xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaExprCXX.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TreeTransform.h"
16 #include "TypeLocBuilder.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/TypeLoc.h"
26 #include "clang/Basic/AlignedAllocation.h"
27 #include "clang/Basic/PartialDiagnostic.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/DeclSpec.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/ParsedTemplate.h"
34 #include "clang/Sema/Scope.h"
35 #include "clang/Sema/ScopeInfo.h"
36 #include "clang/Sema/SemaLambda.h"
37 #include "clang/Sema/TemplateDeduction.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace sema;
43 
44 /// Handle the result of the special case name lookup for inheriting
45 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
46 /// constructor names in member using declarations, even if 'X' is not the
47 /// name of the corresponding type.
48 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
49                                               SourceLocation NameLoc,
50                                               IdentifierInfo &Name) {
51   NestedNameSpecifier *NNS = SS.getScopeRep();
52 
53   // Convert the nested-name-specifier into a type.
54   QualType Type;
55   switch (NNS->getKind()) {
56   case NestedNameSpecifier::TypeSpec:
57   case NestedNameSpecifier::TypeSpecWithTemplate:
58     Type = QualType(NNS->getAsType(), 0);
59     break;
60 
61   case NestedNameSpecifier::Identifier:
62     // Strip off the last layer of the nested-name-specifier and build a
63     // typename type for it.
64     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
65     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
66                                         NNS->getAsIdentifier());
67     break;
68 
69   case NestedNameSpecifier::Global:
70   case NestedNameSpecifier::Super:
71   case NestedNameSpecifier::Namespace:
72   case NestedNameSpecifier::NamespaceAlias:
73     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
74   }
75 
76   // This reference to the type is located entirely at the location of the
77   // final identifier in the qualified-id.
78   return CreateParsedType(Type,
79                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
80 }
81 
82 ParsedType Sema::getConstructorName(IdentifierInfo &II,
83                                     SourceLocation NameLoc,
84                                     Scope *S, CXXScopeSpec &SS,
85                                     bool EnteringContext) {
86   CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
87   assert(CurClass && &II == CurClass->getIdentifier() &&
88          "not a constructor name");
89 
90   // When naming a constructor as a member of a dependent context (eg, in a
91   // friend declaration or an inherited constructor declaration), form an
92   // unresolved "typename" type.
93   if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
94     QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
95     return ParsedType::make(T);
96   }
97 
98   if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
99     return ParsedType();
100 
101   // Find the injected-class-name declaration. Note that we make no attempt to
102   // diagnose cases where the injected-class-name is shadowed: the only
103   // declaration that can validly shadow the injected-class-name is a
104   // non-static data member, and if the class contains both a non-static data
105   // member and a constructor then it is ill-formed (we check that in
106   // CheckCompletedCXXClass).
107   CXXRecordDecl *InjectedClassName = nullptr;
108   for (NamedDecl *ND : CurClass->lookup(&II)) {
109     auto *RD = dyn_cast<CXXRecordDecl>(ND);
110     if (RD && RD->isInjectedClassName()) {
111       InjectedClassName = RD;
112       break;
113     }
114   }
115   if (!InjectedClassName) {
116     if (!CurClass->isInvalidDecl()) {
117       // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
118       // properly. Work around it here for now.
119       Diag(SS.getLastQualifierNameLoc(),
120            diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
121     }
122     return ParsedType();
123   }
124 
125   QualType T = Context.getTypeDeclType(InjectedClassName);
126   DiagnoseUseOfDecl(InjectedClassName, NameLoc);
127   MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
128 
129   return ParsedType::make(T);
130 }
131 
132 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
133                                    IdentifierInfo &II,
134                                    SourceLocation NameLoc,
135                                    Scope *S, CXXScopeSpec &SS,
136                                    ParsedType ObjectTypePtr,
137                                    bool EnteringContext) {
138   // Determine where to perform name lookup.
139 
140   // FIXME: This area of the standard is very messy, and the current
141   // wording is rather unclear about which scopes we search for the
142   // destructor name; see core issues 399 and 555. Issue 399 in
143   // particular shows where the current description of destructor name
144   // lookup is completely out of line with existing practice, e.g.,
145   // this appears to be ill-formed:
146   //
147   //   namespace N {
148   //     template <typename T> struct S {
149   //       ~S();
150   //     };
151   //   }
152   //
153   //   void f(N::S<int>* s) {
154   //     s->N::S<int>::~S();
155   //   }
156   //
157   // See also PR6358 and PR6359.
158   // For this reason, we're currently only doing the C++03 version of this
159   // code; the C++0x version has to wait until we get a proper spec.
160   QualType SearchType;
161   DeclContext *LookupCtx = nullptr;
162   bool isDependent = false;
163   bool LookInScope = false;
164 
165   if (SS.isInvalid())
166     return nullptr;
167 
168   // If we have an object type, it's because we are in a
169   // pseudo-destructor-expression or a member access expression, and
170   // we know what type we're looking for.
171   if (ObjectTypePtr)
172     SearchType = GetTypeFromParser(ObjectTypePtr);
173 
174   if (SS.isSet()) {
175     NestedNameSpecifier *NNS = SS.getScopeRep();
176 
177     bool AlreadySearched = false;
178     bool LookAtPrefix = true;
179     // C++11 [basic.lookup.qual]p6:
180     //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
181     //   the type-names are looked up as types in the scope designated by the
182     //   nested-name-specifier. Similarly, in a qualified-id of the form:
183     //
184     //     nested-name-specifier[opt] class-name :: ~ class-name
185     //
186     //   the second class-name is looked up in the same scope as the first.
187     //
188     // Here, we determine whether the code below is permitted to look at the
189     // prefix of the nested-name-specifier.
190     DeclContext *DC = computeDeclContext(SS, EnteringContext);
191     if (DC && DC->isFileContext()) {
192       AlreadySearched = true;
193       LookupCtx = DC;
194       isDependent = false;
195     } else if (DC && isa<CXXRecordDecl>(DC)) {
196       LookAtPrefix = false;
197       LookInScope = true;
198     }
199 
200     // The second case from the C++03 rules quoted further above.
201     NestedNameSpecifier *Prefix = nullptr;
202     if (AlreadySearched) {
203       // Nothing left to do.
204     } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
205       CXXScopeSpec PrefixSS;
206       PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
207       LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
208       isDependent = isDependentScopeSpecifier(PrefixSS);
209     } else if (ObjectTypePtr) {
210       LookupCtx = computeDeclContext(SearchType);
211       isDependent = SearchType->isDependentType();
212     } else {
213       LookupCtx = computeDeclContext(SS, EnteringContext);
214       isDependent = LookupCtx && LookupCtx->isDependentContext();
215     }
216   } else if (ObjectTypePtr) {
217     // C++ [basic.lookup.classref]p3:
218     //   If the unqualified-id is ~type-name, the type-name is looked up
219     //   in the context of the entire postfix-expression. If the type T
220     //   of the object expression is of a class type C, the type-name is
221     //   also looked up in the scope of class C. At least one of the
222     //   lookups shall find a name that refers to (possibly
223     //   cv-qualified) T.
224     LookupCtx = computeDeclContext(SearchType);
225     isDependent = SearchType->isDependentType();
226     assert((isDependent || !SearchType->isIncompleteType()) &&
227            "Caller should have completed object type");
228 
229     LookInScope = true;
230   } else {
231     // Perform lookup into the current scope (only).
232     LookInScope = true;
233   }
234 
235   TypeDecl *NonMatchingTypeDecl = nullptr;
236   LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
237   for (unsigned Step = 0; Step != 2; ++Step) {
238     // Look for the name first in the computed lookup context (if we
239     // have one) and, if that fails to find a match, in the scope (if
240     // we're allowed to look there).
241     Found.clear();
242     if (Step == 0 && LookupCtx) {
243       if (RequireCompleteDeclContext(SS, LookupCtx))
244         return nullptr;
245       LookupQualifiedName(Found, LookupCtx);
246     } else if (Step == 1 && LookInScope && S) {
247       LookupName(Found, S);
248     } else {
249       continue;
250     }
251 
252     // FIXME: Should we be suppressing ambiguities here?
253     if (Found.isAmbiguous())
254       return nullptr;
255 
256     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
257       QualType T = Context.getTypeDeclType(Type);
258       MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
259 
260       if (SearchType.isNull() || SearchType->isDependentType() ||
261           Context.hasSameUnqualifiedType(T, SearchType)) {
262         // We found our type!
263 
264         return CreateParsedType(T,
265                                 Context.getTrivialTypeSourceInfo(T, NameLoc));
266       }
267 
268       if (!SearchType.isNull())
269         NonMatchingTypeDecl = Type;
270     }
271 
272     // If the name that we found is a class template name, and it is
273     // the same name as the template name in the last part of the
274     // nested-name-specifier (if present) or the object type, then
275     // this is the destructor for that class.
276     // FIXME: This is a workaround until we get real drafting for core
277     // issue 399, for which there isn't even an obvious direction.
278     if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
279       QualType MemberOfType;
280       if (SS.isSet()) {
281         if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
282           // Figure out the type of the context, if it has one.
283           if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
284             MemberOfType = Context.getTypeDeclType(Record);
285         }
286       }
287       if (MemberOfType.isNull())
288         MemberOfType = SearchType;
289 
290       if (MemberOfType.isNull())
291         continue;
292 
293       // We're referring into a class template specialization. If the
294       // class template we found is the same as the template being
295       // specialized, we found what we are looking for.
296       if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
297         if (ClassTemplateSpecializationDecl *Spec
298               = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
299           if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
300                 Template->getCanonicalDecl())
301             return CreateParsedType(
302                 MemberOfType,
303                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
304         }
305 
306         continue;
307       }
308 
309       // We're referring to an unresolved class template
310       // specialization. Determine whether we class template we found
311       // is the same as the template being specialized or, if we don't
312       // know which template is being specialized, that it at least
313       // has the same name.
314       if (const TemplateSpecializationType *SpecType
315             = MemberOfType->getAs<TemplateSpecializationType>()) {
316         TemplateName SpecName = SpecType->getTemplateName();
317 
318         // The class template we found is the same template being
319         // specialized.
320         if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
321           if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
322             return CreateParsedType(
323                 MemberOfType,
324                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
325 
326           continue;
327         }
328 
329         // The class template we found has the same name as the
330         // (dependent) template name being specialized.
331         if (DependentTemplateName *DepTemplate
332                                     = SpecName.getAsDependentTemplateName()) {
333           if (DepTemplate->isIdentifier() &&
334               DepTemplate->getIdentifier() == Template->getIdentifier())
335             return CreateParsedType(
336                 MemberOfType,
337                 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
338 
339           continue;
340         }
341       }
342     }
343   }
344 
345   if (isDependent) {
346     // We didn't find our type, but that's okay: it's dependent
347     // anyway.
348 
349     // FIXME: What if we have no nested-name-specifier?
350     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
351                                    SS.getWithLocInContext(Context),
352                                    II, NameLoc);
353     return ParsedType::make(T);
354   }
355 
356   if (NonMatchingTypeDecl) {
357     QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
358     Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
359       << T << SearchType;
360     Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
361       << T;
362   } else if (ObjectTypePtr)
363     Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
364       << &II;
365   else {
366     SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
367                                           diag::err_destructor_class_name);
368     if (S) {
369       const DeclContext *Ctx = S->getEntity();
370       if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
371         DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
372                                                  Class->getNameAsString());
373     }
374   }
375 
376   return nullptr;
377 }
378 
379 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
380                                               ParsedType ObjectType) {
381   if (DS.getTypeSpecType() == DeclSpec::TST_error)
382     return nullptr;
383 
384   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
385     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
386     return nullptr;
387   }
388 
389   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
390          "unexpected type in getDestructorType");
391   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
392 
393   // If we know the type of the object, check that the correct destructor
394   // type was named now; we can give better diagnostics this way.
395   QualType SearchType = GetTypeFromParser(ObjectType);
396   if (!SearchType.isNull() && !SearchType->isDependentType() &&
397       !Context.hasSameUnqualifiedType(T, SearchType)) {
398     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
399       << T << SearchType;
400     return nullptr;
401   }
402 
403   return ParsedType::make(T);
404 }
405 
406 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
407                                   const UnqualifiedId &Name) {
408   assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
409 
410   if (!SS.isValid())
411     return false;
412 
413   switch (SS.getScopeRep()->getKind()) {
414   case NestedNameSpecifier::Identifier:
415   case NestedNameSpecifier::TypeSpec:
416   case NestedNameSpecifier::TypeSpecWithTemplate:
417     // Per C++11 [over.literal]p2, literal operators can only be declared at
418     // namespace scope. Therefore, this unqualified-id cannot name anything.
419     // Reject it early, because we have no AST representation for this in the
420     // case where the scope is dependent.
421     Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
422         << SS.getScopeRep();
423     return true;
424 
425   case NestedNameSpecifier::Global:
426   case NestedNameSpecifier::Super:
427   case NestedNameSpecifier::Namespace:
428   case NestedNameSpecifier::NamespaceAlias:
429     return false;
430   }
431 
432   llvm_unreachable("unknown nested name specifier kind");
433 }
434 
435 /// Build a C++ typeid expression with a type operand.
436 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
437                                 SourceLocation TypeidLoc,
438                                 TypeSourceInfo *Operand,
439                                 SourceLocation RParenLoc) {
440   // C++ [expr.typeid]p4:
441   //   The top-level cv-qualifiers of the lvalue expression or the type-id
442   //   that is the operand of typeid are always ignored.
443   //   If the type of the type-id is a class type or a reference to a class
444   //   type, the class shall be completely-defined.
445   Qualifiers Quals;
446   QualType T
447     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
448                                       Quals);
449   if (T->getAs<RecordType>() &&
450       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
451     return ExprError();
452 
453   if (T->isVariablyModifiedType())
454     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
455 
456   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
457                                      SourceRange(TypeidLoc, RParenLoc));
458 }
459 
460 /// Build a C++ typeid expression with an expression operand.
461 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
462                                 SourceLocation TypeidLoc,
463                                 Expr *E,
464                                 SourceLocation RParenLoc) {
465   bool WasEvaluated = false;
466   if (E && !E->isTypeDependent()) {
467     if (E->getType()->isPlaceholderType()) {
468       ExprResult result = CheckPlaceholderExpr(E);
469       if (result.isInvalid()) return ExprError();
470       E = result.get();
471     }
472 
473     QualType T = E->getType();
474     if (const RecordType *RecordT = T->getAs<RecordType>()) {
475       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
476       // C++ [expr.typeid]p3:
477       //   [...] If the type of the expression is a class type, the class
478       //   shall be completely-defined.
479       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
480         return ExprError();
481 
482       // C++ [expr.typeid]p3:
483       //   When typeid is applied to an expression other than an glvalue of a
484       //   polymorphic class type [...] [the] expression is an unevaluated
485       //   operand. [...]
486       if (RecordD->isPolymorphic() && E->isGLValue()) {
487         // The subexpression is potentially evaluated; switch the context
488         // and recheck the subexpression.
489         ExprResult Result = TransformToPotentiallyEvaluated(E);
490         if (Result.isInvalid()) return ExprError();
491         E = Result.get();
492 
493         // We require a vtable to query the type at run time.
494         MarkVTableUsed(TypeidLoc, RecordD);
495         WasEvaluated = true;
496       }
497     }
498 
499     // C++ [expr.typeid]p4:
500     //   [...] If the type of the type-id is a reference to a possibly
501     //   cv-qualified type, the result of the typeid expression refers to a
502     //   std::type_info object representing the cv-unqualified referenced
503     //   type.
504     Qualifiers Quals;
505     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
506     if (!Context.hasSameType(T, UnqualT)) {
507       T = UnqualT;
508       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
509     }
510   }
511 
512   if (E->getType()->isVariablyModifiedType())
513     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
514                      << E->getType());
515   else if (!inTemplateInstantiation() &&
516            E->HasSideEffects(Context, WasEvaluated)) {
517     // The expression operand for typeid is in an unevaluated expression
518     // context, so side effects could result in unintended consequences.
519     Diag(E->getExprLoc(), WasEvaluated
520                               ? diag::warn_side_effects_typeid
521                               : diag::warn_side_effects_unevaluated_context);
522   }
523 
524   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
525                                      SourceRange(TypeidLoc, RParenLoc));
526 }
527 
528 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
529 ExprResult
530 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
531                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
532   // typeid is not supported in OpenCL.
533   if (getLangOpts().OpenCLCPlusPlus) {
534     return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
535                      << "typeid");
536   }
537 
538   // Find the std::type_info type.
539   if (!getStdNamespace())
540     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
541 
542   if (!CXXTypeInfoDecl) {
543     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
544     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
545     LookupQualifiedName(R, getStdNamespace());
546     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
547     // Microsoft's typeinfo doesn't have type_info in std but in the global
548     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
549     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
550       LookupQualifiedName(R, Context.getTranslationUnitDecl());
551       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
552     }
553     if (!CXXTypeInfoDecl)
554       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
555   }
556 
557   if (!getLangOpts().RTTI) {
558     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
559   }
560 
561   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
562 
563   if (isType) {
564     // The operand is a type; handle it as such.
565     TypeSourceInfo *TInfo = nullptr;
566     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
567                                    &TInfo);
568     if (T.isNull())
569       return ExprError();
570 
571     if (!TInfo)
572       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
573 
574     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
575   }
576 
577   // The operand is an expression.
578   return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
579 }
580 
581 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
582 /// a single GUID.
583 static void
584 getUuidAttrOfType(Sema &SemaRef, QualType QT,
585                   llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
586   // Optionally remove one level of pointer, reference or array indirection.
587   const Type *Ty = QT.getTypePtr();
588   if (QT->isPointerType() || QT->isReferenceType())
589     Ty = QT->getPointeeType().getTypePtr();
590   else if (QT->isArrayType())
591     Ty = Ty->getBaseElementTypeUnsafe();
592 
593   const auto *TD = Ty->getAsTagDecl();
594   if (!TD)
595     return;
596 
597   if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
598     UuidAttrs.insert(Uuid);
599     return;
600   }
601 
602   // __uuidof can grab UUIDs from template arguments.
603   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
604     const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
605     for (const TemplateArgument &TA : TAL.asArray()) {
606       const UuidAttr *UuidForTA = nullptr;
607       if (TA.getKind() == TemplateArgument::Type)
608         getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
609       else if (TA.getKind() == TemplateArgument::Declaration)
610         getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
611 
612       if (UuidForTA)
613         UuidAttrs.insert(UuidForTA);
614     }
615   }
616 }
617 
618 /// Build a Microsoft __uuidof expression with a type operand.
619 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
620                                 SourceLocation TypeidLoc,
621                                 TypeSourceInfo *Operand,
622                                 SourceLocation RParenLoc) {
623   StringRef UuidStr;
624   if (!Operand->getType()->isDependentType()) {
625     llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
626     getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
627     if (UuidAttrs.empty())
628       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
629     if (UuidAttrs.size() > 1)
630       return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
631     UuidStr = UuidAttrs.back()->getGuid();
632   }
633 
634   return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr,
635                                      SourceRange(TypeidLoc, RParenLoc));
636 }
637 
638 /// Build a Microsoft __uuidof expression with an expression operand.
639 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
640                                 SourceLocation TypeidLoc,
641                                 Expr *E,
642                                 SourceLocation RParenLoc) {
643   StringRef UuidStr;
644   if (!E->getType()->isDependentType()) {
645     if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
646       UuidStr = "00000000-0000-0000-0000-000000000000";
647     } else {
648       llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
649       getUuidAttrOfType(*this, E->getType(), UuidAttrs);
650       if (UuidAttrs.empty())
651         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
652       if (UuidAttrs.size() > 1)
653         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
654       UuidStr = UuidAttrs.back()->getGuid();
655     }
656   }
657 
658   return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr,
659                                      SourceRange(TypeidLoc, RParenLoc));
660 }
661 
662 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
663 ExprResult
664 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
665                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
666   // If MSVCGuidDecl has not been cached, do the lookup.
667   if (!MSVCGuidDecl) {
668     IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
669     LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
670     LookupQualifiedName(R, Context.getTranslationUnitDecl());
671     MSVCGuidDecl = R.getAsSingle<RecordDecl>();
672     if (!MSVCGuidDecl)
673       return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
674   }
675 
676   QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
677 
678   if (isType) {
679     // The operand is a type; handle it as such.
680     TypeSourceInfo *TInfo = nullptr;
681     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
682                                    &TInfo);
683     if (T.isNull())
684       return ExprError();
685 
686     if (!TInfo)
687       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
688 
689     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
690   }
691 
692   // The operand is an expression.
693   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
694 }
695 
696 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
697 ExprResult
698 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
699   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
700          "Unknown C++ Boolean value!");
701   return new (Context)
702       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
703 }
704 
705 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
706 ExprResult
707 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
708   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
709 }
710 
711 /// ActOnCXXThrow - Parse throw expressions.
712 ExprResult
713 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
714   bool IsThrownVarInScope = false;
715   if (Ex) {
716     // C++0x [class.copymove]p31:
717     //   When certain criteria are met, an implementation is allowed to omit the
718     //   copy/move construction of a class object [...]
719     //
720     //     - in a throw-expression, when the operand is the name of a
721     //       non-volatile automatic object (other than a function or catch-
722     //       clause parameter) whose scope does not extend beyond the end of the
723     //       innermost enclosing try-block (if there is one), the copy/move
724     //       operation from the operand to the exception object (15.1) can be
725     //       omitted by constructing the automatic object directly into the
726     //       exception object
727     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
728       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
729         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
730           for( ; S; S = S->getParent()) {
731             if (S->isDeclScope(Var)) {
732               IsThrownVarInScope = true;
733               break;
734             }
735 
736             if (S->getFlags() &
737                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
738                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
739                  Scope::TryScope))
740               break;
741           }
742         }
743       }
744   }
745 
746   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
747 }
748 
749 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
750                                bool IsThrownVarInScope) {
751   // Don't report an error if 'throw' is used in system headers.
752   if (!getLangOpts().CXXExceptions &&
753       !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
754     // Delay error emission for the OpenMP device code.
755     targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
756   }
757 
758   // Exceptions aren't allowed in CUDA device code.
759   if (getLangOpts().CUDA)
760     CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
761         << "throw" << CurrentCUDATarget();
762 
763   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
764     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
765 
766   if (Ex && !Ex->isTypeDependent()) {
767     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
768     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
769       return ExprError();
770 
771     // Initialize the exception result.  This implicitly weeds out
772     // abstract types or types with inaccessible copy constructors.
773 
774     // C++0x [class.copymove]p31:
775     //   When certain criteria are met, an implementation is allowed to omit the
776     //   copy/move construction of a class object [...]
777     //
778     //     - in a throw-expression, when the operand is the name of a
779     //       non-volatile automatic object (other than a function or
780     //       catch-clause
781     //       parameter) whose scope does not extend beyond the end of the
782     //       innermost enclosing try-block (if there is one), the copy/move
783     //       operation from the operand to the exception object (15.1) can be
784     //       omitted by constructing the automatic object directly into the
785     //       exception object
786     const VarDecl *NRVOVariable = nullptr;
787     if (IsThrownVarInScope)
788       NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict);
789 
790     InitializedEntity Entity = InitializedEntity::InitializeException(
791         OpLoc, ExceptionObjectTy,
792         /*NRVO=*/NRVOVariable != nullptr);
793     ExprResult Res = PerformMoveOrCopyInitialization(
794         Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
795     if (Res.isInvalid())
796       return ExprError();
797     Ex = Res.get();
798   }
799 
800   return new (Context)
801       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
802 }
803 
804 static void
805 collectPublicBases(CXXRecordDecl *RD,
806                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
807                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
808                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
809                    bool ParentIsPublic) {
810   for (const CXXBaseSpecifier &BS : RD->bases()) {
811     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
812     bool NewSubobject;
813     // Virtual bases constitute the same subobject.  Non-virtual bases are
814     // always distinct subobjects.
815     if (BS.isVirtual())
816       NewSubobject = VBases.insert(BaseDecl).second;
817     else
818       NewSubobject = true;
819 
820     if (NewSubobject)
821       ++SubobjectsSeen[BaseDecl];
822 
823     // Only add subobjects which have public access throughout the entire chain.
824     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
825     if (PublicPath)
826       PublicSubobjectsSeen.insert(BaseDecl);
827 
828     // Recurse on to each base subobject.
829     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
830                        PublicPath);
831   }
832 }
833 
834 static void getUnambiguousPublicSubobjects(
835     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
836   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
837   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
838   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
839   SubobjectsSeen[RD] = 1;
840   PublicSubobjectsSeen.insert(RD);
841   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
842                      /*ParentIsPublic=*/true);
843 
844   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
845     // Skip ambiguous objects.
846     if (SubobjectsSeen[PublicSubobject] > 1)
847       continue;
848 
849     Objects.push_back(PublicSubobject);
850   }
851 }
852 
853 /// CheckCXXThrowOperand - Validate the operand of a throw.
854 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
855                                 QualType ExceptionObjectTy, Expr *E) {
856   //   If the type of the exception would be an incomplete type or a pointer
857   //   to an incomplete type other than (cv) void the program is ill-formed.
858   QualType Ty = ExceptionObjectTy;
859   bool isPointer = false;
860   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
861     Ty = Ptr->getPointeeType();
862     isPointer = true;
863   }
864   if (!isPointer || !Ty->isVoidType()) {
865     if (RequireCompleteType(ThrowLoc, Ty,
866                             isPointer ? diag::err_throw_incomplete_ptr
867                                       : diag::err_throw_incomplete,
868                             E->getSourceRange()))
869       return true;
870 
871     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
872                                diag::err_throw_abstract_type, E))
873       return true;
874   }
875 
876   // If the exception has class type, we need additional handling.
877   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
878   if (!RD)
879     return false;
880 
881   // If we are throwing a polymorphic class type or pointer thereof,
882   // exception handling will make use of the vtable.
883   MarkVTableUsed(ThrowLoc, RD);
884 
885   // If a pointer is thrown, the referenced object will not be destroyed.
886   if (isPointer)
887     return false;
888 
889   // If the class has a destructor, we must be able to call it.
890   if (!RD->hasIrrelevantDestructor()) {
891     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
892       MarkFunctionReferenced(E->getExprLoc(), Destructor);
893       CheckDestructorAccess(E->getExprLoc(), Destructor,
894                             PDiag(diag::err_access_dtor_exception) << Ty);
895       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
896         return true;
897     }
898   }
899 
900   // The MSVC ABI creates a list of all types which can catch the exception
901   // object.  This list also references the appropriate copy constructor to call
902   // if the object is caught by value and has a non-trivial copy constructor.
903   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
904     // We are only interested in the public, unambiguous bases contained within
905     // the exception object.  Bases which are ambiguous or otherwise
906     // inaccessible are not catchable types.
907     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
908     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
909 
910     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
911       // Attempt to lookup the copy constructor.  Various pieces of machinery
912       // will spring into action, like template instantiation, which means this
913       // cannot be a simple walk of the class's decls.  Instead, we must perform
914       // lookup and overload resolution.
915       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
916       if (!CD)
917         continue;
918 
919       // Mark the constructor referenced as it is used by this throw expression.
920       MarkFunctionReferenced(E->getExprLoc(), CD);
921 
922       // Skip this copy constructor if it is trivial, we don't need to record it
923       // in the catchable type data.
924       if (CD->isTrivial())
925         continue;
926 
927       // The copy constructor is non-trivial, create a mapping from this class
928       // type to this constructor.
929       // N.B.  The selection of copy constructor is not sensitive to this
930       // particular throw-site.  Lookup will be performed at the catch-site to
931       // ensure that the copy constructor is, in fact, accessible (via
932       // friendship or any other means).
933       Context.addCopyConstructorForExceptionObject(Subobject, CD);
934 
935       // We don't keep the instantiated default argument expressions around so
936       // we must rebuild them here.
937       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
938         if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
939           return true;
940       }
941     }
942   }
943 
944   // Under the Itanium C++ ABI, memory for the exception object is allocated by
945   // the runtime with no ability for the compiler to request additional
946   // alignment. Warn if the exception type requires alignment beyond the minimum
947   // guaranteed by the target C++ runtime.
948   if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
949     CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
950     CharUnits ExnObjAlign = Context.getExnObjectAlignment();
951     if (ExnObjAlign < TypeAlign) {
952       Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
953       Diag(ThrowLoc, diag::note_throw_underaligned_obj)
954           << Ty << (unsigned)TypeAlign.getQuantity()
955           << (unsigned)ExnObjAlign.getQuantity();
956     }
957   }
958 
959   return false;
960 }
961 
962 static QualType adjustCVQualifiersForCXXThisWithinLambda(
963     ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
964     DeclContext *CurSemaContext, ASTContext &ASTCtx) {
965 
966   QualType ClassType = ThisTy->getPointeeType();
967   LambdaScopeInfo *CurLSI = nullptr;
968   DeclContext *CurDC = CurSemaContext;
969 
970   // Iterate through the stack of lambdas starting from the innermost lambda to
971   // the outermost lambda, checking if '*this' is ever captured by copy - since
972   // that could change the cv-qualifiers of the '*this' object.
973   // The object referred to by '*this' starts out with the cv-qualifiers of its
974   // member function.  We then start with the innermost lambda and iterate
975   // outward checking to see if any lambda performs a by-copy capture of '*this'
976   // - and if so, any nested lambda must respect the 'constness' of that
977   // capturing lamdbda's call operator.
978   //
979 
980   // Since the FunctionScopeInfo stack is representative of the lexical
981   // nesting of the lambda expressions during initial parsing (and is the best
982   // place for querying information about captures about lambdas that are
983   // partially processed) and perhaps during instantiation of function templates
984   // that contain lambda expressions that need to be transformed BUT not
985   // necessarily during instantiation of a nested generic lambda's function call
986   // operator (which might even be instantiated at the end of the TU) - at which
987   // time the DeclContext tree is mature enough to query capture information
988   // reliably - we use a two pronged approach to walk through all the lexically
989   // enclosing lambda expressions:
990   //
991   //  1) Climb down the FunctionScopeInfo stack as long as each item represents
992   //  a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
993   //  enclosed by the call-operator of the LSI below it on the stack (while
994   //  tracking the enclosing DC for step 2 if needed).  Note the topmost LSI on
995   //  the stack represents the innermost lambda.
996   //
997   //  2) If we run out of enclosing LSI's, check if the enclosing DeclContext
998   //  represents a lambda's call operator.  If it does, we must be instantiating
999   //  a generic lambda's call operator (represented by the Current LSI, and
1000   //  should be the only scenario where an inconsistency between the LSI and the
1001   //  DeclContext should occur), so climb out the DeclContexts if they
1002   //  represent lambdas, while querying the corresponding closure types
1003   //  regarding capture information.
1004 
1005   // 1) Climb down the function scope info stack.
1006   for (int I = FunctionScopes.size();
1007        I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1008        (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1009                        cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1010        CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1011     CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1012 
1013     if (!CurLSI->isCXXThisCaptured())
1014         continue;
1015 
1016     auto C = CurLSI->getCXXThisCapture();
1017 
1018     if (C.isCopyCapture()) {
1019       ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1020       if (CurLSI->CallOperator->isConst())
1021         ClassType.addConst();
1022       return ASTCtx.getPointerType(ClassType);
1023     }
1024   }
1025 
1026   // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
1027   // happen during instantiation of its nested generic lambda call operator)
1028   if (isLambdaCallOperator(CurDC)) {
1029     assert(CurLSI && "While computing 'this' capture-type for a generic "
1030                      "lambda, we must have a corresponding LambdaScopeInfo");
1031     assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1032            "While computing 'this' capture-type for a generic lambda, when we "
1033            "run out of enclosing LSI's, yet the enclosing DC is a "
1034            "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1035            "lambda call oeprator");
1036     assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1037 
1038     auto IsThisCaptured =
1039         [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1040       IsConst = false;
1041       IsByCopy = false;
1042       for (auto &&C : Closure->captures()) {
1043         if (C.capturesThis()) {
1044           if (C.getCaptureKind() == LCK_StarThis)
1045             IsByCopy = true;
1046           if (Closure->getLambdaCallOperator()->isConst())
1047             IsConst = true;
1048           return true;
1049         }
1050       }
1051       return false;
1052     };
1053 
1054     bool IsByCopyCapture = false;
1055     bool IsConstCapture = false;
1056     CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1057     while (Closure &&
1058            IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1059       if (IsByCopyCapture) {
1060         ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1061         if (IsConstCapture)
1062           ClassType.addConst();
1063         return ASTCtx.getPointerType(ClassType);
1064       }
1065       Closure = isLambdaCallOperator(Closure->getParent())
1066                     ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1067                     : nullptr;
1068     }
1069   }
1070   return ASTCtx.getPointerType(ClassType);
1071 }
1072 
1073 QualType Sema::getCurrentThisType() {
1074   DeclContext *DC = getFunctionLevelDeclContext();
1075   QualType ThisTy = CXXThisTypeOverride;
1076 
1077   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1078     if (method && method->isInstance())
1079       ThisTy = method->getThisType();
1080   }
1081 
1082   if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1083       inTemplateInstantiation()) {
1084 
1085     assert(isa<CXXRecordDecl>(DC) &&
1086            "Trying to get 'this' type from static method?");
1087 
1088     // This is a lambda call operator that is being instantiated as a default
1089     // initializer. DC must point to the enclosing class type, so we can recover
1090     // the 'this' type from it.
1091 
1092     QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1093     // There are no cv-qualifiers for 'this' within default initializers,
1094     // per [expr.prim.general]p4.
1095     ThisTy = Context.getPointerType(ClassTy);
1096   }
1097 
1098   // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1099   // might need to be adjusted if the lambda or any of its enclosing lambda's
1100   // captures '*this' by copy.
1101   if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1102     return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1103                                                     CurContext, Context);
1104   return ThisTy;
1105 }
1106 
1107 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1108                                          Decl *ContextDecl,
1109                                          Qualifiers CXXThisTypeQuals,
1110                                          bool Enabled)
1111   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1112 {
1113   if (!Enabled || !ContextDecl)
1114     return;
1115 
1116   CXXRecordDecl *Record = nullptr;
1117   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1118     Record = Template->getTemplatedDecl();
1119   else
1120     Record = cast<CXXRecordDecl>(ContextDecl);
1121 
1122   QualType T = S.Context.getRecordType(Record);
1123   T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1124 
1125   S.CXXThisTypeOverride = S.Context.getPointerType(T);
1126 
1127   this->Enabled = true;
1128 }
1129 
1130 
1131 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1132   if (Enabled) {
1133     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1134   }
1135 }
1136 
1137 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1138     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1139     const bool ByCopy) {
1140   // We don't need to capture this in an unevaluated context.
1141   if (isUnevaluatedContext() && !Explicit)
1142     return true;
1143 
1144   assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1145 
1146   const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1147                                          ? *FunctionScopeIndexToStopAt
1148                                          : FunctionScopes.size() - 1;
1149 
1150   // Check that we can capture the *enclosing object* (referred to by '*this')
1151   // by the capturing-entity/closure (lambda/block/etc) at
1152   // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1153 
1154   // Note: The *enclosing object* can only be captured by-value by a
1155   // closure that is a lambda, using the explicit notation:
1156   //    [*this] { ... }.
1157   // Every other capture of the *enclosing object* results in its by-reference
1158   // capture.
1159 
1160   // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1161   // stack), we can capture the *enclosing object* only if:
1162   // - 'L' has an explicit byref or byval capture of the *enclosing object*
1163   // -  or, 'L' has an implicit capture.
1164   // AND
1165   //   -- there is no enclosing closure
1166   //   -- or, there is some enclosing closure 'E' that has already captured the
1167   //      *enclosing object*, and every intervening closure (if any) between 'E'
1168   //      and 'L' can implicitly capture the *enclosing object*.
1169   //   -- or, every enclosing closure can implicitly capture the
1170   //      *enclosing object*
1171 
1172 
1173   unsigned NumCapturingClosures = 0;
1174   for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1175     if (CapturingScopeInfo *CSI =
1176             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1177       if (CSI->CXXThisCaptureIndex != 0) {
1178         // 'this' is already being captured; there isn't anything more to do.
1179         CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1180         break;
1181       }
1182       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1183       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1184         // This context can't implicitly capture 'this'; fail out.
1185         if (BuildAndDiagnose)
1186           Diag(Loc, diag::err_this_capture)
1187               << (Explicit && idx == MaxFunctionScopesIndex);
1188         return true;
1189       }
1190       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1191           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1192           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1193           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1194           (Explicit && idx == MaxFunctionScopesIndex)) {
1195         // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1196         // iteration through can be an explicit capture, all enclosing closures,
1197         // if any, must perform implicit captures.
1198 
1199         // This closure can capture 'this'; continue looking upwards.
1200         NumCapturingClosures++;
1201         continue;
1202       }
1203       // This context can't implicitly capture 'this'; fail out.
1204       if (BuildAndDiagnose)
1205         Diag(Loc, diag::err_this_capture)
1206             << (Explicit && idx == MaxFunctionScopesIndex);
1207       return true;
1208     }
1209     break;
1210   }
1211   if (!BuildAndDiagnose) return false;
1212 
1213   // If we got here, then the closure at MaxFunctionScopesIndex on the
1214   // FunctionScopes stack, can capture the *enclosing object*, so capture it
1215   // (including implicit by-reference captures in any enclosing closures).
1216 
1217   // In the loop below, respect the ByCopy flag only for the closure requesting
1218   // the capture (i.e. first iteration through the loop below).  Ignore it for
1219   // all enclosing closure's up to NumCapturingClosures (since they must be
1220   // implicitly capturing the *enclosing  object* by reference (see loop
1221   // above)).
1222   assert((!ByCopy ||
1223           dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1224          "Only a lambda can capture the enclosing object (referred to by "
1225          "*this) by copy");
1226   QualType ThisTy = getCurrentThisType();
1227   for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1228        --idx, --NumCapturingClosures) {
1229     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1230 
1231     // The type of the corresponding data member (not a 'this' pointer if 'by
1232     // copy').
1233     QualType CaptureType = ThisTy;
1234     if (ByCopy) {
1235       // If we are capturing the object referred to by '*this' by copy, ignore
1236       // any cv qualifiers inherited from the type of the member function for
1237       // the type of the closure-type's corresponding data member and any use
1238       // of 'this'.
1239       CaptureType = ThisTy->getPointeeType();
1240       CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1241     }
1242 
1243     bool isNested = NumCapturingClosures > 1;
1244     CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1245   }
1246   return false;
1247 }
1248 
1249 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1250   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1251   /// is a non-lvalue expression whose value is the address of the object for
1252   /// which the function is called.
1253 
1254   QualType ThisTy = getCurrentThisType();
1255   if (ThisTy.isNull())
1256     return Diag(Loc, diag::err_invalid_this_use);
1257   return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1258 }
1259 
1260 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1261                              bool IsImplicit) {
1262   auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1263   MarkThisReferenced(This);
1264   return This;
1265 }
1266 
1267 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1268   CheckCXXThisCapture(This->getExprLoc());
1269 }
1270 
1271 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1272   // If we're outside the body of a member function, then we'll have a specified
1273   // type for 'this'.
1274   if (CXXThisTypeOverride.isNull())
1275     return false;
1276 
1277   // Determine whether we're looking into a class that's currently being
1278   // defined.
1279   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1280   return Class && Class->isBeingDefined();
1281 }
1282 
1283 /// Parse construction of a specified type.
1284 /// Can be interpreted either as function-style casting ("int(x)")
1285 /// or class type construction ("ClassType(x,y,z)")
1286 /// or creation of a value-initialized type ("int()").
1287 ExprResult
1288 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1289                                 SourceLocation LParenOrBraceLoc,
1290                                 MultiExprArg exprs,
1291                                 SourceLocation RParenOrBraceLoc,
1292                                 bool ListInitialization) {
1293   if (!TypeRep)
1294     return ExprError();
1295 
1296   TypeSourceInfo *TInfo;
1297   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1298   if (!TInfo)
1299     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1300 
1301   auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1302                                           RParenOrBraceLoc, ListInitialization);
1303   // Avoid creating a non-type-dependent expression that contains typos.
1304   // Non-type-dependent expressions are liable to be discarded without
1305   // checking for embedded typos.
1306   if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1307       !Result.get()->isTypeDependent())
1308     Result = CorrectDelayedTyposInExpr(Result.get());
1309   return Result;
1310 }
1311 
1312 ExprResult
1313 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1314                                 SourceLocation LParenOrBraceLoc,
1315                                 MultiExprArg Exprs,
1316                                 SourceLocation RParenOrBraceLoc,
1317                                 bool ListInitialization) {
1318   QualType Ty = TInfo->getType();
1319   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1320 
1321   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1322     // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1323     // directly. We work around this by dropping the locations of the braces.
1324     SourceRange Locs = ListInitialization
1325                            ? SourceRange()
1326                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1327     return CXXUnresolvedConstructExpr::Create(Context, TInfo, Locs.getBegin(),
1328                                               Exprs, Locs.getEnd());
1329   }
1330 
1331   assert((!ListInitialization ||
1332           (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&
1333          "List initialization must have initializer list as expression.");
1334   SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1335 
1336   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1337   InitializationKind Kind =
1338       Exprs.size()
1339           ? ListInitialization
1340                 ? InitializationKind::CreateDirectList(
1341                       TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1342                 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1343                                                    RParenOrBraceLoc)
1344           : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1345                                             RParenOrBraceLoc);
1346 
1347   // C++1z [expr.type.conv]p1:
1348   //   If the type is a placeholder for a deduced class type, [...perform class
1349   //   template argument deduction...]
1350   DeducedType *Deduced = Ty->getContainedDeducedType();
1351   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1352     Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1353                                                      Kind, Exprs);
1354     if (Ty.isNull())
1355       return ExprError();
1356     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1357   }
1358 
1359   // C++ [expr.type.conv]p1:
1360   // If the expression list is a parenthesized single expression, the type
1361   // conversion expression is equivalent (in definedness, and if defined in
1362   // meaning) to the corresponding cast expression.
1363   if (Exprs.size() == 1 && !ListInitialization &&
1364       !isa<InitListExpr>(Exprs[0])) {
1365     Expr *Arg = Exprs[0];
1366     return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1367                                       RParenOrBraceLoc);
1368   }
1369 
1370   //   For an expression of the form T(), T shall not be an array type.
1371   QualType ElemTy = Ty;
1372   if (Ty->isArrayType()) {
1373     if (!ListInitialization)
1374       return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1375                          << FullRange);
1376     ElemTy = Context.getBaseElementType(Ty);
1377   }
1378 
1379   // There doesn't seem to be an explicit rule against this but sanity demands
1380   // we only construct objects with object types.
1381   if (Ty->isFunctionType())
1382     return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1383                        << Ty << FullRange);
1384 
1385   // C++17 [expr.type.conv]p2:
1386   //   If the type is cv void and the initializer is (), the expression is a
1387   //   prvalue of the specified type that performs no initialization.
1388   if (!Ty->isVoidType() &&
1389       RequireCompleteType(TyBeginLoc, ElemTy,
1390                           diag::err_invalid_incomplete_type_use, FullRange))
1391     return ExprError();
1392 
1393   //   Otherwise, the expression is a prvalue of the specified type whose
1394   //   result object is direct-initialized (11.6) with the initializer.
1395   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1396   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1397 
1398   if (Result.isInvalid())
1399     return Result;
1400 
1401   Expr *Inner = Result.get();
1402   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1403     Inner = BTE->getSubExpr();
1404   if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1405       !isa<CXXScalarValueInitExpr>(Inner)) {
1406     // If we created a CXXTemporaryObjectExpr, that node also represents the
1407     // functional cast. Otherwise, create an explicit cast to represent
1408     // the syntactic form of a functional-style cast that was used here.
1409     //
1410     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1411     // would give a more consistent AST representation than using a
1412     // CXXTemporaryObjectExpr. It's also weird that the functional cast
1413     // is sometimes handled by initialization and sometimes not.
1414     QualType ResultType = Result.get()->getType();
1415     SourceRange Locs = ListInitialization
1416                            ? SourceRange()
1417                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1418     Result = CXXFunctionalCastExpr::Create(
1419         Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1420         Result.get(), /*Path=*/nullptr, Locs.getBegin(), Locs.getEnd());
1421   }
1422 
1423   return Result;
1424 }
1425 
1426 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1427   // [CUDA] Ignore this function, if we can't call it.
1428   const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1429   if (getLangOpts().CUDA &&
1430       IdentifyCUDAPreference(Caller, Method) <= CFP_WrongSide)
1431     return false;
1432 
1433   SmallVector<const FunctionDecl*, 4> PreventedBy;
1434   bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1435 
1436   if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1437     return Result;
1438 
1439   // In case of CUDA, return true if none of the 1-argument deallocator
1440   // functions are actually callable.
1441   return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1442     assert(FD->getNumParams() == 1 &&
1443            "Only single-operand functions should be in PreventedBy");
1444     return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1445   });
1446 }
1447 
1448 /// Determine whether the given function is a non-placement
1449 /// deallocation function.
1450 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1451   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1452     return S.isUsualDeallocationFunction(Method);
1453 
1454   if (FD->getOverloadedOperator() != OO_Delete &&
1455       FD->getOverloadedOperator() != OO_Array_Delete)
1456     return false;
1457 
1458   unsigned UsualParams = 1;
1459 
1460   if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1461       S.Context.hasSameUnqualifiedType(
1462           FD->getParamDecl(UsualParams)->getType(),
1463           S.Context.getSizeType()))
1464     ++UsualParams;
1465 
1466   if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1467       S.Context.hasSameUnqualifiedType(
1468           FD->getParamDecl(UsualParams)->getType(),
1469           S.Context.getTypeDeclType(S.getStdAlignValT())))
1470     ++UsualParams;
1471 
1472   return UsualParams == FD->getNumParams();
1473 }
1474 
1475 namespace {
1476   struct UsualDeallocFnInfo {
1477     UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1478     UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1479         : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1480           Destroying(false), HasSizeT(false), HasAlignValT(false),
1481           CUDAPref(Sema::CFP_Native) {
1482       // A function template declaration is never a usual deallocation function.
1483       if (!FD)
1484         return;
1485       unsigned NumBaseParams = 1;
1486       if (FD->isDestroyingOperatorDelete()) {
1487         Destroying = true;
1488         ++NumBaseParams;
1489       }
1490 
1491       if (NumBaseParams < FD->getNumParams() &&
1492           S.Context.hasSameUnqualifiedType(
1493               FD->getParamDecl(NumBaseParams)->getType(),
1494               S.Context.getSizeType())) {
1495         ++NumBaseParams;
1496         HasSizeT = true;
1497       }
1498 
1499       if (NumBaseParams < FD->getNumParams() &&
1500           FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1501         ++NumBaseParams;
1502         HasAlignValT = true;
1503       }
1504 
1505       // In CUDA, determine how much we'd like / dislike to call this.
1506       if (S.getLangOpts().CUDA)
1507         if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1508           CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1509     }
1510 
1511     explicit operator bool() const { return FD; }
1512 
1513     bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1514                       bool WantAlign) const {
1515       // C++ P0722:
1516       //   A destroying operator delete is preferred over a non-destroying
1517       //   operator delete.
1518       if (Destroying != Other.Destroying)
1519         return Destroying;
1520 
1521       // C++17 [expr.delete]p10:
1522       //   If the type has new-extended alignment, a function with a parameter
1523       //   of type std::align_val_t is preferred; otherwise a function without
1524       //   such a parameter is preferred
1525       if (HasAlignValT != Other.HasAlignValT)
1526         return HasAlignValT == WantAlign;
1527 
1528       if (HasSizeT != Other.HasSizeT)
1529         return HasSizeT == WantSize;
1530 
1531       // Use CUDA call preference as a tiebreaker.
1532       return CUDAPref > Other.CUDAPref;
1533     }
1534 
1535     DeclAccessPair Found;
1536     FunctionDecl *FD;
1537     bool Destroying, HasSizeT, HasAlignValT;
1538     Sema::CUDAFunctionPreference CUDAPref;
1539   };
1540 }
1541 
1542 /// Determine whether a type has new-extended alignment. This may be called when
1543 /// the type is incomplete (for a delete-expression with an incomplete pointee
1544 /// type), in which case it will conservatively return false if the alignment is
1545 /// not known.
1546 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1547   return S.getLangOpts().AlignedAllocation &&
1548          S.getASTContext().getTypeAlignIfKnown(AllocType) >
1549              S.getASTContext().getTargetInfo().getNewAlign();
1550 }
1551 
1552 /// Select the correct "usual" deallocation function to use from a selection of
1553 /// deallocation functions (either global or class-scope).
1554 static UsualDeallocFnInfo resolveDeallocationOverload(
1555     Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1556     llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1557   UsualDeallocFnInfo Best;
1558 
1559   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1560     UsualDeallocFnInfo Info(S, I.getPair());
1561     if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1562         Info.CUDAPref == Sema::CFP_Never)
1563       continue;
1564 
1565     if (!Best) {
1566       Best = Info;
1567       if (BestFns)
1568         BestFns->push_back(Info);
1569       continue;
1570     }
1571 
1572     if (Best.isBetterThan(Info, WantSize, WantAlign))
1573       continue;
1574 
1575     //   If more than one preferred function is found, all non-preferred
1576     //   functions are eliminated from further consideration.
1577     if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1578       BestFns->clear();
1579 
1580     Best = Info;
1581     if (BestFns)
1582       BestFns->push_back(Info);
1583   }
1584 
1585   return Best;
1586 }
1587 
1588 /// Determine whether a given type is a class for which 'delete[]' would call
1589 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1590 /// we need to store the array size (even if the type is
1591 /// trivially-destructible).
1592 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1593                                          QualType allocType) {
1594   const RecordType *record =
1595     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1596   if (!record) return false;
1597 
1598   // Try to find an operator delete[] in class scope.
1599 
1600   DeclarationName deleteName =
1601     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1602   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1603   S.LookupQualifiedName(ops, record->getDecl());
1604 
1605   // We're just doing this for information.
1606   ops.suppressDiagnostics();
1607 
1608   // Very likely: there's no operator delete[].
1609   if (ops.empty()) return false;
1610 
1611   // If it's ambiguous, it should be illegal to call operator delete[]
1612   // on this thing, so it doesn't matter if we allocate extra space or not.
1613   if (ops.isAmbiguous()) return false;
1614 
1615   // C++17 [expr.delete]p10:
1616   //   If the deallocation functions have class scope, the one without a
1617   //   parameter of type std::size_t is selected.
1618   auto Best = resolveDeallocationOverload(
1619       S, ops, /*WantSize*/false,
1620       /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1621   return Best && Best.HasSizeT;
1622 }
1623 
1624 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1625 ///
1626 /// E.g.:
1627 /// @code new (memory) int[size][4] @endcode
1628 /// or
1629 /// @code ::new Foo(23, "hello") @endcode
1630 ///
1631 /// \param StartLoc The first location of the expression.
1632 /// \param UseGlobal True if 'new' was prefixed with '::'.
1633 /// \param PlacementLParen Opening paren of the placement arguments.
1634 /// \param PlacementArgs Placement new arguments.
1635 /// \param PlacementRParen Closing paren of the placement arguments.
1636 /// \param TypeIdParens If the type is in parens, the source range.
1637 /// \param D The type to be allocated, as well as array dimensions.
1638 /// \param Initializer The initializing expression or initializer-list, or null
1639 ///   if there is none.
1640 ExprResult
1641 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1642                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1643                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
1644                   Declarator &D, Expr *Initializer) {
1645   Optional<Expr *> ArraySize;
1646   // If the specified type is an array, unwrap it and save the expression.
1647   if (D.getNumTypeObjects() > 0 &&
1648       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1649     DeclaratorChunk &Chunk = D.getTypeObject(0);
1650     if (D.getDeclSpec().hasAutoTypeSpec())
1651       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1652         << D.getSourceRange());
1653     if (Chunk.Arr.hasStatic)
1654       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1655         << D.getSourceRange());
1656     if (!Chunk.Arr.NumElts && !Initializer)
1657       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1658         << D.getSourceRange());
1659 
1660     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1661     D.DropFirstTypeObject();
1662   }
1663 
1664   // Every dimension shall be of constant size.
1665   if (ArraySize) {
1666     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1667       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1668         break;
1669 
1670       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1671       if (Expr *NumElts = (Expr *)Array.NumElts) {
1672         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1673           if (getLangOpts().CPlusPlus14) {
1674             // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1675             //   shall be a converted constant expression (5.19) of type std::size_t
1676             //   and shall evaluate to a strictly positive value.
1677             unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1678             assert(IntWidth && "Builtin type of size 0?");
1679             llvm::APSInt Value(IntWidth);
1680             Array.NumElts
1681              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1682                                                 CCEK_NewExpr)
1683                  .get();
1684           } else {
1685             Array.NumElts
1686               = VerifyIntegerConstantExpression(NumElts, nullptr,
1687                                                 diag::err_new_array_nonconst)
1688                   .get();
1689           }
1690           if (!Array.NumElts)
1691             return ExprError();
1692         }
1693       }
1694     }
1695   }
1696 
1697   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1698   QualType AllocType = TInfo->getType();
1699   if (D.isInvalidType())
1700     return ExprError();
1701 
1702   SourceRange DirectInitRange;
1703   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1704     DirectInitRange = List->getSourceRange();
1705 
1706   return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1707                      PlacementLParen, PlacementArgs, PlacementRParen,
1708                      TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1709                      Initializer);
1710 }
1711 
1712 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1713                                        Expr *Init) {
1714   if (!Init)
1715     return true;
1716   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1717     return PLE->getNumExprs() == 0;
1718   if (isa<ImplicitValueInitExpr>(Init))
1719     return true;
1720   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1721     return !CCE->isListInitialization() &&
1722            CCE->getConstructor()->isDefaultConstructor();
1723   else if (Style == CXXNewExpr::ListInit) {
1724     assert(isa<InitListExpr>(Init) &&
1725            "Shouldn't create list CXXConstructExprs for arrays.");
1726     return true;
1727   }
1728   return false;
1729 }
1730 
1731 bool
1732 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1733   if (!getLangOpts().AlignedAllocationUnavailable)
1734     return false;
1735   if (FD.isDefined())
1736     return false;
1737   bool IsAligned = false;
1738   if (FD.isReplaceableGlobalAllocationFunction(&IsAligned) && IsAligned)
1739     return true;
1740   return false;
1741 }
1742 
1743 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1744 // implemented in the standard library is selected.
1745 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1746                                                 SourceLocation Loc) {
1747   if (isUnavailableAlignedAllocationFunction(FD)) {
1748     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1749     StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1750         getASTContext().getTargetInfo().getPlatformName());
1751 
1752     OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1753     bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1754     Diag(Loc, diag::err_aligned_allocation_unavailable)
1755         << IsDelete << FD.getType().getAsString() << OSName
1756         << alignedAllocMinVersion(T.getOS()).getAsString();
1757     Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1758   }
1759 }
1760 
1761 ExprResult
1762 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1763                   SourceLocation PlacementLParen,
1764                   MultiExprArg PlacementArgs,
1765                   SourceLocation PlacementRParen,
1766                   SourceRange TypeIdParens,
1767                   QualType AllocType,
1768                   TypeSourceInfo *AllocTypeInfo,
1769                   Optional<Expr *> ArraySize,
1770                   SourceRange DirectInitRange,
1771                   Expr *Initializer) {
1772   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1773   SourceLocation StartLoc = Range.getBegin();
1774 
1775   CXXNewExpr::InitializationStyle initStyle;
1776   if (DirectInitRange.isValid()) {
1777     assert(Initializer && "Have parens but no initializer.");
1778     initStyle = CXXNewExpr::CallInit;
1779   } else if (Initializer && isa<InitListExpr>(Initializer))
1780     initStyle = CXXNewExpr::ListInit;
1781   else {
1782     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1783             isa<CXXConstructExpr>(Initializer)) &&
1784            "Initializer expression that cannot have been implicitly created.");
1785     initStyle = CXXNewExpr::NoInit;
1786   }
1787 
1788   Expr **Inits = &Initializer;
1789   unsigned NumInits = Initializer ? 1 : 0;
1790   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1791     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1792     Inits = List->getExprs();
1793     NumInits = List->getNumExprs();
1794   }
1795 
1796   // C++11 [expr.new]p15:
1797   //   A new-expression that creates an object of type T initializes that
1798   //   object as follows:
1799   InitializationKind Kind
1800       //     - If the new-initializer is omitted, the object is default-
1801       //       initialized (8.5); if no initialization is performed,
1802       //       the object has indeterminate value
1803       = initStyle == CXXNewExpr::NoInit
1804             ? InitializationKind::CreateDefault(TypeRange.getBegin())
1805             //     - Otherwise, the new-initializer is interpreted according to
1806             //     the
1807             //       initialization rules of 8.5 for direct-initialization.
1808             : initStyle == CXXNewExpr::ListInit
1809                   ? InitializationKind::CreateDirectList(
1810                         TypeRange.getBegin(), Initializer->getBeginLoc(),
1811                         Initializer->getEndLoc())
1812                   : InitializationKind::CreateDirect(TypeRange.getBegin(),
1813                                                      DirectInitRange.getBegin(),
1814                                                      DirectInitRange.getEnd());
1815 
1816   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1817   auto *Deduced = AllocType->getContainedDeducedType();
1818   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1819     if (ArraySize)
1820       return ExprError(
1821           Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
1822                diag::err_deduced_class_template_compound_type)
1823           << /*array*/ 2
1824           << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
1825 
1826     InitializedEntity Entity
1827       = InitializedEntity::InitializeNew(StartLoc, AllocType);
1828     AllocType = DeduceTemplateSpecializationFromInitializer(
1829         AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1830     if (AllocType.isNull())
1831       return ExprError();
1832   } else if (Deduced) {
1833     bool Braced = (initStyle == CXXNewExpr::ListInit);
1834     if (NumInits == 1) {
1835       if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1836         Inits = p->getInits();
1837         NumInits = p->getNumInits();
1838         Braced = true;
1839       }
1840     }
1841 
1842     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1843       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1844                        << AllocType << TypeRange);
1845     if (NumInits > 1) {
1846       Expr *FirstBad = Inits[1];
1847       return ExprError(Diag(FirstBad->getBeginLoc(),
1848                             diag::err_auto_new_ctor_multiple_expressions)
1849                        << AllocType << TypeRange);
1850     }
1851     if (Braced && !getLangOpts().CPlusPlus17)
1852       Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
1853           << AllocType << TypeRange;
1854     Expr *Deduce = Inits[0];
1855     QualType DeducedType;
1856     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1857       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1858                        << AllocType << Deduce->getType()
1859                        << TypeRange << Deduce->getSourceRange());
1860     if (DeducedType.isNull())
1861       return ExprError();
1862     AllocType = DeducedType;
1863   }
1864 
1865   // Per C++0x [expr.new]p5, the type being constructed may be a
1866   // typedef of an array type.
1867   if (!ArraySize) {
1868     if (const ConstantArrayType *Array
1869                               = Context.getAsConstantArrayType(AllocType)) {
1870       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1871                                          Context.getSizeType(),
1872                                          TypeRange.getEnd());
1873       AllocType = Array->getElementType();
1874     }
1875   }
1876 
1877   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1878     return ExprError();
1879 
1880   // In ARC, infer 'retaining' for the allocated
1881   if (getLangOpts().ObjCAutoRefCount &&
1882       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1883       AllocType->isObjCLifetimeType()) {
1884     AllocType = Context.getLifetimeQualifiedType(AllocType,
1885                                     AllocType->getObjCARCImplicitLifetime());
1886   }
1887 
1888   QualType ResultType = Context.getPointerType(AllocType);
1889 
1890   if (ArraySize && *ArraySize &&
1891       (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
1892     ExprResult result = CheckPlaceholderExpr(*ArraySize);
1893     if (result.isInvalid()) return ExprError();
1894     ArraySize = result.get();
1895   }
1896   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1897   //   integral or enumeration type with a non-negative value."
1898   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1899   //   enumeration type, or a class type for which a single non-explicit
1900   //   conversion function to integral or unscoped enumeration type exists.
1901   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1902   //   std::size_t.
1903   llvm::Optional<uint64_t> KnownArraySize;
1904   if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
1905     ExprResult ConvertedSize;
1906     if (getLangOpts().CPlusPlus14) {
1907       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
1908 
1909       ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
1910                                                 AA_Converting);
1911 
1912       if (!ConvertedSize.isInvalid() &&
1913           (*ArraySize)->getType()->getAs<RecordType>())
1914         // Diagnose the compatibility of this conversion.
1915         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1916           << (*ArraySize)->getType() << 0 << "'size_t'";
1917     } else {
1918       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1919       protected:
1920         Expr *ArraySize;
1921 
1922       public:
1923         SizeConvertDiagnoser(Expr *ArraySize)
1924             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1925               ArraySize(ArraySize) {}
1926 
1927         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1928                                              QualType T) override {
1929           return S.Diag(Loc, diag::err_array_size_not_integral)
1930                    << S.getLangOpts().CPlusPlus11 << T;
1931         }
1932 
1933         SemaDiagnosticBuilder diagnoseIncomplete(
1934             Sema &S, SourceLocation Loc, QualType T) override {
1935           return S.Diag(Loc, diag::err_array_size_incomplete_type)
1936                    << T << ArraySize->getSourceRange();
1937         }
1938 
1939         SemaDiagnosticBuilder diagnoseExplicitConv(
1940             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1941           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1942         }
1943 
1944         SemaDiagnosticBuilder noteExplicitConv(
1945             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1946           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1947                    << ConvTy->isEnumeralType() << ConvTy;
1948         }
1949 
1950         SemaDiagnosticBuilder diagnoseAmbiguous(
1951             Sema &S, SourceLocation Loc, QualType T) override {
1952           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1953         }
1954 
1955         SemaDiagnosticBuilder noteAmbiguous(
1956             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1957           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1958                    << ConvTy->isEnumeralType() << ConvTy;
1959         }
1960 
1961         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1962                                                  QualType T,
1963                                                  QualType ConvTy) override {
1964           return S.Diag(Loc,
1965                         S.getLangOpts().CPlusPlus11
1966                           ? diag::warn_cxx98_compat_array_size_conversion
1967                           : diag::ext_array_size_conversion)
1968                    << T << ConvTy->isEnumeralType() << ConvTy;
1969         }
1970       } SizeDiagnoser(*ArraySize);
1971 
1972       ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
1973                                                           SizeDiagnoser);
1974     }
1975     if (ConvertedSize.isInvalid())
1976       return ExprError();
1977 
1978     ArraySize = ConvertedSize.get();
1979     QualType SizeType = (*ArraySize)->getType();
1980 
1981     if (!SizeType->isIntegralOrUnscopedEnumerationType())
1982       return ExprError();
1983 
1984     // C++98 [expr.new]p7:
1985     //   The expression in a direct-new-declarator shall have integral type
1986     //   with a non-negative value.
1987     //
1988     // Let's see if this is a constant < 0. If so, we reject it out of hand,
1989     // per CWG1464. Otherwise, if it's not a constant, we must have an
1990     // unparenthesized array type.
1991     if (!(*ArraySize)->isValueDependent()) {
1992       llvm::APSInt Value;
1993       // We've already performed any required implicit conversion to integer or
1994       // unscoped enumeration type.
1995       // FIXME: Per CWG1464, we are required to check the value prior to
1996       // converting to size_t. This will never find a negative array size in
1997       // C++14 onwards, because Value is always unsigned here!
1998       if ((*ArraySize)->isIntegerConstantExpr(Value, Context)) {
1999         if (Value.isSigned() && Value.isNegative()) {
2000           return ExprError(Diag((*ArraySize)->getBeginLoc(),
2001                                 diag::err_typecheck_negative_array_size)
2002                            << (*ArraySize)->getSourceRange());
2003         }
2004 
2005         if (!AllocType->isDependentType()) {
2006           unsigned ActiveSizeBits =
2007             ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
2008           if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2009             return ExprError(
2010                 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2011                 << Value.toString(10) << (*ArraySize)->getSourceRange());
2012         }
2013 
2014         KnownArraySize = Value.getZExtValue();
2015       } else if (TypeIdParens.isValid()) {
2016         // Can't have dynamic array size when the type-id is in parentheses.
2017         Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2018             << (*ArraySize)->getSourceRange()
2019             << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2020             << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2021 
2022         TypeIdParens = SourceRange();
2023       }
2024     }
2025 
2026     // Note that we do *not* convert the argument in any way.  It can
2027     // be signed, larger than size_t, whatever.
2028   }
2029 
2030   FunctionDecl *OperatorNew = nullptr;
2031   FunctionDecl *OperatorDelete = nullptr;
2032   unsigned Alignment =
2033       AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2034   unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2035   bool PassAlignment = getLangOpts().AlignedAllocation &&
2036                        Alignment > NewAlignment;
2037 
2038   AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2039   if (!AllocType->isDependentType() &&
2040       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2041       FindAllocationFunctions(
2042           StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2043           AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs,
2044           OperatorNew, OperatorDelete))
2045     return ExprError();
2046 
2047   // If this is an array allocation, compute whether the usual array
2048   // deallocation function for the type has a size_t parameter.
2049   bool UsualArrayDeleteWantsSize = false;
2050   if (ArraySize && !AllocType->isDependentType())
2051     UsualArrayDeleteWantsSize =
2052         doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2053 
2054   SmallVector<Expr *, 8> AllPlaceArgs;
2055   if (OperatorNew) {
2056     const FunctionProtoType *Proto =
2057         OperatorNew->getType()->getAs<FunctionProtoType>();
2058     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2059                                                     : VariadicDoesNotApply;
2060 
2061     // We've already converted the placement args, just fill in any default
2062     // arguments. Skip the first parameter because we don't have a corresponding
2063     // argument. Skip the second parameter too if we're passing in the
2064     // alignment; we've already filled it in.
2065     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2066                                PassAlignment ? 2 : 1, PlacementArgs,
2067                                AllPlaceArgs, CallType))
2068       return ExprError();
2069 
2070     if (!AllPlaceArgs.empty())
2071       PlacementArgs = AllPlaceArgs;
2072 
2073     // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
2074     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
2075 
2076     // FIXME: Missing call to CheckFunctionCall or equivalent
2077 
2078     // Warn if the type is over-aligned and is being allocated by (unaligned)
2079     // global operator new.
2080     if (PlacementArgs.empty() && !PassAlignment &&
2081         (OperatorNew->isImplicit() ||
2082          (OperatorNew->getBeginLoc().isValid() &&
2083           getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2084       if (Alignment > NewAlignment)
2085         Diag(StartLoc, diag::warn_overaligned_type)
2086             << AllocType
2087             << unsigned(Alignment / Context.getCharWidth())
2088             << unsigned(NewAlignment / Context.getCharWidth());
2089     }
2090   }
2091 
2092   // Array 'new' can't have any initializers except empty parentheses.
2093   // Initializer lists are also allowed, in C++11. Rely on the parser for the
2094   // dialect distinction.
2095   if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2096     SourceRange InitRange(Inits[0]->getBeginLoc(),
2097                           Inits[NumInits - 1]->getEndLoc());
2098     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2099     return ExprError();
2100   }
2101 
2102   // If we can perform the initialization, and we've not already done so,
2103   // do it now.
2104   if (!AllocType->isDependentType() &&
2105       !Expr::hasAnyTypeDependentArguments(
2106           llvm::makeArrayRef(Inits, NumInits))) {
2107     // The type we initialize is the complete type, including the array bound.
2108     QualType InitType;
2109     if (KnownArraySize)
2110       InitType = Context.getConstantArrayType(
2111           AllocType, llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2112                                  *KnownArraySize),
2113           ArrayType::Normal, 0);
2114     else if (ArraySize)
2115       InitType =
2116           Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2117     else
2118       InitType = AllocType;
2119 
2120     InitializedEntity Entity
2121       = InitializedEntity::InitializeNew(StartLoc, InitType);
2122     InitializationSequence InitSeq(*this, Entity, Kind,
2123                                    MultiExprArg(Inits, NumInits));
2124     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2125                                           MultiExprArg(Inits, NumInits));
2126     if (FullInit.isInvalid())
2127       return ExprError();
2128 
2129     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2130     // we don't want the initialized object to be destructed.
2131     // FIXME: We should not create these in the first place.
2132     if (CXXBindTemporaryExpr *Binder =
2133             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2134       FullInit = Binder->getSubExpr();
2135 
2136     Initializer = FullInit.get();
2137 
2138     // FIXME: If we have a KnownArraySize, check that the array bound of the
2139     // initializer is no greater than that constant value.
2140 
2141     if (ArraySize && !*ArraySize) {
2142       auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2143       if (CAT) {
2144         // FIXME: Track that the array size was inferred rather than explicitly
2145         // specified.
2146         ArraySize = IntegerLiteral::Create(
2147             Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2148       } else {
2149         Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2150             << Initializer->getSourceRange();
2151       }
2152     }
2153   }
2154 
2155   // Mark the new and delete operators as referenced.
2156   if (OperatorNew) {
2157     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2158       return ExprError();
2159     MarkFunctionReferenced(StartLoc, OperatorNew);
2160   }
2161   if (OperatorDelete) {
2162     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2163       return ExprError();
2164     MarkFunctionReferenced(StartLoc, OperatorDelete);
2165   }
2166 
2167   return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2168                             PassAlignment, UsualArrayDeleteWantsSize,
2169                             PlacementArgs, TypeIdParens, ArraySize, initStyle,
2170                             Initializer, ResultType, AllocTypeInfo, Range,
2171                             DirectInitRange);
2172 }
2173 
2174 /// Checks that a type is suitable as the allocated type
2175 /// in a new-expression.
2176 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2177                               SourceRange R) {
2178   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2179   //   abstract class type or array thereof.
2180   if (AllocType->isFunctionType())
2181     return Diag(Loc, diag::err_bad_new_type)
2182       << AllocType << 0 << R;
2183   else if (AllocType->isReferenceType())
2184     return Diag(Loc, diag::err_bad_new_type)
2185       << AllocType << 1 << R;
2186   else if (!AllocType->isDependentType() &&
2187            RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
2188     return true;
2189   else if (RequireNonAbstractType(Loc, AllocType,
2190                                   diag::err_allocation_of_abstract_type))
2191     return true;
2192   else if (AllocType->isVariablyModifiedType())
2193     return Diag(Loc, diag::err_variably_modified_new_type)
2194              << AllocType;
2195   else if (AllocType.getAddressSpace() != LangAS::Default &&
2196            !getLangOpts().OpenCLCPlusPlus)
2197     return Diag(Loc, diag::err_address_space_qualified_new)
2198       << AllocType.getUnqualifiedType()
2199       << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2200   else if (getLangOpts().ObjCAutoRefCount) {
2201     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2202       QualType BaseAllocType = Context.getBaseElementType(AT);
2203       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2204           BaseAllocType->isObjCLifetimeType())
2205         return Diag(Loc, diag::err_arc_new_array_without_ownership)
2206           << BaseAllocType;
2207     }
2208   }
2209 
2210   return false;
2211 }
2212 
2213 static bool resolveAllocationOverload(
2214     Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2215     bool &PassAlignment, FunctionDecl *&Operator,
2216     OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2217   OverloadCandidateSet Candidates(R.getNameLoc(),
2218                                   OverloadCandidateSet::CSK_Normal);
2219   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2220        Alloc != AllocEnd; ++Alloc) {
2221     // Even member operator new/delete are implicitly treated as
2222     // static, so don't use AddMemberCandidate.
2223     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2224 
2225     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2226       S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2227                                      /*ExplicitTemplateArgs=*/nullptr, Args,
2228                                      Candidates,
2229                                      /*SuppressUserConversions=*/false);
2230       continue;
2231     }
2232 
2233     FunctionDecl *Fn = cast<FunctionDecl>(D);
2234     S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2235                            /*SuppressUserConversions=*/false);
2236   }
2237 
2238   // Do the resolution.
2239   OverloadCandidateSet::iterator Best;
2240   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2241   case OR_Success: {
2242     // Got one!
2243     FunctionDecl *FnDecl = Best->Function;
2244     if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2245                                 Best->FoundDecl) == Sema::AR_inaccessible)
2246       return true;
2247 
2248     Operator = FnDecl;
2249     return false;
2250   }
2251 
2252   case OR_No_Viable_Function:
2253     // C++17 [expr.new]p13:
2254     //   If no matching function is found and the allocated object type has
2255     //   new-extended alignment, the alignment argument is removed from the
2256     //   argument list, and overload resolution is performed again.
2257     if (PassAlignment) {
2258       PassAlignment = false;
2259       AlignArg = Args[1];
2260       Args.erase(Args.begin() + 1);
2261       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2262                                        Operator, &Candidates, AlignArg,
2263                                        Diagnose);
2264     }
2265 
2266     // MSVC will fall back on trying to find a matching global operator new
2267     // if operator new[] cannot be found.  Also, MSVC will leak by not
2268     // generating a call to operator delete or operator delete[], but we
2269     // will not replicate that bug.
2270     // FIXME: Find out how this interacts with the std::align_val_t fallback
2271     // once MSVC implements it.
2272     if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2273         S.Context.getLangOpts().MSVCCompat) {
2274       R.clear();
2275       R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2276       S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2277       // FIXME: This will give bad diagnostics pointing at the wrong functions.
2278       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2279                                        Operator, /*Candidates=*/nullptr,
2280                                        /*AlignArg=*/nullptr, Diagnose);
2281     }
2282 
2283     if (Diagnose) {
2284       PartialDiagnosticAt PD(R.getNameLoc(), S.PDiag(diag::err_ovl_no_viable_function_in_call)
2285           << R.getLookupName() << Range);
2286 
2287       // If we have aligned candidates, only note the align_val_t candidates
2288       // from AlignedCandidates and the non-align_val_t candidates from
2289       // Candidates.
2290       if (AlignedCandidates) {
2291         auto IsAligned = [](OverloadCandidate &C) {
2292           return C.Function->getNumParams() > 1 &&
2293                  C.Function->getParamDecl(1)->getType()->isAlignValT();
2294         };
2295         auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2296 
2297         // This was an overaligned allocation, so list the aligned candidates
2298         // first.
2299         Args.insert(Args.begin() + 1, AlignArg);
2300         AlignedCandidates->NoteCandidates(PD, S, OCD_AllCandidates, Args, "",
2301                                           R.getNameLoc(), IsAligned);
2302         Args.erase(Args.begin() + 1);
2303         Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args, "", R.getNameLoc(),
2304                                   IsUnaligned);
2305       } else {
2306         Candidates.NoteCandidates(PD, S, OCD_AllCandidates, Args);
2307       }
2308     }
2309     return true;
2310 
2311   case OR_Ambiguous:
2312     if (Diagnose) {
2313       Candidates.NoteCandidates(
2314           PartialDiagnosticAt(R.getNameLoc(),
2315                               S.PDiag(diag::err_ovl_ambiguous_call)
2316                                   << R.getLookupName() << Range),
2317           S, OCD_ViableCandidates, Args);
2318     }
2319     return true;
2320 
2321   case OR_Deleted: {
2322     if (Diagnose) {
2323       Candidates.NoteCandidates(
2324           PartialDiagnosticAt(R.getNameLoc(),
2325                               S.PDiag(diag::err_ovl_deleted_call)
2326                                   << R.getLookupName() << Range),
2327           S, OCD_AllCandidates, Args);
2328     }
2329     return true;
2330   }
2331   }
2332   llvm_unreachable("Unreachable, bad result from BestViableFunction");
2333 }
2334 
2335 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2336                                    AllocationFunctionScope NewScope,
2337                                    AllocationFunctionScope DeleteScope,
2338                                    QualType AllocType, bool IsArray,
2339                                    bool &PassAlignment, MultiExprArg PlaceArgs,
2340                                    FunctionDecl *&OperatorNew,
2341                                    FunctionDecl *&OperatorDelete,
2342                                    bool Diagnose) {
2343   // --- Choosing an allocation function ---
2344   // C++ 5.3.4p8 - 14 & 18
2345   // 1) If looking in AFS_Global scope for allocation functions, only look in
2346   //    the global scope. Else, if AFS_Class, only look in the scope of the
2347   //    allocated class. If AFS_Both, look in both.
2348   // 2) If an array size is given, look for operator new[], else look for
2349   //   operator new.
2350   // 3) The first argument is always size_t. Append the arguments from the
2351   //   placement form.
2352 
2353   SmallVector<Expr*, 8> AllocArgs;
2354   AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2355 
2356   // We don't care about the actual value of these arguments.
2357   // FIXME: Should the Sema create the expression and embed it in the syntax
2358   // tree? Or should the consumer just recalculate the value?
2359   // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2360   IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2361                       Context.getTargetInfo().getPointerWidth(0)),
2362                       Context.getSizeType(),
2363                       SourceLocation());
2364   AllocArgs.push_back(&Size);
2365 
2366   QualType AlignValT = Context.VoidTy;
2367   if (PassAlignment) {
2368     DeclareGlobalNewDelete();
2369     AlignValT = Context.getTypeDeclType(getStdAlignValT());
2370   }
2371   CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2372   if (PassAlignment)
2373     AllocArgs.push_back(&Align);
2374 
2375   AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2376 
2377   // C++ [expr.new]p8:
2378   //   If the allocated type is a non-array type, the allocation
2379   //   function's name is operator new and the deallocation function's
2380   //   name is operator delete. If the allocated type is an array
2381   //   type, the allocation function's name is operator new[] and the
2382   //   deallocation function's name is operator delete[].
2383   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2384       IsArray ? OO_Array_New : OO_New);
2385 
2386   QualType AllocElemType = Context.getBaseElementType(AllocType);
2387 
2388   // Find the allocation function.
2389   {
2390     LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2391 
2392     // C++1z [expr.new]p9:
2393     //   If the new-expression begins with a unary :: operator, the allocation
2394     //   function's name is looked up in the global scope. Otherwise, if the
2395     //   allocated type is a class type T or array thereof, the allocation
2396     //   function's name is looked up in the scope of T.
2397     if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2398       LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2399 
2400     // We can see ambiguity here if the allocation function is found in
2401     // multiple base classes.
2402     if (R.isAmbiguous())
2403       return true;
2404 
2405     //   If this lookup fails to find the name, or if the allocated type is not
2406     //   a class type, the allocation function's name is looked up in the
2407     //   global scope.
2408     if (R.empty()) {
2409       if (NewScope == AFS_Class)
2410         return true;
2411 
2412       LookupQualifiedName(R, Context.getTranslationUnitDecl());
2413     }
2414 
2415     if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2416       if (PlaceArgs.empty()) {
2417         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2418       } else {
2419         Diag(StartLoc, diag::err_openclcxx_placement_new);
2420       }
2421       return true;
2422     }
2423 
2424     assert(!R.empty() && "implicitly declared allocation functions not found");
2425     assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2426 
2427     // We do our own custom access checks below.
2428     R.suppressDiagnostics();
2429 
2430     if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2431                                   OperatorNew, /*Candidates=*/nullptr,
2432                                   /*AlignArg=*/nullptr, Diagnose))
2433       return true;
2434   }
2435 
2436   // We don't need an operator delete if we're running under -fno-exceptions.
2437   if (!getLangOpts().Exceptions) {
2438     OperatorDelete = nullptr;
2439     return false;
2440   }
2441 
2442   // Note, the name of OperatorNew might have been changed from array to
2443   // non-array by resolveAllocationOverload.
2444   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2445       OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2446           ? OO_Array_Delete
2447           : OO_Delete);
2448 
2449   // C++ [expr.new]p19:
2450   //
2451   //   If the new-expression begins with a unary :: operator, the
2452   //   deallocation function's name is looked up in the global
2453   //   scope. Otherwise, if the allocated type is a class type T or an
2454   //   array thereof, the deallocation function's name is looked up in
2455   //   the scope of T. If this lookup fails to find the name, or if
2456   //   the allocated type is not a class type or array thereof, the
2457   //   deallocation function's name is looked up in the global scope.
2458   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2459   if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2460     CXXRecordDecl *RD
2461       = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
2462     LookupQualifiedName(FoundDelete, RD);
2463   }
2464   if (FoundDelete.isAmbiguous())
2465     return true; // FIXME: clean up expressions?
2466 
2467   bool FoundGlobalDelete = FoundDelete.empty();
2468   if (FoundDelete.empty()) {
2469     if (DeleteScope == AFS_Class)
2470       return true;
2471 
2472     DeclareGlobalNewDelete();
2473     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2474   }
2475 
2476   FoundDelete.suppressDiagnostics();
2477 
2478   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2479 
2480   // Whether we're looking for a placement operator delete is dictated
2481   // by whether we selected a placement operator new, not by whether
2482   // we had explicit placement arguments.  This matters for things like
2483   //   struct A { void *operator new(size_t, int = 0); ... };
2484   //   A *a = new A()
2485   //
2486   // We don't have any definition for what a "placement allocation function"
2487   // is, but we assume it's any allocation function whose
2488   // parameter-declaration-clause is anything other than (size_t).
2489   //
2490   // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2491   // This affects whether an exception from the constructor of an overaligned
2492   // type uses the sized or non-sized form of aligned operator delete.
2493   bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2494                         OperatorNew->isVariadic();
2495 
2496   if (isPlacementNew) {
2497     // C++ [expr.new]p20:
2498     //   A declaration of a placement deallocation function matches the
2499     //   declaration of a placement allocation function if it has the
2500     //   same number of parameters and, after parameter transformations
2501     //   (8.3.5), all parameter types except the first are
2502     //   identical. [...]
2503     //
2504     // To perform this comparison, we compute the function type that
2505     // the deallocation function should have, and use that type both
2506     // for template argument deduction and for comparison purposes.
2507     QualType ExpectedFunctionType;
2508     {
2509       const FunctionProtoType *Proto
2510         = OperatorNew->getType()->getAs<FunctionProtoType>();
2511 
2512       SmallVector<QualType, 4> ArgTypes;
2513       ArgTypes.push_back(Context.VoidPtrTy);
2514       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2515         ArgTypes.push_back(Proto->getParamType(I));
2516 
2517       FunctionProtoType::ExtProtoInfo EPI;
2518       // FIXME: This is not part of the standard's rule.
2519       EPI.Variadic = Proto->isVariadic();
2520 
2521       ExpectedFunctionType
2522         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2523     }
2524 
2525     for (LookupResult::iterator D = FoundDelete.begin(),
2526                              DEnd = FoundDelete.end();
2527          D != DEnd; ++D) {
2528       FunctionDecl *Fn = nullptr;
2529       if (FunctionTemplateDecl *FnTmpl =
2530               dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2531         // Perform template argument deduction to try to match the
2532         // expected function type.
2533         TemplateDeductionInfo Info(StartLoc);
2534         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2535                                     Info))
2536           continue;
2537       } else
2538         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2539 
2540       if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2541                                                   ExpectedFunctionType,
2542                                                   /*AdjustExcpetionSpec*/true),
2543                               ExpectedFunctionType))
2544         Matches.push_back(std::make_pair(D.getPair(), Fn));
2545     }
2546 
2547     if (getLangOpts().CUDA)
2548       EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2549   } else {
2550     // C++1y [expr.new]p22:
2551     //   For a non-placement allocation function, the normal deallocation
2552     //   function lookup is used
2553     //
2554     // Per [expr.delete]p10, this lookup prefers a member operator delete
2555     // without a size_t argument, but prefers a non-member operator delete
2556     // with a size_t where possible (which it always is in this case).
2557     llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2558     UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2559         *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2560         /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2561         &BestDeallocFns);
2562     if (Selected)
2563       Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2564     else {
2565       // If we failed to select an operator, all remaining functions are viable
2566       // but ambiguous.
2567       for (auto Fn : BestDeallocFns)
2568         Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2569     }
2570   }
2571 
2572   // C++ [expr.new]p20:
2573   //   [...] If the lookup finds a single matching deallocation
2574   //   function, that function will be called; otherwise, no
2575   //   deallocation function will be called.
2576   if (Matches.size() == 1) {
2577     OperatorDelete = Matches[0].second;
2578 
2579     // C++1z [expr.new]p23:
2580     //   If the lookup finds a usual deallocation function (3.7.4.2)
2581     //   with a parameter of type std::size_t and that function, considered
2582     //   as a placement deallocation function, would have been
2583     //   selected as a match for the allocation function, the program
2584     //   is ill-formed.
2585     if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2586         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2587       UsualDeallocFnInfo Info(*this,
2588                               DeclAccessPair::make(OperatorDelete, AS_public));
2589       // Core issue, per mail to core reflector, 2016-10-09:
2590       //   If this is a member operator delete, and there is a corresponding
2591       //   non-sized member operator delete, this isn't /really/ a sized
2592       //   deallocation function, it just happens to have a size_t parameter.
2593       bool IsSizedDelete = Info.HasSizeT;
2594       if (IsSizedDelete && !FoundGlobalDelete) {
2595         auto NonSizedDelete =
2596             resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2597                                         /*WantAlign*/Info.HasAlignValT);
2598         if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2599             NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2600           IsSizedDelete = false;
2601       }
2602 
2603       if (IsSizedDelete) {
2604         SourceRange R = PlaceArgs.empty()
2605                             ? SourceRange()
2606                             : SourceRange(PlaceArgs.front()->getBeginLoc(),
2607                                           PlaceArgs.back()->getEndLoc());
2608         Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2609         if (!OperatorDelete->isImplicit())
2610           Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2611               << DeleteName;
2612       }
2613     }
2614 
2615     CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2616                           Matches[0].first);
2617   } else if (!Matches.empty()) {
2618     // We found multiple suitable operators. Per [expr.new]p20, that means we
2619     // call no 'operator delete' function, but we should at least warn the user.
2620     // FIXME: Suppress this warning if the construction cannot throw.
2621     Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2622       << DeleteName << AllocElemType;
2623 
2624     for (auto &Match : Matches)
2625       Diag(Match.second->getLocation(),
2626            diag::note_member_declared_here) << DeleteName;
2627   }
2628 
2629   return false;
2630 }
2631 
2632 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2633 /// delete. These are:
2634 /// @code
2635 ///   // C++03:
2636 ///   void* operator new(std::size_t) throw(std::bad_alloc);
2637 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
2638 ///   void operator delete(void *) throw();
2639 ///   void operator delete[](void *) throw();
2640 ///   // C++11:
2641 ///   void* operator new(std::size_t);
2642 ///   void* operator new[](std::size_t);
2643 ///   void operator delete(void *) noexcept;
2644 ///   void operator delete[](void *) noexcept;
2645 ///   // C++1y:
2646 ///   void* operator new(std::size_t);
2647 ///   void* operator new[](std::size_t);
2648 ///   void operator delete(void *) noexcept;
2649 ///   void operator delete[](void *) noexcept;
2650 ///   void operator delete(void *, std::size_t) noexcept;
2651 ///   void operator delete[](void *, std::size_t) noexcept;
2652 /// @endcode
2653 /// Note that the placement and nothrow forms of new are *not* implicitly
2654 /// declared. Their use requires including \<new\>.
2655 void Sema::DeclareGlobalNewDelete() {
2656   if (GlobalNewDeleteDeclared)
2657     return;
2658 
2659   // The implicitly declared new and delete operators
2660   // are not supported in OpenCL.
2661   if (getLangOpts().OpenCLCPlusPlus)
2662     return;
2663 
2664   // C++ [basic.std.dynamic]p2:
2665   //   [...] The following allocation and deallocation functions (18.4) are
2666   //   implicitly declared in global scope in each translation unit of a
2667   //   program
2668   //
2669   //     C++03:
2670   //     void* operator new(std::size_t) throw(std::bad_alloc);
2671   //     void* operator new[](std::size_t) throw(std::bad_alloc);
2672   //     void  operator delete(void*) throw();
2673   //     void  operator delete[](void*) throw();
2674   //     C++11:
2675   //     void* operator new(std::size_t);
2676   //     void* operator new[](std::size_t);
2677   //     void  operator delete(void*) noexcept;
2678   //     void  operator delete[](void*) noexcept;
2679   //     C++1y:
2680   //     void* operator new(std::size_t);
2681   //     void* operator new[](std::size_t);
2682   //     void  operator delete(void*) noexcept;
2683   //     void  operator delete[](void*) noexcept;
2684   //     void  operator delete(void*, std::size_t) noexcept;
2685   //     void  operator delete[](void*, std::size_t) noexcept;
2686   //
2687   //   These implicit declarations introduce only the function names operator
2688   //   new, operator new[], operator delete, operator delete[].
2689   //
2690   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2691   // "std" or "bad_alloc" as necessary to form the exception specification.
2692   // However, we do not make these implicit declarations visible to name
2693   // lookup.
2694   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2695     // The "std::bad_alloc" class has not yet been declared, so build it
2696     // implicitly.
2697     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2698                                         getOrCreateStdNamespace(),
2699                                         SourceLocation(), SourceLocation(),
2700                                       &PP.getIdentifierTable().get("bad_alloc"),
2701                                         nullptr);
2702     getStdBadAlloc()->setImplicit(true);
2703   }
2704   if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2705     // The "std::align_val_t" enum class has not yet been declared, so build it
2706     // implicitly.
2707     auto *AlignValT = EnumDecl::Create(
2708         Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2709         &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2710     AlignValT->setIntegerType(Context.getSizeType());
2711     AlignValT->setPromotionType(Context.getSizeType());
2712     AlignValT->setImplicit(true);
2713     StdAlignValT = AlignValT;
2714   }
2715 
2716   GlobalNewDeleteDeclared = true;
2717 
2718   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2719   QualType SizeT = Context.getSizeType();
2720 
2721   auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2722                                               QualType Return, QualType Param) {
2723     llvm::SmallVector<QualType, 3> Params;
2724     Params.push_back(Param);
2725 
2726     // Create up to four variants of the function (sized/aligned).
2727     bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2728                            (Kind == OO_Delete || Kind == OO_Array_Delete);
2729     bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2730 
2731     int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2732     int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2733     for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2734       if (Sized)
2735         Params.push_back(SizeT);
2736 
2737       for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2738         if (Aligned)
2739           Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2740 
2741         DeclareGlobalAllocationFunction(
2742             Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2743 
2744         if (Aligned)
2745           Params.pop_back();
2746       }
2747     }
2748   };
2749 
2750   DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
2751   DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
2752   DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
2753   DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
2754 }
2755 
2756 /// DeclareGlobalAllocationFunction - Declares a single implicit global
2757 /// allocation function if it doesn't already exist.
2758 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2759                                            QualType Return,
2760                                            ArrayRef<QualType> Params) {
2761   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2762 
2763   // Check if this function is already declared.
2764   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2765   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2766        Alloc != AllocEnd; ++Alloc) {
2767     // Only look at non-template functions, as it is the predefined,
2768     // non-templated allocation function we are trying to declare here.
2769     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2770       if (Func->getNumParams() == Params.size()) {
2771         llvm::SmallVector<QualType, 3> FuncParams;
2772         for (auto *P : Func->parameters())
2773           FuncParams.push_back(
2774               Context.getCanonicalType(P->getType().getUnqualifiedType()));
2775         if (llvm::makeArrayRef(FuncParams) == Params) {
2776           // Make the function visible to name lookup, even if we found it in
2777           // an unimported module. It either is an implicitly-declared global
2778           // allocation function, or is suppressing that function.
2779           Func->setVisibleDespiteOwningModule();
2780           return;
2781         }
2782       }
2783     }
2784   }
2785 
2786   FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
2787       /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
2788 
2789   QualType BadAllocType;
2790   bool HasBadAllocExceptionSpec
2791     = (Name.getCXXOverloadedOperator() == OO_New ||
2792        Name.getCXXOverloadedOperator() == OO_Array_New);
2793   if (HasBadAllocExceptionSpec) {
2794     if (!getLangOpts().CPlusPlus11) {
2795       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2796       assert(StdBadAlloc && "Must have std::bad_alloc declared");
2797       EPI.ExceptionSpec.Type = EST_Dynamic;
2798       EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2799     }
2800   } else {
2801     EPI.ExceptionSpec =
2802         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2803   }
2804 
2805   auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
2806     QualType FnType = Context.getFunctionType(Return, Params, EPI);
2807     FunctionDecl *Alloc = FunctionDecl::Create(
2808         Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
2809         FnType, /*TInfo=*/nullptr, SC_None, false, true);
2810     Alloc->setImplicit();
2811     // Global allocation functions should always be visible.
2812     Alloc->setVisibleDespiteOwningModule();
2813 
2814     Alloc->addAttr(VisibilityAttr::CreateImplicit(
2815         Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
2816                      ? VisibilityAttr::Hidden
2817                      : VisibilityAttr::Default));
2818 
2819     llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
2820     for (QualType T : Params) {
2821       ParamDecls.push_back(ParmVarDecl::Create(
2822           Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
2823           /*TInfo=*/nullptr, SC_None, nullptr));
2824       ParamDecls.back()->setImplicit();
2825     }
2826     Alloc->setParams(ParamDecls);
2827     if (ExtraAttr)
2828       Alloc->addAttr(ExtraAttr);
2829     Context.getTranslationUnitDecl()->addDecl(Alloc);
2830     IdResolver.tryAddTopLevelDecl(Alloc, Name);
2831   };
2832 
2833   if (!LangOpts.CUDA)
2834     CreateAllocationFunctionDecl(nullptr);
2835   else {
2836     // Host and device get their own declaration so each can be
2837     // defined or re-declared independently.
2838     CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
2839     CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
2840   }
2841 }
2842 
2843 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2844                                                   bool CanProvideSize,
2845                                                   bool Overaligned,
2846                                                   DeclarationName Name) {
2847   DeclareGlobalNewDelete();
2848 
2849   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2850   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2851 
2852   // FIXME: It's possible for this to result in ambiguity, through a
2853   // user-declared variadic operator delete or the enable_if attribute. We
2854   // should probably not consider those cases to be usual deallocation
2855   // functions. But for now we just make an arbitrary choice in that case.
2856   auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
2857                                             Overaligned);
2858   assert(Result.FD && "operator delete missing from global scope?");
2859   return Result.FD;
2860 }
2861 
2862 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
2863                                                           CXXRecordDecl *RD) {
2864   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2865 
2866   FunctionDecl *OperatorDelete = nullptr;
2867   if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2868     return nullptr;
2869   if (OperatorDelete)
2870     return OperatorDelete;
2871 
2872   // If there's no class-specific operator delete, look up the global
2873   // non-array delete.
2874   return FindUsualDeallocationFunction(
2875       Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
2876       Name);
2877 }
2878 
2879 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2880                                     DeclarationName Name,
2881                                     FunctionDecl *&Operator, bool Diagnose) {
2882   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2883   // Try to find operator delete/operator delete[] in class scope.
2884   LookupQualifiedName(Found, RD);
2885 
2886   if (Found.isAmbiguous())
2887     return true;
2888 
2889   Found.suppressDiagnostics();
2890 
2891   bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
2892 
2893   // C++17 [expr.delete]p10:
2894   //   If the deallocation functions have class scope, the one without a
2895   //   parameter of type std::size_t is selected.
2896   llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
2897   resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
2898                               /*WantAlign*/ Overaligned, &Matches);
2899 
2900   // If we could find an overload, use it.
2901   if (Matches.size() == 1) {
2902     Operator = cast<CXXMethodDecl>(Matches[0].FD);
2903 
2904     // FIXME: DiagnoseUseOfDecl?
2905     if (Operator->isDeleted()) {
2906       if (Diagnose) {
2907         Diag(StartLoc, diag::err_deleted_function_use);
2908         NoteDeletedFunction(Operator);
2909       }
2910       return true;
2911     }
2912 
2913     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2914                               Matches[0].Found, Diagnose) == AR_inaccessible)
2915       return true;
2916 
2917     return false;
2918   }
2919 
2920   // We found multiple suitable operators; complain about the ambiguity.
2921   // FIXME: The standard doesn't say to do this; it appears that the intent
2922   // is that this should never happen.
2923   if (!Matches.empty()) {
2924     if (Diagnose) {
2925       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2926         << Name << RD;
2927       for (auto &Match : Matches)
2928         Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
2929     }
2930     return true;
2931   }
2932 
2933   // We did find operator delete/operator delete[] declarations, but
2934   // none of them were suitable.
2935   if (!Found.empty()) {
2936     if (Diagnose) {
2937       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2938         << Name << RD;
2939 
2940       for (NamedDecl *D : Found)
2941         Diag(D->getUnderlyingDecl()->getLocation(),
2942              diag::note_member_declared_here) << Name;
2943     }
2944     return true;
2945   }
2946 
2947   Operator = nullptr;
2948   return false;
2949 }
2950 
2951 namespace {
2952 /// Checks whether delete-expression, and new-expression used for
2953 ///  initializing deletee have the same array form.
2954 class MismatchingNewDeleteDetector {
2955 public:
2956   enum MismatchResult {
2957     /// Indicates that there is no mismatch or a mismatch cannot be proven.
2958     NoMismatch,
2959     /// Indicates that variable is initialized with mismatching form of \a new.
2960     VarInitMismatches,
2961     /// Indicates that member is initialized with mismatching form of \a new.
2962     MemberInitMismatches,
2963     /// Indicates that 1 or more constructors' definitions could not been
2964     /// analyzed, and they will be checked again at the end of translation unit.
2965     AnalyzeLater
2966   };
2967 
2968   /// \param EndOfTU True, if this is the final analysis at the end of
2969   /// translation unit. False, if this is the initial analysis at the point
2970   /// delete-expression was encountered.
2971   explicit MismatchingNewDeleteDetector(bool EndOfTU)
2972       : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
2973         HasUndefinedConstructors(false) {}
2974 
2975   /// Checks whether pointee of a delete-expression is initialized with
2976   /// matching form of new-expression.
2977   ///
2978   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2979   /// point where delete-expression is encountered, then a warning will be
2980   /// issued immediately. If return value is \c AnalyzeLater at the point where
2981   /// delete-expression is seen, then member will be analyzed at the end of
2982   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2983   /// couldn't be analyzed. If at least one constructor initializes the member
2984   /// with matching type of new, the return value is \c NoMismatch.
2985   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
2986   /// Analyzes a class member.
2987   /// \param Field Class member to analyze.
2988   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
2989   /// for deleting the \p Field.
2990   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
2991   FieldDecl *Field;
2992   /// List of mismatching new-expressions used for initialization of the pointee
2993   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
2994   /// Indicates whether delete-expression was in array form.
2995   bool IsArrayForm;
2996 
2997 private:
2998   const bool EndOfTU;
2999   /// Indicates that there is at least one constructor without body.
3000   bool HasUndefinedConstructors;
3001   /// Returns \c CXXNewExpr from given initialization expression.
3002   /// \param E Expression used for initializing pointee in delete-expression.
3003   /// E can be a single-element \c InitListExpr consisting of new-expression.
3004   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3005   /// Returns whether member is initialized with mismatching form of
3006   /// \c new either by the member initializer or in-class initialization.
3007   ///
3008   /// If bodies of all constructors are not visible at the end of translation
3009   /// unit or at least one constructor initializes member with the matching
3010   /// form of \c new, mismatch cannot be proven, and this function will return
3011   /// \c NoMismatch.
3012   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3013   /// Returns whether variable is initialized with mismatching form of
3014   /// \c new.
3015   ///
3016   /// If variable is initialized with matching form of \c new or variable is not
3017   /// initialized with a \c new expression, this function will return true.
3018   /// If variable is initialized with mismatching form of \c new, returns false.
3019   /// \param D Variable to analyze.
3020   bool hasMatchingVarInit(const DeclRefExpr *D);
3021   /// Checks whether the constructor initializes pointee with mismatching
3022   /// form of \c new.
3023   ///
3024   /// Returns true, if member is initialized with matching form of \c new in
3025   /// member initializer list. Returns false, if member is initialized with the
3026   /// matching form of \c new in this constructor's initializer or given
3027   /// constructor isn't defined at the point where delete-expression is seen, or
3028   /// member isn't initialized by the constructor.
3029   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3030   /// Checks whether member is initialized with matching form of
3031   /// \c new in member initializer list.
3032   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3033   /// Checks whether member is initialized with mismatching form of \c new by
3034   /// in-class initializer.
3035   MismatchResult analyzeInClassInitializer();
3036 };
3037 }
3038 
3039 MismatchingNewDeleteDetector::MismatchResult
3040 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3041   NewExprs.clear();
3042   assert(DE && "Expected delete-expression");
3043   IsArrayForm = DE->isArrayForm();
3044   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3045   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3046     return analyzeMemberExpr(ME);
3047   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3048     if (!hasMatchingVarInit(D))
3049       return VarInitMismatches;
3050   }
3051   return NoMismatch;
3052 }
3053 
3054 const CXXNewExpr *
3055 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3056   assert(E != nullptr && "Expected a valid initializer expression");
3057   E = E->IgnoreParenImpCasts();
3058   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3059     if (ILE->getNumInits() == 1)
3060       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3061   }
3062 
3063   return dyn_cast_or_null<const CXXNewExpr>(E);
3064 }
3065 
3066 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3067     const CXXCtorInitializer *CI) {
3068   const CXXNewExpr *NE = nullptr;
3069   if (Field == CI->getMember() &&
3070       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3071     if (NE->isArray() == IsArrayForm)
3072       return true;
3073     else
3074       NewExprs.push_back(NE);
3075   }
3076   return false;
3077 }
3078 
3079 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3080     const CXXConstructorDecl *CD) {
3081   if (CD->isImplicit())
3082     return false;
3083   const FunctionDecl *Definition = CD;
3084   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3085     HasUndefinedConstructors = true;
3086     return EndOfTU;
3087   }
3088   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3089     if (hasMatchingNewInCtorInit(CI))
3090       return true;
3091   }
3092   return false;
3093 }
3094 
3095 MismatchingNewDeleteDetector::MismatchResult
3096 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3097   assert(Field != nullptr && "This should be called only for members");
3098   const Expr *InitExpr = Field->getInClassInitializer();
3099   if (!InitExpr)
3100     return EndOfTU ? NoMismatch : AnalyzeLater;
3101   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3102     if (NE->isArray() != IsArrayForm) {
3103       NewExprs.push_back(NE);
3104       return MemberInitMismatches;
3105     }
3106   }
3107   return NoMismatch;
3108 }
3109 
3110 MismatchingNewDeleteDetector::MismatchResult
3111 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3112                                            bool DeleteWasArrayForm) {
3113   assert(Field != nullptr && "Analysis requires a valid class member.");
3114   this->Field = Field;
3115   IsArrayForm = DeleteWasArrayForm;
3116   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3117   for (const auto *CD : RD->ctors()) {
3118     if (hasMatchingNewInCtor(CD))
3119       return NoMismatch;
3120   }
3121   if (HasUndefinedConstructors)
3122     return EndOfTU ? NoMismatch : AnalyzeLater;
3123   if (!NewExprs.empty())
3124     return MemberInitMismatches;
3125   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3126                                         : NoMismatch;
3127 }
3128 
3129 MismatchingNewDeleteDetector::MismatchResult
3130 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3131   assert(ME != nullptr && "Expected a member expression");
3132   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3133     return analyzeField(F, IsArrayForm);
3134   return NoMismatch;
3135 }
3136 
3137 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3138   const CXXNewExpr *NE = nullptr;
3139   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3140     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3141         NE->isArray() != IsArrayForm) {
3142       NewExprs.push_back(NE);
3143     }
3144   }
3145   return NewExprs.empty();
3146 }
3147 
3148 static void
3149 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3150                             const MismatchingNewDeleteDetector &Detector) {
3151   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3152   FixItHint H;
3153   if (!Detector.IsArrayForm)
3154     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3155   else {
3156     SourceLocation RSquare = Lexer::findLocationAfterToken(
3157         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3158         SemaRef.getLangOpts(), true);
3159     if (RSquare.isValid())
3160       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3161   }
3162   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3163       << Detector.IsArrayForm << H;
3164 
3165   for (const auto *NE : Detector.NewExprs)
3166     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3167         << Detector.IsArrayForm;
3168 }
3169 
3170 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3171   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3172     return;
3173   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3174   switch (Detector.analyzeDeleteExpr(DE)) {
3175   case MismatchingNewDeleteDetector::VarInitMismatches:
3176   case MismatchingNewDeleteDetector::MemberInitMismatches: {
3177     DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3178     break;
3179   }
3180   case MismatchingNewDeleteDetector::AnalyzeLater: {
3181     DeleteExprs[Detector.Field].push_back(
3182         std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3183     break;
3184   }
3185   case MismatchingNewDeleteDetector::NoMismatch:
3186     break;
3187   }
3188 }
3189 
3190 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3191                                      bool DeleteWasArrayForm) {
3192   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3193   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3194   case MismatchingNewDeleteDetector::VarInitMismatches:
3195     llvm_unreachable("This analysis should have been done for class members.");
3196   case MismatchingNewDeleteDetector::AnalyzeLater:
3197     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3198                      "translation unit.");
3199   case MismatchingNewDeleteDetector::MemberInitMismatches:
3200     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3201     break;
3202   case MismatchingNewDeleteDetector::NoMismatch:
3203     break;
3204   }
3205 }
3206 
3207 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3208 /// @code ::delete ptr; @endcode
3209 /// or
3210 /// @code delete [] ptr; @endcode
3211 ExprResult
3212 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3213                      bool ArrayForm, Expr *ExE) {
3214   // C++ [expr.delete]p1:
3215   //   The operand shall have a pointer type, or a class type having a single
3216   //   non-explicit conversion function to a pointer type. The result has type
3217   //   void.
3218   //
3219   // DR599 amends "pointer type" to "pointer to object type" in both cases.
3220 
3221   ExprResult Ex = ExE;
3222   FunctionDecl *OperatorDelete = nullptr;
3223   bool ArrayFormAsWritten = ArrayForm;
3224   bool UsualArrayDeleteWantsSize = false;
3225 
3226   if (!Ex.get()->isTypeDependent()) {
3227     // Perform lvalue-to-rvalue cast, if needed.
3228     Ex = DefaultLvalueConversion(Ex.get());
3229     if (Ex.isInvalid())
3230       return ExprError();
3231 
3232     QualType Type = Ex.get()->getType();
3233 
3234     class DeleteConverter : public ContextualImplicitConverter {
3235     public:
3236       DeleteConverter() : ContextualImplicitConverter(false, true) {}
3237 
3238       bool match(QualType ConvType) override {
3239         // FIXME: If we have an operator T* and an operator void*, we must pick
3240         // the operator T*.
3241         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3242           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3243             return true;
3244         return false;
3245       }
3246 
3247       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3248                                             QualType T) override {
3249         return S.Diag(Loc, diag::err_delete_operand) << T;
3250       }
3251 
3252       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3253                                                QualType T) override {
3254         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3255       }
3256 
3257       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3258                                                  QualType T,
3259                                                  QualType ConvTy) override {
3260         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3261       }
3262 
3263       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3264                                              QualType ConvTy) override {
3265         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3266           << ConvTy;
3267       }
3268 
3269       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3270                                               QualType T) override {
3271         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3272       }
3273 
3274       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3275                                           QualType ConvTy) override {
3276         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3277           << ConvTy;
3278       }
3279 
3280       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3281                                                QualType T,
3282                                                QualType ConvTy) override {
3283         llvm_unreachable("conversion functions are permitted");
3284       }
3285     } Converter;
3286 
3287     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3288     if (Ex.isInvalid())
3289       return ExprError();
3290     Type = Ex.get()->getType();
3291     if (!Converter.match(Type))
3292       // FIXME: PerformContextualImplicitConversion should return ExprError
3293       //        itself in this case.
3294       return ExprError();
3295 
3296     QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
3297     QualType PointeeElem = Context.getBaseElementType(Pointee);
3298 
3299     if (Pointee.getAddressSpace() != LangAS::Default &&
3300         !getLangOpts().OpenCLCPlusPlus)
3301       return Diag(Ex.get()->getBeginLoc(),
3302                   diag::err_address_space_qualified_delete)
3303              << Pointee.getUnqualifiedType()
3304              << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3305 
3306     CXXRecordDecl *PointeeRD = nullptr;
3307     if (Pointee->isVoidType() && !isSFINAEContext()) {
3308       // The C++ standard bans deleting a pointer to a non-object type, which
3309       // effectively bans deletion of "void*". However, most compilers support
3310       // this, so we treat it as a warning unless we're in a SFINAE context.
3311       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3312         << Type << Ex.get()->getSourceRange();
3313     } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
3314       return ExprError(Diag(StartLoc, diag::err_delete_operand)
3315         << Type << Ex.get()->getSourceRange());
3316     } else if (!Pointee->isDependentType()) {
3317       // FIXME: This can result in errors if the definition was imported from a
3318       // module but is hidden.
3319       if (!RequireCompleteType(StartLoc, Pointee,
3320                                diag::warn_delete_incomplete, Ex.get())) {
3321         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3322           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3323       }
3324     }
3325 
3326     if (Pointee->isArrayType() && !ArrayForm) {
3327       Diag(StartLoc, diag::warn_delete_array_type)
3328           << Type << Ex.get()->getSourceRange()
3329           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3330       ArrayForm = true;
3331     }
3332 
3333     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3334                                       ArrayForm ? OO_Array_Delete : OO_Delete);
3335 
3336     if (PointeeRD) {
3337       if (!UseGlobal &&
3338           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3339                                    OperatorDelete))
3340         return ExprError();
3341 
3342       // If we're allocating an array of records, check whether the
3343       // usual operator delete[] has a size_t parameter.
3344       if (ArrayForm) {
3345         // If the user specifically asked to use the global allocator,
3346         // we'll need to do the lookup into the class.
3347         if (UseGlobal)
3348           UsualArrayDeleteWantsSize =
3349             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3350 
3351         // Otherwise, the usual operator delete[] should be the
3352         // function we just found.
3353         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3354           UsualArrayDeleteWantsSize =
3355             UsualDeallocFnInfo(*this,
3356                                DeclAccessPair::make(OperatorDelete, AS_public))
3357               .HasSizeT;
3358       }
3359 
3360       if (!PointeeRD->hasIrrelevantDestructor())
3361         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3362           MarkFunctionReferenced(StartLoc,
3363                                     const_cast<CXXDestructorDecl*>(Dtor));
3364           if (DiagnoseUseOfDecl(Dtor, StartLoc))
3365             return ExprError();
3366         }
3367 
3368       CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3369                            /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3370                            /*WarnOnNonAbstractTypes=*/!ArrayForm,
3371                            SourceLocation());
3372     }
3373 
3374     if (!OperatorDelete) {
3375       if (getLangOpts().OpenCLCPlusPlus) {
3376         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3377         return ExprError();
3378       }
3379 
3380       bool IsComplete = isCompleteType(StartLoc, Pointee);
3381       bool CanProvideSize =
3382           IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3383                          Pointee.isDestructedType());
3384       bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3385 
3386       // Look for a global declaration.
3387       OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3388                                                      Overaligned, DeleteName);
3389     }
3390 
3391     MarkFunctionReferenced(StartLoc, OperatorDelete);
3392 
3393     // Check access and ambiguity of destructor if we're going to call it.
3394     // Note that this is required even for a virtual delete.
3395     bool IsVirtualDelete = false;
3396     if (PointeeRD) {
3397       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3398         CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3399                               PDiag(diag::err_access_dtor) << PointeeElem);
3400         IsVirtualDelete = Dtor->isVirtual();
3401       }
3402     }
3403 
3404     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3405 
3406     // Convert the operand to the type of the first parameter of operator
3407     // delete. This is only necessary if we selected a destroying operator
3408     // delete that we are going to call (non-virtually); converting to void*
3409     // is trivial and left to AST consumers to handle.
3410     QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3411     if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3412       Qualifiers Qs = Pointee.getQualifiers();
3413       if (Qs.hasCVRQualifiers()) {
3414         // Qualifiers are irrelevant to this conversion; we're only looking
3415         // for access and ambiguity.
3416         Qs.removeCVRQualifiers();
3417         QualType Unqual = Context.getPointerType(
3418             Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3419         Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3420       }
3421       Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3422       if (Ex.isInvalid())
3423         return ExprError();
3424     }
3425   }
3426 
3427   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3428       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3429       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3430   AnalyzeDeleteExprMismatch(Result);
3431   return Result;
3432 }
3433 
3434 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3435                                             bool IsDelete,
3436                                             FunctionDecl *&Operator) {
3437 
3438   DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3439       IsDelete ? OO_Delete : OO_New);
3440 
3441   LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3442   S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3443   assert(!R.empty() && "implicitly declared allocation functions not found");
3444   assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3445 
3446   // We do our own custom access checks below.
3447   R.suppressDiagnostics();
3448 
3449   SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3450   OverloadCandidateSet Candidates(R.getNameLoc(),
3451                                   OverloadCandidateSet::CSK_Normal);
3452   for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3453        FnOvl != FnOvlEnd; ++FnOvl) {
3454     // Even member operator new/delete are implicitly treated as
3455     // static, so don't use AddMemberCandidate.
3456     NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3457 
3458     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3459       S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3460                                      /*ExplicitTemplateArgs=*/nullptr, Args,
3461                                      Candidates,
3462                                      /*SuppressUserConversions=*/false);
3463       continue;
3464     }
3465 
3466     FunctionDecl *Fn = cast<FunctionDecl>(D);
3467     S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3468                            /*SuppressUserConversions=*/false);
3469   }
3470 
3471   SourceRange Range = TheCall->getSourceRange();
3472 
3473   // Do the resolution.
3474   OverloadCandidateSet::iterator Best;
3475   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3476   case OR_Success: {
3477     // Got one!
3478     FunctionDecl *FnDecl = Best->Function;
3479     assert(R.getNamingClass() == nullptr &&
3480            "class members should not be considered");
3481 
3482     if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3483       S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3484           << (IsDelete ? 1 : 0) << Range;
3485       S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3486           << R.getLookupName() << FnDecl->getSourceRange();
3487       return true;
3488     }
3489 
3490     Operator = FnDecl;
3491     return false;
3492   }
3493 
3494   case OR_No_Viable_Function:
3495     Candidates.NoteCandidates(
3496         PartialDiagnosticAt(R.getNameLoc(),
3497                             S.PDiag(diag::err_ovl_no_viable_function_in_call)
3498                                 << R.getLookupName() << Range),
3499         S, OCD_AllCandidates, Args);
3500     return true;
3501 
3502   case OR_Ambiguous:
3503     Candidates.NoteCandidates(
3504         PartialDiagnosticAt(R.getNameLoc(),
3505                             S.PDiag(diag::err_ovl_ambiguous_call)
3506                                 << R.getLookupName() << Range),
3507         S, OCD_ViableCandidates, Args);
3508     return true;
3509 
3510   case OR_Deleted: {
3511     Candidates.NoteCandidates(
3512         PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3513                                                 << R.getLookupName() << Range),
3514         S, OCD_AllCandidates, Args);
3515     return true;
3516   }
3517   }
3518   llvm_unreachable("Unreachable, bad result from BestViableFunction");
3519 }
3520 
3521 ExprResult
3522 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3523                                              bool IsDelete) {
3524   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3525   if (!getLangOpts().CPlusPlus) {
3526     Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3527         << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3528         << "C++";
3529     return ExprError();
3530   }
3531   // CodeGen assumes it can find the global new and delete to call,
3532   // so ensure that they are declared.
3533   DeclareGlobalNewDelete();
3534 
3535   FunctionDecl *OperatorNewOrDelete = nullptr;
3536   if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3537                                       OperatorNewOrDelete))
3538     return ExprError();
3539   assert(OperatorNewOrDelete && "should be found");
3540 
3541   DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3542   MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3543 
3544   TheCall->setType(OperatorNewOrDelete->getReturnType());
3545   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3546     QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3547     InitializedEntity Entity =
3548         InitializedEntity::InitializeParameter(Context, ParamTy, false);
3549     ExprResult Arg = PerformCopyInitialization(
3550         Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3551     if (Arg.isInvalid())
3552       return ExprError();
3553     TheCall->setArg(i, Arg.get());
3554   }
3555   auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3556   assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3557          "Callee expected to be implicit cast to a builtin function pointer");
3558   Callee->setType(OperatorNewOrDelete->getType());
3559 
3560   return TheCallResult;
3561 }
3562 
3563 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3564                                 bool IsDelete, bool CallCanBeVirtual,
3565                                 bool WarnOnNonAbstractTypes,
3566                                 SourceLocation DtorLoc) {
3567   if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3568     return;
3569 
3570   // C++ [expr.delete]p3:
3571   //   In the first alternative (delete object), if the static type of the
3572   //   object to be deleted is different from its dynamic type, the static
3573   //   type shall be a base class of the dynamic type of the object to be
3574   //   deleted and the static type shall have a virtual destructor or the
3575   //   behavior is undefined.
3576   //
3577   const CXXRecordDecl *PointeeRD = dtor->getParent();
3578   // Note: a final class cannot be derived from, no issue there
3579   if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3580     return;
3581 
3582   // If the superclass is in a system header, there's nothing that can be done.
3583   // The `delete` (where we emit the warning) can be in a system header,
3584   // what matters for this warning is where the deleted type is defined.
3585   if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3586     return;
3587 
3588   QualType ClassType = dtor->getThisType()->getPointeeType();
3589   if (PointeeRD->isAbstract()) {
3590     // If the class is abstract, we warn by default, because we're
3591     // sure the code has undefined behavior.
3592     Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3593                                                            << ClassType;
3594   } else if (WarnOnNonAbstractTypes) {
3595     // Otherwise, if this is not an array delete, it's a bit suspect,
3596     // but not necessarily wrong.
3597     Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3598                                                   << ClassType;
3599   }
3600   if (!IsDelete) {
3601     std::string TypeStr;
3602     ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3603     Diag(DtorLoc, diag::note_delete_non_virtual)
3604         << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3605   }
3606 }
3607 
3608 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3609                                                    SourceLocation StmtLoc,
3610                                                    ConditionKind CK) {
3611   ExprResult E =
3612       CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3613   if (E.isInvalid())
3614     return ConditionError();
3615   return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3616                          CK == ConditionKind::ConstexprIf);
3617 }
3618 
3619 /// Check the use of the given variable as a C++ condition in an if,
3620 /// while, do-while, or switch statement.
3621 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3622                                         SourceLocation StmtLoc,
3623                                         ConditionKind CK) {
3624   if (ConditionVar->isInvalidDecl())
3625     return ExprError();
3626 
3627   QualType T = ConditionVar->getType();
3628 
3629   // C++ [stmt.select]p2:
3630   //   The declarator shall not specify a function or an array.
3631   if (T->isFunctionType())
3632     return ExprError(Diag(ConditionVar->getLocation(),
3633                           diag::err_invalid_use_of_function_type)
3634                        << ConditionVar->getSourceRange());
3635   else if (T->isArrayType())
3636     return ExprError(Diag(ConditionVar->getLocation(),
3637                           diag::err_invalid_use_of_array_type)
3638                      << ConditionVar->getSourceRange());
3639 
3640   ExprResult Condition = BuildDeclRefExpr(
3641       ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3642       ConditionVar->getLocation());
3643 
3644   switch (CK) {
3645   case ConditionKind::Boolean:
3646     return CheckBooleanCondition(StmtLoc, Condition.get());
3647 
3648   case ConditionKind::ConstexprIf:
3649     return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3650 
3651   case ConditionKind::Switch:
3652     return CheckSwitchCondition(StmtLoc, Condition.get());
3653   }
3654 
3655   llvm_unreachable("unexpected condition kind");
3656 }
3657 
3658 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3659 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3660   // C++ 6.4p4:
3661   // The value of a condition that is an initialized declaration in a statement
3662   // other than a switch statement is the value of the declared variable
3663   // implicitly converted to type bool. If that conversion is ill-formed, the
3664   // program is ill-formed.
3665   // The value of a condition that is an expression is the value of the
3666   // expression, implicitly converted to bool.
3667   //
3668   // FIXME: Return this value to the caller so they don't need to recompute it.
3669   llvm::APSInt Value(/*BitWidth*/1);
3670   return (IsConstexpr && !CondExpr->isValueDependent())
3671              ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
3672                                                 CCEK_ConstexprIf)
3673              : PerformContextuallyConvertToBool(CondExpr);
3674 }
3675 
3676 /// Helper function to determine whether this is the (deprecated) C++
3677 /// conversion from a string literal to a pointer to non-const char or
3678 /// non-const wchar_t (for narrow and wide string literals,
3679 /// respectively).
3680 bool
3681 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3682   // Look inside the implicit cast, if it exists.
3683   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3684     From = Cast->getSubExpr();
3685 
3686   // A string literal (2.13.4) that is not a wide string literal can
3687   // be converted to an rvalue of type "pointer to char"; a wide
3688   // string literal can be converted to an rvalue of type "pointer
3689   // to wchar_t" (C++ 4.2p2).
3690   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3691     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3692       if (const BuiltinType *ToPointeeType
3693           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3694         // This conversion is considered only when there is an
3695         // explicit appropriate pointer target type (C++ 4.2p2).
3696         if (!ToPtrType->getPointeeType().hasQualifiers()) {
3697           switch (StrLit->getKind()) {
3698             case StringLiteral::UTF8:
3699             case StringLiteral::UTF16:
3700             case StringLiteral::UTF32:
3701               // We don't allow UTF literals to be implicitly converted
3702               break;
3703             case StringLiteral::Ascii:
3704               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3705                       ToPointeeType->getKind() == BuiltinType::Char_S);
3706             case StringLiteral::Wide:
3707               return Context.typesAreCompatible(Context.getWideCharType(),
3708                                                 QualType(ToPointeeType, 0));
3709           }
3710         }
3711       }
3712 
3713   return false;
3714 }
3715 
3716 static ExprResult BuildCXXCastArgument(Sema &S,
3717                                        SourceLocation CastLoc,
3718                                        QualType Ty,
3719                                        CastKind Kind,
3720                                        CXXMethodDecl *Method,
3721                                        DeclAccessPair FoundDecl,
3722                                        bool HadMultipleCandidates,
3723                                        Expr *From) {
3724   switch (Kind) {
3725   default: llvm_unreachable("Unhandled cast kind!");
3726   case CK_ConstructorConversion: {
3727     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3728     SmallVector<Expr*, 8> ConstructorArgs;
3729 
3730     if (S.RequireNonAbstractType(CastLoc, Ty,
3731                                  diag::err_allocation_of_abstract_type))
3732       return ExprError();
3733 
3734     if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
3735       return ExprError();
3736 
3737     S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
3738                              InitializedEntity::InitializeTemporary(Ty));
3739     if (S.DiagnoseUseOfDecl(Method, CastLoc))
3740       return ExprError();
3741 
3742     ExprResult Result = S.BuildCXXConstructExpr(
3743         CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
3744         ConstructorArgs, HadMultipleCandidates,
3745         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3746         CXXConstructExpr::CK_Complete, SourceRange());
3747     if (Result.isInvalid())
3748       return ExprError();
3749 
3750     return S.MaybeBindToTemporary(Result.getAs<Expr>());
3751   }
3752 
3753   case CK_UserDefinedConversion: {
3754     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
3755 
3756     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
3757     if (S.DiagnoseUseOfDecl(Method, CastLoc))
3758       return ExprError();
3759 
3760     // Create an implicit call expr that calls it.
3761     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
3762     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
3763                                                  HadMultipleCandidates);
3764     if (Result.isInvalid())
3765       return ExprError();
3766     // Record usage of conversion in an implicit cast.
3767     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
3768                                       CK_UserDefinedConversion, Result.get(),
3769                                       nullptr, Result.get()->getValueKind());
3770 
3771     return S.MaybeBindToTemporary(Result.get());
3772   }
3773   }
3774 }
3775 
3776 /// PerformImplicitConversion - Perform an implicit conversion of the
3777 /// expression From to the type ToType using the pre-computed implicit
3778 /// conversion sequence ICS. Returns the converted
3779 /// expression. Action is the kind of conversion we're performing,
3780 /// used in the error message.
3781 ExprResult
3782 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3783                                 const ImplicitConversionSequence &ICS,
3784                                 AssignmentAction Action,
3785                                 CheckedConversionKind CCK) {
3786   // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
3787   if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
3788     return From;
3789 
3790   switch (ICS.getKind()) {
3791   case ImplicitConversionSequence::StandardConversion: {
3792     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
3793                                                Action, CCK);
3794     if (Res.isInvalid())
3795       return ExprError();
3796     From = Res.get();
3797     break;
3798   }
3799 
3800   case ImplicitConversionSequence::UserDefinedConversion: {
3801 
3802       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
3803       CastKind CastKind;
3804       QualType BeforeToType;
3805       assert(FD && "no conversion function for user-defined conversion seq");
3806       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
3807         CastKind = CK_UserDefinedConversion;
3808 
3809         // If the user-defined conversion is specified by a conversion function,
3810         // the initial standard conversion sequence converts the source type to
3811         // the implicit object parameter of the conversion function.
3812         BeforeToType = Context.getTagDeclType(Conv->getParent());
3813       } else {
3814         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3815         CastKind = CK_ConstructorConversion;
3816         // Do no conversion if dealing with ... for the first conversion.
3817         if (!ICS.UserDefined.EllipsisConversion) {
3818           // If the user-defined conversion is specified by a constructor, the
3819           // initial standard conversion sequence converts the source type to
3820           // the type required by the argument of the constructor
3821           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3822         }
3823       }
3824       // Watch out for ellipsis conversion.
3825       if (!ICS.UserDefined.EllipsisConversion) {
3826         ExprResult Res =
3827           PerformImplicitConversion(From, BeforeToType,
3828                                     ICS.UserDefined.Before, AA_Converting,
3829                                     CCK);
3830         if (Res.isInvalid())
3831           return ExprError();
3832         From = Res.get();
3833       }
3834 
3835       ExprResult CastArg = BuildCXXCastArgument(
3836           *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
3837           cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
3838           ICS.UserDefined.HadMultipleCandidates, From);
3839 
3840       if (CastArg.isInvalid())
3841         return ExprError();
3842 
3843       From = CastArg.get();
3844 
3845       // C++ [over.match.oper]p7:
3846       //   [...] the second standard conversion sequence of a user-defined
3847       //   conversion sequence is not applied.
3848       if (CCK == CCK_ForBuiltinOverloadedOp)
3849         return From;
3850 
3851       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3852                                        AA_Converting, CCK);
3853   }
3854 
3855   case ImplicitConversionSequence::AmbiguousConversion:
3856     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3857                           PDiag(diag::err_typecheck_ambiguous_condition)
3858                             << From->getSourceRange());
3859      return ExprError();
3860 
3861   case ImplicitConversionSequence::EllipsisConversion:
3862     llvm_unreachable("Cannot perform an ellipsis conversion");
3863 
3864   case ImplicitConversionSequence::BadConversion:
3865     bool Diagnosed =
3866         DiagnoseAssignmentResult(Incompatible, From->getExprLoc(), ToType,
3867                                  From->getType(), From, Action);
3868     assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
3869     return ExprError();
3870   }
3871 
3872   // Everything went well.
3873   return From;
3874 }
3875 
3876 /// PerformImplicitConversion - Perform an implicit conversion of the
3877 /// expression From to the type ToType by following the standard
3878 /// conversion sequence SCS. Returns the converted
3879 /// expression. Flavor is the context in which we're performing this
3880 /// conversion, for use in error messages.
3881 ExprResult
3882 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3883                                 const StandardConversionSequence& SCS,
3884                                 AssignmentAction Action,
3885                                 CheckedConversionKind CCK) {
3886   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3887 
3888   // Overall FIXME: we are recomputing too many types here and doing far too
3889   // much extra work. What this means is that we need to keep track of more
3890   // information that is computed when we try the implicit conversion initially,
3891   // so that we don't need to recompute anything here.
3892   QualType FromType = From->getType();
3893 
3894   if (SCS.CopyConstructor) {
3895     // FIXME: When can ToType be a reference type?
3896     assert(!ToType->isReferenceType());
3897     if (SCS.Second == ICK_Derived_To_Base) {
3898       SmallVector<Expr*, 8> ConstructorArgs;
3899       if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3900                                   From, /*FIXME:ConstructLoc*/SourceLocation(),
3901                                   ConstructorArgs))
3902         return ExprError();
3903       return BuildCXXConstructExpr(
3904           /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3905           SCS.FoundCopyConstructor, SCS.CopyConstructor,
3906           ConstructorArgs, /*HadMultipleCandidates*/ false,
3907           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3908           CXXConstructExpr::CK_Complete, SourceRange());
3909     }
3910     return BuildCXXConstructExpr(
3911         /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3912         SCS.FoundCopyConstructor, SCS.CopyConstructor,
3913         From, /*HadMultipleCandidates*/ false,
3914         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3915         CXXConstructExpr::CK_Complete, SourceRange());
3916   }
3917 
3918   // Resolve overloaded function references.
3919   if (Context.hasSameType(FromType, Context.OverloadTy)) {
3920     DeclAccessPair Found;
3921     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
3922                                                           true, Found);
3923     if (!Fn)
3924       return ExprError();
3925 
3926     if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
3927       return ExprError();
3928 
3929     From = FixOverloadedFunctionReference(From, Found, Fn);
3930     FromType = From->getType();
3931   }
3932 
3933   // If we're converting to an atomic type, first convert to the corresponding
3934   // non-atomic type.
3935   QualType ToAtomicType;
3936   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3937     ToAtomicType = ToType;
3938     ToType = ToAtomic->getValueType();
3939   }
3940 
3941   QualType InitialFromType = FromType;
3942   // Perform the first implicit conversion.
3943   switch (SCS.First) {
3944   case ICK_Identity:
3945     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3946       FromType = FromAtomic->getValueType().getUnqualifiedType();
3947       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3948                                       From, /*BasePath=*/nullptr, VK_RValue);
3949     }
3950     break;
3951 
3952   case ICK_Lvalue_To_Rvalue: {
3953     assert(From->getObjectKind() != OK_ObjCProperty);
3954     ExprResult FromRes = DefaultLvalueConversion(From);
3955     assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
3956     From = FromRes.get();
3957     FromType = From->getType();
3958     break;
3959   }
3960 
3961   case ICK_Array_To_Pointer:
3962     FromType = Context.getArrayDecayedType(FromType);
3963     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
3964                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
3965     break;
3966 
3967   case ICK_Function_To_Pointer:
3968     FromType = Context.getPointerType(FromType);
3969     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
3970                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
3971     break;
3972 
3973   default:
3974     llvm_unreachable("Improper first standard conversion");
3975   }
3976 
3977   // Perform the second implicit conversion
3978   switch (SCS.Second) {
3979   case ICK_Identity:
3980     // C++ [except.spec]p5:
3981     //   [For] assignment to and initialization of pointers to functions,
3982     //   pointers to member functions, and references to functions: the
3983     //   target entity shall allow at least the exceptions allowed by the
3984     //   source value in the assignment or initialization.
3985     switch (Action) {
3986     case AA_Assigning:
3987     case AA_Initializing:
3988       // Note, function argument passing and returning are initialization.
3989     case AA_Passing:
3990     case AA_Returning:
3991     case AA_Sending:
3992     case AA_Passing_CFAudited:
3993       if (CheckExceptionSpecCompatibility(From, ToType))
3994         return ExprError();
3995       break;
3996 
3997     case AA_Casting:
3998     case AA_Converting:
3999       // Casts and implicit conversions are not initialization, so are not
4000       // checked for exception specification mismatches.
4001       break;
4002     }
4003     // Nothing else to do.
4004     break;
4005 
4006   case ICK_Integral_Promotion:
4007   case ICK_Integral_Conversion:
4008     if (ToType->isBooleanType()) {
4009       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4010              SCS.Second == ICK_Integral_Promotion &&
4011              "only enums with fixed underlying type can promote to bool");
4012       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
4013                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4014     } else {
4015       From = ImpCastExprToType(From, ToType, CK_IntegralCast,
4016                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4017     }
4018     break;
4019 
4020   case ICK_Floating_Promotion:
4021   case ICK_Floating_Conversion:
4022     From = ImpCastExprToType(From, ToType, CK_FloatingCast,
4023                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4024     break;
4025 
4026   case ICK_Complex_Promotion:
4027   case ICK_Complex_Conversion: {
4028     QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
4029     QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
4030     CastKind CK;
4031     if (FromEl->isRealFloatingType()) {
4032       if (ToEl->isRealFloatingType())
4033         CK = CK_FloatingComplexCast;
4034       else
4035         CK = CK_FloatingComplexToIntegralComplex;
4036     } else if (ToEl->isRealFloatingType()) {
4037       CK = CK_IntegralComplexToFloatingComplex;
4038     } else {
4039       CK = CK_IntegralComplexCast;
4040     }
4041     From = ImpCastExprToType(From, ToType, CK,
4042                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4043     break;
4044   }
4045 
4046   case ICK_Floating_Integral:
4047     if (ToType->isRealFloatingType())
4048       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
4049                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4050     else
4051       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
4052                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4053     break;
4054 
4055   case ICK_Compatible_Conversion:
4056       From = ImpCastExprToType(From, ToType, CK_NoOp,
4057                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4058     break;
4059 
4060   case ICK_Writeback_Conversion:
4061   case ICK_Pointer_Conversion: {
4062     if (SCS.IncompatibleObjC && Action != AA_Casting) {
4063       // Diagnose incompatible Objective-C conversions
4064       if (Action == AA_Initializing || Action == AA_Assigning)
4065         Diag(From->getBeginLoc(),
4066              diag::ext_typecheck_convert_incompatible_pointer)
4067             << ToType << From->getType() << Action << From->getSourceRange()
4068             << 0;
4069       else
4070         Diag(From->getBeginLoc(),
4071              diag::ext_typecheck_convert_incompatible_pointer)
4072             << From->getType() << ToType << Action << From->getSourceRange()
4073             << 0;
4074 
4075       if (From->getType()->isObjCObjectPointerType() &&
4076           ToType->isObjCObjectPointerType())
4077         EmitRelatedResultTypeNote(From);
4078     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4079                !CheckObjCARCUnavailableWeakConversion(ToType,
4080                                                       From->getType())) {
4081       if (Action == AA_Initializing)
4082         Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4083       else
4084         Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4085             << (Action == AA_Casting) << From->getType() << ToType
4086             << From->getSourceRange();
4087     }
4088 
4089     CastKind Kind;
4090     CXXCastPath BasePath;
4091     if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
4092       return ExprError();
4093 
4094     // Make sure we extend blocks if necessary.
4095     // FIXME: doing this here is really ugly.
4096     if (Kind == CK_BlockPointerToObjCPointerCast) {
4097       ExprResult E = From;
4098       (void) PrepareCastToObjCObjectPointer(E);
4099       From = E.get();
4100     }
4101     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4102       CheckObjCConversion(SourceRange(), ToType, From, CCK);
4103     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4104              .get();
4105     break;
4106   }
4107 
4108   case ICK_Pointer_Member: {
4109     CastKind Kind;
4110     CXXCastPath BasePath;
4111     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4112       return ExprError();
4113     if (CheckExceptionSpecCompatibility(From, ToType))
4114       return ExprError();
4115 
4116     // We may not have been able to figure out what this member pointer resolved
4117     // to up until this exact point.  Attempt to lock-in it's inheritance model.
4118     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4119       (void)isCompleteType(From->getExprLoc(), From->getType());
4120       (void)isCompleteType(From->getExprLoc(), ToType);
4121     }
4122 
4123     From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4124              .get();
4125     break;
4126   }
4127 
4128   case ICK_Boolean_Conversion:
4129     // Perform half-to-boolean conversion via float.
4130     if (From->getType()->isHalfType()) {
4131       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4132       FromType = Context.FloatTy;
4133     }
4134 
4135     From = ImpCastExprToType(From, Context.BoolTy,
4136                              ScalarTypeToBooleanCastKind(FromType),
4137                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4138     break;
4139 
4140   case ICK_Derived_To_Base: {
4141     CXXCastPath BasePath;
4142     if (CheckDerivedToBaseConversion(
4143             From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4144             From->getSourceRange(), &BasePath, CStyle))
4145       return ExprError();
4146 
4147     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4148                       CK_DerivedToBase, From->getValueKind(),
4149                       &BasePath, CCK).get();
4150     break;
4151   }
4152 
4153   case ICK_Vector_Conversion:
4154     From = ImpCastExprToType(From, ToType, CK_BitCast,
4155                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4156     break;
4157 
4158   case ICK_Vector_Splat: {
4159     // Vector splat from any arithmetic type to a vector.
4160     Expr *Elem = prepareVectorSplat(ToType, From).get();
4161     From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue,
4162                              /*BasePath=*/nullptr, CCK).get();
4163     break;
4164   }
4165 
4166   case ICK_Complex_Real:
4167     // Case 1.  x -> _Complex y
4168     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4169       QualType ElType = ToComplex->getElementType();
4170       bool isFloatingComplex = ElType->isRealFloatingType();
4171 
4172       // x -> y
4173       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4174         // do nothing
4175       } else if (From->getType()->isRealFloatingType()) {
4176         From = ImpCastExprToType(From, ElType,
4177                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4178       } else {
4179         assert(From->getType()->isIntegerType());
4180         From = ImpCastExprToType(From, ElType,
4181                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4182       }
4183       // y -> _Complex y
4184       From = ImpCastExprToType(From, ToType,
4185                    isFloatingComplex ? CK_FloatingRealToComplex
4186                                      : CK_IntegralRealToComplex).get();
4187 
4188     // Case 2.  _Complex x -> y
4189     } else {
4190       const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
4191       assert(FromComplex);
4192 
4193       QualType ElType = FromComplex->getElementType();
4194       bool isFloatingComplex = ElType->isRealFloatingType();
4195 
4196       // _Complex x -> x
4197       From = ImpCastExprToType(From, ElType,
4198                    isFloatingComplex ? CK_FloatingComplexToReal
4199                                      : CK_IntegralComplexToReal,
4200                                VK_RValue, /*BasePath=*/nullptr, CCK).get();
4201 
4202       // x -> y
4203       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4204         // do nothing
4205       } else if (ToType->isRealFloatingType()) {
4206         From = ImpCastExprToType(From, ToType,
4207                    isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
4208                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4209       } else {
4210         assert(ToType->isIntegerType());
4211         From = ImpCastExprToType(From, ToType,
4212                    isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
4213                                  VK_RValue, /*BasePath=*/nullptr, CCK).get();
4214       }
4215     }
4216     break;
4217 
4218   case ICK_Block_Pointer_Conversion: {
4219     LangAS AddrSpaceL =
4220         ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4221     LangAS AddrSpaceR =
4222         FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4223     assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4224            "Invalid cast");
4225     CastKind Kind =
4226         AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4227     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4228                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4229     break;
4230   }
4231 
4232   case ICK_TransparentUnionConversion: {
4233     ExprResult FromRes = From;
4234     Sema::AssignConvertType ConvTy =
4235       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4236     if (FromRes.isInvalid())
4237       return ExprError();
4238     From = FromRes.get();
4239     assert ((ConvTy == Sema::Compatible) &&
4240             "Improper transparent union conversion");
4241     (void)ConvTy;
4242     break;
4243   }
4244 
4245   case ICK_Zero_Event_Conversion:
4246   case ICK_Zero_Queue_Conversion:
4247     From = ImpCastExprToType(From, ToType,
4248                              CK_ZeroToOCLOpaqueType,
4249                              From->getValueKind()).get();
4250     break;
4251 
4252   case ICK_Lvalue_To_Rvalue:
4253   case ICK_Array_To_Pointer:
4254   case ICK_Function_To_Pointer:
4255   case ICK_Function_Conversion:
4256   case ICK_Qualification:
4257   case ICK_Num_Conversion_Kinds:
4258   case ICK_C_Only_Conversion:
4259   case ICK_Incompatible_Pointer_Conversion:
4260     llvm_unreachable("Improper second standard conversion");
4261   }
4262 
4263   switch (SCS.Third) {
4264   case ICK_Identity:
4265     // Nothing to do.
4266     break;
4267 
4268   case ICK_Function_Conversion:
4269     // If both sides are functions (or pointers/references to them), there could
4270     // be incompatible exception declarations.
4271     if (CheckExceptionSpecCompatibility(From, ToType))
4272       return ExprError();
4273 
4274     From = ImpCastExprToType(From, ToType, CK_NoOp,
4275                              VK_RValue, /*BasePath=*/nullptr, CCK).get();
4276     break;
4277 
4278   case ICK_Qualification: {
4279     // The qualification keeps the category of the inner expression, unless the
4280     // target type isn't a reference.
4281     ExprValueKind VK =
4282         ToType->isReferenceType() ? From->getValueKind() : VK_RValue;
4283 
4284     CastKind CK = CK_NoOp;
4285 
4286     if (ToType->isReferenceType() &&
4287         ToType->getPointeeType().getAddressSpace() !=
4288             From->getType().getAddressSpace())
4289       CK = CK_AddressSpaceConversion;
4290 
4291     if (ToType->isPointerType() &&
4292         ToType->getPointeeType().getAddressSpace() !=
4293             From->getType()->getPointeeType().getAddressSpace())
4294       CK = CK_AddressSpaceConversion;
4295 
4296     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4297                              /*BasePath=*/nullptr, CCK)
4298                .get();
4299 
4300     if (SCS.DeprecatedStringLiteralToCharPtr &&
4301         !getLangOpts().WritableStrings) {
4302       Diag(From->getBeginLoc(),
4303            getLangOpts().CPlusPlus11
4304                ? diag::ext_deprecated_string_literal_conversion
4305                : diag::warn_deprecated_string_literal_conversion)
4306           << ToType.getNonReferenceType();
4307     }
4308 
4309     break;
4310   }
4311 
4312   default:
4313     llvm_unreachable("Improper third standard conversion");
4314   }
4315 
4316   // If this conversion sequence involved a scalar -> atomic conversion, perform
4317   // that conversion now.
4318   if (!ToAtomicType.isNull()) {
4319     assert(Context.hasSameType(
4320         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4321     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4322                              VK_RValue, nullptr, CCK).get();
4323   }
4324 
4325   // If this conversion sequence succeeded and involved implicitly converting a
4326   // _Nullable type to a _Nonnull one, complain.
4327   if (!isCast(CCK))
4328     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4329                                         From->getBeginLoc());
4330 
4331   return From;
4332 }
4333 
4334 /// Check the completeness of a type in a unary type trait.
4335 ///
4336 /// If the particular type trait requires a complete type, tries to complete
4337 /// it. If completing the type fails, a diagnostic is emitted and false
4338 /// returned. If completing the type succeeds or no completion was required,
4339 /// returns true.
4340 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4341                                                 SourceLocation Loc,
4342                                                 QualType ArgTy) {
4343   // C++0x [meta.unary.prop]p3:
4344   //   For all of the class templates X declared in this Clause, instantiating
4345   //   that template with a template argument that is a class template
4346   //   specialization may result in the implicit instantiation of the template
4347   //   argument if and only if the semantics of X require that the argument
4348   //   must be a complete type.
4349   // We apply this rule to all the type trait expressions used to implement
4350   // these class templates. We also try to follow any GCC documented behavior
4351   // in these expressions to ensure portability of standard libraries.
4352   switch (UTT) {
4353   default: llvm_unreachable("not a UTT");
4354     // is_complete_type somewhat obviously cannot require a complete type.
4355   case UTT_IsCompleteType:
4356     // Fall-through
4357 
4358     // These traits are modeled on the type predicates in C++0x
4359     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4360     // requiring a complete type, as whether or not they return true cannot be
4361     // impacted by the completeness of the type.
4362   case UTT_IsVoid:
4363   case UTT_IsIntegral:
4364   case UTT_IsFloatingPoint:
4365   case UTT_IsArray:
4366   case UTT_IsPointer:
4367   case UTT_IsLvalueReference:
4368   case UTT_IsRvalueReference:
4369   case UTT_IsMemberFunctionPointer:
4370   case UTT_IsMemberObjectPointer:
4371   case UTT_IsEnum:
4372   case UTT_IsUnion:
4373   case UTT_IsClass:
4374   case UTT_IsFunction:
4375   case UTT_IsReference:
4376   case UTT_IsArithmetic:
4377   case UTT_IsFundamental:
4378   case UTT_IsObject:
4379   case UTT_IsScalar:
4380   case UTT_IsCompound:
4381   case UTT_IsMemberPointer:
4382     // Fall-through
4383 
4384     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4385     // which requires some of its traits to have the complete type. However,
4386     // the completeness of the type cannot impact these traits' semantics, and
4387     // so they don't require it. This matches the comments on these traits in
4388     // Table 49.
4389   case UTT_IsConst:
4390   case UTT_IsVolatile:
4391   case UTT_IsSigned:
4392   case UTT_IsUnsigned:
4393 
4394   // This type trait always returns false, checking the type is moot.
4395   case UTT_IsInterfaceClass:
4396     return true;
4397 
4398   // C++14 [meta.unary.prop]:
4399   //   If T is a non-union class type, T shall be a complete type.
4400   case UTT_IsEmpty:
4401   case UTT_IsPolymorphic:
4402   case UTT_IsAbstract:
4403     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4404       if (!RD->isUnion())
4405         return !S.RequireCompleteType(
4406             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4407     return true;
4408 
4409   // C++14 [meta.unary.prop]:
4410   //   If T is a class type, T shall be a complete type.
4411   case UTT_IsFinal:
4412   case UTT_IsSealed:
4413     if (ArgTy->getAsCXXRecordDecl())
4414       return !S.RequireCompleteType(
4415           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4416     return true;
4417 
4418   // C++1z [meta.unary.prop]:
4419   //   remove_all_extents_t<T> shall be a complete type or cv void.
4420   case UTT_IsAggregate:
4421   case UTT_IsTrivial:
4422   case UTT_IsTriviallyCopyable:
4423   case UTT_IsStandardLayout:
4424   case UTT_IsPOD:
4425   case UTT_IsLiteral:
4426   // Per the GCC type traits documentation, T shall be a complete type, cv void,
4427   // or an array of unknown bound. But GCC actually imposes the same constraints
4428   // as above.
4429   case UTT_HasNothrowAssign:
4430   case UTT_HasNothrowMoveAssign:
4431   case UTT_HasNothrowConstructor:
4432   case UTT_HasNothrowCopy:
4433   case UTT_HasTrivialAssign:
4434   case UTT_HasTrivialMoveAssign:
4435   case UTT_HasTrivialDefaultConstructor:
4436   case UTT_HasTrivialMoveConstructor:
4437   case UTT_HasTrivialCopy:
4438   case UTT_HasTrivialDestructor:
4439   case UTT_HasVirtualDestructor:
4440     ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4441     LLVM_FALLTHROUGH;
4442 
4443   // C++1z [meta.unary.prop]:
4444   //   T shall be a complete type, cv void, or an array of unknown bound.
4445   case UTT_IsDestructible:
4446   case UTT_IsNothrowDestructible:
4447   case UTT_IsTriviallyDestructible:
4448   case UTT_HasUniqueObjectRepresentations:
4449     if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4450       return true;
4451 
4452     return !S.RequireCompleteType(
4453         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4454   }
4455 }
4456 
4457 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4458                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4459                                bool (CXXRecordDecl::*HasTrivial)() const,
4460                                bool (CXXRecordDecl::*HasNonTrivial)() const,
4461                                bool (CXXMethodDecl::*IsDesiredOp)() const)
4462 {
4463   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4464   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4465     return true;
4466 
4467   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4468   DeclarationNameInfo NameInfo(Name, KeyLoc);
4469   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4470   if (Self.LookupQualifiedName(Res, RD)) {
4471     bool FoundOperator = false;
4472     Res.suppressDiagnostics();
4473     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4474          Op != OpEnd; ++Op) {
4475       if (isa<FunctionTemplateDecl>(*Op))
4476         continue;
4477 
4478       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4479       if((Operator->*IsDesiredOp)()) {
4480         FoundOperator = true;
4481         const FunctionProtoType *CPT =
4482           Operator->getType()->getAs<FunctionProtoType>();
4483         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4484         if (!CPT || !CPT->isNothrow())
4485           return false;
4486       }
4487     }
4488     return FoundOperator;
4489   }
4490   return false;
4491 }
4492 
4493 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4494                                    SourceLocation KeyLoc, QualType T) {
4495   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4496 
4497   ASTContext &C = Self.Context;
4498   switch(UTT) {
4499   default: llvm_unreachable("not a UTT");
4500     // Type trait expressions corresponding to the primary type category
4501     // predicates in C++0x [meta.unary.cat].
4502   case UTT_IsVoid:
4503     return T->isVoidType();
4504   case UTT_IsIntegral:
4505     return T->isIntegralType(C);
4506   case UTT_IsFloatingPoint:
4507     return T->isFloatingType();
4508   case UTT_IsArray:
4509     return T->isArrayType();
4510   case UTT_IsPointer:
4511     return T->isPointerType();
4512   case UTT_IsLvalueReference:
4513     return T->isLValueReferenceType();
4514   case UTT_IsRvalueReference:
4515     return T->isRValueReferenceType();
4516   case UTT_IsMemberFunctionPointer:
4517     return T->isMemberFunctionPointerType();
4518   case UTT_IsMemberObjectPointer:
4519     return T->isMemberDataPointerType();
4520   case UTT_IsEnum:
4521     return T->isEnumeralType();
4522   case UTT_IsUnion:
4523     return T->isUnionType();
4524   case UTT_IsClass:
4525     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4526   case UTT_IsFunction:
4527     return T->isFunctionType();
4528 
4529     // Type trait expressions which correspond to the convenient composition
4530     // predicates in C++0x [meta.unary.comp].
4531   case UTT_IsReference:
4532     return T->isReferenceType();
4533   case UTT_IsArithmetic:
4534     return T->isArithmeticType() && !T->isEnumeralType();
4535   case UTT_IsFundamental:
4536     return T->isFundamentalType();
4537   case UTT_IsObject:
4538     return T->isObjectType();
4539   case UTT_IsScalar:
4540     // Note: semantic analysis depends on Objective-C lifetime types to be
4541     // considered scalar types. However, such types do not actually behave
4542     // like scalar types at run time (since they may require retain/release
4543     // operations), so we report them as non-scalar.
4544     if (T->isObjCLifetimeType()) {
4545       switch (T.getObjCLifetime()) {
4546       case Qualifiers::OCL_None:
4547       case Qualifiers::OCL_ExplicitNone:
4548         return true;
4549 
4550       case Qualifiers::OCL_Strong:
4551       case Qualifiers::OCL_Weak:
4552       case Qualifiers::OCL_Autoreleasing:
4553         return false;
4554       }
4555     }
4556 
4557     return T->isScalarType();
4558   case UTT_IsCompound:
4559     return T->isCompoundType();
4560   case UTT_IsMemberPointer:
4561     return T->isMemberPointerType();
4562 
4563     // Type trait expressions which correspond to the type property predicates
4564     // in C++0x [meta.unary.prop].
4565   case UTT_IsConst:
4566     return T.isConstQualified();
4567   case UTT_IsVolatile:
4568     return T.isVolatileQualified();
4569   case UTT_IsTrivial:
4570     return T.isTrivialType(C);
4571   case UTT_IsTriviallyCopyable:
4572     return T.isTriviallyCopyableType(C);
4573   case UTT_IsStandardLayout:
4574     return T->isStandardLayoutType();
4575   case UTT_IsPOD:
4576     return T.isPODType(C);
4577   case UTT_IsLiteral:
4578     return T->isLiteralType(C);
4579   case UTT_IsEmpty:
4580     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4581       return !RD->isUnion() && RD->isEmpty();
4582     return false;
4583   case UTT_IsPolymorphic:
4584     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4585       return !RD->isUnion() && RD->isPolymorphic();
4586     return false;
4587   case UTT_IsAbstract:
4588     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4589       return !RD->isUnion() && RD->isAbstract();
4590     return false;
4591   case UTT_IsAggregate:
4592     // Report vector extensions and complex types as aggregates because they
4593     // support aggregate initialization. GCC mirrors this behavior for vectors
4594     // but not _Complex.
4595     return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4596            T->isAnyComplexType();
4597   // __is_interface_class only returns true when CL is invoked in /CLR mode and
4598   // even then only when it is used with the 'interface struct ...' syntax
4599   // Clang doesn't support /CLR which makes this type trait moot.
4600   case UTT_IsInterfaceClass:
4601     return false;
4602   case UTT_IsFinal:
4603   case UTT_IsSealed:
4604     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4605       return RD->hasAttr<FinalAttr>();
4606     return false;
4607   case UTT_IsSigned:
4608     return T->isSignedIntegerType();
4609   case UTT_IsUnsigned:
4610     return T->isUnsignedIntegerType();
4611 
4612     // Type trait expressions which query classes regarding their construction,
4613     // destruction, and copying. Rather than being based directly on the
4614     // related type predicates in the standard, they are specified by both
4615     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4616     // specifications.
4617     //
4618     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4619     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4620     //
4621     // Note that these builtins do not behave as documented in g++: if a class
4622     // has both a trivial and a non-trivial special member of a particular kind,
4623     // they return false! For now, we emulate this behavior.
4624     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4625     // does not correctly compute triviality in the presence of multiple special
4626     // members of the same kind. Revisit this once the g++ bug is fixed.
4627   case UTT_HasTrivialDefaultConstructor:
4628     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4629     //   If __is_pod (type) is true then the trait is true, else if type is
4630     //   a cv class or union type (or array thereof) with a trivial default
4631     //   constructor ([class.ctor]) then the trait is true, else it is false.
4632     if (T.isPODType(C))
4633       return true;
4634     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4635       return RD->hasTrivialDefaultConstructor() &&
4636              !RD->hasNonTrivialDefaultConstructor();
4637     return false;
4638   case UTT_HasTrivialMoveConstructor:
4639     //  This trait is implemented by MSVC 2012 and needed to parse the
4640     //  standard library headers. Specifically this is used as the logic
4641     //  behind std::is_trivially_move_constructible (20.9.4.3).
4642     if (T.isPODType(C))
4643       return true;
4644     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4645       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4646     return false;
4647   case UTT_HasTrivialCopy:
4648     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4649     //   If __is_pod (type) is true or type is a reference type then
4650     //   the trait is true, else if type is a cv class or union type
4651     //   with a trivial copy constructor ([class.copy]) then the trait
4652     //   is true, else it is false.
4653     if (T.isPODType(C) || T->isReferenceType())
4654       return true;
4655     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4656       return RD->hasTrivialCopyConstructor() &&
4657              !RD->hasNonTrivialCopyConstructor();
4658     return false;
4659   case UTT_HasTrivialMoveAssign:
4660     //  This trait is implemented by MSVC 2012 and needed to parse the
4661     //  standard library headers. Specifically it is used as the logic
4662     //  behind std::is_trivially_move_assignable (20.9.4.3)
4663     if (T.isPODType(C))
4664       return true;
4665     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4666       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4667     return false;
4668   case UTT_HasTrivialAssign:
4669     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4670     //   If type is const qualified or is a reference type then the
4671     //   trait is false. Otherwise if __is_pod (type) is true then the
4672     //   trait is true, else if type is a cv class or union type with
4673     //   a trivial copy assignment ([class.copy]) then the trait is
4674     //   true, else it is false.
4675     // Note: the const and reference restrictions are interesting,
4676     // given that const and reference members don't prevent a class
4677     // from having a trivial copy assignment operator (but do cause
4678     // errors if the copy assignment operator is actually used, q.v.
4679     // [class.copy]p12).
4680 
4681     if (T.isConstQualified())
4682       return false;
4683     if (T.isPODType(C))
4684       return true;
4685     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4686       return RD->hasTrivialCopyAssignment() &&
4687              !RD->hasNonTrivialCopyAssignment();
4688     return false;
4689   case UTT_IsDestructible:
4690   case UTT_IsTriviallyDestructible:
4691   case UTT_IsNothrowDestructible:
4692     // C++14 [meta.unary.prop]:
4693     //   For reference types, is_destructible<T>::value is true.
4694     if (T->isReferenceType())
4695       return true;
4696 
4697     // Objective-C++ ARC: autorelease types don't require destruction.
4698     if (T->isObjCLifetimeType() &&
4699         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4700       return true;
4701 
4702     // C++14 [meta.unary.prop]:
4703     //   For incomplete types and function types, is_destructible<T>::value is
4704     //   false.
4705     if (T->isIncompleteType() || T->isFunctionType())
4706       return false;
4707 
4708     // A type that requires destruction (via a non-trivial destructor or ARC
4709     // lifetime semantics) is not trivially-destructible.
4710     if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
4711       return false;
4712 
4713     // C++14 [meta.unary.prop]:
4714     //   For object types and given U equal to remove_all_extents_t<T>, if the
4715     //   expression std::declval<U&>().~U() is well-formed when treated as an
4716     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
4717     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4718       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
4719       if (!Destructor)
4720         return false;
4721       //  C++14 [dcl.fct.def.delete]p2:
4722       //    A program that refers to a deleted function implicitly or
4723       //    explicitly, other than to declare it, is ill-formed.
4724       if (Destructor->isDeleted())
4725         return false;
4726       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
4727         return false;
4728       if (UTT == UTT_IsNothrowDestructible) {
4729         const FunctionProtoType *CPT =
4730             Destructor->getType()->getAs<FunctionProtoType>();
4731         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4732         if (!CPT || !CPT->isNothrow())
4733           return false;
4734       }
4735     }
4736     return true;
4737 
4738   case UTT_HasTrivialDestructor:
4739     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4740     //   If __is_pod (type) is true or type is a reference type
4741     //   then the trait is true, else if type is a cv class or union
4742     //   type (or array thereof) with a trivial destructor
4743     //   ([class.dtor]) then the trait is true, else it is
4744     //   false.
4745     if (T.isPODType(C) || T->isReferenceType())
4746       return true;
4747 
4748     // Objective-C++ ARC: autorelease types don't require destruction.
4749     if (T->isObjCLifetimeType() &&
4750         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4751       return true;
4752 
4753     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4754       return RD->hasTrivialDestructor();
4755     return false;
4756   // TODO: Propagate nothrowness for implicitly declared special members.
4757   case UTT_HasNothrowAssign:
4758     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4759     //   If type is const qualified or is a reference type then the
4760     //   trait is false. Otherwise if __has_trivial_assign (type)
4761     //   is true then the trait is true, else if type is a cv class
4762     //   or union type with copy assignment operators that are known
4763     //   not to throw an exception then the trait is true, else it is
4764     //   false.
4765     if (C.getBaseElementType(T).isConstQualified())
4766       return false;
4767     if (T->isReferenceType())
4768       return false;
4769     if (T.isPODType(C) || T->isObjCLifetimeType())
4770       return true;
4771 
4772     if (const RecordType *RT = T->getAs<RecordType>())
4773       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4774                                 &CXXRecordDecl::hasTrivialCopyAssignment,
4775                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
4776                                 &CXXMethodDecl::isCopyAssignmentOperator);
4777     return false;
4778   case UTT_HasNothrowMoveAssign:
4779     //  This trait is implemented by MSVC 2012 and needed to parse the
4780     //  standard library headers. Specifically this is used as the logic
4781     //  behind std::is_nothrow_move_assignable (20.9.4.3).
4782     if (T.isPODType(C))
4783       return true;
4784 
4785     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
4786       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4787                                 &CXXRecordDecl::hasTrivialMoveAssignment,
4788                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
4789                                 &CXXMethodDecl::isMoveAssignmentOperator);
4790     return false;
4791   case UTT_HasNothrowCopy:
4792     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4793     //   If __has_trivial_copy (type) is true then the trait is true, else
4794     //   if type is a cv class or union type with copy constructors that are
4795     //   known not to throw an exception then the trait is true, else it is
4796     //   false.
4797     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
4798       return true;
4799     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
4800       if (RD->hasTrivialCopyConstructor() &&
4801           !RD->hasNonTrivialCopyConstructor())
4802         return true;
4803 
4804       bool FoundConstructor = false;
4805       unsigned FoundTQs;
4806       for (const auto *ND : Self.LookupConstructors(RD)) {
4807         // A template constructor is never a copy constructor.
4808         // FIXME: However, it may actually be selected at the actual overload
4809         // resolution point.
4810         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4811           continue;
4812         // UsingDecl itself is not a constructor
4813         if (isa<UsingDecl>(ND))
4814           continue;
4815         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4816         if (Constructor->isCopyConstructor(FoundTQs)) {
4817           FoundConstructor = true;
4818           const FunctionProtoType *CPT
4819               = Constructor->getType()->getAs<FunctionProtoType>();
4820           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4821           if (!CPT)
4822             return false;
4823           // TODO: check whether evaluating default arguments can throw.
4824           // For now, we'll be conservative and assume that they can throw.
4825           if (!CPT->isNothrow() || CPT->getNumParams() > 1)
4826             return false;
4827         }
4828       }
4829 
4830       return FoundConstructor;
4831     }
4832     return false;
4833   case UTT_HasNothrowConstructor:
4834     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4835     //   If __has_trivial_constructor (type) is true then the trait is
4836     //   true, else if type is a cv class or union type (or array
4837     //   thereof) with a default constructor that is known not to
4838     //   throw an exception then the trait is true, else it is false.
4839     if (T.isPODType(C) || T->isObjCLifetimeType())
4840       return true;
4841     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4842       if (RD->hasTrivialDefaultConstructor() &&
4843           !RD->hasNonTrivialDefaultConstructor())
4844         return true;
4845 
4846       bool FoundConstructor = false;
4847       for (const auto *ND : Self.LookupConstructors(RD)) {
4848         // FIXME: In C++0x, a constructor template can be a default constructor.
4849         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4850           continue;
4851         // UsingDecl itself is not a constructor
4852         if (isa<UsingDecl>(ND))
4853           continue;
4854         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4855         if (Constructor->isDefaultConstructor()) {
4856           FoundConstructor = true;
4857           const FunctionProtoType *CPT
4858               = Constructor->getType()->getAs<FunctionProtoType>();
4859           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4860           if (!CPT)
4861             return false;
4862           // FIXME: check whether evaluating default arguments can throw.
4863           // For now, we'll be conservative and assume that they can throw.
4864           if (!CPT->isNothrow() || CPT->getNumParams() > 0)
4865             return false;
4866         }
4867       }
4868       return FoundConstructor;
4869     }
4870     return false;
4871   case UTT_HasVirtualDestructor:
4872     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4873     //   If type is a class type with a virtual destructor ([class.dtor])
4874     //   then the trait is true, else it is false.
4875     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4876       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4877         return Destructor->isVirtual();
4878     return false;
4879 
4880     // These type trait expressions are modeled on the specifications for the
4881     // Embarcadero C++0x type trait functions:
4882     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4883   case UTT_IsCompleteType:
4884     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4885     //   Returns True if and only if T is a complete type at the point of the
4886     //   function call.
4887     return !T->isIncompleteType();
4888   case UTT_HasUniqueObjectRepresentations:
4889     return C.hasUniqueObjectRepresentations(T);
4890   }
4891 }
4892 
4893 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4894                                     QualType RhsT, SourceLocation KeyLoc);
4895 
4896 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
4897                               ArrayRef<TypeSourceInfo *> Args,
4898                               SourceLocation RParenLoc) {
4899   if (Kind <= UTT_Last)
4900     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4901 
4902   // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
4903   // traits to avoid duplication.
4904   if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
4905     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4906                                    Args[1]->getType(), RParenLoc);
4907 
4908   switch (Kind) {
4909   case clang::BTT_ReferenceBindsToTemporary:
4910   case clang::TT_IsConstructible:
4911   case clang::TT_IsNothrowConstructible:
4912   case clang::TT_IsTriviallyConstructible: {
4913     // C++11 [meta.unary.prop]:
4914     //   is_trivially_constructible is defined as:
4915     //
4916     //     is_constructible<T, Args...>::value is true and the variable
4917     //     definition for is_constructible, as defined below, is known to call
4918     //     no operation that is not trivial.
4919     //
4920     //   The predicate condition for a template specialization
4921     //   is_constructible<T, Args...> shall be satisfied if and only if the
4922     //   following variable definition would be well-formed for some invented
4923     //   variable t:
4924     //
4925     //     T t(create<Args>()...);
4926     assert(!Args.empty());
4927 
4928     // Precondition: T and all types in the parameter pack Args shall be
4929     // complete types, (possibly cv-qualified) void, or arrays of
4930     // unknown bound.
4931     for (const auto *TSI : Args) {
4932       QualType ArgTy = TSI->getType();
4933       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4934         continue;
4935 
4936       if (S.RequireCompleteType(KWLoc, ArgTy,
4937           diag::err_incomplete_type_used_in_type_trait_expr))
4938         return false;
4939     }
4940 
4941     // Make sure the first argument is not incomplete nor a function type.
4942     QualType T = Args[0]->getType();
4943     if (T->isIncompleteType() || T->isFunctionType())
4944       return false;
4945 
4946     // Make sure the first argument is not an abstract type.
4947     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4948     if (RD && RD->isAbstract())
4949       return false;
4950 
4951     SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4952     SmallVector<Expr *, 2> ArgExprs;
4953     ArgExprs.reserve(Args.size() - 1);
4954     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4955       QualType ArgTy = Args[I]->getType();
4956       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4957         ArgTy = S.Context.getRValueReferenceType(ArgTy);
4958       OpaqueArgExprs.push_back(
4959           OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
4960                           ArgTy.getNonLValueExprType(S.Context),
4961                           Expr::getValueKindForType(ArgTy)));
4962     }
4963     for (Expr &E : OpaqueArgExprs)
4964       ArgExprs.push_back(&E);
4965 
4966     // Perform the initialization in an unevaluated context within a SFINAE
4967     // trap at translation unit scope.
4968     EnterExpressionEvaluationContext Unevaluated(
4969         S, Sema::ExpressionEvaluationContext::Unevaluated);
4970     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4971     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
4972     InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
4973     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
4974                                                                  RParenLoc));
4975     InitializationSequence Init(S, To, InitKind, ArgExprs);
4976     if (Init.Failed())
4977       return false;
4978 
4979     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4980     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4981       return false;
4982 
4983     if (Kind == clang::TT_IsConstructible)
4984       return true;
4985 
4986     if (Kind == clang::BTT_ReferenceBindsToTemporary) {
4987       if (!T->isReferenceType())
4988         return false;
4989 
4990       return !Init.isDirectReferenceBinding();
4991     }
4992 
4993     if (Kind == clang::TT_IsNothrowConstructible)
4994       return S.canThrow(Result.get()) == CT_Cannot;
4995 
4996     if (Kind == clang::TT_IsTriviallyConstructible) {
4997       // Under Objective-C ARC and Weak, if the destination has non-trivial
4998       // Objective-C lifetime, this is a non-trivial construction.
4999       if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5000         return false;
5001 
5002       // The initialization succeeded; now make sure there are no non-trivial
5003       // calls.
5004       return !Result.get()->hasNonTrivialCall(S.Context);
5005     }
5006 
5007     llvm_unreachable("unhandled type trait");
5008     return false;
5009   }
5010     default: llvm_unreachable("not a TT");
5011   }
5012 
5013   return false;
5014 }
5015 
5016 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5017                                 ArrayRef<TypeSourceInfo *> Args,
5018                                 SourceLocation RParenLoc) {
5019   QualType ResultType = Context.getLogicalOperationType();
5020 
5021   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5022                                *this, Kind, KWLoc, Args[0]->getType()))
5023     return ExprError();
5024 
5025   bool Dependent = false;
5026   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5027     if (Args[I]->getType()->isDependentType()) {
5028       Dependent = true;
5029       break;
5030     }
5031   }
5032 
5033   bool Result = false;
5034   if (!Dependent)
5035     Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5036 
5037   return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5038                                RParenLoc, Result);
5039 }
5040 
5041 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5042                                 ArrayRef<ParsedType> Args,
5043                                 SourceLocation RParenLoc) {
5044   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5045   ConvertedArgs.reserve(Args.size());
5046 
5047   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5048     TypeSourceInfo *TInfo;
5049     QualType T = GetTypeFromParser(Args[I], &TInfo);
5050     if (!TInfo)
5051       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5052 
5053     ConvertedArgs.push_back(TInfo);
5054   }
5055 
5056   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5057 }
5058 
5059 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5060                                     QualType RhsT, SourceLocation KeyLoc) {
5061   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5062          "Cannot evaluate traits of dependent types");
5063 
5064   switch(BTT) {
5065   case BTT_IsBaseOf: {
5066     // C++0x [meta.rel]p2
5067     // Base is a base class of Derived without regard to cv-qualifiers or
5068     // Base and Derived are not unions and name the same class type without
5069     // regard to cv-qualifiers.
5070 
5071     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5072     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5073     if (!rhsRecord || !lhsRecord) {
5074       const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5075       const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5076       if (!LHSObjTy || !RHSObjTy)
5077         return false;
5078 
5079       ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5080       ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5081       if (!BaseInterface || !DerivedInterface)
5082         return false;
5083 
5084       if (Self.RequireCompleteType(
5085               KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5086         return false;
5087 
5088       return BaseInterface->isSuperClassOf(DerivedInterface);
5089     }
5090 
5091     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5092              == (lhsRecord == rhsRecord));
5093 
5094     // Unions are never base classes, and never have base classes.
5095     // It doesn't matter if they are complete or not. See PR#41843
5096     if (lhsRecord && lhsRecord->getDecl()->isUnion())
5097       return false;
5098     if (rhsRecord && rhsRecord->getDecl()->isUnion())
5099       return false;
5100 
5101     if (lhsRecord == rhsRecord)
5102       return true;
5103 
5104     // C++0x [meta.rel]p2:
5105     //   If Base and Derived are class types and are different types
5106     //   (ignoring possible cv-qualifiers) then Derived shall be a
5107     //   complete type.
5108     if (Self.RequireCompleteType(KeyLoc, RhsT,
5109                           diag::err_incomplete_type_used_in_type_trait_expr))
5110       return false;
5111 
5112     return cast<CXXRecordDecl>(rhsRecord->getDecl())
5113       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5114   }
5115   case BTT_IsSame:
5116     return Self.Context.hasSameType(LhsT, RhsT);
5117   case BTT_TypeCompatible: {
5118     // GCC ignores cv-qualifiers on arrays for this builtin.
5119     Qualifiers LhsQuals, RhsQuals;
5120     QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5121     QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5122     return Self.Context.typesAreCompatible(Lhs, Rhs);
5123   }
5124   case BTT_IsConvertible:
5125   case BTT_IsConvertibleTo: {
5126     // C++0x [meta.rel]p4:
5127     //   Given the following function prototype:
5128     //
5129     //     template <class T>
5130     //       typename add_rvalue_reference<T>::type create();
5131     //
5132     //   the predicate condition for a template specialization
5133     //   is_convertible<From, To> shall be satisfied if and only if
5134     //   the return expression in the following code would be
5135     //   well-formed, including any implicit conversions to the return
5136     //   type of the function:
5137     //
5138     //     To test() {
5139     //       return create<From>();
5140     //     }
5141     //
5142     //   Access checking is performed as if in a context unrelated to To and
5143     //   From. Only the validity of the immediate context of the expression
5144     //   of the return-statement (including conversions to the return type)
5145     //   is considered.
5146     //
5147     // We model the initialization as a copy-initialization of a temporary
5148     // of the appropriate type, which for this expression is identical to the
5149     // return statement (since NRVO doesn't apply).
5150 
5151     // Functions aren't allowed to return function or array types.
5152     if (RhsT->isFunctionType() || RhsT->isArrayType())
5153       return false;
5154 
5155     // A return statement in a void function must have void type.
5156     if (RhsT->isVoidType())
5157       return LhsT->isVoidType();
5158 
5159     // A function definition requires a complete, non-abstract return type.
5160     if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5161       return false;
5162 
5163     // Compute the result of add_rvalue_reference.
5164     if (LhsT->isObjectType() || LhsT->isFunctionType())
5165       LhsT = Self.Context.getRValueReferenceType(LhsT);
5166 
5167     // Build a fake source and destination for initialization.
5168     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5169     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5170                          Expr::getValueKindForType(LhsT));
5171     Expr *FromPtr = &From;
5172     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5173                                                            SourceLocation()));
5174 
5175     // Perform the initialization in an unevaluated context within a SFINAE
5176     // trap at translation unit scope.
5177     EnterExpressionEvaluationContext Unevaluated(
5178         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5179     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5180     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5181     InitializationSequence Init(Self, To, Kind, FromPtr);
5182     if (Init.Failed())
5183       return false;
5184 
5185     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5186     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5187   }
5188 
5189   case BTT_IsAssignable:
5190   case BTT_IsNothrowAssignable:
5191   case BTT_IsTriviallyAssignable: {
5192     // C++11 [meta.unary.prop]p3:
5193     //   is_trivially_assignable is defined as:
5194     //     is_assignable<T, U>::value is true and the assignment, as defined by
5195     //     is_assignable, is known to call no operation that is not trivial
5196     //
5197     //   is_assignable is defined as:
5198     //     The expression declval<T>() = declval<U>() is well-formed when
5199     //     treated as an unevaluated operand (Clause 5).
5200     //
5201     //   For both, T and U shall be complete types, (possibly cv-qualified)
5202     //   void, or arrays of unknown bound.
5203     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5204         Self.RequireCompleteType(KeyLoc, LhsT,
5205           diag::err_incomplete_type_used_in_type_trait_expr))
5206       return false;
5207     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5208         Self.RequireCompleteType(KeyLoc, RhsT,
5209           diag::err_incomplete_type_used_in_type_trait_expr))
5210       return false;
5211 
5212     // cv void is never assignable.
5213     if (LhsT->isVoidType() || RhsT->isVoidType())
5214       return false;
5215 
5216     // Build expressions that emulate the effect of declval<T>() and
5217     // declval<U>().
5218     if (LhsT->isObjectType() || LhsT->isFunctionType())
5219       LhsT = Self.Context.getRValueReferenceType(LhsT);
5220     if (RhsT->isObjectType() || RhsT->isFunctionType())
5221       RhsT = Self.Context.getRValueReferenceType(RhsT);
5222     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5223                         Expr::getValueKindForType(LhsT));
5224     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5225                         Expr::getValueKindForType(RhsT));
5226 
5227     // Attempt the assignment in an unevaluated context within a SFINAE
5228     // trap at translation unit scope.
5229     EnterExpressionEvaluationContext Unevaluated(
5230         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5231     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5232     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5233     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5234                                         &Rhs);
5235     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5236       return false;
5237 
5238     if (BTT == BTT_IsAssignable)
5239       return true;
5240 
5241     if (BTT == BTT_IsNothrowAssignable)
5242       return Self.canThrow(Result.get()) == CT_Cannot;
5243 
5244     if (BTT == BTT_IsTriviallyAssignable) {
5245       // Under Objective-C ARC and Weak, if the destination has non-trivial
5246       // Objective-C lifetime, this is a non-trivial assignment.
5247       if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5248         return false;
5249 
5250       return !Result.get()->hasNonTrivialCall(Self.Context);
5251     }
5252 
5253     llvm_unreachable("unhandled type trait");
5254     return false;
5255   }
5256     default: llvm_unreachable("not a BTT");
5257   }
5258   llvm_unreachable("Unknown type trait or not implemented");
5259 }
5260 
5261 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5262                                      SourceLocation KWLoc,
5263                                      ParsedType Ty,
5264                                      Expr* DimExpr,
5265                                      SourceLocation RParen) {
5266   TypeSourceInfo *TSInfo;
5267   QualType T = GetTypeFromParser(Ty, &TSInfo);
5268   if (!TSInfo)
5269     TSInfo = Context.getTrivialTypeSourceInfo(T);
5270 
5271   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5272 }
5273 
5274 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5275                                            QualType T, Expr *DimExpr,
5276                                            SourceLocation KeyLoc) {
5277   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5278 
5279   switch(ATT) {
5280   case ATT_ArrayRank:
5281     if (T->isArrayType()) {
5282       unsigned Dim = 0;
5283       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5284         ++Dim;
5285         T = AT->getElementType();
5286       }
5287       return Dim;
5288     }
5289     return 0;
5290 
5291   case ATT_ArrayExtent: {
5292     llvm::APSInt Value;
5293     uint64_t Dim;
5294     if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
5295           diag::err_dimension_expr_not_constant_integer,
5296           false).isInvalid())
5297       return 0;
5298     if (Value.isSigned() && Value.isNegative()) {
5299       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5300         << DimExpr->getSourceRange();
5301       return 0;
5302     }
5303     Dim = Value.getLimitedValue();
5304 
5305     if (T->isArrayType()) {
5306       unsigned D = 0;
5307       bool Matched = false;
5308       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5309         if (Dim == D) {
5310           Matched = true;
5311           break;
5312         }
5313         ++D;
5314         T = AT->getElementType();
5315       }
5316 
5317       if (Matched && T->isArrayType()) {
5318         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5319           return CAT->getSize().getLimitedValue();
5320       }
5321     }
5322     return 0;
5323   }
5324   }
5325   llvm_unreachable("Unknown type trait or not implemented");
5326 }
5327 
5328 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5329                                      SourceLocation KWLoc,
5330                                      TypeSourceInfo *TSInfo,
5331                                      Expr* DimExpr,
5332                                      SourceLocation RParen) {
5333   QualType T = TSInfo->getType();
5334 
5335   // FIXME: This should likely be tracked as an APInt to remove any host
5336   // assumptions about the width of size_t on the target.
5337   uint64_t Value = 0;
5338   if (!T->isDependentType())
5339     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5340 
5341   // While the specification for these traits from the Embarcadero C++
5342   // compiler's documentation says the return type is 'unsigned int', Clang
5343   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5344   // compiler, there is no difference. On several other platforms this is an
5345   // important distinction.
5346   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5347                                           RParen, Context.getSizeType());
5348 }
5349 
5350 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5351                                       SourceLocation KWLoc,
5352                                       Expr *Queried,
5353                                       SourceLocation RParen) {
5354   // If error parsing the expression, ignore.
5355   if (!Queried)
5356     return ExprError();
5357 
5358   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5359 
5360   return Result;
5361 }
5362 
5363 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5364   switch (ET) {
5365   case ET_IsLValueExpr: return E->isLValue();
5366   case ET_IsRValueExpr: return E->isRValue();
5367   }
5368   llvm_unreachable("Expression trait not covered by switch");
5369 }
5370 
5371 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5372                                       SourceLocation KWLoc,
5373                                       Expr *Queried,
5374                                       SourceLocation RParen) {
5375   if (Queried->isTypeDependent()) {
5376     // Delay type-checking for type-dependent expressions.
5377   } else if (Queried->getType()->isPlaceholderType()) {
5378     ExprResult PE = CheckPlaceholderExpr(Queried);
5379     if (PE.isInvalid()) return ExprError();
5380     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5381   }
5382 
5383   bool Value = EvaluateExpressionTrait(ET, Queried);
5384 
5385   return new (Context)
5386       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5387 }
5388 
5389 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5390                                             ExprValueKind &VK,
5391                                             SourceLocation Loc,
5392                                             bool isIndirect) {
5393   assert(!LHS.get()->getType()->isPlaceholderType() &&
5394          !RHS.get()->getType()->isPlaceholderType() &&
5395          "placeholders should have been weeded out by now");
5396 
5397   // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5398   // temporary materialization conversion otherwise.
5399   if (isIndirect)
5400     LHS = DefaultLvalueConversion(LHS.get());
5401   else if (LHS.get()->isRValue())
5402     LHS = TemporaryMaterializationConversion(LHS.get());
5403   if (LHS.isInvalid())
5404     return QualType();
5405 
5406   // The RHS always undergoes lvalue conversions.
5407   RHS = DefaultLvalueConversion(RHS.get());
5408   if (RHS.isInvalid()) return QualType();
5409 
5410   const char *OpSpelling = isIndirect ? "->*" : ".*";
5411   // C++ 5.5p2
5412   //   The binary operator .* [p3: ->*] binds its second operand, which shall
5413   //   be of type "pointer to member of T" (where T is a completely-defined
5414   //   class type) [...]
5415   QualType RHSType = RHS.get()->getType();
5416   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5417   if (!MemPtr) {
5418     Diag(Loc, diag::err_bad_memptr_rhs)
5419       << OpSpelling << RHSType << RHS.get()->getSourceRange();
5420     return QualType();
5421   }
5422 
5423   QualType Class(MemPtr->getClass(), 0);
5424 
5425   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5426   // member pointer points must be completely-defined. However, there is no
5427   // reason for this semantic distinction, and the rule is not enforced by
5428   // other compilers. Therefore, we do not check this property, as it is
5429   // likely to be considered a defect.
5430 
5431   // C++ 5.5p2
5432   //   [...] to its first operand, which shall be of class T or of a class of
5433   //   which T is an unambiguous and accessible base class. [p3: a pointer to
5434   //   such a class]
5435   QualType LHSType = LHS.get()->getType();
5436   if (isIndirect) {
5437     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5438       LHSType = Ptr->getPointeeType();
5439     else {
5440       Diag(Loc, diag::err_bad_memptr_lhs)
5441         << OpSpelling << 1 << LHSType
5442         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5443       return QualType();
5444     }
5445   }
5446 
5447   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5448     // If we want to check the hierarchy, we need a complete type.
5449     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5450                             OpSpelling, (int)isIndirect)) {
5451       return QualType();
5452     }
5453 
5454     if (!IsDerivedFrom(Loc, LHSType, Class)) {
5455       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5456         << (int)isIndirect << LHS.get()->getType();
5457       return QualType();
5458     }
5459 
5460     CXXCastPath BasePath;
5461     if (CheckDerivedToBaseConversion(
5462             LHSType, Class, Loc,
5463             SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5464             &BasePath))
5465       return QualType();
5466 
5467     // Cast LHS to type of use.
5468     QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5469     if (isIndirect)
5470       UseType = Context.getPointerType(UseType);
5471     ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
5472     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5473                             &BasePath);
5474   }
5475 
5476   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5477     // Diagnose use of pointer-to-member type which when used as
5478     // the functional cast in a pointer-to-member expression.
5479     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5480      return QualType();
5481   }
5482 
5483   // C++ 5.5p2
5484   //   The result is an object or a function of the type specified by the
5485   //   second operand.
5486   // The cv qualifiers are the union of those in the pointer and the left side,
5487   // in accordance with 5.5p5 and 5.2.5.
5488   QualType Result = MemPtr->getPointeeType();
5489   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5490 
5491   // C++0x [expr.mptr.oper]p6:
5492   //   In a .* expression whose object expression is an rvalue, the program is
5493   //   ill-formed if the second operand is a pointer to member function with
5494   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
5495   //   expression is an lvalue, the program is ill-formed if the second operand
5496   //   is a pointer to member function with ref-qualifier &&.
5497   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5498     switch (Proto->getRefQualifier()) {
5499     case RQ_None:
5500       // Do nothing
5501       break;
5502 
5503     case RQ_LValue:
5504       if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5505         // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
5506         // is (exactly) 'const'.
5507         if (Proto->isConst() && !Proto->isVolatile())
5508           Diag(Loc, getLangOpts().CPlusPlus2a
5509                         ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5510                         : diag::ext_pointer_to_const_ref_member_on_rvalue);
5511         else
5512           Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5513               << RHSType << 1 << LHS.get()->getSourceRange();
5514       }
5515       break;
5516 
5517     case RQ_RValue:
5518       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5519         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5520           << RHSType << 0 << LHS.get()->getSourceRange();
5521       break;
5522     }
5523   }
5524 
5525   // C++ [expr.mptr.oper]p6:
5526   //   The result of a .* expression whose second operand is a pointer
5527   //   to a data member is of the same value category as its
5528   //   first operand. The result of a .* expression whose second
5529   //   operand is a pointer to a member function is a prvalue. The
5530   //   result of an ->* expression is an lvalue if its second operand
5531   //   is a pointer to data member and a prvalue otherwise.
5532   if (Result->isFunctionType()) {
5533     VK = VK_RValue;
5534     return Context.BoundMemberTy;
5535   } else if (isIndirect) {
5536     VK = VK_LValue;
5537   } else {
5538     VK = LHS.get()->getValueKind();
5539   }
5540 
5541   return Result;
5542 }
5543 
5544 /// Try to convert a type to another according to C++11 5.16p3.
5545 ///
5546 /// This is part of the parameter validation for the ? operator. If either
5547 /// value operand is a class type, the two operands are attempted to be
5548 /// converted to each other. This function does the conversion in one direction.
5549 /// It returns true if the program is ill-formed and has already been diagnosed
5550 /// as such.
5551 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5552                                 SourceLocation QuestionLoc,
5553                                 bool &HaveConversion,
5554                                 QualType &ToType) {
5555   HaveConversion = false;
5556   ToType = To->getType();
5557 
5558   InitializationKind Kind =
5559       InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
5560   // C++11 5.16p3
5561   //   The process for determining whether an operand expression E1 of type T1
5562   //   can be converted to match an operand expression E2 of type T2 is defined
5563   //   as follows:
5564   //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5565   //      implicitly converted to type "lvalue reference to T2", subject to the
5566   //      constraint that in the conversion the reference must bind directly to
5567   //      an lvalue.
5568   //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5569   //      implicitly converted to the type "rvalue reference to R2", subject to
5570   //      the constraint that the reference must bind directly.
5571   if (To->isLValue() || To->isXValue()) {
5572     QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType)
5573                                 : Self.Context.getRValueReferenceType(ToType);
5574 
5575     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5576 
5577     InitializationSequence InitSeq(Self, Entity, Kind, From);
5578     if (InitSeq.isDirectReferenceBinding()) {
5579       ToType = T;
5580       HaveConversion = true;
5581       return false;
5582     }
5583 
5584     if (InitSeq.isAmbiguous())
5585       return InitSeq.Diagnose(Self, Entity, Kind, From);
5586   }
5587 
5588   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
5589   //      -- if E1 and E2 have class type, and the underlying class types are
5590   //         the same or one is a base class of the other:
5591   QualType FTy = From->getType();
5592   QualType TTy = To->getType();
5593   const RecordType *FRec = FTy->getAs<RecordType>();
5594   const RecordType *TRec = TTy->getAs<RecordType>();
5595   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5596                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5597   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5598                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5599     //         E1 can be converted to match E2 if the class of T2 is the
5600     //         same type as, or a base class of, the class of T1, and
5601     //         [cv2 > cv1].
5602     if (FRec == TRec || FDerivedFromT) {
5603       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5604         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5605         InitializationSequence InitSeq(Self, Entity, Kind, From);
5606         if (InitSeq) {
5607           HaveConversion = true;
5608           return false;
5609         }
5610 
5611         if (InitSeq.isAmbiguous())
5612           return InitSeq.Diagnose(Self, Entity, Kind, From);
5613       }
5614     }
5615 
5616     return false;
5617   }
5618 
5619   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
5620   //        implicitly converted to the type that expression E2 would have
5621   //        if E2 were converted to an rvalue (or the type it has, if E2 is
5622   //        an rvalue).
5623   //
5624   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5625   // to the array-to-pointer or function-to-pointer conversions.
5626   TTy = TTy.getNonLValueExprType(Self.Context);
5627 
5628   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5629   InitializationSequence InitSeq(Self, Entity, Kind, From);
5630   HaveConversion = !InitSeq.Failed();
5631   ToType = TTy;
5632   if (InitSeq.isAmbiguous())
5633     return InitSeq.Diagnose(Self, Entity, Kind, From);
5634 
5635   return false;
5636 }
5637 
5638 /// Try to find a common type for two according to C++0x 5.16p5.
5639 ///
5640 /// This is part of the parameter validation for the ? operator. If either
5641 /// value operand is a class type, overload resolution is used to find a
5642 /// conversion to a common type.
5643 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5644                                     SourceLocation QuestionLoc) {
5645   Expr *Args[2] = { LHS.get(), RHS.get() };
5646   OverloadCandidateSet CandidateSet(QuestionLoc,
5647                                     OverloadCandidateSet::CSK_Operator);
5648   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5649                                     CandidateSet);
5650 
5651   OverloadCandidateSet::iterator Best;
5652   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5653     case OR_Success: {
5654       // We found a match. Perform the conversions on the arguments and move on.
5655       ExprResult LHSRes = Self.PerformImplicitConversion(
5656           LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
5657           Sema::AA_Converting);
5658       if (LHSRes.isInvalid())
5659         break;
5660       LHS = LHSRes;
5661 
5662       ExprResult RHSRes = Self.PerformImplicitConversion(
5663           RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
5664           Sema::AA_Converting);
5665       if (RHSRes.isInvalid())
5666         break;
5667       RHS = RHSRes;
5668       if (Best->Function)
5669         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5670       return false;
5671     }
5672 
5673     case OR_No_Viable_Function:
5674 
5675       // Emit a better diagnostic if one of the expressions is a null pointer
5676       // constant and the other is a pointer type. In this case, the user most
5677       // likely forgot to take the address of the other expression.
5678       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5679         return true;
5680 
5681       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5682         << LHS.get()->getType() << RHS.get()->getType()
5683         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5684       return true;
5685 
5686     case OR_Ambiguous:
5687       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
5688         << LHS.get()->getType() << RHS.get()->getType()
5689         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5690       // FIXME: Print the possible common types by printing the return types of
5691       // the viable candidates.
5692       break;
5693 
5694     case OR_Deleted:
5695       llvm_unreachable("Conditional operator has only built-in overloads");
5696   }
5697   return true;
5698 }
5699 
5700 /// Perform an "extended" implicit conversion as returned by
5701 /// TryClassUnification.
5702 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
5703   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5704   InitializationKind Kind =
5705       InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
5706   Expr *Arg = E.get();
5707   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
5708   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
5709   if (Result.isInvalid())
5710     return true;
5711 
5712   E = Result;
5713   return false;
5714 }
5715 
5716 /// Check the operands of ?: under C++ semantics.
5717 ///
5718 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
5719 /// extension. In this case, LHS == Cond. (But they're not aliases.)
5720 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5721                                            ExprResult &RHS, ExprValueKind &VK,
5722                                            ExprObjectKind &OK,
5723                                            SourceLocation QuestionLoc) {
5724   // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
5725   // interface pointers.
5726 
5727   // C++11 [expr.cond]p1
5728   //   The first expression is contextually converted to bool.
5729   //
5730   // FIXME; GCC's vector extension permits the use of a?b:c where the type of
5731   //        a is that of a integer vector with the same number of elements and
5732   //        size as the vectors of b and c. If one of either b or c is a scalar
5733   //        it is implicitly converted to match the type of the vector.
5734   //        Otherwise the expression is ill-formed. If both b and c are scalars,
5735   //        then b and c are checked and converted to the type of a if possible.
5736   //        Unlike the OpenCL ?: operator, the expression is evaluated as
5737   //        (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
5738   if (!Cond.get()->isTypeDependent()) {
5739     ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
5740     if (CondRes.isInvalid())
5741       return QualType();
5742     Cond = CondRes;
5743   }
5744 
5745   // Assume r-value.
5746   VK = VK_RValue;
5747   OK = OK_Ordinary;
5748 
5749   // Either of the arguments dependent?
5750   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
5751     return Context.DependentTy;
5752 
5753   // C++11 [expr.cond]p2
5754   //   If either the second or the third operand has type (cv) void, ...
5755   QualType LTy = LHS.get()->getType();
5756   QualType RTy = RHS.get()->getType();
5757   bool LVoid = LTy->isVoidType();
5758   bool RVoid = RTy->isVoidType();
5759   if (LVoid || RVoid) {
5760     //   ... one of the following shall hold:
5761     //   -- The second or the third operand (but not both) is a (possibly
5762     //      parenthesized) throw-expression; the result is of the type
5763     //      and value category of the other.
5764     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
5765     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
5766     if (LThrow != RThrow) {
5767       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
5768       VK = NonThrow->getValueKind();
5769       // DR (no number yet): the result is a bit-field if the
5770       // non-throw-expression operand is a bit-field.
5771       OK = NonThrow->getObjectKind();
5772       return NonThrow->getType();
5773     }
5774 
5775     //   -- Both the second and third operands have type void; the result is of
5776     //      type void and is a prvalue.
5777     if (LVoid && RVoid)
5778       return Context.VoidTy;
5779 
5780     // Neither holds, error.
5781     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
5782       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
5783       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5784     return QualType();
5785   }
5786 
5787   // Neither is void.
5788 
5789   // C++11 [expr.cond]p3
5790   //   Otherwise, if the second and third operand have different types, and
5791   //   either has (cv) class type [...] an attempt is made to convert each of
5792   //   those operands to the type of the other.
5793   if (!Context.hasSameType(LTy, RTy) &&
5794       (LTy->isRecordType() || RTy->isRecordType())) {
5795     // These return true if a single direction is already ambiguous.
5796     QualType L2RType, R2LType;
5797     bool HaveL2R, HaveR2L;
5798     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
5799       return QualType();
5800     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
5801       return QualType();
5802 
5803     //   If both can be converted, [...] the program is ill-formed.
5804     if (HaveL2R && HaveR2L) {
5805       Diag(QuestionLoc, diag::err_conditional_ambiguous)
5806         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5807       return QualType();
5808     }
5809 
5810     //   If exactly one conversion is possible, that conversion is applied to
5811     //   the chosen operand and the converted operands are used in place of the
5812     //   original operands for the remainder of this section.
5813     if (HaveL2R) {
5814       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
5815         return QualType();
5816       LTy = LHS.get()->getType();
5817     } else if (HaveR2L) {
5818       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
5819         return QualType();
5820       RTy = RHS.get()->getType();
5821     }
5822   }
5823 
5824   // C++11 [expr.cond]p3
5825   //   if both are glvalues of the same value category and the same type except
5826   //   for cv-qualification, an attempt is made to convert each of those
5827   //   operands to the type of the other.
5828   // FIXME:
5829   //   Resolving a defect in P0012R1: we extend this to cover all cases where
5830   //   one of the operands is reference-compatible with the other, in order
5831   //   to support conditionals between functions differing in noexcept.
5832   ExprValueKind LVK = LHS.get()->getValueKind();
5833   ExprValueKind RVK = RHS.get()->getValueKind();
5834   if (!Context.hasSameType(LTy, RTy) &&
5835       LVK == RVK && LVK != VK_RValue) {
5836     // DerivedToBase was already handled by the class-specific case above.
5837     // FIXME: Should we allow ObjC conversions here?
5838     bool DerivedToBase, ObjCConversion, ObjCLifetimeConversion;
5839     if (CompareReferenceRelationship(
5840             QuestionLoc, LTy, RTy, DerivedToBase,
5841             ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5842         !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5843         // [...] subject to the constraint that the reference must bind
5844         // directly [...]
5845         !RHS.get()->refersToBitField() &&
5846         !RHS.get()->refersToVectorElement()) {
5847       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
5848       RTy = RHS.get()->getType();
5849     } else if (CompareReferenceRelationship(
5850                    QuestionLoc, RTy, LTy, DerivedToBase,
5851                    ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5852                !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5853                !LHS.get()->refersToBitField() &&
5854                !LHS.get()->refersToVectorElement()) {
5855       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
5856       LTy = LHS.get()->getType();
5857     }
5858   }
5859 
5860   // C++11 [expr.cond]p4
5861   //   If the second and third operands are glvalues of the same value
5862   //   category and have the same type, the result is of that type and
5863   //   value category and it is a bit-field if the second or the third
5864   //   operand is a bit-field, or if both are bit-fields.
5865   // We only extend this to bitfields, not to the crazy other kinds of
5866   // l-values.
5867   bool Same = Context.hasSameType(LTy, RTy);
5868   if (Same && LVK == RVK && LVK != VK_RValue &&
5869       LHS.get()->isOrdinaryOrBitFieldObject() &&
5870       RHS.get()->isOrdinaryOrBitFieldObject()) {
5871     VK = LHS.get()->getValueKind();
5872     if (LHS.get()->getObjectKind() == OK_BitField ||
5873         RHS.get()->getObjectKind() == OK_BitField)
5874       OK = OK_BitField;
5875 
5876     // If we have function pointer types, unify them anyway to unify their
5877     // exception specifications, if any.
5878     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5879       Qualifiers Qs = LTy.getQualifiers();
5880       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
5881                                      /*ConvertArgs*/false);
5882       LTy = Context.getQualifiedType(LTy, Qs);
5883 
5884       assert(!LTy.isNull() && "failed to find composite pointer type for "
5885                               "canonically equivalent function ptr types");
5886       assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type");
5887     }
5888 
5889     return LTy;
5890   }
5891 
5892   // C++11 [expr.cond]p5
5893   //   Otherwise, the result is a prvalue. If the second and third operands
5894   //   do not have the same type, and either has (cv) class type, ...
5895   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
5896     //   ... overload resolution is used to determine the conversions (if any)
5897     //   to be applied to the operands. If the overload resolution fails, the
5898     //   program is ill-formed.
5899     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
5900       return QualType();
5901   }
5902 
5903   // C++11 [expr.cond]p6
5904   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
5905   //   conversions are performed on the second and third operands.
5906   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
5907   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
5908   if (LHS.isInvalid() || RHS.isInvalid())
5909     return QualType();
5910   LTy = LHS.get()->getType();
5911   RTy = RHS.get()->getType();
5912 
5913   //   After those conversions, one of the following shall hold:
5914   //   -- The second and third operands have the same type; the result
5915   //      is of that type. If the operands have class type, the result
5916   //      is a prvalue temporary of the result type, which is
5917   //      copy-initialized from either the second operand or the third
5918   //      operand depending on the value of the first operand.
5919   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
5920     if (LTy->isRecordType()) {
5921       // The operands have class type. Make a temporary copy.
5922       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
5923 
5924       ExprResult LHSCopy = PerformCopyInitialization(Entity,
5925                                                      SourceLocation(),
5926                                                      LHS);
5927       if (LHSCopy.isInvalid())
5928         return QualType();
5929 
5930       ExprResult RHSCopy = PerformCopyInitialization(Entity,
5931                                                      SourceLocation(),
5932                                                      RHS);
5933       if (RHSCopy.isInvalid())
5934         return QualType();
5935 
5936       LHS = LHSCopy;
5937       RHS = RHSCopy;
5938     }
5939 
5940     // If we have function pointer types, unify them anyway to unify their
5941     // exception specifications, if any.
5942     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5943       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
5944       assert(!LTy.isNull() && "failed to find composite pointer type for "
5945                               "canonically equivalent function ptr types");
5946     }
5947 
5948     return LTy;
5949   }
5950 
5951   // Extension: conditional operator involving vector types.
5952   if (LTy->isVectorType() || RTy->isVectorType())
5953     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
5954                                /*AllowBothBool*/true,
5955                                /*AllowBoolConversions*/false);
5956 
5957   //   -- The second and third operands have arithmetic or enumeration type;
5958   //      the usual arithmetic conversions are performed to bring them to a
5959   //      common type, and the result is of that type.
5960   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
5961     QualType ResTy = UsualArithmeticConversions(LHS, RHS);
5962     if (LHS.isInvalid() || RHS.isInvalid())
5963       return QualType();
5964     if (ResTy.isNull()) {
5965       Diag(QuestionLoc,
5966            diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
5967         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5968       return QualType();
5969     }
5970 
5971     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
5972     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
5973 
5974     return ResTy;
5975   }
5976 
5977   //   -- The second and third operands have pointer type, or one has pointer
5978   //      type and the other is a null pointer constant, or both are null
5979   //      pointer constants, at least one of which is non-integral; pointer
5980   //      conversions and qualification conversions are performed to bring them
5981   //      to their composite pointer type. The result is of the composite
5982   //      pointer type.
5983   //   -- The second and third operands have pointer to member type, or one has
5984   //      pointer to member type and the other is a null pointer constant;
5985   //      pointer to member conversions and qualification conversions are
5986   //      performed to bring them to a common type, whose cv-qualification
5987   //      shall match the cv-qualification of either the second or the third
5988   //      operand. The result is of the common type.
5989   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
5990   if (!Composite.isNull())
5991     return Composite;
5992 
5993   // Similarly, attempt to find composite type of two objective-c pointers.
5994   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
5995   if (!Composite.isNull())
5996     return Composite;
5997 
5998   // Check if we are using a null with a non-pointer type.
5999   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6000     return QualType();
6001 
6002   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6003     << LHS.get()->getType() << RHS.get()->getType()
6004     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6005   return QualType();
6006 }
6007 
6008 static FunctionProtoType::ExceptionSpecInfo
6009 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
6010                     FunctionProtoType::ExceptionSpecInfo ESI2,
6011                     SmallVectorImpl<QualType> &ExceptionTypeStorage) {
6012   ExceptionSpecificationType EST1 = ESI1.Type;
6013   ExceptionSpecificationType EST2 = ESI2.Type;
6014 
6015   // If either of them can throw anything, that is the result.
6016   if (EST1 == EST_None) return ESI1;
6017   if (EST2 == EST_None) return ESI2;
6018   if (EST1 == EST_MSAny) return ESI1;
6019   if (EST2 == EST_MSAny) return ESI2;
6020   if (EST1 == EST_NoexceptFalse) return ESI1;
6021   if (EST2 == EST_NoexceptFalse) return ESI2;
6022 
6023   // If either of them is non-throwing, the result is the other.
6024   if (EST1 == EST_NoThrow) return ESI2;
6025   if (EST2 == EST_NoThrow) return ESI1;
6026   if (EST1 == EST_DynamicNone) return ESI2;
6027   if (EST2 == EST_DynamicNone) return ESI1;
6028   if (EST1 == EST_BasicNoexcept) return ESI2;
6029   if (EST2 == EST_BasicNoexcept) return ESI1;
6030   if (EST1 == EST_NoexceptTrue) return ESI2;
6031   if (EST2 == EST_NoexceptTrue) return ESI1;
6032 
6033   // If we're left with value-dependent computed noexcept expressions, we're
6034   // stuck. Before C++17, we can just drop the exception specification entirely,
6035   // since it's not actually part of the canonical type. And this should never
6036   // happen in C++17, because it would mean we were computing the composite
6037   // pointer type of dependent types, which should never happen.
6038   if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
6039     assert(!S.getLangOpts().CPlusPlus17 &&
6040            "computing composite pointer type of dependent types");
6041     return FunctionProtoType::ExceptionSpecInfo();
6042   }
6043 
6044   // Switch over the possibilities so that people adding new values know to
6045   // update this function.
6046   switch (EST1) {
6047   case EST_None:
6048   case EST_DynamicNone:
6049   case EST_MSAny:
6050   case EST_BasicNoexcept:
6051   case EST_DependentNoexcept:
6052   case EST_NoexceptFalse:
6053   case EST_NoexceptTrue:
6054   case EST_NoThrow:
6055     llvm_unreachable("handled above");
6056 
6057   case EST_Dynamic: {
6058     // This is the fun case: both exception specifications are dynamic. Form
6059     // the union of the two lists.
6060     assert(EST2 == EST_Dynamic && "other cases should already be handled");
6061     llvm::SmallPtrSet<QualType, 8> Found;
6062     for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
6063       for (QualType E : Exceptions)
6064         if (Found.insert(S.Context.getCanonicalType(E)).second)
6065           ExceptionTypeStorage.push_back(E);
6066 
6067     FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
6068     Result.Exceptions = ExceptionTypeStorage;
6069     return Result;
6070   }
6071 
6072   case EST_Unevaluated:
6073   case EST_Uninstantiated:
6074   case EST_Unparsed:
6075     llvm_unreachable("shouldn't see unresolved exception specifications here");
6076   }
6077 
6078   llvm_unreachable("invalid ExceptionSpecificationType");
6079 }
6080 
6081 /// Find a merged pointer type and convert the two expressions to it.
6082 ///
6083 /// This finds the composite pointer type (or member pointer type) for @p E1
6084 /// and @p E2 according to C++1z 5p14. It converts both expressions to this
6085 /// type and returns it.
6086 /// It does not emit diagnostics.
6087 ///
6088 /// \param Loc The location of the operator requiring these two expressions to
6089 /// be converted to the composite pointer type.
6090 ///
6091 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6092 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6093                                         Expr *&E1, Expr *&E2,
6094                                         bool ConvertArgs) {
6095   assert(getLangOpts().CPlusPlus && "This function assumes C++");
6096 
6097   // C++1z [expr]p14:
6098   //   The composite pointer type of two operands p1 and p2 having types T1
6099   //   and T2
6100   QualType T1 = E1->getType(), T2 = E2->getType();
6101 
6102   //   where at least one is a pointer or pointer to member type or
6103   //   std::nullptr_t is:
6104   bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6105                          T1->isNullPtrType();
6106   bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6107                          T2->isNullPtrType();
6108   if (!T1IsPointerLike && !T2IsPointerLike)
6109     return QualType();
6110 
6111   //   - if both p1 and p2 are null pointer constants, std::nullptr_t;
6112   // This can't actually happen, following the standard, but we also use this
6113   // to implement the end of [expr.conv], which hits this case.
6114   //
6115   //   - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6116   if (T1IsPointerLike &&
6117       E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6118     if (ConvertArgs)
6119       E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6120                                          ? CK_NullToMemberPointer
6121                                          : CK_NullToPointer).get();
6122     return T1;
6123   }
6124   if (T2IsPointerLike &&
6125       E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6126     if (ConvertArgs)
6127       E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6128                                          ? CK_NullToMemberPointer
6129                                          : CK_NullToPointer).get();
6130     return T2;
6131   }
6132 
6133   // Now both have to be pointers or member pointers.
6134   if (!T1IsPointerLike || !T2IsPointerLike)
6135     return QualType();
6136   assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6137          "nullptr_t should be a null pointer constant");
6138 
6139   //  - if T1 or T2 is "pointer to cv1 void" and the other type is
6140   //    "pointer to cv2 T", "pointer to cv12 void", where cv12 is
6141   //    the union of cv1 and cv2;
6142   //  - if T1 or T2 is "pointer to noexcept function" and the other type is
6143   //    "pointer to function", where the function types are otherwise the same,
6144   //    "pointer to function";
6145   //     FIXME: This rule is defective: it should also permit removing noexcept
6146   //     from a pointer to member function.  As a Clang extension, we also
6147   //     permit removing 'noreturn', so we generalize this rule to;
6148   //     - [Clang] If T1 and T2 are both of type "pointer to function" or
6149   //       "pointer to member function" and the pointee types can be unified
6150   //       by a function pointer conversion, that conversion is applied
6151   //       before checking the following rules.
6152   //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6153   //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6154   //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6155   //    respectively;
6156   //  - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6157   //    to member of C2 of type cv2 U2" where C1 is reference-related to C2 or
6158   //    C2 is reference-related to C1 (8.6.3), the cv-combined type of T2 and
6159   //    T1 or the cv-combined type of T1 and T2, respectively;
6160   //  - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6161   //    T2;
6162   //
6163   // If looked at in the right way, these bullets all do the same thing.
6164   // What we do here is, we build the two possible cv-combined types, and try
6165   // the conversions in both directions. If only one works, or if the two
6166   // composite types are the same, we have succeeded.
6167   // FIXME: extended qualifiers?
6168   //
6169   // Note that this will fail to find a composite pointer type for "pointer
6170   // to void" and "pointer to function". We can't actually perform the final
6171   // conversion in this case, even though a composite pointer type formally
6172   // exists.
6173   SmallVector<unsigned, 4> QualifierUnion;
6174   SmallVector<std::pair<const Type *, const Type *>, 4> MemberOfClass;
6175   QualType Composite1 = T1;
6176   QualType Composite2 = T2;
6177   unsigned NeedConstBefore = 0;
6178   while (true) {
6179     const PointerType *Ptr1, *Ptr2;
6180     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
6181         (Ptr2 = Composite2->getAs<PointerType>())) {
6182       Composite1 = Ptr1->getPointeeType();
6183       Composite2 = Ptr2->getPointeeType();
6184 
6185       // If we're allowed to create a non-standard composite type, keep track
6186       // of where we need to fill in additional 'const' qualifiers.
6187       if (Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
6188         NeedConstBefore = QualifierUnion.size();
6189 
6190       QualifierUnion.push_back(
6191                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
6192       MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
6193       continue;
6194     }
6195 
6196     const MemberPointerType *MemPtr1, *MemPtr2;
6197     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
6198         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
6199       Composite1 = MemPtr1->getPointeeType();
6200       Composite2 = MemPtr2->getPointeeType();
6201 
6202       // If we're allowed to create a non-standard composite type, keep track
6203       // of where we need to fill in additional 'const' qualifiers.
6204       if (Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
6205         NeedConstBefore = QualifierUnion.size();
6206 
6207       QualifierUnion.push_back(
6208                  Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
6209       MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
6210                                              MemPtr2->getClass()));
6211       continue;
6212     }
6213 
6214     // FIXME: block pointer types?
6215 
6216     // Cannot unwrap any more types.
6217     break;
6218   }
6219 
6220   // Apply the function pointer conversion to unify the types. We've already
6221   // unwrapped down to the function types, and we want to merge rather than
6222   // just convert, so do this ourselves rather than calling
6223   // IsFunctionConversion.
6224   //
6225   // FIXME: In order to match the standard wording as closely as possible, we
6226   // currently only do this under a single level of pointers. Ideally, we would
6227   // allow this in general, and set NeedConstBefore to the relevant depth on
6228   // the side(s) where we changed anything.
6229   if (QualifierUnion.size() == 1) {
6230     if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
6231       if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
6232         FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
6233         FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
6234 
6235         // The result is noreturn if both operands are.
6236         bool Noreturn =
6237             EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
6238         EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
6239         EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
6240 
6241         // The result is nothrow if both operands are.
6242         SmallVector<QualType, 8> ExceptionTypeStorage;
6243         EPI1.ExceptionSpec = EPI2.ExceptionSpec =
6244             mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec,
6245                                 ExceptionTypeStorage);
6246 
6247         Composite1 = Context.getFunctionType(FPT1->getReturnType(),
6248                                              FPT1->getParamTypes(), EPI1);
6249         Composite2 = Context.getFunctionType(FPT2->getReturnType(),
6250                                              FPT2->getParamTypes(), EPI2);
6251       }
6252     }
6253   }
6254 
6255   if (NeedConstBefore) {
6256     // Extension: Add 'const' to qualifiers that come before the first qualifier
6257     // mismatch, so that our (non-standard!) composite type meets the
6258     // requirements of C++ [conv.qual]p4 bullet 3.
6259     for (unsigned I = 0; I != NeedConstBefore; ++I)
6260       if ((QualifierUnion[I] & Qualifiers::Const) == 0)
6261         QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
6262   }
6263 
6264   // Rewrap the composites as pointers or member pointers with the union CVRs.
6265   auto MOC = MemberOfClass.rbegin();
6266   for (unsigned CVR : llvm::reverse(QualifierUnion)) {
6267     Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
6268     auto Classes = *MOC++;
6269     if (Classes.first && Classes.second) {
6270       // Rebuild member pointer type
6271       Composite1 = Context.getMemberPointerType(
6272           Context.getQualifiedType(Composite1, Quals), Classes.first);
6273       Composite2 = Context.getMemberPointerType(
6274           Context.getQualifiedType(Composite2, Quals), Classes.second);
6275     } else {
6276       // Rebuild pointer type
6277       Composite1 =
6278           Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
6279       Composite2 =
6280           Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
6281     }
6282   }
6283 
6284   struct Conversion {
6285     Sema &S;
6286     Expr *&E1, *&E2;
6287     QualType Composite;
6288     InitializedEntity Entity;
6289     InitializationKind Kind;
6290     InitializationSequence E1ToC, E2ToC;
6291     bool Viable;
6292 
6293     Conversion(Sema &S, SourceLocation Loc, Expr *&E1, Expr *&E2,
6294                QualType Composite)
6295         : S(S), E1(E1), E2(E2), Composite(Composite),
6296           Entity(InitializedEntity::InitializeTemporary(Composite)),
6297           Kind(InitializationKind::CreateCopy(Loc, SourceLocation())),
6298           E1ToC(S, Entity, Kind, E1), E2ToC(S, Entity, Kind, E2),
6299           Viable(E1ToC && E2ToC) {}
6300 
6301     bool perform() {
6302       ExprResult E1Result = E1ToC.Perform(S, Entity, Kind, E1);
6303       if (E1Result.isInvalid())
6304         return true;
6305       E1 = E1Result.getAs<Expr>();
6306 
6307       ExprResult E2Result = E2ToC.Perform(S, Entity, Kind, E2);
6308       if (E2Result.isInvalid())
6309         return true;
6310       E2 = E2Result.getAs<Expr>();
6311 
6312       return false;
6313     }
6314   };
6315 
6316   // Try to convert to each composite pointer type.
6317   Conversion C1(*this, Loc, E1, E2, Composite1);
6318   if (C1.Viable && Context.hasSameType(Composite1, Composite2)) {
6319     if (ConvertArgs && C1.perform())
6320       return QualType();
6321     return C1.Composite;
6322   }
6323   Conversion C2(*this, Loc, E1, E2, Composite2);
6324 
6325   if (C1.Viable == C2.Viable) {
6326     // Either Composite1 and Composite2 are viable and are different, or
6327     // neither is viable.
6328     // FIXME: How both be viable and different?
6329     return QualType();
6330   }
6331 
6332   // Convert to the chosen type.
6333   if (ConvertArgs && (C1.Viable ? C1 : C2).perform())
6334     return QualType();
6335 
6336   return C1.Viable ? C1.Composite : C2.Composite;
6337 }
6338 
6339 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
6340   if (!E)
6341     return ExprError();
6342 
6343   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
6344 
6345   // If the result is a glvalue, we shouldn't bind it.
6346   if (!E->isRValue())
6347     return E;
6348 
6349   // In ARC, calls that return a retainable type can return retained,
6350   // in which case we have to insert a consuming cast.
6351   if (getLangOpts().ObjCAutoRefCount &&
6352       E->getType()->isObjCRetainableType()) {
6353 
6354     bool ReturnsRetained;
6355 
6356     // For actual calls, we compute this by examining the type of the
6357     // called value.
6358     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
6359       Expr *Callee = Call->getCallee()->IgnoreParens();
6360       QualType T = Callee->getType();
6361 
6362       if (T == Context.BoundMemberTy) {
6363         // Handle pointer-to-members.
6364         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
6365           T = BinOp->getRHS()->getType();
6366         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
6367           T = Mem->getMemberDecl()->getType();
6368       }
6369 
6370       if (const PointerType *Ptr = T->getAs<PointerType>())
6371         T = Ptr->getPointeeType();
6372       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
6373         T = Ptr->getPointeeType();
6374       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
6375         T = MemPtr->getPointeeType();
6376 
6377       const FunctionType *FTy = T->getAs<FunctionType>();
6378       assert(FTy && "call to value not of function type?");
6379       ReturnsRetained = FTy->getExtInfo().getProducesResult();
6380 
6381     // ActOnStmtExpr arranges things so that StmtExprs of retainable
6382     // type always produce a +1 object.
6383     } else if (isa<StmtExpr>(E)) {
6384       ReturnsRetained = true;
6385 
6386     // We hit this case with the lambda conversion-to-block optimization;
6387     // we don't want any extra casts here.
6388     } else if (isa<CastExpr>(E) &&
6389                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
6390       return E;
6391 
6392     // For message sends and property references, we try to find an
6393     // actual method.  FIXME: we should infer retention by selector in
6394     // cases where we don't have an actual method.
6395     } else {
6396       ObjCMethodDecl *D = nullptr;
6397       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
6398         D = Send->getMethodDecl();
6399       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
6400         D = BoxedExpr->getBoxingMethod();
6401       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
6402         // Don't do reclaims if we're using the zero-element array
6403         // constant.
6404         if (ArrayLit->getNumElements() == 0 &&
6405             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6406           return E;
6407 
6408         D = ArrayLit->getArrayWithObjectsMethod();
6409       } else if (ObjCDictionaryLiteral *DictLit
6410                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
6411         // Don't do reclaims if we're using the zero-element dictionary
6412         // constant.
6413         if (DictLit->getNumElements() == 0 &&
6414             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6415           return E;
6416 
6417         D = DictLit->getDictWithObjectsMethod();
6418       }
6419 
6420       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
6421 
6422       // Don't do reclaims on performSelector calls; despite their
6423       // return type, the invoked method doesn't necessarily actually
6424       // return an object.
6425       if (!ReturnsRetained &&
6426           D && D->getMethodFamily() == OMF_performSelector)
6427         return E;
6428     }
6429 
6430     // Don't reclaim an object of Class type.
6431     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
6432       return E;
6433 
6434     Cleanup.setExprNeedsCleanups(true);
6435 
6436     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
6437                                    : CK_ARCReclaimReturnedObject);
6438     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
6439                                     VK_RValue);
6440   }
6441 
6442   if (!getLangOpts().CPlusPlus)
6443     return E;
6444 
6445   // Search for the base element type (cf. ASTContext::getBaseElementType) with
6446   // a fast path for the common case that the type is directly a RecordType.
6447   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
6448   const RecordType *RT = nullptr;
6449   while (!RT) {
6450     switch (T->getTypeClass()) {
6451     case Type::Record:
6452       RT = cast<RecordType>(T);
6453       break;
6454     case Type::ConstantArray:
6455     case Type::IncompleteArray:
6456     case Type::VariableArray:
6457     case Type::DependentSizedArray:
6458       T = cast<ArrayType>(T)->getElementType().getTypePtr();
6459       break;
6460     default:
6461       return E;
6462     }
6463   }
6464 
6465   // That should be enough to guarantee that this type is complete, if we're
6466   // not processing a decltype expression.
6467   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
6468   if (RD->isInvalidDecl() || RD->isDependentContext())
6469     return E;
6470 
6471   bool IsDecltype = ExprEvalContexts.back().ExprContext ==
6472                     ExpressionEvaluationContextRecord::EK_Decltype;
6473   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
6474 
6475   if (Destructor) {
6476     MarkFunctionReferenced(E->getExprLoc(), Destructor);
6477     CheckDestructorAccess(E->getExprLoc(), Destructor,
6478                           PDiag(diag::err_access_dtor_temp)
6479                             << E->getType());
6480     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
6481       return ExprError();
6482 
6483     // If destructor is trivial, we can avoid the extra copy.
6484     if (Destructor->isTrivial())
6485       return E;
6486 
6487     // We need a cleanup, but we don't need to remember the temporary.
6488     Cleanup.setExprNeedsCleanups(true);
6489   }
6490 
6491   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
6492   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
6493 
6494   if (IsDecltype)
6495     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
6496 
6497   return Bind;
6498 }
6499 
6500 ExprResult
6501 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
6502   if (SubExpr.isInvalid())
6503     return ExprError();
6504 
6505   return MaybeCreateExprWithCleanups(SubExpr.get());
6506 }
6507 
6508 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
6509   assert(SubExpr && "subexpression can't be null!");
6510 
6511   CleanupVarDeclMarking();
6512 
6513   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
6514   assert(ExprCleanupObjects.size() >= FirstCleanup);
6515   assert(Cleanup.exprNeedsCleanups() ||
6516          ExprCleanupObjects.size() == FirstCleanup);
6517   if (!Cleanup.exprNeedsCleanups())
6518     return SubExpr;
6519 
6520   auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
6521                                      ExprCleanupObjects.size() - FirstCleanup);
6522 
6523   auto *E = ExprWithCleanups::Create(
6524       Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
6525   DiscardCleanupsInEvaluationContext();
6526 
6527   return E;
6528 }
6529 
6530 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
6531   assert(SubStmt && "sub-statement can't be null!");
6532 
6533   CleanupVarDeclMarking();
6534 
6535   if (!Cleanup.exprNeedsCleanups())
6536     return SubStmt;
6537 
6538   // FIXME: In order to attach the temporaries, wrap the statement into
6539   // a StmtExpr; currently this is only used for asm statements.
6540   // This is hacky, either create a new CXXStmtWithTemporaries statement or
6541   // a new AsmStmtWithTemporaries.
6542   CompoundStmt *CompStmt = CompoundStmt::Create(
6543       Context, SubStmt, SourceLocation(), SourceLocation());
6544   Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
6545                                    SourceLocation());
6546   return MaybeCreateExprWithCleanups(E);
6547 }
6548 
6549 /// Process the expression contained within a decltype. For such expressions,
6550 /// certain semantic checks on temporaries are delayed until this point, and
6551 /// are omitted for the 'topmost' call in the decltype expression. If the
6552 /// topmost call bound a temporary, strip that temporary off the expression.
6553 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
6554   assert(ExprEvalContexts.back().ExprContext ==
6555              ExpressionEvaluationContextRecord::EK_Decltype &&
6556          "not in a decltype expression");
6557 
6558   ExprResult Result = CheckPlaceholderExpr(E);
6559   if (Result.isInvalid())
6560     return ExprError();
6561   E = Result.get();
6562 
6563   // C++11 [expr.call]p11:
6564   //   If a function call is a prvalue of object type,
6565   // -- if the function call is either
6566   //   -- the operand of a decltype-specifier, or
6567   //   -- the right operand of a comma operator that is the operand of a
6568   //      decltype-specifier,
6569   //   a temporary object is not introduced for the prvalue.
6570 
6571   // Recursively rebuild ParenExprs and comma expressions to strip out the
6572   // outermost CXXBindTemporaryExpr, if any.
6573   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6574     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
6575     if (SubExpr.isInvalid())
6576       return ExprError();
6577     if (SubExpr.get() == PE->getSubExpr())
6578       return E;
6579     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
6580   }
6581   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6582     if (BO->getOpcode() == BO_Comma) {
6583       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
6584       if (RHS.isInvalid())
6585         return ExprError();
6586       if (RHS.get() == BO->getRHS())
6587         return E;
6588       return new (Context) BinaryOperator(
6589           BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
6590           BO->getObjectKind(), BO->getOperatorLoc(), BO->getFPFeatures());
6591     }
6592   }
6593 
6594   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
6595   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
6596                               : nullptr;
6597   if (TopCall)
6598     E = TopCall;
6599   else
6600     TopBind = nullptr;
6601 
6602   // Disable the special decltype handling now.
6603   ExprEvalContexts.back().ExprContext =
6604       ExpressionEvaluationContextRecord::EK_Other;
6605 
6606   // In MS mode, don't perform any extra checking of call return types within a
6607   // decltype expression.
6608   if (getLangOpts().MSVCCompat)
6609     return E;
6610 
6611   // Perform the semantic checks we delayed until this point.
6612   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
6613        I != N; ++I) {
6614     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
6615     if (Call == TopCall)
6616       continue;
6617 
6618     if (CheckCallReturnType(Call->getCallReturnType(Context),
6619                             Call->getBeginLoc(), Call, Call->getDirectCallee()))
6620       return ExprError();
6621   }
6622 
6623   // Now all relevant types are complete, check the destructors are accessible
6624   // and non-deleted, and annotate them on the temporaries.
6625   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
6626        I != N; ++I) {
6627     CXXBindTemporaryExpr *Bind =
6628       ExprEvalContexts.back().DelayedDecltypeBinds[I];
6629     if (Bind == TopBind)
6630       continue;
6631 
6632     CXXTemporary *Temp = Bind->getTemporary();
6633 
6634     CXXRecordDecl *RD =
6635       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6636     CXXDestructorDecl *Destructor = LookupDestructor(RD);
6637     Temp->setDestructor(Destructor);
6638 
6639     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
6640     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
6641                           PDiag(diag::err_access_dtor_temp)
6642                             << Bind->getType());
6643     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
6644       return ExprError();
6645 
6646     // We need a cleanup, but we don't need to remember the temporary.
6647     Cleanup.setExprNeedsCleanups(true);
6648   }
6649 
6650   // Possibly strip off the top CXXBindTemporaryExpr.
6651   return E;
6652 }
6653 
6654 /// Note a set of 'operator->' functions that were used for a member access.
6655 static void noteOperatorArrows(Sema &S,
6656                                ArrayRef<FunctionDecl *> OperatorArrows) {
6657   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
6658   // FIXME: Make this configurable?
6659   unsigned Limit = 9;
6660   if (OperatorArrows.size() > Limit) {
6661     // Produce Limit-1 normal notes and one 'skipping' note.
6662     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
6663     SkipCount = OperatorArrows.size() - (Limit - 1);
6664   }
6665 
6666   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
6667     if (I == SkipStart) {
6668       S.Diag(OperatorArrows[I]->getLocation(),
6669              diag::note_operator_arrows_suppressed)
6670           << SkipCount;
6671       I += SkipCount;
6672     } else {
6673       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
6674           << OperatorArrows[I]->getCallResultType();
6675       ++I;
6676     }
6677   }
6678 }
6679 
6680 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
6681                                               SourceLocation OpLoc,
6682                                               tok::TokenKind OpKind,
6683                                               ParsedType &ObjectType,
6684                                               bool &MayBePseudoDestructor) {
6685   // Since this might be a postfix expression, get rid of ParenListExprs.
6686   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
6687   if (Result.isInvalid()) return ExprError();
6688   Base = Result.get();
6689 
6690   Result = CheckPlaceholderExpr(Base);
6691   if (Result.isInvalid()) return ExprError();
6692   Base = Result.get();
6693 
6694   QualType BaseType = Base->getType();
6695   MayBePseudoDestructor = false;
6696   if (BaseType->isDependentType()) {
6697     // If we have a pointer to a dependent type and are using the -> operator,
6698     // the object type is the type that the pointer points to. We might still
6699     // have enough information about that type to do something useful.
6700     if (OpKind == tok::arrow)
6701       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
6702         BaseType = Ptr->getPointeeType();
6703 
6704     ObjectType = ParsedType::make(BaseType);
6705     MayBePseudoDestructor = true;
6706     return Base;
6707   }
6708 
6709   // C++ [over.match.oper]p8:
6710   //   [...] When operator->returns, the operator-> is applied  to the value
6711   //   returned, with the original second operand.
6712   if (OpKind == tok::arrow) {
6713     QualType StartingType = BaseType;
6714     bool NoArrowOperatorFound = false;
6715     bool FirstIteration = true;
6716     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
6717     // The set of types we've considered so far.
6718     llvm::SmallPtrSet<CanQualType,8> CTypes;
6719     SmallVector<FunctionDecl*, 8> OperatorArrows;
6720     CTypes.insert(Context.getCanonicalType(BaseType));
6721 
6722     while (BaseType->isRecordType()) {
6723       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
6724         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
6725           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
6726         noteOperatorArrows(*this, OperatorArrows);
6727         Diag(OpLoc, diag::note_operator_arrow_depth)
6728           << getLangOpts().ArrowDepth;
6729         return ExprError();
6730       }
6731 
6732       Result = BuildOverloadedArrowExpr(
6733           S, Base, OpLoc,
6734           // When in a template specialization and on the first loop iteration,
6735           // potentially give the default diagnostic (with the fixit in a
6736           // separate note) instead of having the error reported back to here
6737           // and giving a diagnostic with a fixit attached to the error itself.
6738           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
6739               ? nullptr
6740               : &NoArrowOperatorFound);
6741       if (Result.isInvalid()) {
6742         if (NoArrowOperatorFound) {
6743           if (FirstIteration) {
6744             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6745               << BaseType << 1 << Base->getSourceRange()
6746               << FixItHint::CreateReplacement(OpLoc, ".");
6747             OpKind = tok::period;
6748             break;
6749           }
6750           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6751             << BaseType << Base->getSourceRange();
6752           CallExpr *CE = dyn_cast<CallExpr>(Base);
6753           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
6754             Diag(CD->getBeginLoc(),
6755                  diag::note_member_reference_arrow_from_operator_arrow);
6756           }
6757         }
6758         return ExprError();
6759       }
6760       Base = Result.get();
6761       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
6762         OperatorArrows.push_back(OpCall->getDirectCallee());
6763       BaseType = Base->getType();
6764       CanQualType CBaseType = Context.getCanonicalType(BaseType);
6765       if (!CTypes.insert(CBaseType).second) {
6766         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
6767         noteOperatorArrows(*this, OperatorArrows);
6768         return ExprError();
6769       }
6770       FirstIteration = false;
6771     }
6772 
6773     if (OpKind == tok::arrow) {
6774       if (BaseType->isPointerType())
6775         BaseType = BaseType->getPointeeType();
6776       else if (auto *AT = Context.getAsArrayType(BaseType))
6777         BaseType = AT->getElementType();
6778     }
6779   }
6780 
6781   // Objective-C properties allow "." access on Objective-C pointer types,
6782   // so adjust the base type to the object type itself.
6783   if (BaseType->isObjCObjectPointerType())
6784     BaseType = BaseType->getPointeeType();
6785 
6786   // C++ [basic.lookup.classref]p2:
6787   //   [...] If the type of the object expression is of pointer to scalar
6788   //   type, the unqualified-id is looked up in the context of the complete
6789   //   postfix-expression.
6790   //
6791   // This also indicates that we could be parsing a pseudo-destructor-name.
6792   // Note that Objective-C class and object types can be pseudo-destructor
6793   // expressions or normal member (ivar or property) access expressions, and
6794   // it's legal for the type to be incomplete if this is a pseudo-destructor
6795   // call.  We'll do more incomplete-type checks later in the lookup process,
6796   // so just skip this check for ObjC types.
6797   if (!BaseType->isRecordType()) {
6798     ObjectType = ParsedType::make(BaseType);
6799     MayBePseudoDestructor = true;
6800     return Base;
6801   }
6802 
6803   // The object type must be complete (or dependent), or
6804   // C++11 [expr.prim.general]p3:
6805   //   Unlike the object expression in other contexts, *this is not required to
6806   //   be of complete type for purposes of class member access (5.2.5) outside
6807   //   the member function body.
6808   if (!BaseType->isDependentType() &&
6809       !isThisOutsideMemberFunctionBody(BaseType) &&
6810       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
6811     return ExprError();
6812 
6813   // C++ [basic.lookup.classref]p2:
6814   //   If the id-expression in a class member access (5.2.5) is an
6815   //   unqualified-id, and the type of the object expression is of a class
6816   //   type C (or of pointer to a class type C), the unqualified-id is looked
6817   //   up in the scope of class C. [...]
6818   ObjectType = ParsedType::make(BaseType);
6819   return Base;
6820 }
6821 
6822 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
6823                    tok::TokenKind& OpKind, SourceLocation OpLoc) {
6824   if (Base->hasPlaceholderType()) {
6825     ExprResult result = S.CheckPlaceholderExpr(Base);
6826     if (result.isInvalid()) return true;
6827     Base = result.get();
6828   }
6829   ObjectType = Base->getType();
6830 
6831   // C++ [expr.pseudo]p2:
6832   //   The left-hand side of the dot operator shall be of scalar type. The
6833   //   left-hand side of the arrow operator shall be of pointer to scalar type.
6834   //   This scalar type is the object type.
6835   // Note that this is rather different from the normal handling for the
6836   // arrow operator.
6837   if (OpKind == tok::arrow) {
6838     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
6839       ObjectType = Ptr->getPointeeType();
6840     } else if (!Base->isTypeDependent()) {
6841       // The user wrote "p->" when they probably meant "p."; fix it.
6842       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6843         << ObjectType << true
6844         << FixItHint::CreateReplacement(OpLoc, ".");
6845       if (S.isSFINAEContext())
6846         return true;
6847 
6848       OpKind = tok::period;
6849     }
6850   }
6851 
6852   return false;
6853 }
6854 
6855 /// Check if it's ok to try and recover dot pseudo destructor calls on
6856 /// pointer objects.
6857 static bool
6858 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
6859                                                    QualType DestructedType) {
6860   // If this is a record type, check if its destructor is callable.
6861   if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
6862     if (RD->hasDefinition())
6863       if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
6864         return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
6865     return false;
6866   }
6867 
6868   // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
6869   return DestructedType->isDependentType() || DestructedType->isScalarType() ||
6870          DestructedType->isVectorType();
6871 }
6872 
6873 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
6874                                            SourceLocation OpLoc,
6875                                            tok::TokenKind OpKind,
6876                                            const CXXScopeSpec &SS,
6877                                            TypeSourceInfo *ScopeTypeInfo,
6878                                            SourceLocation CCLoc,
6879                                            SourceLocation TildeLoc,
6880                                          PseudoDestructorTypeStorage Destructed) {
6881   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
6882 
6883   QualType ObjectType;
6884   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
6885     return ExprError();
6886 
6887   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
6888       !ObjectType->isVectorType()) {
6889     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
6890       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
6891     else {
6892       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
6893         << ObjectType << Base->getSourceRange();
6894       return ExprError();
6895     }
6896   }
6897 
6898   // C++ [expr.pseudo]p2:
6899   //   [...] The cv-unqualified versions of the object type and of the type
6900   //   designated by the pseudo-destructor-name shall be the same type.
6901   if (DestructedTypeInfo) {
6902     QualType DestructedType = DestructedTypeInfo->getType();
6903     SourceLocation DestructedTypeStart
6904       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
6905     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
6906       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
6907         // Detect dot pseudo destructor calls on pointer objects, e.g.:
6908         //   Foo *foo;
6909         //   foo.~Foo();
6910         if (OpKind == tok::period && ObjectType->isPointerType() &&
6911             Context.hasSameUnqualifiedType(DestructedType,
6912                                            ObjectType->getPointeeType())) {
6913           auto Diagnostic =
6914               Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6915               << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
6916 
6917           // Issue a fixit only when the destructor is valid.
6918           if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
6919                   *this, DestructedType))
6920             Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
6921 
6922           // Recover by setting the object type to the destructed type and the
6923           // operator to '->'.
6924           ObjectType = DestructedType;
6925           OpKind = tok::arrow;
6926         } else {
6927           Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
6928               << ObjectType << DestructedType << Base->getSourceRange()
6929               << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
6930 
6931           // Recover by setting the destructed type to the object type.
6932           DestructedType = ObjectType;
6933           DestructedTypeInfo =
6934               Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
6935           Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6936         }
6937       } else if (DestructedType.getObjCLifetime() !=
6938                                                 ObjectType.getObjCLifetime()) {
6939 
6940         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
6941           // Okay: just pretend that the user provided the correctly-qualified
6942           // type.
6943         } else {
6944           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
6945             << ObjectType << DestructedType << Base->getSourceRange()
6946             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
6947         }
6948 
6949         // Recover by setting the destructed type to the object type.
6950         DestructedType = ObjectType;
6951         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
6952                                                            DestructedTypeStart);
6953         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6954       }
6955     }
6956   }
6957 
6958   // C++ [expr.pseudo]p2:
6959   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
6960   //   form
6961   //
6962   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
6963   //
6964   //   shall designate the same scalar type.
6965   if (ScopeTypeInfo) {
6966     QualType ScopeType = ScopeTypeInfo->getType();
6967     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
6968         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
6969 
6970       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
6971            diag::err_pseudo_dtor_type_mismatch)
6972         << ObjectType << ScopeType << Base->getSourceRange()
6973         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
6974 
6975       ScopeType = QualType();
6976       ScopeTypeInfo = nullptr;
6977     }
6978   }
6979 
6980   Expr *Result
6981     = new (Context) CXXPseudoDestructorExpr(Context, Base,
6982                                             OpKind == tok::arrow, OpLoc,
6983                                             SS.getWithLocInContext(Context),
6984                                             ScopeTypeInfo,
6985                                             CCLoc,
6986                                             TildeLoc,
6987                                             Destructed);
6988 
6989   return Result;
6990 }
6991 
6992 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6993                                            SourceLocation OpLoc,
6994                                            tok::TokenKind OpKind,
6995                                            CXXScopeSpec &SS,
6996                                            UnqualifiedId &FirstTypeName,
6997                                            SourceLocation CCLoc,
6998                                            SourceLocation TildeLoc,
6999                                            UnqualifiedId &SecondTypeName) {
7000   assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7001           FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7002          "Invalid first type name in pseudo-destructor");
7003   assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7004           SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7005          "Invalid second type name in pseudo-destructor");
7006 
7007   QualType ObjectType;
7008   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7009     return ExprError();
7010 
7011   // Compute the object type that we should use for name lookup purposes. Only
7012   // record types and dependent types matter.
7013   ParsedType ObjectTypePtrForLookup;
7014   if (!SS.isSet()) {
7015     if (ObjectType->isRecordType())
7016       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7017     else if (ObjectType->isDependentType())
7018       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7019   }
7020 
7021   // Convert the name of the type being destructed (following the ~) into a
7022   // type (with source-location information).
7023   QualType DestructedType;
7024   TypeSourceInfo *DestructedTypeInfo = nullptr;
7025   PseudoDestructorTypeStorage Destructed;
7026   if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7027     ParsedType T = getTypeName(*SecondTypeName.Identifier,
7028                                SecondTypeName.StartLocation,
7029                                S, &SS, true, false, ObjectTypePtrForLookup,
7030                                /*IsCtorOrDtorName*/true);
7031     if (!T &&
7032         ((SS.isSet() && !computeDeclContext(SS, false)) ||
7033          (!SS.isSet() && ObjectType->isDependentType()))) {
7034       // The name of the type being destroyed is a dependent name, and we
7035       // couldn't find anything useful in scope. Just store the identifier and
7036       // it's location, and we'll perform (qualified) name lookup again at
7037       // template instantiation time.
7038       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7039                                                SecondTypeName.StartLocation);
7040     } else if (!T) {
7041       Diag(SecondTypeName.StartLocation,
7042            diag::err_pseudo_dtor_destructor_non_type)
7043         << SecondTypeName.Identifier << ObjectType;
7044       if (isSFINAEContext())
7045         return ExprError();
7046 
7047       // Recover by assuming we had the right type all along.
7048       DestructedType = ObjectType;
7049     } else
7050       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7051   } else {
7052     // Resolve the template-id to a type.
7053     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7054     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7055                                        TemplateId->NumArgs);
7056     TypeResult T = ActOnTemplateIdType(S,
7057                                        TemplateId->SS,
7058                                        TemplateId->TemplateKWLoc,
7059                                        TemplateId->Template,
7060                                        TemplateId->Name,
7061                                        TemplateId->TemplateNameLoc,
7062                                        TemplateId->LAngleLoc,
7063                                        TemplateArgsPtr,
7064                                        TemplateId->RAngleLoc,
7065                                        /*IsCtorOrDtorName*/true);
7066     if (T.isInvalid() || !T.get()) {
7067       // Recover by assuming we had the right type all along.
7068       DestructedType = ObjectType;
7069     } else
7070       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7071   }
7072 
7073   // If we've performed some kind of recovery, (re-)build the type source
7074   // information.
7075   if (!DestructedType.isNull()) {
7076     if (!DestructedTypeInfo)
7077       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7078                                                   SecondTypeName.StartLocation);
7079     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7080   }
7081 
7082   // Convert the name of the scope type (the type prior to '::') into a type.
7083   TypeSourceInfo *ScopeTypeInfo = nullptr;
7084   QualType ScopeType;
7085   if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7086       FirstTypeName.Identifier) {
7087     if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7088       ParsedType T = getTypeName(*FirstTypeName.Identifier,
7089                                  FirstTypeName.StartLocation,
7090                                  S, &SS, true, false, ObjectTypePtrForLookup,
7091                                  /*IsCtorOrDtorName*/true);
7092       if (!T) {
7093         Diag(FirstTypeName.StartLocation,
7094              diag::err_pseudo_dtor_destructor_non_type)
7095           << FirstTypeName.Identifier << ObjectType;
7096 
7097         if (isSFINAEContext())
7098           return ExprError();
7099 
7100         // Just drop this type. It's unnecessary anyway.
7101         ScopeType = QualType();
7102       } else
7103         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7104     } else {
7105       // Resolve the template-id to a type.
7106       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7107       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7108                                          TemplateId->NumArgs);
7109       TypeResult T = ActOnTemplateIdType(S,
7110                                          TemplateId->SS,
7111                                          TemplateId->TemplateKWLoc,
7112                                          TemplateId->Template,
7113                                          TemplateId->Name,
7114                                          TemplateId->TemplateNameLoc,
7115                                          TemplateId->LAngleLoc,
7116                                          TemplateArgsPtr,
7117                                          TemplateId->RAngleLoc,
7118                                          /*IsCtorOrDtorName*/true);
7119       if (T.isInvalid() || !T.get()) {
7120         // Recover by dropping this type.
7121         ScopeType = QualType();
7122       } else
7123         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
7124     }
7125   }
7126 
7127   if (!ScopeType.isNull() && !ScopeTypeInfo)
7128     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
7129                                                   FirstTypeName.StartLocation);
7130 
7131 
7132   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
7133                                    ScopeTypeInfo, CCLoc, TildeLoc,
7134                                    Destructed);
7135 }
7136 
7137 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7138                                            SourceLocation OpLoc,
7139                                            tok::TokenKind OpKind,
7140                                            SourceLocation TildeLoc,
7141                                            const DeclSpec& DS) {
7142   QualType ObjectType;
7143   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7144     return ExprError();
7145 
7146   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
7147                                  false);
7148 
7149   TypeLocBuilder TLB;
7150   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
7151   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
7152   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
7153   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
7154 
7155   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
7156                                    nullptr, SourceLocation(), TildeLoc,
7157                                    Destructed);
7158 }
7159 
7160 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
7161                                         CXXConversionDecl *Method,
7162                                         bool HadMultipleCandidates) {
7163   // Convert the expression to match the conversion function's implicit object
7164   // parameter.
7165   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
7166                                           FoundDecl, Method);
7167   if (Exp.isInvalid())
7168     return true;
7169 
7170   if (Method->getParent()->isLambda() &&
7171       Method->getConversionType()->isBlockPointerType()) {
7172     // This is a lambda coversion to block pointer; check if the argument
7173     // was a LambdaExpr.
7174     Expr *SubE = E;
7175     CastExpr *CE = dyn_cast<CastExpr>(SubE);
7176     if (CE && CE->getCastKind() == CK_NoOp)
7177       SubE = CE->getSubExpr();
7178     SubE = SubE->IgnoreParens();
7179     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
7180       SubE = BE->getSubExpr();
7181     if (isa<LambdaExpr>(SubE)) {
7182       // For the conversion to block pointer on a lambda expression, we
7183       // construct a special BlockLiteral instead; this doesn't really make
7184       // a difference in ARC, but outside of ARC the resulting block literal
7185       // follows the normal lifetime rules for block literals instead of being
7186       // autoreleased.
7187       DiagnosticErrorTrap Trap(Diags);
7188       PushExpressionEvaluationContext(
7189           ExpressionEvaluationContext::PotentiallyEvaluated);
7190       ExprResult BlockExp = BuildBlockForLambdaConversion(
7191           Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
7192       PopExpressionEvaluationContext();
7193 
7194       if (BlockExp.isInvalid())
7195         Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
7196       return BlockExp;
7197     }
7198   }
7199 
7200   MemberExpr *ME =
7201       BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
7202                       NestedNameSpecifierLoc(), SourceLocation(), Method,
7203                       DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
7204                       HadMultipleCandidates, DeclarationNameInfo(),
7205                       Context.BoundMemberTy, VK_RValue, OK_Ordinary);
7206 
7207   QualType ResultType = Method->getReturnType();
7208   ExprValueKind VK = Expr::getValueKindForType(ResultType);
7209   ResultType = ResultType.getNonLValueExprType(Context);
7210 
7211   CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
7212       Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc());
7213 
7214   if (CheckFunctionCall(Method, CE,
7215                         Method->getType()->castAs<FunctionProtoType>()))
7216     return ExprError();
7217 
7218   return CE;
7219 }
7220 
7221 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
7222                                       SourceLocation RParen) {
7223   // If the operand is an unresolved lookup expression, the expression is ill-
7224   // formed per [over.over]p1, because overloaded function names cannot be used
7225   // without arguments except in explicit contexts.
7226   ExprResult R = CheckPlaceholderExpr(Operand);
7227   if (R.isInvalid())
7228     return R;
7229 
7230   // The operand may have been modified when checking the placeholder type.
7231   Operand = R.get();
7232 
7233   if (!inTemplateInstantiation() && Operand->HasSideEffects(Context, false)) {
7234     // The expression operand for noexcept is in an unevaluated expression
7235     // context, so side effects could result in unintended consequences.
7236     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
7237   }
7238 
7239   CanThrowResult CanThrow = canThrow(Operand);
7240   return new (Context)
7241       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
7242 }
7243 
7244 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
7245                                    Expr *Operand, SourceLocation RParen) {
7246   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
7247 }
7248 
7249 static bool IsSpecialDiscardedValue(Expr *E) {
7250   // In C++11, discarded-value expressions of a certain form are special,
7251   // according to [expr]p10:
7252   //   The lvalue-to-rvalue conversion (4.1) is applied only if the
7253   //   expression is an lvalue of volatile-qualified type and it has
7254   //   one of the following forms:
7255   E = E->IgnoreParens();
7256 
7257   //   - id-expression (5.1.1),
7258   if (isa<DeclRefExpr>(E))
7259     return true;
7260 
7261   //   - subscripting (5.2.1),
7262   if (isa<ArraySubscriptExpr>(E))
7263     return true;
7264 
7265   //   - class member access (5.2.5),
7266   if (isa<MemberExpr>(E))
7267     return true;
7268 
7269   //   - indirection (5.3.1),
7270   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
7271     if (UO->getOpcode() == UO_Deref)
7272       return true;
7273 
7274   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7275     //   - pointer-to-member operation (5.5),
7276     if (BO->isPtrMemOp())
7277       return true;
7278 
7279     //   - comma expression (5.18) where the right operand is one of the above.
7280     if (BO->getOpcode() == BO_Comma)
7281       return IsSpecialDiscardedValue(BO->getRHS());
7282   }
7283 
7284   //   - conditional expression (5.16) where both the second and the third
7285   //     operands are one of the above, or
7286   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
7287     return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
7288            IsSpecialDiscardedValue(CO->getFalseExpr());
7289   // The related edge case of "*x ?: *x".
7290   if (BinaryConditionalOperator *BCO =
7291           dyn_cast<BinaryConditionalOperator>(E)) {
7292     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
7293       return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
7294              IsSpecialDiscardedValue(BCO->getFalseExpr());
7295   }
7296 
7297   // Objective-C++ extensions to the rule.
7298   if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
7299     return true;
7300 
7301   return false;
7302 }
7303 
7304 /// Perform the conversions required for an expression used in a
7305 /// context that ignores the result.
7306 ExprResult Sema::IgnoredValueConversions(Expr *E) {
7307   if (E->hasPlaceholderType()) {
7308     ExprResult result = CheckPlaceholderExpr(E);
7309     if (result.isInvalid()) return E;
7310     E = result.get();
7311   }
7312 
7313   // C99 6.3.2.1:
7314   //   [Except in specific positions,] an lvalue that does not have
7315   //   array type is converted to the value stored in the
7316   //   designated object (and is no longer an lvalue).
7317   if (E->isRValue()) {
7318     // In C, function designators (i.e. expressions of function type)
7319     // are r-values, but we still want to do function-to-pointer decay
7320     // on them.  This is both technically correct and convenient for
7321     // some clients.
7322     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
7323       return DefaultFunctionArrayConversion(E);
7324 
7325     return E;
7326   }
7327 
7328   if (getLangOpts().CPlusPlus)  {
7329     // The C++11 standard defines the notion of a discarded-value expression;
7330     // normally, we don't need to do anything to handle it, but if it is a
7331     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
7332     // conversion.
7333     if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
7334         E->getType().isVolatileQualified() &&
7335         IsSpecialDiscardedValue(E)) {
7336       ExprResult Res = DefaultLvalueConversion(E);
7337       if (Res.isInvalid())
7338         return E;
7339       E = Res.get();
7340     }
7341 
7342     // C++1z:
7343     //   If the expression is a prvalue after this optional conversion, the
7344     //   temporary materialization conversion is applied.
7345     //
7346     // We skip this step: IR generation is able to synthesize the storage for
7347     // itself in the aggregate case, and adding the extra node to the AST is
7348     // just clutter.
7349     // FIXME: We don't emit lifetime markers for the temporaries due to this.
7350     // FIXME: Do any other AST consumers care about this?
7351     return E;
7352   }
7353 
7354   // GCC seems to also exclude expressions of incomplete enum type.
7355   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
7356     if (!T->getDecl()->isComplete()) {
7357       // FIXME: stupid workaround for a codegen bug!
7358       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
7359       return E;
7360     }
7361   }
7362 
7363   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
7364   if (Res.isInvalid())
7365     return E;
7366   E = Res.get();
7367 
7368   if (!E->getType()->isVoidType())
7369     RequireCompleteType(E->getExprLoc(), E->getType(),
7370                         diag::err_incomplete_type);
7371   return E;
7372 }
7373 
7374 // If we can unambiguously determine whether Var can never be used
7375 // in a constant expression, return true.
7376 //  - if the variable and its initializer are non-dependent, then
7377 //    we can unambiguously check if the variable is a constant expression.
7378 //  - if the initializer is not value dependent - we can determine whether
7379 //    it can be used to initialize a constant expression.  If Init can not
7380 //    be used to initialize a constant expression we conclude that Var can
7381 //    never be a constant expression.
7382 //  - FXIME: if the initializer is dependent, we can still do some analysis and
7383 //    identify certain cases unambiguously as non-const by using a Visitor:
7384 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
7385 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
7386 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
7387     ASTContext &Context) {
7388   if (isa<ParmVarDecl>(Var)) return true;
7389   const VarDecl *DefVD = nullptr;
7390 
7391   // If there is no initializer - this can not be a constant expression.
7392   if (!Var->getAnyInitializer(DefVD)) return true;
7393   assert(DefVD);
7394   if (DefVD->isWeak()) return false;
7395   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
7396 
7397   Expr *Init = cast<Expr>(Eval->Value);
7398 
7399   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
7400     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
7401     // of value-dependent expressions, and use it here to determine whether the
7402     // initializer is a potential constant expression.
7403     return false;
7404   }
7405 
7406   return !Var->isUsableInConstantExpressions(Context);
7407 }
7408 
7409 /// Check if the current lambda has any potential captures
7410 /// that must be captured by any of its enclosing lambdas that are ready to
7411 /// capture. If there is a lambda that can capture a nested
7412 /// potential-capture, go ahead and do so.  Also, check to see if any
7413 /// variables are uncaptureable or do not involve an odr-use so do not
7414 /// need to be captured.
7415 
7416 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
7417     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
7418 
7419   assert(!S.isUnevaluatedContext());
7420   assert(S.CurContext->isDependentContext());
7421 #ifndef NDEBUG
7422   DeclContext *DC = S.CurContext;
7423   while (DC && isa<CapturedDecl>(DC))
7424     DC = DC->getParent();
7425   assert(
7426       CurrentLSI->CallOperator == DC &&
7427       "The current call operator must be synchronized with Sema's CurContext");
7428 #endif // NDEBUG
7429 
7430   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
7431 
7432   // All the potentially captureable variables in the current nested
7433   // lambda (within a generic outer lambda), must be captured by an
7434   // outer lambda that is enclosed within a non-dependent context.
7435   CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) {
7436     // If the variable is clearly identified as non-odr-used and the full
7437     // expression is not instantiation dependent, only then do we not
7438     // need to check enclosing lambda's for speculative captures.
7439     // For e.g.:
7440     // Even though 'x' is not odr-used, it should be captured.
7441     // int test() {
7442     //   const int x = 10;
7443     //   auto L = [=](auto a) {
7444     //     (void) +x + a;
7445     //   };
7446     // }
7447     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
7448         !IsFullExprInstantiationDependent)
7449       return;
7450 
7451     // If we have a capture-capable lambda for the variable, go ahead and
7452     // capture the variable in that lambda (and all its enclosing lambdas).
7453     if (const Optional<unsigned> Index =
7454             getStackIndexOfNearestEnclosingCaptureCapableLambda(
7455                 S.FunctionScopes, Var, S))
7456       S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(),
7457                                           Index.getValue());
7458     const bool IsVarNeverAConstantExpression =
7459         VariableCanNeverBeAConstantExpression(Var, S.Context);
7460     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
7461       // This full expression is not instantiation dependent or the variable
7462       // can not be used in a constant expression - which means
7463       // this variable must be odr-used here, so diagnose a
7464       // capture violation early, if the variable is un-captureable.
7465       // This is purely for diagnosing errors early.  Otherwise, this
7466       // error would get diagnosed when the lambda becomes capture ready.
7467       QualType CaptureType, DeclRefType;
7468       SourceLocation ExprLoc = VarExpr->getExprLoc();
7469       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
7470                           /*EllipsisLoc*/ SourceLocation(),
7471                           /*BuildAndDiagnose*/false, CaptureType,
7472                           DeclRefType, nullptr)) {
7473         // We will never be able to capture this variable, and we need
7474         // to be able to in any and all instantiations, so diagnose it.
7475         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
7476                           /*EllipsisLoc*/ SourceLocation(),
7477                           /*BuildAndDiagnose*/true, CaptureType,
7478                           DeclRefType, nullptr);
7479       }
7480     }
7481   });
7482 
7483   // Check if 'this' needs to be captured.
7484   if (CurrentLSI->hasPotentialThisCapture()) {
7485     // If we have a capture-capable lambda for 'this', go ahead and capture
7486     // 'this' in that lambda (and all its enclosing lambdas).
7487     if (const Optional<unsigned> Index =
7488             getStackIndexOfNearestEnclosingCaptureCapableLambda(
7489                 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
7490       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
7491       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
7492                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
7493                             &FunctionScopeIndexOfCapturableLambda);
7494     }
7495   }
7496 
7497   // Reset all the potential captures at the end of each full-expression.
7498   CurrentLSI->clearPotentialCaptures();
7499 }
7500 
7501 static ExprResult attemptRecovery(Sema &SemaRef,
7502                                   const TypoCorrectionConsumer &Consumer,
7503                                   const TypoCorrection &TC) {
7504   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
7505                  Consumer.getLookupResult().getLookupKind());
7506   const CXXScopeSpec *SS = Consumer.getSS();
7507   CXXScopeSpec NewSS;
7508 
7509   // Use an approprate CXXScopeSpec for building the expr.
7510   if (auto *NNS = TC.getCorrectionSpecifier())
7511     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
7512   else if (SS && !TC.WillReplaceSpecifier())
7513     NewSS = *SS;
7514 
7515   if (auto *ND = TC.getFoundDecl()) {
7516     R.setLookupName(ND->getDeclName());
7517     R.addDecl(ND);
7518     if (ND->isCXXClassMember()) {
7519       // Figure out the correct naming class to add to the LookupResult.
7520       CXXRecordDecl *Record = nullptr;
7521       if (auto *NNS = TC.getCorrectionSpecifier())
7522         Record = NNS->getAsType()->getAsCXXRecordDecl();
7523       if (!Record)
7524         Record =
7525             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
7526       if (Record)
7527         R.setNamingClass(Record);
7528 
7529       // Detect and handle the case where the decl might be an implicit
7530       // member.
7531       bool MightBeImplicitMember;
7532       if (!Consumer.isAddressOfOperand())
7533         MightBeImplicitMember = true;
7534       else if (!NewSS.isEmpty())
7535         MightBeImplicitMember = false;
7536       else if (R.isOverloadedResult())
7537         MightBeImplicitMember = false;
7538       else if (R.isUnresolvableResult())
7539         MightBeImplicitMember = true;
7540       else
7541         MightBeImplicitMember = isa<FieldDecl>(ND) ||
7542                                 isa<IndirectFieldDecl>(ND) ||
7543                                 isa<MSPropertyDecl>(ND);
7544 
7545       if (MightBeImplicitMember)
7546         return SemaRef.BuildPossibleImplicitMemberExpr(
7547             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
7548             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
7549     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
7550       return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
7551                                         Ivar->getIdentifier());
7552     }
7553   }
7554 
7555   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
7556                                           /*AcceptInvalidDecl*/ true);
7557 }
7558 
7559 namespace {
7560 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
7561   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
7562 
7563 public:
7564   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
7565       : TypoExprs(TypoExprs) {}
7566   bool VisitTypoExpr(TypoExpr *TE) {
7567     TypoExprs.insert(TE);
7568     return true;
7569   }
7570 };
7571 
7572 class TransformTypos : public TreeTransform<TransformTypos> {
7573   typedef TreeTransform<TransformTypos> BaseTransform;
7574 
7575   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
7576                      // process of being initialized.
7577   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
7578   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
7579   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
7580   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
7581 
7582   /// Emit diagnostics for all of the TypoExprs encountered.
7583   /// If the TypoExprs were successfully corrected, then the diagnostics should
7584   /// suggest the corrections. Otherwise the diagnostics will not suggest
7585   /// anything (having been passed an empty TypoCorrection).
7586   void EmitAllDiagnostics() {
7587     for (TypoExpr *TE : TypoExprs) {
7588       auto &State = SemaRef.getTypoExprState(TE);
7589       if (State.DiagHandler) {
7590         TypoCorrection TC = State.Consumer->getCurrentCorrection();
7591         ExprResult Replacement = TransformCache[TE];
7592 
7593         // Extract the NamedDecl from the transformed TypoExpr and add it to the
7594         // TypoCorrection, replacing the existing decls. This ensures the right
7595         // NamedDecl is used in diagnostics e.g. in the case where overload
7596         // resolution was used to select one from several possible decls that
7597         // had been stored in the TypoCorrection.
7598         if (auto *ND = getDeclFromExpr(
7599                 Replacement.isInvalid() ? nullptr : Replacement.get()))
7600           TC.setCorrectionDecl(ND);
7601 
7602         State.DiagHandler(TC);
7603       }
7604       SemaRef.clearDelayedTypo(TE);
7605     }
7606   }
7607 
7608   /// If corrections for the first TypoExpr have been exhausted for a
7609   /// given combination of the other TypoExprs, retry those corrections against
7610   /// the next combination of substitutions for the other TypoExprs by advancing
7611   /// to the next potential correction of the second TypoExpr. For the second
7612   /// and subsequent TypoExprs, if its stream of corrections has been exhausted,
7613   /// the stream is reset and the next TypoExpr's stream is advanced by one (a
7614   /// TypoExpr's correction stream is advanced by removing the TypoExpr from the
7615   /// TransformCache). Returns true if there is still any untried combinations
7616   /// of corrections.
7617   bool CheckAndAdvanceTypoExprCorrectionStreams() {
7618     for (auto TE : TypoExprs) {
7619       auto &State = SemaRef.getTypoExprState(TE);
7620       TransformCache.erase(TE);
7621       if (!State.Consumer->finished())
7622         return true;
7623       State.Consumer->resetCorrectionStream();
7624     }
7625     return false;
7626   }
7627 
7628   NamedDecl *getDeclFromExpr(Expr *E) {
7629     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
7630       E = OverloadResolution[OE];
7631 
7632     if (!E)
7633       return nullptr;
7634     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
7635       return DRE->getFoundDecl();
7636     if (auto *ME = dyn_cast<MemberExpr>(E))
7637       return ME->getFoundDecl();
7638     // FIXME: Add any other expr types that could be be seen by the delayed typo
7639     // correction TreeTransform for which the corresponding TypoCorrection could
7640     // contain multiple decls.
7641     return nullptr;
7642   }
7643 
7644   ExprResult TryTransform(Expr *E) {
7645     Sema::SFINAETrap Trap(SemaRef);
7646     ExprResult Res = TransformExpr(E);
7647     if (Trap.hasErrorOccurred() || Res.isInvalid())
7648       return ExprError();
7649 
7650     return ExprFilter(Res.get());
7651   }
7652 
7653 public:
7654   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
7655       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
7656 
7657   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
7658                                    MultiExprArg Args,
7659                                    SourceLocation RParenLoc,
7660                                    Expr *ExecConfig = nullptr) {
7661     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
7662                                                  RParenLoc, ExecConfig);
7663     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
7664       if (Result.isUsable()) {
7665         Expr *ResultCall = Result.get();
7666         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
7667           ResultCall = BE->getSubExpr();
7668         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
7669           OverloadResolution[OE] = CE->getCallee();
7670       }
7671     }
7672     return Result;
7673   }
7674 
7675   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
7676 
7677   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
7678 
7679   ExprResult Transform(Expr *E) {
7680     ExprResult Res;
7681     while (true) {
7682       Res = TryTransform(E);
7683 
7684       // Exit if either the transform was valid or if there were no TypoExprs
7685       // to transform that still have any untried correction candidates..
7686       if (!Res.isInvalid() ||
7687           !CheckAndAdvanceTypoExprCorrectionStreams())
7688         break;
7689     }
7690 
7691     // Ensure none of the TypoExprs have multiple typo correction candidates
7692     // with the same edit length that pass all the checks and filters.
7693     // TODO: Properly handle various permutations of possible corrections when
7694     // there is more than one potentially ambiguous typo correction.
7695     // Also, disable typo correction while attempting the transform when
7696     // handling potentially ambiguous typo corrections as any new TypoExprs will
7697     // have been introduced by the application of one of the correction
7698     // candidates and add little to no value if corrected.
7699     SemaRef.DisableTypoCorrection = true;
7700     while (!AmbiguousTypoExprs.empty()) {
7701       auto TE  = AmbiguousTypoExprs.back();
7702       auto Cached = TransformCache[TE];
7703       auto &State = SemaRef.getTypoExprState(TE);
7704       State.Consumer->saveCurrentPosition();
7705       TransformCache.erase(TE);
7706       if (!TryTransform(E).isInvalid()) {
7707         State.Consumer->resetCorrectionStream();
7708         TransformCache.erase(TE);
7709         Res = ExprError();
7710         break;
7711       }
7712       AmbiguousTypoExprs.remove(TE);
7713       State.Consumer->restoreSavedPosition();
7714       TransformCache[TE] = Cached;
7715     }
7716     SemaRef.DisableTypoCorrection = false;
7717 
7718     // Ensure that all of the TypoExprs within the current Expr have been found.
7719     if (!Res.isUsable())
7720       FindTypoExprs(TypoExprs).TraverseStmt(E);
7721 
7722     EmitAllDiagnostics();
7723 
7724     return Res;
7725   }
7726 
7727   ExprResult TransformTypoExpr(TypoExpr *E) {
7728     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
7729     // cached transformation result if there is one and the TypoExpr isn't the
7730     // first one that was encountered.
7731     auto &CacheEntry = TransformCache[E];
7732     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
7733       return CacheEntry;
7734     }
7735 
7736     auto &State = SemaRef.getTypoExprState(E);
7737     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
7738 
7739     // For the first TypoExpr and an uncached TypoExpr, find the next likely
7740     // typo correction and return it.
7741     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
7742       if (InitDecl && TC.getFoundDecl() == InitDecl)
7743         continue;
7744       // FIXME: If we would typo-correct to an invalid declaration, it's
7745       // probably best to just suppress all errors from this typo correction.
7746       ExprResult NE = State.RecoveryHandler ?
7747           State.RecoveryHandler(SemaRef, E, TC) :
7748           attemptRecovery(SemaRef, *State.Consumer, TC);
7749       if (!NE.isInvalid()) {
7750         // Check whether there may be a second viable correction with the same
7751         // edit distance; if so, remember this TypoExpr may have an ambiguous
7752         // correction so it can be more thoroughly vetted later.
7753         TypoCorrection Next;
7754         if ((Next = State.Consumer->peekNextCorrection()) &&
7755             Next.getEditDistance(false) == TC.getEditDistance(false)) {
7756           AmbiguousTypoExprs.insert(E);
7757         } else {
7758           AmbiguousTypoExprs.remove(E);
7759         }
7760         assert(!NE.isUnset() &&
7761                "Typo was transformed into a valid-but-null ExprResult");
7762         return CacheEntry = NE;
7763       }
7764     }
7765     return CacheEntry = ExprError();
7766   }
7767 };
7768 }
7769 
7770 ExprResult
7771 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
7772                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
7773   // If the current evaluation context indicates there are uncorrected typos
7774   // and the current expression isn't guaranteed to not have typos, try to
7775   // resolve any TypoExpr nodes that might be in the expression.
7776   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
7777       (E->isTypeDependent() || E->isValueDependent() ||
7778        E->isInstantiationDependent())) {
7779     auto TyposResolved = DelayedTypos.size();
7780     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
7781     TyposResolved -= DelayedTypos.size();
7782     if (Result.isInvalid() || Result.get() != E) {
7783       ExprEvalContexts.back().NumTypos -= TyposResolved;
7784       return Result;
7785     }
7786     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
7787   }
7788   return E;
7789 }
7790 
7791 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
7792                                      bool DiscardedValue,
7793                                      bool IsConstexpr) {
7794   ExprResult FullExpr = FE;
7795 
7796   if (!FullExpr.get())
7797     return ExprError();
7798 
7799   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
7800     return ExprError();
7801 
7802   if (DiscardedValue) {
7803     // Top-level expressions default to 'id' when we're in a debugger.
7804     if (getLangOpts().DebuggerCastResultToId &&
7805         FullExpr.get()->getType() == Context.UnknownAnyTy) {
7806       FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
7807       if (FullExpr.isInvalid())
7808         return ExprError();
7809     }
7810 
7811     FullExpr = CheckPlaceholderExpr(FullExpr.get());
7812     if (FullExpr.isInvalid())
7813       return ExprError();
7814 
7815     FullExpr = IgnoredValueConversions(FullExpr.get());
7816     if (FullExpr.isInvalid())
7817       return ExprError();
7818 
7819     DiagnoseUnusedExprResult(FullExpr.get());
7820   }
7821 
7822   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get());
7823   if (FullExpr.isInvalid())
7824     return ExprError();
7825 
7826   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
7827 
7828   // At the end of this full expression (which could be a deeply nested
7829   // lambda), if there is a potential capture within the nested lambda,
7830   // have the outer capture-able lambda try and capture it.
7831   // Consider the following code:
7832   // void f(int, int);
7833   // void f(const int&, double);
7834   // void foo() {
7835   //  const int x = 10, y = 20;
7836   //  auto L = [=](auto a) {
7837   //      auto M = [=](auto b) {
7838   //         f(x, b); <-- requires x to be captured by L and M
7839   //         f(y, a); <-- requires y to be captured by L, but not all Ms
7840   //      };
7841   //   };
7842   // }
7843 
7844   // FIXME: Also consider what happens for something like this that involves
7845   // the gnu-extension statement-expressions or even lambda-init-captures:
7846   //   void f() {
7847   //     const int n = 0;
7848   //     auto L =  [&](auto a) {
7849   //       +n + ({ 0; a; });
7850   //     };
7851   //   }
7852   //
7853   // Here, we see +n, and then the full-expression 0; ends, so we don't
7854   // capture n (and instead remove it from our list of potential captures),
7855   // and then the full-expression +n + ({ 0; }); ends, but it's too late
7856   // for us to see that we need to capture n after all.
7857 
7858   LambdaScopeInfo *const CurrentLSI =
7859       getCurLambda(/*IgnoreCapturedRegions=*/true);
7860   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
7861   // even if CurContext is not a lambda call operator. Refer to that Bug Report
7862   // for an example of the code that might cause this asynchrony.
7863   // By ensuring we are in the context of a lambda's call operator
7864   // we can fix the bug (we only need to check whether we need to capture
7865   // if we are within a lambda's body); but per the comments in that
7866   // PR, a proper fix would entail :
7867   //   "Alternative suggestion:
7868   //   - Add to Sema an integer holding the smallest (outermost) scope
7869   //     index that we are *lexically* within, and save/restore/set to
7870   //     FunctionScopes.size() in InstantiatingTemplate's
7871   //     constructor/destructor.
7872   //  - Teach the handful of places that iterate over FunctionScopes to
7873   //    stop at the outermost enclosing lexical scope."
7874   DeclContext *DC = CurContext;
7875   while (DC && isa<CapturedDecl>(DC))
7876     DC = DC->getParent();
7877   const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
7878   if (IsInLambdaDeclContext && CurrentLSI &&
7879       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
7880     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
7881                                                               *this);
7882   return MaybeCreateExprWithCleanups(FullExpr);
7883 }
7884 
7885 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
7886   if (!FullStmt) return StmtError();
7887 
7888   return MaybeCreateStmtWithCleanups(FullStmt);
7889 }
7890 
7891 Sema::IfExistsResult
7892 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
7893                                    CXXScopeSpec &SS,
7894                                    const DeclarationNameInfo &TargetNameInfo) {
7895   DeclarationName TargetName = TargetNameInfo.getName();
7896   if (!TargetName)
7897     return IER_DoesNotExist;
7898 
7899   // If the name itself is dependent, then the result is dependent.
7900   if (TargetName.isDependentName())
7901     return IER_Dependent;
7902 
7903   // Do the redeclaration lookup in the current scope.
7904   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
7905                  Sema::NotForRedeclaration);
7906   LookupParsedName(R, S, &SS);
7907   R.suppressDiagnostics();
7908 
7909   switch (R.getResultKind()) {
7910   case LookupResult::Found:
7911   case LookupResult::FoundOverloaded:
7912   case LookupResult::FoundUnresolvedValue:
7913   case LookupResult::Ambiguous:
7914     return IER_Exists;
7915 
7916   case LookupResult::NotFound:
7917     return IER_DoesNotExist;
7918 
7919   case LookupResult::NotFoundInCurrentInstantiation:
7920     return IER_Dependent;
7921   }
7922 
7923   llvm_unreachable("Invalid LookupResult Kind!");
7924 }
7925 
7926 Sema::IfExistsResult
7927 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
7928                                    bool IsIfExists, CXXScopeSpec &SS,
7929                                    UnqualifiedId &Name) {
7930   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
7931 
7932   // Check for an unexpanded parameter pack.
7933   auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
7934   if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
7935       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
7936     return IER_Error;
7937 
7938   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
7939 }
7940