType: 4679 // Fall-through 4680 4681 // These traits are modeled on the type predicates in C++0x 4682 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4683 // requiring a complete type, as whether or not they return true cannot be 4684 // impacted by the completeness of the type. 4685 case UTT_IsVoid: 4686 case UTT_IsIntegral: 4687 case UTT_IsFloatingPoint: 4688 case UTT_IsArray: 4689 case UTT_IsPointer: 4690 case UTT_IsLvalueReference: 4691 case UTT_IsRvalueReference: 4692 case UTT_IsMemberFunctionPointer: 4693 case UTT_IsMemberObjectPointer: 4694 case UTT_IsEnum: 4695 case UTT_IsUnion: 4696 case UTT_IsClass: 4697 case UTT_IsFunction: 4698 case UTT_IsReference: 4699 case UTT_IsArithmetic: 4700 case UTT_IsFundamental: 4701 case UTT_IsObject: 4702 case UTT_IsScalar: 4703 case UTT_IsCompound: 4704 case UTT_IsMemberPointer: 4705 // Fall-through 4706 4707 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4708 // which requires some of its traits to have the complete type. However, 4709 // the completeness of the type cannot impact these traits' semantics, and 4710 // so they don't require it. This matches the comments on these traits in 4711 // Table 49. 4712 case UTT_IsConst: 4713 case UTT_IsVolatile: 4714 case UTT_IsSigned: 4715 case UTT_IsUnsigned: 4716 4717 // This type trait always returns false, checking the type is moot. 4718 case UTT_IsInterfaceClass: 4719 return true; 4720 4721 // C++14 [meta.unary.prop]: 4722 // If T is a non-union class type, T shall be a complete type. 4723 case UTT_IsEmpty: 4724 case UTT_IsPolymorphic: 4725 case UTT_IsAbstract: 4726 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4727 if (!RD->isUnion()) 4728 return !S.RequireCompleteType( 4729 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4730 return true; 4731 4732 // C++14 [meta.unary.prop]: 4733 // If T is a class type, T shall be a complete type. 4734 case UTT_IsFinal: 4735 case UTT_IsSealed: 4736 if (ArgTy->getAsCXXRecordDecl()) 4737 return !S.RequireCompleteType( 4738 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4739 return true; 4740 4741 // C++1z [meta.unary.prop]: 4742 // remove_all_extents_t<T> shall be a complete type or cv void. 4743 case UTT_IsAggregate: 4744 case UTT_IsTrivial: 4745 case UTT_IsTriviallyCopyable: 4746 case UTT_IsStandardLayout: 4747 case UTT_IsPOD: 4748 case UTT_IsLiteral: 4749 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4750 // or an array of unknown bound. But GCC actually imposes the same constraints 4751 // as above. 4752 case UTT_HasNothrowAssign: 4753 case UTT_HasNothrowMoveAssign: 4754 case UTT_HasNothrowConstructor: 4755 case UTT_HasNothrowCopy: 4756 case UTT_HasTrivialAssign: 4757 case UTT_HasTrivialMoveAssign: 4758 case UTT_HasTrivialDefaultConstructor: 4759 case UTT_HasTrivialMoveConstructor: 4760 case UTT_HasTrivialCopy: 4761 case UTT_HasTrivialDestructor: 4762 case UTT_HasVirtualDestructor: 4763 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4764 LLVM_FALLTHROUGH; 4765 4766 // C++1z [meta.unary.prop]: 4767 // T shall be a complete type, cv void, or an array of unknown bound. 4768 case UTT_IsDestructible: 4769 case UTT_IsNothrowDestructible: 4770 case UTT_IsTriviallyDestructible: 4771 case UTT_HasUniqueObjectRepresentations: 4772 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4773 return true; 4774 4775 return !S.RequireCompleteType( 4776 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4777 } 4778 } 4779 4780 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 4781 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 4782 bool (CXXRecordDecl::*HasTrivial)() const, 4783 bool (CXXRecordDecl::*HasNonTrivial)() const, 4784 bool (CXXMethodDecl::*IsDesiredOp)() const) 4785 { 4786 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4787 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 4788 return true; 4789 4790 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 4791 DeclarationNameInfo NameInfo(Name, KeyLoc); 4792 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 4793 if (Self.LookupQualifiedName(Res, RD)) { 4794 bool FoundOperator = false; 4795 Res.suppressDiagnostics(); 4796 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 4797 Op != OpEnd; ++Op) { 4798 if (isa<FunctionTemplateDecl>(*Op)) 4799 continue; 4800 4801 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 4802 if((Operator->*IsDesiredOp)()) { 4803 FoundOperator = true; 4804 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 4805 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4806 if (!CPT || !CPT->isNothrow()) 4807 return false; 4808 } 4809 } 4810 return FoundOperator; 4811 } 4812 return false; 4813 } 4814 4815 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 4816 SourceLocation KeyLoc, QualType T) { 4817 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 4818 4819 ASTContext &C = Self.Context; 4820 switch(UTT) { 4821 default: llvm_unreachable("not a UTT"); 4822 // Type trait expressions corresponding to the primary type category 4823 // predicates in C++0x [meta.unary.cat]. 4824 case UTT_IsVoid: 4825 return T->isVoidType(); 4826 case UTT_IsIntegral: 4827 return T->isIntegralType(C); 4828 case UTT_IsFloatingPoint: 4829 return T->isFloatingType(); 4830 case UTT_IsArray: 4831 return T->isArrayType(); 4832 case UTT_IsPointer: 4833 return T->isAnyPointerType(); 4834 case UTT_IsLvalueReference: 4835 return T->isLValueReferenceType(); 4836 case UTT_IsRvalueReference: 4837 return T->isRValueReferenceType(); 4838 case UTT_IsMemberFunctionPointer: 4839 return T->isMemberFunctionPointerType(); 4840 case UTT_IsMemberObjectPointer: 4841 return T->isMemberDataPointerType(); 4842 case UTT_IsEnum: 4843 return T->isEnumeralType(); 4844 case UTT_IsUnion: 4845 return T->isUnionType(); 4846 case UTT_IsClass: 4847 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 4848 case UTT_IsFunction: 4849 return T->isFunctionType(); 4850 4851 // Type trait expressions which correspond to the convenient composition 4852 // predicates in C++0x [meta.unary.comp]. 4853 case UTT_IsReference: 4854 return T->isReferenceType(); 4855 case UTT_IsArithmetic: 4856 return T->isArithmeticType() && !T->isEnumeralType(); 4857 case UTT_IsFundamental: 4858 return T->isFundamentalType(); 4859 case UTT_IsObject: 4860 return T->isObjectType(); 4861 case UTT_IsScalar: 4862 // Note: semantic analysis depends on Objective-C lifetime types to be 4863 // considered scalar types. However, such types do not actually behave 4864 // like scalar types at run time (since they may require retain/release 4865 // operations), so we report them as non-scalar. 4866 if (T->isObjCLifetimeType()) { 4867 switch (T.getObjCLifetime()) { 4868 case Qualifiers::OCL_None: 4869 case Qualifiers::OCL_ExplicitNone: 4870 return true; 4871 4872 case Qualifiers::OCL_Strong: 4873 case Qualifiers::OCL_Weak: 4874 case Qualifiers::OCL_Autoreleasing: 4875 return false; 4876 } 4877 } 4878 4879 return T->isScalarType(); 4880 case UTT_IsCompound: 4881 return T->isCompoundType(); 4882 case UTT_IsMemberPointer: 4883 return T->isMemberPointerType(); 4884 4885 // Type trait expressions which correspond to the type property predicates 4886 // in C++0x [meta.unary.prop]. 4887 case UTT_IsConst: 4888 return T.isConstQualified(); 4889 case UTT_IsVolatile: 4890 return T.isVolatileQualified(); 4891 case UTT_IsTrivial: 4892 return T.isTrivialType(C); 4893 case UTT_IsTriviallyCopyable: 4894 return T.isTriviallyCopyableType(C); 4895 case UTT_IsStandardLayout: 4896 return T->isStandardLayoutType(); 4897 case UTT_IsPOD: 4898 return T.isPODType(C); 4899 case UTT_IsLiteral: 4900 return T->isLiteralType(C); 4901 case UTT_IsEmpty: 4902 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4903 return !RD->isUnion() && RD->isEmpty(); 4904 return false; 4905 case UTT_IsPolymorphic: 4906 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4907 return !RD->isUnion() && RD->isPolymorphic(); 4908 return false; 4909 case UTT_IsAbstract: 4910 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4911 return !RD->isUnion() && RD->isAbstract(); 4912 return false; 4913 case UTT_IsAggregate: 4914 // Report vector extensions and complex types as aggregates because they 4915 // support aggregate initialization. GCC mirrors this behavior for vectors 4916 // but not _Complex. 4917 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 4918 T->isAnyComplexType(); 4919 // __is_interface_class only returns true when CL is invoked in /CLR mode and 4920 // even then only when it is used with the 'interface struct ...' syntax 4921 // Clang doesn't support /CLR which makes this type trait moot. 4922 case UTT_IsInterfaceClass: 4923 return false; 4924 case UTT_IsFinal: 4925 case UTT_IsSealed: 4926 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4927 return RD->hasAttr<FinalAttr>(); 4928 return false; 4929 case UTT_IsSigned: 4930 // Enum types should always return false. 4931 // Floating points should always return true. 4932 return T->isFloatingType() || 4933 (T->isSignedIntegerType() && !T->isEnumeralType()); 4934 case UTT_IsUnsigned: 4935 // Enum types should always return false. 4936 return T->isUnsignedIntegerType() && !T->isEnumeralType(); 4937 4938 // Type trait expressions which query classes regarding their construction, 4939 // destruction, and copying. Rather than being based directly on the 4940 // related type predicates in the standard, they are specified by both 4941 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 4942 // specifications. 4943 // 4944 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 4945 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4946 // 4947 // Note that these builtins do not behave as documented in g++: if a class 4948 // has both a trivial and a non-trivial special member of a particular kind, 4949 // they return false! For now, we emulate this behavior. 4950 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 4951 // does not correctly compute triviality in the presence of multiple special 4952 // members of the same kind. Revisit this once the g++ bug is fixed. 4953 case UTT_HasTrivialDefaultConstructor: 4954 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4955 // If __is_pod (type) is true then the trait is true, else if type is 4956 // a cv class or union type (or array thereof) with a trivial default 4957 // constructor ([class.ctor]) then the trait is true, else it is false. 4958 if (T.isPODType(C)) 4959 return true; 4960 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4961 return RD->hasTrivialDefaultConstructor() && 4962 !RD->hasNonTrivialDefaultConstructor(); 4963 return false; 4964 case UTT_HasTrivialMoveConstructor: 4965 // This trait is implemented by MSVC 2012 and needed to parse the 4966 // standard library headers. Specifically this is used as the logic 4967 // behind std::is_trivially_move_constructible (20.9.4.3). 4968 if (T.isPODType(C)) 4969 return true; 4970 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4971 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 4972 return false; 4973 case UTT_HasTrivialCopy: 4974 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4975 // If __is_pod (type) is true or type is a reference type then 4976 // the trait is true, else if type is a cv class or union type 4977 // with a trivial copy constructor ([class.copy]) then the trait 4978 // is true, else it is false. 4979 if (T.isPODType(C) || T->isReferenceType()) 4980 return true; 4981 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4982 return RD->hasTrivialCopyConstructor() && 4983 !RD->hasNonTrivialCopyConstructor(); 4984 return false; 4985 case UTT_HasTrivialMoveAssign: 4986 // This trait is implemented by MSVC 2012 and needed to parse the 4987 // standard library headers. Specifically it is used as the logic 4988 // behind std::is_trivially_move_assignable (20.9.4.3) 4989 if (T.isPODType(C)) 4990 return true; 4991 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4992 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 4993 return false; 4994 case UTT_HasTrivialAssign: 4995 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4996 // If type is const qualified or is a reference type then the 4997 // trait is false. Otherwise if __is_pod (type) is true then the 4998 // trait is true, else if type is a cv class or union type with 4999 // a trivial copy assignment ([class.copy]) then the trait is 5000 // true, else it is false. 5001 // Note: the const and reference restrictions are interesting, 5002 // given that const and reference members don't prevent a class 5003 // from having a trivial copy assignment operator (but do cause 5004 // errors if the copy assignment operator is actually used, q.v. 5005 // [class.copy]p12). 5006 5007 if (T.isConstQualified()) 5008 return false; 5009 if (T.isPODType(C)) 5010 return true; 5011 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5012 return RD->hasTrivialCopyAssignment() && 5013 !RD->hasNonTrivialCopyAssignment(); 5014 return false; 5015 case UTT_IsDestructible: 5016 case UTT_IsTriviallyDestructible: 5017 case UTT_IsNothrowDestructible: 5018 // C++14 [meta.unary.prop]: 5019 // For reference types, is_destructible<T>::value is true. 5020 if (T->isReferenceType()) 5021 return true; 5022 5023 // Objective-C++ ARC: autorelease types don't require destruction. 5024 if (T->isObjCLifetimeType() && 5025 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5026 return true; 5027 5028 // C++14 [meta.unary.prop]: 5029 // For incomplete types and function types, is_destructible<T>::value is 5030 // false. 5031 if (T->isIncompleteType() || T->isFunctionType()) 5032 return false; 5033 5034 // A type that requires destruction (via a non-trivial destructor or ARC 5035 // lifetime semantics) is not trivially-destructible. 5036 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 5037 return false; 5038 5039 // C++14 [meta.unary.prop]: 5040 // For object types and given U equal to remove_all_extents_t<T>, if the 5041 // expression std::declval<U&>().~U() is well-formed when treated as an 5042 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 5043 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5044 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 5045 if (!Destructor) 5046 return false; 5047 // C++14 [dcl.fct.def.delete]p2: 5048 // A program that refers to a deleted function implicitly or 5049 // explicitly, other than to declare it, is ill-formed. 5050 if (Destructor->isDeleted()) 5051 return false; 5052 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 5053 return false; 5054 if (UTT == UTT_IsNothrowDestructible) { 5055 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 5056 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5057 if (!CPT || !CPT->isNothrow()) 5058 return false; 5059 } 5060 } 5061 return true; 5062 5063 case UTT_HasTrivialDestructor: 5064 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5065 // If __is_pod (type) is true or type is a reference type 5066 // then the trait is true, else if type is a cv class or union 5067 // type (or array thereof) with a trivial destructor 5068 // ([class.dtor]) then the trait is true, else it is 5069 // false. 5070 if (T.isPODType(C) || T->isReferenceType()) 5071 return true; 5072 5073 // Objective-C++ ARC: autorelease types don't require destruction. 5074 if (T->isObjCLifetimeType() && 5075 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5076 return true; 5077 5078 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5079 return RD->hasTrivialDestructor(); 5080 return false; 5081 // TODO: Propagate nothrowness for implicitly declared special members. 5082 case UTT_HasNothrowAssign: 5083 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5084 // If type is const qualified or is a reference type then the 5085 // trait is false. Otherwise if __has_trivial_assign (type) 5086 // is true then the trait is true, else if type is a cv class 5087 // or union type with copy assignment operators that are known 5088 // not to throw an exception then the trait is true, else it is 5089 // false. 5090 if (C.getBaseElementType(T).isConstQualified()) 5091 return false; 5092 if (T->isReferenceType()) 5093 return false; 5094 if (T.isPODType(C) || T->isObjCLifetimeType()) 5095 return true; 5096 5097 if (const RecordType *RT = T->getAs<RecordType>()) 5098 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5099 &CXXRecordDecl::hasTrivialCopyAssignment, 5100 &CXXRecordDecl::hasNonTrivialCopyAssignment, 5101 &CXXMethodDecl::isCopyAssignmentOperator); 5102 return false; 5103 case UTT_HasNothrowMoveAssign: 5104 // This trait is implemented by MSVC 2012 and needed to parse the 5105 // standard library headers. Specifically this is used as the logic 5106 // behind std::is_nothrow_move_assignable (20.9.4.3). 5107 if (T.isPODType(C)) 5108 return true; 5109 5110 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 5111 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5112 &CXXRecordDecl::hasTrivialMoveAssignment, 5113 &CXXRecordDecl::hasNonTrivialMoveAssignment, 5114 &CXXMethodDecl::isMoveAssignmentOperator); 5115 return false; 5116 case UTT_HasNothrowCopy: 5117 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5118 // If __has_trivial_copy (type) is true then the trait is true, else 5119 // if type is a cv class or union type with copy constructors that are 5120 // known not to throw an exception then the trait is true, else it is 5121 // false. 5122 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 5123 return true; 5124 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 5125 if (RD->hasTrivialCopyConstructor() && 5126 !RD->hasNonTrivialCopyConstructor()) 5127 return true; 5128 5129 bool FoundConstructor = false; 5130 unsigned FoundTQs; 5131 for (const auto *ND : Self.LookupConstructors(RD)) { 5132 // A template constructor is never a copy constructor. 5133 // FIXME: However, it may actually be selected at the actual overload 5134 // resolution point. 5135 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5136 continue; 5137 // UsingDecl itself is not a constructor 5138 if (isa<UsingDecl>(ND)) 5139 continue; 5140 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5141 if (Constructor->isCopyConstructor(FoundTQs)) { 5142 FoundConstructor = true; 5143 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5144 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5145 if (!CPT) 5146 return false; 5147 // TODO: check whether evaluating default arguments can throw. 5148 // For now, we'll be conservative and assume that they can throw. 5149 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 5150 return false; 5151 } 5152 } 5153 5154 return FoundConstructor; 5155 } 5156 return false; 5157 case UTT_HasNothrowConstructor: 5158 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5159 // If __has_trivial_constructor (type) is true then the trait is 5160 // true, else if type is a cv class or union type (or array 5161 // thereof) with a default constructor that is known not to 5162 // throw an exception then the trait is true, else it is false. 5163 if (T.isPODType(C) || T->isObjCLifetimeType()) 5164 return true; 5165 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5166 if (RD->hasTrivialDefaultConstructor() && 5167 !RD->hasNonTrivialDefaultConstructor()) 5168 return true; 5169 5170 bool FoundConstructor = false; 5171 for (const auto *ND : Self.LookupConstructors(RD)) { 5172 // FIXME: In C++0x, a constructor template can be a default constructor. 5173 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5174 continue; 5175 // UsingDecl itself is not a constructor 5176 if (isa<UsingDecl>(ND)) 5177 continue; 5178 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5179 if (Constructor->isDefaultConstructor()) { 5180 FoundConstructor = true; 5181 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5182 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5183 if (!CPT) 5184 return false; 5185 // FIXME: check whether evaluating default arguments can throw. 5186 // For now, we'll be conservative and assume that they can throw. 5187 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5188 return false; 5189 } 5190 } 5191 return FoundConstructor; 5192 } 5193 return false; 5194 case UTT_HasVirtualDestructor: 5195 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5196 // If type is a class type with a virtual destructor ([class.dtor]) 5197 // then the trait is true, else it is false. 5198 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5199 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5200 return Destructor->isVirtual(); 5201 return false; 5202 5203 // These type trait expressions are modeled on the specifications for the 5204 // Embarcadero C++0x type trait functions: 5205 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5206 case UTT_IsCompleteType: 5207 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5208 // Returns True if and only if T is a complete type at the point of the 5209 // function call. 5210 return !T->isIncompleteType(); 5211 case UTT_HasUniqueObjectRepresentations: 5212 return C.hasUniqueObjectRepresentations(T); 5213 } 5214 } 5215 5216 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5217 QualType RhsT, SourceLocation KeyLoc); 5218 5219 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 5220 ArrayRef<TypeSourceInfo *> Args, 5221 SourceLocation RParenLoc) { 5222 if (Kind <= UTT_Last) 5223 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 5224 5225 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible 5226 // traits to avoid duplication. 5227 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) 5228 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 5229 Args[1]->getType(), RParenLoc); 5230 5231 switch (Kind) { 5232 case clang::BTT_ReferenceBindsToTemporary: 5233 case clang::TT_IsConstructible: 5234 case clang::TT_IsNothrowConstructible: 5235 case clang::TT_IsTriviallyConstructible: { 5236 // C++11 [meta.unary.prop]: 5237 // is_trivially_constructible is defined as: 5238 // 5239 // is_constructible<T, Args...>::value is true and the variable 5240 // definition for is_constructible, as defined below, is known to call 5241 // no operation that is not trivial. 5242 // 5243 // The predicate condition for a template specialization 5244 // is_constructible<T, Args...> shall be satisfied if and only if the 5245 // following variable definition would be well-formed for some invented 5246 // variable t: 5247 // 5248 // T t(create<Args>()...); 5249 assert(!Args.empty()); 5250 5251 // Precondition: T and all types in the parameter pack Args shall be 5252 // complete types, (possibly cv-qualified) void, or arrays of 5253 // unknown bound. 5254 for (const auto *TSI : Args) { 5255 QualType ArgTy = TSI->getType(); 5256 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5257 continue; 5258 5259 if (S.RequireCompleteType(KWLoc, ArgTy, 5260 diag::err_incomplete_type_used_in_type_trait_expr)) 5261 return false; 5262 } 5263 5264 // Make sure the first argument is not incomplete nor a function type. 5265 QualType T = Args[0]->getType(); 5266 if (T->isIncompleteType() || T->isFunctionType()) 5267 return false; 5268 5269 // Make sure the first argument is not an abstract type. 5270 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5271 if (RD && RD->isAbstract()) 5272 return false; 5273 5274 llvm::BumpPtrAllocator OpaqueExprAllocator; 5275 SmallVector<Expr *, 2> ArgExprs; 5276 ArgExprs.reserve(Args.size() - 1); 5277 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5278 QualType ArgTy = Args[I]->getType(); 5279 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5280 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5281 ArgExprs.push_back( 5282 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5283 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5284 ArgTy.getNonLValueExprType(S.Context), 5285 Expr::getValueKindForType(ArgTy))); 5286 } 5287 5288 // Perform the initialization in an unevaluated context within a SFINAE 5289 // trap at translation unit scope. 5290 EnterExpressionEvaluationContext Unevaluated( 5291 S, Sema::ExpressionEvaluationContext::Unevaluated); 5292 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5293 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5294 InitializedEntity To( 5295 InitializedEntity::InitializeTemporary(S.Context, Args[0])); 5296 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 5297 RParenLoc)); 5298 InitializationSequence Init(S, To, InitKind, ArgExprs); 5299 if (Init.Failed()) 5300 return false; 5301 5302 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5303 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5304 return false; 5305 5306 if (Kind == clang::TT_IsConstructible) 5307 return true; 5308 5309 if (Kind == clang::BTT_ReferenceBindsToTemporary) { 5310 if (!T->isReferenceType()) 5311 return false; 5312 5313 return !Init.isDirectReferenceBinding(); 5314 } 5315 5316 if (Kind == clang::TT_IsNothrowConstructible) 5317 return S.canThrow(Result.get()) == CT_Cannot; 5318 5319 if (Kind == clang::TT_IsTriviallyConstructible) { 5320 // Under Objective-C ARC and Weak, if the destination has non-trivial 5321 // Objective-C lifetime, this is a non-trivial construction. 5322 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5323 return false; 5324 5325 // The initialization succeeded; now make sure there are no non-trivial 5326 // calls. 5327 return !Result.get()->hasNonTrivialCall(S.Context); 5328 } 5329 5330 llvm_unreachable("unhandled type trait"); 5331 return false; 5332 } 5333 default: llvm_unreachable("not a TT"); 5334 } 5335 5336 return false; 5337 } 5338 5339 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5340 ArrayRef<TypeSourceInfo *> Args, 5341 SourceLocation RParenLoc) { 5342 QualType ResultType = Context.getLogicalOperationType(); 5343 5344 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5345 *this, Kind, KWLoc, Args[0]->getType())) 5346 return ExprError(); 5347 5348 bool Dependent = false; 5349 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5350 if (Args[I]->getType()->isDependentType()) { 5351 Dependent = true; 5352 break; 5353 } 5354 } 5355 5356 bool Result = false; 5357 if (!Dependent) 5358 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 5359 5360 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 5361 RParenLoc, Result); 5362 } 5363 5364 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5365 ArrayRef<ParsedType> Args, 5366 SourceLocation RParenLoc) { 5367 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5368 ConvertedArgs.reserve(Args.size()); 5369 5370 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5371 TypeSourceInfo *TInfo; 5372 QualType T = GetTypeFromParser(Args[I], &TInfo); 5373 if (!TInfo) 5374 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5375 5376 ConvertedArgs.push_back(TInfo); 5377 } 5378 5379 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5380 } 5381 5382 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5383 QualType RhsT, SourceLocation KeyLoc) { 5384 assert(!LhsT->isDependentType() && !RhsT->isDependentType() && 5385 "Cannot evaluate traits of dependent types"); 5386 5387 switch(BTT) { 5388 case BTT_IsBaseOf: { 5389 // C++0x [meta.rel]p2 5390 // Base is a base class of Derived without regard to cv-qualifiers or 5391 // Base and Derived are not unions and name the same class type without 5392 // regard to cv-qualifiers. 5393 5394 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5395 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5396 if (!rhsRecord || !lhsRecord) { 5397 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5398 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5399 if (!LHSObjTy || !RHSObjTy) 5400 return false; 5401 5402 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5403 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5404 if (!BaseInterface || !DerivedInterface) 5405 return false; 5406 5407 if (Self.RequireCompleteType( 5408 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5409 return false; 5410 5411 return BaseInterface->isSuperClassOf(DerivedInterface); 5412 } 5413 5414 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) 5415 == (lhsRecord == rhsRecord)); 5416 5417 // Unions are never base classes, and never have base classes. 5418 // It doesn't matter if they are complete or not. See PR#41843 5419 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5420 return false; 5421 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5422 return false; 5423 5424 if (lhsRecord == rhsRecord) 5425 return true; 5426 5427 // C++0x [meta.rel]p2: 5428 // If Base and Derived are class types and are different types 5429 // (ignoring possible cv-qualifiers) then Derived shall be a 5430 // complete type. 5431 if (Self.RequireCompleteType(KeyLoc, RhsT, 5432 diag::err_incomplete_type_used_in_type_trait_expr)) 5433 return false; 5434 5435 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5436 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5437 } 5438 case BTT_IsSame: 5439 return Self.Context.hasSameType(LhsT, RhsT); 5440 case BTT_TypeCompatible: { 5441 // GCC ignores cv-qualifiers on arrays for this builtin. 5442 Qualifiers LhsQuals, RhsQuals; 5443 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5444 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5445 return Self.Context.typesAreCompatible(Lhs, Rhs); 5446 } 5447 case BTT_IsConvertible: 5448 case BTT_IsConvertibleTo: { 5449 // C++0x [meta.rel]p4: 5450 // Given the following function prototype: 5451 // 5452 // template <class T> 5453 // typename add_rvalue_reference<T>::type create(); 5454 // 5455 // the predicate condition for a template specialization 5456 // is_convertible<From, To> shall be satisfied if and only if 5457 // the return expression in the following code would be 5458 // well-formed, including any implicit conversions to the return 5459 // type of the function: 5460 // 5461 // To test() { 5462 // return create<From>(); 5463 // } 5464 // 5465 // Access checking is performed as if in a context unrelated to To and 5466 // From. Only the validity of the immediate context of the expression 5467 // of the return-statement (including conversions to the return type) 5468 // is considered. 5469 // 5470 // We model the initialization as a copy-initialization of a temporary 5471 // of the appropriate type, which for this expression is identical to the 5472 // return statement (since NRVO doesn't apply). 5473 5474 // Functions aren't allowed to return function or array types. 5475 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5476 return false; 5477 5478 // A return statement in a void function must have void type. 5479 if (RhsT->isVoidType()) 5480 return LhsT->isVoidType(); 5481 5482 // A function definition requires a complete, non-abstract return type. 5483 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5484 return false; 5485 5486 // Compute the result of add_rvalue_reference. 5487 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5488 LhsT = Self.Context.getRValueReferenceType(LhsT); 5489 5490 // Build a fake source and destination for initialization. 5491 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5492 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5493 Expr::getValueKindForType(LhsT)); 5494 Expr *FromPtr = &From; 5495 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5496 SourceLocation())); 5497 5498 // Perform the initialization in an unevaluated context within a SFINAE 5499 // trap at translation unit scope. 5500 EnterExpressionEvaluationContext Unevaluated( 5501 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5502 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5503 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5504 InitializationSequence Init(Self, To, Kind, FromPtr); 5505 if (Init.Failed()) 5506 return false; 5507 5508 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5509 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5510 } 5511 5512 case BTT_IsAssignable: 5513 case BTT_IsNothrowAssignable: 5514 case BTT_IsTriviallyAssignable: { 5515 // C++11 [meta.unary.prop]p3: 5516 // is_trivially_assignable is defined as: 5517 // is_assignable<T, U>::value is true and the assignment, as defined by 5518 // is_assignable, is known to call no operation that is not trivial 5519 // 5520 // is_assignable is defined as: 5521 // The expression declval<T>() = declval<U>() is well-formed when 5522 // treated as an unevaluated operand (Clause 5). 5523 // 5524 // For both, T and U shall be complete types, (possibly cv-qualified) 5525 // void, or arrays of unknown bound. 5526 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5527 Self.RequireCompleteType(KeyLoc, LhsT, 5528 diag::err_incomplete_type_used_in_type_trait_expr)) 5529 return false; 5530 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5531 Self.RequireCompleteType(KeyLoc, RhsT, 5532 diag::err_incomplete_type_used_in_type_trait_expr)) 5533 return false; 5534 5535 // cv void is never assignable. 5536 if (LhsT->isVoidType() || RhsT->isVoidType()) 5537 return false; 5538 5539 // Build expressions that emulate the effect of declval<T>() and 5540 // declval<U>(). 5541 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5542 LhsT = Self.Context.getRValueReferenceType(LhsT); 5543 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5544 RhsT = Self.Context.getRValueReferenceType(RhsT); 5545 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5546 Expr::getValueKindForType(LhsT)); 5547 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5548 Expr::getValueKindForType(RhsT)); 5549 5550 // Attempt the assignment in an unevaluated context within a SFINAE 5551 // trap at translation unit scope. 5552 EnterExpressionEvaluationContext Unevaluated( 5553 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5554 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5555 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5556 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5557 &Rhs); 5558 if (Result.isInvalid()) 5559 return false; 5560 5561 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. 5562 Self.CheckUnusedVolatileAssignment(Result.get()); 5563 5564 if (SFINAE.hasErrorOccurred()) 5565 return false; 5566 5567 if (BTT == BTT_IsAssignable) 5568 return true; 5569 5570 if (BTT == BTT_IsNothrowAssignable) 5571 return Self.canThrow(Result.get()) == CT_Cannot; 5572 5573 if (BTT == BTT_IsTriviallyAssignable) { 5574 // Under Objective-C ARC and Weak, if the destination has non-trivial 5575 // Objective-C lifetime, this is a non-trivial assignment. 5576 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 5577 return false; 5578 5579 return !Result.get()->hasNonTrivialCall(Self.Context); 5580 } 5581 5582 llvm_unreachable("unhandled type trait"); 5583 return false; 5584 } 5585 default: llvm_unreachable("not a BTT"); 5586 } 5587 llvm_unreachable("Unknown type trait or not implemented"); 5588 } 5589 5590 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 5591 SourceLocation KWLoc, 5592 ParsedType Ty, 5593 Expr* DimExpr, 5594 SourceLocation RParen) { 5595 TypeSourceInfo *TSInfo; 5596 QualType T = GetTypeFromParser(Ty, &TSInfo); 5597 if (!TSInfo) 5598 TSInfo = Context.getTrivialTypeSourceInfo(T); 5599 5600 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 5601 } 5602 5603 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 5604 QualType T, Expr *DimExpr, 5605 SourceLocation KeyLoc) { 5606 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 5607 5608 switch(ATT) { 5609 case ATT_ArrayRank: 5610 if (T->isArrayType()) { 5611 unsigned Dim = 0; 5612 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5613 ++Dim; 5614 T = AT->getElementType(); 5615 } 5616 return Dim; 5617 } 5618 return 0; 5619 5620 case ATT_ArrayExtent: { 5621 llvm::APSInt Value; 5622 uint64_t Dim; 5623 if (Self.VerifyIntegerConstantExpression( 5624 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) 5625 .isInvalid()) 5626 return 0; 5627 if (Value.isSigned() && Value.isNegative()) { 5628 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 5629 << DimExpr->getSourceRange(); 5630 return 0; 5631 } 5632 Dim = Value.getLimitedValue(); 5633 5634 if (T->isArrayType()) { 5635 unsigned D = 0; 5636 bool Matched = false; 5637 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5638 if (Dim == D) { 5639 Matched = true; 5640 break; 5641 } 5642 ++D; 5643 T = AT->getElementType(); 5644 } 5645 5646 if (Matched && T->isArrayType()) { 5647 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 5648 return CAT->getSize().getLimitedValue(); 5649 } 5650 } 5651 return 0; 5652 } 5653 } 5654 llvm_unreachable("Unknown type trait or not implemented"); 5655 } 5656 5657 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 5658 SourceLocation KWLoc, 5659 TypeSourceInfo *TSInfo, 5660 Expr* DimExpr, 5661 SourceLocation RParen) { 5662 QualType T = TSInfo->getType(); 5663 5664 // FIXME: This should likely be tracked as an APInt to remove any host 5665 // assumptions about the width of size_t on the target. 5666 uint64_t Value = 0; 5667 if (!T->isDependentType()) 5668 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 5669 5670 // While the specification for these traits from the Embarcadero C++ 5671 // compiler's documentation says the return type is 'unsigned int', Clang 5672 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 5673 // compiler, there is no difference. On several other platforms this is an 5674 // important distinction. 5675 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 5676 RParen, Context.getSizeType()); 5677 } 5678 5679 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 5680 SourceLocation KWLoc, 5681 Expr *Queried, 5682 SourceLocation RParen) { 5683 // If error parsing the expression, ignore. 5684 if (!Queried) 5685 return ExprError(); 5686 5687 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 5688 5689 return Result; 5690 } 5691 5692 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 5693 switch (ET) { 5694 case ET_IsLValueExpr: return E->isLValue(); 5695 case ET_IsRValueExpr: 5696 return E->isPRValue(); 5697 } 5698 llvm_unreachable("Expression trait not covered by switch"); 5699 } 5700 5701 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 5702 SourceLocation KWLoc, 5703 Expr *Queried, 5704 SourceLocation RParen) { 5705 if (Queried->isTypeDependent()) { 5706 // Delay type-checking for type-dependent expressions. 5707 } else if (Queried->hasPlaceholderType()) { 5708 ExprResult PE = CheckPlaceholderExpr(Queried); 5709 if (PE.isInvalid()) return ExprError(); 5710 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 5711 } 5712 5713 bool Value = EvaluateExpressionTrait(ET, Queried); 5714 5715 return new (Context) 5716 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 5717 } 5718 5719 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 5720 ExprValueKind &VK, 5721 SourceLocation Loc, 5722 bool isIndirect) { 5723 assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && 5724 "placeholders should have been weeded out by now"); 5725 5726 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the 5727 // temporary materialization conversion otherwise. 5728 if (isIndirect) 5729 LHS = DefaultLvalueConversion(LHS.get()); 5730 else if (LHS.get()->isPRValue()) 5731 LHS = TemporaryMaterializationConversion(LHS.get()); 5732 if (LHS.isInvalid()) 5733 return QualType(); 5734 5735 // The RHS always undergoes lvalue conversions. 5736 RHS = DefaultLvalueConversion(RHS.get()); 5737 if (RHS.isInvalid()) return QualType(); 5738 5739 const char *OpSpelling = isIndirect ? "->*" : ".*"; 5740 // C++ 5.5p2 5741 // The binary operator .* [p3: ->*] binds its second operand, which shall 5742 // be of type "pointer to member of T" (where T is a completely-defined 5743 // class type) [...] 5744 QualType RHSType = RHS.get()->getType(); 5745 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 5746 if (!MemPtr) { 5747 Diag(Loc, diag::err_bad_memptr_rhs) 5748 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 5749 return QualType(); 5750 } 5751 5752 QualType Class(MemPtr->getClass(), 0); 5753 5754 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 5755 // member pointer points must be completely-defined. However, there is no 5756 // reason for this semantic distinction, and the rule is not enforced by 5757 // other compilers. Therefore, we do not check this property, as it is 5758 // likely to be considered a defect. 5759 5760 // C++ 5.5p2 5761 // [...] to its first operand, which shall be of class T or of a class of 5762 // which T is an unambiguous and accessible base class. [p3: a pointer to 5763 // such a class] 5764 QualType LHSType = LHS.get()->getType(); 5765 if (isIndirect) { 5766 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 5767 LHSType = Ptr->getPointeeType(); 5768 else { 5769 Diag(Loc, diag::err_bad_memptr_lhs) 5770 << OpSpelling << 1 << LHSType 5771 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 5772 return QualType(); 5773 } 5774 } 5775 5776 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 5777 // If we want to check the hierarchy, we need a complete type. 5778 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 5779 OpSpelling, (int)isIndirect)) { 5780 return QualType(); 5781 } 5782 5783 if (!IsDerivedFrom(Loc, LHSType, Class)) { 5784 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 5785 << (int)isIndirect << LHS.get()->getType(); 5786 return QualType(); 5787 } 5788 5789 CXXCastPath BasePath; 5790 if (CheckDerivedToBaseConversion( 5791 LHSType, Class, Loc, 5792 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), 5793 &BasePath)) 5794 return QualType(); 5795 5796 // Cast LHS to type of use. 5797 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); 5798 if (isIndirect) 5799 UseType = Context.getPointerType(UseType); 5800 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind(); 5801 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 5802 &BasePath); 5803 } 5804 5805 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 5806 // Diagnose use of pointer-to-member type which when used as 5807 // the functional cast in a pointer-to-member expression. 5808 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 5809 return QualType(); 5810 } 5811 5812 // C++ 5.5p2 5813 // The result is an object or a function of the type specified by the 5814 // second operand. 5815 // The cv qualifiers are the union of those in the pointer and the left side, 5816 // in accordance with 5.5p5 and 5.2.5. 5817 QualType Result = MemPtr->getPointeeType(); 5818 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 5819 5820 // C++0x [expr.mptr.oper]p6: 5821 // In a .* expression whose object expression is an rvalue, the program is 5822 // ill-formed if the second operand is a pointer to member function with 5823 // ref-qualifier &. In a ->* expression or in a .* expression whose object 5824 // expression is an lvalue, the program is ill-formed if the second operand 5825 // is a pointer to member function with ref-qualifier &&. 5826 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 5827 switch (Proto->getRefQualifier()) { 5828 case RQ_None: 5829 // Do nothing 5830 break; 5831 5832 case RQ_LValue: 5833 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { 5834 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq 5835 // is (exactly) 'const'. 5836 if (Proto->isConst() && !Proto->isVolatile()) 5837 Diag(Loc, getLangOpts().CPlusPlus20 5838 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue 5839 : diag::ext_pointer_to_const_ref_member_on_rvalue); 5840 else 5841 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5842 << RHSType << 1 << LHS.get()->getSourceRange(); 5843 } 5844 break; 5845 5846 case RQ_RValue: 5847 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 5848 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5849 << RHSType << 0 << LHS.get()->getSourceRange(); 5850 break; 5851 } 5852 } 5853 5854 // C++ [expr.mptr.oper]p6: 5855 // The result of a .* expression whose second operand is a pointer 5856 // to a data member is of the same value category as its 5857 // first operand. The result of a .* expression whose second 5858 // operand is a pointer to a member function is a prvalue. The 5859 // result of an ->* expression is an lvalue if its second operand 5860 // is a pointer to data member and a prvalue otherwise. 5861 if (Result->isFunctionType()) { 5862 VK = VK_PRValue; 5863 return Context.BoundMemberTy; 5864 } else if (isIndirect) { 5865 VK = VK_LValue; 5866 } else { 5867 VK = LHS.get()->getValueKind(); 5868 } 5869 5870 return Result; 5871 } 5872 5873 /// Try to convert a type to another according to C++11 5.16p3. 5874 /// 5875 /// This is part of the parameter validation for the ? operator. If either 5876 /// value operand is a class type, the two operands are attempted to be 5877 /// converted to each other. This function does the conversion in one direction. 5878 /// It returns true if the program is ill-formed and has already been diagnosed 5879 /// as such. 5880 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 5881 SourceLocation QuestionLoc, 5882 bool &HaveConversion, 5883 QualType &ToType) { 5884 HaveConversion = false; 5885 ToType = To->getType(); 5886 5887 InitializationKind Kind = 5888 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); 5889 // C++11 5.16p3 5890 // The process for determining whether an operand expression E1 of type T1 5891 // can be converted to match an operand expression E2 of type T2 is defined 5892 // as follows: 5893 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be 5894 // implicitly converted to type "lvalue reference to T2", subject to the 5895 // constraint that in the conversion the reference must bind directly to 5896 // an lvalue. 5897 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be 5898 // implicitly converted to the type "rvalue reference to R2", subject to 5899 // the constraint that the reference must bind directly. 5900 if (To->isGLValue()) { 5901 QualType T = Self.Context.getReferenceQualifiedType(To); 5902 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5903 5904 InitializationSequence InitSeq(Self, Entity, Kind, From); 5905 if (InitSeq.isDirectReferenceBinding()) { 5906 ToType = T; 5907 HaveConversion = true; 5908 return false; 5909 } 5910 5911 if (InitSeq.isAmbiguous()) 5912 return InitSeq.Diagnose(Self, Entity, Kind, From); 5913 } 5914 5915 // -- If E2 is an rvalue, or if the conversion above cannot be done: 5916 // -- if E1 and E2 have class type, and the underlying class types are 5917 // the same or one is a base class of the other: 5918 QualType FTy = From->getType(); 5919 QualType TTy = To->getType(); 5920 const RecordType *FRec = FTy->getAs<RecordType>(); 5921 const RecordType *TRec = TTy->getAs<RecordType>(); 5922 bool FDerivedFromT = FRec && TRec && FRec != TRec && 5923 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 5924 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 5925 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 5926 // E1 can be converted to match E2 if the class of T2 is the 5927 // same type as, or a base class of, the class of T1, and 5928 // [cv2 > cv1]. 5929 if (FRec == TRec || FDerivedFromT) { 5930 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 5931 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5932 InitializationSequence InitSeq(Self, Entity, Kind, From); 5933 if (InitSeq) { 5934 HaveConversion = true; 5935 return false; 5936 } 5937 5938 if (InitSeq.isAmbiguous()) 5939 return InitSeq.Diagnose(Self, Entity, Kind, From); 5940 } 5941 } 5942 5943 return false; 5944 } 5945 5946 // -- Otherwise: E1 can be converted to match E2 if E1 can be 5947 // implicitly converted to the type that expression E2 would have 5948 // if E2 were converted to an rvalue (or the type it has, if E2 is 5949 // an rvalue). 5950 // 5951 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 5952 // to the array-to-pointer or function-to-pointer conversions. 5953 TTy = TTy.getNonLValueExprType(Self.Context); 5954 5955 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5956 InitializationSequence InitSeq(Self, Entity, Kind, From); 5957 HaveConversion = !InitSeq.Failed(); 5958 ToType = TTy; 5959 if (InitSeq.isAmbiguous()) 5960 return InitSeq.Diagnose(Self, Entity, Kind, From); 5961 5962 return false; 5963 } 5964 5965 /// Try to find a common type for two according to C++0x 5.16p5. 5966 /// 5967 /// This is part of the parameter validation for the ? operator. If either 5968 /// value operand is a class type, overload resolution is used to find a 5969 /// conversion to a common type. 5970 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 5971 SourceLocation QuestionLoc) { 5972 Expr *Args[2] = { LHS.get(), RHS.get() }; 5973 OverloadCandidateSet CandidateSet(QuestionLoc, 5974 OverloadCandidateSet::CSK_Operator); 5975 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 5976 CandidateSet); 5977 5978 OverloadCandidateSet::iterator Best; 5979 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 5980 case OR_Success: { 5981 // We found a match. Perform the conversions on the arguments and move on. 5982 ExprResult LHSRes = Self.PerformImplicitConversion( 5983 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], 5984 Sema::AA_Converting); 5985 if (LHSRes.isInvalid()) 5986 break; 5987 LHS = LHSRes; 5988 5989 ExprResult RHSRes = Self.PerformImplicitConversion( 5990 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], 5991 Sema::AA_Converting); 5992 if (RHSRes.isInvalid()) 5993 break; 5994 RHS = RHSRes; 5995 if (Best->Function) 5996 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 5997 return false; 5998 } 5999 6000 case OR_No_Viable_Function: 6001 6002 // Emit a better diagnostic if one of the expressions is a null pointer 6003 // constant and the other is a pointer type. In this case, the user most 6004 // likely forgot to take the address of the other expression. 6005 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6006 return true; 6007 6008 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6009 << LHS.get()->getType() << RHS.get()->getType() 6010 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6011 return true; 6012 6013 case OR_Ambiguous: 6014 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 6015 << LHS.get()->getType() << RHS.get()->getType() 6016 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6017 // FIXME: Print the possible common types by printing the return types of 6018 // the viable candidates. 6019 break; 6020 6021 case OR_Deleted: 6022 llvm_unreachable("Conditional operator has only built-in overloads"); 6023 } 6024 return true; 6025 } 6026 6027 /// Perform an "extended" implicit conversion as returned by 6028 /// TryClassUnification. 6029 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 6030 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 6031 InitializationKind Kind = 6032 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); 6033 Expr *Arg = E.get(); 6034 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 6035 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 6036 if (Result.isInvalid()) 6037 return true; 6038 6039 E = Result; 6040 return false; 6041 } 6042 6043 // Check the condition operand of ?: to see if it is valid for the GCC 6044 // extension. 6045 static bool isValidVectorForConditionalCondition(ASTContext &Ctx, 6046 QualType CondTy) { 6047 if (!CondTy->isVectorType() && !CondTy->isExtVectorType()) 6048 return false; 6049 const QualType EltTy = 6050 cast<VectorType>(CondTy.getCanonicalType())->getElementType(); 6051 assert(!EltTy->isBooleanType() && !EltTy->isEnumeralType() && 6052 "Vectors cant be boolean or enum types"); 6053 return EltTy->isIntegralType(Ctx); 6054 } 6055 6056 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, 6057 ExprResult &RHS, 6058 SourceLocation QuestionLoc) { 6059 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6060 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6061 6062 QualType CondType = Cond.get()->getType(); 6063 const auto *CondVT = CondType->castAs<VectorType>(); 6064 QualType CondElementTy = CondVT->getElementType(); 6065 unsigned CondElementCount = CondVT->getNumElements(); 6066 QualType LHSType = LHS.get()->getType(); 6067 const auto *LHSVT = LHSType->getAs<VectorType>(); 6068 QualType RHSType = RHS.get()->getType(); 6069 const auto *RHSVT = RHSType->getAs<VectorType>(); 6070 6071 QualType ResultType; 6072 6073 6074 if (LHSVT && RHSVT) { 6075 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) { 6076 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch) 6077 << /*isExtVector*/ isa<ExtVectorType>(CondVT); 6078 return {}; 6079 } 6080 6081 // If both are vector types, they must be the same type. 6082 if (!Context.hasSameType(LHSType, RHSType)) { 6083 Diag(QuestionLoc, diag::err_conditional_vector_mismatched) 6084 << LHSType << RHSType; 6085 return {}; 6086 } 6087 ResultType = LHSType; 6088 } else if (LHSVT || RHSVT) { 6089 ResultType = CheckVectorOperands( 6090 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, 6091 /*AllowBoolConversions*/ false); 6092 if (ResultType.isNull()) 6093 return {}; 6094 } else { 6095 // Both are scalar. 6096 QualType ResultElementTy; 6097 LHSType = LHSType.getCanonicalType().getUnqualifiedType(); 6098 RHSType = RHSType.getCanonicalType().getUnqualifiedType(); 6099 6100 if (Context.hasSameType(LHSType, RHSType)) 6101 ResultElementTy = LHSType; 6102 else 6103 ResultElementTy = 6104 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6105 6106 if (ResultElementTy->isEnumeralType()) { 6107 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 6108 << ResultElementTy; 6109 return {}; 6110 } 6111 if (CondType->isExtVectorType()) 6112 ResultType = 6113 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements()); 6114 else 6115 ResultType = Context.getVectorType( 6116 ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector); 6117 6118 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 6119 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 6120 } 6121 6122 assert(!ResultType.isNull() && ResultType->isVectorType() && 6123 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && 6124 "Result should have been a vector type"); 6125 auto *ResultVectorTy = ResultType->castAs<VectorType>(); 6126 QualType ResultElementTy = ResultVectorTy->getElementType(); 6127 unsigned ResultElementCount = ResultVectorTy->getNumElements(); 6128 6129 if (ResultElementCount != CondElementCount) { 6130 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType 6131 << ResultType; 6132 return {}; 6133 } 6134 6135 if (Context.getTypeSize(ResultElementTy) != 6136 Context.getTypeSize(CondElementTy)) { 6137 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType 6138 << ResultType; 6139 return {}; 6140 } 6141 6142 return ResultType; 6143 } 6144 6145 /// Check the operands of ?: under C++ semantics. 6146 /// 6147 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 6148 /// extension. In this case, LHS == Cond. (But they're not aliases.) 6149 /// 6150 /// This function also implements GCC's vector extension and the 6151 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions 6152 /// permit the use of a?b:c where the type of a is that of a integer vector with 6153 /// the same number of elements and size as the vectors of b and c. If one of 6154 /// either b or c is a scalar it is implicitly converted to match the type of 6155 /// the vector. Otherwise the expression is ill-formed. If both b and c are 6156 /// scalars, then b and c are checked and converted to the type of a if 6157 /// possible. 6158 /// 6159 /// The expressions are evaluated differently for GCC's and OpenCL's extensions. 6160 /// For the GCC extension, the ?: operator is evaluated as 6161 /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]). 6162 /// For the OpenCL extensions, the ?: operator is evaluated as 6163 /// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. , 6164 /// most-significant-bit-set(a[n]) ? b[n] : c[n]). 6165 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 6166 ExprResult &RHS, ExprValueKind &VK, 6167 ExprObjectKind &OK, 6168 SourceLocation QuestionLoc) { 6169 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface 6170 // pointers. 6171 6172 // Assume r-value. 6173 VK = VK_PRValue; 6174 OK = OK_Ordinary; 6175 bool IsVectorConditional = 6176 isValidVectorForConditionalCondition(Context, Cond.get()->getType()); 6177 6178 // C++11 [expr.cond]p1 6179 // The first expression is contextually converted to bool. 6180 if (!Cond.get()->isTypeDependent()) { 6181 ExprResult CondRes = IsVectorConditional 6182 ? DefaultFunctionArrayLvalueConversion(Cond.get()) 6183 : CheckCXXBooleanCondition(Cond.get()); 6184 if (CondRes.isInvalid()) 6185 return QualType(); 6186 Cond = CondRes; 6187 } else { 6188 // To implement C++, the first expression typically doesn't alter the result 6189 // type of the conditional, however the GCC compatible vector extension 6190 // changes the result type to be that of the conditional. Since we cannot 6191 // know if this is a vector extension here, delay the conversion of the 6192 // LHS/RHS below until later. 6193 return Context.DependentTy; 6194 } 6195 6196 6197 // Either of the arguments dependent? 6198 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 6199 return Context.DependentTy; 6200 6201 // C++11 [expr.cond]p2 6202 // If either the second or the third operand has type (cv) void, ... 6203 QualType LTy = LHS.get()->getType(); 6204 QualType RTy = RHS.get()->getType(); 6205 bool LVoid = LTy->isVoidType(); 6206 bool RVoid = RTy->isVoidType(); 6207 if (LVoid || RVoid) { 6208 // ... one of the following shall hold: 6209 // -- The second or the third operand (but not both) is a (possibly 6210 // parenthesized) throw-expression; the result is of the type 6211 // and value category of the other. 6212 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 6213 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 6214 6215 // Void expressions aren't legal in the vector-conditional expressions. 6216 if (IsVectorConditional) { 6217 SourceRange DiagLoc = 6218 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange(); 6219 bool IsThrow = LVoid ? LThrow : RThrow; 6220 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void) 6221 << DiagLoc << IsThrow; 6222 return QualType(); 6223 } 6224 6225 if (LThrow != RThrow) { 6226 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 6227 VK = NonThrow->getValueKind(); 6228 // DR (no number yet): the result is a bit-field if the 6229 // non-throw-expression operand is a bit-field. 6230 OK = NonThrow->getObjectKind(); 6231 return NonThrow->getType(); 6232 } 6233 6234 // -- Both the second and third operands have type void; the result is of 6235 // type void and is a prvalue. 6236 if (LVoid && RVoid) 6237 return Context.VoidTy; 6238 6239 // Neither holds, error. 6240 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 6241 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 6242 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6243 return QualType(); 6244 } 6245 6246 // Neither is void. 6247 if (IsVectorConditional) 6248 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6249 6250 // C++11 [expr.cond]p3 6251 // Otherwise, if the second and third operand have different types, and 6252 // either has (cv) class type [...] an attempt is made to convert each of 6253 // those operands to the type of the other. 6254 if (!Context.hasSameType(LTy, RTy) && 6255 (LTy->isRecordType() || RTy->isRecordType())) { 6256 // These return true if a single direction is already ambiguous. 6257 QualType L2RType, R2LType; 6258 bool HaveL2R, HaveR2L; 6259 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 6260 return QualType(); 6261 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 6262 return QualType(); 6263 6264 // If both can be converted, [...] the program is ill-formed. 6265 if (HaveL2R && HaveR2L) { 6266 Diag(QuestionLoc, diag::err_conditional_ambiguous) 6267 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6268 return QualType(); 6269 } 6270 6271 // If exactly one conversion is possible, that conversion is applied to 6272 // the chosen operand and the converted operands are used in place of the 6273 // original operands for the remainder of this section. 6274 if (HaveL2R) { 6275 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 6276 return QualType(); 6277 LTy = LHS.get()->getType(); 6278 } else if (HaveR2L) { 6279 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 6280 return QualType(); 6281 RTy = RHS.get()->getType(); 6282 } 6283 } 6284 6285 // C++11 [expr.cond]p3 6286 // if both are glvalues of the same value category and the same type except 6287 // for cv-qualification, an attempt is made to convert each of those 6288 // operands to the type of the other. 6289 // FIXME: 6290 // Resolving a defect in P0012R1: we extend this to cover all cases where 6291 // one of the operands is reference-compatible with the other, in order 6292 // to support conditionals between functions differing in noexcept. This 6293 // will similarly cover difference in array bounds after P0388R4. 6294 // FIXME: If LTy and RTy have a composite pointer type, should we convert to 6295 // that instead? 6296 ExprValueKind LVK = LHS.get()->getValueKind(); 6297 ExprValueKind RVK = RHS.get()->getValueKind(); 6298 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) { 6299 // DerivedToBase was already handled by the class-specific case above. 6300 // FIXME: Should we allow ObjC conversions here? 6301 const ReferenceConversions AllowedConversions = 6302 ReferenceConversions::Qualification | 6303 ReferenceConversions::NestedQualification | 6304 ReferenceConversions::Function; 6305 6306 ReferenceConversions RefConv; 6307 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) == 6308 Ref_Compatible && 6309 !(RefConv & ~AllowedConversions) && 6310 // [...] subject to the constraint that the reference must bind 6311 // directly [...] 6312 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) { 6313 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 6314 RTy = RHS.get()->getType(); 6315 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) == 6316 Ref_Compatible && 6317 !(RefConv & ~AllowedConversions) && 6318 !LHS.get()->refersToBitField() && 6319 !LHS.get()->refersToVectorElement()) { 6320 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 6321 LTy = LHS.get()->getType(); 6322 } 6323 } 6324 6325 // C++11 [expr.cond]p4 6326 // If the second and third operands are glvalues of the same value 6327 // category and have the same type, the result is of that type and 6328 // value category and it is a bit-field if the second or the third 6329 // operand is a bit-field, or if both are bit-fields. 6330 // We only extend this to bitfields, not to the crazy other kinds of 6331 // l-values. 6332 bool Same = Context.hasSameType(LTy, RTy); 6333 if (Same && LVK == RVK && LVK != VK_PRValue && 6334 LHS.get()->isOrdinaryOrBitFieldObject() && 6335 RHS.get()->isOrdinaryOrBitFieldObject()) { 6336 VK = LHS.get()->getValueKind(); 6337 if (LHS.get()->getObjectKind() == OK_BitField || 6338 RHS.get()->getObjectKind() == OK_BitField) 6339 OK = OK_BitField; 6340 6341 // If we have function pointer types, unify them anyway to unify their 6342 // exception specifications, if any. 6343 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6344 Qualifiers Qs = LTy.getQualifiers(); 6345 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS, 6346 /*ConvertArgs*/false); 6347 LTy = Context.getQualifiedType(LTy, Qs); 6348 6349 assert(!LTy.isNull() && "failed to find composite pointer type for " 6350 "canonically equivalent function ptr types"); 6351 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type"); 6352 } 6353 6354 return LTy; 6355 } 6356 6357 // C++11 [expr.cond]p5 6358 // Otherwise, the result is a prvalue. If the second and third operands 6359 // do not have the same type, and either has (cv) class type, ... 6360 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 6361 // ... overload resolution is used to determine the conversions (if any) 6362 // to be applied to the operands. If the overload resolution fails, the 6363 // program is ill-formed. 6364 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 6365 return QualType(); 6366 } 6367 6368 // C++11 [expr.cond]p6 6369 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 6370 // conversions are performed on the second and third operands. 6371 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6372 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6373 if (LHS.isInvalid() || RHS.isInvalid()) 6374 return QualType(); 6375 LTy = LHS.get()->getType(); 6376 RTy = RHS.get()->getType(); 6377 6378 // After those conversions, one of the following shall hold: 6379 // -- The second and third operands have the same type; the result 6380 // is of that type. If the operands have class type, the result 6381 // is a prvalue temporary of the result type, which is 6382 // copy-initialized from either the second operand or the third 6383 // operand depending on the value of the first operand. 6384 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { 6385 if (LTy->isRecordType()) { 6386 // The operands have class type. Make a temporary copy. 6387 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); 6388 6389 ExprResult LHSCopy = PerformCopyInitialization(Entity, 6390 SourceLocation(), 6391 LHS); 6392 if (LHSCopy.isInvalid()) 6393 return QualType(); 6394 6395 ExprResult RHSCopy = PerformCopyInitialization(Entity, 6396 SourceLocation(), 6397 RHS); 6398 if (RHSCopy.isInvalid()) 6399 return QualType(); 6400 6401 LHS = LHSCopy; 6402 RHS = RHSCopy; 6403 } 6404 6405 // If we have function pointer types, unify them anyway to unify their 6406 // exception specifications, if any. 6407 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6408 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS); 6409 assert(!LTy.isNull() && "failed to find composite pointer type for " 6410 "canonically equivalent function ptr types"); 6411 } 6412 6413 return LTy; 6414 } 6415 6416 // Extension: conditional operator involving vector types. 6417 if (LTy->isVectorType() || RTy->isVectorType()) 6418 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false, 6419 /*AllowBothBool*/true, 6420 /*AllowBoolConversions*/false); 6421 6422 // -- The second and third operands have arithmetic or enumeration type; 6423 // the usual arithmetic conversions are performed to bring them to a 6424 // common type, and the result is of that type. 6425 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 6426 QualType ResTy = 6427 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6428 if (LHS.isInvalid() || RHS.isInvalid()) 6429 return QualType(); 6430 if (ResTy.isNull()) { 6431 Diag(QuestionLoc, 6432 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy 6433 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6434 return QualType(); 6435 } 6436 6437 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 6438 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 6439 6440 return ResTy; 6441 } 6442 6443 // -- The second and third operands have pointer type, or one has pointer 6444 // type and the other is a null pointer constant, or both are null 6445 // pointer constants, at least one of which is non-integral; pointer 6446 // conversions and qualification conversions are performed to bring them 6447 // to their composite pointer type. The result is of the composite 6448 // pointer type. 6449 // -- The second and third operands have pointer to member type, or one has 6450 // pointer to member type and the other is a null pointer constant; 6451 // pointer to member conversions and qualification conversions are 6452 // performed to bring them to a common type, whose cv-qualification 6453 // shall match the cv-qualification of either the second or the third 6454 // operand. The result is of the common type. 6455 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS); 6456 if (!Composite.isNull()) 6457 return Composite; 6458 6459 // Similarly, attempt to find composite type of two objective-c pointers. 6460 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 6461 if (LHS.isInvalid() || RHS.isInvalid()) 6462 return QualType(); 6463 if (!Composite.isNull()) 6464 return Composite; 6465 6466 // Check if we are using a null with a non-pointer type. 6467 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6468 return QualType(); 6469 6470 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6471 << LHS.get()->getType() << RHS.get()->getType() 6472 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6473 return QualType(); 6474 } 6475 6476 static FunctionProtoType::ExceptionSpecInfo 6477 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1, 6478 FunctionProtoType::ExceptionSpecInfo ESI2, 6479 SmallVectorImpl<QualType> &ExceptionTypeStorage) { 6480 ExceptionSpecificationType EST1 = ESI1.Type; 6481 ExceptionSpecificationType EST2 = ESI2.Type; 6482 6483 // If either of them can throw anything, that is the result. 6484 if (EST1 == EST_None) return ESI1; 6485 if (EST2 == EST_None) return ESI2; 6486 if (EST1 == EST_MSAny) return ESI1; 6487 if (EST2 == EST_MSAny) return ESI2; 6488 if (EST1 == EST_NoexceptFalse) return ESI1; 6489 if (EST2 == EST_NoexceptFalse) return ESI2; 6490 6491 // If either of them is non-throwing, the result is the other. 6492 if (EST1 == EST_NoThrow) return ESI2; 6493 if (EST2 == EST_NoThrow) return ESI1; 6494 if (EST1 == EST_DynamicNone) return ESI2; 6495 if (EST2 == EST_DynamicNone) return ESI1; 6496 if (EST1 == EST_BasicNoexcept) return ESI2; 6497 if (EST2 == EST_BasicNoexcept) return ESI1; 6498 if (EST1 == EST_NoexceptTrue) return ESI2; 6499 if (EST2 == EST_NoexceptTrue) return ESI1; 6500 6501 // If we're left with value-dependent computed noexcept expressions, we're 6502 // stuck. Before C++17, we can just drop the exception specification entirely, 6503 // since it's not actually part of the canonical type. And this should never 6504 // happen in C++17, because it would mean we were computing the composite 6505 // pointer type of dependent types, which should never happen. 6506 if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { 6507 assert(!S.getLangOpts().CPlusPlus17 && 6508 "computing composite pointer type of dependent types"); 6509 return FunctionProtoType::ExceptionSpecInfo(); 6510 } 6511 6512 // Switch over the possibilities so that people adding new values know to 6513 // update this function. 6514 switch (EST1) { 6515 case EST_None: 6516 case EST_DynamicNone: 6517 case EST_MSAny: 6518 case EST_BasicNoexcept: 6519 case EST_DependentNoexcept: 6520 case EST_NoexceptFalse: 6521 case EST_NoexceptTrue: 6522 case EST_NoThrow: 6523 llvm_unreachable("handled above"); 6524 6525 case EST_Dynamic: { 6526 // This is the fun case: both exception specifications are dynamic. Form 6527 // the union of the two lists. 6528 assert(EST2 == EST_Dynamic && "other cases should already be handled"); 6529 llvm::SmallPtrSet<QualType, 8> Found; 6530 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions}) 6531 for (QualType E : Exceptions) 6532 if (Found.insert(S.Context.getCanonicalType(E)).second) 6533 ExceptionTypeStorage.push_back(E); 6534 6535 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); 6536 Result.Exceptions = ExceptionTypeStorage; 6537 return Result; 6538 } 6539 6540 case EST_Unevaluated: 6541 case EST_Uninstantiated: 6542 case EST_Unparsed: 6543 llvm_unreachable("shouldn't see unresolved exception specifications here"); 6544 } 6545 6546 llvm_unreachable("invalid ExceptionSpecificationType"); 6547 } 6548 6549 /// Find a merged pointer type and convert the two expressions to it. 6550 /// 6551 /// This finds the composite pointer type for \p E1 and \p E2 according to 6552 /// C++2a [expr.type]p3. It converts both expressions to this type and returns 6553 /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs 6554 /// is \c true). 6555 /// 6556 /// \param Loc The location of the operator requiring these two expressions to 6557 /// be converted to the composite pointer type. 6558 /// 6559 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type. 6560 QualType Sema::FindCompositePointerType(SourceLocation Loc, 6561 Expr *&E1, Expr *&E2, 6562 bool ConvertArgs) { 6563 assert(getLangOpts().CPlusPlus && "This function assumes C++"); 6564 6565 // C++1z [expr]p14: 6566 // The composite pointer type of two operands p1 and p2 having types T1 6567 // and T2 6568 QualType T1 = E1->getType(), T2 = E2->getType(); 6569 6570 // where at least one is a pointer or pointer to member type or 6571 // std::nullptr_t is: 6572 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || 6573 T1->isNullPtrType(); 6574 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || 6575 T2->isNullPtrType(); 6576 if (!T1IsPointerLike && !T2IsPointerLike) 6577 return QualType(); 6578 6579 // - if both p1 and p2 are null pointer constants, std::nullptr_t; 6580 // This can't actually happen, following the standard, but we also use this 6581 // to implement the end of [expr.conv], which hits this case. 6582 // 6583 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; 6584 if (T1IsPointerLike && 6585 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6586 if (ConvertArgs) 6587 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType() 6588 ? CK_NullToMemberPointer 6589 : CK_NullToPointer).get(); 6590 return T1; 6591 } 6592 if (T2IsPointerLike && 6593 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6594 if (ConvertArgs) 6595 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType() 6596 ? CK_NullToMemberPointer 6597 : CK_NullToPointer).get(); 6598 return T2; 6599 } 6600 6601 // Now both have to be pointers or member pointers. 6602 if (!T1IsPointerLike || !T2IsPointerLike) 6603 return QualType(); 6604 assert(!T1->isNullPtrType() && !T2->isNullPtrType() && 6605 "nullptr_t should be a null pointer constant"); 6606 6607 struct Step { 6608 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K; 6609 // Qualifiers to apply under the step kind. 6610 Qualifiers Quals; 6611 /// The class for a pointer-to-member; a constant array type with a bound 6612 /// (if any) for an array. 6613 const Type *ClassOrBound; 6614 6615 Step(Kind K, const Type *ClassOrBound = nullptr) 6616 : K(K), ClassOrBound(ClassOrBound) {} 6617 QualType rebuild(ASTContext &Ctx, QualType T) const { 6618 T = Ctx.getQualifiedType(T, Quals); 6619 switch (K) { 6620 case Pointer: 6621 return Ctx.getPointerType(T); 6622 case MemberPointer: 6623 return Ctx.getMemberPointerType(T, ClassOrBound); 6624 case ObjCPointer: 6625 return Ctx.getObjCObjectPointerType(T); 6626 case Array: 6627 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound)) 6628 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr, 6629 ArrayType::Normal, 0); 6630 else 6631 return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0); 6632 } 6633 llvm_unreachable("unknown step kind"); 6634 } 6635 }; 6636 6637 SmallVector<Step, 8> Steps; 6638 6639 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6640 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6641 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, 6642 // respectively; 6643 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer 6644 // to member of C2 of type cv2 U2" for some non-function type U, where 6645 // C1 is reference-related to C2 or C2 is reference-related to C1, the 6646 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2, 6647 // respectively; 6648 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and 6649 // T2; 6650 // 6651 // Dismantle T1 and T2 to simultaneously determine whether they are similar 6652 // and to prepare to form the cv-combined type if so. 6653 QualType Composite1 = T1; 6654 QualType Composite2 = T2; 6655 unsigned NeedConstBefore = 0; 6656 while (true) { 6657 assert(!Composite1.isNull() && !Composite2.isNull()); 6658 6659 Qualifiers Q1, Q2; 6660 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1); 6661 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2); 6662 6663 // Top-level qualifiers are ignored. Merge at all lower levels. 6664 if (!Steps.empty()) { 6665 // Find the qualifier union: (approximately) the unique minimal set of 6666 // qualifiers that is compatible with both types. 6667 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() | 6668 Q2.getCVRUQualifiers()); 6669 6670 // Under one level of pointer or pointer-to-member, we can change to an 6671 // unambiguous compatible address space. 6672 if (Q1.getAddressSpace() == Q2.getAddressSpace()) { 6673 Quals.setAddressSpace(Q1.getAddressSpace()); 6674 } else if (Steps.size() == 1) { 6675 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2); 6676 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1); 6677 if (MaybeQ1 == MaybeQ2) { 6678 // Exception for ptr size address spaces. Should be able to choose 6679 // either address space during comparison. 6680 if (isPtrSizeAddressSpace(Q1.getAddressSpace()) || 6681 isPtrSizeAddressSpace(Q2.getAddressSpace())) 6682 MaybeQ1 = true; 6683 else 6684 return QualType(); // No unique best address space. 6685 } 6686 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace() 6687 : Q2.getAddressSpace()); 6688 } else { 6689 return QualType(); 6690 } 6691 6692 // FIXME: In C, we merge __strong and none to __strong at the top level. 6693 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr()) 6694 Quals.setObjCGCAttr(Q1.getObjCGCAttr()); 6695 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6696 assert(Steps.size() == 1); 6697 else 6698 return QualType(); 6699 6700 // Mismatched lifetime qualifiers never compatibly include each other. 6701 if (Q1.getObjCLifetime() == Q2.getObjCLifetime()) 6702 Quals.setObjCLifetime(Q1.getObjCLifetime()); 6703 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6704 assert(Steps.size() == 1); 6705 else 6706 return QualType(); 6707 6708 Steps.back().Quals = Quals; 6709 if (Q1 != Quals || Q2 != Quals) 6710 NeedConstBefore = Steps.size() - 1; 6711 } 6712 6713 // FIXME: Can we unify the following with UnwrapSimilarTypes? 6714 6715 const ArrayType *Arr1, *Arr2; 6716 if ((Arr1 = Context.getAsArrayType(Composite1)) && 6717 (Arr2 = Context.getAsArrayType(Composite2))) { 6718 auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1); 6719 auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2); 6720 if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) { 6721 Composite1 = Arr1->getElementType(); 6722 Composite2 = Arr2->getElementType(); 6723 Steps.emplace_back(Step::Array, CAT1); 6724 continue; 6725 } 6726 bool IAT1 = isa<IncompleteArrayType>(Arr1); 6727 bool IAT2 = isa<IncompleteArrayType>(Arr2); 6728 if ((IAT1 && IAT2) || 6729 (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) && 6730 ((bool)CAT1 != (bool)CAT2) && 6731 (Steps.empty() || Steps.back().K != Step::Array))) { 6732 // In C++20 onwards, we can unify an array of N T with an array of 6733 // a different or unknown bound. But we can't form an array whose 6734 // element type is an array of unknown bound by doing so. 6735 Composite1 = Arr1->getElementType(); 6736 Composite2 = Arr2->getElementType(); 6737 Steps.emplace_back(Step::Array); 6738 if (CAT1 || CAT2) 6739 NeedConstBefore = Steps.size(); 6740 continue; 6741 } 6742 } 6743 6744 const PointerType *Ptr1, *Ptr2; 6745 if ((Ptr1 = Composite1->getAs<PointerType>()) && 6746 (Ptr2 = Composite2->getAs<PointerType>())) { 6747 Composite1 = Ptr1->getPointeeType(); 6748 Composite2 = Ptr2->getPointeeType(); 6749 Steps.emplace_back(Step::Pointer); 6750 continue; 6751 } 6752 6753 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2; 6754 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) && 6755 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) { 6756 Composite1 = ObjPtr1->getPointeeType(); 6757 Composite2 = ObjPtr2->getPointeeType(); 6758 Steps.emplace_back(Step::ObjCPointer); 6759 continue; 6760 } 6761 6762 const MemberPointerType *MemPtr1, *MemPtr2; 6763 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 6764 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 6765 Composite1 = MemPtr1->getPointeeType(); 6766 Composite2 = MemPtr2->getPointeeType(); 6767 6768 // At the top level, we can perform a base-to-derived pointer-to-member 6769 // conversion: 6770 // 6771 // - [...] where C1 is reference-related to C2 or C2 is 6772 // reference-related to C1 6773 // 6774 // (Note that the only kinds of reference-relatedness in scope here are 6775 // "same type or derived from".) At any other level, the class must 6776 // exactly match. 6777 const Type *Class = nullptr; 6778 QualType Cls1(MemPtr1->getClass(), 0); 6779 QualType Cls2(MemPtr2->getClass(), 0); 6780 if (Context.hasSameType(Cls1, Cls2)) 6781 Class = MemPtr1->getClass(); 6782 else if (Steps.empty()) 6783 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() : 6784 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr; 6785 if (!Class) 6786 return QualType(); 6787 6788 Steps.emplace_back(Step::MemberPointer, Class); 6789 continue; 6790 } 6791 6792 // Special case: at the top level, we can decompose an Objective-C pointer 6793 // and a 'cv void *'. Unify the qualifiers. 6794 if (Steps.empty() && ((Composite1->isVoidPointerType() && 6795 Composite2->isObjCObjectPointerType()) || 6796 (Composite1->isObjCObjectPointerType() && 6797 Composite2->isVoidPointerType()))) { 6798 Composite1 = Composite1->getPointeeType(); 6799 Composite2 = Composite2->getPointeeType(); 6800 Steps.emplace_back(Step::Pointer); 6801 continue; 6802 } 6803 6804 // FIXME: block pointer types? 6805 6806 // Cannot unwrap any more types. 6807 break; 6808 } 6809 6810 // - if T1 or T2 is "pointer to noexcept function" and the other type is 6811 // "pointer to function", where the function types are otherwise the same, 6812 // "pointer to function"; 6813 // - if T1 or T2 is "pointer to member of C1 of type function", the other 6814 // type is "pointer to member of C2 of type noexcept function", and C1 6815 // is reference-related to C2 or C2 is reference-related to C1, where 6816 // the function types are otherwise the same, "pointer to member of C2 of 6817 // type function" or "pointer to member of C1 of type function", 6818 // respectively; 6819 // 6820 // We also support 'noreturn' here, so as a Clang extension we generalize the 6821 // above to: 6822 // 6823 // - [Clang] If T1 and T2 are both of type "pointer to function" or 6824 // "pointer to member function" and the pointee types can be unified 6825 // by a function pointer conversion, that conversion is applied 6826 // before checking the following rules. 6827 // 6828 // We've already unwrapped down to the function types, and we want to merge 6829 // rather than just convert, so do this ourselves rather than calling 6830 // IsFunctionConversion. 6831 // 6832 // FIXME: In order to match the standard wording as closely as possible, we 6833 // currently only do this under a single level of pointers. Ideally, we would 6834 // allow this in general, and set NeedConstBefore to the relevant depth on 6835 // the side(s) where we changed anything. If we permit that, we should also 6836 // consider this conversion when determining type similarity and model it as 6837 // a qualification conversion. 6838 if (Steps.size() == 1) { 6839 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { 6840 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { 6841 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); 6842 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); 6843 6844 // The result is noreturn if both operands are. 6845 bool Noreturn = 6846 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); 6847 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn); 6848 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn); 6849 6850 // The result is nothrow if both operands are. 6851 SmallVector<QualType, 8> ExceptionTypeStorage; 6852 EPI1.ExceptionSpec = EPI2.ExceptionSpec = 6853 mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec, 6854 ExceptionTypeStorage); 6855 6856 Composite1 = Context.getFunctionType(FPT1->getReturnType(), 6857 FPT1->getParamTypes(), EPI1); 6858 Composite2 = Context.getFunctionType(FPT2->getReturnType(), 6859 FPT2->getParamTypes(), EPI2); 6860 } 6861 } 6862 } 6863 6864 // There are some more conversions we can perform under exactly one pointer. 6865 if (Steps.size() == 1 && Steps.front().K == Step::Pointer && 6866 !Context.hasSameType(Composite1, Composite2)) { 6867 // - if T1 or T2 is "pointer to cv1 void" and the other type is 6868 // "pointer to cv2 T", where T is an object type or void, 6869 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2; 6870 if (Composite1->isVoidType() && Composite2->isObjectType()) 6871 Composite2 = Composite1; 6872 else if (Composite2->isVoidType() && Composite1->isObjectType()) 6873 Composite1 = Composite2; 6874 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6875 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6876 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and 6877 // T1, respectively; 6878 // 6879 // The "similar type" handling covers all of this except for the "T1 is a 6880 // base class of T2" case in the definition of reference-related. 6881 else if (IsDerivedFrom(Loc, Composite1, Composite2)) 6882 Composite1 = Composite2; 6883 else if (IsDerivedFrom(Loc, Composite2, Composite1)) 6884 Composite2 = Composite1; 6885 } 6886 6887 // At this point, either the inner types are the same or we have failed to 6888 // find a composite pointer type. 6889 if (!Context.hasSameType(Composite1, Composite2)) 6890 return QualType(); 6891 6892 // Per C++ [conv.qual]p3, add 'const' to every level before the last 6893 // differing qualifier. 6894 for (unsigned I = 0; I != NeedConstBefore; ++I) 6895 Steps[I].Quals.addConst(); 6896 6897 // Rebuild the composite type. 6898 QualType Composite = Composite1; 6899 for (auto &S : llvm::reverse(Steps)) 6900 Composite = S.rebuild(Context, Composite); 6901 6902 if (ConvertArgs) { 6903 // Convert the expressions to the composite pointer type. 6904 InitializedEntity Entity = 6905 InitializedEntity::InitializeTemporary(Composite); 6906 InitializationKind Kind = 6907 InitializationKind::CreateCopy(Loc, SourceLocation()); 6908 6909 InitializationSequence E1ToC(*this, Entity, Kind, E1); 6910 if (!E1ToC) 6911 return QualType(); 6912 6913 InitializationSequence E2ToC(*this, Entity, Kind, E2); 6914 if (!E2ToC) 6915 return QualType(); 6916 6917 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics. 6918 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1); 6919 if (E1Result.isInvalid()) 6920 return QualType(); 6921 E1 = E1Result.get(); 6922 6923 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2); 6924 if (E2Result.isInvalid()) 6925 return QualType(); 6926 E2 = E2Result.get(); 6927 } 6928 6929 return Composite; 6930 } 6931 6932 ExprResult Sema::MaybeBindToTemporary(Expr *E) { 6933 if (!E) 6934 return ExprError(); 6935 6936 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); 6937 6938 // If the result is a glvalue, we shouldn't bind it. 6939 if (E->isGLValue()) 6940 return E; 6941 6942 // In ARC, calls that return a retainable type can return retained, 6943 // in which case we have to insert a consuming cast. 6944 if (getLangOpts().ObjCAutoRefCount && 6945 E->getType()->isObjCRetainableType()) { 6946 6947 bool ReturnsRetained; 6948 6949 // For actual calls, we compute this by examining the type of the 6950 // called value. 6951 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 6952 Expr *Callee = Call->getCallee()->IgnoreParens(); 6953 QualType T = Callee->getType(); 6954 6955 if (T == Context.BoundMemberTy) { 6956 // Handle pointer-to-members. 6957 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 6958 T = BinOp->getRHS()->getType(); 6959 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 6960 T = Mem->getMemberDecl()->getType(); 6961 } 6962 6963 if (const PointerType *Ptr = T->getAs<PointerType>()) 6964 T = Ptr->getPointeeType(); 6965 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 6966 T = Ptr->getPointeeType(); 6967 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 6968 T = MemPtr->getPointeeType(); 6969 6970 auto *FTy = T->castAs<FunctionType>(); 6971 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 6972 6973 // ActOnStmtExpr arranges things so that StmtExprs of retainable 6974 // type always produce a +1 object. 6975 } else if (isa<StmtExpr>(E)) { 6976 ReturnsRetained = true; 6977 6978 // We hit this case with the lambda conversion-to-block optimization; 6979 // we don't want any extra casts here. 6980 } else if (isa<CastExpr>(E) && 6981 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 6982 return E; 6983 6984 // For message sends and property references, we try to find an 6985 // actual method. FIXME: we should infer retention by selector in 6986 // cases where we don't have an actual method. 6987 } else { 6988 ObjCMethodDecl *D = nullptr; 6989 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 6990 D = Send->getMethodDecl(); 6991 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 6992 D = BoxedExpr->getBoxingMethod(); 6993 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 6994 // Don't do reclaims if we're using the zero-element array 6995 // constant. 6996 if (ArrayLit->getNumElements() == 0 && 6997 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 6998 return E; 6999 7000 D = ArrayLit->getArrayWithObjectsMethod(); 7001 } else if (ObjCDictionaryLiteral *DictLit 7002 = dyn_cast<ObjCDictionaryLiteral>(E)) { 7003 // Don't do reclaims if we're using the zero-element dictionary 7004 // constant. 7005 if (DictLit->getNumElements() == 0 && 7006 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 7007 return E; 7008 7009 D = DictLit->getDictWithObjectsMethod(); 7010 } 7011 7012 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 7013 7014 // Don't do reclaims on performSelector calls; despite their 7015 // return type, the invoked method doesn't necessarily actually 7016 // return an object. 7017 if (!ReturnsRetained && 7018 D && D->getMethodFamily() == OMF_performSelector) 7019 return E; 7020 } 7021 7022 // Don't reclaim an object of Class type. 7023 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 7024 return E; 7025 7026 Cleanup.setExprNeedsCleanups(true); 7027 7028 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 7029 : CK_ARCReclaimReturnedObject); 7030 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 7031 VK_PRValue, FPOptionsOverride()); 7032 } 7033 7034 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 7035 Cleanup.setExprNeedsCleanups(true); 7036 7037 if (!getLangOpts().CPlusPlus) 7038 return E; 7039 7040 // Search for the base element type (cf. ASTContext::getBaseElementType) with 7041 // a fast path for the common case that the type is directly a RecordType. 7042 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 7043 const RecordType *RT = nullptr; 7044 while (!RT) { 7045 switch (T->getTypeClass()) { 7046 case Type::Record: 7047 RT = cast<RecordType>(T); 7048 break; 7049 case Type::ConstantArray: 7050 case Type::IncompleteArray: 7051 case Type::VariableArray: 7052 case Type::DependentSizedArray: 7053 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 7054 break; 7055 default: 7056 return E; 7057 } 7058 } 7059 7060 // That should be enough to guarantee that this type is complete, if we're 7061 // not processing a decltype expression. 7062 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 7063 if (RD->isInvalidDecl() || RD->isDependentContext()) 7064 return E; 7065 7066 bool IsDecltype = ExprEvalContexts.back().ExprContext == 7067 ExpressionEvaluationContextRecord::EK_Decltype; 7068 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 7069 7070 if (Destructor) { 7071 MarkFunctionReferenced(E->getExprLoc(), Destructor); 7072 CheckDestructorAccess(E->getExprLoc(), Destructor, 7073 PDiag(diag::err_access_dtor_temp) 7074 << E->getType()); 7075 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 7076 return ExprError(); 7077 7078 // If destructor is trivial, we can avoid the extra copy. 7079 if (Destructor->isTrivial()) 7080 return E; 7081 7082 // We need a cleanup, but we don't need to remember the temporary. 7083 Cleanup.setExprNeedsCleanups(true); 7084 } 7085 7086 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 7087 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 7088 7089 if (IsDecltype) 7090 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 7091 7092 return Bind; 7093 } 7094 7095 ExprResult 7096 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 7097 if (SubExpr.isInvalid()) 7098 return ExprError(); 7099 7100 return MaybeCreateExprWithCleanups(SubExpr.get()); 7101 } 7102 7103 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 7104 assert(SubExpr && "subexpression can't be null!"); 7105 7106 CleanupVarDeclMarking(); 7107 7108 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 7109 assert(ExprCleanupObjects.size() >= FirstCleanup); 7110 assert(Cleanup.exprNeedsCleanups() || 7111 ExprCleanupObjects.size() == FirstCleanup); 7112 if (!Cleanup.exprNeedsCleanups()) 7113 return SubExpr; 7114 7115 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 7116 ExprCleanupObjects.size() - FirstCleanup); 7117 7118 auto *E = ExprWithCleanups::Create( 7119 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); 7120 DiscardCleanupsInEvaluationContext(); 7121 7122 return E; 7123 } 7124 7125 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 7126 assert(SubStmt && "sub-statement can't be null!"); 7127 7128 CleanupVarDeclMarking(); 7129 7130 if (!Cleanup.exprNeedsCleanups()) 7131 return SubStmt; 7132 7133 // FIXME: In order to attach the temporaries, wrap the statement into 7134 // a StmtExpr; currently this is only used for asm statements. 7135 // This is hacky, either create a new CXXStmtWithTemporaries statement or 7136 // a new AsmStmtWithTemporaries. 7137 CompoundStmt *CompStmt = CompoundStmt::Create( 7138 Context, SubStmt, SourceLocation(), SourceLocation()); 7139 Expr *E = new (Context) 7140 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(), 7141 /*FIXME TemplateDepth=*/0); 7142 return MaybeCreateExprWithCleanups(E); 7143 } 7144 7145 /// Process the expression contained within a decltype. For such expressions, 7146 /// certain semantic checks on temporaries are delayed until this point, and 7147 /// are omitted for the 'topmost' call in the decltype expression. If the 7148 /// topmost call bound a temporary, strip that temporary off the expression. 7149 ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 7150 assert(ExprEvalContexts.back().ExprContext == 7151 ExpressionEvaluationContextRecord::EK_Decltype && 7152 "not in a decltype expression"); 7153 7154 ExprResult Result = CheckPlaceholderExpr(E); 7155 if (Result.isInvalid()) 7156 return ExprError(); 7157 E = Result.get(); 7158 7159 // C++11 [expr.call]p11: 7160 // If a function call is a prvalue of object type, 7161 // -- if the function call is either 7162 // -- the operand of a decltype-specifier, or 7163 // -- the right operand of a comma operator that is the operand of a 7164 // decltype-specifier, 7165 // a temporary object is not introduced for the prvalue. 7166 7167 // Recursively rebuild ParenExprs and comma expressions to strip out the 7168 // outermost CXXBindTemporaryExpr, if any. 7169 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7170 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 7171 if (SubExpr.isInvalid()) 7172 return ExprError(); 7173 if (SubExpr.get() == PE->getSubExpr()) 7174 return E; 7175 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 7176 } 7177 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7178 if (BO->getOpcode() == BO_Comma) { 7179 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 7180 if (RHS.isInvalid()) 7181 return ExprError(); 7182 if (RHS.get() == BO->getRHS()) 7183 return E; 7184 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma, 7185 BO->getType(), BO->getValueKind(), 7186 BO->getObjectKind(), BO->getOperatorLoc(), 7187 BO->getFPFeatures(getLangOpts())); 7188 } 7189 } 7190 7191 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 7192 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 7193 : nullptr; 7194 if (TopCall) 7195 E = TopCall; 7196 else 7197 TopBind = nullptr; 7198 7199 // Disable the special decltype handling now. 7200 ExprEvalContexts.back().ExprContext = 7201 ExpressionEvaluationContextRecord::EK_Other; 7202 7203 Result = CheckUnevaluatedOperand(E); 7204 if (Result.isInvalid()) 7205 return ExprError(); 7206 E = Result.get(); 7207 7208 // In MS mode, don't perform any extra checking of call return types within a 7209 // decltype expression. 7210 if (getLangOpts().MSVCCompat) 7211 return E; 7212 7213 // Perform the semantic checks we delayed until this point. 7214 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 7215 I != N; ++I) { 7216 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 7217 if (Call == TopCall) 7218 continue; 7219 7220 if (CheckCallReturnType(Call->getCallReturnType(Context), 7221 Call->getBeginLoc(), Call, Call->getDirectCallee())) 7222 return ExprError(); 7223 } 7224 7225 // Now all relevant types are complete, check the destructors are accessible 7226 // and non-deleted, and annotate them on the temporaries. 7227 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 7228 I != N; ++I) { 7229 CXXBindTemporaryExpr *Bind = 7230 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 7231 if (Bind == TopBind) 7232 continue; 7233 7234 CXXTemporary *Temp = Bind->getTemporary(); 7235 7236 CXXRecordDecl *RD = 7237 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 7238 CXXDestructorDecl *Destructor = LookupDestructor(RD); 7239 Temp->setDestructor(Destructor); 7240 7241 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 7242 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 7243 PDiag(diag::err_access_dtor_temp) 7244 << Bind->getType()); 7245 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 7246 return ExprError(); 7247 7248 // We need a cleanup, but we don't need to remember the temporary. 7249 Cleanup.setExprNeedsCleanups(true); 7250 } 7251 7252 // Possibly strip off the top CXXBindTemporaryExpr. 7253 return E; 7254 } 7255 7256 /// Note a set of 'operator->' functions that were used for a member access. 7257 static void noteOperatorArrows(Sema &S, 7258 ArrayRef<FunctionDecl *> OperatorArrows) { 7259 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 7260 // FIXME: Make this configurable? 7261 unsigned Limit = 9; 7262 if (OperatorArrows.size() > Limit) { 7263 // Produce Limit-1 normal notes and one 'skipping' note. 7264 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 7265 SkipCount = OperatorArrows.size() - (Limit - 1); 7266 } 7267 7268 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 7269 if (I == SkipStart) { 7270 S.Diag(OperatorArrows[I]->getLocation(), 7271 diag::note_operator_arrows_suppressed) 7272 << SkipCount; 7273 I += SkipCount; 7274 } else { 7275 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 7276 << OperatorArrows[I]->getCallResultType(); 7277 ++I; 7278 } 7279 } 7280 } 7281 7282 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 7283 SourceLocation OpLoc, 7284 tok::TokenKind OpKind, 7285 ParsedType &ObjectType, 7286 bool &MayBePseudoDestructor) { 7287 // Since this might be a postfix expression, get rid of ParenListExprs. 7288 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 7289 if (Result.isInvalid()) return ExprError(); 7290 Base = Result.get(); 7291 7292 Result = CheckPlaceholderExpr(Base); 7293 if (Result.isInvalid()) return ExprError(); 7294 Base = Result.get(); 7295 7296 QualType BaseType = Base->getType(); 7297 MayBePseudoDestructor = false; 7298 if (BaseType->isDependentType()) { 7299 // If we have a pointer to a dependent type and are using the -> operator, 7300 // the object type is the type that the pointer points to. We might still 7301 // have enough information about that type to do something useful. 7302 if (OpKind == tok::arrow) 7303 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 7304 BaseType = Ptr->getPointeeType(); 7305 7306 ObjectType = ParsedType::make(BaseType); 7307 MayBePseudoDestructor = true; 7308 return Base; 7309 } 7310 7311 // C++ [over.match.oper]p8: 7312 // [...] When operator->returns, the operator-> is applied to the value 7313 // returned, with the original second operand. 7314 if (OpKind == tok::arrow) { 7315 QualType StartingType = BaseType; 7316 bool NoArrowOperatorFound = false; 7317 bool FirstIteration = true; 7318 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 7319 // The set of types we've considered so far. 7320 llvm::SmallPtrSet<CanQualType,8> CTypes; 7321 SmallVector<FunctionDecl*, 8> OperatorArrows; 7322 CTypes.insert(Context.getCanonicalType(BaseType)); 7323 7324 while (BaseType->isRecordType()) { 7325 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 7326 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 7327 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 7328 noteOperatorArrows(*this, OperatorArrows); 7329 Diag(OpLoc, diag::note_operator_arrow_depth) 7330 << getLangOpts().ArrowDepth; 7331 return ExprError(); 7332 } 7333 7334 Result = BuildOverloadedArrowExpr( 7335 S, Base, OpLoc, 7336 // When in a template specialization and on the first loop iteration, 7337 // potentially give the default diagnostic (with the fixit in a 7338 // separate note) instead of having the error reported back to here 7339 // and giving a diagnostic with a fixit attached to the error itself. 7340 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 7341 ? nullptr 7342 : &NoArrowOperatorFound); 7343 if (Result.isInvalid()) { 7344 if (NoArrowOperatorFound) { 7345 if (FirstIteration) { 7346 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7347 << BaseType << 1 << Base->getSourceRange() 7348 << FixItHint::CreateReplacement(OpLoc, "."); 7349 OpKind = tok::period; 7350 break; 7351 } 7352 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7353 << BaseType << Base->getSourceRange(); 7354 CallExpr *CE = dyn_cast<CallExpr>(Base); 7355 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 7356 Diag(CD->getBeginLoc(), 7357 diag::note_member_reference_arrow_from_operator_arrow); 7358 } 7359 } 7360 return ExprError(); 7361 } 7362 Base = Result.get(); 7363 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 7364 OperatorArrows.push_back(OpCall->getDirectCallee()); 7365 BaseType = Base->getType(); 7366 CanQualType CBaseType = Context.getCanonicalType(BaseType); 7367 if (!CTypes.insert(CBaseType).second) { 7368 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 7369 noteOperatorArrows(*this, OperatorArrows); 7370 return ExprError(); 7371 } 7372 FirstIteration = false; 7373 } 7374 7375 if (OpKind == tok::arrow) { 7376 if (BaseType->isPointerType()) 7377 BaseType = BaseType->getPointeeType(); 7378 else if (auto *AT = Context.getAsArrayType(BaseType)) 7379 BaseType = AT->getElementType(); 7380 } 7381 } 7382 7383 // Objective-C properties allow "." access on Objective-C pointer types, 7384 // so adjust the base type to the object type itself. 7385 if (BaseType->isObjCObjectPointerType()) 7386 BaseType = BaseType->getPointeeType(); 7387 7388 // C++ [basic.lookup.classref]p2: 7389 // [...] If the type of the object expression is of pointer to scalar 7390 // type, the unqualified-id is looked up in the context of the complete 7391 // postfix-expression. 7392 // 7393 // This also indicates that we could be parsing a pseudo-destructor-name. 7394 // Note that Objective-C class and object types can be pseudo-destructor 7395 // expressions or normal member (ivar or property) access expressions, and 7396 // it's legal for the type to be incomplete if this is a pseudo-destructor 7397 // call. We'll do more incomplete-type checks later in the lookup process, 7398 // so just skip this check for ObjC types. 7399 if (!BaseType->isRecordType()) { 7400 ObjectType = ParsedType::make(BaseType); 7401 MayBePseudoDestructor = true; 7402 return Base; 7403 } 7404 7405 // The object type must be complete (or dependent), or 7406 // C++11 [expr.prim.general]p3: 7407 // Unlike the object expression in other contexts, *this is not required to 7408 // be of complete type for purposes of class member access (5.2.5) outside 7409 // the member function body. 7410 if (!BaseType->isDependentType() && 7411 !isThisOutsideMemberFunctionBody(BaseType) && 7412 RequireCompleteType(OpLoc, BaseType, 7413 diag::err_incomplete_member_access)) { 7414 return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base}); 7415 } 7416 7417 // C++ [basic.lookup.classref]p2: 7418 // If the id-expression in a class member access (5.2.5) is an 7419 // unqualified-id, and the type of the object expression is of a class 7420 // type C (or of pointer to a class type C), the unqualified-id is looked 7421 // up in the scope of class C. [...] 7422 ObjectType = ParsedType::make(BaseType); 7423 return Base; 7424 } 7425 7426 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base, 7427 tok::TokenKind &OpKind, SourceLocation OpLoc) { 7428 if (Base->hasPlaceholderType()) { 7429 ExprResult result = S.CheckPlaceholderExpr(Base); 7430 if (result.isInvalid()) return true; 7431 Base = result.get(); 7432 } 7433 ObjectType = Base->getType(); 7434 7435 // C++ [expr.pseudo]p2: 7436 // The left-hand side of the dot operator shall be of scalar type. The 7437 // left-hand side of the arrow operator shall be of pointer to scalar type. 7438 // This scalar type is the object type. 7439 // Note that this is rather different from the normal handling for the 7440 // arrow operator. 7441 if (OpKind == tok::arrow) { 7442 // The operator requires a prvalue, so perform lvalue conversions. 7443 // Only do this if we might plausibly end with a pointer, as otherwise 7444 // this was likely to be intended to be a '.'. 7445 if (ObjectType->isPointerType() || ObjectType->isArrayType() || 7446 ObjectType->isFunctionType()) { 7447 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base); 7448 if (BaseResult.isInvalid()) 7449 return true; 7450 Base = BaseResult.get(); 7451 ObjectType = Base->getType(); 7452 } 7453 7454 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 7455 ObjectType = Ptr->getPointeeType(); 7456 } else if (!Base->isTypeDependent()) { 7457 // The user wrote "p->" when they probably meant "p."; fix it. 7458 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7459 << ObjectType << true 7460 << FixItHint::CreateReplacement(OpLoc, "."); 7461 if (S.isSFINAEContext()) 7462 return true; 7463 7464 OpKind = tok::period; 7465 } 7466 } 7467 7468 return false; 7469 } 7470 7471 /// Check if it's ok to try and recover dot pseudo destructor calls on 7472 /// pointer objects. 7473 static bool 7474 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, 7475 QualType DestructedType) { 7476 // If this is a record type, check if its destructor is callable. 7477 if (auto *RD = DestructedType->getAsCXXRecordDecl()) { 7478 if (RD->hasDefinition()) 7479 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD)) 7480 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); 7481 return false; 7482 } 7483 7484 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. 7485 return DestructedType->isDependentType() || DestructedType->isScalarType() || 7486 DestructedType->isVectorType(); 7487 } 7488 7489 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 7490 SourceLocation OpLoc, 7491 tok::TokenKind OpKind, 7492 const CXXScopeSpec &SS, 7493 TypeSourceInfo *ScopeTypeInfo, 7494 SourceLocation CCLoc, 7495 SourceLocation TildeLoc, 7496 PseudoDestructorTypeStorage Destructed) { 7497 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 7498 7499 QualType ObjectType; 7500 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7501 return ExprError(); 7502 7503 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 7504 !ObjectType->isVectorType()) { 7505 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 7506 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 7507 else { 7508 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 7509 << ObjectType << Base->getSourceRange(); 7510 return ExprError(); 7511 } 7512 } 7513 7514 // C++ [expr.pseudo]p2: 7515 // [...] The cv-unqualified versions of the object type and of the type 7516 // designated by the pseudo-destructor-name shall be the same type. 7517 if (DestructedTypeInfo) { 7518 QualType DestructedType = DestructedTypeInfo->getType(); 7519 SourceLocation DestructedTypeStart 7520 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); 7521 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 7522 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 7523 // Detect dot pseudo destructor calls on pointer objects, e.g.: 7524 // Foo *foo; 7525 // foo.~Foo(); 7526 if (OpKind == tok::period && ObjectType->isPointerType() && 7527 Context.hasSameUnqualifiedType(DestructedType, 7528 ObjectType->getPointeeType())) { 7529 auto Diagnostic = 7530 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7531 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); 7532 7533 // Issue a fixit only when the destructor is valid. 7534 if (canRecoverDotPseudoDestructorCallsOnPointerObjects( 7535 *this, DestructedType)) 7536 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->"); 7537 7538 // Recover by setting the object type to the destructed type and the 7539 // operator to '->'. 7540 ObjectType = DestructedType; 7541 OpKind = tok::arrow; 7542 } else { 7543 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 7544 << ObjectType << DestructedType << Base->getSourceRange() 7545 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7546 7547 // Recover by setting the destructed type to the object type. 7548 DestructedType = ObjectType; 7549 DestructedTypeInfo = 7550 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); 7551 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7552 } 7553 } else if (DestructedType.getObjCLifetime() != 7554 ObjectType.getObjCLifetime()) { 7555 7556 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 7557 // Okay: just pretend that the user provided the correctly-qualified 7558 // type. 7559 } else { 7560 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 7561 << ObjectType << DestructedType << Base->getSourceRange() 7562 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7563 } 7564 7565 // Recover by setting the destructed type to the object type. 7566 DestructedType = ObjectType; 7567 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 7568 DestructedTypeStart); 7569 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7570 } 7571 } 7572 } 7573 7574 // C++ [expr.pseudo]p2: 7575 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 7576 // form 7577 // 7578 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 7579 // 7580 // shall designate the same scalar type. 7581 if (ScopeTypeInfo) { 7582 QualType ScopeType = ScopeTypeInfo->getType(); 7583 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 7584 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 7585 7586 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), 7587 diag::err_pseudo_dtor_type_mismatch) 7588 << ObjectType << ScopeType << Base->getSourceRange() 7589 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); 7590 7591 ScopeType = QualType(); 7592 ScopeTypeInfo = nullptr; 7593 } 7594 } 7595 7596 Expr *Result 7597 = new (Context) CXXPseudoDestructorExpr(Context, Base, 7598 OpKind == tok::arrow, OpLoc, 7599 SS.getWithLocInContext(Context), 7600 ScopeTypeInfo, 7601 CCLoc, 7602 TildeLoc, 7603 Destructed); 7604 7605 return Result; 7606 } 7607 7608 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7609 SourceLocation OpLoc, 7610 tok::TokenKind OpKind, 7611 CXXScopeSpec &SS, 7612 UnqualifiedId &FirstTypeName, 7613 SourceLocation CCLoc, 7614 SourceLocation TildeLoc, 7615 UnqualifiedId &SecondTypeName) { 7616 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7617 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7618 "Invalid first type name in pseudo-destructor"); 7619 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7620 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7621 "Invalid second type name in pseudo-destructor"); 7622 7623 QualType ObjectType; 7624 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7625 return ExprError(); 7626 7627 // Compute the object type that we should use for name lookup purposes. Only 7628 // record types and dependent types matter. 7629 ParsedType ObjectTypePtrForLookup; 7630 if (!SS.isSet()) { 7631 if (ObjectType->isRecordType()) 7632 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 7633 else if (ObjectType->isDependentType()) 7634 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 7635 } 7636 7637 // Convert the name of the type being destructed (following the ~) into a 7638 // type (with source-location information). 7639 QualType DestructedType; 7640 TypeSourceInfo *DestructedTypeInfo = nullptr; 7641 PseudoDestructorTypeStorage Destructed; 7642 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7643 ParsedType T = getTypeName(*SecondTypeName.Identifier, 7644 SecondTypeName.StartLocation, 7645 S, &SS, true, false, ObjectTypePtrForLookup, 7646 /*IsCtorOrDtorName*/true); 7647 if (!T && 7648 ((SS.isSet() && !computeDeclContext(SS, false)) || 7649 (!SS.isSet() && ObjectType->isDependentType()))) { 7650 // The name of the type being destroyed is a dependent name, and we 7651 // couldn't find anything useful in scope. Just store the identifier and 7652 // it's location, and we'll perform (qualified) name lookup again at 7653 // template instantiation time. 7654 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 7655 SecondTypeName.StartLocation); 7656 } else if (!T) { 7657 Diag(SecondTypeName.StartLocation, 7658 diag::err_pseudo_dtor_destructor_non_type) 7659 << SecondTypeName.Identifier << ObjectType; 7660 if (isSFINAEContext()) 7661 return ExprError(); 7662 7663 // Recover by assuming we had the right type all along. 7664 DestructedType = ObjectType; 7665 } else 7666 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 7667 } else { 7668 // Resolve the template-id to a type. 7669 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 7670 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7671 TemplateId->NumArgs); 7672 TypeResult T = ActOnTemplateIdType(S, 7673 SS, 7674 TemplateId->TemplateKWLoc, 7675 TemplateId->Template, 7676 TemplateId->Name, 7677 TemplateId->TemplateNameLoc, 7678 TemplateId->LAngleLoc, 7679 TemplateArgsPtr, 7680 TemplateId->RAngleLoc, 7681 /*IsCtorOrDtorName*/true); 7682 if (T.isInvalid() || !T.get()) { 7683 // Recover by assuming we had the right type all along. 7684 DestructedType = ObjectType; 7685 } else 7686 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 7687 } 7688 7689 // If we've performed some kind of recovery, (re-)build the type source 7690 // information. 7691 if (!DestructedType.isNull()) { 7692 if (!DestructedTypeInfo) 7693 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 7694 SecondTypeName.StartLocation); 7695 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7696 } 7697 7698 // Convert the name of the scope type (the type prior to '::') into a type. 7699 TypeSourceInfo *ScopeTypeInfo = nullptr; 7700 QualType ScopeType; 7701 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7702 FirstTypeName.Identifier) { 7703 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7704 ParsedType T = getTypeName(*FirstTypeName.Identifier, 7705 FirstTypeName.StartLocation, 7706 S, &SS, true, false, ObjectTypePtrForLookup, 7707 /*IsCtorOrDtorName*/true); 7708 if (!T) { 7709 Diag(FirstTypeName.StartLocation, 7710 diag::err_pseudo_dtor_destructor_non_type) 7711 << FirstTypeName.Identifier << ObjectType; 7712 7713 if (isSFINAEContext()) 7714 return ExprError(); 7715 7716 // Just drop this type. It's unnecessary anyway. 7717 ScopeType = QualType(); 7718 } else 7719 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 7720 } else { 7721 // Resolve the template-id to a type. 7722 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 7723 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7724 TemplateId->NumArgs); 7725 TypeResult T = ActOnTemplateIdType(S, 7726 SS, 7727 TemplateId->TemplateKWLoc, 7728 TemplateId->Template, 7729 TemplateId->Name, 7730 TemplateId->TemplateNameLoc, 7731 TemplateId->LAngleLoc, 7732 TemplateArgsPtr, 7733 TemplateId->RAngleLoc, 7734 /*IsCtorOrDtorName*/true); 7735 if (T.isInvalid() || !T.get()) { 7736 // Recover by dropping this type. 7737 ScopeType = QualType(); 7738 } else 7739 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 7740 } 7741 } 7742 7743 if (!ScopeType.isNull() && !ScopeTypeInfo) 7744 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 7745 FirstTypeName.StartLocation); 7746 7747 7748 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 7749 ScopeTypeInfo, CCLoc, TildeLoc, 7750 Destructed); 7751 } 7752 7753 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7754 SourceLocation OpLoc, 7755 tok::TokenKind OpKind, 7756 SourceLocation TildeLoc, 7757 const DeclSpec& DS) { 7758 QualType ObjectType; 7759 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7760 return ExprError(); 7761 7762 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 7763 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 7764 return true; 7765 } 7766 7767 QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false); 7768 7769 TypeLocBuilder TLB; 7770 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 7771 DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc()); 7772 DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd()); 7773 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 7774 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 7775 7776 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 7777 nullptr, SourceLocation(), TildeLoc, 7778 Destructed); 7779 } 7780 7781 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, 7782 CXXConversionDecl *Method, 7783 bool HadMultipleCandidates) { 7784 // Convert the expression to match the conversion function's implicit object 7785 // parameter. 7786 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, 7787 FoundDecl, Method); 7788 if (Exp.isInvalid()) 7789 return true; 7790 7791 if (Method->getParent()->isLambda() && 7792 Method->getConversionType()->isBlockPointerType()) { 7793 // This is a lambda conversion to block pointer; check if the argument 7794 // was a LambdaExpr. 7795 Expr *SubE = E; 7796 CastExpr *CE = dyn_cast<CastExpr>(SubE); 7797 if (CE && CE->getCastKind() == CK_NoOp) 7798 SubE = CE->getSubExpr(); 7799 SubE = SubE->IgnoreParens(); 7800 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) 7801 SubE = BE->getSubExpr(); 7802 if (isa<LambdaExpr>(SubE)) { 7803 // For the conversion to block pointer on a lambda expression, we 7804 // construct a special BlockLiteral instead; this doesn't really make 7805 // a difference in ARC, but outside of ARC the resulting block literal 7806 // follows the normal lifetime rules for block literals instead of being 7807 // autoreleased. 7808 PushExpressionEvaluationContext( 7809 ExpressionEvaluationContext::PotentiallyEvaluated); 7810 ExprResult BlockExp = BuildBlockForLambdaConversion( 7811 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get()); 7812 PopExpressionEvaluationContext(); 7813 7814 // FIXME: This note should be produced by a CodeSynthesisContext. 7815 if (BlockExp.isInvalid()) 7816 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv); 7817 return BlockExp; 7818 } 7819 } 7820 7821 MemberExpr *ME = 7822 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(), 7823 NestedNameSpecifierLoc(), SourceLocation(), Method, 7824 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), 7825 HadMultipleCandidates, DeclarationNameInfo(), 7826 Context.BoundMemberTy, VK_PRValue, OK_Ordinary); 7827 7828 QualType ResultType = Method->getReturnType(); 7829 ExprValueKind VK = Expr::getValueKindForType(ResultType); 7830 ResultType = ResultType.getNonLValueExprType(Context); 7831 7832 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create( 7833 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(), 7834 CurFPFeatureOverrides()); 7835 7836 if (CheckFunctionCall(Method, CE, 7837 Method->getType()->castAs<FunctionProtoType>())) 7838 return ExprError(); 7839 7840 return CheckForImmediateInvocation(CE, CE->getMethodDecl()); 7841 } 7842 7843 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 7844 SourceLocation RParen) { 7845 // If the operand is an unresolved lookup expression, the expression is ill- 7846 // formed per [over.over]p1, because overloaded function names cannot be used 7847 // without arguments except in explicit contexts. 7848 ExprResult R = CheckPlaceholderExpr(Operand); 7849 if (R.isInvalid()) 7850 return R; 7851 7852 R = CheckUnevaluatedOperand(R.get()); 7853 if (R.isInvalid()) 7854 return ExprError(); 7855 7856 Operand = R.get(); 7857 7858 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() && 7859 Operand->HasSideEffects(Context, false)) { 7860 // The expression operand for noexcept is in an unevaluated expression 7861 // context, so side effects could result in unintended consequences. 7862 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 7863 } 7864 7865 CanThrowResult CanThrow = canThrow(Operand); 7866 return new (Context) 7867 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 7868 } 7869 7870 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 7871 Expr *Operand, SourceLocation RParen) { 7872 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 7873 } 7874 7875 static void MaybeDecrementCount( 7876 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { 7877 DeclRefExpr *LHS = nullptr; 7878 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7879 if (BO->getLHS()->getType()->isDependentType() || 7880 BO->getRHS()->getType()->isDependentType()) { 7881 if (BO->getOpcode() != BO_Assign) 7882 return; 7883 } else if (!BO->isAssignmentOp()) 7884 return; 7885 LHS = dyn_cast<DeclRefExpr>(BO->getLHS()); 7886 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) { 7887 if (COCE->getOperator() != OO_Equal) 7888 return; 7889 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0)); 7890 } 7891 if (!LHS) 7892 return; 7893 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl()); 7894 if (!VD) 7895 return; 7896 auto iter = RefsMinusAssignments.find(VD); 7897 if (iter == RefsMinusAssignments.end()) 7898 return; 7899 iter->getSecond()--; 7900 } 7901 7902 /// Perform the conversions required for an expression used in a 7903 /// context that ignores the result. 7904 ExprResult Sema::IgnoredValueConversions(Expr *E) { 7905 MaybeDecrementCount(E, RefsMinusAssignments); 7906 7907 if (E->hasPlaceholderType()) { 7908 ExprResult result = CheckPlaceholderExpr(E); 7909 if (result.isInvalid()) return E; 7910 E = result.get(); 7911 } 7912 7913 // C99 6.3.2.1: 7914 // [Except in specific positions,] an lvalue that does not have 7915 // array type is converted to the value stored in the 7916 // designated object (and is no longer an lvalue). 7917 if (E->isPRValue()) { 7918 // In C, function designators (i.e. expressions of function type) 7919 // are r-values, but we still want to do function-to-pointer decay 7920 // on them. This is both technically correct and convenient for 7921 // some clients. 7922 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 7923 return DefaultFunctionArrayConversion(E); 7924 7925 return E; 7926 } 7927 7928 if (getLangOpts().CPlusPlus) { 7929 // The C++11 standard defines the notion of a discarded-value expression; 7930 // normally, we don't need to do anything to handle it, but if it is a 7931 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 7932 // conversion. 7933 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) { 7934 ExprResult Res = DefaultLvalueConversion(E); 7935 if (Res.isInvalid()) 7936 return E; 7937 E = Res.get(); 7938 } else { 7939 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 7940 // it occurs as a discarded-value expression. 7941 CheckUnusedVolatileAssignment(E); 7942 } 7943 7944 // C++1z: 7945 // If the expression is a prvalue after this optional conversion, the 7946 // temporary materialization conversion is applied. 7947 // 7948 // We skip this step: IR generation is able to synthesize the storage for 7949 // itself in the aggregate case, and adding the extra node to the AST is 7950 // just clutter. 7951 // FIXME: We don't emit lifetime markers for the temporaries due to this. 7952 // FIXME: Do any other AST consumers care about this? 7953 return E; 7954 } 7955 7956 // GCC seems to also exclude expressions of incomplete enum type. 7957 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 7958 if (!T->getDecl()->isComplete()) { 7959 // FIXME: stupid workaround for a codegen bug! 7960 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 7961 return E; 7962 } 7963 } 7964 7965 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 7966 if (Res.isInvalid()) 7967 return E; 7968 E = Res.get(); 7969 7970 if (!E->getType()->isVoidType()) 7971 RequireCompleteType(E->getExprLoc(), E->getType(), 7972 diag::err_incomplete_type); 7973 return E; 7974 } 7975 7976 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) { 7977 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 7978 // it occurs as an unevaluated operand. 7979 CheckUnusedVolatileAssignment(E); 7980 7981 return E; 7982 } 7983 7984 // If we can unambiguously determine whether Var can never be used 7985 // in a constant expression, return true. 7986 // - if the variable and its initializer are non-dependent, then 7987 // we can unambiguously check if the variable is a constant expression. 7988 // - if the initializer is not value dependent - we can determine whether 7989 // it can be used to initialize a constant expression. If Init can not 7990 // be used to initialize a constant expression we conclude that Var can 7991 // never be a constant expression. 7992 // - FXIME: if the initializer is dependent, we can still do some analysis and 7993 // identify certain cases unambiguously as non-const by using a Visitor: 7994 // - such as those that involve odr-use of a ParmVarDecl, involve a new 7995 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 7996 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 7997 ASTContext &Context) { 7998 if (isa<ParmVarDecl>(Var)) return true; 7999 const VarDecl *DefVD = nullptr; 8000 8001 // If there is no initializer - this can not be a constant expression. 8002 if (!Var->getAnyInitializer(DefVD)) return true; 8003 assert(DefVD); 8004 if (DefVD->isWeak()) return false; 8005 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); 8006 8007 Expr *Init = cast<Expr>(Eval->Value); 8008 8009 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 8010 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 8011 // of value-dependent expressions, and use it here to determine whether the 8012 // initializer is a potential constant expression. 8013 return false; 8014 } 8015 8016 return !Var->isUsableInConstantExpressions(Context); 8017 } 8018 8019 /// Check if the current lambda has any potential captures 8020 /// that must be captured by any of its enclosing lambdas that are ready to 8021 /// capture. If there is a lambda that can capture a nested 8022 /// potential-capture, go ahead and do so. Also, check to see if any 8023 /// variables are uncaptureable or do not involve an odr-use so do not 8024 /// need to be captured. 8025 8026 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 8027 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 8028 8029 assert(!S.isUnevaluatedContext()); 8030 assert(S.CurContext->isDependentContext()); 8031 #ifndef NDEBUG 8032 DeclContext *DC = S.CurContext; 8033 while (DC && isa<CapturedDecl>(DC)) 8034 DC = DC->getParent(); 8035 assert( 8036 CurrentLSI->CallOperator == DC && 8037 "The current call operator must be synchronized with Sema's CurContext"); 8038 #endif // NDEBUG 8039 8040 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 8041 8042 // All the potentially captureable variables in the current nested 8043 // lambda (within a generic outer lambda), must be captured by an 8044 // outer lambda that is enclosed within a non-dependent context. 8045 CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) { 8046 // If the variable is clearly identified as non-odr-used and the full 8047 // expression is not instantiation dependent, only then do we not 8048 // need to check enclosing lambda's for speculative captures. 8049 // For e.g.: 8050 // Even though 'x' is not odr-used, it should be captured. 8051 // int test() { 8052 // const int x = 10; 8053 // auto L = [=](auto a) { 8054 // (void) +x + a; 8055 // }; 8056 // } 8057 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 8058 !IsFullExprInstantiationDependent) 8059 return; 8060 8061 // If we have a capture-capable lambda for the variable, go ahead and 8062 // capture the variable in that lambda (and all its enclosing lambdas). 8063 if (const Optional<unsigned> Index = 8064 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8065 S.FunctionScopes, Var, S)) 8066 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), 8067 Index.getValue()); 8068 const bool IsVarNeverAConstantExpression = 8069 VariableCanNeverBeAConstantExpression(Var, S.Context); 8070 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 8071 // This full expression is not instantiation dependent or the variable 8072 // can not be used in a constant expression - which means 8073 // this variable must be odr-used here, so diagnose a 8074 // capture violation early, if the variable is un-captureable. 8075 // This is purely for diagnosing errors early. Otherwise, this 8076 // error would get diagnosed when the lambda becomes capture ready. 8077 QualType CaptureType, DeclRefType; 8078 SourceLocation ExprLoc = VarExpr->getExprLoc(); 8079 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8080 /*EllipsisLoc*/ SourceLocation(), 8081 /*BuildAndDiagnose*/false, CaptureType, 8082 DeclRefType, nullptr)) { 8083 // We will never be able to capture this variable, and we need 8084 // to be able to in any and all instantiations, so diagnose it. 8085 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8086 /*EllipsisLoc*/ SourceLocation(), 8087 /*BuildAndDiagnose*/true, CaptureType, 8088 DeclRefType, nullptr); 8089 } 8090 } 8091 }); 8092 8093 // Check if 'this' needs to be captured. 8094 if (CurrentLSI->hasPotentialThisCapture()) { 8095 // If we have a capture-capable lambda for 'this', go ahead and capture 8096 // 'this' in that lambda (and all its enclosing lambdas). 8097 if (const Optional<unsigned> Index = 8098 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8099 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) { 8100 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 8101 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 8102 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 8103 &FunctionScopeIndexOfCapturableLambda); 8104 } 8105 } 8106 8107 // Reset all the potential captures at the end of each full-expression. 8108 CurrentLSI->clearPotentialCaptures(); 8109 } 8110 8111 static ExprResult attemptRecovery(Sema &SemaRef, 8112 const TypoCorrectionConsumer &Consumer, 8113 const TypoCorrection &TC) { 8114 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 8115 Consumer.getLookupResult().getLookupKind()); 8116 const CXXScopeSpec *SS = Consumer.getSS(); 8117 CXXScopeSpec NewSS; 8118 8119 // Use an approprate CXXScopeSpec for building the expr. 8120 if (auto *NNS = TC.getCorrectionSpecifier()) 8121 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 8122 else if (SS && !TC.WillReplaceSpecifier()) 8123 NewSS = *SS; 8124 8125 if (auto *ND = TC.getFoundDecl()) { 8126 R.setLookupName(ND->getDeclName()); 8127 R.addDecl(ND); 8128 if (ND->isCXXClassMember()) { 8129 // Figure out the correct naming class to add to the LookupResult. 8130 CXXRecordDecl *Record = nullptr; 8131 if (auto *NNS = TC.getCorrectionSpecifier()) 8132 Record = NNS->getAsType()->getAsCXXRecordDecl(); 8133 if (!Record) 8134 Record = 8135 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 8136 if (Record) 8137 R.setNamingClass(Record); 8138 8139 // Detect and handle the case where the decl might be an implicit 8140 // member. 8141 bool MightBeImplicitMember; 8142 if (!Consumer.isAddressOfOperand()) 8143 MightBeImplicitMember = true; 8144 else if (!NewSS.isEmpty()) 8145 MightBeImplicitMember = false; 8146 else if (R.isOverloadedResult()) 8147 MightBeImplicitMember = false; 8148 else if (R.isUnresolvableResult()) 8149 MightBeImplicitMember = true; 8150 else 8151 MightBeImplicitMember = isa<FieldDecl>(ND) || 8152 isa<IndirectFieldDecl>(ND) || 8153 isa<MSPropertyDecl>(ND); 8154 8155 if (MightBeImplicitMember) 8156 return SemaRef.BuildPossibleImplicitMemberExpr( 8157 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 8158 /*TemplateArgs*/ nullptr, /*S*/ nullptr); 8159 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 8160 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), 8161 Ivar->getIdentifier()); 8162 } 8163 } 8164 8165 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 8166 /*AcceptInvalidDecl*/ true); 8167 } 8168 8169 namespace { 8170 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 8171 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 8172 8173 public: 8174 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 8175 : TypoExprs(TypoExprs) {} 8176 bool VisitTypoExpr(TypoExpr *TE) { 8177 TypoExprs.insert(TE); 8178 return true; 8179 } 8180 }; 8181 8182 class TransformTypos : public TreeTransform<TransformTypos> { 8183 typedef TreeTransform<TransformTypos> BaseTransform; 8184 8185 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the 8186 // process of being initialized. 8187 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 8188 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 8189 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 8190 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 8191 8192 /// Emit diagnostics for all of the TypoExprs encountered. 8193 /// 8194 /// If the TypoExprs were successfully corrected, then the diagnostics should 8195 /// suggest the corrections. Otherwise the diagnostics will not suggest 8196 /// anything (having been passed an empty TypoCorrection). 8197 /// 8198 /// If we've failed to correct due to ambiguous corrections, we need to 8199 /// be sure to pass empty corrections and replacements. Otherwise it's 8200 /// possible that the Consumer has a TypoCorrection that failed to ambiguity 8201 /// and we don't want to report those diagnostics. 8202 void EmitAllDiagnostics(bool IsAmbiguous) { 8203 for (TypoExpr *TE : TypoExprs) { 8204 auto &State = SemaRef.getTypoExprState(TE); 8205 if (State.DiagHandler) { 8206 TypoCorrection TC = IsAmbiguous 8207 ? TypoCorrection() : State.Consumer->getCurrentCorrection(); 8208 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE]; 8209 8210 // Extract the NamedDecl from the transformed TypoExpr and add it to the 8211 // TypoCorrection, replacing the existing decls. This ensures the right 8212 // NamedDecl is used in diagnostics e.g. in the case where overload 8213 // resolution was used to select one from several possible decls that 8214 // had been stored in the TypoCorrection. 8215 if (auto *ND = getDeclFromExpr( 8216 Replacement.isInvalid() ? nullptr : Replacement.get())) 8217 TC.setCorrectionDecl(ND); 8218 8219 State.DiagHandler(TC); 8220 } 8221 SemaRef.clearDelayedTypo(TE); 8222 } 8223 } 8224 8225 /// Try to advance the typo correction state of the first unfinished TypoExpr. 8226 /// We allow advancement of the correction stream by removing it from the 8227 /// TransformCache which allows `TransformTypoExpr` to advance during the 8228 /// next transformation attempt. 8229 /// 8230 /// Any substitution attempts for the previous TypoExprs (which must have been 8231 /// finished) will need to be retried since it's possible that they will now 8232 /// be invalid given the latest advancement. 8233 /// 8234 /// We need to be sure that we're making progress - it's possible that the 8235 /// tree is so malformed that the transform never makes it to the 8236 /// `TransformTypoExpr`. 8237 /// 8238 /// Returns true if there are any untried correction combinations. 8239 bool CheckAndAdvanceTypoExprCorrectionStreams() { 8240 for (auto TE : TypoExprs) { 8241 auto &State = SemaRef.getTypoExprState(TE); 8242 TransformCache.erase(TE); 8243 if (!State.Consumer->hasMadeAnyCorrectionProgress()) 8244 return false; 8245 if (!State.Consumer->finished()) 8246 return true; 8247 State.Consumer->resetCorrectionStream(); 8248 } 8249 return false; 8250 } 8251 8252 NamedDecl *getDeclFromExpr(Expr *E) { 8253 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 8254 E = OverloadResolution[OE]; 8255 8256 if (!E) 8257 return nullptr; 8258 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 8259 return DRE->getFoundDecl(); 8260 if (auto *ME = dyn_cast<MemberExpr>(E)) 8261 return ME->getFoundDecl(); 8262 // FIXME: Add any other expr types that could be be seen by the delayed typo 8263 // correction TreeTransform for which the corresponding TypoCorrection could 8264 // contain multiple decls. 8265 return nullptr; 8266 } 8267 8268 ExprResult TryTransform(Expr *E) { 8269 Sema::SFINAETrap Trap(SemaRef); 8270 ExprResult Res = TransformExpr(E); 8271 if (Trap.hasErrorOccurred() || Res.isInvalid()) 8272 return ExprError(); 8273 8274 return ExprFilter(Res.get()); 8275 } 8276 8277 // Since correcting typos may intoduce new TypoExprs, this function 8278 // checks for new TypoExprs and recurses if it finds any. Note that it will 8279 // only succeed if it is able to correct all typos in the given expression. 8280 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) { 8281 if (Res.isInvalid()) { 8282 return Res; 8283 } 8284 // Check to see if any new TypoExprs were created. If so, we need to recurse 8285 // to check their validity. 8286 Expr *FixedExpr = Res.get(); 8287 8288 auto SavedTypoExprs = std::move(TypoExprs); 8289 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs); 8290 TypoExprs.clear(); 8291 AmbiguousTypoExprs.clear(); 8292 8293 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr); 8294 if (!TypoExprs.empty()) { 8295 // Recurse to handle newly created TypoExprs. If we're not able to 8296 // handle them, discard these TypoExprs. 8297 ExprResult RecurResult = 8298 RecursiveTransformLoop(FixedExpr, IsAmbiguous); 8299 if (RecurResult.isInvalid()) { 8300 Res = ExprError(); 8301 // Recursive corrections didn't work, wipe them away and don't add 8302 // them to the TypoExprs set. Remove them from Sema's TypoExpr list 8303 // since we don't want to clear them twice. Note: it's possible the 8304 // TypoExprs were created recursively and thus won't be in our 8305 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`. 8306 auto &SemaTypoExprs = SemaRef.TypoExprs; 8307 for (auto TE : TypoExprs) { 8308 TransformCache.erase(TE); 8309 SemaRef.clearDelayedTypo(TE); 8310 8311 auto SI = find(SemaTypoExprs, TE); 8312 if (SI != SemaTypoExprs.end()) { 8313 SemaTypoExprs.erase(SI); 8314 } 8315 } 8316 } else { 8317 // TypoExpr is valid: add newly created TypoExprs since we were 8318 // able to correct them. 8319 Res = RecurResult; 8320 SavedTypoExprs.set_union(TypoExprs); 8321 } 8322 } 8323 8324 TypoExprs = std::move(SavedTypoExprs); 8325 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs); 8326 8327 return Res; 8328 } 8329 8330 // Try to transform the given expression, looping through the correction 8331 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`. 8332 // 8333 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to 8334 // true and this method immediately will return an `ExprError`. 8335 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) { 8336 ExprResult Res; 8337 auto SavedTypoExprs = std::move(SemaRef.TypoExprs); 8338 SemaRef.TypoExprs.clear(); 8339 8340 while (true) { 8341 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8342 8343 // Recursion encountered an ambiguous correction. This means that our 8344 // correction itself is ambiguous, so stop now. 8345 if (IsAmbiguous) 8346 break; 8347 8348 // If the transform is still valid after checking for any new typos, 8349 // it's good to go. 8350 if (!Res.isInvalid()) 8351 break; 8352 8353 // The transform was invalid, see if we have any TypoExprs with untried 8354 // correction candidates. 8355 if (!CheckAndAdvanceTypoExprCorrectionStreams()) 8356 break; 8357 } 8358 8359 // If we found a valid result, double check to make sure it's not ambiguous. 8360 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) { 8361 auto SavedTransformCache = 8362 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache); 8363 8364 // Ensure none of the TypoExprs have multiple typo correction candidates 8365 // with the same edit length that pass all the checks and filters. 8366 while (!AmbiguousTypoExprs.empty()) { 8367 auto TE = AmbiguousTypoExprs.back(); 8368 8369 // TryTransform itself can create new Typos, adding them to the TypoExpr map 8370 // and invalidating our TypoExprState, so always fetch it instead of storing. 8371 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition(); 8372 8373 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection(); 8374 TypoCorrection Next; 8375 do { 8376 // Fetch the next correction by erasing the typo from the cache and calling 8377 // `TryTransform` which will iterate through corrections in 8378 // `TransformTypoExpr`. 8379 TransformCache.erase(TE); 8380 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8381 8382 if (!AmbigRes.isInvalid() || IsAmbiguous) { 8383 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream(); 8384 SavedTransformCache.erase(TE); 8385 Res = ExprError(); 8386 IsAmbiguous = true; 8387 break; 8388 } 8389 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) && 8390 Next.getEditDistance(false) == TC.getEditDistance(false)); 8391 8392 if (IsAmbiguous) 8393 break; 8394 8395 AmbiguousTypoExprs.remove(TE); 8396 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition(); 8397 TransformCache[TE] = SavedTransformCache[TE]; 8398 } 8399 TransformCache = std::move(SavedTransformCache); 8400 } 8401 8402 // Wipe away any newly created TypoExprs that we don't know about. Since we 8403 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only 8404 // possible if a `TypoExpr` is created during a transformation but then 8405 // fails before we can discover it. 8406 auto &SemaTypoExprs = SemaRef.TypoExprs; 8407 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) { 8408 auto TE = *Iterator; 8409 auto FI = find(TypoExprs, TE); 8410 if (FI != TypoExprs.end()) { 8411 Iterator++; 8412 continue; 8413 } 8414 SemaRef.clearDelayedTypo(TE); 8415 Iterator = SemaTypoExprs.erase(Iterator); 8416 } 8417 SemaRef.TypoExprs = std::move(SavedTypoExprs); 8418 8419 return Res; 8420 } 8421 8422 public: 8423 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) 8424 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} 8425 8426 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 8427 MultiExprArg Args, 8428 SourceLocation RParenLoc, 8429 Expr *ExecConfig = nullptr) { 8430 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 8431 RParenLoc, ExecConfig); 8432 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 8433 if (Result.isUsable()) { 8434 Expr *ResultCall = Result.get(); 8435 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 8436 ResultCall = BE->getSubExpr(); 8437 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 8438 OverloadResolution[OE] = CE->getCallee(); 8439 } 8440 } 8441 return Result; 8442 } 8443 8444 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 8445 8446 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } 8447 8448 ExprResult Transform(Expr *E) { 8449 bool IsAmbiguous = false; 8450 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous); 8451 8452 if (!Res.isUsable()) 8453 FindTypoExprs(TypoExprs).TraverseStmt(E); 8454 8455 EmitAllDiagnostics(IsAmbiguous); 8456 8457 return Res; 8458 } 8459 8460 ExprResult TransformTypoExpr(TypoExpr *E) { 8461 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 8462 // cached transformation result if there is one and the TypoExpr isn't the 8463 // first one that was encountered. 8464 auto &CacheEntry = TransformCache[E]; 8465 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 8466 return CacheEntry; 8467 } 8468 8469 auto &State = SemaRef.getTypoExprState(E); 8470 assert(State.Consumer && "Cannot transform a cleared TypoExpr"); 8471 8472 // For the first TypoExpr and an uncached TypoExpr, find the next likely 8473 // typo correction and return it. 8474 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 8475 if (InitDecl && TC.getFoundDecl() == InitDecl) 8476 continue; 8477 // FIXME: If we would typo-correct to an invalid declaration, it's 8478 // probably best to just suppress all errors from this typo correction. 8479 ExprResult NE = State.RecoveryHandler ? 8480 State.RecoveryHandler(SemaRef, E, TC) : 8481 attemptRecovery(SemaRef, *State.Consumer, TC); 8482 if (!NE.isInvalid()) { 8483 // Check whether there may be a second viable correction with the same 8484 // edit distance; if so, remember this TypoExpr may have an ambiguous 8485 // correction so it can be more thoroughly vetted later. 8486 TypoCorrection Next; 8487 if ((Next = State.Consumer->peekNextCorrection()) && 8488 Next.getEditDistance(false) == TC.getEditDistance(false)) { 8489 AmbiguousTypoExprs.insert(E); 8490 } else { 8491 AmbiguousTypoExprs.remove(E); 8492 } 8493 assert(!NE.isUnset() && 8494 "Typo was transformed into a valid-but-null ExprResult"); 8495 return CacheEntry = NE; 8496 } 8497 } 8498 return CacheEntry = ExprError(); 8499 } 8500 }; 8501 } 8502 8503 ExprResult 8504 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, 8505 bool RecoverUncorrectedTypos, 8506 llvm::function_ref<ExprResult(Expr *)> Filter) { 8507 // If the current evaluation context indicates there are uncorrected typos 8508 // and the current expression isn't guaranteed to not have typos, try to 8509 // resolve any TypoExpr nodes that might be in the expression. 8510 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 8511 (E->isTypeDependent() || E->isValueDependent() || 8512 E->isInstantiationDependent())) { 8513 auto TyposResolved = DelayedTypos.size(); 8514 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); 8515 TyposResolved -= DelayedTypos.size(); 8516 if (Result.isInvalid() || Result.get() != E) { 8517 ExprEvalContexts.back().NumTypos -= TyposResolved; 8518 if (Result.isInvalid() && RecoverUncorrectedTypos) { 8519 struct TyposReplace : TreeTransform<TyposReplace> { 8520 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {} 8521 ExprResult TransformTypoExpr(clang::TypoExpr *E) { 8522 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(), 8523 E->getEndLoc(), {}); 8524 } 8525 } TT(*this); 8526 return TT.TransformExpr(E); 8527 } 8528 return Result; 8529 } 8530 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); 8531 } 8532 return E; 8533 } 8534 8535 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 8536 bool DiscardedValue, 8537 bool IsConstexpr) { 8538 ExprResult FullExpr = FE; 8539 8540 if (!FullExpr.get()) 8541 return ExprError(); 8542 8543 if (DiagnoseUnexpandedParameterPack(FullExpr.get())) 8544 return ExprError(); 8545 8546 if (DiscardedValue) { 8547 // Top-level expressions default to 'id' when we're in a debugger. 8548 if (getLangOpts().DebuggerCastResultToId && 8549 FullExpr.get()->getType() == Context.UnknownAnyTy) { 8550 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 8551 if (FullExpr.isInvalid()) 8552 return ExprError(); 8553 } 8554 8555 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 8556 if (FullExpr.isInvalid()) 8557 return ExprError(); 8558 8559 FullExpr = IgnoredValueConversions(FullExpr.get()); 8560 if (FullExpr.isInvalid()) 8561 return ExprError(); 8562 8563 DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr); 8564 } 8565 8566 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr, 8567 /*RecoverUncorrectedTypos=*/true); 8568 if (FullExpr.isInvalid()) 8569 return ExprError(); 8570 8571 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 8572 8573 // At the end of this full expression (which could be a deeply nested 8574 // lambda), if there is a potential capture within the nested lambda, 8575 // have the outer capture-able lambda try and capture it. 8576 // Consider the following code: 8577 // void f(int, int); 8578 // void f(const int&, double); 8579 // void foo() { 8580 // const int x = 10, y = 20; 8581 // auto L = [=](auto a) { 8582 // auto M = [=](auto b) { 8583 // f(x, b); <-- requires x to be captured by L and M 8584 // f(y, a); <-- requires y to be captured by L, but not all Ms 8585 // }; 8586 // }; 8587 // } 8588 8589 // FIXME: Also consider what happens for something like this that involves 8590 // the gnu-extension statement-expressions or even lambda-init-captures: 8591 // void f() { 8592 // const int n = 0; 8593 // auto L = [&](auto a) { 8594 // +n + ({ 0; a; }); 8595 // }; 8596 // } 8597 // 8598 // Here, we see +n, and then the full-expression 0; ends, so we don't 8599 // capture n (and instead remove it from our list of potential captures), 8600 // and then the full-expression +n + ({ 0; }); ends, but it's too late 8601 // for us to see that we need to capture n after all. 8602 8603 LambdaScopeInfo *const CurrentLSI = 8604 getCurLambda(/*IgnoreCapturedRegions=*/true); 8605 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 8606 // even if CurContext is not a lambda call operator. Refer to that Bug Report 8607 // for an example of the code that might cause this asynchrony. 8608 // By ensuring we are in the context of a lambda's call operator 8609 // we can fix the bug (we only need to check whether we need to capture 8610 // if we are within a lambda's body); but per the comments in that 8611 // PR, a proper fix would entail : 8612 // "Alternative suggestion: 8613 // - Add to Sema an integer holding the smallest (outermost) scope 8614 // index that we are *lexically* within, and save/restore/set to 8615 // FunctionScopes.size() in InstantiatingTemplate's 8616 // constructor/destructor. 8617 // - Teach the handful of places that iterate over FunctionScopes to 8618 // stop at the outermost enclosing lexical scope." 8619 DeclContext *DC = CurContext; 8620 while (DC && isa<CapturedDecl>(DC)) 8621 DC = DC->getParent(); 8622 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); 8623 if (IsInLambdaDeclContext && CurrentLSI && 8624 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 8625 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 8626 *this); 8627 return MaybeCreateExprWithCleanups(FullExpr); 8628 } 8629 8630 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 8631 if (!FullStmt) return StmtError(); 8632 8633 return MaybeCreateStmtWithCleanups(FullStmt); 8634 } 8635 8636 Sema::IfExistsResult 8637 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 8638 CXXScopeSpec &SS, 8639 const DeclarationNameInfo &TargetNameInfo) { 8640 DeclarationName TargetName = TargetNameInfo.getName(); 8641 if (!TargetName) 8642 return IER_DoesNotExist; 8643 8644 // If the name itself is dependent, then the result is dependent. 8645 if (TargetName.isDependentName()) 8646 return IER_Dependent; 8647 8648 // Do the redeclaration lookup in the current scope. 8649 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 8650 Sema::NotForRedeclaration); 8651 LookupParsedName(R, S, &SS); 8652 R.suppressDiagnostics(); 8653 8654 switch (R.getResultKind()) { 8655 case LookupResult::Found: 8656 case LookupResult::FoundOverloaded: 8657 case LookupResult::FoundUnresolvedValue: 8658 case LookupResult::Ambiguous: 8659 return IER_Exists; 8660 8661 case LookupResult::NotFound: 8662 return IER_DoesNotExist; 8663 8664 case LookupResult::NotFoundInCurrentInstantiation: 8665 return IER_Dependent; 8666 } 8667 8668 llvm_unreachable("Invalid LookupResult Kind!"); 8669 } 8670 8671 Sema::IfExistsResult 8672 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 8673 bool IsIfExists, CXXScopeSpec &SS, 8674 UnqualifiedId &Name) { 8675 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 8676 8677 // Check for an unexpanded parameter pack. 8678 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; 8679 if (DiagnoseUnexpandedParameterPack(SS, UPPC) || 8680 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC)) 8681 return IER_Error; 8682 8683 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 8684 } 8685 8686 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) { 8687 return BuildExprRequirement(E, /*IsSimple=*/true, 8688 /*NoexceptLoc=*/SourceLocation(), 8689 /*ReturnTypeRequirement=*/{}); 8690 } 8691 8692 concepts::Requirement * 8693 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS, 8694 SourceLocation NameLoc, IdentifierInfo *TypeName, 8695 TemplateIdAnnotation *TemplateId) { 8696 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) && 8697 "Exactly one of TypeName and TemplateId must be specified."); 8698 TypeSourceInfo *TSI = nullptr; 8699 if (TypeName) { 8700 QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc, 8701 SS.getWithLocInContext(Context), *TypeName, 8702 NameLoc, &TSI, /*DeducedTSTContext=*/false); 8703 if (T.isNull()) 8704 return nullptr; 8705 } else { 8706 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(), 8707 TemplateId->NumArgs); 8708 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS, 8709 TemplateId->TemplateKWLoc, 8710 TemplateId->Template, TemplateId->Name, 8711 TemplateId->TemplateNameLoc, 8712 TemplateId->LAngleLoc, ArgsPtr, 8713 TemplateId->RAngleLoc); 8714 if (T.isInvalid()) 8715 return nullptr; 8716 if (GetTypeFromParser(T.get(), &TSI).isNull()) 8717 return nullptr; 8718 } 8719 return BuildTypeRequirement(TSI); 8720 } 8721 8722 concepts::Requirement * 8723 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) { 8724 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, 8725 /*ReturnTypeRequirement=*/{}); 8726 } 8727 8728 concepts::Requirement * 8729 Sema::ActOnCompoundRequirement( 8730 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, 8731 TemplateIdAnnotation *TypeConstraint, unsigned Depth) { 8732 // C++2a [expr.prim.req.compound] p1.3.3 8733 // [..] the expression is deduced against an invented function template 8734 // F [...] F is a void function template with a single type template 8735 // parameter T declared with the constrained-parameter. Form a new 8736 // cv-qualifier-seq cv by taking the union of const and volatile specifiers 8737 // around the constrained-parameter. F has a single parameter whose 8738 // type-specifier is cv T followed by the abstract-declarator. [...] 8739 // 8740 // The cv part is done in the calling function - we get the concept with 8741 // arguments and the abstract declarator with the correct CV qualification and 8742 // have to synthesize T and the single parameter of F. 8743 auto &II = Context.Idents.get("expr-type"); 8744 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext, 8745 SourceLocation(), 8746 SourceLocation(), Depth, 8747 /*Index=*/0, &II, 8748 /*Typename=*/true, 8749 /*ParameterPack=*/false, 8750 /*HasTypeConstraint=*/true); 8751 8752 if (BuildTypeConstraint(SS, TypeConstraint, TParam, 8753 /*EllipsisLoc=*/SourceLocation(), 8754 /*AllowUnexpandedPack=*/true)) 8755 // Just produce a requirement with no type requirements. 8756 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {}); 8757 8758 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(), 8759 SourceLocation(), 8760 ArrayRef<NamedDecl *>(TParam), 8761 SourceLocation(), 8762 /*RequiresClause=*/nullptr); 8763 return BuildExprRequirement( 8764 E, /*IsSimple=*/false, NoexceptLoc, 8765 concepts::ExprRequirement::ReturnTypeRequirement(TPL)); 8766 } 8767 8768 concepts::ExprRequirement * 8769 Sema::BuildExprRequirement( 8770 Expr *E, bool IsSimple, SourceLocation NoexceptLoc, 8771 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8772 auto Status = concepts::ExprRequirement::SS_Satisfied; 8773 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr; 8774 if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent()) 8775 Status = concepts::ExprRequirement::SS_Dependent; 8776 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can) 8777 Status = concepts::ExprRequirement::SS_NoexceptNotMet; 8778 else if (ReturnTypeRequirement.isSubstitutionFailure()) 8779 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure; 8780 else if (ReturnTypeRequirement.isTypeConstraint()) { 8781 // C++2a [expr.prim.req]p1.3.3 8782 // The immediately-declared constraint ([temp]) of decltype((E)) shall 8783 // be satisfied. 8784 TemplateParameterList *TPL = 8785 ReturnTypeRequirement.getTypeConstraintTemplateParameterList(); 8786 QualType MatchedType = 8787 Context.getReferenceQualifiedType(E).getCanonicalType(); 8788 llvm::SmallVector<TemplateArgument, 1> Args; 8789 Args.push_back(TemplateArgument(MatchedType)); 8790 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args); 8791 MultiLevelTemplateArgumentList MLTAL(TAL); 8792 for (unsigned I = 0; I < TPL->getDepth(); ++I) 8793 MLTAL.addOuterRetainedLevel(); 8794 Expr *IDC = 8795 cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint() 8796 ->getImmediatelyDeclaredConstraint(); 8797 ExprResult Constraint = SubstExpr(IDC, MLTAL); 8798 assert(!Constraint.isInvalid() && 8799 "Substitution cannot fail as it is simply putting a type template " 8800 "argument into a concept specialization expression's parameter."); 8801 8802 SubstitutedConstraintExpr = 8803 cast<ConceptSpecializationExpr>(Constraint.get()); 8804 if (!SubstitutedConstraintExpr->isSatisfied()) 8805 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied; 8806 } 8807 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc, 8808 ReturnTypeRequirement, Status, 8809 SubstitutedConstraintExpr); 8810 } 8811 8812 concepts::ExprRequirement * 8813 Sema::BuildExprRequirement( 8814 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic, 8815 bool IsSimple, SourceLocation NoexceptLoc, 8816 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8817 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic, 8818 IsSimple, NoexceptLoc, 8819 ReturnTypeRequirement); 8820 } 8821 8822 concepts::TypeRequirement * 8823 Sema::BuildTypeRequirement(TypeSourceInfo *Type) { 8824 return new (Context) concepts::TypeRequirement(Type); 8825 } 8826 8827 concepts::TypeRequirement * 8828 Sema::BuildTypeRequirement( 8829 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8830 return new (Context) concepts::TypeRequirement(SubstDiag); 8831 } 8832 8833 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) { 8834 return BuildNestedRequirement(Constraint); 8835 } 8836 8837 concepts::NestedRequirement * 8838 Sema::BuildNestedRequirement(Expr *Constraint) { 8839 ConstraintSatisfaction Satisfaction; 8840 if (!Constraint->isInstantiationDependent() && 8841 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{}, 8842 Constraint->getSourceRange(), Satisfaction)) 8843 return nullptr; 8844 return new (Context) concepts::NestedRequirement(Context, Constraint, 8845 Satisfaction); 8846 } 8847 8848 concepts::NestedRequirement * 8849 Sema::BuildNestedRequirement( 8850 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8851 return new (Context) concepts::NestedRequirement(SubstDiag); 8852 } 8853 8854 RequiresExprBodyDecl * 8855 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, 8856 ArrayRef<ParmVarDecl *> LocalParameters, 8857 Scope *BodyScope) { 8858 assert(BodyScope); 8859 8860 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext, 8861 RequiresKWLoc); 8862 8863 PushDeclContext(BodyScope, Body); 8864 8865 for (ParmVarDecl *Param : LocalParameters) { 8866 if (Param->hasDefaultArg()) 8867 // C++2a [expr.prim.req] p4 8868 // [...] A local parameter of a requires-expression shall not have a 8869 // default argument. [...] 8870 Diag(Param->getDefaultArgRange().getBegin(), 8871 diag::err_requires_expr_local_parameter_default_argument); 8872 // Ignore default argument and move on 8873 8874 Param->setDeclContext(Body); 8875 // If this has an identifier, add it to the scope stack. 8876 if (Param->getIdentifier()) { 8877 CheckShadow(BodyScope, Param); 8878 PushOnScopeChains(Param, BodyScope); 8879 } 8880 } 8881 return Body; 8882 } 8883 8884 void Sema::ActOnFinishRequiresExpr() { 8885 assert(CurContext && "DeclContext imbalance!"); 8886 CurContext = CurContext->getLexicalParent(); 8887 assert(CurContext && "Popped translation unit!"); 8888 } 8889 8890 ExprResult 8891 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc, 8892 RequiresExprBodyDecl *Body, 8893 ArrayRef<ParmVarDecl *> LocalParameters, 8894 ArrayRef<concepts::Requirement *> Requirements, 8895 SourceLocation ClosingBraceLoc) { 8896 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters, 8897 Requirements, ClosingBraceLoc); 8898 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE)) 8899 return ExprError(); 8900 return RE; 8901 } 8902