1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Implements semantic analysis for C++ expressions. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaInternal.h" 15 #include "TreeTransform.h" 16 #include "TypeLocBuilder.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/ASTLambda.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/CharUnits.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/ExprCXX.h" 23 #include "clang/AST/ExprObjC.h" 24 #include "clang/AST/RecursiveASTVisitor.h" 25 #include "clang/AST/TypeLoc.h" 26 #include "clang/Basic/AlignedAllocation.h" 27 #include "clang/Basic/PartialDiagnostic.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Lex/Preprocessor.h" 30 #include "clang/Sema/DeclSpec.h" 31 #include "clang/Sema/Initialization.h" 32 #include "clang/Sema/Lookup.h" 33 #include "clang/Sema/ParsedTemplate.h" 34 #include "clang/Sema/Scope.h" 35 #include "clang/Sema/ScopeInfo.h" 36 #include "clang/Sema/SemaLambda.h" 37 #include "clang/Sema/TemplateDeduction.h" 38 #include "llvm/ADT/APInt.h" 39 #include "llvm/ADT/STLExtras.h" 40 #include "llvm/Support/ErrorHandling.h" 41 using namespace clang; 42 using namespace sema; 43 44 /// Handle the result of the special case name lookup for inheriting 45 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as 46 /// constructor names in member using declarations, even if 'X' is not the 47 /// name of the corresponding type. 48 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, 49 SourceLocation NameLoc, 50 IdentifierInfo &Name) { 51 NestedNameSpecifier *NNS = SS.getScopeRep(); 52 53 // Convert the nested-name-specifier into a type. 54 QualType Type; 55 switch (NNS->getKind()) { 56 case NestedNameSpecifier::TypeSpec: 57 case NestedNameSpecifier::TypeSpecWithTemplate: 58 Type = QualType(NNS->getAsType(), 0); 59 break; 60 61 case NestedNameSpecifier::Identifier: 62 // Strip off the last layer of the nested-name-specifier and build a 63 // typename type for it. 64 assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); 65 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(), 66 NNS->getAsIdentifier()); 67 break; 68 69 case NestedNameSpecifier::Global: 70 case NestedNameSpecifier::Super: 71 case NestedNameSpecifier::Namespace: 72 case NestedNameSpecifier::NamespaceAlias: 73 llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); 74 } 75 76 // This reference to the type is located entirely at the location of the 77 // final identifier in the qualified-id. 78 return CreateParsedType(Type, 79 Context.getTrivialTypeSourceInfo(Type, NameLoc)); 80 } 81 82 ParsedType Sema::getConstructorName(IdentifierInfo &II, 83 SourceLocation NameLoc, 84 Scope *S, CXXScopeSpec &SS, 85 bool EnteringContext) { 86 CXXRecordDecl *CurClass = getCurrentClass(S, &SS); 87 assert(CurClass && &II == CurClass->getIdentifier() && 88 "not a constructor name"); 89 90 // When naming a constructor as a member of a dependent context (eg, in a 91 // friend declaration or an inherited constructor declaration), form an 92 // unresolved "typename" type. 93 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) { 94 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II); 95 return ParsedType::make(T); 96 } 97 98 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass)) 99 return ParsedType(); 100 101 // Find the injected-class-name declaration. Note that we make no attempt to 102 // diagnose cases where the injected-class-name is shadowed: the only 103 // declaration that can validly shadow the injected-class-name is a 104 // non-static data member, and if the class contains both a non-static data 105 // member and a constructor then it is ill-formed (we check that in 106 // CheckCompletedCXXClass). 107 CXXRecordDecl *InjectedClassName = nullptr; 108 for (NamedDecl *ND : CurClass->lookup(&II)) { 109 auto *RD = dyn_cast<CXXRecordDecl>(ND); 110 if (RD && RD->isInjectedClassName()) { 111 InjectedClassName = RD; 112 break; 113 } 114 } 115 if (!InjectedClassName) { 116 if (!CurClass->isInvalidDecl()) { 117 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts 118 // properly. Work around it here for now. 119 Diag(SS.getLastQualifierNameLoc(), 120 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange(); 121 } 122 return ParsedType(); 123 } 124 125 QualType T = Context.getTypeDeclType(InjectedClassName); 126 DiagnoseUseOfDecl(InjectedClassName, NameLoc); 127 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false); 128 129 return ParsedType::make(T); 130 } 131 132 ParsedType Sema::getDestructorName(SourceLocation TildeLoc, 133 IdentifierInfo &II, 134 SourceLocation NameLoc, 135 Scope *S, CXXScopeSpec &SS, 136 ParsedType ObjectTypePtr, 137 bool EnteringContext) { 138 // Determine where to perform name lookup. 139 140 // FIXME: This area of the standard is very messy, and the current 141 // wording is rather unclear about which scopes we search for the 142 // destructor name; see core issues 399 and 555. Issue 399 in 143 // particular shows where the current description of destructor name 144 // lookup is completely out of line with existing practice, e.g., 145 // this appears to be ill-formed: 146 // 147 // namespace N { 148 // template <typename T> struct S { 149 // ~S(); 150 // }; 151 // } 152 // 153 // void f(N::S<int>* s) { 154 // s->N::S<int>::~S(); 155 // } 156 // 157 // See also PR6358 and PR6359. 158 // For this reason, we're currently only doing the C++03 version of this 159 // code; the C++0x version has to wait until we get a proper spec. 160 QualType SearchType; 161 DeclContext *LookupCtx = nullptr; 162 bool isDependent = false; 163 bool LookInScope = false; 164 165 if (SS.isInvalid()) 166 return nullptr; 167 168 // If we have an object type, it's because we are in a 169 // pseudo-destructor-expression or a member access expression, and 170 // we know what type we're looking for. 171 if (ObjectTypePtr) 172 SearchType = GetTypeFromParser(ObjectTypePtr); 173 174 if (SS.isSet()) { 175 NestedNameSpecifier *NNS = SS.getScopeRep(); 176 177 bool AlreadySearched = false; 178 bool LookAtPrefix = true; 179 // C++11 [basic.lookup.qual]p6: 180 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, 181 // the type-names are looked up as types in the scope designated by the 182 // nested-name-specifier. Similarly, in a qualified-id of the form: 183 // 184 // nested-name-specifier[opt] class-name :: ~ class-name 185 // 186 // the second class-name is looked up in the same scope as the first. 187 // 188 // Here, we determine whether the code below is permitted to look at the 189 // prefix of the nested-name-specifier. 190 DeclContext *DC = computeDeclContext(SS, EnteringContext); 191 if (DC && DC->isFileContext()) { 192 AlreadySearched = true; 193 LookupCtx = DC; 194 isDependent = false; 195 } else if (DC && isa<CXXRecordDecl>(DC)) { 196 LookAtPrefix = false; 197 LookInScope = true; 198 } 199 200 // The second case from the C++03 rules quoted further above. 201 NestedNameSpecifier *Prefix = nullptr; 202 if (AlreadySearched) { 203 // Nothing left to do. 204 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) { 205 CXXScopeSpec PrefixSS; 206 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); 207 LookupCtx = computeDeclContext(PrefixSS, EnteringContext); 208 isDependent = isDependentScopeSpecifier(PrefixSS); 209 } else if (ObjectTypePtr) { 210 LookupCtx = computeDeclContext(SearchType); 211 isDependent = SearchType->isDependentType(); 212 } else { 213 LookupCtx = computeDeclContext(SS, EnteringContext); 214 isDependent = LookupCtx && LookupCtx->isDependentContext(); 215 } 216 } else if (ObjectTypePtr) { 217 // C++ [basic.lookup.classref]p3: 218 // If the unqualified-id is ~type-name, the type-name is looked up 219 // in the context of the entire postfix-expression. If the type T 220 // of the object expression is of a class type C, the type-name is 221 // also looked up in the scope of class C. At least one of the 222 // lookups shall find a name that refers to (possibly 223 // cv-qualified) T. 224 LookupCtx = computeDeclContext(SearchType); 225 isDependent = SearchType->isDependentType(); 226 assert((isDependent || !SearchType->isIncompleteType()) && 227 "Caller should have completed object type"); 228 229 LookInScope = true; 230 } else { 231 // Perform lookup into the current scope (only). 232 LookInScope = true; 233 } 234 235 TypeDecl *NonMatchingTypeDecl = nullptr; 236 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName); 237 for (unsigned Step = 0; Step != 2; ++Step) { 238 // Look for the name first in the computed lookup context (if we 239 // have one) and, if that fails to find a match, in the scope (if 240 // we're allowed to look there). 241 Found.clear(); 242 if (Step == 0 && LookupCtx) { 243 if (RequireCompleteDeclContext(SS, LookupCtx)) 244 return nullptr; 245 LookupQualifiedName(Found, LookupCtx); 246 } else if (Step == 1 && LookInScope && S) { 247 LookupName(Found, S); 248 } else { 249 continue; 250 } 251 252 // FIXME: Should we be suppressing ambiguities here? 253 if (Found.isAmbiguous()) 254 return nullptr; 255 256 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { 257 QualType T = Context.getTypeDeclType(Type); 258 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 259 260 if (SearchType.isNull() || SearchType->isDependentType() || 261 Context.hasSameUnqualifiedType(T, SearchType)) { 262 // We found our type! 263 264 return CreateParsedType(T, 265 Context.getTrivialTypeSourceInfo(T, NameLoc)); 266 } 267 268 if (!SearchType.isNull()) 269 NonMatchingTypeDecl = Type; 270 } 271 272 // If the name that we found is a class template name, and it is 273 // the same name as the template name in the last part of the 274 // nested-name-specifier (if present) or the object type, then 275 // this is the destructor for that class. 276 // FIXME: This is a workaround until we get real drafting for core 277 // issue 399, for which there isn't even an obvious direction. 278 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) { 279 QualType MemberOfType; 280 if (SS.isSet()) { 281 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) { 282 // Figure out the type of the context, if it has one. 283 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) 284 MemberOfType = Context.getTypeDeclType(Record); 285 } 286 } 287 if (MemberOfType.isNull()) 288 MemberOfType = SearchType; 289 290 if (MemberOfType.isNull()) 291 continue; 292 293 // We're referring into a class template specialization. If the 294 // class template we found is the same as the template being 295 // specialized, we found what we are looking for. 296 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) { 297 if (ClassTemplateSpecializationDecl *Spec 298 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) { 299 if (Spec->getSpecializedTemplate()->getCanonicalDecl() == 300 Template->getCanonicalDecl()) 301 return CreateParsedType( 302 MemberOfType, 303 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); 304 } 305 306 continue; 307 } 308 309 // We're referring to an unresolved class template 310 // specialization. Determine whether we class template we found 311 // is the same as the template being specialized or, if we don't 312 // know which template is being specialized, that it at least 313 // has the same name. 314 if (const TemplateSpecializationType *SpecType 315 = MemberOfType->getAs<TemplateSpecializationType>()) { 316 TemplateName SpecName = SpecType->getTemplateName(); 317 318 // The class template we found is the same template being 319 // specialized. 320 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) { 321 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl()) 322 return CreateParsedType( 323 MemberOfType, 324 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); 325 326 continue; 327 } 328 329 // The class template we found has the same name as the 330 // (dependent) template name being specialized. 331 if (DependentTemplateName *DepTemplate 332 = SpecName.getAsDependentTemplateName()) { 333 if (DepTemplate->isIdentifier() && 334 DepTemplate->getIdentifier() == Template->getIdentifier()) 335 return CreateParsedType( 336 MemberOfType, 337 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); 338 339 continue; 340 } 341 } 342 } 343 } 344 345 if (isDependent) { 346 // We didn't find our type, but that's okay: it's dependent 347 // anyway. 348 349 // FIXME: What if we have no nested-name-specifier? 350 QualType T = CheckTypenameType(ETK_None, SourceLocation(), 351 SS.getWithLocInContext(Context), 352 II, NameLoc); 353 return ParsedType::make(T); 354 } 355 356 if (NonMatchingTypeDecl) { 357 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl); 358 Diag(NameLoc, diag::err_destructor_expr_type_mismatch) 359 << T << SearchType; 360 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here) 361 << T; 362 } else if (ObjectTypePtr) 363 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type) 364 << &II; 365 else { 366 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc, 367 diag::err_destructor_class_name); 368 if (S) { 369 const DeclContext *Ctx = S->getEntity(); 370 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx)) 371 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc), 372 Class->getNameAsString()); 373 } 374 } 375 376 return nullptr; 377 } 378 379 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS, 380 ParsedType ObjectType) { 381 if (DS.getTypeSpecType() == DeclSpec::TST_error) 382 return nullptr; 383 384 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 385 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 386 return nullptr; 387 } 388 389 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype && 390 "unexpected type in getDestructorType"); 391 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 392 393 // If we know the type of the object, check that the correct destructor 394 // type was named now; we can give better diagnostics this way. 395 QualType SearchType = GetTypeFromParser(ObjectType); 396 if (!SearchType.isNull() && !SearchType->isDependentType() && 397 !Context.hasSameUnqualifiedType(T, SearchType)) { 398 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) 399 << T << SearchType; 400 return nullptr; 401 } 402 403 return ParsedType::make(T); 404 } 405 406 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, 407 const UnqualifiedId &Name) { 408 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId); 409 410 if (!SS.isValid()) 411 return false; 412 413 switch (SS.getScopeRep()->getKind()) { 414 case NestedNameSpecifier::Identifier: 415 case NestedNameSpecifier::TypeSpec: 416 case NestedNameSpecifier::TypeSpecWithTemplate: 417 // Per C++11 [over.literal]p2, literal operators can only be declared at 418 // namespace scope. Therefore, this unqualified-id cannot name anything. 419 // Reject it early, because we have no AST representation for this in the 420 // case where the scope is dependent. 421 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace) 422 << SS.getScopeRep(); 423 return true; 424 425 case NestedNameSpecifier::Global: 426 case NestedNameSpecifier::Super: 427 case NestedNameSpecifier::Namespace: 428 case NestedNameSpecifier::NamespaceAlias: 429 return false; 430 } 431 432 llvm_unreachable("unknown nested name specifier kind"); 433 } 434 435 /// Build a C++ typeid expression with a type operand. 436 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 437 SourceLocation TypeidLoc, 438 TypeSourceInfo *Operand, 439 SourceLocation RParenLoc) { 440 // C++ [expr.typeid]p4: 441 // The top-level cv-qualifiers of the lvalue expression or the type-id 442 // that is the operand of typeid are always ignored. 443 // If the type of the type-id is a class type or a reference to a class 444 // type, the class shall be completely-defined. 445 Qualifiers Quals; 446 QualType T 447 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), 448 Quals); 449 if (T->getAs<RecordType>() && 450 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 451 return ExprError(); 452 453 if (T->isVariablyModifiedType()) 454 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); 455 456 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, 457 SourceRange(TypeidLoc, RParenLoc)); 458 } 459 460 /// Build a C++ typeid expression with an expression operand. 461 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 462 SourceLocation TypeidLoc, 463 Expr *E, 464 SourceLocation RParenLoc) { 465 bool WasEvaluated = false; 466 if (E && !E->isTypeDependent()) { 467 if (E->getType()->isPlaceholderType()) { 468 ExprResult result = CheckPlaceholderExpr(E); 469 if (result.isInvalid()) return ExprError(); 470 E = result.get(); 471 } 472 473 QualType T = E->getType(); 474 if (const RecordType *RecordT = T->getAs<RecordType>()) { 475 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); 476 // C++ [expr.typeid]p3: 477 // [...] If the type of the expression is a class type, the class 478 // shall be completely-defined. 479 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 480 return ExprError(); 481 482 // C++ [expr.typeid]p3: 483 // When typeid is applied to an expression other than an glvalue of a 484 // polymorphic class type [...] [the] expression is an unevaluated 485 // operand. [...] 486 if (RecordD->isPolymorphic() && E->isGLValue()) { 487 // The subexpression is potentially evaluated; switch the context 488 // and recheck the subexpression. 489 ExprResult Result = TransformToPotentiallyEvaluated(E); 490 if (Result.isInvalid()) return ExprError(); 491 E = Result.get(); 492 493 // We require a vtable to query the type at run time. 494 MarkVTableUsed(TypeidLoc, RecordD); 495 WasEvaluated = true; 496 } 497 } 498 499 // C++ [expr.typeid]p4: 500 // [...] If the type of the type-id is a reference to a possibly 501 // cv-qualified type, the result of the typeid expression refers to a 502 // std::type_info object representing the cv-unqualified referenced 503 // type. 504 Qualifiers Quals; 505 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); 506 if (!Context.hasSameType(T, UnqualT)) { 507 T = UnqualT; 508 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); 509 } 510 } 511 512 if (E->getType()->isVariablyModifiedType()) 513 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) 514 << E->getType()); 515 else if (!inTemplateInstantiation() && 516 E->HasSideEffects(Context, WasEvaluated)) { 517 // The expression operand for typeid is in an unevaluated expression 518 // context, so side effects could result in unintended consequences. 519 Diag(E->getExprLoc(), WasEvaluated 520 ? diag::warn_side_effects_typeid 521 : diag::warn_side_effects_unevaluated_context); 522 } 523 524 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, 525 SourceRange(TypeidLoc, RParenLoc)); 526 } 527 528 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); 529 ExprResult 530 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, 531 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 532 // typeid is not supported in OpenCL. 533 if (getLangOpts().OpenCLCPlusPlus) { 534 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) 535 << "typeid"); 536 } 537 538 // Find the std::type_info type. 539 if (!getStdNamespace()) 540 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 541 542 if (!CXXTypeInfoDecl) { 543 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); 544 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); 545 LookupQualifiedName(R, getStdNamespace()); 546 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 547 // Microsoft's typeinfo doesn't have type_info in std but in the global 548 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. 549 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { 550 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 551 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 552 } 553 if (!CXXTypeInfoDecl) 554 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 555 } 556 557 if (!getLangOpts().RTTI) { 558 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); 559 } 560 561 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); 562 563 if (isType) { 564 // The operand is a type; handle it as such. 565 TypeSourceInfo *TInfo = nullptr; 566 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 567 &TInfo); 568 if (T.isNull()) 569 return ExprError(); 570 571 if (!TInfo) 572 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 573 574 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); 575 } 576 577 // The operand is an expression. 578 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 579 } 580 581 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to 582 /// a single GUID. 583 static void 584 getUuidAttrOfType(Sema &SemaRef, QualType QT, 585 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) { 586 // Optionally remove one level of pointer, reference or array indirection. 587 const Type *Ty = QT.getTypePtr(); 588 if (QT->isPointerType() || QT->isReferenceType()) 589 Ty = QT->getPointeeType().getTypePtr(); 590 else if (QT->isArrayType()) 591 Ty = Ty->getBaseElementTypeUnsafe(); 592 593 const auto *TD = Ty->getAsTagDecl(); 594 if (!TD) 595 return; 596 597 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) { 598 UuidAttrs.insert(Uuid); 599 return; 600 } 601 602 // __uuidof can grab UUIDs from template arguments. 603 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) { 604 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 605 for (const TemplateArgument &TA : TAL.asArray()) { 606 const UuidAttr *UuidForTA = nullptr; 607 if (TA.getKind() == TemplateArgument::Type) 608 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs); 609 else if (TA.getKind() == TemplateArgument::Declaration) 610 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs); 611 612 if (UuidForTA) 613 UuidAttrs.insert(UuidForTA); 614 } 615 } 616 } 617 618 /// Build a Microsoft __uuidof expression with a type operand. 619 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, 620 SourceLocation TypeidLoc, 621 TypeSourceInfo *Operand, 622 SourceLocation RParenLoc) { 623 StringRef UuidStr; 624 if (!Operand->getType()->isDependentType()) { 625 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 626 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs); 627 if (UuidAttrs.empty()) 628 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 629 if (UuidAttrs.size() > 1) 630 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 631 UuidStr = UuidAttrs.back()->getGuid(); 632 } 633 634 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr, 635 SourceRange(TypeidLoc, RParenLoc)); 636 } 637 638 /// Build a Microsoft __uuidof expression with an expression operand. 639 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, 640 SourceLocation TypeidLoc, 641 Expr *E, 642 SourceLocation RParenLoc) { 643 StringRef UuidStr; 644 if (!E->getType()->isDependentType()) { 645 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 646 UuidStr = "00000000-0000-0000-0000-000000000000"; 647 } else { 648 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 649 getUuidAttrOfType(*this, E->getType(), UuidAttrs); 650 if (UuidAttrs.empty()) 651 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 652 if (UuidAttrs.size() > 1) 653 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 654 UuidStr = UuidAttrs.back()->getGuid(); 655 } 656 } 657 658 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr, 659 SourceRange(TypeidLoc, RParenLoc)); 660 } 661 662 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); 663 ExprResult 664 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, 665 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 666 // If MSVCGuidDecl has not been cached, do the lookup. 667 if (!MSVCGuidDecl) { 668 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID"); 669 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName); 670 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 671 MSVCGuidDecl = R.getAsSingle<RecordDecl>(); 672 if (!MSVCGuidDecl) 673 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof)); 674 } 675 676 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl); 677 678 if (isType) { 679 // The operand is a type; handle it as such. 680 TypeSourceInfo *TInfo = nullptr; 681 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 682 &TInfo); 683 if (T.isNull()) 684 return ExprError(); 685 686 if (!TInfo) 687 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 688 689 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); 690 } 691 692 // The operand is an expression. 693 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 694 } 695 696 /// ActOnCXXBoolLiteral - Parse {true,false} literals. 697 ExprResult 698 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { 699 assert((Kind == tok::kw_true || Kind == tok::kw_false) && 700 "Unknown C++ Boolean value!"); 701 return new (Context) 702 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); 703 } 704 705 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. 706 ExprResult 707 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { 708 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 709 } 710 711 /// ActOnCXXThrow - Parse throw expressions. 712 ExprResult 713 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { 714 bool IsThrownVarInScope = false; 715 if (Ex) { 716 // C++0x [class.copymove]p31: 717 // When certain criteria are met, an implementation is allowed to omit the 718 // copy/move construction of a class object [...] 719 // 720 // - in a throw-expression, when the operand is the name of a 721 // non-volatile automatic object (other than a function or catch- 722 // clause parameter) whose scope does not extend beyond the end of the 723 // innermost enclosing try-block (if there is one), the copy/move 724 // operation from the operand to the exception object (15.1) can be 725 // omitted by constructing the automatic object directly into the 726 // exception object 727 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) 728 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 729 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { 730 for( ; S; S = S->getParent()) { 731 if (S->isDeclScope(Var)) { 732 IsThrownVarInScope = true; 733 break; 734 } 735 736 if (S->getFlags() & 737 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | 738 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope | 739 Scope::TryScope)) 740 break; 741 } 742 } 743 } 744 } 745 746 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); 747 } 748 749 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 750 bool IsThrownVarInScope) { 751 // Don't report an error if 'throw' is used in system headers. 752 if (!getLangOpts().CXXExceptions && 753 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) { 754 // Delay error emission for the OpenMP device code. 755 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw"; 756 } 757 758 // Exceptions aren't allowed in CUDA device code. 759 if (getLangOpts().CUDA) 760 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions) 761 << "throw" << CurrentCUDATarget(); 762 763 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 764 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; 765 766 if (Ex && !Ex->isTypeDependent()) { 767 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); 768 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) 769 return ExprError(); 770 771 // Initialize the exception result. This implicitly weeds out 772 // abstract types or types with inaccessible copy constructors. 773 774 // C++0x [class.copymove]p31: 775 // When certain criteria are met, an implementation is allowed to omit the 776 // copy/move construction of a class object [...] 777 // 778 // - in a throw-expression, when the operand is the name of a 779 // non-volatile automatic object (other than a function or 780 // catch-clause 781 // parameter) whose scope does not extend beyond the end of the 782 // innermost enclosing try-block (if there is one), the copy/move 783 // operation from the operand to the exception object (15.1) can be 784 // omitted by constructing the automatic object directly into the 785 // exception object 786 const VarDecl *NRVOVariable = nullptr; 787 if (IsThrownVarInScope) 788 NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict); 789 790 InitializedEntity Entity = InitializedEntity::InitializeException( 791 OpLoc, ExceptionObjectTy, 792 /*NRVO=*/NRVOVariable != nullptr); 793 ExprResult Res = PerformMoveOrCopyInitialization( 794 Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope); 795 if (Res.isInvalid()) 796 return ExprError(); 797 Ex = Res.get(); 798 } 799 800 return new (Context) 801 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); 802 } 803 804 static void 805 collectPublicBases(CXXRecordDecl *RD, 806 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, 807 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, 808 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, 809 bool ParentIsPublic) { 810 for (const CXXBaseSpecifier &BS : RD->bases()) { 811 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 812 bool NewSubobject; 813 // Virtual bases constitute the same subobject. Non-virtual bases are 814 // always distinct subobjects. 815 if (BS.isVirtual()) 816 NewSubobject = VBases.insert(BaseDecl).second; 817 else 818 NewSubobject = true; 819 820 if (NewSubobject) 821 ++SubobjectsSeen[BaseDecl]; 822 823 // Only add subobjects which have public access throughout the entire chain. 824 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; 825 if (PublicPath) 826 PublicSubobjectsSeen.insert(BaseDecl); 827 828 // Recurse on to each base subobject. 829 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, 830 PublicPath); 831 } 832 } 833 834 static void getUnambiguousPublicSubobjects( 835 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { 836 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; 837 llvm::SmallSet<CXXRecordDecl *, 2> VBases; 838 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; 839 SubobjectsSeen[RD] = 1; 840 PublicSubobjectsSeen.insert(RD); 841 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, 842 /*ParentIsPublic=*/true); 843 844 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { 845 // Skip ambiguous objects. 846 if (SubobjectsSeen[PublicSubobject] > 1) 847 continue; 848 849 Objects.push_back(PublicSubobject); 850 } 851 } 852 853 /// CheckCXXThrowOperand - Validate the operand of a throw. 854 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, 855 QualType ExceptionObjectTy, Expr *E) { 856 // If the type of the exception would be an incomplete type or a pointer 857 // to an incomplete type other than (cv) void the program is ill-formed. 858 QualType Ty = ExceptionObjectTy; 859 bool isPointer = false; 860 if (const PointerType* Ptr = Ty->getAs<PointerType>()) { 861 Ty = Ptr->getPointeeType(); 862 isPointer = true; 863 } 864 if (!isPointer || !Ty->isVoidType()) { 865 if (RequireCompleteType(ThrowLoc, Ty, 866 isPointer ? diag::err_throw_incomplete_ptr 867 : diag::err_throw_incomplete, 868 E->getSourceRange())) 869 return true; 870 871 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, 872 diag::err_throw_abstract_type, E)) 873 return true; 874 } 875 876 // If the exception has class type, we need additional handling. 877 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 878 if (!RD) 879 return false; 880 881 // If we are throwing a polymorphic class type or pointer thereof, 882 // exception handling will make use of the vtable. 883 MarkVTableUsed(ThrowLoc, RD); 884 885 // If a pointer is thrown, the referenced object will not be destroyed. 886 if (isPointer) 887 return false; 888 889 // If the class has a destructor, we must be able to call it. 890 if (!RD->hasIrrelevantDestructor()) { 891 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 892 MarkFunctionReferenced(E->getExprLoc(), Destructor); 893 CheckDestructorAccess(E->getExprLoc(), Destructor, 894 PDiag(diag::err_access_dtor_exception) << Ty); 895 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 896 return true; 897 } 898 } 899 900 // The MSVC ABI creates a list of all types which can catch the exception 901 // object. This list also references the appropriate copy constructor to call 902 // if the object is caught by value and has a non-trivial copy constructor. 903 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 904 // We are only interested in the public, unambiguous bases contained within 905 // the exception object. Bases which are ambiguous or otherwise 906 // inaccessible are not catchable types. 907 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; 908 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); 909 910 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { 911 // Attempt to lookup the copy constructor. Various pieces of machinery 912 // will spring into action, like template instantiation, which means this 913 // cannot be a simple walk of the class's decls. Instead, we must perform 914 // lookup and overload resolution. 915 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); 916 if (!CD) 917 continue; 918 919 // Mark the constructor referenced as it is used by this throw expression. 920 MarkFunctionReferenced(E->getExprLoc(), CD); 921 922 // Skip this copy constructor if it is trivial, we don't need to record it 923 // in the catchable type data. 924 if (CD->isTrivial()) 925 continue; 926 927 // The copy constructor is non-trivial, create a mapping from this class 928 // type to this constructor. 929 // N.B. The selection of copy constructor is not sensitive to this 930 // particular throw-site. Lookup will be performed at the catch-site to 931 // ensure that the copy constructor is, in fact, accessible (via 932 // friendship or any other means). 933 Context.addCopyConstructorForExceptionObject(Subobject, CD); 934 935 // We don't keep the instantiated default argument expressions around so 936 // we must rebuild them here. 937 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { 938 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I))) 939 return true; 940 } 941 } 942 } 943 944 // Under the Itanium C++ ABI, memory for the exception object is allocated by 945 // the runtime with no ability for the compiler to request additional 946 // alignment. Warn if the exception type requires alignment beyond the minimum 947 // guaranteed by the target C++ runtime. 948 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) { 949 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty); 950 CharUnits ExnObjAlign = Context.getExnObjectAlignment(); 951 if (ExnObjAlign < TypeAlign) { 952 Diag(ThrowLoc, diag::warn_throw_underaligned_obj); 953 Diag(ThrowLoc, diag::note_throw_underaligned_obj) 954 << Ty << (unsigned)TypeAlign.getQuantity() 955 << (unsigned)ExnObjAlign.getQuantity(); 956 } 957 } 958 959 return false; 960 } 961 962 static QualType adjustCVQualifiersForCXXThisWithinLambda( 963 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy, 964 DeclContext *CurSemaContext, ASTContext &ASTCtx) { 965 966 QualType ClassType = ThisTy->getPointeeType(); 967 LambdaScopeInfo *CurLSI = nullptr; 968 DeclContext *CurDC = CurSemaContext; 969 970 // Iterate through the stack of lambdas starting from the innermost lambda to 971 // the outermost lambda, checking if '*this' is ever captured by copy - since 972 // that could change the cv-qualifiers of the '*this' object. 973 // The object referred to by '*this' starts out with the cv-qualifiers of its 974 // member function. We then start with the innermost lambda and iterate 975 // outward checking to see if any lambda performs a by-copy capture of '*this' 976 // - and if so, any nested lambda must respect the 'constness' of that 977 // capturing lamdbda's call operator. 978 // 979 980 // Since the FunctionScopeInfo stack is representative of the lexical 981 // nesting of the lambda expressions during initial parsing (and is the best 982 // place for querying information about captures about lambdas that are 983 // partially processed) and perhaps during instantiation of function templates 984 // that contain lambda expressions that need to be transformed BUT not 985 // necessarily during instantiation of a nested generic lambda's function call 986 // operator (which might even be instantiated at the end of the TU) - at which 987 // time the DeclContext tree is mature enough to query capture information 988 // reliably - we use a two pronged approach to walk through all the lexically 989 // enclosing lambda expressions: 990 // 991 // 1) Climb down the FunctionScopeInfo stack as long as each item represents 992 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically 993 // enclosed by the call-operator of the LSI below it on the stack (while 994 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on 995 // the stack represents the innermost lambda. 996 // 997 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext 998 // represents a lambda's call operator. If it does, we must be instantiating 999 // a generic lambda's call operator (represented by the Current LSI, and 1000 // should be the only scenario where an inconsistency between the LSI and the 1001 // DeclContext should occur), so climb out the DeclContexts if they 1002 // represent lambdas, while querying the corresponding closure types 1003 // regarding capture information. 1004 1005 // 1) Climb down the function scope info stack. 1006 for (int I = FunctionScopes.size(); 1007 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) && 1008 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() == 1009 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator); 1010 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) { 1011 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]); 1012 1013 if (!CurLSI->isCXXThisCaptured()) 1014 continue; 1015 1016 auto C = CurLSI->getCXXThisCapture(); 1017 1018 if (C.isCopyCapture()) { 1019 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1020 if (CurLSI->CallOperator->isConst()) 1021 ClassType.addConst(); 1022 return ASTCtx.getPointerType(ClassType); 1023 } 1024 } 1025 1026 // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can 1027 // happen during instantiation of its nested generic lambda call operator) 1028 if (isLambdaCallOperator(CurDC)) { 1029 assert(CurLSI && "While computing 'this' capture-type for a generic " 1030 "lambda, we must have a corresponding LambdaScopeInfo"); 1031 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && 1032 "While computing 'this' capture-type for a generic lambda, when we " 1033 "run out of enclosing LSI's, yet the enclosing DC is a " 1034 "lambda-call-operator we must be (i.e. Current LSI) in a generic " 1035 "lambda call oeprator"); 1036 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)); 1037 1038 auto IsThisCaptured = 1039 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) { 1040 IsConst = false; 1041 IsByCopy = false; 1042 for (auto &&C : Closure->captures()) { 1043 if (C.capturesThis()) { 1044 if (C.getCaptureKind() == LCK_StarThis) 1045 IsByCopy = true; 1046 if (Closure->getLambdaCallOperator()->isConst()) 1047 IsConst = true; 1048 return true; 1049 } 1050 } 1051 return false; 1052 }; 1053 1054 bool IsByCopyCapture = false; 1055 bool IsConstCapture = false; 1056 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent()); 1057 while (Closure && 1058 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) { 1059 if (IsByCopyCapture) { 1060 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1061 if (IsConstCapture) 1062 ClassType.addConst(); 1063 return ASTCtx.getPointerType(ClassType); 1064 } 1065 Closure = isLambdaCallOperator(Closure->getParent()) 1066 ? cast<CXXRecordDecl>(Closure->getParent()->getParent()) 1067 : nullptr; 1068 } 1069 } 1070 return ASTCtx.getPointerType(ClassType); 1071 } 1072 1073 QualType Sema::getCurrentThisType() { 1074 DeclContext *DC = getFunctionLevelDeclContext(); 1075 QualType ThisTy = CXXThisTypeOverride; 1076 1077 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { 1078 if (method && method->isInstance()) 1079 ThisTy = method->getThisType(); 1080 } 1081 1082 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) && 1083 inTemplateInstantiation()) { 1084 1085 assert(isa<CXXRecordDecl>(DC) && 1086 "Trying to get 'this' type from static method?"); 1087 1088 // This is a lambda call operator that is being instantiated as a default 1089 // initializer. DC must point to the enclosing class type, so we can recover 1090 // the 'this' type from it. 1091 1092 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC)); 1093 // There are no cv-qualifiers for 'this' within default initializers, 1094 // per [expr.prim.general]p4. 1095 ThisTy = Context.getPointerType(ClassTy); 1096 } 1097 1098 // If we are within a lambda's call operator, the cv-qualifiers of 'this' 1099 // might need to be adjusted if the lambda or any of its enclosing lambda's 1100 // captures '*this' by copy. 1101 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext)) 1102 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy, 1103 CurContext, Context); 1104 return ThisTy; 1105 } 1106 1107 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 1108 Decl *ContextDecl, 1109 Qualifiers CXXThisTypeQuals, 1110 bool Enabled) 1111 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) 1112 { 1113 if (!Enabled || !ContextDecl) 1114 return; 1115 1116 CXXRecordDecl *Record = nullptr; 1117 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) 1118 Record = Template->getTemplatedDecl(); 1119 else 1120 Record = cast<CXXRecordDecl>(ContextDecl); 1121 1122 QualType T = S.Context.getRecordType(Record); 1123 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals); 1124 1125 S.CXXThisTypeOverride = S.Context.getPointerType(T); 1126 1127 this->Enabled = true; 1128 } 1129 1130 1131 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { 1132 if (Enabled) { 1133 S.CXXThisTypeOverride = OldCXXThisTypeOverride; 1134 } 1135 } 1136 1137 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit, 1138 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt, 1139 const bool ByCopy) { 1140 // We don't need to capture this in an unevaluated context. 1141 if (isUnevaluatedContext() && !Explicit) 1142 return true; 1143 1144 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value"); 1145 1146 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt 1147 ? *FunctionScopeIndexToStopAt 1148 : FunctionScopes.size() - 1; 1149 1150 // Check that we can capture the *enclosing object* (referred to by '*this') 1151 // by the capturing-entity/closure (lambda/block/etc) at 1152 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1153 1154 // Note: The *enclosing object* can only be captured by-value by a 1155 // closure that is a lambda, using the explicit notation: 1156 // [*this] { ... }. 1157 // Every other capture of the *enclosing object* results in its by-reference 1158 // capture. 1159 1160 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1161 // stack), we can capture the *enclosing object* only if: 1162 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1163 // - or, 'L' has an implicit capture. 1164 // AND 1165 // -- there is no enclosing closure 1166 // -- or, there is some enclosing closure 'E' that has already captured the 1167 // *enclosing object*, and every intervening closure (if any) between 'E' 1168 // and 'L' can implicitly capture the *enclosing object*. 1169 // -- or, every enclosing closure can implicitly capture the 1170 // *enclosing object* 1171 1172 1173 unsigned NumCapturingClosures = 0; 1174 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) { 1175 if (CapturingScopeInfo *CSI = 1176 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { 1177 if (CSI->CXXThisCaptureIndex != 0) { 1178 // 'this' is already being captured; there isn't anything more to do. 1179 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1180 break; 1181 } 1182 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); 1183 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1184 // This context can't implicitly capture 'this'; fail out. 1185 if (BuildAndDiagnose) 1186 Diag(Loc, diag::err_this_capture) 1187 << (Explicit && idx == MaxFunctionScopesIndex); 1188 return true; 1189 } 1190 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || 1191 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || 1192 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || 1193 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || 1194 (Explicit && idx == MaxFunctionScopesIndex)) { 1195 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1196 // iteration through can be an explicit capture, all enclosing closures, 1197 // if any, must perform implicit captures. 1198 1199 // This closure can capture 'this'; continue looking upwards. 1200 NumCapturingClosures++; 1201 continue; 1202 } 1203 // This context can't implicitly capture 'this'; fail out. 1204 if (BuildAndDiagnose) 1205 Diag(Loc, diag::err_this_capture) 1206 << (Explicit && idx == MaxFunctionScopesIndex); 1207 return true; 1208 } 1209 break; 1210 } 1211 if (!BuildAndDiagnose) return false; 1212 1213 // If we got here, then the closure at MaxFunctionScopesIndex on the 1214 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1215 // (including implicit by-reference captures in any enclosing closures). 1216 1217 // In the loop below, respect the ByCopy flag only for the closure requesting 1218 // the capture (i.e. first iteration through the loop below). Ignore it for 1219 // all enclosing closure's up to NumCapturingClosures (since they must be 1220 // implicitly capturing the *enclosing object* by reference (see loop 1221 // above)). 1222 assert((!ByCopy || 1223 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && 1224 "Only a lambda can capture the enclosing object (referred to by " 1225 "*this) by copy"); 1226 QualType ThisTy = getCurrentThisType(); 1227 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1228 --idx, --NumCapturingClosures) { 1229 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1230 1231 // The type of the corresponding data member (not a 'this' pointer if 'by 1232 // copy'). 1233 QualType CaptureType = ThisTy; 1234 if (ByCopy) { 1235 // If we are capturing the object referred to by '*this' by copy, ignore 1236 // any cv qualifiers inherited from the type of the member function for 1237 // the type of the closure-type's corresponding data member and any use 1238 // of 'this'. 1239 CaptureType = ThisTy->getPointeeType(); 1240 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1241 } 1242 1243 bool isNested = NumCapturingClosures > 1; 1244 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1245 } 1246 return false; 1247 } 1248 1249 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1250 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1251 /// is a non-lvalue expression whose value is the address of the object for 1252 /// which the function is called. 1253 1254 QualType ThisTy = getCurrentThisType(); 1255 if (ThisTy.isNull()) 1256 return Diag(Loc, diag::err_invalid_this_use); 1257 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false); 1258 } 1259 1260 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1261 bool IsImplicit) { 1262 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); 1263 MarkThisReferenced(This); 1264 return This; 1265 } 1266 1267 void Sema::MarkThisReferenced(CXXThisExpr *This) { 1268 CheckCXXThisCapture(This->getExprLoc()); 1269 } 1270 1271 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1272 // If we're outside the body of a member function, then we'll have a specified 1273 // type for 'this'. 1274 if (CXXThisTypeOverride.isNull()) 1275 return false; 1276 1277 // Determine whether we're looking into a class that's currently being 1278 // defined. 1279 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1280 return Class && Class->isBeingDefined(); 1281 } 1282 1283 /// Parse construction of a specified type. 1284 /// Can be interpreted either as function-style casting ("int(x)") 1285 /// or class type construction ("ClassType(x,y,z)") 1286 /// or creation of a value-initialized type ("int()"). 1287 ExprResult 1288 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1289 SourceLocation LParenOrBraceLoc, 1290 MultiExprArg exprs, 1291 SourceLocation RParenOrBraceLoc, 1292 bool ListInitialization) { 1293 if (!TypeRep) 1294 return ExprError(); 1295 1296 TypeSourceInfo *TInfo; 1297 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1298 if (!TInfo) 1299 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1300 1301 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1302 RParenOrBraceLoc, ListInitialization); 1303 // Avoid creating a non-type-dependent expression that contains typos. 1304 // Non-type-dependent expressions are liable to be discarded without 1305 // checking for embedded typos. 1306 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1307 !Result.get()->isTypeDependent()) 1308 Result = CorrectDelayedTyposInExpr(Result.get()); 1309 return Result; 1310 } 1311 1312 ExprResult 1313 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1314 SourceLocation LParenOrBraceLoc, 1315 MultiExprArg Exprs, 1316 SourceLocation RParenOrBraceLoc, 1317 bool ListInitialization) { 1318 QualType Ty = TInfo->getType(); 1319 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1320 1321 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1322 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization 1323 // directly. We work around this by dropping the locations of the braces. 1324 SourceRange Locs = ListInitialization 1325 ? SourceRange() 1326 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1327 return CXXUnresolvedConstructExpr::Create(Context, TInfo, Locs.getBegin(), 1328 Exprs, Locs.getEnd()); 1329 } 1330 1331 assert((!ListInitialization || 1332 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && 1333 "List initialization must have initializer list as expression."); 1334 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1335 1336 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); 1337 InitializationKind Kind = 1338 Exprs.size() 1339 ? ListInitialization 1340 ? InitializationKind::CreateDirectList( 1341 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1342 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1343 RParenOrBraceLoc) 1344 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1345 RParenOrBraceLoc); 1346 1347 // C++1z [expr.type.conv]p1: 1348 // If the type is a placeholder for a deduced class type, [...perform class 1349 // template argument deduction...] 1350 DeducedType *Deduced = Ty->getContainedDeducedType(); 1351 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1352 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1353 Kind, Exprs); 1354 if (Ty.isNull()) 1355 return ExprError(); 1356 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1357 } 1358 1359 // C++ [expr.type.conv]p1: 1360 // If the expression list is a parenthesized single expression, the type 1361 // conversion expression is equivalent (in definedness, and if defined in 1362 // meaning) to the corresponding cast expression. 1363 if (Exprs.size() == 1 && !ListInitialization && 1364 !isa<InitListExpr>(Exprs[0])) { 1365 Expr *Arg = Exprs[0]; 1366 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1367 RParenOrBraceLoc); 1368 } 1369 1370 // For an expression of the form T(), T shall not be an array type. 1371 QualType ElemTy = Ty; 1372 if (Ty->isArrayType()) { 1373 if (!ListInitialization) 1374 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1375 << FullRange); 1376 ElemTy = Context.getBaseElementType(Ty); 1377 } 1378 1379 // There doesn't seem to be an explicit rule against this but sanity demands 1380 // we only construct objects with object types. 1381 if (Ty->isFunctionType()) 1382 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1383 << Ty << FullRange); 1384 1385 // C++17 [expr.type.conv]p2: 1386 // If the type is cv void and the initializer is (), the expression is a 1387 // prvalue of the specified type that performs no initialization. 1388 if (!Ty->isVoidType() && 1389 RequireCompleteType(TyBeginLoc, ElemTy, 1390 diag::err_invalid_incomplete_type_use, FullRange)) 1391 return ExprError(); 1392 1393 // Otherwise, the expression is a prvalue of the specified type whose 1394 // result object is direct-initialized (11.6) with the initializer. 1395 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1396 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1397 1398 if (Result.isInvalid()) 1399 return Result; 1400 1401 Expr *Inner = Result.get(); 1402 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1403 Inner = BTE->getSubExpr(); 1404 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1405 !isa<CXXScalarValueInitExpr>(Inner)) { 1406 // If we created a CXXTemporaryObjectExpr, that node also represents the 1407 // functional cast. Otherwise, create an explicit cast to represent 1408 // the syntactic form of a functional-style cast that was used here. 1409 // 1410 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1411 // would give a more consistent AST representation than using a 1412 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1413 // is sometimes handled by initialization and sometimes not. 1414 QualType ResultType = Result.get()->getType(); 1415 SourceRange Locs = ListInitialization 1416 ? SourceRange() 1417 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1418 Result = CXXFunctionalCastExpr::Create( 1419 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1420 Result.get(), /*Path=*/nullptr, Locs.getBegin(), Locs.getEnd()); 1421 } 1422 1423 return Result; 1424 } 1425 1426 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1427 // [CUDA] Ignore this function, if we can't call it. 1428 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext); 1429 if (getLangOpts().CUDA && 1430 IdentifyCUDAPreference(Caller, Method) <= CFP_WrongSide) 1431 return false; 1432 1433 SmallVector<const FunctionDecl*, 4> PreventedBy; 1434 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1435 1436 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1437 return Result; 1438 1439 // In case of CUDA, return true if none of the 1-argument deallocator 1440 // functions are actually callable. 1441 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1442 assert(FD->getNumParams() == 1 && 1443 "Only single-operand functions should be in PreventedBy"); 1444 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1445 }); 1446 } 1447 1448 /// Determine whether the given function is a non-placement 1449 /// deallocation function. 1450 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1451 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1452 return S.isUsualDeallocationFunction(Method); 1453 1454 if (FD->getOverloadedOperator() != OO_Delete && 1455 FD->getOverloadedOperator() != OO_Array_Delete) 1456 return false; 1457 1458 unsigned UsualParams = 1; 1459 1460 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1461 S.Context.hasSameUnqualifiedType( 1462 FD->getParamDecl(UsualParams)->getType(), 1463 S.Context.getSizeType())) 1464 ++UsualParams; 1465 1466 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1467 S.Context.hasSameUnqualifiedType( 1468 FD->getParamDecl(UsualParams)->getType(), 1469 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1470 ++UsualParams; 1471 1472 return UsualParams == FD->getNumParams(); 1473 } 1474 1475 namespace { 1476 struct UsualDeallocFnInfo { 1477 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1478 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1479 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1480 Destroying(false), HasSizeT(false), HasAlignValT(false), 1481 CUDAPref(Sema::CFP_Native) { 1482 // A function template declaration is never a usual deallocation function. 1483 if (!FD) 1484 return; 1485 unsigned NumBaseParams = 1; 1486 if (FD->isDestroyingOperatorDelete()) { 1487 Destroying = true; 1488 ++NumBaseParams; 1489 } 1490 1491 if (NumBaseParams < FD->getNumParams() && 1492 S.Context.hasSameUnqualifiedType( 1493 FD->getParamDecl(NumBaseParams)->getType(), 1494 S.Context.getSizeType())) { 1495 ++NumBaseParams; 1496 HasSizeT = true; 1497 } 1498 1499 if (NumBaseParams < FD->getNumParams() && 1500 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1501 ++NumBaseParams; 1502 HasAlignValT = true; 1503 } 1504 1505 // In CUDA, determine how much we'd like / dislike to call this. 1506 if (S.getLangOpts().CUDA) 1507 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 1508 CUDAPref = S.IdentifyCUDAPreference(Caller, FD); 1509 } 1510 1511 explicit operator bool() const { return FD; } 1512 1513 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1514 bool WantAlign) const { 1515 // C++ P0722: 1516 // A destroying operator delete is preferred over a non-destroying 1517 // operator delete. 1518 if (Destroying != Other.Destroying) 1519 return Destroying; 1520 1521 // C++17 [expr.delete]p10: 1522 // If the type has new-extended alignment, a function with a parameter 1523 // of type std::align_val_t is preferred; otherwise a function without 1524 // such a parameter is preferred 1525 if (HasAlignValT != Other.HasAlignValT) 1526 return HasAlignValT == WantAlign; 1527 1528 if (HasSizeT != Other.HasSizeT) 1529 return HasSizeT == WantSize; 1530 1531 // Use CUDA call preference as a tiebreaker. 1532 return CUDAPref > Other.CUDAPref; 1533 } 1534 1535 DeclAccessPair Found; 1536 FunctionDecl *FD; 1537 bool Destroying, HasSizeT, HasAlignValT; 1538 Sema::CUDAFunctionPreference CUDAPref; 1539 }; 1540 } 1541 1542 /// Determine whether a type has new-extended alignment. This may be called when 1543 /// the type is incomplete (for a delete-expression with an incomplete pointee 1544 /// type), in which case it will conservatively return false if the alignment is 1545 /// not known. 1546 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1547 return S.getLangOpts().AlignedAllocation && 1548 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1549 S.getASTContext().getTargetInfo().getNewAlign(); 1550 } 1551 1552 /// Select the correct "usual" deallocation function to use from a selection of 1553 /// deallocation functions (either global or class-scope). 1554 static UsualDeallocFnInfo resolveDeallocationOverload( 1555 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1556 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1557 UsualDeallocFnInfo Best; 1558 1559 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1560 UsualDeallocFnInfo Info(S, I.getPair()); 1561 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1562 Info.CUDAPref == Sema::CFP_Never) 1563 continue; 1564 1565 if (!Best) { 1566 Best = Info; 1567 if (BestFns) 1568 BestFns->push_back(Info); 1569 continue; 1570 } 1571 1572 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1573 continue; 1574 1575 // If more than one preferred function is found, all non-preferred 1576 // functions are eliminated from further consideration. 1577 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1578 BestFns->clear(); 1579 1580 Best = Info; 1581 if (BestFns) 1582 BestFns->push_back(Info); 1583 } 1584 1585 return Best; 1586 } 1587 1588 /// Determine whether a given type is a class for which 'delete[]' would call 1589 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1590 /// we need to store the array size (even if the type is 1591 /// trivially-destructible). 1592 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1593 QualType allocType) { 1594 const RecordType *record = 1595 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1596 if (!record) return false; 1597 1598 // Try to find an operator delete[] in class scope. 1599 1600 DeclarationName deleteName = 1601 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1602 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1603 S.LookupQualifiedName(ops, record->getDecl()); 1604 1605 // We're just doing this for information. 1606 ops.suppressDiagnostics(); 1607 1608 // Very likely: there's no operator delete[]. 1609 if (ops.empty()) return false; 1610 1611 // If it's ambiguous, it should be illegal to call operator delete[] 1612 // on this thing, so it doesn't matter if we allocate extra space or not. 1613 if (ops.isAmbiguous()) return false; 1614 1615 // C++17 [expr.delete]p10: 1616 // If the deallocation functions have class scope, the one without a 1617 // parameter of type std::size_t is selected. 1618 auto Best = resolveDeallocationOverload( 1619 S, ops, /*WantSize*/false, 1620 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1621 return Best && Best.HasSizeT; 1622 } 1623 1624 /// Parsed a C++ 'new' expression (C++ 5.3.4). 1625 /// 1626 /// E.g.: 1627 /// @code new (memory) int[size][4] @endcode 1628 /// or 1629 /// @code ::new Foo(23, "hello") @endcode 1630 /// 1631 /// \param StartLoc The first location of the expression. 1632 /// \param UseGlobal True if 'new' was prefixed with '::'. 1633 /// \param PlacementLParen Opening paren of the placement arguments. 1634 /// \param PlacementArgs Placement new arguments. 1635 /// \param PlacementRParen Closing paren of the placement arguments. 1636 /// \param TypeIdParens If the type is in parens, the source range. 1637 /// \param D The type to be allocated, as well as array dimensions. 1638 /// \param Initializer The initializing expression or initializer-list, or null 1639 /// if there is none. 1640 ExprResult 1641 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1642 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1643 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1644 Declarator &D, Expr *Initializer) { 1645 Optional<Expr *> ArraySize; 1646 // If the specified type is an array, unwrap it and save the expression. 1647 if (D.getNumTypeObjects() > 0 && 1648 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1649 DeclaratorChunk &Chunk = D.getTypeObject(0); 1650 if (D.getDeclSpec().hasAutoTypeSpec()) 1651 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1652 << D.getSourceRange()); 1653 if (Chunk.Arr.hasStatic) 1654 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1655 << D.getSourceRange()); 1656 if (!Chunk.Arr.NumElts && !Initializer) 1657 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1658 << D.getSourceRange()); 1659 1660 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1661 D.DropFirstTypeObject(); 1662 } 1663 1664 // Every dimension shall be of constant size. 1665 if (ArraySize) { 1666 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1667 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1668 break; 1669 1670 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1671 if (Expr *NumElts = (Expr *)Array.NumElts) { 1672 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1673 if (getLangOpts().CPlusPlus14) { 1674 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1675 // shall be a converted constant expression (5.19) of type std::size_t 1676 // and shall evaluate to a strictly positive value. 1677 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 1678 assert(IntWidth && "Builtin type of size 0?"); 1679 llvm::APSInt Value(IntWidth); 1680 Array.NumElts 1681 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1682 CCEK_NewExpr) 1683 .get(); 1684 } else { 1685 Array.NumElts 1686 = VerifyIntegerConstantExpression(NumElts, nullptr, 1687 diag::err_new_array_nonconst) 1688 .get(); 1689 } 1690 if (!Array.NumElts) 1691 return ExprError(); 1692 } 1693 } 1694 } 1695 } 1696 1697 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1698 QualType AllocType = TInfo->getType(); 1699 if (D.isInvalidType()) 1700 return ExprError(); 1701 1702 SourceRange DirectInitRange; 1703 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1704 DirectInitRange = List->getSourceRange(); 1705 1706 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1707 PlacementLParen, PlacementArgs, PlacementRParen, 1708 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1709 Initializer); 1710 } 1711 1712 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1713 Expr *Init) { 1714 if (!Init) 1715 return true; 1716 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1717 return PLE->getNumExprs() == 0; 1718 if (isa<ImplicitValueInitExpr>(Init)) 1719 return true; 1720 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1721 return !CCE->isListInitialization() && 1722 CCE->getConstructor()->isDefaultConstructor(); 1723 else if (Style == CXXNewExpr::ListInit) { 1724 assert(isa<InitListExpr>(Init) && 1725 "Shouldn't create list CXXConstructExprs for arrays."); 1726 return true; 1727 } 1728 return false; 1729 } 1730 1731 bool 1732 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1733 if (!getLangOpts().AlignedAllocationUnavailable) 1734 return false; 1735 if (FD.isDefined()) 1736 return false; 1737 bool IsAligned = false; 1738 if (FD.isReplaceableGlobalAllocationFunction(&IsAligned) && IsAligned) 1739 return true; 1740 return false; 1741 } 1742 1743 // Emit a diagnostic if an aligned allocation/deallocation function that is not 1744 // implemented in the standard library is selected. 1745 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1746 SourceLocation Loc) { 1747 if (isUnavailableAlignedAllocationFunction(FD)) { 1748 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1749 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1750 getASTContext().getTargetInfo().getPlatformName()); 1751 1752 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1753 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1754 Diag(Loc, diag::err_aligned_allocation_unavailable) 1755 << IsDelete << FD.getType().getAsString() << OSName 1756 << alignedAllocMinVersion(T.getOS()).getAsString(); 1757 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1758 } 1759 } 1760 1761 ExprResult 1762 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1763 SourceLocation PlacementLParen, 1764 MultiExprArg PlacementArgs, 1765 SourceLocation PlacementRParen, 1766 SourceRange TypeIdParens, 1767 QualType AllocType, 1768 TypeSourceInfo *AllocTypeInfo, 1769 Optional<Expr *> ArraySize, 1770 SourceRange DirectInitRange, 1771 Expr *Initializer) { 1772 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1773 SourceLocation StartLoc = Range.getBegin(); 1774 1775 CXXNewExpr::InitializationStyle initStyle; 1776 if (DirectInitRange.isValid()) { 1777 assert(Initializer && "Have parens but no initializer."); 1778 initStyle = CXXNewExpr::CallInit; 1779 } else if (Initializer && isa<InitListExpr>(Initializer)) 1780 initStyle = CXXNewExpr::ListInit; 1781 else { 1782 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || 1783 isa<CXXConstructExpr>(Initializer)) && 1784 "Initializer expression that cannot have been implicitly created."); 1785 initStyle = CXXNewExpr::NoInit; 1786 } 1787 1788 Expr **Inits = &Initializer; 1789 unsigned NumInits = Initializer ? 1 : 0; 1790 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1791 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init"); 1792 Inits = List->getExprs(); 1793 NumInits = List->getNumExprs(); 1794 } 1795 1796 // C++11 [expr.new]p15: 1797 // A new-expression that creates an object of type T initializes that 1798 // object as follows: 1799 InitializationKind Kind 1800 // - If the new-initializer is omitted, the object is default- 1801 // initialized (8.5); if no initialization is performed, 1802 // the object has indeterminate value 1803 = initStyle == CXXNewExpr::NoInit 1804 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1805 // - Otherwise, the new-initializer is interpreted according to 1806 // the 1807 // initialization rules of 8.5 for direct-initialization. 1808 : initStyle == CXXNewExpr::ListInit 1809 ? InitializationKind::CreateDirectList( 1810 TypeRange.getBegin(), Initializer->getBeginLoc(), 1811 Initializer->getEndLoc()) 1812 : InitializationKind::CreateDirect(TypeRange.getBegin(), 1813 DirectInitRange.getBegin(), 1814 DirectInitRange.getEnd()); 1815 1816 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 1817 auto *Deduced = AllocType->getContainedDeducedType(); 1818 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1819 if (ArraySize) 1820 return ExprError( 1821 Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 1822 diag::err_deduced_class_template_compound_type) 1823 << /*array*/ 2 1824 << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 1825 1826 InitializedEntity Entity 1827 = InitializedEntity::InitializeNew(StartLoc, AllocType); 1828 AllocType = DeduceTemplateSpecializationFromInitializer( 1829 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits)); 1830 if (AllocType.isNull()) 1831 return ExprError(); 1832 } else if (Deduced) { 1833 bool Braced = (initStyle == CXXNewExpr::ListInit); 1834 if (NumInits == 1) { 1835 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) { 1836 Inits = p->getInits(); 1837 NumInits = p->getNumInits(); 1838 Braced = true; 1839 } 1840 } 1841 1842 if (initStyle == CXXNewExpr::NoInit || NumInits == 0) 1843 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 1844 << AllocType << TypeRange); 1845 if (NumInits > 1) { 1846 Expr *FirstBad = Inits[1]; 1847 return ExprError(Diag(FirstBad->getBeginLoc(), 1848 diag::err_auto_new_ctor_multiple_expressions) 1849 << AllocType << TypeRange); 1850 } 1851 if (Braced && !getLangOpts().CPlusPlus17) 1852 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 1853 << AllocType << TypeRange; 1854 Expr *Deduce = Inits[0]; 1855 QualType DeducedType; 1856 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 1857 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 1858 << AllocType << Deduce->getType() 1859 << TypeRange << Deduce->getSourceRange()); 1860 if (DeducedType.isNull()) 1861 return ExprError(); 1862 AllocType = DeducedType; 1863 } 1864 1865 // Per C++0x [expr.new]p5, the type being constructed may be a 1866 // typedef of an array type. 1867 if (!ArraySize) { 1868 if (const ConstantArrayType *Array 1869 = Context.getAsConstantArrayType(AllocType)) { 1870 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 1871 Context.getSizeType(), 1872 TypeRange.getEnd()); 1873 AllocType = Array->getElementType(); 1874 } 1875 } 1876 1877 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 1878 return ExprError(); 1879 1880 // In ARC, infer 'retaining' for the allocated 1881 if (getLangOpts().ObjCAutoRefCount && 1882 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 1883 AllocType->isObjCLifetimeType()) { 1884 AllocType = Context.getLifetimeQualifiedType(AllocType, 1885 AllocType->getObjCARCImplicitLifetime()); 1886 } 1887 1888 QualType ResultType = Context.getPointerType(AllocType); 1889 1890 if (ArraySize && *ArraySize && 1891 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 1892 ExprResult result = CheckPlaceholderExpr(*ArraySize); 1893 if (result.isInvalid()) return ExprError(); 1894 ArraySize = result.get(); 1895 } 1896 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 1897 // integral or enumeration type with a non-negative value." 1898 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 1899 // enumeration type, or a class type for which a single non-explicit 1900 // conversion function to integral or unscoped enumeration type exists. 1901 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 1902 // std::size_t. 1903 llvm::Optional<uint64_t> KnownArraySize; 1904 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 1905 ExprResult ConvertedSize; 1906 if (getLangOpts().CPlusPlus14) { 1907 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); 1908 1909 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 1910 AA_Converting); 1911 1912 if (!ConvertedSize.isInvalid() && 1913 (*ArraySize)->getType()->getAs<RecordType>()) 1914 // Diagnose the compatibility of this conversion. 1915 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 1916 << (*ArraySize)->getType() << 0 << "'size_t'"; 1917 } else { 1918 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 1919 protected: 1920 Expr *ArraySize; 1921 1922 public: 1923 SizeConvertDiagnoser(Expr *ArraySize) 1924 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 1925 ArraySize(ArraySize) {} 1926 1927 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 1928 QualType T) override { 1929 return S.Diag(Loc, diag::err_array_size_not_integral) 1930 << S.getLangOpts().CPlusPlus11 << T; 1931 } 1932 1933 SemaDiagnosticBuilder diagnoseIncomplete( 1934 Sema &S, SourceLocation Loc, QualType T) override { 1935 return S.Diag(Loc, diag::err_array_size_incomplete_type) 1936 << T << ArraySize->getSourceRange(); 1937 } 1938 1939 SemaDiagnosticBuilder diagnoseExplicitConv( 1940 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 1941 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 1942 } 1943 1944 SemaDiagnosticBuilder noteExplicitConv( 1945 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1946 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 1947 << ConvTy->isEnumeralType() << ConvTy; 1948 } 1949 1950 SemaDiagnosticBuilder diagnoseAmbiguous( 1951 Sema &S, SourceLocation Loc, QualType T) override { 1952 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 1953 } 1954 1955 SemaDiagnosticBuilder noteAmbiguous( 1956 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1957 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 1958 << ConvTy->isEnumeralType() << ConvTy; 1959 } 1960 1961 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 1962 QualType T, 1963 QualType ConvTy) override { 1964 return S.Diag(Loc, 1965 S.getLangOpts().CPlusPlus11 1966 ? diag::warn_cxx98_compat_array_size_conversion 1967 : diag::ext_array_size_conversion) 1968 << T << ConvTy->isEnumeralType() << ConvTy; 1969 } 1970 } SizeDiagnoser(*ArraySize); 1971 1972 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 1973 SizeDiagnoser); 1974 } 1975 if (ConvertedSize.isInvalid()) 1976 return ExprError(); 1977 1978 ArraySize = ConvertedSize.get(); 1979 QualType SizeType = (*ArraySize)->getType(); 1980 1981 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 1982 return ExprError(); 1983 1984 // C++98 [expr.new]p7: 1985 // The expression in a direct-new-declarator shall have integral type 1986 // with a non-negative value. 1987 // 1988 // Let's see if this is a constant < 0. If so, we reject it out of hand, 1989 // per CWG1464. Otherwise, if it's not a constant, we must have an 1990 // unparenthesized array type. 1991 if (!(*ArraySize)->isValueDependent()) { 1992 llvm::APSInt Value; 1993 // We've already performed any required implicit conversion to integer or 1994 // unscoped enumeration type. 1995 // FIXME: Per CWG1464, we are required to check the value prior to 1996 // converting to size_t. This will never find a negative array size in 1997 // C++14 onwards, because Value is always unsigned here! 1998 if ((*ArraySize)->isIntegerConstantExpr(Value, Context)) { 1999 if (Value.isSigned() && Value.isNegative()) { 2000 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2001 diag::err_typecheck_negative_array_size) 2002 << (*ArraySize)->getSourceRange()); 2003 } 2004 2005 if (!AllocType->isDependentType()) { 2006 unsigned ActiveSizeBits = 2007 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value); 2008 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2009 return ExprError( 2010 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2011 << Value.toString(10) << (*ArraySize)->getSourceRange()); 2012 } 2013 2014 KnownArraySize = Value.getZExtValue(); 2015 } else if (TypeIdParens.isValid()) { 2016 // Can't have dynamic array size when the type-id is in parentheses. 2017 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2018 << (*ArraySize)->getSourceRange() 2019 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2020 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2021 2022 TypeIdParens = SourceRange(); 2023 } 2024 } 2025 2026 // Note that we do *not* convert the argument in any way. It can 2027 // be signed, larger than size_t, whatever. 2028 } 2029 2030 FunctionDecl *OperatorNew = nullptr; 2031 FunctionDecl *OperatorDelete = nullptr; 2032 unsigned Alignment = 2033 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2034 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2035 bool PassAlignment = getLangOpts().AlignedAllocation && 2036 Alignment > NewAlignment; 2037 2038 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2039 if (!AllocType->isDependentType() && 2040 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2041 FindAllocationFunctions( 2042 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2043 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs, 2044 OperatorNew, OperatorDelete)) 2045 return ExprError(); 2046 2047 // If this is an array allocation, compute whether the usual array 2048 // deallocation function for the type has a size_t parameter. 2049 bool UsualArrayDeleteWantsSize = false; 2050 if (ArraySize && !AllocType->isDependentType()) 2051 UsualArrayDeleteWantsSize = 2052 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2053 2054 SmallVector<Expr *, 8> AllPlaceArgs; 2055 if (OperatorNew) { 2056 const FunctionProtoType *Proto = 2057 OperatorNew->getType()->getAs<FunctionProtoType>(); 2058 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2059 : VariadicDoesNotApply; 2060 2061 // We've already converted the placement args, just fill in any default 2062 // arguments. Skip the first parameter because we don't have a corresponding 2063 // argument. Skip the second parameter too if we're passing in the 2064 // alignment; we've already filled it in. 2065 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2066 PassAlignment ? 2 : 1, PlacementArgs, 2067 AllPlaceArgs, CallType)) 2068 return ExprError(); 2069 2070 if (!AllPlaceArgs.empty()) 2071 PlacementArgs = AllPlaceArgs; 2072 2073 // FIXME: This is wrong: PlacementArgs misses out the first (size) argument. 2074 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs); 2075 2076 // FIXME: Missing call to CheckFunctionCall or equivalent 2077 2078 // Warn if the type is over-aligned and is being allocated by (unaligned) 2079 // global operator new. 2080 if (PlacementArgs.empty() && !PassAlignment && 2081 (OperatorNew->isImplicit() || 2082 (OperatorNew->getBeginLoc().isValid() && 2083 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2084 if (Alignment > NewAlignment) 2085 Diag(StartLoc, diag::warn_overaligned_type) 2086 << AllocType 2087 << unsigned(Alignment / Context.getCharWidth()) 2088 << unsigned(NewAlignment / Context.getCharWidth()); 2089 } 2090 } 2091 2092 // Array 'new' can't have any initializers except empty parentheses. 2093 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2094 // dialect distinction. 2095 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { 2096 SourceRange InitRange(Inits[0]->getBeginLoc(), 2097 Inits[NumInits - 1]->getEndLoc()); 2098 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2099 return ExprError(); 2100 } 2101 2102 // If we can perform the initialization, and we've not already done so, 2103 // do it now. 2104 if (!AllocType->isDependentType() && 2105 !Expr::hasAnyTypeDependentArguments( 2106 llvm::makeArrayRef(Inits, NumInits))) { 2107 // The type we initialize is the complete type, including the array bound. 2108 QualType InitType; 2109 if (KnownArraySize) 2110 InitType = Context.getConstantArrayType( 2111 AllocType, llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2112 *KnownArraySize), 2113 ArrayType::Normal, 0); 2114 else if (ArraySize) 2115 InitType = 2116 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); 2117 else 2118 InitType = AllocType; 2119 2120 InitializedEntity Entity 2121 = InitializedEntity::InitializeNew(StartLoc, InitType); 2122 InitializationSequence InitSeq(*this, Entity, Kind, 2123 MultiExprArg(Inits, NumInits)); 2124 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 2125 MultiExprArg(Inits, NumInits)); 2126 if (FullInit.isInvalid()) 2127 return ExprError(); 2128 2129 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2130 // we don't want the initialized object to be destructed. 2131 // FIXME: We should not create these in the first place. 2132 if (CXXBindTemporaryExpr *Binder = 2133 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2134 FullInit = Binder->getSubExpr(); 2135 2136 Initializer = FullInit.get(); 2137 2138 // FIXME: If we have a KnownArraySize, check that the array bound of the 2139 // initializer is no greater than that constant value. 2140 2141 if (ArraySize && !*ArraySize) { 2142 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2143 if (CAT) { 2144 // FIXME: Track that the array size was inferred rather than explicitly 2145 // specified. 2146 ArraySize = IntegerLiteral::Create( 2147 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2148 } else { 2149 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2150 << Initializer->getSourceRange(); 2151 } 2152 } 2153 } 2154 2155 // Mark the new and delete operators as referenced. 2156 if (OperatorNew) { 2157 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2158 return ExprError(); 2159 MarkFunctionReferenced(StartLoc, OperatorNew); 2160 } 2161 if (OperatorDelete) { 2162 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2163 return ExprError(); 2164 MarkFunctionReferenced(StartLoc, OperatorDelete); 2165 } 2166 2167 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2168 PassAlignment, UsualArrayDeleteWantsSize, 2169 PlacementArgs, TypeIdParens, ArraySize, initStyle, 2170 Initializer, ResultType, AllocTypeInfo, Range, 2171 DirectInitRange); 2172 } 2173 2174 /// Checks that a type is suitable as the allocated type 2175 /// in a new-expression. 2176 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2177 SourceRange R) { 2178 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2179 // abstract class type or array thereof. 2180 if (AllocType->isFunctionType()) 2181 return Diag(Loc, diag::err_bad_new_type) 2182 << AllocType << 0 << R; 2183 else if (AllocType->isReferenceType()) 2184 return Diag(Loc, diag::err_bad_new_type) 2185 << AllocType << 1 << R; 2186 else if (!AllocType->isDependentType() && 2187 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R)) 2188 return true; 2189 else if (RequireNonAbstractType(Loc, AllocType, 2190 diag::err_allocation_of_abstract_type)) 2191 return true; 2192 else if (AllocType->isVariablyModifiedType()) 2193 return Diag(Loc, diag::err_variably_modified_new_type) 2194 << AllocType; 2195 else if (AllocType.getAddressSpace() != LangAS::Default && 2196 !getLangOpts().OpenCLCPlusPlus) 2197 return Diag(Loc, diag::err_address_space_qualified_new) 2198 << AllocType.getUnqualifiedType() 2199 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2200 else if (getLangOpts().ObjCAutoRefCount) { 2201 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2202 QualType BaseAllocType = Context.getBaseElementType(AT); 2203 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2204 BaseAllocType->isObjCLifetimeType()) 2205 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2206 << BaseAllocType; 2207 } 2208 } 2209 2210 return false; 2211 } 2212 2213 static bool resolveAllocationOverload( 2214 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2215 bool &PassAlignment, FunctionDecl *&Operator, 2216 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2217 OverloadCandidateSet Candidates(R.getNameLoc(), 2218 OverloadCandidateSet::CSK_Normal); 2219 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2220 Alloc != AllocEnd; ++Alloc) { 2221 // Even member operator new/delete are implicitly treated as 2222 // static, so don't use AddMemberCandidate. 2223 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2224 2225 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2226 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2227 /*ExplicitTemplateArgs=*/nullptr, Args, 2228 Candidates, 2229 /*SuppressUserConversions=*/false); 2230 continue; 2231 } 2232 2233 FunctionDecl *Fn = cast<FunctionDecl>(D); 2234 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2235 /*SuppressUserConversions=*/false); 2236 } 2237 2238 // Do the resolution. 2239 OverloadCandidateSet::iterator Best; 2240 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2241 case OR_Success: { 2242 // Got one! 2243 FunctionDecl *FnDecl = Best->Function; 2244 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2245 Best->FoundDecl) == Sema::AR_inaccessible) 2246 return true; 2247 2248 Operator = FnDecl; 2249 return false; 2250 } 2251 2252 case OR_No_Viable_Function: 2253 // C++17 [expr.new]p13: 2254 // If no matching function is found and the allocated object type has 2255 // new-extended alignment, the alignment argument is removed from the 2256 // argument list, and overload resolution is performed again. 2257 if (PassAlignment) { 2258 PassAlignment = false; 2259 AlignArg = Args[1]; 2260 Args.erase(Args.begin() + 1); 2261 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2262 Operator, &Candidates, AlignArg, 2263 Diagnose); 2264 } 2265 2266 // MSVC will fall back on trying to find a matching global operator new 2267 // if operator new[] cannot be found. Also, MSVC will leak by not 2268 // generating a call to operator delete or operator delete[], but we 2269 // will not replicate that bug. 2270 // FIXME: Find out how this interacts with the std::align_val_t fallback 2271 // once MSVC implements it. 2272 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2273 S.Context.getLangOpts().MSVCCompat) { 2274 R.clear(); 2275 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2276 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2277 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2278 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2279 Operator, /*Candidates=*/nullptr, 2280 /*AlignArg=*/nullptr, Diagnose); 2281 } 2282 2283 if (Diagnose) { 2284 PartialDiagnosticAt PD(R.getNameLoc(), S.PDiag(diag::err_ovl_no_viable_function_in_call) 2285 << R.getLookupName() << Range); 2286 2287 // If we have aligned candidates, only note the align_val_t candidates 2288 // from AlignedCandidates and the non-align_val_t candidates from 2289 // Candidates. 2290 if (AlignedCandidates) { 2291 auto IsAligned = [](OverloadCandidate &C) { 2292 return C.Function->getNumParams() > 1 && 2293 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2294 }; 2295 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2296 2297 // This was an overaligned allocation, so list the aligned candidates 2298 // first. 2299 Args.insert(Args.begin() + 1, AlignArg); 2300 AlignedCandidates->NoteCandidates(PD, S, OCD_AllCandidates, Args, "", 2301 R.getNameLoc(), IsAligned); 2302 Args.erase(Args.begin() + 1); 2303 Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args, "", R.getNameLoc(), 2304 IsUnaligned); 2305 } else { 2306 Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args); 2307 } 2308 } 2309 return true; 2310 2311 case OR_Ambiguous: 2312 if (Diagnose) { 2313 Candidates.NoteCandidates( 2314 PartialDiagnosticAt(R.getNameLoc(), 2315 S.PDiag(diag::err_ovl_ambiguous_call) 2316 << R.getLookupName() << Range), 2317 S, OCD_ViableCandidates, Args); 2318 } 2319 return true; 2320 2321 case OR_Deleted: { 2322 if (Diagnose) { 2323 Candidates.NoteCandidates( 2324 PartialDiagnosticAt(R.getNameLoc(), 2325 S.PDiag(diag::err_ovl_deleted_call) 2326 << R.getLookupName() << Range), 2327 S, OCD_AllCandidates, Args); 2328 } 2329 return true; 2330 } 2331 } 2332 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 2333 } 2334 2335 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2336 AllocationFunctionScope NewScope, 2337 AllocationFunctionScope DeleteScope, 2338 QualType AllocType, bool IsArray, 2339 bool &PassAlignment, MultiExprArg PlaceArgs, 2340 FunctionDecl *&OperatorNew, 2341 FunctionDecl *&OperatorDelete, 2342 bool Diagnose) { 2343 // --- Choosing an allocation function --- 2344 // C++ 5.3.4p8 - 14 & 18 2345 // 1) If looking in AFS_Global scope for allocation functions, only look in 2346 // the global scope. Else, if AFS_Class, only look in the scope of the 2347 // allocated class. If AFS_Both, look in both. 2348 // 2) If an array size is given, look for operator new[], else look for 2349 // operator new. 2350 // 3) The first argument is always size_t. Append the arguments from the 2351 // placement form. 2352 2353 SmallVector<Expr*, 8> AllocArgs; 2354 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2355 2356 // We don't care about the actual value of these arguments. 2357 // FIXME: Should the Sema create the expression and embed it in the syntax 2358 // tree? Or should the consumer just recalculate the value? 2359 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2360 IntegerLiteral Size(Context, llvm::APInt::getNullValue( 2361 Context.getTargetInfo().getPointerWidth(0)), 2362 Context.getSizeType(), 2363 SourceLocation()); 2364 AllocArgs.push_back(&Size); 2365 2366 QualType AlignValT = Context.VoidTy; 2367 if (PassAlignment) { 2368 DeclareGlobalNewDelete(); 2369 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2370 } 2371 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2372 if (PassAlignment) 2373 AllocArgs.push_back(&Align); 2374 2375 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2376 2377 // C++ [expr.new]p8: 2378 // If the allocated type is a non-array type, the allocation 2379 // function's name is operator new and the deallocation function's 2380 // name is operator delete. If the allocated type is an array 2381 // type, the allocation function's name is operator new[] and the 2382 // deallocation function's name is operator delete[]. 2383 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2384 IsArray ? OO_Array_New : OO_New); 2385 2386 QualType AllocElemType = Context.getBaseElementType(AllocType); 2387 2388 // Find the allocation function. 2389 { 2390 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2391 2392 // C++1z [expr.new]p9: 2393 // If the new-expression begins with a unary :: operator, the allocation 2394 // function's name is looked up in the global scope. Otherwise, if the 2395 // allocated type is a class type T or array thereof, the allocation 2396 // function's name is looked up in the scope of T. 2397 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2398 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2399 2400 // We can see ambiguity here if the allocation function is found in 2401 // multiple base classes. 2402 if (R.isAmbiguous()) 2403 return true; 2404 2405 // If this lookup fails to find the name, or if the allocated type is not 2406 // a class type, the allocation function's name is looked up in the 2407 // global scope. 2408 if (R.empty()) { 2409 if (NewScope == AFS_Class) 2410 return true; 2411 2412 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2413 } 2414 2415 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2416 if (PlaceArgs.empty()) { 2417 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2418 } else { 2419 Diag(StartLoc, diag::err_openclcxx_placement_new); 2420 } 2421 return true; 2422 } 2423 2424 assert(!R.empty() && "implicitly declared allocation functions not found"); 2425 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 2426 2427 // We do our own custom access checks below. 2428 R.suppressDiagnostics(); 2429 2430 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2431 OperatorNew, /*Candidates=*/nullptr, 2432 /*AlignArg=*/nullptr, Diagnose)) 2433 return true; 2434 } 2435 2436 // We don't need an operator delete if we're running under -fno-exceptions. 2437 if (!getLangOpts().Exceptions) { 2438 OperatorDelete = nullptr; 2439 return false; 2440 } 2441 2442 // Note, the name of OperatorNew might have been changed from array to 2443 // non-array by resolveAllocationOverload. 2444 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2445 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2446 ? OO_Array_Delete 2447 : OO_Delete); 2448 2449 // C++ [expr.new]p19: 2450 // 2451 // If the new-expression begins with a unary :: operator, the 2452 // deallocation function's name is looked up in the global 2453 // scope. Otherwise, if the allocated type is a class type T or an 2454 // array thereof, the deallocation function's name is looked up in 2455 // the scope of T. If this lookup fails to find the name, or if 2456 // the allocated type is not a class type or array thereof, the 2457 // deallocation function's name is looked up in the global scope. 2458 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2459 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2460 CXXRecordDecl *RD 2461 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); 2462 LookupQualifiedName(FoundDelete, RD); 2463 } 2464 if (FoundDelete.isAmbiguous()) 2465 return true; // FIXME: clean up expressions? 2466 2467 bool FoundGlobalDelete = FoundDelete.empty(); 2468 if (FoundDelete.empty()) { 2469 if (DeleteScope == AFS_Class) 2470 return true; 2471 2472 DeclareGlobalNewDelete(); 2473 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2474 } 2475 2476 FoundDelete.suppressDiagnostics(); 2477 2478 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2479 2480 // Whether we're looking for a placement operator delete is dictated 2481 // by whether we selected a placement operator new, not by whether 2482 // we had explicit placement arguments. This matters for things like 2483 // struct A { void *operator new(size_t, int = 0); ... }; 2484 // A *a = new A() 2485 // 2486 // We don't have any definition for what a "placement allocation function" 2487 // is, but we assume it's any allocation function whose 2488 // parameter-declaration-clause is anything other than (size_t). 2489 // 2490 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2491 // This affects whether an exception from the constructor of an overaligned 2492 // type uses the sized or non-sized form of aligned operator delete. 2493 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2494 OperatorNew->isVariadic(); 2495 2496 if (isPlacementNew) { 2497 // C++ [expr.new]p20: 2498 // A declaration of a placement deallocation function matches the 2499 // declaration of a placement allocation function if it has the 2500 // same number of parameters and, after parameter transformations 2501 // (8.3.5), all parameter types except the first are 2502 // identical. [...] 2503 // 2504 // To perform this comparison, we compute the function type that 2505 // the deallocation function should have, and use that type both 2506 // for template argument deduction and for comparison purposes. 2507 QualType ExpectedFunctionType; 2508 { 2509 const FunctionProtoType *Proto 2510 = OperatorNew->getType()->getAs<FunctionProtoType>(); 2511 2512 SmallVector<QualType, 4> ArgTypes; 2513 ArgTypes.push_back(Context.VoidPtrTy); 2514 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2515 ArgTypes.push_back(Proto->getParamType(I)); 2516 2517 FunctionProtoType::ExtProtoInfo EPI; 2518 // FIXME: This is not part of the standard's rule. 2519 EPI.Variadic = Proto->isVariadic(); 2520 2521 ExpectedFunctionType 2522 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2523 } 2524 2525 for (LookupResult::iterator D = FoundDelete.begin(), 2526 DEnd = FoundDelete.end(); 2527 D != DEnd; ++D) { 2528 FunctionDecl *Fn = nullptr; 2529 if (FunctionTemplateDecl *FnTmpl = 2530 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2531 // Perform template argument deduction to try to match the 2532 // expected function type. 2533 TemplateDeductionInfo Info(StartLoc); 2534 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2535 Info)) 2536 continue; 2537 } else 2538 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2539 2540 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2541 ExpectedFunctionType, 2542 /*AdjustExcpetionSpec*/true), 2543 ExpectedFunctionType)) 2544 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2545 } 2546 2547 if (getLangOpts().CUDA) 2548 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches); 2549 } else { 2550 // C++1y [expr.new]p22: 2551 // For a non-placement allocation function, the normal deallocation 2552 // function lookup is used 2553 // 2554 // Per [expr.delete]p10, this lookup prefers a member operator delete 2555 // without a size_t argument, but prefers a non-member operator delete 2556 // with a size_t where possible (which it always is in this case). 2557 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2558 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2559 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2560 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2561 &BestDeallocFns); 2562 if (Selected) 2563 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2564 else { 2565 // If we failed to select an operator, all remaining functions are viable 2566 // but ambiguous. 2567 for (auto Fn : BestDeallocFns) 2568 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2569 } 2570 } 2571 2572 // C++ [expr.new]p20: 2573 // [...] If the lookup finds a single matching deallocation 2574 // function, that function will be called; otherwise, no 2575 // deallocation function will be called. 2576 if (Matches.size() == 1) { 2577 OperatorDelete = Matches[0].second; 2578 2579 // C++1z [expr.new]p23: 2580 // If the lookup finds a usual deallocation function (3.7.4.2) 2581 // with a parameter of type std::size_t and that function, considered 2582 // as a placement deallocation function, would have been 2583 // selected as a match for the allocation function, the program 2584 // is ill-formed. 2585 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2586 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2587 UsualDeallocFnInfo Info(*this, 2588 DeclAccessPair::make(OperatorDelete, AS_public)); 2589 // Core issue, per mail to core reflector, 2016-10-09: 2590 // If this is a member operator delete, and there is a corresponding 2591 // non-sized member operator delete, this isn't /really/ a sized 2592 // deallocation function, it just happens to have a size_t parameter. 2593 bool IsSizedDelete = Info.HasSizeT; 2594 if (IsSizedDelete && !FoundGlobalDelete) { 2595 auto NonSizedDelete = 2596 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2597 /*WantAlign*/Info.HasAlignValT); 2598 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2599 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2600 IsSizedDelete = false; 2601 } 2602 2603 if (IsSizedDelete) { 2604 SourceRange R = PlaceArgs.empty() 2605 ? SourceRange() 2606 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2607 PlaceArgs.back()->getEndLoc()); 2608 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2609 if (!OperatorDelete->isImplicit()) 2610 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2611 << DeleteName; 2612 } 2613 } 2614 2615 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2616 Matches[0].first); 2617 } else if (!Matches.empty()) { 2618 // We found multiple suitable operators. Per [expr.new]p20, that means we 2619 // call no 'operator delete' function, but we should at least warn the user. 2620 // FIXME: Suppress this warning if the construction cannot throw. 2621 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2622 << DeleteName << AllocElemType; 2623 2624 for (auto &Match : Matches) 2625 Diag(Match.second->getLocation(), 2626 diag::note_member_declared_here) << DeleteName; 2627 } 2628 2629 return false; 2630 } 2631 2632 /// DeclareGlobalNewDelete - Declare the global forms of operator new and 2633 /// delete. These are: 2634 /// @code 2635 /// // C++03: 2636 /// void* operator new(std::size_t) throw(std::bad_alloc); 2637 /// void* operator new[](std::size_t) throw(std::bad_alloc); 2638 /// void operator delete(void *) throw(); 2639 /// void operator delete[](void *) throw(); 2640 /// // C++11: 2641 /// void* operator new(std::size_t); 2642 /// void* operator new[](std::size_t); 2643 /// void operator delete(void *) noexcept; 2644 /// void operator delete[](void *) noexcept; 2645 /// // C++1y: 2646 /// void* operator new(std::size_t); 2647 /// void* operator new[](std::size_t); 2648 /// void operator delete(void *) noexcept; 2649 /// void operator delete[](void *) noexcept; 2650 /// void operator delete(void *, std::size_t) noexcept; 2651 /// void operator delete[](void *, std::size_t) noexcept; 2652 /// @endcode 2653 /// Note that the placement and nothrow forms of new are *not* implicitly 2654 /// declared. Their use requires including \<new\>. 2655 void Sema::DeclareGlobalNewDelete() { 2656 if (GlobalNewDeleteDeclared) 2657 return; 2658 2659 // The implicitly declared new and delete operators 2660 // are not supported in OpenCL. 2661 if (getLangOpts().OpenCLCPlusPlus) 2662 return; 2663 2664 // C++ [basic.std.dynamic]p2: 2665 // [...] The following allocation and deallocation functions (18.4) are 2666 // implicitly declared in global scope in each translation unit of a 2667 // program 2668 // 2669 // C++03: 2670 // void* operator new(std::size_t) throw(std::bad_alloc); 2671 // void* operator new[](std::size_t) throw(std::bad_alloc); 2672 // void operator delete(void*) throw(); 2673 // void operator delete[](void*) throw(); 2674 // C++11: 2675 // void* operator new(std::size_t); 2676 // void* operator new[](std::size_t); 2677 // void operator delete(void*) noexcept; 2678 // void operator delete[](void*) noexcept; 2679 // C++1y: 2680 // void* operator new(std::size_t); 2681 // void* operator new[](std::size_t); 2682 // void operator delete(void*) noexcept; 2683 // void operator delete[](void*) noexcept; 2684 // void operator delete(void*, std::size_t) noexcept; 2685 // void operator delete[](void*, std::size_t) noexcept; 2686 // 2687 // These implicit declarations introduce only the function names operator 2688 // new, operator new[], operator delete, operator delete[]. 2689 // 2690 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2691 // "std" or "bad_alloc" as necessary to form the exception specification. 2692 // However, we do not make these implicit declarations visible to name 2693 // lookup. 2694 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2695 // The "std::bad_alloc" class has not yet been declared, so build it 2696 // implicitly. 2697 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2698 getOrCreateStdNamespace(), 2699 SourceLocation(), SourceLocation(), 2700 &PP.getIdentifierTable().get("bad_alloc"), 2701 nullptr); 2702 getStdBadAlloc()->setImplicit(true); 2703 } 2704 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 2705 // The "std::align_val_t" enum class has not yet been declared, so build it 2706 // implicitly. 2707 auto *AlignValT = EnumDecl::Create( 2708 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 2709 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 2710 AlignValT->setIntegerType(Context.getSizeType()); 2711 AlignValT->setPromotionType(Context.getSizeType()); 2712 AlignValT->setImplicit(true); 2713 StdAlignValT = AlignValT; 2714 } 2715 2716 GlobalNewDeleteDeclared = true; 2717 2718 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 2719 QualType SizeT = Context.getSizeType(); 2720 2721 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 2722 QualType Return, QualType Param) { 2723 llvm::SmallVector<QualType, 3> Params; 2724 Params.push_back(Param); 2725 2726 // Create up to four variants of the function (sized/aligned). 2727 bool HasSizedVariant = getLangOpts().SizedDeallocation && 2728 (Kind == OO_Delete || Kind == OO_Array_Delete); 2729 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 2730 2731 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 2732 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 2733 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 2734 if (Sized) 2735 Params.push_back(SizeT); 2736 2737 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 2738 if (Aligned) 2739 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 2740 2741 DeclareGlobalAllocationFunction( 2742 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 2743 2744 if (Aligned) 2745 Params.pop_back(); 2746 } 2747 } 2748 }; 2749 2750 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 2751 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 2752 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 2753 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 2754 } 2755 2756 /// DeclareGlobalAllocationFunction - Declares a single implicit global 2757 /// allocation function if it doesn't already exist. 2758 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 2759 QualType Return, 2760 ArrayRef<QualType> Params) { 2761 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 2762 2763 // Check if this function is already declared. 2764 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 2765 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 2766 Alloc != AllocEnd; ++Alloc) { 2767 // Only look at non-template functions, as it is the predefined, 2768 // non-templated allocation function we are trying to declare here. 2769 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 2770 if (Func->getNumParams() == Params.size()) { 2771 llvm::SmallVector<QualType, 3> FuncParams; 2772 for (auto *P : Func->parameters()) 2773 FuncParams.push_back( 2774 Context.getCanonicalType(P->getType().getUnqualifiedType())); 2775 if (llvm::makeArrayRef(FuncParams) == Params) { 2776 // Make the function visible to name lookup, even if we found it in 2777 // an unimported module. It either is an implicitly-declared global 2778 // allocation function, or is suppressing that function. 2779 Func->setVisibleDespiteOwningModule(); 2780 return; 2781 } 2782 } 2783 } 2784 } 2785 2786 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 2787 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 2788 2789 QualType BadAllocType; 2790 bool HasBadAllocExceptionSpec 2791 = (Name.getCXXOverloadedOperator() == OO_New || 2792 Name.getCXXOverloadedOperator() == OO_Array_New); 2793 if (HasBadAllocExceptionSpec) { 2794 if (!getLangOpts().CPlusPlus11) { 2795 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 2796 assert(StdBadAlloc && "Must have std::bad_alloc declared"); 2797 EPI.ExceptionSpec.Type = EST_Dynamic; 2798 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 2799 } 2800 } else { 2801 EPI.ExceptionSpec = 2802 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 2803 } 2804 2805 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 2806 QualType FnType = Context.getFunctionType(Return, Params, EPI); 2807 FunctionDecl *Alloc = FunctionDecl::Create( 2808 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, 2809 FnType, /*TInfo=*/nullptr, SC_None, false, true); 2810 Alloc->setImplicit(); 2811 // Global allocation functions should always be visible. 2812 Alloc->setVisibleDespiteOwningModule(); 2813 2814 Alloc->addAttr(VisibilityAttr::CreateImplicit( 2815 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden 2816 ? VisibilityAttr::Hidden 2817 : VisibilityAttr::Default)); 2818 2819 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 2820 for (QualType T : Params) { 2821 ParamDecls.push_back(ParmVarDecl::Create( 2822 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 2823 /*TInfo=*/nullptr, SC_None, nullptr)); 2824 ParamDecls.back()->setImplicit(); 2825 } 2826 Alloc->setParams(ParamDecls); 2827 if (ExtraAttr) 2828 Alloc->addAttr(ExtraAttr); 2829 Context.getTranslationUnitDecl()->addDecl(Alloc); 2830 IdResolver.tryAddTopLevelDecl(Alloc, Name); 2831 }; 2832 2833 if (!LangOpts.CUDA) 2834 CreateAllocationFunctionDecl(nullptr); 2835 else { 2836 // Host and device get their own declaration so each can be 2837 // defined or re-declared independently. 2838 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 2839 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 2840 } 2841 } 2842 2843 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 2844 bool CanProvideSize, 2845 bool Overaligned, 2846 DeclarationName Name) { 2847 DeclareGlobalNewDelete(); 2848 2849 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 2850 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2851 2852 // FIXME: It's possible for this to result in ambiguity, through a 2853 // user-declared variadic operator delete or the enable_if attribute. We 2854 // should probably not consider those cases to be usual deallocation 2855 // functions. But for now we just make an arbitrary choice in that case. 2856 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 2857 Overaligned); 2858 assert(Result.FD && "operator delete missing from global scope?"); 2859 return Result.FD; 2860 } 2861 2862 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 2863 CXXRecordDecl *RD) { 2864 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 2865 2866 FunctionDecl *OperatorDelete = nullptr; 2867 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 2868 return nullptr; 2869 if (OperatorDelete) 2870 return OperatorDelete; 2871 2872 // If there's no class-specific operator delete, look up the global 2873 // non-array delete. 2874 return FindUsualDeallocationFunction( 2875 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 2876 Name); 2877 } 2878 2879 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 2880 DeclarationName Name, 2881 FunctionDecl *&Operator, bool Diagnose) { 2882 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 2883 // Try to find operator delete/operator delete[] in class scope. 2884 LookupQualifiedName(Found, RD); 2885 2886 if (Found.isAmbiguous()) 2887 return true; 2888 2889 Found.suppressDiagnostics(); 2890 2891 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 2892 2893 // C++17 [expr.delete]p10: 2894 // If the deallocation functions have class scope, the one without a 2895 // parameter of type std::size_t is selected. 2896 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 2897 resolveDeallocationOverload(*this, Found, /*WantSize*/ false, 2898 /*WantAlign*/ Overaligned, &Matches); 2899 2900 // If we could find an overload, use it. 2901 if (Matches.size() == 1) { 2902 Operator = cast<CXXMethodDecl>(Matches[0].FD); 2903 2904 // FIXME: DiagnoseUseOfDecl? 2905 if (Operator->isDeleted()) { 2906 if (Diagnose) { 2907 Diag(StartLoc, diag::err_deleted_function_use); 2908 NoteDeletedFunction(Operator); 2909 } 2910 return true; 2911 } 2912 2913 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 2914 Matches[0].Found, Diagnose) == AR_inaccessible) 2915 return true; 2916 2917 return false; 2918 } 2919 2920 // We found multiple suitable operators; complain about the ambiguity. 2921 // FIXME: The standard doesn't say to do this; it appears that the intent 2922 // is that this should never happen. 2923 if (!Matches.empty()) { 2924 if (Diagnose) { 2925 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 2926 << Name << RD; 2927 for (auto &Match : Matches) 2928 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 2929 } 2930 return true; 2931 } 2932 2933 // We did find operator delete/operator delete[] declarations, but 2934 // none of them were suitable. 2935 if (!Found.empty()) { 2936 if (Diagnose) { 2937 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 2938 << Name << RD; 2939 2940 for (NamedDecl *D : Found) 2941 Diag(D->getUnderlyingDecl()->getLocation(), 2942 diag::note_member_declared_here) << Name; 2943 } 2944 return true; 2945 } 2946 2947 Operator = nullptr; 2948 return false; 2949 } 2950 2951 namespace { 2952 /// Checks whether delete-expression, and new-expression used for 2953 /// initializing deletee have the same array form. 2954 class MismatchingNewDeleteDetector { 2955 public: 2956 enum MismatchResult { 2957 /// Indicates that there is no mismatch or a mismatch cannot be proven. 2958 NoMismatch, 2959 /// Indicates that variable is initialized with mismatching form of \a new. 2960 VarInitMismatches, 2961 /// Indicates that member is initialized with mismatching form of \a new. 2962 MemberInitMismatches, 2963 /// Indicates that 1 or more constructors' definitions could not been 2964 /// analyzed, and they will be checked again at the end of translation unit. 2965 AnalyzeLater 2966 }; 2967 2968 /// \param EndOfTU True, if this is the final analysis at the end of 2969 /// translation unit. False, if this is the initial analysis at the point 2970 /// delete-expression was encountered. 2971 explicit MismatchingNewDeleteDetector(bool EndOfTU) 2972 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 2973 HasUndefinedConstructors(false) {} 2974 2975 /// Checks whether pointee of a delete-expression is initialized with 2976 /// matching form of new-expression. 2977 /// 2978 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 2979 /// point where delete-expression is encountered, then a warning will be 2980 /// issued immediately. If return value is \c AnalyzeLater at the point where 2981 /// delete-expression is seen, then member will be analyzed at the end of 2982 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 2983 /// couldn't be analyzed. If at least one constructor initializes the member 2984 /// with matching type of new, the return value is \c NoMismatch. 2985 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 2986 /// Analyzes a class member. 2987 /// \param Field Class member to analyze. 2988 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 2989 /// for deleting the \p Field. 2990 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 2991 FieldDecl *Field; 2992 /// List of mismatching new-expressions used for initialization of the pointee 2993 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 2994 /// Indicates whether delete-expression was in array form. 2995 bool IsArrayForm; 2996 2997 private: 2998 const bool EndOfTU; 2999 /// Indicates that there is at least one constructor without body. 3000 bool HasUndefinedConstructors; 3001 /// Returns \c CXXNewExpr from given initialization expression. 3002 /// \param E Expression used for initializing pointee in delete-expression. 3003 /// E can be a single-element \c InitListExpr consisting of new-expression. 3004 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3005 /// Returns whether member is initialized with mismatching form of 3006 /// \c new either by the member initializer or in-class initialization. 3007 /// 3008 /// If bodies of all constructors are not visible at the end of translation 3009 /// unit or at least one constructor initializes member with the matching 3010 /// form of \c new, mismatch cannot be proven, and this function will return 3011 /// \c NoMismatch. 3012 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3013 /// Returns whether variable is initialized with mismatching form of 3014 /// \c new. 3015 /// 3016 /// If variable is initialized with matching form of \c new or variable is not 3017 /// initialized with a \c new expression, this function will return true. 3018 /// If variable is initialized with mismatching form of \c new, returns false. 3019 /// \param D Variable to analyze. 3020 bool hasMatchingVarInit(const DeclRefExpr *D); 3021 /// Checks whether the constructor initializes pointee with mismatching 3022 /// form of \c new. 3023 /// 3024 /// Returns true, if member is initialized with matching form of \c new in 3025 /// member initializer list. Returns false, if member is initialized with the 3026 /// matching form of \c new in this constructor's initializer or given 3027 /// constructor isn't defined at the point where delete-expression is seen, or 3028 /// member isn't initialized by the constructor. 3029 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3030 /// Checks whether member is initialized with matching form of 3031 /// \c new in member initializer list. 3032 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3033 /// Checks whether member is initialized with mismatching form of \c new by 3034 /// in-class initializer. 3035 MismatchResult analyzeInClassInitializer(); 3036 }; 3037 } 3038 3039 MismatchingNewDeleteDetector::MismatchResult 3040 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3041 NewExprs.clear(); 3042 assert(DE && "Expected delete-expression"); 3043 IsArrayForm = DE->isArrayForm(); 3044 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3045 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3046 return analyzeMemberExpr(ME); 3047 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3048 if (!hasMatchingVarInit(D)) 3049 return VarInitMismatches; 3050 } 3051 return NoMismatch; 3052 } 3053 3054 const CXXNewExpr * 3055 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3056 assert(E != nullptr && "Expected a valid initializer expression"); 3057 E = E->IgnoreParenImpCasts(); 3058 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3059 if (ILE->getNumInits() == 1) 3060 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3061 } 3062 3063 return dyn_cast_or_null<const CXXNewExpr>(E); 3064 } 3065 3066 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3067 const CXXCtorInitializer *CI) { 3068 const CXXNewExpr *NE = nullptr; 3069 if (Field == CI->getMember() && 3070 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3071 if (NE->isArray() == IsArrayForm) 3072 return true; 3073 else 3074 NewExprs.push_back(NE); 3075 } 3076 return false; 3077 } 3078 3079 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3080 const CXXConstructorDecl *CD) { 3081 if (CD->isImplicit()) 3082 return false; 3083 const FunctionDecl *Definition = CD; 3084 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3085 HasUndefinedConstructors = true; 3086 return EndOfTU; 3087 } 3088 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3089 if (hasMatchingNewInCtorInit(CI)) 3090 return true; 3091 } 3092 return false; 3093 } 3094 3095 MismatchingNewDeleteDetector::MismatchResult 3096 MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3097 assert(Field != nullptr && "This should be called only for members"); 3098 const Expr *InitExpr = Field->getInClassInitializer(); 3099 if (!InitExpr) 3100 return EndOfTU ? NoMismatch : AnalyzeLater; 3101 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3102 if (NE->isArray() != IsArrayForm) { 3103 NewExprs.push_back(NE); 3104 return MemberInitMismatches; 3105 } 3106 } 3107 return NoMismatch; 3108 } 3109 3110 MismatchingNewDeleteDetector::MismatchResult 3111 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3112 bool DeleteWasArrayForm) { 3113 assert(Field != nullptr && "Analysis requires a valid class member."); 3114 this->Field = Field; 3115 IsArrayForm = DeleteWasArrayForm; 3116 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3117 for (const auto *CD : RD->ctors()) { 3118 if (hasMatchingNewInCtor(CD)) 3119 return NoMismatch; 3120 } 3121 if (HasUndefinedConstructors) 3122 return EndOfTU ? NoMismatch : AnalyzeLater; 3123 if (!NewExprs.empty()) 3124 return MemberInitMismatches; 3125 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3126 : NoMismatch; 3127 } 3128 3129 MismatchingNewDeleteDetector::MismatchResult 3130 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3131 assert(ME != nullptr && "Expected a member expression"); 3132 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3133 return analyzeField(F, IsArrayForm); 3134 return NoMismatch; 3135 } 3136 3137 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3138 const CXXNewExpr *NE = nullptr; 3139 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3140 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3141 NE->isArray() != IsArrayForm) { 3142 NewExprs.push_back(NE); 3143 } 3144 } 3145 return NewExprs.empty(); 3146 } 3147 3148 static void 3149 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3150 const MismatchingNewDeleteDetector &Detector) { 3151 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3152 FixItHint H; 3153 if (!Detector.IsArrayForm) 3154 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3155 else { 3156 SourceLocation RSquare = Lexer::findLocationAfterToken( 3157 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3158 SemaRef.getLangOpts(), true); 3159 if (RSquare.isValid()) 3160 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3161 } 3162 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3163 << Detector.IsArrayForm << H; 3164 3165 for (const auto *NE : Detector.NewExprs) 3166 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3167 << Detector.IsArrayForm; 3168 } 3169 3170 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3171 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3172 return; 3173 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3174 switch (Detector.analyzeDeleteExpr(DE)) { 3175 case MismatchingNewDeleteDetector::VarInitMismatches: 3176 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3177 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3178 break; 3179 } 3180 case MismatchingNewDeleteDetector::AnalyzeLater: { 3181 DeleteExprs[Detector.Field].push_back( 3182 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3183 break; 3184 } 3185 case MismatchingNewDeleteDetector::NoMismatch: 3186 break; 3187 } 3188 } 3189 3190 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3191 bool DeleteWasArrayForm) { 3192 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3193 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3194 case MismatchingNewDeleteDetector::VarInitMismatches: 3195 llvm_unreachable("This analysis should have been done for class members."); 3196 case MismatchingNewDeleteDetector::AnalyzeLater: 3197 llvm_unreachable("Analysis cannot be postponed any point beyond end of " 3198 "translation unit."); 3199 case MismatchingNewDeleteDetector::MemberInitMismatches: 3200 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3201 break; 3202 case MismatchingNewDeleteDetector::NoMismatch: 3203 break; 3204 } 3205 } 3206 3207 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3208 /// @code ::delete ptr; @endcode 3209 /// or 3210 /// @code delete [] ptr; @endcode 3211 ExprResult 3212 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3213 bool ArrayForm, Expr *ExE) { 3214 // C++ [expr.delete]p1: 3215 // The operand shall have a pointer type, or a class type having a single 3216 // non-explicit conversion function to a pointer type. The result has type 3217 // void. 3218 // 3219 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3220 3221 ExprResult Ex = ExE; 3222 FunctionDecl *OperatorDelete = nullptr; 3223 bool ArrayFormAsWritten = ArrayForm; 3224 bool UsualArrayDeleteWantsSize = false; 3225 3226 if (!Ex.get()->isTypeDependent()) { 3227 // Perform lvalue-to-rvalue cast, if needed. 3228 Ex = DefaultLvalueConversion(Ex.get()); 3229 if (Ex.isInvalid()) 3230 return ExprError(); 3231 3232 QualType Type = Ex.get()->getType(); 3233 3234 class DeleteConverter : public ContextualImplicitConverter { 3235 public: 3236 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3237 3238 bool match(QualType ConvType) override { 3239 // FIXME: If we have an operator T* and an operator void*, we must pick 3240 // the operator T*. 3241 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3242 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3243 return true; 3244 return false; 3245 } 3246 3247 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3248 QualType T) override { 3249 return S.Diag(Loc, diag::err_delete_operand) << T; 3250 } 3251 3252 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3253 QualType T) override { 3254 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3255 } 3256 3257 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3258 QualType T, 3259 QualType ConvTy) override { 3260 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3261 } 3262 3263 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3264 QualType ConvTy) override { 3265 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3266 << ConvTy; 3267 } 3268 3269 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3270 QualType T) override { 3271 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3272 } 3273 3274 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3275 QualType ConvTy) override { 3276 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3277 << ConvTy; 3278 } 3279 3280 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3281 QualType T, 3282 QualType ConvTy) override { 3283 llvm_unreachable("conversion functions are permitted"); 3284 } 3285 } Converter; 3286 3287 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3288 if (Ex.isInvalid()) 3289 return ExprError(); 3290 Type = Ex.get()->getType(); 3291 if (!Converter.match(Type)) 3292 // FIXME: PerformContextualImplicitConversion should return ExprError 3293 // itself in this case. 3294 return ExprError(); 3295 3296 QualType Pointee = Type->getAs<PointerType>()->getPointeeType(); 3297 QualType PointeeElem = Context.getBaseElementType(Pointee); 3298 3299 if (Pointee.getAddressSpace() != LangAS::Default && 3300 !getLangOpts().OpenCLCPlusPlus) 3301 return Diag(Ex.get()->getBeginLoc(), 3302 diag::err_address_space_qualified_delete) 3303 << Pointee.getUnqualifiedType() 3304 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3305 3306 CXXRecordDecl *PointeeRD = nullptr; 3307 if (Pointee->isVoidType() && !isSFINAEContext()) { 3308 // The C++ standard bans deleting a pointer to a non-object type, which 3309 // effectively bans deletion of "void*". However, most compilers support 3310 // this, so we treat it as a warning unless we're in a SFINAE context. 3311 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3312 << Type << Ex.get()->getSourceRange(); 3313 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) { 3314 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3315 << Type << Ex.get()->getSourceRange()); 3316 } else if (!Pointee->isDependentType()) { 3317 // FIXME: This can result in errors if the definition was imported from a 3318 // module but is hidden. 3319 if (!RequireCompleteType(StartLoc, Pointee, 3320 diag::warn_delete_incomplete, Ex.get())) { 3321 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3322 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3323 } 3324 } 3325 3326 if (Pointee->isArrayType() && !ArrayForm) { 3327 Diag(StartLoc, diag::warn_delete_array_type) 3328 << Type << Ex.get()->getSourceRange() 3329 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3330 ArrayForm = true; 3331 } 3332 3333 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3334 ArrayForm ? OO_Array_Delete : OO_Delete); 3335 3336 if (PointeeRD) { 3337 if (!UseGlobal && 3338 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3339 OperatorDelete)) 3340 return ExprError(); 3341 3342 // If we're allocating an array of records, check whether the 3343 // usual operator delete[] has a size_t parameter. 3344 if (ArrayForm) { 3345 // If the user specifically asked to use the global allocator, 3346 // we'll need to do the lookup into the class. 3347 if (UseGlobal) 3348 UsualArrayDeleteWantsSize = 3349 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3350 3351 // Otherwise, the usual operator delete[] should be the 3352 // function we just found. 3353 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3354 UsualArrayDeleteWantsSize = 3355 UsualDeallocFnInfo(*this, 3356 DeclAccessPair::make(OperatorDelete, AS_public)) 3357 .HasSizeT; 3358 } 3359 3360 if (!PointeeRD->hasIrrelevantDestructor()) 3361 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3362 MarkFunctionReferenced(StartLoc, 3363 const_cast<CXXDestructorDecl*>(Dtor)); 3364 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3365 return ExprError(); 3366 } 3367 3368 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3369 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3370 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3371 SourceLocation()); 3372 } 3373 3374 if (!OperatorDelete) { 3375 if (getLangOpts().OpenCLCPlusPlus) { 3376 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3377 return ExprError(); 3378 } 3379 3380 bool IsComplete = isCompleteType(StartLoc, Pointee); 3381 bool CanProvideSize = 3382 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3383 Pointee.isDestructedType()); 3384 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3385 3386 // Look for a global declaration. 3387 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3388 Overaligned, DeleteName); 3389 } 3390 3391 MarkFunctionReferenced(StartLoc, OperatorDelete); 3392 3393 // Check access and ambiguity of destructor if we're going to call it. 3394 // Note that this is required even for a virtual delete. 3395 bool IsVirtualDelete = false; 3396 if (PointeeRD) { 3397 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3398 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3399 PDiag(diag::err_access_dtor) << PointeeElem); 3400 IsVirtualDelete = Dtor->isVirtual(); 3401 } 3402 } 3403 3404 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3405 3406 // Convert the operand to the type of the first parameter of operator 3407 // delete. This is only necessary if we selected a destroying operator 3408 // delete that we are going to call (non-virtually); converting to void* 3409 // is trivial and left to AST consumers to handle. 3410 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3411 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3412 Qualifiers Qs = Pointee.getQualifiers(); 3413 if (Qs.hasCVRQualifiers()) { 3414 // Qualifiers are irrelevant to this conversion; we're only looking 3415 // for access and ambiguity. 3416 Qs.removeCVRQualifiers(); 3417 QualType Unqual = Context.getPointerType( 3418 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3419 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3420 } 3421 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3422 if (Ex.isInvalid()) 3423 return ExprError(); 3424 } 3425 } 3426 3427 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3428 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3429 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3430 AnalyzeDeleteExprMismatch(Result); 3431 return Result; 3432 } 3433 3434 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3435 bool IsDelete, 3436 FunctionDecl *&Operator) { 3437 3438 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3439 IsDelete ? OO_Delete : OO_New); 3440 3441 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3442 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3443 assert(!R.empty() && "implicitly declared allocation functions not found"); 3444 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 3445 3446 // We do our own custom access checks below. 3447 R.suppressDiagnostics(); 3448 3449 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end()); 3450 OverloadCandidateSet Candidates(R.getNameLoc(), 3451 OverloadCandidateSet::CSK_Normal); 3452 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3453 FnOvl != FnOvlEnd; ++FnOvl) { 3454 // Even member operator new/delete are implicitly treated as 3455 // static, so don't use AddMemberCandidate. 3456 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3457 3458 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3459 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3460 /*ExplicitTemplateArgs=*/nullptr, Args, 3461 Candidates, 3462 /*SuppressUserConversions=*/false); 3463 continue; 3464 } 3465 3466 FunctionDecl *Fn = cast<FunctionDecl>(D); 3467 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3468 /*SuppressUserConversions=*/false); 3469 } 3470 3471 SourceRange Range = TheCall->getSourceRange(); 3472 3473 // Do the resolution. 3474 OverloadCandidateSet::iterator Best; 3475 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3476 case OR_Success: { 3477 // Got one! 3478 FunctionDecl *FnDecl = Best->Function; 3479 assert(R.getNamingClass() == nullptr && 3480 "class members should not be considered"); 3481 3482 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3483 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3484 << (IsDelete ? 1 : 0) << Range; 3485 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3486 << R.getLookupName() << FnDecl->getSourceRange(); 3487 return true; 3488 } 3489 3490 Operator = FnDecl; 3491 return false; 3492 } 3493 3494 case OR_No_Viable_Function: 3495 Candidates.NoteCandidates( 3496 PartialDiagnosticAt(R.getNameLoc(), 3497 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3498 << R.getLookupName() << Range), 3499 S, OCD_AllCandidates, Args); 3500 return true; 3501 3502 case OR_Ambiguous: 3503 Candidates.NoteCandidates( 3504 PartialDiagnosticAt(R.getNameLoc(), 3505 S.PDiag(diag::err_ovl_ambiguous_call) 3506 << R.getLookupName() << Range), 3507 S, OCD_ViableCandidates, Args); 3508 return true; 3509 3510 case OR_Deleted: { 3511 Candidates.NoteCandidates( 3512 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3513 << R.getLookupName() << Range), 3514 S, OCD_AllCandidates, Args); 3515 return true; 3516 } 3517 } 3518 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 3519 } 3520 3521 ExprResult 3522 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3523 bool IsDelete) { 3524 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3525 if (!getLangOpts().CPlusPlus) { 3526 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3527 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3528 << "C++"; 3529 return ExprError(); 3530 } 3531 // CodeGen assumes it can find the global new and delete to call, 3532 // so ensure that they are declared. 3533 DeclareGlobalNewDelete(); 3534 3535 FunctionDecl *OperatorNewOrDelete = nullptr; 3536 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3537 OperatorNewOrDelete)) 3538 return ExprError(); 3539 assert(OperatorNewOrDelete && "should be found"); 3540 3541 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3542 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3543 3544 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3545 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3546 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3547 InitializedEntity Entity = 3548 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3549 ExprResult Arg = PerformCopyInitialization( 3550 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3551 if (Arg.isInvalid()) 3552 return ExprError(); 3553 TheCall->setArg(i, Arg.get()); 3554 } 3555 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3556 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && 3557 "Callee expected to be implicit cast to a builtin function pointer"); 3558 Callee->setType(OperatorNewOrDelete->getType()); 3559 3560 return TheCallResult; 3561 } 3562 3563 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3564 bool IsDelete, bool CallCanBeVirtual, 3565 bool WarnOnNonAbstractTypes, 3566 SourceLocation DtorLoc) { 3567 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3568 return; 3569 3570 // C++ [expr.delete]p3: 3571 // In the first alternative (delete object), if the static type of the 3572 // object to be deleted is different from its dynamic type, the static 3573 // type shall be a base class of the dynamic type of the object to be 3574 // deleted and the static type shall have a virtual destructor or the 3575 // behavior is undefined. 3576 // 3577 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3578 // Note: a final class cannot be derived from, no issue there 3579 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3580 return; 3581 3582 // If the superclass is in a system header, there's nothing that can be done. 3583 // The `delete` (where we emit the warning) can be in a system header, 3584 // what matters for this warning is where the deleted type is defined. 3585 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3586 return; 3587 3588 QualType ClassType = dtor->getThisType()->getPointeeType(); 3589 if (PointeeRD->isAbstract()) { 3590 // If the class is abstract, we warn by default, because we're 3591 // sure the code has undefined behavior. 3592 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3593 << ClassType; 3594 } else if (WarnOnNonAbstractTypes) { 3595 // Otherwise, if this is not an array delete, it's a bit suspect, 3596 // but not necessarily wrong. 3597 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3598 << ClassType; 3599 } 3600 if (!IsDelete) { 3601 std::string TypeStr; 3602 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3603 Diag(DtorLoc, diag::note_delete_non_virtual) 3604 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3605 } 3606 } 3607 3608 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3609 SourceLocation StmtLoc, 3610 ConditionKind CK) { 3611 ExprResult E = 3612 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3613 if (E.isInvalid()) 3614 return ConditionError(); 3615 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3616 CK == ConditionKind::ConstexprIf); 3617 } 3618 3619 /// Check the use of the given variable as a C++ condition in an if, 3620 /// while, do-while, or switch statement. 3621 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3622 SourceLocation StmtLoc, 3623 ConditionKind CK) { 3624 if (ConditionVar->isInvalidDecl()) 3625 return ExprError(); 3626 3627 QualType T = ConditionVar->getType(); 3628 3629 // C++ [stmt.select]p2: 3630 // The declarator shall not specify a function or an array. 3631 if (T->isFunctionType()) 3632 return ExprError(Diag(ConditionVar->getLocation(), 3633 diag::err_invalid_use_of_function_type) 3634 << ConditionVar->getSourceRange()); 3635 else if (T->isArrayType()) 3636 return ExprError(Diag(ConditionVar->getLocation(), 3637 diag::err_invalid_use_of_array_type) 3638 << ConditionVar->getSourceRange()); 3639 3640 ExprResult Condition = BuildDeclRefExpr( 3641 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 3642 ConditionVar->getLocation()); 3643 3644 switch (CK) { 3645 case ConditionKind::Boolean: 3646 return CheckBooleanCondition(StmtLoc, Condition.get()); 3647 3648 case ConditionKind::ConstexprIf: 3649 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 3650 3651 case ConditionKind::Switch: 3652 return CheckSwitchCondition(StmtLoc, Condition.get()); 3653 } 3654 3655 llvm_unreachable("unexpected condition kind"); 3656 } 3657 3658 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 3659 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 3660 // C++ 6.4p4: 3661 // The value of a condition that is an initialized declaration in a statement 3662 // other than a switch statement is the value of the declared variable 3663 // implicitly converted to type bool. If that conversion is ill-formed, the 3664 // program is ill-formed. 3665 // The value of a condition that is an expression is the value of the 3666 // expression, implicitly converted to bool. 3667 // 3668 // FIXME: Return this value to the caller so they don't need to recompute it. 3669 llvm::APSInt Value(/*BitWidth*/1); 3670 return (IsConstexpr && !CondExpr->isValueDependent()) 3671 ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value, 3672 CCEK_ConstexprIf) 3673 : PerformContextuallyConvertToBool(CondExpr); 3674 } 3675 3676 /// Helper function to determine whether this is the (deprecated) C++ 3677 /// conversion from a string literal to a pointer to non-const char or 3678 /// non-const wchar_t (for narrow and wide string literals, 3679 /// respectively). 3680 bool 3681 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 3682 // Look inside the implicit cast, if it exists. 3683 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 3684 From = Cast->getSubExpr(); 3685 3686 // A string literal (2.13.4) that is not a wide string literal can 3687 // be converted to an rvalue of type "pointer to char"; a wide 3688 // string literal can be converted to an rvalue of type "pointer 3689 // to wchar_t" (C++ 4.2p2). 3690 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 3691 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 3692 if (const BuiltinType *ToPointeeType 3693 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 3694 // This conversion is considered only when there is an 3695 // explicit appropriate pointer target type (C++ 4.2p2). 3696 if (!ToPtrType->getPointeeType().hasQualifiers()) { 3697 switch (StrLit->getKind()) { 3698 case StringLiteral::UTF8: 3699 case StringLiteral::UTF16: 3700 case StringLiteral::UTF32: 3701 // We don't allow UTF literals to be implicitly converted 3702 break; 3703 case StringLiteral::Ascii: 3704 return (ToPointeeType->getKind() == BuiltinType::Char_U || 3705 ToPointeeType->getKind() == BuiltinType::Char_S); 3706 case StringLiteral::Wide: 3707 return Context.typesAreCompatible(Context.getWideCharType(), 3708 QualType(ToPointeeType, 0)); 3709 } 3710 } 3711 } 3712 3713 return false; 3714 } 3715 3716 static ExprResult BuildCXXCastArgument(Sema &S, 3717 SourceLocation CastLoc, 3718 QualType Ty, 3719 CastKind Kind, 3720 CXXMethodDecl *Method, 3721 DeclAccessPair FoundDecl, 3722 bool HadMultipleCandidates, 3723 Expr *From) { 3724 switch (Kind) { 3725 default: llvm_unreachable("Unhandled cast kind!"); 3726 case CK_ConstructorConversion: { 3727 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 3728 SmallVector<Expr*, 8> ConstructorArgs; 3729 3730 if (S.RequireNonAbstractType(CastLoc, Ty, 3731 diag::err_allocation_of_abstract_type)) 3732 return ExprError(); 3733 3734 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs)) 3735 return ExprError(); 3736 3737 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 3738 InitializedEntity::InitializeTemporary(Ty)); 3739 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 3740 return ExprError(); 3741 3742 ExprResult Result = S.BuildCXXConstructExpr( 3743 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 3744 ConstructorArgs, HadMultipleCandidates, 3745 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 3746 CXXConstructExpr::CK_Complete, SourceRange()); 3747 if (Result.isInvalid()) 3748 return ExprError(); 3749 3750 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 3751 } 3752 3753 case CK_UserDefinedConversion: { 3754 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); 3755 3756 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 3757 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 3758 return ExprError(); 3759 3760 // Create an implicit call expr that calls it. 3761 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 3762 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 3763 HadMultipleCandidates); 3764 if (Result.isInvalid()) 3765 return ExprError(); 3766 // Record usage of conversion in an implicit cast. 3767 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 3768 CK_UserDefinedConversion, Result.get(), 3769 nullptr, Result.get()->getValueKind()); 3770 3771 return S.MaybeBindToTemporary(Result.get()); 3772 } 3773 } 3774 } 3775 3776 /// PerformImplicitConversion - Perform an implicit conversion of the 3777 /// expression From to the type ToType using the pre-computed implicit 3778 /// conversion sequence ICS. Returns the converted 3779 /// expression. Action is the kind of conversion we're performing, 3780 /// used in the error message. 3781 ExprResult 3782 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 3783 const ImplicitConversionSequence &ICS, 3784 AssignmentAction Action, 3785 CheckedConversionKind CCK) { 3786 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 3787 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 3788 return From; 3789 3790 switch (ICS.getKind()) { 3791 case ImplicitConversionSequence::StandardConversion: { 3792 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 3793 Action, CCK); 3794 if (Res.isInvalid()) 3795 return ExprError(); 3796 From = Res.get(); 3797 break; 3798 } 3799 3800 case ImplicitConversionSequence::UserDefinedConversion: { 3801 3802 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 3803 CastKind CastKind; 3804 QualType BeforeToType; 3805 assert(FD && "no conversion function for user-defined conversion seq"); 3806 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 3807 CastKind = CK_UserDefinedConversion; 3808 3809 // If the user-defined conversion is specified by a conversion function, 3810 // the initial standard conversion sequence converts the source type to 3811 // the implicit object parameter of the conversion function. 3812 BeforeToType = Context.getTagDeclType(Conv->getParent()); 3813 } else { 3814 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 3815 CastKind = CK_ConstructorConversion; 3816 // Do no conversion if dealing with ... for the first conversion. 3817 if (!ICS.UserDefined.EllipsisConversion) { 3818 // If the user-defined conversion is specified by a constructor, the 3819 // initial standard conversion sequence converts the source type to 3820 // the type required by the argument of the constructor 3821 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 3822 } 3823 } 3824 // Watch out for ellipsis conversion. 3825 if (!ICS.UserDefined.EllipsisConversion) { 3826 ExprResult Res = 3827 PerformImplicitConversion(From, BeforeToType, 3828 ICS.UserDefined.Before, AA_Converting, 3829 CCK); 3830 if (Res.isInvalid()) 3831 return ExprError(); 3832 From = Res.get(); 3833 } 3834 3835 ExprResult CastArg = BuildCXXCastArgument( 3836 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 3837 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 3838 ICS.UserDefined.HadMultipleCandidates, From); 3839 3840 if (CastArg.isInvalid()) 3841 return ExprError(); 3842 3843 From = CastArg.get(); 3844 3845 // C++ [over.match.oper]p7: 3846 // [...] the second standard conversion sequence of a user-defined 3847 // conversion sequence is not applied. 3848 if (CCK == CCK_ForBuiltinOverloadedOp) 3849 return From; 3850 3851 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 3852 AA_Converting, CCK); 3853 } 3854 3855 case ImplicitConversionSequence::AmbiguousConversion: 3856 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 3857 PDiag(diag::err_typecheck_ambiguous_condition) 3858 << From->getSourceRange()); 3859 return ExprError(); 3860 3861 case ImplicitConversionSequence::EllipsisConversion: 3862 llvm_unreachable("Cannot perform an ellipsis conversion"); 3863 3864 case ImplicitConversionSequence::BadConversion: 3865 bool Diagnosed = 3866 DiagnoseAssignmentResult(Incompatible, From->getExprLoc(), ToType, 3867 From->getType(), From, Action); 3868 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed; 3869 return ExprError(); 3870 } 3871 3872 // Everything went well. 3873 return From; 3874 } 3875 3876 /// PerformImplicitConversion - Perform an implicit conversion of the 3877 /// expression From to the type ToType by following the standard 3878 /// conversion sequence SCS. Returns the converted 3879 /// expression. Flavor is the context in which we're performing this 3880 /// conversion, for use in error messages. 3881 ExprResult 3882 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 3883 const StandardConversionSequence& SCS, 3884 AssignmentAction Action, 3885 CheckedConversionKind CCK) { 3886 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 3887 3888 // Overall FIXME: we are recomputing too many types here and doing far too 3889 // much extra work. What this means is that we need to keep track of more 3890 // information that is computed when we try the implicit conversion initially, 3891 // so that we don't need to recompute anything here. 3892 QualType FromType = From->getType(); 3893 3894 if (SCS.CopyConstructor) { 3895 // FIXME: When can ToType be a reference type? 3896 assert(!ToType->isReferenceType()); 3897 if (SCS.Second == ICK_Derived_To_Base) { 3898 SmallVector<Expr*, 8> ConstructorArgs; 3899 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), 3900 From, /*FIXME:ConstructLoc*/SourceLocation(), 3901 ConstructorArgs)) 3902 return ExprError(); 3903 return BuildCXXConstructExpr( 3904 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 3905 SCS.FoundCopyConstructor, SCS.CopyConstructor, 3906 ConstructorArgs, /*HadMultipleCandidates*/ false, 3907 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 3908 CXXConstructExpr::CK_Complete, SourceRange()); 3909 } 3910 return BuildCXXConstructExpr( 3911 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 3912 SCS.FoundCopyConstructor, SCS.CopyConstructor, 3913 From, /*HadMultipleCandidates*/ false, 3914 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 3915 CXXConstructExpr::CK_Complete, SourceRange()); 3916 } 3917 3918 // Resolve overloaded function references. 3919 if (Context.hasSameType(FromType, Context.OverloadTy)) { 3920 DeclAccessPair Found; 3921 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 3922 true, Found); 3923 if (!Fn) 3924 return ExprError(); 3925 3926 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 3927 return ExprError(); 3928 3929 From = FixOverloadedFunctionReference(From, Found, Fn); 3930 FromType = From->getType(); 3931 } 3932 3933 // If we're converting to an atomic type, first convert to the corresponding 3934 // non-atomic type. 3935 QualType ToAtomicType; 3936 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 3937 ToAtomicType = ToType; 3938 ToType = ToAtomic->getValueType(); 3939 } 3940 3941 QualType InitialFromType = FromType; 3942 // Perform the first implicit conversion. 3943 switch (SCS.First) { 3944 case ICK_Identity: 3945 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 3946 FromType = FromAtomic->getValueType().getUnqualifiedType(); 3947 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 3948 From, /*BasePath=*/nullptr, VK_RValue); 3949 } 3950 break; 3951 3952 case ICK_Lvalue_To_Rvalue: { 3953 assert(From->getObjectKind() != OK_ObjCProperty); 3954 ExprResult FromRes = DefaultLvalueConversion(From); 3955 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!"); 3956 From = FromRes.get(); 3957 FromType = From->getType(); 3958 break; 3959 } 3960 3961 case ICK_Array_To_Pointer: 3962 FromType = Context.getArrayDecayedType(FromType); 3963 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, 3964 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3965 break; 3966 3967 case ICK_Function_To_Pointer: 3968 FromType = Context.getPointerType(FromType); 3969 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 3970 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3971 break; 3972 3973 default: 3974 llvm_unreachable("Improper first standard conversion"); 3975 } 3976 3977 // Perform the second implicit conversion 3978 switch (SCS.Second) { 3979 case ICK_Identity: 3980 // C++ [except.spec]p5: 3981 // [For] assignment to and initialization of pointers to functions, 3982 // pointers to member functions, and references to functions: the 3983 // target entity shall allow at least the exceptions allowed by the 3984 // source value in the assignment or initialization. 3985 switch (Action) { 3986 case AA_Assigning: 3987 case AA_Initializing: 3988 // Note, function argument passing and returning are initialization. 3989 case AA_Passing: 3990 case AA_Returning: 3991 case AA_Sending: 3992 case AA_Passing_CFAudited: 3993 if (CheckExceptionSpecCompatibility(From, ToType)) 3994 return ExprError(); 3995 break; 3996 3997 case AA_Casting: 3998 case AA_Converting: 3999 // Casts and implicit conversions are not initialization, so are not 4000 // checked for exception specification mismatches. 4001 break; 4002 } 4003 // Nothing else to do. 4004 break; 4005 4006 case ICK_Integral_Promotion: 4007 case ICK_Integral_Conversion: 4008 if (ToType->isBooleanType()) { 4009 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && 4010 SCS.Second == ICK_Integral_Promotion && 4011 "only enums with fixed underlying type can promote to bool"); 4012 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, 4013 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4014 } else { 4015 From = ImpCastExprToType(From, ToType, CK_IntegralCast, 4016 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4017 } 4018 break; 4019 4020 case ICK_Floating_Promotion: 4021 case ICK_Floating_Conversion: 4022 From = ImpCastExprToType(From, ToType, CK_FloatingCast, 4023 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4024 break; 4025 4026 case ICK_Complex_Promotion: 4027 case ICK_Complex_Conversion: { 4028 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType(); 4029 QualType ToEl = ToType->getAs<ComplexType>()->getElementType(); 4030 CastKind CK; 4031 if (FromEl->isRealFloatingType()) { 4032 if (ToEl->isRealFloatingType()) 4033 CK = CK_FloatingComplexCast; 4034 else 4035 CK = CK_FloatingComplexToIntegralComplex; 4036 } else if (ToEl->isRealFloatingType()) { 4037 CK = CK_IntegralComplexToFloatingComplex; 4038 } else { 4039 CK = CK_IntegralComplexCast; 4040 } 4041 From = ImpCastExprToType(From, ToType, CK, 4042 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4043 break; 4044 } 4045 4046 case ICK_Floating_Integral: 4047 if (ToType->isRealFloatingType()) 4048 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, 4049 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4050 else 4051 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, 4052 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4053 break; 4054 4055 case ICK_Compatible_Conversion: 4056 From = ImpCastExprToType(From, ToType, CK_NoOp, 4057 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4058 break; 4059 4060 case ICK_Writeback_Conversion: 4061 case ICK_Pointer_Conversion: { 4062 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4063 // Diagnose incompatible Objective-C conversions 4064 if (Action == AA_Initializing || Action == AA_Assigning) 4065 Diag(From->getBeginLoc(), 4066 diag::ext_typecheck_convert_incompatible_pointer) 4067 << ToType << From->getType() << Action << From->getSourceRange() 4068 << 0; 4069 else 4070 Diag(From->getBeginLoc(), 4071 diag::ext_typecheck_convert_incompatible_pointer) 4072 << From->getType() << ToType << Action << From->getSourceRange() 4073 << 0; 4074 4075 if (From->getType()->isObjCObjectPointerType() && 4076 ToType->isObjCObjectPointerType()) 4077 EmitRelatedResultTypeNote(From); 4078 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4079 !CheckObjCARCUnavailableWeakConversion(ToType, 4080 From->getType())) { 4081 if (Action == AA_Initializing) 4082 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4083 else 4084 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4085 << (Action == AA_Casting) << From->getType() << ToType 4086 << From->getSourceRange(); 4087 } 4088 4089 CastKind Kind; 4090 CXXCastPath BasePath; 4091 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4092 return ExprError(); 4093 4094 // Make sure we extend blocks if necessary. 4095 // FIXME: doing this here is really ugly. 4096 if (Kind == CK_BlockPointerToObjCPointerCast) { 4097 ExprResult E = From; 4098 (void) PrepareCastToObjCObjectPointer(E); 4099 From = E.get(); 4100 } 4101 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4102 CheckObjCConversion(SourceRange(), ToType, From, CCK); 4103 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) 4104 .get(); 4105 break; 4106 } 4107 4108 case ICK_Pointer_Member: { 4109 CastKind Kind; 4110 CXXCastPath BasePath; 4111 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4112 return ExprError(); 4113 if (CheckExceptionSpecCompatibility(From, ToType)) 4114 return ExprError(); 4115 4116 // We may not have been able to figure out what this member pointer resolved 4117 // to up until this exact point. Attempt to lock-in it's inheritance model. 4118 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4119 (void)isCompleteType(From->getExprLoc(), From->getType()); 4120 (void)isCompleteType(From->getExprLoc(), ToType); 4121 } 4122 4123 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) 4124 .get(); 4125 break; 4126 } 4127 4128 case ICK_Boolean_Conversion: 4129 // Perform half-to-boolean conversion via float. 4130 if (From->getType()->isHalfType()) { 4131 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4132 FromType = Context.FloatTy; 4133 } 4134 4135 From = ImpCastExprToType(From, Context.BoolTy, 4136 ScalarTypeToBooleanCastKind(FromType), 4137 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4138 break; 4139 4140 case ICK_Derived_To_Base: { 4141 CXXCastPath BasePath; 4142 if (CheckDerivedToBaseConversion( 4143 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4144 From->getSourceRange(), &BasePath, CStyle)) 4145 return ExprError(); 4146 4147 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4148 CK_DerivedToBase, From->getValueKind(), 4149 &BasePath, CCK).get(); 4150 break; 4151 } 4152 4153 case ICK_Vector_Conversion: 4154 From = ImpCastExprToType(From, ToType, CK_BitCast, 4155 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4156 break; 4157 4158 case ICK_Vector_Splat: { 4159 // Vector splat from any arithmetic type to a vector. 4160 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4161 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue, 4162 /*BasePath=*/nullptr, CCK).get(); 4163 break; 4164 } 4165 4166 case ICK_Complex_Real: 4167 // Case 1. x -> _Complex y 4168 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4169 QualType ElType = ToComplex->getElementType(); 4170 bool isFloatingComplex = ElType->isRealFloatingType(); 4171 4172 // x -> y 4173 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4174 // do nothing 4175 } else if (From->getType()->isRealFloatingType()) { 4176 From = ImpCastExprToType(From, ElType, 4177 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4178 } else { 4179 assert(From->getType()->isIntegerType()); 4180 From = ImpCastExprToType(From, ElType, 4181 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4182 } 4183 // y -> _Complex y 4184 From = ImpCastExprToType(From, ToType, 4185 isFloatingComplex ? CK_FloatingRealToComplex 4186 : CK_IntegralRealToComplex).get(); 4187 4188 // Case 2. _Complex x -> y 4189 } else { 4190 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>(); 4191 assert(FromComplex); 4192 4193 QualType ElType = FromComplex->getElementType(); 4194 bool isFloatingComplex = ElType->isRealFloatingType(); 4195 4196 // _Complex x -> x 4197 From = ImpCastExprToType(From, ElType, 4198 isFloatingComplex ? CK_FloatingComplexToReal 4199 : CK_IntegralComplexToReal, 4200 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4201 4202 // x -> y 4203 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4204 // do nothing 4205 } else if (ToType->isRealFloatingType()) { 4206 From = ImpCastExprToType(From, ToType, 4207 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating, 4208 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4209 } else { 4210 assert(ToType->isIntegerType()); 4211 From = ImpCastExprToType(From, ToType, 4212 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast, 4213 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4214 } 4215 } 4216 break; 4217 4218 case ICK_Block_Pointer_Conversion: { 4219 LangAS AddrSpaceL = 4220 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4221 LangAS AddrSpaceR = 4222 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4223 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && 4224 "Invalid cast"); 4225 CastKind Kind = 4226 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4227 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4228 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4229 break; 4230 } 4231 4232 case ICK_TransparentUnionConversion: { 4233 ExprResult FromRes = From; 4234 Sema::AssignConvertType ConvTy = 4235 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4236 if (FromRes.isInvalid()) 4237 return ExprError(); 4238 From = FromRes.get(); 4239 assert ((ConvTy == Sema::Compatible) && 4240 "Improper transparent union conversion"); 4241 (void)ConvTy; 4242 break; 4243 } 4244 4245 case ICK_Zero_Event_Conversion: 4246 case ICK_Zero_Queue_Conversion: 4247 From = ImpCastExprToType(From, ToType, 4248 CK_ZeroToOCLOpaqueType, 4249 From->getValueKind()).get(); 4250 break; 4251 4252 case ICK_Lvalue_To_Rvalue: 4253 case ICK_Array_To_Pointer: 4254 case ICK_Function_To_Pointer: 4255 case ICK_Function_Conversion: 4256 case ICK_Qualification: 4257 case ICK_Num_Conversion_Kinds: 4258 case ICK_C_Only_Conversion: 4259 case ICK_Incompatible_Pointer_Conversion: 4260 llvm_unreachable("Improper second standard conversion"); 4261 } 4262 4263 switch (SCS.Third) { 4264 case ICK_Identity: 4265 // Nothing to do. 4266 break; 4267 4268 case ICK_Function_Conversion: 4269 // If both sides are functions (or pointers/references to them), there could 4270 // be incompatible exception declarations. 4271 if (CheckExceptionSpecCompatibility(From, ToType)) 4272 return ExprError(); 4273 4274 From = ImpCastExprToType(From, ToType, CK_NoOp, 4275 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 4276 break; 4277 4278 case ICK_Qualification: { 4279 // The qualification keeps the category of the inner expression, unless the 4280 // target type isn't a reference. 4281 ExprValueKind VK = 4282 ToType->isReferenceType() ? From->getValueKind() : VK_RValue; 4283 4284 CastKind CK = CK_NoOp; 4285 4286 if (ToType->isReferenceType() && 4287 ToType->getPointeeType().getAddressSpace() != 4288 From->getType().getAddressSpace()) 4289 CK = CK_AddressSpaceConversion; 4290 4291 if (ToType->isPointerType() && 4292 ToType->getPointeeType().getAddressSpace() != 4293 From->getType()->getPointeeType().getAddressSpace()) 4294 CK = CK_AddressSpaceConversion; 4295 4296 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4297 /*BasePath=*/nullptr, CCK) 4298 .get(); 4299 4300 if (SCS.DeprecatedStringLiteralToCharPtr && 4301 !getLangOpts().WritableStrings) { 4302 Diag(From->getBeginLoc(), 4303 getLangOpts().CPlusPlus11 4304 ? diag::ext_deprecated_string_literal_conversion 4305 : diag::warn_deprecated_string_literal_conversion) 4306 << ToType.getNonReferenceType(); 4307 } 4308 4309 break; 4310 } 4311 4312 default: 4313 llvm_unreachable("Improper third standard conversion"); 4314 } 4315 4316 // If this conversion sequence involved a scalar -> atomic conversion, perform 4317 // that conversion now. 4318 if (!ToAtomicType.isNull()) { 4319 assert(Context.hasSameType( 4320 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); 4321 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4322 VK_RValue, nullptr, CCK).get(); 4323 } 4324 4325 // If this conversion sequence succeeded and involved implicitly converting a 4326 // _Nullable type to a _Nonnull one, complain. 4327 if (!isCast(CCK)) 4328 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4329 From->getBeginLoc()); 4330 4331 return From; 4332 } 4333 4334 /// Check the completeness of a type in a unary type trait. 4335 /// 4336 /// If the particular type trait requires a complete type, tries to complete 4337 /// it. If completing the type fails, a diagnostic is emitted and false 4338 /// returned. If completing the type succeeds or no completion was required, 4339 /// returns true. 4340 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4341 SourceLocation Loc, 4342 QualType ArgTy) { 4343 // C++0x [meta.unary.prop]p3: 4344 // For all of the class templates X declared in this Clause, instantiating 4345 // that template with a template argument that is a class template 4346 // specialization may result in the implicit instantiation of the template 4347 // argument if and only if the semantics of X require that the argument 4348 // must be a complete type. 4349 // We apply this rule to all the type trait expressions used to implement 4350 // these class templates. We also try to follow any GCC documented behavior 4351 // in these expressions to ensure portability of standard libraries. 4352 switch (UTT) { 4353 default: llvm_unreachable("not a UTT"); 4354 // is_complete_type somewhat obviously cannot require a complete type. 4355 case UTT_IsCompleteType: 4356 // Fall-through 4357 4358 // These traits are modeled on the type predicates in C++0x 4359 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4360 // requiring a complete type, as whether or not they return true cannot be 4361 // impacted by the completeness of the type. 4362 case UTT_IsVoid: 4363 case UTT_IsIntegral: 4364 case UTT_IsFloatingPoint: 4365 case UTT_IsArray: 4366 case UTT_IsPointer: 4367 case UTT_IsLvalueReference: 4368 case UTT_IsRvalueReference: 4369 case UTT_IsMemberFunctionPointer: 4370 case UTT_IsMemberObjectPointer: 4371 case UTT_IsEnum: 4372 case UTT_IsUnion: 4373 case UTT_IsClass: 4374 case UTT_IsFunction: 4375 case UTT_IsReference: 4376 case UTT_IsArithmetic: 4377 case UTT_IsFundamental: 4378 case UTT_IsObject: 4379 case UTT_IsScalar: 4380 case UTT_IsCompound: 4381 case UTT_IsMemberPointer: 4382 // Fall-through 4383 4384 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4385 // which requires some of its traits to have the complete type. However, 4386 // the completeness of the type cannot impact these traits' semantics, and 4387 // so they don't require it. This matches the comments on these traits in 4388 // Table 49. 4389 case UTT_IsConst: 4390 case UTT_IsVolatile: 4391 case UTT_IsSigned: 4392 case UTT_IsUnsigned: 4393 4394 // This type trait always returns false, checking the type is moot. 4395 case UTT_IsInterfaceClass: 4396 return true; 4397 4398 // C++14 [meta.unary.prop]: 4399 // If T is a non-union class type, T shall be a complete type. 4400 case UTT_IsEmpty: 4401 case UTT_IsPolymorphic: 4402 case UTT_IsAbstract: 4403 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4404 if (!RD->isUnion()) 4405 return !S.RequireCompleteType( 4406 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4407 return true; 4408 4409 // C++14 [meta.unary.prop]: 4410 // If T is a class type, T shall be a complete type. 4411 case UTT_IsFinal: 4412 case UTT_IsSealed: 4413 if (ArgTy->getAsCXXRecordDecl()) 4414 return !S.RequireCompleteType( 4415 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4416 return true; 4417 4418 // C++1z [meta.unary.prop]: 4419 // remove_all_extents_t<T> shall be a complete type or cv void. 4420 case UTT_IsAggregate: 4421 case UTT_IsTrivial: 4422 case UTT_IsTriviallyCopyable: 4423 case UTT_IsStandardLayout: 4424 case UTT_IsPOD: 4425 case UTT_IsLiteral: 4426 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4427 // or an array of unknown bound. But GCC actually imposes the same constraints 4428 // as above. 4429 case UTT_HasNothrowAssign: 4430 case UTT_HasNothrowMoveAssign: 4431 case UTT_HasNothrowConstructor: 4432 case UTT_HasNothrowCopy: 4433 case UTT_HasTrivialAssign: 4434 case UTT_HasTrivialMoveAssign: 4435 case UTT_HasTrivialDefaultConstructor: 4436 case UTT_HasTrivialMoveConstructor: 4437 case UTT_HasTrivialCopy: 4438 case UTT_HasTrivialDestructor: 4439 case UTT_HasVirtualDestructor: 4440 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4441 LLVM_FALLTHROUGH; 4442 4443 // C++1z [meta.unary.prop]: 4444 // T shall be a complete type, cv void, or an array of unknown bound. 4445 case UTT_IsDestructible: 4446 case UTT_IsNothrowDestructible: 4447 case UTT_IsTriviallyDestructible: 4448 case UTT_HasUniqueObjectRepresentations: 4449 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4450 return true; 4451 4452 return !S.RequireCompleteType( 4453 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4454 } 4455 } 4456 4457 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 4458 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 4459 bool (CXXRecordDecl::*HasTrivial)() const, 4460 bool (CXXRecordDecl::*HasNonTrivial)() const, 4461 bool (CXXMethodDecl::*IsDesiredOp)() const) 4462 { 4463 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4464 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 4465 return true; 4466 4467 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 4468 DeclarationNameInfo NameInfo(Name, KeyLoc); 4469 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 4470 if (Self.LookupQualifiedName(Res, RD)) { 4471 bool FoundOperator = false; 4472 Res.suppressDiagnostics(); 4473 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 4474 Op != OpEnd; ++Op) { 4475 if (isa<FunctionTemplateDecl>(*Op)) 4476 continue; 4477 4478 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 4479 if((Operator->*IsDesiredOp)()) { 4480 FoundOperator = true; 4481 const FunctionProtoType *CPT = 4482 Operator->getType()->getAs<FunctionProtoType>(); 4483 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4484 if (!CPT || !CPT->isNothrow()) 4485 return false; 4486 } 4487 } 4488 return FoundOperator; 4489 } 4490 return false; 4491 } 4492 4493 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 4494 SourceLocation KeyLoc, QualType T) { 4495 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 4496 4497 ASTContext &C = Self.Context; 4498 switch(UTT) { 4499 default: llvm_unreachable("not a UTT"); 4500 // Type trait expressions corresponding to the primary type category 4501 // predicates in C++0x [meta.unary.cat]. 4502 case UTT_IsVoid: 4503 return T->isVoidType(); 4504 case UTT_IsIntegral: 4505 return T->isIntegralType(C); 4506 case UTT_IsFloatingPoint: 4507 return T->isFloatingType(); 4508 case UTT_IsArray: 4509 return T->isArrayType(); 4510 case UTT_IsPointer: 4511 return T->isPointerType(); 4512 case UTT_IsLvalueReference: 4513 return T->isLValueReferenceType(); 4514 case UTT_IsRvalueReference: 4515 return T->isRValueReferenceType(); 4516 case UTT_IsMemberFunctionPointer: 4517 return T->isMemberFunctionPointerType(); 4518 case UTT_IsMemberObjectPointer: 4519 return T->isMemberDataPointerType(); 4520 case UTT_IsEnum: 4521 return T->isEnumeralType(); 4522 case UTT_IsUnion: 4523 return T->isUnionType(); 4524 case UTT_IsClass: 4525 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 4526 case UTT_IsFunction: 4527 return T->isFunctionType(); 4528 4529 // Type trait expressions which correspond to the convenient composition 4530 // predicates in C++0x [meta.unary.comp]. 4531 case UTT_IsReference: 4532 return T->isReferenceType(); 4533 case UTT_IsArithmetic: 4534 return T->isArithmeticType() && !T->isEnumeralType(); 4535 case UTT_IsFundamental: 4536 return T->isFundamentalType(); 4537 case UTT_IsObject: 4538 return T->isObjectType(); 4539 case UTT_IsScalar: 4540 // Note: semantic analysis depends on Objective-C lifetime types to be 4541 // considered scalar types. However, such types do not actually behave 4542 // like scalar types at run time (since they may require retain/release 4543 // operations), so we report them as non-scalar. 4544 if (T->isObjCLifetimeType()) { 4545 switch (T.getObjCLifetime()) { 4546 case Qualifiers::OCL_None: 4547 case Qualifiers::OCL_ExplicitNone: 4548 return true; 4549 4550 case Qualifiers::OCL_Strong: 4551 case Qualifiers::OCL_Weak: 4552 case Qualifiers::OCL_Autoreleasing: 4553 return false; 4554 } 4555 } 4556 4557 return T->isScalarType(); 4558 case UTT_IsCompound: 4559 return T->isCompoundType(); 4560 case UTT_IsMemberPointer: 4561 return T->isMemberPointerType(); 4562 4563 // Type trait expressions which correspond to the type property predicates 4564 // in C++0x [meta.unary.prop]. 4565 case UTT_IsConst: 4566 return T.isConstQualified(); 4567 case UTT_IsVolatile: 4568 return T.isVolatileQualified(); 4569 case UTT_IsTrivial: 4570 return T.isTrivialType(C); 4571 case UTT_IsTriviallyCopyable: 4572 return T.isTriviallyCopyableType(C); 4573 case UTT_IsStandardLayout: 4574 return T->isStandardLayoutType(); 4575 case UTT_IsPOD: 4576 return T.isPODType(C); 4577 case UTT_IsLiteral: 4578 return T->isLiteralType(C); 4579 case UTT_IsEmpty: 4580 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4581 return !RD->isUnion() && RD->isEmpty(); 4582 return false; 4583 case UTT_IsPolymorphic: 4584 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4585 return !RD->isUnion() && RD->isPolymorphic(); 4586 return false; 4587 case UTT_IsAbstract: 4588 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4589 return !RD->isUnion() && RD->isAbstract(); 4590 return false; 4591 case UTT_IsAggregate: 4592 // Report vector extensions and complex types as aggregates because they 4593 // support aggregate initialization. GCC mirrors this behavior for vectors 4594 // but not _Complex. 4595 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 4596 T->isAnyComplexType(); 4597 // __is_interface_class only returns true when CL is invoked in /CLR mode and 4598 // even then only when it is used with the 'interface struct ...' syntax 4599 // Clang doesn't support /CLR which makes this type trait moot. 4600 case UTT_IsInterfaceClass: 4601 return false; 4602 case UTT_IsFinal: 4603 case UTT_IsSealed: 4604 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4605 return RD->hasAttr<FinalAttr>(); 4606 return false; 4607 case UTT_IsSigned: 4608 return T->isSignedIntegerType(); 4609 case UTT_IsUnsigned: 4610 return T->isUnsignedIntegerType(); 4611 4612 // Type trait expressions which query classes regarding their construction, 4613 // destruction, and copying. Rather than being based directly on the 4614 // related type predicates in the standard, they are specified by both 4615 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 4616 // specifications. 4617 // 4618 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 4619 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4620 // 4621 // Note that these builtins do not behave as documented in g++: if a class 4622 // has both a trivial and a non-trivial special member of a particular kind, 4623 // they return false! For now, we emulate this behavior. 4624 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 4625 // does not correctly compute triviality in the presence of multiple special 4626 // members of the same kind. Revisit this once the g++ bug is fixed. 4627 case UTT_HasTrivialDefaultConstructor: 4628 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4629 // If __is_pod (type) is true then the trait is true, else if type is 4630 // a cv class or union type (or array thereof) with a trivial default 4631 // constructor ([class.ctor]) then the trait is true, else it is false. 4632 if (T.isPODType(C)) 4633 return true; 4634 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4635 return RD->hasTrivialDefaultConstructor() && 4636 !RD->hasNonTrivialDefaultConstructor(); 4637 return false; 4638 case UTT_HasTrivialMoveConstructor: 4639 // This trait is implemented by MSVC 2012 and needed to parse the 4640 // standard library headers. Specifically this is used as the logic 4641 // behind std::is_trivially_move_constructible (20.9.4.3). 4642 if (T.isPODType(C)) 4643 return true; 4644 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4645 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 4646 return false; 4647 case UTT_HasTrivialCopy: 4648 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4649 // If __is_pod (type) is true or type is a reference type then 4650 // the trait is true, else if type is a cv class or union type 4651 // with a trivial copy constructor ([class.copy]) then the trait 4652 // is true, else it is false. 4653 if (T.isPODType(C) || T->isReferenceType()) 4654 return true; 4655 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4656 return RD->hasTrivialCopyConstructor() && 4657 !RD->hasNonTrivialCopyConstructor(); 4658 return false; 4659 case UTT_HasTrivialMoveAssign: 4660 // This trait is implemented by MSVC 2012 and needed to parse the 4661 // standard library headers. Specifically it is used as the logic 4662 // behind std::is_trivially_move_assignable (20.9.4.3) 4663 if (T.isPODType(C)) 4664 return true; 4665 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4666 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 4667 return false; 4668 case UTT_HasTrivialAssign: 4669 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4670 // If type is const qualified or is a reference type then the 4671 // trait is false. Otherwise if __is_pod (type) is true then the 4672 // trait is true, else if type is a cv class or union type with 4673 // a trivial copy assignment ([class.copy]) then the trait is 4674 // true, else it is false. 4675 // Note: the const and reference restrictions are interesting, 4676 // given that const and reference members don't prevent a class 4677 // from having a trivial copy assignment operator (but do cause 4678 // errors if the copy assignment operator is actually used, q.v. 4679 // [class.copy]p12). 4680 4681 if (T.isConstQualified()) 4682 return false; 4683 if (T.isPODType(C)) 4684 return true; 4685 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4686 return RD->hasTrivialCopyAssignment() && 4687 !RD->hasNonTrivialCopyAssignment(); 4688 return false; 4689 case UTT_IsDestructible: 4690 case UTT_IsTriviallyDestructible: 4691 case UTT_IsNothrowDestructible: 4692 // C++14 [meta.unary.prop]: 4693 // For reference types, is_destructible<T>::value is true. 4694 if (T->isReferenceType()) 4695 return true; 4696 4697 // Objective-C++ ARC: autorelease types don't require destruction. 4698 if (T->isObjCLifetimeType() && 4699 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 4700 return true; 4701 4702 // C++14 [meta.unary.prop]: 4703 // For incomplete types and function types, is_destructible<T>::value is 4704 // false. 4705 if (T->isIncompleteType() || T->isFunctionType()) 4706 return false; 4707 4708 // A type that requires destruction (via a non-trivial destructor or ARC 4709 // lifetime semantics) is not trivially-destructible. 4710 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 4711 return false; 4712 4713 // C++14 [meta.unary.prop]: 4714 // For object types and given U equal to remove_all_extents_t<T>, if the 4715 // expression std::declval<U&>().~U() is well-formed when treated as an 4716 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 4717 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 4718 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 4719 if (!Destructor) 4720 return false; 4721 // C++14 [dcl.fct.def.delete]p2: 4722 // A program that refers to a deleted function implicitly or 4723 // explicitly, other than to declare it, is ill-formed. 4724 if (Destructor->isDeleted()) 4725 return false; 4726 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 4727 return false; 4728 if (UTT == UTT_IsNothrowDestructible) { 4729 const FunctionProtoType *CPT = 4730 Destructor->getType()->getAs<FunctionProtoType>(); 4731 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4732 if (!CPT || !CPT->isNothrow()) 4733 return false; 4734 } 4735 } 4736 return true; 4737 4738 case UTT_HasTrivialDestructor: 4739 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 4740 // If __is_pod (type) is true or type is a reference type 4741 // then the trait is true, else if type is a cv class or union 4742 // type (or array thereof) with a trivial destructor 4743 // ([class.dtor]) then the trait is true, else it is 4744 // false. 4745 if (T.isPODType(C) || T->isReferenceType()) 4746 return true; 4747 4748 // Objective-C++ ARC: autorelease types don't require destruction. 4749 if (T->isObjCLifetimeType() && 4750 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 4751 return true; 4752 4753 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4754 return RD->hasTrivialDestructor(); 4755 return false; 4756 // TODO: Propagate nothrowness for implicitly declared special members. 4757 case UTT_HasNothrowAssign: 4758 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4759 // If type is const qualified or is a reference type then the 4760 // trait is false. Otherwise if __has_trivial_assign (type) 4761 // is true then the trait is true, else if type is a cv class 4762 // or union type with copy assignment operators that are known 4763 // not to throw an exception then the trait is true, else it is 4764 // false. 4765 if (C.getBaseElementType(T).isConstQualified()) 4766 return false; 4767 if (T->isReferenceType()) 4768 return false; 4769 if (T.isPODType(C) || T->isObjCLifetimeType()) 4770 return true; 4771 4772 if (const RecordType *RT = T->getAs<RecordType>()) 4773 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 4774 &CXXRecordDecl::hasTrivialCopyAssignment, 4775 &CXXRecordDecl::hasNonTrivialCopyAssignment, 4776 &CXXMethodDecl::isCopyAssignmentOperator); 4777 return false; 4778 case UTT_HasNothrowMoveAssign: 4779 // This trait is implemented by MSVC 2012 and needed to parse the 4780 // standard library headers. Specifically this is used as the logic 4781 // behind std::is_nothrow_move_assignable (20.9.4.3). 4782 if (T.isPODType(C)) 4783 return true; 4784 4785 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 4786 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 4787 &CXXRecordDecl::hasTrivialMoveAssignment, 4788 &CXXRecordDecl::hasNonTrivialMoveAssignment, 4789 &CXXMethodDecl::isMoveAssignmentOperator); 4790 return false; 4791 case UTT_HasNothrowCopy: 4792 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4793 // If __has_trivial_copy (type) is true then the trait is true, else 4794 // if type is a cv class or union type with copy constructors that are 4795 // known not to throw an exception then the trait is true, else it is 4796 // false. 4797 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 4798 return true; 4799 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 4800 if (RD->hasTrivialCopyConstructor() && 4801 !RD->hasNonTrivialCopyConstructor()) 4802 return true; 4803 4804 bool FoundConstructor = false; 4805 unsigned FoundTQs; 4806 for (const auto *ND : Self.LookupConstructors(RD)) { 4807 // A template constructor is never a copy constructor. 4808 // FIXME: However, it may actually be selected at the actual overload 4809 // resolution point. 4810 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 4811 continue; 4812 // UsingDecl itself is not a constructor 4813 if (isa<UsingDecl>(ND)) 4814 continue; 4815 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 4816 if (Constructor->isCopyConstructor(FoundTQs)) { 4817 FoundConstructor = true; 4818 const FunctionProtoType *CPT 4819 = Constructor->getType()->getAs<FunctionProtoType>(); 4820 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4821 if (!CPT) 4822 return false; 4823 // TODO: check whether evaluating default arguments can throw. 4824 // For now, we'll be conservative and assume that they can throw. 4825 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 4826 return false; 4827 } 4828 } 4829 4830 return FoundConstructor; 4831 } 4832 return false; 4833 case UTT_HasNothrowConstructor: 4834 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 4835 // If __has_trivial_constructor (type) is true then the trait is 4836 // true, else if type is a cv class or union type (or array 4837 // thereof) with a default constructor that is known not to 4838 // throw an exception then the trait is true, else it is false. 4839 if (T.isPODType(C) || T->isObjCLifetimeType()) 4840 return true; 4841 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 4842 if (RD->hasTrivialDefaultConstructor() && 4843 !RD->hasNonTrivialDefaultConstructor()) 4844 return true; 4845 4846 bool FoundConstructor = false; 4847 for (const auto *ND : Self.LookupConstructors(RD)) { 4848 // FIXME: In C++0x, a constructor template can be a default constructor. 4849 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 4850 continue; 4851 // UsingDecl itself is not a constructor 4852 if (isa<UsingDecl>(ND)) 4853 continue; 4854 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 4855 if (Constructor->isDefaultConstructor()) { 4856 FoundConstructor = true; 4857 const FunctionProtoType *CPT 4858 = Constructor->getType()->getAs<FunctionProtoType>(); 4859 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4860 if (!CPT) 4861 return false; 4862 // FIXME: check whether evaluating default arguments can throw. 4863 // For now, we'll be conservative and assume that they can throw. 4864 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 4865 return false; 4866 } 4867 } 4868 return FoundConstructor; 4869 } 4870 return false; 4871 case UTT_HasVirtualDestructor: 4872 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4873 // If type is a class type with a virtual destructor ([class.dtor]) 4874 // then the trait is true, else it is false. 4875 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4876 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 4877 return Destructor->isVirtual(); 4878 return false; 4879 4880 // These type trait expressions are modeled on the specifications for the 4881 // Embarcadero C++0x type trait functions: 4882 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4883 case UTT_IsCompleteType: 4884 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 4885 // Returns True if and only if T is a complete type at the point of the 4886 // function call. 4887 return !T->isIncompleteType(); 4888 case UTT_HasUniqueObjectRepresentations: 4889 return C.hasUniqueObjectRepresentations(T); 4890 } 4891 } 4892 4893 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 4894 QualType RhsT, SourceLocation KeyLoc); 4895 4896 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 4897 ArrayRef<TypeSourceInfo *> Args, 4898 SourceLocation RParenLoc) { 4899 if (Kind <= UTT_Last) 4900 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 4901 4902 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible 4903 // traits to avoid duplication. 4904 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) 4905 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 4906 Args[1]->getType(), RParenLoc); 4907 4908 switch (Kind) { 4909 case clang::BTT_ReferenceBindsToTemporary: 4910 case clang::TT_IsConstructible: 4911 case clang::TT_IsNothrowConstructible: 4912 case clang::TT_IsTriviallyConstructible: { 4913 // C++11 [meta.unary.prop]: 4914 // is_trivially_constructible is defined as: 4915 // 4916 // is_constructible<T, Args...>::value is true and the variable 4917 // definition for is_constructible, as defined below, is known to call 4918 // no operation that is not trivial. 4919 // 4920 // The predicate condition for a template specialization 4921 // is_constructible<T, Args...> shall be satisfied if and only if the 4922 // following variable definition would be well-formed for some invented 4923 // variable t: 4924 // 4925 // T t(create<Args>()...); 4926 assert(!Args.empty()); 4927 4928 // Precondition: T and all types in the parameter pack Args shall be 4929 // complete types, (possibly cv-qualified) void, or arrays of 4930 // unknown bound. 4931 for (const auto *TSI : Args) { 4932 QualType ArgTy = TSI->getType(); 4933 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 4934 continue; 4935 4936 if (S.RequireCompleteType(KWLoc, ArgTy, 4937 diag::err_incomplete_type_used_in_type_trait_expr)) 4938 return false; 4939 } 4940 4941 // Make sure the first argument is not incomplete nor a function type. 4942 QualType T = Args[0]->getType(); 4943 if (T->isIncompleteType() || T->isFunctionType()) 4944 return false; 4945 4946 // Make sure the first argument is not an abstract type. 4947 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 4948 if (RD && RD->isAbstract()) 4949 return false; 4950 4951 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs; 4952 SmallVector<Expr *, 2> ArgExprs; 4953 ArgExprs.reserve(Args.size() - 1); 4954 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 4955 QualType ArgTy = Args[I]->getType(); 4956 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 4957 ArgTy = S.Context.getRValueReferenceType(ArgTy); 4958 OpaqueArgExprs.push_back( 4959 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 4960 ArgTy.getNonLValueExprType(S.Context), 4961 Expr::getValueKindForType(ArgTy))); 4962 } 4963 for (Expr &E : OpaqueArgExprs) 4964 ArgExprs.push_back(&E); 4965 4966 // Perform the initialization in an unevaluated context within a SFINAE 4967 // trap at translation unit scope. 4968 EnterExpressionEvaluationContext Unevaluated( 4969 S, Sema::ExpressionEvaluationContext::Unevaluated); 4970 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 4971 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 4972 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0])); 4973 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 4974 RParenLoc)); 4975 InitializationSequence Init(S, To, InitKind, ArgExprs); 4976 if (Init.Failed()) 4977 return false; 4978 4979 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 4980 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 4981 return false; 4982 4983 if (Kind == clang::TT_IsConstructible) 4984 return true; 4985 4986 if (Kind == clang::BTT_ReferenceBindsToTemporary) { 4987 if (!T->isReferenceType()) 4988 return false; 4989 4990 return !Init.isDirectReferenceBinding(); 4991 } 4992 4993 if (Kind == clang::TT_IsNothrowConstructible) 4994 return S.canThrow(Result.get()) == CT_Cannot; 4995 4996 if (Kind == clang::TT_IsTriviallyConstructible) { 4997 // Under Objective-C ARC and Weak, if the destination has non-trivial 4998 // Objective-C lifetime, this is a non-trivial construction. 4999 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5000 return false; 5001 5002 // The initialization succeeded; now make sure there are no non-trivial 5003 // calls. 5004 return !Result.get()->hasNonTrivialCall(S.Context); 5005 } 5006 5007 llvm_unreachable("unhandled type trait"); 5008 return false; 5009 } 5010 default: llvm_unreachable("not a TT"); 5011 } 5012 5013 return false; 5014 } 5015 5016 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5017 ArrayRef<TypeSourceInfo *> Args, 5018 SourceLocation RParenLoc) { 5019 QualType ResultType = Context.getLogicalOperationType(); 5020 5021 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5022 *this, Kind, KWLoc, Args[0]->getType())) 5023 return ExprError(); 5024 5025 bool Dependent = false; 5026 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5027 if (Args[I]->getType()->isDependentType()) { 5028 Dependent = true; 5029 break; 5030 } 5031 } 5032 5033 bool Result = false; 5034 if (!Dependent) 5035 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 5036 5037 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 5038 RParenLoc, Result); 5039 } 5040 5041 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5042 ArrayRef<ParsedType> Args, 5043 SourceLocation RParenLoc) { 5044 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5045 ConvertedArgs.reserve(Args.size()); 5046 5047 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5048 TypeSourceInfo *TInfo; 5049 QualType T = GetTypeFromParser(Args[I], &TInfo); 5050 if (!TInfo) 5051 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5052 5053 ConvertedArgs.push_back(TInfo); 5054 } 5055 5056 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5057 } 5058 5059 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5060 QualType RhsT, SourceLocation KeyLoc) { 5061 assert(!LhsT->isDependentType() && !RhsT->isDependentType() && 5062 "Cannot evaluate traits of dependent types"); 5063 5064 switch(BTT) { 5065 case BTT_IsBaseOf: { 5066 // C++0x [meta.rel]p2 5067 // Base is a base class of Derived without regard to cv-qualifiers or 5068 // Base and Derived are not unions and name the same class type without 5069 // regard to cv-qualifiers. 5070 5071 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5072 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5073 if (!rhsRecord || !lhsRecord) { 5074 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5075 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5076 if (!LHSObjTy || !RHSObjTy) 5077 return false; 5078 5079 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5080 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5081 if (!BaseInterface || !DerivedInterface) 5082 return false; 5083 5084 if (Self.RequireCompleteType( 5085 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5086 return false; 5087 5088 return BaseInterface->isSuperClassOf(DerivedInterface); 5089 } 5090 5091 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) 5092 == (lhsRecord == rhsRecord)); 5093 5094 // Unions are never base classes, and never have base classes. 5095 // It doesn't matter if they are complete or not. See PR#41843 5096 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5097 return false; 5098 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5099 return false; 5100 5101 if (lhsRecord == rhsRecord) 5102 return true; 5103 5104 // C++0x [meta.rel]p2: 5105 // If Base and Derived are class types and are different types 5106 // (ignoring possible cv-qualifiers) then Derived shall be a 5107 // complete type. 5108 if (Self.RequireCompleteType(KeyLoc, RhsT, 5109 diag::err_incomplete_type_used_in_type_trait_expr)) 5110 return false; 5111 5112 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5113 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5114 } 5115 case BTT_IsSame: 5116 return Self.Context.hasSameType(LhsT, RhsT); 5117 case BTT_TypeCompatible: { 5118 // GCC ignores cv-qualifiers on arrays for this builtin. 5119 Qualifiers LhsQuals, RhsQuals; 5120 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5121 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5122 return Self.Context.typesAreCompatible(Lhs, Rhs); 5123 } 5124 case BTT_IsConvertible: 5125 case BTT_IsConvertibleTo: { 5126 // C++0x [meta.rel]p4: 5127 // Given the following function prototype: 5128 // 5129 // template <class T> 5130 // typename add_rvalue_reference<T>::type create(); 5131 // 5132 // the predicate condition for a template specialization 5133 // is_convertible<From, To> shall be satisfied if and only if 5134 // the return expression in the following code would be 5135 // well-formed, including any implicit conversions to the return 5136 // type of the function: 5137 // 5138 // To test() { 5139 // return create<From>(); 5140 // } 5141 // 5142 // Access checking is performed as if in a context unrelated to To and 5143 // From. Only the validity of the immediate context of the expression 5144 // of the return-statement (including conversions to the return type) 5145 // is considered. 5146 // 5147 // We model the initialization as a copy-initialization of a temporary 5148 // of the appropriate type, which for this expression is identical to the 5149 // return statement (since NRVO doesn't apply). 5150 5151 // Functions aren't allowed to return function or array types. 5152 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5153 return false; 5154 5155 // A return statement in a void function must have void type. 5156 if (RhsT->isVoidType()) 5157 return LhsT->isVoidType(); 5158 5159 // A function definition requires a complete, non-abstract return type. 5160 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5161 return false; 5162 5163 // Compute the result of add_rvalue_reference. 5164 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5165 LhsT = Self.Context.getRValueReferenceType(LhsT); 5166 5167 // Build a fake source and destination for initialization. 5168 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5169 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5170 Expr::getValueKindForType(LhsT)); 5171 Expr *FromPtr = &From; 5172 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5173 SourceLocation())); 5174 5175 // Perform the initialization in an unevaluated context within a SFINAE 5176 // trap at translation unit scope. 5177 EnterExpressionEvaluationContext Unevaluated( 5178 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5179 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5180 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5181 InitializationSequence Init(Self, To, Kind, FromPtr); 5182 if (Init.Failed()) 5183 return false; 5184 5185 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5186 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5187 } 5188 5189 case BTT_IsAssignable: 5190 case BTT_IsNothrowAssignable: 5191 case BTT_IsTriviallyAssignable: { 5192 // C++11 [meta.unary.prop]p3: 5193 // is_trivially_assignable is defined as: 5194 // is_assignable<T, U>::value is true and the assignment, as defined by 5195 // is_assignable, is known to call no operation that is not trivial 5196 // 5197 // is_assignable is defined as: 5198 // The expression declval<T>() = declval<U>() is well-formed when 5199 // treated as an unevaluated operand (Clause 5). 5200 // 5201 // For both, T and U shall be complete types, (possibly cv-qualified) 5202 // void, or arrays of unknown bound. 5203 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5204 Self.RequireCompleteType(KeyLoc, LhsT, 5205 diag::err_incomplete_type_used_in_type_trait_expr)) 5206 return false; 5207 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5208 Self.RequireCompleteType(KeyLoc, RhsT, 5209 diag::err_incomplete_type_used_in_type_trait_expr)) 5210 return false; 5211 5212 // cv void is never assignable. 5213 if (LhsT->isVoidType() || RhsT->isVoidType()) 5214 return false; 5215 5216 // Build expressions that emulate the effect of declval<T>() and 5217 // declval<U>(). 5218 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5219 LhsT = Self.Context.getRValueReferenceType(LhsT); 5220 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5221 RhsT = Self.Context.getRValueReferenceType(RhsT); 5222 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5223 Expr::getValueKindForType(LhsT)); 5224 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5225 Expr::getValueKindForType(RhsT)); 5226 5227 // Attempt the assignment in an unevaluated context within a SFINAE 5228 // trap at translation unit scope. 5229 EnterExpressionEvaluationContext Unevaluated( 5230 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5231 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5232 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5233 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5234 &Rhs); 5235 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5236 return false; 5237 5238 if (BTT == BTT_IsAssignable) 5239 return true; 5240 5241 if (BTT == BTT_IsNothrowAssignable) 5242 return Self.canThrow(Result.get()) == CT_Cannot; 5243 5244 if (BTT == BTT_IsTriviallyAssignable) { 5245 // Under Objective-C ARC and Weak, if the destination has non-trivial 5246 // Objective-C lifetime, this is a non-trivial assignment. 5247 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 5248 return false; 5249 5250 return !Result.get()->hasNonTrivialCall(Self.Context); 5251 } 5252 5253 llvm_unreachable("unhandled type trait"); 5254 return false; 5255 } 5256 default: llvm_unreachable("not a BTT"); 5257 } 5258 llvm_unreachable("Unknown type trait or not implemented"); 5259 } 5260 5261 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 5262 SourceLocation KWLoc, 5263 ParsedType Ty, 5264 Expr* DimExpr, 5265 SourceLocation RParen) { 5266 TypeSourceInfo *TSInfo; 5267 QualType T = GetTypeFromParser(Ty, &TSInfo); 5268 if (!TSInfo) 5269 TSInfo = Context.getTrivialTypeSourceInfo(T); 5270 5271 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 5272 } 5273 5274 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 5275 QualType T, Expr *DimExpr, 5276 SourceLocation KeyLoc) { 5277 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 5278 5279 switch(ATT) { 5280 case ATT_ArrayRank: 5281 if (T->isArrayType()) { 5282 unsigned Dim = 0; 5283 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5284 ++Dim; 5285 T = AT->getElementType(); 5286 } 5287 return Dim; 5288 } 5289 return 0; 5290 5291 case ATT_ArrayExtent: { 5292 llvm::APSInt Value; 5293 uint64_t Dim; 5294 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value, 5295 diag::err_dimension_expr_not_constant_integer, 5296 false).isInvalid()) 5297 return 0; 5298 if (Value.isSigned() && Value.isNegative()) { 5299 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 5300 << DimExpr->getSourceRange(); 5301 return 0; 5302 } 5303 Dim = Value.getLimitedValue(); 5304 5305 if (T->isArrayType()) { 5306 unsigned D = 0; 5307 bool Matched = false; 5308 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5309 if (Dim == D) { 5310 Matched = true; 5311 break; 5312 } 5313 ++D; 5314 T = AT->getElementType(); 5315 } 5316 5317 if (Matched && T->isArrayType()) { 5318 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 5319 return CAT->getSize().getLimitedValue(); 5320 } 5321 } 5322 return 0; 5323 } 5324 } 5325 llvm_unreachable("Unknown type trait or not implemented"); 5326 } 5327 5328 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 5329 SourceLocation KWLoc, 5330 TypeSourceInfo *TSInfo, 5331 Expr* DimExpr, 5332 SourceLocation RParen) { 5333 QualType T = TSInfo->getType(); 5334 5335 // FIXME: This should likely be tracked as an APInt to remove any host 5336 // assumptions about the width of size_t on the target. 5337 uint64_t Value = 0; 5338 if (!T->isDependentType()) 5339 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 5340 5341 // While the specification for these traits from the Embarcadero C++ 5342 // compiler's documentation says the return type is 'unsigned int', Clang 5343 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 5344 // compiler, there is no difference. On several other platforms this is an 5345 // important distinction. 5346 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 5347 RParen, Context.getSizeType()); 5348 } 5349 5350 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 5351 SourceLocation KWLoc, 5352 Expr *Queried, 5353 SourceLocation RParen) { 5354 // If error parsing the expression, ignore. 5355 if (!Queried) 5356 return ExprError(); 5357 5358 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 5359 5360 return Result; 5361 } 5362 5363 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 5364 switch (ET) { 5365 case ET_IsLValueExpr: return E->isLValue(); 5366 case ET_IsRValueExpr: return E->isRValue(); 5367 } 5368 llvm_unreachable("Expression trait not covered by switch"); 5369 } 5370 5371 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 5372 SourceLocation KWLoc, 5373 Expr *Queried, 5374 SourceLocation RParen) { 5375 if (Queried->isTypeDependent()) { 5376 // Delay type-checking for type-dependent expressions. 5377 } else if (Queried->getType()->isPlaceholderType()) { 5378 ExprResult PE = CheckPlaceholderExpr(Queried); 5379 if (PE.isInvalid()) return ExprError(); 5380 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 5381 } 5382 5383 bool Value = EvaluateExpressionTrait(ET, Queried); 5384 5385 return new (Context) 5386 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 5387 } 5388 5389 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 5390 ExprValueKind &VK, 5391 SourceLocation Loc, 5392 bool isIndirect) { 5393 assert(!LHS.get()->getType()->isPlaceholderType() && 5394 !RHS.get()->getType()->isPlaceholderType() && 5395 "placeholders should have been weeded out by now"); 5396 5397 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the 5398 // temporary materialization conversion otherwise. 5399 if (isIndirect) 5400 LHS = DefaultLvalueConversion(LHS.get()); 5401 else if (LHS.get()->isRValue()) 5402 LHS = TemporaryMaterializationConversion(LHS.get()); 5403 if (LHS.isInvalid()) 5404 return QualType(); 5405 5406 // The RHS always undergoes lvalue conversions. 5407 RHS = DefaultLvalueConversion(RHS.get()); 5408 if (RHS.isInvalid()) return QualType(); 5409 5410 const char *OpSpelling = isIndirect ? "->*" : ".*"; 5411 // C++ 5.5p2 5412 // The binary operator .* [p3: ->*] binds its second operand, which shall 5413 // be of type "pointer to member of T" (where T is a completely-defined 5414 // class type) [...] 5415 QualType RHSType = RHS.get()->getType(); 5416 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 5417 if (!MemPtr) { 5418 Diag(Loc, diag::err_bad_memptr_rhs) 5419 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 5420 return QualType(); 5421 } 5422 5423 QualType Class(MemPtr->getClass(), 0); 5424 5425 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 5426 // member pointer points must be completely-defined. However, there is no 5427 // reason for this semantic distinction, and the rule is not enforced by 5428 // other compilers. Therefore, we do not check this property, as it is 5429 // likely to be considered a defect. 5430 5431 // C++ 5.5p2 5432 // [...] to its first operand, which shall be of class T or of a class of 5433 // which T is an unambiguous and accessible base class. [p3: a pointer to 5434 // such a class] 5435 QualType LHSType = LHS.get()->getType(); 5436 if (isIndirect) { 5437 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 5438 LHSType = Ptr->getPointeeType(); 5439 else { 5440 Diag(Loc, diag::err_bad_memptr_lhs) 5441 << OpSpelling << 1 << LHSType 5442 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 5443 return QualType(); 5444 } 5445 } 5446 5447 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 5448 // If we want to check the hierarchy, we need a complete type. 5449 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 5450 OpSpelling, (int)isIndirect)) { 5451 return QualType(); 5452 } 5453 5454 if (!IsDerivedFrom(Loc, LHSType, Class)) { 5455 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 5456 << (int)isIndirect << LHS.get()->getType(); 5457 return QualType(); 5458 } 5459 5460 CXXCastPath BasePath; 5461 if (CheckDerivedToBaseConversion( 5462 LHSType, Class, Loc, 5463 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), 5464 &BasePath)) 5465 return QualType(); 5466 5467 // Cast LHS to type of use. 5468 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); 5469 if (isIndirect) 5470 UseType = Context.getPointerType(UseType); 5471 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind(); 5472 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 5473 &BasePath); 5474 } 5475 5476 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 5477 // Diagnose use of pointer-to-member type which when used as 5478 // the functional cast in a pointer-to-member expression. 5479 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 5480 return QualType(); 5481 } 5482 5483 // C++ 5.5p2 5484 // The result is an object or a function of the type specified by the 5485 // second operand. 5486 // The cv qualifiers are the union of those in the pointer and the left side, 5487 // in accordance with 5.5p5 and 5.2.5. 5488 QualType Result = MemPtr->getPointeeType(); 5489 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 5490 5491 // C++0x [expr.mptr.oper]p6: 5492 // In a .* expression whose object expression is an rvalue, the program is 5493 // ill-formed if the second operand is a pointer to member function with 5494 // ref-qualifier &. In a ->* expression or in a .* expression whose object 5495 // expression is an lvalue, the program is ill-formed if the second operand 5496 // is a pointer to member function with ref-qualifier &&. 5497 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 5498 switch (Proto->getRefQualifier()) { 5499 case RQ_None: 5500 // Do nothing 5501 break; 5502 5503 case RQ_LValue: 5504 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { 5505 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq 5506 // is (exactly) 'const'. 5507 if (Proto->isConst() && !Proto->isVolatile()) 5508 Diag(Loc, getLangOpts().CPlusPlus2a 5509 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue 5510 : diag::ext_pointer_to_const_ref_member_on_rvalue); 5511 else 5512 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5513 << RHSType << 1 << LHS.get()->getSourceRange(); 5514 } 5515 break; 5516 5517 case RQ_RValue: 5518 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 5519 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5520 << RHSType << 0 << LHS.get()->getSourceRange(); 5521 break; 5522 } 5523 } 5524 5525 // C++ [expr.mptr.oper]p6: 5526 // The result of a .* expression whose second operand is a pointer 5527 // to a data member is of the same value category as its 5528 // first operand. The result of a .* expression whose second 5529 // operand is a pointer to a member function is a prvalue. The 5530 // result of an ->* expression is an lvalue if its second operand 5531 // is a pointer to data member and a prvalue otherwise. 5532 if (Result->isFunctionType()) { 5533 VK = VK_RValue; 5534 return Context.BoundMemberTy; 5535 } else if (isIndirect) { 5536 VK = VK_LValue; 5537 } else { 5538 VK = LHS.get()->getValueKind(); 5539 } 5540 5541 return Result; 5542 } 5543 5544 /// Try to convert a type to another according to C++11 5.16p3. 5545 /// 5546 /// This is part of the parameter validation for the ? operator. If either 5547 /// value operand is a class type, the two operands are attempted to be 5548 /// converted to each other. This function does the conversion in one direction. 5549 /// It returns true if the program is ill-formed and has already been diagnosed 5550 /// as such. 5551 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 5552 SourceLocation QuestionLoc, 5553 bool &HaveConversion, 5554 QualType &ToType) { 5555 HaveConversion = false; 5556 ToType = To->getType(); 5557 5558 InitializationKind Kind = 5559 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); 5560 // C++11 5.16p3 5561 // The process for determining whether an operand expression E1 of type T1 5562 // can be converted to match an operand expression E2 of type T2 is defined 5563 // as follows: 5564 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be 5565 // implicitly converted to type "lvalue reference to T2", subject to the 5566 // constraint that in the conversion the reference must bind directly to 5567 // an lvalue. 5568 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be 5569 // implicitly converted to the type "rvalue reference to R2", subject to 5570 // the constraint that the reference must bind directly. 5571 if (To->isLValue() || To->isXValue()) { 5572 QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType) 5573 : Self.Context.getRValueReferenceType(ToType); 5574 5575 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5576 5577 InitializationSequence InitSeq(Self, Entity, Kind, From); 5578 if (InitSeq.isDirectReferenceBinding()) { 5579 ToType = T; 5580 HaveConversion = true; 5581 return false; 5582 } 5583 5584 if (InitSeq.isAmbiguous()) 5585 return InitSeq.Diagnose(Self, Entity, Kind, From); 5586 } 5587 5588 // -- If E2 is an rvalue, or if the conversion above cannot be done: 5589 // -- if E1 and E2 have class type, and the underlying class types are 5590 // the same or one is a base class of the other: 5591 QualType FTy = From->getType(); 5592 QualType TTy = To->getType(); 5593 const RecordType *FRec = FTy->getAs<RecordType>(); 5594 const RecordType *TRec = TTy->getAs<RecordType>(); 5595 bool FDerivedFromT = FRec && TRec && FRec != TRec && 5596 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 5597 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 5598 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 5599 // E1 can be converted to match E2 if the class of T2 is the 5600 // same type as, or a base class of, the class of T1, and 5601 // [cv2 > cv1]. 5602 if (FRec == TRec || FDerivedFromT) { 5603 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 5604 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5605 InitializationSequence InitSeq(Self, Entity, Kind, From); 5606 if (InitSeq) { 5607 HaveConversion = true; 5608 return false; 5609 } 5610 5611 if (InitSeq.isAmbiguous()) 5612 return InitSeq.Diagnose(Self, Entity, Kind, From); 5613 } 5614 } 5615 5616 return false; 5617 } 5618 5619 // -- Otherwise: E1 can be converted to match E2 if E1 can be 5620 // implicitly converted to the type that expression E2 would have 5621 // if E2 were converted to an rvalue (or the type it has, if E2 is 5622 // an rvalue). 5623 // 5624 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 5625 // to the array-to-pointer or function-to-pointer conversions. 5626 TTy = TTy.getNonLValueExprType(Self.Context); 5627 5628 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5629 InitializationSequence InitSeq(Self, Entity, Kind, From); 5630 HaveConversion = !InitSeq.Failed(); 5631 ToType = TTy; 5632 if (InitSeq.isAmbiguous()) 5633 return InitSeq.Diagnose(Self, Entity, Kind, From); 5634 5635 return false; 5636 } 5637 5638 /// Try to find a common type for two according to C++0x 5.16p5. 5639 /// 5640 /// This is part of the parameter validation for the ? operator. If either 5641 /// value operand is a class type, overload resolution is used to find a 5642 /// conversion to a common type. 5643 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 5644 SourceLocation QuestionLoc) { 5645 Expr *Args[2] = { LHS.get(), RHS.get() }; 5646 OverloadCandidateSet CandidateSet(QuestionLoc, 5647 OverloadCandidateSet::CSK_Operator); 5648 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 5649 CandidateSet); 5650 5651 OverloadCandidateSet::iterator Best; 5652 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 5653 case OR_Success: { 5654 // We found a match. Perform the conversions on the arguments and move on. 5655 ExprResult LHSRes = Self.PerformImplicitConversion( 5656 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], 5657 Sema::AA_Converting); 5658 if (LHSRes.isInvalid()) 5659 break; 5660 LHS = LHSRes; 5661 5662 ExprResult RHSRes = Self.PerformImplicitConversion( 5663 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], 5664 Sema::AA_Converting); 5665 if (RHSRes.isInvalid()) 5666 break; 5667 RHS = RHSRes; 5668 if (Best->Function) 5669 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 5670 return false; 5671 } 5672 5673 case OR_No_Viable_Function: 5674 5675 // Emit a better diagnostic if one of the expressions is a null pointer 5676 // constant and the other is a pointer type. In this case, the user most 5677 // likely forgot to take the address of the other expression. 5678 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 5679 return true; 5680 5681 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 5682 << LHS.get()->getType() << RHS.get()->getType() 5683 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5684 return true; 5685 5686 case OR_Ambiguous: 5687 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 5688 << LHS.get()->getType() << RHS.get()->getType() 5689 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5690 // FIXME: Print the possible common types by printing the return types of 5691 // the viable candidates. 5692 break; 5693 5694 case OR_Deleted: 5695 llvm_unreachable("Conditional operator has only built-in overloads"); 5696 } 5697 return true; 5698 } 5699 5700 /// Perform an "extended" implicit conversion as returned by 5701 /// TryClassUnification. 5702 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 5703 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5704 InitializationKind Kind = 5705 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); 5706 Expr *Arg = E.get(); 5707 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 5708 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 5709 if (Result.isInvalid()) 5710 return true; 5711 5712 E = Result; 5713 return false; 5714 } 5715 5716 /// Check the operands of ?: under C++ semantics. 5717 /// 5718 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 5719 /// extension. In this case, LHS == Cond. (But they're not aliases.) 5720 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 5721 ExprResult &RHS, ExprValueKind &VK, 5722 ExprObjectKind &OK, 5723 SourceLocation QuestionLoc) { 5724 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ 5725 // interface pointers. 5726 5727 // C++11 [expr.cond]p1 5728 // The first expression is contextually converted to bool. 5729 // 5730 // FIXME; GCC's vector extension permits the use of a?b:c where the type of 5731 // a is that of a integer vector with the same number of elements and 5732 // size as the vectors of b and c. If one of either b or c is a scalar 5733 // it is implicitly converted to match the type of the vector. 5734 // Otherwise the expression is ill-formed. If both b and c are scalars, 5735 // then b and c are checked and converted to the type of a if possible. 5736 // Unlike the OpenCL ?: operator, the expression is evaluated as 5737 // (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]). 5738 if (!Cond.get()->isTypeDependent()) { 5739 ExprResult CondRes = CheckCXXBooleanCondition(Cond.get()); 5740 if (CondRes.isInvalid()) 5741 return QualType(); 5742 Cond = CondRes; 5743 } 5744 5745 // Assume r-value. 5746 VK = VK_RValue; 5747 OK = OK_Ordinary; 5748 5749 // Either of the arguments dependent? 5750 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 5751 return Context.DependentTy; 5752 5753 // C++11 [expr.cond]p2 5754 // If either the second or the third operand has type (cv) void, ... 5755 QualType LTy = LHS.get()->getType(); 5756 QualType RTy = RHS.get()->getType(); 5757 bool LVoid = LTy->isVoidType(); 5758 bool RVoid = RTy->isVoidType(); 5759 if (LVoid || RVoid) { 5760 // ... one of the following shall hold: 5761 // -- The second or the third operand (but not both) is a (possibly 5762 // parenthesized) throw-expression; the result is of the type 5763 // and value category of the other. 5764 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 5765 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 5766 if (LThrow != RThrow) { 5767 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 5768 VK = NonThrow->getValueKind(); 5769 // DR (no number yet): the result is a bit-field if the 5770 // non-throw-expression operand is a bit-field. 5771 OK = NonThrow->getObjectKind(); 5772 return NonThrow->getType(); 5773 } 5774 5775 // -- Both the second and third operands have type void; the result is of 5776 // type void and is a prvalue. 5777 if (LVoid && RVoid) 5778 return Context.VoidTy; 5779 5780 // Neither holds, error. 5781 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 5782 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 5783 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5784 return QualType(); 5785 } 5786 5787 // Neither is void. 5788 5789 // C++11 [expr.cond]p3 5790 // Otherwise, if the second and third operand have different types, and 5791 // either has (cv) class type [...] an attempt is made to convert each of 5792 // those operands to the type of the other. 5793 if (!Context.hasSameType(LTy, RTy) && 5794 (LTy->isRecordType() || RTy->isRecordType())) { 5795 // These return true if a single direction is already ambiguous. 5796 QualType L2RType, R2LType; 5797 bool HaveL2R, HaveR2L; 5798 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 5799 return QualType(); 5800 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 5801 return QualType(); 5802 5803 // If both can be converted, [...] the program is ill-formed. 5804 if (HaveL2R && HaveR2L) { 5805 Diag(QuestionLoc, diag::err_conditional_ambiguous) 5806 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5807 return QualType(); 5808 } 5809 5810 // If exactly one conversion is possible, that conversion is applied to 5811 // the chosen operand and the converted operands are used in place of the 5812 // original operands for the remainder of this section. 5813 if (HaveL2R) { 5814 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 5815 return QualType(); 5816 LTy = LHS.get()->getType(); 5817 } else if (HaveR2L) { 5818 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 5819 return QualType(); 5820 RTy = RHS.get()->getType(); 5821 } 5822 } 5823 5824 // C++11 [expr.cond]p3 5825 // if both are glvalues of the same value category and the same type except 5826 // for cv-qualification, an attempt is made to convert each of those 5827 // operands to the type of the other. 5828 // FIXME: 5829 // Resolving a defect in P0012R1: we extend this to cover all cases where 5830 // one of the operands is reference-compatible with the other, in order 5831 // to support conditionals between functions differing in noexcept. 5832 ExprValueKind LVK = LHS.get()->getValueKind(); 5833 ExprValueKind RVK = RHS.get()->getValueKind(); 5834 if (!Context.hasSameType(LTy, RTy) && 5835 LVK == RVK && LVK != VK_RValue) { 5836 // DerivedToBase was already handled by the class-specific case above. 5837 // FIXME: Should we allow ObjC conversions here? 5838 bool DerivedToBase, ObjCConversion, ObjCLifetimeConversion; 5839 if (CompareReferenceRelationship( 5840 QuestionLoc, LTy, RTy, DerivedToBase, 5841 ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible && 5842 !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion && 5843 // [...] subject to the constraint that the reference must bind 5844 // directly [...] 5845 !RHS.get()->refersToBitField() && 5846 !RHS.get()->refersToVectorElement()) { 5847 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 5848 RTy = RHS.get()->getType(); 5849 } else if (CompareReferenceRelationship( 5850 QuestionLoc, RTy, LTy, DerivedToBase, 5851 ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible && 5852 !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion && 5853 !LHS.get()->refersToBitField() && 5854 !LHS.get()->refersToVectorElement()) { 5855 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 5856 LTy = LHS.get()->getType(); 5857 } 5858 } 5859 5860 // C++11 [expr.cond]p4 5861 // If the second and third operands are glvalues of the same value 5862 // category and have the same type, the result is of that type and 5863 // value category and it is a bit-field if the second or the third 5864 // operand is a bit-field, or if both are bit-fields. 5865 // We only extend this to bitfields, not to the crazy other kinds of 5866 // l-values. 5867 bool Same = Context.hasSameType(LTy, RTy); 5868 if (Same && LVK == RVK && LVK != VK_RValue && 5869 LHS.get()->isOrdinaryOrBitFieldObject() && 5870 RHS.get()->isOrdinaryOrBitFieldObject()) { 5871 VK = LHS.get()->getValueKind(); 5872 if (LHS.get()->getObjectKind() == OK_BitField || 5873 RHS.get()->getObjectKind() == OK_BitField) 5874 OK = OK_BitField; 5875 5876 // If we have function pointer types, unify them anyway to unify their 5877 // exception specifications, if any. 5878 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 5879 Qualifiers Qs = LTy.getQualifiers(); 5880 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS, 5881 /*ConvertArgs*/false); 5882 LTy = Context.getQualifiedType(LTy, Qs); 5883 5884 assert(!LTy.isNull() && "failed to find composite pointer type for " 5885 "canonically equivalent function ptr types"); 5886 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type"); 5887 } 5888 5889 return LTy; 5890 } 5891 5892 // C++11 [expr.cond]p5 5893 // Otherwise, the result is a prvalue. If the second and third operands 5894 // do not have the same type, and either has (cv) class type, ... 5895 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 5896 // ... overload resolution is used to determine the conversions (if any) 5897 // to be applied to the operands. If the overload resolution fails, the 5898 // program is ill-formed. 5899 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 5900 return QualType(); 5901 } 5902 5903 // C++11 [expr.cond]p6 5904 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 5905 // conversions are performed on the second and third operands. 5906 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 5907 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 5908 if (LHS.isInvalid() || RHS.isInvalid()) 5909 return QualType(); 5910 LTy = LHS.get()->getType(); 5911 RTy = RHS.get()->getType(); 5912 5913 // After those conversions, one of the following shall hold: 5914 // -- The second and third operands have the same type; the result 5915 // is of that type. If the operands have class type, the result 5916 // is a prvalue temporary of the result type, which is 5917 // copy-initialized from either the second operand or the third 5918 // operand depending on the value of the first operand. 5919 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { 5920 if (LTy->isRecordType()) { 5921 // The operands have class type. Make a temporary copy. 5922 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); 5923 5924 ExprResult LHSCopy = PerformCopyInitialization(Entity, 5925 SourceLocation(), 5926 LHS); 5927 if (LHSCopy.isInvalid()) 5928 return QualType(); 5929 5930 ExprResult RHSCopy = PerformCopyInitialization(Entity, 5931 SourceLocation(), 5932 RHS); 5933 if (RHSCopy.isInvalid()) 5934 return QualType(); 5935 5936 LHS = LHSCopy; 5937 RHS = RHSCopy; 5938 } 5939 5940 // If we have function pointer types, unify them anyway to unify their 5941 // exception specifications, if any. 5942 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 5943 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS); 5944 assert(!LTy.isNull() && "failed to find composite pointer type for " 5945 "canonically equivalent function ptr types"); 5946 } 5947 5948 return LTy; 5949 } 5950 5951 // Extension: conditional operator involving vector types. 5952 if (LTy->isVectorType() || RTy->isVectorType()) 5953 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false, 5954 /*AllowBothBool*/true, 5955 /*AllowBoolConversions*/false); 5956 5957 // -- The second and third operands have arithmetic or enumeration type; 5958 // the usual arithmetic conversions are performed to bring them to a 5959 // common type, and the result is of that type. 5960 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 5961 QualType ResTy = UsualArithmeticConversions(LHS, RHS); 5962 if (LHS.isInvalid() || RHS.isInvalid()) 5963 return QualType(); 5964 if (ResTy.isNull()) { 5965 Diag(QuestionLoc, 5966 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy 5967 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 5968 return QualType(); 5969 } 5970 5971 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 5972 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 5973 5974 return ResTy; 5975 } 5976 5977 // -- The second and third operands have pointer type, or one has pointer 5978 // type and the other is a null pointer constant, or both are null 5979 // pointer constants, at least one of which is non-integral; pointer 5980 // conversions and qualification conversions are performed to bring them 5981 // to their composite pointer type. The result is of the composite 5982 // pointer type. 5983 // -- The second and third operands have pointer to member type, or one has 5984 // pointer to member type and the other is a null pointer constant; 5985 // pointer to member conversions and qualification conversions are 5986 // performed to bring them to a common type, whose cv-qualification 5987 // shall match the cv-qualification of either the second or the third 5988 // operand. The result is of the common type. 5989 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS); 5990 if (!Composite.isNull()) 5991 return Composite; 5992 5993 // Similarly, attempt to find composite type of two objective-c pointers. 5994 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 5995 if (!Composite.isNull()) 5996 return Composite; 5997 5998 // Check if we are using a null with a non-pointer type. 5999 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6000 return QualType(); 6001 6002 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6003 << LHS.get()->getType() << RHS.get()->getType() 6004 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6005 return QualType(); 6006 } 6007 6008 static FunctionProtoType::ExceptionSpecInfo 6009 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1, 6010 FunctionProtoType::ExceptionSpecInfo ESI2, 6011 SmallVectorImpl<QualType> &ExceptionTypeStorage) { 6012 ExceptionSpecificationType EST1 = ESI1.Type; 6013 ExceptionSpecificationType EST2 = ESI2.Type; 6014 6015 // If either of them can throw anything, that is the result. 6016 if (EST1 == EST_None) return ESI1; 6017 if (EST2 == EST_None) return ESI2; 6018 if (EST1 == EST_MSAny) return ESI1; 6019 if (EST2 == EST_MSAny) return ESI2; 6020 if (EST1 == EST_NoexceptFalse) return ESI1; 6021 if (EST2 == EST_NoexceptFalse) return ESI2; 6022 6023 // If either of them is non-throwing, the result is the other. 6024 if (EST1 == EST_NoThrow) return ESI2; 6025 if (EST2 == EST_NoThrow) return ESI1; 6026 if (EST1 == EST_DynamicNone) return ESI2; 6027 if (EST2 == EST_DynamicNone) return ESI1; 6028 if (EST1 == EST_BasicNoexcept) return ESI2; 6029 if (EST2 == EST_BasicNoexcept) return ESI1; 6030 if (EST1 == EST_NoexceptTrue) return ESI2; 6031 if (EST2 == EST_NoexceptTrue) return ESI1; 6032 6033 // If we're left with value-dependent computed noexcept expressions, we're 6034 // stuck. Before C++17, we can just drop the exception specification entirely, 6035 // since it's not actually part of the canonical type. And this should never 6036 // happen in C++17, because it would mean we were computing the composite 6037 // pointer type of dependent types, which should never happen. 6038 if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { 6039 assert(!S.getLangOpts().CPlusPlus17 && 6040 "computing composite pointer type of dependent types"); 6041 return FunctionProtoType::ExceptionSpecInfo(); 6042 } 6043 6044 // Switch over the possibilities so that people adding new values know to 6045 // update this function. 6046 switch (EST1) { 6047 case EST_None: 6048 case EST_DynamicNone: 6049 case EST_MSAny: 6050 case EST_BasicNoexcept: 6051 case EST_DependentNoexcept: 6052 case EST_NoexceptFalse: 6053 case EST_NoexceptTrue: 6054 case EST_NoThrow: 6055 llvm_unreachable("handled above"); 6056 6057 case EST_Dynamic: { 6058 // This is the fun case: both exception specifications are dynamic. Form 6059 // the union of the two lists. 6060 assert(EST2 == EST_Dynamic && "other cases should already be handled"); 6061 llvm::SmallPtrSet<QualType, 8> Found; 6062 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions}) 6063 for (QualType E : Exceptions) 6064 if (Found.insert(S.Context.getCanonicalType(E)).second) 6065 ExceptionTypeStorage.push_back(E); 6066 6067 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); 6068 Result.Exceptions = ExceptionTypeStorage; 6069 return Result; 6070 } 6071 6072 case EST_Unevaluated: 6073 case EST_Uninstantiated: 6074 case EST_Unparsed: 6075 llvm_unreachable("shouldn't see unresolved exception specifications here"); 6076 } 6077 6078 llvm_unreachable("invalid ExceptionSpecificationType"); 6079 } 6080 6081 /// Find a merged pointer type and convert the two expressions to it. 6082 /// 6083 /// This finds the composite pointer type (or member pointer type) for @p E1 6084 /// and @p E2 according to C++1z 5p14. It converts both expressions to this 6085 /// type and returns it. 6086 /// It does not emit diagnostics. 6087 /// 6088 /// \param Loc The location of the operator requiring these two expressions to 6089 /// be converted to the composite pointer type. 6090 /// 6091 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type. 6092 QualType Sema::FindCompositePointerType(SourceLocation Loc, 6093 Expr *&E1, Expr *&E2, 6094 bool ConvertArgs) { 6095 assert(getLangOpts().CPlusPlus && "This function assumes C++"); 6096 6097 // C++1z [expr]p14: 6098 // The composite pointer type of two operands p1 and p2 having types T1 6099 // and T2 6100 QualType T1 = E1->getType(), T2 = E2->getType(); 6101 6102 // where at least one is a pointer or pointer to member type or 6103 // std::nullptr_t is: 6104 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || 6105 T1->isNullPtrType(); 6106 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || 6107 T2->isNullPtrType(); 6108 if (!T1IsPointerLike && !T2IsPointerLike) 6109 return QualType(); 6110 6111 // - if both p1 and p2 are null pointer constants, std::nullptr_t; 6112 // This can't actually happen, following the standard, but we also use this 6113 // to implement the end of [expr.conv], which hits this case. 6114 // 6115 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; 6116 if (T1IsPointerLike && 6117 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6118 if (ConvertArgs) 6119 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType() 6120 ? CK_NullToMemberPointer 6121 : CK_NullToPointer).get(); 6122 return T1; 6123 } 6124 if (T2IsPointerLike && 6125 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6126 if (ConvertArgs) 6127 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType() 6128 ? CK_NullToMemberPointer 6129 : CK_NullToPointer).get(); 6130 return T2; 6131 } 6132 6133 // Now both have to be pointers or member pointers. 6134 if (!T1IsPointerLike || !T2IsPointerLike) 6135 return QualType(); 6136 assert(!T1->isNullPtrType() && !T2->isNullPtrType() && 6137 "nullptr_t should be a null pointer constant"); 6138 6139 // - if T1 or T2 is "pointer to cv1 void" and the other type is 6140 // "pointer to cv2 T", "pointer to cv12 void", where cv12 is 6141 // the union of cv1 and cv2; 6142 // - if T1 or T2 is "pointer to noexcept function" and the other type is 6143 // "pointer to function", where the function types are otherwise the same, 6144 // "pointer to function"; 6145 // FIXME: This rule is defective: it should also permit removing noexcept 6146 // from a pointer to member function. As a Clang extension, we also 6147 // permit removing 'noreturn', so we generalize this rule to; 6148 // - [Clang] If T1 and T2 are both of type "pointer to function" or 6149 // "pointer to member function" and the pointee types can be unified 6150 // by a function pointer conversion, that conversion is applied 6151 // before checking the following rules. 6152 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6153 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6154 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, 6155 // respectively; 6156 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer 6157 // to member of C2 of type cv2 U2" where C1 is reference-related to C2 or 6158 // C2 is reference-related to C1 (8.6.3), the cv-combined type of T2 and 6159 // T1 or the cv-combined type of T1 and T2, respectively; 6160 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and 6161 // T2; 6162 // 6163 // If looked at in the right way, these bullets all do the same thing. 6164 // What we do here is, we build the two possible cv-combined types, and try 6165 // the conversions in both directions. If only one works, or if the two 6166 // composite types are the same, we have succeeded. 6167 // FIXME: extended qualifiers? 6168 // 6169 // Note that this will fail to find a composite pointer type for "pointer 6170 // to void" and "pointer to function". We can't actually perform the final 6171 // conversion in this case, even though a composite pointer type formally 6172 // exists. 6173 SmallVector<unsigned, 4> QualifierUnion; 6174 SmallVector<std::pair<const Type *, const Type *>, 4> MemberOfClass; 6175 QualType Composite1 = T1; 6176 QualType Composite2 = T2; 6177 unsigned NeedConstBefore = 0; 6178 while (true) { 6179 const PointerType *Ptr1, *Ptr2; 6180 if ((Ptr1 = Composite1->getAs<PointerType>()) && 6181 (Ptr2 = Composite2->getAs<PointerType>())) { 6182 Composite1 = Ptr1->getPointeeType(); 6183 Composite2 = Ptr2->getPointeeType(); 6184 6185 // If we're allowed to create a non-standard composite type, keep track 6186 // of where we need to fill in additional 'const' qualifiers. 6187 if (Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) 6188 NeedConstBefore = QualifierUnion.size(); 6189 6190 QualifierUnion.push_back( 6191 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); 6192 MemberOfClass.push_back(std::make_pair(nullptr, nullptr)); 6193 continue; 6194 } 6195 6196 const MemberPointerType *MemPtr1, *MemPtr2; 6197 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 6198 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 6199 Composite1 = MemPtr1->getPointeeType(); 6200 Composite2 = MemPtr2->getPointeeType(); 6201 6202 // If we're allowed to create a non-standard composite type, keep track 6203 // of where we need to fill in additional 'const' qualifiers. 6204 if (Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) 6205 NeedConstBefore = QualifierUnion.size(); 6206 6207 QualifierUnion.push_back( 6208 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); 6209 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), 6210 MemPtr2->getClass())); 6211 continue; 6212 } 6213 6214 // FIXME: block pointer types? 6215 6216 // Cannot unwrap any more types. 6217 break; 6218 } 6219 6220 // Apply the function pointer conversion to unify the types. We've already 6221 // unwrapped down to the function types, and we want to merge rather than 6222 // just convert, so do this ourselves rather than calling 6223 // IsFunctionConversion. 6224 // 6225 // FIXME: In order to match the standard wording as closely as possible, we 6226 // currently only do this under a single level of pointers. Ideally, we would 6227 // allow this in general, and set NeedConstBefore to the relevant depth on 6228 // the side(s) where we changed anything. 6229 if (QualifierUnion.size() == 1) { 6230 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { 6231 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { 6232 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); 6233 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); 6234 6235 // The result is noreturn if both operands are. 6236 bool Noreturn = 6237 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); 6238 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn); 6239 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn); 6240 6241 // The result is nothrow if both operands are. 6242 SmallVector<QualType, 8> ExceptionTypeStorage; 6243 EPI1.ExceptionSpec = EPI2.ExceptionSpec = 6244 mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec, 6245 ExceptionTypeStorage); 6246 6247 Composite1 = Context.getFunctionType(FPT1->getReturnType(), 6248 FPT1->getParamTypes(), EPI1); 6249 Composite2 = Context.getFunctionType(FPT2->getReturnType(), 6250 FPT2->getParamTypes(), EPI2); 6251 } 6252 } 6253 } 6254 6255 if (NeedConstBefore) { 6256 // Extension: Add 'const' to qualifiers that come before the first qualifier 6257 // mismatch, so that our (non-standard!) composite type meets the 6258 // requirements of C++ [conv.qual]p4 bullet 3. 6259 for (unsigned I = 0; I != NeedConstBefore; ++I) 6260 if ((QualifierUnion[I] & Qualifiers::Const) == 0) 6261 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const; 6262 } 6263 6264 // Rewrap the composites as pointers or member pointers with the union CVRs. 6265 auto MOC = MemberOfClass.rbegin(); 6266 for (unsigned CVR : llvm::reverse(QualifierUnion)) { 6267 Qualifiers Quals = Qualifiers::fromCVRMask(CVR); 6268 auto Classes = *MOC++; 6269 if (Classes.first && Classes.second) { 6270 // Rebuild member pointer type 6271 Composite1 = Context.getMemberPointerType( 6272 Context.getQualifiedType(Composite1, Quals), Classes.first); 6273 Composite2 = Context.getMemberPointerType( 6274 Context.getQualifiedType(Composite2, Quals), Classes.second); 6275 } else { 6276 // Rebuild pointer type 6277 Composite1 = 6278 Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); 6279 Composite2 = 6280 Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); 6281 } 6282 } 6283 6284 struct Conversion { 6285 Sema &S; 6286 Expr *&E1, *&E2; 6287 QualType Composite; 6288 InitializedEntity Entity; 6289 InitializationKind Kind; 6290 InitializationSequence E1ToC, E2ToC; 6291 bool Viable; 6292 6293 Conversion(Sema &S, SourceLocation Loc, Expr *&E1, Expr *&E2, 6294 QualType Composite) 6295 : S(S), E1(E1), E2(E2), Composite(Composite), 6296 Entity(InitializedEntity::InitializeTemporary(Composite)), 6297 Kind(InitializationKind::CreateCopy(Loc, SourceLocation())), 6298 E1ToC(S, Entity, Kind, E1), E2ToC(S, Entity, Kind, E2), 6299 Viable(E1ToC && E2ToC) {} 6300 6301 bool perform() { 6302 ExprResult E1Result = E1ToC.Perform(S, Entity, Kind, E1); 6303 if (E1Result.isInvalid()) 6304 return true; 6305 E1 = E1Result.getAs<Expr>(); 6306 6307 ExprResult E2Result = E2ToC.Perform(S, Entity, Kind, E2); 6308 if (E2Result.isInvalid()) 6309 return true; 6310 E2 = E2Result.getAs<Expr>(); 6311 6312 return false; 6313 } 6314 }; 6315 6316 // Try to convert to each composite pointer type. 6317 Conversion C1(*this, Loc, E1, E2, Composite1); 6318 if (C1.Viable && Context.hasSameType(Composite1, Composite2)) { 6319 if (ConvertArgs && C1.perform()) 6320 return QualType(); 6321 return C1.Composite; 6322 } 6323 Conversion C2(*this, Loc, E1, E2, Composite2); 6324 6325 if (C1.Viable == C2.Viable) { 6326 // Either Composite1 and Composite2 are viable and are different, or 6327 // neither is viable. 6328 // FIXME: How both be viable and different? 6329 return QualType(); 6330 } 6331 6332 // Convert to the chosen type. 6333 if (ConvertArgs && (C1.Viable ? C1 : C2).perform()) 6334 return QualType(); 6335 6336 return C1.Viable ? C1.Composite : C2.Composite; 6337 } 6338 6339 ExprResult Sema::MaybeBindToTemporary(Expr *E) { 6340 if (!E) 6341 return ExprError(); 6342 6343 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); 6344 6345 // If the result is a glvalue, we shouldn't bind it. 6346 if (!E->isRValue()) 6347 return E; 6348 6349 // In ARC, calls that return a retainable type can return retained, 6350 // in which case we have to insert a consuming cast. 6351 if (getLangOpts().ObjCAutoRefCount && 6352 E->getType()->isObjCRetainableType()) { 6353 6354 bool ReturnsRetained; 6355 6356 // For actual calls, we compute this by examining the type of the 6357 // called value. 6358 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 6359 Expr *Callee = Call->getCallee()->IgnoreParens(); 6360 QualType T = Callee->getType(); 6361 6362 if (T == Context.BoundMemberTy) { 6363 // Handle pointer-to-members. 6364 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 6365 T = BinOp->getRHS()->getType(); 6366 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 6367 T = Mem->getMemberDecl()->getType(); 6368 } 6369 6370 if (const PointerType *Ptr = T->getAs<PointerType>()) 6371 T = Ptr->getPointeeType(); 6372 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 6373 T = Ptr->getPointeeType(); 6374 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 6375 T = MemPtr->getPointeeType(); 6376 6377 const FunctionType *FTy = T->getAs<FunctionType>(); 6378 assert(FTy && "call to value not of function type?"); 6379 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 6380 6381 // ActOnStmtExpr arranges things so that StmtExprs of retainable 6382 // type always produce a +1 object. 6383 } else if (isa<StmtExpr>(E)) { 6384 ReturnsRetained = true; 6385 6386 // We hit this case with the lambda conversion-to-block optimization; 6387 // we don't want any extra casts here. 6388 } else if (isa<CastExpr>(E) && 6389 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 6390 return E; 6391 6392 // For message sends and property references, we try to find an 6393 // actual method. FIXME: we should infer retention by selector in 6394 // cases where we don't have an actual method. 6395 } else { 6396 ObjCMethodDecl *D = nullptr; 6397 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 6398 D = Send->getMethodDecl(); 6399 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 6400 D = BoxedExpr->getBoxingMethod(); 6401 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 6402 // Don't do reclaims if we're using the zero-element array 6403 // constant. 6404 if (ArrayLit->getNumElements() == 0 && 6405 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 6406 return E; 6407 6408 D = ArrayLit->getArrayWithObjectsMethod(); 6409 } else if (ObjCDictionaryLiteral *DictLit 6410 = dyn_cast<ObjCDictionaryLiteral>(E)) { 6411 // Don't do reclaims if we're using the zero-element dictionary 6412 // constant. 6413 if (DictLit->getNumElements() == 0 && 6414 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 6415 return E; 6416 6417 D = DictLit->getDictWithObjectsMethod(); 6418 } 6419 6420 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 6421 6422 // Don't do reclaims on performSelector calls; despite their 6423 // return type, the invoked method doesn't necessarily actually 6424 // return an object. 6425 if (!ReturnsRetained && 6426 D && D->getMethodFamily() == OMF_performSelector) 6427 return E; 6428 } 6429 6430 // Don't reclaim an object of Class type. 6431 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 6432 return E; 6433 6434 Cleanup.setExprNeedsCleanups(true); 6435 6436 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 6437 : CK_ARCReclaimReturnedObject); 6438 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 6439 VK_RValue); 6440 } 6441 6442 if (!getLangOpts().CPlusPlus) 6443 return E; 6444 6445 // Search for the base element type (cf. ASTContext::getBaseElementType) with 6446 // a fast path for the common case that the type is directly a RecordType. 6447 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 6448 const RecordType *RT = nullptr; 6449 while (!RT) { 6450 switch (T->getTypeClass()) { 6451 case Type::Record: 6452 RT = cast<RecordType>(T); 6453 break; 6454 case Type::ConstantArray: 6455 case Type::IncompleteArray: 6456 case Type::VariableArray: 6457 case Type::DependentSizedArray: 6458 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 6459 break; 6460 default: 6461 return E; 6462 } 6463 } 6464 6465 // That should be enough to guarantee that this type is complete, if we're 6466 // not processing a decltype expression. 6467 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 6468 if (RD->isInvalidDecl() || RD->isDependentContext()) 6469 return E; 6470 6471 bool IsDecltype = ExprEvalContexts.back().ExprContext == 6472 ExpressionEvaluationContextRecord::EK_Decltype; 6473 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 6474 6475 if (Destructor) { 6476 MarkFunctionReferenced(E->getExprLoc(), Destructor); 6477 CheckDestructorAccess(E->getExprLoc(), Destructor, 6478 PDiag(diag::err_access_dtor_temp) 6479 << E->getType()); 6480 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 6481 return ExprError(); 6482 6483 // If destructor is trivial, we can avoid the extra copy. 6484 if (Destructor->isTrivial()) 6485 return E; 6486 6487 // We need a cleanup, but we don't need to remember the temporary. 6488 Cleanup.setExprNeedsCleanups(true); 6489 } 6490 6491 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 6492 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 6493 6494 if (IsDecltype) 6495 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 6496 6497 return Bind; 6498 } 6499 6500 ExprResult 6501 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 6502 if (SubExpr.isInvalid()) 6503 return ExprError(); 6504 6505 return MaybeCreateExprWithCleanups(SubExpr.get()); 6506 } 6507 6508 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 6509 assert(SubExpr && "subexpression can't be null!"); 6510 6511 CleanupVarDeclMarking(); 6512 6513 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 6514 assert(ExprCleanupObjects.size() >= FirstCleanup); 6515 assert(Cleanup.exprNeedsCleanups() || 6516 ExprCleanupObjects.size() == FirstCleanup); 6517 if (!Cleanup.exprNeedsCleanups()) 6518 return SubExpr; 6519 6520 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 6521 ExprCleanupObjects.size() - FirstCleanup); 6522 6523 auto *E = ExprWithCleanups::Create( 6524 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); 6525 DiscardCleanupsInEvaluationContext(); 6526 6527 return E; 6528 } 6529 6530 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 6531 assert(SubStmt && "sub-statement can't be null!"); 6532 6533 CleanupVarDeclMarking(); 6534 6535 if (!Cleanup.exprNeedsCleanups()) 6536 return SubStmt; 6537 6538 // FIXME: In order to attach the temporaries, wrap the statement into 6539 // a StmtExpr; currently this is only used for asm statements. 6540 // This is hacky, either create a new CXXStmtWithTemporaries statement or 6541 // a new AsmStmtWithTemporaries. 6542 CompoundStmt *CompStmt = CompoundStmt::Create( 6543 Context, SubStmt, SourceLocation(), SourceLocation()); 6544 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), 6545 SourceLocation()); 6546 return MaybeCreateExprWithCleanups(E); 6547 } 6548 6549 /// Process the expression contained within a decltype. For such expressions, 6550 /// certain semantic checks on temporaries are delayed until this point, and 6551 /// are omitted for the 'topmost' call in the decltype expression. If the 6552 /// topmost call bound a temporary, strip that temporary off the expression. 6553 ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 6554 assert(ExprEvalContexts.back().ExprContext == 6555 ExpressionEvaluationContextRecord::EK_Decltype && 6556 "not in a decltype expression"); 6557 6558 ExprResult Result = CheckPlaceholderExpr(E); 6559 if (Result.isInvalid()) 6560 return ExprError(); 6561 E = Result.get(); 6562 6563 // C++11 [expr.call]p11: 6564 // If a function call is a prvalue of object type, 6565 // -- if the function call is either 6566 // -- the operand of a decltype-specifier, or 6567 // -- the right operand of a comma operator that is the operand of a 6568 // decltype-specifier, 6569 // a temporary object is not introduced for the prvalue. 6570 6571 // Recursively rebuild ParenExprs and comma expressions to strip out the 6572 // outermost CXXBindTemporaryExpr, if any. 6573 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 6574 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 6575 if (SubExpr.isInvalid()) 6576 return ExprError(); 6577 if (SubExpr.get() == PE->getSubExpr()) 6578 return E; 6579 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 6580 } 6581 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 6582 if (BO->getOpcode() == BO_Comma) { 6583 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 6584 if (RHS.isInvalid()) 6585 return ExprError(); 6586 if (RHS.get() == BO->getRHS()) 6587 return E; 6588 return new (Context) BinaryOperator( 6589 BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(), 6590 BO->getObjectKind(), BO->getOperatorLoc(), BO->getFPFeatures()); 6591 } 6592 } 6593 6594 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 6595 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 6596 : nullptr; 6597 if (TopCall) 6598 E = TopCall; 6599 else 6600 TopBind = nullptr; 6601 6602 // Disable the special decltype handling now. 6603 ExprEvalContexts.back().ExprContext = 6604 ExpressionEvaluationContextRecord::EK_Other; 6605 6606 // In MS mode, don't perform any extra checking of call return types within a 6607 // decltype expression. 6608 if (getLangOpts().MSVCCompat) 6609 return E; 6610 6611 // Perform the semantic checks we delayed until this point. 6612 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 6613 I != N; ++I) { 6614 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 6615 if (Call == TopCall) 6616 continue; 6617 6618 if (CheckCallReturnType(Call->getCallReturnType(Context), 6619 Call->getBeginLoc(), Call, Call->getDirectCallee())) 6620 return ExprError(); 6621 } 6622 6623 // Now all relevant types are complete, check the destructors are accessible 6624 // and non-deleted, and annotate them on the temporaries. 6625 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 6626 I != N; ++I) { 6627 CXXBindTemporaryExpr *Bind = 6628 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 6629 if (Bind == TopBind) 6630 continue; 6631 6632 CXXTemporary *Temp = Bind->getTemporary(); 6633 6634 CXXRecordDecl *RD = 6635 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 6636 CXXDestructorDecl *Destructor = LookupDestructor(RD); 6637 Temp->setDestructor(Destructor); 6638 6639 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 6640 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 6641 PDiag(diag::err_access_dtor_temp) 6642 << Bind->getType()); 6643 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 6644 return ExprError(); 6645 6646 // We need a cleanup, but we don't need to remember the temporary. 6647 Cleanup.setExprNeedsCleanups(true); 6648 } 6649 6650 // Possibly strip off the top CXXBindTemporaryExpr. 6651 return E; 6652 } 6653 6654 /// Note a set of 'operator->' functions that were used for a member access. 6655 static void noteOperatorArrows(Sema &S, 6656 ArrayRef<FunctionDecl *> OperatorArrows) { 6657 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 6658 // FIXME: Make this configurable? 6659 unsigned Limit = 9; 6660 if (OperatorArrows.size() > Limit) { 6661 // Produce Limit-1 normal notes and one 'skipping' note. 6662 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 6663 SkipCount = OperatorArrows.size() - (Limit - 1); 6664 } 6665 6666 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 6667 if (I == SkipStart) { 6668 S.Diag(OperatorArrows[I]->getLocation(), 6669 diag::note_operator_arrows_suppressed) 6670 << SkipCount; 6671 I += SkipCount; 6672 } else { 6673 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 6674 << OperatorArrows[I]->getCallResultType(); 6675 ++I; 6676 } 6677 } 6678 } 6679 6680 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 6681 SourceLocation OpLoc, 6682 tok::TokenKind OpKind, 6683 ParsedType &ObjectType, 6684 bool &MayBePseudoDestructor) { 6685 // Since this might be a postfix expression, get rid of ParenListExprs. 6686 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 6687 if (Result.isInvalid()) return ExprError(); 6688 Base = Result.get(); 6689 6690 Result = CheckPlaceholderExpr(Base); 6691 if (Result.isInvalid()) return ExprError(); 6692 Base = Result.get(); 6693 6694 QualType BaseType = Base->getType(); 6695 MayBePseudoDestructor = false; 6696 if (BaseType->isDependentType()) { 6697 // If we have a pointer to a dependent type and are using the -> operator, 6698 // the object type is the type that the pointer points to. We might still 6699 // have enough information about that type to do something useful. 6700 if (OpKind == tok::arrow) 6701 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 6702 BaseType = Ptr->getPointeeType(); 6703 6704 ObjectType = ParsedType::make(BaseType); 6705 MayBePseudoDestructor = true; 6706 return Base; 6707 } 6708 6709 // C++ [over.match.oper]p8: 6710 // [...] When operator->returns, the operator-> is applied to the value 6711 // returned, with the original second operand. 6712 if (OpKind == tok::arrow) { 6713 QualType StartingType = BaseType; 6714 bool NoArrowOperatorFound = false; 6715 bool FirstIteration = true; 6716 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 6717 // The set of types we've considered so far. 6718 llvm::SmallPtrSet<CanQualType,8> CTypes; 6719 SmallVector<FunctionDecl*, 8> OperatorArrows; 6720 CTypes.insert(Context.getCanonicalType(BaseType)); 6721 6722 while (BaseType->isRecordType()) { 6723 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 6724 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 6725 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 6726 noteOperatorArrows(*this, OperatorArrows); 6727 Diag(OpLoc, diag::note_operator_arrow_depth) 6728 << getLangOpts().ArrowDepth; 6729 return ExprError(); 6730 } 6731 6732 Result = BuildOverloadedArrowExpr( 6733 S, Base, OpLoc, 6734 // When in a template specialization and on the first loop iteration, 6735 // potentially give the default diagnostic (with the fixit in a 6736 // separate note) instead of having the error reported back to here 6737 // and giving a diagnostic with a fixit attached to the error itself. 6738 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 6739 ? nullptr 6740 : &NoArrowOperatorFound); 6741 if (Result.isInvalid()) { 6742 if (NoArrowOperatorFound) { 6743 if (FirstIteration) { 6744 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 6745 << BaseType << 1 << Base->getSourceRange() 6746 << FixItHint::CreateReplacement(OpLoc, "."); 6747 OpKind = tok::period; 6748 break; 6749 } 6750 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 6751 << BaseType << Base->getSourceRange(); 6752 CallExpr *CE = dyn_cast<CallExpr>(Base); 6753 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 6754 Diag(CD->getBeginLoc(), 6755 diag::note_member_reference_arrow_from_operator_arrow); 6756 } 6757 } 6758 return ExprError(); 6759 } 6760 Base = Result.get(); 6761 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 6762 OperatorArrows.push_back(OpCall->getDirectCallee()); 6763 BaseType = Base->getType(); 6764 CanQualType CBaseType = Context.getCanonicalType(BaseType); 6765 if (!CTypes.insert(CBaseType).second) { 6766 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 6767 noteOperatorArrows(*this, OperatorArrows); 6768 return ExprError(); 6769 } 6770 FirstIteration = false; 6771 } 6772 6773 if (OpKind == tok::arrow) { 6774 if (BaseType->isPointerType()) 6775 BaseType = BaseType->getPointeeType(); 6776 else if (auto *AT = Context.getAsArrayType(BaseType)) 6777 BaseType = AT->getElementType(); 6778 } 6779 } 6780 6781 // Objective-C properties allow "." access on Objective-C pointer types, 6782 // so adjust the base type to the object type itself. 6783 if (BaseType->isObjCObjectPointerType()) 6784 BaseType = BaseType->getPointeeType(); 6785 6786 // C++ [basic.lookup.classref]p2: 6787 // [...] If the type of the object expression is of pointer to scalar 6788 // type, the unqualified-id is looked up in the context of the complete 6789 // postfix-expression. 6790 // 6791 // This also indicates that we could be parsing a pseudo-destructor-name. 6792 // Note that Objective-C class and object types can be pseudo-destructor 6793 // expressions or normal member (ivar or property) access expressions, and 6794 // it's legal for the type to be incomplete if this is a pseudo-destructor 6795 // call. We'll do more incomplete-type checks later in the lookup process, 6796 // so just skip this check for ObjC types. 6797 if (!BaseType->isRecordType()) { 6798 ObjectType = ParsedType::make(BaseType); 6799 MayBePseudoDestructor = true; 6800 return Base; 6801 } 6802 6803 // The object type must be complete (or dependent), or 6804 // C++11 [expr.prim.general]p3: 6805 // Unlike the object expression in other contexts, *this is not required to 6806 // be of complete type for purposes of class member access (5.2.5) outside 6807 // the member function body. 6808 if (!BaseType->isDependentType() && 6809 !isThisOutsideMemberFunctionBody(BaseType) && 6810 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access)) 6811 return ExprError(); 6812 6813 // C++ [basic.lookup.classref]p2: 6814 // If the id-expression in a class member access (5.2.5) is an 6815 // unqualified-id, and the type of the object expression is of a class 6816 // type C (or of pointer to a class type C), the unqualified-id is looked 6817 // up in the scope of class C. [...] 6818 ObjectType = ParsedType::make(BaseType); 6819 return Base; 6820 } 6821 6822 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base, 6823 tok::TokenKind& OpKind, SourceLocation OpLoc) { 6824 if (Base->hasPlaceholderType()) { 6825 ExprResult result = S.CheckPlaceholderExpr(Base); 6826 if (result.isInvalid()) return true; 6827 Base = result.get(); 6828 } 6829 ObjectType = Base->getType(); 6830 6831 // C++ [expr.pseudo]p2: 6832 // The left-hand side of the dot operator shall be of scalar type. The 6833 // left-hand side of the arrow operator shall be of pointer to scalar type. 6834 // This scalar type is the object type. 6835 // Note that this is rather different from the normal handling for the 6836 // arrow operator. 6837 if (OpKind == tok::arrow) { 6838 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 6839 ObjectType = Ptr->getPointeeType(); 6840 } else if (!Base->isTypeDependent()) { 6841 // The user wrote "p->" when they probably meant "p."; fix it. 6842 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 6843 << ObjectType << true 6844 << FixItHint::CreateReplacement(OpLoc, "."); 6845 if (S.isSFINAEContext()) 6846 return true; 6847 6848 OpKind = tok::period; 6849 } 6850 } 6851 6852 return false; 6853 } 6854 6855 /// Check if it's ok to try and recover dot pseudo destructor calls on 6856 /// pointer objects. 6857 static bool 6858 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, 6859 QualType DestructedType) { 6860 // If this is a record type, check if its destructor is callable. 6861 if (auto *RD = DestructedType->getAsCXXRecordDecl()) { 6862 if (RD->hasDefinition()) 6863 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD)) 6864 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); 6865 return false; 6866 } 6867 6868 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. 6869 return DestructedType->isDependentType() || DestructedType->isScalarType() || 6870 DestructedType->isVectorType(); 6871 } 6872 6873 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 6874 SourceLocation OpLoc, 6875 tok::TokenKind OpKind, 6876 const CXXScopeSpec &SS, 6877 TypeSourceInfo *ScopeTypeInfo, 6878 SourceLocation CCLoc, 6879 SourceLocation TildeLoc, 6880 PseudoDestructorTypeStorage Destructed) { 6881 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 6882 6883 QualType ObjectType; 6884 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 6885 return ExprError(); 6886 6887 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 6888 !ObjectType->isVectorType()) { 6889 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 6890 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 6891 else { 6892 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 6893 << ObjectType << Base->getSourceRange(); 6894 return ExprError(); 6895 } 6896 } 6897 6898 // C++ [expr.pseudo]p2: 6899 // [...] The cv-unqualified versions of the object type and of the type 6900 // designated by the pseudo-destructor-name shall be the same type. 6901 if (DestructedTypeInfo) { 6902 QualType DestructedType = DestructedTypeInfo->getType(); 6903 SourceLocation DestructedTypeStart 6904 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); 6905 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 6906 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 6907 // Detect dot pseudo destructor calls on pointer objects, e.g.: 6908 // Foo *foo; 6909 // foo.~Foo(); 6910 if (OpKind == tok::period && ObjectType->isPointerType() && 6911 Context.hasSameUnqualifiedType(DestructedType, 6912 ObjectType->getPointeeType())) { 6913 auto Diagnostic = 6914 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 6915 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); 6916 6917 // Issue a fixit only when the destructor is valid. 6918 if (canRecoverDotPseudoDestructorCallsOnPointerObjects( 6919 *this, DestructedType)) 6920 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->"); 6921 6922 // Recover by setting the object type to the destructed type and the 6923 // operator to '->'. 6924 ObjectType = DestructedType; 6925 OpKind = tok::arrow; 6926 } else { 6927 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 6928 << ObjectType << DestructedType << Base->getSourceRange() 6929 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 6930 6931 // Recover by setting the destructed type to the object type. 6932 DestructedType = ObjectType; 6933 DestructedTypeInfo = 6934 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); 6935 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 6936 } 6937 } else if (DestructedType.getObjCLifetime() != 6938 ObjectType.getObjCLifetime()) { 6939 6940 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 6941 // Okay: just pretend that the user provided the correctly-qualified 6942 // type. 6943 } else { 6944 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 6945 << ObjectType << DestructedType << Base->getSourceRange() 6946 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 6947 } 6948 6949 // Recover by setting the destructed type to the object type. 6950 DestructedType = ObjectType; 6951 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 6952 DestructedTypeStart); 6953 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 6954 } 6955 } 6956 } 6957 6958 // C++ [expr.pseudo]p2: 6959 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 6960 // form 6961 // 6962 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 6963 // 6964 // shall designate the same scalar type. 6965 if (ScopeTypeInfo) { 6966 QualType ScopeType = ScopeTypeInfo->getType(); 6967 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 6968 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 6969 6970 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), 6971 diag::err_pseudo_dtor_type_mismatch) 6972 << ObjectType << ScopeType << Base->getSourceRange() 6973 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); 6974 6975 ScopeType = QualType(); 6976 ScopeTypeInfo = nullptr; 6977 } 6978 } 6979 6980 Expr *Result 6981 = new (Context) CXXPseudoDestructorExpr(Context, Base, 6982 OpKind == tok::arrow, OpLoc, 6983 SS.getWithLocInContext(Context), 6984 ScopeTypeInfo, 6985 CCLoc, 6986 TildeLoc, 6987 Destructed); 6988 6989 return Result; 6990 } 6991 6992 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 6993 SourceLocation OpLoc, 6994 tok::TokenKind OpKind, 6995 CXXScopeSpec &SS, 6996 UnqualifiedId &FirstTypeName, 6997 SourceLocation CCLoc, 6998 SourceLocation TildeLoc, 6999 UnqualifiedId &SecondTypeName) { 7000 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7001 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7002 "Invalid first type name in pseudo-destructor"); 7003 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7004 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7005 "Invalid second type name in pseudo-destructor"); 7006 7007 QualType ObjectType; 7008 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7009 return ExprError(); 7010 7011 // Compute the object type that we should use for name lookup purposes. Only 7012 // record types and dependent types matter. 7013 ParsedType ObjectTypePtrForLookup; 7014 if (!SS.isSet()) { 7015 if (ObjectType->isRecordType()) 7016 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 7017 else if (ObjectType->isDependentType()) 7018 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 7019 } 7020 7021 // Convert the name of the type being destructed (following the ~) into a 7022 // type (with source-location information). 7023 QualType DestructedType; 7024 TypeSourceInfo *DestructedTypeInfo = nullptr; 7025 PseudoDestructorTypeStorage Destructed; 7026 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7027 ParsedType T = getTypeName(*SecondTypeName.Identifier, 7028 SecondTypeName.StartLocation, 7029 S, &SS, true, false, ObjectTypePtrForLookup, 7030 /*IsCtorOrDtorName*/true); 7031 if (!T && 7032 ((SS.isSet() && !computeDeclContext(SS, false)) || 7033 (!SS.isSet() && ObjectType->isDependentType()))) { 7034 // The name of the type being destroyed is a dependent name, and we 7035 // couldn't find anything useful in scope. Just store the identifier and 7036 // it's location, and we'll perform (qualified) name lookup again at 7037 // template instantiation time. 7038 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 7039 SecondTypeName.StartLocation); 7040 } else if (!T) { 7041 Diag(SecondTypeName.StartLocation, 7042 diag::err_pseudo_dtor_destructor_non_type) 7043 << SecondTypeName.Identifier << ObjectType; 7044 if (isSFINAEContext()) 7045 return ExprError(); 7046 7047 // Recover by assuming we had the right type all along. 7048 DestructedType = ObjectType; 7049 } else 7050 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 7051 } else { 7052 // Resolve the template-id to a type. 7053 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 7054 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7055 TemplateId->NumArgs); 7056 TypeResult T = ActOnTemplateIdType(S, 7057 TemplateId->SS, 7058 TemplateId->TemplateKWLoc, 7059 TemplateId->Template, 7060 TemplateId->Name, 7061 TemplateId->TemplateNameLoc, 7062 TemplateId->LAngleLoc, 7063 TemplateArgsPtr, 7064 TemplateId->RAngleLoc, 7065 /*IsCtorOrDtorName*/true); 7066 if (T.isInvalid() || !T.get()) { 7067 // Recover by assuming we had the right type all along. 7068 DestructedType = ObjectType; 7069 } else 7070 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 7071 } 7072 7073 // If we've performed some kind of recovery, (re-)build the type source 7074 // information. 7075 if (!DestructedType.isNull()) { 7076 if (!DestructedTypeInfo) 7077 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 7078 SecondTypeName.StartLocation); 7079 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7080 } 7081 7082 // Convert the name of the scope type (the type prior to '::') into a type. 7083 TypeSourceInfo *ScopeTypeInfo = nullptr; 7084 QualType ScopeType; 7085 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7086 FirstTypeName.Identifier) { 7087 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7088 ParsedType T = getTypeName(*FirstTypeName.Identifier, 7089 FirstTypeName.StartLocation, 7090 S, &SS, true, false, ObjectTypePtrForLookup, 7091 /*IsCtorOrDtorName*/true); 7092 if (!T) { 7093 Diag(FirstTypeName.StartLocation, 7094 diag::err_pseudo_dtor_destructor_non_type) 7095 << FirstTypeName.Identifier << ObjectType; 7096 7097 if (isSFINAEContext()) 7098 return ExprError(); 7099 7100 // Just drop this type. It's unnecessary anyway. 7101 ScopeType = QualType(); 7102 } else 7103 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 7104 } else { 7105 // Resolve the template-id to a type. 7106 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 7107 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7108 TemplateId->NumArgs); 7109 TypeResult T = ActOnTemplateIdType(S, 7110 TemplateId->SS, 7111 TemplateId->TemplateKWLoc, 7112 TemplateId->Template, 7113 TemplateId->Name, 7114 TemplateId->TemplateNameLoc, 7115 TemplateId->LAngleLoc, 7116 TemplateArgsPtr, 7117 TemplateId->RAngleLoc, 7118 /*IsCtorOrDtorName*/true); 7119 if (T.isInvalid() || !T.get()) { 7120 // Recover by dropping this type. 7121 ScopeType = QualType(); 7122 } else 7123 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 7124 } 7125 } 7126 7127 if (!ScopeType.isNull() && !ScopeTypeInfo) 7128 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 7129 FirstTypeName.StartLocation); 7130 7131 7132 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 7133 ScopeTypeInfo, CCLoc, TildeLoc, 7134 Destructed); 7135 } 7136 7137 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7138 SourceLocation OpLoc, 7139 tok::TokenKind OpKind, 7140 SourceLocation TildeLoc, 7141 const DeclSpec& DS) { 7142 QualType ObjectType; 7143 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7144 return ExprError(); 7145 7146 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(), 7147 false); 7148 7149 TypeLocBuilder TLB; 7150 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 7151 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); 7152 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 7153 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 7154 7155 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 7156 nullptr, SourceLocation(), TildeLoc, 7157 Destructed); 7158 } 7159 7160 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, 7161 CXXConversionDecl *Method, 7162 bool HadMultipleCandidates) { 7163 // Convert the expression to match the conversion function's implicit object 7164 // parameter. 7165 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, 7166 FoundDecl, Method); 7167 if (Exp.isInvalid()) 7168 return true; 7169 7170 if (Method->getParent()->isLambda() && 7171 Method->getConversionType()->isBlockPointerType()) { 7172 // This is a lambda coversion to block pointer; check if the argument 7173 // was a LambdaExpr. 7174 Expr *SubE = E; 7175 CastExpr *CE = dyn_cast<CastExpr>(SubE); 7176 if (CE && CE->getCastKind() == CK_NoOp) 7177 SubE = CE->getSubExpr(); 7178 SubE = SubE->IgnoreParens(); 7179 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) 7180 SubE = BE->getSubExpr(); 7181 if (isa<LambdaExpr>(SubE)) { 7182 // For the conversion to block pointer on a lambda expression, we 7183 // construct a special BlockLiteral instead; this doesn't really make 7184 // a difference in ARC, but outside of ARC the resulting block literal 7185 // follows the normal lifetime rules for block literals instead of being 7186 // autoreleased. 7187 DiagnosticErrorTrap Trap(Diags); 7188 PushExpressionEvaluationContext( 7189 ExpressionEvaluationContext::PotentiallyEvaluated); 7190 ExprResult BlockExp = BuildBlockForLambdaConversion( 7191 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get()); 7192 PopExpressionEvaluationContext(); 7193 7194 if (BlockExp.isInvalid()) 7195 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv); 7196 return BlockExp; 7197 } 7198 } 7199 7200 MemberExpr *ME = 7201 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(), 7202 NestedNameSpecifierLoc(), SourceLocation(), Method, 7203 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), 7204 HadMultipleCandidates, DeclarationNameInfo(), 7205 Context.BoundMemberTy, VK_RValue, OK_Ordinary); 7206 7207 QualType ResultType = Method->getReturnType(); 7208 ExprValueKind VK = Expr::getValueKindForType(ResultType); 7209 ResultType = ResultType.getNonLValueExprType(Context); 7210 7211 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create( 7212 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc()); 7213 7214 if (CheckFunctionCall(Method, CE, 7215 Method->getType()->castAs<FunctionProtoType>())) 7216 return ExprError(); 7217 7218 return CE; 7219 } 7220 7221 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 7222 SourceLocation RParen) { 7223 // If the operand is an unresolved lookup expression, the expression is ill- 7224 // formed per [over.over]p1, because overloaded function names cannot be used 7225 // without arguments except in explicit contexts. 7226 ExprResult R = CheckPlaceholderExpr(Operand); 7227 if (R.isInvalid()) 7228 return R; 7229 7230 // The operand may have been modified when checking the placeholder type. 7231 Operand = R.get(); 7232 7233 if (!inTemplateInstantiation() && Operand->HasSideEffects(Context, false)) { 7234 // The expression operand for noexcept is in an unevaluated expression 7235 // context, so side effects could result in unintended consequences. 7236 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 7237 } 7238 7239 CanThrowResult CanThrow = canThrow(Operand); 7240 return new (Context) 7241 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 7242 } 7243 7244 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 7245 Expr *Operand, SourceLocation RParen) { 7246 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 7247 } 7248 7249 static bool IsSpecialDiscardedValue(Expr *E) { 7250 // In C++11, discarded-value expressions of a certain form are special, 7251 // according to [expr]p10: 7252 // The lvalue-to-rvalue conversion (4.1) is applied only if the 7253 // expression is an lvalue of volatile-qualified type and it has 7254 // one of the following forms: 7255 E = E->IgnoreParens(); 7256 7257 // - id-expression (5.1.1), 7258 if (isa<DeclRefExpr>(E)) 7259 return true; 7260 7261 // - subscripting (5.2.1), 7262 if (isa<ArraySubscriptExpr>(E)) 7263 return true; 7264 7265 // - class member access (5.2.5), 7266 if (isa<MemberExpr>(E)) 7267 return true; 7268 7269 // - indirection (5.3.1), 7270 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) 7271 if (UO->getOpcode() == UO_Deref) 7272 return true; 7273 7274 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7275 // - pointer-to-member operation (5.5), 7276 if (BO->isPtrMemOp()) 7277 return true; 7278 7279 // - comma expression (5.18) where the right operand is one of the above. 7280 if (BO->getOpcode() == BO_Comma) 7281 return IsSpecialDiscardedValue(BO->getRHS()); 7282 } 7283 7284 // - conditional expression (5.16) where both the second and the third 7285 // operands are one of the above, or 7286 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 7287 return IsSpecialDiscardedValue(CO->getTrueExpr()) && 7288 IsSpecialDiscardedValue(CO->getFalseExpr()); 7289 // The related edge case of "*x ?: *x". 7290 if (BinaryConditionalOperator *BCO = 7291 dyn_cast<BinaryConditionalOperator>(E)) { 7292 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 7293 return IsSpecialDiscardedValue(OVE->getSourceExpr()) && 7294 IsSpecialDiscardedValue(BCO->getFalseExpr()); 7295 } 7296 7297 // Objective-C++ extensions to the rule. 7298 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E)) 7299 return true; 7300 7301 return false; 7302 } 7303 7304 /// Perform the conversions required for an expression used in a 7305 /// context that ignores the result. 7306 ExprResult Sema::IgnoredValueConversions(Expr *E) { 7307 if (E->hasPlaceholderType()) { 7308 ExprResult result = CheckPlaceholderExpr(E); 7309 if (result.isInvalid()) return E; 7310 E = result.get(); 7311 } 7312 7313 // C99 6.3.2.1: 7314 // [Except in specific positions,] an lvalue that does not have 7315 // array type is converted to the value stored in the 7316 // designated object (and is no longer an lvalue). 7317 if (E->isRValue()) { 7318 // In C, function designators (i.e. expressions of function type) 7319 // are r-values, but we still want to do function-to-pointer decay 7320 // on them. This is both technically correct and convenient for 7321 // some clients. 7322 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 7323 return DefaultFunctionArrayConversion(E); 7324 7325 return E; 7326 } 7327 7328 if (getLangOpts().CPlusPlus) { 7329 // The C++11 standard defines the notion of a discarded-value expression; 7330 // normally, we don't need to do anything to handle it, but if it is a 7331 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 7332 // conversion. 7333 if (getLangOpts().CPlusPlus11 && E->isGLValue() && 7334 E->getType().isVolatileQualified() && 7335 IsSpecialDiscardedValue(E)) { 7336 ExprResult Res = DefaultLvalueConversion(E); 7337 if (Res.isInvalid()) 7338 return E; 7339 E = Res.get(); 7340 } 7341 7342 // C++1z: 7343 // If the expression is a prvalue after this optional conversion, the 7344 // temporary materialization conversion is applied. 7345 // 7346 // We skip this step: IR generation is able to synthesize the storage for 7347 // itself in the aggregate case, and adding the extra node to the AST is 7348 // just clutter. 7349 // FIXME: We don't emit lifetime markers for the temporaries due to this. 7350 // FIXME: Do any other AST consumers care about this? 7351 return E; 7352 } 7353 7354 // GCC seems to also exclude expressions of incomplete enum type. 7355 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 7356 if (!T->getDecl()->isComplete()) { 7357 // FIXME: stupid workaround for a codegen bug! 7358 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 7359 return E; 7360 } 7361 } 7362 7363 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 7364 if (Res.isInvalid()) 7365 return E; 7366 E = Res.get(); 7367 7368 if (!E->getType()->isVoidType()) 7369 RequireCompleteType(E->getExprLoc(), E->getType(), 7370 diag::err_incomplete_type); 7371 return E; 7372 } 7373 7374 // If we can unambiguously determine whether Var can never be used 7375 // in a constant expression, return true. 7376 // - if the variable and its initializer are non-dependent, then 7377 // we can unambiguously check if the variable is a constant expression. 7378 // - if the initializer is not value dependent - we can determine whether 7379 // it can be used to initialize a constant expression. If Init can not 7380 // be used to initialize a constant expression we conclude that Var can 7381 // never be a constant expression. 7382 // - FXIME: if the initializer is dependent, we can still do some analysis and 7383 // identify certain cases unambiguously as non-const by using a Visitor: 7384 // - such as those that involve odr-use of a ParmVarDecl, involve a new 7385 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 7386 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 7387 ASTContext &Context) { 7388 if (isa<ParmVarDecl>(Var)) return true; 7389 const VarDecl *DefVD = nullptr; 7390 7391 // If there is no initializer - this can not be a constant expression. 7392 if (!Var->getAnyInitializer(DefVD)) return true; 7393 assert(DefVD); 7394 if (DefVD->isWeak()) return false; 7395 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); 7396 7397 Expr *Init = cast<Expr>(Eval->Value); 7398 7399 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 7400 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 7401 // of value-dependent expressions, and use it here to determine whether the 7402 // initializer is a potential constant expression. 7403 return false; 7404 } 7405 7406 return !Var->isUsableInConstantExpressions(Context); 7407 } 7408 7409 /// Check if the current lambda has any potential captures 7410 /// that must be captured by any of its enclosing lambdas that are ready to 7411 /// capture. If there is a lambda that can capture a nested 7412 /// potential-capture, go ahead and do so. Also, check to see if any 7413 /// variables are uncaptureable or do not involve an odr-use so do not 7414 /// need to be captured. 7415 7416 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 7417 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 7418 7419 assert(!S.isUnevaluatedContext()); 7420 assert(S.CurContext->isDependentContext()); 7421 #ifndef NDEBUG 7422 DeclContext *DC = S.CurContext; 7423 while (DC && isa<CapturedDecl>(DC)) 7424 DC = DC->getParent(); 7425 assert( 7426 CurrentLSI->CallOperator == DC && 7427 "The current call operator must be synchronized with Sema's CurContext"); 7428 #endif // NDEBUG 7429 7430 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 7431 7432 // All the potentially captureable variables in the current nested 7433 // lambda (within a generic outer lambda), must be captured by an 7434 // outer lambda that is enclosed within a non-dependent context. 7435 CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) { 7436 // If the variable is clearly identified as non-odr-used and the full 7437 // expression is not instantiation dependent, only then do we not 7438 // need to check enclosing lambda's for speculative captures. 7439 // For e.g.: 7440 // Even though 'x' is not odr-used, it should be captured. 7441 // int test() { 7442 // const int x = 10; 7443 // auto L = [=](auto a) { 7444 // (void) +x + a; 7445 // }; 7446 // } 7447 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 7448 !IsFullExprInstantiationDependent) 7449 return; 7450 7451 // If we have a capture-capable lambda for the variable, go ahead and 7452 // capture the variable in that lambda (and all its enclosing lambdas). 7453 if (const Optional<unsigned> Index = 7454 getStackIndexOfNearestEnclosingCaptureCapableLambda( 7455 S.FunctionScopes, Var, S)) 7456 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), 7457 Index.getValue()); 7458 const bool IsVarNeverAConstantExpression = 7459 VariableCanNeverBeAConstantExpression(Var, S.Context); 7460 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 7461 // This full expression is not instantiation dependent or the variable 7462 // can not be used in a constant expression - which means 7463 // this variable must be odr-used here, so diagnose a 7464 // capture violation early, if the variable is un-captureable. 7465 // This is purely for diagnosing errors early. Otherwise, this 7466 // error would get diagnosed when the lambda becomes capture ready. 7467 QualType CaptureType, DeclRefType; 7468 SourceLocation ExprLoc = VarExpr->getExprLoc(); 7469 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 7470 /*EllipsisLoc*/ SourceLocation(), 7471 /*BuildAndDiagnose*/false, CaptureType, 7472 DeclRefType, nullptr)) { 7473 // We will never be able to capture this variable, and we need 7474 // to be able to in any and all instantiations, so diagnose it. 7475 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 7476 /*EllipsisLoc*/ SourceLocation(), 7477 /*BuildAndDiagnose*/true, CaptureType, 7478 DeclRefType, nullptr); 7479 } 7480 } 7481 }); 7482 7483 // Check if 'this' needs to be captured. 7484 if (CurrentLSI->hasPotentialThisCapture()) { 7485 // If we have a capture-capable lambda for 'this', go ahead and capture 7486 // 'this' in that lambda (and all its enclosing lambdas). 7487 if (const Optional<unsigned> Index = 7488 getStackIndexOfNearestEnclosingCaptureCapableLambda( 7489 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) { 7490 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 7491 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 7492 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 7493 &FunctionScopeIndexOfCapturableLambda); 7494 } 7495 } 7496 7497 // Reset all the potential captures at the end of each full-expression. 7498 CurrentLSI->clearPotentialCaptures(); 7499 } 7500 7501 static ExprResult attemptRecovery(Sema &SemaRef, 7502 const TypoCorrectionConsumer &Consumer, 7503 const TypoCorrection &TC) { 7504 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 7505 Consumer.getLookupResult().getLookupKind()); 7506 const CXXScopeSpec *SS = Consumer.getSS(); 7507 CXXScopeSpec NewSS; 7508 7509 // Use an approprate CXXScopeSpec for building the expr. 7510 if (auto *NNS = TC.getCorrectionSpecifier()) 7511 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 7512 else if (SS && !TC.WillReplaceSpecifier()) 7513 NewSS = *SS; 7514 7515 if (auto *ND = TC.getFoundDecl()) { 7516 R.setLookupName(ND->getDeclName()); 7517 R.addDecl(ND); 7518 if (ND->isCXXClassMember()) { 7519 // Figure out the correct naming class to add to the LookupResult. 7520 CXXRecordDecl *Record = nullptr; 7521 if (auto *NNS = TC.getCorrectionSpecifier()) 7522 Record = NNS->getAsType()->getAsCXXRecordDecl(); 7523 if (!Record) 7524 Record = 7525 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 7526 if (Record) 7527 R.setNamingClass(Record); 7528 7529 // Detect and handle the case where the decl might be an implicit 7530 // member. 7531 bool MightBeImplicitMember; 7532 if (!Consumer.isAddressOfOperand()) 7533 MightBeImplicitMember = true; 7534 else if (!NewSS.isEmpty()) 7535 MightBeImplicitMember = false; 7536 else if (R.isOverloadedResult()) 7537 MightBeImplicitMember = false; 7538 else if (R.isUnresolvableResult()) 7539 MightBeImplicitMember = true; 7540 else 7541 MightBeImplicitMember = isa<FieldDecl>(ND) || 7542 isa<IndirectFieldDecl>(ND) || 7543 isa<MSPropertyDecl>(ND); 7544 7545 if (MightBeImplicitMember) 7546 return SemaRef.BuildPossibleImplicitMemberExpr( 7547 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 7548 /*TemplateArgs*/ nullptr, /*S*/ nullptr); 7549 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 7550 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), 7551 Ivar->getIdentifier()); 7552 } 7553 } 7554 7555 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 7556 /*AcceptInvalidDecl*/ true); 7557 } 7558 7559 namespace { 7560 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 7561 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 7562 7563 public: 7564 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 7565 : TypoExprs(TypoExprs) {} 7566 bool VisitTypoExpr(TypoExpr *TE) { 7567 TypoExprs.insert(TE); 7568 return true; 7569 } 7570 }; 7571 7572 class TransformTypos : public TreeTransform<TransformTypos> { 7573 typedef TreeTransform<TransformTypos> BaseTransform; 7574 7575 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the 7576 // process of being initialized. 7577 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 7578 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 7579 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 7580 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 7581 7582 /// Emit diagnostics for all of the TypoExprs encountered. 7583 /// If the TypoExprs were successfully corrected, then the diagnostics should 7584 /// suggest the corrections. Otherwise the diagnostics will not suggest 7585 /// anything (having been passed an empty TypoCorrection). 7586 void EmitAllDiagnostics() { 7587 for (TypoExpr *TE : TypoExprs) { 7588 auto &State = SemaRef.getTypoExprState(TE); 7589 if (State.DiagHandler) { 7590 TypoCorrection TC = State.Consumer->getCurrentCorrection(); 7591 ExprResult Replacement = TransformCache[TE]; 7592 7593 // Extract the NamedDecl from the transformed TypoExpr and add it to the 7594 // TypoCorrection, replacing the existing decls. This ensures the right 7595 // NamedDecl is used in diagnostics e.g. in the case where overload 7596 // resolution was used to select one from several possible decls that 7597 // had been stored in the TypoCorrection. 7598 if (auto *ND = getDeclFromExpr( 7599 Replacement.isInvalid() ? nullptr : Replacement.get())) 7600 TC.setCorrectionDecl(ND); 7601 7602 State.DiagHandler(TC); 7603 } 7604 SemaRef.clearDelayedTypo(TE); 7605 } 7606 } 7607 7608 /// If corrections for the first TypoExpr have been exhausted for a 7609 /// given combination of the other TypoExprs, retry those corrections against 7610 /// the next combination of substitutions for the other TypoExprs by advancing 7611 /// to the next potential correction of the second TypoExpr. For the second 7612 /// and subsequent TypoExprs, if its stream of corrections has been exhausted, 7613 /// the stream is reset and the next TypoExpr's stream is advanced by one (a 7614 /// TypoExpr's correction stream is advanced by removing the TypoExpr from the 7615 /// TransformCache). Returns true if there is still any untried combinations 7616 /// of corrections. 7617 bool CheckAndAdvanceTypoExprCorrectionStreams() { 7618 for (auto TE : TypoExprs) { 7619 auto &State = SemaRef.getTypoExprState(TE); 7620 TransformCache.erase(TE); 7621 if (!State.Consumer->finished()) 7622 return true; 7623 State.Consumer->resetCorrectionStream(); 7624 } 7625 return false; 7626 } 7627 7628 NamedDecl *getDeclFromExpr(Expr *E) { 7629 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 7630 E = OverloadResolution[OE]; 7631 7632 if (!E) 7633 return nullptr; 7634 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 7635 return DRE->getFoundDecl(); 7636 if (auto *ME = dyn_cast<MemberExpr>(E)) 7637 return ME->getFoundDecl(); 7638 // FIXME: Add any other expr types that could be be seen by the delayed typo 7639 // correction TreeTransform for which the corresponding TypoCorrection could 7640 // contain multiple decls. 7641 return nullptr; 7642 } 7643 7644 ExprResult TryTransform(Expr *E) { 7645 Sema::SFINAETrap Trap(SemaRef); 7646 ExprResult Res = TransformExpr(E); 7647 if (Trap.hasErrorOccurred() || Res.isInvalid()) 7648 return ExprError(); 7649 7650 return ExprFilter(Res.get()); 7651 } 7652 7653 public: 7654 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) 7655 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} 7656 7657 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 7658 MultiExprArg Args, 7659 SourceLocation RParenLoc, 7660 Expr *ExecConfig = nullptr) { 7661 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 7662 RParenLoc, ExecConfig); 7663 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 7664 if (Result.isUsable()) { 7665 Expr *ResultCall = Result.get(); 7666 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 7667 ResultCall = BE->getSubExpr(); 7668 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 7669 OverloadResolution[OE] = CE->getCallee(); 7670 } 7671 } 7672 return Result; 7673 } 7674 7675 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 7676 7677 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } 7678 7679 ExprResult Transform(Expr *E) { 7680 ExprResult Res; 7681 while (true) { 7682 Res = TryTransform(E); 7683 7684 // Exit if either the transform was valid or if there were no TypoExprs 7685 // to transform that still have any untried correction candidates.. 7686 if (!Res.isInvalid() || 7687 !CheckAndAdvanceTypoExprCorrectionStreams()) 7688 break; 7689 } 7690 7691 // Ensure none of the TypoExprs have multiple typo correction candidates 7692 // with the same edit length that pass all the checks and filters. 7693 // TODO: Properly handle various permutations of possible corrections when 7694 // there is more than one potentially ambiguous typo correction. 7695 // Also, disable typo correction while attempting the transform when 7696 // handling potentially ambiguous typo corrections as any new TypoExprs will 7697 // have been introduced by the application of one of the correction 7698 // candidates and add little to no value if corrected. 7699 SemaRef.DisableTypoCorrection = true; 7700 while (!AmbiguousTypoExprs.empty()) { 7701 auto TE = AmbiguousTypoExprs.back(); 7702 auto Cached = TransformCache[TE]; 7703 auto &State = SemaRef.getTypoExprState(TE); 7704 State.Consumer->saveCurrentPosition(); 7705 TransformCache.erase(TE); 7706 if (!TryTransform(E).isInvalid()) { 7707 State.Consumer->resetCorrectionStream(); 7708 TransformCache.erase(TE); 7709 Res = ExprError(); 7710 break; 7711 } 7712 AmbiguousTypoExprs.remove(TE); 7713 State.Consumer->restoreSavedPosition(); 7714 TransformCache[TE] = Cached; 7715 } 7716 SemaRef.DisableTypoCorrection = false; 7717 7718 // Ensure that all of the TypoExprs within the current Expr have been found. 7719 if (!Res.isUsable()) 7720 FindTypoExprs(TypoExprs).TraverseStmt(E); 7721 7722 EmitAllDiagnostics(); 7723 7724 return Res; 7725 } 7726 7727 ExprResult TransformTypoExpr(TypoExpr *E) { 7728 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 7729 // cached transformation result if there is one and the TypoExpr isn't the 7730 // first one that was encountered. 7731 auto &CacheEntry = TransformCache[E]; 7732 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 7733 return CacheEntry; 7734 } 7735 7736 auto &State = SemaRef.getTypoExprState(E); 7737 assert(State.Consumer && "Cannot transform a cleared TypoExpr"); 7738 7739 // For the first TypoExpr and an uncached TypoExpr, find the next likely 7740 // typo correction and return it. 7741 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 7742 if (InitDecl && TC.getFoundDecl() == InitDecl) 7743 continue; 7744 // FIXME: If we would typo-correct to an invalid declaration, it's 7745 // probably best to just suppress all errors from this typo correction. 7746 ExprResult NE = State.RecoveryHandler ? 7747 State.RecoveryHandler(SemaRef, E, TC) : 7748 attemptRecovery(SemaRef, *State.Consumer, TC); 7749 if (!NE.isInvalid()) { 7750 // Check whether there may be a second viable correction with the same 7751 // edit distance; if so, remember this TypoExpr may have an ambiguous 7752 // correction so it can be more thoroughly vetted later. 7753 TypoCorrection Next; 7754 if ((Next = State.Consumer->peekNextCorrection()) && 7755 Next.getEditDistance(false) == TC.getEditDistance(false)) { 7756 AmbiguousTypoExprs.insert(E); 7757 } else { 7758 AmbiguousTypoExprs.remove(E); 7759 } 7760 assert(!NE.isUnset() && 7761 "Typo was transformed into a valid-but-null ExprResult"); 7762 return CacheEntry = NE; 7763 } 7764 } 7765 return CacheEntry = ExprError(); 7766 } 7767 }; 7768 } 7769 7770 ExprResult 7771 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, 7772 llvm::function_ref<ExprResult(Expr *)> Filter) { 7773 // If the current evaluation context indicates there are uncorrected typos 7774 // and the current expression isn't guaranteed to not have typos, try to 7775 // resolve any TypoExpr nodes that might be in the expression. 7776 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 7777 (E->isTypeDependent() || E->isValueDependent() || 7778 E->isInstantiationDependent())) { 7779 auto TyposResolved = DelayedTypos.size(); 7780 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); 7781 TyposResolved -= DelayedTypos.size(); 7782 if (Result.isInvalid() || Result.get() != E) { 7783 ExprEvalContexts.back().NumTypos -= TyposResolved; 7784 return Result; 7785 } 7786 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); 7787 } 7788 return E; 7789 } 7790 7791 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 7792 bool DiscardedValue, 7793 bool IsConstexpr) { 7794 ExprResult FullExpr = FE; 7795 7796 if (!FullExpr.get()) 7797 return ExprError(); 7798 7799 if (DiagnoseUnexpandedParameterPack(FullExpr.get())) 7800 return ExprError(); 7801 7802 if (DiscardedValue) { 7803 // Top-level expressions default to 'id' when we're in a debugger. 7804 if (getLangOpts().DebuggerCastResultToId && 7805 FullExpr.get()->getType() == Context.UnknownAnyTy) { 7806 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 7807 if (FullExpr.isInvalid()) 7808 return ExprError(); 7809 } 7810 7811 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 7812 if (FullExpr.isInvalid()) 7813 return ExprError(); 7814 7815 FullExpr = IgnoredValueConversions(FullExpr.get()); 7816 if (FullExpr.isInvalid()) 7817 return ExprError(); 7818 7819 DiagnoseUnusedExprResult(FullExpr.get()); 7820 } 7821 7822 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get()); 7823 if (FullExpr.isInvalid()) 7824 return ExprError(); 7825 7826 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 7827 7828 // At the end of this full expression (which could be a deeply nested 7829 // lambda), if there is a potential capture within the nested lambda, 7830 // have the outer capture-able lambda try and capture it. 7831 // Consider the following code: 7832 // void f(int, int); 7833 // void f(const int&, double); 7834 // void foo() { 7835 // const int x = 10, y = 20; 7836 // auto L = [=](auto a) { 7837 // auto M = [=](auto b) { 7838 // f(x, b); <-- requires x to be captured by L and M 7839 // f(y, a); <-- requires y to be captured by L, but not all Ms 7840 // }; 7841 // }; 7842 // } 7843 7844 // FIXME: Also consider what happens for something like this that involves 7845 // the gnu-extension statement-expressions or even lambda-init-captures: 7846 // void f() { 7847 // const int n = 0; 7848 // auto L = [&](auto a) { 7849 // +n + ({ 0; a; }); 7850 // }; 7851 // } 7852 // 7853 // Here, we see +n, and then the full-expression 0; ends, so we don't 7854 // capture n (and instead remove it from our list of potential captures), 7855 // and then the full-expression +n + ({ 0; }); ends, but it's too late 7856 // for us to see that we need to capture n after all. 7857 7858 LambdaScopeInfo *const CurrentLSI = 7859 getCurLambda(/*IgnoreCapturedRegions=*/true); 7860 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 7861 // even if CurContext is not a lambda call operator. Refer to that Bug Report 7862 // for an example of the code that might cause this asynchrony. 7863 // By ensuring we are in the context of a lambda's call operator 7864 // we can fix the bug (we only need to check whether we need to capture 7865 // if we are within a lambda's body); but per the comments in that 7866 // PR, a proper fix would entail : 7867 // "Alternative suggestion: 7868 // - Add to Sema an integer holding the smallest (outermost) scope 7869 // index that we are *lexically* within, and save/restore/set to 7870 // FunctionScopes.size() in InstantiatingTemplate's 7871 // constructor/destructor. 7872 // - Teach the handful of places that iterate over FunctionScopes to 7873 // stop at the outermost enclosing lexical scope." 7874 DeclContext *DC = CurContext; 7875 while (DC && isa<CapturedDecl>(DC)) 7876 DC = DC->getParent(); 7877 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); 7878 if (IsInLambdaDeclContext && CurrentLSI && 7879 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 7880 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 7881 *this); 7882 return MaybeCreateExprWithCleanups(FullExpr); 7883 } 7884 7885 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 7886 if (!FullStmt) return StmtError(); 7887 7888 return MaybeCreateStmtWithCleanups(FullStmt); 7889 } 7890 7891 Sema::IfExistsResult 7892 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 7893 CXXScopeSpec &SS, 7894 const DeclarationNameInfo &TargetNameInfo) { 7895 DeclarationName TargetName = TargetNameInfo.getName(); 7896 if (!TargetName) 7897 return IER_DoesNotExist; 7898 7899 // If the name itself is dependent, then the result is dependent. 7900 if (TargetName.isDependentName()) 7901 return IER_Dependent; 7902 7903 // Do the redeclaration lookup in the current scope. 7904 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 7905 Sema::NotForRedeclaration); 7906 LookupParsedName(R, S, &SS); 7907 R.suppressDiagnostics(); 7908 7909 switch (R.getResultKind()) { 7910 case LookupResult::Found: 7911 case LookupResult::FoundOverloaded: 7912 case LookupResult::FoundUnresolvedValue: 7913 case LookupResult::Ambiguous: 7914 return IER_Exists; 7915 7916 case LookupResult::NotFound: 7917 return IER_DoesNotExist; 7918 7919 case LookupResult::NotFoundInCurrentInstantiation: 7920 return IER_Dependent; 7921 } 7922 7923 llvm_unreachable("Invalid LookupResult Kind!"); 7924 } 7925 7926 Sema::IfExistsResult 7927 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 7928 bool IsIfExists, CXXScopeSpec &SS, 7929 UnqualifiedId &Name) { 7930 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 7931 7932 // Check for an unexpanded parameter pack. 7933 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; 7934 if (DiagnoseUnexpandedParameterPack(SS, UPPC) || 7935 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC)) 7936 return IER_Error; 7937 7938 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 7939 } 7940