1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Implements semantic analysis for C++ expressions. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/Template.h" 15 #include "clang/Sema/SemaInternal.h" 16 #include "TreeTransform.h" 17 #include "TypeLocBuilder.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/ASTLambda.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/ExprObjC.h" 25 #include "clang/AST/RecursiveASTVisitor.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/Basic/AlignedAllocation.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Sema/DeclSpec.h" 32 #include "clang/Sema/Initialization.h" 33 #include "clang/Sema/Lookup.h" 34 #include "clang/Sema/ParsedTemplate.h" 35 #include "clang/Sema/Scope.h" 36 #include "clang/Sema/ScopeInfo.h" 37 #include "clang/Sema/SemaLambda.h" 38 #include "clang/Sema/TemplateDeduction.h" 39 #include "llvm/ADT/APInt.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include "llvm/Support/ErrorHandling.h" 42 using namespace clang; 43 using namespace sema; 44 45 /// Handle the result of the special case name lookup for inheriting 46 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as 47 /// constructor names in member using declarations, even if 'X' is not the 48 /// name of the corresponding type. 49 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, 50 SourceLocation NameLoc, 51 IdentifierInfo &Name) { 52 NestedNameSpecifier *NNS = SS.getScopeRep(); 53 54 // Convert the nested-name-specifier into a type. 55 QualType Type; 56 switch (NNS->getKind()) { 57 case NestedNameSpecifier::TypeSpec: 58 case NestedNameSpecifier::TypeSpecWithTemplate: 59 Type = QualType(NNS->getAsType(), 0); 60 break; 61 62 case NestedNameSpecifier::Identifier: 63 // Strip off the last layer of the nested-name-specifier and build a 64 // typename type for it. 65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); 66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(), 67 NNS->getAsIdentifier()); 68 break; 69 70 case NestedNameSpecifier::Global: 71 case NestedNameSpecifier::Super: 72 case NestedNameSpecifier::Namespace: 73 case NestedNameSpecifier::NamespaceAlias: 74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); 75 } 76 77 // This reference to the type is located entirely at the location of the 78 // final identifier in the qualified-id. 79 return CreateParsedType(Type, 80 Context.getTrivialTypeSourceInfo(Type, NameLoc)); 81 } 82 83 ParsedType Sema::getConstructorName(IdentifierInfo &II, 84 SourceLocation NameLoc, 85 Scope *S, CXXScopeSpec &SS, 86 bool EnteringContext) { 87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS); 88 assert(CurClass && &II == CurClass->getIdentifier() && 89 "not a constructor name"); 90 91 // When naming a constructor as a member of a dependent context (eg, in a 92 // friend declaration or an inherited constructor declaration), form an 93 // unresolved "typename" type. 94 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) { 95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II); 96 return ParsedType::make(T); 97 } 98 99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass)) 100 return ParsedType(); 101 102 // Find the injected-class-name declaration. Note that we make no attempt to 103 // diagnose cases where the injected-class-name is shadowed: the only 104 // declaration that can validly shadow the injected-class-name is a 105 // non-static data member, and if the class contains both a non-static data 106 // member and a constructor then it is ill-formed (we check that in 107 // CheckCompletedCXXClass). 108 CXXRecordDecl *InjectedClassName = nullptr; 109 for (NamedDecl *ND : CurClass->lookup(&II)) { 110 auto *RD = dyn_cast<CXXRecordDecl>(ND); 111 if (RD && RD->isInjectedClassName()) { 112 InjectedClassName = RD; 113 break; 114 } 115 } 116 if (!InjectedClassName) { 117 if (!CurClass->isInvalidDecl()) { 118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts 119 // properly. Work around it here for now. 120 Diag(SS.getLastQualifierNameLoc(), 121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange(); 122 } 123 return ParsedType(); 124 } 125 126 QualType T = Context.getTypeDeclType(InjectedClassName); 127 DiagnoseUseOfDecl(InjectedClassName, NameLoc); 128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false); 129 130 return ParsedType::make(T); 131 } 132 133 ParsedType Sema::getDestructorName(SourceLocation TildeLoc, 134 IdentifierInfo &II, 135 SourceLocation NameLoc, 136 Scope *S, CXXScopeSpec &SS, 137 ParsedType ObjectTypePtr, 138 bool EnteringContext) { 139 // Determine where to perform name lookup. 140 141 // FIXME: This area of the standard is very messy, and the current 142 // wording is rather unclear about which scopes we search for the 143 // destructor name; see core issues 399 and 555. Issue 399 in 144 // particular shows where the current description of destructor name 145 // lookup is completely out of line with existing practice, e.g., 146 // this appears to be ill-formed: 147 // 148 // namespace N { 149 // template <typename T> struct S { 150 // ~S(); 151 // }; 152 // } 153 // 154 // void f(N::S<int>* s) { 155 // s->N::S<int>::~S(); 156 // } 157 // 158 // See also PR6358 and PR6359. 159 // 160 // For now, we accept all the cases in which the name given could plausibly 161 // be interpreted as a correct destructor name, issuing off-by-default 162 // extension diagnostics on the cases that don't strictly conform to the 163 // C++20 rules. This basically means we always consider looking in the 164 // nested-name-specifier prefix, the complete nested-name-specifier, and 165 // the scope, and accept if we find the expected type in any of the three 166 // places. 167 168 if (SS.isInvalid()) 169 return nullptr; 170 171 // Whether we've failed with a diagnostic already. 172 bool Failed = false; 173 174 llvm::SmallVector<NamedDecl*, 8> FoundDecls; 175 llvm::SmallSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet; 176 177 // If we have an object type, it's because we are in a 178 // pseudo-destructor-expression or a member access expression, and 179 // we know what type we're looking for. 180 QualType SearchType = 181 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType(); 182 183 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType { 184 auto IsAcceptableResult = [&](NamedDecl *D) -> bool { 185 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl()); 186 if (!Type) 187 return false; 188 189 if (SearchType.isNull() || SearchType->isDependentType()) 190 return true; 191 192 QualType T = Context.getTypeDeclType(Type); 193 return Context.hasSameUnqualifiedType(T, SearchType); 194 }; 195 196 unsigned NumAcceptableResults = 0; 197 for (NamedDecl *D : Found) { 198 if (IsAcceptableResult(D)) 199 ++NumAcceptableResults; 200 201 // Don't list a class twice in the lookup failure diagnostic if it's 202 // found by both its injected-class-name and by the name in the enclosing 203 // scope. 204 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 205 if (RD->isInjectedClassName()) 206 D = cast<NamedDecl>(RD->getParent()); 207 208 if (FoundDeclSet.insert(D).second) 209 FoundDecls.push_back(D); 210 } 211 212 // As an extension, attempt to "fix" an ambiguity by erasing all non-type 213 // results, and all non-matching results if we have a search type. It's not 214 // clear what the right behavior is if destructor lookup hits an ambiguity, 215 // but other compilers do generally accept at least some kinds of 216 // ambiguity. 217 if (Found.isAmbiguous() && NumAcceptableResults == 1) { 218 Diag(NameLoc, diag::ext_dtor_name_ambiguous); 219 LookupResult::Filter F = Found.makeFilter(); 220 while (F.hasNext()) { 221 NamedDecl *D = F.next(); 222 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 223 Diag(D->getLocation(), diag::note_destructor_type_here) 224 << Context.getTypeDeclType(TD); 225 else 226 Diag(D->getLocation(), diag::note_destructor_nontype_here); 227 228 if (!IsAcceptableResult(D)) 229 F.erase(); 230 } 231 F.done(); 232 } 233 234 if (Found.isAmbiguous()) 235 Failed = true; 236 237 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { 238 if (IsAcceptableResult(Type)) { 239 QualType T = Context.getTypeDeclType(Type); 240 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 241 return CreateParsedType(T, 242 Context.getTrivialTypeSourceInfo(T, NameLoc)); 243 } 244 } 245 246 return nullptr; 247 }; 248 249 bool IsDependent = false; 250 251 auto LookupInObjectType = [&]() -> ParsedType { 252 if (Failed || SearchType.isNull()) 253 return nullptr; 254 255 IsDependent |= SearchType->isDependentType(); 256 257 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 258 DeclContext *LookupCtx = computeDeclContext(SearchType); 259 if (!LookupCtx) 260 return nullptr; 261 LookupQualifiedName(Found, LookupCtx); 262 return CheckLookupResult(Found); 263 }; 264 265 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType { 266 if (Failed) 267 return nullptr; 268 269 IsDependent |= isDependentScopeSpecifier(LookupSS); 270 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext); 271 if (!LookupCtx) 272 return nullptr; 273 274 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 275 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) { 276 Failed = true; 277 return nullptr; 278 } 279 LookupQualifiedName(Found, LookupCtx); 280 return CheckLookupResult(Found); 281 }; 282 283 auto LookupInScope = [&]() -> ParsedType { 284 if (Failed || !S) 285 return nullptr; 286 287 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 288 LookupName(Found, S); 289 return CheckLookupResult(Found); 290 }; 291 292 // C++2a [basic.lookup.qual]p6: 293 // In a qualified-id of the form 294 // 295 // nested-name-specifier[opt] type-name :: ~ type-name 296 // 297 // the second type-name is looked up in the same scope as the first. 298 // 299 // We interpret this as meaning that if you do a dual-scope lookup for the 300 // first name, you also do a dual-scope lookup for the second name, per 301 // C++ [basic.lookup.classref]p4: 302 // 303 // If the id-expression in a class member access is a qualified-id of the 304 // form 305 // 306 // class-name-or-namespace-name :: ... 307 // 308 // the class-name-or-namespace-name following the . or -> is first looked 309 // up in the class of the object expression and the name, if found, is used. 310 // Otherwise, it is looked up in the context of the entire 311 // postfix-expression. 312 // 313 // This looks in the same scopes as for an unqualified destructor name: 314 // 315 // C++ [basic.lookup.classref]p3: 316 // If the unqualified-id is ~ type-name, the type-name is looked up 317 // in the context of the entire postfix-expression. If the type T 318 // of the object expression is of a class type C, the type-name is 319 // also looked up in the scope of class C. At least one of the 320 // lookups shall find a name that refers to cv T. 321 // 322 // FIXME: The intent is unclear here. Should type-name::~type-name look in 323 // the scope anyway if it finds a non-matching name declared in the class? 324 // If both lookups succeed and find a dependent result, which result should 325 // we retain? (Same question for p->~type-name().) 326 327 if (NestedNameSpecifier *Prefix = 328 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) { 329 // This is 330 // 331 // nested-name-specifier type-name :: ~ type-name 332 // 333 // Look for the second type-name in the nested-name-specifier. 334 CXXScopeSpec PrefixSS; 335 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); 336 if (ParsedType T = LookupInNestedNameSpec(PrefixSS)) 337 return T; 338 } else { 339 // This is one of 340 // 341 // type-name :: ~ type-name 342 // ~ type-name 343 // 344 // Look in the scope and (if any) the object type. 345 if (ParsedType T = LookupInScope()) 346 return T; 347 if (ParsedType T = LookupInObjectType()) 348 return T; 349 } 350 351 if (Failed) 352 return nullptr; 353 354 if (IsDependent) { 355 // We didn't find our type, but that's OK: it's dependent anyway. 356 357 // FIXME: What if we have no nested-name-specifier? 358 QualType T = CheckTypenameType(ETK_None, SourceLocation(), 359 SS.getWithLocInContext(Context), 360 II, NameLoc); 361 return ParsedType::make(T); 362 } 363 364 // The remaining cases are all non-standard extensions imitating the behavior 365 // of various other compilers. 366 unsigned NumNonExtensionDecls = FoundDecls.size(); 367 368 if (SS.isSet()) { 369 // For compatibility with older broken C++ rules and existing code, 370 // 371 // nested-name-specifier :: ~ type-name 372 // 373 // also looks for type-name within the nested-name-specifier. 374 if (ParsedType T = LookupInNestedNameSpec(SS)) { 375 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope) 376 << SS.getRange() 377 << FixItHint::CreateInsertion(SS.getEndLoc(), 378 ("::" + II.getName()).str()); 379 return T; 380 } 381 382 // For compatibility with other compilers and older versions of Clang, 383 // 384 // nested-name-specifier type-name :: ~ type-name 385 // 386 // also looks for type-name in the scope. Unfortunately, we can't 387 // reasonably apply this fallback for dependent nested-name-specifiers. 388 if (SS.getScopeRep()->getPrefix()) { 389 if (ParsedType T = LookupInScope()) { 390 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope) 391 << FixItHint::CreateRemoval(SS.getRange()); 392 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here) 393 << GetTypeFromParser(T); 394 return T; 395 } 396 } 397 } 398 399 // We didn't find anything matching; tell the user what we did find (if 400 // anything). 401 402 // Don't tell the user about declarations we shouldn't have found. 403 FoundDecls.resize(NumNonExtensionDecls); 404 405 // List types before non-types. 406 std::stable_sort(FoundDecls.begin(), FoundDecls.end(), 407 [](NamedDecl *A, NamedDecl *B) { 408 return isa<TypeDecl>(A->getUnderlyingDecl()) > 409 isa<TypeDecl>(B->getUnderlyingDecl()); 410 }); 411 412 // Suggest a fixit to properly name the destroyed type. 413 auto MakeFixItHint = [&]{ 414 const CXXRecordDecl *Destroyed = nullptr; 415 // FIXME: If we have a scope specifier, suggest its last component? 416 if (!SearchType.isNull()) 417 Destroyed = SearchType->getAsCXXRecordDecl(); 418 else if (S) 419 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity()); 420 if (Destroyed) 421 return FixItHint::CreateReplacement(SourceRange(NameLoc), 422 Destroyed->getNameAsString()); 423 return FixItHint(); 424 }; 425 426 if (FoundDecls.empty()) { 427 // FIXME: Attempt typo-correction? 428 Diag(NameLoc, diag::err_undeclared_destructor_name) 429 << &II << MakeFixItHint(); 430 } else if (!SearchType.isNull() && FoundDecls.size() == 1) { 431 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) { 432 assert(!SearchType.isNull() && 433 "should only reject a type result if we have a search type"); 434 QualType T = Context.getTypeDeclType(TD); 435 Diag(NameLoc, diag::err_destructor_expr_type_mismatch) 436 << T << SearchType << MakeFixItHint(); 437 } else { 438 Diag(NameLoc, diag::err_destructor_expr_nontype) 439 << &II << MakeFixItHint(); 440 } 441 } else { 442 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype 443 : diag::err_destructor_expr_mismatch) 444 << &II << SearchType << MakeFixItHint(); 445 } 446 447 for (NamedDecl *FoundD : FoundDecls) { 448 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl())) 449 Diag(FoundD->getLocation(), diag::note_destructor_type_here) 450 << Context.getTypeDeclType(TD); 451 else 452 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here) 453 << FoundD; 454 } 455 456 return nullptr; 457 } 458 459 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS, 460 ParsedType ObjectType) { 461 if (DS.getTypeSpecType() == DeclSpec::TST_error) 462 return nullptr; 463 464 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 465 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 466 return nullptr; 467 } 468 469 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype && 470 "unexpected type in getDestructorType"); 471 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 472 473 // If we know the type of the object, check that the correct destructor 474 // type was named now; we can give better diagnostics this way. 475 QualType SearchType = GetTypeFromParser(ObjectType); 476 if (!SearchType.isNull() && !SearchType->isDependentType() && 477 !Context.hasSameUnqualifiedType(T, SearchType)) { 478 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) 479 << T << SearchType; 480 return nullptr; 481 } 482 483 return ParsedType::make(T); 484 } 485 486 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, 487 const UnqualifiedId &Name) { 488 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId); 489 490 if (!SS.isValid()) 491 return false; 492 493 switch (SS.getScopeRep()->getKind()) { 494 case NestedNameSpecifier::Identifier: 495 case NestedNameSpecifier::TypeSpec: 496 case NestedNameSpecifier::TypeSpecWithTemplate: 497 // Per C++11 [over.literal]p2, literal operators can only be declared at 498 // namespace scope. Therefore, this unqualified-id cannot name anything. 499 // Reject it early, because we have no AST representation for this in the 500 // case where the scope is dependent. 501 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace) 502 << SS.getScopeRep(); 503 return true; 504 505 case NestedNameSpecifier::Global: 506 case NestedNameSpecifier::Super: 507 case NestedNameSpecifier::Namespace: 508 case NestedNameSpecifier::NamespaceAlias: 509 return false; 510 } 511 512 llvm_unreachable("unknown nested name specifier kind"); 513 } 514 515 /// Build a C++ typeid expression with a type operand. 516 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 517 SourceLocation TypeidLoc, 518 TypeSourceInfo *Operand, 519 SourceLocation RParenLoc) { 520 // C++ [expr.typeid]p4: 521 // The top-level cv-qualifiers of the lvalue expression or the type-id 522 // that is the operand of typeid are always ignored. 523 // If the type of the type-id is a class type or a reference to a class 524 // type, the class shall be completely-defined. 525 Qualifiers Quals; 526 QualType T 527 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), 528 Quals); 529 if (T->getAs<RecordType>() && 530 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 531 return ExprError(); 532 533 if (T->isVariablyModifiedType()) 534 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); 535 536 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc)) 537 return ExprError(); 538 539 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, 540 SourceRange(TypeidLoc, RParenLoc)); 541 } 542 543 /// Build a C++ typeid expression with an expression operand. 544 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 545 SourceLocation TypeidLoc, 546 Expr *E, 547 SourceLocation RParenLoc) { 548 bool WasEvaluated = false; 549 if (E && !E->isTypeDependent()) { 550 if (E->getType()->isPlaceholderType()) { 551 ExprResult result = CheckPlaceholderExpr(E); 552 if (result.isInvalid()) return ExprError(); 553 E = result.get(); 554 } 555 556 QualType T = E->getType(); 557 if (const RecordType *RecordT = T->getAs<RecordType>()) { 558 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); 559 // C++ [expr.typeid]p3: 560 // [...] If the type of the expression is a class type, the class 561 // shall be completely-defined. 562 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 563 return ExprError(); 564 565 // C++ [expr.typeid]p3: 566 // When typeid is applied to an expression other than an glvalue of a 567 // polymorphic class type [...] [the] expression is an unevaluated 568 // operand. [...] 569 if (RecordD->isPolymorphic() && E->isGLValue()) { 570 // The subexpression is potentially evaluated; switch the context 571 // and recheck the subexpression. 572 ExprResult Result = TransformToPotentiallyEvaluated(E); 573 if (Result.isInvalid()) return ExprError(); 574 E = Result.get(); 575 576 // We require a vtable to query the type at run time. 577 MarkVTableUsed(TypeidLoc, RecordD); 578 WasEvaluated = true; 579 } 580 } 581 582 ExprResult Result = CheckUnevaluatedOperand(E); 583 if (Result.isInvalid()) 584 return ExprError(); 585 E = Result.get(); 586 587 // C++ [expr.typeid]p4: 588 // [...] If the type of the type-id is a reference to a possibly 589 // cv-qualified type, the result of the typeid expression refers to a 590 // std::type_info object representing the cv-unqualified referenced 591 // type. 592 Qualifiers Quals; 593 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); 594 if (!Context.hasSameType(T, UnqualT)) { 595 T = UnqualT; 596 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); 597 } 598 } 599 600 if (E->getType()->isVariablyModifiedType()) 601 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) 602 << E->getType()); 603 else if (!inTemplateInstantiation() && 604 E->HasSideEffects(Context, WasEvaluated)) { 605 // The expression operand for typeid is in an unevaluated expression 606 // context, so side effects could result in unintended consequences. 607 Diag(E->getExprLoc(), WasEvaluated 608 ? diag::warn_side_effects_typeid 609 : diag::warn_side_effects_unevaluated_context); 610 } 611 612 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, 613 SourceRange(TypeidLoc, RParenLoc)); 614 } 615 616 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); 617 ExprResult 618 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, 619 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 620 // typeid is not supported in OpenCL. 621 if (getLangOpts().OpenCLCPlusPlus) { 622 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) 623 << "typeid"); 624 } 625 626 // Find the std::type_info type. 627 if (!getStdNamespace()) 628 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 629 630 if (!CXXTypeInfoDecl) { 631 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); 632 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); 633 LookupQualifiedName(R, getStdNamespace()); 634 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 635 // Microsoft's typeinfo doesn't have type_info in std but in the global 636 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. 637 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { 638 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 639 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 640 } 641 if (!CXXTypeInfoDecl) 642 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 643 } 644 645 if (!getLangOpts().RTTI) { 646 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); 647 } 648 649 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); 650 651 if (isType) { 652 // The operand is a type; handle it as such. 653 TypeSourceInfo *TInfo = nullptr; 654 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 655 &TInfo); 656 if (T.isNull()) 657 return ExprError(); 658 659 if (!TInfo) 660 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 661 662 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); 663 } 664 665 // The operand is an expression. 666 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 667 } 668 669 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to 670 /// a single GUID. 671 static void 672 getUuidAttrOfType(Sema &SemaRef, QualType QT, 673 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) { 674 // Optionally remove one level of pointer, reference or array indirection. 675 const Type *Ty = QT.getTypePtr(); 676 if (QT->isPointerType() || QT->isReferenceType()) 677 Ty = QT->getPointeeType().getTypePtr(); 678 else if (QT->isArrayType()) 679 Ty = Ty->getBaseElementTypeUnsafe(); 680 681 const auto *TD = Ty->getAsTagDecl(); 682 if (!TD) 683 return; 684 685 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) { 686 UuidAttrs.insert(Uuid); 687 return; 688 } 689 690 // __uuidof can grab UUIDs from template arguments. 691 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) { 692 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 693 for (const TemplateArgument &TA : TAL.asArray()) { 694 const UuidAttr *UuidForTA = nullptr; 695 if (TA.getKind() == TemplateArgument::Type) 696 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs); 697 else if (TA.getKind() == TemplateArgument::Declaration) 698 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs); 699 700 if (UuidForTA) 701 UuidAttrs.insert(UuidForTA); 702 } 703 } 704 } 705 706 /// Build a Microsoft __uuidof expression with a type operand. 707 ExprResult Sema::BuildCXXUuidof(QualType Type, 708 SourceLocation TypeidLoc, 709 TypeSourceInfo *Operand, 710 SourceLocation RParenLoc) { 711 MSGuidDecl *Guid = nullptr; 712 if (!Operand->getType()->isDependentType()) { 713 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 714 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs); 715 if (UuidAttrs.empty()) 716 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 717 if (UuidAttrs.size() > 1) 718 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 719 Guid = UuidAttrs.back()->getGuidDecl(); 720 } 721 722 return new (Context) 723 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc)); 724 } 725 726 /// Build a Microsoft __uuidof expression with an expression operand. 727 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc, 728 Expr *E, SourceLocation RParenLoc) { 729 MSGuidDecl *Guid = nullptr; 730 if (!E->getType()->isDependentType()) { 731 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 732 // A null pointer results in {00000000-0000-0000-0000-000000000000}. 733 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{}); 734 } else { 735 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 736 getUuidAttrOfType(*this, E->getType(), UuidAttrs); 737 if (UuidAttrs.empty()) 738 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 739 if (UuidAttrs.size() > 1) 740 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 741 Guid = UuidAttrs.back()->getGuidDecl(); 742 } 743 } 744 745 return new (Context) 746 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc)); 747 } 748 749 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); 750 ExprResult 751 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, 752 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 753 QualType GuidType = Context.getMSGuidType(); 754 GuidType.addConst(); 755 756 if (isType) { 757 // The operand is a type; handle it as such. 758 TypeSourceInfo *TInfo = nullptr; 759 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 760 &TInfo); 761 if (T.isNull()) 762 return ExprError(); 763 764 if (!TInfo) 765 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 766 767 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); 768 } 769 770 // The operand is an expression. 771 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 772 } 773 774 /// ActOnCXXBoolLiteral - Parse {true,false} literals. 775 ExprResult 776 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { 777 assert((Kind == tok::kw_true || Kind == tok::kw_false) && 778 "Unknown C++ Boolean value!"); 779 return new (Context) 780 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); 781 } 782 783 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. 784 ExprResult 785 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { 786 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 787 } 788 789 /// ActOnCXXThrow - Parse throw expressions. 790 ExprResult 791 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { 792 bool IsThrownVarInScope = false; 793 if (Ex) { 794 // C++0x [class.copymove]p31: 795 // When certain criteria are met, an implementation is allowed to omit the 796 // copy/move construction of a class object [...] 797 // 798 // - in a throw-expression, when the operand is the name of a 799 // non-volatile automatic object (other than a function or catch- 800 // clause parameter) whose scope does not extend beyond the end of the 801 // innermost enclosing try-block (if there is one), the copy/move 802 // operation from the operand to the exception object (15.1) can be 803 // omitted by constructing the automatic object directly into the 804 // exception object 805 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) 806 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 807 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { 808 for( ; S; S = S->getParent()) { 809 if (S->isDeclScope(Var)) { 810 IsThrownVarInScope = true; 811 break; 812 } 813 814 if (S->getFlags() & 815 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | 816 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope | 817 Scope::TryScope)) 818 break; 819 } 820 } 821 } 822 } 823 824 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); 825 } 826 827 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 828 bool IsThrownVarInScope) { 829 // Don't report an error if 'throw' is used in system headers. 830 if (!getLangOpts().CXXExceptions && 831 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) { 832 // Delay error emission for the OpenMP device code. 833 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw"; 834 } 835 836 // Exceptions aren't allowed in CUDA device code. 837 if (getLangOpts().CUDA) 838 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions) 839 << "throw" << CurrentCUDATarget(); 840 841 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 842 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; 843 844 if (Ex && !Ex->isTypeDependent()) { 845 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); 846 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) 847 return ExprError(); 848 849 // Initialize the exception result. This implicitly weeds out 850 // abstract types or types with inaccessible copy constructors. 851 852 // C++0x [class.copymove]p31: 853 // When certain criteria are met, an implementation is allowed to omit the 854 // copy/move construction of a class object [...] 855 // 856 // - in a throw-expression, when the operand is the name of a 857 // non-volatile automatic object (other than a function or 858 // catch-clause 859 // parameter) whose scope does not extend beyond the end of the 860 // innermost enclosing try-block (if there is one), the copy/move 861 // operation from the operand to the exception object (15.1) can be 862 // omitted by constructing the automatic object directly into the 863 // exception object 864 const VarDecl *NRVOVariable = nullptr; 865 if (IsThrownVarInScope) 866 NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict); 867 868 InitializedEntity Entity = InitializedEntity::InitializeException( 869 OpLoc, ExceptionObjectTy, 870 /*NRVO=*/NRVOVariable != nullptr); 871 ExprResult Res = PerformMoveOrCopyInitialization( 872 Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope); 873 if (Res.isInvalid()) 874 return ExprError(); 875 Ex = Res.get(); 876 } 877 878 return new (Context) 879 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); 880 } 881 882 static void 883 collectPublicBases(CXXRecordDecl *RD, 884 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, 885 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, 886 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, 887 bool ParentIsPublic) { 888 for (const CXXBaseSpecifier &BS : RD->bases()) { 889 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 890 bool NewSubobject; 891 // Virtual bases constitute the same subobject. Non-virtual bases are 892 // always distinct subobjects. 893 if (BS.isVirtual()) 894 NewSubobject = VBases.insert(BaseDecl).second; 895 else 896 NewSubobject = true; 897 898 if (NewSubobject) 899 ++SubobjectsSeen[BaseDecl]; 900 901 // Only add subobjects which have public access throughout the entire chain. 902 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; 903 if (PublicPath) 904 PublicSubobjectsSeen.insert(BaseDecl); 905 906 // Recurse on to each base subobject. 907 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, 908 PublicPath); 909 } 910 } 911 912 static void getUnambiguousPublicSubobjects( 913 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { 914 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; 915 llvm::SmallSet<CXXRecordDecl *, 2> VBases; 916 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; 917 SubobjectsSeen[RD] = 1; 918 PublicSubobjectsSeen.insert(RD); 919 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, 920 /*ParentIsPublic=*/true); 921 922 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { 923 // Skip ambiguous objects. 924 if (SubobjectsSeen[PublicSubobject] > 1) 925 continue; 926 927 Objects.push_back(PublicSubobject); 928 } 929 } 930 931 /// CheckCXXThrowOperand - Validate the operand of a throw. 932 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, 933 QualType ExceptionObjectTy, Expr *E) { 934 // If the type of the exception would be an incomplete type or a pointer 935 // to an incomplete type other than (cv) void the program is ill-formed. 936 QualType Ty = ExceptionObjectTy; 937 bool isPointer = false; 938 if (const PointerType* Ptr = Ty->getAs<PointerType>()) { 939 Ty = Ptr->getPointeeType(); 940 isPointer = true; 941 } 942 if (!isPointer || !Ty->isVoidType()) { 943 if (RequireCompleteType(ThrowLoc, Ty, 944 isPointer ? diag::err_throw_incomplete_ptr 945 : diag::err_throw_incomplete, 946 E->getSourceRange())) 947 return true; 948 949 if (!isPointer && Ty->isSizelessType()) { 950 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange(); 951 return true; 952 } 953 954 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, 955 diag::err_throw_abstract_type, E)) 956 return true; 957 } 958 959 // If the exception has class type, we need additional handling. 960 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 961 if (!RD) 962 return false; 963 964 // If we are throwing a polymorphic class type or pointer thereof, 965 // exception handling will make use of the vtable. 966 MarkVTableUsed(ThrowLoc, RD); 967 968 // If a pointer is thrown, the referenced object will not be destroyed. 969 if (isPointer) 970 return false; 971 972 // If the class has a destructor, we must be able to call it. 973 if (!RD->hasIrrelevantDestructor()) { 974 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 975 MarkFunctionReferenced(E->getExprLoc(), Destructor); 976 CheckDestructorAccess(E->getExprLoc(), Destructor, 977 PDiag(diag::err_access_dtor_exception) << Ty); 978 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 979 return true; 980 } 981 } 982 983 // The MSVC ABI creates a list of all types which can catch the exception 984 // object. This list also references the appropriate copy constructor to call 985 // if the object is caught by value and has a non-trivial copy constructor. 986 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 987 // We are only interested in the public, unambiguous bases contained within 988 // the exception object. Bases which are ambiguous or otherwise 989 // inaccessible are not catchable types. 990 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; 991 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); 992 993 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { 994 // Attempt to lookup the copy constructor. Various pieces of machinery 995 // will spring into action, like template instantiation, which means this 996 // cannot be a simple walk of the class's decls. Instead, we must perform 997 // lookup and overload resolution. 998 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); 999 if (!CD || CD->isDeleted()) 1000 continue; 1001 1002 // Mark the constructor referenced as it is used by this throw expression. 1003 MarkFunctionReferenced(E->getExprLoc(), CD); 1004 1005 // Skip this copy constructor if it is trivial, we don't need to record it 1006 // in the catchable type data. 1007 if (CD->isTrivial()) 1008 continue; 1009 1010 // The copy constructor is non-trivial, create a mapping from this class 1011 // type to this constructor. 1012 // N.B. The selection of copy constructor is not sensitive to this 1013 // particular throw-site. Lookup will be performed at the catch-site to 1014 // ensure that the copy constructor is, in fact, accessible (via 1015 // friendship or any other means). 1016 Context.addCopyConstructorForExceptionObject(Subobject, CD); 1017 1018 // We don't keep the instantiated default argument expressions around so 1019 // we must rebuild them here. 1020 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { 1021 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I))) 1022 return true; 1023 } 1024 } 1025 } 1026 1027 // Under the Itanium C++ ABI, memory for the exception object is allocated by 1028 // the runtime with no ability for the compiler to request additional 1029 // alignment. Warn if the exception type requires alignment beyond the minimum 1030 // guaranteed by the target C++ runtime. 1031 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) { 1032 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty); 1033 CharUnits ExnObjAlign = Context.getExnObjectAlignment(); 1034 if (ExnObjAlign < TypeAlign) { 1035 Diag(ThrowLoc, diag::warn_throw_underaligned_obj); 1036 Diag(ThrowLoc, diag::note_throw_underaligned_obj) 1037 << Ty << (unsigned)TypeAlign.getQuantity() 1038 << (unsigned)ExnObjAlign.getQuantity(); 1039 } 1040 } 1041 1042 return false; 1043 } 1044 1045 static QualType adjustCVQualifiersForCXXThisWithinLambda( 1046 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy, 1047 DeclContext *CurSemaContext, ASTContext &ASTCtx) { 1048 1049 QualType ClassType = ThisTy->getPointeeType(); 1050 LambdaScopeInfo *CurLSI = nullptr; 1051 DeclContext *CurDC = CurSemaContext; 1052 1053 // Iterate through the stack of lambdas starting from the innermost lambda to 1054 // the outermost lambda, checking if '*this' is ever captured by copy - since 1055 // that could change the cv-qualifiers of the '*this' object. 1056 // The object referred to by '*this' starts out with the cv-qualifiers of its 1057 // member function. We then start with the innermost lambda and iterate 1058 // outward checking to see if any lambda performs a by-copy capture of '*this' 1059 // - and if so, any nested lambda must respect the 'constness' of that 1060 // capturing lamdbda's call operator. 1061 // 1062 1063 // Since the FunctionScopeInfo stack is representative of the lexical 1064 // nesting of the lambda expressions during initial parsing (and is the best 1065 // place for querying information about captures about lambdas that are 1066 // partially processed) and perhaps during instantiation of function templates 1067 // that contain lambda expressions that need to be transformed BUT not 1068 // necessarily during instantiation of a nested generic lambda's function call 1069 // operator (which might even be instantiated at the end of the TU) - at which 1070 // time the DeclContext tree is mature enough to query capture information 1071 // reliably - we use a two pronged approach to walk through all the lexically 1072 // enclosing lambda expressions: 1073 // 1074 // 1) Climb down the FunctionScopeInfo stack as long as each item represents 1075 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically 1076 // enclosed by the call-operator of the LSI below it on the stack (while 1077 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on 1078 // the stack represents the innermost lambda. 1079 // 1080 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext 1081 // represents a lambda's call operator. If it does, we must be instantiating 1082 // a generic lambda's call operator (represented by the Current LSI, and 1083 // should be the only scenario where an inconsistency between the LSI and the 1084 // DeclContext should occur), so climb out the DeclContexts if they 1085 // represent lambdas, while querying the corresponding closure types 1086 // regarding capture information. 1087 1088 // 1) Climb down the function scope info stack. 1089 for (int I = FunctionScopes.size(); 1090 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) && 1091 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() == 1092 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator); 1093 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) { 1094 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]); 1095 1096 if (!CurLSI->isCXXThisCaptured()) 1097 continue; 1098 1099 auto C = CurLSI->getCXXThisCapture(); 1100 1101 if (C.isCopyCapture()) { 1102 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1103 if (CurLSI->CallOperator->isConst()) 1104 ClassType.addConst(); 1105 return ASTCtx.getPointerType(ClassType); 1106 } 1107 } 1108 1109 // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can 1110 // happen during instantiation of its nested generic lambda call operator) 1111 if (isLambdaCallOperator(CurDC)) { 1112 assert(CurLSI && "While computing 'this' capture-type for a generic " 1113 "lambda, we must have a corresponding LambdaScopeInfo"); 1114 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && 1115 "While computing 'this' capture-type for a generic lambda, when we " 1116 "run out of enclosing LSI's, yet the enclosing DC is a " 1117 "lambda-call-operator we must be (i.e. Current LSI) in a generic " 1118 "lambda call oeprator"); 1119 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)); 1120 1121 auto IsThisCaptured = 1122 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) { 1123 IsConst = false; 1124 IsByCopy = false; 1125 for (auto &&C : Closure->captures()) { 1126 if (C.capturesThis()) { 1127 if (C.getCaptureKind() == LCK_StarThis) 1128 IsByCopy = true; 1129 if (Closure->getLambdaCallOperator()->isConst()) 1130 IsConst = true; 1131 return true; 1132 } 1133 } 1134 return false; 1135 }; 1136 1137 bool IsByCopyCapture = false; 1138 bool IsConstCapture = false; 1139 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent()); 1140 while (Closure && 1141 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) { 1142 if (IsByCopyCapture) { 1143 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1144 if (IsConstCapture) 1145 ClassType.addConst(); 1146 return ASTCtx.getPointerType(ClassType); 1147 } 1148 Closure = isLambdaCallOperator(Closure->getParent()) 1149 ? cast<CXXRecordDecl>(Closure->getParent()->getParent()) 1150 : nullptr; 1151 } 1152 } 1153 return ASTCtx.getPointerType(ClassType); 1154 } 1155 1156 QualType Sema::getCurrentThisType() { 1157 DeclContext *DC = getFunctionLevelDeclContext(); 1158 QualType ThisTy = CXXThisTypeOverride; 1159 1160 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { 1161 if (method && method->isInstance()) 1162 ThisTy = method->getThisType(); 1163 } 1164 1165 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) && 1166 inTemplateInstantiation()) { 1167 1168 assert(isa<CXXRecordDecl>(DC) && 1169 "Trying to get 'this' type from static method?"); 1170 1171 // This is a lambda call operator that is being instantiated as a default 1172 // initializer. DC must point to the enclosing class type, so we can recover 1173 // the 'this' type from it. 1174 1175 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC)); 1176 // There are no cv-qualifiers for 'this' within default initializers, 1177 // per [expr.prim.general]p4. 1178 ThisTy = Context.getPointerType(ClassTy); 1179 } 1180 1181 // If we are within a lambda's call operator, the cv-qualifiers of 'this' 1182 // might need to be adjusted if the lambda or any of its enclosing lambda's 1183 // captures '*this' by copy. 1184 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext)) 1185 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy, 1186 CurContext, Context); 1187 return ThisTy; 1188 } 1189 1190 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 1191 Decl *ContextDecl, 1192 Qualifiers CXXThisTypeQuals, 1193 bool Enabled) 1194 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) 1195 { 1196 if (!Enabled || !ContextDecl) 1197 return; 1198 1199 CXXRecordDecl *Record = nullptr; 1200 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) 1201 Record = Template->getTemplatedDecl(); 1202 else 1203 Record = cast<CXXRecordDecl>(ContextDecl); 1204 1205 QualType T = S.Context.getRecordType(Record); 1206 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals); 1207 1208 S.CXXThisTypeOverride = S.Context.getPointerType(T); 1209 1210 this->Enabled = true; 1211 } 1212 1213 1214 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { 1215 if (Enabled) { 1216 S.CXXThisTypeOverride = OldCXXThisTypeOverride; 1217 } 1218 } 1219 1220 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit, 1221 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt, 1222 const bool ByCopy) { 1223 // We don't need to capture this in an unevaluated context. 1224 if (isUnevaluatedContext() && !Explicit) 1225 return true; 1226 1227 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value"); 1228 1229 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt 1230 ? *FunctionScopeIndexToStopAt 1231 : FunctionScopes.size() - 1; 1232 1233 // Check that we can capture the *enclosing object* (referred to by '*this') 1234 // by the capturing-entity/closure (lambda/block/etc) at 1235 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1236 1237 // Note: The *enclosing object* can only be captured by-value by a 1238 // closure that is a lambda, using the explicit notation: 1239 // [*this] { ... }. 1240 // Every other capture of the *enclosing object* results in its by-reference 1241 // capture. 1242 1243 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1244 // stack), we can capture the *enclosing object* only if: 1245 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1246 // - or, 'L' has an implicit capture. 1247 // AND 1248 // -- there is no enclosing closure 1249 // -- or, there is some enclosing closure 'E' that has already captured the 1250 // *enclosing object*, and every intervening closure (if any) between 'E' 1251 // and 'L' can implicitly capture the *enclosing object*. 1252 // -- or, every enclosing closure can implicitly capture the 1253 // *enclosing object* 1254 1255 1256 unsigned NumCapturingClosures = 0; 1257 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) { 1258 if (CapturingScopeInfo *CSI = 1259 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { 1260 if (CSI->CXXThisCaptureIndex != 0) { 1261 // 'this' is already being captured; there isn't anything more to do. 1262 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1263 break; 1264 } 1265 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); 1266 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1267 // This context can't implicitly capture 'this'; fail out. 1268 if (BuildAndDiagnose) 1269 Diag(Loc, diag::err_this_capture) 1270 << (Explicit && idx == MaxFunctionScopesIndex); 1271 return true; 1272 } 1273 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || 1274 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || 1275 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || 1276 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || 1277 (Explicit && idx == MaxFunctionScopesIndex)) { 1278 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1279 // iteration through can be an explicit capture, all enclosing closures, 1280 // if any, must perform implicit captures. 1281 1282 // This closure can capture 'this'; continue looking upwards. 1283 NumCapturingClosures++; 1284 continue; 1285 } 1286 // This context can't implicitly capture 'this'; fail out. 1287 if (BuildAndDiagnose) 1288 Diag(Loc, diag::err_this_capture) 1289 << (Explicit && idx == MaxFunctionScopesIndex); 1290 return true; 1291 } 1292 break; 1293 } 1294 if (!BuildAndDiagnose) return false; 1295 1296 // If we got here, then the closure at MaxFunctionScopesIndex on the 1297 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1298 // (including implicit by-reference captures in any enclosing closures). 1299 1300 // In the loop below, respect the ByCopy flag only for the closure requesting 1301 // the capture (i.e. first iteration through the loop below). Ignore it for 1302 // all enclosing closure's up to NumCapturingClosures (since they must be 1303 // implicitly capturing the *enclosing object* by reference (see loop 1304 // above)). 1305 assert((!ByCopy || 1306 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && 1307 "Only a lambda can capture the enclosing object (referred to by " 1308 "*this) by copy"); 1309 QualType ThisTy = getCurrentThisType(); 1310 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1311 --idx, --NumCapturingClosures) { 1312 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1313 1314 // The type of the corresponding data member (not a 'this' pointer if 'by 1315 // copy'). 1316 QualType CaptureType = ThisTy; 1317 if (ByCopy) { 1318 // If we are capturing the object referred to by '*this' by copy, ignore 1319 // any cv qualifiers inherited from the type of the member function for 1320 // the type of the closure-type's corresponding data member and any use 1321 // of 'this'. 1322 CaptureType = ThisTy->getPointeeType(); 1323 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1324 } 1325 1326 bool isNested = NumCapturingClosures > 1; 1327 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1328 } 1329 return false; 1330 } 1331 1332 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1333 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1334 /// is a non-lvalue expression whose value is the address of the object for 1335 /// which the function is called. 1336 1337 QualType ThisTy = getCurrentThisType(); 1338 if (ThisTy.isNull()) 1339 return Diag(Loc, diag::err_invalid_this_use); 1340 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false); 1341 } 1342 1343 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1344 bool IsImplicit) { 1345 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); 1346 MarkThisReferenced(This); 1347 return This; 1348 } 1349 1350 void Sema::MarkThisReferenced(CXXThisExpr *This) { 1351 CheckCXXThisCapture(This->getExprLoc()); 1352 } 1353 1354 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1355 // If we're outside the body of a member function, then we'll have a specified 1356 // type for 'this'. 1357 if (CXXThisTypeOverride.isNull()) 1358 return false; 1359 1360 // Determine whether we're looking into a class that's currently being 1361 // defined. 1362 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1363 return Class && Class->isBeingDefined(); 1364 } 1365 1366 /// Parse construction of a specified type. 1367 /// Can be interpreted either as function-style casting ("int(x)") 1368 /// or class type construction ("ClassType(x,y,z)") 1369 /// or creation of a value-initialized type ("int()"). 1370 ExprResult 1371 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1372 SourceLocation LParenOrBraceLoc, 1373 MultiExprArg exprs, 1374 SourceLocation RParenOrBraceLoc, 1375 bool ListInitialization) { 1376 if (!TypeRep) 1377 return ExprError(); 1378 1379 TypeSourceInfo *TInfo; 1380 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1381 if (!TInfo) 1382 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1383 1384 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1385 RParenOrBraceLoc, ListInitialization); 1386 // Avoid creating a non-type-dependent expression that contains typos. 1387 // Non-type-dependent expressions are liable to be discarded without 1388 // checking for embedded typos. 1389 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1390 !Result.get()->isTypeDependent()) 1391 Result = CorrectDelayedTyposInExpr(Result.get()); 1392 return Result; 1393 } 1394 1395 ExprResult 1396 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1397 SourceLocation LParenOrBraceLoc, 1398 MultiExprArg Exprs, 1399 SourceLocation RParenOrBraceLoc, 1400 bool ListInitialization) { 1401 QualType Ty = TInfo->getType(); 1402 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1403 1404 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1405 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization 1406 // directly. We work around this by dropping the locations of the braces. 1407 SourceRange Locs = ListInitialization 1408 ? SourceRange() 1409 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1410 return CXXUnresolvedConstructExpr::Create(Context, TInfo, Locs.getBegin(), 1411 Exprs, Locs.getEnd()); 1412 } 1413 1414 assert((!ListInitialization || 1415 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && 1416 "List initialization must have initializer list as expression."); 1417 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1418 1419 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); 1420 InitializationKind Kind = 1421 Exprs.size() 1422 ? ListInitialization 1423 ? InitializationKind::CreateDirectList( 1424 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1425 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1426 RParenOrBraceLoc) 1427 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1428 RParenOrBraceLoc); 1429 1430 // C++1z [expr.type.conv]p1: 1431 // If the type is a placeholder for a deduced class type, [...perform class 1432 // template argument deduction...] 1433 DeducedType *Deduced = Ty->getContainedDeducedType(); 1434 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1435 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1436 Kind, Exprs); 1437 if (Ty.isNull()) 1438 return ExprError(); 1439 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1440 } 1441 1442 // C++ [expr.type.conv]p1: 1443 // If the expression list is a parenthesized single expression, the type 1444 // conversion expression is equivalent (in definedness, and if defined in 1445 // meaning) to the corresponding cast expression. 1446 if (Exprs.size() == 1 && !ListInitialization && 1447 !isa<InitListExpr>(Exprs[0])) { 1448 Expr *Arg = Exprs[0]; 1449 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1450 RParenOrBraceLoc); 1451 } 1452 1453 // For an expression of the form T(), T shall not be an array type. 1454 QualType ElemTy = Ty; 1455 if (Ty->isArrayType()) { 1456 if (!ListInitialization) 1457 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1458 << FullRange); 1459 ElemTy = Context.getBaseElementType(Ty); 1460 } 1461 1462 // There doesn't seem to be an explicit rule against this but sanity demands 1463 // we only construct objects with object types. 1464 if (Ty->isFunctionType()) 1465 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1466 << Ty << FullRange); 1467 1468 // C++17 [expr.type.conv]p2: 1469 // If the type is cv void and the initializer is (), the expression is a 1470 // prvalue of the specified type that performs no initialization. 1471 if (!Ty->isVoidType() && 1472 RequireCompleteType(TyBeginLoc, ElemTy, 1473 diag::err_invalid_incomplete_type_use, FullRange)) 1474 return ExprError(); 1475 1476 // Otherwise, the expression is a prvalue of the specified type whose 1477 // result object is direct-initialized (11.6) with the initializer. 1478 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1479 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1480 1481 if (Result.isInvalid()) 1482 return Result; 1483 1484 Expr *Inner = Result.get(); 1485 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1486 Inner = BTE->getSubExpr(); 1487 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1488 !isa<CXXScalarValueInitExpr>(Inner)) { 1489 // If we created a CXXTemporaryObjectExpr, that node also represents the 1490 // functional cast. Otherwise, create an explicit cast to represent 1491 // the syntactic form of a functional-style cast that was used here. 1492 // 1493 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1494 // would give a more consistent AST representation than using a 1495 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1496 // is sometimes handled by initialization and sometimes not. 1497 QualType ResultType = Result.get()->getType(); 1498 SourceRange Locs = ListInitialization 1499 ? SourceRange() 1500 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1501 Result = CXXFunctionalCastExpr::Create( 1502 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1503 Result.get(), /*Path=*/nullptr, Locs.getBegin(), Locs.getEnd()); 1504 } 1505 1506 return Result; 1507 } 1508 1509 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1510 // [CUDA] Ignore this function, if we can't call it. 1511 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext); 1512 if (getLangOpts().CUDA && 1513 IdentifyCUDAPreference(Caller, Method) <= CFP_WrongSide) 1514 return false; 1515 1516 SmallVector<const FunctionDecl*, 4> PreventedBy; 1517 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1518 1519 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1520 return Result; 1521 1522 // In case of CUDA, return true if none of the 1-argument deallocator 1523 // functions are actually callable. 1524 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1525 assert(FD->getNumParams() == 1 && 1526 "Only single-operand functions should be in PreventedBy"); 1527 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1528 }); 1529 } 1530 1531 /// Determine whether the given function is a non-placement 1532 /// deallocation function. 1533 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1534 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1535 return S.isUsualDeallocationFunction(Method); 1536 1537 if (FD->getOverloadedOperator() != OO_Delete && 1538 FD->getOverloadedOperator() != OO_Array_Delete) 1539 return false; 1540 1541 unsigned UsualParams = 1; 1542 1543 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1544 S.Context.hasSameUnqualifiedType( 1545 FD->getParamDecl(UsualParams)->getType(), 1546 S.Context.getSizeType())) 1547 ++UsualParams; 1548 1549 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1550 S.Context.hasSameUnqualifiedType( 1551 FD->getParamDecl(UsualParams)->getType(), 1552 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1553 ++UsualParams; 1554 1555 return UsualParams == FD->getNumParams(); 1556 } 1557 1558 namespace { 1559 struct UsualDeallocFnInfo { 1560 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1561 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1562 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1563 Destroying(false), HasSizeT(false), HasAlignValT(false), 1564 CUDAPref(Sema::CFP_Native) { 1565 // A function template declaration is never a usual deallocation function. 1566 if (!FD) 1567 return; 1568 unsigned NumBaseParams = 1; 1569 if (FD->isDestroyingOperatorDelete()) { 1570 Destroying = true; 1571 ++NumBaseParams; 1572 } 1573 1574 if (NumBaseParams < FD->getNumParams() && 1575 S.Context.hasSameUnqualifiedType( 1576 FD->getParamDecl(NumBaseParams)->getType(), 1577 S.Context.getSizeType())) { 1578 ++NumBaseParams; 1579 HasSizeT = true; 1580 } 1581 1582 if (NumBaseParams < FD->getNumParams() && 1583 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1584 ++NumBaseParams; 1585 HasAlignValT = true; 1586 } 1587 1588 // In CUDA, determine how much we'd like / dislike to call this. 1589 if (S.getLangOpts().CUDA) 1590 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 1591 CUDAPref = S.IdentifyCUDAPreference(Caller, FD); 1592 } 1593 1594 explicit operator bool() const { return FD; } 1595 1596 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1597 bool WantAlign) const { 1598 // C++ P0722: 1599 // A destroying operator delete is preferred over a non-destroying 1600 // operator delete. 1601 if (Destroying != Other.Destroying) 1602 return Destroying; 1603 1604 // C++17 [expr.delete]p10: 1605 // If the type has new-extended alignment, a function with a parameter 1606 // of type std::align_val_t is preferred; otherwise a function without 1607 // such a parameter is preferred 1608 if (HasAlignValT != Other.HasAlignValT) 1609 return HasAlignValT == WantAlign; 1610 1611 if (HasSizeT != Other.HasSizeT) 1612 return HasSizeT == WantSize; 1613 1614 // Use CUDA call preference as a tiebreaker. 1615 return CUDAPref > Other.CUDAPref; 1616 } 1617 1618 DeclAccessPair Found; 1619 FunctionDecl *FD; 1620 bool Destroying, HasSizeT, HasAlignValT; 1621 Sema::CUDAFunctionPreference CUDAPref; 1622 }; 1623 } 1624 1625 /// Determine whether a type has new-extended alignment. This may be called when 1626 /// the type is incomplete (for a delete-expression with an incomplete pointee 1627 /// type), in which case it will conservatively return false if the alignment is 1628 /// not known. 1629 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1630 return S.getLangOpts().AlignedAllocation && 1631 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1632 S.getASTContext().getTargetInfo().getNewAlign(); 1633 } 1634 1635 /// Select the correct "usual" deallocation function to use from a selection of 1636 /// deallocation functions (either global or class-scope). 1637 static UsualDeallocFnInfo resolveDeallocationOverload( 1638 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1639 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1640 UsualDeallocFnInfo Best; 1641 1642 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1643 UsualDeallocFnInfo Info(S, I.getPair()); 1644 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1645 Info.CUDAPref == Sema::CFP_Never) 1646 continue; 1647 1648 if (!Best) { 1649 Best = Info; 1650 if (BestFns) 1651 BestFns->push_back(Info); 1652 continue; 1653 } 1654 1655 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1656 continue; 1657 1658 // If more than one preferred function is found, all non-preferred 1659 // functions are eliminated from further consideration. 1660 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1661 BestFns->clear(); 1662 1663 Best = Info; 1664 if (BestFns) 1665 BestFns->push_back(Info); 1666 } 1667 1668 return Best; 1669 } 1670 1671 /// Determine whether a given type is a class for which 'delete[]' would call 1672 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1673 /// we need to store the array size (even if the type is 1674 /// trivially-destructible). 1675 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1676 QualType allocType) { 1677 const RecordType *record = 1678 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1679 if (!record) return false; 1680 1681 // Try to find an operator delete[] in class scope. 1682 1683 DeclarationName deleteName = 1684 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1685 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1686 S.LookupQualifiedName(ops, record->getDecl()); 1687 1688 // We're just doing this for information. 1689 ops.suppressDiagnostics(); 1690 1691 // Very likely: there's no operator delete[]. 1692 if (ops.empty()) return false; 1693 1694 // If it's ambiguous, it should be illegal to call operator delete[] 1695 // on this thing, so it doesn't matter if we allocate extra space or not. 1696 if (ops.isAmbiguous()) return false; 1697 1698 // C++17 [expr.delete]p10: 1699 // If the deallocation functions have class scope, the one without a 1700 // parameter of type std::size_t is selected. 1701 auto Best = resolveDeallocationOverload( 1702 S, ops, /*WantSize*/false, 1703 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1704 return Best && Best.HasSizeT; 1705 } 1706 1707 /// Parsed a C++ 'new' expression (C++ 5.3.4). 1708 /// 1709 /// E.g.: 1710 /// @code new (memory) int[size][4] @endcode 1711 /// or 1712 /// @code ::new Foo(23, "hello") @endcode 1713 /// 1714 /// \param StartLoc The first location of the expression. 1715 /// \param UseGlobal True if 'new' was prefixed with '::'. 1716 /// \param PlacementLParen Opening paren of the placement arguments. 1717 /// \param PlacementArgs Placement new arguments. 1718 /// \param PlacementRParen Closing paren of the placement arguments. 1719 /// \param TypeIdParens If the type is in parens, the source range. 1720 /// \param D The type to be allocated, as well as array dimensions. 1721 /// \param Initializer The initializing expression or initializer-list, or null 1722 /// if there is none. 1723 ExprResult 1724 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1725 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1726 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1727 Declarator &D, Expr *Initializer) { 1728 Optional<Expr *> ArraySize; 1729 // If the specified type is an array, unwrap it and save the expression. 1730 if (D.getNumTypeObjects() > 0 && 1731 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1732 DeclaratorChunk &Chunk = D.getTypeObject(0); 1733 if (D.getDeclSpec().hasAutoTypeSpec()) 1734 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1735 << D.getSourceRange()); 1736 if (Chunk.Arr.hasStatic) 1737 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1738 << D.getSourceRange()); 1739 if (!Chunk.Arr.NumElts && !Initializer) 1740 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1741 << D.getSourceRange()); 1742 1743 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1744 D.DropFirstTypeObject(); 1745 } 1746 1747 // Every dimension shall be of constant size. 1748 if (ArraySize) { 1749 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1750 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1751 break; 1752 1753 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1754 if (Expr *NumElts = (Expr *)Array.NumElts) { 1755 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1756 if (getLangOpts().CPlusPlus14) { 1757 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1758 // shall be a converted constant expression (5.19) of type std::size_t 1759 // and shall evaluate to a strictly positive value. 1760 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 1761 assert(IntWidth && "Builtin type of size 0?"); 1762 llvm::APSInt Value(IntWidth); 1763 Array.NumElts 1764 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1765 CCEK_NewExpr) 1766 .get(); 1767 } else { 1768 Array.NumElts 1769 = VerifyIntegerConstantExpression(NumElts, nullptr, 1770 diag::err_new_array_nonconst) 1771 .get(); 1772 } 1773 if (!Array.NumElts) 1774 return ExprError(); 1775 } 1776 } 1777 } 1778 } 1779 1780 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1781 QualType AllocType = TInfo->getType(); 1782 if (D.isInvalidType()) 1783 return ExprError(); 1784 1785 SourceRange DirectInitRange; 1786 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1787 DirectInitRange = List->getSourceRange(); 1788 1789 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1790 PlacementLParen, PlacementArgs, PlacementRParen, 1791 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1792 Initializer); 1793 } 1794 1795 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1796 Expr *Init) { 1797 if (!Init) 1798 return true; 1799 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1800 return PLE->getNumExprs() == 0; 1801 if (isa<ImplicitValueInitExpr>(Init)) 1802 return true; 1803 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1804 return !CCE->isListInitialization() && 1805 CCE->getConstructor()->isDefaultConstructor(); 1806 else if (Style == CXXNewExpr::ListInit) { 1807 assert(isa<InitListExpr>(Init) && 1808 "Shouldn't create list CXXConstructExprs for arrays."); 1809 return true; 1810 } 1811 return false; 1812 } 1813 1814 bool 1815 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1816 if (!getLangOpts().AlignedAllocationUnavailable) 1817 return false; 1818 if (FD.isDefined()) 1819 return false; 1820 Optional<unsigned> AlignmentParam; 1821 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 1822 AlignmentParam.hasValue()) 1823 return true; 1824 return false; 1825 } 1826 1827 // Emit a diagnostic if an aligned allocation/deallocation function that is not 1828 // implemented in the standard library is selected. 1829 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1830 SourceLocation Loc) { 1831 if (isUnavailableAlignedAllocationFunction(FD)) { 1832 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1833 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1834 getASTContext().getTargetInfo().getPlatformName()); 1835 1836 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1837 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1838 Diag(Loc, diag::err_aligned_allocation_unavailable) 1839 << IsDelete << FD.getType().getAsString() << OSName 1840 << alignedAllocMinVersion(T.getOS()).getAsString(); 1841 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1842 } 1843 } 1844 1845 ExprResult 1846 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1847 SourceLocation PlacementLParen, 1848 MultiExprArg PlacementArgs, 1849 SourceLocation PlacementRParen, 1850 SourceRange TypeIdParens, 1851 QualType AllocType, 1852 TypeSourceInfo *AllocTypeInfo, 1853 Optional<Expr *> ArraySize, 1854 SourceRange DirectInitRange, 1855 Expr *Initializer) { 1856 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1857 SourceLocation StartLoc = Range.getBegin(); 1858 1859 CXXNewExpr::InitializationStyle initStyle; 1860 if (DirectInitRange.isValid()) { 1861 assert(Initializer && "Have parens but no initializer."); 1862 initStyle = CXXNewExpr::CallInit; 1863 } else if (Initializer && isa<InitListExpr>(Initializer)) 1864 initStyle = CXXNewExpr::ListInit; 1865 else { 1866 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || 1867 isa<CXXConstructExpr>(Initializer)) && 1868 "Initializer expression that cannot have been implicitly created."); 1869 initStyle = CXXNewExpr::NoInit; 1870 } 1871 1872 Expr **Inits = &Initializer; 1873 unsigned NumInits = Initializer ? 1 : 0; 1874 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1875 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init"); 1876 Inits = List->getExprs(); 1877 NumInits = List->getNumExprs(); 1878 } 1879 1880 // C++11 [expr.new]p15: 1881 // A new-expression that creates an object of type T initializes that 1882 // object as follows: 1883 InitializationKind Kind 1884 // - If the new-initializer is omitted, the object is default- 1885 // initialized (8.5); if no initialization is performed, 1886 // the object has indeterminate value 1887 = initStyle == CXXNewExpr::NoInit 1888 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1889 // - Otherwise, the new-initializer is interpreted according to 1890 // the 1891 // initialization rules of 8.5 for direct-initialization. 1892 : initStyle == CXXNewExpr::ListInit 1893 ? InitializationKind::CreateDirectList( 1894 TypeRange.getBegin(), Initializer->getBeginLoc(), 1895 Initializer->getEndLoc()) 1896 : InitializationKind::CreateDirect(TypeRange.getBegin(), 1897 DirectInitRange.getBegin(), 1898 DirectInitRange.getEnd()); 1899 1900 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 1901 auto *Deduced = AllocType->getContainedDeducedType(); 1902 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1903 if (ArraySize) 1904 return ExprError( 1905 Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 1906 diag::err_deduced_class_template_compound_type) 1907 << /*array*/ 2 1908 << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 1909 1910 InitializedEntity Entity 1911 = InitializedEntity::InitializeNew(StartLoc, AllocType); 1912 AllocType = DeduceTemplateSpecializationFromInitializer( 1913 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits)); 1914 if (AllocType.isNull()) 1915 return ExprError(); 1916 } else if (Deduced) { 1917 bool Braced = (initStyle == CXXNewExpr::ListInit); 1918 if (NumInits == 1) { 1919 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) { 1920 Inits = p->getInits(); 1921 NumInits = p->getNumInits(); 1922 Braced = true; 1923 } 1924 } 1925 1926 if (initStyle == CXXNewExpr::NoInit || NumInits == 0) 1927 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 1928 << AllocType << TypeRange); 1929 if (NumInits > 1) { 1930 Expr *FirstBad = Inits[1]; 1931 return ExprError(Diag(FirstBad->getBeginLoc(), 1932 diag::err_auto_new_ctor_multiple_expressions) 1933 << AllocType << TypeRange); 1934 } 1935 if (Braced && !getLangOpts().CPlusPlus17) 1936 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 1937 << AllocType << TypeRange; 1938 Expr *Deduce = Inits[0]; 1939 QualType DeducedType; 1940 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 1941 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 1942 << AllocType << Deduce->getType() 1943 << TypeRange << Deduce->getSourceRange()); 1944 if (DeducedType.isNull()) 1945 return ExprError(); 1946 AllocType = DeducedType; 1947 } 1948 1949 // Per C++0x [expr.new]p5, the type being constructed may be a 1950 // typedef of an array type. 1951 if (!ArraySize) { 1952 if (const ConstantArrayType *Array 1953 = Context.getAsConstantArrayType(AllocType)) { 1954 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 1955 Context.getSizeType(), 1956 TypeRange.getEnd()); 1957 AllocType = Array->getElementType(); 1958 } 1959 } 1960 1961 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 1962 return ExprError(); 1963 1964 // In ARC, infer 'retaining' for the allocated 1965 if (getLangOpts().ObjCAutoRefCount && 1966 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 1967 AllocType->isObjCLifetimeType()) { 1968 AllocType = Context.getLifetimeQualifiedType(AllocType, 1969 AllocType->getObjCARCImplicitLifetime()); 1970 } 1971 1972 QualType ResultType = Context.getPointerType(AllocType); 1973 1974 if (ArraySize && *ArraySize && 1975 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 1976 ExprResult result = CheckPlaceholderExpr(*ArraySize); 1977 if (result.isInvalid()) return ExprError(); 1978 ArraySize = result.get(); 1979 } 1980 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 1981 // integral or enumeration type with a non-negative value." 1982 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 1983 // enumeration type, or a class type for which a single non-explicit 1984 // conversion function to integral or unscoped enumeration type exists. 1985 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 1986 // std::size_t. 1987 llvm::Optional<uint64_t> KnownArraySize; 1988 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 1989 ExprResult ConvertedSize; 1990 if (getLangOpts().CPlusPlus14) { 1991 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); 1992 1993 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 1994 AA_Converting); 1995 1996 if (!ConvertedSize.isInvalid() && 1997 (*ArraySize)->getType()->getAs<RecordType>()) 1998 // Diagnose the compatibility of this conversion. 1999 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2000 << (*ArraySize)->getType() << 0 << "'size_t'"; 2001 } else { 2002 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2003 protected: 2004 Expr *ArraySize; 2005 2006 public: 2007 SizeConvertDiagnoser(Expr *ArraySize) 2008 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2009 ArraySize(ArraySize) {} 2010 2011 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2012 QualType T) override { 2013 return S.Diag(Loc, diag::err_array_size_not_integral) 2014 << S.getLangOpts().CPlusPlus11 << T; 2015 } 2016 2017 SemaDiagnosticBuilder diagnoseIncomplete( 2018 Sema &S, SourceLocation Loc, QualType T) override { 2019 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2020 << T << ArraySize->getSourceRange(); 2021 } 2022 2023 SemaDiagnosticBuilder diagnoseExplicitConv( 2024 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2025 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2026 } 2027 2028 SemaDiagnosticBuilder noteExplicitConv( 2029 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2030 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2031 << ConvTy->isEnumeralType() << ConvTy; 2032 } 2033 2034 SemaDiagnosticBuilder diagnoseAmbiguous( 2035 Sema &S, SourceLocation Loc, QualType T) override { 2036 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2037 } 2038 2039 SemaDiagnosticBuilder noteAmbiguous( 2040 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2041 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2042 << ConvTy->isEnumeralType() << ConvTy; 2043 } 2044 2045 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2046 QualType T, 2047 QualType ConvTy) override { 2048 return S.Diag(Loc, 2049 S.getLangOpts().CPlusPlus11 2050 ? diag::warn_cxx98_compat_array_size_conversion 2051 : diag::ext_array_size_conversion) 2052 << T << ConvTy->isEnumeralType() << ConvTy; 2053 } 2054 } SizeDiagnoser(*ArraySize); 2055 2056 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2057 SizeDiagnoser); 2058 } 2059 if (ConvertedSize.isInvalid()) 2060 return ExprError(); 2061 2062 ArraySize = ConvertedSize.get(); 2063 QualType SizeType = (*ArraySize)->getType(); 2064 2065 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2066 return ExprError(); 2067 2068 // C++98 [expr.new]p7: 2069 // The expression in a direct-new-declarator shall have integral type 2070 // with a non-negative value. 2071 // 2072 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2073 // per CWG1464. Otherwise, if it's not a constant, we must have an 2074 // unparenthesized array type. 2075 if (!(*ArraySize)->isValueDependent()) { 2076 llvm::APSInt Value; 2077 // We've already performed any required implicit conversion to integer or 2078 // unscoped enumeration type. 2079 // FIXME: Per CWG1464, we are required to check the value prior to 2080 // converting to size_t. This will never find a negative array size in 2081 // C++14 onwards, because Value is always unsigned here! 2082 if ((*ArraySize)->isIntegerConstantExpr(Value, Context)) { 2083 if (Value.isSigned() && Value.isNegative()) { 2084 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2085 diag::err_typecheck_negative_array_size) 2086 << (*ArraySize)->getSourceRange()); 2087 } 2088 2089 if (!AllocType->isDependentType()) { 2090 unsigned ActiveSizeBits = 2091 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value); 2092 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2093 return ExprError( 2094 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2095 << Value.toString(10) << (*ArraySize)->getSourceRange()); 2096 } 2097 2098 KnownArraySize = Value.getZExtValue(); 2099 } else if (TypeIdParens.isValid()) { 2100 // Can't have dynamic array size when the type-id is in parentheses. 2101 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2102 << (*ArraySize)->getSourceRange() 2103 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2104 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2105 2106 TypeIdParens = SourceRange(); 2107 } 2108 } 2109 2110 // Note that we do *not* convert the argument in any way. It can 2111 // be signed, larger than size_t, whatever. 2112 } 2113 2114 FunctionDecl *OperatorNew = nullptr; 2115 FunctionDecl *OperatorDelete = nullptr; 2116 unsigned Alignment = 2117 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2118 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2119 bool PassAlignment = getLangOpts().AlignedAllocation && 2120 Alignment > NewAlignment; 2121 2122 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2123 if (!AllocType->isDependentType() && 2124 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2125 FindAllocationFunctions( 2126 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2127 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs, 2128 OperatorNew, OperatorDelete)) 2129 return ExprError(); 2130 2131 // If this is an array allocation, compute whether the usual array 2132 // deallocation function for the type has a size_t parameter. 2133 bool UsualArrayDeleteWantsSize = false; 2134 if (ArraySize && !AllocType->isDependentType()) 2135 UsualArrayDeleteWantsSize = 2136 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2137 2138 SmallVector<Expr *, 8> AllPlaceArgs; 2139 if (OperatorNew) { 2140 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2141 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2142 : VariadicDoesNotApply; 2143 2144 // We've already converted the placement args, just fill in any default 2145 // arguments. Skip the first parameter because we don't have a corresponding 2146 // argument. Skip the second parameter too if we're passing in the 2147 // alignment; we've already filled it in. 2148 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2149 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2150 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2151 CallType)) 2152 return ExprError(); 2153 2154 if (!AllPlaceArgs.empty()) 2155 PlacementArgs = AllPlaceArgs; 2156 2157 // We would like to perform some checking on the given `operator new` call, 2158 // but the PlacementArgs does not contain the implicit arguments, 2159 // namely allocation size and maybe allocation alignment, 2160 // so we need to conjure them. 2161 2162 QualType SizeTy = Context.getSizeType(); 2163 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2164 2165 llvm::APInt SingleEltSize( 2166 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2167 2168 // How many bytes do we want to allocate here? 2169 llvm::Optional<llvm::APInt> AllocationSize; 2170 if (!ArraySize.hasValue() && !AllocType->isDependentType()) { 2171 // For non-array operator new, we only want to allocate one element. 2172 AllocationSize = SingleEltSize; 2173 } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) { 2174 // For array operator new, only deal with static array size case. 2175 bool Overflow; 2176 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2177 .umul_ov(SingleEltSize, Overflow); 2178 (void)Overflow; 2179 assert( 2180 !Overflow && 2181 "Expected that all the overflows would have been handled already."); 2182 } 2183 2184 IntegerLiteral AllocationSizeLiteral( 2185 Context, 2186 AllocationSize.getValueOr(llvm::APInt::getNullValue(SizeTyWidth)), 2187 SizeTy, SourceLocation()); 2188 // Otherwise, if we failed to constant-fold the allocation size, we'll 2189 // just give up and pass-in something opaque, that isn't a null pointer. 2190 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_RValue, 2191 OK_Ordinary, /*SourceExpr=*/nullptr); 2192 2193 // Let's synthesize the alignment argument in case we will need it. 2194 // Since we *really* want to allocate these on stack, this is slightly ugly 2195 // because there might not be a `std::align_val_t` type. 2196 EnumDecl *StdAlignValT = getStdAlignValT(); 2197 QualType AlignValT = 2198 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2199 IntegerLiteral AlignmentLiteral( 2200 Context, 2201 llvm::APInt(Context.getTypeSize(SizeTy), 2202 Alignment / Context.getCharWidth()), 2203 SizeTy, SourceLocation()); 2204 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2205 CK_IntegralCast, &AlignmentLiteral, 2206 VK_RValue); 2207 2208 // Adjust placement args by prepending conjured size and alignment exprs. 2209 llvm::SmallVector<Expr *, 8> CallArgs; 2210 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2211 CallArgs.emplace_back(AllocationSize.hasValue() 2212 ? static_cast<Expr *>(&AllocationSizeLiteral) 2213 : &OpaqueAllocationSize); 2214 if (PassAlignment) 2215 CallArgs.emplace_back(&DesiredAlignment); 2216 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2217 2218 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2219 2220 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2221 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2222 2223 // Warn if the type is over-aligned and is being allocated by (unaligned) 2224 // global operator new. 2225 if (PlacementArgs.empty() && !PassAlignment && 2226 (OperatorNew->isImplicit() || 2227 (OperatorNew->getBeginLoc().isValid() && 2228 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2229 if (Alignment > NewAlignment) 2230 Diag(StartLoc, diag::warn_overaligned_type) 2231 << AllocType 2232 << unsigned(Alignment / Context.getCharWidth()) 2233 << unsigned(NewAlignment / Context.getCharWidth()); 2234 } 2235 } 2236 2237 // Array 'new' can't have any initializers except empty parentheses. 2238 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2239 // dialect distinction. 2240 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { 2241 SourceRange InitRange(Inits[0]->getBeginLoc(), 2242 Inits[NumInits - 1]->getEndLoc()); 2243 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2244 return ExprError(); 2245 } 2246 2247 // If we can perform the initialization, and we've not already done so, 2248 // do it now. 2249 if (!AllocType->isDependentType() && 2250 !Expr::hasAnyTypeDependentArguments( 2251 llvm::makeArrayRef(Inits, NumInits))) { 2252 // The type we initialize is the complete type, including the array bound. 2253 QualType InitType; 2254 if (KnownArraySize) 2255 InitType = Context.getConstantArrayType( 2256 AllocType, 2257 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2258 *KnownArraySize), 2259 *ArraySize, ArrayType::Normal, 0); 2260 else if (ArraySize) 2261 InitType = 2262 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); 2263 else 2264 InitType = AllocType; 2265 2266 InitializedEntity Entity 2267 = InitializedEntity::InitializeNew(StartLoc, InitType); 2268 InitializationSequence InitSeq(*this, Entity, Kind, 2269 MultiExprArg(Inits, NumInits)); 2270 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 2271 MultiExprArg(Inits, NumInits)); 2272 if (FullInit.isInvalid()) 2273 return ExprError(); 2274 2275 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2276 // we don't want the initialized object to be destructed. 2277 // FIXME: We should not create these in the first place. 2278 if (CXXBindTemporaryExpr *Binder = 2279 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2280 FullInit = Binder->getSubExpr(); 2281 2282 Initializer = FullInit.get(); 2283 2284 // FIXME: If we have a KnownArraySize, check that the array bound of the 2285 // initializer is no greater than that constant value. 2286 2287 if (ArraySize && !*ArraySize) { 2288 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2289 if (CAT) { 2290 // FIXME: Track that the array size was inferred rather than explicitly 2291 // specified. 2292 ArraySize = IntegerLiteral::Create( 2293 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2294 } else { 2295 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2296 << Initializer->getSourceRange(); 2297 } 2298 } 2299 } 2300 2301 // Mark the new and delete operators as referenced. 2302 if (OperatorNew) { 2303 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2304 return ExprError(); 2305 MarkFunctionReferenced(StartLoc, OperatorNew); 2306 } 2307 if (OperatorDelete) { 2308 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2309 return ExprError(); 2310 MarkFunctionReferenced(StartLoc, OperatorDelete); 2311 } 2312 2313 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2314 PassAlignment, UsualArrayDeleteWantsSize, 2315 PlacementArgs, TypeIdParens, ArraySize, initStyle, 2316 Initializer, ResultType, AllocTypeInfo, Range, 2317 DirectInitRange); 2318 } 2319 2320 /// Checks that a type is suitable as the allocated type 2321 /// in a new-expression. 2322 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2323 SourceRange R) { 2324 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2325 // abstract class type or array thereof. 2326 if (AllocType->isFunctionType()) 2327 return Diag(Loc, diag::err_bad_new_type) 2328 << AllocType << 0 << R; 2329 else if (AllocType->isReferenceType()) 2330 return Diag(Loc, diag::err_bad_new_type) 2331 << AllocType << 1 << R; 2332 else if (!AllocType->isDependentType() && 2333 RequireCompleteSizedType( 2334 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2335 return true; 2336 else if (RequireNonAbstractType(Loc, AllocType, 2337 diag::err_allocation_of_abstract_type)) 2338 return true; 2339 else if (AllocType->isVariablyModifiedType()) 2340 return Diag(Loc, diag::err_variably_modified_new_type) 2341 << AllocType; 2342 else if (AllocType.getAddressSpace() != LangAS::Default && 2343 !getLangOpts().OpenCLCPlusPlus) 2344 return Diag(Loc, diag::err_address_space_qualified_new) 2345 << AllocType.getUnqualifiedType() 2346 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2347 else if (getLangOpts().ObjCAutoRefCount) { 2348 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2349 QualType BaseAllocType = Context.getBaseElementType(AT); 2350 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2351 BaseAllocType->isObjCLifetimeType()) 2352 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2353 << BaseAllocType; 2354 } 2355 } 2356 2357 return false; 2358 } 2359 2360 static bool resolveAllocationOverload( 2361 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2362 bool &PassAlignment, FunctionDecl *&Operator, 2363 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2364 OverloadCandidateSet Candidates(R.getNameLoc(), 2365 OverloadCandidateSet::CSK_Normal); 2366 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2367 Alloc != AllocEnd; ++Alloc) { 2368 // Even member operator new/delete are implicitly treated as 2369 // static, so don't use AddMemberCandidate. 2370 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2371 2372 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2373 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2374 /*ExplicitTemplateArgs=*/nullptr, Args, 2375 Candidates, 2376 /*SuppressUserConversions=*/false); 2377 continue; 2378 } 2379 2380 FunctionDecl *Fn = cast<FunctionDecl>(D); 2381 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2382 /*SuppressUserConversions=*/false); 2383 } 2384 2385 // Do the resolution. 2386 OverloadCandidateSet::iterator Best; 2387 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2388 case OR_Success: { 2389 // Got one! 2390 FunctionDecl *FnDecl = Best->Function; 2391 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2392 Best->FoundDecl) == Sema::AR_inaccessible) 2393 return true; 2394 2395 Operator = FnDecl; 2396 return false; 2397 } 2398 2399 case OR_No_Viable_Function: 2400 // C++17 [expr.new]p13: 2401 // If no matching function is found and the allocated object type has 2402 // new-extended alignment, the alignment argument is removed from the 2403 // argument list, and overload resolution is performed again. 2404 if (PassAlignment) { 2405 PassAlignment = false; 2406 AlignArg = Args[1]; 2407 Args.erase(Args.begin() + 1); 2408 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2409 Operator, &Candidates, AlignArg, 2410 Diagnose); 2411 } 2412 2413 // MSVC will fall back on trying to find a matching global operator new 2414 // if operator new[] cannot be found. Also, MSVC will leak by not 2415 // generating a call to operator delete or operator delete[], but we 2416 // will not replicate that bug. 2417 // FIXME: Find out how this interacts with the std::align_val_t fallback 2418 // once MSVC implements it. 2419 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2420 S.Context.getLangOpts().MSVCCompat) { 2421 R.clear(); 2422 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2423 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2424 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2425 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2426 Operator, /*Candidates=*/nullptr, 2427 /*AlignArg=*/nullptr, Diagnose); 2428 } 2429 2430 if (Diagnose) { 2431 PartialDiagnosticAt PD(R.getNameLoc(), S.PDiag(diag::err_ovl_no_viable_function_in_call) 2432 << R.getLookupName() << Range); 2433 2434 // If we have aligned candidates, only note the align_val_t candidates 2435 // from AlignedCandidates and the non-align_val_t candidates from 2436 // Candidates. 2437 if (AlignedCandidates) { 2438 auto IsAligned = [](OverloadCandidate &C) { 2439 return C.Function->getNumParams() > 1 && 2440 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2441 }; 2442 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2443 2444 // This was an overaligned allocation, so list the aligned candidates 2445 // first. 2446 Args.insert(Args.begin() + 1, AlignArg); 2447 AlignedCandidates->NoteCandidates(PD, S, OCD_AllCandidates, Args, "", 2448 R.getNameLoc(), IsAligned); 2449 Args.erase(Args.begin() + 1); 2450 Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args, "", R.getNameLoc(), 2451 IsUnaligned); 2452 } else { 2453 Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args); 2454 } 2455 } 2456 return true; 2457 2458 case OR_Ambiguous: 2459 if (Diagnose) { 2460 Candidates.NoteCandidates( 2461 PartialDiagnosticAt(R.getNameLoc(), 2462 S.PDiag(diag::err_ovl_ambiguous_call) 2463 << R.getLookupName() << Range), 2464 S, OCD_AmbiguousCandidates, Args); 2465 } 2466 return true; 2467 2468 case OR_Deleted: { 2469 if (Diagnose) { 2470 Candidates.NoteCandidates( 2471 PartialDiagnosticAt(R.getNameLoc(), 2472 S.PDiag(diag::err_ovl_deleted_call) 2473 << R.getLookupName() << Range), 2474 S, OCD_AllCandidates, Args); 2475 } 2476 return true; 2477 } 2478 } 2479 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 2480 } 2481 2482 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2483 AllocationFunctionScope NewScope, 2484 AllocationFunctionScope DeleteScope, 2485 QualType AllocType, bool IsArray, 2486 bool &PassAlignment, MultiExprArg PlaceArgs, 2487 FunctionDecl *&OperatorNew, 2488 FunctionDecl *&OperatorDelete, 2489 bool Diagnose) { 2490 // --- Choosing an allocation function --- 2491 // C++ 5.3.4p8 - 14 & 18 2492 // 1) If looking in AFS_Global scope for allocation functions, only look in 2493 // the global scope. Else, if AFS_Class, only look in the scope of the 2494 // allocated class. If AFS_Both, look in both. 2495 // 2) If an array size is given, look for operator new[], else look for 2496 // operator new. 2497 // 3) The first argument is always size_t. Append the arguments from the 2498 // placement form. 2499 2500 SmallVector<Expr*, 8> AllocArgs; 2501 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2502 2503 // We don't care about the actual value of these arguments. 2504 // FIXME: Should the Sema create the expression and embed it in the syntax 2505 // tree? Or should the consumer just recalculate the value? 2506 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2507 IntegerLiteral Size(Context, llvm::APInt::getNullValue( 2508 Context.getTargetInfo().getPointerWidth(0)), 2509 Context.getSizeType(), 2510 SourceLocation()); 2511 AllocArgs.push_back(&Size); 2512 2513 QualType AlignValT = Context.VoidTy; 2514 if (PassAlignment) { 2515 DeclareGlobalNewDelete(); 2516 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2517 } 2518 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2519 if (PassAlignment) 2520 AllocArgs.push_back(&Align); 2521 2522 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2523 2524 // C++ [expr.new]p8: 2525 // If the allocated type is a non-array type, the allocation 2526 // function's name is operator new and the deallocation function's 2527 // name is operator delete. If the allocated type is an array 2528 // type, the allocation function's name is operator new[] and the 2529 // deallocation function's name is operator delete[]. 2530 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2531 IsArray ? OO_Array_New : OO_New); 2532 2533 QualType AllocElemType = Context.getBaseElementType(AllocType); 2534 2535 // Find the allocation function. 2536 { 2537 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2538 2539 // C++1z [expr.new]p9: 2540 // If the new-expression begins with a unary :: operator, the allocation 2541 // function's name is looked up in the global scope. Otherwise, if the 2542 // allocated type is a class type T or array thereof, the allocation 2543 // function's name is looked up in the scope of T. 2544 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2545 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2546 2547 // We can see ambiguity here if the allocation function is found in 2548 // multiple base classes. 2549 if (R.isAmbiguous()) 2550 return true; 2551 2552 // If this lookup fails to find the name, or if the allocated type is not 2553 // a class type, the allocation function's name is looked up in the 2554 // global scope. 2555 if (R.empty()) { 2556 if (NewScope == AFS_Class) 2557 return true; 2558 2559 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2560 } 2561 2562 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2563 if (PlaceArgs.empty()) { 2564 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2565 } else { 2566 Diag(StartLoc, diag::err_openclcxx_placement_new); 2567 } 2568 return true; 2569 } 2570 2571 assert(!R.empty() && "implicitly declared allocation functions not found"); 2572 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 2573 2574 // We do our own custom access checks below. 2575 R.suppressDiagnostics(); 2576 2577 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2578 OperatorNew, /*Candidates=*/nullptr, 2579 /*AlignArg=*/nullptr, Diagnose)) 2580 return true; 2581 } 2582 2583 // We don't need an operator delete if we're running under -fno-exceptions. 2584 if (!getLangOpts().Exceptions) { 2585 OperatorDelete = nullptr; 2586 return false; 2587 } 2588 2589 // Note, the name of OperatorNew might have been changed from array to 2590 // non-array by resolveAllocationOverload. 2591 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2592 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2593 ? OO_Array_Delete 2594 : OO_Delete); 2595 2596 // C++ [expr.new]p19: 2597 // 2598 // If the new-expression begins with a unary :: operator, the 2599 // deallocation function's name is looked up in the global 2600 // scope. Otherwise, if the allocated type is a class type T or an 2601 // array thereof, the deallocation function's name is looked up in 2602 // the scope of T. If this lookup fails to find the name, or if 2603 // the allocated type is not a class type or array thereof, the 2604 // deallocation function's name is looked up in the global scope. 2605 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2606 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2607 auto *RD = 2608 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2609 LookupQualifiedName(FoundDelete, RD); 2610 } 2611 if (FoundDelete.isAmbiguous()) 2612 return true; // FIXME: clean up expressions? 2613 2614 bool FoundGlobalDelete = FoundDelete.empty(); 2615 if (FoundDelete.empty()) { 2616 if (DeleteScope == AFS_Class) 2617 return true; 2618 2619 DeclareGlobalNewDelete(); 2620 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2621 } 2622 2623 FoundDelete.suppressDiagnostics(); 2624 2625 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2626 2627 // Whether we're looking for a placement operator delete is dictated 2628 // by whether we selected a placement operator new, not by whether 2629 // we had explicit placement arguments. This matters for things like 2630 // struct A { void *operator new(size_t, int = 0); ... }; 2631 // A *a = new A() 2632 // 2633 // We don't have any definition for what a "placement allocation function" 2634 // is, but we assume it's any allocation function whose 2635 // parameter-declaration-clause is anything other than (size_t). 2636 // 2637 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2638 // This affects whether an exception from the constructor of an overaligned 2639 // type uses the sized or non-sized form of aligned operator delete. 2640 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2641 OperatorNew->isVariadic(); 2642 2643 if (isPlacementNew) { 2644 // C++ [expr.new]p20: 2645 // A declaration of a placement deallocation function matches the 2646 // declaration of a placement allocation function if it has the 2647 // same number of parameters and, after parameter transformations 2648 // (8.3.5), all parameter types except the first are 2649 // identical. [...] 2650 // 2651 // To perform this comparison, we compute the function type that 2652 // the deallocation function should have, and use that type both 2653 // for template argument deduction and for comparison purposes. 2654 QualType ExpectedFunctionType; 2655 { 2656 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2657 2658 SmallVector<QualType, 4> ArgTypes; 2659 ArgTypes.push_back(Context.VoidPtrTy); 2660 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2661 ArgTypes.push_back(Proto->getParamType(I)); 2662 2663 FunctionProtoType::ExtProtoInfo EPI; 2664 // FIXME: This is not part of the standard's rule. 2665 EPI.Variadic = Proto->isVariadic(); 2666 2667 ExpectedFunctionType 2668 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2669 } 2670 2671 for (LookupResult::iterator D = FoundDelete.begin(), 2672 DEnd = FoundDelete.end(); 2673 D != DEnd; ++D) { 2674 FunctionDecl *Fn = nullptr; 2675 if (FunctionTemplateDecl *FnTmpl = 2676 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2677 // Perform template argument deduction to try to match the 2678 // expected function type. 2679 TemplateDeductionInfo Info(StartLoc); 2680 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2681 Info)) 2682 continue; 2683 } else 2684 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2685 2686 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2687 ExpectedFunctionType, 2688 /*AdjustExcpetionSpec*/true), 2689 ExpectedFunctionType)) 2690 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2691 } 2692 2693 if (getLangOpts().CUDA) 2694 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches); 2695 } else { 2696 // C++1y [expr.new]p22: 2697 // For a non-placement allocation function, the normal deallocation 2698 // function lookup is used 2699 // 2700 // Per [expr.delete]p10, this lookup prefers a member operator delete 2701 // without a size_t argument, but prefers a non-member operator delete 2702 // with a size_t where possible (which it always is in this case). 2703 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2704 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2705 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2706 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2707 &BestDeallocFns); 2708 if (Selected) 2709 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2710 else { 2711 // If we failed to select an operator, all remaining functions are viable 2712 // but ambiguous. 2713 for (auto Fn : BestDeallocFns) 2714 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2715 } 2716 } 2717 2718 // C++ [expr.new]p20: 2719 // [...] If the lookup finds a single matching deallocation 2720 // function, that function will be called; otherwise, no 2721 // deallocation function will be called. 2722 if (Matches.size() == 1) { 2723 OperatorDelete = Matches[0].second; 2724 2725 // C++1z [expr.new]p23: 2726 // If the lookup finds a usual deallocation function (3.7.4.2) 2727 // with a parameter of type std::size_t and that function, considered 2728 // as a placement deallocation function, would have been 2729 // selected as a match for the allocation function, the program 2730 // is ill-formed. 2731 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2732 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2733 UsualDeallocFnInfo Info(*this, 2734 DeclAccessPair::make(OperatorDelete, AS_public)); 2735 // Core issue, per mail to core reflector, 2016-10-09: 2736 // If this is a member operator delete, and there is a corresponding 2737 // non-sized member operator delete, this isn't /really/ a sized 2738 // deallocation function, it just happens to have a size_t parameter. 2739 bool IsSizedDelete = Info.HasSizeT; 2740 if (IsSizedDelete && !FoundGlobalDelete) { 2741 auto NonSizedDelete = 2742 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2743 /*WantAlign*/Info.HasAlignValT); 2744 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2745 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2746 IsSizedDelete = false; 2747 } 2748 2749 if (IsSizedDelete) { 2750 SourceRange R = PlaceArgs.empty() 2751 ? SourceRange() 2752 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2753 PlaceArgs.back()->getEndLoc()); 2754 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2755 if (!OperatorDelete->isImplicit()) 2756 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2757 << DeleteName; 2758 } 2759 } 2760 2761 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2762 Matches[0].first); 2763 } else if (!Matches.empty()) { 2764 // We found multiple suitable operators. Per [expr.new]p20, that means we 2765 // call no 'operator delete' function, but we should at least warn the user. 2766 // FIXME: Suppress this warning if the construction cannot throw. 2767 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2768 << DeleteName << AllocElemType; 2769 2770 for (auto &Match : Matches) 2771 Diag(Match.second->getLocation(), 2772 diag::note_member_declared_here) << DeleteName; 2773 } 2774 2775 return false; 2776 } 2777 2778 /// DeclareGlobalNewDelete - Declare the global forms of operator new and 2779 /// delete. These are: 2780 /// @code 2781 /// // C++03: 2782 /// void* operator new(std::size_t) throw(std::bad_alloc); 2783 /// void* operator new[](std::size_t) throw(std::bad_alloc); 2784 /// void operator delete(void *) throw(); 2785 /// void operator delete[](void *) throw(); 2786 /// // C++11: 2787 /// void* operator new(std::size_t); 2788 /// void* operator new[](std::size_t); 2789 /// void operator delete(void *) noexcept; 2790 /// void operator delete[](void *) noexcept; 2791 /// // C++1y: 2792 /// void* operator new(std::size_t); 2793 /// void* operator new[](std::size_t); 2794 /// void operator delete(void *) noexcept; 2795 /// void operator delete[](void *) noexcept; 2796 /// void operator delete(void *, std::size_t) noexcept; 2797 /// void operator delete[](void *, std::size_t) noexcept; 2798 /// @endcode 2799 /// Note that the placement and nothrow forms of new are *not* implicitly 2800 /// declared. Their use requires including \<new\>. 2801 void Sema::DeclareGlobalNewDelete() { 2802 if (GlobalNewDeleteDeclared) 2803 return; 2804 2805 // The implicitly declared new and delete operators 2806 // are not supported in OpenCL. 2807 if (getLangOpts().OpenCLCPlusPlus) 2808 return; 2809 2810 // C++ [basic.std.dynamic]p2: 2811 // [...] The following allocation and deallocation functions (18.4) are 2812 // implicitly declared in global scope in each translation unit of a 2813 // program 2814 // 2815 // C++03: 2816 // void* operator new(std::size_t) throw(std::bad_alloc); 2817 // void* operator new[](std::size_t) throw(std::bad_alloc); 2818 // void operator delete(void*) throw(); 2819 // void operator delete[](void*) throw(); 2820 // C++11: 2821 // void* operator new(std::size_t); 2822 // void* operator new[](std::size_t); 2823 // void operator delete(void*) noexcept; 2824 // void operator delete[](void*) noexcept; 2825 // C++1y: 2826 // void* operator new(std::size_t); 2827 // void* operator new[](std::size_t); 2828 // void operator delete(void*) noexcept; 2829 // void operator delete[](void*) noexcept; 2830 // void operator delete(void*, std::size_t) noexcept; 2831 // void operator delete[](void*, std::size_t) noexcept; 2832 // 2833 // These implicit declarations introduce only the function names operator 2834 // new, operator new[], operator delete, operator delete[]. 2835 // 2836 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2837 // "std" or "bad_alloc" as necessary to form the exception specification. 2838 // However, we do not make these implicit declarations visible to name 2839 // lookup. 2840 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2841 // The "std::bad_alloc" class has not yet been declared, so build it 2842 // implicitly. 2843 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2844 getOrCreateStdNamespace(), 2845 SourceLocation(), SourceLocation(), 2846 &PP.getIdentifierTable().get("bad_alloc"), 2847 nullptr); 2848 getStdBadAlloc()->setImplicit(true); 2849 } 2850 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 2851 // The "std::align_val_t" enum class has not yet been declared, so build it 2852 // implicitly. 2853 auto *AlignValT = EnumDecl::Create( 2854 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 2855 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 2856 AlignValT->setIntegerType(Context.getSizeType()); 2857 AlignValT->setPromotionType(Context.getSizeType()); 2858 AlignValT->setImplicit(true); 2859 StdAlignValT = AlignValT; 2860 } 2861 2862 GlobalNewDeleteDeclared = true; 2863 2864 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 2865 QualType SizeT = Context.getSizeType(); 2866 2867 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 2868 QualType Return, QualType Param) { 2869 llvm::SmallVector<QualType, 3> Params; 2870 Params.push_back(Param); 2871 2872 // Create up to four variants of the function (sized/aligned). 2873 bool HasSizedVariant = getLangOpts().SizedDeallocation && 2874 (Kind == OO_Delete || Kind == OO_Array_Delete); 2875 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 2876 2877 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 2878 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 2879 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 2880 if (Sized) 2881 Params.push_back(SizeT); 2882 2883 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 2884 if (Aligned) 2885 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 2886 2887 DeclareGlobalAllocationFunction( 2888 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 2889 2890 if (Aligned) 2891 Params.pop_back(); 2892 } 2893 } 2894 }; 2895 2896 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 2897 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 2898 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 2899 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 2900 } 2901 2902 /// DeclareGlobalAllocationFunction - Declares a single implicit global 2903 /// allocation function if it doesn't already exist. 2904 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 2905 QualType Return, 2906 ArrayRef<QualType> Params) { 2907 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 2908 2909 // Check if this function is already declared. 2910 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 2911 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 2912 Alloc != AllocEnd; ++Alloc) { 2913 // Only look at non-template functions, as it is the predefined, 2914 // non-templated allocation function we are trying to declare here. 2915 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 2916 if (Func->getNumParams() == Params.size()) { 2917 llvm::SmallVector<QualType, 3> FuncParams; 2918 for (auto *P : Func->parameters()) 2919 FuncParams.push_back( 2920 Context.getCanonicalType(P->getType().getUnqualifiedType())); 2921 if (llvm::makeArrayRef(FuncParams) == Params) { 2922 // Make the function visible to name lookup, even if we found it in 2923 // an unimported module. It either is an implicitly-declared global 2924 // allocation function, or is suppressing that function. 2925 Func->setVisibleDespiteOwningModule(); 2926 return; 2927 } 2928 } 2929 } 2930 } 2931 2932 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 2933 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 2934 2935 QualType BadAllocType; 2936 bool HasBadAllocExceptionSpec 2937 = (Name.getCXXOverloadedOperator() == OO_New || 2938 Name.getCXXOverloadedOperator() == OO_Array_New); 2939 if (HasBadAllocExceptionSpec) { 2940 if (!getLangOpts().CPlusPlus11) { 2941 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 2942 assert(StdBadAlloc && "Must have std::bad_alloc declared"); 2943 EPI.ExceptionSpec.Type = EST_Dynamic; 2944 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 2945 } 2946 } else { 2947 EPI.ExceptionSpec = 2948 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 2949 } 2950 2951 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 2952 QualType FnType = Context.getFunctionType(Return, Params, EPI); 2953 FunctionDecl *Alloc = FunctionDecl::Create( 2954 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, 2955 FnType, /*TInfo=*/nullptr, SC_None, false, true); 2956 Alloc->setImplicit(); 2957 // Global allocation functions should always be visible. 2958 Alloc->setVisibleDespiteOwningModule(); 2959 2960 Alloc->addAttr(VisibilityAttr::CreateImplicit( 2961 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden 2962 ? VisibilityAttr::Hidden 2963 : VisibilityAttr::Default)); 2964 2965 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 2966 for (QualType T : Params) { 2967 ParamDecls.push_back(ParmVarDecl::Create( 2968 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 2969 /*TInfo=*/nullptr, SC_None, nullptr)); 2970 ParamDecls.back()->setImplicit(); 2971 } 2972 Alloc->setParams(ParamDecls); 2973 if (ExtraAttr) 2974 Alloc->addAttr(ExtraAttr); 2975 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 2976 Context.getTranslationUnitDecl()->addDecl(Alloc); 2977 IdResolver.tryAddTopLevelDecl(Alloc, Name); 2978 }; 2979 2980 if (!LangOpts.CUDA) 2981 CreateAllocationFunctionDecl(nullptr); 2982 else { 2983 // Host and device get their own declaration so each can be 2984 // defined or re-declared independently. 2985 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 2986 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 2987 } 2988 } 2989 2990 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 2991 bool CanProvideSize, 2992 bool Overaligned, 2993 DeclarationName Name) { 2994 DeclareGlobalNewDelete(); 2995 2996 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 2997 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2998 2999 // FIXME: It's possible for this to result in ambiguity, through a 3000 // user-declared variadic operator delete or the enable_if attribute. We 3001 // should probably not consider those cases to be usual deallocation 3002 // functions. But for now we just make an arbitrary choice in that case. 3003 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3004 Overaligned); 3005 assert(Result.FD && "operator delete missing from global scope?"); 3006 return Result.FD; 3007 } 3008 3009 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3010 CXXRecordDecl *RD) { 3011 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3012 3013 FunctionDecl *OperatorDelete = nullptr; 3014 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3015 return nullptr; 3016 if (OperatorDelete) 3017 return OperatorDelete; 3018 3019 // If there's no class-specific operator delete, look up the global 3020 // non-array delete. 3021 return FindUsualDeallocationFunction( 3022 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3023 Name); 3024 } 3025 3026 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3027 DeclarationName Name, 3028 FunctionDecl *&Operator, bool Diagnose) { 3029 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3030 // Try to find operator delete/operator delete[] in class scope. 3031 LookupQualifiedName(Found, RD); 3032 3033 if (Found.isAmbiguous()) 3034 return true; 3035 3036 Found.suppressDiagnostics(); 3037 3038 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3039 3040 // C++17 [expr.delete]p10: 3041 // If the deallocation functions have class scope, the one without a 3042 // parameter of type std::size_t is selected. 3043 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3044 resolveDeallocationOverload(*this, Found, /*WantSize*/ false, 3045 /*WantAlign*/ Overaligned, &Matches); 3046 3047 // If we could find an overload, use it. 3048 if (Matches.size() == 1) { 3049 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3050 3051 // FIXME: DiagnoseUseOfDecl? 3052 if (Operator->isDeleted()) { 3053 if (Diagnose) { 3054 Diag(StartLoc, diag::err_deleted_function_use); 3055 NoteDeletedFunction(Operator); 3056 } 3057 return true; 3058 } 3059 3060 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3061 Matches[0].Found, Diagnose) == AR_inaccessible) 3062 return true; 3063 3064 return false; 3065 } 3066 3067 // We found multiple suitable operators; complain about the ambiguity. 3068 // FIXME: The standard doesn't say to do this; it appears that the intent 3069 // is that this should never happen. 3070 if (!Matches.empty()) { 3071 if (Diagnose) { 3072 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3073 << Name << RD; 3074 for (auto &Match : Matches) 3075 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3076 } 3077 return true; 3078 } 3079 3080 // We did find operator delete/operator delete[] declarations, but 3081 // none of them were suitable. 3082 if (!Found.empty()) { 3083 if (Diagnose) { 3084 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3085 << Name << RD; 3086 3087 for (NamedDecl *D : Found) 3088 Diag(D->getUnderlyingDecl()->getLocation(), 3089 diag::note_member_declared_here) << Name; 3090 } 3091 return true; 3092 } 3093 3094 Operator = nullptr; 3095 return false; 3096 } 3097 3098 namespace { 3099 /// Checks whether delete-expression, and new-expression used for 3100 /// initializing deletee have the same array form. 3101 class MismatchingNewDeleteDetector { 3102 public: 3103 enum MismatchResult { 3104 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3105 NoMismatch, 3106 /// Indicates that variable is initialized with mismatching form of \a new. 3107 VarInitMismatches, 3108 /// Indicates that member is initialized with mismatching form of \a new. 3109 MemberInitMismatches, 3110 /// Indicates that 1 or more constructors' definitions could not been 3111 /// analyzed, and they will be checked again at the end of translation unit. 3112 AnalyzeLater 3113 }; 3114 3115 /// \param EndOfTU True, if this is the final analysis at the end of 3116 /// translation unit. False, if this is the initial analysis at the point 3117 /// delete-expression was encountered. 3118 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3119 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3120 HasUndefinedConstructors(false) {} 3121 3122 /// Checks whether pointee of a delete-expression is initialized with 3123 /// matching form of new-expression. 3124 /// 3125 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3126 /// point where delete-expression is encountered, then a warning will be 3127 /// issued immediately. If return value is \c AnalyzeLater at the point where 3128 /// delete-expression is seen, then member will be analyzed at the end of 3129 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3130 /// couldn't be analyzed. If at least one constructor initializes the member 3131 /// with matching type of new, the return value is \c NoMismatch. 3132 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3133 /// Analyzes a class member. 3134 /// \param Field Class member to analyze. 3135 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3136 /// for deleting the \p Field. 3137 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3138 FieldDecl *Field; 3139 /// List of mismatching new-expressions used for initialization of the pointee 3140 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3141 /// Indicates whether delete-expression was in array form. 3142 bool IsArrayForm; 3143 3144 private: 3145 const bool EndOfTU; 3146 /// Indicates that there is at least one constructor without body. 3147 bool HasUndefinedConstructors; 3148 /// Returns \c CXXNewExpr from given initialization expression. 3149 /// \param E Expression used for initializing pointee in delete-expression. 3150 /// E can be a single-element \c InitListExpr consisting of new-expression. 3151 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3152 /// Returns whether member is initialized with mismatching form of 3153 /// \c new either by the member initializer or in-class initialization. 3154 /// 3155 /// If bodies of all constructors are not visible at the end of translation 3156 /// unit or at least one constructor initializes member with the matching 3157 /// form of \c new, mismatch cannot be proven, and this function will return 3158 /// \c NoMismatch. 3159 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3160 /// Returns whether variable is initialized with mismatching form of 3161 /// \c new. 3162 /// 3163 /// If variable is initialized with matching form of \c new or variable is not 3164 /// initialized with a \c new expression, this function will return true. 3165 /// If variable is initialized with mismatching form of \c new, returns false. 3166 /// \param D Variable to analyze. 3167 bool hasMatchingVarInit(const DeclRefExpr *D); 3168 /// Checks whether the constructor initializes pointee with mismatching 3169 /// form of \c new. 3170 /// 3171 /// Returns true, if member is initialized with matching form of \c new in 3172 /// member initializer list. Returns false, if member is initialized with the 3173 /// matching form of \c new in this constructor's initializer or given 3174 /// constructor isn't defined at the point where delete-expression is seen, or 3175 /// member isn't initialized by the constructor. 3176 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3177 /// Checks whether member is initialized with matching form of 3178 /// \c new in member initializer list. 3179 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3180 /// Checks whether member is initialized with mismatching form of \c new by 3181 /// in-class initializer. 3182 MismatchResult analyzeInClassInitializer(); 3183 }; 3184 } 3185 3186 MismatchingNewDeleteDetector::MismatchResult 3187 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3188 NewExprs.clear(); 3189 assert(DE && "Expected delete-expression"); 3190 IsArrayForm = DE->isArrayForm(); 3191 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3192 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3193 return analyzeMemberExpr(ME); 3194 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3195 if (!hasMatchingVarInit(D)) 3196 return VarInitMismatches; 3197 } 3198 return NoMismatch; 3199 } 3200 3201 const CXXNewExpr * 3202 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3203 assert(E != nullptr && "Expected a valid initializer expression"); 3204 E = E->IgnoreParenImpCasts(); 3205 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3206 if (ILE->getNumInits() == 1) 3207 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3208 } 3209 3210 return dyn_cast_or_null<const CXXNewExpr>(E); 3211 } 3212 3213 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3214 const CXXCtorInitializer *CI) { 3215 const CXXNewExpr *NE = nullptr; 3216 if (Field == CI->getMember() && 3217 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3218 if (NE->isArray() == IsArrayForm) 3219 return true; 3220 else 3221 NewExprs.push_back(NE); 3222 } 3223 return false; 3224 } 3225 3226 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3227 const CXXConstructorDecl *CD) { 3228 if (CD->isImplicit()) 3229 return false; 3230 const FunctionDecl *Definition = CD; 3231 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3232 HasUndefinedConstructors = true; 3233 return EndOfTU; 3234 } 3235 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3236 if (hasMatchingNewInCtorInit(CI)) 3237 return true; 3238 } 3239 return false; 3240 } 3241 3242 MismatchingNewDeleteDetector::MismatchResult 3243 MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3244 assert(Field != nullptr && "This should be called only for members"); 3245 const Expr *InitExpr = Field->getInClassInitializer(); 3246 if (!InitExpr) 3247 return EndOfTU ? NoMismatch : AnalyzeLater; 3248 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3249 if (NE->isArray() != IsArrayForm) { 3250 NewExprs.push_back(NE); 3251 return MemberInitMismatches; 3252 } 3253 } 3254 return NoMismatch; 3255 } 3256 3257 MismatchingNewDeleteDetector::MismatchResult 3258 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3259 bool DeleteWasArrayForm) { 3260 assert(Field != nullptr && "Analysis requires a valid class member."); 3261 this->Field = Field; 3262 IsArrayForm = DeleteWasArrayForm; 3263 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3264 for (const auto *CD : RD->ctors()) { 3265 if (hasMatchingNewInCtor(CD)) 3266 return NoMismatch; 3267 } 3268 if (HasUndefinedConstructors) 3269 return EndOfTU ? NoMismatch : AnalyzeLater; 3270 if (!NewExprs.empty()) 3271 return MemberInitMismatches; 3272 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3273 : NoMismatch; 3274 } 3275 3276 MismatchingNewDeleteDetector::MismatchResult 3277 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3278 assert(ME != nullptr && "Expected a member expression"); 3279 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3280 return analyzeField(F, IsArrayForm); 3281 return NoMismatch; 3282 } 3283 3284 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3285 const CXXNewExpr *NE = nullptr; 3286 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3287 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3288 NE->isArray() != IsArrayForm) { 3289 NewExprs.push_back(NE); 3290 } 3291 } 3292 return NewExprs.empty(); 3293 } 3294 3295 static void 3296 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3297 const MismatchingNewDeleteDetector &Detector) { 3298 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3299 FixItHint H; 3300 if (!Detector.IsArrayForm) 3301 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3302 else { 3303 SourceLocation RSquare = Lexer::findLocationAfterToken( 3304 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3305 SemaRef.getLangOpts(), true); 3306 if (RSquare.isValid()) 3307 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3308 } 3309 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3310 << Detector.IsArrayForm << H; 3311 3312 for (const auto *NE : Detector.NewExprs) 3313 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3314 << Detector.IsArrayForm; 3315 } 3316 3317 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3318 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3319 return; 3320 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3321 switch (Detector.analyzeDeleteExpr(DE)) { 3322 case MismatchingNewDeleteDetector::VarInitMismatches: 3323 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3324 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3325 break; 3326 } 3327 case MismatchingNewDeleteDetector::AnalyzeLater: { 3328 DeleteExprs[Detector.Field].push_back( 3329 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3330 break; 3331 } 3332 case MismatchingNewDeleteDetector::NoMismatch: 3333 break; 3334 } 3335 } 3336 3337 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3338 bool DeleteWasArrayForm) { 3339 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3340 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3341 case MismatchingNewDeleteDetector::VarInitMismatches: 3342 llvm_unreachable("This analysis should have been done for class members."); 3343 case MismatchingNewDeleteDetector::AnalyzeLater: 3344 llvm_unreachable("Analysis cannot be postponed any point beyond end of " 3345 "translation unit."); 3346 case MismatchingNewDeleteDetector::MemberInitMismatches: 3347 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3348 break; 3349 case MismatchingNewDeleteDetector::NoMismatch: 3350 break; 3351 } 3352 } 3353 3354 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3355 /// @code ::delete ptr; @endcode 3356 /// or 3357 /// @code delete [] ptr; @endcode 3358 ExprResult 3359 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3360 bool ArrayForm, Expr *ExE) { 3361 // C++ [expr.delete]p1: 3362 // The operand shall have a pointer type, or a class type having a single 3363 // non-explicit conversion function to a pointer type. The result has type 3364 // void. 3365 // 3366 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3367 3368 ExprResult Ex = ExE; 3369 FunctionDecl *OperatorDelete = nullptr; 3370 bool ArrayFormAsWritten = ArrayForm; 3371 bool UsualArrayDeleteWantsSize = false; 3372 3373 if (!Ex.get()->isTypeDependent()) { 3374 // Perform lvalue-to-rvalue cast, if needed. 3375 Ex = DefaultLvalueConversion(Ex.get()); 3376 if (Ex.isInvalid()) 3377 return ExprError(); 3378 3379 QualType Type = Ex.get()->getType(); 3380 3381 class DeleteConverter : public ContextualImplicitConverter { 3382 public: 3383 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3384 3385 bool match(QualType ConvType) override { 3386 // FIXME: If we have an operator T* and an operator void*, we must pick 3387 // the operator T*. 3388 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3389 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3390 return true; 3391 return false; 3392 } 3393 3394 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3395 QualType T) override { 3396 return S.Diag(Loc, diag::err_delete_operand) << T; 3397 } 3398 3399 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3400 QualType T) override { 3401 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3402 } 3403 3404 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3405 QualType T, 3406 QualType ConvTy) override { 3407 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3408 } 3409 3410 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3411 QualType ConvTy) override { 3412 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3413 << ConvTy; 3414 } 3415 3416 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3417 QualType T) override { 3418 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3419 } 3420 3421 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3422 QualType ConvTy) override { 3423 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3424 << ConvTy; 3425 } 3426 3427 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3428 QualType T, 3429 QualType ConvTy) override { 3430 llvm_unreachable("conversion functions are permitted"); 3431 } 3432 } Converter; 3433 3434 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3435 if (Ex.isInvalid()) 3436 return ExprError(); 3437 Type = Ex.get()->getType(); 3438 if (!Converter.match(Type)) 3439 // FIXME: PerformContextualImplicitConversion should return ExprError 3440 // itself in this case. 3441 return ExprError(); 3442 3443 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3444 QualType PointeeElem = Context.getBaseElementType(Pointee); 3445 3446 if (Pointee.getAddressSpace() != LangAS::Default && 3447 !getLangOpts().OpenCLCPlusPlus) 3448 return Diag(Ex.get()->getBeginLoc(), 3449 diag::err_address_space_qualified_delete) 3450 << Pointee.getUnqualifiedType() 3451 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3452 3453 CXXRecordDecl *PointeeRD = nullptr; 3454 if (Pointee->isVoidType() && !isSFINAEContext()) { 3455 // The C++ standard bans deleting a pointer to a non-object type, which 3456 // effectively bans deletion of "void*". However, most compilers support 3457 // this, so we treat it as a warning unless we're in a SFINAE context. 3458 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3459 << Type << Ex.get()->getSourceRange(); 3460 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3461 Pointee->isSizelessType()) { 3462 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3463 << Type << Ex.get()->getSourceRange()); 3464 } else if (!Pointee->isDependentType()) { 3465 // FIXME: This can result in errors if the definition was imported from a 3466 // module but is hidden. 3467 if (!RequireCompleteType(StartLoc, Pointee, 3468 diag::warn_delete_incomplete, Ex.get())) { 3469 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3470 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3471 } 3472 } 3473 3474 if (Pointee->isArrayType() && !ArrayForm) { 3475 Diag(StartLoc, diag::warn_delete_array_type) 3476 << Type << Ex.get()->getSourceRange() 3477 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3478 ArrayForm = true; 3479 } 3480 3481 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3482 ArrayForm ? OO_Array_Delete : OO_Delete); 3483 3484 if (PointeeRD) { 3485 if (!UseGlobal && 3486 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3487 OperatorDelete)) 3488 return ExprError(); 3489 3490 // If we're allocating an array of records, check whether the 3491 // usual operator delete[] has a size_t parameter. 3492 if (ArrayForm) { 3493 // If the user specifically asked to use the global allocator, 3494 // we'll need to do the lookup into the class. 3495 if (UseGlobal) 3496 UsualArrayDeleteWantsSize = 3497 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3498 3499 // Otherwise, the usual operator delete[] should be the 3500 // function we just found. 3501 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3502 UsualArrayDeleteWantsSize = 3503 UsualDeallocFnInfo(*this, 3504 DeclAccessPair::make(OperatorDelete, AS_public)) 3505 .HasSizeT; 3506 } 3507 3508 if (!PointeeRD->hasIrrelevantDestructor()) 3509 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3510 MarkFunctionReferenced(StartLoc, 3511 const_cast<CXXDestructorDecl*>(Dtor)); 3512 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3513 return ExprError(); 3514 } 3515 3516 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3517 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3518 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3519 SourceLocation()); 3520 } 3521 3522 if (!OperatorDelete) { 3523 if (getLangOpts().OpenCLCPlusPlus) { 3524 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3525 return ExprError(); 3526 } 3527 3528 bool IsComplete = isCompleteType(StartLoc, Pointee); 3529 bool CanProvideSize = 3530 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3531 Pointee.isDestructedType()); 3532 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3533 3534 // Look for a global declaration. 3535 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3536 Overaligned, DeleteName); 3537 } 3538 3539 MarkFunctionReferenced(StartLoc, OperatorDelete); 3540 3541 // Check access and ambiguity of destructor if we're going to call it. 3542 // Note that this is required even for a virtual delete. 3543 bool IsVirtualDelete = false; 3544 if (PointeeRD) { 3545 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3546 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3547 PDiag(diag::err_access_dtor) << PointeeElem); 3548 IsVirtualDelete = Dtor->isVirtual(); 3549 } 3550 } 3551 3552 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3553 3554 // Convert the operand to the type of the first parameter of operator 3555 // delete. This is only necessary if we selected a destroying operator 3556 // delete that we are going to call (non-virtually); converting to void* 3557 // is trivial and left to AST consumers to handle. 3558 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3559 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3560 Qualifiers Qs = Pointee.getQualifiers(); 3561 if (Qs.hasCVRQualifiers()) { 3562 // Qualifiers are irrelevant to this conversion; we're only looking 3563 // for access and ambiguity. 3564 Qs.removeCVRQualifiers(); 3565 QualType Unqual = Context.getPointerType( 3566 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3567 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3568 } 3569 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3570 if (Ex.isInvalid()) 3571 return ExprError(); 3572 } 3573 } 3574 3575 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3576 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3577 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3578 AnalyzeDeleteExprMismatch(Result); 3579 return Result; 3580 } 3581 3582 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3583 bool IsDelete, 3584 FunctionDecl *&Operator) { 3585 3586 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3587 IsDelete ? OO_Delete : OO_New); 3588 3589 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3590 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3591 assert(!R.empty() && "implicitly declared allocation functions not found"); 3592 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 3593 3594 // We do our own custom access checks below. 3595 R.suppressDiagnostics(); 3596 3597 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end()); 3598 OverloadCandidateSet Candidates(R.getNameLoc(), 3599 OverloadCandidateSet::CSK_Normal); 3600 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3601 FnOvl != FnOvlEnd; ++FnOvl) { 3602 // Even member operator new/delete are implicitly treated as 3603 // static, so don't use AddMemberCandidate. 3604 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3605 3606 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3607 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3608 /*ExplicitTemplateArgs=*/nullptr, Args, 3609 Candidates, 3610 /*SuppressUserConversions=*/false); 3611 continue; 3612 } 3613 3614 FunctionDecl *Fn = cast<FunctionDecl>(D); 3615 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3616 /*SuppressUserConversions=*/false); 3617 } 3618 3619 SourceRange Range = TheCall->getSourceRange(); 3620 3621 // Do the resolution. 3622 OverloadCandidateSet::iterator Best; 3623 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3624 case OR_Success: { 3625 // Got one! 3626 FunctionDecl *FnDecl = Best->Function; 3627 assert(R.getNamingClass() == nullptr && 3628 "class members should not be considered"); 3629 3630 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3631 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3632 << (IsDelete ? 1 : 0) << Range; 3633 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3634 << R.getLookupName() << FnDecl->getSourceRange(); 3635 return true; 3636 } 3637 3638 Operator = FnDecl; 3639 return false; 3640 } 3641 3642 case OR_No_Viable_Function: 3643 Candidates.NoteCandidates( 3644 PartialDiagnosticAt(R.getNameLoc(), 3645 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3646 << R.getLookupName() << Range), 3647 S, OCD_AllCandidates, Args); 3648 return true; 3649 3650 case OR_Ambiguous: 3651 Candidates.NoteCandidates( 3652 PartialDiagnosticAt(R.getNameLoc(), 3653 S.PDiag(diag::err_ovl_ambiguous_call) 3654 << R.getLookupName() << Range), 3655 S, OCD_AmbiguousCandidates, Args); 3656 return true; 3657 3658 case OR_Deleted: { 3659 Candidates.NoteCandidates( 3660 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3661 << R.getLookupName() << Range), 3662 S, OCD_AllCandidates, Args); 3663 return true; 3664 } 3665 } 3666 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 3667 } 3668 3669 ExprResult 3670 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3671 bool IsDelete) { 3672 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3673 if (!getLangOpts().CPlusPlus) { 3674 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3675 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3676 << "C++"; 3677 return ExprError(); 3678 } 3679 // CodeGen assumes it can find the global new and delete to call, 3680 // so ensure that they are declared. 3681 DeclareGlobalNewDelete(); 3682 3683 FunctionDecl *OperatorNewOrDelete = nullptr; 3684 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3685 OperatorNewOrDelete)) 3686 return ExprError(); 3687 assert(OperatorNewOrDelete && "should be found"); 3688 3689 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3690 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3691 3692 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3693 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3694 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3695 InitializedEntity Entity = 3696 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3697 ExprResult Arg = PerformCopyInitialization( 3698 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3699 if (Arg.isInvalid()) 3700 return ExprError(); 3701 TheCall->setArg(i, Arg.get()); 3702 } 3703 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3704 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && 3705 "Callee expected to be implicit cast to a builtin function pointer"); 3706 Callee->setType(OperatorNewOrDelete->getType()); 3707 3708 return TheCallResult; 3709 } 3710 3711 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3712 bool IsDelete, bool CallCanBeVirtual, 3713 bool WarnOnNonAbstractTypes, 3714 SourceLocation DtorLoc) { 3715 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3716 return; 3717 3718 // C++ [expr.delete]p3: 3719 // In the first alternative (delete object), if the static type of the 3720 // object to be deleted is different from its dynamic type, the static 3721 // type shall be a base class of the dynamic type of the object to be 3722 // deleted and the static type shall have a virtual destructor or the 3723 // behavior is undefined. 3724 // 3725 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3726 // Note: a final class cannot be derived from, no issue there 3727 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3728 return; 3729 3730 // If the superclass is in a system header, there's nothing that can be done. 3731 // The `delete` (where we emit the warning) can be in a system header, 3732 // what matters for this warning is where the deleted type is defined. 3733 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3734 return; 3735 3736 QualType ClassType = dtor->getThisType()->getPointeeType(); 3737 if (PointeeRD->isAbstract()) { 3738 // If the class is abstract, we warn by default, because we're 3739 // sure the code has undefined behavior. 3740 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3741 << ClassType; 3742 } else if (WarnOnNonAbstractTypes) { 3743 // Otherwise, if this is not an array delete, it's a bit suspect, 3744 // but not necessarily wrong. 3745 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3746 << ClassType; 3747 } 3748 if (!IsDelete) { 3749 std::string TypeStr; 3750 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3751 Diag(DtorLoc, diag::note_delete_non_virtual) 3752 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3753 } 3754 } 3755 3756 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3757 SourceLocation StmtLoc, 3758 ConditionKind CK) { 3759 ExprResult E = 3760 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3761 if (E.isInvalid()) 3762 return ConditionError(); 3763 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3764 CK == ConditionKind::ConstexprIf); 3765 } 3766 3767 /// Check the use of the given variable as a C++ condition in an if, 3768 /// while, do-while, or switch statement. 3769 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3770 SourceLocation StmtLoc, 3771 ConditionKind CK) { 3772 if (ConditionVar->isInvalidDecl()) 3773 return ExprError(); 3774 3775 QualType T = ConditionVar->getType(); 3776 3777 // C++ [stmt.select]p2: 3778 // The declarator shall not specify a function or an array. 3779 if (T->isFunctionType()) 3780 return ExprError(Diag(ConditionVar->getLocation(), 3781 diag::err_invalid_use_of_function_type) 3782 << ConditionVar->getSourceRange()); 3783 else if (T->isArrayType()) 3784 return ExprError(Diag(ConditionVar->getLocation(), 3785 diag::err_invalid_use_of_array_type) 3786 << ConditionVar->getSourceRange()); 3787 3788 ExprResult Condition = BuildDeclRefExpr( 3789 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 3790 ConditionVar->getLocation()); 3791 3792 switch (CK) { 3793 case ConditionKind::Boolean: 3794 return CheckBooleanCondition(StmtLoc, Condition.get()); 3795 3796 case ConditionKind::ConstexprIf: 3797 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 3798 3799 case ConditionKind::Switch: 3800 return CheckSwitchCondition(StmtLoc, Condition.get()); 3801 } 3802 3803 llvm_unreachable("unexpected condition kind"); 3804 } 3805 3806 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 3807 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 3808 // C++ 6.4p4: 3809 // The value of a condition that is an initialized declaration in a statement 3810 // other than a switch statement is the value of the declared variable 3811 // implicitly converted to type bool. If that conversion is ill-formed, the 3812 // program is ill-formed. 3813 // The value of a condition that is an expression is the value of the 3814 // expression, implicitly converted to bool. 3815 // 3816 // FIXME: Return this value to the caller so they don't need to recompute it. 3817 llvm::APSInt Value(/*BitWidth*/1); 3818 return (IsConstexpr && !CondExpr->isValueDependent()) 3819 ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value, 3820 CCEK_ConstexprIf) 3821 : PerformContextuallyConvertToBool(CondExpr); 3822 } 3823 3824 /// Helper function to determine whether this is the (deprecated) C++ 3825 /// conversion from a string literal to a pointer to non-const char or 3826 /// non-const wchar_t (for narrow and wide string literals, 3827 /// respectively). 3828 bool 3829 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 3830 // Look inside the implicit cast, if it exists. 3831 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 3832 From = Cast->getSubExpr(); 3833 3834 // A string literal (2.13.4) that is not a wide string literal can 3835 // be converted to an rvalue of type "pointer to char"; a wide 3836 // string literal can be converted to an rvalue of type "pointer 3837 // to wchar_t" (C++ 4.2p2). 3838 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 3839 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 3840 if (const BuiltinType *ToPointeeType 3841 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 3842 // This conversion is considered only when there is an 3843 // explicit appropriate pointer target type (C++ 4.2p2). 3844 if (!ToPtrType->getPointeeType().hasQualifiers()) { 3845 switch (StrLit->getKind()) { 3846 case StringLiteral::UTF8: 3847 case StringLiteral::UTF16: 3848 case StringLiteral::UTF32: 3849 // We don't allow UTF literals to be implicitly converted 3850 break; 3851 case StringLiteral::Ascii: 3852 return (ToPointeeType->getKind() == BuiltinType::Char_U || 3853 ToPointeeType->getKind() == BuiltinType::Char_S); 3854 case StringLiteral::Wide: 3855 return Context.typesAreCompatible(Context.getWideCharType(), 3856 QualType(ToPointeeType, 0)); 3857 } 3858 } 3859 } 3860 3861 return false; 3862 } 3863 3864 static ExprResult BuildCXXCastArgument(Sema &S, 3865 SourceLocation CastLoc, 3866 QualType Ty, 3867 CastKind Kind, 3868 CXXMethodDecl *Method, 3869 DeclAccessPair FoundDecl, 3870 bool HadMultipleCandidates, 3871 Expr *From) { 3872 switch (Kind) { 3873 default: llvm_unreachable("Unhandled cast kind!"); 3874 case CK_ConstructorConversion: { 3875 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 3876 SmallVector<Expr*, 8> ConstructorArgs; 3877 3878 if (S.RequireNonAbstractType(CastLoc, Ty, 3879 diag::err_allocation_of_abstract_type)) 3880 return ExprError(); 3881 3882 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs)) 3883 return ExprError(); 3884 3885 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 3886 InitializedEntity::InitializeTemporary(Ty)); 3887 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 3888 return ExprError(); 3889 3890 ExprResult Result = S.BuildCXXConstructExpr( 3891 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 3892 ConstructorArgs, HadMultipleCandidates, 3893 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 3894 CXXConstructExpr::CK_Complete, SourceRange()); 3895 if (Result.isInvalid()) 3896 return ExprError(); 3897 3898 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 3899 } 3900 3901 case CK_UserDefinedConversion: { 3902 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); 3903 3904 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 3905 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 3906 return ExprError(); 3907 3908 // Create an implicit call expr that calls it. 3909 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 3910 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 3911 HadMultipleCandidates); 3912 if (Result.isInvalid()) 3913 return ExprError(); 3914 // Record usage of conversion in an implicit cast. 3915 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 3916 CK_UserDefinedConversion, Result.get(), 3917 nullptr, Result.get()->getValueKind()); 3918 3919 return S.MaybeBindToTemporary(Result.get()); 3920 } 3921 } 3922 } 3923 3924 /// PerformImplicitConversion - Perform an implicit conversion of the 3925 /// expression From to the type ToType using the pre-computed implicit 3926 /// conversion sequence ICS. Returns the converted 3927 /// expression. Action is the kind of conversion we're performing, 3928 /// used in the error message. 3929 ExprResult 3930 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 3931 const ImplicitConversionSequence &ICS, 3932 AssignmentAction Action, 3933 CheckedConversionKind CCK) { 3934 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 3935 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 3936 return From; 3937 3938 switch (ICS.getKind()) { 3939 case ImplicitConversionSequence::StandardConversion: { 3940 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 3941 Action, CCK); 3942 if (Res.isInvalid()) 3943 return ExprError(); 3944 From = Res.get(); 3945 break; 3946 } 3947 3948 case ImplicitConversionSequence::UserDefinedConversion: { 3949 3950 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 3951 CastKind CastKind; 3952 QualType BeforeToType; 3953 assert(FD && "no conversion function for user-defined conversion seq"); 3954 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 3955 CastKind = CK_UserDefinedConversion; 3956 3957 // If the user-defined conversion is specified by a conversion function, 3958 // the initial standard conversion sequence converts the source type to 3959 // the implicit object parameter of the conversion function. 3960 BeforeToType = Context.getTagDeclType(Conv->getParent()); 3961 } else { 3962 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 3963 CastKind = CK_ConstructorConversion; 3964 // Do no conversion if dealing with ... for the first conversion. 3965 if (!ICS.UserDefined.EllipsisConversion) { 3966 // If the user-defined conversion is specified by a constructor, the 3967 // initial standard conversion sequence converts the source type to 3968 // the type required by the argument of the constructor 3969 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 3970 } 3971 } 3972 // Watch out for ellipsis conversion. 3973 if (!ICS.UserDefined.EllipsisConversion) { 3974 ExprResult Res = 3975 PerformImplicitConversion(From, BeforeToType, 3976 ICS.UserDefined.Before, AA_Converting, 3977 CCK); 3978 if (Res.isInvalid()) 3979 return ExprError(); 3980 From = Res.get(); 3981 } 3982 3983 ExprResult CastArg = BuildCXXCastArgument( 3984 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 3985 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 3986 ICS.UserDefined.HadMultipleCandidates, From); 3987 3988 if (CastArg.isInvalid()) 3989 return ExprError(); 3990 3991 From = CastArg.get(); 3992 3993 // C++ [over.match.oper]p7: 3994 // [...] the second standard conversion sequence of a user-defined 3995 // conversion sequence is not applied. 3996 if (CCK == CCK_ForBuiltinOverloadedOp) 3997 return From; 3998 3999 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4000 AA_Converting, CCK); 4001 } 4002 4003 case ImplicitConversionSequence::AmbiguousConversion: 4004 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4005 PDiag(diag::err_typecheck_ambiguous_condition) 4006 << From->getSourceRange()); 4007 return ExprError(); 4008 4009 case ImplicitConversionSequence::EllipsisConversion: 4010 llvm_unreachable("Cannot perform an ellipsis conversion"); 4011 4012 case ImplicitConversionSequence::BadConversion: 4013 Sema::AssignConvertType ConvTy = 4014 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4015 bool Diagnosed = DiagnoseAssignmentResult( 4016 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4017 ToType, From->getType(), From, Action); 4018 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed; 4019 return ExprError(); 4020 } 4021 4022 // Everything went well. 4023 return From; 4024 } 4025 4026 /// PerformImplicitConversion - Perform an implicit conversion of the 4027 /// expression From to the type ToType by following the standard 4028 /// conversion sequence SCS. Returns the converted 4029 /// expression. Flavor is the context in which we're performing this 4030 /// conversion, for use in error messages. 4031 ExprResult 4032 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4033 const StandardConversionSequence& SCS, 4034 AssignmentAction Action, 4035 CheckedConversionKind CCK) { 4036 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 4037 4038 // Overall FIXME: we are recomputing too many types here and doing far too 4039 // much extra work. What this means is that we need to keep track of more 4040 // information that is computed when we try the implicit conversion initially, 4041 // so that we don't need to recompute anything here. 4042 QualType FromType = From->getType(); 4043 4044 if (SCS.CopyConstructor) { 4045 // FIXME: When can ToType be a reference type? 4046 assert(!ToType->isReferenceType()); 4047 if (SCS.Second == ICK_Derived_To_Base) { 4048 SmallVector<Expr*, 8> ConstructorArgs; 4049 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), 4050 From, /*FIXME:ConstructLoc*/SourceLocation(), 4051 ConstructorArgs)) 4052 return ExprError(); 4053 return BuildCXXConstructExpr( 4054 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4055 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4056 ConstructorArgs, /*HadMultipleCandidates*/ false, 4057 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4058 CXXConstructExpr::CK_Complete, SourceRange()); 4059 } 4060 return BuildCXXConstructExpr( 4061 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4062 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4063 From, /*HadMultipleCandidates*/ false, 4064 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4065 CXXConstructExpr::CK_Complete, SourceRange()); 4066 } 4067 4068 // Resolve overloaded function references. 4069 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4070 DeclAccessPair Found; 4071 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4072 true, Found); 4073 if (!Fn) 4074 return ExprError(); 4075 4076 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4077 return ExprError(); 4078 4079 From = FixOverloadedFunctionReference(From, Found, Fn); 4080 FromType = From->getType(); 4081 } 4082 4083 // If we're converting to an atomic type, first convert to the corresponding 4084 // non-atomic type. 4085 QualType ToAtomicType; 4086 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4087 ToAtomicType = ToType; 4088 ToType = ToAtomic->getValueType(); 4089 } 4090 4091 QualType InitialFromType = FromType; 4092 // Perform the first implicit conversion. 4093 switch (SCS.First) { 4094 case ICK_Identity: 4095 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4096 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4097 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4098 From, /*BasePath=*/nullptr, VK_RValue); 4099 } 4100 break; 4101 4102 case ICK_Lvalue_To_Rvalue: { 4103 assert(From->getObjectKind() != OK_ObjCProperty); 4104 ExprResult FromRes = DefaultLvalueConversion(From); 4105 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!"); 4106 From = FromRes.get(); 4107 FromType = From->getType(); 4108 break; 4109 } 4110 4111 case ICK_Array_To_Pointer: 4112 FromType = Context.getArrayDecayedType(FromType); 4113 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, 4114 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4115 break; 4116 4117 case ICK_Function_To_Pointer: 4118 FromType = Context.getPointerType(FromType); 4119 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4120 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4121 break; 4122 4123 default: 4124 llvm_unreachable("Improper first standard conversion"); 4125 } 4126 4127 // Perform the second implicit conversion 4128 switch (SCS.Second) { 4129 case ICK_Identity: 4130 // C++ [except.spec]p5: 4131 // [For] assignment to and initialization of pointers to functions, 4132 // pointers to member functions, and references to functions: the 4133 // target entity shall allow at least the exceptions allowed by the 4134 // source value in the assignment or initialization. 4135 switch (Action) { 4136 case AA_Assigning: 4137 case AA_Initializing: 4138 // Note, function argument passing and returning are initialization. 4139 case AA_Passing: 4140 case AA_Returning: 4141 case AA_Sending: 4142 case AA_Passing_CFAudited: 4143 if (CheckExceptionSpecCompatibility(From, ToType)) 4144 return ExprError(); 4145 break; 4146 4147 case AA_Casting: 4148 case AA_Converting: 4149 // Casts and implicit conversions are not initialization, so are not 4150 // checked for exception specification mismatches. 4151 break; 4152 } 4153 // Nothing else to do. 4154 break; 4155 4156 case ICK_Integral_Promotion: 4157 case ICK_Integral_Conversion: 4158 if (ToType->isBooleanType()) { 4159 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && 4160 SCS.Second == ICK_Integral_Promotion && 4161 "only enums with fixed underlying type can promote to bool"); 4162 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, 4163 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4164 } else { 4165 From = ImpCastExprToType(From, ToType, CK_IntegralCast, 4166 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4167 } 4168 break; 4169 4170 case ICK_Floating_Promotion: 4171 case ICK_Floating_Conversion: 4172 From = ImpCastExprToType(From, ToType, CK_FloatingCast, 4173 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4174 break; 4175 4176 case ICK_Complex_Promotion: 4177 case ICK_Complex_Conversion: { 4178 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4179 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4180 CastKind CK; 4181 if (FromEl->isRealFloatingType()) { 4182 if (ToEl->isRealFloatingType()) 4183 CK = CK_FloatingComplexCast; 4184 else 4185 CK = CK_FloatingComplexToIntegralComplex; 4186 } else if (ToEl->isRealFloatingType()) { 4187 CK = CK_IntegralComplexToFloatingComplex; 4188 } else { 4189 CK = CK_IntegralComplexCast; 4190 } 4191 From = ImpCastExprToType(From, ToType, CK, 4192 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4193 break; 4194 } 4195 4196 case ICK_Floating_Integral: 4197 if (ToType->isRealFloatingType()) 4198 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, 4199 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4200 else 4201 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, 4202 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4203 break; 4204 4205 case ICK_Compatible_Conversion: 4206 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4207 /*BasePath=*/nullptr, CCK).get(); 4208 break; 4209 4210 case ICK_Writeback_Conversion: 4211 case ICK_Pointer_Conversion: { 4212 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4213 // Diagnose incompatible Objective-C conversions 4214 if (Action == AA_Initializing || Action == AA_Assigning) 4215 Diag(From->getBeginLoc(), 4216 diag::ext_typecheck_convert_incompatible_pointer) 4217 << ToType << From->getType() << Action << From->getSourceRange() 4218 << 0; 4219 else 4220 Diag(From->getBeginLoc(), 4221 diag::ext_typecheck_convert_incompatible_pointer) 4222 << From->getType() << ToType << Action << From->getSourceRange() 4223 << 0; 4224 4225 if (From->getType()->isObjCObjectPointerType() && 4226 ToType->isObjCObjectPointerType()) 4227 EmitRelatedResultTypeNote(From); 4228 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4229 !CheckObjCARCUnavailableWeakConversion(ToType, 4230 From->getType())) { 4231 if (Action == AA_Initializing) 4232 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4233 else 4234 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4235 << (Action == AA_Casting) << From->getType() << ToType 4236 << From->getSourceRange(); 4237 } 4238 4239 // Defer address space conversion to the third conversion. 4240 QualType FromPteeType = From->getType()->getPointeeType(); 4241 QualType ToPteeType = ToType->getPointeeType(); 4242 QualType NewToType = ToType; 4243 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4244 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4245 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4246 NewToType = Context.getAddrSpaceQualType(NewToType, 4247 FromPteeType.getAddressSpace()); 4248 if (ToType->isObjCObjectPointerType()) 4249 NewToType = Context.getObjCObjectPointerType(NewToType); 4250 else if (ToType->isBlockPointerType()) 4251 NewToType = Context.getBlockPointerType(NewToType); 4252 else 4253 NewToType = Context.getPointerType(NewToType); 4254 } 4255 4256 CastKind Kind; 4257 CXXCastPath BasePath; 4258 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4259 return ExprError(); 4260 4261 // Make sure we extend blocks if necessary. 4262 // FIXME: doing this here is really ugly. 4263 if (Kind == CK_BlockPointerToObjCPointerCast) { 4264 ExprResult E = From; 4265 (void) PrepareCastToObjCObjectPointer(E); 4266 From = E.get(); 4267 } 4268 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4269 CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4270 From = ImpCastExprToType(From, NewToType, Kind, VK_RValue, &BasePath, CCK) 4271 .get(); 4272 break; 4273 } 4274 4275 case ICK_Pointer_Member: { 4276 CastKind Kind; 4277 CXXCastPath BasePath; 4278 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4279 return ExprError(); 4280 if (CheckExceptionSpecCompatibility(From, ToType)) 4281 return ExprError(); 4282 4283 // We may not have been able to figure out what this member pointer resolved 4284 // to up until this exact point. Attempt to lock-in it's inheritance model. 4285 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4286 (void)isCompleteType(From->getExprLoc(), From->getType()); 4287 (void)isCompleteType(From->getExprLoc(), ToType); 4288 } 4289 4290 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) 4291 .get(); 4292 break; 4293 } 4294 4295 case ICK_Boolean_Conversion: 4296 // Perform half-to-boolean conversion via float. 4297 if (From->getType()->isHalfType()) { 4298 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4299 FromType = Context.FloatTy; 4300 } 4301 4302 From = ImpCastExprToType(From, Context.BoolTy, 4303 ScalarTypeToBooleanCastKind(FromType), 4304 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4305 break; 4306 4307 case ICK_Derived_To_Base: { 4308 CXXCastPath BasePath; 4309 if (CheckDerivedToBaseConversion( 4310 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4311 From->getSourceRange(), &BasePath, CStyle)) 4312 return ExprError(); 4313 4314 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4315 CK_DerivedToBase, From->getValueKind(), 4316 &BasePath, CCK).get(); 4317 break; 4318 } 4319 4320 case ICK_Vector_Conversion: 4321 From = ImpCastExprToType(From, ToType, CK_BitCast, 4322 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4323 break; 4324 4325 case ICK_Vector_Splat: { 4326 // Vector splat from any arithmetic type to a vector. 4327 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4328 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue, 4329 /*BasePath=*/nullptr, CCK).get(); 4330 break; 4331 } 4332 4333 case ICK_Complex_Real: 4334 // Case 1. x -> _Complex y 4335 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4336 QualType ElType = ToComplex->getElementType(); 4337 bool isFloatingComplex = ElType->isRealFloatingType(); 4338 4339 // x -> y 4340 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4341 // do nothing 4342 } else if (From->getType()->isRealFloatingType()) { 4343 From = ImpCastExprToType(From, ElType, 4344 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4345 } else { 4346 assert(From->getType()->isIntegerType()); 4347 From = ImpCastExprToType(From, ElType, 4348 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4349 } 4350 // y -> _Complex y 4351 From = ImpCastExprToType(From, ToType, 4352 isFloatingComplex ? CK_FloatingRealToComplex 4353 : CK_IntegralRealToComplex).get(); 4354 4355 // Case 2. _Complex x -> y 4356 } else { 4357 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4358 QualType ElType = FromComplex->getElementType(); 4359 bool isFloatingComplex = ElType->isRealFloatingType(); 4360 4361 // _Complex x -> x 4362 From = ImpCastExprToType(From, ElType, 4363 isFloatingComplex ? CK_FloatingComplexToReal 4364 : CK_IntegralComplexToReal, 4365 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4366 4367 // x -> y 4368 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4369 // do nothing 4370 } else if (ToType->isRealFloatingType()) { 4371 From = ImpCastExprToType(From, ToType, 4372 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating, 4373 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4374 } else { 4375 assert(ToType->isIntegerType()); 4376 From = ImpCastExprToType(From, ToType, 4377 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast, 4378 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4379 } 4380 } 4381 break; 4382 4383 case ICK_Block_Pointer_Conversion: { 4384 LangAS AddrSpaceL = 4385 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4386 LangAS AddrSpaceR = 4387 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4388 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && 4389 "Invalid cast"); 4390 CastKind Kind = 4391 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4392 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4393 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4394 break; 4395 } 4396 4397 case ICK_TransparentUnionConversion: { 4398 ExprResult FromRes = From; 4399 Sema::AssignConvertType ConvTy = 4400 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4401 if (FromRes.isInvalid()) 4402 return ExprError(); 4403 From = FromRes.get(); 4404 assert ((ConvTy == Sema::Compatible) && 4405 "Improper transparent union conversion"); 4406 (void)ConvTy; 4407 break; 4408 } 4409 4410 case ICK_Zero_Event_Conversion: 4411 case ICK_Zero_Queue_Conversion: 4412 From = ImpCastExprToType(From, ToType, 4413 CK_ZeroToOCLOpaqueType, 4414 From->getValueKind()).get(); 4415 break; 4416 4417 case ICK_Lvalue_To_Rvalue: 4418 case ICK_Array_To_Pointer: 4419 case ICK_Function_To_Pointer: 4420 case ICK_Function_Conversion: 4421 case ICK_Qualification: 4422 case ICK_Num_Conversion_Kinds: 4423 case ICK_C_Only_Conversion: 4424 case ICK_Incompatible_Pointer_Conversion: 4425 llvm_unreachable("Improper second standard conversion"); 4426 } 4427 4428 switch (SCS.Third) { 4429 case ICK_Identity: 4430 // Nothing to do. 4431 break; 4432 4433 case ICK_Function_Conversion: 4434 // If both sides are functions (or pointers/references to them), there could 4435 // be incompatible exception declarations. 4436 if (CheckExceptionSpecCompatibility(From, ToType)) 4437 return ExprError(); 4438 4439 From = ImpCastExprToType(From, ToType, CK_NoOp, 4440 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4441 break; 4442 4443 case ICK_Qualification: { 4444 ExprValueKind VK = From->getValueKind(); 4445 CastKind CK = CK_NoOp; 4446 4447 if (ToType->isReferenceType() && 4448 ToType->getPointeeType().getAddressSpace() != 4449 From->getType().getAddressSpace()) 4450 CK = CK_AddressSpaceConversion; 4451 4452 if (ToType->isPointerType() && 4453 ToType->getPointeeType().getAddressSpace() != 4454 From->getType()->getPointeeType().getAddressSpace()) 4455 CK = CK_AddressSpaceConversion; 4456 4457 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4458 /*BasePath=*/nullptr, CCK) 4459 .get(); 4460 4461 if (SCS.DeprecatedStringLiteralToCharPtr && 4462 !getLangOpts().WritableStrings) { 4463 Diag(From->getBeginLoc(), 4464 getLangOpts().CPlusPlus11 4465 ? diag::ext_deprecated_string_literal_conversion 4466 : diag::warn_deprecated_string_literal_conversion) 4467 << ToType.getNonReferenceType(); 4468 } 4469 4470 break; 4471 } 4472 4473 default: 4474 llvm_unreachable("Improper third standard conversion"); 4475 } 4476 4477 // If this conversion sequence involved a scalar -> atomic conversion, perform 4478 // that conversion now. 4479 if (!ToAtomicType.isNull()) { 4480 assert(Context.hasSameType( 4481 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); 4482 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4483 VK_RValue, nullptr, CCK).get(); 4484 } 4485 4486 // Materialize a temporary if we're implicitly converting to a reference 4487 // type. This is not required by the C++ rules but is necessary to maintain 4488 // AST invariants. 4489 if (ToType->isReferenceType() && From->isRValue()) { 4490 ExprResult Res = TemporaryMaterializationConversion(From); 4491 if (Res.isInvalid()) 4492 return ExprError(); 4493 From = Res.get(); 4494 } 4495 4496 // If this conversion sequence succeeded and involved implicitly converting a 4497 // _Nullable type to a _Nonnull one, complain. 4498 if (!isCast(CCK)) 4499 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4500 From->getBeginLoc()); 4501 4502 return From; 4503 } 4504 4505 /// Check the completeness of a type in a unary type trait. 4506 /// 4507 /// If the particular type trait requires a complete type, tries to complete 4508 /// it. If completing the type fails, a diagnostic is emitted and false 4509 /// returned. If completing the type succeeds or no completion was required, 4510 /// returns true. 4511 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4512 SourceLocation Loc, 4513 QualType ArgTy) { 4514 // C++0x [meta.unary.prop]p3: 4515 // For all of the class templates X declared in this Clause, instantiating 4516 // that template with a template argument that is a class template 4517 // specialization may result in the implicit instantiation of the template 4518 // argument if and only if the semantics of X require that the argument 4519 // must be a complete type. 4520 // We apply this rule to all the type trait expressions used to implement 4521 // these class templates. We also try to follow any GCC documented behavior 4522 // in these expressions to ensure portability of standard libraries. 4523 switch (UTT) { 4524 default: llvm_unreachable("not a UTT"); 4525 // is_complete_type somewhat obviously cannot require a complete type. 4526 case UTT_IsCompleteType: 4527 // Fall-through 4528 4529 // These traits are modeled on the type predicates in C++0x 4530 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4531 // requiring a complete type, as whether or not they return true cannot be 4532 // impacted by the completeness of the type. 4533 case UTT_IsVoid: 4534 case UTT_IsIntegral: 4535 case UTT_IsFloatingPoint: 4536 case UTT_IsArray: 4537 case UTT_IsPointer: 4538 case UTT_IsLvalueReference: 4539 case UTT_IsRvalueReference: 4540 case UTT_IsMemberFunctionPointer: 4541 case UTT_IsMemberObjectPointer: 4542 case UTT_IsEnum: 4543 case UTT_IsUnion: 4544 case UTT_IsClass: 4545 case UTT_IsFunction: 4546 case UTT_IsReference: 4547 case UTT_IsArithmetic: 4548 case UTT_IsFundamental: 4549 case UTT_IsObject: 4550 case UTT_IsScalar: 4551 case UTT_IsCompound: 4552 case UTT_IsMemberPointer: 4553 // Fall-through 4554 4555 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4556 // which requires some of its traits to have the complete type. However, 4557 // the completeness of the type cannot impact these traits' semantics, and 4558 // so they don't require it. This matches the comments on these traits in 4559 // Table 49. 4560 case UTT_IsConst: 4561 case UTT_IsVolatile: 4562 case UTT_IsSigned: 4563 case UTT_IsUnsigned: 4564 4565 // This type trait always returns false, checking the type is moot. 4566 case UTT_IsInterfaceClass: 4567 return true; 4568 4569 // C++14 [meta.unary.prop]: 4570 // If T is a non-union class type, T shall be a complete type. 4571 case UTT_IsEmpty: 4572 case UTT_IsPolymorphic: 4573 case UTT_IsAbstract: 4574 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4575 if (!RD->isUnion()) 4576 return !S.RequireCompleteType( 4577 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4578 return true; 4579 4580 // C++14 [meta.unary.prop]: 4581 // If T is a class type, T shall be a complete type. 4582 case UTT_IsFinal: 4583 case UTT_IsSealed: 4584 if (ArgTy->getAsCXXRecordDecl()) 4585 return !S.RequireCompleteType( 4586 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4587 return true; 4588 4589 // C++1z [meta.unary.prop]: 4590 // remove_all_extents_t<T> shall be a complete type or cv void. 4591 case UTT_IsAggregate: 4592 case UTT_IsTrivial: 4593 case UTT_IsTriviallyCopyable: 4594 case UTT_IsStandardLayout: 4595 case UTT_IsPOD: 4596 case UTT_IsLiteral: 4597 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4598 // or an array of unknown bound. But GCC actually imposes the same constraints 4599 // as above. 4600 case UTT_HasNothrowAssign: 4601 case UTT_HasNothrowMoveAssign: 4602 case UTT_HasNothrowConstructor: 4603 case UTT_HasNothrowCopy: 4604 case UTT_HasTrivialAssign: 4605 case UTT_HasTrivialMoveAssign: 4606 case UTT_HasTrivialDefaultConstructor: 4607 case UTT_HasTrivialMoveConstructor: 4608 case UTT_HasTrivialCopy: 4609 case UTT_HasTrivialDestructor: 4610 case UTT_HasVirtualDestructor: 4611 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4612 LLVM_FALLTHROUGH; 4613 4614 // C++1z [meta.unary.prop]: 4615 // T shall be a complete type, cv void, or an array of unknown bound. 4616 case UTT_IsDestructible: 4617 case UTT_IsNothrowDestructible: 4618 case UTT_IsTriviallyDestructible: 4619 case UTT_HasUniqueObjectRepresentations: 4620 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4621 return true; 4622 4623 return !S.RequireCompleteType( 4624 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4625 } 4626 } 4627 4628 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 4629 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 4630 bool (CXXRecordDecl::*HasTrivial)() const, 4631 bool (CXXRecordDecl::*HasNonTrivial)() const, 4632 bool (CXXMethodDecl::*IsDesiredOp)() const) 4633 { 4634 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4635 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 4636 return true; 4637 4638 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 4639 DeclarationNameInfo NameInfo(Name, KeyLoc); 4640 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 4641 if (Self.LookupQualifiedName(Res, RD)) { 4642 bool FoundOperator = false; 4643 Res.suppressDiagnostics(); 4644 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 4645 Op != OpEnd; ++Op) { 4646 if (isa<FunctionTemplateDecl>(*Op)) 4647 continue; 4648 4649 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 4650 if((Operator->*IsDesiredOp)()) { 4651 FoundOperator = true; 4652 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 4653 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4654 if (!CPT || !CPT->isNothrow()) 4655 return false; 4656 } 4657 } 4658 return FoundOperator; 4659 } 4660 return false; 4661 } 4662 4663 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 4664 SourceLocation KeyLoc, QualType T) { 4665 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 4666 4667 ASTContext &C = Self.Context; 4668 switch(UTT) { 4669 default: llvm_unreachable("not a UTT"); 4670 // Type trait expressions corresponding to the primary type category 4671 // predicates in C++0x [meta.unary.cat]. 4672 case UTT_IsVoid: 4673 return T->isVoidType(); 4674 case UTT_IsIntegral: 4675 return T->isIntegralType(C); 4676 case UTT_IsFloatingPoint: 4677 return T->isFloatingType(); 4678 case UTT_IsArray: 4679 return T->isArrayType(); 4680 case UTT_IsPointer: 4681 return T->isAnyPointerType(); 4682 case UTT_IsLvalueReference: 4683 return T->isLValueReferenceType(); 4684 case UTT_IsRvalueReference: 4685 return T->isRValueReferenceType(); 4686 case UTT_IsMemberFunctionPointer: 4687 return T->isMemberFunctionPointerType(); 4688 case UTT_IsMemberObjectPointer: 4689 return T->isMemberDataPointerType(); 4690 case UTT_IsEnum: 4691 return T->isEnumeralType(); 4692 case UTT_IsUnion: 4693 return T->isUnionType(); 4694 case UTT_IsClass: 4695 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 4696 case UTT_IsFunction: 4697 return T->isFunctionType(); 4698 4699 // Type trait expressions which correspond to the convenient composition 4700 // predicates in C++0x [meta.unary.comp]. 4701 case UTT_IsReference: 4702 return T->isReferenceType(); 4703 case UTT_IsArithmetic: 4704 return T->isArithmeticType() && !T->isEnumeralType(); 4705 case UTT_IsFundamental: 4706 return T->isFundamentalType(); 4707 case UTT_IsObject: 4708 return T->isObjectType(); 4709 case UTT_IsScalar: 4710 // Note: semantic analysis depends on Objective-C lifetime types to be 4711 // considered scalar types. However, such types do not actually behave 4712 // like scalar types at run time (since they may require retain/release 4713 // operations), so we report them as non-scalar. 4714 if (T->isObjCLifetimeType()) { 4715 switch (T.getObjCLifetime()) { 4716 case Qualifiers::OCL_None: 4717 case Qualifiers::OCL_ExplicitNone: 4718 return true; 4719 4720 case Qualifiers::OCL_Strong: 4721 case Qualifiers::OCL_Weak: 4722 case Qualifiers::OCL_Autoreleasing: 4723 return false; 4724 } 4725 } 4726 4727 return T->isScalarType(); 4728 case UTT_IsCompound: 4729 return T->isCompoundType(); 4730 case UTT_IsMemberPointer: 4731 return T->isMemberPointerType(); 4732 4733 // Type trait expressions which correspond to the type property predicates 4734 // in C++0x [meta.unary.prop]. 4735 case UTT_IsConst: 4736 return T.isConstQualified(); 4737 case UTT_IsVolatile: 4738 return T.isVolatileQualified(); 4739 case UTT_IsTrivial: 4740 return T.isTrivialType(C); 4741 case UTT_IsTriviallyCopyable: 4742 return T.isTriviallyCopyableType(C); 4743 case UTT_IsStandardLayout: 4744 return T->isStandardLayoutType(); 4745 case UTT_IsPOD: 4746 return T.isPODType(C); 4747 case UTT_IsLiteral: 4748 return T->isLiteralType(C); 4749 case UTT_IsEmpty: 4750 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4751 return !RD->isUnion() && RD->isEmpty(); 4752 return false; 4753 case UTT_IsPolymorphic: 4754 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4755 return !RD->isUnion() && RD->isPolymorphic(); 4756 return false; 4757 case UTT_IsAbstract: 4758 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4759 return !RD->isUnion() && RD->isAbstract(); 4760 return false; 4761 case UTT_IsAggregate: 4762 // Report vector extensions and complex types as aggregates because they 4763 // support aggregate initialization. GCC mirrors this behavior for vectors 4764 // but not _Complex. 4765 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 4766 T->isAnyComplexType(); 4767 // __is_interface_class only returns true when CL is invoked in /CLR mode and 4768 // even then only when it is used with the 'interface struct ...' syntax 4769 // Clang doesn't support /CLR which makes this type trait moot. 4770 case UTT_IsInterfaceClass: 4771 return false; 4772 case UTT_IsFinal: 4773 case UTT_IsSealed: 4774 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4775 return RD->hasAttr<FinalAttr>(); 4776 return false; 4777 case UTT_IsSigned: 4778 // Enum types should always return false. 4779 // Floating points should always return true. 4780 return !T->isEnumeralType() && (T->isFloatingType() || T->isSignedIntegerType()); 4781 case UTT_IsUnsigned: 4782 return T->isUnsignedIntegerType(); 4783 4784 // Type trait expressions which query classes regarding their construction, 4785 // destruction, and copying. Rather than being based directly on the 4786 // related type predicates in the standard, they are specified by both 4787 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 4788 // specifications. 4789 // 4790 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 4791 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4792 // 4793 // Note that these builtins do not behave as documented in g++: if a class 4794 // has both a trivial and a non-trivial special member of a particular kind, 4795 // they return false! For now, we emulate this behavior. 4796 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 4797 // does not correctly compute triviality in the presence of multiple special 4798 // members of the same kind. Revisit this once the g++ bug is fixed. 4799 case UTT_HasTrivialDefaultConstructor: 4800 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4801 // If __is_pod (type) is true then the trait is true, else if type is 4802 // a cv class or union type (or array thereof) with a trivial default 4803 // constructor ([class.ctor]) then the trait is true, else it is false. 4804 if (T.isPODType(C)) 4805 return true; 4806 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4807 return RD->hasTrivialDefaultConstructor() && 4808 !RD->hasNonTrivialDefaultConstructor(); 4809 return false; 4810 case UTT_HasTrivialMoveConstructor: 4811 // This trait is implemented by MSVC 2012 and needed to parse the 4812 // standard library headers. Specifically this is used as the logic 4813 // behind std::is_trivially_move_constructible (20.9.4.3). 4814 if (T.isPODType(C)) 4815 return true; 4816 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4817 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 4818 return false; 4819 case UTT_HasTrivialCopy: 4820 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4821 // If __is_pod (type) is true or type is a reference type then 4822 // the trait is true, else if type is a cv class or union type 4823 // with a trivial copy constructor ([class.copy]) then the trait 4824 // is true, else it is false. 4825 if (T.isPODType(C) || T->isReferenceType()) 4826 return true; 4827 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4828 return RD->hasTrivialCopyConstructor() && 4829 !RD->hasNonTrivialCopyConstructor(); 4830 return false; 4831 case UTT_HasTrivialMoveAssign: 4832 // This trait is implemented by MSVC 2012 and needed to parse the 4833 // standard library headers. Specifically it is used as the logic 4834 // behind std::is_trivially_move_assignable (20.9.4.3) 4835 if (T.isPODType(C)) 4836 return true; 4837 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4838 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 4839 return false; 4840 case UTT_HasTrivialAssign: 4841 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4842 // If type is const qualified or is a reference type then the 4843 // trait is false. Otherwise if __is_pod (type) is true then the 4844 // trait is true, else if type is a cv class or union type with 4845 // a trivial copy assignment ([class.copy]) then the trait is 4846 // true, else it is false. 4847 // Note: the const and reference restrictions are interesting, 4848 // given that const and reference members don't prevent a class 4849 // from having a trivial copy assignment operator (but do cause 4850 // errors if the copy assignment operator is actually used, q.v. 4851 // [class.copy]p12). 4852 4853 if (T.isConstQualified()) 4854 return false; 4855 if (T.isPODType(C)) 4856 return true; 4857 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4858 return RD->hasTrivialCopyAssignment() && 4859 !RD->hasNonTrivialCopyAssignment(); 4860 return false; 4861 case UTT_IsDestructible: 4862 case UTT_IsTriviallyDestructible: 4863 case UTT_IsNothrowDestructible: 4864 // C++14 [meta.unary.prop]: 4865 // For reference types, is_destructible<T>::value is true. 4866 if (T->isReferenceType()) 4867 return true; 4868 4869 // Objective-C++ ARC: autorelease types don't require destruction. 4870 if (T->isObjCLifetimeType() && 4871 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 4872 return true; 4873 4874 // C++14 [meta.unary.prop]: 4875 // For incomplete types and function types, is_destructible<T>::value is 4876 // false. 4877 if (T->isIncompleteType() || T->isFunctionType()) 4878 return false; 4879 4880 // A type that requires destruction (via a non-trivial destructor or ARC 4881 // lifetime semantics) is not trivially-destructible. 4882 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 4883 return false; 4884 4885 // C++14 [meta.unary.prop]: 4886 // For object types and given U equal to remove_all_extents_t<T>, if the 4887 // expression std::declval<U&>().~U() is well-formed when treated as an 4888 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 4889 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 4890 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 4891 if (!Destructor) 4892 return false; 4893 // C++14 [dcl.fct.def.delete]p2: 4894 // A program that refers to a deleted function implicitly or 4895 // explicitly, other than to declare it, is ill-formed. 4896 if (Destructor->isDeleted()) 4897 return false; 4898 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 4899 return false; 4900 if (UTT == UTT_IsNothrowDestructible) { 4901 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 4902 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4903 if (!CPT || !CPT->isNothrow()) 4904 return false; 4905 } 4906 } 4907 return true; 4908 4909 case UTT_HasTrivialDestructor: 4910 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 4911 // If __is_pod (type) is true or type is a reference type 4912 // then the trait is true, else if type is a cv class or union 4913 // type (or array thereof) with a trivial destructor 4914 // ([class.dtor]) then the trait is true, else it is 4915 // false. 4916 if (T.isPODType(C) || T->isReferenceType()) 4917 return true; 4918 4919 // Objective-C++ ARC: autorelease types don't require destruction. 4920 if (T->isObjCLifetimeType() && 4921 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 4922 return true; 4923 4924 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4925 return RD->hasTrivialDestructor(); 4926 return false; 4927 // TODO: Propagate nothrowness for implicitly declared special members. 4928 case UTT_HasNothrowAssign: 4929 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4930 // If type is const qualified or is a reference type then the 4931 // trait is false. Otherwise if __has_trivial_assign (type) 4932 // is true then the trait is true, else if type is a cv class 4933 // or union type with copy assignment operators that are known 4934 // not to throw an exception then the trait is true, else it is 4935 // false. 4936 if (C.getBaseElementType(T).isConstQualified()) 4937 return false; 4938 if (T->isReferenceType()) 4939 return false; 4940 if (T.isPODType(C) || T->isObjCLifetimeType()) 4941 return true; 4942 4943 if (const RecordType *RT = T->getAs<RecordType>()) 4944 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 4945 &CXXRecordDecl::hasTrivialCopyAssignment, 4946 &CXXRecordDecl::hasNonTrivialCopyAssignment, 4947 &CXXMethodDecl::isCopyAssignmentOperator); 4948 return false; 4949 case UTT_HasNothrowMoveAssign: 4950 // This trait is implemented by MSVC 2012 and needed to parse the 4951 // standard library headers. Specifically this is used as the logic 4952 // behind std::is_nothrow_move_assignable (20.9.4.3). 4953 if (T.isPODType(C)) 4954 return true; 4955 4956 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 4957 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 4958 &CXXRecordDecl::hasTrivialMoveAssignment, 4959 &CXXRecordDecl::hasNonTrivialMoveAssignment, 4960 &CXXMethodDecl::isMoveAssignmentOperator); 4961 return false; 4962 case UTT_HasNothrowCopy: 4963 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4964 // If __has_trivial_copy (type) is true then the trait is true, else 4965 // if type is a cv class or union type with copy constructors that are 4966 // known not to throw an exception then the trait is true, else it is 4967 // false. 4968 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 4969 return true; 4970 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 4971 if (RD->hasTrivialCopyConstructor() && 4972 !RD->hasNonTrivialCopyConstructor()) 4973 return true; 4974 4975 bool FoundConstructor = false; 4976 unsigned FoundTQs; 4977 for (const auto *ND : Self.LookupConstructors(RD)) { 4978 // A template constructor is never a copy constructor. 4979 // FIXME: However, it may actually be selected at the actual overload 4980 // resolution point. 4981 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 4982 continue; 4983 // UsingDecl itself is not a constructor 4984 if (isa<UsingDecl>(ND)) 4985 continue; 4986 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 4987 if (Constructor->isCopyConstructor(FoundTQs)) { 4988 FoundConstructor = true; 4989 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 4990 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4991 if (!CPT) 4992 return false; 4993 // TODO: check whether evaluating default arguments can throw. 4994 // For now, we'll be conservative and assume that they can throw. 4995 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 4996 return false; 4997 } 4998 } 4999 5000 return FoundConstructor; 5001 } 5002 return false; 5003 case UTT_HasNothrowConstructor: 5004 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5005 // If __has_trivial_constructor (type) is true then the trait is 5006 // true, else if type is a cv class or union type (or array 5007 // thereof) with a default constructor that is known not to 5008 // throw an exception then the trait is true, else it is false. 5009 if (T.isPODType(C) || T->isObjCLifetimeType()) 5010 return true; 5011 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5012 if (RD->hasTrivialDefaultConstructor() && 5013 !RD->hasNonTrivialDefaultConstructor()) 5014 return true; 5015 5016 bool FoundConstructor = false; 5017 for (const auto *ND : Self.LookupConstructors(RD)) { 5018 // FIXME: In C++0x, a constructor template can be a default constructor. 5019 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5020 continue; 5021 // UsingDecl itself is not a constructor 5022 if (isa<UsingDecl>(ND)) 5023 continue; 5024 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5025 if (Constructor->isDefaultConstructor()) { 5026 FoundConstructor = true; 5027 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5028 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5029 if (!CPT) 5030 return false; 5031 // FIXME: check whether evaluating default arguments can throw. 5032 // For now, we'll be conservative and assume that they can throw. 5033 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5034 return false; 5035 } 5036 } 5037 return FoundConstructor; 5038 } 5039 return false; 5040 case UTT_HasVirtualDestructor: 5041 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5042 // If type is a class type with a virtual destructor ([class.dtor]) 5043 // then the trait is true, else it is false. 5044 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5045 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5046 return Destructor->isVirtual(); 5047 return false; 5048 5049 // These type trait expressions are modeled on the specifications for the 5050 // Embarcadero C++0x type trait functions: 5051 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5052 case UTT_IsCompleteType: 5053 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5054 // Returns True if and only if T is a complete type at the point of the 5055 // function call. 5056 return !T->isIncompleteType(); 5057 case UTT_HasUniqueObjectRepresentations: 5058 return C.hasUniqueObjectRepresentations(T); 5059 } 5060 } 5061 5062 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5063 QualType RhsT, SourceLocation KeyLoc); 5064 5065 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 5066 ArrayRef<TypeSourceInfo *> Args, 5067 SourceLocation RParenLoc) { 5068 if (Kind <= UTT_Last) 5069 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 5070 5071 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible 5072 // traits to avoid duplication. 5073 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) 5074 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 5075 Args[1]->getType(), RParenLoc); 5076 5077 switch (Kind) { 5078 case clang::BTT_ReferenceBindsToTemporary: 5079 case clang::TT_IsConstructible: 5080 case clang::TT_IsNothrowConstructible: 5081 case clang::TT_IsTriviallyConstructible: { 5082 // C++11 [meta.unary.prop]: 5083 // is_trivially_constructible is defined as: 5084 // 5085 // is_constructible<T, Args...>::value is true and the variable 5086 // definition for is_constructible, as defined below, is known to call 5087 // no operation that is not trivial. 5088 // 5089 // The predicate condition for a template specialization 5090 // is_constructible<T, Args...> shall be satisfied if and only if the 5091 // following variable definition would be well-formed for some invented 5092 // variable t: 5093 // 5094 // T t(create<Args>()...); 5095 assert(!Args.empty()); 5096 5097 // Precondition: T and all types in the parameter pack Args shall be 5098 // complete types, (possibly cv-qualified) void, or arrays of 5099 // unknown bound. 5100 for (const auto *TSI : Args) { 5101 QualType ArgTy = TSI->getType(); 5102 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5103 continue; 5104 5105 if (S.RequireCompleteType(KWLoc, ArgTy, 5106 diag::err_incomplete_type_used_in_type_trait_expr)) 5107 return false; 5108 } 5109 5110 // Make sure the first argument is not incomplete nor a function type. 5111 QualType T = Args[0]->getType(); 5112 if (T->isIncompleteType() || T->isFunctionType()) 5113 return false; 5114 5115 // Make sure the first argument is not an abstract type. 5116 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5117 if (RD && RD->isAbstract()) 5118 return false; 5119 5120 llvm::BumpPtrAllocator OpaqueExprAllocator; 5121 SmallVector<Expr *, 2> ArgExprs; 5122 ArgExprs.reserve(Args.size() - 1); 5123 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5124 QualType ArgTy = Args[I]->getType(); 5125 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5126 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5127 ArgExprs.push_back( 5128 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5129 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5130 ArgTy.getNonLValueExprType(S.Context), 5131 Expr::getValueKindForType(ArgTy))); 5132 } 5133 5134 // Perform the initialization in an unevaluated context within a SFINAE 5135 // trap at translation unit scope. 5136 EnterExpressionEvaluationContext Unevaluated( 5137 S, Sema::ExpressionEvaluationContext::Unevaluated); 5138 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5139 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5140 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0])); 5141 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 5142 RParenLoc)); 5143 InitializationSequence Init(S, To, InitKind, ArgExprs); 5144 if (Init.Failed()) 5145 return false; 5146 5147 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5148 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5149 return false; 5150 5151 if (Kind == clang::TT_IsConstructible) 5152 return true; 5153 5154 if (Kind == clang::BTT_ReferenceBindsToTemporary) { 5155 if (!T->isReferenceType()) 5156 return false; 5157 5158 return !Init.isDirectReferenceBinding(); 5159 } 5160 5161 if (Kind == clang::TT_IsNothrowConstructible) 5162 return S.canThrow(Result.get()) == CT_Cannot; 5163 5164 if (Kind == clang::TT_IsTriviallyConstructible) { 5165 // Under Objective-C ARC and Weak, if the destination has non-trivial 5166 // Objective-C lifetime, this is a non-trivial construction. 5167 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5168 return false; 5169 5170 // The initialization succeeded; now make sure there are no non-trivial 5171 // calls. 5172 return !Result.get()->hasNonTrivialCall(S.Context); 5173 } 5174 5175 llvm_unreachable("unhandled type trait"); 5176 return false; 5177 } 5178 default: llvm_unreachable("not a TT"); 5179 } 5180 5181 return false; 5182 } 5183 5184 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5185 ArrayRef<TypeSourceInfo *> Args, 5186 SourceLocation RParenLoc) { 5187 QualType ResultType = Context.getLogicalOperationType(); 5188 5189 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5190 *this, Kind, KWLoc, Args[0]->getType())) 5191 return ExprError(); 5192 5193 bool Dependent = false; 5194 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5195 if (Args[I]->getType()->isDependentType()) { 5196 Dependent = true; 5197 break; 5198 } 5199 } 5200 5201 bool Result = false; 5202 if (!Dependent) 5203 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 5204 5205 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 5206 RParenLoc, Result); 5207 } 5208 5209 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5210 ArrayRef<ParsedType> Args, 5211 SourceLocation RParenLoc) { 5212 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5213 ConvertedArgs.reserve(Args.size()); 5214 5215 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5216 TypeSourceInfo *TInfo; 5217 QualType T = GetTypeFromParser(Args[I], &TInfo); 5218 if (!TInfo) 5219 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5220 5221 ConvertedArgs.push_back(TInfo); 5222 } 5223 5224 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5225 } 5226 5227 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5228 QualType RhsT, SourceLocation KeyLoc) { 5229 assert(!LhsT->isDependentType() && !RhsT->isDependentType() && 5230 "Cannot evaluate traits of dependent types"); 5231 5232 switch(BTT) { 5233 case BTT_IsBaseOf: { 5234 // C++0x [meta.rel]p2 5235 // Base is a base class of Derived without regard to cv-qualifiers or 5236 // Base and Derived are not unions and name the same class type without 5237 // regard to cv-qualifiers. 5238 5239 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5240 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5241 if (!rhsRecord || !lhsRecord) { 5242 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5243 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5244 if (!LHSObjTy || !RHSObjTy) 5245 return false; 5246 5247 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5248 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5249 if (!BaseInterface || !DerivedInterface) 5250 return false; 5251 5252 if (Self.RequireCompleteType( 5253 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5254 return false; 5255 5256 return BaseInterface->isSuperClassOf(DerivedInterface); 5257 } 5258 5259 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) 5260 == (lhsRecord == rhsRecord)); 5261 5262 // Unions are never base classes, and never have base classes. 5263 // It doesn't matter if they are complete or not. See PR#41843 5264 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5265 return false; 5266 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5267 return false; 5268 5269 if (lhsRecord == rhsRecord) 5270 return true; 5271 5272 // C++0x [meta.rel]p2: 5273 // If Base and Derived are class types and are different types 5274 // (ignoring possible cv-qualifiers) then Derived shall be a 5275 // complete type. 5276 if (Self.RequireCompleteType(KeyLoc, RhsT, 5277 diag::err_incomplete_type_used_in_type_trait_expr)) 5278 return false; 5279 5280 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5281 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5282 } 5283 case BTT_IsSame: 5284 return Self.Context.hasSameType(LhsT, RhsT); 5285 case BTT_TypeCompatible: { 5286 // GCC ignores cv-qualifiers on arrays for this builtin. 5287 Qualifiers LhsQuals, RhsQuals; 5288 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5289 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5290 return Self.Context.typesAreCompatible(Lhs, Rhs); 5291 } 5292 case BTT_IsConvertible: 5293 case BTT_IsConvertibleTo: { 5294 // C++0x [meta.rel]p4: 5295 // Given the following function prototype: 5296 // 5297 // template <class T> 5298 // typename add_rvalue_reference<T>::type create(); 5299 // 5300 // the predicate condition for a template specialization 5301 // is_convertible<From, To> shall be satisfied if and only if 5302 // the return expression in the following code would be 5303 // well-formed, including any implicit conversions to the return 5304 // type of the function: 5305 // 5306 // To test() { 5307 // return create<From>(); 5308 // } 5309 // 5310 // Access checking is performed as if in a context unrelated to To and 5311 // From. Only the validity of the immediate context of the expression 5312 // of the return-statement (including conversions to the return type) 5313 // is considered. 5314 // 5315 // We model the initialization as a copy-initialization of a temporary 5316 // of the appropriate type, which for this expression is identical to the 5317 // return statement (since NRVO doesn't apply). 5318 5319 // Functions aren't allowed to return function or array types. 5320 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5321 return false; 5322 5323 // A return statement in a void function must have void type. 5324 if (RhsT->isVoidType()) 5325 return LhsT->isVoidType(); 5326 5327 // A function definition requires a complete, non-abstract return type. 5328 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5329 return false; 5330 5331 // Compute the result of add_rvalue_reference. 5332 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5333 LhsT = Self.Context.getRValueReferenceType(LhsT); 5334 5335 // Build a fake source and destination for initialization. 5336 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5337 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5338 Expr::getValueKindForType(LhsT)); 5339 Expr *FromPtr = &From; 5340 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5341 SourceLocation())); 5342 5343 // Perform the initialization in an unevaluated context within a SFINAE 5344 // trap at translation unit scope. 5345 EnterExpressionEvaluationContext Unevaluated( 5346 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5347 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5348 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5349 InitializationSequence Init(Self, To, Kind, FromPtr); 5350 if (Init.Failed()) 5351 return false; 5352 5353 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5354 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5355 } 5356 5357 case BTT_IsAssignable: 5358 case BTT_IsNothrowAssignable: 5359 case BTT_IsTriviallyAssignable: { 5360 // C++11 [meta.unary.prop]p3: 5361 // is_trivially_assignable is defined as: 5362 // is_assignable<T, U>::value is true and the assignment, as defined by 5363 // is_assignable, is known to call no operation that is not trivial 5364 // 5365 // is_assignable is defined as: 5366 // The expression declval<T>() = declval<U>() is well-formed when 5367 // treated as an unevaluated operand (Clause 5). 5368 // 5369 // For both, T and U shall be complete types, (possibly cv-qualified) 5370 // void, or arrays of unknown bound. 5371 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5372 Self.RequireCompleteType(KeyLoc, LhsT, 5373 diag::err_incomplete_type_used_in_type_trait_expr)) 5374 return false; 5375 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5376 Self.RequireCompleteType(KeyLoc, RhsT, 5377 diag::err_incomplete_type_used_in_type_trait_expr)) 5378 return false; 5379 5380 // cv void is never assignable. 5381 if (LhsT->isVoidType() || RhsT->isVoidType()) 5382 return false; 5383 5384 // Build expressions that emulate the effect of declval<T>() and 5385 // declval<U>(). 5386 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5387 LhsT = Self.Context.getRValueReferenceType(LhsT); 5388 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5389 RhsT = Self.Context.getRValueReferenceType(RhsT); 5390 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5391 Expr::getValueKindForType(LhsT)); 5392 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5393 Expr::getValueKindForType(RhsT)); 5394 5395 // Attempt the assignment in an unevaluated context within a SFINAE 5396 // trap at translation unit scope. 5397 EnterExpressionEvaluationContext Unevaluated( 5398 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5399 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5400 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5401 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5402 &Rhs); 5403 if (Result.isInvalid()) 5404 return false; 5405 5406 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. 5407 Self.CheckUnusedVolatileAssignment(Result.get()); 5408 5409 if (SFINAE.hasErrorOccurred()) 5410 return false; 5411 5412 if (BTT == BTT_IsAssignable) 5413 return true; 5414 5415 if (BTT == BTT_IsNothrowAssignable) 5416 return Self.canThrow(Result.get()) == CT_Cannot; 5417 5418 if (BTT == BTT_IsTriviallyAssignable) { 5419 // Under Objective-C ARC and Weak, if the destination has non-trivial 5420 // Objective-C lifetime, this is a non-trivial assignment. 5421 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 5422 return false; 5423 5424 return !Result.get()->hasNonTrivialCall(Self.Context); 5425 } 5426 5427 llvm_unreachable("unhandled type trait"); 5428 return false; 5429 } 5430 default: llvm_unreachable("not a BTT"); 5431 } 5432 llvm_unreachable("Unknown type trait or not implemented"); 5433 } 5434 5435 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 5436 SourceLocation KWLoc, 5437 ParsedType Ty, 5438 Expr* DimExpr, 5439 SourceLocation RParen) { 5440 TypeSourceInfo *TSInfo; 5441 QualType T = GetTypeFromParser(Ty, &TSInfo); 5442 if (!TSInfo) 5443 TSInfo = Context.getTrivialTypeSourceInfo(T); 5444 5445 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 5446 } 5447 5448 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 5449 QualType T, Expr *DimExpr, 5450 SourceLocation KeyLoc) { 5451 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 5452 5453 switch(ATT) { 5454 case ATT_ArrayRank: 5455 if (T->isArrayType()) { 5456 unsigned Dim = 0; 5457 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5458 ++Dim; 5459 T = AT->getElementType(); 5460 } 5461 return Dim; 5462 } 5463 return 0; 5464 5465 case ATT_ArrayExtent: { 5466 llvm::APSInt Value; 5467 uint64_t Dim; 5468 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value, 5469 diag::err_dimension_expr_not_constant_integer, 5470 false).isInvalid()) 5471 return 0; 5472 if (Value.isSigned() && Value.isNegative()) { 5473 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 5474 << DimExpr->getSourceRange(); 5475 return 0; 5476 } 5477 Dim = Value.getLimitedValue(); 5478 5479 if (T->isArrayType()) { 5480 unsigned D = 0; 5481 bool Matched = false; 5482 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5483 if (Dim == D) { 5484 Matched = true; 5485 break; 5486 } 5487 ++D; 5488 T = AT->getElementType(); 5489 } 5490 5491 if (Matched && T->isArrayType()) { 5492 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 5493 return CAT->getSize().getLimitedValue(); 5494 } 5495 } 5496 return 0; 5497 } 5498 } 5499 llvm_unreachable("Unknown type trait or not implemented"); 5500 } 5501 5502 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 5503 SourceLocation KWLoc, 5504 TypeSourceInfo *TSInfo, 5505 Expr* DimExpr, 5506 SourceLocation RParen) { 5507 QualType T = TSInfo->getType(); 5508 5509 // FIXME: This should likely be tracked as an APInt to remove any host 5510 // assumptions about the width of size_t on the target. 5511 uint64_t Value = 0; 5512 if (!T->isDependentType()) 5513 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 5514 5515 // While the specification for these traits from the Embarcadero C++ 5516 // compiler's documentation says the return type is 'unsigned int', Clang 5517 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 5518 // compiler, there is no difference. On several other platforms this is an 5519 // important distinction. 5520 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 5521 RParen, Context.getSizeType()); 5522 } 5523 5524 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 5525 SourceLocation KWLoc, 5526 Expr *Queried, 5527 SourceLocation RParen) { 5528 // If error parsing the expression, ignore. 5529 if (!Queried) 5530 return ExprError(); 5531 5532 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 5533 5534 return Result; 5535 } 5536 5537 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 5538 switch (ET) { 5539 case ET_IsLValueExpr: return E->isLValue(); 5540 case ET_IsRValueExpr: return E->isRValue(); 5541 } 5542 llvm_unreachable("Expression trait not covered by switch"); 5543 } 5544 5545 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 5546 SourceLocation KWLoc, 5547 Expr *Queried, 5548 SourceLocation RParen) { 5549 if (Queried->isTypeDependent()) { 5550 // Delay type-checking for type-dependent expressions. 5551 } else if (Queried->getType()->isPlaceholderType()) { 5552 ExprResult PE = CheckPlaceholderExpr(Queried); 5553 if (PE.isInvalid()) return ExprError(); 5554 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 5555 } 5556 5557 bool Value = EvaluateExpressionTrait(ET, Queried); 5558 5559 return new (Context) 5560 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 5561 } 5562 5563 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 5564 ExprValueKind &VK, 5565 SourceLocation Loc, 5566 bool isIndirect) { 5567 assert(!LHS.get()->getType()->isPlaceholderType() && 5568 !RHS.get()->getType()->isPlaceholderType() && 5569 "placeholders should have been weeded out by now"); 5570 5571 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the 5572 // temporary materialization conversion otherwise. 5573 if (isIndirect) 5574 LHS = DefaultLvalueConversion(LHS.get()); 5575 else if (LHS.get()->isRValue()) 5576 LHS = TemporaryMaterializationConversion(LHS.get()); 5577 if (LHS.isInvalid()) 5578 return QualType(); 5579 5580 // The RHS always undergoes lvalue conversions. 5581 RHS = DefaultLvalueConversion(RHS.get()); 5582 if (RHS.isInvalid()) return QualType(); 5583 5584 const char *OpSpelling = isIndirect ? "->*" : ".*"; 5585 // C++ 5.5p2 5586 // The binary operator .* [p3: ->*] binds its second operand, which shall 5587 // be of type "pointer to member of T" (where T is a completely-defined 5588 // class type) [...] 5589 QualType RHSType = RHS.get()->getType(); 5590 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 5591 if (!MemPtr) { 5592 Diag(Loc, diag::err_bad_memptr_rhs) 5593 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 5594 return QualType(); 5595 } 5596 5597 QualType Class(MemPtr->getClass(), 0); 5598 5599 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 5600 // member pointer points must be completely-defined. However, there is no 5601 // reason for this semantic distinction, and the rule is not enforced by 5602 // other compilers. Therefore, we do not check this property, as it is 5603 // likely to be considered a defect. 5604 5605 // C++ 5.5p2 5606 // [...] to its first operand, which shall be of class T or of a class of 5607 // which T is an unambiguous and accessible base class. [p3: a pointer to 5608 // such a class] 5609 QualType LHSType = LHS.get()->getType(); 5610 if (isIndirect) { 5611 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 5612 LHSType = Ptr->getPointeeType(); 5613 else { 5614 Diag(Loc, diag::err_bad_memptr_lhs) 5615 << OpSpelling << 1 << LHSType 5616 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 5617 return QualType(); 5618 } 5619 } 5620 5621 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 5622 // If we want to check the hierarchy, we need a complete type. 5623 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 5624 OpSpelling, (int)isIndirect)) { 5625 return QualType(); 5626 } 5627 5628 if (!IsDerivedFrom(Loc, LHSType, Class)) { 5629 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 5630 << (int)isIndirect << LHS.get()->getType(); 5631 return QualType(); 5632 } 5633 5634 CXXCastPath BasePath; 5635 if (CheckDerivedToBaseConversion( 5636 LHSType, Class, Loc, 5637 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), 5638 &BasePath)) 5639 return QualType(); 5640 5641 // Cast LHS to type of use. 5642 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); 5643 if (isIndirect) 5644 UseType = Context.getPointerType(UseType); 5645 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind(); 5646 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 5647 &BasePath); 5648 } 5649 5650 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 5651 // Diagnose use of pointer-to-member type which when used as 5652 // the functional cast in a pointer-to-member expression. 5653 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 5654 return QualType(); 5655 } 5656 5657 // C++ 5.5p2 5658 // The result is an object or a function of the type specified by the 5659 // second operand. 5660 // The cv qualifiers are the union of those in the pointer and the left side, 5661 // in accordance with 5.5p5 and 5.2.5. 5662 QualType Result = MemPtr->getPointeeType(); 5663 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 5664 5665 // C++0x [expr.mptr.oper]p6: 5666 // In a .* expression whose object expression is an rvalue, the program is 5667 // ill-formed if the second operand is a pointer to member function with 5668 // ref-qualifier &. In a ->* expression or in a .* expression whose object 5669 // expression is an lvalue, the program is ill-formed if the second operand 5670 // is a pointer to member function with ref-qualifier &&. 5671 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 5672 switch (Proto->getRefQualifier()) { 5673 case RQ_None: 5674 // Do nothing 5675 break; 5676 5677 case RQ_LValue: 5678 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { 5679 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq 5680 // is (exactly) 'const'. 5681 if (Proto->isConst() && !Proto->isVolatile()) 5682 Diag(Loc, getLangOpts().CPlusPlus20 5683 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue 5684 : diag::ext_pointer_to_const_ref_member_on_rvalue); 5685 else 5686 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5687 << RHSType << 1 << LHS.get()->getSourceRange(); 5688 } 5689 break; 5690 5691 case RQ_RValue: 5692 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 5693 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5694 << RHSType << 0 << LHS.get()->getSourceRange(); 5695 break; 5696 } 5697 } 5698 5699 // C++ [expr.mptr.oper]p6: 5700 // The result of a .* expression whose second operand is a pointer 5701 // to a data member is of the same value category as its 5702 // first operand. The result of a .* expression whose second 5703 // operand is a pointer to a member function is a prvalue. The 5704 // result of an ->* expression is an lvalue if its second operand 5705 // is a pointer to data member and a prvalue otherwise. 5706 if (Result->isFunctionType()) { 5707 VK = VK_RValue; 5708 return Context.BoundMemberTy; 5709 } else if (isIndirect) { 5710 VK = VK_LValue; 5711 } else { 5712 VK = LHS.get()->getValueKind(); 5713 } 5714 5715 return Result; 5716 } 5717 5718 /// Try to convert a type to another according to C++11 5.16p3. 5719 /// 5720 /// This is part of the parameter validation for the ? operator. If either 5721 /// value operand is a class type, the two operands are attempted to be 5722 /// converted to each other. This function does the conversion in one direction. 5723 /// It returns true if the program is ill-formed and has already been diagnosed 5724 /// as such. 5725 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 5726 SourceLocation QuestionLoc, 5727 bool &HaveConversion, 5728 QualType &ToType) { 5729 HaveConversion = false; 5730 ToType = To->getType(); 5731 5732 InitializationKind Kind = 5733 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); 5734 // C++11 5.16p3 5735 // The process for determining whether an operand expression E1 of type T1 5736 // can be converted to match an operand expression E2 of type T2 is defined 5737 // as follows: 5738 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be 5739 // implicitly converted to type "lvalue reference to T2", subject to the 5740 // constraint that in the conversion the reference must bind directly to 5741 // an lvalue. 5742 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be 5743 // implicitly converted to the type "rvalue reference to R2", subject to 5744 // the constraint that the reference must bind directly. 5745 if (To->isLValue() || To->isXValue()) { 5746 QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType) 5747 : Self.Context.getRValueReferenceType(ToType); 5748 5749 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5750 5751 InitializationSequence InitSeq(Self, Entity, Kind, From); 5752 if (InitSeq.isDirectReferenceBinding()) { 5753 ToType = T; 5754 HaveConversion = true; 5755 return false; 5756 } 5757 5758 if (InitSeq.isAmbiguous()) 5759 return InitSeq.Diagnose(Self, Entity, Kind, From); 5760 } 5761 5762 // -- If E2 is an rvalue, or if the conversion above cannot be done: 5763 // -- if E1 and E2 have class type, and the underlying class types are 5764 // the same or one is a base class of the other: 5765 QualType FTy = From->getType(); 5766 QualType TTy = To->getType(); 5767 const RecordType *FRec = FTy->getAs<RecordType>(); 5768 const RecordType *TRec = TTy->getAs<RecordType>(); 5769 bool FDerivedFromT = FRec && TRec && FRec != TRec && 5770 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 5771 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 5772 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 5773 // E1 can be converted to match E2 if the class of T2 is the 5774 // same type as, or a base class of, the class of T1, and 5775 // [cv2 > cv1]. 5776 if (FRec == TRec || FDerivedFromT) { 5777 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 5778 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5779 InitializationSequence InitSeq(Self, Entity, Kind, From); 5780 if (InitSeq) { 5781 HaveConversion = true; 5782 return false; 5783 } 5784 5785 if (InitSeq.isAmbiguous()) 5786 return InitSeq.Diagnose(Self, Entity, Kind, From); 5787 } 5788 } 5789 5790 return false; 5791 } 5792 5793 // -- Otherwise: E1 can be converted to match E2 if E1 can be 5794 // implicitly converted to the type that expression E2 would have 5795 // if E2 were converted to an rvalue (or the type it has, if E2 is 5796 // an rvalue). 5797 // 5798 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 5799 // to the array-to-pointer or function-to-pointer conversions. 5800 TTy = TTy.getNonLValueExprType(Self.Context); 5801 5802 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5803 InitializationSequence InitSeq(Self, Entity, Kind, From); 5804 HaveConversion = !InitSeq.Failed(); 5805 ToType = TTy; 5806 if (InitSeq.isAmbiguous()) 5807 return InitSeq.Diagnose(Self, Entity, Kind, From); 5808 5809 return false; 5810 } 5811 5812 /// Try to find a common type for two according to C++0x 5.16p5. 5813 /// 5814 /// This is part of the parameter validation for the ? operator. If either 5815 /// value operand is a class type, overload resolution is used to find a 5816 /// conversion to a common type. 5817 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 5818 SourceLocation QuestionLoc) { 5819 Expr *Args[2] = { LHS.get(), RHS.get() }; 5820 OverloadCandidateSet CandidateSet(QuestionLoc, 5821 OverloadCandidateSet::CSK_Operator); 5822 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 5823 CandidateSet); 5824 5825 OverloadCandidateSet::iterator Best; 5826 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 5827 case OR_Success: { 5828 // We found a match. Perform the conversions on the arguments and move on. 5829 ExprResult LHSRes = Self.PerformImplicitConversion( 5830 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], 5831 Sema::AA_Converting); 5832 if (LHSRes.isInvalid()) 5833 break; 5834 LHS = LHSRes; 5835 5836 ExprResult RHSRes = Self.PerformImplicitConversion( 5837 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], 5838 Sema::AA_Converting); 5839 if (RHSRes.isInvalid()) 5840 break; 5841 RHS = RHSRes; 5842 if (Best->Function) 5843 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 5844 return false; 5845 } 5846 5847 case OR_No_Viable_Function: 5848 5849 // Emit a better diagnostic if one of the expressions is a null pointer 5850 // constant and the other is a pointer type. In this case, the user most 5851 // likely forgot to take the address of the other expression. 5852 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 5853 return true; 5854 5855 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 5856 << LHS.get()->getType() << RHS.get()->getType() 5857 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5858 return true; 5859 5860 case OR_Ambiguous: 5861 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 5862 << LHS.get()->getType() << RHS.get()->getType() 5863 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5864 // FIXME: Print the possible common types by printing the return types of 5865 // the viable candidates. 5866 break; 5867 5868 case OR_Deleted: 5869 llvm_unreachable("Conditional operator has only built-in overloads"); 5870 } 5871 return true; 5872 } 5873 5874 /// Perform an "extended" implicit conversion as returned by 5875 /// TryClassUnification. 5876 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 5877 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5878 InitializationKind Kind = 5879 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); 5880 Expr *Arg = E.get(); 5881 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 5882 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 5883 if (Result.isInvalid()) 5884 return true; 5885 5886 E = Result; 5887 return false; 5888 } 5889 5890 // Check the condition operand of ?: to see if it is valid for the GCC 5891 // extension. 5892 static bool isValidVectorForConditionalCondition(ASTContext &Ctx, 5893 QualType CondTy) { 5894 if (!CondTy->isVectorType() || CondTy->isExtVectorType()) 5895 return false; 5896 const QualType EltTy = 5897 cast<VectorType>(CondTy.getCanonicalType())->getElementType(); 5898 5899 assert(!EltTy->isBooleanType() && !EltTy->isEnumeralType() && 5900 "Vectors cant be boolean or enum types"); 5901 return EltTy->isIntegralType(Ctx); 5902 } 5903 5904 QualType Sema::CheckGNUVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, 5905 ExprResult &RHS, 5906 SourceLocation QuestionLoc) { 5907 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 5908 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 5909 5910 QualType CondType = Cond.get()->getType(); 5911 const auto *CondVT = CondType->castAs<VectorType>(); 5912 QualType CondElementTy = CondVT->getElementType(); 5913 unsigned CondElementCount = CondVT->getNumElements(); 5914 QualType LHSType = LHS.get()->getType(); 5915 const auto *LHSVT = LHSType->getAs<VectorType>(); 5916 QualType RHSType = RHS.get()->getType(); 5917 const auto *RHSVT = RHSType->getAs<VectorType>(); 5918 5919 QualType ResultType; 5920 5921 // FIXME: In the future we should define what the Extvector conditional 5922 // operator looks like. 5923 if (LHSVT && isa<ExtVectorType>(LHSVT)) { 5924 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 5925 << /*isExtVector*/ true << LHSType; 5926 return {}; 5927 } 5928 5929 if (RHSVT && isa<ExtVectorType>(RHSVT)) { 5930 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 5931 << /*isExtVector*/ true << RHSType; 5932 return {}; 5933 } 5934 5935 if (LHSVT && RHSVT) { 5936 // If both are vector types, they must be the same type. 5937 if (!Context.hasSameType(LHSType, RHSType)) { 5938 Diag(QuestionLoc, diag::err_conditional_vector_mismatched_vectors) 5939 << LHSType << RHSType; 5940 return {}; 5941 } 5942 ResultType = LHSType; 5943 } else if (LHSVT || RHSVT) { 5944 ResultType = CheckVectorOperands( 5945 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, 5946 /*AllowBoolConversions*/ false); 5947 if (ResultType.isNull()) 5948 return {}; 5949 } else { 5950 // Both are scalar. 5951 QualType ResultElementTy; 5952 LHSType = LHSType.getCanonicalType().getUnqualifiedType(); 5953 RHSType = RHSType.getCanonicalType().getUnqualifiedType(); 5954 5955 if (Context.hasSameType(LHSType, RHSType)) 5956 ResultElementTy = LHSType; 5957 else 5958 ResultElementTy = 5959 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 5960 5961 if (ResultElementTy->isEnumeralType()) { 5962 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 5963 << /*isExtVector*/ false << ResultElementTy; 5964 return {}; 5965 } 5966 ResultType = Context.getVectorType( 5967 ResultElementTy, CondType->castAs<VectorType>()->getNumElements(), 5968 VectorType::GenericVector); 5969 5970 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 5971 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 5972 } 5973 5974 assert(!ResultType.isNull() && ResultType->isVectorType() && 5975 "Result should have been a vector type"); 5976 auto *ResultVectorTy = ResultType->castAs<VectorType>(); 5977 QualType ResultElementTy = ResultVectorTy->getElementType(); 5978 unsigned ResultElementCount = ResultVectorTy->getNumElements(); 5979 5980 if (ResultElementCount != CondElementCount) { 5981 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType 5982 << ResultType; 5983 return {}; 5984 } 5985 5986 if (Context.getTypeSize(ResultElementTy) != 5987 Context.getTypeSize(CondElementTy)) { 5988 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType 5989 << ResultType; 5990 return {}; 5991 } 5992 5993 return ResultType; 5994 } 5995 5996 /// Check the operands of ?: under C++ semantics. 5997 /// 5998 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 5999 /// extension. In this case, LHS == Cond. (But they're not aliases.) 6000 /// 6001 /// This function also implements GCC's vector extension for conditionals. 6002 /// GCC's vector extension permits the use of a?b:c where the type of 6003 /// a is that of a integer vector with the same number of elements and 6004 /// size as the vectors of b and c. If one of either b or c is a scalar 6005 /// it is implicitly converted to match the type of the vector. 6006 /// Otherwise the expression is ill-formed. If both b and c are scalars, 6007 /// then b and c are checked and converted to the type of a if possible. 6008 /// Unlike the OpenCL ?: operator, the expression is evaluated as 6009 /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]). 6010 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 6011 ExprResult &RHS, ExprValueKind &VK, 6012 ExprObjectKind &OK, 6013 SourceLocation QuestionLoc) { 6014 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface 6015 // pointers. 6016 6017 // Assume r-value. 6018 VK = VK_RValue; 6019 OK = OK_Ordinary; 6020 bool IsVectorConditional = 6021 isValidVectorForConditionalCondition(Context, Cond.get()->getType()); 6022 6023 // C++11 [expr.cond]p1 6024 // The first expression is contextually converted to bool. 6025 if (!Cond.get()->isTypeDependent()) { 6026 ExprResult CondRes = IsVectorConditional 6027 ? DefaultFunctionArrayLvalueConversion(Cond.get()) 6028 : CheckCXXBooleanCondition(Cond.get()); 6029 if (CondRes.isInvalid()) 6030 return QualType(); 6031 Cond = CondRes; 6032 } else { 6033 // To implement C++, the first expression typically doesn't alter the result 6034 // type of the conditional, however the GCC compatible vector extension 6035 // changes the result type to be that of the conditional. Since we cannot 6036 // know if this is a vector extension here, delay the conversion of the 6037 // LHS/RHS below until later. 6038 return Context.DependentTy; 6039 } 6040 6041 6042 // Either of the arguments dependent? 6043 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 6044 return Context.DependentTy; 6045 6046 // C++11 [expr.cond]p2 6047 // If either the second or the third operand has type (cv) void, ... 6048 QualType LTy = LHS.get()->getType(); 6049 QualType RTy = RHS.get()->getType(); 6050 bool LVoid = LTy->isVoidType(); 6051 bool RVoid = RTy->isVoidType(); 6052 if (LVoid || RVoid) { 6053 // ... one of the following shall hold: 6054 // -- The second or the third operand (but not both) is a (possibly 6055 // parenthesized) throw-expression; the result is of the type 6056 // and value category of the other. 6057 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 6058 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 6059 6060 // Void expressions aren't legal in the vector-conditional expressions. 6061 if (IsVectorConditional) { 6062 SourceRange DiagLoc = 6063 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange(); 6064 bool IsThrow = LVoid ? LThrow : RThrow; 6065 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void) 6066 << DiagLoc << IsThrow; 6067 return QualType(); 6068 } 6069 6070 if (LThrow != RThrow) { 6071 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 6072 VK = NonThrow->getValueKind(); 6073 // DR (no number yet): the result is a bit-field if the 6074 // non-throw-expression operand is a bit-field. 6075 OK = NonThrow->getObjectKind(); 6076 return NonThrow->getType(); 6077 } 6078 6079 // -- Both the second and third operands have type void; the result is of 6080 // type void and is a prvalue. 6081 if (LVoid && RVoid) 6082 return Context.VoidTy; 6083 6084 // Neither holds, error. 6085 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 6086 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 6087 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6088 return QualType(); 6089 } 6090 6091 // Neither is void. 6092 if (IsVectorConditional) 6093 return CheckGNUVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6094 6095 // C++11 [expr.cond]p3 6096 // Otherwise, if the second and third operand have different types, and 6097 // either has (cv) class type [...] an attempt is made to convert each of 6098 // those operands to the type of the other. 6099 if (!Context.hasSameType(LTy, RTy) && 6100 (LTy->isRecordType() || RTy->isRecordType())) { 6101 // These return true if a single direction is already ambiguous. 6102 QualType L2RType, R2LType; 6103 bool HaveL2R, HaveR2L; 6104 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 6105 return QualType(); 6106 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 6107 return QualType(); 6108 6109 // If both can be converted, [...] the program is ill-formed. 6110 if (HaveL2R && HaveR2L) { 6111 Diag(QuestionLoc, diag::err_conditional_ambiguous) 6112 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6113 return QualType(); 6114 } 6115 6116 // If exactly one conversion is possible, that conversion is applied to 6117 // the chosen operand and the converted operands are used in place of the 6118 // original operands for the remainder of this section. 6119 if (HaveL2R) { 6120 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 6121 return QualType(); 6122 LTy = LHS.get()->getType(); 6123 } else if (HaveR2L) { 6124 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 6125 return QualType(); 6126 RTy = RHS.get()->getType(); 6127 } 6128 } 6129 6130 // C++11 [expr.cond]p3 6131 // if both are glvalues of the same value category and the same type except 6132 // for cv-qualification, an attempt is made to convert each of those 6133 // operands to the type of the other. 6134 // FIXME: 6135 // Resolving a defect in P0012R1: we extend this to cover all cases where 6136 // one of the operands is reference-compatible with the other, in order 6137 // to support conditionals between functions differing in noexcept. This 6138 // will similarly cover difference in array bounds after P0388R4. 6139 // FIXME: If LTy and RTy have a composite pointer type, should we convert to 6140 // that instead? 6141 ExprValueKind LVK = LHS.get()->getValueKind(); 6142 ExprValueKind RVK = RHS.get()->getValueKind(); 6143 if (!Context.hasSameType(LTy, RTy) && 6144 LVK == RVK && LVK != VK_RValue) { 6145 // DerivedToBase was already handled by the class-specific case above. 6146 // FIXME: Should we allow ObjC conversions here? 6147 const ReferenceConversions AllowedConversions = 6148 ReferenceConversions::Qualification | 6149 ReferenceConversions::NestedQualification | 6150 ReferenceConversions::Function; 6151 6152 ReferenceConversions RefConv; 6153 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) == 6154 Ref_Compatible && 6155 !(RefConv & ~AllowedConversions) && 6156 // [...] subject to the constraint that the reference must bind 6157 // directly [...] 6158 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) { 6159 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 6160 RTy = RHS.get()->getType(); 6161 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) == 6162 Ref_Compatible && 6163 !(RefConv & ~AllowedConversions) && 6164 !LHS.get()->refersToBitField() && 6165 !LHS.get()->refersToVectorElement()) { 6166 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 6167 LTy = LHS.get()->getType(); 6168 } 6169 } 6170 6171 // C++11 [expr.cond]p4 6172 // If the second and third operands are glvalues of the same value 6173 // category and have the same type, the result is of that type and 6174 // value category and it is a bit-field if the second or the third 6175 // operand is a bit-field, or if both are bit-fields. 6176 // We only extend this to bitfields, not to the crazy other kinds of 6177 // l-values. 6178 bool Same = Context.hasSameType(LTy, RTy); 6179 if (Same && LVK == RVK && LVK != VK_RValue && 6180 LHS.get()->isOrdinaryOrBitFieldObject() && 6181 RHS.get()->isOrdinaryOrBitFieldObject()) { 6182 VK = LHS.get()->getValueKind(); 6183 if (LHS.get()->getObjectKind() == OK_BitField || 6184 RHS.get()->getObjectKind() == OK_BitField) 6185 OK = OK_BitField; 6186 6187 // If we have function pointer types, unify them anyway to unify their 6188 // exception specifications, if any. 6189 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6190 Qualifiers Qs = LTy.getQualifiers(); 6191 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS, 6192 /*ConvertArgs*/false); 6193 LTy = Context.getQualifiedType(LTy, Qs); 6194 6195 assert(!LTy.isNull() && "failed to find composite pointer type for " 6196 "canonically equivalent function ptr types"); 6197 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type"); 6198 } 6199 6200 return LTy; 6201 } 6202 6203 // C++11 [expr.cond]p5 6204 // Otherwise, the result is a prvalue. If the second and third operands 6205 // do not have the same type, and either has (cv) class type, ... 6206 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 6207 // ... overload resolution is used to determine the conversions (if any) 6208 // to be applied to the operands. If the overload resolution fails, the 6209 // program is ill-formed. 6210 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 6211 return QualType(); 6212 } 6213 6214 // C++11 [expr.cond]p6 6215 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 6216 // conversions are performed on the second and third operands. 6217 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6218 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6219 if (LHS.isInvalid() || RHS.isInvalid()) 6220 return QualType(); 6221 LTy = LHS.get()->getType(); 6222 RTy = RHS.get()->getType(); 6223 6224 // After those conversions, one of the following shall hold: 6225 // -- The second and third operands have the same type; the result 6226 // is of that type. If the operands have class type, the result 6227 // is a prvalue temporary of the result type, which is 6228 // copy-initialized from either the second operand or the third 6229 // operand depending on the value of the first operand. 6230 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { 6231 if (LTy->isRecordType()) { 6232 // The operands have class type. Make a temporary copy. 6233 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); 6234 6235 ExprResult LHSCopy = PerformCopyInitialization(Entity, 6236 SourceLocation(), 6237 LHS); 6238 if (LHSCopy.isInvalid()) 6239 return QualType(); 6240 6241 ExprResult RHSCopy = PerformCopyInitialization(Entity, 6242 SourceLocation(), 6243 RHS); 6244 if (RHSCopy.isInvalid()) 6245 return QualType(); 6246 6247 LHS = LHSCopy; 6248 RHS = RHSCopy; 6249 } 6250 6251 // If we have function pointer types, unify them anyway to unify their 6252 // exception specifications, if any. 6253 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6254 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS); 6255 assert(!LTy.isNull() && "failed to find composite pointer type for " 6256 "canonically equivalent function ptr types"); 6257 } 6258 6259 return LTy; 6260 } 6261 6262 // Extension: conditional operator involving vector types. 6263 if (LTy->isVectorType() || RTy->isVectorType()) 6264 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false, 6265 /*AllowBothBool*/true, 6266 /*AllowBoolConversions*/false); 6267 6268 // -- The second and third operands have arithmetic or enumeration type; 6269 // the usual arithmetic conversions are performed to bring them to a 6270 // common type, and the result is of that type. 6271 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 6272 QualType ResTy = 6273 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6274 if (LHS.isInvalid() || RHS.isInvalid()) 6275 return QualType(); 6276 if (ResTy.isNull()) { 6277 Diag(QuestionLoc, 6278 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy 6279 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6280 return QualType(); 6281 } 6282 6283 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 6284 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 6285 6286 return ResTy; 6287 } 6288 6289 // -- The second and third operands have pointer type, or one has pointer 6290 // type and the other is a null pointer constant, or both are null 6291 // pointer constants, at least one of which is non-integral; pointer 6292 // conversions and qualification conversions are performed to bring them 6293 // to their composite pointer type. The result is of the composite 6294 // pointer type. 6295 // -- The second and third operands have pointer to member type, or one has 6296 // pointer to member type and the other is a null pointer constant; 6297 // pointer to member conversions and qualification conversions are 6298 // performed to bring them to a common type, whose cv-qualification 6299 // shall match the cv-qualification of either the second or the third 6300 // operand. The result is of the common type. 6301 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS); 6302 if (!Composite.isNull()) 6303 return Composite; 6304 6305 // Similarly, attempt to find composite type of two objective-c pointers. 6306 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 6307 if (!Composite.isNull()) 6308 return Composite; 6309 6310 // Check if we are using a null with a non-pointer type. 6311 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6312 return QualType(); 6313 6314 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6315 << LHS.get()->getType() << RHS.get()->getType() 6316 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6317 return QualType(); 6318 } 6319 6320 static FunctionProtoType::ExceptionSpecInfo 6321 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1, 6322 FunctionProtoType::ExceptionSpecInfo ESI2, 6323 SmallVectorImpl<QualType> &ExceptionTypeStorage) { 6324 ExceptionSpecificationType EST1 = ESI1.Type; 6325 ExceptionSpecificationType EST2 = ESI2.Type; 6326 6327 // If either of them can throw anything, that is the result. 6328 if (EST1 == EST_None) return ESI1; 6329 if (EST2 == EST_None) return ESI2; 6330 if (EST1 == EST_MSAny) return ESI1; 6331 if (EST2 == EST_MSAny) return ESI2; 6332 if (EST1 == EST_NoexceptFalse) return ESI1; 6333 if (EST2 == EST_NoexceptFalse) return ESI2; 6334 6335 // If either of them is non-throwing, the result is the other. 6336 if (EST1 == EST_NoThrow) return ESI2; 6337 if (EST2 == EST_NoThrow) return ESI1; 6338 if (EST1 == EST_DynamicNone) return ESI2; 6339 if (EST2 == EST_DynamicNone) return ESI1; 6340 if (EST1 == EST_BasicNoexcept) return ESI2; 6341 if (EST2 == EST_BasicNoexcept) return ESI1; 6342 if (EST1 == EST_NoexceptTrue) return ESI2; 6343 if (EST2 == EST_NoexceptTrue) return ESI1; 6344 6345 // If we're left with value-dependent computed noexcept expressions, we're 6346 // stuck. Before C++17, we can just drop the exception specification entirely, 6347 // since it's not actually part of the canonical type. And this should never 6348 // happen in C++17, because it would mean we were computing the composite 6349 // pointer type of dependent types, which should never happen. 6350 if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { 6351 assert(!S.getLangOpts().CPlusPlus17 && 6352 "computing composite pointer type of dependent types"); 6353 return FunctionProtoType::ExceptionSpecInfo(); 6354 } 6355 6356 // Switch over the possibilities so that people adding new values know to 6357 // update this function. 6358 switch (EST1) { 6359 case EST_None: 6360 case EST_DynamicNone: 6361 case EST_MSAny: 6362 case EST_BasicNoexcept: 6363 case EST_DependentNoexcept: 6364 case EST_NoexceptFalse: 6365 case EST_NoexceptTrue: 6366 case EST_NoThrow: 6367 llvm_unreachable("handled above"); 6368 6369 case EST_Dynamic: { 6370 // This is the fun case: both exception specifications are dynamic. Form 6371 // the union of the two lists. 6372 assert(EST2 == EST_Dynamic && "other cases should already be handled"); 6373 llvm::SmallPtrSet<QualType, 8> Found; 6374 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions}) 6375 for (QualType E : Exceptions) 6376 if (Found.insert(S.Context.getCanonicalType(E)).second) 6377 ExceptionTypeStorage.push_back(E); 6378 6379 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); 6380 Result.Exceptions = ExceptionTypeStorage; 6381 return Result; 6382 } 6383 6384 case EST_Unevaluated: 6385 case EST_Uninstantiated: 6386 case EST_Unparsed: 6387 llvm_unreachable("shouldn't see unresolved exception specifications here"); 6388 } 6389 6390 llvm_unreachable("invalid ExceptionSpecificationType"); 6391 } 6392 6393 /// Find a merged pointer type and convert the two expressions to it. 6394 /// 6395 /// This finds the composite pointer type for \p E1 and \p E2 according to 6396 /// C++2a [expr.type]p3. It converts both expressions to this type and returns 6397 /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs 6398 /// is \c true). 6399 /// 6400 /// \param Loc The location of the operator requiring these two expressions to 6401 /// be converted to the composite pointer type. 6402 /// 6403 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type. 6404 QualType Sema::FindCompositePointerType(SourceLocation Loc, 6405 Expr *&E1, Expr *&E2, 6406 bool ConvertArgs) { 6407 assert(getLangOpts().CPlusPlus && "This function assumes C++"); 6408 6409 // C++1z [expr]p14: 6410 // The composite pointer type of two operands p1 and p2 having types T1 6411 // and T2 6412 QualType T1 = E1->getType(), T2 = E2->getType(); 6413 6414 // where at least one is a pointer or pointer to member type or 6415 // std::nullptr_t is: 6416 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || 6417 T1->isNullPtrType(); 6418 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || 6419 T2->isNullPtrType(); 6420 if (!T1IsPointerLike && !T2IsPointerLike) 6421 return QualType(); 6422 6423 // - if both p1 and p2 are null pointer constants, std::nullptr_t; 6424 // This can't actually happen, following the standard, but we also use this 6425 // to implement the end of [expr.conv], which hits this case. 6426 // 6427 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; 6428 if (T1IsPointerLike && 6429 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6430 if (ConvertArgs) 6431 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType() 6432 ? CK_NullToMemberPointer 6433 : CK_NullToPointer).get(); 6434 return T1; 6435 } 6436 if (T2IsPointerLike && 6437 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6438 if (ConvertArgs) 6439 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType() 6440 ? CK_NullToMemberPointer 6441 : CK_NullToPointer).get(); 6442 return T2; 6443 } 6444 6445 // Now both have to be pointers or member pointers. 6446 if (!T1IsPointerLike || !T2IsPointerLike) 6447 return QualType(); 6448 assert(!T1->isNullPtrType() && !T2->isNullPtrType() && 6449 "nullptr_t should be a null pointer constant"); 6450 6451 struct Step { 6452 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K; 6453 // Qualifiers to apply under the step kind. 6454 Qualifiers Quals; 6455 /// The class for a pointer-to-member; a constant array type with a bound 6456 /// (if any) for an array. 6457 const Type *ClassOrBound; 6458 6459 Step(Kind K, const Type *ClassOrBound = nullptr) 6460 : K(K), Quals(), ClassOrBound(ClassOrBound) {} 6461 QualType rebuild(ASTContext &Ctx, QualType T) const { 6462 T = Ctx.getQualifiedType(T, Quals); 6463 switch (K) { 6464 case Pointer: 6465 return Ctx.getPointerType(T); 6466 case MemberPointer: 6467 return Ctx.getMemberPointerType(T, ClassOrBound); 6468 case ObjCPointer: 6469 return Ctx.getObjCObjectPointerType(T); 6470 case Array: 6471 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound)) 6472 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr, 6473 ArrayType::Normal, 0); 6474 else 6475 return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0); 6476 } 6477 llvm_unreachable("unknown step kind"); 6478 } 6479 }; 6480 6481 SmallVector<Step, 8> Steps; 6482 6483 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6484 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6485 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, 6486 // respectively; 6487 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer 6488 // to member of C2 of type cv2 U2" for some non-function type U, where 6489 // C1 is reference-related to C2 or C2 is reference-related to C1, the 6490 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2, 6491 // respectively; 6492 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and 6493 // T2; 6494 // 6495 // Dismantle T1 and T2 to simultaneously determine whether they are similar 6496 // and to prepare to form the cv-combined type if so. 6497 QualType Composite1 = T1; 6498 QualType Composite2 = T2; 6499 unsigned NeedConstBefore = 0; 6500 while (true) { 6501 assert(!Composite1.isNull() && !Composite2.isNull()); 6502 6503 Qualifiers Q1, Q2; 6504 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1); 6505 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2); 6506 6507 // Top-level qualifiers are ignored. Merge at all lower levels. 6508 if (!Steps.empty()) { 6509 // Find the qualifier union: (approximately) the unique minimal set of 6510 // qualifiers that is compatible with both types. 6511 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() | 6512 Q2.getCVRUQualifiers()); 6513 6514 // Under one level of pointer or pointer-to-member, we can change to an 6515 // unambiguous compatible address space. 6516 if (Q1.getAddressSpace() == Q2.getAddressSpace()) { 6517 Quals.setAddressSpace(Q1.getAddressSpace()); 6518 } else if (Steps.size() == 1) { 6519 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2); 6520 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1); 6521 if (MaybeQ1 == MaybeQ2) 6522 return QualType(); // No unique best address space. 6523 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace() 6524 : Q2.getAddressSpace()); 6525 } else { 6526 return QualType(); 6527 } 6528 6529 // FIXME: In C, we merge __strong and none to __strong at the top level. 6530 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr()) 6531 Quals.setObjCGCAttr(Q1.getObjCGCAttr()); 6532 else 6533 return QualType(); 6534 6535 // Mismatched lifetime qualifiers never compatibly include each other. 6536 if (Q1.getObjCLifetime() == Q2.getObjCLifetime()) 6537 Quals.setObjCLifetime(Q1.getObjCLifetime()); 6538 else 6539 return QualType(); 6540 6541 Steps.back().Quals = Quals; 6542 if (Q1 != Quals || Q2 != Quals) 6543 NeedConstBefore = Steps.size() - 1; 6544 } 6545 6546 // FIXME: Can we unify the following with UnwrapSimilarTypes? 6547 const PointerType *Ptr1, *Ptr2; 6548 if ((Ptr1 = Composite1->getAs<PointerType>()) && 6549 (Ptr2 = Composite2->getAs<PointerType>())) { 6550 Composite1 = Ptr1->getPointeeType(); 6551 Composite2 = Ptr2->getPointeeType(); 6552 Steps.emplace_back(Step::Pointer); 6553 continue; 6554 } 6555 6556 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2; 6557 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) && 6558 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) { 6559 Composite1 = ObjPtr1->getPointeeType(); 6560 Composite2 = ObjPtr2->getPointeeType(); 6561 Steps.emplace_back(Step::ObjCPointer); 6562 continue; 6563 } 6564 6565 const MemberPointerType *MemPtr1, *MemPtr2; 6566 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 6567 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 6568 Composite1 = MemPtr1->getPointeeType(); 6569 Composite2 = MemPtr2->getPointeeType(); 6570 6571 // At the top level, we can perform a base-to-derived pointer-to-member 6572 // conversion: 6573 // 6574 // - [...] where C1 is reference-related to C2 or C2 is 6575 // reference-related to C1 6576 // 6577 // (Note that the only kinds of reference-relatedness in scope here are 6578 // "same type or derived from".) At any other level, the class must 6579 // exactly match. 6580 const Type *Class = nullptr; 6581 QualType Cls1(MemPtr1->getClass(), 0); 6582 QualType Cls2(MemPtr2->getClass(), 0); 6583 if (Context.hasSameType(Cls1, Cls2)) 6584 Class = MemPtr1->getClass(); 6585 else if (Steps.empty()) 6586 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() : 6587 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr; 6588 if (!Class) 6589 return QualType(); 6590 6591 Steps.emplace_back(Step::MemberPointer, Class); 6592 continue; 6593 } 6594 6595 // Special case: at the top level, we can decompose an Objective-C pointer 6596 // and a 'cv void *'. Unify the qualifiers. 6597 if (Steps.empty() && ((Composite1->isVoidPointerType() && 6598 Composite2->isObjCObjectPointerType()) || 6599 (Composite1->isObjCObjectPointerType() && 6600 Composite2->isVoidPointerType()))) { 6601 Composite1 = Composite1->getPointeeType(); 6602 Composite2 = Composite2->getPointeeType(); 6603 Steps.emplace_back(Step::Pointer); 6604 continue; 6605 } 6606 6607 // FIXME: arrays 6608 6609 // FIXME: block pointer types? 6610 6611 // Cannot unwrap any more types. 6612 break; 6613 } 6614 6615 // - if T1 or T2 is "pointer to noexcept function" and the other type is 6616 // "pointer to function", where the function types are otherwise the same, 6617 // "pointer to function"; 6618 // - if T1 or T2 is "pointer to member of C1 of type function", the other 6619 // type is "pointer to member of C2 of type noexcept function", and C1 6620 // is reference-related to C2 or C2 is reference-related to C1, where 6621 // the function types are otherwise the same, "pointer to member of C2 of 6622 // type function" or "pointer to member of C1 of type function", 6623 // respectively; 6624 // 6625 // We also support 'noreturn' here, so as a Clang extension we generalize the 6626 // above to: 6627 // 6628 // - [Clang] If T1 and T2 are both of type "pointer to function" or 6629 // "pointer to member function" and the pointee types can be unified 6630 // by a function pointer conversion, that conversion is applied 6631 // before checking the following rules. 6632 // 6633 // We've already unwrapped down to the function types, and we want to merge 6634 // rather than just convert, so do this ourselves rather than calling 6635 // IsFunctionConversion. 6636 // 6637 // FIXME: In order to match the standard wording as closely as possible, we 6638 // currently only do this under a single level of pointers. Ideally, we would 6639 // allow this in general, and set NeedConstBefore to the relevant depth on 6640 // the side(s) where we changed anything. If we permit that, we should also 6641 // consider this conversion when determining type similarity and model it as 6642 // a qualification conversion. 6643 if (Steps.size() == 1) { 6644 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { 6645 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { 6646 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); 6647 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); 6648 6649 // The result is noreturn if both operands are. 6650 bool Noreturn = 6651 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); 6652 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn); 6653 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn); 6654 6655 // The result is nothrow if both operands are. 6656 SmallVector<QualType, 8> ExceptionTypeStorage; 6657 EPI1.ExceptionSpec = EPI2.ExceptionSpec = 6658 mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec, 6659 ExceptionTypeStorage); 6660 6661 Composite1 = Context.getFunctionType(FPT1->getReturnType(), 6662 FPT1->getParamTypes(), EPI1); 6663 Composite2 = Context.getFunctionType(FPT2->getReturnType(), 6664 FPT2->getParamTypes(), EPI2); 6665 } 6666 } 6667 } 6668 6669 // There are some more conversions we can perform under exactly one pointer. 6670 if (Steps.size() == 1 && Steps.front().K == Step::Pointer && 6671 !Context.hasSameType(Composite1, Composite2)) { 6672 // - if T1 or T2 is "pointer to cv1 void" and the other type is 6673 // "pointer to cv2 T", where T is an object type or void, 6674 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2; 6675 if (Composite1->isVoidType() && Composite2->isObjectType()) 6676 Composite2 = Composite1; 6677 else if (Composite2->isVoidType() && Composite1->isObjectType()) 6678 Composite1 = Composite2; 6679 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6680 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6681 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and 6682 // T1, respectively; 6683 // 6684 // The "similar type" handling covers all of this except for the "T1 is a 6685 // base class of T2" case in the definition of reference-related. 6686 else if (IsDerivedFrom(Loc, Composite1, Composite2)) 6687 Composite1 = Composite2; 6688 else if (IsDerivedFrom(Loc, Composite2, Composite1)) 6689 Composite2 = Composite1; 6690 } 6691 6692 // At this point, either the inner types are the same or we have failed to 6693 // find a composite pointer type. 6694 if (!Context.hasSameType(Composite1, Composite2)) 6695 return QualType(); 6696 6697 // Per C++ [conv.qual]p3, add 'const' to every level before the last 6698 // differing qualifier. 6699 for (unsigned I = 0; I != NeedConstBefore; ++I) 6700 Steps[I].Quals.addConst(); 6701 6702 // Rebuild the composite type. 6703 QualType Composite = Composite1; 6704 for (auto &S : llvm::reverse(Steps)) 6705 Composite = S.rebuild(Context, Composite); 6706 6707 if (ConvertArgs) { 6708 // Convert the expressions to the composite pointer type. 6709 InitializedEntity Entity = 6710 InitializedEntity::InitializeTemporary(Composite); 6711 InitializationKind Kind = 6712 InitializationKind::CreateCopy(Loc, SourceLocation()); 6713 6714 InitializationSequence E1ToC(*this, Entity, Kind, E1); 6715 if (!E1ToC) 6716 return QualType(); 6717 6718 InitializationSequence E2ToC(*this, Entity, Kind, E2); 6719 if (!E2ToC) 6720 return QualType(); 6721 6722 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics. 6723 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1); 6724 if (E1Result.isInvalid()) 6725 return QualType(); 6726 E1 = E1Result.get(); 6727 6728 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2); 6729 if (E2Result.isInvalid()) 6730 return QualType(); 6731 E2 = E2Result.get(); 6732 } 6733 6734 return Composite; 6735 } 6736 6737 ExprResult Sema::MaybeBindToTemporary(Expr *E) { 6738 if (!E) 6739 return ExprError(); 6740 6741 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); 6742 6743 // If the result is a glvalue, we shouldn't bind it. 6744 if (!E->isRValue()) 6745 return E; 6746 6747 // In ARC, calls that return a retainable type can return retained, 6748 // in which case we have to insert a consuming cast. 6749 if (getLangOpts().ObjCAutoRefCount && 6750 E->getType()->isObjCRetainableType()) { 6751 6752 bool ReturnsRetained; 6753 6754 // For actual calls, we compute this by examining the type of the 6755 // called value. 6756 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 6757 Expr *Callee = Call->getCallee()->IgnoreParens(); 6758 QualType T = Callee->getType(); 6759 6760 if (T == Context.BoundMemberTy) { 6761 // Handle pointer-to-members. 6762 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 6763 T = BinOp->getRHS()->getType(); 6764 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 6765 T = Mem->getMemberDecl()->getType(); 6766 } 6767 6768 if (const PointerType *Ptr = T->getAs<PointerType>()) 6769 T = Ptr->getPointeeType(); 6770 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 6771 T = Ptr->getPointeeType(); 6772 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 6773 T = MemPtr->getPointeeType(); 6774 6775 auto *FTy = T->castAs<FunctionType>(); 6776 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 6777 6778 // ActOnStmtExpr arranges things so that StmtExprs of retainable 6779 // type always produce a +1 object. 6780 } else if (isa<StmtExpr>(E)) { 6781 ReturnsRetained = true; 6782 6783 // We hit this case with the lambda conversion-to-block optimization; 6784 // we don't want any extra casts here. 6785 } else if (isa<CastExpr>(E) && 6786 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 6787 return E; 6788 6789 // For message sends and property references, we try to find an 6790 // actual method. FIXME: we should infer retention by selector in 6791 // cases where we don't have an actual method. 6792 } else { 6793 ObjCMethodDecl *D = nullptr; 6794 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 6795 D = Send->getMethodDecl(); 6796 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 6797 D = BoxedExpr->getBoxingMethod(); 6798 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 6799 // Don't do reclaims if we're using the zero-element array 6800 // constant. 6801 if (ArrayLit->getNumElements() == 0 && 6802 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 6803 return E; 6804 6805 D = ArrayLit->getArrayWithObjectsMethod(); 6806 } else if (ObjCDictionaryLiteral *DictLit 6807 = dyn_cast<ObjCDictionaryLiteral>(E)) { 6808 // Don't do reclaims if we're using the zero-element dictionary 6809 // constant. 6810 if (DictLit->getNumElements() == 0 && 6811 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 6812 return E; 6813 6814 D = DictLit->getDictWithObjectsMethod(); 6815 } 6816 6817 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 6818 6819 // Don't do reclaims on performSelector calls; despite their 6820 // return type, the invoked method doesn't necessarily actually 6821 // return an object. 6822 if (!ReturnsRetained && 6823 D && D->getMethodFamily() == OMF_performSelector) 6824 return E; 6825 } 6826 6827 // Don't reclaim an object of Class type. 6828 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 6829 return E; 6830 6831 Cleanup.setExprNeedsCleanups(true); 6832 6833 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 6834 : CK_ARCReclaimReturnedObject); 6835 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 6836 VK_RValue); 6837 } 6838 6839 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 6840 Cleanup.setExprNeedsCleanups(true); 6841 6842 if (!getLangOpts().CPlusPlus) 6843 return E; 6844 6845 // Search for the base element type (cf. ASTContext::getBaseElementType) with 6846 // a fast path for the common case that the type is directly a RecordType. 6847 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 6848 const RecordType *RT = nullptr; 6849 while (!RT) { 6850 switch (T->getTypeClass()) { 6851 case Type::Record: 6852 RT = cast<RecordType>(T); 6853 break; 6854 case Type::ConstantArray: 6855 case Type::IncompleteArray: 6856 case Type::VariableArray: 6857 case Type::DependentSizedArray: 6858 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 6859 break; 6860 default: 6861 return E; 6862 } 6863 } 6864 6865 // That should be enough to guarantee that this type is complete, if we're 6866 // not processing a decltype expression. 6867 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 6868 if (RD->isInvalidDecl() || RD->isDependentContext()) 6869 return E; 6870 6871 bool IsDecltype = ExprEvalContexts.back().ExprContext == 6872 ExpressionEvaluationContextRecord::EK_Decltype; 6873 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 6874 6875 if (Destructor) { 6876 MarkFunctionReferenced(E->getExprLoc(), Destructor); 6877 CheckDestructorAccess(E->getExprLoc(), Destructor, 6878 PDiag(diag::err_access_dtor_temp) 6879 << E->getType()); 6880 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 6881 return ExprError(); 6882 6883 // If destructor is trivial, we can avoid the extra copy. 6884 if (Destructor->isTrivial()) 6885 return E; 6886 6887 // We need a cleanup, but we don't need to remember the temporary. 6888 Cleanup.setExprNeedsCleanups(true); 6889 } 6890 6891 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 6892 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 6893 6894 if (IsDecltype) 6895 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 6896 6897 return Bind; 6898 } 6899 6900 ExprResult 6901 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 6902 if (SubExpr.isInvalid()) 6903 return ExprError(); 6904 6905 return MaybeCreateExprWithCleanups(SubExpr.get()); 6906 } 6907 6908 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 6909 assert(SubExpr && "subexpression can't be null!"); 6910 6911 CleanupVarDeclMarking(); 6912 6913 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 6914 assert(ExprCleanupObjects.size() >= FirstCleanup); 6915 assert(Cleanup.exprNeedsCleanups() || 6916 ExprCleanupObjects.size() == FirstCleanup); 6917 if (!Cleanup.exprNeedsCleanups()) 6918 return SubExpr; 6919 6920 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 6921 ExprCleanupObjects.size() - FirstCleanup); 6922 6923 auto *E = ExprWithCleanups::Create( 6924 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); 6925 DiscardCleanupsInEvaluationContext(); 6926 6927 return E; 6928 } 6929 6930 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 6931 assert(SubStmt && "sub-statement can't be null!"); 6932 6933 CleanupVarDeclMarking(); 6934 6935 if (!Cleanup.exprNeedsCleanups()) 6936 return SubStmt; 6937 6938 // FIXME: In order to attach the temporaries, wrap the statement into 6939 // a StmtExpr; currently this is only used for asm statements. 6940 // This is hacky, either create a new CXXStmtWithTemporaries statement or 6941 // a new AsmStmtWithTemporaries. 6942 CompoundStmt *CompStmt = CompoundStmt::Create( 6943 Context, SubStmt, SourceLocation(), SourceLocation()); 6944 Expr *E = new (Context) 6945 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(), 6946 /*FIXME TemplateDepth=*/0); 6947 return MaybeCreateExprWithCleanups(E); 6948 } 6949 6950 /// Process the expression contained within a decltype. For such expressions, 6951 /// certain semantic checks on temporaries are delayed until this point, and 6952 /// are omitted for the 'topmost' call in the decltype expression. If the 6953 /// topmost call bound a temporary, strip that temporary off the expression. 6954 ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 6955 assert(ExprEvalContexts.back().ExprContext == 6956 ExpressionEvaluationContextRecord::EK_Decltype && 6957 "not in a decltype expression"); 6958 6959 ExprResult Result = CheckPlaceholderExpr(E); 6960 if (Result.isInvalid()) 6961 return ExprError(); 6962 E = Result.get(); 6963 6964 // C++11 [expr.call]p11: 6965 // If a function call is a prvalue of object type, 6966 // -- if the function call is either 6967 // -- the operand of a decltype-specifier, or 6968 // -- the right operand of a comma operator that is the operand of a 6969 // decltype-specifier, 6970 // a temporary object is not introduced for the prvalue. 6971 6972 // Recursively rebuild ParenExprs and comma expressions to strip out the 6973 // outermost CXXBindTemporaryExpr, if any. 6974 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 6975 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 6976 if (SubExpr.isInvalid()) 6977 return ExprError(); 6978 if (SubExpr.get() == PE->getSubExpr()) 6979 return E; 6980 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 6981 } 6982 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 6983 if (BO->getOpcode() == BO_Comma) { 6984 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 6985 if (RHS.isInvalid()) 6986 return ExprError(); 6987 if (RHS.get() == BO->getRHS()) 6988 return E; 6989 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma, 6990 BO->getType(), BO->getValueKind(), 6991 BO->getObjectKind(), BO->getOperatorLoc(), 6992 BO->getFPFeatures(getLangOpts())); 6993 } 6994 } 6995 6996 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 6997 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 6998 : nullptr; 6999 if (TopCall) 7000 E = TopCall; 7001 else 7002 TopBind = nullptr; 7003 7004 // Disable the special decltype handling now. 7005 ExprEvalContexts.back().ExprContext = 7006 ExpressionEvaluationContextRecord::EK_Other; 7007 7008 Result = CheckUnevaluatedOperand(E); 7009 if (Result.isInvalid()) 7010 return ExprError(); 7011 E = Result.get(); 7012 7013 // In MS mode, don't perform any extra checking of call return types within a 7014 // decltype expression. 7015 if (getLangOpts().MSVCCompat) 7016 return E; 7017 7018 // Perform the semantic checks we delayed until this point. 7019 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 7020 I != N; ++I) { 7021 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 7022 if (Call == TopCall) 7023 continue; 7024 7025 if (CheckCallReturnType(Call->getCallReturnType(Context), 7026 Call->getBeginLoc(), Call, Call->getDirectCallee())) 7027 return ExprError(); 7028 } 7029 7030 // Now all relevant types are complete, check the destructors are accessible 7031 // and non-deleted, and annotate them on the temporaries. 7032 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 7033 I != N; ++I) { 7034 CXXBindTemporaryExpr *Bind = 7035 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 7036 if (Bind == TopBind) 7037 continue; 7038 7039 CXXTemporary *Temp = Bind->getTemporary(); 7040 7041 CXXRecordDecl *RD = 7042 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 7043 CXXDestructorDecl *Destructor = LookupDestructor(RD); 7044 Temp->setDestructor(Destructor); 7045 7046 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 7047 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 7048 PDiag(diag::err_access_dtor_temp) 7049 << Bind->getType()); 7050 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 7051 return ExprError(); 7052 7053 // We need a cleanup, but we don't need to remember the temporary. 7054 Cleanup.setExprNeedsCleanups(true); 7055 } 7056 7057 // Possibly strip off the top CXXBindTemporaryExpr. 7058 return E; 7059 } 7060 7061 /// Note a set of 'operator->' functions that were used for a member access. 7062 static void noteOperatorArrows(Sema &S, 7063 ArrayRef<FunctionDecl *> OperatorArrows) { 7064 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 7065 // FIXME: Make this configurable? 7066 unsigned Limit = 9; 7067 if (OperatorArrows.size() > Limit) { 7068 // Produce Limit-1 normal notes and one 'skipping' note. 7069 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 7070 SkipCount = OperatorArrows.size() - (Limit - 1); 7071 } 7072 7073 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 7074 if (I == SkipStart) { 7075 S.Diag(OperatorArrows[I]->getLocation(), 7076 diag::note_operator_arrows_suppressed) 7077 << SkipCount; 7078 I += SkipCount; 7079 } else { 7080 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 7081 << OperatorArrows[I]->getCallResultType(); 7082 ++I; 7083 } 7084 } 7085 } 7086 7087 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 7088 SourceLocation OpLoc, 7089 tok::TokenKind OpKind, 7090 ParsedType &ObjectType, 7091 bool &MayBePseudoDestructor) { 7092 // Since this might be a postfix expression, get rid of ParenListExprs. 7093 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 7094 if (Result.isInvalid()) return ExprError(); 7095 Base = Result.get(); 7096 7097 Result = CheckPlaceholderExpr(Base); 7098 if (Result.isInvalid()) return ExprError(); 7099 Base = Result.get(); 7100 7101 QualType BaseType = Base->getType(); 7102 MayBePseudoDestructor = false; 7103 if (BaseType->isDependentType()) { 7104 // If we have a pointer to a dependent type and are using the -> operator, 7105 // the object type is the type that the pointer points to. We might still 7106 // have enough information about that type to do something useful. 7107 if (OpKind == tok::arrow) 7108 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 7109 BaseType = Ptr->getPointeeType(); 7110 7111 ObjectType = ParsedType::make(BaseType); 7112 MayBePseudoDestructor = true; 7113 return Base; 7114 } 7115 7116 // C++ [over.match.oper]p8: 7117 // [...] When operator->returns, the operator-> is applied to the value 7118 // returned, with the original second operand. 7119 if (OpKind == tok::arrow) { 7120 QualType StartingType = BaseType; 7121 bool NoArrowOperatorFound = false; 7122 bool FirstIteration = true; 7123 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 7124 // The set of types we've considered so far. 7125 llvm::SmallPtrSet<CanQualType,8> CTypes; 7126 SmallVector<FunctionDecl*, 8> OperatorArrows; 7127 CTypes.insert(Context.getCanonicalType(BaseType)); 7128 7129 while (BaseType->isRecordType()) { 7130 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 7131 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 7132 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 7133 noteOperatorArrows(*this, OperatorArrows); 7134 Diag(OpLoc, diag::note_operator_arrow_depth) 7135 << getLangOpts().ArrowDepth; 7136 return ExprError(); 7137 } 7138 7139 Result = BuildOverloadedArrowExpr( 7140 S, Base, OpLoc, 7141 // When in a template specialization and on the first loop iteration, 7142 // potentially give the default diagnostic (with the fixit in a 7143 // separate note) instead of having the error reported back to here 7144 // and giving a diagnostic with a fixit attached to the error itself. 7145 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 7146 ? nullptr 7147 : &NoArrowOperatorFound); 7148 if (Result.isInvalid()) { 7149 if (NoArrowOperatorFound) { 7150 if (FirstIteration) { 7151 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7152 << BaseType << 1 << Base->getSourceRange() 7153 << FixItHint::CreateReplacement(OpLoc, "."); 7154 OpKind = tok::period; 7155 break; 7156 } 7157 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7158 << BaseType << Base->getSourceRange(); 7159 CallExpr *CE = dyn_cast<CallExpr>(Base); 7160 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 7161 Diag(CD->getBeginLoc(), 7162 diag::note_member_reference_arrow_from_operator_arrow); 7163 } 7164 } 7165 return ExprError(); 7166 } 7167 Base = Result.get(); 7168 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 7169 OperatorArrows.push_back(OpCall->getDirectCallee()); 7170 BaseType = Base->getType(); 7171 CanQualType CBaseType = Context.getCanonicalType(BaseType); 7172 if (!CTypes.insert(CBaseType).second) { 7173 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 7174 noteOperatorArrows(*this, OperatorArrows); 7175 return ExprError(); 7176 } 7177 FirstIteration = false; 7178 } 7179 7180 if (OpKind == tok::arrow) { 7181 if (BaseType->isPointerType()) 7182 BaseType = BaseType->getPointeeType(); 7183 else if (auto *AT = Context.getAsArrayType(BaseType)) 7184 BaseType = AT->getElementType(); 7185 } 7186 } 7187 7188 // Objective-C properties allow "." access on Objective-C pointer types, 7189 // so adjust the base type to the object type itself. 7190 if (BaseType->isObjCObjectPointerType()) 7191 BaseType = BaseType->getPointeeType(); 7192 7193 // C++ [basic.lookup.classref]p2: 7194 // [...] If the type of the object expression is of pointer to scalar 7195 // type, the unqualified-id is looked up in the context of the complete 7196 // postfix-expression. 7197 // 7198 // This also indicates that we could be parsing a pseudo-destructor-name. 7199 // Note that Objective-C class and object types can be pseudo-destructor 7200 // expressions or normal member (ivar or property) access expressions, and 7201 // it's legal for the type to be incomplete if this is a pseudo-destructor 7202 // call. We'll do more incomplete-type checks later in the lookup process, 7203 // so just skip this check for ObjC types. 7204 if (!BaseType->isRecordType()) { 7205 ObjectType = ParsedType::make(BaseType); 7206 MayBePseudoDestructor = true; 7207 return Base; 7208 } 7209 7210 // The object type must be complete (or dependent), or 7211 // C++11 [expr.prim.general]p3: 7212 // Unlike the object expression in other contexts, *this is not required to 7213 // be of complete type for purposes of class member access (5.2.5) outside 7214 // the member function body. 7215 if (!BaseType->isDependentType() && 7216 !isThisOutsideMemberFunctionBody(BaseType) && 7217 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access)) 7218 return ExprError(); 7219 7220 // C++ [basic.lookup.classref]p2: 7221 // If the id-expression in a class member access (5.2.5) is an 7222 // unqualified-id, and the type of the object expression is of a class 7223 // type C (or of pointer to a class type C), the unqualified-id is looked 7224 // up in the scope of class C. [...] 7225 ObjectType = ParsedType::make(BaseType); 7226 return Base; 7227 } 7228 7229 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base, 7230 tok::TokenKind& OpKind, SourceLocation OpLoc) { 7231 if (Base->hasPlaceholderType()) { 7232 ExprResult result = S.CheckPlaceholderExpr(Base); 7233 if (result.isInvalid()) return true; 7234 Base = result.get(); 7235 } 7236 ObjectType = Base->getType(); 7237 7238 // C++ [expr.pseudo]p2: 7239 // The left-hand side of the dot operator shall be of scalar type. The 7240 // left-hand side of the arrow operator shall be of pointer to scalar type. 7241 // This scalar type is the object type. 7242 // Note that this is rather different from the normal handling for the 7243 // arrow operator. 7244 if (OpKind == tok::arrow) { 7245 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 7246 ObjectType = Ptr->getPointeeType(); 7247 } else if (!Base->isTypeDependent()) { 7248 // The user wrote "p->" when they probably meant "p."; fix it. 7249 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7250 << ObjectType << true 7251 << FixItHint::CreateReplacement(OpLoc, "."); 7252 if (S.isSFINAEContext()) 7253 return true; 7254 7255 OpKind = tok::period; 7256 } 7257 } 7258 7259 return false; 7260 } 7261 7262 /// Check if it's ok to try and recover dot pseudo destructor calls on 7263 /// pointer objects. 7264 static bool 7265 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, 7266 QualType DestructedType) { 7267 // If this is a record type, check if its destructor is callable. 7268 if (auto *RD = DestructedType->getAsCXXRecordDecl()) { 7269 if (RD->hasDefinition()) 7270 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD)) 7271 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); 7272 return false; 7273 } 7274 7275 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. 7276 return DestructedType->isDependentType() || DestructedType->isScalarType() || 7277 DestructedType->isVectorType(); 7278 } 7279 7280 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 7281 SourceLocation OpLoc, 7282 tok::TokenKind OpKind, 7283 const CXXScopeSpec &SS, 7284 TypeSourceInfo *ScopeTypeInfo, 7285 SourceLocation CCLoc, 7286 SourceLocation TildeLoc, 7287 PseudoDestructorTypeStorage Destructed) { 7288 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 7289 7290 QualType ObjectType; 7291 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7292 return ExprError(); 7293 7294 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 7295 !ObjectType->isVectorType()) { 7296 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 7297 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 7298 else { 7299 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 7300 << ObjectType << Base->getSourceRange(); 7301 return ExprError(); 7302 } 7303 } 7304 7305 // C++ [expr.pseudo]p2: 7306 // [...] The cv-unqualified versions of the object type and of the type 7307 // designated by the pseudo-destructor-name shall be the same type. 7308 if (DestructedTypeInfo) { 7309 QualType DestructedType = DestructedTypeInfo->getType(); 7310 SourceLocation DestructedTypeStart 7311 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); 7312 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 7313 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 7314 // Detect dot pseudo destructor calls on pointer objects, e.g.: 7315 // Foo *foo; 7316 // foo.~Foo(); 7317 if (OpKind == tok::period && ObjectType->isPointerType() && 7318 Context.hasSameUnqualifiedType(DestructedType, 7319 ObjectType->getPointeeType())) { 7320 auto Diagnostic = 7321 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7322 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); 7323 7324 // Issue a fixit only when the destructor is valid. 7325 if (canRecoverDotPseudoDestructorCallsOnPointerObjects( 7326 *this, DestructedType)) 7327 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->"); 7328 7329 // Recover by setting the object type to the destructed type and the 7330 // operator to '->'. 7331 ObjectType = DestructedType; 7332 OpKind = tok::arrow; 7333 } else { 7334 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 7335 << ObjectType << DestructedType << Base->getSourceRange() 7336 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7337 7338 // Recover by setting the destructed type to the object type. 7339 DestructedType = ObjectType; 7340 DestructedTypeInfo = 7341 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); 7342 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7343 } 7344 } else if (DestructedType.getObjCLifetime() != 7345 ObjectType.getObjCLifetime()) { 7346 7347 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 7348 // Okay: just pretend that the user provided the correctly-qualified 7349 // type. 7350 } else { 7351 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 7352 << ObjectType << DestructedType << Base->getSourceRange() 7353 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7354 } 7355 7356 // Recover by setting the destructed type to the object type. 7357 DestructedType = ObjectType; 7358 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 7359 DestructedTypeStart); 7360 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7361 } 7362 } 7363 } 7364 7365 // C++ [expr.pseudo]p2: 7366 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 7367 // form 7368 // 7369 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 7370 // 7371 // shall designate the same scalar type. 7372 if (ScopeTypeInfo) { 7373 QualType ScopeType = ScopeTypeInfo->getType(); 7374 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 7375 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 7376 7377 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), 7378 diag::err_pseudo_dtor_type_mismatch) 7379 << ObjectType << ScopeType << Base->getSourceRange() 7380 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); 7381 7382 ScopeType = QualType(); 7383 ScopeTypeInfo = nullptr; 7384 } 7385 } 7386 7387 Expr *Result 7388 = new (Context) CXXPseudoDestructorExpr(Context, Base, 7389 OpKind == tok::arrow, OpLoc, 7390 SS.getWithLocInContext(Context), 7391 ScopeTypeInfo, 7392 CCLoc, 7393 TildeLoc, 7394 Destructed); 7395 7396 return Result; 7397 } 7398 7399 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7400 SourceLocation OpLoc, 7401 tok::TokenKind OpKind, 7402 CXXScopeSpec &SS, 7403 UnqualifiedId &FirstTypeName, 7404 SourceLocation CCLoc, 7405 SourceLocation TildeLoc, 7406 UnqualifiedId &SecondTypeName) { 7407 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7408 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7409 "Invalid first type name in pseudo-destructor"); 7410 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7411 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7412 "Invalid second type name in pseudo-destructor"); 7413 7414 QualType ObjectType; 7415 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7416 return ExprError(); 7417 7418 // Compute the object type that we should use for name lookup purposes. Only 7419 // record types and dependent types matter. 7420 ParsedType ObjectTypePtrForLookup; 7421 if (!SS.isSet()) { 7422 if (ObjectType->isRecordType()) 7423 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 7424 else if (ObjectType->isDependentType()) 7425 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 7426 } 7427 7428 // Convert the name of the type being destructed (following the ~) into a 7429 // type (with source-location information). 7430 QualType DestructedType; 7431 TypeSourceInfo *DestructedTypeInfo = nullptr; 7432 PseudoDestructorTypeStorage Destructed; 7433 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7434 ParsedType T = getTypeName(*SecondTypeName.Identifier, 7435 SecondTypeName.StartLocation, 7436 S, &SS, true, false, ObjectTypePtrForLookup, 7437 /*IsCtorOrDtorName*/true); 7438 if (!T && 7439 ((SS.isSet() && !computeDeclContext(SS, false)) || 7440 (!SS.isSet() && ObjectType->isDependentType()))) { 7441 // The name of the type being destroyed is a dependent name, and we 7442 // couldn't find anything useful in scope. Just store the identifier and 7443 // it's location, and we'll perform (qualified) name lookup again at 7444 // template instantiation time. 7445 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 7446 SecondTypeName.StartLocation); 7447 } else if (!T) { 7448 Diag(SecondTypeName.StartLocation, 7449 diag::err_pseudo_dtor_destructor_non_type) 7450 << SecondTypeName.Identifier << ObjectType; 7451 if (isSFINAEContext()) 7452 return ExprError(); 7453 7454 // Recover by assuming we had the right type all along. 7455 DestructedType = ObjectType; 7456 } else 7457 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 7458 } else { 7459 // Resolve the template-id to a type. 7460 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 7461 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7462 TemplateId->NumArgs); 7463 TypeResult T = ActOnTemplateIdType(S, 7464 SS, 7465 TemplateId->TemplateKWLoc, 7466 TemplateId->Template, 7467 TemplateId->Name, 7468 TemplateId->TemplateNameLoc, 7469 TemplateId->LAngleLoc, 7470 TemplateArgsPtr, 7471 TemplateId->RAngleLoc, 7472 /*IsCtorOrDtorName*/true); 7473 if (T.isInvalid() || !T.get()) { 7474 // Recover by assuming we had the right type all along. 7475 DestructedType = ObjectType; 7476 } else 7477 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 7478 } 7479 7480 // If we've performed some kind of recovery, (re-)build the type source 7481 // information. 7482 if (!DestructedType.isNull()) { 7483 if (!DestructedTypeInfo) 7484 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 7485 SecondTypeName.StartLocation); 7486 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7487 } 7488 7489 // Convert the name of the scope type (the type prior to '::') into a type. 7490 TypeSourceInfo *ScopeTypeInfo = nullptr; 7491 QualType ScopeType; 7492 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7493 FirstTypeName.Identifier) { 7494 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7495 ParsedType T = getTypeName(*FirstTypeName.Identifier, 7496 FirstTypeName.StartLocation, 7497 S, &SS, true, false, ObjectTypePtrForLookup, 7498 /*IsCtorOrDtorName*/true); 7499 if (!T) { 7500 Diag(FirstTypeName.StartLocation, 7501 diag::err_pseudo_dtor_destructor_non_type) 7502 << FirstTypeName.Identifier << ObjectType; 7503 7504 if (isSFINAEContext()) 7505 return ExprError(); 7506 7507 // Just drop this type. It's unnecessary anyway. 7508 ScopeType = QualType(); 7509 } else 7510 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 7511 } else { 7512 // Resolve the template-id to a type. 7513 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 7514 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7515 TemplateId->NumArgs); 7516 TypeResult T = ActOnTemplateIdType(S, 7517 SS, 7518 TemplateId->TemplateKWLoc, 7519 TemplateId->Template, 7520 TemplateId->Name, 7521 TemplateId->TemplateNameLoc, 7522 TemplateId->LAngleLoc, 7523 TemplateArgsPtr, 7524 TemplateId->RAngleLoc, 7525 /*IsCtorOrDtorName*/true); 7526 if (T.isInvalid() || !T.get()) { 7527 // Recover by dropping this type. 7528 ScopeType = QualType(); 7529 } else 7530 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 7531 } 7532 } 7533 7534 if (!ScopeType.isNull() && !ScopeTypeInfo) 7535 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 7536 FirstTypeName.StartLocation); 7537 7538 7539 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 7540 ScopeTypeInfo, CCLoc, TildeLoc, 7541 Destructed); 7542 } 7543 7544 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7545 SourceLocation OpLoc, 7546 tok::TokenKind OpKind, 7547 SourceLocation TildeLoc, 7548 const DeclSpec& DS) { 7549 QualType ObjectType; 7550 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7551 return ExprError(); 7552 7553 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(), 7554 false); 7555 7556 TypeLocBuilder TLB; 7557 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 7558 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); 7559 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 7560 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 7561 7562 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 7563 nullptr, SourceLocation(), TildeLoc, 7564 Destructed); 7565 } 7566 7567 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, 7568 CXXConversionDecl *Method, 7569 bool HadMultipleCandidates) { 7570 // Convert the expression to match the conversion function's implicit object 7571 // parameter. 7572 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, 7573 FoundDecl, Method); 7574 if (Exp.isInvalid()) 7575 return true; 7576 7577 if (Method->getParent()->isLambda() && 7578 Method->getConversionType()->isBlockPointerType()) { 7579 // This is a lambda conversion to block pointer; check if the argument 7580 // was a LambdaExpr. 7581 Expr *SubE = E; 7582 CastExpr *CE = dyn_cast<CastExpr>(SubE); 7583 if (CE && CE->getCastKind() == CK_NoOp) 7584 SubE = CE->getSubExpr(); 7585 SubE = SubE->IgnoreParens(); 7586 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) 7587 SubE = BE->getSubExpr(); 7588 if (isa<LambdaExpr>(SubE)) { 7589 // For the conversion to block pointer on a lambda expression, we 7590 // construct a special BlockLiteral instead; this doesn't really make 7591 // a difference in ARC, but outside of ARC the resulting block literal 7592 // follows the normal lifetime rules for block literals instead of being 7593 // autoreleased. 7594 PushExpressionEvaluationContext( 7595 ExpressionEvaluationContext::PotentiallyEvaluated); 7596 ExprResult BlockExp = BuildBlockForLambdaConversion( 7597 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get()); 7598 PopExpressionEvaluationContext(); 7599 7600 // FIXME: This note should be produced by a CodeSynthesisContext. 7601 if (BlockExp.isInvalid()) 7602 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv); 7603 return BlockExp; 7604 } 7605 } 7606 7607 MemberExpr *ME = 7608 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(), 7609 NestedNameSpecifierLoc(), SourceLocation(), Method, 7610 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), 7611 HadMultipleCandidates, DeclarationNameInfo(), 7612 Context.BoundMemberTy, VK_RValue, OK_Ordinary); 7613 7614 QualType ResultType = Method->getReturnType(); 7615 ExprValueKind VK = Expr::getValueKindForType(ResultType); 7616 ResultType = ResultType.getNonLValueExprType(Context); 7617 7618 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create( 7619 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc()); 7620 7621 if (CheckFunctionCall(Method, CE, 7622 Method->getType()->castAs<FunctionProtoType>())) 7623 return ExprError(); 7624 7625 return CE; 7626 } 7627 7628 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 7629 SourceLocation RParen) { 7630 // If the operand is an unresolved lookup expression, the expression is ill- 7631 // formed per [over.over]p1, because overloaded function names cannot be used 7632 // without arguments except in explicit contexts. 7633 ExprResult R = CheckPlaceholderExpr(Operand); 7634 if (R.isInvalid()) 7635 return R; 7636 7637 R = CheckUnevaluatedOperand(R.get()); 7638 if (R.isInvalid()) 7639 return ExprError(); 7640 7641 Operand = R.get(); 7642 7643 if (!inTemplateInstantiation() && Operand->HasSideEffects(Context, false)) { 7644 // The expression operand for noexcept is in an unevaluated expression 7645 // context, so side effects could result in unintended consequences. 7646 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 7647 } 7648 7649 CanThrowResult CanThrow = canThrow(Operand); 7650 return new (Context) 7651 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 7652 } 7653 7654 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 7655 Expr *Operand, SourceLocation RParen) { 7656 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 7657 } 7658 7659 /// Perform the conversions required for an expression used in a 7660 /// context that ignores the result. 7661 ExprResult Sema::IgnoredValueConversions(Expr *E) { 7662 if (E->hasPlaceholderType()) { 7663 ExprResult result = CheckPlaceholderExpr(E); 7664 if (result.isInvalid()) return E; 7665 E = result.get(); 7666 } 7667 7668 // C99 6.3.2.1: 7669 // [Except in specific positions,] an lvalue that does not have 7670 // array type is converted to the value stored in the 7671 // designated object (and is no longer an lvalue). 7672 if (E->isRValue()) { 7673 // In C, function designators (i.e. expressions of function type) 7674 // are r-values, but we still want to do function-to-pointer decay 7675 // on them. This is both technically correct and convenient for 7676 // some clients. 7677 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 7678 return DefaultFunctionArrayConversion(E); 7679 7680 return E; 7681 } 7682 7683 if (getLangOpts().CPlusPlus) { 7684 // The C++11 standard defines the notion of a discarded-value expression; 7685 // normally, we don't need to do anything to handle it, but if it is a 7686 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 7687 // conversion. 7688 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) { 7689 ExprResult Res = DefaultLvalueConversion(E); 7690 if (Res.isInvalid()) 7691 return E; 7692 E = Res.get(); 7693 } else { 7694 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 7695 // it occurs as a discarded-value expression. 7696 CheckUnusedVolatileAssignment(E); 7697 } 7698 7699 // C++1z: 7700 // If the expression is a prvalue after this optional conversion, the 7701 // temporary materialization conversion is applied. 7702 // 7703 // We skip this step: IR generation is able to synthesize the storage for 7704 // itself in the aggregate case, and adding the extra node to the AST is 7705 // just clutter. 7706 // FIXME: We don't emit lifetime markers for the temporaries due to this. 7707 // FIXME: Do any other AST consumers care about this? 7708 return E; 7709 } 7710 7711 // GCC seems to also exclude expressions of incomplete enum type. 7712 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 7713 if (!T->getDecl()->isComplete()) { 7714 // FIXME: stupid workaround for a codegen bug! 7715 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 7716 return E; 7717 } 7718 } 7719 7720 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 7721 if (Res.isInvalid()) 7722 return E; 7723 E = Res.get(); 7724 7725 if (!E->getType()->isVoidType()) 7726 RequireCompleteType(E->getExprLoc(), E->getType(), 7727 diag::err_incomplete_type); 7728 return E; 7729 } 7730 7731 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) { 7732 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 7733 // it occurs as an unevaluated operand. 7734 CheckUnusedVolatileAssignment(E); 7735 7736 return E; 7737 } 7738 7739 // If we can unambiguously determine whether Var can never be used 7740 // in a constant expression, return true. 7741 // - if the variable and its initializer are non-dependent, then 7742 // we can unambiguously check if the variable is a constant expression. 7743 // - if the initializer is not value dependent - we can determine whether 7744 // it can be used to initialize a constant expression. If Init can not 7745 // be used to initialize a constant expression we conclude that Var can 7746 // never be a constant expression. 7747 // - FXIME: if the initializer is dependent, we can still do some analysis and 7748 // identify certain cases unambiguously as non-const by using a Visitor: 7749 // - such as those that involve odr-use of a ParmVarDecl, involve a new 7750 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 7751 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 7752 ASTContext &Context) { 7753 if (isa<ParmVarDecl>(Var)) return true; 7754 const VarDecl *DefVD = nullptr; 7755 7756 // If there is no initializer - this can not be a constant expression. 7757 if (!Var->getAnyInitializer(DefVD)) return true; 7758 assert(DefVD); 7759 if (DefVD->isWeak()) return false; 7760 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); 7761 7762 Expr *Init = cast<Expr>(Eval->Value); 7763 7764 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 7765 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 7766 // of value-dependent expressions, and use it here to determine whether the 7767 // initializer is a potential constant expression. 7768 return false; 7769 } 7770 7771 return !Var->isUsableInConstantExpressions(Context); 7772 } 7773 7774 /// Check if the current lambda has any potential captures 7775 /// that must be captured by any of its enclosing lambdas that are ready to 7776 /// capture. If there is a lambda that can capture a nested 7777 /// potential-capture, go ahead and do so. Also, check to see if any 7778 /// variables are uncaptureable or do not involve an odr-use so do not 7779 /// need to be captured. 7780 7781 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 7782 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 7783 7784 assert(!S.isUnevaluatedContext()); 7785 assert(S.CurContext->isDependentContext()); 7786 #ifndef NDEBUG 7787 DeclContext *DC = S.CurContext; 7788 while (DC && isa<CapturedDecl>(DC)) 7789 DC = DC->getParent(); 7790 assert( 7791 CurrentLSI->CallOperator == DC && 7792 "The current call operator must be synchronized with Sema's CurContext"); 7793 #endif // NDEBUG 7794 7795 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 7796 7797 // All the potentially captureable variables in the current nested 7798 // lambda (within a generic outer lambda), must be captured by an 7799 // outer lambda that is enclosed within a non-dependent context. 7800 CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) { 7801 // If the variable is clearly identified as non-odr-used and the full 7802 // expression is not instantiation dependent, only then do we not 7803 // need to check enclosing lambda's for speculative captures. 7804 // For e.g.: 7805 // Even though 'x' is not odr-used, it should be captured. 7806 // int test() { 7807 // const int x = 10; 7808 // auto L = [=](auto a) { 7809 // (void) +x + a; 7810 // }; 7811 // } 7812 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 7813 !IsFullExprInstantiationDependent) 7814 return; 7815 7816 // If we have a capture-capable lambda for the variable, go ahead and 7817 // capture the variable in that lambda (and all its enclosing lambdas). 7818 if (const Optional<unsigned> Index = 7819 getStackIndexOfNearestEnclosingCaptureCapableLambda( 7820 S.FunctionScopes, Var, S)) 7821 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), 7822 Index.getValue()); 7823 const bool IsVarNeverAConstantExpression = 7824 VariableCanNeverBeAConstantExpression(Var, S.Context); 7825 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 7826 // This full expression is not instantiation dependent or the variable 7827 // can not be used in a constant expression - which means 7828 // this variable must be odr-used here, so diagnose a 7829 // capture violation early, if the variable is un-captureable. 7830 // This is purely for diagnosing errors early. Otherwise, this 7831 // error would get diagnosed when the lambda becomes capture ready. 7832 QualType CaptureType, DeclRefType; 7833 SourceLocation ExprLoc = VarExpr->getExprLoc(); 7834 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 7835 /*EllipsisLoc*/ SourceLocation(), 7836 /*BuildAndDiagnose*/false, CaptureType, 7837 DeclRefType, nullptr)) { 7838 // We will never be able to capture this variable, and we need 7839 // to be able to in any and all instantiations, so diagnose it. 7840 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 7841 /*EllipsisLoc*/ SourceLocation(), 7842 /*BuildAndDiagnose*/true, CaptureType, 7843 DeclRefType, nullptr); 7844 } 7845 } 7846 }); 7847 7848 // Check if 'this' needs to be captured. 7849 if (CurrentLSI->hasPotentialThisCapture()) { 7850 // If we have a capture-capable lambda for 'this', go ahead and capture 7851 // 'this' in that lambda (and all its enclosing lambdas). 7852 if (const Optional<unsigned> Index = 7853 getStackIndexOfNearestEnclosingCaptureCapableLambda( 7854 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) { 7855 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 7856 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 7857 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 7858 &FunctionScopeIndexOfCapturableLambda); 7859 } 7860 } 7861 7862 // Reset all the potential captures at the end of each full-expression. 7863 CurrentLSI->clearPotentialCaptures(); 7864 } 7865 7866 static ExprResult attemptRecovery(Sema &SemaRef, 7867 const TypoCorrectionConsumer &Consumer, 7868 const TypoCorrection &TC) { 7869 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 7870 Consumer.getLookupResult().getLookupKind()); 7871 const CXXScopeSpec *SS = Consumer.getSS(); 7872 CXXScopeSpec NewSS; 7873 7874 // Use an approprate CXXScopeSpec for building the expr. 7875 if (auto *NNS = TC.getCorrectionSpecifier()) 7876 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 7877 else if (SS && !TC.WillReplaceSpecifier()) 7878 NewSS = *SS; 7879 7880 if (auto *ND = TC.getFoundDecl()) { 7881 R.setLookupName(ND->getDeclName()); 7882 R.addDecl(ND); 7883 if (ND->isCXXClassMember()) { 7884 // Figure out the correct naming class to add to the LookupResult. 7885 CXXRecordDecl *Record = nullptr; 7886 if (auto *NNS = TC.getCorrectionSpecifier()) 7887 Record = NNS->getAsType()->getAsCXXRecordDecl(); 7888 if (!Record) 7889 Record = 7890 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 7891 if (Record) 7892 R.setNamingClass(Record); 7893 7894 // Detect and handle the case where the decl might be an implicit 7895 // member. 7896 bool MightBeImplicitMember; 7897 if (!Consumer.isAddressOfOperand()) 7898 MightBeImplicitMember = true; 7899 else if (!NewSS.isEmpty()) 7900 MightBeImplicitMember = false; 7901 else if (R.isOverloadedResult()) 7902 MightBeImplicitMember = false; 7903 else if (R.isUnresolvableResult()) 7904 MightBeImplicitMember = true; 7905 else 7906 MightBeImplicitMember = isa<FieldDecl>(ND) || 7907 isa<IndirectFieldDecl>(ND) || 7908 isa<MSPropertyDecl>(ND); 7909 7910 if (MightBeImplicitMember) 7911 return SemaRef.BuildPossibleImplicitMemberExpr( 7912 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 7913 /*TemplateArgs*/ nullptr, /*S*/ nullptr); 7914 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 7915 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), 7916 Ivar->getIdentifier()); 7917 } 7918 } 7919 7920 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 7921 /*AcceptInvalidDecl*/ true); 7922 } 7923 7924 namespace { 7925 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 7926 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 7927 7928 public: 7929 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 7930 : TypoExprs(TypoExprs) {} 7931 bool VisitTypoExpr(TypoExpr *TE) { 7932 TypoExprs.insert(TE); 7933 return true; 7934 } 7935 }; 7936 7937 class TransformTypos : public TreeTransform<TransformTypos> { 7938 typedef TreeTransform<TransformTypos> BaseTransform; 7939 7940 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the 7941 // process of being initialized. 7942 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 7943 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 7944 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 7945 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 7946 7947 /// Emit diagnostics for all of the TypoExprs encountered. 7948 /// 7949 /// If the TypoExprs were successfully corrected, then the diagnostics should 7950 /// suggest the corrections. Otherwise the diagnostics will not suggest 7951 /// anything (having been passed an empty TypoCorrection). 7952 /// 7953 /// If we've failed to correct due to ambiguous corrections, we need to 7954 /// be sure to pass empty corrections and replacements. Otherwise it's 7955 /// possible that the Consumer has a TypoCorrection that failed to ambiguity 7956 /// and we don't want to report those diagnostics. 7957 void EmitAllDiagnostics(bool IsAmbiguous) { 7958 for (TypoExpr *TE : TypoExprs) { 7959 auto &State = SemaRef.getTypoExprState(TE); 7960 if (State.DiagHandler) { 7961 TypoCorrection TC = IsAmbiguous 7962 ? TypoCorrection() : State.Consumer->getCurrentCorrection(); 7963 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE]; 7964 7965 // Extract the NamedDecl from the transformed TypoExpr and add it to the 7966 // TypoCorrection, replacing the existing decls. This ensures the right 7967 // NamedDecl is used in diagnostics e.g. in the case where overload 7968 // resolution was used to select one from several possible decls that 7969 // had been stored in the TypoCorrection. 7970 if (auto *ND = getDeclFromExpr( 7971 Replacement.isInvalid() ? nullptr : Replacement.get())) 7972 TC.setCorrectionDecl(ND); 7973 7974 State.DiagHandler(TC); 7975 } 7976 SemaRef.clearDelayedTypo(TE); 7977 } 7978 } 7979 7980 /// Try to advance the typo correction state of the first unfinished TypoExpr. 7981 /// We allow advancement of the correction stream by removing it from the 7982 /// TransformCache which allows `TransformTypoExpr` to advance during the 7983 /// next transformation attempt. 7984 /// 7985 /// Any substitution attempts for the previous TypoExprs (which must have been 7986 /// finished) will need to be retried since it's possible that they will now 7987 /// be invalid given the latest advancement. 7988 /// 7989 /// We need to be sure that we're making progress - it's possible that the 7990 /// tree is so malformed that the transform never makes it to the 7991 /// `TransformTypoExpr`. 7992 /// 7993 /// Returns true if there are any untried correction combinations. 7994 bool CheckAndAdvanceTypoExprCorrectionStreams() { 7995 for (auto TE : TypoExprs) { 7996 auto &State = SemaRef.getTypoExprState(TE); 7997 TransformCache.erase(TE); 7998 if (!State.Consumer->hasMadeAnyCorrectionProgress()) 7999 return false; 8000 if (!State.Consumer->finished()) 8001 return true; 8002 State.Consumer->resetCorrectionStream(); 8003 } 8004 return false; 8005 } 8006 8007 NamedDecl *getDeclFromExpr(Expr *E) { 8008 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 8009 E = OverloadResolution[OE]; 8010 8011 if (!E) 8012 return nullptr; 8013 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 8014 return DRE->getFoundDecl(); 8015 if (auto *ME = dyn_cast<MemberExpr>(E)) 8016 return ME->getFoundDecl(); 8017 // FIXME: Add any other expr types that could be be seen by the delayed typo 8018 // correction TreeTransform for which the corresponding TypoCorrection could 8019 // contain multiple decls. 8020 return nullptr; 8021 } 8022 8023 ExprResult TryTransform(Expr *E) { 8024 Sema::SFINAETrap Trap(SemaRef); 8025 ExprResult Res = TransformExpr(E); 8026 if (Trap.hasErrorOccurred() || Res.isInvalid()) 8027 return ExprError(); 8028 8029 return ExprFilter(Res.get()); 8030 } 8031 8032 // Since correcting typos may intoduce new TypoExprs, this function 8033 // checks for new TypoExprs and recurses if it finds any. Note that it will 8034 // only succeed if it is able to correct all typos in the given expression. 8035 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) { 8036 if (Res.isInvalid()) { 8037 return Res; 8038 } 8039 // Check to see if any new TypoExprs were created. If so, we need to recurse 8040 // to check their validity. 8041 Expr *FixedExpr = Res.get(); 8042 8043 auto SavedTypoExprs = std::move(TypoExprs); 8044 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs); 8045 TypoExprs.clear(); 8046 AmbiguousTypoExprs.clear(); 8047 8048 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr); 8049 if (!TypoExprs.empty()) { 8050 // Recurse to handle newly created TypoExprs. If we're not able to 8051 // handle them, discard these TypoExprs. 8052 ExprResult RecurResult = 8053 RecursiveTransformLoop(FixedExpr, IsAmbiguous); 8054 if (RecurResult.isInvalid()) { 8055 Res = ExprError(); 8056 // Recursive corrections didn't work, wipe them away and don't add 8057 // them to the TypoExprs set. Remove them from Sema's TypoExpr list 8058 // since we don't want to clear them twice. Note: it's possible the 8059 // TypoExprs were created recursively and thus won't be in our 8060 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`. 8061 auto &SemaTypoExprs = SemaRef.TypoExprs; 8062 for (auto TE : TypoExprs) { 8063 TransformCache.erase(TE); 8064 SemaRef.clearDelayedTypo(TE); 8065 8066 auto SI = find(SemaTypoExprs, TE); 8067 if (SI != SemaTypoExprs.end()) { 8068 SemaTypoExprs.erase(SI); 8069 } 8070 } 8071 } else { 8072 // TypoExpr is valid: add newly created TypoExprs since we were 8073 // able to correct them. 8074 Res = RecurResult; 8075 SavedTypoExprs.set_union(TypoExprs); 8076 } 8077 } 8078 8079 TypoExprs = std::move(SavedTypoExprs); 8080 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs); 8081 8082 return Res; 8083 } 8084 8085 // Try to transform the given expression, looping through the correction 8086 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`. 8087 // 8088 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to 8089 // true and this method immediately will return an `ExprError`. 8090 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) { 8091 ExprResult Res; 8092 auto SavedTypoExprs = std::move(SemaRef.TypoExprs); 8093 SemaRef.TypoExprs.clear(); 8094 8095 while (true) { 8096 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8097 8098 // Recursion encountered an ambiguous correction. This means that our 8099 // correction itself is ambiguous, so stop now. 8100 if (IsAmbiguous) 8101 break; 8102 8103 // If the transform is still valid after checking for any new typos, 8104 // it's good to go. 8105 if (!Res.isInvalid()) 8106 break; 8107 8108 // The transform was invalid, see if we have any TypoExprs with untried 8109 // correction candidates. 8110 if (!CheckAndAdvanceTypoExprCorrectionStreams()) 8111 break; 8112 } 8113 8114 // If we found a valid result, double check to make sure it's not ambiguous. 8115 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) { 8116 auto SavedTransformCache = 8117 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache); 8118 8119 // Ensure none of the TypoExprs have multiple typo correction candidates 8120 // with the same edit length that pass all the checks and filters. 8121 while (!AmbiguousTypoExprs.empty()) { 8122 auto TE = AmbiguousTypoExprs.back(); 8123 8124 // TryTransform itself can create new Typos, adding them to the TypoExpr map 8125 // and invalidating our TypoExprState, so always fetch it instead of storing. 8126 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition(); 8127 8128 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection(); 8129 TypoCorrection Next; 8130 do { 8131 // Fetch the next correction by erasing the typo from the cache and calling 8132 // `TryTransform` which will iterate through corrections in 8133 // `TransformTypoExpr`. 8134 TransformCache.erase(TE); 8135 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8136 8137 if (!AmbigRes.isInvalid() || IsAmbiguous) { 8138 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream(); 8139 SavedTransformCache.erase(TE); 8140 Res = ExprError(); 8141 IsAmbiguous = true; 8142 break; 8143 } 8144 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) && 8145 Next.getEditDistance(false) == TC.getEditDistance(false)); 8146 8147 if (IsAmbiguous) 8148 break; 8149 8150 AmbiguousTypoExprs.remove(TE); 8151 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition(); 8152 } 8153 TransformCache = std::move(SavedTransformCache); 8154 } 8155 8156 // Wipe away any newly created TypoExprs that we don't know about. Since we 8157 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only 8158 // possible if a `TypoExpr` is created during a transformation but then 8159 // fails before we can discover it. 8160 auto &SemaTypoExprs = SemaRef.TypoExprs; 8161 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) { 8162 auto TE = *Iterator; 8163 auto FI = find(TypoExprs, TE); 8164 if (FI != TypoExprs.end()) { 8165 Iterator++; 8166 continue; 8167 } 8168 SemaRef.clearDelayedTypo(TE); 8169 Iterator = SemaTypoExprs.erase(Iterator); 8170 } 8171 SemaRef.TypoExprs = std::move(SavedTypoExprs); 8172 8173 return Res; 8174 } 8175 8176 public: 8177 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) 8178 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} 8179 8180 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 8181 MultiExprArg Args, 8182 SourceLocation RParenLoc, 8183 Expr *ExecConfig = nullptr) { 8184 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 8185 RParenLoc, ExecConfig); 8186 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 8187 if (Result.isUsable()) { 8188 Expr *ResultCall = Result.get(); 8189 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 8190 ResultCall = BE->getSubExpr(); 8191 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 8192 OverloadResolution[OE] = CE->getCallee(); 8193 } 8194 } 8195 return Result; 8196 } 8197 8198 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 8199 8200 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } 8201 8202 ExprResult Transform(Expr *E) { 8203 bool IsAmbiguous = false; 8204 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous); 8205 8206 if (!Res.isUsable()) 8207 FindTypoExprs(TypoExprs).TraverseStmt(E); 8208 8209 EmitAllDiagnostics(IsAmbiguous); 8210 8211 return Res; 8212 } 8213 8214 ExprResult TransformTypoExpr(TypoExpr *E) { 8215 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 8216 // cached transformation result if there is one and the TypoExpr isn't the 8217 // first one that was encountered. 8218 auto &CacheEntry = TransformCache[E]; 8219 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 8220 return CacheEntry; 8221 } 8222 8223 auto &State = SemaRef.getTypoExprState(E); 8224 assert(State.Consumer && "Cannot transform a cleared TypoExpr"); 8225 8226 // For the first TypoExpr and an uncached TypoExpr, find the next likely 8227 // typo correction and return it. 8228 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 8229 if (InitDecl && TC.getFoundDecl() == InitDecl) 8230 continue; 8231 // FIXME: If we would typo-correct to an invalid declaration, it's 8232 // probably best to just suppress all errors from this typo correction. 8233 ExprResult NE = State.RecoveryHandler ? 8234 State.RecoveryHandler(SemaRef, E, TC) : 8235 attemptRecovery(SemaRef, *State.Consumer, TC); 8236 if (!NE.isInvalid()) { 8237 // Check whether there may be a second viable correction with the same 8238 // edit distance; if so, remember this TypoExpr may have an ambiguous 8239 // correction so it can be more thoroughly vetted later. 8240 TypoCorrection Next; 8241 if ((Next = State.Consumer->peekNextCorrection()) && 8242 Next.getEditDistance(false) == TC.getEditDistance(false)) { 8243 AmbiguousTypoExprs.insert(E); 8244 } else { 8245 AmbiguousTypoExprs.remove(E); 8246 } 8247 assert(!NE.isUnset() && 8248 "Typo was transformed into a valid-but-null ExprResult"); 8249 return CacheEntry = NE; 8250 } 8251 } 8252 return CacheEntry = ExprError(); 8253 } 8254 }; 8255 } 8256 8257 ExprResult 8258 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, 8259 bool RecoverUncorrectedTypos, 8260 llvm::function_ref<ExprResult(Expr *)> Filter) { 8261 // If the current evaluation context indicates there are uncorrected typos 8262 // and the current expression isn't guaranteed to not have typos, try to 8263 // resolve any TypoExpr nodes that might be in the expression. 8264 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 8265 (E->isTypeDependent() || E->isValueDependent() || 8266 E->isInstantiationDependent())) { 8267 auto TyposResolved = DelayedTypos.size(); 8268 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); 8269 TyposResolved -= DelayedTypos.size(); 8270 if (Result.isInvalid() || Result.get() != E) { 8271 ExprEvalContexts.back().NumTypos -= TyposResolved; 8272 if (Result.isInvalid() && RecoverUncorrectedTypos) { 8273 struct TyposReplace : TreeTransform<TyposReplace> { 8274 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {} 8275 ExprResult TransformTypoExpr(clang::TypoExpr *E) { 8276 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(), 8277 E->getEndLoc(), {}); 8278 } 8279 } TT(*this); 8280 return TT.TransformExpr(E); 8281 } 8282 return Result; 8283 } 8284 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); 8285 } 8286 return E; 8287 } 8288 8289 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 8290 bool DiscardedValue, 8291 bool IsConstexpr) { 8292 ExprResult FullExpr = FE; 8293 8294 if (!FullExpr.get()) 8295 return ExprError(); 8296 8297 if (DiagnoseUnexpandedParameterPack(FullExpr.get())) 8298 return ExprError(); 8299 8300 if (DiscardedValue) { 8301 // Top-level expressions default to 'id' when we're in a debugger. 8302 if (getLangOpts().DebuggerCastResultToId && 8303 FullExpr.get()->getType() == Context.UnknownAnyTy) { 8304 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 8305 if (FullExpr.isInvalid()) 8306 return ExprError(); 8307 } 8308 8309 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 8310 if (FullExpr.isInvalid()) 8311 return ExprError(); 8312 8313 FullExpr = IgnoredValueConversions(FullExpr.get()); 8314 if (FullExpr.isInvalid()) 8315 return ExprError(); 8316 8317 DiagnoseUnusedExprResult(FullExpr.get()); 8318 } 8319 8320 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr, 8321 /*RecoverUncorrectedTypos=*/true); 8322 if (FullExpr.isInvalid()) 8323 return ExprError(); 8324 8325 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 8326 8327 // At the end of this full expression (which could be a deeply nested 8328 // lambda), if there is a potential capture within the nested lambda, 8329 // have the outer capture-able lambda try and capture it. 8330 // Consider the following code: 8331 // void f(int, int); 8332 // void f(const int&, double); 8333 // void foo() { 8334 // const int x = 10, y = 20; 8335 // auto L = [=](auto a) { 8336 // auto M = [=](auto b) { 8337 // f(x, b); <-- requires x to be captured by L and M 8338 // f(y, a); <-- requires y to be captured by L, but not all Ms 8339 // }; 8340 // }; 8341 // } 8342 8343 // FIXME: Also consider what happens for something like this that involves 8344 // the gnu-extension statement-expressions or even lambda-init-captures: 8345 // void f() { 8346 // const int n = 0; 8347 // auto L = [&](auto a) { 8348 // +n + ({ 0; a; }); 8349 // }; 8350 // } 8351 // 8352 // Here, we see +n, and then the full-expression 0; ends, so we don't 8353 // capture n (and instead remove it from our list of potential captures), 8354 // and then the full-expression +n + ({ 0; }); ends, but it's too late 8355 // for us to see that we need to capture n after all. 8356 8357 LambdaScopeInfo *const CurrentLSI = 8358 getCurLambda(/*IgnoreCapturedRegions=*/true); 8359 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 8360 // even if CurContext is not a lambda call operator. Refer to that Bug Report 8361 // for an example of the code that might cause this asynchrony. 8362 // By ensuring we are in the context of a lambda's call operator 8363 // we can fix the bug (we only need to check whether we need to capture 8364 // if we are within a lambda's body); but per the comments in that 8365 // PR, a proper fix would entail : 8366 // "Alternative suggestion: 8367 // - Add to Sema an integer holding the smallest (outermost) scope 8368 // index that we are *lexically* within, and save/restore/set to 8369 // FunctionScopes.size() in InstantiatingTemplate's 8370 // constructor/destructor. 8371 // - Teach the handful of places that iterate over FunctionScopes to 8372 // stop at the outermost enclosing lexical scope." 8373 DeclContext *DC = CurContext; 8374 while (DC && isa<CapturedDecl>(DC)) 8375 DC = DC->getParent(); 8376 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); 8377 if (IsInLambdaDeclContext && CurrentLSI && 8378 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 8379 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 8380 *this); 8381 return MaybeCreateExprWithCleanups(FullExpr); 8382 } 8383 8384 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 8385 if (!FullStmt) return StmtError(); 8386 8387 return MaybeCreateStmtWithCleanups(FullStmt); 8388 } 8389 8390 Sema::IfExistsResult 8391 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 8392 CXXScopeSpec &SS, 8393 const DeclarationNameInfo &TargetNameInfo) { 8394 DeclarationName TargetName = TargetNameInfo.getName(); 8395 if (!TargetName) 8396 return IER_DoesNotExist; 8397 8398 // If the name itself is dependent, then the result is dependent. 8399 if (TargetName.isDependentName()) 8400 return IER_Dependent; 8401 8402 // Do the redeclaration lookup in the current scope. 8403 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 8404 Sema::NotForRedeclaration); 8405 LookupParsedName(R, S, &SS); 8406 R.suppressDiagnostics(); 8407 8408 switch (R.getResultKind()) { 8409 case LookupResult::Found: 8410 case LookupResult::FoundOverloaded: 8411 case LookupResult::FoundUnresolvedValue: 8412 case LookupResult::Ambiguous: 8413 return IER_Exists; 8414 8415 case LookupResult::NotFound: 8416 return IER_DoesNotExist; 8417 8418 case LookupResult::NotFoundInCurrentInstantiation: 8419 return IER_Dependent; 8420 } 8421 8422 llvm_unreachable("Invalid LookupResult Kind!"); 8423 } 8424 8425 Sema::IfExistsResult 8426 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 8427 bool IsIfExists, CXXScopeSpec &SS, 8428 UnqualifiedId &Name) { 8429 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 8430 8431 // Check for an unexpanded parameter pack. 8432 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; 8433 if (DiagnoseUnexpandedParameterPack(SS, UPPC) || 8434 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC)) 8435 return IER_Error; 8436 8437 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 8438 } 8439 8440 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) { 8441 return BuildExprRequirement(E, /*IsSimple=*/true, 8442 /*NoexceptLoc=*/SourceLocation(), 8443 /*ReturnTypeRequirement=*/{}); 8444 } 8445 8446 concepts::Requirement * 8447 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS, 8448 SourceLocation NameLoc, IdentifierInfo *TypeName, 8449 TemplateIdAnnotation *TemplateId) { 8450 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) && 8451 "Exactly one of TypeName and TemplateId must be specified."); 8452 TypeSourceInfo *TSI = nullptr; 8453 if (TypeName) { 8454 QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc, 8455 SS.getWithLocInContext(Context), *TypeName, 8456 NameLoc, &TSI, /*DeducedTypeContext=*/false); 8457 if (T.isNull()) 8458 return nullptr; 8459 } else { 8460 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(), 8461 TemplateId->NumArgs); 8462 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS, 8463 TemplateId->TemplateKWLoc, 8464 TemplateId->Template, TemplateId->Name, 8465 TemplateId->TemplateNameLoc, 8466 TemplateId->LAngleLoc, ArgsPtr, 8467 TemplateId->RAngleLoc); 8468 if (T.isInvalid()) 8469 return nullptr; 8470 if (GetTypeFromParser(T.get(), &TSI).isNull()) 8471 return nullptr; 8472 } 8473 return BuildTypeRequirement(TSI); 8474 } 8475 8476 concepts::Requirement * 8477 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) { 8478 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, 8479 /*ReturnTypeRequirement=*/{}); 8480 } 8481 8482 concepts::Requirement * 8483 Sema::ActOnCompoundRequirement( 8484 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, 8485 TemplateIdAnnotation *TypeConstraint, unsigned Depth) { 8486 // C++2a [expr.prim.req.compound] p1.3.3 8487 // [..] the expression is deduced against an invented function template 8488 // F [...] F is a void function template with a single type template 8489 // parameter T declared with the constrained-parameter. Form a new 8490 // cv-qualifier-seq cv by taking the union of const and volatile specifiers 8491 // around the constrained-parameter. F has a single parameter whose 8492 // type-specifier is cv T followed by the abstract-declarator. [...] 8493 // 8494 // The cv part is done in the calling function - we get the concept with 8495 // arguments and the abstract declarator with the correct CV qualification and 8496 // have to synthesize T and the single parameter of F. 8497 auto &II = Context.Idents.get("expr-type"); 8498 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext, 8499 SourceLocation(), 8500 SourceLocation(), Depth, 8501 /*Index=*/0, &II, 8502 /*Typename=*/true, 8503 /*ParameterPack=*/false, 8504 /*HasTypeConstraint=*/true); 8505 8506 if (ActOnTypeConstraint(SS, TypeConstraint, TParam, 8507 /*EllpsisLoc=*/SourceLocation())) 8508 // Just produce a requirement with no type requirements. 8509 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {}); 8510 8511 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(), 8512 SourceLocation(), 8513 ArrayRef<NamedDecl *>(TParam), 8514 SourceLocation(), 8515 /*RequiresClause=*/nullptr); 8516 return BuildExprRequirement( 8517 E, /*IsSimple=*/false, NoexceptLoc, 8518 concepts::ExprRequirement::ReturnTypeRequirement(TPL)); 8519 } 8520 8521 concepts::ExprRequirement * 8522 Sema::BuildExprRequirement( 8523 Expr *E, bool IsSimple, SourceLocation NoexceptLoc, 8524 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8525 auto Status = concepts::ExprRequirement::SS_Satisfied; 8526 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr; 8527 if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent()) 8528 Status = concepts::ExprRequirement::SS_Dependent; 8529 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can) 8530 Status = concepts::ExprRequirement::SS_NoexceptNotMet; 8531 else if (ReturnTypeRequirement.isSubstitutionFailure()) 8532 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure; 8533 else if (ReturnTypeRequirement.isTypeConstraint()) { 8534 // C++2a [expr.prim.req]p1.3.3 8535 // The immediately-declared constraint ([temp]) of decltype((E)) shall 8536 // be satisfied. 8537 TemplateParameterList *TPL = 8538 ReturnTypeRequirement.getTypeConstraintTemplateParameterList(); 8539 QualType MatchedType = 8540 BuildDecltypeType(E, E->getBeginLoc()).getCanonicalType(); 8541 llvm::SmallVector<TemplateArgument, 1> Args; 8542 Args.push_back(TemplateArgument(MatchedType)); 8543 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args); 8544 MultiLevelTemplateArgumentList MLTAL(TAL); 8545 for (unsigned I = 0; I < TPL->getDepth(); ++I) 8546 MLTAL.addOuterRetainedLevel(); 8547 Expr *IDC = 8548 cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint() 8549 ->getImmediatelyDeclaredConstraint(); 8550 ExprResult Constraint = SubstExpr(IDC, MLTAL); 8551 assert(!Constraint.isInvalid() && 8552 "Substitution cannot fail as it is simply putting a type template " 8553 "argument into a concept specialization expression's parameter."); 8554 8555 SubstitutedConstraintExpr = 8556 cast<ConceptSpecializationExpr>(Constraint.get()); 8557 if (!SubstitutedConstraintExpr->isSatisfied()) 8558 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied; 8559 } 8560 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc, 8561 ReturnTypeRequirement, Status, 8562 SubstitutedConstraintExpr); 8563 } 8564 8565 concepts::ExprRequirement * 8566 Sema::BuildExprRequirement( 8567 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic, 8568 bool IsSimple, SourceLocation NoexceptLoc, 8569 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8570 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic, 8571 IsSimple, NoexceptLoc, 8572 ReturnTypeRequirement); 8573 } 8574 8575 concepts::TypeRequirement * 8576 Sema::BuildTypeRequirement(TypeSourceInfo *Type) { 8577 return new (Context) concepts::TypeRequirement(Type); 8578 } 8579 8580 concepts::TypeRequirement * 8581 Sema::BuildTypeRequirement( 8582 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8583 return new (Context) concepts::TypeRequirement(SubstDiag); 8584 } 8585 8586 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) { 8587 return BuildNestedRequirement(Constraint); 8588 } 8589 8590 concepts::NestedRequirement * 8591 Sema::BuildNestedRequirement(Expr *Constraint) { 8592 ConstraintSatisfaction Satisfaction; 8593 if (!Constraint->isInstantiationDependent() && 8594 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{}, 8595 Constraint->getSourceRange(), Satisfaction)) 8596 return nullptr; 8597 return new (Context) concepts::NestedRequirement(Context, Constraint, 8598 Satisfaction); 8599 } 8600 8601 concepts::NestedRequirement * 8602 Sema::BuildNestedRequirement( 8603 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8604 return new (Context) concepts::NestedRequirement(SubstDiag); 8605 } 8606 8607 RequiresExprBodyDecl * 8608 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, 8609 ArrayRef<ParmVarDecl *> LocalParameters, 8610 Scope *BodyScope) { 8611 assert(BodyScope); 8612 8613 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext, 8614 RequiresKWLoc); 8615 8616 PushDeclContext(BodyScope, Body); 8617 8618 for (ParmVarDecl *Param : LocalParameters) { 8619 if (Param->hasDefaultArg()) 8620 // C++2a [expr.prim.req] p4 8621 // [...] A local parameter of a requires-expression shall not have a 8622 // default argument. [...] 8623 Diag(Param->getDefaultArgRange().getBegin(), 8624 diag::err_requires_expr_local_parameter_default_argument); 8625 // Ignore default argument and move on 8626 8627 Param->setDeclContext(Body); 8628 // If this has an identifier, add it to the scope stack. 8629 if (Param->getIdentifier()) { 8630 CheckShadow(BodyScope, Param); 8631 PushOnScopeChains(Param, BodyScope); 8632 } 8633 } 8634 return Body; 8635 } 8636 8637 void Sema::ActOnFinishRequiresExpr() { 8638 assert(CurContext && "DeclContext imbalance!"); 8639 CurContext = CurContext->getLexicalParent(); 8640 assert(CurContext && "Popped translation unit!"); 8641 } 8642 8643 ExprResult 8644 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc, 8645 RequiresExprBodyDecl *Body, 8646 ArrayRef<ParmVarDecl *> LocalParameters, 8647 ArrayRef<concepts::Requirement *> Requirements, 8648 SourceLocation ClosingBraceLoc) { 8649 return RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters, 8650 Requirements, ClosingBraceLoc); 8651 } 8652