1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Implements semantic analysis for C++ expressions. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/Template.h" 15 #include "clang/Sema/SemaInternal.h" 16 #include "TreeTransform.h" 17 #include "TypeLocBuilder.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/ASTLambda.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/ExprObjC.h" 25 #include "clang/AST/RecursiveASTVisitor.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/Basic/AlignedAllocation.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Sema/DeclSpec.h" 32 #include "clang/Sema/Initialization.h" 33 #include "clang/Sema/Lookup.h" 34 #include "clang/Sema/ParsedTemplate.h" 35 #include "clang/Sema/Scope.h" 36 #include "clang/Sema/ScopeInfo.h" 37 #include "clang/Sema/SemaLambda.h" 38 #include "clang/Sema/TemplateDeduction.h" 39 #include "llvm/ADT/APInt.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include "llvm/Support/ErrorHandling.h" 42 using namespace clang; 43 using namespace sema; 44 45 /// Handle the result of the special case name lookup for inheriting 46 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as 47 /// constructor names in member using declarations, even if 'X' is not the 48 /// name of the corresponding type. 49 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, 50 SourceLocation NameLoc, 51 IdentifierInfo &Name) { 52 NestedNameSpecifier *NNS = SS.getScopeRep(); 53 54 // Convert the nested-name-specifier into a type. 55 QualType Type; 56 switch (NNS->getKind()) { 57 case NestedNameSpecifier::TypeSpec: 58 case NestedNameSpecifier::TypeSpecWithTemplate: 59 Type = QualType(NNS->getAsType(), 0); 60 break; 61 62 case NestedNameSpecifier::Identifier: 63 // Strip off the last layer of the nested-name-specifier and build a 64 // typename type for it. 65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); 66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(), 67 NNS->getAsIdentifier()); 68 break; 69 70 case NestedNameSpecifier::Global: 71 case NestedNameSpecifier::Super: 72 case NestedNameSpecifier::Namespace: 73 case NestedNameSpecifier::NamespaceAlias: 74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); 75 } 76 77 // This reference to the type is located entirely at the location of the 78 // final identifier in the qualified-id. 79 return CreateParsedType(Type, 80 Context.getTrivialTypeSourceInfo(Type, NameLoc)); 81 } 82 83 ParsedType Sema::getConstructorName(IdentifierInfo &II, 84 SourceLocation NameLoc, 85 Scope *S, CXXScopeSpec &SS, 86 bool EnteringContext) { 87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS); 88 assert(CurClass && &II == CurClass->getIdentifier() && 89 "not a constructor name"); 90 91 // When naming a constructor as a member of a dependent context (eg, in a 92 // friend declaration or an inherited constructor declaration), form an 93 // unresolved "typename" type. 94 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) { 95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II); 96 return ParsedType::make(T); 97 } 98 99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass)) 100 return ParsedType(); 101 102 // Find the injected-class-name declaration. Note that we make no attempt to 103 // diagnose cases where the injected-class-name is shadowed: the only 104 // declaration that can validly shadow the injected-class-name is a 105 // non-static data member, and if the class contains both a non-static data 106 // member and a constructor then it is ill-formed (we check that in 107 // CheckCompletedCXXClass). 108 CXXRecordDecl *InjectedClassName = nullptr; 109 for (NamedDecl *ND : CurClass->lookup(&II)) { 110 auto *RD = dyn_cast<CXXRecordDecl>(ND); 111 if (RD && RD->isInjectedClassName()) { 112 InjectedClassName = RD; 113 break; 114 } 115 } 116 if (!InjectedClassName) { 117 if (!CurClass->isInvalidDecl()) { 118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts 119 // properly. Work around it here for now. 120 Diag(SS.getLastQualifierNameLoc(), 121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange(); 122 } 123 return ParsedType(); 124 } 125 126 QualType T = Context.getTypeDeclType(InjectedClassName); 127 DiagnoseUseOfDecl(InjectedClassName, NameLoc); 128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false); 129 130 return ParsedType::make(T); 131 } 132 133 ParsedType Sema::getDestructorName(SourceLocation TildeLoc, 134 IdentifierInfo &II, 135 SourceLocation NameLoc, 136 Scope *S, CXXScopeSpec &SS, 137 ParsedType ObjectTypePtr, 138 bool EnteringContext) { 139 // Determine where to perform name lookup. 140 141 // FIXME: This area of the standard is very messy, and the current 142 // wording is rather unclear about which scopes we search for the 143 // destructor name; see core issues 399 and 555. Issue 399 in 144 // particular shows where the current description of destructor name 145 // lookup is completely out of line with existing practice, e.g., 146 // this appears to be ill-formed: 147 // 148 // namespace N { 149 // template <typename T> struct S { 150 // ~S(); 151 // }; 152 // } 153 // 154 // void f(N::S<int>* s) { 155 // s->N::S<int>::~S(); 156 // } 157 // 158 // See also PR6358 and PR6359. 159 // 160 // For now, we accept all the cases in which the name given could plausibly 161 // be interpreted as a correct destructor name, issuing off-by-default 162 // extension diagnostics on the cases that don't strictly conform to the 163 // C++20 rules. This basically means we always consider looking in the 164 // nested-name-specifier prefix, the complete nested-name-specifier, and 165 // the scope, and accept if we find the expected type in any of the three 166 // places. 167 168 if (SS.isInvalid()) 169 return nullptr; 170 171 // Whether we've failed with a diagnostic already. 172 bool Failed = false; 173 174 llvm::SmallVector<NamedDecl*, 8> FoundDecls; 175 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet; 176 177 // If we have an object type, it's because we are in a 178 // pseudo-destructor-expression or a member access expression, and 179 // we know what type we're looking for. 180 QualType SearchType = 181 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType(); 182 183 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType { 184 auto IsAcceptableResult = [&](NamedDecl *D) -> bool { 185 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl()); 186 if (!Type) 187 return false; 188 189 if (SearchType.isNull() || SearchType->isDependentType()) 190 return true; 191 192 QualType T = Context.getTypeDeclType(Type); 193 return Context.hasSameUnqualifiedType(T, SearchType); 194 }; 195 196 unsigned NumAcceptableResults = 0; 197 for (NamedDecl *D : Found) { 198 if (IsAcceptableResult(D)) 199 ++NumAcceptableResults; 200 201 // Don't list a class twice in the lookup failure diagnostic if it's 202 // found by both its injected-class-name and by the name in the enclosing 203 // scope. 204 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 205 if (RD->isInjectedClassName()) 206 D = cast<NamedDecl>(RD->getParent()); 207 208 if (FoundDeclSet.insert(D).second) 209 FoundDecls.push_back(D); 210 } 211 212 // As an extension, attempt to "fix" an ambiguity by erasing all non-type 213 // results, and all non-matching results if we have a search type. It's not 214 // clear what the right behavior is if destructor lookup hits an ambiguity, 215 // but other compilers do generally accept at least some kinds of 216 // ambiguity. 217 if (Found.isAmbiguous() && NumAcceptableResults == 1) { 218 Diag(NameLoc, diag::ext_dtor_name_ambiguous); 219 LookupResult::Filter F = Found.makeFilter(); 220 while (F.hasNext()) { 221 NamedDecl *D = F.next(); 222 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 223 Diag(D->getLocation(), diag::note_destructor_type_here) 224 << Context.getTypeDeclType(TD); 225 else 226 Diag(D->getLocation(), diag::note_destructor_nontype_here); 227 228 if (!IsAcceptableResult(D)) 229 F.erase(); 230 } 231 F.done(); 232 } 233 234 if (Found.isAmbiguous()) 235 Failed = true; 236 237 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { 238 if (IsAcceptableResult(Type)) { 239 QualType T = Context.getTypeDeclType(Type); 240 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 241 return CreateParsedType(T, 242 Context.getTrivialTypeSourceInfo(T, NameLoc)); 243 } 244 } 245 246 return nullptr; 247 }; 248 249 bool IsDependent = false; 250 251 auto LookupInObjectType = [&]() -> ParsedType { 252 if (Failed || SearchType.isNull()) 253 return nullptr; 254 255 IsDependent |= SearchType->isDependentType(); 256 257 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 258 DeclContext *LookupCtx = computeDeclContext(SearchType); 259 if (!LookupCtx) 260 return nullptr; 261 LookupQualifiedName(Found, LookupCtx); 262 return CheckLookupResult(Found); 263 }; 264 265 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType { 266 if (Failed) 267 return nullptr; 268 269 IsDependent |= isDependentScopeSpecifier(LookupSS); 270 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext); 271 if (!LookupCtx) 272 return nullptr; 273 274 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 275 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) { 276 Failed = true; 277 return nullptr; 278 } 279 LookupQualifiedName(Found, LookupCtx); 280 return CheckLookupResult(Found); 281 }; 282 283 auto LookupInScope = [&]() -> ParsedType { 284 if (Failed || !S) 285 return nullptr; 286 287 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 288 LookupName(Found, S); 289 return CheckLookupResult(Found); 290 }; 291 292 // C++2a [basic.lookup.qual]p6: 293 // In a qualified-id of the form 294 // 295 // nested-name-specifier[opt] type-name :: ~ type-name 296 // 297 // the second type-name is looked up in the same scope as the first. 298 // 299 // We interpret this as meaning that if you do a dual-scope lookup for the 300 // first name, you also do a dual-scope lookup for the second name, per 301 // C++ [basic.lookup.classref]p4: 302 // 303 // If the id-expression in a class member access is a qualified-id of the 304 // form 305 // 306 // class-name-or-namespace-name :: ... 307 // 308 // the class-name-or-namespace-name following the . or -> is first looked 309 // up in the class of the object expression and the name, if found, is used. 310 // Otherwise, it is looked up in the context of the entire 311 // postfix-expression. 312 // 313 // This looks in the same scopes as for an unqualified destructor name: 314 // 315 // C++ [basic.lookup.classref]p3: 316 // If the unqualified-id is ~ type-name, the type-name is looked up 317 // in the context of the entire postfix-expression. If the type T 318 // of the object expression is of a class type C, the type-name is 319 // also looked up in the scope of class C. At least one of the 320 // lookups shall find a name that refers to cv T. 321 // 322 // FIXME: The intent is unclear here. Should type-name::~type-name look in 323 // the scope anyway if it finds a non-matching name declared in the class? 324 // If both lookups succeed and find a dependent result, which result should 325 // we retain? (Same question for p->~type-name().) 326 327 if (NestedNameSpecifier *Prefix = 328 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) { 329 // This is 330 // 331 // nested-name-specifier type-name :: ~ type-name 332 // 333 // Look for the second type-name in the nested-name-specifier. 334 CXXScopeSpec PrefixSS; 335 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); 336 if (ParsedType T = LookupInNestedNameSpec(PrefixSS)) 337 return T; 338 } else { 339 // This is one of 340 // 341 // type-name :: ~ type-name 342 // ~ type-name 343 // 344 // Look in the scope and (if any) the object type. 345 if (ParsedType T = LookupInScope()) 346 return T; 347 if (ParsedType T = LookupInObjectType()) 348 return T; 349 } 350 351 if (Failed) 352 return nullptr; 353 354 if (IsDependent) { 355 // We didn't find our type, but that's OK: it's dependent anyway. 356 357 // FIXME: What if we have no nested-name-specifier? 358 QualType T = CheckTypenameType(ETK_None, SourceLocation(), 359 SS.getWithLocInContext(Context), 360 II, NameLoc); 361 return ParsedType::make(T); 362 } 363 364 // The remaining cases are all non-standard extensions imitating the behavior 365 // of various other compilers. 366 unsigned NumNonExtensionDecls = FoundDecls.size(); 367 368 if (SS.isSet()) { 369 // For compatibility with older broken C++ rules and existing code, 370 // 371 // nested-name-specifier :: ~ type-name 372 // 373 // also looks for type-name within the nested-name-specifier. 374 if (ParsedType T = LookupInNestedNameSpec(SS)) { 375 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope) 376 << SS.getRange() 377 << FixItHint::CreateInsertion(SS.getEndLoc(), 378 ("::" + II.getName()).str()); 379 return T; 380 } 381 382 // For compatibility with other compilers and older versions of Clang, 383 // 384 // nested-name-specifier type-name :: ~ type-name 385 // 386 // also looks for type-name in the scope. Unfortunately, we can't 387 // reasonably apply this fallback for dependent nested-name-specifiers. 388 if (SS.getScopeRep()->getPrefix()) { 389 if (ParsedType T = LookupInScope()) { 390 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope) 391 << FixItHint::CreateRemoval(SS.getRange()); 392 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here) 393 << GetTypeFromParser(T); 394 return T; 395 } 396 } 397 } 398 399 // We didn't find anything matching; tell the user what we did find (if 400 // anything). 401 402 // Don't tell the user about declarations we shouldn't have found. 403 FoundDecls.resize(NumNonExtensionDecls); 404 405 // List types before non-types. 406 std::stable_sort(FoundDecls.begin(), FoundDecls.end(), 407 [](NamedDecl *A, NamedDecl *B) { 408 return isa<TypeDecl>(A->getUnderlyingDecl()) > 409 isa<TypeDecl>(B->getUnderlyingDecl()); 410 }); 411 412 // Suggest a fixit to properly name the destroyed type. 413 auto MakeFixItHint = [&]{ 414 const CXXRecordDecl *Destroyed = nullptr; 415 // FIXME: If we have a scope specifier, suggest its last component? 416 if (!SearchType.isNull()) 417 Destroyed = SearchType->getAsCXXRecordDecl(); 418 else if (S) 419 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity()); 420 if (Destroyed) 421 return FixItHint::CreateReplacement(SourceRange(NameLoc), 422 Destroyed->getNameAsString()); 423 return FixItHint(); 424 }; 425 426 if (FoundDecls.empty()) { 427 // FIXME: Attempt typo-correction? 428 Diag(NameLoc, diag::err_undeclared_destructor_name) 429 << &II << MakeFixItHint(); 430 } else if (!SearchType.isNull() && FoundDecls.size() == 1) { 431 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) { 432 assert(!SearchType.isNull() && 433 "should only reject a type result if we have a search type"); 434 QualType T = Context.getTypeDeclType(TD); 435 Diag(NameLoc, diag::err_destructor_expr_type_mismatch) 436 << T << SearchType << MakeFixItHint(); 437 } else { 438 Diag(NameLoc, diag::err_destructor_expr_nontype) 439 << &II << MakeFixItHint(); 440 } 441 } else { 442 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype 443 : diag::err_destructor_expr_mismatch) 444 << &II << SearchType << MakeFixItHint(); 445 } 446 447 for (NamedDecl *FoundD : FoundDecls) { 448 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl())) 449 Diag(FoundD->getLocation(), diag::note_destructor_type_here) 450 << Context.getTypeDeclType(TD); 451 else 452 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here) 453 << FoundD; 454 } 455 456 return nullptr; 457 } 458 459 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS, 460 ParsedType ObjectType) { 461 if (DS.getTypeSpecType() == DeclSpec::TST_error) 462 return nullptr; 463 464 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 465 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 466 return nullptr; 467 } 468 469 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype && 470 "unexpected type in getDestructorType"); 471 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 472 473 // If we know the type of the object, check that the correct destructor 474 // type was named now; we can give better diagnostics this way. 475 QualType SearchType = GetTypeFromParser(ObjectType); 476 if (!SearchType.isNull() && !SearchType->isDependentType() && 477 !Context.hasSameUnqualifiedType(T, SearchType)) { 478 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) 479 << T << SearchType; 480 return nullptr; 481 } 482 483 return ParsedType::make(T); 484 } 485 486 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, 487 const UnqualifiedId &Name, bool IsUDSuffix) { 488 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId); 489 if (!IsUDSuffix) { 490 // [over.literal] p8 491 // 492 // double operator""_Bq(long double); // OK: not a reserved identifier 493 // double operator"" _Bq(long double); // ill-formed, no diagnostic required 494 IdentifierInfo *II = Name.Identifier; 495 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts()); 496 SourceLocation Loc = Name.getEndLoc(); 497 if (Status != ReservedIdentifierStatus::NotReserved && 498 !PP.getSourceManager().isInSystemHeader(Loc)) { 499 Diag(Loc, diag::warn_reserved_extern_symbol) 500 << II << static_cast<int>(Status) 501 << FixItHint::CreateReplacement( 502 Name.getSourceRange(), 503 (StringRef("operator\"\"") + II->getName()).str()); 504 } 505 } 506 507 if (!SS.isValid()) 508 return false; 509 510 switch (SS.getScopeRep()->getKind()) { 511 case NestedNameSpecifier::Identifier: 512 case NestedNameSpecifier::TypeSpec: 513 case NestedNameSpecifier::TypeSpecWithTemplate: 514 // Per C++11 [over.literal]p2, literal operators can only be declared at 515 // namespace scope. Therefore, this unqualified-id cannot name anything. 516 // Reject it early, because we have no AST representation for this in the 517 // case where the scope is dependent. 518 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace) 519 << SS.getScopeRep(); 520 return true; 521 522 case NestedNameSpecifier::Global: 523 case NestedNameSpecifier::Super: 524 case NestedNameSpecifier::Namespace: 525 case NestedNameSpecifier::NamespaceAlias: 526 return false; 527 } 528 529 llvm_unreachable("unknown nested name specifier kind"); 530 } 531 532 /// Build a C++ typeid expression with a type operand. 533 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 534 SourceLocation TypeidLoc, 535 TypeSourceInfo *Operand, 536 SourceLocation RParenLoc) { 537 // C++ [expr.typeid]p4: 538 // The top-level cv-qualifiers of the lvalue expression or the type-id 539 // that is the operand of typeid are always ignored. 540 // If the type of the type-id is a class type or a reference to a class 541 // type, the class shall be completely-defined. 542 Qualifiers Quals; 543 QualType T 544 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), 545 Quals); 546 if (T->getAs<RecordType>() && 547 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 548 return ExprError(); 549 550 if (T->isVariablyModifiedType()) 551 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); 552 553 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc)) 554 return ExprError(); 555 556 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, 557 SourceRange(TypeidLoc, RParenLoc)); 558 } 559 560 /// Build a C++ typeid expression with an expression operand. 561 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 562 SourceLocation TypeidLoc, 563 Expr *E, 564 SourceLocation RParenLoc) { 565 bool WasEvaluated = false; 566 if (E && !E->isTypeDependent()) { 567 if (E->getType()->isPlaceholderType()) { 568 ExprResult result = CheckPlaceholderExpr(E); 569 if (result.isInvalid()) return ExprError(); 570 E = result.get(); 571 } 572 573 QualType T = E->getType(); 574 if (const RecordType *RecordT = T->getAs<RecordType>()) { 575 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); 576 // C++ [expr.typeid]p3: 577 // [...] If the type of the expression is a class type, the class 578 // shall be completely-defined. 579 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 580 return ExprError(); 581 582 // C++ [expr.typeid]p3: 583 // When typeid is applied to an expression other than an glvalue of a 584 // polymorphic class type [...] [the] expression is an unevaluated 585 // operand. [...] 586 if (RecordD->isPolymorphic() && E->isGLValue()) { 587 if (isUnevaluatedContext()) { 588 // The operand was processed in unevaluated context, switch the 589 // context and recheck the subexpression. 590 ExprResult Result = TransformToPotentiallyEvaluated(E); 591 if (Result.isInvalid()) 592 return ExprError(); 593 E = Result.get(); 594 } 595 596 // We require a vtable to query the type at run time. 597 MarkVTableUsed(TypeidLoc, RecordD); 598 WasEvaluated = true; 599 } 600 } 601 602 ExprResult Result = CheckUnevaluatedOperand(E); 603 if (Result.isInvalid()) 604 return ExprError(); 605 E = Result.get(); 606 607 // C++ [expr.typeid]p4: 608 // [...] If the type of the type-id is a reference to a possibly 609 // cv-qualified type, the result of the typeid expression refers to a 610 // std::type_info object representing the cv-unqualified referenced 611 // type. 612 Qualifiers Quals; 613 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); 614 if (!Context.hasSameType(T, UnqualT)) { 615 T = UnqualT; 616 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); 617 } 618 } 619 620 if (E->getType()->isVariablyModifiedType()) 621 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) 622 << E->getType()); 623 else if (!inTemplateInstantiation() && 624 E->HasSideEffects(Context, WasEvaluated)) { 625 // The expression operand for typeid is in an unevaluated expression 626 // context, so side effects could result in unintended consequences. 627 Diag(E->getExprLoc(), WasEvaluated 628 ? diag::warn_side_effects_typeid 629 : diag::warn_side_effects_unevaluated_context); 630 } 631 632 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, 633 SourceRange(TypeidLoc, RParenLoc)); 634 } 635 636 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); 637 ExprResult 638 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, 639 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 640 // typeid is not supported in OpenCL. 641 if (getLangOpts().OpenCLCPlusPlus) { 642 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) 643 << "typeid"); 644 } 645 646 // Find the std::type_info type. 647 if (!getStdNamespace()) 648 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 649 650 if (!CXXTypeInfoDecl) { 651 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); 652 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); 653 LookupQualifiedName(R, getStdNamespace()); 654 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 655 // Microsoft's typeinfo doesn't have type_info in std but in the global 656 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. 657 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { 658 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 659 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 660 } 661 if (!CXXTypeInfoDecl) 662 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 663 } 664 665 if (!getLangOpts().RTTI) { 666 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); 667 } 668 669 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); 670 671 if (isType) { 672 // The operand is a type; handle it as such. 673 TypeSourceInfo *TInfo = nullptr; 674 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 675 &TInfo); 676 if (T.isNull()) 677 return ExprError(); 678 679 if (!TInfo) 680 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 681 682 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); 683 } 684 685 // The operand is an expression. 686 ExprResult Result = 687 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc); 688 689 if (!getLangOpts().RTTIData && !Result.isInvalid()) 690 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get())) 691 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context)) 692 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled) 693 << (getDiagnostics().getDiagnosticOptions().getFormat() == 694 DiagnosticOptions::MSVC); 695 return Result; 696 } 697 698 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to 699 /// a single GUID. 700 static void 701 getUuidAttrOfType(Sema &SemaRef, QualType QT, 702 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) { 703 // Optionally remove one level of pointer, reference or array indirection. 704 const Type *Ty = QT.getTypePtr(); 705 if (QT->isPointerType() || QT->isReferenceType()) 706 Ty = QT->getPointeeType().getTypePtr(); 707 else if (QT->isArrayType()) 708 Ty = Ty->getBaseElementTypeUnsafe(); 709 710 const auto *TD = Ty->getAsTagDecl(); 711 if (!TD) 712 return; 713 714 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) { 715 UuidAttrs.insert(Uuid); 716 return; 717 } 718 719 // __uuidof can grab UUIDs from template arguments. 720 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) { 721 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 722 for (const TemplateArgument &TA : TAL.asArray()) { 723 const UuidAttr *UuidForTA = nullptr; 724 if (TA.getKind() == TemplateArgument::Type) 725 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs); 726 else if (TA.getKind() == TemplateArgument::Declaration) 727 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs); 728 729 if (UuidForTA) 730 UuidAttrs.insert(UuidForTA); 731 } 732 } 733 } 734 735 /// Build a Microsoft __uuidof expression with a type operand. 736 ExprResult Sema::BuildCXXUuidof(QualType Type, 737 SourceLocation TypeidLoc, 738 TypeSourceInfo *Operand, 739 SourceLocation RParenLoc) { 740 MSGuidDecl *Guid = nullptr; 741 if (!Operand->getType()->isDependentType()) { 742 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 743 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs); 744 if (UuidAttrs.empty()) 745 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 746 if (UuidAttrs.size() > 1) 747 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 748 Guid = UuidAttrs.back()->getGuidDecl(); 749 } 750 751 return new (Context) 752 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc)); 753 } 754 755 /// Build a Microsoft __uuidof expression with an expression operand. 756 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc, 757 Expr *E, SourceLocation RParenLoc) { 758 MSGuidDecl *Guid = nullptr; 759 if (!E->getType()->isDependentType()) { 760 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 761 // A null pointer results in {00000000-0000-0000-0000-000000000000}. 762 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{}); 763 } else { 764 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 765 getUuidAttrOfType(*this, E->getType(), UuidAttrs); 766 if (UuidAttrs.empty()) 767 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 768 if (UuidAttrs.size() > 1) 769 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 770 Guid = UuidAttrs.back()->getGuidDecl(); 771 } 772 } 773 774 return new (Context) 775 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc)); 776 } 777 778 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); 779 ExprResult 780 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, 781 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 782 QualType GuidType = Context.getMSGuidType(); 783 GuidType.addConst(); 784 785 if (isType) { 786 // The operand is a type; handle it as such. 787 TypeSourceInfo *TInfo = nullptr; 788 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 789 &TInfo); 790 if (T.isNull()) 791 return ExprError(); 792 793 if (!TInfo) 794 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 795 796 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); 797 } 798 799 // The operand is an expression. 800 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 801 } 802 803 /// ActOnCXXBoolLiteral - Parse {true,false} literals. 804 ExprResult 805 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { 806 assert((Kind == tok::kw_true || Kind == tok::kw_false) && 807 "Unknown C++ Boolean value!"); 808 return new (Context) 809 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); 810 } 811 812 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. 813 ExprResult 814 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { 815 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 816 } 817 818 /// ActOnCXXThrow - Parse throw expressions. 819 ExprResult 820 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { 821 bool IsThrownVarInScope = false; 822 if (Ex) { 823 // C++0x [class.copymove]p31: 824 // When certain criteria are met, an implementation is allowed to omit the 825 // copy/move construction of a class object [...] 826 // 827 // - in a throw-expression, when the operand is the name of a 828 // non-volatile automatic object (other than a function or catch- 829 // clause parameter) whose scope does not extend beyond the end of the 830 // innermost enclosing try-block (if there is one), the copy/move 831 // operation from the operand to the exception object (15.1) can be 832 // omitted by constructing the automatic object directly into the 833 // exception object 834 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) 835 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 836 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { 837 for( ; S; S = S->getParent()) { 838 if (S->isDeclScope(Var)) { 839 IsThrownVarInScope = true; 840 break; 841 } 842 843 if (S->getFlags() & 844 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | 845 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope | 846 Scope::TryScope)) 847 break; 848 } 849 } 850 } 851 } 852 853 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); 854 } 855 856 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 857 bool IsThrownVarInScope) { 858 // Don't report an error if 'throw' is used in system headers. 859 if (!getLangOpts().CXXExceptions && 860 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) { 861 // Delay error emission for the OpenMP device code. 862 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw"; 863 } 864 865 // Exceptions aren't allowed in CUDA device code. 866 if (getLangOpts().CUDA) 867 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions) 868 << "throw" << CurrentCUDATarget(); 869 870 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 871 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; 872 873 if (Ex && !Ex->isTypeDependent()) { 874 // Initialize the exception result. This implicitly weeds out 875 // abstract types or types with inaccessible copy constructors. 876 877 // C++0x [class.copymove]p31: 878 // When certain criteria are met, an implementation is allowed to omit the 879 // copy/move construction of a class object [...] 880 // 881 // - in a throw-expression, when the operand is the name of a 882 // non-volatile automatic object (other than a function or 883 // catch-clause 884 // parameter) whose scope does not extend beyond the end of the 885 // innermost enclosing try-block (if there is one), the copy/move 886 // operation from the operand to the exception object (15.1) can be 887 // omitted by constructing the automatic object directly into the 888 // exception object 889 NamedReturnInfo NRInfo = 890 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo(); 891 892 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); 893 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) 894 return ExprError(); 895 896 InitializedEntity Entity = 897 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy); 898 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex); 899 if (Res.isInvalid()) 900 return ExprError(); 901 Ex = Res.get(); 902 } 903 904 // PPC MMA non-pointer types are not allowed as throw expr types. 905 if (Ex && Context.getTargetInfo().getTriple().isPPC64()) 906 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc()); 907 908 return new (Context) 909 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); 910 } 911 912 static void 913 collectPublicBases(CXXRecordDecl *RD, 914 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, 915 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, 916 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, 917 bool ParentIsPublic) { 918 for (const CXXBaseSpecifier &BS : RD->bases()) { 919 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 920 bool NewSubobject; 921 // Virtual bases constitute the same subobject. Non-virtual bases are 922 // always distinct subobjects. 923 if (BS.isVirtual()) 924 NewSubobject = VBases.insert(BaseDecl).second; 925 else 926 NewSubobject = true; 927 928 if (NewSubobject) 929 ++SubobjectsSeen[BaseDecl]; 930 931 // Only add subobjects which have public access throughout the entire chain. 932 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; 933 if (PublicPath) 934 PublicSubobjectsSeen.insert(BaseDecl); 935 936 // Recurse on to each base subobject. 937 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, 938 PublicPath); 939 } 940 } 941 942 static void getUnambiguousPublicSubobjects( 943 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { 944 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; 945 llvm::SmallSet<CXXRecordDecl *, 2> VBases; 946 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; 947 SubobjectsSeen[RD] = 1; 948 PublicSubobjectsSeen.insert(RD); 949 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, 950 /*ParentIsPublic=*/true); 951 952 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { 953 // Skip ambiguous objects. 954 if (SubobjectsSeen[PublicSubobject] > 1) 955 continue; 956 957 Objects.push_back(PublicSubobject); 958 } 959 } 960 961 /// CheckCXXThrowOperand - Validate the operand of a throw. 962 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, 963 QualType ExceptionObjectTy, Expr *E) { 964 // If the type of the exception would be an incomplete type or a pointer 965 // to an incomplete type other than (cv) void the program is ill-formed. 966 QualType Ty = ExceptionObjectTy; 967 bool isPointer = false; 968 if (const PointerType* Ptr = Ty->getAs<PointerType>()) { 969 Ty = Ptr->getPointeeType(); 970 isPointer = true; 971 } 972 if (!isPointer || !Ty->isVoidType()) { 973 if (RequireCompleteType(ThrowLoc, Ty, 974 isPointer ? diag::err_throw_incomplete_ptr 975 : diag::err_throw_incomplete, 976 E->getSourceRange())) 977 return true; 978 979 if (!isPointer && Ty->isSizelessType()) { 980 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange(); 981 return true; 982 } 983 984 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, 985 diag::err_throw_abstract_type, E)) 986 return true; 987 } 988 989 // If the exception has class type, we need additional handling. 990 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 991 if (!RD) 992 return false; 993 994 // If we are throwing a polymorphic class type or pointer thereof, 995 // exception handling will make use of the vtable. 996 MarkVTableUsed(ThrowLoc, RD); 997 998 // If a pointer is thrown, the referenced object will not be destroyed. 999 if (isPointer) 1000 return false; 1001 1002 // If the class has a destructor, we must be able to call it. 1003 if (!RD->hasIrrelevantDestructor()) { 1004 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 1005 MarkFunctionReferenced(E->getExprLoc(), Destructor); 1006 CheckDestructorAccess(E->getExprLoc(), Destructor, 1007 PDiag(diag::err_access_dtor_exception) << Ty); 1008 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 1009 return true; 1010 } 1011 } 1012 1013 // The MSVC ABI creates a list of all types which can catch the exception 1014 // object. This list also references the appropriate copy constructor to call 1015 // if the object is caught by value and has a non-trivial copy constructor. 1016 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1017 // We are only interested in the public, unambiguous bases contained within 1018 // the exception object. Bases which are ambiguous or otherwise 1019 // inaccessible are not catchable types. 1020 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; 1021 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); 1022 1023 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { 1024 // Attempt to lookup the copy constructor. Various pieces of machinery 1025 // will spring into action, like template instantiation, which means this 1026 // cannot be a simple walk of the class's decls. Instead, we must perform 1027 // lookup and overload resolution. 1028 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); 1029 if (!CD || CD->isDeleted()) 1030 continue; 1031 1032 // Mark the constructor referenced as it is used by this throw expression. 1033 MarkFunctionReferenced(E->getExprLoc(), CD); 1034 1035 // Skip this copy constructor if it is trivial, we don't need to record it 1036 // in the catchable type data. 1037 if (CD->isTrivial()) 1038 continue; 1039 1040 // The copy constructor is non-trivial, create a mapping from this class 1041 // type to this constructor. 1042 // N.B. The selection of copy constructor is not sensitive to this 1043 // particular throw-site. Lookup will be performed at the catch-site to 1044 // ensure that the copy constructor is, in fact, accessible (via 1045 // friendship or any other means). 1046 Context.addCopyConstructorForExceptionObject(Subobject, CD); 1047 1048 // We don't keep the instantiated default argument expressions around so 1049 // we must rebuild them here. 1050 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { 1051 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I))) 1052 return true; 1053 } 1054 } 1055 } 1056 1057 // Under the Itanium C++ ABI, memory for the exception object is allocated by 1058 // the runtime with no ability for the compiler to request additional 1059 // alignment. Warn if the exception type requires alignment beyond the minimum 1060 // guaranteed by the target C++ runtime. 1061 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) { 1062 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty); 1063 CharUnits ExnObjAlign = Context.getExnObjectAlignment(); 1064 if (ExnObjAlign < TypeAlign) { 1065 Diag(ThrowLoc, diag::warn_throw_underaligned_obj); 1066 Diag(ThrowLoc, diag::note_throw_underaligned_obj) 1067 << Ty << (unsigned)TypeAlign.getQuantity() 1068 << (unsigned)ExnObjAlign.getQuantity(); 1069 } 1070 } 1071 1072 return false; 1073 } 1074 1075 static QualType adjustCVQualifiersForCXXThisWithinLambda( 1076 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy, 1077 DeclContext *CurSemaContext, ASTContext &ASTCtx) { 1078 1079 QualType ClassType = ThisTy->getPointeeType(); 1080 LambdaScopeInfo *CurLSI = nullptr; 1081 DeclContext *CurDC = CurSemaContext; 1082 1083 // Iterate through the stack of lambdas starting from the innermost lambda to 1084 // the outermost lambda, checking if '*this' is ever captured by copy - since 1085 // that could change the cv-qualifiers of the '*this' object. 1086 // The object referred to by '*this' starts out with the cv-qualifiers of its 1087 // member function. We then start with the innermost lambda and iterate 1088 // outward checking to see if any lambda performs a by-copy capture of '*this' 1089 // - and if so, any nested lambda must respect the 'constness' of that 1090 // capturing lamdbda's call operator. 1091 // 1092 1093 // Since the FunctionScopeInfo stack is representative of the lexical 1094 // nesting of the lambda expressions during initial parsing (and is the best 1095 // place for querying information about captures about lambdas that are 1096 // partially processed) and perhaps during instantiation of function templates 1097 // that contain lambda expressions that need to be transformed BUT not 1098 // necessarily during instantiation of a nested generic lambda's function call 1099 // operator (which might even be instantiated at the end of the TU) - at which 1100 // time the DeclContext tree is mature enough to query capture information 1101 // reliably - we use a two pronged approach to walk through all the lexically 1102 // enclosing lambda expressions: 1103 // 1104 // 1) Climb down the FunctionScopeInfo stack as long as each item represents 1105 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically 1106 // enclosed by the call-operator of the LSI below it on the stack (while 1107 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on 1108 // the stack represents the innermost lambda. 1109 // 1110 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext 1111 // represents a lambda's call operator. If it does, we must be instantiating 1112 // a generic lambda's call operator (represented by the Current LSI, and 1113 // should be the only scenario where an inconsistency between the LSI and the 1114 // DeclContext should occur), so climb out the DeclContexts if they 1115 // represent lambdas, while querying the corresponding closure types 1116 // regarding capture information. 1117 1118 // 1) Climb down the function scope info stack. 1119 for (int I = FunctionScopes.size(); 1120 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) && 1121 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() == 1122 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator); 1123 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) { 1124 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]); 1125 1126 if (!CurLSI->isCXXThisCaptured()) 1127 continue; 1128 1129 auto C = CurLSI->getCXXThisCapture(); 1130 1131 if (C.isCopyCapture()) { 1132 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1133 if (CurLSI->CallOperator->isConst()) 1134 ClassType.addConst(); 1135 return ASTCtx.getPointerType(ClassType); 1136 } 1137 } 1138 1139 // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can 1140 // happen during instantiation of its nested generic lambda call operator) 1141 if (isLambdaCallOperator(CurDC)) { 1142 assert(CurLSI && "While computing 'this' capture-type for a generic " 1143 "lambda, we must have a corresponding LambdaScopeInfo"); 1144 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && 1145 "While computing 'this' capture-type for a generic lambda, when we " 1146 "run out of enclosing LSI's, yet the enclosing DC is a " 1147 "lambda-call-operator we must be (i.e. Current LSI) in a generic " 1148 "lambda call oeprator"); 1149 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)); 1150 1151 auto IsThisCaptured = 1152 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) { 1153 IsConst = false; 1154 IsByCopy = false; 1155 for (auto &&C : Closure->captures()) { 1156 if (C.capturesThis()) { 1157 if (C.getCaptureKind() == LCK_StarThis) 1158 IsByCopy = true; 1159 if (Closure->getLambdaCallOperator()->isConst()) 1160 IsConst = true; 1161 return true; 1162 } 1163 } 1164 return false; 1165 }; 1166 1167 bool IsByCopyCapture = false; 1168 bool IsConstCapture = false; 1169 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent()); 1170 while (Closure && 1171 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) { 1172 if (IsByCopyCapture) { 1173 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1174 if (IsConstCapture) 1175 ClassType.addConst(); 1176 return ASTCtx.getPointerType(ClassType); 1177 } 1178 Closure = isLambdaCallOperator(Closure->getParent()) 1179 ? cast<CXXRecordDecl>(Closure->getParent()->getParent()) 1180 : nullptr; 1181 } 1182 } 1183 return ASTCtx.getPointerType(ClassType); 1184 } 1185 1186 QualType Sema::getCurrentThisType() { 1187 DeclContext *DC = getFunctionLevelDeclContext(); 1188 QualType ThisTy = CXXThisTypeOverride; 1189 1190 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { 1191 if (method && method->isInstance()) 1192 ThisTy = method->getThisType(); 1193 } 1194 1195 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) && 1196 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) { 1197 1198 // This is a lambda call operator that is being instantiated as a default 1199 // initializer. DC must point to the enclosing class type, so we can recover 1200 // the 'this' type from it. 1201 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC)); 1202 // There are no cv-qualifiers for 'this' within default initializers, 1203 // per [expr.prim.general]p4. 1204 ThisTy = Context.getPointerType(ClassTy); 1205 } 1206 1207 // If we are within a lambda's call operator, the cv-qualifiers of 'this' 1208 // might need to be adjusted if the lambda or any of its enclosing lambda's 1209 // captures '*this' by copy. 1210 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext)) 1211 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy, 1212 CurContext, Context); 1213 return ThisTy; 1214 } 1215 1216 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 1217 Decl *ContextDecl, 1218 Qualifiers CXXThisTypeQuals, 1219 bool Enabled) 1220 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) 1221 { 1222 if (!Enabled || !ContextDecl) 1223 return; 1224 1225 CXXRecordDecl *Record = nullptr; 1226 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) 1227 Record = Template->getTemplatedDecl(); 1228 else 1229 Record = cast<CXXRecordDecl>(ContextDecl); 1230 1231 QualType T = S.Context.getRecordType(Record); 1232 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals); 1233 1234 S.CXXThisTypeOverride = S.Context.getPointerType(T); 1235 1236 this->Enabled = true; 1237 } 1238 1239 1240 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { 1241 if (Enabled) { 1242 S.CXXThisTypeOverride = OldCXXThisTypeOverride; 1243 } 1244 } 1245 1246 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) { 1247 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd(); 1248 assert(!LSI->isCXXThisCaptured()); 1249 // [=, this] {}; // until C++20: Error: this when = is the default 1250 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval && 1251 !Sema.getLangOpts().CPlusPlus20) 1252 return; 1253 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit) 1254 << FixItHint::CreateInsertion( 1255 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this"); 1256 } 1257 1258 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit, 1259 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt, 1260 const bool ByCopy) { 1261 // We don't need to capture this in an unevaluated context. 1262 if (isUnevaluatedContext() && !Explicit) 1263 return true; 1264 1265 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value"); 1266 1267 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt 1268 ? *FunctionScopeIndexToStopAt 1269 : FunctionScopes.size() - 1; 1270 1271 // Check that we can capture the *enclosing object* (referred to by '*this') 1272 // by the capturing-entity/closure (lambda/block/etc) at 1273 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1274 1275 // Note: The *enclosing object* can only be captured by-value by a 1276 // closure that is a lambda, using the explicit notation: 1277 // [*this] { ... }. 1278 // Every other capture of the *enclosing object* results in its by-reference 1279 // capture. 1280 1281 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1282 // stack), we can capture the *enclosing object* only if: 1283 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1284 // - or, 'L' has an implicit capture. 1285 // AND 1286 // -- there is no enclosing closure 1287 // -- or, there is some enclosing closure 'E' that has already captured the 1288 // *enclosing object*, and every intervening closure (if any) between 'E' 1289 // and 'L' can implicitly capture the *enclosing object*. 1290 // -- or, every enclosing closure can implicitly capture the 1291 // *enclosing object* 1292 1293 1294 unsigned NumCapturingClosures = 0; 1295 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) { 1296 if (CapturingScopeInfo *CSI = 1297 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { 1298 if (CSI->CXXThisCaptureIndex != 0) { 1299 // 'this' is already being captured; there isn't anything more to do. 1300 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1301 break; 1302 } 1303 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); 1304 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1305 // This context can't implicitly capture 'this'; fail out. 1306 if (BuildAndDiagnose) { 1307 Diag(Loc, diag::err_this_capture) 1308 << (Explicit && idx == MaxFunctionScopesIndex); 1309 if (!Explicit) 1310 buildLambdaThisCaptureFixit(*this, LSI); 1311 } 1312 return true; 1313 } 1314 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || 1315 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || 1316 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || 1317 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || 1318 (Explicit && idx == MaxFunctionScopesIndex)) { 1319 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1320 // iteration through can be an explicit capture, all enclosing closures, 1321 // if any, must perform implicit captures. 1322 1323 // This closure can capture 'this'; continue looking upwards. 1324 NumCapturingClosures++; 1325 continue; 1326 } 1327 // This context can't implicitly capture 'this'; fail out. 1328 if (BuildAndDiagnose) 1329 Diag(Loc, diag::err_this_capture) 1330 << (Explicit && idx == MaxFunctionScopesIndex); 1331 1332 if (!Explicit) 1333 buildLambdaThisCaptureFixit(*this, LSI); 1334 return true; 1335 } 1336 break; 1337 } 1338 if (!BuildAndDiagnose) return false; 1339 1340 // If we got here, then the closure at MaxFunctionScopesIndex on the 1341 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1342 // (including implicit by-reference captures in any enclosing closures). 1343 1344 // In the loop below, respect the ByCopy flag only for the closure requesting 1345 // the capture (i.e. first iteration through the loop below). Ignore it for 1346 // all enclosing closure's up to NumCapturingClosures (since they must be 1347 // implicitly capturing the *enclosing object* by reference (see loop 1348 // above)). 1349 assert((!ByCopy || 1350 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && 1351 "Only a lambda can capture the enclosing object (referred to by " 1352 "*this) by copy"); 1353 QualType ThisTy = getCurrentThisType(); 1354 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1355 --idx, --NumCapturingClosures) { 1356 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1357 1358 // The type of the corresponding data member (not a 'this' pointer if 'by 1359 // copy'). 1360 QualType CaptureType = ThisTy; 1361 if (ByCopy) { 1362 // If we are capturing the object referred to by '*this' by copy, ignore 1363 // any cv qualifiers inherited from the type of the member function for 1364 // the type of the closure-type's corresponding data member and any use 1365 // of 'this'. 1366 CaptureType = ThisTy->getPointeeType(); 1367 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1368 } 1369 1370 bool isNested = NumCapturingClosures > 1; 1371 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1372 } 1373 return false; 1374 } 1375 1376 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1377 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1378 /// is a non-lvalue expression whose value is the address of the object for 1379 /// which the function is called. 1380 1381 QualType ThisTy = getCurrentThisType(); 1382 if (ThisTy.isNull()) 1383 return Diag(Loc, diag::err_invalid_this_use); 1384 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false); 1385 } 1386 1387 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1388 bool IsImplicit) { 1389 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); 1390 MarkThisReferenced(This); 1391 return This; 1392 } 1393 1394 void Sema::MarkThisReferenced(CXXThisExpr *This) { 1395 CheckCXXThisCapture(This->getExprLoc()); 1396 } 1397 1398 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1399 // If we're outside the body of a member function, then we'll have a specified 1400 // type for 'this'. 1401 if (CXXThisTypeOverride.isNull()) 1402 return false; 1403 1404 // Determine whether we're looking into a class that's currently being 1405 // defined. 1406 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1407 return Class && Class->isBeingDefined(); 1408 } 1409 1410 /// Parse construction of a specified type. 1411 /// Can be interpreted either as function-style casting ("int(x)") 1412 /// or class type construction ("ClassType(x,y,z)") 1413 /// or creation of a value-initialized type ("int()"). 1414 ExprResult 1415 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1416 SourceLocation LParenOrBraceLoc, 1417 MultiExprArg exprs, 1418 SourceLocation RParenOrBraceLoc, 1419 bool ListInitialization) { 1420 if (!TypeRep) 1421 return ExprError(); 1422 1423 TypeSourceInfo *TInfo; 1424 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1425 if (!TInfo) 1426 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1427 1428 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1429 RParenOrBraceLoc, ListInitialization); 1430 // Avoid creating a non-type-dependent expression that contains typos. 1431 // Non-type-dependent expressions are liable to be discarded without 1432 // checking for embedded typos. 1433 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1434 !Result.get()->isTypeDependent()) 1435 Result = CorrectDelayedTyposInExpr(Result.get()); 1436 else if (Result.isInvalid()) 1437 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), 1438 RParenOrBraceLoc, exprs, Ty); 1439 return Result; 1440 } 1441 1442 ExprResult 1443 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1444 SourceLocation LParenOrBraceLoc, 1445 MultiExprArg Exprs, 1446 SourceLocation RParenOrBraceLoc, 1447 bool ListInitialization) { 1448 QualType Ty = TInfo->getType(); 1449 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1450 1451 assert((!ListInitialization || 1452 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && 1453 "List initialization must have initializer list as expression."); 1454 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1455 1456 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); 1457 InitializationKind Kind = 1458 Exprs.size() 1459 ? ListInitialization 1460 ? InitializationKind::CreateDirectList( 1461 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1462 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1463 RParenOrBraceLoc) 1464 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1465 RParenOrBraceLoc); 1466 1467 // C++1z [expr.type.conv]p1: 1468 // If the type is a placeholder for a deduced class type, [...perform class 1469 // template argument deduction...] 1470 DeducedType *Deduced = Ty->getContainedDeducedType(); 1471 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1472 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1473 Kind, Exprs); 1474 if (Ty.isNull()) 1475 return ExprError(); 1476 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1477 } 1478 1479 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1480 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization 1481 // directly. We work around this by dropping the locations of the braces. 1482 SourceRange Locs = ListInitialization 1483 ? SourceRange() 1484 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1485 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(), 1486 TInfo, Locs.getBegin(), Exprs, 1487 Locs.getEnd()); 1488 } 1489 1490 // C++ [expr.type.conv]p1: 1491 // If the expression list is a parenthesized single expression, the type 1492 // conversion expression is equivalent (in definedness, and if defined in 1493 // meaning) to the corresponding cast expression. 1494 if (Exprs.size() == 1 && !ListInitialization && 1495 !isa<InitListExpr>(Exprs[0])) { 1496 Expr *Arg = Exprs[0]; 1497 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1498 RParenOrBraceLoc); 1499 } 1500 1501 // For an expression of the form T(), T shall not be an array type. 1502 QualType ElemTy = Ty; 1503 if (Ty->isArrayType()) { 1504 if (!ListInitialization) 1505 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1506 << FullRange); 1507 ElemTy = Context.getBaseElementType(Ty); 1508 } 1509 1510 // There doesn't seem to be an explicit rule against this but sanity demands 1511 // we only construct objects with object types. 1512 if (Ty->isFunctionType()) 1513 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1514 << Ty << FullRange); 1515 1516 // C++17 [expr.type.conv]p2: 1517 // If the type is cv void and the initializer is (), the expression is a 1518 // prvalue of the specified type that performs no initialization. 1519 if (!Ty->isVoidType() && 1520 RequireCompleteType(TyBeginLoc, ElemTy, 1521 diag::err_invalid_incomplete_type_use, FullRange)) 1522 return ExprError(); 1523 1524 // Otherwise, the expression is a prvalue of the specified type whose 1525 // result object is direct-initialized (11.6) with the initializer. 1526 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1527 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1528 1529 if (Result.isInvalid()) 1530 return Result; 1531 1532 Expr *Inner = Result.get(); 1533 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1534 Inner = BTE->getSubExpr(); 1535 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1536 !isa<CXXScalarValueInitExpr>(Inner)) { 1537 // If we created a CXXTemporaryObjectExpr, that node also represents the 1538 // functional cast. Otherwise, create an explicit cast to represent 1539 // the syntactic form of a functional-style cast that was used here. 1540 // 1541 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1542 // would give a more consistent AST representation than using a 1543 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1544 // is sometimes handled by initialization and sometimes not. 1545 QualType ResultType = Result.get()->getType(); 1546 SourceRange Locs = ListInitialization 1547 ? SourceRange() 1548 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1549 Result = CXXFunctionalCastExpr::Create( 1550 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1551 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), 1552 Locs.getBegin(), Locs.getEnd()); 1553 } 1554 1555 return Result; 1556 } 1557 1558 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1559 // [CUDA] Ignore this function, if we can't call it. 1560 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext); 1561 if (getLangOpts().CUDA) { 1562 auto CallPreference = IdentifyCUDAPreference(Caller, Method); 1563 // If it's not callable at all, it's not the right function. 1564 if (CallPreference < CFP_WrongSide) 1565 return false; 1566 if (CallPreference == CFP_WrongSide) { 1567 // Maybe. We have to check if there are better alternatives. 1568 DeclContext::lookup_result R = 1569 Method->getDeclContext()->lookup(Method->getDeclName()); 1570 for (const auto *D : R) { 1571 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1572 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) 1573 return false; 1574 } 1575 } 1576 // We've found no better variants. 1577 } 1578 } 1579 1580 SmallVector<const FunctionDecl*, 4> PreventedBy; 1581 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1582 1583 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1584 return Result; 1585 1586 // In case of CUDA, return true if none of the 1-argument deallocator 1587 // functions are actually callable. 1588 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1589 assert(FD->getNumParams() == 1 && 1590 "Only single-operand functions should be in PreventedBy"); 1591 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1592 }); 1593 } 1594 1595 /// Determine whether the given function is a non-placement 1596 /// deallocation function. 1597 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1598 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1599 return S.isUsualDeallocationFunction(Method); 1600 1601 if (FD->getOverloadedOperator() != OO_Delete && 1602 FD->getOverloadedOperator() != OO_Array_Delete) 1603 return false; 1604 1605 unsigned UsualParams = 1; 1606 1607 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1608 S.Context.hasSameUnqualifiedType( 1609 FD->getParamDecl(UsualParams)->getType(), 1610 S.Context.getSizeType())) 1611 ++UsualParams; 1612 1613 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1614 S.Context.hasSameUnqualifiedType( 1615 FD->getParamDecl(UsualParams)->getType(), 1616 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1617 ++UsualParams; 1618 1619 return UsualParams == FD->getNumParams(); 1620 } 1621 1622 namespace { 1623 struct UsualDeallocFnInfo { 1624 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1625 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1626 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1627 Destroying(false), HasSizeT(false), HasAlignValT(false), 1628 CUDAPref(Sema::CFP_Native) { 1629 // A function template declaration is never a usual deallocation function. 1630 if (!FD) 1631 return; 1632 unsigned NumBaseParams = 1; 1633 if (FD->isDestroyingOperatorDelete()) { 1634 Destroying = true; 1635 ++NumBaseParams; 1636 } 1637 1638 if (NumBaseParams < FD->getNumParams() && 1639 S.Context.hasSameUnqualifiedType( 1640 FD->getParamDecl(NumBaseParams)->getType(), 1641 S.Context.getSizeType())) { 1642 ++NumBaseParams; 1643 HasSizeT = true; 1644 } 1645 1646 if (NumBaseParams < FD->getNumParams() && 1647 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1648 ++NumBaseParams; 1649 HasAlignValT = true; 1650 } 1651 1652 // In CUDA, determine how much we'd like / dislike to call this. 1653 if (S.getLangOpts().CUDA) 1654 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 1655 CUDAPref = S.IdentifyCUDAPreference(Caller, FD); 1656 } 1657 1658 explicit operator bool() const { return FD; } 1659 1660 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1661 bool WantAlign) const { 1662 // C++ P0722: 1663 // A destroying operator delete is preferred over a non-destroying 1664 // operator delete. 1665 if (Destroying != Other.Destroying) 1666 return Destroying; 1667 1668 // C++17 [expr.delete]p10: 1669 // If the type has new-extended alignment, a function with a parameter 1670 // of type std::align_val_t is preferred; otherwise a function without 1671 // such a parameter is preferred 1672 if (HasAlignValT != Other.HasAlignValT) 1673 return HasAlignValT == WantAlign; 1674 1675 if (HasSizeT != Other.HasSizeT) 1676 return HasSizeT == WantSize; 1677 1678 // Use CUDA call preference as a tiebreaker. 1679 return CUDAPref > Other.CUDAPref; 1680 } 1681 1682 DeclAccessPair Found; 1683 FunctionDecl *FD; 1684 bool Destroying, HasSizeT, HasAlignValT; 1685 Sema::CUDAFunctionPreference CUDAPref; 1686 }; 1687 } 1688 1689 /// Determine whether a type has new-extended alignment. This may be called when 1690 /// the type is incomplete (for a delete-expression with an incomplete pointee 1691 /// type), in which case it will conservatively return false if the alignment is 1692 /// not known. 1693 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1694 return S.getLangOpts().AlignedAllocation && 1695 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1696 S.getASTContext().getTargetInfo().getNewAlign(); 1697 } 1698 1699 /// Select the correct "usual" deallocation function to use from a selection of 1700 /// deallocation functions (either global or class-scope). 1701 static UsualDeallocFnInfo resolveDeallocationOverload( 1702 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1703 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1704 UsualDeallocFnInfo Best; 1705 1706 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1707 UsualDeallocFnInfo Info(S, I.getPair()); 1708 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1709 Info.CUDAPref == Sema::CFP_Never) 1710 continue; 1711 1712 if (!Best) { 1713 Best = Info; 1714 if (BestFns) 1715 BestFns->push_back(Info); 1716 continue; 1717 } 1718 1719 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1720 continue; 1721 1722 // If more than one preferred function is found, all non-preferred 1723 // functions are eliminated from further consideration. 1724 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1725 BestFns->clear(); 1726 1727 Best = Info; 1728 if (BestFns) 1729 BestFns->push_back(Info); 1730 } 1731 1732 return Best; 1733 } 1734 1735 /// Determine whether a given type is a class for which 'delete[]' would call 1736 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1737 /// we need to store the array size (even if the type is 1738 /// trivially-destructible). 1739 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1740 QualType allocType) { 1741 const RecordType *record = 1742 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1743 if (!record) return false; 1744 1745 // Try to find an operator delete[] in class scope. 1746 1747 DeclarationName deleteName = 1748 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1749 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1750 S.LookupQualifiedName(ops, record->getDecl()); 1751 1752 // We're just doing this for information. 1753 ops.suppressDiagnostics(); 1754 1755 // Very likely: there's no operator delete[]. 1756 if (ops.empty()) return false; 1757 1758 // If it's ambiguous, it should be illegal to call operator delete[] 1759 // on this thing, so it doesn't matter if we allocate extra space or not. 1760 if (ops.isAmbiguous()) return false; 1761 1762 // C++17 [expr.delete]p10: 1763 // If the deallocation functions have class scope, the one without a 1764 // parameter of type std::size_t is selected. 1765 auto Best = resolveDeallocationOverload( 1766 S, ops, /*WantSize*/false, 1767 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1768 return Best && Best.HasSizeT; 1769 } 1770 1771 /// Parsed a C++ 'new' expression (C++ 5.3.4). 1772 /// 1773 /// E.g.: 1774 /// @code new (memory) int[size][4] @endcode 1775 /// or 1776 /// @code ::new Foo(23, "hello") @endcode 1777 /// 1778 /// \param StartLoc The first location of the expression. 1779 /// \param UseGlobal True if 'new' was prefixed with '::'. 1780 /// \param PlacementLParen Opening paren of the placement arguments. 1781 /// \param PlacementArgs Placement new arguments. 1782 /// \param PlacementRParen Closing paren of the placement arguments. 1783 /// \param TypeIdParens If the type is in parens, the source range. 1784 /// \param D The type to be allocated, as well as array dimensions. 1785 /// \param Initializer The initializing expression or initializer-list, or null 1786 /// if there is none. 1787 ExprResult 1788 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1789 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1790 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1791 Declarator &D, Expr *Initializer) { 1792 Optional<Expr *> ArraySize; 1793 // If the specified type is an array, unwrap it and save the expression. 1794 if (D.getNumTypeObjects() > 0 && 1795 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1796 DeclaratorChunk &Chunk = D.getTypeObject(0); 1797 if (D.getDeclSpec().hasAutoTypeSpec()) 1798 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1799 << D.getSourceRange()); 1800 if (Chunk.Arr.hasStatic) 1801 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1802 << D.getSourceRange()); 1803 if (!Chunk.Arr.NumElts && !Initializer) 1804 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1805 << D.getSourceRange()); 1806 1807 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1808 D.DropFirstTypeObject(); 1809 } 1810 1811 // Every dimension shall be of constant size. 1812 if (ArraySize) { 1813 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1814 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1815 break; 1816 1817 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1818 if (Expr *NumElts = (Expr *)Array.NumElts) { 1819 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1820 // FIXME: GCC permits constant folding here. We should either do so consistently 1821 // or not do so at all, rather than changing behavior in C++14 onwards. 1822 if (getLangOpts().CPlusPlus14) { 1823 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1824 // shall be a converted constant expression (5.19) of type std::size_t 1825 // and shall evaluate to a strictly positive value. 1826 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); 1827 Array.NumElts 1828 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1829 CCEK_ArrayBound) 1830 .get(); 1831 } else { 1832 Array.NumElts = 1833 VerifyIntegerConstantExpression( 1834 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) 1835 .get(); 1836 } 1837 if (!Array.NumElts) 1838 return ExprError(); 1839 } 1840 } 1841 } 1842 } 1843 1844 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1845 QualType AllocType = TInfo->getType(); 1846 if (D.isInvalidType()) 1847 return ExprError(); 1848 1849 SourceRange DirectInitRange; 1850 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1851 DirectInitRange = List->getSourceRange(); 1852 1853 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1854 PlacementLParen, PlacementArgs, PlacementRParen, 1855 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1856 Initializer); 1857 } 1858 1859 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1860 Expr *Init) { 1861 if (!Init) 1862 return true; 1863 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1864 return PLE->getNumExprs() == 0; 1865 if (isa<ImplicitValueInitExpr>(Init)) 1866 return true; 1867 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1868 return !CCE->isListInitialization() && 1869 CCE->getConstructor()->isDefaultConstructor(); 1870 else if (Style == CXXNewExpr::ListInit) { 1871 assert(isa<InitListExpr>(Init) && 1872 "Shouldn't create list CXXConstructExprs for arrays."); 1873 return true; 1874 } 1875 return false; 1876 } 1877 1878 bool 1879 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1880 if (!getLangOpts().AlignedAllocationUnavailable) 1881 return false; 1882 if (FD.isDefined()) 1883 return false; 1884 Optional<unsigned> AlignmentParam; 1885 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 1886 AlignmentParam.hasValue()) 1887 return true; 1888 return false; 1889 } 1890 1891 // Emit a diagnostic if an aligned allocation/deallocation function that is not 1892 // implemented in the standard library is selected. 1893 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1894 SourceLocation Loc) { 1895 if (isUnavailableAlignedAllocationFunction(FD)) { 1896 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1897 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1898 getASTContext().getTargetInfo().getPlatformName()); 1899 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); 1900 1901 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1902 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1903 Diag(Loc, diag::err_aligned_allocation_unavailable) 1904 << IsDelete << FD.getType().getAsString() << OSName 1905 << OSVersion.getAsString() << OSVersion.empty(); 1906 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1907 } 1908 } 1909 1910 ExprResult 1911 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1912 SourceLocation PlacementLParen, 1913 MultiExprArg PlacementArgs, 1914 SourceLocation PlacementRParen, 1915 SourceRange TypeIdParens, 1916 QualType AllocType, 1917 TypeSourceInfo *AllocTypeInfo, 1918 Optional<Expr *> ArraySize, 1919 SourceRange DirectInitRange, 1920 Expr *Initializer) { 1921 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1922 SourceLocation StartLoc = Range.getBegin(); 1923 1924 CXXNewExpr::InitializationStyle initStyle; 1925 if (DirectInitRange.isValid()) { 1926 assert(Initializer && "Have parens but no initializer."); 1927 initStyle = CXXNewExpr::CallInit; 1928 } else if (Initializer && isa<InitListExpr>(Initializer)) 1929 initStyle = CXXNewExpr::ListInit; 1930 else { 1931 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || 1932 isa<CXXConstructExpr>(Initializer)) && 1933 "Initializer expression that cannot have been implicitly created."); 1934 initStyle = CXXNewExpr::NoInit; 1935 } 1936 1937 Expr **Inits = &Initializer; 1938 unsigned NumInits = Initializer ? 1 : 0; 1939 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1940 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init"); 1941 Inits = List->getExprs(); 1942 NumInits = List->getNumExprs(); 1943 } 1944 1945 // C++11 [expr.new]p15: 1946 // A new-expression that creates an object of type T initializes that 1947 // object as follows: 1948 InitializationKind Kind 1949 // - If the new-initializer is omitted, the object is default- 1950 // initialized (8.5); if no initialization is performed, 1951 // the object has indeterminate value 1952 = initStyle == CXXNewExpr::NoInit 1953 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1954 // - Otherwise, the new-initializer is interpreted according to 1955 // the 1956 // initialization rules of 8.5 for direct-initialization. 1957 : initStyle == CXXNewExpr::ListInit 1958 ? InitializationKind::CreateDirectList( 1959 TypeRange.getBegin(), Initializer->getBeginLoc(), 1960 Initializer->getEndLoc()) 1961 : InitializationKind::CreateDirect(TypeRange.getBegin(), 1962 DirectInitRange.getBegin(), 1963 DirectInitRange.getEnd()); 1964 1965 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 1966 auto *Deduced = AllocType->getContainedDeducedType(); 1967 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1968 if (ArraySize) 1969 return ExprError( 1970 Diag(ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 1971 diag::err_deduced_class_template_compound_type) 1972 << /*array*/ 2 1973 << (ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 1974 1975 InitializedEntity Entity 1976 = InitializedEntity::InitializeNew(StartLoc, AllocType); 1977 AllocType = DeduceTemplateSpecializationFromInitializer( 1978 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits)); 1979 if (AllocType.isNull()) 1980 return ExprError(); 1981 } else if (Deduced) { 1982 bool Braced = (initStyle == CXXNewExpr::ListInit); 1983 if (NumInits == 1) { 1984 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) { 1985 Inits = p->getInits(); 1986 NumInits = p->getNumInits(); 1987 Braced = true; 1988 } 1989 } 1990 1991 if (initStyle == CXXNewExpr::NoInit || NumInits == 0) 1992 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 1993 << AllocType << TypeRange); 1994 if (NumInits > 1) { 1995 Expr *FirstBad = Inits[1]; 1996 return ExprError(Diag(FirstBad->getBeginLoc(), 1997 diag::err_auto_new_ctor_multiple_expressions) 1998 << AllocType << TypeRange); 1999 } 2000 if (Braced && !getLangOpts().CPlusPlus17) 2001 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 2002 << AllocType << TypeRange; 2003 Expr *Deduce = Inits[0]; 2004 QualType DeducedType; 2005 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 2006 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 2007 << AllocType << Deduce->getType() 2008 << TypeRange << Deduce->getSourceRange()); 2009 if (DeducedType.isNull()) 2010 return ExprError(); 2011 AllocType = DeducedType; 2012 } 2013 2014 // Per C++0x [expr.new]p5, the type being constructed may be a 2015 // typedef of an array type. 2016 if (!ArraySize) { 2017 if (const ConstantArrayType *Array 2018 = Context.getAsConstantArrayType(AllocType)) { 2019 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 2020 Context.getSizeType(), 2021 TypeRange.getEnd()); 2022 AllocType = Array->getElementType(); 2023 } 2024 } 2025 2026 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 2027 return ExprError(); 2028 2029 // In ARC, infer 'retaining' for the allocated 2030 if (getLangOpts().ObjCAutoRefCount && 2031 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 2032 AllocType->isObjCLifetimeType()) { 2033 AllocType = Context.getLifetimeQualifiedType(AllocType, 2034 AllocType->getObjCARCImplicitLifetime()); 2035 } 2036 2037 QualType ResultType = Context.getPointerType(AllocType); 2038 2039 if (ArraySize && *ArraySize && 2040 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 2041 ExprResult result = CheckPlaceholderExpr(*ArraySize); 2042 if (result.isInvalid()) return ExprError(); 2043 ArraySize = result.get(); 2044 } 2045 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 2046 // integral or enumeration type with a non-negative value." 2047 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 2048 // enumeration type, or a class type for which a single non-explicit 2049 // conversion function to integral or unscoped enumeration type exists. 2050 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 2051 // std::size_t. 2052 llvm::Optional<uint64_t> KnownArraySize; 2053 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 2054 ExprResult ConvertedSize; 2055 if (getLangOpts().CPlusPlus14) { 2056 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); 2057 2058 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 2059 AA_Converting); 2060 2061 if (!ConvertedSize.isInvalid() && 2062 (*ArraySize)->getType()->getAs<RecordType>()) 2063 // Diagnose the compatibility of this conversion. 2064 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2065 << (*ArraySize)->getType() << 0 << "'size_t'"; 2066 } else { 2067 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2068 protected: 2069 Expr *ArraySize; 2070 2071 public: 2072 SizeConvertDiagnoser(Expr *ArraySize) 2073 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2074 ArraySize(ArraySize) {} 2075 2076 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2077 QualType T) override { 2078 return S.Diag(Loc, diag::err_array_size_not_integral) 2079 << S.getLangOpts().CPlusPlus11 << T; 2080 } 2081 2082 SemaDiagnosticBuilder diagnoseIncomplete( 2083 Sema &S, SourceLocation Loc, QualType T) override { 2084 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2085 << T << ArraySize->getSourceRange(); 2086 } 2087 2088 SemaDiagnosticBuilder diagnoseExplicitConv( 2089 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2090 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2091 } 2092 2093 SemaDiagnosticBuilder noteExplicitConv( 2094 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2095 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2096 << ConvTy->isEnumeralType() << ConvTy; 2097 } 2098 2099 SemaDiagnosticBuilder diagnoseAmbiguous( 2100 Sema &S, SourceLocation Loc, QualType T) override { 2101 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2102 } 2103 2104 SemaDiagnosticBuilder noteAmbiguous( 2105 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2106 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2107 << ConvTy->isEnumeralType() << ConvTy; 2108 } 2109 2110 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2111 QualType T, 2112 QualType ConvTy) override { 2113 return S.Diag(Loc, 2114 S.getLangOpts().CPlusPlus11 2115 ? diag::warn_cxx98_compat_array_size_conversion 2116 : diag::ext_array_size_conversion) 2117 << T << ConvTy->isEnumeralType() << ConvTy; 2118 } 2119 } SizeDiagnoser(*ArraySize); 2120 2121 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2122 SizeDiagnoser); 2123 } 2124 if (ConvertedSize.isInvalid()) 2125 return ExprError(); 2126 2127 ArraySize = ConvertedSize.get(); 2128 QualType SizeType = (*ArraySize)->getType(); 2129 2130 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2131 return ExprError(); 2132 2133 // C++98 [expr.new]p7: 2134 // The expression in a direct-new-declarator shall have integral type 2135 // with a non-negative value. 2136 // 2137 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2138 // per CWG1464. Otherwise, if it's not a constant, we must have an 2139 // unparenthesized array type. 2140 if (!(*ArraySize)->isValueDependent()) { 2141 // We've already performed any required implicit conversion to integer or 2142 // unscoped enumeration type. 2143 // FIXME: Per CWG1464, we are required to check the value prior to 2144 // converting to size_t. This will never find a negative array size in 2145 // C++14 onwards, because Value is always unsigned here! 2146 if (Optional<llvm::APSInt> Value = 2147 (*ArraySize)->getIntegerConstantExpr(Context)) { 2148 if (Value->isSigned() && Value->isNegative()) { 2149 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2150 diag::err_typecheck_negative_array_size) 2151 << (*ArraySize)->getSourceRange()); 2152 } 2153 2154 if (!AllocType->isDependentType()) { 2155 unsigned ActiveSizeBits = ConstantArrayType::getNumAddressingBits( 2156 Context, AllocType, *Value); 2157 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2158 return ExprError( 2159 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2160 << toString(*Value, 10) << (*ArraySize)->getSourceRange()); 2161 } 2162 2163 KnownArraySize = Value->getZExtValue(); 2164 } else if (TypeIdParens.isValid()) { 2165 // Can't have dynamic array size when the type-id is in parentheses. 2166 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2167 << (*ArraySize)->getSourceRange() 2168 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2169 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2170 2171 TypeIdParens = SourceRange(); 2172 } 2173 } 2174 2175 // Note that we do *not* convert the argument in any way. It can 2176 // be signed, larger than size_t, whatever. 2177 } 2178 2179 FunctionDecl *OperatorNew = nullptr; 2180 FunctionDecl *OperatorDelete = nullptr; 2181 unsigned Alignment = 2182 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2183 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2184 bool PassAlignment = getLangOpts().AlignedAllocation && 2185 Alignment > NewAlignment; 2186 2187 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2188 if (!AllocType->isDependentType() && 2189 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2190 FindAllocationFunctions( 2191 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2192 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs, 2193 OperatorNew, OperatorDelete)) 2194 return ExprError(); 2195 2196 // If this is an array allocation, compute whether the usual array 2197 // deallocation function for the type has a size_t parameter. 2198 bool UsualArrayDeleteWantsSize = false; 2199 if (ArraySize && !AllocType->isDependentType()) 2200 UsualArrayDeleteWantsSize = 2201 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2202 2203 SmallVector<Expr *, 8> AllPlaceArgs; 2204 if (OperatorNew) { 2205 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2206 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2207 : VariadicDoesNotApply; 2208 2209 // We've already converted the placement args, just fill in any default 2210 // arguments. Skip the first parameter because we don't have a corresponding 2211 // argument. Skip the second parameter too if we're passing in the 2212 // alignment; we've already filled it in. 2213 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2214 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2215 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2216 CallType)) 2217 return ExprError(); 2218 2219 if (!AllPlaceArgs.empty()) 2220 PlacementArgs = AllPlaceArgs; 2221 2222 // We would like to perform some checking on the given `operator new` call, 2223 // but the PlacementArgs does not contain the implicit arguments, 2224 // namely allocation size and maybe allocation alignment, 2225 // so we need to conjure them. 2226 2227 QualType SizeTy = Context.getSizeType(); 2228 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2229 2230 llvm::APInt SingleEltSize( 2231 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2232 2233 // How many bytes do we want to allocate here? 2234 llvm::Optional<llvm::APInt> AllocationSize; 2235 if (!ArraySize.hasValue() && !AllocType->isDependentType()) { 2236 // For non-array operator new, we only want to allocate one element. 2237 AllocationSize = SingleEltSize; 2238 } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) { 2239 // For array operator new, only deal with static array size case. 2240 bool Overflow; 2241 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2242 .umul_ov(SingleEltSize, Overflow); 2243 (void)Overflow; 2244 assert( 2245 !Overflow && 2246 "Expected that all the overflows would have been handled already."); 2247 } 2248 2249 IntegerLiteral AllocationSizeLiteral( 2250 Context, 2251 AllocationSize.getValueOr(llvm::APInt::getNullValue(SizeTyWidth)), 2252 SizeTy, SourceLocation()); 2253 // Otherwise, if we failed to constant-fold the allocation size, we'll 2254 // just give up and pass-in something opaque, that isn't a null pointer. 2255 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue, 2256 OK_Ordinary, /*SourceExpr=*/nullptr); 2257 2258 // Let's synthesize the alignment argument in case we will need it. 2259 // Since we *really* want to allocate these on stack, this is slightly ugly 2260 // because there might not be a `std::align_val_t` type. 2261 EnumDecl *StdAlignValT = getStdAlignValT(); 2262 QualType AlignValT = 2263 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2264 IntegerLiteral AlignmentLiteral( 2265 Context, 2266 llvm::APInt(Context.getTypeSize(SizeTy), 2267 Alignment / Context.getCharWidth()), 2268 SizeTy, SourceLocation()); 2269 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2270 CK_IntegralCast, &AlignmentLiteral, 2271 VK_PRValue, FPOptionsOverride()); 2272 2273 // Adjust placement args by prepending conjured size and alignment exprs. 2274 llvm::SmallVector<Expr *, 8> CallArgs; 2275 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2276 CallArgs.emplace_back(AllocationSize.hasValue() 2277 ? static_cast<Expr *>(&AllocationSizeLiteral) 2278 : &OpaqueAllocationSize); 2279 if (PassAlignment) 2280 CallArgs.emplace_back(&DesiredAlignment); 2281 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2282 2283 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2284 2285 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2286 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2287 2288 // Warn if the type is over-aligned and is being allocated by (unaligned) 2289 // global operator new. 2290 if (PlacementArgs.empty() && !PassAlignment && 2291 (OperatorNew->isImplicit() || 2292 (OperatorNew->getBeginLoc().isValid() && 2293 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2294 if (Alignment > NewAlignment) 2295 Diag(StartLoc, diag::warn_overaligned_type) 2296 << AllocType 2297 << unsigned(Alignment / Context.getCharWidth()) 2298 << unsigned(NewAlignment / Context.getCharWidth()); 2299 } 2300 } 2301 2302 // Array 'new' can't have any initializers except empty parentheses. 2303 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2304 // dialect distinction. 2305 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { 2306 SourceRange InitRange(Inits[0]->getBeginLoc(), 2307 Inits[NumInits - 1]->getEndLoc()); 2308 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2309 return ExprError(); 2310 } 2311 2312 // If we can perform the initialization, and we've not already done so, 2313 // do it now. 2314 if (!AllocType->isDependentType() && 2315 !Expr::hasAnyTypeDependentArguments( 2316 llvm::makeArrayRef(Inits, NumInits))) { 2317 // The type we initialize is the complete type, including the array bound. 2318 QualType InitType; 2319 if (KnownArraySize) 2320 InitType = Context.getConstantArrayType( 2321 AllocType, 2322 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2323 *KnownArraySize), 2324 *ArraySize, ArrayType::Normal, 0); 2325 else if (ArraySize) 2326 InitType = 2327 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); 2328 else 2329 InitType = AllocType; 2330 2331 InitializedEntity Entity 2332 = InitializedEntity::InitializeNew(StartLoc, InitType); 2333 InitializationSequence InitSeq(*this, Entity, Kind, 2334 MultiExprArg(Inits, NumInits)); 2335 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 2336 MultiExprArg(Inits, NumInits)); 2337 if (FullInit.isInvalid()) 2338 return ExprError(); 2339 2340 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2341 // we don't want the initialized object to be destructed. 2342 // FIXME: We should not create these in the first place. 2343 if (CXXBindTemporaryExpr *Binder = 2344 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2345 FullInit = Binder->getSubExpr(); 2346 2347 Initializer = FullInit.get(); 2348 2349 // FIXME: If we have a KnownArraySize, check that the array bound of the 2350 // initializer is no greater than that constant value. 2351 2352 if (ArraySize && !*ArraySize) { 2353 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2354 if (CAT) { 2355 // FIXME: Track that the array size was inferred rather than explicitly 2356 // specified. 2357 ArraySize = IntegerLiteral::Create( 2358 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2359 } else { 2360 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2361 << Initializer->getSourceRange(); 2362 } 2363 } 2364 } 2365 2366 // Mark the new and delete operators as referenced. 2367 if (OperatorNew) { 2368 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2369 return ExprError(); 2370 MarkFunctionReferenced(StartLoc, OperatorNew); 2371 } 2372 if (OperatorDelete) { 2373 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2374 return ExprError(); 2375 MarkFunctionReferenced(StartLoc, OperatorDelete); 2376 } 2377 2378 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2379 PassAlignment, UsualArrayDeleteWantsSize, 2380 PlacementArgs, TypeIdParens, ArraySize, initStyle, 2381 Initializer, ResultType, AllocTypeInfo, Range, 2382 DirectInitRange); 2383 } 2384 2385 /// Checks that a type is suitable as the allocated type 2386 /// in a new-expression. 2387 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2388 SourceRange R) { 2389 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2390 // abstract class type or array thereof. 2391 if (AllocType->isFunctionType()) 2392 return Diag(Loc, diag::err_bad_new_type) 2393 << AllocType << 0 << R; 2394 else if (AllocType->isReferenceType()) 2395 return Diag(Loc, diag::err_bad_new_type) 2396 << AllocType << 1 << R; 2397 else if (!AllocType->isDependentType() && 2398 RequireCompleteSizedType( 2399 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2400 return true; 2401 else if (RequireNonAbstractType(Loc, AllocType, 2402 diag::err_allocation_of_abstract_type)) 2403 return true; 2404 else if (AllocType->isVariablyModifiedType()) 2405 return Diag(Loc, diag::err_variably_modified_new_type) 2406 << AllocType; 2407 else if (AllocType.getAddressSpace() != LangAS::Default && 2408 !getLangOpts().OpenCLCPlusPlus) 2409 return Diag(Loc, diag::err_address_space_qualified_new) 2410 << AllocType.getUnqualifiedType() 2411 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2412 else if (getLangOpts().ObjCAutoRefCount) { 2413 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2414 QualType BaseAllocType = Context.getBaseElementType(AT); 2415 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2416 BaseAllocType->isObjCLifetimeType()) 2417 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2418 << BaseAllocType; 2419 } 2420 } 2421 2422 return false; 2423 } 2424 2425 static bool resolveAllocationOverload( 2426 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2427 bool &PassAlignment, FunctionDecl *&Operator, 2428 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2429 OverloadCandidateSet Candidates(R.getNameLoc(), 2430 OverloadCandidateSet::CSK_Normal); 2431 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2432 Alloc != AllocEnd; ++Alloc) { 2433 // Even member operator new/delete are implicitly treated as 2434 // static, so don't use AddMemberCandidate. 2435 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2436 2437 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2438 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2439 /*ExplicitTemplateArgs=*/nullptr, Args, 2440 Candidates, 2441 /*SuppressUserConversions=*/false); 2442 continue; 2443 } 2444 2445 FunctionDecl *Fn = cast<FunctionDecl>(D); 2446 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2447 /*SuppressUserConversions=*/false); 2448 } 2449 2450 // Do the resolution. 2451 OverloadCandidateSet::iterator Best; 2452 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2453 case OR_Success: { 2454 // Got one! 2455 FunctionDecl *FnDecl = Best->Function; 2456 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2457 Best->FoundDecl) == Sema::AR_inaccessible) 2458 return true; 2459 2460 Operator = FnDecl; 2461 return false; 2462 } 2463 2464 case OR_No_Viable_Function: 2465 // C++17 [expr.new]p13: 2466 // If no matching function is found and the allocated object type has 2467 // new-extended alignment, the alignment argument is removed from the 2468 // argument list, and overload resolution is performed again. 2469 if (PassAlignment) { 2470 PassAlignment = false; 2471 AlignArg = Args[1]; 2472 Args.erase(Args.begin() + 1); 2473 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2474 Operator, &Candidates, AlignArg, 2475 Diagnose); 2476 } 2477 2478 // MSVC will fall back on trying to find a matching global operator new 2479 // if operator new[] cannot be found. Also, MSVC will leak by not 2480 // generating a call to operator delete or operator delete[], but we 2481 // will not replicate that bug. 2482 // FIXME: Find out how this interacts with the std::align_val_t fallback 2483 // once MSVC implements it. 2484 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2485 S.Context.getLangOpts().MSVCCompat) { 2486 R.clear(); 2487 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2488 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2489 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2490 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2491 Operator, /*Candidates=*/nullptr, 2492 /*AlignArg=*/nullptr, Diagnose); 2493 } 2494 2495 if (Diagnose) { 2496 // If this is an allocation of the form 'new (p) X' for some object 2497 // pointer p (or an expression that will decay to such a pointer), 2498 // diagnose the missing inclusion of <new>. 2499 if (!R.isClassLookup() && Args.size() == 2 && 2500 (Args[1]->getType()->isObjectPointerType() || 2501 Args[1]->getType()->isArrayType())) { 2502 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) 2503 << R.getLookupName() << Range; 2504 // Listing the candidates is unlikely to be useful; skip it. 2505 return true; 2506 } 2507 2508 // Finish checking all candidates before we note any. This checking can 2509 // produce additional diagnostics so can't be interleaved with our 2510 // emission of notes. 2511 // 2512 // For an aligned allocation, separately check the aligned and unaligned 2513 // candidates with their respective argument lists. 2514 SmallVector<OverloadCandidate*, 32> Cands; 2515 SmallVector<OverloadCandidate*, 32> AlignedCands; 2516 llvm::SmallVector<Expr*, 4> AlignedArgs; 2517 if (AlignedCandidates) { 2518 auto IsAligned = [](OverloadCandidate &C) { 2519 return C.Function->getNumParams() > 1 && 2520 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2521 }; 2522 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2523 2524 AlignedArgs.reserve(Args.size() + 1); 2525 AlignedArgs.push_back(Args[0]); 2526 AlignedArgs.push_back(AlignArg); 2527 AlignedArgs.append(Args.begin() + 1, Args.end()); 2528 AlignedCands = AlignedCandidates->CompleteCandidates( 2529 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); 2530 2531 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2532 R.getNameLoc(), IsUnaligned); 2533 } else { 2534 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2535 R.getNameLoc()); 2536 } 2537 2538 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) 2539 << R.getLookupName() << Range; 2540 if (AlignedCandidates) 2541 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", 2542 R.getNameLoc()); 2543 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); 2544 } 2545 return true; 2546 2547 case OR_Ambiguous: 2548 if (Diagnose) { 2549 Candidates.NoteCandidates( 2550 PartialDiagnosticAt(R.getNameLoc(), 2551 S.PDiag(diag::err_ovl_ambiguous_call) 2552 << R.getLookupName() << Range), 2553 S, OCD_AmbiguousCandidates, Args); 2554 } 2555 return true; 2556 2557 case OR_Deleted: { 2558 if (Diagnose) { 2559 Candidates.NoteCandidates( 2560 PartialDiagnosticAt(R.getNameLoc(), 2561 S.PDiag(diag::err_ovl_deleted_call) 2562 << R.getLookupName() << Range), 2563 S, OCD_AllCandidates, Args); 2564 } 2565 return true; 2566 } 2567 } 2568 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 2569 } 2570 2571 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2572 AllocationFunctionScope NewScope, 2573 AllocationFunctionScope DeleteScope, 2574 QualType AllocType, bool IsArray, 2575 bool &PassAlignment, MultiExprArg PlaceArgs, 2576 FunctionDecl *&OperatorNew, 2577 FunctionDecl *&OperatorDelete, 2578 bool Diagnose) { 2579 // --- Choosing an allocation function --- 2580 // C++ 5.3.4p8 - 14 & 18 2581 // 1) If looking in AFS_Global scope for allocation functions, only look in 2582 // the global scope. Else, if AFS_Class, only look in the scope of the 2583 // allocated class. If AFS_Both, look in both. 2584 // 2) If an array size is given, look for operator new[], else look for 2585 // operator new. 2586 // 3) The first argument is always size_t. Append the arguments from the 2587 // placement form. 2588 2589 SmallVector<Expr*, 8> AllocArgs; 2590 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2591 2592 // We don't care about the actual value of these arguments. 2593 // FIXME: Should the Sema create the expression and embed it in the syntax 2594 // tree? Or should the consumer just recalculate the value? 2595 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2596 IntegerLiteral Size(Context, llvm::APInt::getNullValue( 2597 Context.getTargetInfo().getPointerWidth(0)), 2598 Context.getSizeType(), 2599 SourceLocation()); 2600 AllocArgs.push_back(&Size); 2601 2602 QualType AlignValT = Context.VoidTy; 2603 if (PassAlignment) { 2604 DeclareGlobalNewDelete(); 2605 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2606 } 2607 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2608 if (PassAlignment) 2609 AllocArgs.push_back(&Align); 2610 2611 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2612 2613 // C++ [expr.new]p8: 2614 // If the allocated type is a non-array type, the allocation 2615 // function's name is operator new and the deallocation function's 2616 // name is operator delete. If the allocated type is an array 2617 // type, the allocation function's name is operator new[] and the 2618 // deallocation function's name is operator delete[]. 2619 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2620 IsArray ? OO_Array_New : OO_New); 2621 2622 QualType AllocElemType = Context.getBaseElementType(AllocType); 2623 2624 // Find the allocation function. 2625 { 2626 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2627 2628 // C++1z [expr.new]p9: 2629 // If the new-expression begins with a unary :: operator, the allocation 2630 // function's name is looked up in the global scope. Otherwise, if the 2631 // allocated type is a class type T or array thereof, the allocation 2632 // function's name is looked up in the scope of T. 2633 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2634 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2635 2636 // We can see ambiguity here if the allocation function is found in 2637 // multiple base classes. 2638 if (R.isAmbiguous()) 2639 return true; 2640 2641 // If this lookup fails to find the name, or if the allocated type is not 2642 // a class type, the allocation function's name is looked up in the 2643 // global scope. 2644 if (R.empty()) { 2645 if (NewScope == AFS_Class) 2646 return true; 2647 2648 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2649 } 2650 2651 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2652 if (PlaceArgs.empty()) { 2653 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2654 } else { 2655 Diag(StartLoc, diag::err_openclcxx_placement_new); 2656 } 2657 return true; 2658 } 2659 2660 assert(!R.empty() && "implicitly declared allocation functions not found"); 2661 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 2662 2663 // We do our own custom access checks below. 2664 R.suppressDiagnostics(); 2665 2666 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2667 OperatorNew, /*Candidates=*/nullptr, 2668 /*AlignArg=*/nullptr, Diagnose)) 2669 return true; 2670 } 2671 2672 // We don't need an operator delete if we're running under -fno-exceptions. 2673 if (!getLangOpts().Exceptions) { 2674 OperatorDelete = nullptr; 2675 return false; 2676 } 2677 2678 // Note, the name of OperatorNew might have been changed from array to 2679 // non-array by resolveAllocationOverload. 2680 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2681 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2682 ? OO_Array_Delete 2683 : OO_Delete); 2684 2685 // C++ [expr.new]p19: 2686 // 2687 // If the new-expression begins with a unary :: operator, the 2688 // deallocation function's name is looked up in the global 2689 // scope. Otherwise, if the allocated type is a class type T or an 2690 // array thereof, the deallocation function's name is looked up in 2691 // the scope of T. If this lookup fails to find the name, or if 2692 // the allocated type is not a class type or array thereof, the 2693 // deallocation function's name is looked up in the global scope. 2694 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2695 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2696 auto *RD = 2697 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2698 LookupQualifiedName(FoundDelete, RD); 2699 } 2700 if (FoundDelete.isAmbiguous()) 2701 return true; // FIXME: clean up expressions? 2702 2703 // Filter out any destroying operator deletes. We can't possibly call such a 2704 // function in this context, because we're handling the case where the object 2705 // was not successfully constructed. 2706 // FIXME: This is not covered by the language rules yet. 2707 { 2708 LookupResult::Filter Filter = FoundDelete.makeFilter(); 2709 while (Filter.hasNext()) { 2710 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); 2711 if (FD && FD->isDestroyingOperatorDelete()) 2712 Filter.erase(); 2713 } 2714 Filter.done(); 2715 } 2716 2717 bool FoundGlobalDelete = FoundDelete.empty(); 2718 if (FoundDelete.empty()) { 2719 FoundDelete.clear(LookupOrdinaryName); 2720 2721 if (DeleteScope == AFS_Class) 2722 return true; 2723 2724 DeclareGlobalNewDelete(); 2725 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2726 } 2727 2728 FoundDelete.suppressDiagnostics(); 2729 2730 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2731 2732 // Whether we're looking for a placement operator delete is dictated 2733 // by whether we selected a placement operator new, not by whether 2734 // we had explicit placement arguments. This matters for things like 2735 // struct A { void *operator new(size_t, int = 0); ... }; 2736 // A *a = new A() 2737 // 2738 // We don't have any definition for what a "placement allocation function" 2739 // is, but we assume it's any allocation function whose 2740 // parameter-declaration-clause is anything other than (size_t). 2741 // 2742 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2743 // This affects whether an exception from the constructor of an overaligned 2744 // type uses the sized or non-sized form of aligned operator delete. 2745 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2746 OperatorNew->isVariadic(); 2747 2748 if (isPlacementNew) { 2749 // C++ [expr.new]p20: 2750 // A declaration of a placement deallocation function matches the 2751 // declaration of a placement allocation function if it has the 2752 // same number of parameters and, after parameter transformations 2753 // (8.3.5), all parameter types except the first are 2754 // identical. [...] 2755 // 2756 // To perform this comparison, we compute the function type that 2757 // the deallocation function should have, and use that type both 2758 // for template argument deduction and for comparison purposes. 2759 QualType ExpectedFunctionType; 2760 { 2761 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2762 2763 SmallVector<QualType, 4> ArgTypes; 2764 ArgTypes.push_back(Context.VoidPtrTy); 2765 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2766 ArgTypes.push_back(Proto->getParamType(I)); 2767 2768 FunctionProtoType::ExtProtoInfo EPI; 2769 // FIXME: This is not part of the standard's rule. 2770 EPI.Variadic = Proto->isVariadic(); 2771 2772 ExpectedFunctionType 2773 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2774 } 2775 2776 for (LookupResult::iterator D = FoundDelete.begin(), 2777 DEnd = FoundDelete.end(); 2778 D != DEnd; ++D) { 2779 FunctionDecl *Fn = nullptr; 2780 if (FunctionTemplateDecl *FnTmpl = 2781 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2782 // Perform template argument deduction to try to match the 2783 // expected function type. 2784 TemplateDeductionInfo Info(StartLoc); 2785 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2786 Info)) 2787 continue; 2788 } else 2789 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2790 2791 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2792 ExpectedFunctionType, 2793 /*AdjustExcpetionSpec*/true), 2794 ExpectedFunctionType)) 2795 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2796 } 2797 2798 if (getLangOpts().CUDA) 2799 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches); 2800 } else { 2801 // C++1y [expr.new]p22: 2802 // For a non-placement allocation function, the normal deallocation 2803 // function lookup is used 2804 // 2805 // Per [expr.delete]p10, this lookup prefers a member operator delete 2806 // without a size_t argument, but prefers a non-member operator delete 2807 // with a size_t where possible (which it always is in this case). 2808 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2809 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2810 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2811 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2812 &BestDeallocFns); 2813 if (Selected) 2814 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2815 else { 2816 // If we failed to select an operator, all remaining functions are viable 2817 // but ambiguous. 2818 for (auto Fn : BestDeallocFns) 2819 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2820 } 2821 } 2822 2823 // C++ [expr.new]p20: 2824 // [...] If the lookup finds a single matching deallocation 2825 // function, that function will be called; otherwise, no 2826 // deallocation function will be called. 2827 if (Matches.size() == 1) { 2828 OperatorDelete = Matches[0].second; 2829 2830 // C++1z [expr.new]p23: 2831 // If the lookup finds a usual deallocation function (3.7.4.2) 2832 // with a parameter of type std::size_t and that function, considered 2833 // as a placement deallocation function, would have been 2834 // selected as a match for the allocation function, the program 2835 // is ill-formed. 2836 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2837 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2838 UsualDeallocFnInfo Info(*this, 2839 DeclAccessPair::make(OperatorDelete, AS_public)); 2840 // Core issue, per mail to core reflector, 2016-10-09: 2841 // If this is a member operator delete, and there is a corresponding 2842 // non-sized member operator delete, this isn't /really/ a sized 2843 // deallocation function, it just happens to have a size_t parameter. 2844 bool IsSizedDelete = Info.HasSizeT; 2845 if (IsSizedDelete && !FoundGlobalDelete) { 2846 auto NonSizedDelete = 2847 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2848 /*WantAlign*/Info.HasAlignValT); 2849 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2850 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2851 IsSizedDelete = false; 2852 } 2853 2854 if (IsSizedDelete) { 2855 SourceRange R = PlaceArgs.empty() 2856 ? SourceRange() 2857 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2858 PlaceArgs.back()->getEndLoc()); 2859 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2860 if (!OperatorDelete->isImplicit()) 2861 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2862 << DeleteName; 2863 } 2864 } 2865 2866 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2867 Matches[0].first); 2868 } else if (!Matches.empty()) { 2869 // We found multiple suitable operators. Per [expr.new]p20, that means we 2870 // call no 'operator delete' function, but we should at least warn the user. 2871 // FIXME: Suppress this warning if the construction cannot throw. 2872 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2873 << DeleteName << AllocElemType; 2874 2875 for (auto &Match : Matches) 2876 Diag(Match.second->getLocation(), 2877 diag::note_member_declared_here) << DeleteName; 2878 } 2879 2880 return false; 2881 } 2882 2883 /// DeclareGlobalNewDelete - Declare the global forms of operator new and 2884 /// delete. These are: 2885 /// @code 2886 /// // C++03: 2887 /// void* operator new(std::size_t) throw(std::bad_alloc); 2888 /// void* operator new[](std::size_t) throw(std::bad_alloc); 2889 /// void operator delete(void *) throw(); 2890 /// void operator delete[](void *) throw(); 2891 /// // C++11: 2892 /// void* operator new(std::size_t); 2893 /// void* operator new[](std::size_t); 2894 /// void operator delete(void *) noexcept; 2895 /// void operator delete[](void *) noexcept; 2896 /// // C++1y: 2897 /// void* operator new(std::size_t); 2898 /// void* operator new[](std::size_t); 2899 /// void operator delete(void *) noexcept; 2900 /// void operator delete[](void *) noexcept; 2901 /// void operator delete(void *, std::size_t) noexcept; 2902 /// void operator delete[](void *, std::size_t) noexcept; 2903 /// @endcode 2904 /// Note that the placement and nothrow forms of new are *not* implicitly 2905 /// declared. Their use requires including \<new\>. 2906 void Sema::DeclareGlobalNewDelete() { 2907 if (GlobalNewDeleteDeclared) 2908 return; 2909 2910 // The implicitly declared new and delete operators 2911 // are not supported in OpenCL. 2912 if (getLangOpts().OpenCLCPlusPlus) 2913 return; 2914 2915 // C++ [basic.std.dynamic]p2: 2916 // [...] The following allocation and deallocation functions (18.4) are 2917 // implicitly declared in global scope in each translation unit of a 2918 // program 2919 // 2920 // C++03: 2921 // void* operator new(std::size_t) throw(std::bad_alloc); 2922 // void* operator new[](std::size_t) throw(std::bad_alloc); 2923 // void operator delete(void*) throw(); 2924 // void operator delete[](void*) throw(); 2925 // C++11: 2926 // void* operator new(std::size_t); 2927 // void* operator new[](std::size_t); 2928 // void operator delete(void*) noexcept; 2929 // void operator delete[](void*) noexcept; 2930 // C++1y: 2931 // void* operator new(std::size_t); 2932 // void* operator new[](std::size_t); 2933 // void operator delete(void*) noexcept; 2934 // void operator delete[](void*) noexcept; 2935 // void operator delete(void*, std::size_t) noexcept; 2936 // void operator delete[](void*, std::size_t) noexcept; 2937 // 2938 // These implicit declarations introduce only the function names operator 2939 // new, operator new[], operator delete, operator delete[]. 2940 // 2941 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2942 // "std" or "bad_alloc" as necessary to form the exception specification. 2943 // However, we do not make these implicit declarations visible to name 2944 // lookup. 2945 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2946 // The "std::bad_alloc" class has not yet been declared, so build it 2947 // implicitly. 2948 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2949 getOrCreateStdNamespace(), 2950 SourceLocation(), SourceLocation(), 2951 &PP.getIdentifierTable().get("bad_alloc"), 2952 nullptr); 2953 getStdBadAlloc()->setImplicit(true); 2954 } 2955 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 2956 // The "std::align_val_t" enum class has not yet been declared, so build it 2957 // implicitly. 2958 auto *AlignValT = EnumDecl::Create( 2959 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 2960 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 2961 AlignValT->setIntegerType(Context.getSizeType()); 2962 AlignValT->setPromotionType(Context.getSizeType()); 2963 AlignValT->setImplicit(true); 2964 StdAlignValT = AlignValT; 2965 } 2966 2967 GlobalNewDeleteDeclared = true; 2968 2969 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 2970 QualType SizeT = Context.getSizeType(); 2971 2972 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 2973 QualType Return, QualType Param) { 2974 llvm::SmallVector<QualType, 3> Params; 2975 Params.push_back(Param); 2976 2977 // Create up to four variants of the function (sized/aligned). 2978 bool HasSizedVariant = getLangOpts().SizedDeallocation && 2979 (Kind == OO_Delete || Kind == OO_Array_Delete); 2980 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 2981 2982 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 2983 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 2984 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 2985 if (Sized) 2986 Params.push_back(SizeT); 2987 2988 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 2989 if (Aligned) 2990 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 2991 2992 DeclareGlobalAllocationFunction( 2993 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 2994 2995 if (Aligned) 2996 Params.pop_back(); 2997 } 2998 } 2999 }; 3000 3001 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 3002 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 3003 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 3004 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 3005 } 3006 3007 /// DeclareGlobalAllocationFunction - Declares a single implicit global 3008 /// allocation function if it doesn't already exist. 3009 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 3010 QualType Return, 3011 ArrayRef<QualType> Params) { 3012 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 3013 3014 // Check if this function is already declared. 3015 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 3016 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 3017 Alloc != AllocEnd; ++Alloc) { 3018 // Only look at non-template functions, as it is the predefined, 3019 // non-templated allocation function we are trying to declare here. 3020 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 3021 if (Func->getNumParams() == Params.size()) { 3022 llvm::SmallVector<QualType, 3> FuncParams; 3023 for (auto *P : Func->parameters()) 3024 FuncParams.push_back( 3025 Context.getCanonicalType(P->getType().getUnqualifiedType())); 3026 if (llvm::makeArrayRef(FuncParams) == Params) { 3027 // Make the function visible to name lookup, even if we found it in 3028 // an unimported module. It either is an implicitly-declared global 3029 // allocation function, or is suppressing that function. 3030 Func->setVisibleDespiteOwningModule(); 3031 return; 3032 } 3033 } 3034 } 3035 } 3036 3037 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 3038 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 3039 3040 QualType BadAllocType; 3041 bool HasBadAllocExceptionSpec 3042 = (Name.getCXXOverloadedOperator() == OO_New || 3043 Name.getCXXOverloadedOperator() == OO_Array_New); 3044 if (HasBadAllocExceptionSpec) { 3045 if (!getLangOpts().CPlusPlus11) { 3046 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 3047 assert(StdBadAlloc && "Must have std::bad_alloc declared"); 3048 EPI.ExceptionSpec.Type = EST_Dynamic; 3049 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 3050 } 3051 } else { 3052 EPI.ExceptionSpec = 3053 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 3054 } 3055 3056 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 3057 QualType FnType = Context.getFunctionType(Return, Params, EPI); 3058 FunctionDecl *Alloc = FunctionDecl::Create( 3059 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, 3060 FnType, /*TInfo=*/nullptr, SC_None, false, true); 3061 Alloc->setImplicit(); 3062 // Global allocation functions should always be visible. 3063 Alloc->setVisibleDespiteOwningModule(); 3064 3065 Alloc->addAttr(VisibilityAttr::CreateImplicit( 3066 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden 3067 ? VisibilityAttr::Hidden 3068 : VisibilityAttr::Default)); 3069 3070 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 3071 for (QualType T : Params) { 3072 ParamDecls.push_back(ParmVarDecl::Create( 3073 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 3074 /*TInfo=*/nullptr, SC_None, nullptr)); 3075 ParamDecls.back()->setImplicit(); 3076 } 3077 Alloc->setParams(ParamDecls); 3078 if (ExtraAttr) 3079 Alloc->addAttr(ExtraAttr); 3080 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 3081 Context.getTranslationUnitDecl()->addDecl(Alloc); 3082 IdResolver.tryAddTopLevelDecl(Alloc, Name); 3083 }; 3084 3085 if (!LangOpts.CUDA) 3086 CreateAllocationFunctionDecl(nullptr); 3087 else { 3088 // Host and device get their own declaration so each can be 3089 // defined or re-declared independently. 3090 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 3091 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 3092 } 3093 } 3094 3095 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 3096 bool CanProvideSize, 3097 bool Overaligned, 3098 DeclarationName Name) { 3099 DeclareGlobalNewDelete(); 3100 3101 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 3102 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 3103 3104 // FIXME: It's possible for this to result in ambiguity, through a 3105 // user-declared variadic operator delete or the enable_if attribute. We 3106 // should probably not consider those cases to be usual deallocation 3107 // functions. But for now we just make an arbitrary choice in that case. 3108 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3109 Overaligned); 3110 assert(Result.FD && "operator delete missing from global scope?"); 3111 return Result.FD; 3112 } 3113 3114 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3115 CXXRecordDecl *RD) { 3116 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3117 3118 FunctionDecl *OperatorDelete = nullptr; 3119 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3120 return nullptr; 3121 if (OperatorDelete) 3122 return OperatorDelete; 3123 3124 // If there's no class-specific operator delete, look up the global 3125 // non-array delete. 3126 return FindUsualDeallocationFunction( 3127 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3128 Name); 3129 } 3130 3131 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3132 DeclarationName Name, 3133 FunctionDecl *&Operator, bool Diagnose) { 3134 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3135 // Try to find operator delete/operator delete[] in class scope. 3136 LookupQualifiedName(Found, RD); 3137 3138 if (Found.isAmbiguous()) 3139 return true; 3140 3141 Found.suppressDiagnostics(); 3142 3143 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3144 3145 // C++17 [expr.delete]p10: 3146 // If the deallocation functions have class scope, the one without a 3147 // parameter of type std::size_t is selected. 3148 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3149 resolveDeallocationOverload(*this, Found, /*WantSize*/ false, 3150 /*WantAlign*/ Overaligned, &Matches); 3151 3152 // If we could find an overload, use it. 3153 if (Matches.size() == 1) { 3154 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3155 3156 // FIXME: DiagnoseUseOfDecl? 3157 if (Operator->isDeleted()) { 3158 if (Diagnose) { 3159 Diag(StartLoc, diag::err_deleted_function_use); 3160 NoteDeletedFunction(Operator); 3161 } 3162 return true; 3163 } 3164 3165 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3166 Matches[0].Found, Diagnose) == AR_inaccessible) 3167 return true; 3168 3169 return false; 3170 } 3171 3172 // We found multiple suitable operators; complain about the ambiguity. 3173 // FIXME: The standard doesn't say to do this; it appears that the intent 3174 // is that this should never happen. 3175 if (!Matches.empty()) { 3176 if (Diagnose) { 3177 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3178 << Name << RD; 3179 for (auto &Match : Matches) 3180 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3181 } 3182 return true; 3183 } 3184 3185 // We did find operator delete/operator delete[] declarations, but 3186 // none of them were suitable. 3187 if (!Found.empty()) { 3188 if (Diagnose) { 3189 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3190 << Name << RD; 3191 3192 for (NamedDecl *D : Found) 3193 Diag(D->getUnderlyingDecl()->getLocation(), 3194 diag::note_member_declared_here) << Name; 3195 } 3196 return true; 3197 } 3198 3199 Operator = nullptr; 3200 return false; 3201 } 3202 3203 namespace { 3204 /// Checks whether delete-expression, and new-expression used for 3205 /// initializing deletee have the same array form. 3206 class MismatchingNewDeleteDetector { 3207 public: 3208 enum MismatchResult { 3209 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3210 NoMismatch, 3211 /// Indicates that variable is initialized with mismatching form of \a new. 3212 VarInitMismatches, 3213 /// Indicates that member is initialized with mismatching form of \a new. 3214 MemberInitMismatches, 3215 /// Indicates that 1 or more constructors' definitions could not been 3216 /// analyzed, and they will be checked again at the end of translation unit. 3217 AnalyzeLater 3218 }; 3219 3220 /// \param EndOfTU True, if this is the final analysis at the end of 3221 /// translation unit. False, if this is the initial analysis at the point 3222 /// delete-expression was encountered. 3223 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3224 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3225 HasUndefinedConstructors(false) {} 3226 3227 /// Checks whether pointee of a delete-expression is initialized with 3228 /// matching form of new-expression. 3229 /// 3230 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3231 /// point where delete-expression is encountered, then a warning will be 3232 /// issued immediately. If return value is \c AnalyzeLater at the point where 3233 /// delete-expression is seen, then member will be analyzed at the end of 3234 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3235 /// couldn't be analyzed. If at least one constructor initializes the member 3236 /// with matching type of new, the return value is \c NoMismatch. 3237 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3238 /// Analyzes a class member. 3239 /// \param Field Class member to analyze. 3240 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3241 /// for deleting the \p Field. 3242 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3243 FieldDecl *Field; 3244 /// List of mismatching new-expressions used for initialization of the pointee 3245 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3246 /// Indicates whether delete-expression was in array form. 3247 bool IsArrayForm; 3248 3249 private: 3250 const bool EndOfTU; 3251 /// Indicates that there is at least one constructor without body. 3252 bool HasUndefinedConstructors; 3253 /// Returns \c CXXNewExpr from given initialization expression. 3254 /// \param E Expression used for initializing pointee in delete-expression. 3255 /// E can be a single-element \c InitListExpr consisting of new-expression. 3256 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3257 /// Returns whether member is initialized with mismatching form of 3258 /// \c new either by the member initializer or in-class initialization. 3259 /// 3260 /// If bodies of all constructors are not visible at the end of translation 3261 /// unit or at least one constructor initializes member with the matching 3262 /// form of \c new, mismatch cannot be proven, and this function will return 3263 /// \c NoMismatch. 3264 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3265 /// Returns whether variable is initialized with mismatching form of 3266 /// \c new. 3267 /// 3268 /// If variable is initialized with matching form of \c new or variable is not 3269 /// initialized with a \c new expression, this function will return true. 3270 /// If variable is initialized with mismatching form of \c new, returns false. 3271 /// \param D Variable to analyze. 3272 bool hasMatchingVarInit(const DeclRefExpr *D); 3273 /// Checks whether the constructor initializes pointee with mismatching 3274 /// form of \c new. 3275 /// 3276 /// Returns true, if member is initialized with matching form of \c new in 3277 /// member initializer list. Returns false, if member is initialized with the 3278 /// matching form of \c new in this constructor's initializer or given 3279 /// constructor isn't defined at the point where delete-expression is seen, or 3280 /// member isn't initialized by the constructor. 3281 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3282 /// Checks whether member is initialized with matching form of 3283 /// \c new in member initializer list. 3284 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3285 /// Checks whether member is initialized with mismatching form of \c new by 3286 /// in-class initializer. 3287 MismatchResult analyzeInClassInitializer(); 3288 }; 3289 } 3290 3291 MismatchingNewDeleteDetector::MismatchResult 3292 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3293 NewExprs.clear(); 3294 assert(DE && "Expected delete-expression"); 3295 IsArrayForm = DE->isArrayForm(); 3296 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3297 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3298 return analyzeMemberExpr(ME); 3299 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3300 if (!hasMatchingVarInit(D)) 3301 return VarInitMismatches; 3302 } 3303 return NoMismatch; 3304 } 3305 3306 const CXXNewExpr * 3307 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3308 assert(E != nullptr && "Expected a valid initializer expression"); 3309 E = E->IgnoreParenImpCasts(); 3310 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3311 if (ILE->getNumInits() == 1) 3312 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3313 } 3314 3315 return dyn_cast_or_null<const CXXNewExpr>(E); 3316 } 3317 3318 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3319 const CXXCtorInitializer *CI) { 3320 const CXXNewExpr *NE = nullptr; 3321 if (Field == CI->getMember() && 3322 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3323 if (NE->isArray() == IsArrayForm) 3324 return true; 3325 else 3326 NewExprs.push_back(NE); 3327 } 3328 return false; 3329 } 3330 3331 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3332 const CXXConstructorDecl *CD) { 3333 if (CD->isImplicit()) 3334 return false; 3335 const FunctionDecl *Definition = CD; 3336 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3337 HasUndefinedConstructors = true; 3338 return EndOfTU; 3339 } 3340 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3341 if (hasMatchingNewInCtorInit(CI)) 3342 return true; 3343 } 3344 return false; 3345 } 3346 3347 MismatchingNewDeleteDetector::MismatchResult 3348 MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3349 assert(Field != nullptr && "This should be called only for members"); 3350 const Expr *InitExpr = Field->getInClassInitializer(); 3351 if (!InitExpr) 3352 return EndOfTU ? NoMismatch : AnalyzeLater; 3353 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3354 if (NE->isArray() != IsArrayForm) { 3355 NewExprs.push_back(NE); 3356 return MemberInitMismatches; 3357 } 3358 } 3359 return NoMismatch; 3360 } 3361 3362 MismatchingNewDeleteDetector::MismatchResult 3363 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3364 bool DeleteWasArrayForm) { 3365 assert(Field != nullptr && "Analysis requires a valid class member."); 3366 this->Field = Field; 3367 IsArrayForm = DeleteWasArrayForm; 3368 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3369 for (const auto *CD : RD->ctors()) { 3370 if (hasMatchingNewInCtor(CD)) 3371 return NoMismatch; 3372 } 3373 if (HasUndefinedConstructors) 3374 return EndOfTU ? NoMismatch : AnalyzeLater; 3375 if (!NewExprs.empty()) 3376 return MemberInitMismatches; 3377 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3378 : NoMismatch; 3379 } 3380 3381 MismatchingNewDeleteDetector::MismatchResult 3382 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3383 assert(ME != nullptr && "Expected a member expression"); 3384 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3385 return analyzeField(F, IsArrayForm); 3386 return NoMismatch; 3387 } 3388 3389 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3390 const CXXNewExpr *NE = nullptr; 3391 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3392 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3393 NE->isArray() != IsArrayForm) { 3394 NewExprs.push_back(NE); 3395 } 3396 } 3397 return NewExprs.empty(); 3398 } 3399 3400 static void 3401 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3402 const MismatchingNewDeleteDetector &Detector) { 3403 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3404 FixItHint H; 3405 if (!Detector.IsArrayForm) 3406 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3407 else { 3408 SourceLocation RSquare = Lexer::findLocationAfterToken( 3409 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3410 SemaRef.getLangOpts(), true); 3411 if (RSquare.isValid()) 3412 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3413 } 3414 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3415 << Detector.IsArrayForm << H; 3416 3417 for (const auto *NE : Detector.NewExprs) 3418 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3419 << Detector.IsArrayForm; 3420 } 3421 3422 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3423 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3424 return; 3425 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3426 switch (Detector.analyzeDeleteExpr(DE)) { 3427 case MismatchingNewDeleteDetector::VarInitMismatches: 3428 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3429 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3430 break; 3431 } 3432 case MismatchingNewDeleteDetector::AnalyzeLater: { 3433 DeleteExprs[Detector.Field].push_back( 3434 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3435 break; 3436 } 3437 case MismatchingNewDeleteDetector::NoMismatch: 3438 break; 3439 } 3440 } 3441 3442 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3443 bool DeleteWasArrayForm) { 3444 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3445 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3446 case MismatchingNewDeleteDetector::VarInitMismatches: 3447 llvm_unreachable("This analysis should have been done for class members."); 3448 case MismatchingNewDeleteDetector::AnalyzeLater: 3449 llvm_unreachable("Analysis cannot be postponed any point beyond end of " 3450 "translation unit."); 3451 case MismatchingNewDeleteDetector::MemberInitMismatches: 3452 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3453 break; 3454 case MismatchingNewDeleteDetector::NoMismatch: 3455 break; 3456 } 3457 } 3458 3459 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3460 /// @code ::delete ptr; @endcode 3461 /// or 3462 /// @code delete [] ptr; @endcode 3463 ExprResult 3464 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3465 bool ArrayForm, Expr *ExE) { 3466 // C++ [expr.delete]p1: 3467 // The operand shall have a pointer type, or a class type having a single 3468 // non-explicit conversion function to a pointer type. The result has type 3469 // void. 3470 // 3471 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3472 3473 ExprResult Ex = ExE; 3474 FunctionDecl *OperatorDelete = nullptr; 3475 bool ArrayFormAsWritten = ArrayForm; 3476 bool UsualArrayDeleteWantsSize = false; 3477 3478 if (!Ex.get()->isTypeDependent()) { 3479 // Perform lvalue-to-rvalue cast, if needed. 3480 Ex = DefaultLvalueConversion(Ex.get()); 3481 if (Ex.isInvalid()) 3482 return ExprError(); 3483 3484 QualType Type = Ex.get()->getType(); 3485 3486 class DeleteConverter : public ContextualImplicitConverter { 3487 public: 3488 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3489 3490 bool match(QualType ConvType) override { 3491 // FIXME: If we have an operator T* and an operator void*, we must pick 3492 // the operator T*. 3493 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3494 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3495 return true; 3496 return false; 3497 } 3498 3499 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3500 QualType T) override { 3501 return S.Diag(Loc, diag::err_delete_operand) << T; 3502 } 3503 3504 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3505 QualType T) override { 3506 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3507 } 3508 3509 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3510 QualType T, 3511 QualType ConvTy) override { 3512 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3513 } 3514 3515 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3516 QualType ConvTy) override { 3517 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3518 << ConvTy; 3519 } 3520 3521 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3522 QualType T) override { 3523 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3524 } 3525 3526 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3527 QualType ConvTy) override { 3528 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3529 << ConvTy; 3530 } 3531 3532 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3533 QualType T, 3534 QualType ConvTy) override { 3535 llvm_unreachable("conversion functions are permitted"); 3536 } 3537 } Converter; 3538 3539 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3540 if (Ex.isInvalid()) 3541 return ExprError(); 3542 Type = Ex.get()->getType(); 3543 if (!Converter.match(Type)) 3544 // FIXME: PerformContextualImplicitConversion should return ExprError 3545 // itself in this case. 3546 return ExprError(); 3547 3548 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3549 QualType PointeeElem = Context.getBaseElementType(Pointee); 3550 3551 if (Pointee.getAddressSpace() != LangAS::Default && 3552 !getLangOpts().OpenCLCPlusPlus) 3553 return Diag(Ex.get()->getBeginLoc(), 3554 diag::err_address_space_qualified_delete) 3555 << Pointee.getUnqualifiedType() 3556 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3557 3558 CXXRecordDecl *PointeeRD = nullptr; 3559 if (Pointee->isVoidType() && !isSFINAEContext()) { 3560 // The C++ standard bans deleting a pointer to a non-object type, which 3561 // effectively bans deletion of "void*". However, most compilers support 3562 // this, so we treat it as a warning unless we're in a SFINAE context. 3563 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3564 << Type << Ex.get()->getSourceRange(); 3565 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3566 Pointee->isSizelessType()) { 3567 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3568 << Type << Ex.get()->getSourceRange()); 3569 } else if (!Pointee->isDependentType()) { 3570 // FIXME: This can result in errors if the definition was imported from a 3571 // module but is hidden. 3572 if (!RequireCompleteType(StartLoc, Pointee, 3573 diag::warn_delete_incomplete, Ex.get())) { 3574 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3575 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3576 } 3577 } 3578 3579 if (Pointee->isArrayType() && !ArrayForm) { 3580 Diag(StartLoc, diag::warn_delete_array_type) 3581 << Type << Ex.get()->getSourceRange() 3582 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3583 ArrayForm = true; 3584 } 3585 3586 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3587 ArrayForm ? OO_Array_Delete : OO_Delete); 3588 3589 if (PointeeRD) { 3590 if (!UseGlobal && 3591 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3592 OperatorDelete)) 3593 return ExprError(); 3594 3595 // If we're allocating an array of records, check whether the 3596 // usual operator delete[] has a size_t parameter. 3597 if (ArrayForm) { 3598 // If the user specifically asked to use the global allocator, 3599 // we'll need to do the lookup into the class. 3600 if (UseGlobal) 3601 UsualArrayDeleteWantsSize = 3602 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3603 3604 // Otherwise, the usual operator delete[] should be the 3605 // function we just found. 3606 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3607 UsualArrayDeleteWantsSize = 3608 UsualDeallocFnInfo(*this, 3609 DeclAccessPair::make(OperatorDelete, AS_public)) 3610 .HasSizeT; 3611 } 3612 3613 if (!PointeeRD->hasIrrelevantDestructor()) 3614 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3615 MarkFunctionReferenced(StartLoc, 3616 const_cast<CXXDestructorDecl*>(Dtor)); 3617 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3618 return ExprError(); 3619 } 3620 3621 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3622 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3623 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3624 SourceLocation()); 3625 } 3626 3627 if (!OperatorDelete) { 3628 if (getLangOpts().OpenCLCPlusPlus) { 3629 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3630 return ExprError(); 3631 } 3632 3633 bool IsComplete = isCompleteType(StartLoc, Pointee); 3634 bool CanProvideSize = 3635 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3636 Pointee.isDestructedType()); 3637 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3638 3639 // Look for a global declaration. 3640 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3641 Overaligned, DeleteName); 3642 } 3643 3644 MarkFunctionReferenced(StartLoc, OperatorDelete); 3645 3646 // Check access and ambiguity of destructor if we're going to call it. 3647 // Note that this is required even for a virtual delete. 3648 bool IsVirtualDelete = false; 3649 if (PointeeRD) { 3650 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3651 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3652 PDiag(diag::err_access_dtor) << PointeeElem); 3653 IsVirtualDelete = Dtor->isVirtual(); 3654 } 3655 } 3656 3657 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3658 3659 // Convert the operand to the type of the first parameter of operator 3660 // delete. This is only necessary if we selected a destroying operator 3661 // delete that we are going to call (non-virtually); converting to void* 3662 // is trivial and left to AST consumers to handle. 3663 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3664 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3665 Qualifiers Qs = Pointee.getQualifiers(); 3666 if (Qs.hasCVRQualifiers()) { 3667 // Qualifiers are irrelevant to this conversion; we're only looking 3668 // for access and ambiguity. 3669 Qs.removeCVRQualifiers(); 3670 QualType Unqual = Context.getPointerType( 3671 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3672 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3673 } 3674 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3675 if (Ex.isInvalid()) 3676 return ExprError(); 3677 } 3678 } 3679 3680 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3681 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3682 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3683 AnalyzeDeleteExprMismatch(Result); 3684 return Result; 3685 } 3686 3687 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3688 bool IsDelete, 3689 FunctionDecl *&Operator) { 3690 3691 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3692 IsDelete ? OO_Delete : OO_New); 3693 3694 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3695 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3696 assert(!R.empty() && "implicitly declared allocation functions not found"); 3697 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 3698 3699 // We do our own custom access checks below. 3700 R.suppressDiagnostics(); 3701 3702 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end()); 3703 OverloadCandidateSet Candidates(R.getNameLoc(), 3704 OverloadCandidateSet::CSK_Normal); 3705 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3706 FnOvl != FnOvlEnd; ++FnOvl) { 3707 // Even member operator new/delete are implicitly treated as 3708 // static, so don't use AddMemberCandidate. 3709 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3710 3711 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3712 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3713 /*ExplicitTemplateArgs=*/nullptr, Args, 3714 Candidates, 3715 /*SuppressUserConversions=*/false); 3716 continue; 3717 } 3718 3719 FunctionDecl *Fn = cast<FunctionDecl>(D); 3720 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3721 /*SuppressUserConversions=*/false); 3722 } 3723 3724 SourceRange Range = TheCall->getSourceRange(); 3725 3726 // Do the resolution. 3727 OverloadCandidateSet::iterator Best; 3728 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3729 case OR_Success: { 3730 // Got one! 3731 FunctionDecl *FnDecl = Best->Function; 3732 assert(R.getNamingClass() == nullptr && 3733 "class members should not be considered"); 3734 3735 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3736 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3737 << (IsDelete ? 1 : 0) << Range; 3738 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3739 << R.getLookupName() << FnDecl->getSourceRange(); 3740 return true; 3741 } 3742 3743 Operator = FnDecl; 3744 return false; 3745 } 3746 3747 case OR_No_Viable_Function: 3748 Candidates.NoteCandidates( 3749 PartialDiagnosticAt(R.getNameLoc(), 3750 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3751 << R.getLookupName() << Range), 3752 S, OCD_AllCandidates, Args); 3753 return true; 3754 3755 case OR_Ambiguous: 3756 Candidates.NoteCandidates( 3757 PartialDiagnosticAt(R.getNameLoc(), 3758 S.PDiag(diag::err_ovl_ambiguous_call) 3759 << R.getLookupName() << Range), 3760 S, OCD_AmbiguousCandidates, Args); 3761 return true; 3762 3763 case OR_Deleted: { 3764 Candidates.NoteCandidates( 3765 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3766 << R.getLookupName() << Range), 3767 S, OCD_AllCandidates, Args); 3768 return true; 3769 } 3770 } 3771 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 3772 } 3773 3774 ExprResult 3775 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3776 bool IsDelete) { 3777 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3778 if (!getLangOpts().CPlusPlus) { 3779 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3780 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3781 << "C++"; 3782 return ExprError(); 3783 } 3784 // CodeGen assumes it can find the global new and delete to call, 3785 // so ensure that they are declared. 3786 DeclareGlobalNewDelete(); 3787 3788 FunctionDecl *OperatorNewOrDelete = nullptr; 3789 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3790 OperatorNewOrDelete)) 3791 return ExprError(); 3792 assert(OperatorNewOrDelete && "should be found"); 3793 3794 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3795 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3796 3797 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3798 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3799 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3800 InitializedEntity Entity = 3801 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3802 ExprResult Arg = PerformCopyInitialization( 3803 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3804 if (Arg.isInvalid()) 3805 return ExprError(); 3806 TheCall->setArg(i, Arg.get()); 3807 } 3808 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3809 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && 3810 "Callee expected to be implicit cast to a builtin function pointer"); 3811 Callee->setType(OperatorNewOrDelete->getType()); 3812 3813 return TheCallResult; 3814 } 3815 3816 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3817 bool IsDelete, bool CallCanBeVirtual, 3818 bool WarnOnNonAbstractTypes, 3819 SourceLocation DtorLoc) { 3820 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3821 return; 3822 3823 // C++ [expr.delete]p3: 3824 // In the first alternative (delete object), if the static type of the 3825 // object to be deleted is different from its dynamic type, the static 3826 // type shall be a base class of the dynamic type of the object to be 3827 // deleted and the static type shall have a virtual destructor or the 3828 // behavior is undefined. 3829 // 3830 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3831 // Note: a final class cannot be derived from, no issue there 3832 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3833 return; 3834 3835 // If the superclass is in a system header, there's nothing that can be done. 3836 // The `delete` (where we emit the warning) can be in a system header, 3837 // what matters for this warning is where the deleted type is defined. 3838 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3839 return; 3840 3841 QualType ClassType = dtor->getThisType()->getPointeeType(); 3842 if (PointeeRD->isAbstract()) { 3843 // If the class is abstract, we warn by default, because we're 3844 // sure the code has undefined behavior. 3845 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3846 << ClassType; 3847 } else if (WarnOnNonAbstractTypes) { 3848 // Otherwise, if this is not an array delete, it's a bit suspect, 3849 // but not necessarily wrong. 3850 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3851 << ClassType; 3852 } 3853 if (!IsDelete) { 3854 std::string TypeStr; 3855 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3856 Diag(DtorLoc, diag::note_delete_non_virtual) 3857 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3858 } 3859 } 3860 3861 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3862 SourceLocation StmtLoc, 3863 ConditionKind CK) { 3864 ExprResult E = 3865 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3866 if (E.isInvalid()) 3867 return ConditionError(); 3868 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3869 CK == ConditionKind::ConstexprIf); 3870 } 3871 3872 /// Check the use of the given variable as a C++ condition in an if, 3873 /// while, do-while, or switch statement. 3874 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3875 SourceLocation StmtLoc, 3876 ConditionKind CK) { 3877 if (ConditionVar->isInvalidDecl()) 3878 return ExprError(); 3879 3880 QualType T = ConditionVar->getType(); 3881 3882 // C++ [stmt.select]p2: 3883 // The declarator shall not specify a function or an array. 3884 if (T->isFunctionType()) 3885 return ExprError(Diag(ConditionVar->getLocation(), 3886 diag::err_invalid_use_of_function_type) 3887 << ConditionVar->getSourceRange()); 3888 else if (T->isArrayType()) 3889 return ExprError(Diag(ConditionVar->getLocation(), 3890 diag::err_invalid_use_of_array_type) 3891 << ConditionVar->getSourceRange()); 3892 3893 ExprResult Condition = BuildDeclRefExpr( 3894 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 3895 ConditionVar->getLocation()); 3896 3897 switch (CK) { 3898 case ConditionKind::Boolean: 3899 return CheckBooleanCondition(StmtLoc, Condition.get()); 3900 3901 case ConditionKind::ConstexprIf: 3902 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 3903 3904 case ConditionKind::Switch: 3905 return CheckSwitchCondition(StmtLoc, Condition.get()); 3906 } 3907 3908 llvm_unreachable("unexpected condition kind"); 3909 } 3910 3911 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 3912 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 3913 // C++11 6.4p4: 3914 // The value of a condition that is an initialized declaration in a statement 3915 // other than a switch statement is the value of the declared variable 3916 // implicitly converted to type bool. If that conversion is ill-formed, the 3917 // program is ill-formed. 3918 // The value of a condition that is an expression is the value of the 3919 // expression, implicitly converted to bool. 3920 // 3921 // C++2b 8.5.2p2 3922 // If the if statement is of the form if constexpr, the value of the condition 3923 // is contextually converted to bool and the converted expression shall be 3924 // a constant expression. 3925 // 3926 3927 ExprResult E = PerformContextuallyConvertToBool(CondExpr); 3928 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) 3929 return E; 3930 3931 // FIXME: Return this value to the caller so they don't need to recompute it. 3932 llvm::APSInt Cond; 3933 E = VerifyIntegerConstantExpression( 3934 E.get(), &Cond, 3935 diag::err_constexpr_if_condition_expression_is_not_constant); 3936 return E; 3937 } 3938 3939 /// Helper function to determine whether this is the (deprecated) C++ 3940 /// conversion from a string literal to a pointer to non-const char or 3941 /// non-const wchar_t (for narrow and wide string literals, 3942 /// respectively). 3943 bool 3944 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 3945 // Look inside the implicit cast, if it exists. 3946 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 3947 From = Cast->getSubExpr(); 3948 3949 // A string literal (2.13.4) that is not a wide string literal can 3950 // be converted to an rvalue of type "pointer to char"; a wide 3951 // string literal can be converted to an rvalue of type "pointer 3952 // to wchar_t" (C++ 4.2p2). 3953 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 3954 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 3955 if (const BuiltinType *ToPointeeType 3956 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 3957 // This conversion is considered only when there is an 3958 // explicit appropriate pointer target type (C++ 4.2p2). 3959 if (!ToPtrType->getPointeeType().hasQualifiers()) { 3960 switch (StrLit->getKind()) { 3961 case StringLiteral::UTF8: 3962 case StringLiteral::UTF16: 3963 case StringLiteral::UTF32: 3964 // We don't allow UTF literals to be implicitly converted 3965 break; 3966 case StringLiteral::Ascii: 3967 return (ToPointeeType->getKind() == BuiltinType::Char_U || 3968 ToPointeeType->getKind() == BuiltinType::Char_S); 3969 case StringLiteral::Wide: 3970 return Context.typesAreCompatible(Context.getWideCharType(), 3971 QualType(ToPointeeType, 0)); 3972 } 3973 } 3974 } 3975 3976 return false; 3977 } 3978 3979 static ExprResult BuildCXXCastArgument(Sema &S, 3980 SourceLocation CastLoc, 3981 QualType Ty, 3982 CastKind Kind, 3983 CXXMethodDecl *Method, 3984 DeclAccessPair FoundDecl, 3985 bool HadMultipleCandidates, 3986 Expr *From) { 3987 switch (Kind) { 3988 default: llvm_unreachable("Unhandled cast kind!"); 3989 case CK_ConstructorConversion: { 3990 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 3991 SmallVector<Expr*, 8> ConstructorArgs; 3992 3993 if (S.RequireNonAbstractType(CastLoc, Ty, 3994 diag::err_allocation_of_abstract_type)) 3995 return ExprError(); 3996 3997 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, 3998 ConstructorArgs)) 3999 return ExprError(); 4000 4001 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 4002 InitializedEntity::InitializeTemporary(Ty)); 4003 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4004 return ExprError(); 4005 4006 ExprResult Result = S.BuildCXXConstructExpr( 4007 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 4008 ConstructorArgs, HadMultipleCandidates, 4009 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4010 CXXConstructExpr::CK_Complete, SourceRange()); 4011 if (Result.isInvalid()) 4012 return ExprError(); 4013 4014 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 4015 } 4016 4017 case CK_UserDefinedConversion: { 4018 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); 4019 4020 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 4021 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4022 return ExprError(); 4023 4024 // Create an implicit call expr that calls it. 4025 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 4026 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 4027 HadMultipleCandidates); 4028 if (Result.isInvalid()) 4029 return ExprError(); 4030 // Record usage of conversion in an implicit cast. 4031 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 4032 CK_UserDefinedConversion, Result.get(), 4033 nullptr, Result.get()->getValueKind(), 4034 S.CurFPFeatureOverrides()); 4035 4036 return S.MaybeBindToTemporary(Result.get()); 4037 } 4038 } 4039 } 4040 4041 /// PerformImplicitConversion - Perform an implicit conversion of the 4042 /// expression From to the type ToType using the pre-computed implicit 4043 /// conversion sequence ICS. Returns the converted 4044 /// expression. Action is the kind of conversion we're performing, 4045 /// used in the error message. 4046 ExprResult 4047 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4048 const ImplicitConversionSequence &ICS, 4049 AssignmentAction Action, 4050 CheckedConversionKind CCK) { 4051 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 4052 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 4053 return From; 4054 4055 switch (ICS.getKind()) { 4056 case ImplicitConversionSequence::StandardConversion: { 4057 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 4058 Action, CCK); 4059 if (Res.isInvalid()) 4060 return ExprError(); 4061 From = Res.get(); 4062 break; 4063 } 4064 4065 case ImplicitConversionSequence::UserDefinedConversion: { 4066 4067 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 4068 CastKind CastKind; 4069 QualType BeforeToType; 4070 assert(FD && "no conversion function for user-defined conversion seq"); 4071 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 4072 CastKind = CK_UserDefinedConversion; 4073 4074 // If the user-defined conversion is specified by a conversion function, 4075 // the initial standard conversion sequence converts the source type to 4076 // the implicit object parameter of the conversion function. 4077 BeforeToType = Context.getTagDeclType(Conv->getParent()); 4078 } else { 4079 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 4080 CastKind = CK_ConstructorConversion; 4081 // Do no conversion if dealing with ... for the first conversion. 4082 if (!ICS.UserDefined.EllipsisConversion) { 4083 // If the user-defined conversion is specified by a constructor, the 4084 // initial standard conversion sequence converts the source type to 4085 // the type required by the argument of the constructor 4086 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 4087 } 4088 } 4089 // Watch out for ellipsis conversion. 4090 if (!ICS.UserDefined.EllipsisConversion) { 4091 ExprResult Res = 4092 PerformImplicitConversion(From, BeforeToType, 4093 ICS.UserDefined.Before, AA_Converting, 4094 CCK); 4095 if (Res.isInvalid()) 4096 return ExprError(); 4097 From = Res.get(); 4098 } 4099 4100 ExprResult CastArg = BuildCXXCastArgument( 4101 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 4102 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 4103 ICS.UserDefined.HadMultipleCandidates, From); 4104 4105 if (CastArg.isInvalid()) 4106 return ExprError(); 4107 4108 From = CastArg.get(); 4109 4110 // C++ [over.match.oper]p7: 4111 // [...] the second standard conversion sequence of a user-defined 4112 // conversion sequence is not applied. 4113 if (CCK == CCK_ForBuiltinOverloadedOp) 4114 return From; 4115 4116 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4117 AA_Converting, CCK); 4118 } 4119 4120 case ImplicitConversionSequence::AmbiguousConversion: 4121 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4122 PDiag(diag::err_typecheck_ambiguous_condition) 4123 << From->getSourceRange()); 4124 return ExprError(); 4125 4126 case ImplicitConversionSequence::EllipsisConversion: 4127 llvm_unreachable("Cannot perform an ellipsis conversion"); 4128 4129 case ImplicitConversionSequence::BadConversion: 4130 Sema::AssignConvertType ConvTy = 4131 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4132 bool Diagnosed = DiagnoseAssignmentResult( 4133 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4134 ToType, From->getType(), From, Action); 4135 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed; 4136 return ExprError(); 4137 } 4138 4139 // Everything went well. 4140 return From; 4141 } 4142 4143 /// PerformImplicitConversion - Perform an implicit conversion of the 4144 /// expression From to the type ToType by following the standard 4145 /// conversion sequence SCS. Returns the converted 4146 /// expression. Flavor is the context in which we're performing this 4147 /// conversion, for use in error messages. 4148 ExprResult 4149 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4150 const StandardConversionSequence& SCS, 4151 AssignmentAction Action, 4152 CheckedConversionKind CCK) { 4153 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 4154 4155 // Overall FIXME: we are recomputing too many types here and doing far too 4156 // much extra work. What this means is that we need to keep track of more 4157 // information that is computed when we try the implicit conversion initially, 4158 // so that we don't need to recompute anything here. 4159 QualType FromType = From->getType(); 4160 4161 if (SCS.CopyConstructor) { 4162 // FIXME: When can ToType be a reference type? 4163 assert(!ToType->isReferenceType()); 4164 if (SCS.Second == ICK_Derived_To_Base) { 4165 SmallVector<Expr*, 8> ConstructorArgs; 4166 if (CompleteConstructorCall( 4167 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, 4168 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) 4169 return ExprError(); 4170 return BuildCXXConstructExpr( 4171 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4172 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4173 ConstructorArgs, /*HadMultipleCandidates*/ false, 4174 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4175 CXXConstructExpr::CK_Complete, SourceRange()); 4176 } 4177 return BuildCXXConstructExpr( 4178 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4179 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4180 From, /*HadMultipleCandidates*/ false, 4181 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4182 CXXConstructExpr::CK_Complete, SourceRange()); 4183 } 4184 4185 // Resolve overloaded function references. 4186 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4187 DeclAccessPair Found; 4188 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4189 true, Found); 4190 if (!Fn) 4191 return ExprError(); 4192 4193 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4194 return ExprError(); 4195 4196 From = FixOverloadedFunctionReference(From, Found, Fn); 4197 FromType = From->getType(); 4198 } 4199 4200 // If we're converting to an atomic type, first convert to the corresponding 4201 // non-atomic type. 4202 QualType ToAtomicType; 4203 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4204 ToAtomicType = ToType; 4205 ToType = ToAtomic->getValueType(); 4206 } 4207 4208 QualType InitialFromType = FromType; 4209 // Perform the first implicit conversion. 4210 switch (SCS.First) { 4211 case ICK_Identity: 4212 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4213 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4214 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4215 From, /*BasePath=*/nullptr, VK_PRValue, 4216 FPOptionsOverride()); 4217 } 4218 break; 4219 4220 case ICK_Lvalue_To_Rvalue: { 4221 assert(From->getObjectKind() != OK_ObjCProperty); 4222 ExprResult FromRes = DefaultLvalueConversion(From); 4223 if (FromRes.isInvalid()) 4224 return ExprError(); 4225 4226 From = FromRes.get(); 4227 FromType = From->getType(); 4228 break; 4229 } 4230 4231 case ICK_Array_To_Pointer: 4232 FromType = Context.getArrayDecayedType(FromType); 4233 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue, 4234 /*BasePath=*/nullptr, CCK) 4235 .get(); 4236 break; 4237 4238 case ICK_Function_To_Pointer: 4239 FromType = Context.getPointerType(FromType); 4240 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4241 VK_PRValue, /*BasePath=*/nullptr, CCK) 4242 .get(); 4243 break; 4244 4245 default: 4246 llvm_unreachable("Improper first standard conversion"); 4247 } 4248 4249 // Perform the second implicit conversion 4250 switch (SCS.Second) { 4251 case ICK_Identity: 4252 // C++ [except.spec]p5: 4253 // [For] assignment to and initialization of pointers to functions, 4254 // pointers to member functions, and references to functions: the 4255 // target entity shall allow at least the exceptions allowed by the 4256 // source value in the assignment or initialization. 4257 switch (Action) { 4258 case AA_Assigning: 4259 case AA_Initializing: 4260 // Note, function argument passing and returning are initialization. 4261 case AA_Passing: 4262 case AA_Returning: 4263 case AA_Sending: 4264 case AA_Passing_CFAudited: 4265 if (CheckExceptionSpecCompatibility(From, ToType)) 4266 return ExprError(); 4267 break; 4268 4269 case AA_Casting: 4270 case AA_Converting: 4271 // Casts and implicit conversions are not initialization, so are not 4272 // checked for exception specification mismatches. 4273 break; 4274 } 4275 // Nothing else to do. 4276 break; 4277 4278 case ICK_Integral_Promotion: 4279 case ICK_Integral_Conversion: 4280 if (ToType->isBooleanType()) { 4281 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && 4282 SCS.Second == ICK_Integral_Promotion && 4283 "only enums with fixed underlying type can promote to bool"); 4284 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue, 4285 /*BasePath=*/nullptr, CCK) 4286 .get(); 4287 } else { 4288 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue, 4289 /*BasePath=*/nullptr, CCK) 4290 .get(); 4291 } 4292 break; 4293 4294 case ICK_Floating_Promotion: 4295 case ICK_Floating_Conversion: 4296 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue, 4297 /*BasePath=*/nullptr, CCK) 4298 .get(); 4299 break; 4300 4301 case ICK_Complex_Promotion: 4302 case ICK_Complex_Conversion: { 4303 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4304 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4305 CastKind CK; 4306 if (FromEl->isRealFloatingType()) { 4307 if (ToEl->isRealFloatingType()) 4308 CK = CK_FloatingComplexCast; 4309 else 4310 CK = CK_FloatingComplexToIntegralComplex; 4311 } else if (ToEl->isRealFloatingType()) { 4312 CK = CK_IntegralComplexToFloatingComplex; 4313 } else { 4314 CK = CK_IntegralComplexCast; 4315 } 4316 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr, 4317 CCK) 4318 .get(); 4319 break; 4320 } 4321 4322 case ICK_Floating_Integral: 4323 if (ToType->isRealFloatingType()) 4324 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue, 4325 /*BasePath=*/nullptr, CCK) 4326 .get(); 4327 else 4328 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue, 4329 /*BasePath=*/nullptr, CCK) 4330 .get(); 4331 break; 4332 4333 case ICK_Compatible_Conversion: 4334 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4335 /*BasePath=*/nullptr, CCK).get(); 4336 break; 4337 4338 case ICK_Writeback_Conversion: 4339 case ICK_Pointer_Conversion: { 4340 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4341 // Diagnose incompatible Objective-C conversions 4342 if (Action == AA_Initializing || Action == AA_Assigning) 4343 Diag(From->getBeginLoc(), 4344 diag::ext_typecheck_convert_incompatible_pointer) 4345 << ToType << From->getType() << Action << From->getSourceRange() 4346 << 0; 4347 else 4348 Diag(From->getBeginLoc(), 4349 diag::ext_typecheck_convert_incompatible_pointer) 4350 << From->getType() << ToType << Action << From->getSourceRange() 4351 << 0; 4352 4353 if (From->getType()->isObjCObjectPointerType() && 4354 ToType->isObjCObjectPointerType()) 4355 EmitRelatedResultTypeNote(From); 4356 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4357 !CheckObjCARCUnavailableWeakConversion(ToType, 4358 From->getType())) { 4359 if (Action == AA_Initializing) 4360 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4361 else 4362 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4363 << (Action == AA_Casting) << From->getType() << ToType 4364 << From->getSourceRange(); 4365 } 4366 4367 // Defer address space conversion to the third conversion. 4368 QualType FromPteeType = From->getType()->getPointeeType(); 4369 QualType ToPteeType = ToType->getPointeeType(); 4370 QualType NewToType = ToType; 4371 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4372 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4373 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4374 NewToType = Context.getAddrSpaceQualType(NewToType, 4375 FromPteeType.getAddressSpace()); 4376 if (ToType->isObjCObjectPointerType()) 4377 NewToType = Context.getObjCObjectPointerType(NewToType); 4378 else if (ToType->isBlockPointerType()) 4379 NewToType = Context.getBlockPointerType(NewToType); 4380 else 4381 NewToType = Context.getPointerType(NewToType); 4382 } 4383 4384 CastKind Kind; 4385 CXXCastPath BasePath; 4386 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4387 return ExprError(); 4388 4389 // Make sure we extend blocks if necessary. 4390 // FIXME: doing this here is really ugly. 4391 if (Kind == CK_BlockPointerToObjCPointerCast) { 4392 ExprResult E = From; 4393 (void) PrepareCastToObjCObjectPointer(E); 4394 From = E.get(); 4395 } 4396 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4397 CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4398 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK) 4399 .get(); 4400 break; 4401 } 4402 4403 case ICK_Pointer_Member: { 4404 CastKind Kind; 4405 CXXCastPath BasePath; 4406 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4407 return ExprError(); 4408 if (CheckExceptionSpecCompatibility(From, ToType)) 4409 return ExprError(); 4410 4411 // We may not have been able to figure out what this member pointer resolved 4412 // to up until this exact point. Attempt to lock-in it's inheritance model. 4413 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4414 (void)isCompleteType(From->getExprLoc(), From->getType()); 4415 (void)isCompleteType(From->getExprLoc(), ToType); 4416 } 4417 4418 From = 4419 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get(); 4420 break; 4421 } 4422 4423 case ICK_Boolean_Conversion: 4424 // Perform half-to-boolean conversion via float. 4425 if (From->getType()->isHalfType()) { 4426 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4427 FromType = Context.FloatTy; 4428 } 4429 4430 From = ImpCastExprToType(From, Context.BoolTy, 4431 ScalarTypeToBooleanCastKind(FromType), VK_PRValue, 4432 /*BasePath=*/nullptr, CCK) 4433 .get(); 4434 break; 4435 4436 case ICK_Derived_To_Base: { 4437 CXXCastPath BasePath; 4438 if (CheckDerivedToBaseConversion( 4439 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4440 From->getSourceRange(), &BasePath, CStyle)) 4441 return ExprError(); 4442 4443 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4444 CK_DerivedToBase, From->getValueKind(), 4445 &BasePath, CCK).get(); 4446 break; 4447 } 4448 4449 case ICK_Vector_Conversion: 4450 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4451 /*BasePath=*/nullptr, CCK) 4452 .get(); 4453 break; 4454 4455 case ICK_SVE_Vector_Conversion: 4456 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4457 /*BasePath=*/nullptr, CCK) 4458 .get(); 4459 break; 4460 4461 case ICK_Vector_Splat: { 4462 // Vector splat from any arithmetic type to a vector. 4463 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4464 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, 4465 /*BasePath=*/nullptr, CCK) 4466 .get(); 4467 break; 4468 } 4469 4470 case ICK_Complex_Real: 4471 // Case 1. x -> _Complex y 4472 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4473 QualType ElType = ToComplex->getElementType(); 4474 bool isFloatingComplex = ElType->isRealFloatingType(); 4475 4476 // x -> y 4477 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4478 // do nothing 4479 } else if (From->getType()->isRealFloatingType()) { 4480 From = ImpCastExprToType(From, ElType, 4481 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4482 } else { 4483 assert(From->getType()->isIntegerType()); 4484 From = ImpCastExprToType(From, ElType, 4485 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4486 } 4487 // y -> _Complex y 4488 From = ImpCastExprToType(From, ToType, 4489 isFloatingComplex ? CK_FloatingRealToComplex 4490 : CK_IntegralRealToComplex).get(); 4491 4492 // Case 2. _Complex x -> y 4493 } else { 4494 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4495 QualType ElType = FromComplex->getElementType(); 4496 bool isFloatingComplex = ElType->isRealFloatingType(); 4497 4498 // _Complex x -> x 4499 From = ImpCastExprToType(From, ElType, 4500 isFloatingComplex ? CK_FloatingComplexToReal 4501 : CK_IntegralComplexToReal, 4502 VK_PRValue, /*BasePath=*/nullptr, CCK) 4503 .get(); 4504 4505 // x -> y 4506 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4507 // do nothing 4508 } else if (ToType->isRealFloatingType()) { 4509 From = ImpCastExprToType(From, ToType, 4510 isFloatingComplex ? CK_FloatingCast 4511 : CK_IntegralToFloating, 4512 VK_PRValue, /*BasePath=*/nullptr, CCK) 4513 .get(); 4514 } else { 4515 assert(ToType->isIntegerType()); 4516 From = ImpCastExprToType(From, ToType, 4517 isFloatingComplex ? CK_FloatingToIntegral 4518 : CK_IntegralCast, 4519 VK_PRValue, /*BasePath=*/nullptr, CCK) 4520 .get(); 4521 } 4522 } 4523 break; 4524 4525 case ICK_Block_Pointer_Conversion: { 4526 LangAS AddrSpaceL = 4527 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4528 LangAS AddrSpaceR = 4529 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4530 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && 4531 "Invalid cast"); 4532 CastKind Kind = 4533 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4534 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4535 VK_PRValue, /*BasePath=*/nullptr, CCK) 4536 .get(); 4537 break; 4538 } 4539 4540 case ICK_TransparentUnionConversion: { 4541 ExprResult FromRes = From; 4542 Sema::AssignConvertType ConvTy = 4543 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4544 if (FromRes.isInvalid()) 4545 return ExprError(); 4546 From = FromRes.get(); 4547 assert ((ConvTy == Sema::Compatible) && 4548 "Improper transparent union conversion"); 4549 (void)ConvTy; 4550 break; 4551 } 4552 4553 case ICK_Zero_Event_Conversion: 4554 case ICK_Zero_Queue_Conversion: 4555 From = ImpCastExprToType(From, ToType, 4556 CK_ZeroToOCLOpaqueType, 4557 From->getValueKind()).get(); 4558 break; 4559 4560 case ICK_Lvalue_To_Rvalue: 4561 case ICK_Array_To_Pointer: 4562 case ICK_Function_To_Pointer: 4563 case ICK_Function_Conversion: 4564 case ICK_Qualification: 4565 case ICK_Num_Conversion_Kinds: 4566 case ICK_C_Only_Conversion: 4567 case ICK_Incompatible_Pointer_Conversion: 4568 llvm_unreachable("Improper second standard conversion"); 4569 } 4570 4571 switch (SCS.Third) { 4572 case ICK_Identity: 4573 // Nothing to do. 4574 break; 4575 4576 case ICK_Function_Conversion: 4577 // If both sides are functions (or pointers/references to them), there could 4578 // be incompatible exception declarations. 4579 if (CheckExceptionSpecCompatibility(From, ToType)) 4580 return ExprError(); 4581 4582 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue, 4583 /*BasePath=*/nullptr, CCK) 4584 .get(); 4585 break; 4586 4587 case ICK_Qualification: { 4588 ExprValueKind VK = From->getValueKind(); 4589 CastKind CK = CK_NoOp; 4590 4591 if (ToType->isReferenceType() && 4592 ToType->getPointeeType().getAddressSpace() != 4593 From->getType().getAddressSpace()) 4594 CK = CK_AddressSpaceConversion; 4595 4596 if (ToType->isPointerType() && 4597 ToType->getPointeeType().getAddressSpace() != 4598 From->getType()->getPointeeType().getAddressSpace()) 4599 CK = CK_AddressSpaceConversion; 4600 4601 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4602 /*BasePath=*/nullptr, CCK) 4603 .get(); 4604 4605 if (SCS.DeprecatedStringLiteralToCharPtr && 4606 !getLangOpts().WritableStrings) { 4607 Diag(From->getBeginLoc(), 4608 getLangOpts().CPlusPlus11 4609 ? diag::ext_deprecated_string_literal_conversion 4610 : diag::warn_deprecated_string_literal_conversion) 4611 << ToType.getNonReferenceType(); 4612 } 4613 4614 break; 4615 } 4616 4617 default: 4618 llvm_unreachable("Improper third standard conversion"); 4619 } 4620 4621 // If this conversion sequence involved a scalar -> atomic conversion, perform 4622 // that conversion now. 4623 if (!ToAtomicType.isNull()) { 4624 assert(Context.hasSameType( 4625 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); 4626 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4627 VK_PRValue, nullptr, CCK) 4628 .get(); 4629 } 4630 4631 // Materialize a temporary if we're implicitly converting to a reference 4632 // type. This is not required by the C++ rules but is necessary to maintain 4633 // AST invariants. 4634 if (ToType->isReferenceType() && From->isPRValue()) { 4635 ExprResult Res = TemporaryMaterializationConversion(From); 4636 if (Res.isInvalid()) 4637 return ExprError(); 4638 From = Res.get(); 4639 } 4640 4641 // If this conversion sequence succeeded and involved implicitly converting a 4642 // _Nullable type to a _Nonnull one, complain. 4643 if (!isCast(CCK)) 4644 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4645 From->getBeginLoc()); 4646 4647 return From; 4648 } 4649 4650 /// Check the completeness of a type in a unary type trait. 4651 /// 4652 /// If the particular type trait requires a complete type, tries to complete 4653 /// it. If completing the type fails, a diagnostic is emitted and false 4654 /// returned. If completing the type succeeds or no completion was required, 4655 /// returns true. 4656 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4657 SourceLocation Loc, 4658 QualType ArgTy) { 4659 // C++0x [meta.unary.prop]p3: 4660 // For all of the class templates X declared in this Clause, instantiating 4661 // that template with a template argument that is a class template 4662 // specialization may result in the implicit instantiation of the template 4663 // argument if and only if the semantics of X require that the argument 4664 // must be a complete type. 4665 // We apply this rule to all the type trait expressions used to implement 4666 // these class templates. We also try to follow any GCC documented behavior 4667 // in these expressions to ensure portability of standard libraries. 4668 switch (UTT) { 4669 default: llvm_unreachable("not a UTT"); 4670 // is_complete_type somewhat obviously cannot require a complete type. 4671 case UTT_IsCompleteType: 4672 // Fall-through 4673 4674 // These traits are modeled on the type predicates in C++0x 4675 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4676 // requiring a complete type, as whether or not they return true cannot be 4677 // impacted by the completeness of the type. 4678 case UTT_IsVoid: 4679 case UTT_IsIntegral: 4680 case UTT_IsFloatingPoint: 4681 case UTT_IsArray: 4682 case UTT_IsPointer: 4683 case UTT_IsLvalueReference: 4684 case UTT_IsRvalueReference: 4685 case UTT_IsMemberFunctionPointer: 4686 case UTT_IsMemberObjectPointer: 4687 case UTT_IsEnum: 4688 case UTT_IsUnion: 4689 case UTT_IsClass: 4690 case UTT_IsFunction: 4691 case UTT_IsReference: 4692 case UTT_IsArithmetic: 4693 case UTT_IsFundamental: 4694 case UTT_IsObject: 4695 case UTT_IsScalar: 4696 case UTT_IsCompound: 4697 case UTT_IsMemberPointer: 4698 // Fall-through 4699 4700 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4701 // which requires some of its traits to have the complete type. However, 4702 // the completeness of the type cannot impact these traits' semantics, and 4703 // so they don't require it. This matches the comments on these traits in 4704 // Table 49. 4705 case UTT_IsConst: 4706 case UTT_IsVolatile: 4707 case UTT_IsSigned: 4708 case UTT_IsUnsigned: 4709 4710 // This type trait always returns false, checking the type is moot. 4711 case UTT_IsInterfaceClass: 4712 return true; 4713 4714 // C++14 [meta.unary.prop]: 4715 // If T is a non-union class type, T shall be a complete type. 4716 case UTT_IsEmpty: 4717 case UTT_IsPolymorphic: 4718 case UTT_IsAbstract: 4719 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4720 if (!RD->isUnion()) 4721 return !S.RequireCompleteType( 4722 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4723 return true; 4724 4725 // C++14 [meta.unary.prop]: 4726 // If T is a class type, T shall be a complete type. 4727 case UTT_IsFinal: 4728 case UTT_IsSealed: 4729 if (ArgTy->getAsCXXRecordDecl()) 4730 return !S.RequireCompleteType( 4731 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4732 return true; 4733 4734 // C++1z [meta.unary.prop]: 4735 // remove_all_extents_t<T> shall be a complete type or cv void. 4736 case UTT_IsAggregate: 4737 case UTT_IsTrivial: 4738 case UTT_IsTriviallyCopyable: 4739 case UTT_IsStandardLayout: 4740 case UTT_IsPOD: 4741 case UTT_IsLiteral: 4742 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4743 // or an array of unknown bound. But GCC actually imposes the same constraints 4744 // as above. 4745 case UTT_HasNothrowAssign: 4746 case UTT_HasNothrowMoveAssign: 4747 case UTT_HasNothrowConstructor: 4748 case UTT_HasNothrowCopy: 4749 case UTT_HasTrivialAssign: 4750 case UTT_HasTrivialMoveAssign: 4751 case UTT_HasTrivialDefaultConstructor: 4752 case UTT_HasTrivialMoveConstructor: 4753 case UTT_HasTrivialCopy: 4754 case UTT_HasTrivialDestructor: 4755 case UTT_HasVirtualDestructor: 4756 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4757 LLVM_FALLTHROUGH; 4758 4759 // C++1z [meta.unary.prop]: 4760 // T shall be a complete type, cv void, or an array of unknown bound. 4761 case UTT_IsDestructible: 4762 case UTT_IsNothrowDestructible: 4763 case UTT_IsTriviallyDestructible: 4764 case UTT_HasUniqueObjectRepresentations: 4765 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4766 return true; 4767 4768 return !S.RequireCompleteType( 4769 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4770 } 4771 } 4772 4773 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 4774 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 4775 bool (CXXRecordDecl::*HasTrivial)() const, 4776 bool (CXXRecordDecl::*HasNonTrivial)() const, 4777 bool (CXXMethodDecl::*IsDesiredOp)() const) 4778 { 4779 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4780 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 4781 return true; 4782 4783 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 4784 DeclarationNameInfo NameInfo(Name, KeyLoc); 4785 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 4786 if (Self.LookupQualifiedName(Res, RD)) { 4787 bool FoundOperator = false; 4788 Res.suppressDiagnostics(); 4789 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 4790 Op != OpEnd; ++Op) { 4791 if (isa<FunctionTemplateDecl>(*Op)) 4792 continue; 4793 4794 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 4795 if((Operator->*IsDesiredOp)()) { 4796 FoundOperator = true; 4797 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 4798 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4799 if (!CPT || !CPT->isNothrow()) 4800 return false; 4801 } 4802 } 4803 return FoundOperator; 4804 } 4805 return false; 4806 } 4807 4808 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 4809 SourceLocation KeyLoc, QualType T) { 4810 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 4811 4812 ASTContext &C = Self.Context; 4813 switch(UTT) { 4814 default: llvm_unreachable("not a UTT"); 4815 // Type trait expressions corresponding to the primary type category 4816 // predicates in C++0x [meta.unary.cat]. 4817 case UTT_IsVoid: 4818 return T->isVoidType(); 4819 case UTT_IsIntegral: 4820 return T->isIntegralType(C); 4821 case UTT_IsFloatingPoint: 4822 return T->isFloatingType(); 4823 case UTT_IsArray: 4824 return T->isArrayType(); 4825 case UTT_IsPointer: 4826 return T->isAnyPointerType(); 4827 case UTT_IsLvalueReference: 4828 return T->isLValueReferenceType(); 4829 case UTT_IsRvalueReference: 4830 return T->isRValueReferenceType(); 4831 case UTT_IsMemberFunctionPointer: 4832 return T->isMemberFunctionPointerType(); 4833 case UTT_IsMemberObjectPointer: 4834 return T->isMemberDataPointerType(); 4835 case UTT_IsEnum: 4836 return T->isEnumeralType(); 4837 case UTT_IsUnion: 4838 return T->isUnionType(); 4839 case UTT_IsClass: 4840 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 4841 case UTT_IsFunction: 4842 return T->isFunctionType(); 4843 4844 // Type trait expressions which correspond to the convenient composition 4845 // predicates in C++0x [meta.unary.comp]. 4846 case UTT_IsReference: 4847 return T->isReferenceType(); 4848 case UTT_IsArithmetic: 4849 return T->isArithmeticType() && !T->isEnumeralType(); 4850 case UTT_IsFundamental: 4851 return T->isFundamentalType(); 4852 case UTT_IsObject: 4853 return T->isObjectType(); 4854 case UTT_IsScalar: 4855 // Note: semantic analysis depends on Objective-C lifetime types to be 4856 // considered scalar types. However, such types do not actually behave 4857 // like scalar types at run time (since they may require retain/release 4858 // operations), so we report them as non-scalar. 4859 if (T->isObjCLifetimeType()) { 4860 switch (T.getObjCLifetime()) { 4861 case Qualifiers::OCL_None: 4862 case Qualifiers::OCL_ExplicitNone: 4863 return true; 4864 4865 case Qualifiers::OCL_Strong: 4866 case Qualifiers::OCL_Weak: 4867 case Qualifiers::OCL_Autoreleasing: 4868 return false; 4869 } 4870 } 4871 4872 return T->isScalarType(); 4873 case UTT_IsCompound: 4874 return T->isCompoundType(); 4875 case UTT_IsMemberPointer: 4876 return T->isMemberPointerType(); 4877 4878 // Type trait expressions which correspond to the type property predicates 4879 // in C++0x [meta.unary.prop]. 4880 case UTT_IsConst: 4881 return T.isConstQualified(); 4882 case UTT_IsVolatile: 4883 return T.isVolatileQualified(); 4884 case UTT_IsTrivial: 4885 return T.isTrivialType(C); 4886 case UTT_IsTriviallyCopyable: 4887 return T.isTriviallyCopyableType(C); 4888 case UTT_IsStandardLayout: 4889 return T->isStandardLayoutType(); 4890 case UTT_IsPOD: 4891 return T.isPODType(C); 4892 case UTT_IsLiteral: 4893 return T->isLiteralType(C); 4894 case UTT_IsEmpty: 4895 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4896 return !RD->isUnion() && RD->isEmpty(); 4897 return false; 4898 case UTT_IsPolymorphic: 4899 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4900 return !RD->isUnion() && RD->isPolymorphic(); 4901 return false; 4902 case UTT_IsAbstract: 4903 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4904 return !RD->isUnion() && RD->isAbstract(); 4905 return false; 4906 case UTT_IsAggregate: 4907 // Report vector extensions and complex types as aggregates because they 4908 // support aggregate initialization. GCC mirrors this behavior for vectors 4909 // but not _Complex. 4910 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 4911 T->isAnyComplexType(); 4912 // __is_interface_class only returns true when CL is invoked in /CLR mode and 4913 // even then only when it is used with the 'interface struct ...' syntax 4914 // Clang doesn't support /CLR which makes this type trait moot. 4915 case UTT_IsInterfaceClass: 4916 return false; 4917 case UTT_IsFinal: 4918 case UTT_IsSealed: 4919 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4920 return RD->hasAttr<FinalAttr>(); 4921 return false; 4922 case UTT_IsSigned: 4923 // Enum types should always return false. 4924 // Floating points should always return true. 4925 return T->isFloatingType() || 4926 (T->isSignedIntegerType() && !T->isEnumeralType()); 4927 case UTT_IsUnsigned: 4928 // Enum types should always return false. 4929 return T->isUnsignedIntegerType() && !T->isEnumeralType(); 4930 4931 // Type trait expressions which query classes regarding their construction, 4932 // destruction, and copying. Rather than being based directly on the 4933 // related type predicates in the standard, they are specified by both 4934 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 4935 // specifications. 4936 // 4937 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 4938 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4939 // 4940 // Note that these builtins do not behave as documented in g++: if a class 4941 // has both a trivial and a non-trivial special member of a particular kind, 4942 // they return false! For now, we emulate this behavior. 4943 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 4944 // does not correctly compute triviality in the presence of multiple special 4945 // members of the same kind. Revisit this once the g++ bug is fixed. 4946 case UTT_HasTrivialDefaultConstructor: 4947 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4948 // If __is_pod (type) is true then the trait is true, else if type is 4949 // a cv class or union type (or array thereof) with a trivial default 4950 // constructor ([class.ctor]) then the trait is true, else it is false. 4951 if (T.isPODType(C)) 4952 return true; 4953 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4954 return RD->hasTrivialDefaultConstructor() && 4955 !RD->hasNonTrivialDefaultConstructor(); 4956 return false; 4957 case UTT_HasTrivialMoveConstructor: 4958 // This trait is implemented by MSVC 2012 and needed to parse the 4959 // standard library headers. Specifically this is used as the logic 4960 // behind std::is_trivially_move_constructible (20.9.4.3). 4961 if (T.isPODType(C)) 4962 return true; 4963 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4964 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 4965 return false; 4966 case UTT_HasTrivialCopy: 4967 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4968 // If __is_pod (type) is true or type is a reference type then 4969 // the trait is true, else if type is a cv class or union type 4970 // with a trivial copy constructor ([class.copy]) then the trait 4971 // is true, else it is false. 4972 if (T.isPODType(C) || T->isReferenceType()) 4973 return true; 4974 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4975 return RD->hasTrivialCopyConstructor() && 4976 !RD->hasNonTrivialCopyConstructor(); 4977 return false; 4978 case UTT_HasTrivialMoveAssign: 4979 // This trait is implemented by MSVC 2012 and needed to parse the 4980 // standard library headers. Specifically it is used as the logic 4981 // behind std::is_trivially_move_assignable (20.9.4.3) 4982 if (T.isPODType(C)) 4983 return true; 4984 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4985 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 4986 return false; 4987 case UTT_HasTrivialAssign: 4988 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4989 // If type is const qualified or is a reference type then the 4990 // trait is false. Otherwise if __is_pod (type) is true then the 4991 // trait is true, else if type is a cv class or union type with 4992 // a trivial copy assignment ([class.copy]) then the trait is 4993 // true, else it is false. 4994 // Note: the const and reference restrictions are interesting, 4995 // given that const and reference members don't prevent a class 4996 // from having a trivial copy assignment operator (but do cause 4997 // errors if the copy assignment operator is actually used, q.v. 4998 // [class.copy]p12). 4999 5000 if (T.isConstQualified()) 5001 return false; 5002 if (T.isPODType(C)) 5003 return true; 5004 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5005 return RD->hasTrivialCopyAssignment() && 5006 !RD->hasNonTrivialCopyAssignment(); 5007 return false; 5008 case UTT_IsDestructible: 5009 case UTT_IsTriviallyDestructible: 5010 case UTT_IsNothrowDestructible: 5011 // C++14 [meta.unary.prop]: 5012 // For reference types, is_destructible<T>::value is true. 5013 if (T->isReferenceType()) 5014 return true; 5015 5016 // Objective-C++ ARC: autorelease types don't require destruction. 5017 if (T->isObjCLifetimeType() && 5018 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5019 return true; 5020 5021 // C++14 [meta.unary.prop]: 5022 // For incomplete types and function types, is_destructible<T>::value is 5023 // false. 5024 if (T->isIncompleteType() || T->isFunctionType()) 5025 return false; 5026 5027 // A type that requires destruction (via a non-trivial destructor or ARC 5028 // lifetime semantics) is not trivially-destructible. 5029 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 5030 return false; 5031 5032 // C++14 [meta.unary.prop]: 5033 // For object types and given U equal to remove_all_extents_t<T>, if the 5034 // expression std::declval<U&>().~U() is well-formed when treated as an 5035 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 5036 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5037 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 5038 if (!Destructor) 5039 return false; 5040 // C++14 [dcl.fct.def.delete]p2: 5041 // A program that refers to a deleted function implicitly or 5042 // explicitly, other than to declare it, is ill-formed. 5043 if (Destructor->isDeleted()) 5044 return false; 5045 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 5046 return false; 5047 if (UTT == UTT_IsNothrowDestructible) { 5048 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 5049 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5050 if (!CPT || !CPT->isNothrow()) 5051 return false; 5052 } 5053 } 5054 return true; 5055 5056 case UTT_HasTrivialDestructor: 5057 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5058 // If __is_pod (type) is true or type is a reference type 5059 // then the trait is true, else if type is a cv class or union 5060 // type (or array thereof) with a trivial destructor 5061 // ([class.dtor]) then the trait is true, else it is 5062 // false. 5063 if (T.isPODType(C) || T->isReferenceType()) 5064 return true; 5065 5066 // Objective-C++ ARC: autorelease types don't require destruction. 5067 if (T->isObjCLifetimeType() && 5068 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5069 return true; 5070 5071 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5072 return RD->hasTrivialDestructor(); 5073 return false; 5074 // TODO: Propagate nothrowness for implicitly declared special members. 5075 case UTT_HasNothrowAssign: 5076 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5077 // If type is const qualified or is a reference type then the 5078 // trait is false. Otherwise if __has_trivial_assign (type) 5079 // is true then the trait is true, else if type is a cv class 5080 // or union type with copy assignment operators that are known 5081 // not to throw an exception then the trait is true, else it is 5082 // false. 5083 if (C.getBaseElementType(T).isConstQualified()) 5084 return false; 5085 if (T->isReferenceType()) 5086 return false; 5087 if (T.isPODType(C) || T->isObjCLifetimeType()) 5088 return true; 5089 5090 if (const RecordType *RT = T->getAs<RecordType>()) 5091 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5092 &CXXRecordDecl::hasTrivialCopyAssignment, 5093 &CXXRecordDecl::hasNonTrivialCopyAssignment, 5094 &CXXMethodDecl::isCopyAssignmentOperator); 5095 return false; 5096 case UTT_HasNothrowMoveAssign: 5097 // This trait is implemented by MSVC 2012 and needed to parse the 5098 // standard library headers. Specifically this is used as the logic 5099 // behind std::is_nothrow_move_assignable (20.9.4.3). 5100 if (T.isPODType(C)) 5101 return true; 5102 5103 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 5104 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5105 &CXXRecordDecl::hasTrivialMoveAssignment, 5106 &CXXRecordDecl::hasNonTrivialMoveAssignment, 5107 &CXXMethodDecl::isMoveAssignmentOperator); 5108 return false; 5109 case UTT_HasNothrowCopy: 5110 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5111 // If __has_trivial_copy (type) is true then the trait is true, else 5112 // if type is a cv class or union type with copy constructors that are 5113 // known not to throw an exception then the trait is true, else it is 5114 // false. 5115 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 5116 return true; 5117 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 5118 if (RD->hasTrivialCopyConstructor() && 5119 !RD->hasNonTrivialCopyConstructor()) 5120 return true; 5121 5122 bool FoundConstructor = false; 5123 unsigned FoundTQs; 5124 for (const auto *ND : Self.LookupConstructors(RD)) { 5125 // A template constructor is never a copy constructor. 5126 // FIXME: However, it may actually be selected at the actual overload 5127 // resolution point. 5128 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5129 continue; 5130 // UsingDecl itself is not a constructor 5131 if (isa<UsingDecl>(ND)) 5132 continue; 5133 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5134 if (Constructor->isCopyConstructor(FoundTQs)) { 5135 FoundConstructor = true; 5136 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5137 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5138 if (!CPT) 5139 return false; 5140 // TODO: check whether evaluating default arguments can throw. 5141 // For now, we'll be conservative and assume that they can throw. 5142 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 5143 return false; 5144 } 5145 } 5146 5147 return FoundConstructor; 5148 } 5149 return false; 5150 case UTT_HasNothrowConstructor: 5151 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5152 // If __has_trivial_constructor (type) is true then the trait is 5153 // true, else if type is a cv class or union type (or array 5154 // thereof) with a default constructor that is known not to 5155 // throw an exception then the trait is true, else it is false. 5156 if (T.isPODType(C) || T->isObjCLifetimeType()) 5157 return true; 5158 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5159 if (RD->hasTrivialDefaultConstructor() && 5160 !RD->hasNonTrivialDefaultConstructor()) 5161 return true; 5162 5163 bool FoundConstructor = false; 5164 for (const auto *ND : Self.LookupConstructors(RD)) { 5165 // FIXME: In C++0x, a constructor template can be a default constructor. 5166 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5167 continue; 5168 // UsingDecl itself is not a constructor 5169 if (isa<UsingDecl>(ND)) 5170 continue; 5171 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5172 if (Constructor->isDefaultConstructor()) { 5173 FoundConstructor = true; 5174 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5175 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5176 if (!CPT) 5177 return false; 5178 // FIXME: check whether evaluating default arguments can throw. 5179 // For now, we'll be conservative and assume that they can throw. 5180 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5181 return false; 5182 } 5183 } 5184 return FoundConstructor; 5185 } 5186 return false; 5187 case UTT_HasVirtualDestructor: 5188 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5189 // If type is a class type with a virtual destructor ([class.dtor]) 5190 // then the trait is true, else it is false. 5191 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5192 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5193 return Destructor->isVirtual(); 5194 return false; 5195 5196 // These type trait expressions are modeled on the specifications for the 5197 // Embarcadero C++0x type trait functions: 5198 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5199 case UTT_IsCompleteType: 5200 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5201 // Returns True if and only if T is a complete type at the point of the 5202 // function call. 5203 return !T->isIncompleteType(); 5204 case UTT_HasUniqueObjectRepresentations: 5205 return C.hasUniqueObjectRepresentations(T); 5206 } 5207 } 5208 5209 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5210 QualType RhsT, SourceLocation KeyLoc); 5211 5212 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 5213 ArrayRef<TypeSourceInfo *> Args, 5214 SourceLocation RParenLoc) { 5215 if (Kind <= UTT_Last) 5216 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 5217 5218 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible 5219 // traits to avoid duplication. 5220 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) 5221 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 5222 Args[1]->getType(), RParenLoc); 5223 5224 switch (Kind) { 5225 case clang::BTT_ReferenceBindsToTemporary: 5226 case clang::TT_IsConstructible: 5227 case clang::TT_IsNothrowConstructible: 5228 case clang::TT_IsTriviallyConstructible: { 5229 // C++11 [meta.unary.prop]: 5230 // is_trivially_constructible is defined as: 5231 // 5232 // is_constructible<T, Args...>::value is true and the variable 5233 // definition for is_constructible, as defined below, is known to call 5234 // no operation that is not trivial. 5235 // 5236 // The predicate condition for a template specialization 5237 // is_constructible<T, Args...> shall be satisfied if and only if the 5238 // following variable definition would be well-formed for some invented 5239 // variable t: 5240 // 5241 // T t(create<Args>()...); 5242 assert(!Args.empty()); 5243 5244 // Precondition: T and all types in the parameter pack Args shall be 5245 // complete types, (possibly cv-qualified) void, or arrays of 5246 // unknown bound. 5247 for (const auto *TSI : Args) { 5248 QualType ArgTy = TSI->getType(); 5249 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5250 continue; 5251 5252 if (S.RequireCompleteType(KWLoc, ArgTy, 5253 diag::err_incomplete_type_used_in_type_trait_expr)) 5254 return false; 5255 } 5256 5257 // Make sure the first argument is not incomplete nor a function type. 5258 QualType T = Args[0]->getType(); 5259 if (T->isIncompleteType() || T->isFunctionType()) 5260 return false; 5261 5262 // Make sure the first argument is not an abstract type. 5263 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5264 if (RD && RD->isAbstract()) 5265 return false; 5266 5267 llvm::BumpPtrAllocator OpaqueExprAllocator; 5268 SmallVector<Expr *, 2> ArgExprs; 5269 ArgExprs.reserve(Args.size() - 1); 5270 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5271 QualType ArgTy = Args[I]->getType(); 5272 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5273 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5274 ArgExprs.push_back( 5275 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5276 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5277 ArgTy.getNonLValueExprType(S.Context), 5278 Expr::getValueKindForType(ArgTy))); 5279 } 5280 5281 // Perform the initialization in an unevaluated context within a SFINAE 5282 // trap at translation unit scope. 5283 EnterExpressionEvaluationContext Unevaluated( 5284 S, Sema::ExpressionEvaluationContext::Unevaluated); 5285 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5286 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5287 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0])); 5288 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 5289 RParenLoc)); 5290 InitializationSequence Init(S, To, InitKind, ArgExprs); 5291 if (Init.Failed()) 5292 return false; 5293 5294 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5295 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5296 return false; 5297 5298 if (Kind == clang::TT_IsConstructible) 5299 return true; 5300 5301 if (Kind == clang::BTT_ReferenceBindsToTemporary) { 5302 if (!T->isReferenceType()) 5303 return false; 5304 5305 return !Init.isDirectReferenceBinding(); 5306 } 5307 5308 if (Kind == clang::TT_IsNothrowConstructible) 5309 return S.canThrow(Result.get()) == CT_Cannot; 5310 5311 if (Kind == clang::TT_IsTriviallyConstructible) { 5312 // Under Objective-C ARC and Weak, if the destination has non-trivial 5313 // Objective-C lifetime, this is a non-trivial construction. 5314 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5315 return false; 5316 5317 // The initialization succeeded; now make sure there are no non-trivial 5318 // calls. 5319 return !Result.get()->hasNonTrivialCall(S.Context); 5320 } 5321 5322 llvm_unreachable("unhandled type trait"); 5323 return false; 5324 } 5325 default: llvm_unreachable("not a TT"); 5326 } 5327 5328 return false; 5329 } 5330 5331 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5332 ArrayRef<TypeSourceInfo *> Args, 5333 SourceLocation RParenLoc) { 5334 QualType ResultType = Context.getLogicalOperationType(); 5335 5336 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5337 *this, Kind, KWLoc, Args[0]->getType())) 5338 return ExprError(); 5339 5340 bool Dependent = false; 5341 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5342 if (Args[I]->getType()->isDependentType()) { 5343 Dependent = true; 5344 break; 5345 } 5346 } 5347 5348 bool Result = false; 5349 if (!Dependent) 5350 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 5351 5352 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 5353 RParenLoc, Result); 5354 } 5355 5356 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5357 ArrayRef<ParsedType> Args, 5358 SourceLocation RParenLoc) { 5359 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5360 ConvertedArgs.reserve(Args.size()); 5361 5362 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5363 TypeSourceInfo *TInfo; 5364 QualType T = GetTypeFromParser(Args[I], &TInfo); 5365 if (!TInfo) 5366 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5367 5368 ConvertedArgs.push_back(TInfo); 5369 } 5370 5371 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5372 } 5373 5374 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5375 QualType RhsT, SourceLocation KeyLoc) { 5376 assert(!LhsT->isDependentType() && !RhsT->isDependentType() && 5377 "Cannot evaluate traits of dependent types"); 5378 5379 switch(BTT) { 5380 case BTT_IsBaseOf: { 5381 // C++0x [meta.rel]p2 5382 // Base is a base class of Derived without regard to cv-qualifiers or 5383 // Base and Derived are not unions and name the same class type without 5384 // regard to cv-qualifiers. 5385 5386 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5387 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5388 if (!rhsRecord || !lhsRecord) { 5389 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5390 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5391 if (!LHSObjTy || !RHSObjTy) 5392 return false; 5393 5394 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5395 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5396 if (!BaseInterface || !DerivedInterface) 5397 return false; 5398 5399 if (Self.RequireCompleteType( 5400 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5401 return false; 5402 5403 return BaseInterface->isSuperClassOf(DerivedInterface); 5404 } 5405 5406 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) 5407 == (lhsRecord == rhsRecord)); 5408 5409 // Unions are never base classes, and never have base classes. 5410 // It doesn't matter if they are complete or not. See PR#41843 5411 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5412 return false; 5413 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5414 return false; 5415 5416 if (lhsRecord == rhsRecord) 5417 return true; 5418 5419 // C++0x [meta.rel]p2: 5420 // If Base and Derived are class types and are different types 5421 // (ignoring possible cv-qualifiers) then Derived shall be a 5422 // complete type. 5423 if (Self.RequireCompleteType(KeyLoc, RhsT, 5424 diag::err_incomplete_type_used_in_type_trait_expr)) 5425 return false; 5426 5427 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5428 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5429 } 5430 case BTT_IsSame: 5431 return Self.Context.hasSameType(LhsT, RhsT); 5432 case BTT_TypeCompatible: { 5433 // GCC ignores cv-qualifiers on arrays for this builtin. 5434 Qualifiers LhsQuals, RhsQuals; 5435 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5436 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5437 return Self.Context.typesAreCompatible(Lhs, Rhs); 5438 } 5439 case BTT_IsConvertible: 5440 case BTT_IsConvertibleTo: { 5441 // C++0x [meta.rel]p4: 5442 // Given the following function prototype: 5443 // 5444 // template <class T> 5445 // typename add_rvalue_reference<T>::type create(); 5446 // 5447 // the predicate condition for a template specialization 5448 // is_convertible<From, To> shall be satisfied if and only if 5449 // the return expression in the following code would be 5450 // well-formed, including any implicit conversions to the return 5451 // type of the function: 5452 // 5453 // To test() { 5454 // return create<From>(); 5455 // } 5456 // 5457 // Access checking is performed as if in a context unrelated to To and 5458 // From. Only the validity of the immediate context of the expression 5459 // of the return-statement (including conversions to the return type) 5460 // is considered. 5461 // 5462 // We model the initialization as a copy-initialization of a temporary 5463 // of the appropriate type, which for this expression is identical to the 5464 // return statement (since NRVO doesn't apply). 5465 5466 // Functions aren't allowed to return function or array types. 5467 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5468 return false; 5469 5470 // A return statement in a void function must have void type. 5471 if (RhsT->isVoidType()) 5472 return LhsT->isVoidType(); 5473 5474 // A function definition requires a complete, non-abstract return type. 5475 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5476 return false; 5477 5478 // Compute the result of add_rvalue_reference. 5479 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5480 LhsT = Self.Context.getRValueReferenceType(LhsT); 5481 5482 // Build a fake source and destination for initialization. 5483 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5484 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5485 Expr::getValueKindForType(LhsT)); 5486 Expr *FromPtr = &From; 5487 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5488 SourceLocation())); 5489 5490 // Perform the initialization in an unevaluated context within a SFINAE 5491 // trap at translation unit scope. 5492 EnterExpressionEvaluationContext Unevaluated( 5493 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5494 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5495 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5496 InitializationSequence Init(Self, To, Kind, FromPtr); 5497 if (Init.Failed()) 5498 return false; 5499 5500 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5501 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5502 } 5503 5504 case BTT_IsAssignable: 5505 case BTT_IsNothrowAssignable: 5506 case BTT_IsTriviallyAssignable: { 5507 // C++11 [meta.unary.prop]p3: 5508 // is_trivially_assignable is defined as: 5509 // is_assignable<T, U>::value is true and the assignment, as defined by 5510 // is_assignable, is known to call no operation that is not trivial 5511 // 5512 // is_assignable is defined as: 5513 // The expression declval<T>() = declval<U>() is well-formed when 5514 // treated as an unevaluated operand (Clause 5). 5515 // 5516 // For both, T and U shall be complete types, (possibly cv-qualified) 5517 // void, or arrays of unknown bound. 5518 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5519 Self.RequireCompleteType(KeyLoc, LhsT, 5520 diag::err_incomplete_type_used_in_type_trait_expr)) 5521 return false; 5522 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5523 Self.RequireCompleteType(KeyLoc, RhsT, 5524 diag::err_incomplete_type_used_in_type_trait_expr)) 5525 return false; 5526 5527 // cv void is never assignable. 5528 if (LhsT->isVoidType() || RhsT->isVoidType()) 5529 return false; 5530 5531 // Build expressions that emulate the effect of declval<T>() and 5532 // declval<U>(). 5533 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5534 LhsT = Self.Context.getRValueReferenceType(LhsT); 5535 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5536 RhsT = Self.Context.getRValueReferenceType(RhsT); 5537 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5538 Expr::getValueKindForType(LhsT)); 5539 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5540 Expr::getValueKindForType(RhsT)); 5541 5542 // Attempt the assignment in an unevaluated context within a SFINAE 5543 // trap at translation unit scope. 5544 EnterExpressionEvaluationContext Unevaluated( 5545 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5546 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5547 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5548 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5549 &Rhs); 5550 if (Result.isInvalid()) 5551 return false; 5552 5553 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. 5554 Self.CheckUnusedVolatileAssignment(Result.get()); 5555 5556 if (SFINAE.hasErrorOccurred()) 5557 return false; 5558 5559 if (BTT == BTT_IsAssignable) 5560 return true; 5561 5562 if (BTT == BTT_IsNothrowAssignable) 5563 return Self.canThrow(Result.get()) == CT_Cannot; 5564 5565 if (BTT == BTT_IsTriviallyAssignable) { 5566 // Under Objective-C ARC and Weak, if the destination has non-trivial 5567 // Objective-C lifetime, this is a non-trivial assignment. 5568 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 5569 return false; 5570 5571 return !Result.get()->hasNonTrivialCall(Self.Context); 5572 } 5573 5574 llvm_unreachable("unhandled type trait"); 5575 return false; 5576 } 5577 default: llvm_unreachable("not a BTT"); 5578 } 5579 llvm_unreachable("Unknown type trait or not implemented"); 5580 } 5581 5582 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 5583 SourceLocation KWLoc, 5584 ParsedType Ty, 5585 Expr* DimExpr, 5586 SourceLocation RParen) { 5587 TypeSourceInfo *TSInfo; 5588 QualType T = GetTypeFromParser(Ty, &TSInfo); 5589 if (!TSInfo) 5590 TSInfo = Context.getTrivialTypeSourceInfo(T); 5591 5592 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 5593 } 5594 5595 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 5596 QualType T, Expr *DimExpr, 5597 SourceLocation KeyLoc) { 5598 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 5599 5600 switch(ATT) { 5601 case ATT_ArrayRank: 5602 if (T->isArrayType()) { 5603 unsigned Dim = 0; 5604 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5605 ++Dim; 5606 T = AT->getElementType(); 5607 } 5608 return Dim; 5609 } 5610 return 0; 5611 5612 case ATT_ArrayExtent: { 5613 llvm::APSInt Value; 5614 uint64_t Dim; 5615 if (Self.VerifyIntegerConstantExpression( 5616 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) 5617 .isInvalid()) 5618 return 0; 5619 if (Value.isSigned() && Value.isNegative()) { 5620 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 5621 << DimExpr->getSourceRange(); 5622 return 0; 5623 } 5624 Dim = Value.getLimitedValue(); 5625 5626 if (T->isArrayType()) { 5627 unsigned D = 0; 5628 bool Matched = false; 5629 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5630 if (Dim == D) { 5631 Matched = true; 5632 break; 5633 } 5634 ++D; 5635 T = AT->getElementType(); 5636 } 5637 5638 if (Matched && T->isArrayType()) { 5639 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 5640 return CAT->getSize().getLimitedValue(); 5641 } 5642 } 5643 return 0; 5644 } 5645 } 5646 llvm_unreachable("Unknown type trait or not implemented"); 5647 } 5648 5649 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 5650 SourceLocation KWLoc, 5651 TypeSourceInfo *TSInfo, 5652 Expr* DimExpr, 5653 SourceLocation RParen) { 5654 QualType T = TSInfo->getType(); 5655 5656 // FIXME: This should likely be tracked as an APInt to remove any host 5657 // assumptions about the width of size_t on the target. 5658 uint64_t Value = 0; 5659 if (!T->isDependentType()) 5660 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 5661 5662 // While the specification for these traits from the Embarcadero C++ 5663 // compiler's documentation says the return type is 'unsigned int', Clang 5664 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 5665 // compiler, there is no difference. On several other platforms this is an 5666 // important distinction. 5667 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 5668 RParen, Context.getSizeType()); 5669 } 5670 5671 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 5672 SourceLocation KWLoc, 5673 Expr *Queried, 5674 SourceLocation RParen) { 5675 // If error parsing the expression, ignore. 5676 if (!Queried) 5677 return ExprError(); 5678 5679 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 5680 5681 return Result; 5682 } 5683 5684 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 5685 switch (ET) { 5686 case ET_IsLValueExpr: return E->isLValue(); 5687 case ET_IsRValueExpr: 5688 return E->isPRValue(); 5689 } 5690 llvm_unreachable("Expression trait not covered by switch"); 5691 } 5692 5693 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 5694 SourceLocation KWLoc, 5695 Expr *Queried, 5696 SourceLocation RParen) { 5697 if (Queried->isTypeDependent()) { 5698 // Delay type-checking for type-dependent expressions. 5699 } else if (Queried->getType()->isPlaceholderType()) { 5700 ExprResult PE = CheckPlaceholderExpr(Queried); 5701 if (PE.isInvalid()) return ExprError(); 5702 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 5703 } 5704 5705 bool Value = EvaluateExpressionTrait(ET, Queried); 5706 5707 return new (Context) 5708 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 5709 } 5710 5711 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 5712 ExprValueKind &VK, 5713 SourceLocation Loc, 5714 bool isIndirect) { 5715 assert(!LHS.get()->getType()->isPlaceholderType() && 5716 !RHS.get()->getType()->isPlaceholderType() && 5717 "placeholders should have been weeded out by now"); 5718 5719 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the 5720 // temporary materialization conversion otherwise. 5721 if (isIndirect) 5722 LHS = DefaultLvalueConversion(LHS.get()); 5723 else if (LHS.get()->isPRValue()) 5724 LHS = TemporaryMaterializationConversion(LHS.get()); 5725 if (LHS.isInvalid()) 5726 return QualType(); 5727 5728 // The RHS always undergoes lvalue conversions. 5729 RHS = DefaultLvalueConversion(RHS.get()); 5730 if (RHS.isInvalid()) return QualType(); 5731 5732 const char *OpSpelling = isIndirect ? "->*" : ".*"; 5733 // C++ 5.5p2 5734 // The binary operator .* [p3: ->*] binds its second operand, which shall 5735 // be of type "pointer to member of T" (where T is a completely-defined 5736 // class type) [...] 5737 QualType RHSType = RHS.get()->getType(); 5738 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 5739 if (!MemPtr) { 5740 Diag(Loc, diag::err_bad_memptr_rhs) 5741 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 5742 return QualType(); 5743 } 5744 5745 QualType Class(MemPtr->getClass(), 0); 5746 5747 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 5748 // member pointer points must be completely-defined. However, there is no 5749 // reason for this semantic distinction, and the rule is not enforced by 5750 // other compilers. Therefore, we do not check this property, as it is 5751 // likely to be considered a defect. 5752 5753 // C++ 5.5p2 5754 // [...] to its first operand, which shall be of class T or of a class of 5755 // which T is an unambiguous and accessible base class. [p3: a pointer to 5756 // such a class] 5757 QualType LHSType = LHS.get()->getType(); 5758 if (isIndirect) { 5759 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 5760 LHSType = Ptr->getPointeeType(); 5761 else { 5762 Diag(Loc, diag::err_bad_memptr_lhs) 5763 << OpSpelling << 1 << LHSType 5764 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 5765 return QualType(); 5766 } 5767 } 5768 5769 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 5770 // If we want to check the hierarchy, we need a complete type. 5771 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 5772 OpSpelling, (int)isIndirect)) { 5773 return QualType(); 5774 } 5775 5776 if (!IsDerivedFrom(Loc, LHSType, Class)) { 5777 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 5778 << (int)isIndirect << LHS.get()->getType(); 5779 return QualType(); 5780 } 5781 5782 CXXCastPath BasePath; 5783 if (CheckDerivedToBaseConversion( 5784 LHSType, Class, Loc, 5785 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), 5786 &BasePath)) 5787 return QualType(); 5788 5789 // Cast LHS to type of use. 5790 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); 5791 if (isIndirect) 5792 UseType = Context.getPointerType(UseType); 5793 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind(); 5794 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 5795 &BasePath); 5796 } 5797 5798 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 5799 // Diagnose use of pointer-to-member type which when used as 5800 // the functional cast in a pointer-to-member expression. 5801 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 5802 return QualType(); 5803 } 5804 5805 // C++ 5.5p2 5806 // The result is an object or a function of the type specified by the 5807 // second operand. 5808 // The cv qualifiers are the union of those in the pointer and the left side, 5809 // in accordance with 5.5p5 and 5.2.5. 5810 QualType Result = MemPtr->getPointeeType(); 5811 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 5812 5813 // C++0x [expr.mptr.oper]p6: 5814 // In a .* expression whose object expression is an rvalue, the program is 5815 // ill-formed if the second operand is a pointer to member function with 5816 // ref-qualifier &. In a ->* expression or in a .* expression whose object 5817 // expression is an lvalue, the program is ill-formed if the second operand 5818 // is a pointer to member function with ref-qualifier &&. 5819 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 5820 switch (Proto->getRefQualifier()) { 5821 case RQ_None: 5822 // Do nothing 5823 break; 5824 5825 case RQ_LValue: 5826 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { 5827 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq 5828 // is (exactly) 'const'. 5829 if (Proto->isConst() && !Proto->isVolatile()) 5830 Diag(Loc, getLangOpts().CPlusPlus20 5831 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue 5832 : diag::ext_pointer_to_const_ref_member_on_rvalue); 5833 else 5834 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5835 << RHSType << 1 << LHS.get()->getSourceRange(); 5836 } 5837 break; 5838 5839 case RQ_RValue: 5840 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 5841 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5842 << RHSType << 0 << LHS.get()->getSourceRange(); 5843 break; 5844 } 5845 } 5846 5847 // C++ [expr.mptr.oper]p6: 5848 // The result of a .* expression whose second operand is a pointer 5849 // to a data member is of the same value category as its 5850 // first operand. The result of a .* expression whose second 5851 // operand is a pointer to a member function is a prvalue. The 5852 // result of an ->* expression is an lvalue if its second operand 5853 // is a pointer to data member and a prvalue otherwise. 5854 if (Result->isFunctionType()) { 5855 VK = VK_PRValue; 5856 return Context.BoundMemberTy; 5857 } else if (isIndirect) { 5858 VK = VK_LValue; 5859 } else { 5860 VK = LHS.get()->getValueKind(); 5861 } 5862 5863 return Result; 5864 } 5865 5866 /// Try to convert a type to another according to C++11 5.16p3. 5867 /// 5868 /// This is part of the parameter validation for the ? operator. If either 5869 /// value operand is a class type, the two operands are attempted to be 5870 /// converted to each other. This function does the conversion in one direction. 5871 /// It returns true if the program is ill-formed and has already been diagnosed 5872 /// as such. 5873 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 5874 SourceLocation QuestionLoc, 5875 bool &HaveConversion, 5876 QualType &ToType) { 5877 HaveConversion = false; 5878 ToType = To->getType(); 5879 5880 InitializationKind Kind = 5881 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); 5882 // C++11 5.16p3 5883 // The process for determining whether an operand expression E1 of type T1 5884 // can be converted to match an operand expression E2 of type T2 is defined 5885 // as follows: 5886 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be 5887 // implicitly converted to type "lvalue reference to T2", subject to the 5888 // constraint that in the conversion the reference must bind directly to 5889 // an lvalue. 5890 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be 5891 // implicitly converted to the type "rvalue reference to R2", subject to 5892 // the constraint that the reference must bind directly. 5893 if (To->isLValue() || To->isXValue()) { 5894 QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType) 5895 : Self.Context.getRValueReferenceType(ToType); 5896 5897 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5898 5899 InitializationSequence InitSeq(Self, Entity, Kind, From); 5900 if (InitSeq.isDirectReferenceBinding()) { 5901 ToType = T; 5902 HaveConversion = true; 5903 return false; 5904 } 5905 5906 if (InitSeq.isAmbiguous()) 5907 return InitSeq.Diagnose(Self, Entity, Kind, From); 5908 } 5909 5910 // -- If E2 is an rvalue, or if the conversion above cannot be done: 5911 // -- if E1 and E2 have class type, and the underlying class types are 5912 // the same or one is a base class of the other: 5913 QualType FTy = From->getType(); 5914 QualType TTy = To->getType(); 5915 const RecordType *FRec = FTy->getAs<RecordType>(); 5916 const RecordType *TRec = TTy->getAs<RecordType>(); 5917 bool FDerivedFromT = FRec && TRec && FRec != TRec && 5918 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 5919 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 5920 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 5921 // E1 can be converted to match E2 if the class of T2 is the 5922 // same type as, or a base class of, the class of T1, and 5923 // [cv2 > cv1]. 5924 if (FRec == TRec || FDerivedFromT) { 5925 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 5926 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5927 InitializationSequence InitSeq(Self, Entity, Kind, From); 5928 if (InitSeq) { 5929 HaveConversion = true; 5930 return false; 5931 } 5932 5933 if (InitSeq.isAmbiguous()) 5934 return InitSeq.Diagnose(Self, Entity, Kind, From); 5935 } 5936 } 5937 5938 return false; 5939 } 5940 5941 // -- Otherwise: E1 can be converted to match E2 if E1 can be 5942 // implicitly converted to the type that expression E2 would have 5943 // if E2 were converted to an rvalue (or the type it has, if E2 is 5944 // an rvalue). 5945 // 5946 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 5947 // to the array-to-pointer or function-to-pointer conversions. 5948 TTy = TTy.getNonLValueExprType(Self.Context); 5949 5950 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5951 InitializationSequence InitSeq(Self, Entity, Kind, From); 5952 HaveConversion = !InitSeq.Failed(); 5953 ToType = TTy; 5954 if (InitSeq.isAmbiguous()) 5955 return InitSeq.Diagnose(Self, Entity, Kind, From); 5956 5957 return false; 5958 } 5959 5960 /// Try to find a common type for two according to C++0x 5.16p5. 5961 /// 5962 /// This is part of the parameter validation for the ? operator. If either 5963 /// value operand is a class type, overload resolution is used to find a 5964 /// conversion to a common type. 5965 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 5966 SourceLocation QuestionLoc) { 5967 Expr *Args[2] = { LHS.get(), RHS.get() }; 5968 OverloadCandidateSet CandidateSet(QuestionLoc, 5969 OverloadCandidateSet::CSK_Operator); 5970 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 5971 CandidateSet); 5972 5973 OverloadCandidateSet::iterator Best; 5974 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 5975 case OR_Success: { 5976 // We found a match. Perform the conversions on the arguments and move on. 5977 ExprResult LHSRes = Self.PerformImplicitConversion( 5978 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], 5979 Sema::AA_Converting); 5980 if (LHSRes.isInvalid()) 5981 break; 5982 LHS = LHSRes; 5983 5984 ExprResult RHSRes = Self.PerformImplicitConversion( 5985 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], 5986 Sema::AA_Converting); 5987 if (RHSRes.isInvalid()) 5988 break; 5989 RHS = RHSRes; 5990 if (Best->Function) 5991 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 5992 return false; 5993 } 5994 5995 case OR_No_Viable_Function: 5996 5997 // Emit a better diagnostic if one of the expressions is a null pointer 5998 // constant and the other is a pointer type. In this case, the user most 5999 // likely forgot to take the address of the other expression. 6000 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6001 return true; 6002 6003 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6004 << LHS.get()->getType() << RHS.get()->getType() 6005 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6006 return true; 6007 6008 case OR_Ambiguous: 6009 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 6010 << LHS.get()->getType() << RHS.get()->getType() 6011 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6012 // FIXME: Print the possible common types by printing the return types of 6013 // the viable candidates. 6014 break; 6015 6016 case OR_Deleted: 6017 llvm_unreachable("Conditional operator has only built-in overloads"); 6018 } 6019 return true; 6020 } 6021 6022 /// Perform an "extended" implicit conversion as returned by 6023 /// TryClassUnification. 6024 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 6025 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 6026 InitializationKind Kind = 6027 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); 6028 Expr *Arg = E.get(); 6029 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 6030 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 6031 if (Result.isInvalid()) 6032 return true; 6033 6034 E = Result; 6035 return false; 6036 } 6037 6038 // Check the condition operand of ?: to see if it is valid for the GCC 6039 // extension. 6040 static bool isValidVectorForConditionalCondition(ASTContext &Ctx, 6041 QualType CondTy) { 6042 if (!CondTy->isVectorType() && !CondTy->isExtVectorType()) 6043 return false; 6044 const QualType EltTy = 6045 cast<VectorType>(CondTy.getCanonicalType())->getElementType(); 6046 assert(!EltTy->isBooleanType() && !EltTy->isEnumeralType() && 6047 "Vectors cant be boolean or enum types"); 6048 return EltTy->isIntegralType(Ctx); 6049 } 6050 6051 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, 6052 ExprResult &RHS, 6053 SourceLocation QuestionLoc) { 6054 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6055 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6056 6057 QualType CondType = Cond.get()->getType(); 6058 const auto *CondVT = CondType->castAs<VectorType>(); 6059 QualType CondElementTy = CondVT->getElementType(); 6060 unsigned CondElementCount = CondVT->getNumElements(); 6061 QualType LHSType = LHS.get()->getType(); 6062 const auto *LHSVT = LHSType->getAs<VectorType>(); 6063 QualType RHSType = RHS.get()->getType(); 6064 const auto *RHSVT = RHSType->getAs<VectorType>(); 6065 6066 QualType ResultType; 6067 6068 6069 if (LHSVT && RHSVT) { 6070 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) { 6071 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch) 6072 << /*isExtVector*/ isa<ExtVectorType>(CondVT); 6073 return {}; 6074 } 6075 6076 // If both are vector types, they must be the same type. 6077 if (!Context.hasSameType(LHSType, RHSType)) { 6078 Diag(QuestionLoc, diag::err_conditional_vector_mismatched) 6079 << LHSType << RHSType; 6080 return {}; 6081 } 6082 ResultType = LHSType; 6083 } else if (LHSVT || RHSVT) { 6084 ResultType = CheckVectorOperands( 6085 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, 6086 /*AllowBoolConversions*/ false); 6087 if (ResultType.isNull()) 6088 return {}; 6089 } else { 6090 // Both are scalar. 6091 QualType ResultElementTy; 6092 LHSType = LHSType.getCanonicalType().getUnqualifiedType(); 6093 RHSType = RHSType.getCanonicalType().getUnqualifiedType(); 6094 6095 if (Context.hasSameType(LHSType, RHSType)) 6096 ResultElementTy = LHSType; 6097 else 6098 ResultElementTy = 6099 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6100 6101 if (ResultElementTy->isEnumeralType()) { 6102 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 6103 << ResultElementTy; 6104 return {}; 6105 } 6106 if (CondType->isExtVectorType()) 6107 ResultType = 6108 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements()); 6109 else 6110 ResultType = Context.getVectorType( 6111 ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector); 6112 6113 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 6114 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 6115 } 6116 6117 assert(!ResultType.isNull() && ResultType->isVectorType() && 6118 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && 6119 "Result should have been a vector type"); 6120 auto *ResultVectorTy = ResultType->castAs<VectorType>(); 6121 QualType ResultElementTy = ResultVectorTy->getElementType(); 6122 unsigned ResultElementCount = ResultVectorTy->getNumElements(); 6123 6124 if (ResultElementCount != CondElementCount) { 6125 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType 6126 << ResultType; 6127 return {}; 6128 } 6129 6130 if (Context.getTypeSize(ResultElementTy) != 6131 Context.getTypeSize(CondElementTy)) { 6132 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType 6133 << ResultType; 6134 return {}; 6135 } 6136 6137 return ResultType; 6138 } 6139 6140 /// Check the operands of ?: under C++ semantics. 6141 /// 6142 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 6143 /// extension. In this case, LHS == Cond. (But they're not aliases.) 6144 /// 6145 /// This function also implements GCC's vector extension and the 6146 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions 6147 /// permit the use of a?b:c where the type of a is that of a integer vector with 6148 /// the same number of elements and size as the vectors of b and c. If one of 6149 /// either b or c is a scalar it is implicitly converted to match the type of 6150 /// the vector. Otherwise the expression is ill-formed. If both b and c are 6151 /// scalars, then b and c are checked and converted to the type of a if 6152 /// possible. 6153 /// 6154 /// The expressions are evaluated differently for GCC's and OpenCL's extensions. 6155 /// For the GCC extension, the ?: operator is evaluated as 6156 /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]). 6157 /// For the OpenCL extensions, the ?: operator is evaluated as 6158 /// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. , 6159 /// most-significant-bit-set(a[n]) ? b[n] : c[n]). 6160 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 6161 ExprResult &RHS, ExprValueKind &VK, 6162 ExprObjectKind &OK, 6163 SourceLocation QuestionLoc) { 6164 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface 6165 // pointers. 6166 6167 // Assume r-value. 6168 VK = VK_PRValue; 6169 OK = OK_Ordinary; 6170 bool IsVectorConditional = 6171 isValidVectorForConditionalCondition(Context, Cond.get()->getType()); 6172 6173 // C++11 [expr.cond]p1 6174 // The first expression is contextually converted to bool. 6175 if (!Cond.get()->isTypeDependent()) { 6176 ExprResult CondRes = IsVectorConditional 6177 ? DefaultFunctionArrayLvalueConversion(Cond.get()) 6178 : CheckCXXBooleanCondition(Cond.get()); 6179 if (CondRes.isInvalid()) 6180 return QualType(); 6181 Cond = CondRes; 6182 } else { 6183 // To implement C++, the first expression typically doesn't alter the result 6184 // type of the conditional, however the GCC compatible vector extension 6185 // changes the result type to be that of the conditional. Since we cannot 6186 // know if this is a vector extension here, delay the conversion of the 6187 // LHS/RHS below until later. 6188 return Context.DependentTy; 6189 } 6190 6191 6192 // Either of the arguments dependent? 6193 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 6194 return Context.DependentTy; 6195 6196 // C++11 [expr.cond]p2 6197 // If either the second or the third operand has type (cv) void, ... 6198 QualType LTy = LHS.get()->getType(); 6199 QualType RTy = RHS.get()->getType(); 6200 bool LVoid = LTy->isVoidType(); 6201 bool RVoid = RTy->isVoidType(); 6202 if (LVoid || RVoid) { 6203 // ... one of the following shall hold: 6204 // -- The second or the third operand (but not both) is a (possibly 6205 // parenthesized) throw-expression; the result is of the type 6206 // and value category of the other. 6207 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 6208 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 6209 6210 // Void expressions aren't legal in the vector-conditional expressions. 6211 if (IsVectorConditional) { 6212 SourceRange DiagLoc = 6213 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange(); 6214 bool IsThrow = LVoid ? LThrow : RThrow; 6215 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void) 6216 << DiagLoc << IsThrow; 6217 return QualType(); 6218 } 6219 6220 if (LThrow != RThrow) { 6221 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 6222 VK = NonThrow->getValueKind(); 6223 // DR (no number yet): the result is a bit-field if the 6224 // non-throw-expression operand is a bit-field. 6225 OK = NonThrow->getObjectKind(); 6226 return NonThrow->getType(); 6227 } 6228 6229 // -- Both the second and third operands have type void; the result is of 6230 // type void and is a prvalue. 6231 if (LVoid && RVoid) 6232 return Context.VoidTy; 6233 6234 // Neither holds, error. 6235 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 6236 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 6237 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6238 return QualType(); 6239 } 6240 6241 // Neither is void. 6242 if (IsVectorConditional) 6243 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6244 6245 // C++11 [expr.cond]p3 6246 // Otherwise, if the second and third operand have different types, and 6247 // either has (cv) class type [...] an attempt is made to convert each of 6248 // those operands to the type of the other. 6249 if (!Context.hasSameType(LTy, RTy) && 6250 (LTy->isRecordType() || RTy->isRecordType())) { 6251 // These return true if a single direction is already ambiguous. 6252 QualType L2RType, R2LType; 6253 bool HaveL2R, HaveR2L; 6254 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 6255 return QualType(); 6256 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 6257 return QualType(); 6258 6259 // If both can be converted, [...] the program is ill-formed. 6260 if (HaveL2R && HaveR2L) { 6261 Diag(QuestionLoc, diag::err_conditional_ambiguous) 6262 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6263 return QualType(); 6264 } 6265 6266 // If exactly one conversion is possible, that conversion is applied to 6267 // the chosen operand and the converted operands are used in place of the 6268 // original operands for the remainder of this section. 6269 if (HaveL2R) { 6270 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 6271 return QualType(); 6272 LTy = LHS.get()->getType(); 6273 } else if (HaveR2L) { 6274 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 6275 return QualType(); 6276 RTy = RHS.get()->getType(); 6277 } 6278 } 6279 6280 // C++11 [expr.cond]p3 6281 // if both are glvalues of the same value category and the same type except 6282 // for cv-qualification, an attempt is made to convert each of those 6283 // operands to the type of the other. 6284 // FIXME: 6285 // Resolving a defect in P0012R1: we extend this to cover all cases where 6286 // one of the operands is reference-compatible with the other, in order 6287 // to support conditionals between functions differing in noexcept. This 6288 // will similarly cover difference in array bounds after P0388R4. 6289 // FIXME: If LTy and RTy have a composite pointer type, should we convert to 6290 // that instead? 6291 ExprValueKind LVK = LHS.get()->getValueKind(); 6292 ExprValueKind RVK = RHS.get()->getValueKind(); 6293 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) { 6294 // DerivedToBase was already handled by the class-specific case above. 6295 // FIXME: Should we allow ObjC conversions here? 6296 const ReferenceConversions AllowedConversions = 6297 ReferenceConversions::Qualification | 6298 ReferenceConversions::NestedQualification | 6299 ReferenceConversions::Function; 6300 6301 ReferenceConversions RefConv; 6302 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) == 6303 Ref_Compatible && 6304 !(RefConv & ~AllowedConversions) && 6305 // [...] subject to the constraint that the reference must bind 6306 // directly [...] 6307 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) { 6308 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 6309 RTy = RHS.get()->getType(); 6310 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) == 6311 Ref_Compatible && 6312 !(RefConv & ~AllowedConversions) && 6313 !LHS.get()->refersToBitField() && 6314 !LHS.get()->refersToVectorElement()) { 6315 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 6316 LTy = LHS.get()->getType(); 6317 } 6318 } 6319 6320 // C++11 [expr.cond]p4 6321 // If the second and third operands are glvalues of the same value 6322 // category and have the same type, the result is of that type and 6323 // value category and it is a bit-field if the second or the third 6324 // operand is a bit-field, or if both are bit-fields. 6325 // We only extend this to bitfields, not to the crazy other kinds of 6326 // l-values. 6327 bool Same = Context.hasSameType(LTy, RTy); 6328 if (Same && LVK == RVK && LVK != VK_PRValue && 6329 LHS.get()->isOrdinaryOrBitFieldObject() && 6330 RHS.get()->isOrdinaryOrBitFieldObject()) { 6331 VK = LHS.get()->getValueKind(); 6332 if (LHS.get()->getObjectKind() == OK_BitField || 6333 RHS.get()->getObjectKind() == OK_BitField) 6334 OK = OK_BitField; 6335 6336 // If we have function pointer types, unify them anyway to unify their 6337 // exception specifications, if any. 6338 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6339 Qualifiers Qs = LTy.getQualifiers(); 6340 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS, 6341 /*ConvertArgs*/false); 6342 LTy = Context.getQualifiedType(LTy, Qs); 6343 6344 assert(!LTy.isNull() && "failed to find composite pointer type for " 6345 "canonically equivalent function ptr types"); 6346 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type"); 6347 } 6348 6349 return LTy; 6350 } 6351 6352 // C++11 [expr.cond]p5 6353 // Otherwise, the result is a prvalue. If the second and third operands 6354 // do not have the same type, and either has (cv) class type, ... 6355 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 6356 // ... overload resolution is used to determine the conversions (if any) 6357 // to be applied to the operands. If the overload resolution fails, the 6358 // program is ill-formed. 6359 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 6360 return QualType(); 6361 } 6362 6363 // C++11 [expr.cond]p6 6364 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 6365 // conversions are performed on the second and third operands. 6366 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6367 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6368 if (LHS.isInvalid() || RHS.isInvalid()) 6369 return QualType(); 6370 LTy = LHS.get()->getType(); 6371 RTy = RHS.get()->getType(); 6372 6373 // After those conversions, one of the following shall hold: 6374 // -- The second and third operands have the same type; the result 6375 // is of that type. If the operands have class type, the result 6376 // is a prvalue temporary of the result type, which is 6377 // copy-initialized from either the second operand or the third 6378 // operand depending on the value of the first operand. 6379 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { 6380 if (LTy->isRecordType()) { 6381 // The operands have class type. Make a temporary copy. 6382 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); 6383 6384 ExprResult LHSCopy = PerformCopyInitialization(Entity, 6385 SourceLocation(), 6386 LHS); 6387 if (LHSCopy.isInvalid()) 6388 return QualType(); 6389 6390 ExprResult RHSCopy = PerformCopyInitialization(Entity, 6391 SourceLocation(), 6392 RHS); 6393 if (RHSCopy.isInvalid()) 6394 return QualType(); 6395 6396 LHS = LHSCopy; 6397 RHS = RHSCopy; 6398 } 6399 6400 // If we have function pointer types, unify them anyway to unify their 6401 // exception specifications, if any. 6402 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6403 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS); 6404 assert(!LTy.isNull() && "failed to find composite pointer type for " 6405 "canonically equivalent function ptr types"); 6406 } 6407 6408 return LTy; 6409 } 6410 6411 // Extension: conditional operator involving vector types. 6412 if (LTy->isVectorType() || RTy->isVectorType()) 6413 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false, 6414 /*AllowBothBool*/true, 6415 /*AllowBoolConversions*/false); 6416 6417 // -- The second and third operands have arithmetic or enumeration type; 6418 // the usual arithmetic conversions are performed to bring them to a 6419 // common type, and the result is of that type. 6420 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 6421 QualType ResTy = 6422 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6423 if (LHS.isInvalid() || RHS.isInvalid()) 6424 return QualType(); 6425 if (ResTy.isNull()) { 6426 Diag(QuestionLoc, 6427 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy 6428 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6429 return QualType(); 6430 } 6431 6432 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 6433 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 6434 6435 return ResTy; 6436 } 6437 6438 // -- The second and third operands have pointer type, or one has pointer 6439 // type and the other is a null pointer constant, or both are null 6440 // pointer constants, at least one of which is non-integral; pointer 6441 // conversions and qualification conversions are performed to bring them 6442 // to their composite pointer type. The result is of the composite 6443 // pointer type. 6444 // -- The second and third operands have pointer to member type, or one has 6445 // pointer to member type and the other is a null pointer constant; 6446 // pointer to member conversions and qualification conversions are 6447 // performed to bring them to a common type, whose cv-qualification 6448 // shall match the cv-qualification of either the second or the third 6449 // operand. The result is of the common type. 6450 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS); 6451 if (!Composite.isNull()) 6452 return Composite; 6453 6454 // Similarly, attempt to find composite type of two objective-c pointers. 6455 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 6456 if (LHS.isInvalid() || RHS.isInvalid()) 6457 return QualType(); 6458 if (!Composite.isNull()) 6459 return Composite; 6460 6461 // Check if we are using a null with a non-pointer type. 6462 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6463 return QualType(); 6464 6465 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6466 << LHS.get()->getType() << RHS.get()->getType() 6467 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6468 return QualType(); 6469 } 6470 6471 static FunctionProtoType::ExceptionSpecInfo 6472 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1, 6473 FunctionProtoType::ExceptionSpecInfo ESI2, 6474 SmallVectorImpl<QualType> &ExceptionTypeStorage) { 6475 ExceptionSpecificationType EST1 = ESI1.Type; 6476 ExceptionSpecificationType EST2 = ESI2.Type; 6477 6478 // If either of them can throw anything, that is the result. 6479 if (EST1 == EST_None) return ESI1; 6480 if (EST2 == EST_None) return ESI2; 6481 if (EST1 == EST_MSAny) return ESI1; 6482 if (EST2 == EST_MSAny) return ESI2; 6483 if (EST1 == EST_NoexceptFalse) return ESI1; 6484 if (EST2 == EST_NoexceptFalse) return ESI2; 6485 6486 // If either of them is non-throwing, the result is the other. 6487 if (EST1 == EST_NoThrow) return ESI2; 6488 if (EST2 == EST_NoThrow) return ESI1; 6489 if (EST1 == EST_DynamicNone) return ESI2; 6490 if (EST2 == EST_DynamicNone) return ESI1; 6491 if (EST1 == EST_BasicNoexcept) return ESI2; 6492 if (EST2 == EST_BasicNoexcept) return ESI1; 6493 if (EST1 == EST_NoexceptTrue) return ESI2; 6494 if (EST2 == EST_NoexceptTrue) return ESI1; 6495 6496 // If we're left with value-dependent computed noexcept expressions, we're 6497 // stuck. Before C++17, we can just drop the exception specification entirely, 6498 // since it's not actually part of the canonical type. And this should never 6499 // happen in C++17, because it would mean we were computing the composite 6500 // pointer type of dependent types, which should never happen. 6501 if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { 6502 assert(!S.getLangOpts().CPlusPlus17 && 6503 "computing composite pointer type of dependent types"); 6504 return FunctionProtoType::ExceptionSpecInfo(); 6505 } 6506 6507 // Switch over the possibilities so that people adding new values know to 6508 // update this function. 6509 switch (EST1) { 6510 case EST_None: 6511 case EST_DynamicNone: 6512 case EST_MSAny: 6513 case EST_BasicNoexcept: 6514 case EST_DependentNoexcept: 6515 case EST_NoexceptFalse: 6516 case EST_NoexceptTrue: 6517 case EST_NoThrow: 6518 llvm_unreachable("handled above"); 6519 6520 case EST_Dynamic: { 6521 // This is the fun case: both exception specifications are dynamic. Form 6522 // the union of the two lists. 6523 assert(EST2 == EST_Dynamic && "other cases should already be handled"); 6524 llvm::SmallPtrSet<QualType, 8> Found; 6525 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions}) 6526 for (QualType E : Exceptions) 6527 if (Found.insert(S.Context.getCanonicalType(E)).second) 6528 ExceptionTypeStorage.push_back(E); 6529 6530 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); 6531 Result.Exceptions = ExceptionTypeStorage; 6532 return Result; 6533 } 6534 6535 case EST_Unevaluated: 6536 case EST_Uninstantiated: 6537 case EST_Unparsed: 6538 llvm_unreachable("shouldn't see unresolved exception specifications here"); 6539 } 6540 6541 llvm_unreachable("invalid ExceptionSpecificationType"); 6542 } 6543 6544 /// Find a merged pointer type and convert the two expressions to it. 6545 /// 6546 /// This finds the composite pointer type for \p E1 and \p E2 according to 6547 /// C++2a [expr.type]p3. It converts both expressions to this type and returns 6548 /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs 6549 /// is \c true). 6550 /// 6551 /// \param Loc The location of the operator requiring these two expressions to 6552 /// be converted to the composite pointer type. 6553 /// 6554 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type. 6555 QualType Sema::FindCompositePointerType(SourceLocation Loc, 6556 Expr *&E1, Expr *&E2, 6557 bool ConvertArgs) { 6558 assert(getLangOpts().CPlusPlus && "This function assumes C++"); 6559 6560 // C++1z [expr]p14: 6561 // The composite pointer type of two operands p1 and p2 having types T1 6562 // and T2 6563 QualType T1 = E1->getType(), T2 = E2->getType(); 6564 6565 // where at least one is a pointer or pointer to member type or 6566 // std::nullptr_t is: 6567 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || 6568 T1->isNullPtrType(); 6569 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || 6570 T2->isNullPtrType(); 6571 if (!T1IsPointerLike && !T2IsPointerLike) 6572 return QualType(); 6573 6574 // - if both p1 and p2 are null pointer constants, std::nullptr_t; 6575 // This can't actually happen, following the standard, but we also use this 6576 // to implement the end of [expr.conv], which hits this case. 6577 // 6578 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; 6579 if (T1IsPointerLike && 6580 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6581 if (ConvertArgs) 6582 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType() 6583 ? CK_NullToMemberPointer 6584 : CK_NullToPointer).get(); 6585 return T1; 6586 } 6587 if (T2IsPointerLike && 6588 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6589 if (ConvertArgs) 6590 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType() 6591 ? CK_NullToMemberPointer 6592 : CK_NullToPointer).get(); 6593 return T2; 6594 } 6595 6596 // Now both have to be pointers or member pointers. 6597 if (!T1IsPointerLike || !T2IsPointerLike) 6598 return QualType(); 6599 assert(!T1->isNullPtrType() && !T2->isNullPtrType() && 6600 "nullptr_t should be a null pointer constant"); 6601 6602 struct Step { 6603 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K; 6604 // Qualifiers to apply under the step kind. 6605 Qualifiers Quals; 6606 /// The class for a pointer-to-member; a constant array type with a bound 6607 /// (if any) for an array. 6608 const Type *ClassOrBound; 6609 6610 Step(Kind K, const Type *ClassOrBound = nullptr) 6611 : K(K), Quals(), ClassOrBound(ClassOrBound) {} 6612 QualType rebuild(ASTContext &Ctx, QualType T) const { 6613 T = Ctx.getQualifiedType(T, Quals); 6614 switch (K) { 6615 case Pointer: 6616 return Ctx.getPointerType(T); 6617 case MemberPointer: 6618 return Ctx.getMemberPointerType(T, ClassOrBound); 6619 case ObjCPointer: 6620 return Ctx.getObjCObjectPointerType(T); 6621 case Array: 6622 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound)) 6623 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr, 6624 ArrayType::Normal, 0); 6625 else 6626 return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0); 6627 } 6628 llvm_unreachable("unknown step kind"); 6629 } 6630 }; 6631 6632 SmallVector<Step, 8> Steps; 6633 6634 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6635 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6636 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, 6637 // respectively; 6638 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer 6639 // to member of C2 of type cv2 U2" for some non-function type U, where 6640 // C1 is reference-related to C2 or C2 is reference-related to C1, the 6641 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2, 6642 // respectively; 6643 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and 6644 // T2; 6645 // 6646 // Dismantle T1 and T2 to simultaneously determine whether they are similar 6647 // and to prepare to form the cv-combined type if so. 6648 QualType Composite1 = T1; 6649 QualType Composite2 = T2; 6650 unsigned NeedConstBefore = 0; 6651 while (true) { 6652 assert(!Composite1.isNull() && !Composite2.isNull()); 6653 6654 Qualifiers Q1, Q2; 6655 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1); 6656 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2); 6657 6658 // Top-level qualifiers are ignored. Merge at all lower levels. 6659 if (!Steps.empty()) { 6660 // Find the qualifier union: (approximately) the unique minimal set of 6661 // qualifiers that is compatible with both types. 6662 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() | 6663 Q2.getCVRUQualifiers()); 6664 6665 // Under one level of pointer or pointer-to-member, we can change to an 6666 // unambiguous compatible address space. 6667 if (Q1.getAddressSpace() == Q2.getAddressSpace()) { 6668 Quals.setAddressSpace(Q1.getAddressSpace()); 6669 } else if (Steps.size() == 1) { 6670 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2); 6671 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1); 6672 if (MaybeQ1 == MaybeQ2) 6673 return QualType(); // No unique best address space. 6674 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace() 6675 : Q2.getAddressSpace()); 6676 } else { 6677 return QualType(); 6678 } 6679 6680 // FIXME: In C, we merge __strong and none to __strong at the top level. 6681 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr()) 6682 Quals.setObjCGCAttr(Q1.getObjCGCAttr()); 6683 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6684 assert(Steps.size() == 1); 6685 else 6686 return QualType(); 6687 6688 // Mismatched lifetime qualifiers never compatibly include each other. 6689 if (Q1.getObjCLifetime() == Q2.getObjCLifetime()) 6690 Quals.setObjCLifetime(Q1.getObjCLifetime()); 6691 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6692 assert(Steps.size() == 1); 6693 else 6694 return QualType(); 6695 6696 Steps.back().Quals = Quals; 6697 if (Q1 != Quals || Q2 != Quals) 6698 NeedConstBefore = Steps.size() - 1; 6699 } 6700 6701 // FIXME: Can we unify the following with UnwrapSimilarTypes? 6702 const PointerType *Ptr1, *Ptr2; 6703 if ((Ptr1 = Composite1->getAs<PointerType>()) && 6704 (Ptr2 = Composite2->getAs<PointerType>())) { 6705 Composite1 = Ptr1->getPointeeType(); 6706 Composite2 = Ptr2->getPointeeType(); 6707 Steps.emplace_back(Step::Pointer); 6708 continue; 6709 } 6710 6711 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2; 6712 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) && 6713 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) { 6714 Composite1 = ObjPtr1->getPointeeType(); 6715 Composite2 = ObjPtr2->getPointeeType(); 6716 Steps.emplace_back(Step::ObjCPointer); 6717 continue; 6718 } 6719 6720 const MemberPointerType *MemPtr1, *MemPtr2; 6721 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 6722 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 6723 Composite1 = MemPtr1->getPointeeType(); 6724 Composite2 = MemPtr2->getPointeeType(); 6725 6726 // At the top level, we can perform a base-to-derived pointer-to-member 6727 // conversion: 6728 // 6729 // - [...] where C1 is reference-related to C2 or C2 is 6730 // reference-related to C1 6731 // 6732 // (Note that the only kinds of reference-relatedness in scope here are 6733 // "same type or derived from".) At any other level, the class must 6734 // exactly match. 6735 const Type *Class = nullptr; 6736 QualType Cls1(MemPtr1->getClass(), 0); 6737 QualType Cls2(MemPtr2->getClass(), 0); 6738 if (Context.hasSameType(Cls1, Cls2)) 6739 Class = MemPtr1->getClass(); 6740 else if (Steps.empty()) 6741 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() : 6742 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr; 6743 if (!Class) 6744 return QualType(); 6745 6746 Steps.emplace_back(Step::MemberPointer, Class); 6747 continue; 6748 } 6749 6750 // Special case: at the top level, we can decompose an Objective-C pointer 6751 // and a 'cv void *'. Unify the qualifiers. 6752 if (Steps.empty() && ((Composite1->isVoidPointerType() && 6753 Composite2->isObjCObjectPointerType()) || 6754 (Composite1->isObjCObjectPointerType() && 6755 Composite2->isVoidPointerType()))) { 6756 Composite1 = Composite1->getPointeeType(); 6757 Composite2 = Composite2->getPointeeType(); 6758 Steps.emplace_back(Step::Pointer); 6759 continue; 6760 } 6761 6762 // FIXME: arrays 6763 6764 // FIXME: block pointer types? 6765 6766 // Cannot unwrap any more types. 6767 break; 6768 } 6769 6770 // - if T1 or T2 is "pointer to noexcept function" and the other type is 6771 // "pointer to function", where the function types are otherwise the same, 6772 // "pointer to function"; 6773 // - if T1 or T2 is "pointer to member of C1 of type function", the other 6774 // type is "pointer to member of C2 of type noexcept function", and C1 6775 // is reference-related to C2 or C2 is reference-related to C1, where 6776 // the function types are otherwise the same, "pointer to member of C2 of 6777 // type function" or "pointer to member of C1 of type function", 6778 // respectively; 6779 // 6780 // We also support 'noreturn' here, so as a Clang extension we generalize the 6781 // above to: 6782 // 6783 // - [Clang] If T1 and T2 are both of type "pointer to function" or 6784 // "pointer to member function" and the pointee types can be unified 6785 // by a function pointer conversion, that conversion is applied 6786 // before checking the following rules. 6787 // 6788 // We've already unwrapped down to the function types, and we want to merge 6789 // rather than just convert, so do this ourselves rather than calling 6790 // IsFunctionConversion. 6791 // 6792 // FIXME: In order to match the standard wording as closely as possible, we 6793 // currently only do this under a single level of pointers. Ideally, we would 6794 // allow this in general, and set NeedConstBefore to the relevant depth on 6795 // the side(s) where we changed anything. If we permit that, we should also 6796 // consider this conversion when determining type similarity and model it as 6797 // a qualification conversion. 6798 if (Steps.size() == 1) { 6799 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { 6800 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { 6801 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); 6802 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); 6803 6804 // The result is noreturn if both operands are. 6805 bool Noreturn = 6806 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); 6807 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn); 6808 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn); 6809 6810 // The result is nothrow if both operands are. 6811 SmallVector<QualType, 8> ExceptionTypeStorage; 6812 EPI1.ExceptionSpec = EPI2.ExceptionSpec = 6813 mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec, 6814 ExceptionTypeStorage); 6815 6816 Composite1 = Context.getFunctionType(FPT1->getReturnType(), 6817 FPT1->getParamTypes(), EPI1); 6818 Composite2 = Context.getFunctionType(FPT2->getReturnType(), 6819 FPT2->getParamTypes(), EPI2); 6820 } 6821 } 6822 } 6823 6824 // There are some more conversions we can perform under exactly one pointer. 6825 if (Steps.size() == 1 && Steps.front().K == Step::Pointer && 6826 !Context.hasSameType(Composite1, Composite2)) { 6827 // - if T1 or T2 is "pointer to cv1 void" and the other type is 6828 // "pointer to cv2 T", where T is an object type or void, 6829 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2; 6830 if (Composite1->isVoidType() && Composite2->isObjectType()) 6831 Composite2 = Composite1; 6832 else if (Composite2->isVoidType() && Composite1->isObjectType()) 6833 Composite1 = Composite2; 6834 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6835 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6836 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and 6837 // T1, respectively; 6838 // 6839 // The "similar type" handling covers all of this except for the "T1 is a 6840 // base class of T2" case in the definition of reference-related. 6841 else if (IsDerivedFrom(Loc, Composite1, Composite2)) 6842 Composite1 = Composite2; 6843 else if (IsDerivedFrom(Loc, Composite2, Composite1)) 6844 Composite2 = Composite1; 6845 } 6846 6847 // At this point, either the inner types are the same or we have failed to 6848 // find a composite pointer type. 6849 if (!Context.hasSameType(Composite1, Composite2)) 6850 return QualType(); 6851 6852 // Per C++ [conv.qual]p3, add 'const' to every level before the last 6853 // differing qualifier. 6854 for (unsigned I = 0; I != NeedConstBefore; ++I) 6855 Steps[I].Quals.addConst(); 6856 6857 // Rebuild the composite type. 6858 QualType Composite = Composite1; 6859 for (auto &S : llvm::reverse(Steps)) 6860 Composite = S.rebuild(Context, Composite); 6861 6862 if (ConvertArgs) { 6863 // Convert the expressions to the composite pointer type. 6864 InitializedEntity Entity = 6865 InitializedEntity::InitializeTemporary(Composite); 6866 InitializationKind Kind = 6867 InitializationKind::CreateCopy(Loc, SourceLocation()); 6868 6869 InitializationSequence E1ToC(*this, Entity, Kind, E1); 6870 if (!E1ToC) 6871 return QualType(); 6872 6873 InitializationSequence E2ToC(*this, Entity, Kind, E2); 6874 if (!E2ToC) 6875 return QualType(); 6876 6877 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics. 6878 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1); 6879 if (E1Result.isInvalid()) 6880 return QualType(); 6881 E1 = E1Result.get(); 6882 6883 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2); 6884 if (E2Result.isInvalid()) 6885 return QualType(); 6886 E2 = E2Result.get(); 6887 } 6888 6889 return Composite; 6890 } 6891 6892 ExprResult Sema::MaybeBindToTemporary(Expr *E) { 6893 if (!E) 6894 return ExprError(); 6895 6896 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); 6897 6898 // If the result is a glvalue, we shouldn't bind it. 6899 if (E->isGLValue()) 6900 return E; 6901 6902 // In ARC, calls that return a retainable type can return retained, 6903 // in which case we have to insert a consuming cast. 6904 if (getLangOpts().ObjCAutoRefCount && 6905 E->getType()->isObjCRetainableType()) { 6906 6907 bool ReturnsRetained; 6908 6909 // For actual calls, we compute this by examining the type of the 6910 // called value. 6911 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 6912 Expr *Callee = Call->getCallee()->IgnoreParens(); 6913 QualType T = Callee->getType(); 6914 6915 if (T == Context.BoundMemberTy) { 6916 // Handle pointer-to-members. 6917 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 6918 T = BinOp->getRHS()->getType(); 6919 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 6920 T = Mem->getMemberDecl()->getType(); 6921 } 6922 6923 if (const PointerType *Ptr = T->getAs<PointerType>()) 6924 T = Ptr->getPointeeType(); 6925 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 6926 T = Ptr->getPointeeType(); 6927 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 6928 T = MemPtr->getPointeeType(); 6929 6930 auto *FTy = T->castAs<FunctionType>(); 6931 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 6932 6933 // ActOnStmtExpr arranges things so that StmtExprs of retainable 6934 // type always produce a +1 object. 6935 } else if (isa<StmtExpr>(E)) { 6936 ReturnsRetained = true; 6937 6938 // We hit this case with the lambda conversion-to-block optimization; 6939 // we don't want any extra casts here. 6940 } else if (isa<CastExpr>(E) && 6941 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 6942 return E; 6943 6944 // For message sends and property references, we try to find an 6945 // actual method. FIXME: we should infer retention by selector in 6946 // cases where we don't have an actual method. 6947 } else { 6948 ObjCMethodDecl *D = nullptr; 6949 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 6950 D = Send->getMethodDecl(); 6951 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 6952 D = BoxedExpr->getBoxingMethod(); 6953 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 6954 // Don't do reclaims if we're using the zero-element array 6955 // constant. 6956 if (ArrayLit->getNumElements() == 0 && 6957 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 6958 return E; 6959 6960 D = ArrayLit->getArrayWithObjectsMethod(); 6961 } else if (ObjCDictionaryLiteral *DictLit 6962 = dyn_cast<ObjCDictionaryLiteral>(E)) { 6963 // Don't do reclaims if we're using the zero-element dictionary 6964 // constant. 6965 if (DictLit->getNumElements() == 0 && 6966 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 6967 return E; 6968 6969 D = DictLit->getDictWithObjectsMethod(); 6970 } 6971 6972 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 6973 6974 // Don't do reclaims on performSelector calls; despite their 6975 // return type, the invoked method doesn't necessarily actually 6976 // return an object. 6977 if (!ReturnsRetained && 6978 D && D->getMethodFamily() == OMF_performSelector) 6979 return E; 6980 } 6981 6982 // Don't reclaim an object of Class type. 6983 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 6984 return E; 6985 6986 Cleanup.setExprNeedsCleanups(true); 6987 6988 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 6989 : CK_ARCReclaimReturnedObject); 6990 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 6991 VK_PRValue, FPOptionsOverride()); 6992 } 6993 6994 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 6995 Cleanup.setExprNeedsCleanups(true); 6996 6997 if (!getLangOpts().CPlusPlus) 6998 return E; 6999 7000 // Search for the base element type (cf. ASTContext::getBaseElementType) with 7001 // a fast path for the common case that the type is directly a RecordType. 7002 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 7003 const RecordType *RT = nullptr; 7004 while (!RT) { 7005 switch (T->getTypeClass()) { 7006 case Type::Record: 7007 RT = cast<RecordType>(T); 7008 break; 7009 case Type::ConstantArray: 7010 case Type::IncompleteArray: 7011 case Type::VariableArray: 7012 case Type::DependentSizedArray: 7013 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 7014 break; 7015 default: 7016 return E; 7017 } 7018 } 7019 7020 // That should be enough to guarantee that this type is complete, if we're 7021 // not processing a decltype expression. 7022 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 7023 if (RD->isInvalidDecl() || RD->isDependentContext()) 7024 return E; 7025 7026 bool IsDecltype = ExprEvalContexts.back().ExprContext == 7027 ExpressionEvaluationContextRecord::EK_Decltype; 7028 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 7029 7030 if (Destructor) { 7031 MarkFunctionReferenced(E->getExprLoc(), Destructor); 7032 CheckDestructorAccess(E->getExprLoc(), Destructor, 7033 PDiag(diag::err_access_dtor_temp) 7034 << E->getType()); 7035 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 7036 return ExprError(); 7037 7038 // If destructor is trivial, we can avoid the extra copy. 7039 if (Destructor->isTrivial()) 7040 return E; 7041 7042 // We need a cleanup, but we don't need to remember the temporary. 7043 Cleanup.setExprNeedsCleanups(true); 7044 } 7045 7046 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 7047 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 7048 7049 if (IsDecltype) 7050 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 7051 7052 return Bind; 7053 } 7054 7055 ExprResult 7056 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 7057 if (SubExpr.isInvalid()) 7058 return ExprError(); 7059 7060 return MaybeCreateExprWithCleanups(SubExpr.get()); 7061 } 7062 7063 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 7064 assert(SubExpr && "subexpression can't be null!"); 7065 7066 CleanupVarDeclMarking(); 7067 7068 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 7069 assert(ExprCleanupObjects.size() >= FirstCleanup); 7070 assert(Cleanup.exprNeedsCleanups() || 7071 ExprCleanupObjects.size() == FirstCleanup); 7072 if (!Cleanup.exprNeedsCleanups()) 7073 return SubExpr; 7074 7075 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 7076 ExprCleanupObjects.size() - FirstCleanup); 7077 7078 auto *E = ExprWithCleanups::Create( 7079 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); 7080 DiscardCleanupsInEvaluationContext(); 7081 7082 return E; 7083 } 7084 7085 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 7086 assert(SubStmt && "sub-statement can't be null!"); 7087 7088 CleanupVarDeclMarking(); 7089 7090 if (!Cleanup.exprNeedsCleanups()) 7091 return SubStmt; 7092 7093 // FIXME: In order to attach the temporaries, wrap the statement into 7094 // a StmtExpr; currently this is only used for asm statements. 7095 // This is hacky, either create a new CXXStmtWithTemporaries statement or 7096 // a new AsmStmtWithTemporaries. 7097 CompoundStmt *CompStmt = CompoundStmt::Create( 7098 Context, SubStmt, SourceLocation(), SourceLocation()); 7099 Expr *E = new (Context) 7100 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(), 7101 /*FIXME TemplateDepth=*/0); 7102 return MaybeCreateExprWithCleanups(E); 7103 } 7104 7105 /// Process the expression contained within a decltype. For such expressions, 7106 /// certain semantic checks on temporaries are delayed until this point, and 7107 /// are omitted for the 'topmost' call in the decltype expression. If the 7108 /// topmost call bound a temporary, strip that temporary off the expression. 7109 ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 7110 assert(ExprEvalContexts.back().ExprContext == 7111 ExpressionEvaluationContextRecord::EK_Decltype && 7112 "not in a decltype expression"); 7113 7114 ExprResult Result = CheckPlaceholderExpr(E); 7115 if (Result.isInvalid()) 7116 return ExprError(); 7117 E = Result.get(); 7118 7119 // C++11 [expr.call]p11: 7120 // If a function call is a prvalue of object type, 7121 // -- if the function call is either 7122 // -- the operand of a decltype-specifier, or 7123 // -- the right operand of a comma operator that is the operand of a 7124 // decltype-specifier, 7125 // a temporary object is not introduced for the prvalue. 7126 7127 // Recursively rebuild ParenExprs and comma expressions to strip out the 7128 // outermost CXXBindTemporaryExpr, if any. 7129 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7130 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 7131 if (SubExpr.isInvalid()) 7132 return ExprError(); 7133 if (SubExpr.get() == PE->getSubExpr()) 7134 return E; 7135 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 7136 } 7137 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7138 if (BO->getOpcode() == BO_Comma) { 7139 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 7140 if (RHS.isInvalid()) 7141 return ExprError(); 7142 if (RHS.get() == BO->getRHS()) 7143 return E; 7144 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma, 7145 BO->getType(), BO->getValueKind(), 7146 BO->getObjectKind(), BO->getOperatorLoc(), 7147 BO->getFPFeatures(getLangOpts())); 7148 } 7149 } 7150 7151 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 7152 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 7153 : nullptr; 7154 if (TopCall) 7155 E = TopCall; 7156 else 7157 TopBind = nullptr; 7158 7159 // Disable the special decltype handling now. 7160 ExprEvalContexts.back().ExprContext = 7161 ExpressionEvaluationContextRecord::EK_Other; 7162 7163 Result = CheckUnevaluatedOperand(E); 7164 if (Result.isInvalid()) 7165 return ExprError(); 7166 E = Result.get(); 7167 7168 // In MS mode, don't perform any extra checking of call return types within a 7169 // decltype expression. 7170 if (getLangOpts().MSVCCompat) 7171 return E; 7172 7173 // Perform the semantic checks we delayed until this point. 7174 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 7175 I != N; ++I) { 7176 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 7177 if (Call == TopCall) 7178 continue; 7179 7180 if (CheckCallReturnType(Call->getCallReturnType(Context), 7181 Call->getBeginLoc(), Call, Call->getDirectCallee())) 7182 return ExprError(); 7183 } 7184 7185 // Now all relevant types are complete, check the destructors are accessible 7186 // and non-deleted, and annotate them on the temporaries. 7187 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 7188 I != N; ++I) { 7189 CXXBindTemporaryExpr *Bind = 7190 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 7191 if (Bind == TopBind) 7192 continue; 7193 7194 CXXTemporary *Temp = Bind->getTemporary(); 7195 7196 CXXRecordDecl *RD = 7197 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 7198 CXXDestructorDecl *Destructor = LookupDestructor(RD); 7199 Temp->setDestructor(Destructor); 7200 7201 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 7202 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 7203 PDiag(diag::err_access_dtor_temp) 7204 << Bind->getType()); 7205 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 7206 return ExprError(); 7207 7208 // We need a cleanup, but we don't need to remember the temporary. 7209 Cleanup.setExprNeedsCleanups(true); 7210 } 7211 7212 // Possibly strip off the top CXXBindTemporaryExpr. 7213 return E; 7214 } 7215 7216 /// Note a set of 'operator->' functions that were used for a member access. 7217 static void noteOperatorArrows(Sema &S, 7218 ArrayRef<FunctionDecl *> OperatorArrows) { 7219 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 7220 // FIXME: Make this configurable? 7221 unsigned Limit = 9; 7222 if (OperatorArrows.size() > Limit) { 7223 // Produce Limit-1 normal notes and one 'skipping' note. 7224 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 7225 SkipCount = OperatorArrows.size() - (Limit - 1); 7226 } 7227 7228 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 7229 if (I == SkipStart) { 7230 S.Diag(OperatorArrows[I]->getLocation(), 7231 diag::note_operator_arrows_suppressed) 7232 << SkipCount; 7233 I += SkipCount; 7234 } else { 7235 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 7236 << OperatorArrows[I]->getCallResultType(); 7237 ++I; 7238 } 7239 } 7240 } 7241 7242 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 7243 SourceLocation OpLoc, 7244 tok::TokenKind OpKind, 7245 ParsedType &ObjectType, 7246 bool &MayBePseudoDestructor) { 7247 // Since this might be a postfix expression, get rid of ParenListExprs. 7248 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 7249 if (Result.isInvalid()) return ExprError(); 7250 Base = Result.get(); 7251 7252 Result = CheckPlaceholderExpr(Base); 7253 if (Result.isInvalid()) return ExprError(); 7254 Base = Result.get(); 7255 7256 QualType BaseType = Base->getType(); 7257 MayBePseudoDestructor = false; 7258 if (BaseType->isDependentType()) { 7259 // If we have a pointer to a dependent type and are using the -> operator, 7260 // the object type is the type that the pointer points to. We might still 7261 // have enough information about that type to do something useful. 7262 if (OpKind == tok::arrow) 7263 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 7264 BaseType = Ptr->getPointeeType(); 7265 7266 ObjectType = ParsedType::make(BaseType); 7267 MayBePseudoDestructor = true; 7268 return Base; 7269 } 7270 7271 // C++ [over.match.oper]p8: 7272 // [...] When operator->returns, the operator-> is applied to the value 7273 // returned, with the original second operand. 7274 if (OpKind == tok::arrow) { 7275 QualType StartingType = BaseType; 7276 bool NoArrowOperatorFound = false; 7277 bool FirstIteration = true; 7278 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 7279 // The set of types we've considered so far. 7280 llvm::SmallPtrSet<CanQualType,8> CTypes; 7281 SmallVector<FunctionDecl*, 8> OperatorArrows; 7282 CTypes.insert(Context.getCanonicalType(BaseType)); 7283 7284 while (BaseType->isRecordType()) { 7285 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 7286 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 7287 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 7288 noteOperatorArrows(*this, OperatorArrows); 7289 Diag(OpLoc, diag::note_operator_arrow_depth) 7290 << getLangOpts().ArrowDepth; 7291 return ExprError(); 7292 } 7293 7294 Result = BuildOverloadedArrowExpr( 7295 S, Base, OpLoc, 7296 // When in a template specialization and on the first loop iteration, 7297 // potentially give the default diagnostic (with the fixit in a 7298 // separate note) instead of having the error reported back to here 7299 // and giving a diagnostic with a fixit attached to the error itself. 7300 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 7301 ? nullptr 7302 : &NoArrowOperatorFound); 7303 if (Result.isInvalid()) { 7304 if (NoArrowOperatorFound) { 7305 if (FirstIteration) { 7306 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7307 << BaseType << 1 << Base->getSourceRange() 7308 << FixItHint::CreateReplacement(OpLoc, "."); 7309 OpKind = tok::period; 7310 break; 7311 } 7312 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7313 << BaseType << Base->getSourceRange(); 7314 CallExpr *CE = dyn_cast<CallExpr>(Base); 7315 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 7316 Diag(CD->getBeginLoc(), 7317 diag::note_member_reference_arrow_from_operator_arrow); 7318 } 7319 } 7320 return ExprError(); 7321 } 7322 Base = Result.get(); 7323 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 7324 OperatorArrows.push_back(OpCall->getDirectCallee()); 7325 BaseType = Base->getType(); 7326 CanQualType CBaseType = Context.getCanonicalType(BaseType); 7327 if (!CTypes.insert(CBaseType).second) { 7328 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 7329 noteOperatorArrows(*this, OperatorArrows); 7330 return ExprError(); 7331 } 7332 FirstIteration = false; 7333 } 7334 7335 if (OpKind == tok::arrow) { 7336 if (BaseType->isPointerType()) 7337 BaseType = BaseType->getPointeeType(); 7338 else if (auto *AT = Context.getAsArrayType(BaseType)) 7339 BaseType = AT->getElementType(); 7340 } 7341 } 7342 7343 // Objective-C properties allow "." access on Objective-C pointer types, 7344 // so adjust the base type to the object type itself. 7345 if (BaseType->isObjCObjectPointerType()) 7346 BaseType = BaseType->getPointeeType(); 7347 7348 // C++ [basic.lookup.classref]p2: 7349 // [...] If the type of the object expression is of pointer to scalar 7350 // type, the unqualified-id is looked up in the context of the complete 7351 // postfix-expression. 7352 // 7353 // This also indicates that we could be parsing a pseudo-destructor-name. 7354 // Note that Objective-C class and object types can be pseudo-destructor 7355 // expressions or normal member (ivar or property) access expressions, and 7356 // it's legal for the type to be incomplete if this is a pseudo-destructor 7357 // call. We'll do more incomplete-type checks later in the lookup process, 7358 // so just skip this check for ObjC types. 7359 if (!BaseType->isRecordType()) { 7360 ObjectType = ParsedType::make(BaseType); 7361 MayBePseudoDestructor = true; 7362 return Base; 7363 } 7364 7365 // The object type must be complete (or dependent), or 7366 // C++11 [expr.prim.general]p3: 7367 // Unlike the object expression in other contexts, *this is not required to 7368 // be of complete type for purposes of class member access (5.2.5) outside 7369 // the member function body. 7370 if (!BaseType->isDependentType() && 7371 !isThisOutsideMemberFunctionBody(BaseType) && 7372 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access)) 7373 return ExprError(); 7374 7375 // C++ [basic.lookup.classref]p2: 7376 // If the id-expression in a class member access (5.2.5) is an 7377 // unqualified-id, and the type of the object expression is of a class 7378 // type C (or of pointer to a class type C), the unqualified-id is looked 7379 // up in the scope of class C. [...] 7380 ObjectType = ParsedType::make(BaseType); 7381 return Base; 7382 } 7383 7384 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base, 7385 tok::TokenKind &OpKind, SourceLocation OpLoc) { 7386 if (Base->hasPlaceholderType()) { 7387 ExprResult result = S.CheckPlaceholderExpr(Base); 7388 if (result.isInvalid()) return true; 7389 Base = result.get(); 7390 } 7391 ObjectType = Base->getType(); 7392 7393 // C++ [expr.pseudo]p2: 7394 // The left-hand side of the dot operator shall be of scalar type. The 7395 // left-hand side of the arrow operator shall be of pointer to scalar type. 7396 // This scalar type is the object type. 7397 // Note that this is rather different from the normal handling for the 7398 // arrow operator. 7399 if (OpKind == tok::arrow) { 7400 // The operator requires a prvalue, so perform lvalue conversions. 7401 // Only do this if we might plausibly end with a pointer, as otherwise 7402 // this was likely to be intended to be a '.'. 7403 if (ObjectType->isPointerType() || ObjectType->isArrayType() || 7404 ObjectType->isFunctionType()) { 7405 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base); 7406 if (BaseResult.isInvalid()) 7407 return true; 7408 Base = BaseResult.get(); 7409 ObjectType = Base->getType(); 7410 } 7411 7412 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 7413 ObjectType = Ptr->getPointeeType(); 7414 } else if (!Base->isTypeDependent()) { 7415 // The user wrote "p->" when they probably meant "p."; fix it. 7416 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7417 << ObjectType << true 7418 << FixItHint::CreateReplacement(OpLoc, "."); 7419 if (S.isSFINAEContext()) 7420 return true; 7421 7422 OpKind = tok::period; 7423 } 7424 } 7425 7426 return false; 7427 } 7428 7429 /// Check if it's ok to try and recover dot pseudo destructor calls on 7430 /// pointer objects. 7431 static bool 7432 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, 7433 QualType DestructedType) { 7434 // If this is a record type, check if its destructor is callable. 7435 if (auto *RD = DestructedType->getAsCXXRecordDecl()) { 7436 if (RD->hasDefinition()) 7437 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD)) 7438 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); 7439 return false; 7440 } 7441 7442 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. 7443 return DestructedType->isDependentType() || DestructedType->isScalarType() || 7444 DestructedType->isVectorType(); 7445 } 7446 7447 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 7448 SourceLocation OpLoc, 7449 tok::TokenKind OpKind, 7450 const CXXScopeSpec &SS, 7451 TypeSourceInfo *ScopeTypeInfo, 7452 SourceLocation CCLoc, 7453 SourceLocation TildeLoc, 7454 PseudoDestructorTypeStorage Destructed) { 7455 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 7456 7457 QualType ObjectType; 7458 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7459 return ExprError(); 7460 7461 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 7462 !ObjectType->isVectorType()) { 7463 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 7464 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 7465 else { 7466 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 7467 << ObjectType << Base->getSourceRange(); 7468 return ExprError(); 7469 } 7470 } 7471 7472 // C++ [expr.pseudo]p2: 7473 // [...] The cv-unqualified versions of the object type and of the type 7474 // designated by the pseudo-destructor-name shall be the same type. 7475 if (DestructedTypeInfo) { 7476 QualType DestructedType = DestructedTypeInfo->getType(); 7477 SourceLocation DestructedTypeStart 7478 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); 7479 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 7480 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 7481 // Detect dot pseudo destructor calls on pointer objects, e.g.: 7482 // Foo *foo; 7483 // foo.~Foo(); 7484 if (OpKind == tok::period && ObjectType->isPointerType() && 7485 Context.hasSameUnqualifiedType(DestructedType, 7486 ObjectType->getPointeeType())) { 7487 auto Diagnostic = 7488 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7489 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); 7490 7491 // Issue a fixit only when the destructor is valid. 7492 if (canRecoverDotPseudoDestructorCallsOnPointerObjects( 7493 *this, DestructedType)) 7494 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->"); 7495 7496 // Recover by setting the object type to the destructed type and the 7497 // operator to '->'. 7498 ObjectType = DestructedType; 7499 OpKind = tok::arrow; 7500 } else { 7501 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 7502 << ObjectType << DestructedType << Base->getSourceRange() 7503 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7504 7505 // Recover by setting the destructed type to the object type. 7506 DestructedType = ObjectType; 7507 DestructedTypeInfo = 7508 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); 7509 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7510 } 7511 } else if (DestructedType.getObjCLifetime() != 7512 ObjectType.getObjCLifetime()) { 7513 7514 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 7515 // Okay: just pretend that the user provided the correctly-qualified 7516 // type. 7517 } else { 7518 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 7519 << ObjectType << DestructedType << Base->getSourceRange() 7520 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7521 } 7522 7523 // Recover by setting the destructed type to the object type. 7524 DestructedType = ObjectType; 7525 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 7526 DestructedTypeStart); 7527 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7528 } 7529 } 7530 } 7531 7532 // C++ [expr.pseudo]p2: 7533 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 7534 // form 7535 // 7536 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 7537 // 7538 // shall designate the same scalar type. 7539 if (ScopeTypeInfo) { 7540 QualType ScopeType = ScopeTypeInfo->getType(); 7541 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 7542 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 7543 7544 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), 7545 diag::err_pseudo_dtor_type_mismatch) 7546 << ObjectType << ScopeType << Base->getSourceRange() 7547 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); 7548 7549 ScopeType = QualType(); 7550 ScopeTypeInfo = nullptr; 7551 } 7552 } 7553 7554 Expr *Result 7555 = new (Context) CXXPseudoDestructorExpr(Context, Base, 7556 OpKind == tok::arrow, OpLoc, 7557 SS.getWithLocInContext(Context), 7558 ScopeTypeInfo, 7559 CCLoc, 7560 TildeLoc, 7561 Destructed); 7562 7563 return Result; 7564 } 7565 7566 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7567 SourceLocation OpLoc, 7568 tok::TokenKind OpKind, 7569 CXXScopeSpec &SS, 7570 UnqualifiedId &FirstTypeName, 7571 SourceLocation CCLoc, 7572 SourceLocation TildeLoc, 7573 UnqualifiedId &SecondTypeName) { 7574 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7575 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7576 "Invalid first type name in pseudo-destructor"); 7577 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7578 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7579 "Invalid second type name in pseudo-destructor"); 7580 7581 QualType ObjectType; 7582 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7583 return ExprError(); 7584 7585 // Compute the object type that we should use for name lookup purposes. Only 7586 // record types and dependent types matter. 7587 ParsedType ObjectTypePtrForLookup; 7588 if (!SS.isSet()) { 7589 if (ObjectType->isRecordType()) 7590 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 7591 else if (ObjectType->isDependentType()) 7592 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 7593 } 7594 7595 // Convert the name of the type being destructed (following the ~) into a 7596 // type (with source-location information). 7597 QualType DestructedType; 7598 TypeSourceInfo *DestructedTypeInfo = nullptr; 7599 PseudoDestructorTypeStorage Destructed; 7600 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7601 ParsedType T = getTypeName(*SecondTypeName.Identifier, 7602 SecondTypeName.StartLocation, 7603 S, &SS, true, false, ObjectTypePtrForLookup, 7604 /*IsCtorOrDtorName*/true); 7605 if (!T && 7606 ((SS.isSet() && !computeDeclContext(SS, false)) || 7607 (!SS.isSet() && ObjectType->isDependentType()))) { 7608 // The name of the type being destroyed is a dependent name, and we 7609 // couldn't find anything useful in scope. Just store the identifier and 7610 // it's location, and we'll perform (qualified) name lookup again at 7611 // template instantiation time. 7612 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 7613 SecondTypeName.StartLocation); 7614 } else if (!T) { 7615 Diag(SecondTypeName.StartLocation, 7616 diag::err_pseudo_dtor_destructor_non_type) 7617 << SecondTypeName.Identifier << ObjectType; 7618 if (isSFINAEContext()) 7619 return ExprError(); 7620 7621 // Recover by assuming we had the right type all along. 7622 DestructedType = ObjectType; 7623 } else 7624 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 7625 } else { 7626 // Resolve the template-id to a type. 7627 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 7628 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7629 TemplateId->NumArgs); 7630 TypeResult T = ActOnTemplateIdType(S, 7631 SS, 7632 TemplateId->TemplateKWLoc, 7633 TemplateId->Template, 7634 TemplateId->Name, 7635 TemplateId->TemplateNameLoc, 7636 TemplateId->LAngleLoc, 7637 TemplateArgsPtr, 7638 TemplateId->RAngleLoc, 7639 /*IsCtorOrDtorName*/true); 7640 if (T.isInvalid() || !T.get()) { 7641 // Recover by assuming we had the right type all along. 7642 DestructedType = ObjectType; 7643 } else 7644 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 7645 } 7646 7647 // If we've performed some kind of recovery, (re-)build the type source 7648 // information. 7649 if (!DestructedType.isNull()) { 7650 if (!DestructedTypeInfo) 7651 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 7652 SecondTypeName.StartLocation); 7653 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7654 } 7655 7656 // Convert the name of the scope type (the type prior to '::') into a type. 7657 TypeSourceInfo *ScopeTypeInfo = nullptr; 7658 QualType ScopeType; 7659 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7660 FirstTypeName.Identifier) { 7661 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7662 ParsedType T = getTypeName(*FirstTypeName.Identifier, 7663 FirstTypeName.StartLocation, 7664 S, &SS, true, false, ObjectTypePtrForLookup, 7665 /*IsCtorOrDtorName*/true); 7666 if (!T) { 7667 Diag(FirstTypeName.StartLocation, 7668 diag::err_pseudo_dtor_destructor_non_type) 7669 << FirstTypeName.Identifier << ObjectType; 7670 7671 if (isSFINAEContext()) 7672 return ExprError(); 7673 7674 // Just drop this type. It's unnecessary anyway. 7675 ScopeType = QualType(); 7676 } else 7677 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 7678 } else { 7679 // Resolve the template-id to a type. 7680 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 7681 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7682 TemplateId->NumArgs); 7683 TypeResult T = ActOnTemplateIdType(S, 7684 SS, 7685 TemplateId->TemplateKWLoc, 7686 TemplateId->Template, 7687 TemplateId->Name, 7688 TemplateId->TemplateNameLoc, 7689 TemplateId->LAngleLoc, 7690 TemplateArgsPtr, 7691 TemplateId->RAngleLoc, 7692 /*IsCtorOrDtorName*/true); 7693 if (T.isInvalid() || !T.get()) { 7694 // Recover by dropping this type. 7695 ScopeType = QualType(); 7696 } else 7697 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 7698 } 7699 } 7700 7701 if (!ScopeType.isNull() && !ScopeTypeInfo) 7702 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 7703 FirstTypeName.StartLocation); 7704 7705 7706 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 7707 ScopeTypeInfo, CCLoc, TildeLoc, 7708 Destructed); 7709 } 7710 7711 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7712 SourceLocation OpLoc, 7713 tok::TokenKind OpKind, 7714 SourceLocation TildeLoc, 7715 const DeclSpec& DS) { 7716 QualType ObjectType; 7717 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7718 return ExprError(); 7719 7720 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 7721 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 7722 return true; 7723 } 7724 7725 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(), 7726 false); 7727 7728 TypeLocBuilder TLB; 7729 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 7730 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); 7731 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 7732 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 7733 7734 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 7735 nullptr, SourceLocation(), TildeLoc, 7736 Destructed); 7737 } 7738 7739 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, 7740 CXXConversionDecl *Method, 7741 bool HadMultipleCandidates) { 7742 // Convert the expression to match the conversion function's implicit object 7743 // parameter. 7744 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, 7745 FoundDecl, Method); 7746 if (Exp.isInvalid()) 7747 return true; 7748 7749 if (Method->getParent()->isLambda() && 7750 Method->getConversionType()->isBlockPointerType()) { 7751 // This is a lambda conversion to block pointer; check if the argument 7752 // was a LambdaExpr. 7753 Expr *SubE = E; 7754 CastExpr *CE = dyn_cast<CastExpr>(SubE); 7755 if (CE && CE->getCastKind() == CK_NoOp) 7756 SubE = CE->getSubExpr(); 7757 SubE = SubE->IgnoreParens(); 7758 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) 7759 SubE = BE->getSubExpr(); 7760 if (isa<LambdaExpr>(SubE)) { 7761 // For the conversion to block pointer on a lambda expression, we 7762 // construct a special BlockLiteral instead; this doesn't really make 7763 // a difference in ARC, but outside of ARC the resulting block literal 7764 // follows the normal lifetime rules for block literals instead of being 7765 // autoreleased. 7766 PushExpressionEvaluationContext( 7767 ExpressionEvaluationContext::PotentiallyEvaluated); 7768 ExprResult BlockExp = BuildBlockForLambdaConversion( 7769 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get()); 7770 PopExpressionEvaluationContext(); 7771 7772 // FIXME: This note should be produced by a CodeSynthesisContext. 7773 if (BlockExp.isInvalid()) 7774 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv); 7775 return BlockExp; 7776 } 7777 } 7778 7779 MemberExpr *ME = 7780 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(), 7781 NestedNameSpecifierLoc(), SourceLocation(), Method, 7782 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), 7783 HadMultipleCandidates, DeclarationNameInfo(), 7784 Context.BoundMemberTy, VK_PRValue, OK_Ordinary); 7785 7786 QualType ResultType = Method->getReturnType(); 7787 ExprValueKind VK = Expr::getValueKindForType(ResultType); 7788 ResultType = ResultType.getNonLValueExprType(Context); 7789 7790 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create( 7791 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(), 7792 CurFPFeatureOverrides()); 7793 7794 if (CheckFunctionCall(Method, CE, 7795 Method->getType()->castAs<FunctionProtoType>())) 7796 return ExprError(); 7797 7798 return CheckForImmediateInvocation(CE, CE->getMethodDecl()); 7799 } 7800 7801 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 7802 SourceLocation RParen) { 7803 // If the operand is an unresolved lookup expression, the expression is ill- 7804 // formed per [over.over]p1, because overloaded function names cannot be used 7805 // without arguments except in explicit contexts. 7806 ExprResult R = CheckPlaceholderExpr(Operand); 7807 if (R.isInvalid()) 7808 return R; 7809 7810 R = CheckUnevaluatedOperand(R.get()); 7811 if (R.isInvalid()) 7812 return ExprError(); 7813 7814 Operand = R.get(); 7815 7816 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() && 7817 Operand->HasSideEffects(Context, false)) { 7818 // The expression operand for noexcept is in an unevaluated expression 7819 // context, so side effects could result in unintended consequences. 7820 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 7821 } 7822 7823 CanThrowResult CanThrow = canThrow(Operand); 7824 return new (Context) 7825 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 7826 } 7827 7828 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 7829 Expr *Operand, SourceLocation RParen) { 7830 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 7831 } 7832 7833 static void MaybeDecrementCount( 7834 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { 7835 DeclRefExpr *LHS = nullptr; 7836 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7837 if (BO->getLHS()->getType()->isDependentType() || 7838 BO->getRHS()->getType()->isDependentType()) { 7839 if (BO->getOpcode() != BO_Assign) 7840 return; 7841 } else if (!BO->isAssignmentOp()) 7842 return; 7843 LHS = dyn_cast<DeclRefExpr>(BO->getLHS()); 7844 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) { 7845 if (COCE->getOperator() != OO_Equal) 7846 return; 7847 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0)); 7848 } 7849 if (!LHS) 7850 return; 7851 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl()); 7852 if (!VD) 7853 return; 7854 auto iter = RefsMinusAssignments.find(VD); 7855 if (iter == RefsMinusAssignments.end()) 7856 return; 7857 iter->getSecond()--; 7858 } 7859 7860 /// Perform the conversions required for an expression used in a 7861 /// context that ignores the result. 7862 ExprResult Sema::IgnoredValueConversions(Expr *E) { 7863 MaybeDecrementCount(E, RefsMinusAssignments); 7864 7865 if (E->hasPlaceholderType()) { 7866 ExprResult result = CheckPlaceholderExpr(E); 7867 if (result.isInvalid()) return E; 7868 E = result.get(); 7869 } 7870 7871 // C99 6.3.2.1: 7872 // [Except in specific positions,] an lvalue that does not have 7873 // array type is converted to the value stored in the 7874 // designated object (and is no longer an lvalue). 7875 if (E->isPRValue()) { 7876 // In C, function designators (i.e. expressions of function type) 7877 // are r-values, but we still want to do function-to-pointer decay 7878 // on them. This is both technically correct and convenient for 7879 // some clients. 7880 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 7881 return DefaultFunctionArrayConversion(E); 7882 7883 return E; 7884 } 7885 7886 if (getLangOpts().CPlusPlus) { 7887 // The C++11 standard defines the notion of a discarded-value expression; 7888 // normally, we don't need to do anything to handle it, but if it is a 7889 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 7890 // conversion. 7891 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) { 7892 ExprResult Res = DefaultLvalueConversion(E); 7893 if (Res.isInvalid()) 7894 return E; 7895 E = Res.get(); 7896 } else { 7897 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 7898 // it occurs as a discarded-value expression. 7899 CheckUnusedVolatileAssignment(E); 7900 } 7901 7902 // C++1z: 7903 // If the expression is a prvalue after this optional conversion, the 7904 // temporary materialization conversion is applied. 7905 // 7906 // We skip this step: IR generation is able to synthesize the storage for 7907 // itself in the aggregate case, and adding the extra node to the AST is 7908 // just clutter. 7909 // FIXME: We don't emit lifetime markers for the temporaries due to this. 7910 // FIXME: Do any other AST consumers care about this? 7911 return E; 7912 } 7913 7914 // GCC seems to also exclude expressions of incomplete enum type. 7915 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 7916 if (!T->getDecl()->isComplete()) { 7917 // FIXME: stupid workaround for a codegen bug! 7918 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 7919 return E; 7920 } 7921 } 7922 7923 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 7924 if (Res.isInvalid()) 7925 return E; 7926 E = Res.get(); 7927 7928 if (!E->getType()->isVoidType()) 7929 RequireCompleteType(E->getExprLoc(), E->getType(), 7930 diag::err_incomplete_type); 7931 return E; 7932 } 7933 7934 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) { 7935 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 7936 // it occurs as an unevaluated operand. 7937 CheckUnusedVolatileAssignment(E); 7938 7939 return E; 7940 } 7941 7942 // If we can unambiguously determine whether Var can never be used 7943 // in a constant expression, return true. 7944 // - if the variable and its initializer are non-dependent, then 7945 // we can unambiguously check if the variable is a constant expression. 7946 // - if the initializer is not value dependent - we can determine whether 7947 // it can be used to initialize a constant expression. If Init can not 7948 // be used to initialize a constant expression we conclude that Var can 7949 // never be a constant expression. 7950 // - FXIME: if the initializer is dependent, we can still do some analysis and 7951 // identify certain cases unambiguously as non-const by using a Visitor: 7952 // - such as those that involve odr-use of a ParmVarDecl, involve a new 7953 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 7954 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 7955 ASTContext &Context) { 7956 if (isa<ParmVarDecl>(Var)) return true; 7957 const VarDecl *DefVD = nullptr; 7958 7959 // If there is no initializer - this can not be a constant expression. 7960 if (!Var->getAnyInitializer(DefVD)) return true; 7961 assert(DefVD); 7962 if (DefVD->isWeak()) return false; 7963 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); 7964 7965 Expr *Init = cast<Expr>(Eval->Value); 7966 7967 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 7968 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 7969 // of value-dependent expressions, and use it here to determine whether the 7970 // initializer is a potential constant expression. 7971 return false; 7972 } 7973 7974 return !Var->isUsableInConstantExpressions(Context); 7975 } 7976 7977 /// Check if the current lambda has any potential captures 7978 /// that must be captured by any of its enclosing lambdas that are ready to 7979 /// capture. If there is a lambda that can capture a nested 7980 /// potential-capture, go ahead and do so. Also, check to see if any 7981 /// variables are uncaptureable or do not involve an odr-use so do not 7982 /// need to be captured. 7983 7984 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 7985 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 7986 7987 assert(!S.isUnevaluatedContext()); 7988 assert(S.CurContext->isDependentContext()); 7989 #ifndef NDEBUG 7990 DeclContext *DC = S.CurContext; 7991 while (DC && isa<CapturedDecl>(DC)) 7992 DC = DC->getParent(); 7993 assert( 7994 CurrentLSI->CallOperator == DC && 7995 "The current call operator must be synchronized with Sema's CurContext"); 7996 #endif // NDEBUG 7997 7998 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 7999 8000 // All the potentially captureable variables in the current nested 8001 // lambda (within a generic outer lambda), must be captured by an 8002 // outer lambda that is enclosed within a non-dependent context. 8003 CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) { 8004 // If the variable is clearly identified as non-odr-used and the full 8005 // expression is not instantiation dependent, only then do we not 8006 // need to check enclosing lambda's for speculative captures. 8007 // For e.g.: 8008 // Even though 'x' is not odr-used, it should be captured. 8009 // int test() { 8010 // const int x = 10; 8011 // auto L = [=](auto a) { 8012 // (void) +x + a; 8013 // }; 8014 // } 8015 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 8016 !IsFullExprInstantiationDependent) 8017 return; 8018 8019 // If we have a capture-capable lambda for the variable, go ahead and 8020 // capture the variable in that lambda (and all its enclosing lambdas). 8021 if (const Optional<unsigned> Index = 8022 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8023 S.FunctionScopes, Var, S)) 8024 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), 8025 Index.getValue()); 8026 const bool IsVarNeverAConstantExpression = 8027 VariableCanNeverBeAConstantExpression(Var, S.Context); 8028 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 8029 // This full expression is not instantiation dependent or the variable 8030 // can not be used in a constant expression - which means 8031 // this variable must be odr-used here, so diagnose a 8032 // capture violation early, if the variable is un-captureable. 8033 // This is purely for diagnosing errors early. Otherwise, this 8034 // error would get diagnosed when the lambda becomes capture ready. 8035 QualType CaptureType, DeclRefType; 8036 SourceLocation ExprLoc = VarExpr->getExprLoc(); 8037 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8038 /*EllipsisLoc*/ SourceLocation(), 8039 /*BuildAndDiagnose*/false, CaptureType, 8040 DeclRefType, nullptr)) { 8041 // We will never be able to capture this variable, and we need 8042 // to be able to in any and all instantiations, so diagnose it. 8043 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8044 /*EllipsisLoc*/ SourceLocation(), 8045 /*BuildAndDiagnose*/true, CaptureType, 8046 DeclRefType, nullptr); 8047 } 8048 } 8049 }); 8050 8051 // Check if 'this' needs to be captured. 8052 if (CurrentLSI->hasPotentialThisCapture()) { 8053 // If we have a capture-capable lambda for 'this', go ahead and capture 8054 // 'this' in that lambda (and all its enclosing lambdas). 8055 if (const Optional<unsigned> Index = 8056 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8057 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) { 8058 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 8059 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 8060 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 8061 &FunctionScopeIndexOfCapturableLambda); 8062 } 8063 } 8064 8065 // Reset all the potential captures at the end of each full-expression. 8066 CurrentLSI->clearPotentialCaptures(); 8067 } 8068 8069 static ExprResult attemptRecovery(Sema &SemaRef, 8070 const TypoCorrectionConsumer &Consumer, 8071 const TypoCorrection &TC) { 8072 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 8073 Consumer.getLookupResult().getLookupKind()); 8074 const CXXScopeSpec *SS = Consumer.getSS(); 8075 CXXScopeSpec NewSS; 8076 8077 // Use an approprate CXXScopeSpec for building the expr. 8078 if (auto *NNS = TC.getCorrectionSpecifier()) 8079 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 8080 else if (SS && !TC.WillReplaceSpecifier()) 8081 NewSS = *SS; 8082 8083 if (auto *ND = TC.getFoundDecl()) { 8084 R.setLookupName(ND->getDeclName()); 8085 R.addDecl(ND); 8086 if (ND->isCXXClassMember()) { 8087 // Figure out the correct naming class to add to the LookupResult. 8088 CXXRecordDecl *Record = nullptr; 8089 if (auto *NNS = TC.getCorrectionSpecifier()) 8090 Record = NNS->getAsType()->getAsCXXRecordDecl(); 8091 if (!Record) 8092 Record = 8093 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 8094 if (Record) 8095 R.setNamingClass(Record); 8096 8097 // Detect and handle the case where the decl might be an implicit 8098 // member. 8099 bool MightBeImplicitMember; 8100 if (!Consumer.isAddressOfOperand()) 8101 MightBeImplicitMember = true; 8102 else if (!NewSS.isEmpty()) 8103 MightBeImplicitMember = false; 8104 else if (R.isOverloadedResult()) 8105 MightBeImplicitMember = false; 8106 else if (R.isUnresolvableResult()) 8107 MightBeImplicitMember = true; 8108 else 8109 MightBeImplicitMember = isa<FieldDecl>(ND) || 8110 isa<IndirectFieldDecl>(ND) || 8111 isa<MSPropertyDecl>(ND); 8112 8113 if (MightBeImplicitMember) 8114 return SemaRef.BuildPossibleImplicitMemberExpr( 8115 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 8116 /*TemplateArgs*/ nullptr, /*S*/ nullptr); 8117 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 8118 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), 8119 Ivar->getIdentifier()); 8120 } 8121 } 8122 8123 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 8124 /*AcceptInvalidDecl*/ true); 8125 } 8126 8127 namespace { 8128 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 8129 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 8130 8131 public: 8132 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 8133 : TypoExprs(TypoExprs) {} 8134 bool VisitTypoExpr(TypoExpr *TE) { 8135 TypoExprs.insert(TE); 8136 return true; 8137 } 8138 }; 8139 8140 class TransformTypos : public TreeTransform<TransformTypos> { 8141 typedef TreeTransform<TransformTypos> BaseTransform; 8142 8143 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the 8144 // process of being initialized. 8145 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 8146 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 8147 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 8148 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 8149 8150 /// Emit diagnostics for all of the TypoExprs encountered. 8151 /// 8152 /// If the TypoExprs were successfully corrected, then the diagnostics should 8153 /// suggest the corrections. Otherwise the diagnostics will not suggest 8154 /// anything (having been passed an empty TypoCorrection). 8155 /// 8156 /// If we've failed to correct due to ambiguous corrections, we need to 8157 /// be sure to pass empty corrections and replacements. Otherwise it's 8158 /// possible that the Consumer has a TypoCorrection that failed to ambiguity 8159 /// and we don't want to report those diagnostics. 8160 void EmitAllDiagnostics(bool IsAmbiguous) { 8161 for (TypoExpr *TE : TypoExprs) { 8162 auto &State = SemaRef.getTypoExprState(TE); 8163 if (State.DiagHandler) { 8164 TypoCorrection TC = IsAmbiguous 8165 ? TypoCorrection() : State.Consumer->getCurrentCorrection(); 8166 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE]; 8167 8168 // Extract the NamedDecl from the transformed TypoExpr and add it to the 8169 // TypoCorrection, replacing the existing decls. This ensures the right 8170 // NamedDecl is used in diagnostics e.g. in the case where overload 8171 // resolution was used to select one from several possible decls that 8172 // had been stored in the TypoCorrection. 8173 if (auto *ND = getDeclFromExpr( 8174 Replacement.isInvalid() ? nullptr : Replacement.get())) 8175 TC.setCorrectionDecl(ND); 8176 8177 State.DiagHandler(TC); 8178 } 8179 SemaRef.clearDelayedTypo(TE); 8180 } 8181 } 8182 8183 /// Try to advance the typo correction state of the first unfinished TypoExpr. 8184 /// We allow advancement of the correction stream by removing it from the 8185 /// TransformCache which allows `TransformTypoExpr` to advance during the 8186 /// next transformation attempt. 8187 /// 8188 /// Any substitution attempts for the previous TypoExprs (which must have been 8189 /// finished) will need to be retried since it's possible that they will now 8190 /// be invalid given the latest advancement. 8191 /// 8192 /// We need to be sure that we're making progress - it's possible that the 8193 /// tree is so malformed that the transform never makes it to the 8194 /// `TransformTypoExpr`. 8195 /// 8196 /// Returns true if there are any untried correction combinations. 8197 bool CheckAndAdvanceTypoExprCorrectionStreams() { 8198 for (auto TE : TypoExprs) { 8199 auto &State = SemaRef.getTypoExprState(TE); 8200 TransformCache.erase(TE); 8201 if (!State.Consumer->hasMadeAnyCorrectionProgress()) 8202 return false; 8203 if (!State.Consumer->finished()) 8204 return true; 8205 State.Consumer->resetCorrectionStream(); 8206 } 8207 return false; 8208 } 8209 8210 NamedDecl *getDeclFromExpr(Expr *E) { 8211 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 8212 E = OverloadResolution[OE]; 8213 8214 if (!E) 8215 return nullptr; 8216 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 8217 return DRE->getFoundDecl(); 8218 if (auto *ME = dyn_cast<MemberExpr>(E)) 8219 return ME->getFoundDecl(); 8220 // FIXME: Add any other expr types that could be be seen by the delayed typo 8221 // correction TreeTransform for which the corresponding TypoCorrection could 8222 // contain multiple decls. 8223 return nullptr; 8224 } 8225 8226 ExprResult TryTransform(Expr *E) { 8227 Sema::SFINAETrap Trap(SemaRef); 8228 ExprResult Res = TransformExpr(E); 8229 if (Trap.hasErrorOccurred() || Res.isInvalid()) 8230 return ExprError(); 8231 8232 return ExprFilter(Res.get()); 8233 } 8234 8235 // Since correcting typos may intoduce new TypoExprs, this function 8236 // checks for new TypoExprs and recurses if it finds any. Note that it will 8237 // only succeed if it is able to correct all typos in the given expression. 8238 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) { 8239 if (Res.isInvalid()) { 8240 return Res; 8241 } 8242 // Check to see if any new TypoExprs were created. If so, we need to recurse 8243 // to check their validity. 8244 Expr *FixedExpr = Res.get(); 8245 8246 auto SavedTypoExprs = std::move(TypoExprs); 8247 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs); 8248 TypoExprs.clear(); 8249 AmbiguousTypoExprs.clear(); 8250 8251 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr); 8252 if (!TypoExprs.empty()) { 8253 // Recurse to handle newly created TypoExprs. If we're not able to 8254 // handle them, discard these TypoExprs. 8255 ExprResult RecurResult = 8256 RecursiveTransformLoop(FixedExpr, IsAmbiguous); 8257 if (RecurResult.isInvalid()) { 8258 Res = ExprError(); 8259 // Recursive corrections didn't work, wipe them away and don't add 8260 // them to the TypoExprs set. Remove them from Sema's TypoExpr list 8261 // since we don't want to clear them twice. Note: it's possible the 8262 // TypoExprs were created recursively and thus won't be in our 8263 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`. 8264 auto &SemaTypoExprs = SemaRef.TypoExprs; 8265 for (auto TE : TypoExprs) { 8266 TransformCache.erase(TE); 8267 SemaRef.clearDelayedTypo(TE); 8268 8269 auto SI = find(SemaTypoExprs, TE); 8270 if (SI != SemaTypoExprs.end()) { 8271 SemaTypoExprs.erase(SI); 8272 } 8273 } 8274 } else { 8275 // TypoExpr is valid: add newly created TypoExprs since we were 8276 // able to correct them. 8277 Res = RecurResult; 8278 SavedTypoExprs.set_union(TypoExprs); 8279 } 8280 } 8281 8282 TypoExprs = std::move(SavedTypoExprs); 8283 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs); 8284 8285 return Res; 8286 } 8287 8288 // Try to transform the given expression, looping through the correction 8289 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`. 8290 // 8291 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to 8292 // true and this method immediately will return an `ExprError`. 8293 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) { 8294 ExprResult Res; 8295 auto SavedTypoExprs = std::move(SemaRef.TypoExprs); 8296 SemaRef.TypoExprs.clear(); 8297 8298 while (true) { 8299 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8300 8301 // Recursion encountered an ambiguous correction. This means that our 8302 // correction itself is ambiguous, so stop now. 8303 if (IsAmbiguous) 8304 break; 8305 8306 // If the transform is still valid after checking for any new typos, 8307 // it's good to go. 8308 if (!Res.isInvalid()) 8309 break; 8310 8311 // The transform was invalid, see if we have any TypoExprs with untried 8312 // correction candidates. 8313 if (!CheckAndAdvanceTypoExprCorrectionStreams()) 8314 break; 8315 } 8316 8317 // If we found a valid result, double check to make sure it's not ambiguous. 8318 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) { 8319 auto SavedTransformCache = 8320 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache); 8321 8322 // Ensure none of the TypoExprs have multiple typo correction candidates 8323 // with the same edit length that pass all the checks and filters. 8324 while (!AmbiguousTypoExprs.empty()) { 8325 auto TE = AmbiguousTypoExprs.back(); 8326 8327 // TryTransform itself can create new Typos, adding them to the TypoExpr map 8328 // and invalidating our TypoExprState, so always fetch it instead of storing. 8329 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition(); 8330 8331 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection(); 8332 TypoCorrection Next; 8333 do { 8334 // Fetch the next correction by erasing the typo from the cache and calling 8335 // `TryTransform` which will iterate through corrections in 8336 // `TransformTypoExpr`. 8337 TransformCache.erase(TE); 8338 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8339 8340 if (!AmbigRes.isInvalid() || IsAmbiguous) { 8341 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream(); 8342 SavedTransformCache.erase(TE); 8343 Res = ExprError(); 8344 IsAmbiguous = true; 8345 break; 8346 } 8347 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) && 8348 Next.getEditDistance(false) == TC.getEditDistance(false)); 8349 8350 if (IsAmbiguous) 8351 break; 8352 8353 AmbiguousTypoExprs.remove(TE); 8354 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition(); 8355 TransformCache[TE] = SavedTransformCache[TE]; 8356 } 8357 TransformCache = std::move(SavedTransformCache); 8358 } 8359 8360 // Wipe away any newly created TypoExprs that we don't know about. Since we 8361 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only 8362 // possible if a `TypoExpr` is created during a transformation but then 8363 // fails before we can discover it. 8364 auto &SemaTypoExprs = SemaRef.TypoExprs; 8365 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) { 8366 auto TE = *Iterator; 8367 auto FI = find(TypoExprs, TE); 8368 if (FI != TypoExprs.end()) { 8369 Iterator++; 8370 continue; 8371 } 8372 SemaRef.clearDelayedTypo(TE); 8373 Iterator = SemaTypoExprs.erase(Iterator); 8374 } 8375 SemaRef.TypoExprs = std::move(SavedTypoExprs); 8376 8377 return Res; 8378 } 8379 8380 public: 8381 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) 8382 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} 8383 8384 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 8385 MultiExprArg Args, 8386 SourceLocation RParenLoc, 8387 Expr *ExecConfig = nullptr) { 8388 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 8389 RParenLoc, ExecConfig); 8390 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 8391 if (Result.isUsable()) { 8392 Expr *ResultCall = Result.get(); 8393 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 8394 ResultCall = BE->getSubExpr(); 8395 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 8396 OverloadResolution[OE] = CE->getCallee(); 8397 } 8398 } 8399 return Result; 8400 } 8401 8402 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 8403 8404 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } 8405 8406 ExprResult Transform(Expr *E) { 8407 bool IsAmbiguous = false; 8408 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous); 8409 8410 if (!Res.isUsable()) 8411 FindTypoExprs(TypoExprs).TraverseStmt(E); 8412 8413 EmitAllDiagnostics(IsAmbiguous); 8414 8415 return Res; 8416 } 8417 8418 ExprResult TransformTypoExpr(TypoExpr *E) { 8419 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 8420 // cached transformation result if there is one and the TypoExpr isn't the 8421 // first one that was encountered. 8422 auto &CacheEntry = TransformCache[E]; 8423 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 8424 return CacheEntry; 8425 } 8426 8427 auto &State = SemaRef.getTypoExprState(E); 8428 assert(State.Consumer && "Cannot transform a cleared TypoExpr"); 8429 8430 // For the first TypoExpr and an uncached TypoExpr, find the next likely 8431 // typo correction and return it. 8432 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 8433 if (InitDecl && TC.getFoundDecl() == InitDecl) 8434 continue; 8435 // FIXME: If we would typo-correct to an invalid declaration, it's 8436 // probably best to just suppress all errors from this typo correction. 8437 ExprResult NE = State.RecoveryHandler ? 8438 State.RecoveryHandler(SemaRef, E, TC) : 8439 attemptRecovery(SemaRef, *State.Consumer, TC); 8440 if (!NE.isInvalid()) { 8441 // Check whether there may be a second viable correction with the same 8442 // edit distance; if so, remember this TypoExpr may have an ambiguous 8443 // correction so it can be more thoroughly vetted later. 8444 TypoCorrection Next; 8445 if ((Next = State.Consumer->peekNextCorrection()) && 8446 Next.getEditDistance(false) == TC.getEditDistance(false)) { 8447 AmbiguousTypoExprs.insert(E); 8448 } else { 8449 AmbiguousTypoExprs.remove(E); 8450 } 8451 assert(!NE.isUnset() && 8452 "Typo was transformed into a valid-but-null ExprResult"); 8453 return CacheEntry = NE; 8454 } 8455 } 8456 return CacheEntry = ExprError(); 8457 } 8458 }; 8459 } 8460 8461 ExprResult 8462 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, 8463 bool RecoverUncorrectedTypos, 8464 llvm::function_ref<ExprResult(Expr *)> Filter) { 8465 // If the current evaluation context indicates there are uncorrected typos 8466 // and the current expression isn't guaranteed to not have typos, try to 8467 // resolve any TypoExpr nodes that might be in the expression. 8468 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 8469 (E->isTypeDependent() || E->isValueDependent() || 8470 E->isInstantiationDependent())) { 8471 auto TyposResolved = DelayedTypos.size(); 8472 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); 8473 TyposResolved -= DelayedTypos.size(); 8474 if (Result.isInvalid() || Result.get() != E) { 8475 ExprEvalContexts.back().NumTypos -= TyposResolved; 8476 if (Result.isInvalid() && RecoverUncorrectedTypos) { 8477 struct TyposReplace : TreeTransform<TyposReplace> { 8478 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {} 8479 ExprResult TransformTypoExpr(clang::TypoExpr *E) { 8480 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(), 8481 E->getEndLoc(), {}); 8482 } 8483 } TT(*this); 8484 return TT.TransformExpr(E); 8485 } 8486 return Result; 8487 } 8488 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); 8489 } 8490 return E; 8491 } 8492 8493 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 8494 bool DiscardedValue, 8495 bool IsConstexpr) { 8496 ExprResult FullExpr = FE; 8497 8498 if (!FullExpr.get()) 8499 return ExprError(); 8500 8501 if (DiagnoseUnexpandedParameterPack(FullExpr.get())) 8502 return ExprError(); 8503 8504 if (DiscardedValue) { 8505 // Top-level expressions default to 'id' when we're in a debugger. 8506 if (getLangOpts().DebuggerCastResultToId && 8507 FullExpr.get()->getType() == Context.UnknownAnyTy) { 8508 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 8509 if (FullExpr.isInvalid()) 8510 return ExprError(); 8511 } 8512 8513 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 8514 if (FullExpr.isInvalid()) 8515 return ExprError(); 8516 8517 FullExpr = IgnoredValueConversions(FullExpr.get()); 8518 if (FullExpr.isInvalid()) 8519 return ExprError(); 8520 8521 DiagnoseUnusedExprResult(FullExpr.get()); 8522 } 8523 8524 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr, 8525 /*RecoverUncorrectedTypos=*/true); 8526 if (FullExpr.isInvalid()) 8527 return ExprError(); 8528 8529 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 8530 8531 // At the end of this full expression (which could be a deeply nested 8532 // lambda), if there is a potential capture within the nested lambda, 8533 // have the outer capture-able lambda try and capture it. 8534 // Consider the following code: 8535 // void f(int, int); 8536 // void f(const int&, double); 8537 // void foo() { 8538 // const int x = 10, y = 20; 8539 // auto L = [=](auto a) { 8540 // auto M = [=](auto b) { 8541 // f(x, b); <-- requires x to be captured by L and M 8542 // f(y, a); <-- requires y to be captured by L, but not all Ms 8543 // }; 8544 // }; 8545 // } 8546 8547 // FIXME: Also consider what happens for something like this that involves 8548 // the gnu-extension statement-expressions or even lambda-init-captures: 8549 // void f() { 8550 // const int n = 0; 8551 // auto L = [&](auto a) { 8552 // +n + ({ 0; a; }); 8553 // }; 8554 // } 8555 // 8556 // Here, we see +n, and then the full-expression 0; ends, so we don't 8557 // capture n (and instead remove it from our list of potential captures), 8558 // and then the full-expression +n + ({ 0; }); ends, but it's too late 8559 // for us to see that we need to capture n after all. 8560 8561 LambdaScopeInfo *const CurrentLSI = 8562 getCurLambda(/*IgnoreCapturedRegions=*/true); 8563 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 8564 // even if CurContext is not a lambda call operator. Refer to that Bug Report 8565 // for an example of the code that might cause this asynchrony. 8566 // By ensuring we are in the context of a lambda's call operator 8567 // we can fix the bug (we only need to check whether we need to capture 8568 // if we are within a lambda's body); but per the comments in that 8569 // PR, a proper fix would entail : 8570 // "Alternative suggestion: 8571 // - Add to Sema an integer holding the smallest (outermost) scope 8572 // index that we are *lexically* within, and save/restore/set to 8573 // FunctionScopes.size() in InstantiatingTemplate's 8574 // constructor/destructor. 8575 // - Teach the handful of places that iterate over FunctionScopes to 8576 // stop at the outermost enclosing lexical scope." 8577 DeclContext *DC = CurContext; 8578 while (DC && isa<CapturedDecl>(DC)) 8579 DC = DC->getParent(); 8580 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); 8581 if (IsInLambdaDeclContext && CurrentLSI && 8582 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 8583 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 8584 *this); 8585 return MaybeCreateExprWithCleanups(FullExpr); 8586 } 8587 8588 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 8589 if (!FullStmt) return StmtError(); 8590 8591 return MaybeCreateStmtWithCleanups(FullStmt); 8592 } 8593 8594 Sema::IfExistsResult 8595 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 8596 CXXScopeSpec &SS, 8597 const DeclarationNameInfo &TargetNameInfo) { 8598 DeclarationName TargetName = TargetNameInfo.getName(); 8599 if (!TargetName) 8600 return IER_DoesNotExist; 8601 8602 // If the name itself is dependent, then the result is dependent. 8603 if (TargetName.isDependentName()) 8604 return IER_Dependent; 8605 8606 // Do the redeclaration lookup in the current scope. 8607 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 8608 Sema::NotForRedeclaration); 8609 LookupParsedName(R, S, &SS); 8610 R.suppressDiagnostics(); 8611 8612 switch (R.getResultKind()) { 8613 case LookupResult::Found: 8614 case LookupResult::FoundOverloaded: 8615 case LookupResult::FoundUnresolvedValue: 8616 case LookupResult::Ambiguous: 8617 return IER_Exists; 8618 8619 case LookupResult::NotFound: 8620 return IER_DoesNotExist; 8621 8622 case LookupResult::NotFoundInCurrentInstantiation: 8623 return IER_Dependent; 8624 } 8625 8626 llvm_unreachable("Invalid LookupResult Kind!"); 8627 } 8628 8629 Sema::IfExistsResult 8630 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 8631 bool IsIfExists, CXXScopeSpec &SS, 8632 UnqualifiedId &Name) { 8633 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 8634 8635 // Check for an unexpanded parameter pack. 8636 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; 8637 if (DiagnoseUnexpandedParameterPack(SS, UPPC) || 8638 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC)) 8639 return IER_Error; 8640 8641 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 8642 } 8643 8644 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) { 8645 return BuildExprRequirement(E, /*IsSimple=*/true, 8646 /*NoexceptLoc=*/SourceLocation(), 8647 /*ReturnTypeRequirement=*/{}); 8648 } 8649 8650 concepts::Requirement * 8651 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS, 8652 SourceLocation NameLoc, IdentifierInfo *TypeName, 8653 TemplateIdAnnotation *TemplateId) { 8654 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) && 8655 "Exactly one of TypeName and TemplateId must be specified."); 8656 TypeSourceInfo *TSI = nullptr; 8657 if (TypeName) { 8658 QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc, 8659 SS.getWithLocInContext(Context), *TypeName, 8660 NameLoc, &TSI, /*DeducedTypeContext=*/false); 8661 if (T.isNull()) 8662 return nullptr; 8663 } else { 8664 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(), 8665 TemplateId->NumArgs); 8666 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS, 8667 TemplateId->TemplateKWLoc, 8668 TemplateId->Template, TemplateId->Name, 8669 TemplateId->TemplateNameLoc, 8670 TemplateId->LAngleLoc, ArgsPtr, 8671 TemplateId->RAngleLoc); 8672 if (T.isInvalid()) 8673 return nullptr; 8674 if (GetTypeFromParser(T.get(), &TSI).isNull()) 8675 return nullptr; 8676 } 8677 return BuildTypeRequirement(TSI); 8678 } 8679 8680 concepts::Requirement * 8681 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) { 8682 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, 8683 /*ReturnTypeRequirement=*/{}); 8684 } 8685 8686 concepts::Requirement * 8687 Sema::ActOnCompoundRequirement( 8688 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, 8689 TemplateIdAnnotation *TypeConstraint, unsigned Depth) { 8690 // C++2a [expr.prim.req.compound] p1.3.3 8691 // [..] the expression is deduced against an invented function template 8692 // F [...] F is a void function template with a single type template 8693 // parameter T declared with the constrained-parameter. Form a new 8694 // cv-qualifier-seq cv by taking the union of const and volatile specifiers 8695 // around the constrained-parameter. F has a single parameter whose 8696 // type-specifier is cv T followed by the abstract-declarator. [...] 8697 // 8698 // The cv part is done in the calling function - we get the concept with 8699 // arguments and the abstract declarator with the correct CV qualification and 8700 // have to synthesize T and the single parameter of F. 8701 auto &II = Context.Idents.get("expr-type"); 8702 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext, 8703 SourceLocation(), 8704 SourceLocation(), Depth, 8705 /*Index=*/0, &II, 8706 /*Typename=*/true, 8707 /*ParameterPack=*/false, 8708 /*HasTypeConstraint=*/true); 8709 8710 if (BuildTypeConstraint(SS, TypeConstraint, TParam, 8711 /*EllpsisLoc=*/SourceLocation(), 8712 /*AllowUnexpandedPack=*/true)) 8713 // Just produce a requirement with no type requirements. 8714 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {}); 8715 8716 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(), 8717 SourceLocation(), 8718 ArrayRef<NamedDecl *>(TParam), 8719 SourceLocation(), 8720 /*RequiresClause=*/nullptr); 8721 return BuildExprRequirement( 8722 E, /*IsSimple=*/false, NoexceptLoc, 8723 concepts::ExprRequirement::ReturnTypeRequirement(TPL)); 8724 } 8725 8726 concepts::ExprRequirement * 8727 Sema::BuildExprRequirement( 8728 Expr *E, bool IsSimple, SourceLocation NoexceptLoc, 8729 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8730 auto Status = concepts::ExprRequirement::SS_Satisfied; 8731 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr; 8732 if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent()) 8733 Status = concepts::ExprRequirement::SS_Dependent; 8734 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can) 8735 Status = concepts::ExprRequirement::SS_NoexceptNotMet; 8736 else if (ReturnTypeRequirement.isSubstitutionFailure()) 8737 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure; 8738 else if (ReturnTypeRequirement.isTypeConstraint()) { 8739 // C++2a [expr.prim.req]p1.3.3 8740 // The immediately-declared constraint ([temp]) of decltype((E)) shall 8741 // be satisfied. 8742 TemplateParameterList *TPL = 8743 ReturnTypeRequirement.getTypeConstraintTemplateParameterList(); 8744 QualType MatchedType = 8745 getDecltypeForParenthesizedExpr(E).getCanonicalType(); 8746 llvm::SmallVector<TemplateArgument, 1> Args; 8747 Args.push_back(TemplateArgument(MatchedType)); 8748 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args); 8749 MultiLevelTemplateArgumentList MLTAL(TAL); 8750 for (unsigned I = 0; I < TPL->getDepth(); ++I) 8751 MLTAL.addOuterRetainedLevel(); 8752 Expr *IDC = 8753 cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint() 8754 ->getImmediatelyDeclaredConstraint(); 8755 ExprResult Constraint = SubstExpr(IDC, MLTAL); 8756 assert(!Constraint.isInvalid() && 8757 "Substitution cannot fail as it is simply putting a type template " 8758 "argument into a concept specialization expression's parameter."); 8759 8760 SubstitutedConstraintExpr = 8761 cast<ConceptSpecializationExpr>(Constraint.get()); 8762 if (!SubstitutedConstraintExpr->isSatisfied()) 8763 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied; 8764 } 8765 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc, 8766 ReturnTypeRequirement, Status, 8767 SubstitutedConstraintExpr); 8768 } 8769 8770 concepts::ExprRequirement * 8771 Sema::BuildExprRequirement( 8772 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic, 8773 bool IsSimple, SourceLocation NoexceptLoc, 8774 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8775 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic, 8776 IsSimple, NoexceptLoc, 8777 ReturnTypeRequirement); 8778 } 8779 8780 concepts::TypeRequirement * 8781 Sema::BuildTypeRequirement(TypeSourceInfo *Type) { 8782 return new (Context) concepts::TypeRequirement(Type); 8783 } 8784 8785 concepts::TypeRequirement * 8786 Sema::BuildTypeRequirement( 8787 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8788 return new (Context) concepts::TypeRequirement(SubstDiag); 8789 } 8790 8791 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) { 8792 return BuildNestedRequirement(Constraint); 8793 } 8794 8795 concepts::NestedRequirement * 8796 Sema::BuildNestedRequirement(Expr *Constraint) { 8797 ConstraintSatisfaction Satisfaction; 8798 if (!Constraint->isInstantiationDependent() && 8799 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{}, 8800 Constraint->getSourceRange(), Satisfaction)) 8801 return nullptr; 8802 return new (Context) concepts::NestedRequirement(Context, Constraint, 8803 Satisfaction); 8804 } 8805 8806 concepts::NestedRequirement * 8807 Sema::BuildNestedRequirement( 8808 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8809 return new (Context) concepts::NestedRequirement(SubstDiag); 8810 } 8811 8812 RequiresExprBodyDecl * 8813 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, 8814 ArrayRef<ParmVarDecl *> LocalParameters, 8815 Scope *BodyScope) { 8816 assert(BodyScope); 8817 8818 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext, 8819 RequiresKWLoc); 8820 8821 PushDeclContext(BodyScope, Body); 8822 8823 for (ParmVarDecl *Param : LocalParameters) { 8824 if (Param->hasDefaultArg()) 8825 // C++2a [expr.prim.req] p4 8826 // [...] A local parameter of a requires-expression shall not have a 8827 // default argument. [...] 8828 Diag(Param->getDefaultArgRange().getBegin(), 8829 diag::err_requires_expr_local_parameter_default_argument); 8830 // Ignore default argument and move on 8831 8832 Param->setDeclContext(Body); 8833 // If this has an identifier, add it to the scope stack. 8834 if (Param->getIdentifier()) { 8835 CheckShadow(BodyScope, Param); 8836 PushOnScopeChains(Param, BodyScope); 8837 } 8838 } 8839 return Body; 8840 } 8841 8842 void Sema::ActOnFinishRequiresExpr() { 8843 assert(CurContext && "DeclContext imbalance!"); 8844 CurContext = CurContext->getLexicalParent(); 8845 assert(CurContext && "Popped translation unit!"); 8846 } 8847 8848 ExprResult 8849 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc, 8850 RequiresExprBodyDecl *Body, 8851 ArrayRef<ParmVarDecl *> LocalParameters, 8852 ArrayRef<concepts::Requirement *> Requirements, 8853 SourceLocation ClosingBraceLoc) { 8854 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters, 8855 Requirements, ClosingBraceLoc); 8856 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE)) 8857 return ExprError(); 8858 return RE; 8859 } 8860