1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Implements semantic analysis for C++ expressions. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/Template.h" 15 #include "clang/Sema/SemaInternal.h" 16 #include "TreeTransform.h" 17 #include "TypeLocBuilder.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/ASTLambda.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/ExprObjC.h" 25 #include "clang/AST/RecursiveASTVisitor.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/Basic/AlignedAllocation.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Sema/DeclSpec.h" 32 #include "clang/Sema/Initialization.h" 33 #include "clang/Sema/Lookup.h" 34 #include "clang/Sema/ParsedTemplate.h" 35 #include "clang/Sema/Scope.h" 36 #include "clang/Sema/ScopeInfo.h" 37 #include "clang/Sema/SemaLambda.h" 38 #include "clang/Sema/TemplateDeduction.h" 39 #include "llvm/ADT/APInt.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include "llvm/Support/ErrorHandling.h" 42 using namespace clang; 43 using namespace sema; 44 45 /// Handle the result of the special case name lookup for inheriting 46 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as 47 /// constructor names in member using declarations, even if 'X' is not the 48 /// name of the corresponding type. 49 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, 50 SourceLocation NameLoc, 51 IdentifierInfo &Name) { 52 NestedNameSpecifier *NNS = SS.getScopeRep(); 53 54 // Convert the nested-name-specifier into a type. 55 QualType Type; 56 switch (NNS->getKind()) { 57 case NestedNameSpecifier::TypeSpec: 58 case NestedNameSpecifier::TypeSpecWithTemplate: 59 Type = QualType(NNS->getAsType(), 0); 60 break; 61 62 case NestedNameSpecifier::Identifier: 63 // Strip off the last layer of the nested-name-specifier and build a 64 // typename type for it. 65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); 66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(), 67 NNS->getAsIdentifier()); 68 break; 69 70 case NestedNameSpecifier::Global: 71 case NestedNameSpecifier::Super: 72 case NestedNameSpecifier::Namespace: 73 case NestedNameSpecifier::NamespaceAlias: 74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); 75 } 76 77 // This reference to the type is located entirely at the location of the 78 // final identifier in the qualified-id. 79 return CreateParsedType(Type, 80 Context.getTrivialTypeSourceInfo(Type, NameLoc)); 81 } 82 83 ParsedType Sema::getConstructorName(IdentifierInfo &II, 84 SourceLocation NameLoc, 85 Scope *S, CXXScopeSpec &SS, 86 bool EnteringContext) { 87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS); 88 assert(CurClass && &II == CurClass->getIdentifier() && 89 "not a constructor name"); 90 91 // When naming a constructor as a member of a dependent context (eg, in a 92 // friend declaration or an inherited constructor declaration), form an 93 // unresolved "typename" type. 94 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) { 95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II); 96 return ParsedType::make(T); 97 } 98 99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass)) 100 return ParsedType(); 101 102 // Find the injected-class-name declaration. Note that we make no attempt to 103 // diagnose cases where the injected-class-name is shadowed: the only 104 // declaration that can validly shadow the injected-class-name is a 105 // non-static data member, and if the class contains both a non-static data 106 // member and a constructor then it is ill-formed (we check that in 107 // CheckCompletedCXXClass). 108 CXXRecordDecl *InjectedClassName = nullptr; 109 for (NamedDecl *ND : CurClass->lookup(&II)) { 110 auto *RD = dyn_cast<CXXRecordDecl>(ND); 111 if (RD && RD->isInjectedClassName()) { 112 InjectedClassName = RD; 113 break; 114 } 115 } 116 if (!InjectedClassName) { 117 if (!CurClass->isInvalidDecl()) { 118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts 119 // properly. Work around it here for now. 120 Diag(SS.getLastQualifierNameLoc(), 121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange(); 122 } 123 return ParsedType(); 124 } 125 126 QualType T = Context.getTypeDeclType(InjectedClassName); 127 DiagnoseUseOfDecl(InjectedClassName, NameLoc); 128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false); 129 130 return ParsedType::make(T); 131 } 132 133 ParsedType Sema::getDestructorName(SourceLocation TildeLoc, 134 IdentifierInfo &II, 135 SourceLocation NameLoc, 136 Scope *S, CXXScopeSpec &SS, 137 ParsedType ObjectTypePtr, 138 bool EnteringContext) { 139 // Determine where to perform name lookup. 140 141 // FIXME: This area of the standard is very messy, and the current 142 // wording is rather unclear about which scopes we search for the 143 // destructor name; see core issues 399 and 555. Issue 399 in 144 // particular shows where the current description of destructor name 145 // lookup is completely out of line with existing practice, e.g., 146 // this appears to be ill-formed: 147 // 148 // namespace N { 149 // template <typename T> struct S { 150 // ~S(); 151 // }; 152 // } 153 // 154 // void f(N::S<int>* s) { 155 // s->N::S<int>::~S(); 156 // } 157 // 158 // See also PR6358 and PR6359. 159 // 160 // For now, we accept all the cases in which the name given could plausibly 161 // be interpreted as a correct destructor name, issuing off-by-default 162 // extension diagnostics on the cases that don't strictly conform to the 163 // C++20 rules. This basically means we always consider looking in the 164 // nested-name-specifier prefix, the complete nested-name-specifier, and 165 // the scope, and accept if we find the expected type in any of the three 166 // places. 167 168 if (SS.isInvalid()) 169 return nullptr; 170 171 // Whether we've failed with a diagnostic already. 172 bool Failed = false; 173 174 llvm::SmallVector<NamedDecl*, 8> FoundDecls; 175 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet; 176 177 // If we have an object type, it's because we are in a 178 // pseudo-destructor-expression or a member access expression, and 179 // we know what type we're looking for. 180 QualType SearchType = 181 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType(); 182 183 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType { 184 auto IsAcceptableResult = [&](NamedDecl *D) -> bool { 185 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl()); 186 if (!Type) 187 return false; 188 189 if (SearchType.isNull() || SearchType->isDependentType()) 190 return true; 191 192 QualType T = Context.getTypeDeclType(Type); 193 return Context.hasSameUnqualifiedType(T, SearchType); 194 }; 195 196 unsigned NumAcceptableResults = 0; 197 for (NamedDecl *D : Found) { 198 if (IsAcceptableResult(D)) 199 ++NumAcceptableResults; 200 201 // Don't list a class twice in the lookup failure diagnostic if it's 202 // found by both its injected-class-name and by the name in the enclosing 203 // scope. 204 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 205 if (RD->isInjectedClassName()) 206 D = cast<NamedDecl>(RD->getParent()); 207 208 if (FoundDeclSet.insert(D).second) 209 FoundDecls.push_back(D); 210 } 211 212 // As an extension, attempt to "fix" an ambiguity by erasing all non-type 213 // results, and all non-matching results if we have a search type. It's not 214 // clear what the right behavior is if destructor lookup hits an ambiguity, 215 // but other compilers do generally accept at least some kinds of 216 // ambiguity. 217 if (Found.isAmbiguous() && NumAcceptableResults == 1) { 218 Diag(NameLoc, diag::ext_dtor_name_ambiguous); 219 LookupResult::Filter F = Found.makeFilter(); 220 while (F.hasNext()) { 221 NamedDecl *D = F.next(); 222 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 223 Diag(D->getLocation(), diag::note_destructor_type_here) 224 << Context.getTypeDeclType(TD); 225 else 226 Diag(D->getLocation(), diag::note_destructor_nontype_here); 227 228 if (!IsAcceptableResult(D)) 229 F.erase(); 230 } 231 F.done(); 232 } 233 234 if (Found.isAmbiguous()) 235 Failed = true; 236 237 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { 238 if (IsAcceptableResult(Type)) { 239 QualType T = Context.getTypeDeclType(Type); 240 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 241 return CreateParsedType(T, 242 Context.getTrivialTypeSourceInfo(T, NameLoc)); 243 } 244 } 245 246 return nullptr; 247 }; 248 249 bool IsDependent = false; 250 251 auto LookupInObjectType = [&]() -> ParsedType { 252 if (Failed || SearchType.isNull()) 253 return nullptr; 254 255 IsDependent |= SearchType->isDependentType(); 256 257 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 258 DeclContext *LookupCtx = computeDeclContext(SearchType); 259 if (!LookupCtx) 260 return nullptr; 261 LookupQualifiedName(Found, LookupCtx); 262 return CheckLookupResult(Found); 263 }; 264 265 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType { 266 if (Failed) 267 return nullptr; 268 269 IsDependent |= isDependentScopeSpecifier(LookupSS); 270 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext); 271 if (!LookupCtx) 272 return nullptr; 273 274 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 275 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) { 276 Failed = true; 277 return nullptr; 278 } 279 LookupQualifiedName(Found, LookupCtx); 280 return CheckLookupResult(Found); 281 }; 282 283 auto LookupInScope = [&]() -> ParsedType { 284 if (Failed || !S) 285 return nullptr; 286 287 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 288 LookupName(Found, S); 289 return CheckLookupResult(Found); 290 }; 291 292 // C++2a [basic.lookup.qual]p6: 293 // In a qualified-id of the form 294 // 295 // nested-name-specifier[opt] type-name :: ~ type-name 296 // 297 // the second type-name is looked up in the same scope as the first. 298 // 299 // We interpret this as meaning that if you do a dual-scope lookup for the 300 // first name, you also do a dual-scope lookup for the second name, per 301 // C++ [basic.lookup.classref]p4: 302 // 303 // If the id-expression in a class member access is a qualified-id of the 304 // form 305 // 306 // class-name-or-namespace-name :: ... 307 // 308 // the class-name-or-namespace-name following the . or -> is first looked 309 // up in the class of the object expression and the name, if found, is used. 310 // Otherwise, it is looked up in the context of the entire 311 // postfix-expression. 312 // 313 // This looks in the same scopes as for an unqualified destructor name: 314 // 315 // C++ [basic.lookup.classref]p3: 316 // If the unqualified-id is ~ type-name, the type-name is looked up 317 // in the context of the entire postfix-expression. If the type T 318 // of the object expression is of a class type C, the type-name is 319 // also looked up in the scope of class C. At least one of the 320 // lookups shall find a name that refers to cv T. 321 // 322 // FIXME: The intent is unclear here. Should type-name::~type-name look in 323 // the scope anyway if it finds a non-matching name declared in the class? 324 // If both lookups succeed and find a dependent result, which result should 325 // we retain? (Same question for p->~type-name().) 326 327 if (NestedNameSpecifier *Prefix = 328 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) { 329 // This is 330 // 331 // nested-name-specifier type-name :: ~ type-name 332 // 333 // Look for the second type-name in the nested-name-specifier. 334 CXXScopeSpec PrefixSS; 335 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); 336 if (ParsedType T = LookupInNestedNameSpec(PrefixSS)) 337 return T; 338 } else { 339 // This is one of 340 // 341 // type-name :: ~ type-name 342 // ~ type-name 343 // 344 // Look in the scope and (if any) the object type. 345 if (ParsedType T = LookupInScope()) 346 return T; 347 if (ParsedType T = LookupInObjectType()) 348 return T; 349 } 350 351 if (Failed) 352 return nullptr; 353 354 if (IsDependent) { 355 // We didn't find our type, but that's OK: it's dependent anyway. 356 357 // FIXME: What if we have no nested-name-specifier? 358 QualType T = CheckTypenameType(ETK_None, SourceLocation(), 359 SS.getWithLocInContext(Context), 360 II, NameLoc); 361 return ParsedType::make(T); 362 } 363 364 // The remaining cases are all non-standard extensions imitating the behavior 365 // of various other compilers. 366 unsigned NumNonExtensionDecls = FoundDecls.size(); 367 368 if (SS.isSet()) { 369 // For compatibility with older broken C++ rules and existing code, 370 // 371 // nested-name-specifier :: ~ type-name 372 // 373 // also looks for type-name within the nested-name-specifier. 374 if (ParsedType T = LookupInNestedNameSpec(SS)) { 375 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope) 376 << SS.getRange() 377 << FixItHint::CreateInsertion(SS.getEndLoc(), 378 ("::" + II.getName()).str()); 379 return T; 380 } 381 382 // For compatibility with other compilers and older versions of Clang, 383 // 384 // nested-name-specifier type-name :: ~ type-name 385 // 386 // also looks for type-name in the scope. Unfortunately, we can't 387 // reasonably apply this fallback for dependent nested-name-specifiers. 388 if (SS.getScopeRep()->getPrefix()) { 389 if (ParsedType T = LookupInScope()) { 390 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope) 391 << FixItHint::CreateRemoval(SS.getRange()); 392 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here) 393 << GetTypeFromParser(T); 394 return T; 395 } 396 } 397 } 398 399 // We didn't find anything matching; tell the user what we did find (if 400 // anything). 401 402 // Don't tell the user about declarations we shouldn't have found. 403 FoundDecls.resize(NumNonExtensionDecls); 404 405 // List types before non-types. 406 std::stable_sort(FoundDecls.begin(), FoundDecls.end(), 407 [](NamedDecl *A, NamedDecl *B) { 408 return isa<TypeDecl>(A->getUnderlyingDecl()) > 409 isa<TypeDecl>(B->getUnderlyingDecl()); 410 }); 411 412 // Suggest a fixit to properly name the destroyed type. 413 auto MakeFixItHint = [&]{ 414 const CXXRecordDecl *Destroyed = nullptr; 415 // FIXME: If we have a scope specifier, suggest its last component? 416 if (!SearchType.isNull()) 417 Destroyed = SearchType->getAsCXXRecordDecl(); 418 else if (S) 419 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity()); 420 if (Destroyed) 421 return FixItHint::CreateReplacement(SourceRange(NameLoc), 422 Destroyed->getNameAsString()); 423 return FixItHint(); 424 }; 425 426 if (FoundDecls.empty()) { 427 // FIXME: Attempt typo-correction? 428 Diag(NameLoc, diag::err_undeclared_destructor_name) 429 << &II << MakeFixItHint(); 430 } else if (!SearchType.isNull() && FoundDecls.size() == 1) { 431 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) { 432 assert(!SearchType.isNull() && 433 "should only reject a type result if we have a search type"); 434 QualType T = Context.getTypeDeclType(TD); 435 Diag(NameLoc, diag::err_destructor_expr_type_mismatch) 436 << T << SearchType << MakeFixItHint(); 437 } else { 438 Diag(NameLoc, diag::err_destructor_expr_nontype) 439 << &II << MakeFixItHint(); 440 } 441 } else { 442 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype 443 : diag::err_destructor_expr_mismatch) 444 << &II << SearchType << MakeFixItHint(); 445 } 446 447 for (NamedDecl *FoundD : FoundDecls) { 448 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl())) 449 Diag(FoundD->getLocation(), diag::note_destructor_type_here) 450 << Context.getTypeDeclType(TD); 451 else 452 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here) 453 << FoundD; 454 } 455 456 return nullptr; 457 } 458 459 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS, 460 ParsedType ObjectType) { 461 if (DS.getTypeSpecType() == DeclSpec::TST_error) 462 return nullptr; 463 464 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 465 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 466 return nullptr; 467 } 468 469 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype && 470 "unexpected type in getDestructorType"); 471 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 472 473 // If we know the type of the object, check that the correct destructor 474 // type was named now; we can give better diagnostics this way. 475 QualType SearchType = GetTypeFromParser(ObjectType); 476 if (!SearchType.isNull() && !SearchType->isDependentType() && 477 !Context.hasSameUnqualifiedType(T, SearchType)) { 478 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) 479 << T << SearchType; 480 return nullptr; 481 } 482 483 return ParsedType::make(T); 484 } 485 486 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, 487 const UnqualifiedId &Name) { 488 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId); 489 490 if (!SS.isValid()) 491 return false; 492 493 switch (SS.getScopeRep()->getKind()) { 494 case NestedNameSpecifier::Identifier: 495 case NestedNameSpecifier::TypeSpec: 496 case NestedNameSpecifier::TypeSpecWithTemplate: 497 // Per C++11 [over.literal]p2, literal operators can only be declared at 498 // namespace scope. Therefore, this unqualified-id cannot name anything. 499 // Reject it early, because we have no AST representation for this in the 500 // case where the scope is dependent. 501 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace) 502 << SS.getScopeRep(); 503 return true; 504 505 case NestedNameSpecifier::Global: 506 case NestedNameSpecifier::Super: 507 case NestedNameSpecifier::Namespace: 508 case NestedNameSpecifier::NamespaceAlias: 509 return false; 510 } 511 512 llvm_unreachable("unknown nested name specifier kind"); 513 } 514 515 /// Build a C++ typeid expression with a type operand. 516 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 517 SourceLocation TypeidLoc, 518 TypeSourceInfo *Operand, 519 SourceLocation RParenLoc) { 520 // C++ [expr.typeid]p4: 521 // The top-level cv-qualifiers of the lvalue expression or the type-id 522 // that is the operand of typeid are always ignored. 523 // If the type of the type-id is a class type or a reference to a class 524 // type, the class shall be completely-defined. 525 Qualifiers Quals; 526 QualType T 527 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), 528 Quals); 529 if (T->getAs<RecordType>() && 530 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 531 return ExprError(); 532 533 if (T->isVariablyModifiedType()) 534 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); 535 536 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc)) 537 return ExprError(); 538 539 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, 540 SourceRange(TypeidLoc, RParenLoc)); 541 } 542 543 /// Build a C++ typeid expression with an expression operand. 544 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 545 SourceLocation TypeidLoc, 546 Expr *E, 547 SourceLocation RParenLoc) { 548 bool WasEvaluated = false; 549 if (E && !E->isTypeDependent()) { 550 if (E->getType()->isPlaceholderType()) { 551 ExprResult result = CheckPlaceholderExpr(E); 552 if (result.isInvalid()) return ExprError(); 553 E = result.get(); 554 } 555 556 QualType T = E->getType(); 557 if (const RecordType *RecordT = T->getAs<RecordType>()) { 558 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); 559 // C++ [expr.typeid]p3: 560 // [...] If the type of the expression is a class type, the class 561 // shall be completely-defined. 562 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 563 return ExprError(); 564 565 // C++ [expr.typeid]p3: 566 // When typeid is applied to an expression other than an glvalue of a 567 // polymorphic class type [...] [the] expression is an unevaluated 568 // operand. [...] 569 if (RecordD->isPolymorphic() && E->isGLValue()) { 570 // The subexpression is potentially evaluated; switch the context 571 // and recheck the subexpression. 572 ExprResult Result = TransformToPotentiallyEvaluated(E); 573 if (Result.isInvalid()) return ExprError(); 574 E = Result.get(); 575 576 // We require a vtable to query the type at run time. 577 MarkVTableUsed(TypeidLoc, RecordD); 578 WasEvaluated = true; 579 } 580 } 581 582 ExprResult Result = CheckUnevaluatedOperand(E); 583 if (Result.isInvalid()) 584 return ExprError(); 585 E = Result.get(); 586 587 // C++ [expr.typeid]p4: 588 // [...] If the type of the type-id is a reference to a possibly 589 // cv-qualified type, the result of the typeid expression refers to a 590 // std::type_info object representing the cv-unqualified referenced 591 // type. 592 Qualifiers Quals; 593 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); 594 if (!Context.hasSameType(T, UnqualT)) { 595 T = UnqualT; 596 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); 597 } 598 } 599 600 if (E->getType()->isVariablyModifiedType()) 601 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) 602 << E->getType()); 603 else if (!inTemplateInstantiation() && 604 E->HasSideEffects(Context, WasEvaluated)) { 605 // The expression operand for typeid is in an unevaluated expression 606 // context, so side effects could result in unintended consequences. 607 Diag(E->getExprLoc(), WasEvaluated 608 ? diag::warn_side_effects_typeid 609 : diag::warn_side_effects_unevaluated_context); 610 } 611 612 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, 613 SourceRange(TypeidLoc, RParenLoc)); 614 } 615 616 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); 617 ExprResult 618 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, 619 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 620 // typeid is not supported in OpenCL. 621 if (getLangOpts().OpenCLCPlusPlus) { 622 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) 623 << "typeid"); 624 } 625 626 // Find the std::type_info type. 627 if (!getStdNamespace()) 628 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 629 630 if (!CXXTypeInfoDecl) { 631 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); 632 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); 633 LookupQualifiedName(R, getStdNamespace()); 634 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 635 // Microsoft's typeinfo doesn't have type_info in std but in the global 636 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. 637 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { 638 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 639 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 640 } 641 if (!CXXTypeInfoDecl) 642 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 643 } 644 645 if (!getLangOpts().RTTI) { 646 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); 647 } 648 649 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); 650 651 if (isType) { 652 // The operand is a type; handle it as such. 653 TypeSourceInfo *TInfo = nullptr; 654 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 655 &TInfo); 656 if (T.isNull()) 657 return ExprError(); 658 659 if (!TInfo) 660 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 661 662 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); 663 } 664 665 // The operand is an expression. 666 ExprResult Result = 667 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc); 668 669 if (!getLangOpts().RTTIData && !Result.isInvalid()) 670 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get())) 671 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context)) 672 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled) 673 << (getDiagnostics().getDiagnosticOptions().getFormat() == 674 DiagnosticOptions::MSVC); 675 return Result; 676 } 677 678 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to 679 /// a single GUID. 680 static void 681 getUuidAttrOfType(Sema &SemaRef, QualType QT, 682 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) { 683 // Optionally remove one level of pointer, reference or array indirection. 684 const Type *Ty = QT.getTypePtr(); 685 if (QT->isPointerType() || QT->isReferenceType()) 686 Ty = QT->getPointeeType().getTypePtr(); 687 else if (QT->isArrayType()) 688 Ty = Ty->getBaseElementTypeUnsafe(); 689 690 const auto *TD = Ty->getAsTagDecl(); 691 if (!TD) 692 return; 693 694 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) { 695 UuidAttrs.insert(Uuid); 696 return; 697 } 698 699 // __uuidof can grab UUIDs from template arguments. 700 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) { 701 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 702 for (const TemplateArgument &TA : TAL.asArray()) { 703 const UuidAttr *UuidForTA = nullptr; 704 if (TA.getKind() == TemplateArgument::Type) 705 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs); 706 else if (TA.getKind() == TemplateArgument::Declaration) 707 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs); 708 709 if (UuidForTA) 710 UuidAttrs.insert(UuidForTA); 711 } 712 } 713 } 714 715 /// Build a Microsoft __uuidof expression with a type operand. 716 ExprResult Sema::BuildCXXUuidof(QualType Type, 717 SourceLocation TypeidLoc, 718 TypeSourceInfo *Operand, 719 SourceLocation RParenLoc) { 720 MSGuidDecl *Guid = nullptr; 721 if (!Operand->getType()->isDependentType()) { 722 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 723 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs); 724 if (UuidAttrs.empty()) 725 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 726 if (UuidAttrs.size() > 1) 727 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 728 Guid = UuidAttrs.back()->getGuidDecl(); 729 } 730 731 return new (Context) 732 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc)); 733 } 734 735 /// Build a Microsoft __uuidof expression with an expression operand. 736 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc, 737 Expr *E, SourceLocation RParenLoc) { 738 MSGuidDecl *Guid = nullptr; 739 if (!E->getType()->isDependentType()) { 740 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 741 // A null pointer results in {00000000-0000-0000-0000-000000000000}. 742 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{}); 743 } else { 744 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 745 getUuidAttrOfType(*this, E->getType(), UuidAttrs); 746 if (UuidAttrs.empty()) 747 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 748 if (UuidAttrs.size() > 1) 749 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 750 Guid = UuidAttrs.back()->getGuidDecl(); 751 } 752 } 753 754 return new (Context) 755 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc)); 756 } 757 758 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); 759 ExprResult 760 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, 761 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 762 QualType GuidType = Context.getMSGuidType(); 763 GuidType.addConst(); 764 765 if (isType) { 766 // The operand is a type; handle it as such. 767 TypeSourceInfo *TInfo = nullptr; 768 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 769 &TInfo); 770 if (T.isNull()) 771 return ExprError(); 772 773 if (!TInfo) 774 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 775 776 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); 777 } 778 779 // The operand is an expression. 780 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 781 } 782 783 /// ActOnCXXBoolLiteral - Parse {true,false} literals. 784 ExprResult 785 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { 786 assert((Kind == tok::kw_true || Kind == tok::kw_false) && 787 "Unknown C++ Boolean value!"); 788 return new (Context) 789 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); 790 } 791 792 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. 793 ExprResult 794 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { 795 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 796 } 797 798 /// ActOnCXXThrow - Parse throw expressions. 799 ExprResult 800 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { 801 bool IsThrownVarInScope = false; 802 if (Ex) { 803 // C++0x [class.copymove]p31: 804 // When certain criteria are met, an implementation is allowed to omit the 805 // copy/move construction of a class object [...] 806 // 807 // - in a throw-expression, when the operand is the name of a 808 // non-volatile automatic object (other than a function or catch- 809 // clause parameter) whose scope does not extend beyond the end of the 810 // innermost enclosing try-block (if there is one), the copy/move 811 // operation from the operand to the exception object (15.1) can be 812 // omitted by constructing the automatic object directly into the 813 // exception object 814 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) 815 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 816 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { 817 for( ; S; S = S->getParent()) { 818 if (S->isDeclScope(Var)) { 819 IsThrownVarInScope = true; 820 break; 821 } 822 823 if (S->getFlags() & 824 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | 825 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope | 826 Scope::TryScope)) 827 break; 828 } 829 } 830 } 831 } 832 833 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); 834 } 835 836 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 837 bool IsThrownVarInScope) { 838 // Don't report an error if 'throw' is used in system headers. 839 if (!getLangOpts().CXXExceptions && 840 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) { 841 // Delay error emission for the OpenMP device code. 842 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw"; 843 } 844 845 // Exceptions aren't allowed in CUDA device code. 846 if (getLangOpts().CUDA) 847 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions) 848 << "throw" << CurrentCUDATarget(); 849 850 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 851 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; 852 853 if (Ex && !Ex->isTypeDependent()) { 854 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); 855 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) 856 return ExprError(); 857 858 // Initialize the exception result. This implicitly weeds out 859 // abstract types or types with inaccessible copy constructors. 860 861 // C++0x [class.copymove]p31: 862 // When certain criteria are met, an implementation is allowed to omit the 863 // copy/move construction of a class object [...] 864 // 865 // - in a throw-expression, when the operand is the name of a 866 // non-volatile automatic object (other than a function or 867 // catch-clause 868 // parameter) whose scope does not extend beyond the end of the 869 // innermost enclosing try-block (if there is one), the copy/move 870 // operation from the operand to the exception object (15.1) can be 871 // omitted by constructing the automatic object directly into the 872 // exception object 873 const VarDecl *NRVOVariable = nullptr; 874 if (IsThrownVarInScope) 875 NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict); 876 877 InitializedEntity Entity = InitializedEntity::InitializeException( 878 OpLoc, ExceptionObjectTy, 879 /*NRVO=*/NRVOVariable != nullptr); 880 ExprResult Res = PerformMoveOrCopyInitialization( 881 Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope); 882 if (Res.isInvalid()) 883 return ExprError(); 884 Ex = Res.get(); 885 } 886 887 // PPC MMA non-pointer types are not allowed as throw expr types. 888 if (Ex && Context.getTargetInfo().getTriple().isPPC64()) 889 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc()); 890 891 return new (Context) 892 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); 893 } 894 895 static void 896 collectPublicBases(CXXRecordDecl *RD, 897 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, 898 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, 899 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, 900 bool ParentIsPublic) { 901 for (const CXXBaseSpecifier &BS : RD->bases()) { 902 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 903 bool NewSubobject; 904 // Virtual bases constitute the same subobject. Non-virtual bases are 905 // always distinct subobjects. 906 if (BS.isVirtual()) 907 NewSubobject = VBases.insert(BaseDecl).second; 908 else 909 NewSubobject = true; 910 911 if (NewSubobject) 912 ++SubobjectsSeen[BaseDecl]; 913 914 // Only add subobjects which have public access throughout the entire chain. 915 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; 916 if (PublicPath) 917 PublicSubobjectsSeen.insert(BaseDecl); 918 919 // Recurse on to each base subobject. 920 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, 921 PublicPath); 922 } 923 } 924 925 static void getUnambiguousPublicSubobjects( 926 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { 927 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; 928 llvm::SmallSet<CXXRecordDecl *, 2> VBases; 929 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; 930 SubobjectsSeen[RD] = 1; 931 PublicSubobjectsSeen.insert(RD); 932 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, 933 /*ParentIsPublic=*/true); 934 935 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { 936 // Skip ambiguous objects. 937 if (SubobjectsSeen[PublicSubobject] > 1) 938 continue; 939 940 Objects.push_back(PublicSubobject); 941 } 942 } 943 944 /// CheckCXXThrowOperand - Validate the operand of a throw. 945 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, 946 QualType ExceptionObjectTy, Expr *E) { 947 // If the type of the exception would be an incomplete type or a pointer 948 // to an incomplete type other than (cv) void the program is ill-formed. 949 QualType Ty = ExceptionObjectTy; 950 bool isPointer = false; 951 if (const PointerType* Ptr = Ty->getAs<PointerType>()) { 952 Ty = Ptr->getPointeeType(); 953 isPointer = true; 954 } 955 if (!isPointer || !Ty->isVoidType()) { 956 if (RequireCompleteType(ThrowLoc, Ty, 957 isPointer ? diag::err_throw_incomplete_ptr 958 : diag::err_throw_incomplete, 959 E->getSourceRange())) 960 return true; 961 962 if (!isPointer && Ty->isSizelessType()) { 963 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange(); 964 return true; 965 } 966 967 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, 968 diag::err_throw_abstract_type, E)) 969 return true; 970 } 971 972 // If the exception has class type, we need additional handling. 973 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 974 if (!RD) 975 return false; 976 977 // If we are throwing a polymorphic class type or pointer thereof, 978 // exception handling will make use of the vtable. 979 MarkVTableUsed(ThrowLoc, RD); 980 981 // If a pointer is thrown, the referenced object will not be destroyed. 982 if (isPointer) 983 return false; 984 985 // If the class has a destructor, we must be able to call it. 986 if (!RD->hasIrrelevantDestructor()) { 987 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 988 MarkFunctionReferenced(E->getExprLoc(), Destructor); 989 CheckDestructorAccess(E->getExprLoc(), Destructor, 990 PDiag(diag::err_access_dtor_exception) << Ty); 991 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 992 return true; 993 } 994 } 995 996 // The MSVC ABI creates a list of all types which can catch the exception 997 // object. This list also references the appropriate copy constructor to call 998 // if the object is caught by value and has a non-trivial copy constructor. 999 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1000 // We are only interested in the public, unambiguous bases contained within 1001 // the exception object. Bases which are ambiguous or otherwise 1002 // inaccessible are not catchable types. 1003 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; 1004 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); 1005 1006 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { 1007 // Attempt to lookup the copy constructor. Various pieces of machinery 1008 // will spring into action, like template instantiation, which means this 1009 // cannot be a simple walk of the class's decls. Instead, we must perform 1010 // lookup and overload resolution. 1011 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); 1012 if (!CD || CD->isDeleted()) 1013 continue; 1014 1015 // Mark the constructor referenced as it is used by this throw expression. 1016 MarkFunctionReferenced(E->getExprLoc(), CD); 1017 1018 // Skip this copy constructor if it is trivial, we don't need to record it 1019 // in the catchable type data. 1020 if (CD->isTrivial()) 1021 continue; 1022 1023 // The copy constructor is non-trivial, create a mapping from this class 1024 // type to this constructor. 1025 // N.B. The selection of copy constructor is not sensitive to this 1026 // particular throw-site. Lookup will be performed at the catch-site to 1027 // ensure that the copy constructor is, in fact, accessible (via 1028 // friendship or any other means). 1029 Context.addCopyConstructorForExceptionObject(Subobject, CD); 1030 1031 // We don't keep the instantiated default argument expressions around so 1032 // we must rebuild them here. 1033 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { 1034 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I))) 1035 return true; 1036 } 1037 } 1038 } 1039 1040 // Under the Itanium C++ ABI, memory for the exception object is allocated by 1041 // the runtime with no ability for the compiler to request additional 1042 // alignment. Warn if the exception type requires alignment beyond the minimum 1043 // guaranteed by the target C++ runtime. 1044 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) { 1045 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty); 1046 CharUnits ExnObjAlign = Context.getExnObjectAlignment(); 1047 if (ExnObjAlign < TypeAlign) { 1048 Diag(ThrowLoc, diag::warn_throw_underaligned_obj); 1049 Diag(ThrowLoc, diag::note_throw_underaligned_obj) 1050 << Ty << (unsigned)TypeAlign.getQuantity() 1051 << (unsigned)ExnObjAlign.getQuantity(); 1052 } 1053 } 1054 1055 return false; 1056 } 1057 1058 static QualType adjustCVQualifiersForCXXThisWithinLambda( 1059 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy, 1060 DeclContext *CurSemaContext, ASTContext &ASTCtx) { 1061 1062 QualType ClassType = ThisTy->getPointeeType(); 1063 LambdaScopeInfo *CurLSI = nullptr; 1064 DeclContext *CurDC = CurSemaContext; 1065 1066 // Iterate through the stack of lambdas starting from the innermost lambda to 1067 // the outermost lambda, checking if '*this' is ever captured by copy - since 1068 // that could change the cv-qualifiers of the '*this' object. 1069 // The object referred to by '*this' starts out with the cv-qualifiers of its 1070 // member function. We then start with the innermost lambda and iterate 1071 // outward checking to see if any lambda performs a by-copy capture of '*this' 1072 // - and if so, any nested lambda must respect the 'constness' of that 1073 // capturing lamdbda's call operator. 1074 // 1075 1076 // Since the FunctionScopeInfo stack is representative of the lexical 1077 // nesting of the lambda expressions during initial parsing (and is the best 1078 // place for querying information about captures about lambdas that are 1079 // partially processed) and perhaps during instantiation of function templates 1080 // that contain lambda expressions that need to be transformed BUT not 1081 // necessarily during instantiation of a nested generic lambda's function call 1082 // operator (which might even be instantiated at the end of the TU) - at which 1083 // time the DeclContext tree is mature enough to query capture information 1084 // reliably - we use a two pronged approach to walk through all the lexically 1085 // enclosing lambda expressions: 1086 // 1087 // 1) Climb down the FunctionScopeInfo stack as long as each item represents 1088 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically 1089 // enclosed by the call-operator of the LSI below it on the stack (while 1090 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on 1091 // the stack represents the innermost lambda. 1092 // 1093 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext 1094 // represents a lambda's call operator. If it does, we must be instantiating 1095 // a generic lambda's call operator (represented by the Current LSI, and 1096 // should be the only scenario where an inconsistency between the LSI and the 1097 // DeclContext should occur), so climb out the DeclContexts if they 1098 // represent lambdas, while querying the corresponding closure types 1099 // regarding capture information. 1100 1101 // 1) Climb down the function scope info stack. 1102 for (int I = FunctionScopes.size(); 1103 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) && 1104 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() == 1105 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator); 1106 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) { 1107 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]); 1108 1109 if (!CurLSI->isCXXThisCaptured()) 1110 continue; 1111 1112 auto C = CurLSI->getCXXThisCapture(); 1113 1114 if (C.isCopyCapture()) { 1115 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1116 if (CurLSI->CallOperator->isConst()) 1117 ClassType.addConst(); 1118 return ASTCtx.getPointerType(ClassType); 1119 } 1120 } 1121 1122 // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can 1123 // happen during instantiation of its nested generic lambda call operator) 1124 if (isLambdaCallOperator(CurDC)) { 1125 assert(CurLSI && "While computing 'this' capture-type for a generic " 1126 "lambda, we must have a corresponding LambdaScopeInfo"); 1127 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && 1128 "While computing 'this' capture-type for a generic lambda, when we " 1129 "run out of enclosing LSI's, yet the enclosing DC is a " 1130 "lambda-call-operator we must be (i.e. Current LSI) in a generic " 1131 "lambda call oeprator"); 1132 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)); 1133 1134 auto IsThisCaptured = 1135 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) { 1136 IsConst = false; 1137 IsByCopy = false; 1138 for (auto &&C : Closure->captures()) { 1139 if (C.capturesThis()) { 1140 if (C.getCaptureKind() == LCK_StarThis) 1141 IsByCopy = true; 1142 if (Closure->getLambdaCallOperator()->isConst()) 1143 IsConst = true; 1144 return true; 1145 } 1146 } 1147 return false; 1148 }; 1149 1150 bool IsByCopyCapture = false; 1151 bool IsConstCapture = false; 1152 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent()); 1153 while (Closure && 1154 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) { 1155 if (IsByCopyCapture) { 1156 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1157 if (IsConstCapture) 1158 ClassType.addConst(); 1159 return ASTCtx.getPointerType(ClassType); 1160 } 1161 Closure = isLambdaCallOperator(Closure->getParent()) 1162 ? cast<CXXRecordDecl>(Closure->getParent()->getParent()) 1163 : nullptr; 1164 } 1165 } 1166 return ASTCtx.getPointerType(ClassType); 1167 } 1168 1169 QualType Sema::getCurrentThisType() { 1170 DeclContext *DC = getFunctionLevelDeclContext(); 1171 QualType ThisTy = CXXThisTypeOverride; 1172 1173 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { 1174 if (method && method->isInstance()) 1175 ThisTy = method->getThisType(); 1176 } 1177 1178 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) && 1179 inTemplateInstantiation()) { 1180 1181 assert(isa<CXXRecordDecl>(DC) && 1182 "Trying to get 'this' type from static method?"); 1183 1184 // This is a lambda call operator that is being instantiated as a default 1185 // initializer. DC must point to the enclosing class type, so we can recover 1186 // the 'this' type from it. 1187 1188 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC)); 1189 // There are no cv-qualifiers for 'this' within default initializers, 1190 // per [expr.prim.general]p4. 1191 ThisTy = Context.getPointerType(ClassTy); 1192 } 1193 1194 // If we are within a lambda's call operator, the cv-qualifiers of 'this' 1195 // might need to be adjusted if the lambda or any of its enclosing lambda's 1196 // captures '*this' by copy. 1197 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext)) 1198 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy, 1199 CurContext, Context); 1200 return ThisTy; 1201 } 1202 1203 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 1204 Decl *ContextDecl, 1205 Qualifiers CXXThisTypeQuals, 1206 bool Enabled) 1207 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) 1208 { 1209 if (!Enabled || !ContextDecl) 1210 return; 1211 1212 CXXRecordDecl *Record = nullptr; 1213 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) 1214 Record = Template->getTemplatedDecl(); 1215 else 1216 Record = cast<CXXRecordDecl>(ContextDecl); 1217 1218 QualType T = S.Context.getRecordType(Record); 1219 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals); 1220 1221 S.CXXThisTypeOverride = S.Context.getPointerType(T); 1222 1223 this->Enabled = true; 1224 } 1225 1226 1227 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { 1228 if (Enabled) { 1229 S.CXXThisTypeOverride = OldCXXThisTypeOverride; 1230 } 1231 } 1232 1233 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit, 1234 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt, 1235 const bool ByCopy) { 1236 // We don't need to capture this in an unevaluated context. 1237 if (isUnevaluatedContext() && !Explicit) 1238 return true; 1239 1240 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value"); 1241 1242 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt 1243 ? *FunctionScopeIndexToStopAt 1244 : FunctionScopes.size() - 1; 1245 1246 // Check that we can capture the *enclosing object* (referred to by '*this') 1247 // by the capturing-entity/closure (lambda/block/etc) at 1248 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1249 1250 // Note: The *enclosing object* can only be captured by-value by a 1251 // closure that is a lambda, using the explicit notation: 1252 // [*this] { ... }. 1253 // Every other capture of the *enclosing object* results in its by-reference 1254 // capture. 1255 1256 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1257 // stack), we can capture the *enclosing object* only if: 1258 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1259 // - or, 'L' has an implicit capture. 1260 // AND 1261 // -- there is no enclosing closure 1262 // -- or, there is some enclosing closure 'E' that has already captured the 1263 // *enclosing object*, and every intervening closure (if any) between 'E' 1264 // and 'L' can implicitly capture the *enclosing object*. 1265 // -- or, every enclosing closure can implicitly capture the 1266 // *enclosing object* 1267 1268 1269 unsigned NumCapturingClosures = 0; 1270 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) { 1271 if (CapturingScopeInfo *CSI = 1272 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { 1273 if (CSI->CXXThisCaptureIndex != 0) { 1274 // 'this' is already being captured; there isn't anything more to do. 1275 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1276 break; 1277 } 1278 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); 1279 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1280 // This context can't implicitly capture 'this'; fail out. 1281 if (BuildAndDiagnose) 1282 Diag(Loc, diag::err_this_capture) 1283 << (Explicit && idx == MaxFunctionScopesIndex); 1284 return true; 1285 } 1286 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || 1287 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || 1288 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || 1289 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || 1290 (Explicit && idx == MaxFunctionScopesIndex)) { 1291 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1292 // iteration through can be an explicit capture, all enclosing closures, 1293 // if any, must perform implicit captures. 1294 1295 // This closure can capture 'this'; continue looking upwards. 1296 NumCapturingClosures++; 1297 continue; 1298 } 1299 // This context can't implicitly capture 'this'; fail out. 1300 if (BuildAndDiagnose) 1301 Diag(Loc, diag::err_this_capture) 1302 << (Explicit && idx == MaxFunctionScopesIndex); 1303 return true; 1304 } 1305 break; 1306 } 1307 if (!BuildAndDiagnose) return false; 1308 1309 // If we got here, then the closure at MaxFunctionScopesIndex on the 1310 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1311 // (including implicit by-reference captures in any enclosing closures). 1312 1313 // In the loop below, respect the ByCopy flag only for the closure requesting 1314 // the capture (i.e. first iteration through the loop below). Ignore it for 1315 // all enclosing closure's up to NumCapturingClosures (since they must be 1316 // implicitly capturing the *enclosing object* by reference (see loop 1317 // above)). 1318 assert((!ByCopy || 1319 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && 1320 "Only a lambda can capture the enclosing object (referred to by " 1321 "*this) by copy"); 1322 QualType ThisTy = getCurrentThisType(); 1323 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1324 --idx, --NumCapturingClosures) { 1325 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1326 1327 // The type of the corresponding data member (not a 'this' pointer if 'by 1328 // copy'). 1329 QualType CaptureType = ThisTy; 1330 if (ByCopy) { 1331 // If we are capturing the object referred to by '*this' by copy, ignore 1332 // any cv qualifiers inherited from the type of the member function for 1333 // the type of the closure-type's corresponding data member and any use 1334 // of 'this'. 1335 CaptureType = ThisTy->getPointeeType(); 1336 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1337 } 1338 1339 bool isNested = NumCapturingClosures > 1; 1340 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1341 } 1342 return false; 1343 } 1344 1345 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1346 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1347 /// is a non-lvalue expression whose value is the address of the object for 1348 /// which the function is called. 1349 1350 QualType ThisTy = getCurrentThisType(); 1351 if (ThisTy.isNull()) 1352 return Diag(Loc, diag::err_invalid_this_use); 1353 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false); 1354 } 1355 1356 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1357 bool IsImplicit) { 1358 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); 1359 MarkThisReferenced(This); 1360 return This; 1361 } 1362 1363 void Sema::MarkThisReferenced(CXXThisExpr *This) { 1364 CheckCXXThisCapture(This->getExprLoc()); 1365 } 1366 1367 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1368 // If we're outside the body of a member function, then we'll have a specified 1369 // type for 'this'. 1370 if (CXXThisTypeOverride.isNull()) 1371 return false; 1372 1373 // Determine whether we're looking into a class that's currently being 1374 // defined. 1375 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1376 return Class && Class->isBeingDefined(); 1377 } 1378 1379 /// Parse construction of a specified type. 1380 /// Can be interpreted either as function-style casting ("int(x)") 1381 /// or class type construction ("ClassType(x,y,z)") 1382 /// or creation of a value-initialized type ("int()"). 1383 ExprResult 1384 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1385 SourceLocation LParenOrBraceLoc, 1386 MultiExprArg exprs, 1387 SourceLocation RParenOrBraceLoc, 1388 bool ListInitialization) { 1389 if (!TypeRep) 1390 return ExprError(); 1391 1392 TypeSourceInfo *TInfo; 1393 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1394 if (!TInfo) 1395 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1396 1397 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1398 RParenOrBraceLoc, ListInitialization); 1399 // Avoid creating a non-type-dependent expression that contains typos. 1400 // Non-type-dependent expressions are liable to be discarded without 1401 // checking for embedded typos. 1402 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1403 !Result.get()->isTypeDependent()) 1404 Result = CorrectDelayedTyposInExpr(Result.get()); 1405 else if (Result.isInvalid()) 1406 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), 1407 RParenOrBraceLoc, exprs, Ty); 1408 return Result; 1409 } 1410 1411 ExprResult 1412 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1413 SourceLocation LParenOrBraceLoc, 1414 MultiExprArg Exprs, 1415 SourceLocation RParenOrBraceLoc, 1416 bool ListInitialization) { 1417 QualType Ty = TInfo->getType(); 1418 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1419 1420 assert((!ListInitialization || 1421 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && 1422 "List initialization must have initializer list as expression."); 1423 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1424 1425 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); 1426 InitializationKind Kind = 1427 Exprs.size() 1428 ? ListInitialization 1429 ? InitializationKind::CreateDirectList( 1430 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1431 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1432 RParenOrBraceLoc) 1433 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1434 RParenOrBraceLoc); 1435 1436 // C++1z [expr.type.conv]p1: 1437 // If the type is a placeholder for a deduced class type, [...perform class 1438 // template argument deduction...] 1439 DeducedType *Deduced = Ty->getContainedDeducedType(); 1440 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1441 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1442 Kind, Exprs); 1443 if (Ty.isNull()) 1444 return ExprError(); 1445 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1446 } 1447 1448 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1449 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization 1450 // directly. We work around this by dropping the locations of the braces. 1451 SourceRange Locs = ListInitialization 1452 ? SourceRange() 1453 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1454 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(), 1455 TInfo, Locs.getBegin(), Exprs, 1456 Locs.getEnd()); 1457 } 1458 1459 // C++ [expr.type.conv]p1: 1460 // If the expression list is a parenthesized single expression, the type 1461 // conversion expression is equivalent (in definedness, and if defined in 1462 // meaning) to the corresponding cast expression. 1463 if (Exprs.size() == 1 && !ListInitialization && 1464 !isa<InitListExpr>(Exprs[0])) { 1465 Expr *Arg = Exprs[0]; 1466 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1467 RParenOrBraceLoc); 1468 } 1469 1470 // For an expression of the form T(), T shall not be an array type. 1471 QualType ElemTy = Ty; 1472 if (Ty->isArrayType()) { 1473 if (!ListInitialization) 1474 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1475 << FullRange); 1476 ElemTy = Context.getBaseElementType(Ty); 1477 } 1478 1479 // There doesn't seem to be an explicit rule against this but sanity demands 1480 // we only construct objects with object types. 1481 if (Ty->isFunctionType()) 1482 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1483 << Ty << FullRange); 1484 1485 // C++17 [expr.type.conv]p2: 1486 // If the type is cv void and the initializer is (), the expression is a 1487 // prvalue of the specified type that performs no initialization. 1488 if (!Ty->isVoidType() && 1489 RequireCompleteType(TyBeginLoc, ElemTy, 1490 diag::err_invalid_incomplete_type_use, FullRange)) 1491 return ExprError(); 1492 1493 // Otherwise, the expression is a prvalue of the specified type whose 1494 // result object is direct-initialized (11.6) with the initializer. 1495 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1496 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1497 1498 if (Result.isInvalid()) 1499 return Result; 1500 1501 Expr *Inner = Result.get(); 1502 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1503 Inner = BTE->getSubExpr(); 1504 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1505 !isa<CXXScalarValueInitExpr>(Inner)) { 1506 // If we created a CXXTemporaryObjectExpr, that node also represents the 1507 // functional cast. Otherwise, create an explicit cast to represent 1508 // the syntactic form of a functional-style cast that was used here. 1509 // 1510 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1511 // would give a more consistent AST representation than using a 1512 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1513 // is sometimes handled by initialization and sometimes not. 1514 QualType ResultType = Result.get()->getType(); 1515 SourceRange Locs = ListInitialization 1516 ? SourceRange() 1517 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1518 Result = CXXFunctionalCastExpr::Create( 1519 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1520 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), 1521 Locs.getBegin(), Locs.getEnd()); 1522 } 1523 1524 return Result; 1525 } 1526 1527 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1528 // [CUDA] Ignore this function, if we can't call it. 1529 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext); 1530 if (getLangOpts().CUDA) { 1531 auto CallPreference = IdentifyCUDAPreference(Caller, Method); 1532 // If it's not callable at all, it's not the right function. 1533 if (CallPreference < CFP_WrongSide) 1534 return false; 1535 if (CallPreference == CFP_WrongSide) { 1536 // Maybe. We have to check if there are better alternatives. 1537 DeclContext::lookup_result R = 1538 Method->getDeclContext()->lookup(Method->getDeclName()); 1539 for (const auto *D : R) { 1540 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1541 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) 1542 return false; 1543 } 1544 } 1545 // We've found no better variants. 1546 } 1547 } 1548 1549 SmallVector<const FunctionDecl*, 4> PreventedBy; 1550 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1551 1552 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1553 return Result; 1554 1555 // In case of CUDA, return true if none of the 1-argument deallocator 1556 // functions are actually callable. 1557 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1558 assert(FD->getNumParams() == 1 && 1559 "Only single-operand functions should be in PreventedBy"); 1560 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1561 }); 1562 } 1563 1564 /// Determine whether the given function is a non-placement 1565 /// deallocation function. 1566 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1567 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1568 return S.isUsualDeallocationFunction(Method); 1569 1570 if (FD->getOverloadedOperator() != OO_Delete && 1571 FD->getOverloadedOperator() != OO_Array_Delete) 1572 return false; 1573 1574 unsigned UsualParams = 1; 1575 1576 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1577 S.Context.hasSameUnqualifiedType( 1578 FD->getParamDecl(UsualParams)->getType(), 1579 S.Context.getSizeType())) 1580 ++UsualParams; 1581 1582 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1583 S.Context.hasSameUnqualifiedType( 1584 FD->getParamDecl(UsualParams)->getType(), 1585 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1586 ++UsualParams; 1587 1588 return UsualParams == FD->getNumParams(); 1589 } 1590 1591 namespace { 1592 struct UsualDeallocFnInfo { 1593 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1594 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1595 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1596 Destroying(false), HasSizeT(false), HasAlignValT(false), 1597 CUDAPref(Sema::CFP_Native) { 1598 // A function template declaration is never a usual deallocation function. 1599 if (!FD) 1600 return; 1601 unsigned NumBaseParams = 1; 1602 if (FD->isDestroyingOperatorDelete()) { 1603 Destroying = true; 1604 ++NumBaseParams; 1605 } 1606 1607 if (NumBaseParams < FD->getNumParams() && 1608 S.Context.hasSameUnqualifiedType( 1609 FD->getParamDecl(NumBaseParams)->getType(), 1610 S.Context.getSizeType())) { 1611 ++NumBaseParams; 1612 HasSizeT = true; 1613 } 1614 1615 if (NumBaseParams < FD->getNumParams() && 1616 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1617 ++NumBaseParams; 1618 HasAlignValT = true; 1619 } 1620 1621 // In CUDA, determine how much we'd like / dislike to call this. 1622 if (S.getLangOpts().CUDA) 1623 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 1624 CUDAPref = S.IdentifyCUDAPreference(Caller, FD); 1625 } 1626 1627 explicit operator bool() const { return FD; } 1628 1629 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1630 bool WantAlign) const { 1631 // C++ P0722: 1632 // A destroying operator delete is preferred over a non-destroying 1633 // operator delete. 1634 if (Destroying != Other.Destroying) 1635 return Destroying; 1636 1637 // C++17 [expr.delete]p10: 1638 // If the type has new-extended alignment, a function with a parameter 1639 // of type std::align_val_t is preferred; otherwise a function without 1640 // such a parameter is preferred 1641 if (HasAlignValT != Other.HasAlignValT) 1642 return HasAlignValT == WantAlign; 1643 1644 if (HasSizeT != Other.HasSizeT) 1645 return HasSizeT == WantSize; 1646 1647 // Use CUDA call preference as a tiebreaker. 1648 return CUDAPref > Other.CUDAPref; 1649 } 1650 1651 DeclAccessPair Found; 1652 FunctionDecl *FD; 1653 bool Destroying, HasSizeT, HasAlignValT; 1654 Sema::CUDAFunctionPreference CUDAPref; 1655 }; 1656 } 1657 1658 /// Determine whether a type has new-extended alignment. This may be called when 1659 /// the type is incomplete (for a delete-expression with an incomplete pointee 1660 /// type), in which case it will conservatively return false if the alignment is 1661 /// not known. 1662 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1663 return S.getLangOpts().AlignedAllocation && 1664 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1665 S.getASTContext().getTargetInfo().getNewAlign(); 1666 } 1667 1668 /// Select the correct "usual" deallocation function to use from a selection of 1669 /// deallocation functions (either global or class-scope). 1670 static UsualDeallocFnInfo resolveDeallocationOverload( 1671 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1672 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1673 UsualDeallocFnInfo Best; 1674 1675 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1676 UsualDeallocFnInfo Info(S, I.getPair()); 1677 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1678 Info.CUDAPref == Sema::CFP_Never) 1679 continue; 1680 1681 if (!Best) { 1682 Best = Info; 1683 if (BestFns) 1684 BestFns->push_back(Info); 1685 continue; 1686 } 1687 1688 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1689 continue; 1690 1691 // If more than one preferred function is found, all non-preferred 1692 // functions are eliminated from further consideration. 1693 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1694 BestFns->clear(); 1695 1696 Best = Info; 1697 if (BestFns) 1698 BestFns->push_back(Info); 1699 } 1700 1701 return Best; 1702 } 1703 1704 /// Determine whether a given type is a class for which 'delete[]' would call 1705 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1706 /// we need to store the array size (even if the type is 1707 /// trivially-destructible). 1708 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1709 QualType allocType) { 1710 const RecordType *record = 1711 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1712 if (!record) return false; 1713 1714 // Try to find an operator delete[] in class scope. 1715 1716 DeclarationName deleteName = 1717 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1718 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1719 S.LookupQualifiedName(ops, record->getDecl()); 1720 1721 // We're just doing this for information. 1722 ops.suppressDiagnostics(); 1723 1724 // Very likely: there's no operator delete[]. 1725 if (ops.empty()) return false; 1726 1727 // If it's ambiguous, it should be illegal to call operator delete[] 1728 // on this thing, so it doesn't matter if we allocate extra space or not. 1729 if (ops.isAmbiguous()) return false; 1730 1731 // C++17 [expr.delete]p10: 1732 // If the deallocation functions have class scope, the one without a 1733 // parameter of type std::size_t is selected. 1734 auto Best = resolveDeallocationOverload( 1735 S, ops, /*WantSize*/false, 1736 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1737 return Best && Best.HasSizeT; 1738 } 1739 1740 /// Parsed a C++ 'new' expression (C++ 5.3.4). 1741 /// 1742 /// E.g.: 1743 /// @code new (memory) int[size][4] @endcode 1744 /// or 1745 /// @code ::new Foo(23, "hello") @endcode 1746 /// 1747 /// \param StartLoc The first location of the expression. 1748 /// \param UseGlobal True if 'new' was prefixed with '::'. 1749 /// \param PlacementLParen Opening paren of the placement arguments. 1750 /// \param PlacementArgs Placement new arguments. 1751 /// \param PlacementRParen Closing paren of the placement arguments. 1752 /// \param TypeIdParens If the type is in parens, the source range. 1753 /// \param D The type to be allocated, as well as array dimensions. 1754 /// \param Initializer The initializing expression or initializer-list, or null 1755 /// if there is none. 1756 ExprResult 1757 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1758 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1759 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1760 Declarator &D, Expr *Initializer) { 1761 Optional<Expr *> ArraySize; 1762 // If the specified type is an array, unwrap it and save the expression. 1763 if (D.getNumTypeObjects() > 0 && 1764 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1765 DeclaratorChunk &Chunk = D.getTypeObject(0); 1766 if (D.getDeclSpec().hasAutoTypeSpec()) 1767 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1768 << D.getSourceRange()); 1769 if (Chunk.Arr.hasStatic) 1770 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1771 << D.getSourceRange()); 1772 if (!Chunk.Arr.NumElts && !Initializer) 1773 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1774 << D.getSourceRange()); 1775 1776 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1777 D.DropFirstTypeObject(); 1778 } 1779 1780 // Every dimension shall be of constant size. 1781 if (ArraySize) { 1782 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1783 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1784 break; 1785 1786 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1787 if (Expr *NumElts = (Expr *)Array.NumElts) { 1788 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1789 // FIXME: GCC permits constant folding here. We should either do so consistently 1790 // or not do so at all, rather than changing behavior in C++14 onwards. 1791 if (getLangOpts().CPlusPlus14) { 1792 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1793 // shall be a converted constant expression (5.19) of type std::size_t 1794 // and shall evaluate to a strictly positive value. 1795 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); 1796 Array.NumElts 1797 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1798 CCEK_ArrayBound) 1799 .get(); 1800 } else { 1801 Array.NumElts = 1802 VerifyIntegerConstantExpression( 1803 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) 1804 .get(); 1805 } 1806 if (!Array.NumElts) 1807 return ExprError(); 1808 } 1809 } 1810 } 1811 } 1812 1813 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1814 QualType AllocType = TInfo->getType(); 1815 if (D.isInvalidType()) 1816 return ExprError(); 1817 1818 SourceRange DirectInitRange; 1819 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1820 DirectInitRange = List->getSourceRange(); 1821 1822 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1823 PlacementLParen, PlacementArgs, PlacementRParen, 1824 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1825 Initializer); 1826 } 1827 1828 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1829 Expr *Init) { 1830 if (!Init) 1831 return true; 1832 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1833 return PLE->getNumExprs() == 0; 1834 if (isa<ImplicitValueInitExpr>(Init)) 1835 return true; 1836 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1837 return !CCE->isListInitialization() && 1838 CCE->getConstructor()->isDefaultConstructor(); 1839 else if (Style == CXXNewExpr::ListInit) { 1840 assert(isa<InitListExpr>(Init) && 1841 "Shouldn't create list CXXConstructExprs for arrays."); 1842 return true; 1843 } 1844 return false; 1845 } 1846 1847 bool 1848 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1849 if (!getLangOpts().AlignedAllocationUnavailable) 1850 return false; 1851 if (FD.isDefined()) 1852 return false; 1853 Optional<unsigned> AlignmentParam; 1854 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 1855 AlignmentParam.hasValue()) 1856 return true; 1857 return false; 1858 } 1859 1860 // Emit a diagnostic if an aligned allocation/deallocation function that is not 1861 // implemented in the standard library is selected. 1862 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1863 SourceLocation Loc) { 1864 if (isUnavailableAlignedAllocationFunction(FD)) { 1865 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1866 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1867 getASTContext().getTargetInfo().getPlatformName()); 1868 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); 1869 1870 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1871 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1872 Diag(Loc, diag::err_aligned_allocation_unavailable) 1873 << IsDelete << FD.getType().getAsString() << OSName 1874 << OSVersion.getAsString() << OSVersion.empty(); 1875 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1876 } 1877 } 1878 1879 ExprResult 1880 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1881 SourceLocation PlacementLParen, 1882 MultiExprArg PlacementArgs, 1883 SourceLocation PlacementRParen, 1884 SourceRange TypeIdParens, 1885 QualType AllocType, 1886 TypeSourceInfo *AllocTypeInfo, 1887 Optional<Expr *> ArraySize, 1888 SourceRange DirectInitRange, 1889 Expr *Initializer) { 1890 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1891 SourceLocation StartLoc = Range.getBegin(); 1892 1893 CXXNewExpr::InitializationStyle initStyle; 1894 if (DirectInitRange.isValid()) { 1895 assert(Initializer && "Have parens but no initializer."); 1896 initStyle = CXXNewExpr::CallInit; 1897 } else if (Initializer && isa<InitListExpr>(Initializer)) 1898 initStyle = CXXNewExpr::ListInit; 1899 else { 1900 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || 1901 isa<CXXConstructExpr>(Initializer)) && 1902 "Initializer expression that cannot have been implicitly created."); 1903 initStyle = CXXNewExpr::NoInit; 1904 } 1905 1906 Expr **Inits = &Initializer; 1907 unsigned NumInits = Initializer ? 1 : 0; 1908 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1909 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init"); 1910 Inits = List->getExprs(); 1911 NumInits = List->getNumExprs(); 1912 } 1913 1914 // C++11 [expr.new]p15: 1915 // A new-expression that creates an object of type T initializes that 1916 // object as follows: 1917 InitializationKind Kind 1918 // - If the new-initializer is omitted, the object is default- 1919 // initialized (8.5); if no initialization is performed, 1920 // the object has indeterminate value 1921 = initStyle == CXXNewExpr::NoInit 1922 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1923 // - Otherwise, the new-initializer is interpreted according to 1924 // the 1925 // initialization rules of 8.5 for direct-initialization. 1926 : initStyle == CXXNewExpr::ListInit 1927 ? InitializationKind::CreateDirectList( 1928 TypeRange.getBegin(), Initializer->getBeginLoc(), 1929 Initializer->getEndLoc()) 1930 : InitializationKind::CreateDirect(TypeRange.getBegin(), 1931 DirectInitRange.getBegin(), 1932 DirectInitRange.getEnd()); 1933 1934 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 1935 auto *Deduced = AllocType->getContainedDeducedType(); 1936 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1937 if (ArraySize) 1938 return ExprError( 1939 Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 1940 diag::err_deduced_class_template_compound_type) 1941 << /*array*/ 2 1942 << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 1943 1944 InitializedEntity Entity 1945 = InitializedEntity::InitializeNew(StartLoc, AllocType); 1946 AllocType = DeduceTemplateSpecializationFromInitializer( 1947 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits)); 1948 if (AllocType.isNull()) 1949 return ExprError(); 1950 } else if (Deduced) { 1951 bool Braced = (initStyle == CXXNewExpr::ListInit); 1952 if (NumInits == 1) { 1953 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) { 1954 Inits = p->getInits(); 1955 NumInits = p->getNumInits(); 1956 Braced = true; 1957 } 1958 } 1959 1960 if (initStyle == CXXNewExpr::NoInit || NumInits == 0) 1961 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 1962 << AllocType << TypeRange); 1963 if (NumInits > 1) { 1964 Expr *FirstBad = Inits[1]; 1965 return ExprError(Diag(FirstBad->getBeginLoc(), 1966 diag::err_auto_new_ctor_multiple_expressions) 1967 << AllocType << TypeRange); 1968 } 1969 if (Braced && !getLangOpts().CPlusPlus17) 1970 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 1971 << AllocType << TypeRange; 1972 Expr *Deduce = Inits[0]; 1973 QualType DeducedType; 1974 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 1975 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 1976 << AllocType << Deduce->getType() 1977 << TypeRange << Deduce->getSourceRange()); 1978 if (DeducedType.isNull()) 1979 return ExprError(); 1980 AllocType = DeducedType; 1981 } 1982 1983 // Per C++0x [expr.new]p5, the type being constructed may be a 1984 // typedef of an array type. 1985 if (!ArraySize) { 1986 if (const ConstantArrayType *Array 1987 = Context.getAsConstantArrayType(AllocType)) { 1988 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 1989 Context.getSizeType(), 1990 TypeRange.getEnd()); 1991 AllocType = Array->getElementType(); 1992 } 1993 } 1994 1995 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 1996 return ExprError(); 1997 1998 // In ARC, infer 'retaining' for the allocated 1999 if (getLangOpts().ObjCAutoRefCount && 2000 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 2001 AllocType->isObjCLifetimeType()) { 2002 AllocType = Context.getLifetimeQualifiedType(AllocType, 2003 AllocType->getObjCARCImplicitLifetime()); 2004 } 2005 2006 QualType ResultType = Context.getPointerType(AllocType); 2007 2008 if (ArraySize && *ArraySize && 2009 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 2010 ExprResult result = CheckPlaceholderExpr(*ArraySize); 2011 if (result.isInvalid()) return ExprError(); 2012 ArraySize = result.get(); 2013 } 2014 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 2015 // integral or enumeration type with a non-negative value." 2016 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 2017 // enumeration type, or a class type for which a single non-explicit 2018 // conversion function to integral or unscoped enumeration type exists. 2019 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 2020 // std::size_t. 2021 llvm::Optional<uint64_t> KnownArraySize; 2022 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 2023 ExprResult ConvertedSize; 2024 if (getLangOpts().CPlusPlus14) { 2025 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); 2026 2027 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 2028 AA_Converting); 2029 2030 if (!ConvertedSize.isInvalid() && 2031 (*ArraySize)->getType()->getAs<RecordType>()) 2032 // Diagnose the compatibility of this conversion. 2033 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2034 << (*ArraySize)->getType() << 0 << "'size_t'"; 2035 } else { 2036 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2037 protected: 2038 Expr *ArraySize; 2039 2040 public: 2041 SizeConvertDiagnoser(Expr *ArraySize) 2042 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2043 ArraySize(ArraySize) {} 2044 2045 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2046 QualType T) override { 2047 return S.Diag(Loc, diag::err_array_size_not_integral) 2048 << S.getLangOpts().CPlusPlus11 << T; 2049 } 2050 2051 SemaDiagnosticBuilder diagnoseIncomplete( 2052 Sema &S, SourceLocation Loc, QualType T) override { 2053 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2054 << T << ArraySize->getSourceRange(); 2055 } 2056 2057 SemaDiagnosticBuilder diagnoseExplicitConv( 2058 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2059 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2060 } 2061 2062 SemaDiagnosticBuilder noteExplicitConv( 2063 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2064 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2065 << ConvTy->isEnumeralType() << ConvTy; 2066 } 2067 2068 SemaDiagnosticBuilder diagnoseAmbiguous( 2069 Sema &S, SourceLocation Loc, QualType T) override { 2070 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2071 } 2072 2073 SemaDiagnosticBuilder noteAmbiguous( 2074 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2075 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2076 << ConvTy->isEnumeralType() << ConvTy; 2077 } 2078 2079 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2080 QualType T, 2081 QualType ConvTy) override { 2082 return S.Diag(Loc, 2083 S.getLangOpts().CPlusPlus11 2084 ? diag::warn_cxx98_compat_array_size_conversion 2085 : diag::ext_array_size_conversion) 2086 << T << ConvTy->isEnumeralType() << ConvTy; 2087 } 2088 } SizeDiagnoser(*ArraySize); 2089 2090 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2091 SizeDiagnoser); 2092 } 2093 if (ConvertedSize.isInvalid()) 2094 return ExprError(); 2095 2096 ArraySize = ConvertedSize.get(); 2097 QualType SizeType = (*ArraySize)->getType(); 2098 2099 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2100 return ExprError(); 2101 2102 // C++98 [expr.new]p7: 2103 // The expression in a direct-new-declarator shall have integral type 2104 // with a non-negative value. 2105 // 2106 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2107 // per CWG1464. Otherwise, if it's not a constant, we must have an 2108 // unparenthesized array type. 2109 if (!(*ArraySize)->isValueDependent()) { 2110 // We've already performed any required implicit conversion to integer or 2111 // unscoped enumeration type. 2112 // FIXME: Per CWG1464, we are required to check the value prior to 2113 // converting to size_t. This will never find a negative array size in 2114 // C++14 onwards, because Value is always unsigned here! 2115 if (Optional<llvm::APSInt> Value = 2116 (*ArraySize)->getIntegerConstantExpr(Context)) { 2117 if (Value->isSigned() && Value->isNegative()) { 2118 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2119 diag::err_typecheck_negative_array_size) 2120 << (*ArraySize)->getSourceRange()); 2121 } 2122 2123 if (!AllocType->isDependentType()) { 2124 unsigned ActiveSizeBits = ConstantArrayType::getNumAddressingBits( 2125 Context, AllocType, *Value); 2126 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2127 return ExprError( 2128 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2129 << Value->toString(10) << (*ArraySize)->getSourceRange()); 2130 } 2131 2132 KnownArraySize = Value->getZExtValue(); 2133 } else if (TypeIdParens.isValid()) { 2134 // Can't have dynamic array size when the type-id is in parentheses. 2135 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2136 << (*ArraySize)->getSourceRange() 2137 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2138 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2139 2140 TypeIdParens = SourceRange(); 2141 } 2142 } 2143 2144 // Note that we do *not* convert the argument in any way. It can 2145 // be signed, larger than size_t, whatever. 2146 } 2147 2148 FunctionDecl *OperatorNew = nullptr; 2149 FunctionDecl *OperatorDelete = nullptr; 2150 unsigned Alignment = 2151 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2152 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2153 bool PassAlignment = getLangOpts().AlignedAllocation && 2154 Alignment > NewAlignment; 2155 2156 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2157 if (!AllocType->isDependentType() && 2158 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2159 FindAllocationFunctions( 2160 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2161 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs, 2162 OperatorNew, OperatorDelete)) 2163 return ExprError(); 2164 2165 // If this is an array allocation, compute whether the usual array 2166 // deallocation function for the type has a size_t parameter. 2167 bool UsualArrayDeleteWantsSize = false; 2168 if (ArraySize && !AllocType->isDependentType()) 2169 UsualArrayDeleteWantsSize = 2170 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2171 2172 SmallVector<Expr *, 8> AllPlaceArgs; 2173 if (OperatorNew) { 2174 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2175 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2176 : VariadicDoesNotApply; 2177 2178 // We've already converted the placement args, just fill in any default 2179 // arguments. Skip the first parameter because we don't have a corresponding 2180 // argument. Skip the second parameter too if we're passing in the 2181 // alignment; we've already filled it in. 2182 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2183 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2184 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2185 CallType)) 2186 return ExprError(); 2187 2188 if (!AllPlaceArgs.empty()) 2189 PlacementArgs = AllPlaceArgs; 2190 2191 // We would like to perform some checking on the given `operator new` call, 2192 // but the PlacementArgs does not contain the implicit arguments, 2193 // namely allocation size and maybe allocation alignment, 2194 // so we need to conjure them. 2195 2196 QualType SizeTy = Context.getSizeType(); 2197 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2198 2199 llvm::APInt SingleEltSize( 2200 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2201 2202 // How many bytes do we want to allocate here? 2203 llvm::Optional<llvm::APInt> AllocationSize; 2204 if (!ArraySize.hasValue() && !AllocType->isDependentType()) { 2205 // For non-array operator new, we only want to allocate one element. 2206 AllocationSize = SingleEltSize; 2207 } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) { 2208 // For array operator new, only deal with static array size case. 2209 bool Overflow; 2210 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2211 .umul_ov(SingleEltSize, Overflow); 2212 (void)Overflow; 2213 assert( 2214 !Overflow && 2215 "Expected that all the overflows would have been handled already."); 2216 } 2217 2218 IntegerLiteral AllocationSizeLiteral( 2219 Context, 2220 AllocationSize.getValueOr(llvm::APInt::getNullValue(SizeTyWidth)), 2221 SizeTy, SourceLocation()); 2222 // Otherwise, if we failed to constant-fold the allocation size, we'll 2223 // just give up and pass-in something opaque, that isn't a null pointer. 2224 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_RValue, 2225 OK_Ordinary, /*SourceExpr=*/nullptr); 2226 2227 // Let's synthesize the alignment argument in case we will need it. 2228 // Since we *really* want to allocate these on stack, this is slightly ugly 2229 // because there might not be a `std::align_val_t` type. 2230 EnumDecl *StdAlignValT = getStdAlignValT(); 2231 QualType AlignValT = 2232 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2233 IntegerLiteral AlignmentLiteral( 2234 Context, 2235 llvm::APInt(Context.getTypeSize(SizeTy), 2236 Alignment / Context.getCharWidth()), 2237 SizeTy, SourceLocation()); 2238 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2239 CK_IntegralCast, &AlignmentLiteral, 2240 VK_RValue, FPOptionsOverride()); 2241 2242 // Adjust placement args by prepending conjured size and alignment exprs. 2243 llvm::SmallVector<Expr *, 8> CallArgs; 2244 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2245 CallArgs.emplace_back(AllocationSize.hasValue() 2246 ? static_cast<Expr *>(&AllocationSizeLiteral) 2247 : &OpaqueAllocationSize); 2248 if (PassAlignment) 2249 CallArgs.emplace_back(&DesiredAlignment); 2250 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2251 2252 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2253 2254 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2255 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2256 2257 // Warn if the type is over-aligned and is being allocated by (unaligned) 2258 // global operator new. 2259 if (PlacementArgs.empty() && !PassAlignment && 2260 (OperatorNew->isImplicit() || 2261 (OperatorNew->getBeginLoc().isValid() && 2262 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2263 if (Alignment > NewAlignment) 2264 Diag(StartLoc, diag::warn_overaligned_type) 2265 << AllocType 2266 << unsigned(Alignment / Context.getCharWidth()) 2267 << unsigned(NewAlignment / Context.getCharWidth()); 2268 } 2269 } 2270 2271 // Array 'new' can't have any initializers except empty parentheses. 2272 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2273 // dialect distinction. 2274 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { 2275 SourceRange InitRange(Inits[0]->getBeginLoc(), 2276 Inits[NumInits - 1]->getEndLoc()); 2277 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2278 return ExprError(); 2279 } 2280 2281 // If we can perform the initialization, and we've not already done so, 2282 // do it now. 2283 if (!AllocType->isDependentType() && 2284 !Expr::hasAnyTypeDependentArguments( 2285 llvm::makeArrayRef(Inits, NumInits))) { 2286 // The type we initialize is the complete type, including the array bound. 2287 QualType InitType; 2288 if (KnownArraySize) 2289 InitType = Context.getConstantArrayType( 2290 AllocType, 2291 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2292 *KnownArraySize), 2293 *ArraySize, ArrayType::Normal, 0); 2294 else if (ArraySize) 2295 InitType = 2296 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); 2297 else 2298 InitType = AllocType; 2299 2300 InitializedEntity Entity 2301 = InitializedEntity::InitializeNew(StartLoc, InitType); 2302 InitializationSequence InitSeq(*this, Entity, Kind, 2303 MultiExprArg(Inits, NumInits)); 2304 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 2305 MultiExprArg(Inits, NumInits)); 2306 if (FullInit.isInvalid()) 2307 return ExprError(); 2308 2309 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2310 // we don't want the initialized object to be destructed. 2311 // FIXME: We should not create these in the first place. 2312 if (CXXBindTemporaryExpr *Binder = 2313 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2314 FullInit = Binder->getSubExpr(); 2315 2316 Initializer = FullInit.get(); 2317 2318 // FIXME: If we have a KnownArraySize, check that the array bound of the 2319 // initializer is no greater than that constant value. 2320 2321 if (ArraySize && !*ArraySize) { 2322 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2323 if (CAT) { 2324 // FIXME: Track that the array size was inferred rather than explicitly 2325 // specified. 2326 ArraySize = IntegerLiteral::Create( 2327 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2328 } else { 2329 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2330 << Initializer->getSourceRange(); 2331 } 2332 } 2333 } 2334 2335 // Mark the new and delete operators as referenced. 2336 if (OperatorNew) { 2337 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2338 return ExprError(); 2339 MarkFunctionReferenced(StartLoc, OperatorNew); 2340 } 2341 if (OperatorDelete) { 2342 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2343 return ExprError(); 2344 MarkFunctionReferenced(StartLoc, OperatorDelete); 2345 } 2346 2347 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2348 PassAlignment, UsualArrayDeleteWantsSize, 2349 PlacementArgs, TypeIdParens, ArraySize, initStyle, 2350 Initializer, ResultType, AllocTypeInfo, Range, 2351 DirectInitRange); 2352 } 2353 2354 /// Checks that a type is suitable as the allocated type 2355 /// in a new-expression. 2356 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2357 SourceRange R) { 2358 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2359 // abstract class type or array thereof. 2360 if (AllocType->isFunctionType()) 2361 return Diag(Loc, diag::err_bad_new_type) 2362 << AllocType << 0 << R; 2363 else if (AllocType->isReferenceType()) 2364 return Diag(Loc, diag::err_bad_new_type) 2365 << AllocType << 1 << R; 2366 else if (!AllocType->isDependentType() && 2367 RequireCompleteSizedType( 2368 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2369 return true; 2370 else if (RequireNonAbstractType(Loc, AllocType, 2371 diag::err_allocation_of_abstract_type)) 2372 return true; 2373 else if (AllocType->isVariablyModifiedType()) 2374 return Diag(Loc, diag::err_variably_modified_new_type) 2375 << AllocType; 2376 else if (AllocType.getAddressSpace() != LangAS::Default && 2377 !getLangOpts().OpenCLCPlusPlus) 2378 return Diag(Loc, diag::err_address_space_qualified_new) 2379 << AllocType.getUnqualifiedType() 2380 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2381 else if (getLangOpts().ObjCAutoRefCount) { 2382 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2383 QualType BaseAllocType = Context.getBaseElementType(AT); 2384 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2385 BaseAllocType->isObjCLifetimeType()) 2386 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2387 << BaseAllocType; 2388 } 2389 } 2390 2391 return false; 2392 } 2393 2394 static bool resolveAllocationOverload( 2395 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2396 bool &PassAlignment, FunctionDecl *&Operator, 2397 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2398 OverloadCandidateSet Candidates(R.getNameLoc(), 2399 OverloadCandidateSet::CSK_Normal); 2400 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2401 Alloc != AllocEnd; ++Alloc) { 2402 // Even member operator new/delete are implicitly treated as 2403 // static, so don't use AddMemberCandidate. 2404 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2405 2406 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2407 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2408 /*ExplicitTemplateArgs=*/nullptr, Args, 2409 Candidates, 2410 /*SuppressUserConversions=*/false); 2411 continue; 2412 } 2413 2414 FunctionDecl *Fn = cast<FunctionDecl>(D); 2415 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2416 /*SuppressUserConversions=*/false); 2417 } 2418 2419 // Do the resolution. 2420 OverloadCandidateSet::iterator Best; 2421 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2422 case OR_Success: { 2423 // Got one! 2424 FunctionDecl *FnDecl = Best->Function; 2425 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2426 Best->FoundDecl) == Sema::AR_inaccessible) 2427 return true; 2428 2429 Operator = FnDecl; 2430 return false; 2431 } 2432 2433 case OR_No_Viable_Function: 2434 // C++17 [expr.new]p13: 2435 // If no matching function is found and the allocated object type has 2436 // new-extended alignment, the alignment argument is removed from the 2437 // argument list, and overload resolution is performed again. 2438 if (PassAlignment) { 2439 PassAlignment = false; 2440 AlignArg = Args[1]; 2441 Args.erase(Args.begin() + 1); 2442 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2443 Operator, &Candidates, AlignArg, 2444 Diagnose); 2445 } 2446 2447 // MSVC will fall back on trying to find a matching global operator new 2448 // if operator new[] cannot be found. Also, MSVC will leak by not 2449 // generating a call to operator delete or operator delete[], but we 2450 // will not replicate that bug. 2451 // FIXME: Find out how this interacts with the std::align_val_t fallback 2452 // once MSVC implements it. 2453 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2454 S.Context.getLangOpts().MSVCCompat) { 2455 R.clear(); 2456 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2457 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2458 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2459 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2460 Operator, /*Candidates=*/nullptr, 2461 /*AlignArg=*/nullptr, Diagnose); 2462 } 2463 2464 if (Diagnose) { 2465 PartialDiagnosticAt PD(R.getNameLoc(), S.PDiag(diag::err_ovl_no_viable_function_in_call) 2466 << R.getLookupName() << Range); 2467 2468 // If we have aligned candidates, only note the align_val_t candidates 2469 // from AlignedCandidates and the non-align_val_t candidates from 2470 // Candidates. 2471 if (AlignedCandidates) { 2472 auto IsAligned = [](OverloadCandidate &C) { 2473 return C.Function->getNumParams() > 1 && 2474 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2475 }; 2476 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2477 2478 // This was an overaligned allocation, so list the aligned candidates 2479 // first. 2480 Args.insert(Args.begin() + 1, AlignArg); 2481 AlignedCandidates->NoteCandidates(PD, S, OCD_AllCandidates, Args, "", 2482 R.getNameLoc(), IsAligned); 2483 Args.erase(Args.begin() + 1); 2484 Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args, "", R.getNameLoc(), 2485 IsUnaligned); 2486 } else { 2487 Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args); 2488 } 2489 } 2490 return true; 2491 2492 case OR_Ambiguous: 2493 if (Diagnose) { 2494 Candidates.NoteCandidates( 2495 PartialDiagnosticAt(R.getNameLoc(), 2496 S.PDiag(diag::err_ovl_ambiguous_call) 2497 << R.getLookupName() << Range), 2498 S, OCD_AmbiguousCandidates, Args); 2499 } 2500 return true; 2501 2502 case OR_Deleted: { 2503 if (Diagnose) { 2504 Candidates.NoteCandidates( 2505 PartialDiagnosticAt(R.getNameLoc(), 2506 S.PDiag(diag::err_ovl_deleted_call) 2507 << R.getLookupName() << Range), 2508 S, OCD_AllCandidates, Args); 2509 } 2510 return true; 2511 } 2512 } 2513 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 2514 } 2515 2516 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2517 AllocationFunctionScope NewScope, 2518 AllocationFunctionScope DeleteScope, 2519 QualType AllocType, bool IsArray, 2520 bool &PassAlignment, MultiExprArg PlaceArgs, 2521 FunctionDecl *&OperatorNew, 2522 FunctionDecl *&OperatorDelete, 2523 bool Diagnose) { 2524 // --- Choosing an allocation function --- 2525 // C++ 5.3.4p8 - 14 & 18 2526 // 1) If looking in AFS_Global scope for allocation functions, only look in 2527 // the global scope. Else, if AFS_Class, only look in the scope of the 2528 // allocated class. If AFS_Both, look in both. 2529 // 2) If an array size is given, look for operator new[], else look for 2530 // operator new. 2531 // 3) The first argument is always size_t. Append the arguments from the 2532 // placement form. 2533 2534 SmallVector<Expr*, 8> AllocArgs; 2535 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2536 2537 // We don't care about the actual value of these arguments. 2538 // FIXME: Should the Sema create the expression and embed it in the syntax 2539 // tree? Or should the consumer just recalculate the value? 2540 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2541 IntegerLiteral Size(Context, llvm::APInt::getNullValue( 2542 Context.getTargetInfo().getPointerWidth(0)), 2543 Context.getSizeType(), 2544 SourceLocation()); 2545 AllocArgs.push_back(&Size); 2546 2547 QualType AlignValT = Context.VoidTy; 2548 if (PassAlignment) { 2549 DeclareGlobalNewDelete(); 2550 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2551 } 2552 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2553 if (PassAlignment) 2554 AllocArgs.push_back(&Align); 2555 2556 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2557 2558 // C++ [expr.new]p8: 2559 // If the allocated type is a non-array type, the allocation 2560 // function's name is operator new and the deallocation function's 2561 // name is operator delete. If the allocated type is an array 2562 // type, the allocation function's name is operator new[] and the 2563 // deallocation function's name is operator delete[]. 2564 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2565 IsArray ? OO_Array_New : OO_New); 2566 2567 QualType AllocElemType = Context.getBaseElementType(AllocType); 2568 2569 // Find the allocation function. 2570 { 2571 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2572 2573 // C++1z [expr.new]p9: 2574 // If the new-expression begins with a unary :: operator, the allocation 2575 // function's name is looked up in the global scope. Otherwise, if the 2576 // allocated type is a class type T or array thereof, the allocation 2577 // function's name is looked up in the scope of T. 2578 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2579 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2580 2581 // We can see ambiguity here if the allocation function is found in 2582 // multiple base classes. 2583 if (R.isAmbiguous()) 2584 return true; 2585 2586 // If this lookup fails to find the name, or if the allocated type is not 2587 // a class type, the allocation function's name is looked up in the 2588 // global scope. 2589 if (R.empty()) { 2590 if (NewScope == AFS_Class) 2591 return true; 2592 2593 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2594 } 2595 2596 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2597 if (PlaceArgs.empty()) { 2598 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2599 } else { 2600 Diag(StartLoc, diag::err_openclcxx_placement_new); 2601 } 2602 return true; 2603 } 2604 2605 assert(!R.empty() && "implicitly declared allocation functions not found"); 2606 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 2607 2608 // We do our own custom access checks below. 2609 R.suppressDiagnostics(); 2610 2611 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2612 OperatorNew, /*Candidates=*/nullptr, 2613 /*AlignArg=*/nullptr, Diagnose)) 2614 return true; 2615 } 2616 2617 // We don't need an operator delete if we're running under -fno-exceptions. 2618 if (!getLangOpts().Exceptions) { 2619 OperatorDelete = nullptr; 2620 return false; 2621 } 2622 2623 // Note, the name of OperatorNew might have been changed from array to 2624 // non-array by resolveAllocationOverload. 2625 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2626 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2627 ? OO_Array_Delete 2628 : OO_Delete); 2629 2630 // C++ [expr.new]p19: 2631 // 2632 // If the new-expression begins with a unary :: operator, the 2633 // deallocation function's name is looked up in the global 2634 // scope. Otherwise, if the allocated type is a class type T or an 2635 // array thereof, the deallocation function's name is looked up in 2636 // the scope of T. If this lookup fails to find the name, or if 2637 // the allocated type is not a class type or array thereof, the 2638 // deallocation function's name is looked up in the global scope. 2639 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2640 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2641 auto *RD = 2642 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2643 LookupQualifiedName(FoundDelete, RD); 2644 } 2645 if (FoundDelete.isAmbiguous()) 2646 return true; // FIXME: clean up expressions? 2647 2648 // Filter out any destroying operator deletes. We can't possibly call such a 2649 // function in this context, because we're handling the case where the object 2650 // was not successfully constructed. 2651 // FIXME: This is not covered by the language rules yet. 2652 { 2653 LookupResult::Filter Filter = FoundDelete.makeFilter(); 2654 while (Filter.hasNext()) { 2655 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); 2656 if (FD && FD->isDestroyingOperatorDelete()) 2657 Filter.erase(); 2658 } 2659 Filter.done(); 2660 } 2661 2662 bool FoundGlobalDelete = FoundDelete.empty(); 2663 if (FoundDelete.empty()) { 2664 FoundDelete.clear(LookupOrdinaryName); 2665 2666 if (DeleteScope == AFS_Class) 2667 return true; 2668 2669 DeclareGlobalNewDelete(); 2670 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2671 } 2672 2673 FoundDelete.suppressDiagnostics(); 2674 2675 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2676 2677 // Whether we're looking for a placement operator delete is dictated 2678 // by whether we selected a placement operator new, not by whether 2679 // we had explicit placement arguments. This matters for things like 2680 // struct A { void *operator new(size_t, int = 0); ... }; 2681 // A *a = new A() 2682 // 2683 // We don't have any definition for what a "placement allocation function" 2684 // is, but we assume it's any allocation function whose 2685 // parameter-declaration-clause is anything other than (size_t). 2686 // 2687 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2688 // This affects whether an exception from the constructor of an overaligned 2689 // type uses the sized or non-sized form of aligned operator delete. 2690 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2691 OperatorNew->isVariadic(); 2692 2693 if (isPlacementNew) { 2694 // C++ [expr.new]p20: 2695 // A declaration of a placement deallocation function matches the 2696 // declaration of a placement allocation function if it has the 2697 // same number of parameters and, after parameter transformations 2698 // (8.3.5), all parameter types except the first are 2699 // identical. [...] 2700 // 2701 // To perform this comparison, we compute the function type that 2702 // the deallocation function should have, and use that type both 2703 // for template argument deduction and for comparison purposes. 2704 QualType ExpectedFunctionType; 2705 { 2706 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2707 2708 SmallVector<QualType, 4> ArgTypes; 2709 ArgTypes.push_back(Context.VoidPtrTy); 2710 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2711 ArgTypes.push_back(Proto->getParamType(I)); 2712 2713 FunctionProtoType::ExtProtoInfo EPI; 2714 // FIXME: This is not part of the standard's rule. 2715 EPI.Variadic = Proto->isVariadic(); 2716 2717 ExpectedFunctionType 2718 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2719 } 2720 2721 for (LookupResult::iterator D = FoundDelete.begin(), 2722 DEnd = FoundDelete.end(); 2723 D != DEnd; ++D) { 2724 FunctionDecl *Fn = nullptr; 2725 if (FunctionTemplateDecl *FnTmpl = 2726 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2727 // Perform template argument deduction to try to match the 2728 // expected function type. 2729 TemplateDeductionInfo Info(StartLoc); 2730 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2731 Info)) 2732 continue; 2733 } else 2734 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2735 2736 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2737 ExpectedFunctionType, 2738 /*AdjustExcpetionSpec*/true), 2739 ExpectedFunctionType)) 2740 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2741 } 2742 2743 if (getLangOpts().CUDA) 2744 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches); 2745 } else { 2746 // C++1y [expr.new]p22: 2747 // For a non-placement allocation function, the normal deallocation 2748 // function lookup is used 2749 // 2750 // Per [expr.delete]p10, this lookup prefers a member operator delete 2751 // without a size_t argument, but prefers a non-member operator delete 2752 // with a size_t where possible (which it always is in this case). 2753 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2754 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2755 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2756 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2757 &BestDeallocFns); 2758 if (Selected) 2759 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2760 else { 2761 // If we failed to select an operator, all remaining functions are viable 2762 // but ambiguous. 2763 for (auto Fn : BestDeallocFns) 2764 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2765 } 2766 } 2767 2768 // C++ [expr.new]p20: 2769 // [...] If the lookup finds a single matching deallocation 2770 // function, that function will be called; otherwise, no 2771 // deallocation function will be called. 2772 if (Matches.size() == 1) { 2773 OperatorDelete = Matches[0].second; 2774 2775 // C++1z [expr.new]p23: 2776 // If the lookup finds a usual deallocation function (3.7.4.2) 2777 // with a parameter of type std::size_t and that function, considered 2778 // as a placement deallocation function, would have been 2779 // selected as a match for the allocation function, the program 2780 // is ill-formed. 2781 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2782 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2783 UsualDeallocFnInfo Info(*this, 2784 DeclAccessPair::make(OperatorDelete, AS_public)); 2785 // Core issue, per mail to core reflector, 2016-10-09: 2786 // If this is a member operator delete, and there is a corresponding 2787 // non-sized member operator delete, this isn't /really/ a sized 2788 // deallocation function, it just happens to have a size_t parameter. 2789 bool IsSizedDelete = Info.HasSizeT; 2790 if (IsSizedDelete && !FoundGlobalDelete) { 2791 auto NonSizedDelete = 2792 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2793 /*WantAlign*/Info.HasAlignValT); 2794 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2795 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2796 IsSizedDelete = false; 2797 } 2798 2799 if (IsSizedDelete) { 2800 SourceRange R = PlaceArgs.empty() 2801 ? SourceRange() 2802 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2803 PlaceArgs.back()->getEndLoc()); 2804 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2805 if (!OperatorDelete->isImplicit()) 2806 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2807 << DeleteName; 2808 } 2809 } 2810 2811 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2812 Matches[0].first); 2813 } else if (!Matches.empty()) { 2814 // We found multiple suitable operators. Per [expr.new]p20, that means we 2815 // call no 'operator delete' function, but we should at least warn the user. 2816 // FIXME: Suppress this warning if the construction cannot throw. 2817 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2818 << DeleteName << AllocElemType; 2819 2820 for (auto &Match : Matches) 2821 Diag(Match.second->getLocation(), 2822 diag::note_member_declared_here) << DeleteName; 2823 } 2824 2825 return false; 2826 } 2827 2828 /// DeclareGlobalNewDelete - Declare the global forms of operator new and 2829 /// delete. These are: 2830 /// @code 2831 /// // C++03: 2832 /// void* operator new(std::size_t) throw(std::bad_alloc); 2833 /// void* operator new[](std::size_t) throw(std::bad_alloc); 2834 /// void operator delete(void *) throw(); 2835 /// void operator delete[](void *) throw(); 2836 /// // C++11: 2837 /// void* operator new(std::size_t); 2838 /// void* operator new[](std::size_t); 2839 /// void operator delete(void *) noexcept; 2840 /// void operator delete[](void *) noexcept; 2841 /// // C++1y: 2842 /// void* operator new(std::size_t); 2843 /// void* operator new[](std::size_t); 2844 /// void operator delete(void *) noexcept; 2845 /// void operator delete[](void *) noexcept; 2846 /// void operator delete(void *, std::size_t) noexcept; 2847 /// void operator delete[](void *, std::size_t) noexcept; 2848 /// @endcode 2849 /// Note that the placement and nothrow forms of new are *not* implicitly 2850 /// declared. Their use requires including \<new\>. 2851 void Sema::DeclareGlobalNewDelete() { 2852 if (GlobalNewDeleteDeclared) 2853 return; 2854 2855 // The implicitly declared new and delete operators 2856 // are not supported in OpenCL. 2857 if (getLangOpts().OpenCLCPlusPlus) 2858 return; 2859 2860 // C++ [basic.std.dynamic]p2: 2861 // [...] The following allocation and deallocation functions (18.4) are 2862 // implicitly declared in global scope in each translation unit of a 2863 // program 2864 // 2865 // C++03: 2866 // void* operator new(std::size_t) throw(std::bad_alloc); 2867 // void* operator new[](std::size_t) throw(std::bad_alloc); 2868 // void operator delete(void*) throw(); 2869 // void operator delete[](void*) throw(); 2870 // C++11: 2871 // void* operator new(std::size_t); 2872 // void* operator new[](std::size_t); 2873 // void operator delete(void*) noexcept; 2874 // void operator delete[](void*) noexcept; 2875 // C++1y: 2876 // void* operator new(std::size_t); 2877 // void* operator new[](std::size_t); 2878 // void operator delete(void*) noexcept; 2879 // void operator delete[](void*) noexcept; 2880 // void operator delete(void*, std::size_t) noexcept; 2881 // void operator delete[](void*, std::size_t) noexcept; 2882 // 2883 // These implicit declarations introduce only the function names operator 2884 // new, operator new[], operator delete, operator delete[]. 2885 // 2886 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2887 // "std" or "bad_alloc" as necessary to form the exception specification. 2888 // However, we do not make these implicit declarations visible to name 2889 // lookup. 2890 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2891 // The "std::bad_alloc" class has not yet been declared, so build it 2892 // implicitly. 2893 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2894 getOrCreateStdNamespace(), 2895 SourceLocation(), SourceLocation(), 2896 &PP.getIdentifierTable().get("bad_alloc"), 2897 nullptr); 2898 getStdBadAlloc()->setImplicit(true); 2899 } 2900 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 2901 // The "std::align_val_t" enum class has not yet been declared, so build it 2902 // implicitly. 2903 auto *AlignValT = EnumDecl::Create( 2904 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 2905 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 2906 AlignValT->setIntegerType(Context.getSizeType()); 2907 AlignValT->setPromotionType(Context.getSizeType()); 2908 AlignValT->setImplicit(true); 2909 StdAlignValT = AlignValT; 2910 } 2911 2912 GlobalNewDeleteDeclared = true; 2913 2914 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 2915 QualType SizeT = Context.getSizeType(); 2916 2917 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 2918 QualType Return, QualType Param) { 2919 llvm::SmallVector<QualType, 3> Params; 2920 Params.push_back(Param); 2921 2922 // Create up to four variants of the function (sized/aligned). 2923 bool HasSizedVariant = getLangOpts().SizedDeallocation && 2924 (Kind == OO_Delete || Kind == OO_Array_Delete); 2925 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 2926 2927 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 2928 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 2929 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 2930 if (Sized) 2931 Params.push_back(SizeT); 2932 2933 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 2934 if (Aligned) 2935 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 2936 2937 DeclareGlobalAllocationFunction( 2938 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 2939 2940 if (Aligned) 2941 Params.pop_back(); 2942 } 2943 } 2944 }; 2945 2946 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 2947 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 2948 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 2949 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 2950 } 2951 2952 /// DeclareGlobalAllocationFunction - Declares a single implicit global 2953 /// allocation function if it doesn't already exist. 2954 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 2955 QualType Return, 2956 ArrayRef<QualType> Params) { 2957 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 2958 2959 // Check if this function is already declared. 2960 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 2961 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 2962 Alloc != AllocEnd; ++Alloc) { 2963 // Only look at non-template functions, as it is the predefined, 2964 // non-templated allocation function we are trying to declare here. 2965 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 2966 if (Func->getNumParams() == Params.size()) { 2967 llvm::SmallVector<QualType, 3> FuncParams; 2968 for (auto *P : Func->parameters()) 2969 FuncParams.push_back( 2970 Context.getCanonicalType(P->getType().getUnqualifiedType())); 2971 if (llvm::makeArrayRef(FuncParams) == Params) { 2972 // Make the function visible to name lookup, even if we found it in 2973 // an unimported module. It either is an implicitly-declared global 2974 // allocation function, or is suppressing that function. 2975 Func->setVisibleDespiteOwningModule(); 2976 return; 2977 } 2978 } 2979 } 2980 } 2981 2982 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 2983 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 2984 2985 QualType BadAllocType; 2986 bool HasBadAllocExceptionSpec 2987 = (Name.getCXXOverloadedOperator() == OO_New || 2988 Name.getCXXOverloadedOperator() == OO_Array_New); 2989 if (HasBadAllocExceptionSpec) { 2990 if (!getLangOpts().CPlusPlus11) { 2991 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 2992 assert(StdBadAlloc && "Must have std::bad_alloc declared"); 2993 EPI.ExceptionSpec.Type = EST_Dynamic; 2994 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 2995 } 2996 } else { 2997 EPI.ExceptionSpec = 2998 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 2999 } 3000 3001 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 3002 QualType FnType = Context.getFunctionType(Return, Params, EPI); 3003 FunctionDecl *Alloc = FunctionDecl::Create( 3004 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, 3005 FnType, /*TInfo=*/nullptr, SC_None, false, true); 3006 Alloc->setImplicit(); 3007 // Global allocation functions should always be visible. 3008 Alloc->setVisibleDespiteOwningModule(); 3009 3010 Alloc->addAttr(VisibilityAttr::CreateImplicit( 3011 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden 3012 ? VisibilityAttr::Hidden 3013 : VisibilityAttr::Default)); 3014 3015 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 3016 for (QualType T : Params) { 3017 ParamDecls.push_back(ParmVarDecl::Create( 3018 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 3019 /*TInfo=*/nullptr, SC_None, nullptr)); 3020 ParamDecls.back()->setImplicit(); 3021 } 3022 Alloc->setParams(ParamDecls); 3023 if (ExtraAttr) 3024 Alloc->addAttr(ExtraAttr); 3025 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 3026 Context.getTranslationUnitDecl()->addDecl(Alloc); 3027 IdResolver.tryAddTopLevelDecl(Alloc, Name); 3028 }; 3029 3030 if (!LangOpts.CUDA) 3031 CreateAllocationFunctionDecl(nullptr); 3032 else { 3033 // Host and device get their own declaration so each can be 3034 // defined or re-declared independently. 3035 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 3036 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 3037 } 3038 } 3039 3040 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 3041 bool CanProvideSize, 3042 bool Overaligned, 3043 DeclarationName Name) { 3044 DeclareGlobalNewDelete(); 3045 3046 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 3047 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 3048 3049 // FIXME: It's possible for this to result in ambiguity, through a 3050 // user-declared variadic operator delete or the enable_if attribute. We 3051 // should probably not consider those cases to be usual deallocation 3052 // functions. But for now we just make an arbitrary choice in that case. 3053 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3054 Overaligned); 3055 assert(Result.FD && "operator delete missing from global scope?"); 3056 return Result.FD; 3057 } 3058 3059 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3060 CXXRecordDecl *RD) { 3061 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3062 3063 FunctionDecl *OperatorDelete = nullptr; 3064 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3065 return nullptr; 3066 if (OperatorDelete) 3067 return OperatorDelete; 3068 3069 // If there's no class-specific operator delete, look up the global 3070 // non-array delete. 3071 return FindUsualDeallocationFunction( 3072 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3073 Name); 3074 } 3075 3076 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3077 DeclarationName Name, 3078 FunctionDecl *&Operator, bool Diagnose) { 3079 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3080 // Try to find operator delete/operator delete[] in class scope. 3081 LookupQualifiedName(Found, RD); 3082 3083 if (Found.isAmbiguous()) 3084 return true; 3085 3086 Found.suppressDiagnostics(); 3087 3088 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3089 3090 // C++17 [expr.delete]p10: 3091 // If the deallocation functions have class scope, the one without a 3092 // parameter of type std::size_t is selected. 3093 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3094 resolveDeallocationOverload(*this, Found, /*WantSize*/ false, 3095 /*WantAlign*/ Overaligned, &Matches); 3096 3097 // If we could find an overload, use it. 3098 if (Matches.size() == 1) { 3099 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3100 3101 // FIXME: DiagnoseUseOfDecl? 3102 if (Operator->isDeleted()) { 3103 if (Diagnose) { 3104 Diag(StartLoc, diag::err_deleted_function_use); 3105 NoteDeletedFunction(Operator); 3106 } 3107 return true; 3108 } 3109 3110 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3111 Matches[0].Found, Diagnose) == AR_inaccessible) 3112 return true; 3113 3114 return false; 3115 } 3116 3117 // We found multiple suitable operators; complain about the ambiguity. 3118 // FIXME: The standard doesn't say to do this; it appears that the intent 3119 // is that this should never happen. 3120 if (!Matches.empty()) { 3121 if (Diagnose) { 3122 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3123 << Name << RD; 3124 for (auto &Match : Matches) 3125 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3126 } 3127 return true; 3128 } 3129 3130 // We did find operator delete/operator delete[] declarations, but 3131 // none of them were suitable. 3132 if (!Found.empty()) { 3133 if (Diagnose) { 3134 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3135 << Name << RD; 3136 3137 for (NamedDecl *D : Found) 3138 Diag(D->getUnderlyingDecl()->getLocation(), 3139 diag::note_member_declared_here) << Name; 3140 } 3141 return true; 3142 } 3143 3144 Operator = nullptr; 3145 return false; 3146 } 3147 3148 namespace { 3149 /// Checks whether delete-expression, and new-expression used for 3150 /// initializing deletee have the same array form. 3151 class MismatchingNewDeleteDetector { 3152 public: 3153 enum MismatchResult { 3154 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3155 NoMismatch, 3156 /// Indicates that variable is initialized with mismatching form of \a new. 3157 VarInitMismatches, 3158 /// Indicates that member is initialized with mismatching form of \a new. 3159 MemberInitMismatches, 3160 /// Indicates that 1 or more constructors' definitions could not been 3161 /// analyzed, and they will be checked again at the end of translation unit. 3162 AnalyzeLater 3163 }; 3164 3165 /// \param EndOfTU True, if this is the final analysis at the end of 3166 /// translation unit. False, if this is the initial analysis at the point 3167 /// delete-expression was encountered. 3168 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3169 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3170 HasUndefinedConstructors(false) {} 3171 3172 /// Checks whether pointee of a delete-expression is initialized with 3173 /// matching form of new-expression. 3174 /// 3175 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3176 /// point where delete-expression is encountered, then a warning will be 3177 /// issued immediately. If return value is \c AnalyzeLater at the point where 3178 /// delete-expression is seen, then member will be analyzed at the end of 3179 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3180 /// couldn't be analyzed. If at least one constructor initializes the member 3181 /// with matching type of new, the return value is \c NoMismatch. 3182 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3183 /// Analyzes a class member. 3184 /// \param Field Class member to analyze. 3185 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3186 /// for deleting the \p Field. 3187 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3188 FieldDecl *Field; 3189 /// List of mismatching new-expressions used for initialization of the pointee 3190 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3191 /// Indicates whether delete-expression was in array form. 3192 bool IsArrayForm; 3193 3194 private: 3195 const bool EndOfTU; 3196 /// Indicates that there is at least one constructor without body. 3197 bool HasUndefinedConstructors; 3198 /// Returns \c CXXNewExpr from given initialization expression. 3199 /// \param E Expression used for initializing pointee in delete-expression. 3200 /// E can be a single-element \c InitListExpr consisting of new-expression. 3201 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3202 /// Returns whether member is initialized with mismatching form of 3203 /// \c new either by the member initializer or in-class initialization. 3204 /// 3205 /// If bodies of all constructors are not visible at the end of translation 3206 /// unit or at least one constructor initializes member with the matching 3207 /// form of \c new, mismatch cannot be proven, and this function will return 3208 /// \c NoMismatch. 3209 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3210 /// Returns whether variable is initialized with mismatching form of 3211 /// \c new. 3212 /// 3213 /// If variable is initialized with matching form of \c new or variable is not 3214 /// initialized with a \c new expression, this function will return true. 3215 /// If variable is initialized with mismatching form of \c new, returns false. 3216 /// \param D Variable to analyze. 3217 bool hasMatchingVarInit(const DeclRefExpr *D); 3218 /// Checks whether the constructor initializes pointee with mismatching 3219 /// form of \c new. 3220 /// 3221 /// Returns true, if member is initialized with matching form of \c new in 3222 /// member initializer list. Returns false, if member is initialized with the 3223 /// matching form of \c new in this constructor's initializer or given 3224 /// constructor isn't defined at the point where delete-expression is seen, or 3225 /// member isn't initialized by the constructor. 3226 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3227 /// Checks whether member is initialized with matching form of 3228 /// \c new in member initializer list. 3229 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3230 /// Checks whether member is initialized with mismatching form of \c new by 3231 /// in-class initializer. 3232 MismatchResult analyzeInClassInitializer(); 3233 }; 3234 } 3235 3236 MismatchingNewDeleteDetector::MismatchResult 3237 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3238 NewExprs.clear(); 3239 assert(DE && "Expected delete-expression"); 3240 IsArrayForm = DE->isArrayForm(); 3241 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3242 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3243 return analyzeMemberExpr(ME); 3244 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3245 if (!hasMatchingVarInit(D)) 3246 return VarInitMismatches; 3247 } 3248 return NoMismatch; 3249 } 3250 3251 const CXXNewExpr * 3252 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3253 assert(E != nullptr && "Expected a valid initializer expression"); 3254 E = E->IgnoreParenImpCasts(); 3255 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3256 if (ILE->getNumInits() == 1) 3257 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3258 } 3259 3260 return dyn_cast_or_null<const CXXNewExpr>(E); 3261 } 3262 3263 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3264 const CXXCtorInitializer *CI) { 3265 const CXXNewExpr *NE = nullptr; 3266 if (Field == CI->getMember() && 3267 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3268 if (NE->isArray() == IsArrayForm) 3269 return true; 3270 else 3271 NewExprs.push_back(NE); 3272 } 3273 return false; 3274 } 3275 3276 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3277 const CXXConstructorDecl *CD) { 3278 if (CD->isImplicit()) 3279 return false; 3280 const FunctionDecl *Definition = CD; 3281 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3282 HasUndefinedConstructors = true; 3283 return EndOfTU; 3284 } 3285 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3286 if (hasMatchingNewInCtorInit(CI)) 3287 return true; 3288 } 3289 return false; 3290 } 3291 3292 MismatchingNewDeleteDetector::MismatchResult 3293 MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3294 assert(Field != nullptr && "This should be called only for members"); 3295 const Expr *InitExpr = Field->getInClassInitializer(); 3296 if (!InitExpr) 3297 return EndOfTU ? NoMismatch : AnalyzeLater; 3298 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3299 if (NE->isArray() != IsArrayForm) { 3300 NewExprs.push_back(NE); 3301 return MemberInitMismatches; 3302 } 3303 } 3304 return NoMismatch; 3305 } 3306 3307 MismatchingNewDeleteDetector::MismatchResult 3308 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3309 bool DeleteWasArrayForm) { 3310 assert(Field != nullptr && "Analysis requires a valid class member."); 3311 this->Field = Field; 3312 IsArrayForm = DeleteWasArrayForm; 3313 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3314 for (const auto *CD : RD->ctors()) { 3315 if (hasMatchingNewInCtor(CD)) 3316 return NoMismatch; 3317 } 3318 if (HasUndefinedConstructors) 3319 return EndOfTU ? NoMismatch : AnalyzeLater; 3320 if (!NewExprs.empty()) 3321 return MemberInitMismatches; 3322 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3323 : NoMismatch; 3324 } 3325 3326 MismatchingNewDeleteDetector::MismatchResult 3327 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3328 assert(ME != nullptr && "Expected a member expression"); 3329 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3330 return analyzeField(F, IsArrayForm); 3331 return NoMismatch; 3332 } 3333 3334 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3335 const CXXNewExpr *NE = nullptr; 3336 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3337 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3338 NE->isArray() != IsArrayForm) { 3339 NewExprs.push_back(NE); 3340 } 3341 } 3342 return NewExprs.empty(); 3343 } 3344 3345 static void 3346 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3347 const MismatchingNewDeleteDetector &Detector) { 3348 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3349 FixItHint H; 3350 if (!Detector.IsArrayForm) 3351 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3352 else { 3353 SourceLocation RSquare = Lexer::findLocationAfterToken( 3354 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3355 SemaRef.getLangOpts(), true); 3356 if (RSquare.isValid()) 3357 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3358 } 3359 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3360 << Detector.IsArrayForm << H; 3361 3362 for (const auto *NE : Detector.NewExprs) 3363 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3364 << Detector.IsArrayForm; 3365 } 3366 3367 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3368 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3369 return; 3370 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3371 switch (Detector.analyzeDeleteExpr(DE)) { 3372 case MismatchingNewDeleteDetector::VarInitMismatches: 3373 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3374 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3375 break; 3376 } 3377 case MismatchingNewDeleteDetector::AnalyzeLater: { 3378 DeleteExprs[Detector.Field].push_back( 3379 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3380 break; 3381 } 3382 case MismatchingNewDeleteDetector::NoMismatch: 3383 break; 3384 } 3385 } 3386 3387 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3388 bool DeleteWasArrayForm) { 3389 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3390 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3391 case MismatchingNewDeleteDetector::VarInitMismatches: 3392 llvm_unreachable("This analysis should have been done for class members."); 3393 case MismatchingNewDeleteDetector::AnalyzeLater: 3394 llvm_unreachable("Analysis cannot be postponed any point beyond end of " 3395 "translation unit."); 3396 case MismatchingNewDeleteDetector::MemberInitMismatches: 3397 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3398 break; 3399 case MismatchingNewDeleteDetector::NoMismatch: 3400 break; 3401 } 3402 } 3403 3404 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3405 /// @code ::delete ptr; @endcode 3406 /// or 3407 /// @code delete [] ptr; @endcode 3408 ExprResult 3409 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3410 bool ArrayForm, Expr *ExE) { 3411 // C++ [expr.delete]p1: 3412 // The operand shall have a pointer type, or a class type having a single 3413 // non-explicit conversion function to a pointer type. The result has type 3414 // void. 3415 // 3416 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3417 3418 ExprResult Ex = ExE; 3419 FunctionDecl *OperatorDelete = nullptr; 3420 bool ArrayFormAsWritten = ArrayForm; 3421 bool UsualArrayDeleteWantsSize = false; 3422 3423 if (!Ex.get()->isTypeDependent()) { 3424 // Perform lvalue-to-rvalue cast, if needed. 3425 Ex = DefaultLvalueConversion(Ex.get()); 3426 if (Ex.isInvalid()) 3427 return ExprError(); 3428 3429 QualType Type = Ex.get()->getType(); 3430 3431 class DeleteConverter : public ContextualImplicitConverter { 3432 public: 3433 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3434 3435 bool match(QualType ConvType) override { 3436 // FIXME: If we have an operator T* and an operator void*, we must pick 3437 // the operator T*. 3438 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3439 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3440 return true; 3441 return false; 3442 } 3443 3444 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3445 QualType T) override { 3446 return S.Diag(Loc, diag::err_delete_operand) << T; 3447 } 3448 3449 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3450 QualType T) override { 3451 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3452 } 3453 3454 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3455 QualType T, 3456 QualType ConvTy) override { 3457 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3458 } 3459 3460 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3461 QualType ConvTy) override { 3462 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3463 << ConvTy; 3464 } 3465 3466 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3467 QualType T) override { 3468 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3469 } 3470 3471 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3472 QualType ConvTy) override { 3473 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3474 << ConvTy; 3475 } 3476 3477 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3478 QualType T, 3479 QualType ConvTy) override { 3480 llvm_unreachable("conversion functions are permitted"); 3481 } 3482 } Converter; 3483 3484 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3485 if (Ex.isInvalid()) 3486 return ExprError(); 3487 Type = Ex.get()->getType(); 3488 if (!Converter.match(Type)) 3489 // FIXME: PerformContextualImplicitConversion should return ExprError 3490 // itself in this case. 3491 return ExprError(); 3492 3493 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3494 QualType PointeeElem = Context.getBaseElementType(Pointee); 3495 3496 if (Pointee.getAddressSpace() != LangAS::Default && 3497 !getLangOpts().OpenCLCPlusPlus) 3498 return Diag(Ex.get()->getBeginLoc(), 3499 diag::err_address_space_qualified_delete) 3500 << Pointee.getUnqualifiedType() 3501 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3502 3503 CXXRecordDecl *PointeeRD = nullptr; 3504 if (Pointee->isVoidType() && !isSFINAEContext()) { 3505 // The C++ standard bans deleting a pointer to a non-object type, which 3506 // effectively bans deletion of "void*". However, most compilers support 3507 // this, so we treat it as a warning unless we're in a SFINAE context. 3508 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3509 << Type << Ex.get()->getSourceRange(); 3510 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3511 Pointee->isSizelessType()) { 3512 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3513 << Type << Ex.get()->getSourceRange()); 3514 } else if (!Pointee->isDependentType()) { 3515 // FIXME: This can result in errors if the definition was imported from a 3516 // module but is hidden. 3517 if (!RequireCompleteType(StartLoc, Pointee, 3518 diag::warn_delete_incomplete, Ex.get())) { 3519 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3520 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3521 } 3522 } 3523 3524 if (Pointee->isArrayType() && !ArrayForm) { 3525 Diag(StartLoc, diag::warn_delete_array_type) 3526 << Type << Ex.get()->getSourceRange() 3527 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3528 ArrayForm = true; 3529 } 3530 3531 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3532 ArrayForm ? OO_Array_Delete : OO_Delete); 3533 3534 if (PointeeRD) { 3535 if (!UseGlobal && 3536 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3537 OperatorDelete)) 3538 return ExprError(); 3539 3540 // If we're allocating an array of records, check whether the 3541 // usual operator delete[] has a size_t parameter. 3542 if (ArrayForm) { 3543 // If the user specifically asked to use the global allocator, 3544 // we'll need to do the lookup into the class. 3545 if (UseGlobal) 3546 UsualArrayDeleteWantsSize = 3547 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3548 3549 // Otherwise, the usual operator delete[] should be the 3550 // function we just found. 3551 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3552 UsualArrayDeleteWantsSize = 3553 UsualDeallocFnInfo(*this, 3554 DeclAccessPair::make(OperatorDelete, AS_public)) 3555 .HasSizeT; 3556 } 3557 3558 if (!PointeeRD->hasIrrelevantDestructor()) 3559 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3560 MarkFunctionReferenced(StartLoc, 3561 const_cast<CXXDestructorDecl*>(Dtor)); 3562 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3563 return ExprError(); 3564 } 3565 3566 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3567 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3568 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3569 SourceLocation()); 3570 } 3571 3572 if (!OperatorDelete) { 3573 if (getLangOpts().OpenCLCPlusPlus) { 3574 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3575 return ExprError(); 3576 } 3577 3578 bool IsComplete = isCompleteType(StartLoc, Pointee); 3579 bool CanProvideSize = 3580 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3581 Pointee.isDestructedType()); 3582 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3583 3584 // Look for a global declaration. 3585 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3586 Overaligned, DeleteName); 3587 } 3588 3589 MarkFunctionReferenced(StartLoc, OperatorDelete); 3590 3591 // Check access and ambiguity of destructor if we're going to call it. 3592 // Note that this is required even for a virtual delete. 3593 bool IsVirtualDelete = false; 3594 if (PointeeRD) { 3595 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3596 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3597 PDiag(diag::err_access_dtor) << PointeeElem); 3598 IsVirtualDelete = Dtor->isVirtual(); 3599 } 3600 } 3601 3602 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3603 3604 // Convert the operand to the type of the first parameter of operator 3605 // delete. This is only necessary if we selected a destroying operator 3606 // delete that we are going to call (non-virtually); converting to void* 3607 // is trivial and left to AST consumers to handle. 3608 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3609 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3610 Qualifiers Qs = Pointee.getQualifiers(); 3611 if (Qs.hasCVRQualifiers()) { 3612 // Qualifiers are irrelevant to this conversion; we're only looking 3613 // for access and ambiguity. 3614 Qs.removeCVRQualifiers(); 3615 QualType Unqual = Context.getPointerType( 3616 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3617 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3618 } 3619 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3620 if (Ex.isInvalid()) 3621 return ExprError(); 3622 } 3623 } 3624 3625 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3626 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3627 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3628 AnalyzeDeleteExprMismatch(Result); 3629 return Result; 3630 } 3631 3632 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3633 bool IsDelete, 3634 FunctionDecl *&Operator) { 3635 3636 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3637 IsDelete ? OO_Delete : OO_New); 3638 3639 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3640 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3641 assert(!R.empty() && "implicitly declared allocation functions not found"); 3642 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 3643 3644 // We do our own custom access checks below. 3645 R.suppressDiagnostics(); 3646 3647 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end()); 3648 OverloadCandidateSet Candidates(R.getNameLoc(), 3649 OverloadCandidateSet::CSK_Normal); 3650 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3651 FnOvl != FnOvlEnd; ++FnOvl) { 3652 // Even member operator new/delete are implicitly treated as 3653 // static, so don't use AddMemberCandidate. 3654 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3655 3656 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3657 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3658 /*ExplicitTemplateArgs=*/nullptr, Args, 3659 Candidates, 3660 /*SuppressUserConversions=*/false); 3661 continue; 3662 } 3663 3664 FunctionDecl *Fn = cast<FunctionDecl>(D); 3665 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3666 /*SuppressUserConversions=*/false); 3667 } 3668 3669 SourceRange Range = TheCall->getSourceRange(); 3670 3671 // Do the resolution. 3672 OverloadCandidateSet::iterator Best; 3673 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3674 case OR_Success: { 3675 // Got one! 3676 FunctionDecl *FnDecl = Best->Function; 3677 assert(R.getNamingClass() == nullptr && 3678 "class members should not be considered"); 3679 3680 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3681 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3682 << (IsDelete ? 1 : 0) << Range; 3683 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3684 << R.getLookupName() << FnDecl->getSourceRange(); 3685 return true; 3686 } 3687 3688 Operator = FnDecl; 3689 return false; 3690 } 3691 3692 case OR_No_Viable_Function: 3693 Candidates.NoteCandidates( 3694 PartialDiagnosticAt(R.getNameLoc(), 3695 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3696 << R.getLookupName() << Range), 3697 S, OCD_AllCandidates, Args); 3698 return true; 3699 3700 case OR_Ambiguous: 3701 Candidates.NoteCandidates( 3702 PartialDiagnosticAt(R.getNameLoc(), 3703 S.PDiag(diag::err_ovl_ambiguous_call) 3704 << R.getLookupName() << Range), 3705 S, OCD_AmbiguousCandidates, Args); 3706 return true; 3707 3708 case OR_Deleted: { 3709 Candidates.NoteCandidates( 3710 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3711 << R.getLookupName() << Range), 3712 S, OCD_AllCandidates, Args); 3713 return true; 3714 } 3715 } 3716 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 3717 } 3718 3719 ExprResult 3720 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3721 bool IsDelete) { 3722 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3723 if (!getLangOpts().CPlusPlus) { 3724 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3725 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3726 << "C++"; 3727 return ExprError(); 3728 } 3729 // CodeGen assumes it can find the global new and delete to call, 3730 // so ensure that they are declared. 3731 DeclareGlobalNewDelete(); 3732 3733 FunctionDecl *OperatorNewOrDelete = nullptr; 3734 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3735 OperatorNewOrDelete)) 3736 return ExprError(); 3737 assert(OperatorNewOrDelete && "should be found"); 3738 3739 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3740 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3741 3742 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3743 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3744 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3745 InitializedEntity Entity = 3746 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3747 ExprResult Arg = PerformCopyInitialization( 3748 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3749 if (Arg.isInvalid()) 3750 return ExprError(); 3751 TheCall->setArg(i, Arg.get()); 3752 } 3753 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3754 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && 3755 "Callee expected to be implicit cast to a builtin function pointer"); 3756 Callee->setType(OperatorNewOrDelete->getType()); 3757 3758 return TheCallResult; 3759 } 3760 3761 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3762 bool IsDelete, bool CallCanBeVirtual, 3763 bool WarnOnNonAbstractTypes, 3764 SourceLocation DtorLoc) { 3765 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3766 return; 3767 3768 // C++ [expr.delete]p3: 3769 // In the first alternative (delete object), if the static type of the 3770 // object to be deleted is different from its dynamic type, the static 3771 // type shall be a base class of the dynamic type of the object to be 3772 // deleted and the static type shall have a virtual destructor or the 3773 // behavior is undefined. 3774 // 3775 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3776 // Note: a final class cannot be derived from, no issue there 3777 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3778 return; 3779 3780 // If the superclass is in a system header, there's nothing that can be done. 3781 // The `delete` (where we emit the warning) can be in a system header, 3782 // what matters for this warning is where the deleted type is defined. 3783 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3784 return; 3785 3786 QualType ClassType = dtor->getThisType()->getPointeeType(); 3787 if (PointeeRD->isAbstract()) { 3788 // If the class is abstract, we warn by default, because we're 3789 // sure the code has undefined behavior. 3790 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3791 << ClassType; 3792 } else if (WarnOnNonAbstractTypes) { 3793 // Otherwise, if this is not an array delete, it's a bit suspect, 3794 // but not necessarily wrong. 3795 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3796 << ClassType; 3797 } 3798 if (!IsDelete) { 3799 std::string TypeStr; 3800 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3801 Diag(DtorLoc, diag::note_delete_non_virtual) 3802 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3803 } 3804 } 3805 3806 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3807 SourceLocation StmtLoc, 3808 ConditionKind CK) { 3809 ExprResult E = 3810 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3811 if (E.isInvalid()) 3812 return ConditionError(); 3813 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3814 CK == ConditionKind::ConstexprIf); 3815 } 3816 3817 /// Check the use of the given variable as a C++ condition in an if, 3818 /// while, do-while, or switch statement. 3819 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3820 SourceLocation StmtLoc, 3821 ConditionKind CK) { 3822 if (ConditionVar->isInvalidDecl()) 3823 return ExprError(); 3824 3825 QualType T = ConditionVar->getType(); 3826 3827 // C++ [stmt.select]p2: 3828 // The declarator shall not specify a function or an array. 3829 if (T->isFunctionType()) 3830 return ExprError(Diag(ConditionVar->getLocation(), 3831 diag::err_invalid_use_of_function_type) 3832 << ConditionVar->getSourceRange()); 3833 else if (T->isArrayType()) 3834 return ExprError(Diag(ConditionVar->getLocation(), 3835 diag::err_invalid_use_of_array_type) 3836 << ConditionVar->getSourceRange()); 3837 3838 ExprResult Condition = BuildDeclRefExpr( 3839 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 3840 ConditionVar->getLocation()); 3841 3842 switch (CK) { 3843 case ConditionKind::Boolean: 3844 return CheckBooleanCondition(StmtLoc, Condition.get()); 3845 3846 case ConditionKind::ConstexprIf: 3847 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 3848 3849 case ConditionKind::Switch: 3850 return CheckSwitchCondition(StmtLoc, Condition.get()); 3851 } 3852 3853 llvm_unreachable("unexpected condition kind"); 3854 } 3855 3856 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 3857 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 3858 // C++ 6.4p4: 3859 // The value of a condition that is an initialized declaration in a statement 3860 // other than a switch statement is the value of the declared variable 3861 // implicitly converted to type bool. If that conversion is ill-formed, the 3862 // program is ill-formed. 3863 // The value of a condition that is an expression is the value of the 3864 // expression, implicitly converted to bool. 3865 // 3866 // FIXME: Return this value to the caller so they don't need to recompute it. 3867 llvm::APSInt Value(/*BitWidth*/1); 3868 return (IsConstexpr && !CondExpr->isValueDependent()) 3869 ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value, 3870 CCEK_ConstexprIf) 3871 : PerformContextuallyConvertToBool(CondExpr); 3872 } 3873 3874 /// Helper function to determine whether this is the (deprecated) C++ 3875 /// conversion from a string literal to a pointer to non-const char or 3876 /// non-const wchar_t (for narrow and wide string literals, 3877 /// respectively). 3878 bool 3879 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 3880 // Look inside the implicit cast, if it exists. 3881 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 3882 From = Cast->getSubExpr(); 3883 3884 // A string literal (2.13.4) that is not a wide string literal can 3885 // be converted to an rvalue of type "pointer to char"; a wide 3886 // string literal can be converted to an rvalue of type "pointer 3887 // to wchar_t" (C++ 4.2p2). 3888 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 3889 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 3890 if (const BuiltinType *ToPointeeType 3891 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 3892 // This conversion is considered only when there is an 3893 // explicit appropriate pointer target type (C++ 4.2p2). 3894 if (!ToPtrType->getPointeeType().hasQualifiers()) { 3895 switch (StrLit->getKind()) { 3896 case StringLiteral::UTF8: 3897 case StringLiteral::UTF16: 3898 case StringLiteral::UTF32: 3899 // We don't allow UTF literals to be implicitly converted 3900 break; 3901 case StringLiteral::Ascii: 3902 return (ToPointeeType->getKind() == BuiltinType::Char_U || 3903 ToPointeeType->getKind() == BuiltinType::Char_S); 3904 case StringLiteral::Wide: 3905 return Context.typesAreCompatible(Context.getWideCharType(), 3906 QualType(ToPointeeType, 0)); 3907 } 3908 } 3909 } 3910 3911 return false; 3912 } 3913 3914 static ExprResult BuildCXXCastArgument(Sema &S, 3915 SourceLocation CastLoc, 3916 QualType Ty, 3917 CastKind Kind, 3918 CXXMethodDecl *Method, 3919 DeclAccessPair FoundDecl, 3920 bool HadMultipleCandidates, 3921 Expr *From) { 3922 switch (Kind) { 3923 default: llvm_unreachable("Unhandled cast kind!"); 3924 case CK_ConstructorConversion: { 3925 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 3926 SmallVector<Expr*, 8> ConstructorArgs; 3927 3928 if (S.RequireNonAbstractType(CastLoc, Ty, 3929 diag::err_allocation_of_abstract_type)) 3930 return ExprError(); 3931 3932 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs)) 3933 return ExprError(); 3934 3935 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 3936 InitializedEntity::InitializeTemporary(Ty)); 3937 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 3938 return ExprError(); 3939 3940 ExprResult Result = S.BuildCXXConstructExpr( 3941 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 3942 ConstructorArgs, HadMultipleCandidates, 3943 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 3944 CXXConstructExpr::CK_Complete, SourceRange()); 3945 if (Result.isInvalid()) 3946 return ExprError(); 3947 3948 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 3949 } 3950 3951 case CK_UserDefinedConversion: { 3952 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); 3953 3954 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 3955 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 3956 return ExprError(); 3957 3958 // Create an implicit call expr that calls it. 3959 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 3960 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 3961 HadMultipleCandidates); 3962 if (Result.isInvalid()) 3963 return ExprError(); 3964 // Record usage of conversion in an implicit cast. 3965 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 3966 CK_UserDefinedConversion, Result.get(), 3967 nullptr, Result.get()->getValueKind(), 3968 S.CurFPFeatureOverrides()); 3969 3970 return S.MaybeBindToTemporary(Result.get()); 3971 } 3972 } 3973 } 3974 3975 /// PerformImplicitConversion - Perform an implicit conversion of the 3976 /// expression From to the type ToType using the pre-computed implicit 3977 /// conversion sequence ICS. Returns the converted 3978 /// expression. Action is the kind of conversion we're performing, 3979 /// used in the error message. 3980 ExprResult 3981 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 3982 const ImplicitConversionSequence &ICS, 3983 AssignmentAction Action, 3984 CheckedConversionKind CCK) { 3985 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 3986 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 3987 return From; 3988 3989 switch (ICS.getKind()) { 3990 case ImplicitConversionSequence::StandardConversion: { 3991 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 3992 Action, CCK); 3993 if (Res.isInvalid()) 3994 return ExprError(); 3995 From = Res.get(); 3996 break; 3997 } 3998 3999 case ImplicitConversionSequence::UserDefinedConversion: { 4000 4001 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 4002 CastKind CastKind; 4003 QualType BeforeToType; 4004 assert(FD && "no conversion function for user-defined conversion seq"); 4005 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 4006 CastKind = CK_UserDefinedConversion; 4007 4008 // If the user-defined conversion is specified by a conversion function, 4009 // the initial standard conversion sequence converts the source type to 4010 // the implicit object parameter of the conversion function. 4011 BeforeToType = Context.getTagDeclType(Conv->getParent()); 4012 } else { 4013 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 4014 CastKind = CK_ConstructorConversion; 4015 // Do no conversion if dealing with ... for the first conversion. 4016 if (!ICS.UserDefined.EllipsisConversion) { 4017 // If the user-defined conversion is specified by a constructor, the 4018 // initial standard conversion sequence converts the source type to 4019 // the type required by the argument of the constructor 4020 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 4021 } 4022 } 4023 // Watch out for ellipsis conversion. 4024 if (!ICS.UserDefined.EllipsisConversion) { 4025 ExprResult Res = 4026 PerformImplicitConversion(From, BeforeToType, 4027 ICS.UserDefined.Before, AA_Converting, 4028 CCK); 4029 if (Res.isInvalid()) 4030 return ExprError(); 4031 From = Res.get(); 4032 } 4033 4034 ExprResult CastArg = BuildCXXCastArgument( 4035 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 4036 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 4037 ICS.UserDefined.HadMultipleCandidates, From); 4038 4039 if (CastArg.isInvalid()) 4040 return ExprError(); 4041 4042 From = CastArg.get(); 4043 4044 // C++ [over.match.oper]p7: 4045 // [...] the second standard conversion sequence of a user-defined 4046 // conversion sequence is not applied. 4047 if (CCK == CCK_ForBuiltinOverloadedOp) 4048 return From; 4049 4050 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4051 AA_Converting, CCK); 4052 } 4053 4054 case ImplicitConversionSequence::AmbiguousConversion: 4055 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4056 PDiag(diag::err_typecheck_ambiguous_condition) 4057 << From->getSourceRange()); 4058 return ExprError(); 4059 4060 case ImplicitConversionSequence::EllipsisConversion: 4061 llvm_unreachable("Cannot perform an ellipsis conversion"); 4062 4063 case ImplicitConversionSequence::BadConversion: 4064 Sema::AssignConvertType ConvTy = 4065 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4066 bool Diagnosed = DiagnoseAssignmentResult( 4067 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4068 ToType, From->getType(), From, Action); 4069 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed; 4070 return ExprError(); 4071 } 4072 4073 // Everything went well. 4074 return From; 4075 } 4076 4077 /// PerformImplicitConversion - Perform an implicit conversion of the 4078 /// expression From to the type ToType by following the standard 4079 /// conversion sequence SCS. Returns the converted 4080 /// expression. Flavor is the context in which we're performing this 4081 /// conversion, for use in error messages. 4082 ExprResult 4083 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4084 const StandardConversionSequence& SCS, 4085 AssignmentAction Action, 4086 CheckedConversionKind CCK) { 4087 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 4088 4089 // Overall FIXME: we are recomputing too many types here and doing far too 4090 // much extra work. What this means is that we need to keep track of more 4091 // information that is computed when we try the implicit conversion initially, 4092 // so that we don't need to recompute anything here. 4093 QualType FromType = From->getType(); 4094 4095 if (SCS.CopyConstructor) { 4096 // FIXME: When can ToType be a reference type? 4097 assert(!ToType->isReferenceType()); 4098 if (SCS.Second == ICK_Derived_To_Base) { 4099 SmallVector<Expr*, 8> ConstructorArgs; 4100 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), 4101 From, /*FIXME:ConstructLoc*/SourceLocation(), 4102 ConstructorArgs)) 4103 return ExprError(); 4104 return BuildCXXConstructExpr( 4105 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4106 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4107 ConstructorArgs, /*HadMultipleCandidates*/ false, 4108 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4109 CXXConstructExpr::CK_Complete, SourceRange()); 4110 } 4111 return BuildCXXConstructExpr( 4112 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4113 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4114 From, /*HadMultipleCandidates*/ false, 4115 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4116 CXXConstructExpr::CK_Complete, SourceRange()); 4117 } 4118 4119 // Resolve overloaded function references. 4120 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4121 DeclAccessPair Found; 4122 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4123 true, Found); 4124 if (!Fn) 4125 return ExprError(); 4126 4127 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4128 return ExprError(); 4129 4130 From = FixOverloadedFunctionReference(From, Found, Fn); 4131 FromType = From->getType(); 4132 } 4133 4134 // If we're converting to an atomic type, first convert to the corresponding 4135 // non-atomic type. 4136 QualType ToAtomicType; 4137 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4138 ToAtomicType = ToType; 4139 ToType = ToAtomic->getValueType(); 4140 } 4141 4142 QualType InitialFromType = FromType; 4143 // Perform the first implicit conversion. 4144 switch (SCS.First) { 4145 case ICK_Identity: 4146 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4147 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4148 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4149 From, /*BasePath=*/nullptr, VK_RValue, 4150 FPOptionsOverride()); 4151 } 4152 break; 4153 4154 case ICK_Lvalue_To_Rvalue: { 4155 assert(From->getObjectKind() != OK_ObjCProperty); 4156 ExprResult FromRes = DefaultLvalueConversion(From); 4157 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!"); 4158 From = FromRes.get(); 4159 FromType = From->getType(); 4160 break; 4161 } 4162 4163 case ICK_Array_To_Pointer: 4164 FromType = Context.getArrayDecayedType(FromType); 4165 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, 4166 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4167 break; 4168 4169 case ICK_Function_To_Pointer: 4170 FromType = Context.getPointerType(FromType); 4171 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4172 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4173 break; 4174 4175 default: 4176 llvm_unreachable("Improper first standard conversion"); 4177 } 4178 4179 // Perform the second implicit conversion 4180 switch (SCS.Second) { 4181 case ICK_Identity: 4182 // C++ [except.spec]p5: 4183 // [For] assignment to and initialization of pointers to functions, 4184 // pointers to member functions, and references to functions: the 4185 // target entity shall allow at least the exceptions allowed by the 4186 // source value in the assignment or initialization. 4187 switch (Action) { 4188 case AA_Assigning: 4189 case AA_Initializing: 4190 // Note, function argument passing and returning are initialization. 4191 case AA_Passing: 4192 case AA_Returning: 4193 case AA_Sending: 4194 case AA_Passing_CFAudited: 4195 if (CheckExceptionSpecCompatibility(From, ToType)) 4196 return ExprError(); 4197 break; 4198 4199 case AA_Casting: 4200 case AA_Converting: 4201 // Casts and implicit conversions are not initialization, so are not 4202 // checked for exception specification mismatches. 4203 break; 4204 } 4205 // Nothing else to do. 4206 break; 4207 4208 case ICK_Integral_Promotion: 4209 case ICK_Integral_Conversion: 4210 if (ToType->isBooleanType()) { 4211 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && 4212 SCS.Second == ICK_Integral_Promotion && 4213 "only enums with fixed underlying type can promote to bool"); 4214 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, 4215 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4216 } else { 4217 From = ImpCastExprToType(From, ToType, CK_IntegralCast, 4218 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4219 } 4220 break; 4221 4222 case ICK_Floating_Promotion: 4223 case ICK_Floating_Conversion: 4224 From = ImpCastExprToType(From, ToType, CK_FloatingCast, 4225 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4226 break; 4227 4228 case ICK_Complex_Promotion: 4229 case ICK_Complex_Conversion: { 4230 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4231 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4232 CastKind CK; 4233 if (FromEl->isRealFloatingType()) { 4234 if (ToEl->isRealFloatingType()) 4235 CK = CK_FloatingComplexCast; 4236 else 4237 CK = CK_FloatingComplexToIntegralComplex; 4238 } else if (ToEl->isRealFloatingType()) { 4239 CK = CK_IntegralComplexToFloatingComplex; 4240 } else { 4241 CK = CK_IntegralComplexCast; 4242 } 4243 From = ImpCastExprToType(From, ToType, CK, 4244 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4245 break; 4246 } 4247 4248 case ICK_Floating_Integral: 4249 if (ToType->isRealFloatingType()) 4250 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, 4251 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4252 else 4253 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, 4254 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4255 break; 4256 4257 case ICK_Compatible_Conversion: 4258 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4259 /*BasePath=*/nullptr, CCK).get(); 4260 break; 4261 4262 case ICK_Writeback_Conversion: 4263 case ICK_Pointer_Conversion: { 4264 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4265 // Diagnose incompatible Objective-C conversions 4266 if (Action == AA_Initializing || Action == AA_Assigning) 4267 Diag(From->getBeginLoc(), 4268 diag::ext_typecheck_convert_incompatible_pointer) 4269 << ToType << From->getType() << Action << From->getSourceRange() 4270 << 0; 4271 else 4272 Diag(From->getBeginLoc(), 4273 diag::ext_typecheck_convert_incompatible_pointer) 4274 << From->getType() << ToType << Action << From->getSourceRange() 4275 << 0; 4276 4277 if (From->getType()->isObjCObjectPointerType() && 4278 ToType->isObjCObjectPointerType()) 4279 EmitRelatedResultTypeNote(From); 4280 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4281 !CheckObjCARCUnavailableWeakConversion(ToType, 4282 From->getType())) { 4283 if (Action == AA_Initializing) 4284 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4285 else 4286 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4287 << (Action == AA_Casting) << From->getType() << ToType 4288 << From->getSourceRange(); 4289 } 4290 4291 // Defer address space conversion to the third conversion. 4292 QualType FromPteeType = From->getType()->getPointeeType(); 4293 QualType ToPteeType = ToType->getPointeeType(); 4294 QualType NewToType = ToType; 4295 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4296 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4297 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4298 NewToType = Context.getAddrSpaceQualType(NewToType, 4299 FromPteeType.getAddressSpace()); 4300 if (ToType->isObjCObjectPointerType()) 4301 NewToType = Context.getObjCObjectPointerType(NewToType); 4302 else if (ToType->isBlockPointerType()) 4303 NewToType = Context.getBlockPointerType(NewToType); 4304 else 4305 NewToType = Context.getPointerType(NewToType); 4306 } 4307 4308 CastKind Kind; 4309 CXXCastPath BasePath; 4310 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4311 return ExprError(); 4312 4313 // Make sure we extend blocks if necessary. 4314 // FIXME: doing this here is really ugly. 4315 if (Kind == CK_BlockPointerToObjCPointerCast) { 4316 ExprResult E = From; 4317 (void) PrepareCastToObjCObjectPointer(E); 4318 From = E.get(); 4319 } 4320 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4321 CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4322 From = ImpCastExprToType(From, NewToType, Kind, VK_RValue, &BasePath, CCK) 4323 .get(); 4324 break; 4325 } 4326 4327 case ICK_Pointer_Member: { 4328 CastKind Kind; 4329 CXXCastPath BasePath; 4330 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4331 return ExprError(); 4332 if (CheckExceptionSpecCompatibility(From, ToType)) 4333 return ExprError(); 4334 4335 // We may not have been able to figure out what this member pointer resolved 4336 // to up until this exact point. Attempt to lock-in it's inheritance model. 4337 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4338 (void)isCompleteType(From->getExprLoc(), From->getType()); 4339 (void)isCompleteType(From->getExprLoc(), ToType); 4340 } 4341 4342 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) 4343 .get(); 4344 break; 4345 } 4346 4347 case ICK_Boolean_Conversion: 4348 // Perform half-to-boolean conversion via float. 4349 if (From->getType()->isHalfType()) { 4350 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4351 FromType = Context.FloatTy; 4352 } 4353 4354 From = ImpCastExprToType(From, Context.BoolTy, 4355 ScalarTypeToBooleanCastKind(FromType), 4356 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4357 break; 4358 4359 case ICK_Derived_To_Base: { 4360 CXXCastPath BasePath; 4361 if (CheckDerivedToBaseConversion( 4362 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4363 From->getSourceRange(), &BasePath, CStyle)) 4364 return ExprError(); 4365 4366 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4367 CK_DerivedToBase, From->getValueKind(), 4368 &BasePath, CCK).get(); 4369 break; 4370 } 4371 4372 case ICK_Vector_Conversion: 4373 From = ImpCastExprToType(From, ToType, CK_BitCast, 4374 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4375 break; 4376 4377 case ICK_SVE_Vector_Conversion: 4378 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_RValue, 4379 /*BasePath=*/nullptr, CCK) 4380 .get(); 4381 break; 4382 4383 case ICK_Vector_Splat: { 4384 // Vector splat from any arithmetic type to a vector. 4385 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4386 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue, 4387 /*BasePath=*/nullptr, CCK).get(); 4388 break; 4389 } 4390 4391 case ICK_Complex_Real: 4392 // Case 1. x -> _Complex y 4393 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4394 QualType ElType = ToComplex->getElementType(); 4395 bool isFloatingComplex = ElType->isRealFloatingType(); 4396 4397 // x -> y 4398 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4399 // do nothing 4400 } else if (From->getType()->isRealFloatingType()) { 4401 From = ImpCastExprToType(From, ElType, 4402 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4403 } else { 4404 assert(From->getType()->isIntegerType()); 4405 From = ImpCastExprToType(From, ElType, 4406 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4407 } 4408 // y -> _Complex y 4409 From = ImpCastExprToType(From, ToType, 4410 isFloatingComplex ? CK_FloatingRealToComplex 4411 : CK_IntegralRealToComplex).get(); 4412 4413 // Case 2. _Complex x -> y 4414 } else { 4415 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4416 QualType ElType = FromComplex->getElementType(); 4417 bool isFloatingComplex = ElType->isRealFloatingType(); 4418 4419 // _Complex x -> x 4420 From = ImpCastExprToType(From, ElType, 4421 isFloatingComplex ? CK_FloatingComplexToReal 4422 : CK_IntegralComplexToReal, 4423 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4424 4425 // x -> y 4426 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4427 // do nothing 4428 } else if (ToType->isRealFloatingType()) { 4429 From = ImpCastExprToType(From, ToType, 4430 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating, 4431 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4432 } else { 4433 assert(ToType->isIntegerType()); 4434 From = ImpCastExprToType(From, ToType, 4435 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast, 4436 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4437 } 4438 } 4439 break; 4440 4441 case ICK_Block_Pointer_Conversion: { 4442 LangAS AddrSpaceL = 4443 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4444 LangAS AddrSpaceR = 4445 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4446 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && 4447 "Invalid cast"); 4448 CastKind Kind = 4449 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4450 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4451 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4452 break; 4453 } 4454 4455 case ICK_TransparentUnionConversion: { 4456 ExprResult FromRes = From; 4457 Sema::AssignConvertType ConvTy = 4458 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4459 if (FromRes.isInvalid()) 4460 return ExprError(); 4461 From = FromRes.get(); 4462 assert ((ConvTy == Sema::Compatible) && 4463 "Improper transparent union conversion"); 4464 (void)ConvTy; 4465 break; 4466 } 4467 4468 case ICK_Zero_Event_Conversion: 4469 case ICK_Zero_Queue_Conversion: 4470 From = ImpCastExprToType(From, ToType, 4471 CK_ZeroToOCLOpaqueType, 4472 From->getValueKind()).get(); 4473 break; 4474 4475 case ICK_Lvalue_To_Rvalue: 4476 case ICK_Array_To_Pointer: 4477 case ICK_Function_To_Pointer: 4478 case ICK_Function_Conversion: 4479 case ICK_Qualification: 4480 case ICK_Num_Conversion_Kinds: 4481 case ICK_C_Only_Conversion: 4482 case ICK_Incompatible_Pointer_Conversion: 4483 llvm_unreachable("Improper second standard conversion"); 4484 } 4485 4486 switch (SCS.Third) { 4487 case ICK_Identity: 4488 // Nothing to do. 4489 break; 4490 4491 case ICK_Function_Conversion: 4492 // If both sides are functions (or pointers/references to them), there could 4493 // be incompatible exception declarations. 4494 if (CheckExceptionSpecCompatibility(From, ToType)) 4495 return ExprError(); 4496 4497 From = ImpCastExprToType(From, ToType, CK_NoOp, 4498 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4499 break; 4500 4501 case ICK_Qualification: { 4502 ExprValueKind VK = From->getValueKind(); 4503 CastKind CK = CK_NoOp; 4504 4505 if (ToType->isReferenceType() && 4506 ToType->getPointeeType().getAddressSpace() != 4507 From->getType().getAddressSpace()) 4508 CK = CK_AddressSpaceConversion; 4509 4510 if (ToType->isPointerType() && 4511 ToType->getPointeeType().getAddressSpace() != 4512 From->getType()->getPointeeType().getAddressSpace()) 4513 CK = CK_AddressSpaceConversion; 4514 4515 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4516 /*BasePath=*/nullptr, CCK) 4517 .get(); 4518 4519 if (SCS.DeprecatedStringLiteralToCharPtr && 4520 !getLangOpts().WritableStrings) { 4521 Diag(From->getBeginLoc(), 4522 getLangOpts().CPlusPlus11 4523 ? diag::ext_deprecated_string_literal_conversion 4524 : diag::warn_deprecated_string_literal_conversion) 4525 << ToType.getNonReferenceType(); 4526 } 4527 4528 break; 4529 } 4530 4531 default: 4532 llvm_unreachable("Improper third standard conversion"); 4533 } 4534 4535 // If this conversion sequence involved a scalar -> atomic conversion, perform 4536 // that conversion now. 4537 if (!ToAtomicType.isNull()) { 4538 assert(Context.hasSameType( 4539 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); 4540 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4541 VK_RValue, nullptr, CCK).get(); 4542 } 4543 4544 // Materialize a temporary if we're implicitly converting to a reference 4545 // type. This is not required by the C++ rules but is necessary to maintain 4546 // AST invariants. 4547 if (ToType->isReferenceType() && From->isRValue()) { 4548 ExprResult Res = TemporaryMaterializationConversion(From); 4549 if (Res.isInvalid()) 4550 return ExprError(); 4551 From = Res.get(); 4552 } 4553 4554 // If this conversion sequence succeeded and involved implicitly converting a 4555 // _Nullable type to a _Nonnull one, complain. 4556 if (!isCast(CCK)) 4557 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4558 From->getBeginLoc()); 4559 4560 return From; 4561 } 4562 4563 /// Check the completeness of a type in a unary type trait. 4564 /// 4565 /// If the particular type trait requires a complete type, tries to complete 4566 /// it. If completing the type fails, a diagnostic is emitted and false 4567 /// returned. If completing the type succeeds or no completion was required, 4568 /// returns true. 4569 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4570 SourceLocation Loc, 4571 QualType ArgTy) { 4572 // C++0x [meta.unary.prop]p3: 4573 // For all of the class templates X declared in this Clause, instantiating 4574 // that template with a template argument that is a class template 4575 // specialization may result in the implicit instantiation of the template 4576 // argument if and only if the semantics of X require that the argument 4577 // must be a complete type. 4578 // We apply this rule to all the type trait expressions used to implement 4579 // these class templates. We also try to follow any GCC documented behavior 4580 // in these expressions to ensure portability of standard libraries. 4581 switch (UTT) { 4582 default: llvm_unreachable("not a UTT"); 4583 // is_complete_type somewhat obviously cannot require a complete type. 4584 case UTT_IsCompleteType: 4585 // Fall-through 4586 4587 // These traits are modeled on the type predicates in C++0x 4588 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4589 // requiring a complete type, as whether or not they return true cannot be 4590 // impacted by the completeness of the type. 4591 case UTT_IsVoid: 4592 case UTT_IsIntegral: 4593 case UTT_IsFloatingPoint: 4594 case UTT_IsArray: 4595 case UTT_IsPointer: 4596 case UTT_IsLvalueReference: 4597 case UTT_IsRvalueReference: 4598 case UTT_IsMemberFunctionPointer: 4599 case UTT_IsMemberObjectPointer: 4600 case UTT_IsEnum: 4601 case UTT_IsUnion: 4602 case UTT_IsClass: 4603 case UTT_IsFunction: 4604 case UTT_IsReference: 4605 case UTT_IsArithmetic: 4606 case UTT_IsFundamental: 4607 case UTT_IsObject: 4608 case UTT_IsScalar: 4609 case UTT_IsCompound: 4610 case UTT_IsMemberPointer: 4611 // Fall-through 4612 4613 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4614 // which requires some of its traits to have the complete type. However, 4615 // the completeness of the type cannot impact these traits' semantics, and 4616 // so they don't require it. This matches the comments on these traits in 4617 // Table 49. 4618 case UTT_IsConst: 4619 case UTT_IsVolatile: 4620 case UTT_IsSigned: 4621 case UTT_IsUnsigned: 4622 4623 // This type trait always returns false, checking the type is moot. 4624 case UTT_IsInterfaceClass: 4625 return true; 4626 4627 // C++14 [meta.unary.prop]: 4628 // If T is a non-union class type, T shall be a complete type. 4629 case UTT_IsEmpty: 4630 case UTT_IsPolymorphic: 4631 case UTT_IsAbstract: 4632 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4633 if (!RD->isUnion()) 4634 return !S.RequireCompleteType( 4635 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4636 return true; 4637 4638 // C++14 [meta.unary.prop]: 4639 // If T is a class type, T shall be a complete type. 4640 case UTT_IsFinal: 4641 case UTT_IsSealed: 4642 if (ArgTy->getAsCXXRecordDecl()) 4643 return !S.RequireCompleteType( 4644 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4645 return true; 4646 4647 // C++1z [meta.unary.prop]: 4648 // remove_all_extents_t<T> shall be a complete type or cv void. 4649 case UTT_IsAggregate: 4650 case UTT_IsTrivial: 4651 case UTT_IsTriviallyCopyable: 4652 case UTT_IsStandardLayout: 4653 case UTT_IsPOD: 4654 case UTT_IsLiteral: 4655 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4656 // or an array of unknown bound. But GCC actually imposes the same constraints 4657 // as above. 4658 case UTT_HasNothrowAssign: 4659 case UTT_HasNothrowMoveAssign: 4660 case UTT_HasNothrowConstructor: 4661 case UTT_HasNothrowCopy: 4662 case UTT_HasTrivialAssign: 4663 case UTT_HasTrivialMoveAssign: 4664 case UTT_HasTrivialDefaultConstructor: 4665 case UTT_HasTrivialMoveConstructor: 4666 case UTT_HasTrivialCopy: 4667 case UTT_HasTrivialDestructor: 4668 case UTT_HasVirtualDestructor: 4669 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4670 LLVM_FALLTHROUGH; 4671 4672 // C++1z [meta.unary.prop]: 4673 // T shall be a complete type, cv void, or an array of unknown bound. 4674 case UTT_IsDestructible: 4675 case UTT_IsNothrowDestructible: 4676 case UTT_IsTriviallyDestructible: 4677 case UTT_HasUniqueObjectRepresentations: 4678 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4679 return true; 4680 4681 return !S.RequireCompleteType( 4682 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4683 } 4684 } 4685 4686 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 4687 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 4688 bool (CXXRecordDecl::*HasTrivial)() const, 4689 bool (CXXRecordDecl::*HasNonTrivial)() const, 4690 bool (CXXMethodDecl::*IsDesiredOp)() const) 4691 { 4692 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4693 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 4694 return true; 4695 4696 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 4697 DeclarationNameInfo NameInfo(Name, KeyLoc); 4698 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 4699 if (Self.LookupQualifiedName(Res, RD)) { 4700 bool FoundOperator = false; 4701 Res.suppressDiagnostics(); 4702 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 4703 Op != OpEnd; ++Op) { 4704 if (isa<FunctionTemplateDecl>(*Op)) 4705 continue; 4706 4707 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 4708 if((Operator->*IsDesiredOp)()) { 4709 FoundOperator = true; 4710 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 4711 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4712 if (!CPT || !CPT->isNothrow()) 4713 return false; 4714 } 4715 } 4716 return FoundOperator; 4717 } 4718 return false; 4719 } 4720 4721 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 4722 SourceLocation KeyLoc, QualType T) { 4723 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 4724 4725 ASTContext &C = Self.Context; 4726 switch(UTT) { 4727 default: llvm_unreachable("not a UTT"); 4728 // Type trait expressions corresponding to the primary type category 4729 // predicates in C++0x [meta.unary.cat]. 4730 case UTT_IsVoid: 4731 return T->isVoidType(); 4732 case UTT_IsIntegral: 4733 return T->isIntegralType(C); 4734 case UTT_IsFloatingPoint: 4735 return T->isFloatingType(); 4736 case UTT_IsArray: 4737 return T->isArrayType(); 4738 case UTT_IsPointer: 4739 return T->isAnyPointerType(); 4740 case UTT_IsLvalueReference: 4741 return T->isLValueReferenceType(); 4742 case UTT_IsRvalueReference: 4743 return T->isRValueReferenceType(); 4744 case UTT_IsMemberFunctionPointer: 4745 return T->isMemberFunctionPointerType(); 4746 case UTT_IsMemberObjectPointer: 4747 return T->isMemberDataPointerType(); 4748 case UTT_IsEnum: 4749 return T->isEnumeralType(); 4750 case UTT_IsUnion: 4751 return T->isUnionType(); 4752 case UTT_IsClass: 4753 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 4754 case UTT_IsFunction: 4755 return T->isFunctionType(); 4756 4757 // Type trait expressions which correspond to the convenient composition 4758 // predicates in C++0x [meta.unary.comp]. 4759 case UTT_IsReference: 4760 return T->isReferenceType(); 4761 case UTT_IsArithmetic: 4762 return T->isArithmeticType() && !T->isEnumeralType(); 4763 case UTT_IsFundamental: 4764 return T->isFundamentalType(); 4765 case UTT_IsObject: 4766 return T->isObjectType(); 4767 case UTT_IsScalar: 4768 // Note: semantic analysis depends on Objective-C lifetime types to be 4769 // considered scalar types. However, such types do not actually behave 4770 // like scalar types at run time (since they may require retain/release 4771 // operations), so we report them as non-scalar. 4772 if (T->isObjCLifetimeType()) { 4773 switch (T.getObjCLifetime()) { 4774 case Qualifiers::OCL_None: 4775 case Qualifiers::OCL_ExplicitNone: 4776 return true; 4777 4778 case Qualifiers::OCL_Strong: 4779 case Qualifiers::OCL_Weak: 4780 case Qualifiers::OCL_Autoreleasing: 4781 return false; 4782 } 4783 } 4784 4785 return T->isScalarType(); 4786 case UTT_IsCompound: 4787 return T->isCompoundType(); 4788 case UTT_IsMemberPointer: 4789 return T->isMemberPointerType(); 4790 4791 // Type trait expressions which correspond to the type property predicates 4792 // in C++0x [meta.unary.prop]. 4793 case UTT_IsConst: 4794 return T.isConstQualified(); 4795 case UTT_IsVolatile: 4796 return T.isVolatileQualified(); 4797 case UTT_IsTrivial: 4798 return T.isTrivialType(C); 4799 case UTT_IsTriviallyCopyable: 4800 return T.isTriviallyCopyableType(C); 4801 case UTT_IsStandardLayout: 4802 return T->isStandardLayoutType(); 4803 case UTT_IsPOD: 4804 return T.isPODType(C); 4805 case UTT_IsLiteral: 4806 return T->isLiteralType(C); 4807 case UTT_IsEmpty: 4808 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4809 return !RD->isUnion() && RD->isEmpty(); 4810 return false; 4811 case UTT_IsPolymorphic: 4812 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4813 return !RD->isUnion() && RD->isPolymorphic(); 4814 return false; 4815 case UTT_IsAbstract: 4816 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4817 return !RD->isUnion() && RD->isAbstract(); 4818 return false; 4819 case UTT_IsAggregate: 4820 // Report vector extensions and complex types as aggregates because they 4821 // support aggregate initialization. GCC mirrors this behavior for vectors 4822 // but not _Complex. 4823 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 4824 T->isAnyComplexType(); 4825 // __is_interface_class only returns true when CL is invoked in /CLR mode and 4826 // even then only when it is used with the 'interface struct ...' syntax 4827 // Clang doesn't support /CLR which makes this type trait moot. 4828 case UTT_IsInterfaceClass: 4829 return false; 4830 case UTT_IsFinal: 4831 case UTT_IsSealed: 4832 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4833 return RD->hasAttr<FinalAttr>(); 4834 return false; 4835 case UTT_IsSigned: 4836 // Enum types should always return false. 4837 // Floating points should always return true. 4838 return !T->isEnumeralType() && (T->isFloatingType() || T->isSignedIntegerType()); 4839 case UTT_IsUnsigned: 4840 return T->isUnsignedIntegerType(); 4841 4842 // Type trait expressions which query classes regarding their construction, 4843 // destruction, and copying. Rather than being based directly on the 4844 // related type predicates in the standard, they are specified by both 4845 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 4846 // specifications. 4847 // 4848 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 4849 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4850 // 4851 // Note that these builtins do not behave as documented in g++: if a class 4852 // has both a trivial and a non-trivial special member of a particular kind, 4853 // they return false! For now, we emulate this behavior. 4854 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 4855 // does not correctly compute triviality in the presence of multiple special 4856 // members of the same kind. Revisit this once the g++ bug is fixed. 4857 case UTT_HasTrivialDefaultConstructor: 4858 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4859 // If __is_pod (type) is true then the trait is true, else if type is 4860 // a cv class or union type (or array thereof) with a trivial default 4861 // constructor ([class.ctor]) then the trait is true, else it is false. 4862 if (T.isPODType(C)) 4863 return true; 4864 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4865 return RD->hasTrivialDefaultConstructor() && 4866 !RD->hasNonTrivialDefaultConstructor(); 4867 return false; 4868 case UTT_HasTrivialMoveConstructor: 4869 // This trait is implemented by MSVC 2012 and needed to parse the 4870 // standard library headers. Specifically this is used as the logic 4871 // behind std::is_trivially_move_constructible (20.9.4.3). 4872 if (T.isPODType(C)) 4873 return true; 4874 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4875 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 4876 return false; 4877 case UTT_HasTrivialCopy: 4878 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4879 // If __is_pod (type) is true or type is a reference type then 4880 // the trait is true, else if type is a cv class or union type 4881 // with a trivial copy constructor ([class.copy]) then the trait 4882 // is true, else it is false. 4883 if (T.isPODType(C) || T->isReferenceType()) 4884 return true; 4885 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4886 return RD->hasTrivialCopyConstructor() && 4887 !RD->hasNonTrivialCopyConstructor(); 4888 return false; 4889 case UTT_HasTrivialMoveAssign: 4890 // This trait is implemented by MSVC 2012 and needed to parse the 4891 // standard library headers. Specifically it is used as the logic 4892 // behind std::is_trivially_move_assignable (20.9.4.3) 4893 if (T.isPODType(C)) 4894 return true; 4895 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4896 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 4897 return false; 4898 case UTT_HasTrivialAssign: 4899 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4900 // If type is const qualified or is a reference type then the 4901 // trait is false. Otherwise if __is_pod (type) is true then the 4902 // trait is true, else if type is a cv class or union type with 4903 // a trivial copy assignment ([class.copy]) then the trait is 4904 // true, else it is false. 4905 // Note: the const and reference restrictions are interesting, 4906 // given that const and reference members don't prevent a class 4907 // from having a trivial copy assignment operator (but do cause 4908 // errors if the copy assignment operator is actually used, q.v. 4909 // [class.copy]p12). 4910 4911 if (T.isConstQualified()) 4912 return false; 4913 if (T.isPODType(C)) 4914 return true; 4915 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4916 return RD->hasTrivialCopyAssignment() && 4917 !RD->hasNonTrivialCopyAssignment(); 4918 return false; 4919 case UTT_IsDestructible: 4920 case UTT_IsTriviallyDestructible: 4921 case UTT_IsNothrowDestructible: 4922 // C++14 [meta.unary.prop]: 4923 // For reference types, is_destructible<T>::value is true. 4924 if (T->isReferenceType()) 4925 return true; 4926 4927 // Objective-C++ ARC: autorelease types don't require destruction. 4928 if (T->isObjCLifetimeType() && 4929 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 4930 return true; 4931 4932 // C++14 [meta.unary.prop]: 4933 // For incomplete types and function types, is_destructible<T>::value is 4934 // false. 4935 if (T->isIncompleteType() || T->isFunctionType()) 4936 return false; 4937 4938 // A type that requires destruction (via a non-trivial destructor or ARC 4939 // lifetime semantics) is not trivially-destructible. 4940 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 4941 return false; 4942 4943 // C++14 [meta.unary.prop]: 4944 // For object types and given U equal to remove_all_extents_t<T>, if the 4945 // expression std::declval<U&>().~U() is well-formed when treated as an 4946 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 4947 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 4948 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 4949 if (!Destructor) 4950 return false; 4951 // C++14 [dcl.fct.def.delete]p2: 4952 // A program that refers to a deleted function implicitly or 4953 // explicitly, other than to declare it, is ill-formed. 4954 if (Destructor->isDeleted()) 4955 return false; 4956 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 4957 return false; 4958 if (UTT == UTT_IsNothrowDestructible) { 4959 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 4960 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4961 if (!CPT || !CPT->isNothrow()) 4962 return false; 4963 } 4964 } 4965 return true; 4966 4967 case UTT_HasTrivialDestructor: 4968 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 4969 // If __is_pod (type) is true or type is a reference type 4970 // then the trait is true, else if type is a cv class or union 4971 // type (or array thereof) with a trivial destructor 4972 // ([class.dtor]) then the trait is true, else it is 4973 // false. 4974 if (T.isPODType(C) || T->isReferenceType()) 4975 return true; 4976 4977 // Objective-C++ ARC: autorelease types don't require destruction. 4978 if (T->isObjCLifetimeType() && 4979 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 4980 return true; 4981 4982 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4983 return RD->hasTrivialDestructor(); 4984 return false; 4985 // TODO: Propagate nothrowness for implicitly declared special members. 4986 case UTT_HasNothrowAssign: 4987 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4988 // If type is const qualified or is a reference type then the 4989 // trait is false. Otherwise if __has_trivial_assign (type) 4990 // is true then the trait is true, else if type is a cv class 4991 // or union type with copy assignment operators that are known 4992 // not to throw an exception then the trait is true, else it is 4993 // false. 4994 if (C.getBaseElementType(T).isConstQualified()) 4995 return false; 4996 if (T->isReferenceType()) 4997 return false; 4998 if (T.isPODType(C) || T->isObjCLifetimeType()) 4999 return true; 5000 5001 if (const RecordType *RT = T->getAs<RecordType>()) 5002 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5003 &CXXRecordDecl::hasTrivialCopyAssignment, 5004 &CXXRecordDecl::hasNonTrivialCopyAssignment, 5005 &CXXMethodDecl::isCopyAssignmentOperator); 5006 return false; 5007 case UTT_HasNothrowMoveAssign: 5008 // This trait is implemented by MSVC 2012 and needed to parse the 5009 // standard library headers. Specifically this is used as the logic 5010 // behind std::is_nothrow_move_assignable (20.9.4.3). 5011 if (T.isPODType(C)) 5012 return true; 5013 5014 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 5015 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5016 &CXXRecordDecl::hasTrivialMoveAssignment, 5017 &CXXRecordDecl::hasNonTrivialMoveAssignment, 5018 &CXXMethodDecl::isMoveAssignmentOperator); 5019 return false; 5020 case UTT_HasNothrowCopy: 5021 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5022 // If __has_trivial_copy (type) is true then the trait is true, else 5023 // if type is a cv class or union type with copy constructors that are 5024 // known not to throw an exception then the trait is true, else it is 5025 // false. 5026 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 5027 return true; 5028 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 5029 if (RD->hasTrivialCopyConstructor() && 5030 !RD->hasNonTrivialCopyConstructor()) 5031 return true; 5032 5033 bool FoundConstructor = false; 5034 unsigned FoundTQs; 5035 for (const auto *ND : Self.LookupConstructors(RD)) { 5036 // A template constructor is never a copy constructor. 5037 // FIXME: However, it may actually be selected at the actual overload 5038 // resolution point. 5039 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5040 continue; 5041 // UsingDecl itself is not a constructor 5042 if (isa<UsingDecl>(ND)) 5043 continue; 5044 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5045 if (Constructor->isCopyConstructor(FoundTQs)) { 5046 FoundConstructor = true; 5047 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5048 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5049 if (!CPT) 5050 return false; 5051 // TODO: check whether evaluating default arguments can throw. 5052 // For now, we'll be conservative and assume that they can throw. 5053 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 5054 return false; 5055 } 5056 } 5057 5058 return FoundConstructor; 5059 } 5060 return false; 5061 case UTT_HasNothrowConstructor: 5062 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5063 // If __has_trivial_constructor (type) is true then the trait is 5064 // true, else if type is a cv class or union type (or array 5065 // thereof) with a default constructor that is known not to 5066 // throw an exception then the trait is true, else it is false. 5067 if (T.isPODType(C) || T->isObjCLifetimeType()) 5068 return true; 5069 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5070 if (RD->hasTrivialDefaultConstructor() && 5071 !RD->hasNonTrivialDefaultConstructor()) 5072 return true; 5073 5074 bool FoundConstructor = false; 5075 for (const auto *ND : Self.LookupConstructors(RD)) { 5076 // FIXME: In C++0x, a constructor template can be a default constructor. 5077 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5078 continue; 5079 // UsingDecl itself is not a constructor 5080 if (isa<UsingDecl>(ND)) 5081 continue; 5082 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5083 if (Constructor->isDefaultConstructor()) { 5084 FoundConstructor = true; 5085 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5086 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5087 if (!CPT) 5088 return false; 5089 // FIXME: check whether evaluating default arguments can throw. 5090 // For now, we'll be conservative and assume that they can throw. 5091 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5092 return false; 5093 } 5094 } 5095 return FoundConstructor; 5096 } 5097 return false; 5098 case UTT_HasVirtualDestructor: 5099 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5100 // If type is a class type with a virtual destructor ([class.dtor]) 5101 // then the trait is true, else it is false. 5102 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5103 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5104 return Destructor->isVirtual(); 5105 return false; 5106 5107 // These type trait expressions are modeled on the specifications for the 5108 // Embarcadero C++0x type trait functions: 5109 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5110 case UTT_IsCompleteType: 5111 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5112 // Returns True if and only if T is a complete type at the point of the 5113 // function call. 5114 return !T->isIncompleteType(); 5115 case UTT_HasUniqueObjectRepresentations: 5116 return C.hasUniqueObjectRepresentations(T); 5117 } 5118 } 5119 5120 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5121 QualType RhsT, SourceLocation KeyLoc); 5122 5123 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 5124 ArrayRef<TypeSourceInfo *> Args, 5125 SourceLocation RParenLoc) { 5126 if (Kind <= UTT_Last) 5127 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 5128 5129 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible 5130 // traits to avoid duplication. 5131 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) 5132 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 5133 Args[1]->getType(), RParenLoc); 5134 5135 switch (Kind) { 5136 case clang::BTT_ReferenceBindsToTemporary: 5137 case clang::TT_IsConstructible: 5138 case clang::TT_IsNothrowConstructible: 5139 case clang::TT_IsTriviallyConstructible: { 5140 // C++11 [meta.unary.prop]: 5141 // is_trivially_constructible is defined as: 5142 // 5143 // is_constructible<T, Args...>::value is true and the variable 5144 // definition for is_constructible, as defined below, is known to call 5145 // no operation that is not trivial. 5146 // 5147 // The predicate condition for a template specialization 5148 // is_constructible<T, Args...> shall be satisfied if and only if the 5149 // following variable definition would be well-formed for some invented 5150 // variable t: 5151 // 5152 // T t(create<Args>()...); 5153 assert(!Args.empty()); 5154 5155 // Precondition: T and all types in the parameter pack Args shall be 5156 // complete types, (possibly cv-qualified) void, or arrays of 5157 // unknown bound. 5158 for (const auto *TSI : Args) { 5159 QualType ArgTy = TSI->getType(); 5160 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5161 continue; 5162 5163 if (S.RequireCompleteType(KWLoc, ArgTy, 5164 diag::err_incomplete_type_used_in_type_trait_expr)) 5165 return false; 5166 } 5167 5168 // Make sure the first argument is not incomplete nor a function type. 5169 QualType T = Args[0]->getType(); 5170 if (T->isIncompleteType() || T->isFunctionType()) 5171 return false; 5172 5173 // Make sure the first argument is not an abstract type. 5174 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5175 if (RD && RD->isAbstract()) 5176 return false; 5177 5178 llvm::BumpPtrAllocator OpaqueExprAllocator; 5179 SmallVector<Expr *, 2> ArgExprs; 5180 ArgExprs.reserve(Args.size() - 1); 5181 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5182 QualType ArgTy = Args[I]->getType(); 5183 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5184 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5185 ArgExprs.push_back( 5186 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5187 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5188 ArgTy.getNonLValueExprType(S.Context), 5189 Expr::getValueKindForType(ArgTy))); 5190 } 5191 5192 // Perform the initialization in an unevaluated context within a SFINAE 5193 // trap at translation unit scope. 5194 EnterExpressionEvaluationContext Unevaluated( 5195 S, Sema::ExpressionEvaluationContext::Unevaluated); 5196 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5197 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5198 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0])); 5199 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 5200 RParenLoc)); 5201 InitializationSequence Init(S, To, InitKind, ArgExprs); 5202 if (Init.Failed()) 5203 return false; 5204 5205 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5206 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5207 return false; 5208 5209 if (Kind == clang::TT_IsConstructible) 5210 return true; 5211 5212 if (Kind == clang::BTT_ReferenceBindsToTemporary) { 5213 if (!T->isReferenceType()) 5214 return false; 5215 5216 return !Init.isDirectReferenceBinding(); 5217 } 5218 5219 if (Kind == clang::TT_IsNothrowConstructible) 5220 return S.canThrow(Result.get()) == CT_Cannot; 5221 5222 if (Kind == clang::TT_IsTriviallyConstructible) { 5223 // Under Objective-C ARC and Weak, if the destination has non-trivial 5224 // Objective-C lifetime, this is a non-trivial construction. 5225 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5226 return false; 5227 5228 // The initialization succeeded; now make sure there are no non-trivial 5229 // calls. 5230 return !Result.get()->hasNonTrivialCall(S.Context); 5231 } 5232 5233 llvm_unreachable("unhandled type trait"); 5234 return false; 5235 } 5236 default: llvm_unreachable("not a TT"); 5237 } 5238 5239 return false; 5240 } 5241 5242 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5243 ArrayRef<TypeSourceInfo *> Args, 5244 SourceLocation RParenLoc) { 5245 QualType ResultType = Context.getLogicalOperationType(); 5246 5247 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5248 *this, Kind, KWLoc, Args[0]->getType())) 5249 return ExprError(); 5250 5251 bool Dependent = false; 5252 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5253 if (Args[I]->getType()->isDependentType()) { 5254 Dependent = true; 5255 break; 5256 } 5257 } 5258 5259 bool Result = false; 5260 if (!Dependent) 5261 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 5262 5263 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 5264 RParenLoc, Result); 5265 } 5266 5267 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5268 ArrayRef<ParsedType> Args, 5269 SourceLocation RParenLoc) { 5270 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5271 ConvertedArgs.reserve(Args.size()); 5272 5273 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5274 TypeSourceInfo *TInfo; 5275 QualType T = GetTypeFromParser(Args[I], &TInfo); 5276 if (!TInfo) 5277 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5278 5279 ConvertedArgs.push_back(TInfo); 5280 } 5281 5282 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5283 } 5284 5285 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5286 QualType RhsT, SourceLocation KeyLoc) { 5287 assert(!LhsT->isDependentType() && !RhsT->isDependentType() && 5288 "Cannot evaluate traits of dependent types"); 5289 5290 switch(BTT) { 5291 case BTT_IsBaseOf: { 5292 // C++0x [meta.rel]p2 5293 // Base is a base class of Derived without regard to cv-qualifiers or 5294 // Base and Derived are not unions and name the same class type without 5295 // regard to cv-qualifiers. 5296 5297 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5298 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5299 if (!rhsRecord || !lhsRecord) { 5300 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5301 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5302 if (!LHSObjTy || !RHSObjTy) 5303 return false; 5304 5305 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5306 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5307 if (!BaseInterface || !DerivedInterface) 5308 return false; 5309 5310 if (Self.RequireCompleteType( 5311 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5312 return false; 5313 5314 return BaseInterface->isSuperClassOf(DerivedInterface); 5315 } 5316 5317 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) 5318 == (lhsRecord == rhsRecord)); 5319 5320 // Unions are never base classes, and never have base classes. 5321 // It doesn't matter if they are complete or not. See PR#41843 5322 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5323 return false; 5324 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5325 return false; 5326 5327 if (lhsRecord == rhsRecord) 5328 return true; 5329 5330 // C++0x [meta.rel]p2: 5331 // If Base and Derived are class types and are different types 5332 // (ignoring possible cv-qualifiers) then Derived shall be a 5333 // complete type. 5334 if (Self.RequireCompleteType(KeyLoc, RhsT, 5335 diag::err_incomplete_type_used_in_type_trait_expr)) 5336 return false; 5337 5338 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5339 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5340 } 5341 case BTT_IsSame: 5342 return Self.Context.hasSameType(LhsT, RhsT); 5343 case BTT_TypeCompatible: { 5344 // GCC ignores cv-qualifiers on arrays for this builtin. 5345 Qualifiers LhsQuals, RhsQuals; 5346 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5347 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5348 return Self.Context.typesAreCompatible(Lhs, Rhs); 5349 } 5350 case BTT_IsConvertible: 5351 case BTT_IsConvertibleTo: { 5352 // C++0x [meta.rel]p4: 5353 // Given the following function prototype: 5354 // 5355 // template <class T> 5356 // typename add_rvalue_reference<T>::type create(); 5357 // 5358 // the predicate condition for a template specialization 5359 // is_convertible<From, To> shall be satisfied if and only if 5360 // the return expression in the following code would be 5361 // well-formed, including any implicit conversions to the return 5362 // type of the function: 5363 // 5364 // To test() { 5365 // return create<From>(); 5366 // } 5367 // 5368 // Access checking is performed as if in a context unrelated to To and 5369 // From. Only the validity of the immediate context of the expression 5370 // of the return-statement (including conversions to the return type) 5371 // is considered. 5372 // 5373 // We model the initialization as a copy-initialization of a temporary 5374 // of the appropriate type, which for this expression is identical to the 5375 // return statement (since NRVO doesn't apply). 5376 5377 // Functions aren't allowed to return function or array types. 5378 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5379 return false; 5380 5381 // A return statement in a void function must have void type. 5382 if (RhsT->isVoidType()) 5383 return LhsT->isVoidType(); 5384 5385 // A function definition requires a complete, non-abstract return type. 5386 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5387 return false; 5388 5389 // Compute the result of add_rvalue_reference. 5390 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5391 LhsT = Self.Context.getRValueReferenceType(LhsT); 5392 5393 // Build a fake source and destination for initialization. 5394 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5395 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5396 Expr::getValueKindForType(LhsT)); 5397 Expr *FromPtr = &From; 5398 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5399 SourceLocation())); 5400 5401 // Perform the initialization in an unevaluated context within a SFINAE 5402 // trap at translation unit scope. 5403 EnterExpressionEvaluationContext Unevaluated( 5404 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5405 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5406 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5407 InitializationSequence Init(Self, To, Kind, FromPtr); 5408 if (Init.Failed()) 5409 return false; 5410 5411 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5412 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5413 } 5414 5415 case BTT_IsAssignable: 5416 case BTT_IsNothrowAssignable: 5417 case BTT_IsTriviallyAssignable: { 5418 // C++11 [meta.unary.prop]p3: 5419 // is_trivially_assignable is defined as: 5420 // is_assignable<T, U>::value is true and the assignment, as defined by 5421 // is_assignable, is known to call no operation that is not trivial 5422 // 5423 // is_assignable is defined as: 5424 // The expression declval<T>() = declval<U>() is well-formed when 5425 // treated as an unevaluated operand (Clause 5). 5426 // 5427 // For both, T and U shall be complete types, (possibly cv-qualified) 5428 // void, or arrays of unknown bound. 5429 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5430 Self.RequireCompleteType(KeyLoc, LhsT, 5431 diag::err_incomplete_type_used_in_type_trait_expr)) 5432 return false; 5433 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5434 Self.RequireCompleteType(KeyLoc, RhsT, 5435 diag::err_incomplete_type_used_in_type_trait_expr)) 5436 return false; 5437 5438 // cv void is never assignable. 5439 if (LhsT->isVoidType() || RhsT->isVoidType()) 5440 return false; 5441 5442 // Build expressions that emulate the effect of declval<T>() and 5443 // declval<U>(). 5444 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5445 LhsT = Self.Context.getRValueReferenceType(LhsT); 5446 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5447 RhsT = Self.Context.getRValueReferenceType(RhsT); 5448 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5449 Expr::getValueKindForType(LhsT)); 5450 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5451 Expr::getValueKindForType(RhsT)); 5452 5453 // Attempt the assignment in an unevaluated context within a SFINAE 5454 // trap at translation unit scope. 5455 EnterExpressionEvaluationContext Unevaluated( 5456 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5457 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5458 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5459 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5460 &Rhs); 5461 if (Result.isInvalid()) 5462 return false; 5463 5464 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. 5465 Self.CheckUnusedVolatileAssignment(Result.get()); 5466 5467 if (SFINAE.hasErrorOccurred()) 5468 return false; 5469 5470 if (BTT == BTT_IsAssignable) 5471 return true; 5472 5473 if (BTT == BTT_IsNothrowAssignable) 5474 return Self.canThrow(Result.get()) == CT_Cannot; 5475 5476 if (BTT == BTT_IsTriviallyAssignable) { 5477 // Under Objective-C ARC and Weak, if the destination has non-trivial 5478 // Objective-C lifetime, this is a non-trivial assignment. 5479 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 5480 return false; 5481 5482 return !Result.get()->hasNonTrivialCall(Self.Context); 5483 } 5484 5485 llvm_unreachable("unhandled type trait"); 5486 return false; 5487 } 5488 default: llvm_unreachable("not a BTT"); 5489 } 5490 llvm_unreachable("Unknown type trait or not implemented"); 5491 } 5492 5493 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 5494 SourceLocation KWLoc, 5495 ParsedType Ty, 5496 Expr* DimExpr, 5497 SourceLocation RParen) { 5498 TypeSourceInfo *TSInfo; 5499 QualType T = GetTypeFromParser(Ty, &TSInfo); 5500 if (!TSInfo) 5501 TSInfo = Context.getTrivialTypeSourceInfo(T); 5502 5503 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 5504 } 5505 5506 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 5507 QualType T, Expr *DimExpr, 5508 SourceLocation KeyLoc) { 5509 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 5510 5511 switch(ATT) { 5512 case ATT_ArrayRank: 5513 if (T->isArrayType()) { 5514 unsigned Dim = 0; 5515 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5516 ++Dim; 5517 T = AT->getElementType(); 5518 } 5519 return Dim; 5520 } 5521 return 0; 5522 5523 case ATT_ArrayExtent: { 5524 llvm::APSInt Value; 5525 uint64_t Dim; 5526 if (Self.VerifyIntegerConstantExpression( 5527 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) 5528 .isInvalid()) 5529 return 0; 5530 if (Value.isSigned() && Value.isNegative()) { 5531 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 5532 << DimExpr->getSourceRange(); 5533 return 0; 5534 } 5535 Dim = Value.getLimitedValue(); 5536 5537 if (T->isArrayType()) { 5538 unsigned D = 0; 5539 bool Matched = false; 5540 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5541 if (Dim == D) { 5542 Matched = true; 5543 break; 5544 } 5545 ++D; 5546 T = AT->getElementType(); 5547 } 5548 5549 if (Matched && T->isArrayType()) { 5550 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 5551 return CAT->getSize().getLimitedValue(); 5552 } 5553 } 5554 return 0; 5555 } 5556 } 5557 llvm_unreachable("Unknown type trait or not implemented"); 5558 } 5559 5560 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 5561 SourceLocation KWLoc, 5562 TypeSourceInfo *TSInfo, 5563 Expr* DimExpr, 5564 SourceLocation RParen) { 5565 QualType T = TSInfo->getType(); 5566 5567 // FIXME: This should likely be tracked as an APInt to remove any host 5568 // assumptions about the width of size_t on the target. 5569 uint64_t Value = 0; 5570 if (!T->isDependentType()) 5571 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 5572 5573 // While the specification for these traits from the Embarcadero C++ 5574 // compiler's documentation says the return type is 'unsigned int', Clang 5575 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 5576 // compiler, there is no difference. On several other platforms this is an 5577 // important distinction. 5578 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 5579 RParen, Context.getSizeType()); 5580 } 5581 5582 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 5583 SourceLocation KWLoc, 5584 Expr *Queried, 5585 SourceLocation RParen) { 5586 // If error parsing the expression, ignore. 5587 if (!Queried) 5588 return ExprError(); 5589 5590 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 5591 5592 return Result; 5593 } 5594 5595 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 5596 switch (ET) { 5597 case ET_IsLValueExpr: return E->isLValue(); 5598 case ET_IsRValueExpr: return E->isRValue(); 5599 } 5600 llvm_unreachable("Expression trait not covered by switch"); 5601 } 5602 5603 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 5604 SourceLocation KWLoc, 5605 Expr *Queried, 5606 SourceLocation RParen) { 5607 if (Queried->isTypeDependent()) { 5608 // Delay type-checking for type-dependent expressions. 5609 } else if (Queried->getType()->isPlaceholderType()) { 5610 ExprResult PE = CheckPlaceholderExpr(Queried); 5611 if (PE.isInvalid()) return ExprError(); 5612 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 5613 } 5614 5615 bool Value = EvaluateExpressionTrait(ET, Queried); 5616 5617 return new (Context) 5618 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 5619 } 5620 5621 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 5622 ExprValueKind &VK, 5623 SourceLocation Loc, 5624 bool isIndirect) { 5625 assert(!LHS.get()->getType()->isPlaceholderType() && 5626 !RHS.get()->getType()->isPlaceholderType() && 5627 "placeholders should have been weeded out by now"); 5628 5629 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the 5630 // temporary materialization conversion otherwise. 5631 if (isIndirect) 5632 LHS = DefaultLvalueConversion(LHS.get()); 5633 else if (LHS.get()->isRValue()) 5634 LHS = TemporaryMaterializationConversion(LHS.get()); 5635 if (LHS.isInvalid()) 5636 return QualType(); 5637 5638 // The RHS always undergoes lvalue conversions. 5639 RHS = DefaultLvalueConversion(RHS.get()); 5640 if (RHS.isInvalid()) return QualType(); 5641 5642 const char *OpSpelling = isIndirect ? "->*" : ".*"; 5643 // C++ 5.5p2 5644 // The binary operator .* [p3: ->*] binds its second operand, which shall 5645 // be of type "pointer to member of T" (where T is a completely-defined 5646 // class type) [...] 5647 QualType RHSType = RHS.get()->getType(); 5648 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 5649 if (!MemPtr) { 5650 Diag(Loc, diag::err_bad_memptr_rhs) 5651 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 5652 return QualType(); 5653 } 5654 5655 QualType Class(MemPtr->getClass(), 0); 5656 5657 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 5658 // member pointer points must be completely-defined. However, there is no 5659 // reason for this semantic distinction, and the rule is not enforced by 5660 // other compilers. Therefore, we do not check this property, as it is 5661 // likely to be considered a defect. 5662 5663 // C++ 5.5p2 5664 // [...] to its first operand, which shall be of class T or of a class of 5665 // which T is an unambiguous and accessible base class. [p3: a pointer to 5666 // such a class] 5667 QualType LHSType = LHS.get()->getType(); 5668 if (isIndirect) { 5669 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 5670 LHSType = Ptr->getPointeeType(); 5671 else { 5672 Diag(Loc, diag::err_bad_memptr_lhs) 5673 << OpSpelling << 1 << LHSType 5674 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 5675 return QualType(); 5676 } 5677 } 5678 5679 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 5680 // If we want to check the hierarchy, we need a complete type. 5681 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 5682 OpSpelling, (int)isIndirect)) { 5683 return QualType(); 5684 } 5685 5686 if (!IsDerivedFrom(Loc, LHSType, Class)) { 5687 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 5688 << (int)isIndirect << LHS.get()->getType(); 5689 return QualType(); 5690 } 5691 5692 CXXCastPath BasePath; 5693 if (CheckDerivedToBaseConversion( 5694 LHSType, Class, Loc, 5695 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), 5696 &BasePath)) 5697 return QualType(); 5698 5699 // Cast LHS to type of use. 5700 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); 5701 if (isIndirect) 5702 UseType = Context.getPointerType(UseType); 5703 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind(); 5704 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 5705 &BasePath); 5706 } 5707 5708 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 5709 // Diagnose use of pointer-to-member type which when used as 5710 // the functional cast in a pointer-to-member expression. 5711 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 5712 return QualType(); 5713 } 5714 5715 // C++ 5.5p2 5716 // The result is an object or a function of the type specified by the 5717 // second operand. 5718 // The cv qualifiers are the union of those in the pointer and the left side, 5719 // in accordance with 5.5p5 and 5.2.5. 5720 QualType Result = MemPtr->getPointeeType(); 5721 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 5722 5723 // C++0x [expr.mptr.oper]p6: 5724 // In a .* expression whose object expression is an rvalue, the program is 5725 // ill-formed if the second operand is a pointer to member function with 5726 // ref-qualifier &. In a ->* expression or in a .* expression whose object 5727 // expression is an lvalue, the program is ill-formed if the second operand 5728 // is a pointer to member function with ref-qualifier &&. 5729 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 5730 switch (Proto->getRefQualifier()) { 5731 case RQ_None: 5732 // Do nothing 5733 break; 5734 5735 case RQ_LValue: 5736 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { 5737 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq 5738 // is (exactly) 'const'. 5739 if (Proto->isConst() && !Proto->isVolatile()) 5740 Diag(Loc, getLangOpts().CPlusPlus20 5741 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue 5742 : diag::ext_pointer_to_const_ref_member_on_rvalue); 5743 else 5744 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5745 << RHSType << 1 << LHS.get()->getSourceRange(); 5746 } 5747 break; 5748 5749 case RQ_RValue: 5750 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 5751 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5752 << RHSType << 0 << LHS.get()->getSourceRange(); 5753 break; 5754 } 5755 } 5756 5757 // C++ [expr.mptr.oper]p6: 5758 // The result of a .* expression whose second operand is a pointer 5759 // to a data member is of the same value category as its 5760 // first operand. The result of a .* expression whose second 5761 // operand is a pointer to a member function is a prvalue. The 5762 // result of an ->* expression is an lvalue if its second operand 5763 // is a pointer to data member and a prvalue otherwise. 5764 if (Result->isFunctionType()) { 5765 VK = VK_RValue; 5766 return Context.BoundMemberTy; 5767 } else if (isIndirect) { 5768 VK = VK_LValue; 5769 } else { 5770 VK = LHS.get()->getValueKind(); 5771 } 5772 5773 return Result; 5774 } 5775 5776 /// Try to convert a type to another according to C++11 5.16p3. 5777 /// 5778 /// This is part of the parameter validation for the ? operator. If either 5779 /// value operand is a class type, the two operands are attempted to be 5780 /// converted to each other. This function does the conversion in one direction. 5781 /// It returns true if the program is ill-formed and has already been diagnosed 5782 /// as such. 5783 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 5784 SourceLocation QuestionLoc, 5785 bool &HaveConversion, 5786 QualType &ToType) { 5787 HaveConversion = false; 5788 ToType = To->getType(); 5789 5790 InitializationKind Kind = 5791 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); 5792 // C++11 5.16p3 5793 // The process for determining whether an operand expression E1 of type T1 5794 // can be converted to match an operand expression E2 of type T2 is defined 5795 // as follows: 5796 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be 5797 // implicitly converted to type "lvalue reference to T2", subject to the 5798 // constraint that in the conversion the reference must bind directly to 5799 // an lvalue. 5800 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be 5801 // implicitly converted to the type "rvalue reference to R2", subject to 5802 // the constraint that the reference must bind directly. 5803 if (To->isLValue() || To->isXValue()) { 5804 QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType) 5805 : Self.Context.getRValueReferenceType(ToType); 5806 5807 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5808 5809 InitializationSequence InitSeq(Self, Entity, Kind, From); 5810 if (InitSeq.isDirectReferenceBinding()) { 5811 ToType = T; 5812 HaveConversion = true; 5813 return false; 5814 } 5815 5816 if (InitSeq.isAmbiguous()) 5817 return InitSeq.Diagnose(Self, Entity, Kind, From); 5818 } 5819 5820 // -- If E2 is an rvalue, or if the conversion above cannot be done: 5821 // -- if E1 and E2 have class type, and the underlying class types are 5822 // the same or one is a base class of the other: 5823 QualType FTy = From->getType(); 5824 QualType TTy = To->getType(); 5825 const RecordType *FRec = FTy->getAs<RecordType>(); 5826 const RecordType *TRec = TTy->getAs<RecordType>(); 5827 bool FDerivedFromT = FRec && TRec && FRec != TRec && 5828 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 5829 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 5830 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 5831 // E1 can be converted to match E2 if the class of T2 is the 5832 // same type as, or a base class of, the class of T1, and 5833 // [cv2 > cv1]. 5834 if (FRec == TRec || FDerivedFromT) { 5835 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 5836 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5837 InitializationSequence InitSeq(Self, Entity, Kind, From); 5838 if (InitSeq) { 5839 HaveConversion = true; 5840 return false; 5841 } 5842 5843 if (InitSeq.isAmbiguous()) 5844 return InitSeq.Diagnose(Self, Entity, Kind, From); 5845 } 5846 } 5847 5848 return false; 5849 } 5850 5851 // -- Otherwise: E1 can be converted to match E2 if E1 can be 5852 // implicitly converted to the type that expression E2 would have 5853 // if E2 were converted to an rvalue (or the type it has, if E2 is 5854 // an rvalue). 5855 // 5856 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 5857 // to the array-to-pointer or function-to-pointer conversions. 5858 TTy = TTy.getNonLValueExprType(Self.Context); 5859 5860 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5861 InitializationSequence InitSeq(Self, Entity, Kind, From); 5862 HaveConversion = !InitSeq.Failed(); 5863 ToType = TTy; 5864 if (InitSeq.isAmbiguous()) 5865 return InitSeq.Diagnose(Self, Entity, Kind, From); 5866 5867 return false; 5868 } 5869 5870 /// Try to find a common type for two according to C++0x 5.16p5. 5871 /// 5872 /// This is part of the parameter validation for the ? operator. If either 5873 /// value operand is a class type, overload resolution is used to find a 5874 /// conversion to a common type. 5875 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 5876 SourceLocation QuestionLoc) { 5877 Expr *Args[2] = { LHS.get(), RHS.get() }; 5878 OverloadCandidateSet CandidateSet(QuestionLoc, 5879 OverloadCandidateSet::CSK_Operator); 5880 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 5881 CandidateSet); 5882 5883 OverloadCandidateSet::iterator Best; 5884 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 5885 case OR_Success: { 5886 // We found a match. Perform the conversions on the arguments and move on. 5887 ExprResult LHSRes = Self.PerformImplicitConversion( 5888 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], 5889 Sema::AA_Converting); 5890 if (LHSRes.isInvalid()) 5891 break; 5892 LHS = LHSRes; 5893 5894 ExprResult RHSRes = Self.PerformImplicitConversion( 5895 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], 5896 Sema::AA_Converting); 5897 if (RHSRes.isInvalid()) 5898 break; 5899 RHS = RHSRes; 5900 if (Best->Function) 5901 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 5902 return false; 5903 } 5904 5905 case OR_No_Viable_Function: 5906 5907 // Emit a better diagnostic if one of the expressions is a null pointer 5908 // constant and the other is a pointer type. In this case, the user most 5909 // likely forgot to take the address of the other expression. 5910 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 5911 return true; 5912 5913 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 5914 << LHS.get()->getType() << RHS.get()->getType() 5915 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5916 return true; 5917 5918 case OR_Ambiguous: 5919 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 5920 << LHS.get()->getType() << RHS.get()->getType() 5921 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5922 // FIXME: Print the possible common types by printing the return types of 5923 // the viable candidates. 5924 break; 5925 5926 case OR_Deleted: 5927 llvm_unreachable("Conditional operator has only built-in overloads"); 5928 } 5929 return true; 5930 } 5931 5932 /// Perform an "extended" implicit conversion as returned by 5933 /// TryClassUnification. 5934 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 5935 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5936 InitializationKind Kind = 5937 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); 5938 Expr *Arg = E.get(); 5939 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 5940 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 5941 if (Result.isInvalid()) 5942 return true; 5943 5944 E = Result; 5945 return false; 5946 } 5947 5948 // Check the condition operand of ?: to see if it is valid for the GCC 5949 // extension. 5950 static bool isValidVectorForConditionalCondition(ASTContext &Ctx, 5951 QualType CondTy) { 5952 if (!CondTy->isVectorType() || CondTy->isExtVectorType()) 5953 return false; 5954 const QualType EltTy = 5955 cast<VectorType>(CondTy.getCanonicalType())->getElementType(); 5956 5957 assert(!EltTy->isBooleanType() && !EltTy->isEnumeralType() && 5958 "Vectors cant be boolean or enum types"); 5959 return EltTy->isIntegralType(Ctx); 5960 } 5961 5962 QualType Sema::CheckGNUVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, 5963 ExprResult &RHS, 5964 SourceLocation QuestionLoc) { 5965 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 5966 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 5967 5968 QualType CondType = Cond.get()->getType(); 5969 const auto *CondVT = CondType->castAs<VectorType>(); 5970 QualType CondElementTy = CondVT->getElementType(); 5971 unsigned CondElementCount = CondVT->getNumElements(); 5972 QualType LHSType = LHS.get()->getType(); 5973 const auto *LHSVT = LHSType->getAs<VectorType>(); 5974 QualType RHSType = RHS.get()->getType(); 5975 const auto *RHSVT = RHSType->getAs<VectorType>(); 5976 5977 QualType ResultType; 5978 5979 // FIXME: In the future we should define what the Extvector conditional 5980 // operator looks like. 5981 if (LHSVT && isa<ExtVectorType>(LHSVT)) { 5982 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 5983 << /*isExtVector*/ true << LHSType; 5984 return {}; 5985 } 5986 5987 if (RHSVT && isa<ExtVectorType>(RHSVT)) { 5988 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 5989 << /*isExtVector*/ true << RHSType; 5990 return {}; 5991 } 5992 5993 if (LHSVT && RHSVT) { 5994 // If both are vector types, they must be the same type. 5995 if (!Context.hasSameType(LHSType, RHSType)) { 5996 Diag(QuestionLoc, diag::err_conditional_vector_mismatched_vectors) 5997 << LHSType << RHSType; 5998 return {}; 5999 } 6000 ResultType = LHSType; 6001 } else if (LHSVT || RHSVT) { 6002 ResultType = CheckVectorOperands( 6003 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, 6004 /*AllowBoolConversions*/ false); 6005 if (ResultType.isNull()) 6006 return {}; 6007 } else { 6008 // Both are scalar. 6009 QualType ResultElementTy; 6010 LHSType = LHSType.getCanonicalType().getUnqualifiedType(); 6011 RHSType = RHSType.getCanonicalType().getUnqualifiedType(); 6012 6013 if (Context.hasSameType(LHSType, RHSType)) 6014 ResultElementTy = LHSType; 6015 else 6016 ResultElementTy = 6017 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6018 6019 if (ResultElementTy->isEnumeralType()) { 6020 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 6021 << /*isExtVector*/ false << ResultElementTy; 6022 return {}; 6023 } 6024 ResultType = Context.getVectorType( 6025 ResultElementTy, CondType->castAs<VectorType>()->getNumElements(), 6026 VectorType::GenericVector); 6027 6028 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 6029 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 6030 } 6031 6032 assert(!ResultType.isNull() && ResultType->isVectorType() && 6033 "Result should have been a vector type"); 6034 auto *ResultVectorTy = ResultType->castAs<VectorType>(); 6035 QualType ResultElementTy = ResultVectorTy->getElementType(); 6036 unsigned ResultElementCount = ResultVectorTy->getNumElements(); 6037 6038 if (ResultElementCount != CondElementCount) { 6039 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType 6040 << ResultType; 6041 return {}; 6042 } 6043 6044 if (Context.getTypeSize(ResultElementTy) != 6045 Context.getTypeSize(CondElementTy)) { 6046 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType 6047 << ResultType; 6048 return {}; 6049 } 6050 6051 return ResultType; 6052 } 6053 6054 /// Check the operands of ?: under C++ semantics. 6055 /// 6056 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 6057 /// extension. In this case, LHS == Cond. (But they're not aliases.) 6058 /// 6059 /// This function also implements GCC's vector extension for conditionals. 6060 /// GCC's vector extension permits the use of a?b:c where the type of 6061 /// a is that of a integer vector with the same number of elements and 6062 /// size as the vectors of b and c. If one of either b or c is a scalar 6063 /// it is implicitly converted to match the type of the vector. 6064 /// Otherwise the expression is ill-formed. If both b and c are scalars, 6065 /// then b and c are checked and converted to the type of a if possible. 6066 /// Unlike the OpenCL ?: operator, the expression is evaluated as 6067 /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]). 6068 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 6069 ExprResult &RHS, ExprValueKind &VK, 6070 ExprObjectKind &OK, 6071 SourceLocation QuestionLoc) { 6072 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface 6073 // pointers. 6074 6075 // Assume r-value. 6076 VK = VK_RValue; 6077 OK = OK_Ordinary; 6078 bool IsVectorConditional = 6079 isValidVectorForConditionalCondition(Context, Cond.get()->getType()); 6080 6081 // C++11 [expr.cond]p1 6082 // The first expression is contextually converted to bool. 6083 if (!Cond.get()->isTypeDependent()) { 6084 ExprResult CondRes = IsVectorConditional 6085 ? DefaultFunctionArrayLvalueConversion(Cond.get()) 6086 : CheckCXXBooleanCondition(Cond.get()); 6087 if (CondRes.isInvalid()) 6088 return QualType(); 6089 Cond = CondRes; 6090 } else { 6091 // To implement C++, the first expression typically doesn't alter the result 6092 // type of the conditional, however the GCC compatible vector extension 6093 // changes the result type to be that of the conditional. Since we cannot 6094 // know if this is a vector extension here, delay the conversion of the 6095 // LHS/RHS below until later. 6096 return Context.DependentTy; 6097 } 6098 6099 6100 // Either of the arguments dependent? 6101 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 6102 return Context.DependentTy; 6103 6104 // C++11 [expr.cond]p2 6105 // If either the second or the third operand has type (cv) void, ... 6106 QualType LTy = LHS.get()->getType(); 6107 QualType RTy = RHS.get()->getType(); 6108 bool LVoid = LTy->isVoidType(); 6109 bool RVoid = RTy->isVoidType(); 6110 if (LVoid || RVoid) { 6111 // ... one of the following shall hold: 6112 // -- The second or the third operand (but not both) is a (possibly 6113 // parenthesized) throw-expression; the result is of the type 6114 // and value category of the other. 6115 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 6116 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 6117 6118 // Void expressions aren't legal in the vector-conditional expressions. 6119 if (IsVectorConditional) { 6120 SourceRange DiagLoc = 6121 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange(); 6122 bool IsThrow = LVoid ? LThrow : RThrow; 6123 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void) 6124 << DiagLoc << IsThrow; 6125 return QualType(); 6126 } 6127 6128 if (LThrow != RThrow) { 6129 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 6130 VK = NonThrow->getValueKind(); 6131 // DR (no number yet): the result is a bit-field if the 6132 // non-throw-expression operand is a bit-field. 6133 OK = NonThrow->getObjectKind(); 6134 return NonThrow->getType(); 6135 } 6136 6137 // -- Both the second and third operands have type void; the result is of 6138 // type void and is a prvalue. 6139 if (LVoid && RVoid) 6140 return Context.VoidTy; 6141 6142 // Neither holds, error. 6143 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 6144 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 6145 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6146 return QualType(); 6147 } 6148 6149 // Neither is void. 6150 if (IsVectorConditional) 6151 return CheckGNUVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6152 6153 // C++11 [expr.cond]p3 6154 // Otherwise, if the second and third operand have different types, and 6155 // either has (cv) class type [...] an attempt is made to convert each of 6156 // those operands to the type of the other. 6157 if (!Context.hasSameType(LTy, RTy) && 6158 (LTy->isRecordType() || RTy->isRecordType())) { 6159 // These return true if a single direction is already ambiguous. 6160 QualType L2RType, R2LType; 6161 bool HaveL2R, HaveR2L; 6162 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 6163 return QualType(); 6164 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 6165 return QualType(); 6166 6167 // If both can be converted, [...] the program is ill-formed. 6168 if (HaveL2R && HaveR2L) { 6169 Diag(QuestionLoc, diag::err_conditional_ambiguous) 6170 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6171 return QualType(); 6172 } 6173 6174 // If exactly one conversion is possible, that conversion is applied to 6175 // the chosen operand and the converted operands are used in place of the 6176 // original operands for the remainder of this section. 6177 if (HaveL2R) { 6178 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 6179 return QualType(); 6180 LTy = LHS.get()->getType(); 6181 } else if (HaveR2L) { 6182 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 6183 return QualType(); 6184 RTy = RHS.get()->getType(); 6185 } 6186 } 6187 6188 // C++11 [expr.cond]p3 6189 // if both are glvalues of the same value category and the same type except 6190 // for cv-qualification, an attempt is made to convert each of those 6191 // operands to the type of the other. 6192 // FIXME: 6193 // Resolving a defect in P0012R1: we extend this to cover all cases where 6194 // one of the operands is reference-compatible with the other, in order 6195 // to support conditionals between functions differing in noexcept. This 6196 // will similarly cover difference in array bounds after P0388R4. 6197 // FIXME: If LTy and RTy have a composite pointer type, should we convert to 6198 // that instead? 6199 ExprValueKind LVK = LHS.get()->getValueKind(); 6200 ExprValueKind RVK = RHS.get()->getValueKind(); 6201 if (!Context.hasSameType(LTy, RTy) && 6202 LVK == RVK && LVK != VK_RValue) { 6203 // DerivedToBase was already handled by the class-specific case above. 6204 // FIXME: Should we allow ObjC conversions here? 6205 const ReferenceConversions AllowedConversions = 6206 ReferenceConversions::Qualification | 6207 ReferenceConversions::NestedQualification | 6208 ReferenceConversions::Function; 6209 6210 ReferenceConversions RefConv; 6211 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) == 6212 Ref_Compatible && 6213 !(RefConv & ~AllowedConversions) && 6214 // [...] subject to the constraint that the reference must bind 6215 // directly [...] 6216 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) { 6217 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 6218 RTy = RHS.get()->getType(); 6219 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) == 6220 Ref_Compatible && 6221 !(RefConv & ~AllowedConversions) && 6222 !LHS.get()->refersToBitField() && 6223 !LHS.get()->refersToVectorElement()) { 6224 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 6225 LTy = LHS.get()->getType(); 6226 } 6227 } 6228 6229 // C++11 [expr.cond]p4 6230 // If the second and third operands are glvalues of the same value 6231 // category and have the same type, the result is of that type and 6232 // value category and it is a bit-field if the second or the third 6233 // operand is a bit-field, or if both are bit-fields. 6234 // We only extend this to bitfields, not to the crazy other kinds of 6235 // l-values. 6236 bool Same = Context.hasSameType(LTy, RTy); 6237 if (Same && LVK == RVK && LVK != VK_RValue && 6238 LHS.get()->isOrdinaryOrBitFieldObject() && 6239 RHS.get()->isOrdinaryOrBitFieldObject()) { 6240 VK = LHS.get()->getValueKind(); 6241 if (LHS.get()->getObjectKind() == OK_BitField || 6242 RHS.get()->getObjectKind() == OK_BitField) 6243 OK = OK_BitField; 6244 6245 // If we have function pointer types, unify them anyway to unify their 6246 // exception specifications, if any. 6247 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6248 Qualifiers Qs = LTy.getQualifiers(); 6249 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS, 6250 /*ConvertArgs*/false); 6251 LTy = Context.getQualifiedType(LTy, Qs); 6252 6253 assert(!LTy.isNull() && "failed to find composite pointer type for " 6254 "canonically equivalent function ptr types"); 6255 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type"); 6256 } 6257 6258 return LTy; 6259 } 6260 6261 // C++11 [expr.cond]p5 6262 // Otherwise, the result is a prvalue. If the second and third operands 6263 // do not have the same type, and either has (cv) class type, ... 6264 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 6265 // ... overload resolution is used to determine the conversions (if any) 6266 // to be applied to the operands. If the overload resolution fails, the 6267 // program is ill-formed. 6268 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 6269 return QualType(); 6270 } 6271 6272 // C++11 [expr.cond]p6 6273 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 6274 // conversions are performed on the second and third operands. 6275 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6276 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6277 if (LHS.isInvalid() || RHS.isInvalid()) 6278 return QualType(); 6279 LTy = LHS.get()->getType(); 6280 RTy = RHS.get()->getType(); 6281 6282 // After those conversions, one of the following shall hold: 6283 // -- The second and third operands have the same type; the result 6284 // is of that type. If the operands have class type, the result 6285 // is a prvalue temporary of the result type, which is 6286 // copy-initialized from either the second operand or the third 6287 // operand depending on the value of the first operand. 6288 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { 6289 if (LTy->isRecordType()) { 6290 // The operands have class type. Make a temporary copy. 6291 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); 6292 6293 ExprResult LHSCopy = PerformCopyInitialization(Entity, 6294 SourceLocation(), 6295 LHS); 6296 if (LHSCopy.isInvalid()) 6297 return QualType(); 6298 6299 ExprResult RHSCopy = PerformCopyInitialization(Entity, 6300 SourceLocation(), 6301 RHS); 6302 if (RHSCopy.isInvalid()) 6303 return QualType(); 6304 6305 LHS = LHSCopy; 6306 RHS = RHSCopy; 6307 } 6308 6309 // If we have function pointer types, unify them anyway to unify their 6310 // exception specifications, if any. 6311 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6312 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS); 6313 assert(!LTy.isNull() && "failed to find composite pointer type for " 6314 "canonically equivalent function ptr types"); 6315 } 6316 6317 return LTy; 6318 } 6319 6320 // Extension: conditional operator involving vector types. 6321 if (LTy->isVectorType() || RTy->isVectorType()) 6322 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false, 6323 /*AllowBothBool*/true, 6324 /*AllowBoolConversions*/false); 6325 6326 // -- The second and third operands have arithmetic or enumeration type; 6327 // the usual arithmetic conversions are performed to bring them to a 6328 // common type, and the result is of that type. 6329 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 6330 QualType ResTy = 6331 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6332 if (LHS.isInvalid() || RHS.isInvalid()) 6333 return QualType(); 6334 if (ResTy.isNull()) { 6335 Diag(QuestionLoc, 6336 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy 6337 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6338 return QualType(); 6339 } 6340 6341 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 6342 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 6343 6344 return ResTy; 6345 } 6346 6347 // -- The second and third operands have pointer type, or one has pointer 6348 // type and the other is a null pointer constant, or both are null 6349 // pointer constants, at least one of which is non-integral; pointer 6350 // conversions and qualification conversions are performed to bring them 6351 // to their composite pointer type. The result is of the composite 6352 // pointer type. 6353 // -- The second and third operands have pointer to member type, or one has 6354 // pointer to member type and the other is a null pointer constant; 6355 // pointer to member conversions and qualification conversions are 6356 // performed to bring them to a common type, whose cv-qualification 6357 // shall match the cv-qualification of either the second or the third 6358 // operand. The result is of the common type. 6359 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS); 6360 if (!Composite.isNull()) 6361 return Composite; 6362 6363 // Similarly, attempt to find composite type of two objective-c pointers. 6364 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 6365 if (LHS.isInvalid() || RHS.isInvalid()) 6366 return QualType(); 6367 if (!Composite.isNull()) 6368 return Composite; 6369 6370 // Check if we are using a null with a non-pointer type. 6371 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6372 return QualType(); 6373 6374 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6375 << LHS.get()->getType() << RHS.get()->getType() 6376 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6377 return QualType(); 6378 } 6379 6380 static FunctionProtoType::ExceptionSpecInfo 6381 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1, 6382 FunctionProtoType::ExceptionSpecInfo ESI2, 6383 SmallVectorImpl<QualType> &ExceptionTypeStorage) { 6384 ExceptionSpecificationType EST1 = ESI1.Type; 6385 ExceptionSpecificationType EST2 = ESI2.Type; 6386 6387 // If either of them can throw anything, that is the result. 6388 if (EST1 == EST_None) return ESI1; 6389 if (EST2 == EST_None) return ESI2; 6390 if (EST1 == EST_MSAny) return ESI1; 6391 if (EST2 == EST_MSAny) return ESI2; 6392 if (EST1 == EST_NoexceptFalse) return ESI1; 6393 if (EST2 == EST_NoexceptFalse) return ESI2; 6394 6395 // If either of them is non-throwing, the result is the other. 6396 if (EST1 == EST_NoThrow) return ESI2; 6397 if (EST2 == EST_NoThrow) return ESI1; 6398 if (EST1 == EST_DynamicNone) return ESI2; 6399 if (EST2 == EST_DynamicNone) return ESI1; 6400 if (EST1 == EST_BasicNoexcept) return ESI2; 6401 if (EST2 == EST_BasicNoexcept) return ESI1; 6402 if (EST1 == EST_NoexceptTrue) return ESI2; 6403 if (EST2 == EST_NoexceptTrue) return ESI1; 6404 6405 // If we're left with value-dependent computed noexcept expressions, we're 6406 // stuck. Before C++17, we can just drop the exception specification entirely, 6407 // since it's not actually part of the canonical type. And this should never 6408 // happen in C++17, because it would mean we were computing the composite 6409 // pointer type of dependent types, which should never happen. 6410 if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { 6411 assert(!S.getLangOpts().CPlusPlus17 && 6412 "computing composite pointer type of dependent types"); 6413 return FunctionProtoType::ExceptionSpecInfo(); 6414 } 6415 6416 // Switch over the possibilities so that people adding new values know to 6417 // update this function. 6418 switch (EST1) { 6419 case EST_None: 6420 case EST_DynamicNone: 6421 case EST_MSAny: 6422 case EST_BasicNoexcept: 6423 case EST_DependentNoexcept: 6424 case EST_NoexceptFalse: 6425 case EST_NoexceptTrue: 6426 case EST_NoThrow: 6427 llvm_unreachable("handled above"); 6428 6429 case EST_Dynamic: { 6430 // This is the fun case: both exception specifications are dynamic. Form 6431 // the union of the two lists. 6432 assert(EST2 == EST_Dynamic && "other cases should already be handled"); 6433 llvm::SmallPtrSet<QualType, 8> Found; 6434 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions}) 6435 for (QualType E : Exceptions) 6436 if (Found.insert(S.Context.getCanonicalType(E)).second) 6437 ExceptionTypeStorage.push_back(E); 6438 6439 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); 6440 Result.Exceptions = ExceptionTypeStorage; 6441 return Result; 6442 } 6443 6444 case EST_Unevaluated: 6445 case EST_Uninstantiated: 6446 case EST_Unparsed: 6447 llvm_unreachable("shouldn't see unresolved exception specifications here"); 6448 } 6449 6450 llvm_unreachable("invalid ExceptionSpecificationType"); 6451 } 6452 6453 /// Find a merged pointer type and convert the two expressions to it. 6454 /// 6455 /// This finds the composite pointer type for \p E1 and \p E2 according to 6456 /// C++2a [expr.type]p3. It converts both expressions to this type and returns 6457 /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs 6458 /// is \c true). 6459 /// 6460 /// \param Loc The location of the operator requiring these two expressions to 6461 /// be converted to the composite pointer type. 6462 /// 6463 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type. 6464 QualType Sema::FindCompositePointerType(SourceLocation Loc, 6465 Expr *&E1, Expr *&E2, 6466 bool ConvertArgs) { 6467 assert(getLangOpts().CPlusPlus && "This function assumes C++"); 6468 6469 // C++1z [expr]p14: 6470 // The composite pointer type of two operands p1 and p2 having types T1 6471 // and T2 6472 QualType T1 = E1->getType(), T2 = E2->getType(); 6473 6474 // where at least one is a pointer or pointer to member type or 6475 // std::nullptr_t is: 6476 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || 6477 T1->isNullPtrType(); 6478 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || 6479 T2->isNullPtrType(); 6480 if (!T1IsPointerLike && !T2IsPointerLike) 6481 return QualType(); 6482 6483 // - if both p1 and p2 are null pointer constants, std::nullptr_t; 6484 // This can't actually happen, following the standard, but we also use this 6485 // to implement the end of [expr.conv], which hits this case. 6486 // 6487 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; 6488 if (T1IsPointerLike && 6489 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6490 if (ConvertArgs) 6491 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType() 6492 ? CK_NullToMemberPointer 6493 : CK_NullToPointer).get(); 6494 return T1; 6495 } 6496 if (T2IsPointerLike && 6497 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6498 if (ConvertArgs) 6499 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType() 6500 ? CK_NullToMemberPointer 6501 : CK_NullToPointer).get(); 6502 return T2; 6503 } 6504 6505 // Now both have to be pointers or member pointers. 6506 if (!T1IsPointerLike || !T2IsPointerLike) 6507 return QualType(); 6508 assert(!T1->isNullPtrType() && !T2->isNullPtrType() && 6509 "nullptr_t should be a null pointer constant"); 6510 6511 struct Step { 6512 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K; 6513 // Qualifiers to apply under the step kind. 6514 Qualifiers Quals; 6515 /// The class for a pointer-to-member; a constant array type with a bound 6516 /// (if any) for an array. 6517 const Type *ClassOrBound; 6518 6519 Step(Kind K, const Type *ClassOrBound = nullptr) 6520 : K(K), Quals(), ClassOrBound(ClassOrBound) {} 6521 QualType rebuild(ASTContext &Ctx, QualType T) const { 6522 T = Ctx.getQualifiedType(T, Quals); 6523 switch (K) { 6524 case Pointer: 6525 return Ctx.getPointerType(T); 6526 case MemberPointer: 6527 return Ctx.getMemberPointerType(T, ClassOrBound); 6528 case ObjCPointer: 6529 return Ctx.getObjCObjectPointerType(T); 6530 case Array: 6531 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound)) 6532 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr, 6533 ArrayType::Normal, 0); 6534 else 6535 return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0); 6536 } 6537 llvm_unreachable("unknown step kind"); 6538 } 6539 }; 6540 6541 SmallVector<Step, 8> Steps; 6542 6543 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6544 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6545 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, 6546 // respectively; 6547 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer 6548 // to member of C2 of type cv2 U2" for some non-function type U, where 6549 // C1 is reference-related to C2 or C2 is reference-related to C1, the 6550 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2, 6551 // respectively; 6552 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and 6553 // T2; 6554 // 6555 // Dismantle T1 and T2 to simultaneously determine whether they are similar 6556 // and to prepare to form the cv-combined type if so. 6557 QualType Composite1 = T1; 6558 QualType Composite2 = T2; 6559 unsigned NeedConstBefore = 0; 6560 while (true) { 6561 assert(!Composite1.isNull() && !Composite2.isNull()); 6562 6563 Qualifiers Q1, Q2; 6564 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1); 6565 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2); 6566 6567 // Top-level qualifiers are ignored. Merge at all lower levels. 6568 if (!Steps.empty()) { 6569 // Find the qualifier union: (approximately) the unique minimal set of 6570 // qualifiers that is compatible with both types. 6571 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() | 6572 Q2.getCVRUQualifiers()); 6573 6574 // Under one level of pointer or pointer-to-member, we can change to an 6575 // unambiguous compatible address space. 6576 if (Q1.getAddressSpace() == Q2.getAddressSpace()) { 6577 Quals.setAddressSpace(Q1.getAddressSpace()); 6578 } else if (Steps.size() == 1) { 6579 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2); 6580 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1); 6581 if (MaybeQ1 == MaybeQ2) 6582 return QualType(); // No unique best address space. 6583 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace() 6584 : Q2.getAddressSpace()); 6585 } else { 6586 return QualType(); 6587 } 6588 6589 // FIXME: In C, we merge __strong and none to __strong at the top level. 6590 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr()) 6591 Quals.setObjCGCAttr(Q1.getObjCGCAttr()); 6592 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6593 assert(Steps.size() == 1); 6594 else 6595 return QualType(); 6596 6597 // Mismatched lifetime qualifiers never compatibly include each other. 6598 if (Q1.getObjCLifetime() == Q2.getObjCLifetime()) 6599 Quals.setObjCLifetime(Q1.getObjCLifetime()); 6600 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6601 assert(Steps.size() == 1); 6602 else 6603 return QualType(); 6604 6605 Steps.back().Quals = Quals; 6606 if (Q1 != Quals || Q2 != Quals) 6607 NeedConstBefore = Steps.size() - 1; 6608 } 6609 6610 // FIXME: Can we unify the following with UnwrapSimilarTypes? 6611 const PointerType *Ptr1, *Ptr2; 6612 if ((Ptr1 = Composite1->getAs<PointerType>()) && 6613 (Ptr2 = Composite2->getAs<PointerType>())) { 6614 Composite1 = Ptr1->getPointeeType(); 6615 Composite2 = Ptr2->getPointeeType(); 6616 Steps.emplace_back(Step::Pointer); 6617 continue; 6618 } 6619 6620 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2; 6621 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) && 6622 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) { 6623 Composite1 = ObjPtr1->getPointeeType(); 6624 Composite2 = ObjPtr2->getPointeeType(); 6625 Steps.emplace_back(Step::ObjCPointer); 6626 continue; 6627 } 6628 6629 const MemberPointerType *MemPtr1, *MemPtr2; 6630 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 6631 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 6632 Composite1 = MemPtr1->getPointeeType(); 6633 Composite2 = MemPtr2->getPointeeType(); 6634 6635 // At the top level, we can perform a base-to-derived pointer-to-member 6636 // conversion: 6637 // 6638 // - [...] where C1 is reference-related to C2 or C2 is 6639 // reference-related to C1 6640 // 6641 // (Note that the only kinds of reference-relatedness in scope here are 6642 // "same type or derived from".) At any other level, the class must 6643 // exactly match. 6644 const Type *Class = nullptr; 6645 QualType Cls1(MemPtr1->getClass(), 0); 6646 QualType Cls2(MemPtr2->getClass(), 0); 6647 if (Context.hasSameType(Cls1, Cls2)) 6648 Class = MemPtr1->getClass(); 6649 else if (Steps.empty()) 6650 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() : 6651 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr; 6652 if (!Class) 6653 return QualType(); 6654 6655 Steps.emplace_back(Step::MemberPointer, Class); 6656 continue; 6657 } 6658 6659 // Special case: at the top level, we can decompose an Objective-C pointer 6660 // and a 'cv void *'. Unify the qualifiers. 6661 if (Steps.empty() && ((Composite1->isVoidPointerType() && 6662 Composite2->isObjCObjectPointerType()) || 6663 (Composite1->isObjCObjectPointerType() && 6664 Composite2->isVoidPointerType()))) { 6665 Composite1 = Composite1->getPointeeType(); 6666 Composite2 = Composite2->getPointeeType(); 6667 Steps.emplace_back(Step::Pointer); 6668 continue; 6669 } 6670 6671 // FIXME: arrays 6672 6673 // FIXME: block pointer types? 6674 6675 // Cannot unwrap any more types. 6676 break; 6677 } 6678 6679 // - if T1 or T2 is "pointer to noexcept function" and the other type is 6680 // "pointer to function", where the function types are otherwise the same, 6681 // "pointer to function"; 6682 // - if T1 or T2 is "pointer to member of C1 of type function", the other 6683 // type is "pointer to member of C2 of type noexcept function", and C1 6684 // is reference-related to C2 or C2 is reference-related to C1, where 6685 // the function types are otherwise the same, "pointer to member of C2 of 6686 // type function" or "pointer to member of C1 of type function", 6687 // respectively; 6688 // 6689 // We also support 'noreturn' here, so as a Clang extension we generalize the 6690 // above to: 6691 // 6692 // - [Clang] If T1 and T2 are both of type "pointer to function" or 6693 // "pointer to member function" and the pointee types can be unified 6694 // by a function pointer conversion, that conversion is applied 6695 // before checking the following rules. 6696 // 6697 // We've already unwrapped down to the function types, and we want to merge 6698 // rather than just convert, so do this ourselves rather than calling 6699 // IsFunctionConversion. 6700 // 6701 // FIXME: In order to match the standard wording as closely as possible, we 6702 // currently only do this under a single level of pointers. Ideally, we would 6703 // allow this in general, and set NeedConstBefore to the relevant depth on 6704 // the side(s) where we changed anything. If we permit that, we should also 6705 // consider this conversion when determining type similarity and model it as 6706 // a qualification conversion. 6707 if (Steps.size() == 1) { 6708 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { 6709 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { 6710 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); 6711 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); 6712 6713 // The result is noreturn if both operands are. 6714 bool Noreturn = 6715 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); 6716 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn); 6717 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn); 6718 6719 // The result is nothrow if both operands are. 6720 SmallVector<QualType, 8> ExceptionTypeStorage; 6721 EPI1.ExceptionSpec = EPI2.ExceptionSpec = 6722 mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec, 6723 ExceptionTypeStorage); 6724 6725 Composite1 = Context.getFunctionType(FPT1->getReturnType(), 6726 FPT1->getParamTypes(), EPI1); 6727 Composite2 = Context.getFunctionType(FPT2->getReturnType(), 6728 FPT2->getParamTypes(), EPI2); 6729 } 6730 } 6731 } 6732 6733 // There are some more conversions we can perform under exactly one pointer. 6734 if (Steps.size() == 1 && Steps.front().K == Step::Pointer && 6735 !Context.hasSameType(Composite1, Composite2)) { 6736 // - if T1 or T2 is "pointer to cv1 void" and the other type is 6737 // "pointer to cv2 T", where T is an object type or void, 6738 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2; 6739 if (Composite1->isVoidType() && Composite2->isObjectType()) 6740 Composite2 = Composite1; 6741 else if (Composite2->isVoidType() && Composite1->isObjectType()) 6742 Composite1 = Composite2; 6743 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6744 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6745 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and 6746 // T1, respectively; 6747 // 6748 // The "similar type" handling covers all of this except for the "T1 is a 6749 // base class of T2" case in the definition of reference-related. 6750 else if (IsDerivedFrom(Loc, Composite1, Composite2)) 6751 Composite1 = Composite2; 6752 else if (IsDerivedFrom(Loc, Composite2, Composite1)) 6753 Composite2 = Composite1; 6754 } 6755 6756 // At this point, either the inner types are the same or we have failed to 6757 // find a composite pointer type. 6758 if (!Context.hasSameType(Composite1, Composite2)) 6759 return QualType(); 6760 6761 // Per C++ [conv.qual]p3, add 'const' to every level before the last 6762 // differing qualifier. 6763 for (unsigned I = 0; I != NeedConstBefore; ++I) 6764 Steps[I].Quals.addConst(); 6765 6766 // Rebuild the composite type. 6767 QualType Composite = Composite1; 6768 for (auto &S : llvm::reverse(Steps)) 6769 Composite = S.rebuild(Context, Composite); 6770 6771 if (ConvertArgs) { 6772 // Convert the expressions to the composite pointer type. 6773 InitializedEntity Entity = 6774 InitializedEntity::InitializeTemporary(Composite); 6775 InitializationKind Kind = 6776 InitializationKind::CreateCopy(Loc, SourceLocation()); 6777 6778 InitializationSequence E1ToC(*this, Entity, Kind, E1); 6779 if (!E1ToC) 6780 return QualType(); 6781 6782 InitializationSequence E2ToC(*this, Entity, Kind, E2); 6783 if (!E2ToC) 6784 return QualType(); 6785 6786 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics. 6787 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1); 6788 if (E1Result.isInvalid()) 6789 return QualType(); 6790 E1 = E1Result.get(); 6791 6792 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2); 6793 if (E2Result.isInvalid()) 6794 return QualType(); 6795 E2 = E2Result.get(); 6796 } 6797 6798 return Composite; 6799 } 6800 6801 ExprResult Sema::MaybeBindToTemporary(Expr *E) { 6802 if (!E) 6803 return ExprError(); 6804 6805 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); 6806 6807 // If the result is a glvalue, we shouldn't bind it. 6808 if (!E->isRValue()) 6809 return E; 6810 6811 // In ARC, calls that return a retainable type can return retained, 6812 // in which case we have to insert a consuming cast. 6813 if (getLangOpts().ObjCAutoRefCount && 6814 E->getType()->isObjCRetainableType()) { 6815 6816 bool ReturnsRetained; 6817 6818 // For actual calls, we compute this by examining the type of the 6819 // called value. 6820 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 6821 Expr *Callee = Call->getCallee()->IgnoreParens(); 6822 QualType T = Callee->getType(); 6823 6824 if (T == Context.BoundMemberTy) { 6825 // Handle pointer-to-members. 6826 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 6827 T = BinOp->getRHS()->getType(); 6828 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 6829 T = Mem->getMemberDecl()->getType(); 6830 } 6831 6832 if (const PointerType *Ptr = T->getAs<PointerType>()) 6833 T = Ptr->getPointeeType(); 6834 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 6835 T = Ptr->getPointeeType(); 6836 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 6837 T = MemPtr->getPointeeType(); 6838 6839 auto *FTy = T->castAs<FunctionType>(); 6840 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 6841 6842 // ActOnStmtExpr arranges things so that StmtExprs of retainable 6843 // type always produce a +1 object. 6844 } else if (isa<StmtExpr>(E)) { 6845 ReturnsRetained = true; 6846 6847 // We hit this case with the lambda conversion-to-block optimization; 6848 // we don't want any extra casts here. 6849 } else if (isa<CastExpr>(E) && 6850 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 6851 return E; 6852 6853 // For message sends and property references, we try to find an 6854 // actual method. FIXME: we should infer retention by selector in 6855 // cases where we don't have an actual method. 6856 } else { 6857 ObjCMethodDecl *D = nullptr; 6858 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 6859 D = Send->getMethodDecl(); 6860 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 6861 D = BoxedExpr->getBoxingMethod(); 6862 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 6863 // Don't do reclaims if we're using the zero-element array 6864 // constant. 6865 if (ArrayLit->getNumElements() == 0 && 6866 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 6867 return E; 6868 6869 D = ArrayLit->getArrayWithObjectsMethod(); 6870 } else if (ObjCDictionaryLiteral *DictLit 6871 = dyn_cast<ObjCDictionaryLiteral>(E)) { 6872 // Don't do reclaims if we're using the zero-element dictionary 6873 // constant. 6874 if (DictLit->getNumElements() == 0 && 6875 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 6876 return E; 6877 6878 D = DictLit->getDictWithObjectsMethod(); 6879 } 6880 6881 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 6882 6883 // Don't do reclaims on performSelector calls; despite their 6884 // return type, the invoked method doesn't necessarily actually 6885 // return an object. 6886 if (!ReturnsRetained && 6887 D && D->getMethodFamily() == OMF_performSelector) 6888 return E; 6889 } 6890 6891 // Don't reclaim an object of Class type. 6892 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 6893 return E; 6894 6895 Cleanup.setExprNeedsCleanups(true); 6896 6897 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 6898 : CK_ARCReclaimReturnedObject); 6899 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 6900 VK_RValue, FPOptionsOverride()); 6901 } 6902 6903 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 6904 Cleanup.setExprNeedsCleanups(true); 6905 6906 if (!getLangOpts().CPlusPlus) 6907 return E; 6908 6909 // Search for the base element type (cf. ASTContext::getBaseElementType) with 6910 // a fast path for the common case that the type is directly a RecordType. 6911 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 6912 const RecordType *RT = nullptr; 6913 while (!RT) { 6914 switch (T->getTypeClass()) { 6915 case Type::Record: 6916 RT = cast<RecordType>(T); 6917 break; 6918 case Type::ConstantArray: 6919 case Type::IncompleteArray: 6920 case Type::VariableArray: 6921 case Type::DependentSizedArray: 6922 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 6923 break; 6924 default: 6925 return E; 6926 } 6927 } 6928 6929 // That should be enough to guarantee that this type is complete, if we're 6930 // not processing a decltype expression. 6931 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 6932 if (RD->isInvalidDecl() || RD->isDependentContext()) 6933 return E; 6934 6935 bool IsDecltype = ExprEvalContexts.back().ExprContext == 6936 ExpressionEvaluationContextRecord::EK_Decltype; 6937 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 6938 6939 if (Destructor) { 6940 MarkFunctionReferenced(E->getExprLoc(), Destructor); 6941 CheckDestructorAccess(E->getExprLoc(), Destructor, 6942 PDiag(diag::err_access_dtor_temp) 6943 << E->getType()); 6944 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 6945 return ExprError(); 6946 6947 // If destructor is trivial, we can avoid the extra copy. 6948 if (Destructor->isTrivial()) 6949 return E; 6950 6951 // We need a cleanup, but we don't need to remember the temporary. 6952 Cleanup.setExprNeedsCleanups(true); 6953 } 6954 6955 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 6956 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 6957 6958 if (IsDecltype) 6959 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 6960 6961 return Bind; 6962 } 6963 6964 ExprResult 6965 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 6966 if (SubExpr.isInvalid()) 6967 return ExprError(); 6968 6969 return MaybeCreateExprWithCleanups(SubExpr.get()); 6970 } 6971 6972 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 6973 assert(SubExpr && "subexpression can't be null!"); 6974 6975 CleanupVarDeclMarking(); 6976 6977 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 6978 assert(ExprCleanupObjects.size() >= FirstCleanup); 6979 assert(Cleanup.exprNeedsCleanups() || 6980 ExprCleanupObjects.size() == FirstCleanup); 6981 if (!Cleanup.exprNeedsCleanups()) 6982 return SubExpr; 6983 6984 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 6985 ExprCleanupObjects.size() - FirstCleanup); 6986 6987 auto *E = ExprWithCleanups::Create( 6988 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); 6989 DiscardCleanupsInEvaluationContext(); 6990 6991 return E; 6992 } 6993 6994 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 6995 assert(SubStmt && "sub-statement can't be null!"); 6996 6997 CleanupVarDeclMarking(); 6998 6999 if (!Cleanup.exprNeedsCleanups()) 7000 return SubStmt; 7001 7002 // FIXME: In order to attach the temporaries, wrap the statement into 7003 // a StmtExpr; currently this is only used for asm statements. 7004 // This is hacky, either create a new CXXStmtWithTemporaries statement or 7005 // a new AsmStmtWithTemporaries. 7006 CompoundStmt *CompStmt = CompoundStmt::Create( 7007 Context, SubStmt, SourceLocation(), SourceLocation()); 7008 Expr *E = new (Context) 7009 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(), 7010 /*FIXME TemplateDepth=*/0); 7011 return MaybeCreateExprWithCleanups(E); 7012 } 7013 7014 /// Process the expression contained within a decltype. For such expressions, 7015 /// certain semantic checks on temporaries are delayed until this point, and 7016 /// are omitted for the 'topmost' call in the decltype expression. If the 7017 /// topmost call bound a temporary, strip that temporary off the expression. 7018 ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 7019 assert(ExprEvalContexts.back().ExprContext == 7020 ExpressionEvaluationContextRecord::EK_Decltype && 7021 "not in a decltype expression"); 7022 7023 ExprResult Result = CheckPlaceholderExpr(E); 7024 if (Result.isInvalid()) 7025 return ExprError(); 7026 E = Result.get(); 7027 7028 // C++11 [expr.call]p11: 7029 // If a function call is a prvalue of object type, 7030 // -- if the function call is either 7031 // -- the operand of a decltype-specifier, or 7032 // -- the right operand of a comma operator that is the operand of a 7033 // decltype-specifier, 7034 // a temporary object is not introduced for the prvalue. 7035 7036 // Recursively rebuild ParenExprs and comma expressions to strip out the 7037 // outermost CXXBindTemporaryExpr, if any. 7038 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7039 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 7040 if (SubExpr.isInvalid()) 7041 return ExprError(); 7042 if (SubExpr.get() == PE->getSubExpr()) 7043 return E; 7044 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 7045 } 7046 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7047 if (BO->getOpcode() == BO_Comma) { 7048 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 7049 if (RHS.isInvalid()) 7050 return ExprError(); 7051 if (RHS.get() == BO->getRHS()) 7052 return E; 7053 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma, 7054 BO->getType(), BO->getValueKind(), 7055 BO->getObjectKind(), BO->getOperatorLoc(), 7056 BO->getFPFeatures(getLangOpts())); 7057 } 7058 } 7059 7060 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 7061 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 7062 : nullptr; 7063 if (TopCall) 7064 E = TopCall; 7065 else 7066 TopBind = nullptr; 7067 7068 // Disable the special decltype handling now. 7069 ExprEvalContexts.back().ExprContext = 7070 ExpressionEvaluationContextRecord::EK_Other; 7071 7072 Result = CheckUnevaluatedOperand(E); 7073 if (Result.isInvalid()) 7074 return ExprError(); 7075 E = Result.get(); 7076 7077 // In MS mode, don't perform any extra checking of call return types within a 7078 // decltype expression. 7079 if (getLangOpts().MSVCCompat) 7080 return E; 7081 7082 // Perform the semantic checks we delayed until this point. 7083 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 7084 I != N; ++I) { 7085 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 7086 if (Call == TopCall) 7087 continue; 7088 7089 if (CheckCallReturnType(Call->getCallReturnType(Context), 7090 Call->getBeginLoc(), Call, Call->getDirectCallee())) 7091 return ExprError(); 7092 } 7093 7094 // Now all relevant types are complete, check the destructors are accessible 7095 // and non-deleted, and annotate them on the temporaries. 7096 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 7097 I != N; ++I) { 7098 CXXBindTemporaryExpr *Bind = 7099 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 7100 if (Bind == TopBind) 7101 continue; 7102 7103 CXXTemporary *Temp = Bind->getTemporary(); 7104 7105 CXXRecordDecl *RD = 7106 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 7107 CXXDestructorDecl *Destructor = LookupDestructor(RD); 7108 Temp->setDestructor(Destructor); 7109 7110 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 7111 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 7112 PDiag(diag::err_access_dtor_temp) 7113 << Bind->getType()); 7114 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 7115 return ExprError(); 7116 7117 // We need a cleanup, but we don't need to remember the temporary. 7118 Cleanup.setExprNeedsCleanups(true); 7119 } 7120 7121 // Possibly strip off the top CXXBindTemporaryExpr. 7122 return E; 7123 } 7124 7125 /// Note a set of 'operator->' functions that were used for a member access. 7126 static void noteOperatorArrows(Sema &S, 7127 ArrayRef<FunctionDecl *> OperatorArrows) { 7128 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 7129 // FIXME: Make this configurable? 7130 unsigned Limit = 9; 7131 if (OperatorArrows.size() > Limit) { 7132 // Produce Limit-1 normal notes and one 'skipping' note. 7133 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 7134 SkipCount = OperatorArrows.size() - (Limit - 1); 7135 } 7136 7137 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 7138 if (I == SkipStart) { 7139 S.Diag(OperatorArrows[I]->getLocation(), 7140 diag::note_operator_arrows_suppressed) 7141 << SkipCount; 7142 I += SkipCount; 7143 } else { 7144 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 7145 << OperatorArrows[I]->getCallResultType(); 7146 ++I; 7147 } 7148 } 7149 } 7150 7151 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 7152 SourceLocation OpLoc, 7153 tok::TokenKind OpKind, 7154 ParsedType &ObjectType, 7155 bool &MayBePseudoDestructor) { 7156 // Since this might be a postfix expression, get rid of ParenListExprs. 7157 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 7158 if (Result.isInvalid()) return ExprError(); 7159 Base = Result.get(); 7160 7161 Result = CheckPlaceholderExpr(Base); 7162 if (Result.isInvalid()) return ExprError(); 7163 Base = Result.get(); 7164 7165 QualType BaseType = Base->getType(); 7166 MayBePseudoDestructor = false; 7167 if (BaseType->isDependentType()) { 7168 // If we have a pointer to a dependent type and are using the -> operator, 7169 // the object type is the type that the pointer points to. We might still 7170 // have enough information about that type to do something useful. 7171 if (OpKind == tok::arrow) 7172 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 7173 BaseType = Ptr->getPointeeType(); 7174 7175 ObjectType = ParsedType::make(BaseType); 7176 MayBePseudoDestructor = true; 7177 return Base; 7178 } 7179 7180 // C++ [over.match.oper]p8: 7181 // [...] When operator->returns, the operator-> is applied to the value 7182 // returned, with the original second operand. 7183 if (OpKind == tok::arrow) { 7184 QualType StartingType = BaseType; 7185 bool NoArrowOperatorFound = false; 7186 bool FirstIteration = true; 7187 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 7188 // The set of types we've considered so far. 7189 llvm::SmallPtrSet<CanQualType,8> CTypes; 7190 SmallVector<FunctionDecl*, 8> OperatorArrows; 7191 CTypes.insert(Context.getCanonicalType(BaseType)); 7192 7193 while (BaseType->isRecordType()) { 7194 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 7195 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 7196 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 7197 noteOperatorArrows(*this, OperatorArrows); 7198 Diag(OpLoc, diag::note_operator_arrow_depth) 7199 << getLangOpts().ArrowDepth; 7200 return ExprError(); 7201 } 7202 7203 Result = BuildOverloadedArrowExpr( 7204 S, Base, OpLoc, 7205 // When in a template specialization and on the first loop iteration, 7206 // potentially give the default diagnostic (with the fixit in a 7207 // separate note) instead of having the error reported back to here 7208 // and giving a diagnostic with a fixit attached to the error itself. 7209 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 7210 ? nullptr 7211 : &NoArrowOperatorFound); 7212 if (Result.isInvalid()) { 7213 if (NoArrowOperatorFound) { 7214 if (FirstIteration) { 7215 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7216 << BaseType << 1 << Base->getSourceRange() 7217 << FixItHint::CreateReplacement(OpLoc, "."); 7218 OpKind = tok::period; 7219 break; 7220 } 7221 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7222 << BaseType << Base->getSourceRange(); 7223 CallExpr *CE = dyn_cast<CallExpr>(Base); 7224 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 7225 Diag(CD->getBeginLoc(), 7226 diag::note_member_reference_arrow_from_operator_arrow); 7227 } 7228 } 7229 return ExprError(); 7230 } 7231 Base = Result.get(); 7232 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 7233 OperatorArrows.push_back(OpCall->getDirectCallee()); 7234 BaseType = Base->getType(); 7235 CanQualType CBaseType = Context.getCanonicalType(BaseType); 7236 if (!CTypes.insert(CBaseType).second) { 7237 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 7238 noteOperatorArrows(*this, OperatorArrows); 7239 return ExprError(); 7240 } 7241 FirstIteration = false; 7242 } 7243 7244 if (OpKind == tok::arrow) { 7245 if (BaseType->isPointerType()) 7246 BaseType = BaseType->getPointeeType(); 7247 else if (auto *AT = Context.getAsArrayType(BaseType)) 7248 BaseType = AT->getElementType(); 7249 } 7250 } 7251 7252 // Objective-C properties allow "." access on Objective-C pointer types, 7253 // so adjust the base type to the object type itself. 7254 if (BaseType->isObjCObjectPointerType()) 7255 BaseType = BaseType->getPointeeType(); 7256 7257 // C++ [basic.lookup.classref]p2: 7258 // [...] If the type of the object expression is of pointer to scalar 7259 // type, the unqualified-id is looked up in the context of the complete 7260 // postfix-expression. 7261 // 7262 // This also indicates that we could be parsing a pseudo-destructor-name. 7263 // Note that Objective-C class and object types can be pseudo-destructor 7264 // expressions or normal member (ivar or property) access expressions, and 7265 // it's legal for the type to be incomplete if this is a pseudo-destructor 7266 // call. We'll do more incomplete-type checks later in the lookup process, 7267 // so just skip this check for ObjC types. 7268 if (!BaseType->isRecordType()) { 7269 ObjectType = ParsedType::make(BaseType); 7270 MayBePseudoDestructor = true; 7271 return Base; 7272 } 7273 7274 // The object type must be complete (or dependent), or 7275 // C++11 [expr.prim.general]p3: 7276 // Unlike the object expression in other contexts, *this is not required to 7277 // be of complete type for purposes of class member access (5.2.5) outside 7278 // the member function body. 7279 if (!BaseType->isDependentType() && 7280 !isThisOutsideMemberFunctionBody(BaseType) && 7281 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access)) 7282 return ExprError(); 7283 7284 // C++ [basic.lookup.classref]p2: 7285 // If the id-expression in a class member access (5.2.5) is an 7286 // unqualified-id, and the type of the object expression is of a class 7287 // type C (or of pointer to a class type C), the unqualified-id is looked 7288 // up in the scope of class C. [...] 7289 ObjectType = ParsedType::make(BaseType); 7290 return Base; 7291 } 7292 7293 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base, 7294 tok::TokenKind &OpKind, SourceLocation OpLoc) { 7295 if (Base->hasPlaceholderType()) { 7296 ExprResult result = S.CheckPlaceholderExpr(Base); 7297 if (result.isInvalid()) return true; 7298 Base = result.get(); 7299 } 7300 ObjectType = Base->getType(); 7301 7302 // C++ [expr.pseudo]p2: 7303 // The left-hand side of the dot operator shall be of scalar type. The 7304 // left-hand side of the arrow operator shall be of pointer to scalar type. 7305 // This scalar type is the object type. 7306 // Note that this is rather different from the normal handling for the 7307 // arrow operator. 7308 if (OpKind == tok::arrow) { 7309 // The operator requires a prvalue, so perform lvalue conversions. 7310 // Only do this if we might plausibly end with a pointer, as otherwise 7311 // this was likely to be intended to be a '.'. 7312 if (ObjectType->isPointerType() || ObjectType->isArrayType() || 7313 ObjectType->isFunctionType()) { 7314 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base); 7315 if (BaseResult.isInvalid()) 7316 return true; 7317 Base = BaseResult.get(); 7318 ObjectType = Base->getType(); 7319 } 7320 7321 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 7322 ObjectType = Ptr->getPointeeType(); 7323 } else if (!Base->isTypeDependent()) { 7324 // The user wrote "p->" when they probably meant "p."; fix it. 7325 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7326 << ObjectType << true 7327 << FixItHint::CreateReplacement(OpLoc, "."); 7328 if (S.isSFINAEContext()) 7329 return true; 7330 7331 OpKind = tok::period; 7332 } 7333 } 7334 7335 return false; 7336 } 7337 7338 /// Check if it's ok to try and recover dot pseudo destructor calls on 7339 /// pointer objects. 7340 static bool 7341 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, 7342 QualType DestructedType) { 7343 // If this is a record type, check if its destructor is callable. 7344 if (auto *RD = DestructedType->getAsCXXRecordDecl()) { 7345 if (RD->hasDefinition()) 7346 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD)) 7347 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); 7348 return false; 7349 } 7350 7351 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. 7352 return DestructedType->isDependentType() || DestructedType->isScalarType() || 7353 DestructedType->isVectorType(); 7354 } 7355 7356 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 7357 SourceLocation OpLoc, 7358 tok::TokenKind OpKind, 7359 const CXXScopeSpec &SS, 7360 TypeSourceInfo *ScopeTypeInfo, 7361 SourceLocation CCLoc, 7362 SourceLocation TildeLoc, 7363 PseudoDestructorTypeStorage Destructed) { 7364 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 7365 7366 QualType ObjectType; 7367 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7368 return ExprError(); 7369 7370 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 7371 !ObjectType->isVectorType()) { 7372 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 7373 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 7374 else { 7375 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 7376 << ObjectType << Base->getSourceRange(); 7377 return ExprError(); 7378 } 7379 } 7380 7381 // C++ [expr.pseudo]p2: 7382 // [...] The cv-unqualified versions of the object type and of the type 7383 // designated by the pseudo-destructor-name shall be the same type. 7384 if (DestructedTypeInfo) { 7385 QualType DestructedType = DestructedTypeInfo->getType(); 7386 SourceLocation DestructedTypeStart 7387 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); 7388 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 7389 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 7390 // Detect dot pseudo destructor calls on pointer objects, e.g.: 7391 // Foo *foo; 7392 // foo.~Foo(); 7393 if (OpKind == tok::period && ObjectType->isPointerType() && 7394 Context.hasSameUnqualifiedType(DestructedType, 7395 ObjectType->getPointeeType())) { 7396 auto Diagnostic = 7397 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7398 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); 7399 7400 // Issue a fixit only when the destructor is valid. 7401 if (canRecoverDotPseudoDestructorCallsOnPointerObjects( 7402 *this, DestructedType)) 7403 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->"); 7404 7405 // Recover by setting the object type to the destructed type and the 7406 // operator to '->'. 7407 ObjectType = DestructedType; 7408 OpKind = tok::arrow; 7409 } else { 7410 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 7411 << ObjectType << DestructedType << Base->getSourceRange() 7412 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7413 7414 // Recover by setting the destructed type to the object type. 7415 DestructedType = ObjectType; 7416 DestructedTypeInfo = 7417 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); 7418 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7419 } 7420 } else if (DestructedType.getObjCLifetime() != 7421 ObjectType.getObjCLifetime()) { 7422 7423 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 7424 // Okay: just pretend that the user provided the correctly-qualified 7425 // type. 7426 } else { 7427 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 7428 << ObjectType << DestructedType << Base->getSourceRange() 7429 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7430 } 7431 7432 // Recover by setting the destructed type to the object type. 7433 DestructedType = ObjectType; 7434 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 7435 DestructedTypeStart); 7436 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7437 } 7438 } 7439 } 7440 7441 // C++ [expr.pseudo]p2: 7442 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 7443 // form 7444 // 7445 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 7446 // 7447 // shall designate the same scalar type. 7448 if (ScopeTypeInfo) { 7449 QualType ScopeType = ScopeTypeInfo->getType(); 7450 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 7451 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 7452 7453 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), 7454 diag::err_pseudo_dtor_type_mismatch) 7455 << ObjectType << ScopeType << Base->getSourceRange() 7456 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); 7457 7458 ScopeType = QualType(); 7459 ScopeTypeInfo = nullptr; 7460 } 7461 } 7462 7463 Expr *Result 7464 = new (Context) CXXPseudoDestructorExpr(Context, Base, 7465 OpKind == tok::arrow, OpLoc, 7466 SS.getWithLocInContext(Context), 7467 ScopeTypeInfo, 7468 CCLoc, 7469 TildeLoc, 7470 Destructed); 7471 7472 return Result; 7473 } 7474 7475 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7476 SourceLocation OpLoc, 7477 tok::TokenKind OpKind, 7478 CXXScopeSpec &SS, 7479 UnqualifiedId &FirstTypeName, 7480 SourceLocation CCLoc, 7481 SourceLocation TildeLoc, 7482 UnqualifiedId &SecondTypeName) { 7483 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7484 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7485 "Invalid first type name in pseudo-destructor"); 7486 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7487 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7488 "Invalid second type name in pseudo-destructor"); 7489 7490 QualType ObjectType; 7491 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7492 return ExprError(); 7493 7494 // Compute the object type that we should use for name lookup purposes. Only 7495 // record types and dependent types matter. 7496 ParsedType ObjectTypePtrForLookup; 7497 if (!SS.isSet()) { 7498 if (ObjectType->isRecordType()) 7499 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 7500 else if (ObjectType->isDependentType()) 7501 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 7502 } 7503 7504 // Convert the name of the type being destructed (following the ~) into a 7505 // type (with source-location information). 7506 QualType DestructedType; 7507 TypeSourceInfo *DestructedTypeInfo = nullptr; 7508 PseudoDestructorTypeStorage Destructed; 7509 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7510 ParsedType T = getTypeName(*SecondTypeName.Identifier, 7511 SecondTypeName.StartLocation, 7512 S, &SS, true, false, ObjectTypePtrForLookup, 7513 /*IsCtorOrDtorName*/true); 7514 if (!T && 7515 ((SS.isSet() && !computeDeclContext(SS, false)) || 7516 (!SS.isSet() && ObjectType->isDependentType()))) { 7517 // The name of the type being destroyed is a dependent name, and we 7518 // couldn't find anything useful in scope. Just store the identifier and 7519 // it's location, and we'll perform (qualified) name lookup again at 7520 // template instantiation time. 7521 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 7522 SecondTypeName.StartLocation); 7523 } else if (!T) { 7524 Diag(SecondTypeName.StartLocation, 7525 diag::err_pseudo_dtor_destructor_non_type) 7526 << SecondTypeName.Identifier << ObjectType; 7527 if (isSFINAEContext()) 7528 return ExprError(); 7529 7530 // Recover by assuming we had the right type all along. 7531 DestructedType = ObjectType; 7532 } else 7533 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 7534 } else { 7535 // Resolve the template-id to a type. 7536 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 7537 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7538 TemplateId->NumArgs); 7539 TypeResult T = ActOnTemplateIdType(S, 7540 SS, 7541 TemplateId->TemplateKWLoc, 7542 TemplateId->Template, 7543 TemplateId->Name, 7544 TemplateId->TemplateNameLoc, 7545 TemplateId->LAngleLoc, 7546 TemplateArgsPtr, 7547 TemplateId->RAngleLoc, 7548 /*IsCtorOrDtorName*/true); 7549 if (T.isInvalid() || !T.get()) { 7550 // Recover by assuming we had the right type all along. 7551 DestructedType = ObjectType; 7552 } else 7553 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 7554 } 7555 7556 // If we've performed some kind of recovery, (re-)build the type source 7557 // information. 7558 if (!DestructedType.isNull()) { 7559 if (!DestructedTypeInfo) 7560 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 7561 SecondTypeName.StartLocation); 7562 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7563 } 7564 7565 // Convert the name of the scope type (the type prior to '::') into a type. 7566 TypeSourceInfo *ScopeTypeInfo = nullptr; 7567 QualType ScopeType; 7568 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7569 FirstTypeName.Identifier) { 7570 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7571 ParsedType T = getTypeName(*FirstTypeName.Identifier, 7572 FirstTypeName.StartLocation, 7573 S, &SS, true, false, ObjectTypePtrForLookup, 7574 /*IsCtorOrDtorName*/true); 7575 if (!T) { 7576 Diag(FirstTypeName.StartLocation, 7577 diag::err_pseudo_dtor_destructor_non_type) 7578 << FirstTypeName.Identifier << ObjectType; 7579 7580 if (isSFINAEContext()) 7581 return ExprError(); 7582 7583 // Just drop this type. It's unnecessary anyway. 7584 ScopeType = QualType(); 7585 } else 7586 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 7587 } else { 7588 // Resolve the template-id to a type. 7589 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 7590 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7591 TemplateId->NumArgs); 7592 TypeResult T = ActOnTemplateIdType(S, 7593 SS, 7594 TemplateId->TemplateKWLoc, 7595 TemplateId->Template, 7596 TemplateId->Name, 7597 TemplateId->TemplateNameLoc, 7598 TemplateId->LAngleLoc, 7599 TemplateArgsPtr, 7600 TemplateId->RAngleLoc, 7601 /*IsCtorOrDtorName*/true); 7602 if (T.isInvalid() || !T.get()) { 7603 // Recover by dropping this type. 7604 ScopeType = QualType(); 7605 } else 7606 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 7607 } 7608 } 7609 7610 if (!ScopeType.isNull() && !ScopeTypeInfo) 7611 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 7612 FirstTypeName.StartLocation); 7613 7614 7615 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 7616 ScopeTypeInfo, CCLoc, TildeLoc, 7617 Destructed); 7618 } 7619 7620 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7621 SourceLocation OpLoc, 7622 tok::TokenKind OpKind, 7623 SourceLocation TildeLoc, 7624 const DeclSpec& DS) { 7625 QualType ObjectType; 7626 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7627 return ExprError(); 7628 7629 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 7630 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 7631 return true; 7632 } 7633 7634 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(), 7635 false); 7636 7637 TypeLocBuilder TLB; 7638 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 7639 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); 7640 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 7641 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 7642 7643 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 7644 nullptr, SourceLocation(), TildeLoc, 7645 Destructed); 7646 } 7647 7648 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, 7649 CXXConversionDecl *Method, 7650 bool HadMultipleCandidates) { 7651 // Convert the expression to match the conversion function's implicit object 7652 // parameter. 7653 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, 7654 FoundDecl, Method); 7655 if (Exp.isInvalid()) 7656 return true; 7657 7658 if (Method->getParent()->isLambda() && 7659 Method->getConversionType()->isBlockPointerType()) { 7660 // This is a lambda conversion to block pointer; check if the argument 7661 // was a LambdaExpr. 7662 Expr *SubE = E; 7663 CastExpr *CE = dyn_cast<CastExpr>(SubE); 7664 if (CE && CE->getCastKind() == CK_NoOp) 7665 SubE = CE->getSubExpr(); 7666 SubE = SubE->IgnoreParens(); 7667 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) 7668 SubE = BE->getSubExpr(); 7669 if (isa<LambdaExpr>(SubE)) { 7670 // For the conversion to block pointer on a lambda expression, we 7671 // construct a special BlockLiteral instead; this doesn't really make 7672 // a difference in ARC, but outside of ARC the resulting block literal 7673 // follows the normal lifetime rules for block literals instead of being 7674 // autoreleased. 7675 PushExpressionEvaluationContext( 7676 ExpressionEvaluationContext::PotentiallyEvaluated); 7677 ExprResult BlockExp = BuildBlockForLambdaConversion( 7678 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get()); 7679 PopExpressionEvaluationContext(); 7680 7681 // FIXME: This note should be produced by a CodeSynthesisContext. 7682 if (BlockExp.isInvalid()) 7683 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv); 7684 return BlockExp; 7685 } 7686 } 7687 7688 MemberExpr *ME = 7689 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(), 7690 NestedNameSpecifierLoc(), SourceLocation(), Method, 7691 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), 7692 HadMultipleCandidates, DeclarationNameInfo(), 7693 Context.BoundMemberTy, VK_RValue, OK_Ordinary); 7694 7695 QualType ResultType = Method->getReturnType(); 7696 ExprValueKind VK = Expr::getValueKindForType(ResultType); 7697 ResultType = ResultType.getNonLValueExprType(Context); 7698 7699 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create( 7700 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(), 7701 CurFPFeatureOverrides()); 7702 7703 if (CheckFunctionCall(Method, CE, 7704 Method->getType()->castAs<FunctionProtoType>())) 7705 return ExprError(); 7706 7707 return CE; 7708 } 7709 7710 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 7711 SourceLocation RParen) { 7712 // If the operand is an unresolved lookup expression, the expression is ill- 7713 // formed per [over.over]p1, because overloaded function names cannot be used 7714 // without arguments except in explicit contexts. 7715 ExprResult R = CheckPlaceholderExpr(Operand); 7716 if (R.isInvalid()) 7717 return R; 7718 7719 R = CheckUnevaluatedOperand(R.get()); 7720 if (R.isInvalid()) 7721 return ExprError(); 7722 7723 Operand = R.get(); 7724 7725 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() && 7726 Operand->HasSideEffects(Context, false)) { 7727 // The expression operand for noexcept is in an unevaluated expression 7728 // context, so side effects could result in unintended consequences. 7729 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 7730 } 7731 7732 CanThrowResult CanThrow = canThrow(Operand); 7733 return new (Context) 7734 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 7735 } 7736 7737 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 7738 Expr *Operand, SourceLocation RParen) { 7739 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 7740 } 7741 7742 /// Perform the conversions required for an expression used in a 7743 /// context that ignores the result. 7744 ExprResult Sema::IgnoredValueConversions(Expr *E) { 7745 if (E->hasPlaceholderType()) { 7746 ExprResult result = CheckPlaceholderExpr(E); 7747 if (result.isInvalid()) return E; 7748 E = result.get(); 7749 } 7750 7751 // C99 6.3.2.1: 7752 // [Except in specific positions,] an lvalue that does not have 7753 // array type is converted to the value stored in the 7754 // designated object (and is no longer an lvalue). 7755 if (E->isRValue()) { 7756 // In C, function designators (i.e. expressions of function type) 7757 // are r-values, but we still want to do function-to-pointer decay 7758 // on them. This is both technically correct and convenient for 7759 // some clients. 7760 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 7761 return DefaultFunctionArrayConversion(E); 7762 7763 return E; 7764 } 7765 7766 if (getLangOpts().CPlusPlus) { 7767 // The C++11 standard defines the notion of a discarded-value expression; 7768 // normally, we don't need to do anything to handle it, but if it is a 7769 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 7770 // conversion. 7771 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) { 7772 ExprResult Res = DefaultLvalueConversion(E); 7773 if (Res.isInvalid()) 7774 return E; 7775 E = Res.get(); 7776 } else { 7777 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 7778 // it occurs as a discarded-value expression. 7779 CheckUnusedVolatileAssignment(E); 7780 } 7781 7782 // C++1z: 7783 // If the expression is a prvalue after this optional conversion, the 7784 // temporary materialization conversion is applied. 7785 // 7786 // We skip this step: IR generation is able to synthesize the storage for 7787 // itself in the aggregate case, and adding the extra node to the AST is 7788 // just clutter. 7789 // FIXME: We don't emit lifetime markers for the temporaries due to this. 7790 // FIXME: Do any other AST consumers care about this? 7791 return E; 7792 } 7793 7794 // GCC seems to also exclude expressions of incomplete enum type. 7795 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 7796 if (!T->getDecl()->isComplete()) { 7797 // FIXME: stupid workaround for a codegen bug! 7798 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 7799 return E; 7800 } 7801 } 7802 7803 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 7804 if (Res.isInvalid()) 7805 return E; 7806 E = Res.get(); 7807 7808 if (!E->getType()->isVoidType()) 7809 RequireCompleteType(E->getExprLoc(), E->getType(), 7810 diag::err_incomplete_type); 7811 return E; 7812 } 7813 7814 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) { 7815 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 7816 // it occurs as an unevaluated operand. 7817 CheckUnusedVolatileAssignment(E); 7818 7819 return E; 7820 } 7821 7822 // If we can unambiguously determine whether Var can never be used 7823 // in a constant expression, return true. 7824 // - if the variable and its initializer are non-dependent, then 7825 // we can unambiguously check if the variable is a constant expression. 7826 // - if the initializer is not value dependent - we can determine whether 7827 // it can be used to initialize a constant expression. If Init can not 7828 // be used to initialize a constant expression we conclude that Var can 7829 // never be a constant expression. 7830 // - FXIME: if the initializer is dependent, we can still do some analysis and 7831 // identify certain cases unambiguously as non-const by using a Visitor: 7832 // - such as those that involve odr-use of a ParmVarDecl, involve a new 7833 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 7834 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 7835 ASTContext &Context) { 7836 if (isa<ParmVarDecl>(Var)) return true; 7837 const VarDecl *DefVD = nullptr; 7838 7839 // If there is no initializer - this can not be a constant expression. 7840 if (!Var->getAnyInitializer(DefVD)) return true; 7841 assert(DefVD); 7842 if (DefVD->isWeak()) return false; 7843 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); 7844 7845 Expr *Init = cast<Expr>(Eval->Value); 7846 7847 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 7848 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 7849 // of value-dependent expressions, and use it here to determine whether the 7850 // initializer is a potential constant expression. 7851 return false; 7852 } 7853 7854 return !Var->isUsableInConstantExpressions(Context); 7855 } 7856 7857 /// Check if the current lambda has any potential captures 7858 /// that must be captured by any of its enclosing lambdas that are ready to 7859 /// capture. If there is a lambda that can capture a nested 7860 /// potential-capture, go ahead and do so. Also, check to see if any 7861 /// variables are uncaptureable or do not involve an odr-use so do not 7862 /// need to be captured. 7863 7864 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 7865 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 7866 7867 assert(!S.isUnevaluatedContext()); 7868 assert(S.CurContext->isDependentContext()); 7869 #ifndef NDEBUG 7870 DeclContext *DC = S.CurContext; 7871 while (DC && isa<CapturedDecl>(DC)) 7872 DC = DC->getParent(); 7873 assert( 7874 CurrentLSI->CallOperator == DC && 7875 "The current call operator must be synchronized with Sema's CurContext"); 7876 #endif // NDEBUG 7877 7878 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 7879 7880 // All the potentially captureable variables in the current nested 7881 // lambda (within a generic outer lambda), must be captured by an 7882 // outer lambda that is enclosed within a non-dependent context. 7883 CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) { 7884 // If the variable is clearly identified as non-odr-used and the full 7885 // expression is not instantiation dependent, only then do we not 7886 // need to check enclosing lambda's for speculative captures. 7887 // For e.g.: 7888 // Even though 'x' is not odr-used, it should be captured. 7889 // int test() { 7890 // const int x = 10; 7891 // auto L = [=](auto a) { 7892 // (void) +x + a; 7893 // }; 7894 // } 7895 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 7896 !IsFullExprInstantiationDependent) 7897 return; 7898 7899 // If we have a capture-capable lambda for the variable, go ahead and 7900 // capture the variable in that lambda (and all its enclosing lambdas). 7901 if (const Optional<unsigned> Index = 7902 getStackIndexOfNearestEnclosingCaptureCapableLambda( 7903 S.FunctionScopes, Var, S)) 7904 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), 7905 Index.getValue()); 7906 const bool IsVarNeverAConstantExpression = 7907 VariableCanNeverBeAConstantExpression(Var, S.Context); 7908 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 7909 // This full expression is not instantiation dependent or the variable 7910 // can not be used in a constant expression - which means 7911 // this variable must be odr-used here, so diagnose a 7912 // capture violation early, if the variable is un-captureable. 7913 // This is purely for diagnosing errors early. Otherwise, this 7914 // error would get diagnosed when the lambda becomes capture ready. 7915 QualType CaptureType, DeclRefType; 7916 SourceLocation ExprLoc = VarExpr->getExprLoc(); 7917 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 7918 /*EllipsisLoc*/ SourceLocation(), 7919 /*BuildAndDiagnose*/false, CaptureType, 7920 DeclRefType, nullptr)) { 7921 // We will never be able to capture this variable, and we need 7922 // to be able to in any and all instantiations, so diagnose it. 7923 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 7924 /*EllipsisLoc*/ SourceLocation(), 7925 /*BuildAndDiagnose*/true, CaptureType, 7926 DeclRefType, nullptr); 7927 } 7928 } 7929 }); 7930 7931 // Check if 'this' needs to be captured. 7932 if (CurrentLSI->hasPotentialThisCapture()) { 7933 // If we have a capture-capable lambda for 'this', go ahead and capture 7934 // 'this' in that lambda (and all its enclosing lambdas). 7935 if (const Optional<unsigned> Index = 7936 getStackIndexOfNearestEnclosingCaptureCapableLambda( 7937 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) { 7938 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 7939 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 7940 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 7941 &FunctionScopeIndexOfCapturableLambda); 7942 } 7943 } 7944 7945 // Reset all the potential captures at the end of each full-expression. 7946 CurrentLSI->clearPotentialCaptures(); 7947 } 7948 7949 static ExprResult attemptRecovery(Sema &SemaRef, 7950 const TypoCorrectionConsumer &Consumer, 7951 const TypoCorrection &TC) { 7952 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 7953 Consumer.getLookupResult().getLookupKind()); 7954 const CXXScopeSpec *SS = Consumer.getSS(); 7955 CXXScopeSpec NewSS; 7956 7957 // Use an approprate CXXScopeSpec for building the expr. 7958 if (auto *NNS = TC.getCorrectionSpecifier()) 7959 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 7960 else if (SS && !TC.WillReplaceSpecifier()) 7961 NewSS = *SS; 7962 7963 if (auto *ND = TC.getFoundDecl()) { 7964 R.setLookupName(ND->getDeclName()); 7965 R.addDecl(ND); 7966 if (ND->isCXXClassMember()) { 7967 // Figure out the correct naming class to add to the LookupResult. 7968 CXXRecordDecl *Record = nullptr; 7969 if (auto *NNS = TC.getCorrectionSpecifier()) 7970 Record = NNS->getAsType()->getAsCXXRecordDecl(); 7971 if (!Record) 7972 Record = 7973 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 7974 if (Record) 7975 R.setNamingClass(Record); 7976 7977 // Detect and handle the case where the decl might be an implicit 7978 // member. 7979 bool MightBeImplicitMember; 7980 if (!Consumer.isAddressOfOperand()) 7981 MightBeImplicitMember = true; 7982 else if (!NewSS.isEmpty()) 7983 MightBeImplicitMember = false; 7984 else if (R.isOverloadedResult()) 7985 MightBeImplicitMember = false; 7986 else if (R.isUnresolvableResult()) 7987 MightBeImplicitMember = true; 7988 else 7989 MightBeImplicitMember = isa<FieldDecl>(ND) || 7990 isa<IndirectFieldDecl>(ND) || 7991 isa<MSPropertyDecl>(ND); 7992 7993 if (MightBeImplicitMember) 7994 return SemaRef.BuildPossibleImplicitMemberExpr( 7995 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 7996 /*TemplateArgs*/ nullptr, /*S*/ nullptr); 7997 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 7998 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), 7999 Ivar->getIdentifier()); 8000 } 8001 } 8002 8003 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 8004 /*AcceptInvalidDecl*/ true); 8005 } 8006 8007 namespace { 8008 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 8009 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 8010 8011 public: 8012 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 8013 : TypoExprs(TypoExprs) {} 8014 bool VisitTypoExpr(TypoExpr *TE) { 8015 TypoExprs.insert(TE); 8016 return true; 8017 } 8018 }; 8019 8020 class TransformTypos : public TreeTransform<TransformTypos> { 8021 typedef TreeTransform<TransformTypos> BaseTransform; 8022 8023 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the 8024 // process of being initialized. 8025 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 8026 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 8027 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 8028 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 8029 8030 /// Emit diagnostics for all of the TypoExprs encountered. 8031 /// 8032 /// If the TypoExprs were successfully corrected, then the diagnostics should 8033 /// suggest the corrections. Otherwise the diagnostics will not suggest 8034 /// anything (having been passed an empty TypoCorrection). 8035 /// 8036 /// If we've failed to correct due to ambiguous corrections, we need to 8037 /// be sure to pass empty corrections and replacements. Otherwise it's 8038 /// possible that the Consumer has a TypoCorrection that failed to ambiguity 8039 /// and we don't want to report those diagnostics. 8040 void EmitAllDiagnostics(bool IsAmbiguous) { 8041 for (TypoExpr *TE : TypoExprs) { 8042 auto &State = SemaRef.getTypoExprState(TE); 8043 if (State.DiagHandler) { 8044 TypoCorrection TC = IsAmbiguous 8045 ? TypoCorrection() : State.Consumer->getCurrentCorrection(); 8046 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE]; 8047 8048 // Extract the NamedDecl from the transformed TypoExpr and add it to the 8049 // TypoCorrection, replacing the existing decls. This ensures the right 8050 // NamedDecl is used in diagnostics e.g. in the case where overload 8051 // resolution was used to select one from several possible decls that 8052 // had been stored in the TypoCorrection. 8053 if (auto *ND = getDeclFromExpr( 8054 Replacement.isInvalid() ? nullptr : Replacement.get())) 8055 TC.setCorrectionDecl(ND); 8056 8057 State.DiagHandler(TC); 8058 } 8059 SemaRef.clearDelayedTypo(TE); 8060 } 8061 } 8062 8063 /// Try to advance the typo correction state of the first unfinished TypoExpr. 8064 /// We allow advancement of the correction stream by removing it from the 8065 /// TransformCache which allows `TransformTypoExpr` to advance during the 8066 /// next transformation attempt. 8067 /// 8068 /// Any substitution attempts for the previous TypoExprs (which must have been 8069 /// finished) will need to be retried since it's possible that they will now 8070 /// be invalid given the latest advancement. 8071 /// 8072 /// We need to be sure that we're making progress - it's possible that the 8073 /// tree is so malformed that the transform never makes it to the 8074 /// `TransformTypoExpr`. 8075 /// 8076 /// Returns true if there are any untried correction combinations. 8077 bool CheckAndAdvanceTypoExprCorrectionStreams() { 8078 for (auto TE : TypoExprs) { 8079 auto &State = SemaRef.getTypoExprState(TE); 8080 TransformCache.erase(TE); 8081 if (!State.Consumer->hasMadeAnyCorrectionProgress()) 8082 return false; 8083 if (!State.Consumer->finished()) 8084 return true; 8085 State.Consumer->resetCorrectionStream(); 8086 } 8087 return false; 8088 } 8089 8090 NamedDecl *getDeclFromExpr(Expr *E) { 8091 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 8092 E = OverloadResolution[OE]; 8093 8094 if (!E) 8095 return nullptr; 8096 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 8097 return DRE->getFoundDecl(); 8098 if (auto *ME = dyn_cast<MemberExpr>(E)) 8099 return ME->getFoundDecl(); 8100 // FIXME: Add any other expr types that could be be seen by the delayed typo 8101 // correction TreeTransform for which the corresponding TypoCorrection could 8102 // contain multiple decls. 8103 return nullptr; 8104 } 8105 8106 ExprResult TryTransform(Expr *E) { 8107 Sema::SFINAETrap Trap(SemaRef); 8108 ExprResult Res = TransformExpr(E); 8109 if (Trap.hasErrorOccurred() || Res.isInvalid()) 8110 return ExprError(); 8111 8112 return ExprFilter(Res.get()); 8113 } 8114 8115 // Since correcting typos may intoduce new TypoExprs, this function 8116 // checks for new TypoExprs and recurses if it finds any. Note that it will 8117 // only succeed if it is able to correct all typos in the given expression. 8118 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) { 8119 if (Res.isInvalid()) { 8120 return Res; 8121 } 8122 // Check to see if any new TypoExprs were created. If so, we need to recurse 8123 // to check their validity. 8124 Expr *FixedExpr = Res.get(); 8125 8126 auto SavedTypoExprs = std::move(TypoExprs); 8127 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs); 8128 TypoExprs.clear(); 8129 AmbiguousTypoExprs.clear(); 8130 8131 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr); 8132 if (!TypoExprs.empty()) { 8133 // Recurse to handle newly created TypoExprs. If we're not able to 8134 // handle them, discard these TypoExprs. 8135 ExprResult RecurResult = 8136 RecursiveTransformLoop(FixedExpr, IsAmbiguous); 8137 if (RecurResult.isInvalid()) { 8138 Res = ExprError(); 8139 // Recursive corrections didn't work, wipe them away and don't add 8140 // them to the TypoExprs set. Remove them from Sema's TypoExpr list 8141 // since we don't want to clear them twice. Note: it's possible the 8142 // TypoExprs were created recursively and thus won't be in our 8143 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`. 8144 auto &SemaTypoExprs = SemaRef.TypoExprs; 8145 for (auto TE : TypoExprs) { 8146 TransformCache.erase(TE); 8147 SemaRef.clearDelayedTypo(TE); 8148 8149 auto SI = find(SemaTypoExprs, TE); 8150 if (SI != SemaTypoExprs.end()) { 8151 SemaTypoExprs.erase(SI); 8152 } 8153 } 8154 } else { 8155 // TypoExpr is valid: add newly created TypoExprs since we were 8156 // able to correct them. 8157 Res = RecurResult; 8158 SavedTypoExprs.set_union(TypoExprs); 8159 } 8160 } 8161 8162 TypoExprs = std::move(SavedTypoExprs); 8163 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs); 8164 8165 return Res; 8166 } 8167 8168 // Try to transform the given expression, looping through the correction 8169 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`. 8170 // 8171 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to 8172 // true and this method immediately will return an `ExprError`. 8173 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) { 8174 ExprResult Res; 8175 auto SavedTypoExprs = std::move(SemaRef.TypoExprs); 8176 SemaRef.TypoExprs.clear(); 8177 8178 while (true) { 8179 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8180 8181 // Recursion encountered an ambiguous correction. This means that our 8182 // correction itself is ambiguous, so stop now. 8183 if (IsAmbiguous) 8184 break; 8185 8186 // If the transform is still valid after checking for any new typos, 8187 // it's good to go. 8188 if (!Res.isInvalid()) 8189 break; 8190 8191 // The transform was invalid, see if we have any TypoExprs with untried 8192 // correction candidates. 8193 if (!CheckAndAdvanceTypoExprCorrectionStreams()) 8194 break; 8195 } 8196 8197 // If we found a valid result, double check to make sure it's not ambiguous. 8198 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) { 8199 auto SavedTransformCache = 8200 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache); 8201 8202 // Ensure none of the TypoExprs have multiple typo correction candidates 8203 // with the same edit length that pass all the checks and filters. 8204 while (!AmbiguousTypoExprs.empty()) { 8205 auto TE = AmbiguousTypoExprs.back(); 8206 8207 // TryTransform itself can create new Typos, adding them to the TypoExpr map 8208 // and invalidating our TypoExprState, so always fetch it instead of storing. 8209 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition(); 8210 8211 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection(); 8212 TypoCorrection Next; 8213 do { 8214 // Fetch the next correction by erasing the typo from the cache and calling 8215 // `TryTransform` which will iterate through corrections in 8216 // `TransformTypoExpr`. 8217 TransformCache.erase(TE); 8218 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8219 8220 if (!AmbigRes.isInvalid() || IsAmbiguous) { 8221 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream(); 8222 SavedTransformCache.erase(TE); 8223 Res = ExprError(); 8224 IsAmbiguous = true; 8225 break; 8226 } 8227 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) && 8228 Next.getEditDistance(false) == TC.getEditDistance(false)); 8229 8230 if (IsAmbiguous) 8231 break; 8232 8233 AmbiguousTypoExprs.remove(TE); 8234 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition(); 8235 } 8236 TransformCache = std::move(SavedTransformCache); 8237 } 8238 8239 // Wipe away any newly created TypoExprs that we don't know about. Since we 8240 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only 8241 // possible if a `TypoExpr` is created during a transformation but then 8242 // fails before we can discover it. 8243 auto &SemaTypoExprs = SemaRef.TypoExprs; 8244 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) { 8245 auto TE = *Iterator; 8246 auto FI = find(TypoExprs, TE); 8247 if (FI != TypoExprs.end()) { 8248 Iterator++; 8249 continue; 8250 } 8251 SemaRef.clearDelayedTypo(TE); 8252 Iterator = SemaTypoExprs.erase(Iterator); 8253 } 8254 SemaRef.TypoExprs = std::move(SavedTypoExprs); 8255 8256 return Res; 8257 } 8258 8259 public: 8260 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) 8261 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} 8262 8263 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 8264 MultiExprArg Args, 8265 SourceLocation RParenLoc, 8266 Expr *ExecConfig = nullptr) { 8267 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 8268 RParenLoc, ExecConfig); 8269 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 8270 if (Result.isUsable()) { 8271 Expr *ResultCall = Result.get(); 8272 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 8273 ResultCall = BE->getSubExpr(); 8274 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 8275 OverloadResolution[OE] = CE->getCallee(); 8276 } 8277 } 8278 return Result; 8279 } 8280 8281 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 8282 8283 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } 8284 8285 ExprResult Transform(Expr *E) { 8286 bool IsAmbiguous = false; 8287 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous); 8288 8289 if (!Res.isUsable()) 8290 FindTypoExprs(TypoExprs).TraverseStmt(E); 8291 8292 EmitAllDiagnostics(IsAmbiguous); 8293 8294 return Res; 8295 } 8296 8297 ExprResult TransformTypoExpr(TypoExpr *E) { 8298 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 8299 // cached transformation result if there is one and the TypoExpr isn't the 8300 // first one that was encountered. 8301 auto &CacheEntry = TransformCache[E]; 8302 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 8303 return CacheEntry; 8304 } 8305 8306 auto &State = SemaRef.getTypoExprState(E); 8307 assert(State.Consumer && "Cannot transform a cleared TypoExpr"); 8308 8309 // For the first TypoExpr and an uncached TypoExpr, find the next likely 8310 // typo correction and return it. 8311 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 8312 if (InitDecl && TC.getFoundDecl() == InitDecl) 8313 continue; 8314 // FIXME: If we would typo-correct to an invalid declaration, it's 8315 // probably best to just suppress all errors from this typo correction. 8316 ExprResult NE = State.RecoveryHandler ? 8317 State.RecoveryHandler(SemaRef, E, TC) : 8318 attemptRecovery(SemaRef, *State.Consumer, TC); 8319 if (!NE.isInvalid()) { 8320 // Check whether there may be a second viable correction with the same 8321 // edit distance; if so, remember this TypoExpr may have an ambiguous 8322 // correction so it can be more thoroughly vetted later. 8323 TypoCorrection Next; 8324 if ((Next = State.Consumer->peekNextCorrection()) && 8325 Next.getEditDistance(false) == TC.getEditDistance(false)) { 8326 AmbiguousTypoExprs.insert(E); 8327 } else { 8328 AmbiguousTypoExprs.remove(E); 8329 } 8330 assert(!NE.isUnset() && 8331 "Typo was transformed into a valid-but-null ExprResult"); 8332 return CacheEntry = NE; 8333 } 8334 } 8335 return CacheEntry = ExprError(); 8336 } 8337 }; 8338 } 8339 8340 ExprResult 8341 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, 8342 bool RecoverUncorrectedTypos, 8343 llvm::function_ref<ExprResult(Expr *)> Filter) { 8344 // If the current evaluation context indicates there are uncorrected typos 8345 // and the current expression isn't guaranteed to not have typos, try to 8346 // resolve any TypoExpr nodes that might be in the expression. 8347 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 8348 (E->isTypeDependent() || E->isValueDependent() || 8349 E->isInstantiationDependent())) { 8350 auto TyposResolved = DelayedTypos.size(); 8351 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); 8352 TyposResolved -= DelayedTypos.size(); 8353 if (Result.isInvalid() || Result.get() != E) { 8354 ExprEvalContexts.back().NumTypos -= TyposResolved; 8355 if (Result.isInvalid() && RecoverUncorrectedTypos) { 8356 struct TyposReplace : TreeTransform<TyposReplace> { 8357 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {} 8358 ExprResult TransformTypoExpr(clang::TypoExpr *E) { 8359 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(), 8360 E->getEndLoc(), {}); 8361 } 8362 } TT(*this); 8363 return TT.TransformExpr(E); 8364 } 8365 return Result; 8366 } 8367 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); 8368 } 8369 return E; 8370 } 8371 8372 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 8373 bool DiscardedValue, 8374 bool IsConstexpr) { 8375 ExprResult FullExpr = FE; 8376 8377 if (!FullExpr.get()) 8378 return ExprError(); 8379 8380 if (DiagnoseUnexpandedParameterPack(FullExpr.get())) 8381 return ExprError(); 8382 8383 if (DiscardedValue) { 8384 // Top-level expressions default to 'id' when we're in a debugger. 8385 if (getLangOpts().DebuggerCastResultToId && 8386 FullExpr.get()->getType() == Context.UnknownAnyTy) { 8387 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 8388 if (FullExpr.isInvalid()) 8389 return ExprError(); 8390 } 8391 8392 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 8393 if (FullExpr.isInvalid()) 8394 return ExprError(); 8395 8396 FullExpr = IgnoredValueConversions(FullExpr.get()); 8397 if (FullExpr.isInvalid()) 8398 return ExprError(); 8399 8400 DiagnoseUnusedExprResult(FullExpr.get()); 8401 } 8402 8403 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr, 8404 /*RecoverUncorrectedTypos=*/true); 8405 if (FullExpr.isInvalid()) 8406 return ExprError(); 8407 8408 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 8409 8410 // At the end of this full expression (which could be a deeply nested 8411 // lambda), if there is a potential capture within the nested lambda, 8412 // have the outer capture-able lambda try and capture it. 8413 // Consider the following code: 8414 // void f(int, int); 8415 // void f(const int&, double); 8416 // void foo() { 8417 // const int x = 10, y = 20; 8418 // auto L = [=](auto a) { 8419 // auto M = [=](auto b) { 8420 // f(x, b); <-- requires x to be captured by L and M 8421 // f(y, a); <-- requires y to be captured by L, but not all Ms 8422 // }; 8423 // }; 8424 // } 8425 8426 // FIXME: Also consider what happens for something like this that involves 8427 // the gnu-extension statement-expressions or even lambda-init-captures: 8428 // void f() { 8429 // const int n = 0; 8430 // auto L = [&](auto a) { 8431 // +n + ({ 0; a; }); 8432 // }; 8433 // } 8434 // 8435 // Here, we see +n, and then the full-expression 0; ends, so we don't 8436 // capture n (and instead remove it from our list of potential captures), 8437 // and then the full-expression +n + ({ 0; }); ends, but it's too late 8438 // for us to see that we need to capture n after all. 8439 8440 LambdaScopeInfo *const CurrentLSI = 8441 getCurLambda(/*IgnoreCapturedRegions=*/true); 8442 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 8443 // even if CurContext is not a lambda call operator. Refer to that Bug Report 8444 // for an example of the code that might cause this asynchrony. 8445 // By ensuring we are in the context of a lambda's call operator 8446 // we can fix the bug (we only need to check whether we need to capture 8447 // if we are within a lambda's body); but per the comments in that 8448 // PR, a proper fix would entail : 8449 // "Alternative suggestion: 8450 // - Add to Sema an integer holding the smallest (outermost) scope 8451 // index that we are *lexically* within, and save/restore/set to 8452 // FunctionScopes.size() in InstantiatingTemplate's 8453 // constructor/destructor. 8454 // - Teach the handful of places that iterate over FunctionScopes to 8455 // stop at the outermost enclosing lexical scope." 8456 DeclContext *DC = CurContext; 8457 while (DC && isa<CapturedDecl>(DC)) 8458 DC = DC->getParent(); 8459 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); 8460 if (IsInLambdaDeclContext && CurrentLSI && 8461 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 8462 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 8463 *this); 8464 return MaybeCreateExprWithCleanups(FullExpr); 8465 } 8466 8467 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 8468 if (!FullStmt) return StmtError(); 8469 8470 return MaybeCreateStmtWithCleanups(FullStmt); 8471 } 8472 8473 Sema::IfExistsResult 8474 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 8475 CXXScopeSpec &SS, 8476 const DeclarationNameInfo &TargetNameInfo) { 8477 DeclarationName TargetName = TargetNameInfo.getName(); 8478 if (!TargetName) 8479 return IER_DoesNotExist; 8480 8481 // If the name itself is dependent, then the result is dependent. 8482 if (TargetName.isDependentName()) 8483 return IER_Dependent; 8484 8485 // Do the redeclaration lookup in the current scope. 8486 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 8487 Sema::NotForRedeclaration); 8488 LookupParsedName(R, S, &SS); 8489 R.suppressDiagnostics(); 8490 8491 switch (R.getResultKind()) { 8492 case LookupResult::Found: 8493 case LookupResult::FoundOverloaded: 8494 case LookupResult::FoundUnresolvedValue: 8495 case LookupResult::Ambiguous: 8496 return IER_Exists; 8497 8498 case LookupResult::NotFound: 8499 return IER_DoesNotExist; 8500 8501 case LookupResult::NotFoundInCurrentInstantiation: 8502 return IER_Dependent; 8503 } 8504 8505 llvm_unreachable("Invalid LookupResult Kind!"); 8506 } 8507 8508 Sema::IfExistsResult 8509 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 8510 bool IsIfExists, CXXScopeSpec &SS, 8511 UnqualifiedId &Name) { 8512 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 8513 8514 // Check for an unexpanded parameter pack. 8515 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; 8516 if (DiagnoseUnexpandedParameterPack(SS, UPPC) || 8517 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC)) 8518 return IER_Error; 8519 8520 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 8521 } 8522 8523 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) { 8524 return BuildExprRequirement(E, /*IsSimple=*/true, 8525 /*NoexceptLoc=*/SourceLocation(), 8526 /*ReturnTypeRequirement=*/{}); 8527 } 8528 8529 concepts::Requirement * 8530 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS, 8531 SourceLocation NameLoc, IdentifierInfo *TypeName, 8532 TemplateIdAnnotation *TemplateId) { 8533 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) && 8534 "Exactly one of TypeName and TemplateId must be specified."); 8535 TypeSourceInfo *TSI = nullptr; 8536 if (TypeName) { 8537 QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc, 8538 SS.getWithLocInContext(Context), *TypeName, 8539 NameLoc, &TSI, /*DeducedTypeContext=*/false); 8540 if (T.isNull()) 8541 return nullptr; 8542 } else { 8543 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(), 8544 TemplateId->NumArgs); 8545 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS, 8546 TemplateId->TemplateKWLoc, 8547 TemplateId->Template, TemplateId->Name, 8548 TemplateId->TemplateNameLoc, 8549 TemplateId->LAngleLoc, ArgsPtr, 8550 TemplateId->RAngleLoc); 8551 if (T.isInvalid()) 8552 return nullptr; 8553 if (GetTypeFromParser(T.get(), &TSI).isNull()) 8554 return nullptr; 8555 } 8556 return BuildTypeRequirement(TSI); 8557 } 8558 8559 concepts::Requirement * 8560 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) { 8561 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, 8562 /*ReturnTypeRequirement=*/{}); 8563 } 8564 8565 concepts::Requirement * 8566 Sema::ActOnCompoundRequirement( 8567 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, 8568 TemplateIdAnnotation *TypeConstraint, unsigned Depth) { 8569 // C++2a [expr.prim.req.compound] p1.3.3 8570 // [..] the expression is deduced against an invented function template 8571 // F [...] F is a void function template with a single type template 8572 // parameter T declared with the constrained-parameter. Form a new 8573 // cv-qualifier-seq cv by taking the union of const and volatile specifiers 8574 // around the constrained-parameter. F has a single parameter whose 8575 // type-specifier is cv T followed by the abstract-declarator. [...] 8576 // 8577 // The cv part is done in the calling function - we get the concept with 8578 // arguments and the abstract declarator with the correct CV qualification and 8579 // have to synthesize T and the single parameter of F. 8580 auto &II = Context.Idents.get("expr-type"); 8581 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext, 8582 SourceLocation(), 8583 SourceLocation(), Depth, 8584 /*Index=*/0, &II, 8585 /*Typename=*/true, 8586 /*ParameterPack=*/false, 8587 /*HasTypeConstraint=*/true); 8588 8589 if (ActOnTypeConstraint(SS, TypeConstraint, TParam, 8590 /*EllpsisLoc=*/SourceLocation())) 8591 // Just produce a requirement with no type requirements. 8592 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {}); 8593 8594 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(), 8595 SourceLocation(), 8596 ArrayRef<NamedDecl *>(TParam), 8597 SourceLocation(), 8598 /*RequiresClause=*/nullptr); 8599 return BuildExprRequirement( 8600 E, /*IsSimple=*/false, NoexceptLoc, 8601 concepts::ExprRequirement::ReturnTypeRequirement(TPL)); 8602 } 8603 8604 concepts::ExprRequirement * 8605 Sema::BuildExprRequirement( 8606 Expr *E, bool IsSimple, SourceLocation NoexceptLoc, 8607 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8608 auto Status = concepts::ExprRequirement::SS_Satisfied; 8609 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr; 8610 if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent()) 8611 Status = concepts::ExprRequirement::SS_Dependent; 8612 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can) 8613 Status = concepts::ExprRequirement::SS_NoexceptNotMet; 8614 else if (ReturnTypeRequirement.isSubstitutionFailure()) 8615 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure; 8616 else if (ReturnTypeRequirement.isTypeConstraint()) { 8617 // C++2a [expr.prim.req]p1.3.3 8618 // The immediately-declared constraint ([temp]) of decltype((E)) shall 8619 // be satisfied. 8620 TemplateParameterList *TPL = 8621 ReturnTypeRequirement.getTypeConstraintTemplateParameterList(); 8622 QualType MatchedType = 8623 BuildDecltypeType(E, E->getBeginLoc()).getCanonicalType(); 8624 llvm::SmallVector<TemplateArgument, 1> Args; 8625 Args.push_back(TemplateArgument(MatchedType)); 8626 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args); 8627 MultiLevelTemplateArgumentList MLTAL(TAL); 8628 for (unsigned I = 0; I < TPL->getDepth(); ++I) 8629 MLTAL.addOuterRetainedLevel(); 8630 Expr *IDC = 8631 cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint() 8632 ->getImmediatelyDeclaredConstraint(); 8633 ExprResult Constraint = SubstExpr(IDC, MLTAL); 8634 assert(!Constraint.isInvalid() && 8635 "Substitution cannot fail as it is simply putting a type template " 8636 "argument into a concept specialization expression's parameter."); 8637 8638 SubstitutedConstraintExpr = 8639 cast<ConceptSpecializationExpr>(Constraint.get()); 8640 if (!SubstitutedConstraintExpr->isSatisfied()) 8641 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied; 8642 } 8643 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc, 8644 ReturnTypeRequirement, Status, 8645 SubstitutedConstraintExpr); 8646 } 8647 8648 concepts::ExprRequirement * 8649 Sema::BuildExprRequirement( 8650 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic, 8651 bool IsSimple, SourceLocation NoexceptLoc, 8652 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8653 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic, 8654 IsSimple, NoexceptLoc, 8655 ReturnTypeRequirement); 8656 } 8657 8658 concepts::TypeRequirement * 8659 Sema::BuildTypeRequirement(TypeSourceInfo *Type) { 8660 return new (Context) concepts::TypeRequirement(Type); 8661 } 8662 8663 concepts::TypeRequirement * 8664 Sema::BuildTypeRequirement( 8665 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8666 return new (Context) concepts::TypeRequirement(SubstDiag); 8667 } 8668 8669 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) { 8670 return BuildNestedRequirement(Constraint); 8671 } 8672 8673 concepts::NestedRequirement * 8674 Sema::BuildNestedRequirement(Expr *Constraint) { 8675 ConstraintSatisfaction Satisfaction; 8676 if (!Constraint->isInstantiationDependent() && 8677 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{}, 8678 Constraint->getSourceRange(), Satisfaction)) 8679 return nullptr; 8680 return new (Context) concepts::NestedRequirement(Context, Constraint, 8681 Satisfaction); 8682 } 8683 8684 concepts::NestedRequirement * 8685 Sema::BuildNestedRequirement( 8686 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8687 return new (Context) concepts::NestedRequirement(SubstDiag); 8688 } 8689 8690 RequiresExprBodyDecl * 8691 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, 8692 ArrayRef<ParmVarDecl *> LocalParameters, 8693 Scope *BodyScope) { 8694 assert(BodyScope); 8695 8696 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext, 8697 RequiresKWLoc); 8698 8699 PushDeclContext(BodyScope, Body); 8700 8701 for (ParmVarDecl *Param : LocalParameters) { 8702 if (Param->hasDefaultArg()) 8703 // C++2a [expr.prim.req] p4 8704 // [...] A local parameter of a requires-expression shall not have a 8705 // default argument. [...] 8706 Diag(Param->getDefaultArgRange().getBegin(), 8707 diag::err_requires_expr_local_parameter_default_argument); 8708 // Ignore default argument and move on 8709 8710 Param->setDeclContext(Body); 8711 // If this has an identifier, add it to the scope stack. 8712 if (Param->getIdentifier()) { 8713 CheckShadow(BodyScope, Param); 8714 PushOnScopeChains(Param, BodyScope); 8715 } 8716 } 8717 return Body; 8718 } 8719 8720 void Sema::ActOnFinishRequiresExpr() { 8721 assert(CurContext && "DeclContext imbalance!"); 8722 CurContext = CurContext->getLexicalParent(); 8723 assert(CurContext && "Popped translation unit!"); 8724 } 8725 8726 ExprResult 8727 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc, 8728 RequiresExprBodyDecl *Body, 8729 ArrayRef<ParmVarDecl *> LocalParameters, 8730 ArrayRef<concepts::Requirement *> Requirements, 8731 SourceLocation ClosingBraceLoc) { 8732 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters, 8733 Requirements, ClosingBraceLoc); 8734 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE)) 8735 return ExprError(); 8736 return RE; 8737 } 8738