xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaExprCXX.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprConcepts.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/Type.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/DiagnosticSema.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/TokenKinds.h"
32 #include "clang/Basic/TypeTraits.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/EnterExpressionEvaluationContext.h"
36 #include "clang/Sema/Initialization.h"
37 #include "clang/Sema/Lookup.h"
38 #include "clang/Sema/ParsedTemplate.h"
39 #include "clang/Sema/Scope.h"
40 #include "clang/Sema/ScopeInfo.h"
41 #include "clang/Sema/SemaInternal.h"
42 #include "clang/Sema/SemaLambda.h"
43 #include "clang/Sema/Template.h"
44 #include "clang/Sema/TemplateDeduction.h"
45 #include "llvm/ADT/APInt.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/ADT/StringExtras.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/TypeSize.h"
50 #include <optional>
51 using namespace clang;
52 using namespace sema;
53 
54 /// Handle the result of the special case name lookup for inheriting
55 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
56 /// constructor names in member using declarations, even if 'X' is not the
57 /// name of the corresponding type.
58 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
59                                               SourceLocation NameLoc,
60                                               IdentifierInfo &Name) {
61   NestedNameSpecifier *NNS = SS.getScopeRep();
62 
63   // Convert the nested-name-specifier into a type.
64   QualType Type;
65   switch (NNS->getKind()) {
66   case NestedNameSpecifier::TypeSpec:
67   case NestedNameSpecifier::TypeSpecWithTemplate:
68     Type = QualType(NNS->getAsType(), 0);
69     break;
70 
71   case NestedNameSpecifier::Identifier:
72     // Strip off the last layer of the nested-name-specifier and build a
73     // typename type for it.
74     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
75     Type = Context.getDependentNameType(
76         ElaboratedTypeKeyword::None, NNS->getPrefix(), NNS->getAsIdentifier());
77     break;
78 
79   case NestedNameSpecifier::Global:
80   case NestedNameSpecifier::Super:
81   case NestedNameSpecifier::Namespace:
82   case NestedNameSpecifier::NamespaceAlias:
83     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
84   }
85 
86   // This reference to the type is located entirely at the location of the
87   // final identifier in the qualified-id.
88   return CreateParsedType(Type,
89                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
90 }
91 
92 ParsedType Sema::getConstructorName(IdentifierInfo &II,
93                                     SourceLocation NameLoc,
94                                     Scope *S, CXXScopeSpec &SS,
95                                     bool EnteringContext) {
96   CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
97   assert(CurClass && &II == CurClass->getIdentifier() &&
98          "not a constructor name");
99 
100   // When naming a constructor as a member of a dependent context (eg, in a
101   // friend declaration or an inherited constructor declaration), form an
102   // unresolved "typename" type.
103   if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
104     QualType T = Context.getDependentNameType(ElaboratedTypeKeyword::None,
105                                               SS.getScopeRep(), &II);
106     return ParsedType::make(T);
107   }
108 
109   if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
110     return ParsedType();
111 
112   // Find the injected-class-name declaration. Note that we make no attempt to
113   // diagnose cases where the injected-class-name is shadowed: the only
114   // declaration that can validly shadow the injected-class-name is a
115   // non-static data member, and if the class contains both a non-static data
116   // member and a constructor then it is ill-formed (we check that in
117   // CheckCompletedCXXClass).
118   CXXRecordDecl *InjectedClassName = nullptr;
119   for (NamedDecl *ND : CurClass->lookup(&II)) {
120     auto *RD = dyn_cast<CXXRecordDecl>(ND);
121     if (RD && RD->isInjectedClassName()) {
122       InjectedClassName = RD;
123       break;
124     }
125   }
126   if (!InjectedClassName) {
127     if (!CurClass->isInvalidDecl()) {
128       // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
129       // properly. Work around it here for now.
130       Diag(SS.getLastQualifierNameLoc(),
131            diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
132     }
133     return ParsedType();
134   }
135 
136   QualType T = Context.getTypeDeclType(InjectedClassName);
137   DiagnoseUseOfDecl(InjectedClassName, NameLoc);
138   MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
139 
140   return ParsedType::make(T);
141 }
142 
143 ParsedType Sema::getDestructorName(IdentifierInfo &II, SourceLocation NameLoc,
144                                    Scope *S, CXXScopeSpec &SS,
145                                    ParsedType ObjectTypePtr,
146                                    bool EnteringContext) {
147   // Determine where to perform name lookup.
148 
149   // FIXME: This area of the standard is very messy, and the current
150   // wording is rather unclear about which scopes we search for the
151   // destructor name; see core issues 399 and 555. Issue 399 in
152   // particular shows where the current description of destructor name
153   // lookup is completely out of line with existing practice, e.g.,
154   // this appears to be ill-formed:
155   //
156   //   namespace N {
157   //     template <typename T> struct S {
158   //       ~S();
159   //     };
160   //   }
161   //
162   //   void f(N::S<int>* s) {
163   //     s->N::S<int>::~S();
164   //   }
165   //
166   // See also PR6358 and PR6359.
167   //
168   // For now, we accept all the cases in which the name given could plausibly
169   // be interpreted as a correct destructor name, issuing off-by-default
170   // extension diagnostics on the cases that don't strictly conform to the
171   // C++20 rules. This basically means we always consider looking in the
172   // nested-name-specifier prefix, the complete nested-name-specifier, and
173   // the scope, and accept if we find the expected type in any of the three
174   // places.
175 
176   if (SS.isInvalid())
177     return nullptr;
178 
179   // Whether we've failed with a diagnostic already.
180   bool Failed = false;
181 
182   llvm::SmallVector<NamedDecl*, 8> FoundDecls;
183   llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
184 
185   // If we have an object type, it's because we are in a
186   // pseudo-destructor-expression or a member access expression, and
187   // we know what type we're looking for.
188   QualType SearchType =
189       ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
190 
191   auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
192     auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
193       auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
194       if (!Type)
195         return false;
196 
197       if (SearchType.isNull() || SearchType->isDependentType())
198         return true;
199 
200       QualType T = Context.getTypeDeclType(Type);
201       return Context.hasSameUnqualifiedType(T, SearchType);
202     };
203 
204     unsigned NumAcceptableResults = 0;
205     for (NamedDecl *D : Found) {
206       if (IsAcceptableResult(D))
207         ++NumAcceptableResults;
208 
209       // Don't list a class twice in the lookup failure diagnostic if it's
210       // found by both its injected-class-name and by the name in the enclosing
211       // scope.
212       if (auto *RD = dyn_cast<CXXRecordDecl>(D))
213         if (RD->isInjectedClassName())
214           D = cast<NamedDecl>(RD->getParent());
215 
216       if (FoundDeclSet.insert(D).second)
217         FoundDecls.push_back(D);
218     }
219 
220     // As an extension, attempt to "fix" an ambiguity by erasing all non-type
221     // results, and all non-matching results if we have a search type. It's not
222     // clear what the right behavior is if destructor lookup hits an ambiguity,
223     // but other compilers do generally accept at least some kinds of
224     // ambiguity.
225     if (Found.isAmbiguous() && NumAcceptableResults == 1) {
226       Diag(NameLoc, diag::ext_dtor_name_ambiguous);
227       LookupResult::Filter F = Found.makeFilter();
228       while (F.hasNext()) {
229         NamedDecl *D = F.next();
230         if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
231           Diag(D->getLocation(), diag::note_destructor_type_here)
232               << Context.getTypeDeclType(TD);
233         else
234           Diag(D->getLocation(), diag::note_destructor_nontype_here);
235 
236         if (!IsAcceptableResult(D))
237           F.erase();
238       }
239       F.done();
240     }
241 
242     if (Found.isAmbiguous())
243       Failed = true;
244 
245     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
246       if (IsAcceptableResult(Type)) {
247         QualType T = Context.getTypeDeclType(Type);
248         MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
249         return CreateParsedType(
250             Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, T),
251             Context.getTrivialTypeSourceInfo(T, NameLoc));
252       }
253     }
254 
255     return nullptr;
256   };
257 
258   bool IsDependent = false;
259 
260   auto LookupInObjectType = [&]() -> ParsedType {
261     if (Failed || SearchType.isNull())
262       return nullptr;
263 
264     IsDependent |= SearchType->isDependentType();
265 
266     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
267     DeclContext *LookupCtx = computeDeclContext(SearchType);
268     if (!LookupCtx)
269       return nullptr;
270     LookupQualifiedName(Found, LookupCtx);
271     return CheckLookupResult(Found);
272   };
273 
274   auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
275     if (Failed)
276       return nullptr;
277 
278     IsDependent |= isDependentScopeSpecifier(LookupSS);
279     DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
280     if (!LookupCtx)
281       return nullptr;
282 
283     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
284     if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
285       Failed = true;
286       return nullptr;
287     }
288     LookupQualifiedName(Found, LookupCtx);
289     return CheckLookupResult(Found);
290   };
291 
292   auto LookupInScope = [&]() -> ParsedType {
293     if (Failed || !S)
294       return nullptr;
295 
296     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
297     LookupName(Found, S);
298     return CheckLookupResult(Found);
299   };
300 
301   // C++2a [basic.lookup.qual]p6:
302   //   In a qualified-id of the form
303   //
304   //     nested-name-specifier[opt] type-name :: ~ type-name
305   //
306   //   the second type-name is looked up in the same scope as the first.
307   //
308   // We interpret this as meaning that if you do a dual-scope lookup for the
309   // first name, you also do a dual-scope lookup for the second name, per
310   // C++ [basic.lookup.classref]p4:
311   //
312   //   If the id-expression in a class member access is a qualified-id of the
313   //   form
314   //
315   //     class-name-or-namespace-name :: ...
316   //
317   //   the class-name-or-namespace-name following the . or -> is first looked
318   //   up in the class of the object expression and the name, if found, is used.
319   //   Otherwise, it is looked up in the context of the entire
320   //   postfix-expression.
321   //
322   // This looks in the same scopes as for an unqualified destructor name:
323   //
324   // C++ [basic.lookup.classref]p3:
325   //   If the unqualified-id is ~ type-name, the type-name is looked up
326   //   in the context of the entire postfix-expression. If the type T
327   //   of the object expression is of a class type C, the type-name is
328   //   also looked up in the scope of class C. At least one of the
329   //   lookups shall find a name that refers to cv T.
330   //
331   // FIXME: The intent is unclear here. Should type-name::~type-name look in
332   // the scope anyway if it finds a non-matching name declared in the class?
333   // If both lookups succeed and find a dependent result, which result should
334   // we retain? (Same question for p->~type-name().)
335 
336   if (NestedNameSpecifier *Prefix =
337       SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
338     // This is
339     //
340     //   nested-name-specifier type-name :: ~ type-name
341     //
342     // Look for the second type-name in the nested-name-specifier.
343     CXXScopeSpec PrefixSS;
344     PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
345     if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
346       return T;
347   } else {
348     // This is one of
349     //
350     //   type-name :: ~ type-name
351     //   ~ type-name
352     //
353     // Look in the scope and (if any) the object type.
354     if (ParsedType T = LookupInScope())
355       return T;
356     if (ParsedType T = LookupInObjectType())
357       return T;
358   }
359 
360   if (Failed)
361     return nullptr;
362 
363   if (IsDependent) {
364     // We didn't find our type, but that's OK: it's dependent anyway.
365 
366     // FIXME: What if we have no nested-name-specifier?
367     QualType T =
368         CheckTypenameType(ElaboratedTypeKeyword::None, SourceLocation(),
369                           SS.getWithLocInContext(Context), II, NameLoc);
370     return ParsedType::make(T);
371   }
372 
373   // The remaining cases are all non-standard extensions imitating the behavior
374   // of various other compilers.
375   unsigned NumNonExtensionDecls = FoundDecls.size();
376 
377   if (SS.isSet()) {
378     // For compatibility with older broken C++ rules and existing code,
379     //
380     //   nested-name-specifier :: ~ type-name
381     //
382     // also looks for type-name within the nested-name-specifier.
383     if (ParsedType T = LookupInNestedNameSpec(SS)) {
384       Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
385           << SS.getRange()
386           << FixItHint::CreateInsertion(SS.getEndLoc(),
387                                         ("::" + II.getName()).str());
388       return T;
389     }
390 
391     // For compatibility with other compilers and older versions of Clang,
392     //
393     //   nested-name-specifier type-name :: ~ type-name
394     //
395     // also looks for type-name in the scope. Unfortunately, we can't
396     // reasonably apply this fallback for dependent nested-name-specifiers.
397     if (SS.isValid() && SS.getScopeRep()->getPrefix()) {
398       if (ParsedType T = LookupInScope()) {
399         Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
400             << FixItHint::CreateRemoval(SS.getRange());
401         Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
402             << GetTypeFromParser(T);
403         return T;
404       }
405     }
406   }
407 
408   // We didn't find anything matching; tell the user what we did find (if
409   // anything).
410 
411   // Don't tell the user about declarations we shouldn't have found.
412   FoundDecls.resize(NumNonExtensionDecls);
413 
414   // List types before non-types.
415   std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
416                    [](NamedDecl *A, NamedDecl *B) {
417                      return isa<TypeDecl>(A->getUnderlyingDecl()) >
418                             isa<TypeDecl>(B->getUnderlyingDecl());
419                    });
420 
421   // Suggest a fixit to properly name the destroyed type.
422   auto MakeFixItHint = [&]{
423     const CXXRecordDecl *Destroyed = nullptr;
424     // FIXME: If we have a scope specifier, suggest its last component?
425     if (!SearchType.isNull())
426       Destroyed = SearchType->getAsCXXRecordDecl();
427     else if (S)
428       Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
429     if (Destroyed)
430       return FixItHint::CreateReplacement(SourceRange(NameLoc),
431                                           Destroyed->getNameAsString());
432     return FixItHint();
433   };
434 
435   if (FoundDecls.empty()) {
436     // FIXME: Attempt typo-correction?
437     Diag(NameLoc, diag::err_undeclared_destructor_name)
438       << &II << MakeFixItHint();
439   } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
440     if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
441       assert(!SearchType.isNull() &&
442              "should only reject a type result if we have a search type");
443       QualType T = Context.getTypeDeclType(TD);
444       Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
445           << T << SearchType << MakeFixItHint();
446     } else {
447       Diag(NameLoc, diag::err_destructor_expr_nontype)
448           << &II << MakeFixItHint();
449     }
450   } else {
451     Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
452                                       : diag::err_destructor_expr_mismatch)
453         << &II << SearchType << MakeFixItHint();
454   }
455 
456   for (NamedDecl *FoundD : FoundDecls) {
457     if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
458       Diag(FoundD->getLocation(), diag::note_destructor_type_here)
459           << Context.getTypeDeclType(TD);
460     else
461       Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
462           << FoundD;
463   }
464 
465   return nullptr;
466 }
467 
468 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
469                                               ParsedType ObjectType) {
470   if (DS.getTypeSpecType() == DeclSpec::TST_error)
471     return nullptr;
472 
473   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
474     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
475     return nullptr;
476   }
477 
478   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
479          "unexpected type in getDestructorType");
480   QualType T = BuildDecltypeType(DS.getRepAsExpr());
481 
482   // If we know the type of the object, check that the correct destructor
483   // type was named now; we can give better diagnostics this way.
484   QualType SearchType = GetTypeFromParser(ObjectType);
485   if (!SearchType.isNull() && !SearchType->isDependentType() &&
486       !Context.hasSameUnqualifiedType(T, SearchType)) {
487     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
488       << T << SearchType;
489     return nullptr;
490   }
491 
492   return ParsedType::make(T);
493 }
494 
495 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
496                                   const UnqualifiedId &Name, bool IsUDSuffix) {
497   assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
498   if (!IsUDSuffix) {
499     // [over.literal] p8
500     //
501     // double operator""_Bq(long double);  // OK: not a reserved identifier
502     // double operator"" _Bq(long double); // ill-formed, no diagnostic required
503     IdentifierInfo *II = Name.Identifier;
504     ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
505     SourceLocation Loc = Name.getEndLoc();
506     if (!PP.getSourceManager().isInSystemHeader(Loc)) {
507       if (auto Hint = FixItHint::CreateReplacement(
508               Name.getSourceRange(),
509               (StringRef("operator\"\"") + II->getName()).str());
510           isReservedInAllContexts(Status)) {
511         Diag(Loc, diag::warn_reserved_extern_symbol)
512             << II << static_cast<int>(Status) << Hint;
513       } else {
514         Diag(Loc, diag::warn_deprecated_literal_operator_id) << II << Hint;
515       }
516     }
517   }
518 
519   if (!SS.isValid())
520     return false;
521 
522   switch (SS.getScopeRep()->getKind()) {
523   case NestedNameSpecifier::Identifier:
524   case NestedNameSpecifier::TypeSpec:
525   case NestedNameSpecifier::TypeSpecWithTemplate:
526     // Per C++11 [over.literal]p2, literal operators can only be declared at
527     // namespace scope. Therefore, this unqualified-id cannot name anything.
528     // Reject it early, because we have no AST representation for this in the
529     // case where the scope is dependent.
530     Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
531         << SS.getScopeRep();
532     return true;
533 
534   case NestedNameSpecifier::Global:
535   case NestedNameSpecifier::Super:
536   case NestedNameSpecifier::Namespace:
537   case NestedNameSpecifier::NamespaceAlias:
538     return false;
539   }
540 
541   llvm_unreachable("unknown nested name specifier kind");
542 }
543 
544 /// Build a C++ typeid expression with a type operand.
545 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
546                                 SourceLocation TypeidLoc,
547                                 TypeSourceInfo *Operand,
548                                 SourceLocation RParenLoc) {
549   // C++ [expr.typeid]p4:
550   //   The top-level cv-qualifiers of the lvalue expression or the type-id
551   //   that is the operand of typeid are always ignored.
552   //   If the type of the type-id is a class type or a reference to a class
553   //   type, the class shall be completely-defined.
554   Qualifiers Quals;
555   QualType T
556     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
557                                       Quals);
558   if (T->getAs<RecordType>() &&
559       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
560     return ExprError();
561 
562   if (T->isVariablyModifiedType())
563     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
564 
565   if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
566     return ExprError();
567 
568   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
569                                      SourceRange(TypeidLoc, RParenLoc));
570 }
571 
572 /// Build a C++ typeid expression with an expression operand.
573 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
574                                 SourceLocation TypeidLoc,
575                                 Expr *E,
576                                 SourceLocation RParenLoc) {
577   bool WasEvaluated = false;
578   if (E && !E->isTypeDependent()) {
579     if (E->hasPlaceholderType()) {
580       ExprResult result = CheckPlaceholderExpr(E);
581       if (result.isInvalid()) return ExprError();
582       E = result.get();
583     }
584 
585     QualType T = E->getType();
586     if (const RecordType *RecordT = T->getAs<RecordType>()) {
587       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
588       // C++ [expr.typeid]p3:
589       //   [...] If the type of the expression is a class type, the class
590       //   shall be completely-defined.
591       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
592         return ExprError();
593 
594       // C++ [expr.typeid]p3:
595       //   When typeid is applied to an expression other than an glvalue of a
596       //   polymorphic class type [...] [the] expression is an unevaluated
597       //   operand. [...]
598       if (RecordD->isPolymorphic() && E->isGLValue()) {
599         if (isUnevaluatedContext()) {
600           // The operand was processed in unevaluated context, switch the
601           // context and recheck the subexpression.
602           ExprResult Result = TransformToPotentiallyEvaluated(E);
603           if (Result.isInvalid())
604             return ExprError();
605           E = Result.get();
606         }
607 
608         // We require a vtable to query the type at run time.
609         MarkVTableUsed(TypeidLoc, RecordD);
610         WasEvaluated = true;
611       }
612     }
613 
614     ExprResult Result = CheckUnevaluatedOperand(E);
615     if (Result.isInvalid())
616       return ExprError();
617     E = Result.get();
618 
619     // C++ [expr.typeid]p4:
620     //   [...] If the type of the type-id is a reference to a possibly
621     //   cv-qualified type, the result of the typeid expression refers to a
622     //   std::type_info object representing the cv-unqualified referenced
623     //   type.
624     Qualifiers Quals;
625     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
626     if (!Context.hasSameType(T, UnqualT)) {
627       T = UnqualT;
628       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
629     }
630   }
631 
632   if (E->getType()->isVariablyModifiedType())
633     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
634                      << E->getType());
635   else if (!inTemplateInstantiation() &&
636            E->HasSideEffects(Context, WasEvaluated)) {
637     // The expression operand for typeid is in an unevaluated expression
638     // context, so side effects could result in unintended consequences.
639     Diag(E->getExprLoc(), WasEvaluated
640                               ? diag::warn_side_effects_typeid
641                               : diag::warn_side_effects_unevaluated_context);
642   }
643 
644   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
645                                      SourceRange(TypeidLoc, RParenLoc));
646 }
647 
648 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
649 ExprResult
650 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
651                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
652   // typeid is not supported in OpenCL.
653   if (getLangOpts().OpenCLCPlusPlus) {
654     return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
655                      << "typeid");
656   }
657 
658   // Find the std::type_info type.
659   if (!getStdNamespace())
660     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
661 
662   if (!CXXTypeInfoDecl) {
663     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
664     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
665     LookupQualifiedName(R, getStdNamespace());
666     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
667     // Microsoft's typeinfo doesn't have type_info in std but in the global
668     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
669     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
670       LookupQualifiedName(R, Context.getTranslationUnitDecl());
671       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
672     }
673     if (!CXXTypeInfoDecl)
674       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
675   }
676 
677   if (!getLangOpts().RTTI) {
678     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
679   }
680 
681   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
682 
683   if (isType) {
684     // The operand is a type; handle it as such.
685     TypeSourceInfo *TInfo = nullptr;
686     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
687                                    &TInfo);
688     if (T.isNull())
689       return ExprError();
690 
691     if (!TInfo)
692       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
693 
694     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
695   }
696 
697   // The operand is an expression.
698   ExprResult Result =
699       BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
700 
701   if (!getLangOpts().RTTIData && !Result.isInvalid())
702     if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
703       if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
704         Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
705             << (getDiagnostics().getDiagnosticOptions().getFormat() ==
706                 DiagnosticOptions::MSVC);
707   return Result;
708 }
709 
710 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
711 /// a single GUID.
712 static void
713 getUuidAttrOfType(Sema &SemaRef, QualType QT,
714                   llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
715   // Optionally remove one level of pointer, reference or array indirection.
716   const Type *Ty = QT.getTypePtr();
717   if (QT->isPointerType() || QT->isReferenceType())
718     Ty = QT->getPointeeType().getTypePtr();
719   else if (QT->isArrayType())
720     Ty = Ty->getBaseElementTypeUnsafe();
721 
722   const auto *TD = Ty->getAsTagDecl();
723   if (!TD)
724     return;
725 
726   if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
727     UuidAttrs.insert(Uuid);
728     return;
729   }
730 
731   // __uuidof can grab UUIDs from template arguments.
732   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
733     const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
734     for (const TemplateArgument &TA : TAL.asArray()) {
735       const UuidAttr *UuidForTA = nullptr;
736       if (TA.getKind() == TemplateArgument::Type)
737         getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
738       else if (TA.getKind() == TemplateArgument::Declaration)
739         getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
740 
741       if (UuidForTA)
742         UuidAttrs.insert(UuidForTA);
743     }
744   }
745 }
746 
747 /// Build a Microsoft __uuidof expression with a type operand.
748 ExprResult Sema::BuildCXXUuidof(QualType Type,
749                                 SourceLocation TypeidLoc,
750                                 TypeSourceInfo *Operand,
751                                 SourceLocation RParenLoc) {
752   MSGuidDecl *Guid = nullptr;
753   if (!Operand->getType()->isDependentType()) {
754     llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
755     getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
756     if (UuidAttrs.empty())
757       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
758     if (UuidAttrs.size() > 1)
759       return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
760     Guid = UuidAttrs.back()->getGuidDecl();
761   }
762 
763   return new (Context)
764       CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
765 }
766 
767 /// Build a Microsoft __uuidof expression with an expression operand.
768 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
769                                 Expr *E, SourceLocation RParenLoc) {
770   MSGuidDecl *Guid = nullptr;
771   if (!E->getType()->isDependentType()) {
772     if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
773       // A null pointer results in {00000000-0000-0000-0000-000000000000}.
774       Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
775     } else {
776       llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
777       getUuidAttrOfType(*this, E->getType(), UuidAttrs);
778       if (UuidAttrs.empty())
779         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
780       if (UuidAttrs.size() > 1)
781         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
782       Guid = UuidAttrs.back()->getGuidDecl();
783     }
784   }
785 
786   return new (Context)
787       CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
788 }
789 
790 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
791 ExprResult
792 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
793                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
794   QualType GuidType = Context.getMSGuidType();
795   GuidType.addConst();
796 
797   if (isType) {
798     // The operand is a type; handle it as such.
799     TypeSourceInfo *TInfo = nullptr;
800     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
801                                    &TInfo);
802     if (T.isNull())
803       return ExprError();
804 
805     if (!TInfo)
806       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
807 
808     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
809   }
810 
811   // The operand is an expression.
812   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
813 }
814 
815 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
816 ExprResult
817 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
818   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
819          "Unknown C++ Boolean value!");
820   return new (Context)
821       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
822 }
823 
824 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
825 ExprResult
826 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
827   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
828 }
829 
830 /// ActOnCXXThrow - Parse throw expressions.
831 ExprResult
832 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
833   bool IsThrownVarInScope = false;
834   if (Ex) {
835     // C++0x [class.copymove]p31:
836     //   When certain criteria are met, an implementation is allowed to omit the
837     //   copy/move construction of a class object [...]
838     //
839     //     - in a throw-expression, when the operand is the name of a
840     //       non-volatile automatic object (other than a function or catch-
841     //       clause parameter) whose scope does not extend beyond the end of the
842     //       innermost enclosing try-block (if there is one), the copy/move
843     //       operation from the operand to the exception object (15.1) can be
844     //       omitted by constructing the automatic object directly into the
845     //       exception object
846     if (const auto *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
847       if (const auto *Var = dyn_cast<VarDecl>(DRE->getDecl());
848           Var && Var->hasLocalStorage() &&
849           !Var->getType().isVolatileQualified()) {
850         for (; S; S = S->getParent()) {
851           if (S->isDeclScope(Var)) {
852             IsThrownVarInScope = true;
853             break;
854           }
855 
856           // FIXME: Many of the scope checks here seem incorrect.
857           if (S->getFlags() &
858               (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
859                Scope::ObjCMethodScope | Scope::TryScope))
860             break;
861         }
862       }
863   }
864 
865   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
866 }
867 
868 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
869                                bool IsThrownVarInScope) {
870   const llvm::Triple &T = Context.getTargetInfo().getTriple();
871   const bool IsOpenMPGPUTarget =
872       getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN());
873   // Don't report an error if 'throw' is used in system headers or in an OpenMP
874   // target region compiled for a GPU architecture.
875   if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions &&
876       !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
877     // Delay error emission for the OpenMP device code.
878     targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
879   }
880 
881   // In OpenMP target regions, we replace 'throw' with a trap on GPU targets.
882   if (IsOpenMPGPUTarget)
883     targetDiag(OpLoc, diag::warn_throw_not_valid_on_target) << T.str();
884 
885   // Exceptions aren't allowed in CUDA device code.
886   if (getLangOpts().CUDA)
887     CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
888         << "throw" << CurrentCUDATarget();
889 
890   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
891     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
892 
893   if (Ex && !Ex->isTypeDependent()) {
894     // Initialize the exception result.  This implicitly weeds out
895     // abstract types or types with inaccessible copy constructors.
896 
897     // C++0x [class.copymove]p31:
898     //   When certain criteria are met, an implementation is allowed to omit the
899     //   copy/move construction of a class object [...]
900     //
901     //     - in a throw-expression, when the operand is the name of a
902     //       non-volatile automatic object (other than a function or
903     //       catch-clause
904     //       parameter) whose scope does not extend beyond the end of the
905     //       innermost enclosing try-block (if there is one), the copy/move
906     //       operation from the operand to the exception object (15.1) can be
907     //       omitted by constructing the automatic object directly into the
908     //       exception object
909     NamedReturnInfo NRInfo =
910         IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
911 
912     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
913     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
914       return ExprError();
915 
916     InitializedEntity Entity =
917         InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
918     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
919     if (Res.isInvalid())
920       return ExprError();
921     Ex = Res.get();
922   }
923 
924   // PPC MMA non-pointer types are not allowed as throw expr types.
925   if (Ex && Context.getTargetInfo().getTriple().isPPC64())
926     CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
927 
928   return new (Context)
929       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
930 }
931 
932 static void
933 collectPublicBases(CXXRecordDecl *RD,
934                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
935                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
936                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
937                    bool ParentIsPublic) {
938   for (const CXXBaseSpecifier &BS : RD->bases()) {
939     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
940     bool NewSubobject;
941     // Virtual bases constitute the same subobject.  Non-virtual bases are
942     // always distinct subobjects.
943     if (BS.isVirtual())
944       NewSubobject = VBases.insert(BaseDecl).second;
945     else
946       NewSubobject = true;
947 
948     if (NewSubobject)
949       ++SubobjectsSeen[BaseDecl];
950 
951     // Only add subobjects which have public access throughout the entire chain.
952     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
953     if (PublicPath)
954       PublicSubobjectsSeen.insert(BaseDecl);
955 
956     // Recurse on to each base subobject.
957     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
958                        PublicPath);
959   }
960 }
961 
962 static void getUnambiguousPublicSubobjects(
963     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
964   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
965   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
966   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
967   SubobjectsSeen[RD] = 1;
968   PublicSubobjectsSeen.insert(RD);
969   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
970                      /*ParentIsPublic=*/true);
971 
972   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
973     // Skip ambiguous objects.
974     if (SubobjectsSeen[PublicSubobject] > 1)
975       continue;
976 
977     Objects.push_back(PublicSubobject);
978   }
979 }
980 
981 /// CheckCXXThrowOperand - Validate the operand of a throw.
982 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
983                                 QualType ExceptionObjectTy, Expr *E) {
984   //   If the type of the exception would be an incomplete type or a pointer
985   //   to an incomplete type other than (cv) void the program is ill-formed.
986   QualType Ty = ExceptionObjectTy;
987   bool isPointer = false;
988   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
989     Ty = Ptr->getPointeeType();
990     isPointer = true;
991   }
992 
993   // Cannot throw WebAssembly reference type.
994   if (Ty.isWebAssemblyReferenceType()) {
995     Diag(ThrowLoc, diag::err_wasm_reftype_tc) << 0 << E->getSourceRange();
996     return true;
997   }
998 
999   // Cannot throw WebAssembly table.
1000   if (isPointer && Ty.isWebAssemblyReferenceType()) {
1001     Diag(ThrowLoc, diag::err_wasm_table_art) << 2 << E->getSourceRange();
1002     return true;
1003   }
1004 
1005   if (!isPointer || !Ty->isVoidType()) {
1006     if (RequireCompleteType(ThrowLoc, Ty,
1007                             isPointer ? diag::err_throw_incomplete_ptr
1008                                       : diag::err_throw_incomplete,
1009                             E->getSourceRange()))
1010       return true;
1011 
1012     if (!isPointer && Ty->isSizelessType()) {
1013       Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
1014       return true;
1015     }
1016 
1017     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
1018                                diag::err_throw_abstract_type, E))
1019       return true;
1020   }
1021 
1022   // If the exception has class type, we need additional handling.
1023   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1024   if (!RD)
1025     return false;
1026 
1027   // If we are throwing a polymorphic class type or pointer thereof,
1028   // exception handling will make use of the vtable.
1029   MarkVTableUsed(ThrowLoc, RD);
1030 
1031   // If a pointer is thrown, the referenced object will not be destroyed.
1032   if (isPointer)
1033     return false;
1034 
1035   // If the class has a destructor, we must be able to call it.
1036   if (!RD->hasIrrelevantDestructor()) {
1037     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1038       MarkFunctionReferenced(E->getExprLoc(), Destructor);
1039       CheckDestructorAccess(E->getExprLoc(), Destructor,
1040                             PDiag(diag::err_access_dtor_exception) << Ty);
1041       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1042         return true;
1043     }
1044   }
1045 
1046   // The MSVC ABI creates a list of all types which can catch the exception
1047   // object.  This list also references the appropriate copy constructor to call
1048   // if the object is caught by value and has a non-trivial copy constructor.
1049   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1050     // We are only interested in the public, unambiguous bases contained within
1051     // the exception object.  Bases which are ambiguous or otherwise
1052     // inaccessible are not catchable types.
1053     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1054     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1055 
1056     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1057       // Attempt to lookup the copy constructor.  Various pieces of machinery
1058       // will spring into action, like template instantiation, which means this
1059       // cannot be a simple walk of the class's decls.  Instead, we must perform
1060       // lookup and overload resolution.
1061       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1062       if (!CD || CD->isDeleted())
1063         continue;
1064 
1065       // Mark the constructor referenced as it is used by this throw expression.
1066       MarkFunctionReferenced(E->getExprLoc(), CD);
1067 
1068       // Skip this copy constructor if it is trivial, we don't need to record it
1069       // in the catchable type data.
1070       if (CD->isTrivial())
1071         continue;
1072 
1073       // The copy constructor is non-trivial, create a mapping from this class
1074       // type to this constructor.
1075       // N.B.  The selection of copy constructor is not sensitive to this
1076       // particular throw-site.  Lookup will be performed at the catch-site to
1077       // ensure that the copy constructor is, in fact, accessible (via
1078       // friendship or any other means).
1079       Context.addCopyConstructorForExceptionObject(Subobject, CD);
1080 
1081       // We don't keep the instantiated default argument expressions around so
1082       // we must rebuild them here.
1083       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1084         if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1085           return true;
1086       }
1087     }
1088   }
1089 
1090   // Under the Itanium C++ ABI, memory for the exception object is allocated by
1091   // the runtime with no ability for the compiler to request additional
1092   // alignment. Warn if the exception type requires alignment beyond the minimum
1093   // guaranteed by the target C++ runtime.
1094   if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1095     CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1096     CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1097     if (ExnObjAlign < TypeAlign) {
1098       Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1099       Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1100           << Ty << (unsigned)TypeAlign.getQuantity()
1101           << (unsigned)ExnObjAlign.getQuantity();
1102     }
1103   }
1104   if (!isPointer && getLangOpts().AssumeNothrowExceptionDtor) {
1105     if (CXXDestructorDecl *Dtor = RD->getDestructor()) {
1106       auto Ty = Dtor->getType();
1107       if (auto *FT = Ty.getTypePtr()->getAs<FunctionProtoType>()) {
1108         if (!isUnresolvedExceptionSpec(FT->getExceptionSpecType()) &&
1109             !FT->isNothrow())
1110           Diag(ThrowLoc, diag::err_throw_object_throwing_dtor) << RD;
1111       }
1112     }
1113   }
1114 
1115   return false;
1116 }
1117 
1118 static QualType adjustCVQualifiersForCXXThisWithinLambda(
1119     ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1120     DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1121 
1122   QualType ClassType = ThisTy->getPointeeType();
1123   LambdaScopeInfo *CurLSI = nullptr;
1124   DeclContext *CurDC = CurSemaContext;
1125 
1126   // Iterate through the stack of lambdas starting from the innermost lambda to
1127   // the outermost lambda, checking if '*this' is ever captured by copy - since
1128   // that could change the cv-qualifiers of the '*this' object.
1129   // The object referred to by '*this' starts out with the cv-qualifiers of its
1130   // member function.  We then start with the innermost lambda and iterate
1131   // outward checking to see if any lambda performs a by-copy capture of '*this'
1132   // - and if so, any nested lambda must respect the 'constness' of that
1133   // capturing lamdbda's call operator.
1134   //
1135 
1136   // Since the FunctionScopeInfo stack is representative of the lexical
1137   // nesting of the lambda expressions during initial parsing (and is the best
1138   // place for querying information about captures about lambdas that are
1139   // partially processed) and perhaps during instantiation of function templates
1140   // that contain lambda expressions that need to be transformed BUT not
1141   // necessarily during instantiation of a nested generic lambda's function call
1142   // operator (which might even be instantiated at the end of the TU) - at which
1143   // time the DeclContext tree is mature enough to query capture information
1144   // reliably - we use a two pronged approach to walk through all the lexically
1145   // enclosing lambda expressions:
1146   //
1147   //  1) Climb down the FunctionScopeInfo stack as long as each item represents
1148   //  a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1149   //  enclosed by the call-operator of the LSI below it on the stack (while
1150   //  tracking the enclosing DC for step 2 if needed).  Note the topmost LSI on
1151   //  the stack represents the innermost lambda.
1152   //
1153   //  2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1154   //  represents a lambda's call operator.  If it does, we must be instantiating
1155   //  a generic lambda's call operator (represented by the Current LSI, and
1156   //  should be the only scenario where an inconsistency between the LSI and the
1157   //  DeclContext should occur), so climb out the DeclContexts if they
1158   //  represent lambdas, while querying the corresponding closure types
1159   //  regarding capture information.
1160 
1161   // 1) Climb down the function scope info stack.
1162   for (int I = FunctionScopes.size();
1163        I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1164        (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1165                        cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1166        CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1167     CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1168 
1169     if (!CurLSI->isCXXThisCaptured())
1170         continue;
1171 
1172     auto C = CurLSI->getCXXThisCapture();
1173 
1174     if (C.isCopyCapture()) {
1175       if (CurLSI->lambdaCaptureShouldBeConst())
1176         ClassType.addConst();
1177       return ASTCtx.getPointerType(ClassType);
1178     }
1179   }
1180 
1181   // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1182   //    can happen during instantiation of its nested generic lambda call
1183   //    operator); 2. if we're in a lambda scope (lambda body).
1184   if (CurLSI && isLambdaCallOperator(CurDC)) {
1185     assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1186            "While computing 'this' capture-type for a generic lambda, when we "
1187            "run out of enclosing LSI's, yet the enclosing DC is a "
1188            "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1189            "lambda call oeprator");
1190     assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1191 
1192     auto IsThisCaptured =
1193         [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1194       IsConst = false;
1195       IsByCopy = false;
1196       for (auto &&C : Closure->captures()) {
1197         if (C.capturesThis()) {
1198           if (C.getCaptureKind() == LCK_StarThis)
1199             IsByCopy = true;
1200           if (Closure->getLambdaCallOperator()->isConst())
1201             IsConst = true;
1202           return true;
1203         }
1204       }
1205       return false;
1206     };
1207 
1208     bool IsByCopyCapture = false;
1209     bool IsConstCapture = false;
1210     CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1211     while (Closure &&
1212            IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1213       if (IsByCopyCapture) {
1214         if (IsConstCapture)
1215           ClassType.addConst();
1216         return ASTCtx.getPointerType(ClassType);
1217       }
1218       Closure = isLambdaCallOperator(Closure->getParent())
1219                     ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1220                     : nullptr;
1221     }
1222   }
1223   return ASTCtx.getPointerType(ClassType);
1224 }
1225 
1226 QualType Sema::getCurrentThisType() {
1227   DeclContext *DC = getFunctionLevelDeclContext();
1228   QualType ThisTy = CXXThisTypeOverride;
1229 
1230   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1231     if (method && method->isImplicitObjectMemberFunction())
1232       ThisTy = method->getThisType().getNonReferenceType();
1233   }
1234 
1235   if (ThisTy.isNull() && isLambdaCallWithImplicitObjectParameter(CurContext) &&
1236       inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1237 
1238     // This is a lambda call operator that is being instantiated as a default
1239     // initializer. DC must point to the enclosing class type, so we can recover
1240     // the 'this' type from it.
1241     QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1242     // There are no cv-qualifiers for 'this' within default initializers,
1243     // per [expr.prim.general]p4.
1244     ThisTy = Context.getPointerType(ClassTy);
1245   }
1246 
1247   // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1248   // might need to be adjusted if the lambda or any of its enclosing lambda's
1249   // captures '*this' by copy.
1250   if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1251     return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1252                                                     CurContext, Context);
1253   return ThisTy;
1254 }
1255 
1256 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1257                                          Decl *ContextDecl,
1258                                          Qualifiers CXXThisTypeQuals,
1259                                          bool Enabled)
1260   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1261 {
1262   if (!Enabled || !ContextDecl)
1263     return;
1264 
1265   CXXRecordDecl *Record = nullptr;
1266   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1267     Record = Template->getTemplatedDecl();
1268   else
1269     Record = cast<CXXRecordDecl>(ContextDecl);
1270 
1271   QualType T = S.Context.getRecordType(Record);
1272   T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1273 
1274   S.CXXThisTypeOverride =
1275       S.Context.getLangOpts().HLSL ? T : S.Context.getPointerType(T);
1276 
1277   this->Enabled = true;
1278 }
1279 
1280 
1281 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1282   if (Enabled) {
1283     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1284   }
1285 }
1286 
1287 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1288   SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1289   assert(!LSI->isCXXThisCaptured());
1290   //  [=, this] {};   // until C++20: Error: this when = is the default
1291   if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1292       !Sema.getLangOpts().CPlusPlus20)
1293     return;
1294   Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1295       << FixItHint::CreateInsertion(
1296              DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1297 }
1298 
1299 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1300     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1301     const bool ByCopy) {
1302   // We don't need to capture this in an unevaluated context.
1303   if (isUnevaluatedContext() && !Explicit)
1304     return true;
1305 
1306   assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1307 
1308   const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1309                                          ? *FunctionScopeIndexToStopAt
1310                                          : FunctionScopes.size() - 1;
1311 
1312   // Check that we can capture the *enclosing object* (referred to by '*this')
1313   // by the capturing-entity/closure (lambda/block/etc) at
1314   // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1315 
1316   // Note: The *enclosing object* can only be captured by-value by a
1317   // closure that is a lambda, using the explicit notation:
1318   //    [*this] { ... }.
1319   // Every other capture of the *enclosing object* results in its by-reference
1320   // capture.
1321 
1322   // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1323   // stack), we can capture the *enclosing object* only if:
1324   // - 'L' has an explicit byref or byval capture of the *enclosing object*
1325   // -  or, 'L' has an implicit capture.
1326   // AND
1327   //   -- there is no enclosing closure
1328   //   -- or, there is some enclosing closure 'E' that has already captured the
1329   //      *enclosing object*, and every intervening closure (if any) between 'E'
1330   //      and 'L' can implicitly capture the *enclosing object*.
1331   //   -- or, every enclosing closure can implicitly capture the
1332   //      *enclosing object*
1333 
1334 
1335   unsigned NumCapturingClosures = 0;
1336   for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1337     if (CapturingScopeInfo *CSI =
1338             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1339       if (CSI->CXXThisCaptureIndex != 0) {
1340         // 'this' is already being captured; there isn't anything more to do.
1341         CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1342         break;
1343       }
1344       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1345       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1346         // This context can't implicitly capture 'this'; fail out.
1347         if (BuildAndDiagnose) {
1348           LSI->CallOperator->setInvalidDecl();
1349           Diag(Loc, diag::err_this_capture)
1350               << (Explicit && idx == MaxFunctionScopesIndex);
1351           if (!Explicit)
1352             buildLambdaThisCaptureFixit(*this, LSI);
1353         }
1354         return true;
1355       }
1356       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1357           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1358           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1359           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1360           (Explicit && idx == MaxFunctionScopesIndex)) {
1361         // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1362         // iteration through can be an explicit capture, all enclosing closures,
1363         // if any, must perform implicit captures.
1364 
1365         // This closure can capture 'this'; continue looking upwards.
1366         NumCapturingClosures++;
1367         continue;
1368       }
1369       // This context can't implicitly capture 'this'; fail out.
1370       if (BuildAndDiagnose) {
1371         LSI->CallOperator->setInvalidDecl();
1372         Diag(Loc, diag::err_this_capture)
1373             << (Explicit && idx == MaxFunctionScopesIndex);
1374       }
1375       if (!Explicit)
1376         buildLambdaThisCaptureFixit(*this, LSI);
1377       return true;
1378     }
1379     break;
1380   }
1381   if (!BuildAndDiagnose) return false;
1382 
1383   // If we got here, then the closure at MaxFunctionScopesIndex on the
1384   // FunctionScopes stack, can capture the *enclosing object*, so capture it
1385   // (including implicit by-reference captures in any enclosing closures).
1386 
1387   // In the loop below, respect the ByCopy flag only for the closure requesting
1388   // the capture (i.e. first iteration through the loop below).  Ignore it for
1389   // all enclosing closure's up to NumCapturingClosures (since they must be
1390   // implicitly capturing the *enclosing  object* by reference (see loop
1391   // above)).
1392   assert((!ByCopy ||
1393           isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1394          "Only a lambda can capture the enclosing object (referred to by "
1395          "*this) by copy");
1396   QualType ThisTy = getCurrentThisType();
1397   for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1398        --idx, --NumCapturingClosures) {
1399     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1400 
1401     // The type of the corresponding data member (not a 'this' pointer if 'by
1402     // copy').
1403     QualType CaptureType = ByCopy ? ThisTy->getPointeeType() : ThisTy;
1404 
1405     bool isNested = NumCapturingClosures > 1;
1406     CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1407   }
1408   return false;
1409 }
1410 
1411 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1412   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1413   /// is a non-lvalue expression whose value is the address of the object for
1414   /// which the function is called.
1415   QualType ThisTy = getCurrentThisType();
1416 
1417   if (ThisTy.isNull()) {
1418     DeclContext *DC = getFunctionLevelDeclContext();
1419 
1420     if (const auto *Method = dyn_cast<CXXMethodDecl>(DC);
1421         Method && Method->isExplicitObjectMemberFunction()) {
1422       return Diag(Loc, diag::err_invalid_this_use) << 1;
1423     }
1424 
1425     if (isLambdaCallWithExplicitObjectParameter(CurContext))
1426       return Diag(Loc, diag::err_invalid_this_use) << 1;
1427 
1428     return Diag(Loc, diag::err_invalid_this_use) << 0;
1429   }
1430 
1431   return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1432 }
1433 
1434 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1435                              bool IsImplicit) {
1436   auto *This = CXXThisExpr::Create(Context, Loc, Type, IsImplicit);
1437   MarkThisReferenced(This);
1438   return This;
1439 }
1440 
1441 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1442   CheckCXXThisCapture(This->getExprLoc());
1443 }
1444 
1445 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1446   // If we're outside the body of a member function, then we'll have a specified
1447   // type for 'this'.
1448   if (CXXThisTypeOverride.isNull())
1449     return false;
1450 
1451   // Determine whether we're looking into a class that's currently being
1452   // defined.
1453   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1454   return Class && Class->isBeingDefined();
1455 }
1456 
1457 /// Parse construction of a specified type.
1458 /// Can be interpreted either as function-style casting ("int(x)")
1459 /// or class type construction ("ClassType(x,y,z)")
1460 /// or creation of a value-initialized type ("int()").
1461 ExprResult
1462 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1463                                 SourceLocation LParenOrBraceLoc,
1464                                 MultiExprArg exprs,
1465                                 SourceLocation RParenOrBraceLoc,
1466                                 bool ListInitialization) {
1467   if (!TypeRep)
1468     return ExprError();
1469 
1470   TypeSourceInfo *TInfo;
1471   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1472   if (!TInfo)
1473     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1474 
1475   auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1476                                           RParenOrBraceLoc, ListInitialization);
1477   // Avoid creating a non-type-dependent expression that contains typos.
1478   // Non-type-dependent expressions are liable to be discarded without
1479   // checking for embedded typos.
1480   if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1481       !Result.get()->isTypeDependent())
1482     Result = CorrectDelayedTyposInExpr(Result.get());
1483   else if (Result.isInvalid())
1484     Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1485                                 RParenOrBraceLoc, exprs, Ty);
1486   return Result;
1487 }
1488 
1489 ExprResult
1490 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1491                                 SourceLocation LParenOrBraceLoc,
1492                                 MultiExprArg Exprs,
1493                                 SourceLocation RParenOrBraceLoc,
1494                                 bool ListInitialization) {
1495   QualType Ty = TInfo->getType();
1496   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1497 
1498   assert((!ListInitialization || Exprs.size() == 1) &&
1499          "List initialization must have exactly one expression.");
1500   SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1501 
1502   InitializedEntity Entity =
1503       InitializedEntity::InitializeTemporary(Context, TInfo);
1504   InitializationKind Kind =
1505       Exprs.size()
1506           ? ListInitialization
1507                 ? InitializationKind::CreateDirectList(
1508                       TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1509                 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1510                                                    RParenOrBraceLoc)
1511           : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1512                                             RParenOrBraceLoc);
1513 
1514   // C++17 [expr.type.conv]p1:
1515   //   If the type is a placeholder for a deduced class type, [...perform class
1516   //   template argument deduction...]
1517   // C++23:
1518   //   Otherwise, if the type contains a placeholder type, it is replaced by the
1519   //   type determined by placeholder type deduction.
1520   DeducedType *Deduced = Ty->getContainedDeducedType();
1521   if (Deduced && !Deduced->isDeduced() &&
1522       isa<DeducedTemplateSpecializationType>(Deduced)) {
1523     Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1524                                                      Kind, Exprs);
1525     if (Ty.isNull())
1526       return ExprError();
1527     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1528   } else if (Deduced && !Deduced->isDeduced()) {
1529     MultiExprArg Inits = Exprs;
1530     if (ListInitialization) {
1531       auto *ILE = cast<InitListExpr>(Exprs[0]);
1532       Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
1533     }
1534 
1535     if (Inits.empty())
1536       return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
1537                        << Ty << FullRange);
1538     if (Inits.size() > 1) {
1539       Expr *FirstBad = Inits[1];
1540       return ExprError(Diag(FirstBad->getBeginLoc(),
1541                             diag::err_auto_expr_init_multiple_expressions)
1542                        << Ty << FullRange);
1543     }
1544     if (getLangOpts().CPlusPlus23) {
1545       if (Ty->getAs<AutoType>())
1546         Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
1547     }
1548     Expr *Deduce = Inits[0];
1549     if (isa<InitListExpr>(Deduce))
1550       return ExprError(
1551           Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
1552           << ListInitialization << Ty << FullRange);
1553     QualType DeducedType;
1554     TemplateDeductionInfo Info(Deduce->getExprLoc());
1555     TemplateDeductionResult Result =
1556         DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info);
1557     if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
1558       return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
1559                        << Ty << Deduce->getType() << FullRange
1560                        << Deduce->getSourceRange());
1561     if (DeducedType.isNull()) {
1562       assert(Result == TDK_AlreadyDiagnosed);
1563       return ExprError();
1564     }
1565 
1566     Ty = DeducedType;
1567     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1568   }
1569 
1570   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs))
1571     return CXXUnresolvedConstructExpr::Create(
1572         Context, Ty.getNonReferenceType(), TInfo, LParenOrBraceLoc, Exprs,
1573         RParenOrBraceLoc, ListInitialization);
1574 
1575   // C++ [expr.type.conv]p1:
1576   // If the expression list is a parenthesized single expression, the type
1577   // conversion expression is equivalent (in definedness, and if defined in
1578   // meaning) to the corresponding cast expression.
1579   if (Exprs.size() == 1 && !ListInitialization &&
1580       !isa<InitListExpr>(Exprs[0])) {
1581     Expr *Arg = Exprs[0];
1582     return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1583                                       RParenOrBraceLoc);
1584   }
1585 
1586   //   For an expression of the form T(), T shall not be an array type.
1587   QualType ElemTy = Ty;
1588   if (Ty->isArrayType()) {
1589     if (!ListInitialization)
1590       return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1591                          << FullRange);
1592     ElemTy = Context.getBaseElementType(Ty);
1593   }
1594 
1595   // Only construct objects with object types.
1596   // The standard doesn't explicitly forbid function types here, but that's an
1597   // obvious oversight, as there's no way to dynamically construct a function
1598   // in general.
1599   if (Ty->isFunctionType())
1600     return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1601                        << Ty << FullRange);
1602 
1603   // C++17 [expr.type.conv]p2:
1604   //   If the type is cv void and the initializer is (), the expression is a
1605   //   prvalue of the specified type that performs no initialization.
1606   if (!Ty->isVoidType() &&
1607       RequireCompleteType(TyBeginLoc, ElemTy,
1608                           diag::err_invalid_incomplete_type_use, FullRange))
1609     return ExprError();
1610 
1611   //   Otherwise, the expression is a prvalue of the specified type whose
1612   //   result object is direct-initialized (11.6) with the initializer.
1613   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1614   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1615 
1616   if (Result.isInvalid())
1617     return Result;
1618 
1619   Expr *Inner = Result.get();
1620   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1621     Inner = BTE->getSubExpr();
1622   if (auto *CE = dyn_cast<ConstantExpr>(Inner);
1623       CE && CE->isImmediateInvocation())
1624     Inner = CE->getSubExpr();
1625   if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1626       !isa<CXXScalarValueInitExpr>(Inner)) {
1627     // If we created a CXXTemporaryObjectExpr, that node also represents the
1628     // functional cast. Otherwise, create an explicit cast to represent
1629     // the syntactic form of a functional-style cast that was used here.
1630     //
1631     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1632     // would give a more consistent AST representation than using a
1633     // CXXTemporaryObjectExpr. It's also weird that the functional cast
1634     // is sometimes handled by initialization and sometimes not.
1635     QualType ResultType = Result.get()->getType();
1636     SourceRange Locs = ListInitialization
1637                            ? SourceRange()
1638                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1639     Result = CXXFunctionalCastExpr::Create(
1640         Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1641         Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1642         Locs.getBegin(), Locs.getEnd());
1643   }
1644 
1645   return Result;
1646 }
1647 
1648 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1649   // [CUDA] Ignore this function, if we can't call it.
1650   const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
1651   if (getLangOpts().CUDA) {
1652     auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1653     // If it's not callable at all, it's not the right function.
1654     if (CallPreference < CFP_WrongSide)
1655       return false;
1656     if (CallPreference == CFP_WrongSide) {
1657       // Maybe. We have to check if there are better alternatives.
1658       DeclContext::lookup_result R =
1659           Method->getDeclContext()->lookup(Method->getDeclName());
1660       for (const auto *D : R) {
1661         if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1662           if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1663             return false;
1664         }
1665       }
1666       // We've found no better variants.
1667     }
1668   }
1669 
1670   SmallVector<const FunctionDecl*, 4> PreventedBy;
1671   bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1672 
1673   if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1674     return Result;
1675 
1676   // In case of CUDA, return true if none of the 1-argument deallocator
1677   // functions are actually callable.
1678   return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1679     assert(FD->getNumParams() == 1 &&
1680            "Only single-operand functions should be in PreventedBy");
1681     return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1682   });
1683 }
1684 
1685 /// Determine whether the given function is a non-placement
1686 /// deallocation function.
1687 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1688   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1689     return S.isUsualDeallocationFunction(Method);
1690 
1691   if (FD->getOverloadedOperator() != OO_Delete &&
1692       FD->getOverloadedOperator() != OO_Array_Delete)
1693     return false;
1694 
1695   unsigned UsualParams = 1;
1696 
1697   if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1698       S.Context.hasSameUnqualifiedType(
1699           FD->getParamDecl(UsualParams)->getType(),
1700           S.Context.getSizeType()))
1701     ++UsualParams;
1702 
1703   if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1704       S.Context.hasSameUnqualifiedType(
1705           FD->getParamDecl(UsualParams)->getType(),
1706           S.Context.getTypeDeclType(S.getStdAlignValT())))
1707     ++UsualParams;
1708 
1709   return UsualParams == FD->getNumParams();
1710 }
1711 
1712 namespace {
1713   struct UsualDeallocFnInfo {
1714     UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1715     UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1716         : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1717           Destroying(false), HasSizeT(false), HasAlignValT(false),
1718           CUDAPref(Sema::CFP_Native) {
1719       // A function template declaration is never a usual deallocation function.
1720       if (!FD)
1721         return;
1722       unsigned NumBaseParams = 1;
1723       if (FD->isDestroyingOperatorDelete()) {
1724         Destroying = true;
1725         ++NumBaseParams;
1726       }
1727 
1728       if (NumBaseParams < FD->getNumParams() &&
1729           S.Context.hasSameUnqualifiedType(
1730               FD->getParamDecl(NumBaseParams)->getType(),
1731               S.Context.getSizeType())) {
1732         ++NumBaseParams;
1733         HasSizeT = true;
1734       }
1735 
1736       if (NumBaseParams < FD->getNumParams() &&
1737           FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1738         ++NumBaseParams;
1739         HasAlignValT = true;
1740       }
1741 
1742       // In CUDA, determine how much we'd like / dislike to call this.
1743       if (S.getLangOpts().CUDA)
1744         CUDAPref = S.IdentifyCUDAPreference(
1745             S.getCurFunctionDecl(/*AllowLambda=*/true), FD);
1746     }
1747 
1748     explicit operator bool() const { return FD; }
1749 
1750     bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1751                       bool WantAlign) const {
1752       // C++ P0722:
1753       //   A destroying operator delete is preferred over a non-destroying
1754       //   operator delete.
1755       if (Destroying != Other.Destroying)
1756         return Destroying;
1757 
1758       // C++17 [expr.delete]p10:
1759       //   If the type has new-extended alignment, a function with a parameter
1760       //   of type std::align_val_t is preferred; otherwise a function without
1761       //   such a parameter is preferred
1762       if (HasAlignValT != Other.HasAlignValT)
1763         return HasAlignValT == WantAlign;
1764 
1765       if (HasSizeT != Other.HasSizeT)
1766         return HasSizeT == WantSize;
1767 
1768       // Use CUDA call preference as a tiebreaker.
1769       return CUDAPref > Other.CUDAPref;
1770     }
1771 
1772     DeclAccessPair Found;
1773     FunctionDecl *FD;
1774     bool Destroying, HasSizeT, HasAlignValT;
1775     Sema::CUDAFunctionPreference CUDAPref;
1776   };
1777 }
1778 
1779 /// Determine whether a type has new-extended alignment. This may be called when
1780 /// the type is incomplete (for a delete-expression with an incomplete pointee
1781 /// type), in which case it will conservatively return false if the alignment is
1782 /// not known.
1783 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1784   return S.getLangOpts().AlignedAllocation &&
1785          S.getASTContext().getTypeAlignIfKnown(AllocType) >
1786              S.getASTContext().getTargetInfo().getNewAlign();
1787 }
1788 
1789 /// Select the correct "usual" deallocation function to use from a selection of
1790 /// deallocation functions (either global or class-scope).
1791 static UsualDeallocFnInfo resolveDeallocationOverload(
1792     Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1793     llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1794   UsualDeallocFnInfo Best;
1795 
1796   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1797     UsualDeallocFnInfo Info(S, I.getPair());
1798     if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1799         Info.CUDAPref == Sema::CFP_Never)
1800       continue;
1801 
1802     if (!Best) {
1803       Best = Info;
1804       if (BestFns)
1805         BestFns->push_back(Info);
1806       continue;
1807     }
1808 
1809     if (Best.isBetterThan(Info, WantSize, WantAlign))
1810       continue;
1811 
1812     //   If more than one preferred function is found, all non-preferred
1813     //   functions are eliminated from further consideration.
1814     if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1815       BestFns->clear();
1816 
1817     Best = Info;
1818     if (BestFns)
1819       BestFns->push_back(Info);
1820   }
1821 
1822   return Best;
1823 }
1824 
1825 /// Determine whether a given type is a class for which 'delete[]' would call
1826 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1827 /// we need to store the array size (even if the type is
1828 /// trivially-destructible).
1829 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1830                                          QualType allocType) {
1831   const RecordType *record =
1832     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1833   if (!record) return false;
1834 
1835   // Try to find an operator delete[] in class scope.
1836 
1837   DeclarationName deleteName =
1838     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1839   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1840   S.LookupQualifiedName(ops, record->getDecl());
1841 
1842   // We're just doing this for information.
1843   ops.suppressDiagnostics();
1844 
1845   // Very likely: there's no operator delete[].
1846   if (ops.empty()) return false;
1847 
1848   // If it's ambiguous, it should be illegal to call operator delete[]
1849   // on this thing, so it doesn't matter if we allocate extra space or not.
1850   if (ops.isAmbiguous()) return false;
1851 
1852   // C++17 [expr.delete]p10:
1853   //   If the deallocation functions have class scope, the one without a
1854   //   parameter of type std::size_t is selected.
1855   auto Best = resolveDeallocationOverload(
1856       S, ops, /*WantSize*/false,
1857       /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1858   return Best && Best.HasSizeT;
1859 }
1860 
1861 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1862 ///
1863 /// E.g.:
1864 /// @code new (memory) int[size][4] @endcode
1865 /// or
1866 /// @code ::new Foo(23, "hello") @endcode
1867 ///
1868 /// \param StartLoc The first location of the expression.
1869 /// \param UseGlobal True if 'new' was prefixed with '::'.
1870 /// \param PlacementLParen Opening paren of the placement arguments.
1871 /// \param PlacementArgs Placement new arguments.
1872 /// \param PlacementRParen Closing paren of the placement arguments.
1873 /// \param TypeIdParens If the type is in parens, the source range.
1874 /// \param D The type to be allocated, as well as array dimensions.
1875 /// \param Initializer The initializing expression or initializer-list, or null
1876 ///   if there is none.
1877 ExprResult
1878 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1879                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1880                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
1881                   Declarator &D, Expr *Initializer) {
1882   std::optional<Expr *> ArraySize;
1883   // If the specified type is an array, unwrap it and save the expression.
1884   if (D.getNumTypeObjects() > 0 &&
1885       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1886     DeclaratorChunk &Chunk = D.getTypeObject(0);
1887     if (D.getDeclSpec().hasAutoTypeSpec())
1888       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1889         << D.getSourceRange());
1890     if (Chunk.Arr.hasStatic)
1891       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1892         << D.getSourceRange());
1893     if (!Chunk.Arr.NumElts && !Initializer)
1894       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1895         << D.getSourceRange());
1896 
1897     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1898     D.DropFirstTypeObject();
1899   }
1900 
1901   // Every dimension shall be of constant size.
1902   if (ArraySize) {
1903     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1904       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1905         break;
1906 
1907       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1908       if (Expr *NumElts = (Expr *)Array.NumElts) {
1909         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1910           // FIXME: GCC permits constant folding here. We should either do so consistently
1911           // or not do so at all, rather than changing behavior in C++14 onwards.
1912           if (getLangOpts().CPlusPlus14) {
1913             // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1914             //   shall be a converted constant expression (5.19) of type std::size_t
1915             //   and shall evaluate to a strictly positive value.
1916             llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1917             Array.NumElts
1918              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1919                                                 CCEK_ArrayBound)
1920                  .get();
1921           } else {
1922             Array.NumElts =
1923                 VerifyIntegerConstantExpression(
1924                     NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1925                     .get();
1926           }
1927           if (!Array.NumElts)
1928             return ExprError();
1929         }
1930       }
1931     }
1932   }
1933 
1934   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
1935   QualType AllocType = TInfo->getType();
1936   if (D.isInvalidType())
1937     return ExprError();
1938 
1939   SourceRange DirectInitRange;
1940   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1941     DirectInitRange = List->getSourceRange();
1942 
1943   return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1944                      PlacementLParen, PlacementArgs, PlacementRParen,
1945                      TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1946                      Initializer);
1947 }
1948 
1949 static bool isLegalArrayNewInitializer(CXXNewInitializationStyle Style,
1950                                        Expr *Init, bool IsCPlusPlus20) {
1951   if (!Init)
1952     return true;
1953   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1954     return IsCPlusPlus20 || PLE->getNumExprs() == 0;
1955   if (isa<ImplicitValueInitExpr>(Init))
1956     return true;
1957   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1958     return !CCE->isListInitialization() &&
1959            CCE->getConstructor()->isDefaultConstructor();
1960   else if (Style == CXXNewInitializationStyle::Braces) {
1961     assert(isa<InitListExpr>(Init) &&
1962            "Shouldn't create list CXXConstructExprs for arrays.");
1963     return true;
1964   }
1965   return false;
1966 }
1967 
1968 bool
1969 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1970   if (!getLangOpts().AlignedAllocationUnavailable)
1971     return false;
1972   if (FD.isDefined())
1973     return false;
1974   std::optional<unsigned> AlignmentParam;
1975   if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1976       AlignmentParam)
1977     return true;
1978   return false;
1979 }
1980 
1981 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1982 // implemented in the standard library is selected.
1983 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1984                                                 SourceLocation Loc) {
1985   if (isUnavailableAlignedAllocationFunction(FD)) {
1986     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1987     StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1988         getASTContext().getTargetInfo().getPlatformName());
1989     VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1990 
1991     OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1992     bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1993     Diag(Loc, diag::err_aligned_allocation_unavailable)
1994         << IsDelete << FD.getType().getAsString() << OSName
1995         << OSVersion.getAsString() << OSVersion.empty();
1996     Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1997   }
1998 }
1999 
2000 ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
2001                              SourceLocation PlacementLParen,
2002                              MultiExprArg PlacementArgs,
2003                              SourceLocation PlacementRParen,
2004                              SourceRange TypeIdParens, QualType AllocType,
2005                              TypeSourceInfo *AllocTypeInfo,
2006                              std::optional<Expr *> ArraySize,
2007                              SourceRange DirectInitRange, Expr *Initializer) {
2008   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
2009   SourceLocation StartLoc = Range.getBegin();
2010 
2011   CXXNewInitializationStyle InitStyle;
2012   if (DirectInitRange.isValid()) {
2013     assert(Initializer && "Have parens but no initializer.");
2014     InitStyle = CXXNewInitializationStyle::Parens;
2015   } else if (Initializer && isa<InitListExpr>(Initializer))
2016     InitStyle = CXXNewInitializationStyle::Braces;
2017   else {
2018     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
2019             isa<CXXConstructExpr>(Initializer)) &&
2020            "Initializer expression that cannot have been implicitly created.");
2021     InitStyle = CXXNewInitializationStyle::None;
2022   }
2023 
2024   MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0);
2025   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
2026     assert(InitStyle == CXXNewInitializationStyle::Parens &&
2027            "paren init for non-call init");
2028     Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
2029   }
2030 
2031   // C++11 [expr.new]p15:
2032   //   A new-expression that creates an object of type T initializes that
2033   //   object as follows:
2034   InitializationKind Kind = [&] {
2035     switch (InitStyle) {
2036     //     - If the new-initializer is omitted, the object is default-
2037     //       initialized (8.5); if no initialization is performed,
2038     //       the object has indeterminate value
2039     case CXXNewInitializationStyle::None:
2040       return InitializationKind::CreateDefault(TypeRange.getBegin());
2041     //     - Otherwise, the new-initializer is interpreted according to the
2042     //       initialization rules of 8.5 for direct-initialization.
2043     case CXXNewInitializationStyle::Parens:
2044       return InitializationKind::CreateDirect(TypeRange.getBegin(),
2045                                               DirectInitRange.getBegin(),
2046                                               DirectInitRange.getEnd());
2047     case CXXNewInitializationStyle::Braces:
2048       return InitializationKind::CreateDirectList(TypeRange.getBegin(),
2049                                                   Initializer->getBeginLoc(),
2050                                                   Initializer->getEndLoc());
2051     }
2052     llvm_unreachable("Unknown initialization kind");
2053   }();
2054 
2055   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2056   auto *Deduced = AllocType->getContainedDeducedType();
2057   if (Deduced && !Deduced->isDeduced() &&
2058       isa<DeducedTemplateSpecializationType>(Deduced)) {
2059     if (ArraySize)
2060       return ExprError(
2061           Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
2062                diag::err_deduced_class_template_compound_type)
2063           << /*array*/ 2
2064           << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
2065 
2066     InitializedEntity Entity
2067       = InitializedEntity::InitializeNew(StartLoc, AllocType);
2068     AllocType = DeduceTemplateSpecializationFromInitializer(
2069         AllocTypeInfo, Entity, Kind, Exprs);
2070     if (AllocType.isNull())
2071       return ExprError();
2072   } else if (Deduced && !Deduced->isDeduced()) {
2073     MultiExprArg Inits = Exprs;
2074     bool Braced = (InitStyle == CXXNewInitializationStyle::Braces);
2075     if (Braced) {
2076       auto *ILE = cast<InitListExpr>(Exprs[0]);
2077       Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2078     }
2079 
2080     if (InitStyle == CXXNewInitializationStyle::None || Inits.empty())
2081       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
2082                        << AllocType << TypeRange);
2083     if (Inits.size() > 1) {
2084       Expr *FirstBad = Inits[1];
2085       return ExprError(Diag(FirstBad->getBeginLoc(),
2086                             diag::err_auto_new_ctor_multiple_expressions)
2087                        << AllocType << TypeRange);
2088     }
2089     if (Braced && !getLangOpts().CPlusPlus17)
2090       Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2091           << AllocType << TypeRange;
2092     Expr *Deduce = Inits[0];
2093     if (isa<InitListExpr>(Deduce))
2094       return ExprError(
2095           Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
2096           << Braced << AllocType << TypeRange);
2097     QualType DeducedType;
2098     TemplateDeductionInfo Info(Deduce->getExprLoc());
2099     TemplateDeductionResult Result =
2100         DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info);
2101     if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
2102       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2103                        << AllocType << Deduce->getType() << TypeRange
2104                        << Deduce->getSourceRange());
2105     if (DeducedType.isNull()) {
2106       assert(Result == TDK_AlreadyDiagnosed);
2107       return ExprError();
2108     }
2109     AllocType = DeducedType;
2110   }
2111 
2112   // Per C++0x [expr.new]p5, the type being constructed may be a
2113   // typedef of an array type.
2114   if (!ArraySize) {
2115     if (const ConstantArrayType *Array
2116                               = Context.getAsConstantArrayType(AllocType)) {
2117       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2118                                          Context.getSizeType(),
2119                                          TypeRange.getEnd());
2120       AllocType = Array->getElementType();
2121     }
2122   }
2123 
2124   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2125     return ExprError();
2126 
2127   if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin()))
2128     return ExprError();
2129 
2130   // In ARC, infer 'retaining' for the allocated
2131   if (getLangOpts().ObjCAutoRefCount &&
2132       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2133       AllocType->isObjCLifetimeType()) {
2134     AllocType = Context.getLifetimeQualifiedType(AllocType,
2135                                     AllocType->getObjCARCImplicitLifetime());
2136   }
2137 
2138   QualType ResultType = Context.getPointerType(AllocType);
2139 
2140   if (ArraySize && *ArraySize &&
2141       (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2142     ExprResult result = CheckPlaceholderExpr(*ArraySize);
2143     if (result.isInvalid()) return ExprError();
2144     ArraySize = result.get();
2145   }
2146   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2147   //   integral or enumeration type with a non-negative value."
2148   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2149   //   enumeration type, or a class type for which a single non-explicit
2150   //   conversion function to integral or unscoped enumeration type exists.
2151   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2152   //   std::size_t.
2153   std::optional<uint64_t> KnownArraySize;
2154   if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2155     ExprResult ConvertedSize;
2156     if (getLangOpts().CPlusPlus14) {
2157       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2158 
2159       ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2160                                                 AA_Converting);
2161 
2162       if (!ConvertedSize.isInvalid() &&
2163           (*ArraySize)->getType()->getAs<RecordType>())
2164         // Diagnose the compatibility of this conversion.
2165         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2166           << (*ArraySize)->getType() << 0 << "'size_t'";
2167     } else {
2168       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2169       protected:
2170         Expr *ArraySize;
2171 
2172       public:
2173         SizeConvertDiagnoser(Expr *ArraySize)
2174             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2175               ArraySize(ArraySize) {}
2176 
2177         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2178                                              QualType T) override {
2179           return S.Diag(Loc, diag::err_array_size_not_integral)
2180                    << S.getLangOpts().CPlusPlus11 << T;
2181         }
2182 
2183         SemaDiagnosticBuilder diagnoseIncomplete(
2184             Sema &S, SourceLocation Loc, QualType T) override {
2185           return S.Diag(Loc, diag::err_array_size_incomplete_type)
2186                    << T << ArraySize->getSourceRange();
2187         }
2188 
2189         SemaDiagnosticBuilder diagnoseExplicitConv(
2190             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2191           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2192         }
2193 
2194         SemaDiagnosticBuilder noteExplicitConv(
2195             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2196           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2197                    << ConvTy->isEnumeralType() << ConvTy;
2198         }
2199 
2200         SemaDiagnosticBuilder diagnoseAmbiguous(
2201             Sema &S, SourceLocation Loc, QualType T) override {
2202           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2203         }
2204 
2205         SemaDiagnosticBuilder noteAmbiguous(
2206             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2207           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2208                    << ConvTy->isEnumeralType() << ConvTy;
2209         }
2210 
2211         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2212                                                  QualType T,
2213                                                  QualType ConvTy) override {
2214           return S.Diag(Loc,
2215                         S.getLangOpts().CPlusPlus11
2216                           ? diag::warn_cxx98_compat_array_size_conversion
2217                           : diag::ext_array_size_conversion)
2218                    << T << ConvTy->isEnumeralType() << ConvTy;
2219         }
2220       } SizeDiagnoser(*ArraySize);
2221 
2222       ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2223                                                           SizeDiagnoser);
2224     }
2225     if (ConvertedSize.isInvalid())
2226       return ExprError();
2227 
2228     ArraySize = ConvertedSize.get();
2229     QualType SizeType = (*ArraySize)->getType();
2230 
2231     if (!SizeType->isIntegralOrUnscopedEnumerationType())
2232       return ExprError();
2233 
2234     // C++98 [expr.new]p7:
2235     //   The expression in a direct-new-declarator shall have integral type
2236     //   with a non-negative value.
2237     //
2238     // Let's see if this is a constant < 0. If so, we reject it out of hand,
2239     // per CWG1464. Otherwise, if it's not a constant, we must have an
2240     // unparenthesized array type.
2241 
2242     // We've already performed any required implicit conversion to integer or
2243     // unscoped enumeration type.
2244     // FIXME: Per CWG1464, we are required to check the value prior to
2245     // converting to size_t. This will never find a negative array size in
2246     // C++14 onwards, because Value is always unsigned here!
2247     if (std::optional<llvm::APSInt> Value =
2248             (*ArraySize)->getIntegerConstantExpr(Context)) {
2249       if (Value->isSigned() && Value->isNegative()) {
2250         return ExprError(Diag((*ArraySize)->getBeginLoc(),
2251                               diag::err_typecheck_negative_array_size)
2252                          << (*ArraySize)->getSourceRange());
2253       }
2254 
2255       if (!AllocType->isDependentType()) {
2256         unsigned ActiveSizeBits =
2257             ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2258         if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2259           return ExprError(
2260               Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2261               << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2262       }
2263 
2264       KnownArraySize = Value->getZExtValue();
2265     } else if (TypeIdParens.isValid()) {
2266       // Can't have dynamic array size when the type-id is in parentheses.
2267       Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2268           << (*ArraySize)->getSourceRange()
2269           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2270           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2271 
2272       TypeIdParens = SourceRange();
2273     }
2274 
2275     // Note that we do *not* convert the argument in any way.  It can
2276     // be signed, larger than size_t, whatever.
2277   }
2278 
2279   FunctionDecl *OperatorNew = nullptr;
2280   FunctionDecl *OperatorDelete = nullptr;
2281   unsigned Alignment =
2282       AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2283   unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2284   bool PassAlignment = getLangOpts().AlignedAllocation &&
2285                        Alignment > NewAlignment;
2286 
2287   if (CheckArgsForPlaceholders(PlacementArgs))
2288     return ExprError();
2289 
2290   AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2291   if (!AllocType->isDependentType() &&
2292       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2293       FindAllocationFunctions(
2294           StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2295           AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs,
2296           OperatorNew, OperatorDelete))
2297     return ExprError();
2298 
2299   // If this is an array allocation, compute whether the usual array
2300   // deallocation function for the type has a size_t parameter.
2301   bool UsualArrayDeleteWantsSize = false;
2302   if (ArraySize && !AllocType->isDependentType())
2303     UsualArrayDeleteWantsSize =
2304         doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2305 
2306   SmallVector<Expr *, 8> AllPlaceArgs;
2307   if (OperatorNew) {
2308     auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2309     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2310                                                     : VariadicDoesNotApply;
2311 
2312     // We've already converted the placement args, just fill in any default
2313     // arguments. Skip the first parameter because we don't have a corresponding
2314     // argument. Skip the second parameter too if we're passing in the
2315     // alignment; we've already filled it in.
2316     unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2317     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2318                                NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2319                                CallType))
2320       return ExprError();
2321 
2322     if (!AllPlaceArgs.empty())
2323       PlacementArgs = AllPlaceArgs;
2324 
2325     // We would like to perform some checking on the given `operator new` call,
2326     // but the PlacementArgs does not contain the implicit arguments,
2327     // namely allocation size and maybe allocation alignment,
2328     // so we need to conjure them.
2329 
2330     QualType SizeTy = Context.getSizeType();
2331     unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2332 
2333     llvm::APInt SingleEltSize(
2334         SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2335 
2336     // How many bytes do we want to allocate here?
2337     std::optional<llvm::APInt> AllocationSize;
2338     if (!ArraySize && !AllocType->isDependentType()) {
2339       // For non-array operator new, we only want to allocate one element.
2340       AllocationSize = SingleEltSize;
2341     } else if (KnownArraySize && !AllocType->isDependentType()) {
2342       // For array operator new, only deal with static array size case.
2343       bool Overflow;
2344       AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2345                            .umul_ov(SingleEltSize, Overflow);
2346       (void)Overflow;
2347       assert(
2348           !Overflow &&
2349           "Expected that all the overflows would have been handled already.");
2350     }
2351 
2352     IntegerLiteral AllocationSizeLiteral(
2353         Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)),
2354         SizeTy, SourceLocation());
2355     // Otherwise, if we failed to constant-fold the allocation size, we'll
2356     // just give up and pass-in something opaque, that isn't a null pointer.
2357     OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2358                                          OK_Ordinary, /*SourceExpr=*/nullptr);
2359 
2360     // Let's synthesize the alignment argument in case we will need it.
2361     // Since we *really* want to allocate these on stack, this is slightly ugly
2362     // because there might not be a `std::align_val_t` type.
2363     EnumDecl *StdAlignValT = getStdAlignValT();
2364     QualType AlignValT =
2365         StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2366     IntegerLiteral AlignmentLiteral(
2367         Context,
2368         llvm::APInt(Context.getTypeSize(SizeTy),
2369                     Alignment / Context.getCharWidth()),
2370         SizeTy, SourceLocation());
2371     ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2372                                       CK_IntegralCast, &AlignmentLiteral,
2373                                       VK_PRValue, FPOptionsOverride());
2374 
2375     // Adjust placement args by prepending conjured size and alignment exprs.
2376     llvm::SmallVector<Expr *, 8> CallArgs;
2377     CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2378     CallArgs.emplace_back(AllocationSize
2379                               ? static_cast<Expr *>(&AllocationSizeLiteral)
2380                               : &OpaqueAllocationSize);
2381     if (PassAlignment)
2382       CallArgs.emplace_back(&DesiredAlignment);
2383     CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2384 
2385     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2386 
2387     checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2388               /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2389 
2390     // Warn if the type is over-aligned and is being allocated by (unaligned)
2391     // global operator new.
2392     if (PlacementArgs.empty() && !PassAlignment &&
2393         (OperatorNew->isImplicit() ||
2394          (OperatorNew->getBeginLoc().isValid() &&
2395           getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2396       if (Alignment > NewAlignment)
2397         Diag(StartLoc, diag::warn_overaligned_type)
2398             << AllocType
2399             << unsigned(Alignment / Context.getCharWidth())
2400             << unsigned(NewAlignment / Context.getCharWidth());
2401     }
2402   }
2403 
2404   // Array 'new' can't have any initializers except empty parentheses.
2405   // Initializer lists are also allowed, in C++11. Rely on the parser for the
2406   // dialect distinction.
2407   if (ArraySize && !isLegalArrayNewInitializer(InitStyle, Initializer,
2408                                                getLangOpts().CPlusPlus20)) {
2409     SourceRange InitRange(Exprs.front()->getBeginLoc(),
2410                           Exprs.back()->getEndLoc());
2411     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2412     return ExprError();
2413   }
2414 
2415   // If we can perform the initialization, and we've not already done so,
2416   // do it now.
2417   if (!AllocType->isDependentType() &&
2418       !Expr::hasAnyTypeDependentArguments(Exprs)) {
2419     // The type we initialize is the complete type, including the array bound.
2420     QualType InitType;
2421     if (KnownArraySize)
2422       InitType = Context.getConstantArrayType(
2423           AllocType,
2424           llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2425                       *KnownArraySize),
2426           *ArraySize, ArraySizeModifier::Normal, 0);
2427     else if (ArraySize)
2428       InitType = Context.getIncompleteArrayType(AllocType,
2429                                                 ArraySizeModifier::Normal, 0);
2430     else
2431       InitType = AllocType;
2432 
2433     InitializedEntity Entity
2434       = InitializedEntity::InitializeNew(StartLoc, InitType);
2435     InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
2436     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs);
2437     if (FullInit.isInvalid())
2438       return ExprError();
2439 
2440     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2441     // we don't want the initialized object to be destructed.
2442     // FIXME: We should not create these in the first place.
2443     if (CXXBindTemporaryExpr *Binder =
2444             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2445       FullInit = Binder->getSubExpr();
2446 
2447     Initializer = FullInit.get();
2448 
2449     // FIXME: If we have a KnownArraySize, check that the array bound of the
2450     // initializer is no greater than that constant value.
2451 
2452     if (ArraySize && !*ArraySize) {
2453       auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2454       if (CAT) {
2455         // FIXME: Track that the array size was inferred rather than explicitly
2456         // specified.
2457         ArraySize = IntegerLiteral::Create(
2458             Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2459       } else {
2460         Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2461             << Initializer->getSourceRange();
2462       }
2463     }
2464   }
2465 
2466   // Mark the new and delete operators as referenced.
2467   if (OperatorNew) {
2468     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2469       return ExprError();
2470     MarkFunctionReferenced(StartLoc, OperatorNew);
2471   }
2472   if (OperatorDelete) {
2473     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2474       return ExprError();
2475     MarkFunctionReferenced(StartLoc, OperatorDelete);
2476   }
2477 
2478   return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2479                             PassAlignment, UsualArrayDeleteWantsSize,
2480                             PlacementArgs, TypeIdParens, ArraySize, InitStyle,
2481                             Initializer, ResultType, AllocTypeInfo, Range,
2482                             DirectInitRange);
2483 }
2484 
2485 /// Checks that a type is suitable as the allocated type
2486 /// in a new-expression.
2487 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2488                               SourceRange R) {
2489   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2490   //   abstract class type or array thereof.
2491   if (AllocType->isFunctionType())
2492     return Diag(Loc, diag::err_bad_new_type)
2493       << AllocType << 0 << R;
2494   else if (AllocType->isReferenceType())
2495     return Diag(Loc, diag::err_bad_new_type)
2496       << AllocType << 1 << R;
2497   else if (!AllocType->isDependentType() &&
2498            RequireCompleteSizedType(
2499                Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2500     return true;
2501   else if (RequireNonAbstractType(Loc, AllocType,
2502                                   diag::err_allocation_of_abstract_type))
2503     return true;
2504   else if (AllocType->isVariablyModifiedType())
2505     return Diag(Loc, diag::err_variably_modified_new_type)
2506              << AllocType;
2507   else if (AllocType.getAddressSpace() != LangAS::Default &&
2508            !getLangOpts().OpenCLCPlusPlus)
2509     return Diag(Loc, diag::err_address_space_qualified_new)
2510       << AllocType.getUnqualifiedType()
2511       << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2512   else if (getLangOpts().ObjCAutoRefCount) {
2513     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2514       QualType BaseAllocType = Context.getBaseElementType(AT);
2515       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2516           BaseAllocType->isObjCLifetimeType())
2517         return Diag(Loc, diag::err_arc_new_array_without_ownership)
2518           << BaseAllocType;
2519     }
2520   }
2521 
2522   return false;
2523 }
2524 
2525 static bool resolveAllocationOverload(
2526     Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2527     bool &PassAlignment, FunctionDecl *&Operator,
2528     OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2529   OverloadCandidateSet Candidates(R.getNameLoc(),
2530                                   OverloadCandidateSet::CSK_Normal);
2531   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2532        Alloc != AllocEnd; ++Alloc) {
2533     // Even member operator new/delete are implicitly treated as
2534     // static, so don't use AddMemberCandidate.
2535     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2536 
2537     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2538       S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2539                                      /*ExplicitTemplateArgs=*/nullptr, Args,
2540                                      Candidates,
2541                                      /*SuppressUserConversions=*/false);
2542       continue;
2543     }
2544 
2545     FunctionDecl *Fn = cast<FunctionDecl>(D);
2546     S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2547                            /*SuppressUserConversions=*/false);
2548   }
2549 
2550   // Do the resolution.
2551   OverloadCandidateSet::iterator Best;
2552   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2553   case OR_Success: {
2554     // Got one!
2555     FunctionDecl *FnDecl = Best->Function;
2556     if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2557                                 Best->FoundDecl) == Sema::AR_inaccessible)
2558       return true;
2559 
2560     Operator = FnDecl;
2561     return false;
2562   }
2563 
2564   case OR_No_Viable_Function:
2565     // C++17 [expr.new]p13:
2566     //   If no matching function is found and the allocated object type has
2567     //   new-extended alignment, the alignment argument is removed from the
2568     //   argument list, and overload resolution is performed again.
2569     if (PassAlignment) {
2570       PassAlignment = false;
2571       AlignArg = Args[1];
2572       Args.erase(Args.begin() + 1);
2573       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2574                                        Operator, &Candidates, AlignArg,
2575                                        Diagnose);
2576     }
2577 
2578     // MSVC will fall back on trying to find a matching global operator new
2579     // if operator new[] cannot be found.  Also, MSVC will leak by not
2580     // generating a call to operator delete or operator delete[], but we
2581     // will not replicate that bug.
2582     // FIXME: Find out how this interacts with the std::align_val_t fallback
2583     // once MSVC implements it.
2584     if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2585         S.Context.getLangOpts().MSVCCompat) {
2586       R.clear();
2587       R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2588       S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2589       // FIXME: This will give bad diagnostics pointing at the wrong functions.
2590       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2591                                        Operator, /*Candidates=*/nullptr,
2592                                        /*AlignArg=*/nullptr, Diagnose);
2593     }
2594 
2595     if (Diagnose) {
2596       // If this is an allocation of the form 'new (p) X' for some object
2597       // pointer p (or an expression that will decay to such a pointer),
2598       // diagnose the missing inclusion of <new>.
2599       if (!R.isClassLookup() && Args.size() == 2 &&
2600           (Args[1]->getType()->isObjectPointerType() ||
2601            Args[1]->getType()->isArrayType())) {
2602         S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2603             << R.getLookupName() << Range;
2604         // Listing the candidates is unlikely to be useful; skip it.
2605         return true;
2606       }
2607 
2608       // Finish checking all candidates before we note any. This checking can
2609       // produce additional diagnostics so can't be interleaved with our
2610       // emission of notes.
2611       //
2612       // For an aligned allocation, separately check the aligned and unaligned
2613       // candidates with their respective argument lists.
2614       SmallVector<OverloadCandidate*, 32> Cands;
2615       SmallVector<OverloadCandidate*, 32> AlignedCands;
2616       llvm::SmallVector<Expr*, 4> AlignedArgs;
2617       if (AlignedCandidates) {
2618         auto IsAligned = [](OverloadCandidate &C) {
2619           return C.Function->getNumParams() > 1 &&
2620                  C.Function->getParamDecl(1)->getType()->isAlignValT();
2621         };
2622         auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2623 
2624         AlignedArgs.reserve(Args.size() + 1);
2625         AlignedArgs.push_back(Args[0]);
2626         AlignedArgs.push_back(AlignArg);
2627         AlignedArgs.append(Args.begin() + 1, Args.end());
2628         AlignedCands = AlignedCandidates->CompleteCandidates(
2629             S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2630 
2631         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2632                                               R.getNameLoc(), IsUnaligned);
2633       } else {
2634         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2635                                               R.getNameLoc());
2636       }
2637 
2638       S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2639           << R.getLookupName() << Range;
2640       if (AlignedCandidates)
2641         AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2642                                           R.getNameLoc());
2643       Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2644     }
2645     return true;
2646 
2647   case OR_Ambiguous:
2648     if (Diagnose) {
2649       Candidates.NoteCandidates(
2650           PartialDiagnosticAt(R.getNameLoc(),
2651                               S.PDiag(diag::err_ovl_ambiguous_call)
2652                                   << R.getLookupName() << Range),
2653           S, OCD_AmbiguousCandidates, Args);
2654     }
2655     return true;
2656 
2657   case OR_Deleted: {
2658     if (Diagnose) {
2659       Candidates.NoteCandidates(
2660           PartialDiagnosticAt(R.getNameLoc(),
2661                               S.PDiag(diag::err_ovl_deleted_call)
2662                                   << R.getLookupName() << Range),
2663           S, OCD_AllCandidates, Args);
2664     }
2665     return true;
2666   }
2667   }
2668   llvm_unreachable("Unreachable, bad result from BestViableFunction");
2669 }
2670 
2671 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2672                                    AllocationFunctionScope NewScope,
2673                                    AllocationFunctionScope DeleteScope,
2674                                    QualType AllocType, bool IsArray,
2675                                    bool &PassAlignment, MultiExprArg PlaceArgs,
2676                                    FunctionDecl *&OperatorNew,
2677                                    FunctionDecl *&OperatorDelete,
2678                                    bool Diagnose) {
2679   // --- Choosing an allocation function ---
2680   // C++ 5.3.4p8 - 14 & 18
2681   // 1) If looking in AFS_Global scope for allocation functions, only look in
2682   //    the global scope. Else, if AFS_Class, only look in the scope of the
2683   //    allocated class. If AFS_Both, look in both.
2684   // 2) If an array size is given, look for operator new[], else look for
2685   //   operator new.
2686   // 3) The first argument is always size_t. Append the arguments from the
2687   //   placement form.
2688 
2689   SmallVector<Expr*, 8> AllocArgs;
2690   AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2691 
2692   // We don't care about the actual value of these arguments.
2693   // FIXME: Should the Sema create the expression and embed it in the syntax
2694   // tree? Or should the consumer just recalculate the value?
2695   // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2696   QualType SizeTy = Context.getSizeType();
2697   unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2698   IntegerLiteral Size(Context, llvm::APInt::getZero(SizeTyWidth), SizeTy,
2699                       SourceLocation());
2700   AllocArgs.push_back(&Size);
2701 
2702   QualType AlignValT = Context.VoidTy;
2703   if (PassAlignment) {
2704     DeclareGlobalNewDelete();
2705     AlignValT = Context.getTypeDeclType(getStdAlignValT());
2706   }
2707   CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2708   if (PassAlignment)
2709     AllocArgs.push_back(&Align);
2710 
2711   AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2712 
2713   // C++ [expr.new]p8:
2714   //   If the allocated type is a non-array type, the allocation
2715   //   function's name is operator new and the deallocation function's
2716   //   name is operator delete. If the allocated type is an array
2717   //   type, the allocation function's name is operator new[] and the
2718   //   deallocation function's name is operator delete[].
2719   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2720       IsArray ? OO_Array_New : OO_New);
2721 
2722   QualType AllocElemType = Context.getBaseElementType(AllocType);
2723 
2724   // Find the allocation function.
2725   {
2726     LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2727 
2728     // C++1z [expr.new]p9:
2729     //   If the new-expression begins with a unary :: operator, the allocation
2730     //   function's name is looked up in the global scope. Otherwise, if the
2731     //   allocated type is a class type T or array thereof, the allocation
2732     //   function's name is looked up in the scope of T.
2733     if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2734       LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2735 
2736     // We can see ambiguity here if the allocation function is found in
2737     // multiple base classes.
2738     if (R.isAmbiguous())
2739       return true;
2740 
2741     //   If this lookup fails to find the name, or if the allocated type is not
2742     //   a class type, the allocation function's name is looked up in the
2743     //   global scope.
2744     if (R.empty()) {
2745       if (NewScope == AFS_Class)
2746         return true;
2747 
2748       LookupQualifiedName(R, Context.getTranslationUnitDecl());
2749     }
2750 
2751     if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2752       if (PlaceArgs.empty()) {
2753         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2754       } else {
2755         Diag(StartLoc, diag::err_openclcxx_placement_new);
2756       }
2757       return true;
2758     }
2759 
2760     assert(!R.empty() && "implicitly declared allocation functions not found");
2761     assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2762 
2763     // We do our own custom access checks below.
2764     R.suppressDiagnostics();
2765 
2766     if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2767                                   OperatorNew, /*Candidates=*/nullptr,
2768                                   /*AlignArg=*/nullptr, Diagnose))
2769       return true;
2770   }
2771 
2772   // We don't need an operator delete if we're running under -fno-exceptions.
2773   if (!getLangOpts().Exceptions) {
2774     OperatorDelete = nullptr;
2775     return false;
2776   }
2777 
2778   // Note, the name of OperatorNew might have been changed from array to
2779   // non-array by resolveAllocationOverload.
2780   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2781       OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2782           ? OO_Array_Delete
2783           : OO_Delete);
2784 
2785   // C++ [expr.new]p19:
2786   //
2787   //   If the new-expression begins with a unary :: operator, the
2788   //   deallocation function's name is looked up in the global
2789   //   scope. Otherwise, if the allocated type is a class type T or an
2790   //   array thereof, the deallocation function's name is looked up in
2791   //   the scope of T. If this lookup fails to find the name, or if
2792   //   the allocated type is not a class type or array thereof, the
2793   //   deallocation function's name is looked up in the global scope.
2794   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2795   if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2796     auto *RD =
2797         cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2798     LookupQualifiedName(FoundDelete, RD);
2799   }
2800   if (FoundDelete.isAmbiguous())
2801     return true; // FIXME: clean up expressions?
2802 
2803   // Filter out any destroying operator deletes. We can't possibly call such a
2804   // function in this context, because we're handling the case where the object
2805   // was not successfully constructed.
2806   // FIXME: This is not covered by the language rules yet.
2807   {
2808     LookupResult::Filter Filter = FoundDelete.makeFilter();
2809     while (Filter.hasNext()) {
2810       auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2811       if (FD && FD->isDestroyingOperatorDelete())
2812         Filter.erase();
2813     }
2814     Filter.done();
2815   }
2816 
2817   bool FoundGlobalDelete = FoundDelete.empty();
2818   if (FoundDelete.empty()) {
2819     FoundDelete.clear(LookupOrdinaryName);
2820 
2821     if (DeleteScope == AFS_Class)
2822       return true;
2823 
2824     DeclareGlobalNewDelete();
2825     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2826   }
2827 
2828   FoundDelete.suppressDiagnostics();
2829 
2830   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2831 
2832   // Whether we're looking for a placement operator delete is dictated
2833   // by whether we selected a placement operator new, not by whether
2834   // we had explicit placement arguments.  This matters for things like
2835   //   struct A { void *operator new(size_t, int = 0); ... };
2836   //   A *a = new A()
2837   //
2838   // We don't have any definition for what a "placement allocation function"
2839   // is, but we assume it's any allocation function whose
2840   // parameter-declaration-clause is anything other than (size_t).
2841   //
2842   // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2843   // This affects whether an exception from the constructor of an overaligned
2844   // type uses the sized or non-sized form of aligned operator delete.
2845   bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2846                         OperatorNew->isVariadic();
2847 
2848   if (isPlacementNew) {
2849     // C++ [expr.new]p20:
2850     //   A declaration of a placement deallocation function matches the
2851     //   declaration of a placement allocation function if it has the
2852     //   same number of parameters and, after parameter transformations
2853     //   (8.3.5), all parameter types except the first are
2854     //   identical. [...]
2855     //
2856     // To perform this comparison, we compute the function type that
2857     // the deallocation function should have, and use that type both
2858     // for template argument deduction and for comparison purposes.
2859     QualType ExpectedFunctionType;
2860     {
2861       auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2862 
2863       SmallVector<QualType, 4> ArgTypes;
2864       ArgTypes.push_back(Context.VoidPtrTy);
2865       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2866         ArgTypes.push_back(Proto->getParamType(I));
2867 
2868       FunctionProtoType::ExtProtoInfo EPI;
2869       // FIXME: This is not part of the standard's rule.
2870       EPI.Variadic = Proto->isVariadic();
2871 
2872       ExpectedFunctionType
2873         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2874     }
2875 
2876     for (LookupResult::iterator D = FoundDelete.begin(),
2877                              DEnd = FoundDelete.end();
2878          D != DEnd; ++D) {
2879       FunctionDecl *Fn = nullptr;
2880       if (FunctionTemplateDecl *FnTmpl =
2881               dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2882         // Perform template argument deduction to try to match the
2883         // expected function type.
2884         TemplateDeductionInfo Info(StartLoc);
2885         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2886                                     Info))
2887           continue;
2888       } else
2889         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2890 
2891       if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2892                                                   ExpectedFunctionType,
2893                                                   /*AdjustExcpetionSpec*/true),
2894                               ExpectedFunctionType))
2895         Matches.push_back(std::make_pair(D.getPair(), Fn));
2896     }
2897 
2898     if (getLangOpts().CUDA)
2899       EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true),
2900                                Matches);
2901   } else {
2902     // C++1y [expr.new]p22:
2903     //   For a non-placement allocation function, the normal deallocation
2904     //   function lookup is used
2905     //
2906     // Per [expr.delete]p10, this lookup prefers a member operator delete
2907     // without a size_t argument, but prefers a non-member operator delete
2908     // with a size_t where possible (which it always is in this case).
2909     llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2910     UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2911         *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2912         /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2913         &BestDeallocFns);
2914     if (Selected)
2915       Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2916     else {
2917       // If we failed to select an operator, all remaining functions are viable
2918       // but ambiguous.
2919       for (auto Fn : BestDeallocFns)
2920         Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2921     }
2922   }
2923 
2924   // C++ [expr.new]p20:
2925   //   [...] If the lookup finds a single matching deallocation
2926   //   function, that function will be called; otherwise, no
2927   //   deallocation function will be called.
2928   if (Matches.size() == 1) {
2929     OperatorDelete = Matches[0].second;
2930 
2931     // C++1z [expr.new]p23:
2932     //   If the lookup finds a usual deallocation function (3.7.4.2)
2933     //   with a parameter of type std::size_t and that function, considered
2934     //   as a placement deallocation function, would have been
2935     //   selected as a match for the allocation function, the program
2936     //   is ill-formed.
2937     if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2938         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2939       UsualDeallocFnInfo Info(*this,
2940                               DeclAccessPair::make(OperatorDelete, AS_public));
2941       // Core issue, per mail to core reflector, 2016-10-09:
2942       //   If this is a member operator delete, and there is a corresponding
2943       //   non-sized member operator delete, this isn't /really/ a sized
2944       //   deallocation function, it just happens to have a size_t parameter.
2945       bool IsSizedDelete = Info.HasSizeT;
2946       if (IsSizedDelete && !FoundGlobalDelete) {
2947         auto NonSizedDelete =
2948             resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2949                                         /*WantAlign*/Info.HasAlignValT);
2950         if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2951             NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2952           IsSizedDelete = false;
2953       }
2954 
2955       if (IsSizedDelete) {
2956         SourceRange R = PlaceArgs.empty()
2957                             ? SourceRange()
2958                             : SourceRange(PlaceArgs.front()->getBeginLoc(),
2959                                           PlaceArgs.back()->getEndLoc());
2960         Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2961         if (!OperatorDelete->isImplicit())
2962           Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2963               << DeleteName;
2964       }
2965     }
2966 
2967     CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2968                           Matches[0].first);
2969   } else if (!Matches.empty()) {
2970     // We found multiple suitable operators. Per [expr.new]p20, that means we
2971     // call no 'operator delete' function, but we should at least warn the user.
2972     // FIXME: Suppress this warning if the construction cannot throw.
2973     Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2974       << DeleteName << AllocElemType;
2975 
2976     for (auto &Match : Matches)
2977       Diag(Match.second->getLocation(),
2978            diag::note_member_declared_here) << DeleteName;
2979   }
2980 
2981   return false;
2982 }
2983 
2984 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2985 /// delete. These are:
2986 /// @code
2987 ///   // C++03:
2988 ///   void* operator new(std::size_t) throw(std::bad_alloc);
2989 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
2990 ///   void operator delete(void *) throw();
2991 ///   void operator delete[](void *) throw();
2992 ///   // C++11:
2993 ///   void* operator new(std::size_t);
2994 ///   void* operator new[](std::size_t);
2995 ///   void operator delete(void *) noexcept;
2996 ///   void operator delete[](void *) noexcept;
2997 ///   // C++1y:
2998 ///   void* operator new(std::size_t);
2999 ///   void* operator new[](std::size_t);
3000 ///   void operator delete(void *) noexcept;
3001 ///   void operator delete[](void *) noexcept;
3002 ///   void operator delete(void *, std::size_t) noexcept;
3003 ///   void operator delete[](void *, std::size_t) noexcept;
3004 /// @endcode
3005 /// Note that the placement and nothrow forms of new are *not* implicitly
3006 /// declared. Their use requires including \<new\>.
3007 void Sema::DeclareGlobalNewDelete() {
3008   if (GlobalNewDeleteDeclared)
3009     return;
3010 
3011   // The implicitly declared new and delete operators
3012   // are not supported in OpenCL.
3013   if (getLangOpts().OpenCLCPlusPlus)
3014     return;
3015 
3016   // C++ [basic.stc.dynamic.general]p2:
3017   //   The library provides default definitions for the global allocation
3018   //   and deallocation functions. Some global allocation and deallocation
3019   //   functions are replaceable ([new.delete]); these are attached to the
3020   //   global module ([module.unit]).
3021   if (getLangOpts().CPlusPlusModules && getCurrentModule())
3022     PushGlobalModuleFragment(SourceLocation());
3023 
3024   // C++ [basic.std.dynamic]p2:
3025   //   [...] The following allocation and deallocation functions (18.4) are
3026   //   implicitly declared in global scope in each translation unit of a
3027   //   program
3028   //
3029   //     C++03:
3030   //     void* operator new(std::size_t) throw(std::bad_alloc);
3031   //     void* operator new[](std::size_t) throw(std::bad_alloc);
3032   //     void  operator delete(void*) throw();
3033   //     void  operator delete[](void*) throw();
3034   //     C++11:
3035   //     void* operator new(std::size_t);
3036   //     void* operator new[](std::size_t);
3037   //     void  operator delete(void*) noexcept;
3038   //     void  operator delete[](void*) noexcept;
3039   //     C++1y:
3040   //     void* operator new(std::size_t);
3041   //     void* operator new[](std::size_t);
3042   //     void  operator delete(void*) noexcept;
3043   //     void  operator delete[](void*) noexcept;
3044   //     void  operator delete(void*, std::size_t) noexcept;
3045   //     void  operator delete[](void*, std::size_t) noexcept;
3046   //
3047   //   These implicit declarations introduce only the function names operator
3048   //   new, operator new[], operator delete, operator delete[].
3049   //
3050   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
3051   // "std" or "bad_alloc" as necessary to form the exception specification.
3052   // However, we do not make these implicit declarations visible to name
3053   // lookup.
3054   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
3055     // The "std::bad_alloc" class has not yet been declared, so build it
3056     // implicitly.
3057     StdBadAlloc = CXXRecordDecl::Create(
3058         Context, TagTypeKind::Class, getOrCreateStdNamespace(),
3059         SourceLocation(), SourceLocation(),
3060         &PP.getIdentifierTable().get("bad_alloc"), nullptr);
3061     getStdBadAlloc()->setImplicit(true);
3062 
3063     // The implicitly declared "std::bad_alloc" should live in global module
3064     // fragment.
3065     if (TheGlobalModuleFragment) {
3066       getStdBadAlloc()->setModuleOwnershipKind(
3067           Decl::ModuleOwnershipKind::ReachableWhenImported);
3068       getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment);
3069     }
3070   }
3071   if (!StdAlignValT && getLangOpts().AlignedAllocation) {
3072     // The "std::align_val_t" enum class has not yet been declared, so build it
3073     // implicitly.
3074     auto *AlignValT = EnumDecl::Create(
3075         Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
3076         &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
3077 
3078     // The implicitly declared "std::align_val_t" should live in global module
3079     // fragment.
3080     if (TheGlobalModuleFragment) {
3081       AlignValT->setModuleOwnershipKind(
3082           Decl::ModuleOwnershipKind::ReachableWhenImported);
3083       AlignValT->setLocalOwningModule(TheGlobalModuleFragment);
3084     }
3085 
3086     AlignValT->setIntegerType(Context.getSizeType());
3087     AlignValT->setPromotionType(Context.getSizeType());
3088     AlignValT->setImplicit(true);
3089 
3090     StdAlignValT = AlignValT;
3091   }
3092 
3093   GlobalNewDeleteDeclared = true;
3094 
3095   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
3096   QualType SizeT = Context.getSizeType();
3097 
3098   auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
3099                                               QualType Return, QualType Param) {
3100     llvm::SmallVector<QualType, 3> Params;
3101     Params.push_back(Param);
3102 
3103     // Create up to four variants of the function (sized/aligned).
3104     bool HasSizedVariant = getLangOpts().SizedDeallocation &&
3105                            (Kind == OO_Delete || Kind == OO_Array_Delete);
3106     bool HasAlignedVariant = getLangOpts().AlignedAllocation;
3107 
3108     int NumSizeVariants = (HasSizedVariant ? 2 : 1);
3109     int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
3110     for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
3111       if (Sized)
3112         Params.push_back(SizeT);
3113 
3114       for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
3115         if (Aligned)
3116           Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
3117 
3118         DeclareGlobalAllocationFunction(
3119             Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
3120 
3121         if (Aligned)
3122           Params.pop_back();
3123       }
3124     }
3125   };
3126 
3127   DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3128   DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3129   DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3130   DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3131 
3132   if (getLangOpts().CPlusPlusModules && getCurrentModule())
3133     PopGlobalModuleFragment();
3134 }
3135 
3136 /// DeclareGlobalAllocationFunction - Declares a single implicit global
3137 /// allocation function if it doesn't already exist.
3138 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3139                                            QualType Return,
3140                                            ArrayRef<QualType> Params) {
3141   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3142 
3143   // Check if this function is already declared.
3144   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3145   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3146        Alloc != AllocEnd; ++Alloc) {
3147     // Only look at non-template functions, as it is the predefined,
3148     // non-templated allocation function we are trying to declare here.
3149     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3150       if (Func->getNumParams() == Params.size()) {
3151         llvm::SmallVector<QualType, 3> FuncParams;
3152         for (auto *P : Func->parameters())
3153           FuncParams.push_back(
3154               Context.getCanonicalType(P->getType().getUnqualifiedType()));
3155         if (llvm::ArrayRef(FuncParams) == Params) {
3156           // Make the function visible to name lookup, even if we found it in
3157           // an unimported module. It either is an implicitly-declared global
3158           // allocation function, or is suppressing that function.
3159           Func->setVisibleDespiteOwningModule();
3160           return;
3161         }
3162       }
3163     }
3164   }
3165 
3166   FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3167       /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3168 
3169   QualType BadAllocType;
3170   bool HasBadAllocExceptionSpec
3171     = (Name.getCXXOverloadedOperator() == OO_New ||
3172        Name.getCXXOverloadedOperator() == OO_Array_New);
3173   if (HasBadAllocExceptionSpec) {
3174     if (!getLangOpts().CPlusPlus11) {
3175       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3176       assert(StdBadAlloc && "Must have std::bad_alloc declared");
3177       EPI.ExceptionSpec.Type = EST_Dynamic;
3178       EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType);
3179     }
3180     if (getLangOpts().NewInfallible) {
3181       EPI.ExceptionSpec.Type = EST_DynamicNone;
3182     }
3183   } else {
3184     EPI.ExceptionSpec =
3185         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3186   }
3187 
3188   auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3189     QualType FnType = Context.getFunctionType(Return, Params, EPI);
3190     FunctionDecl *Alloc = FunctionDecl::Create(
3191         Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3192         /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3193         true);
3194     Alloc->setImplicit();
3195     // Global allocation functions should always be visible.
3196     Alloc->setVisibleDespiteOwningModule();
3197 
3198     if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible &&
3199         !getLangOpts().CheckNew)
3200       Alloc->addAttr(
3201           ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3202 
3203     // C++ [basic.stc.dynamic.general]p2:
3204     //   The library provides default definitions for the global allocation
3205     //   and deallocation functions. Some global allocation and deallocation
3206     //   functions are replaceable ([new.delete]); these are attached to the
3207     //   global module ([module.unit]).
3208     //
3209     // In the language wording, these functions are attched to the global
3210     // module all the time. But in the implementation, the global module
3211     // is only meaningful when we're in a module unit. So here we attach
3212     // these allocation functions to global module conditionally.
3213     if (TheGlobalModuleFragment) {
3214       Alloc->setModuleOwnershipKind(
3215           Decl::ModuleOwnershipKind::ReachableWhenImported);
3216       Alloc->setLocalOwningModule(TheGlobalModuleFragment);
3217     }
3218 
3219     if (LangOpts.hasGlobalAllocationFunctionVisibility())
3220       Alloc->addAttr(VisibilityAttr::CreateImplicit(
3221           Context, LangOpts.hasHiddenGlobalAllocationFunctionVisibility()
3222                        ? VisibilityAttr::Hidden
3223                    : LangOpts.hasProtectedGlobalAllocationFunctionVisibility()
3224                        ? VisibilityAttr::Protected
3225                        : VisibilityAttr::Default));
3226 
3227     llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3228     for (QualType T : Params) {
3229       ParamDecls.push_back(ParmVarDecl::Create(
3230           Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3231           /*TInfo=*/nullptr, SC_None, nullptr));
3232       ParamDecls.back()->setImplicit();
3233     }
3234     Alloc->setParams(ParamDecls);
3235     if (ExtraAttr)
3236       Alloc->addAttr(ExtraAttr);
3237     AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3238     Context.getTranslationUnitDecl()->addDecl(Alloc);
3239     IdResolver.tryAddTopLevelDecl(Alloc, Name);
3240   };
3241 
3242   if (!LangOpts.CUDA)
3243     CreateAllocationFunctionDecl(nullptr);
3244   else {
3245     // Host and device get their own declaration so each can be
3246     // defined or re-declared independently.
3247     CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3248     CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3249   }
3250 }
3251 
3252 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3253                                                   bool CanProvideSize,
3254                                                   bool Overaligned,
3255                                                   DeclarationName Name) {
3256   DeclareGlobalNewDelete();
3257 
3258   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3259   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3260 
3261   // FIXME: It's possible for this to result in ambiguity, through a
3262   // user-declared variadic operator delete or the enable_if attribute. We
3263   // should probably not consider those cases to be usual deallocation
3264   // functions. But for now we just make an arbitrary choice in that case.
3265   auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3266                                             Overaligned);
3267   assert(Result.FD && "operator delete missing from global scope?");
3268   return Result.FD;
3269 }
3270 
3271 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3272                                                           CXXRecordDecl *RD) {
3273   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3274 
3275   FunctionDecl *OperatorDelete = nullptr;
3276   if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3277     return nullptr;
3278   if (OperatorDelete)
3279     return OperatorDelete;
3280 
3281   // If there's no class-specific operator delete, look up the global
3282   // non-array delete.
3283   return FindUsualDeallocationFunction(
3284       Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3285       Name);
3286 }
3287 
3288 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3289                                     DeclarationName Name,
3290                                     FunctionDecl *&Operator, bool Diagnose,
3291                                     bool WantSize, bool WantAligned) {
3292   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3293   // Try to find operator delete/operator delete[] in class scope.
3294   LookupQualifiedName(Found, RD);
3295 
3296   if (Found.isAmbiguous())
3297     return true;
3298 
3299   Found.suppressDiagnostics();
3300 
3301   bool Overaligned =
3302       WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3303 
3304   // C++17 [expr.delete]p10:
3305   //   If the deallocation functions have class scope, the one without a
3306   //   parameter of type std::size_t is selected.
3307   llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3308   resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize,
3309                               /*WantAlign*/ Overaligned, &Matches);
3310 
3311   // If we could find an overload, use it.
3312   if (Matches.size() == 1) {
3313     Operator = cast<CXXMethodDecl>(Matches[0].FD);
3314 
3315     // FIXME: DiagnoseUseOfDecl?
3316     if (Operator->isDeleted()) {
3317       if (Diagnose) {
3318         Diag(StartLoc, diag::err_deleted_function_use);
3319         NoteDeletedFunction(Operator);
3320       }
3321       return true;
3322     }
3323 
3324     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3325                               Matches[0].Found, Diagnose) == AR_inaccessible)
3326       return true;
3327 
3328     return false;
3329   }
3330 
3331   // We found multiple suitable operators; complain about the ambiguity.
3332   // FIXME: The standard doesn't say to do this; it appears that the intent
3333   // is that this should never happen.
3334   if (!Matches.empty()) {
3335     if (Diagnose) {
3336       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3337         << Name << RD;
3338       for (auto &Match : Matches)
3339         Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3340     }
3341     return true;
3342   }
3343 
3344   // We did find operator delete/operator delete[] declarations, but
3345   // none of them were suitable.
3346   if (!Found.empty()) {
3347     if (Diagnose) {
3348       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3349         << Name << RD;
3350 
3351       for (NamedDecl *D : Found)
3352         Diag(D->getUnderlyingDecl()->getLocation(),
3353              diag::note_member_declared_here) << Name;
3354     }
3355     return true;
3356   }
3357 
3358   Operator = nullptr;
3359   return false;
3360 }
3361 
3362 namespace {
3363 /// Checks whether delete-expression, and new-expression used for
3364 ///  initializing deletee have the same array form.
3365 class MismatchingNewDeleteDetector {
3366 public:
3367   enum MismatchResult {
3368     /// Indicates that there is no mismatch or a mismatch cannot be proven.
3369     NoMismatch,
3370     /// Indicates that variable is initialized with mismatching form of \a new.
3371     VarInitMismatches,
3372     /// Indicates that member is initialized with mismatching form of \a new.
3373     MemberInitMismatches,
3374     /// Indicates that 1 or more constructors' definitions could not been
3375     /// analyzed, and they will be checked again at the end of translation unit.
3376     AnalyzeLater
3377   };
3378 
3379   /// \param EndOfTU True, if this is the final analysis at the end of
3380   /// translation unit. False, if this is the initial analysis at the point
3381   /// delete-expression was encountered.
3382   explicit MismatchingNewDeleteDetector(bool EndOfTU)
3383       : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3384         HasUndefinedConstructors(false) {}
3385 
3386   /// Checks whether pointee of a delete-expression is initialized with
3387   /// matching form of new-expression.
3388   ///
3389   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3390   /// point where delete-expression is encountered, then a warning will be
3391   /// issued immediately. If return value is \c AnalyzeLater at the point where
3392   /// delete-expression is seen, then member will be analyzed at the end of
3393   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3394   /// couldn't be analyzed. If at least one constructor initializes the member
3395   /// with matching type of new, the return value is \c NoMismatch.
3396   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3397   /// Analyzes a class member.
3398   /// \param Field Class member to analyze.
3399   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3400   /// for deleting the \p Field.
3401   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3402   FieldDecl *Field;
3403   /// List of mismatching new-expressions used for initialization of the pointee
3404   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3405   /// Indicates whether delete-expression was in array form.
3406   bool IsArrayForm;
3407 
3408 private:
3409   const bool EndOfTU;
3410   /// Indicates that there is at least one constructor without body.
3411   bool HasUndefinedConstructors;
3412   /// Returns \c CXXNewExpr from given initialization expression.
3413   /// \param E Expression used for initializing pointee in delete-expression.
3414   /// E can be a single-element \c InitListExpr consisting of new-expression.
3415   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3416   /// Returns whether member is initialized with mismatching form of
3417   /// \c new either by the member initializer or in-class initialization.
3418   ///
3419   /// If bodies of all constructors are not visible at the end of translation
3420   /// unit or at least one constructor initializes member with the matching
3421   /// form of \c new, mismatch cannot be proven, and this function will return
3422   /// \c NoMismatch.
3423   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3424   /// Returns whether variable is initialized with mismatching form of
3425   /// \c new.
3426   ///
3427   /// If variable is initialized with matching form of \c new or variable is not
3428   /// initialized with a \c new expression, this function will return true.
3429   /// If variable is initialized with mismatching form of \c new, returns false.
3430   /// \param D Variable to analyze.
3431   bool hasMatchingVarInit(const DeclRefExpr *D);
3432   /// Checks whether the constructor initializes pointee with mismatching
3433   /// form of \c new.
3434   ///
3435   /// Returns true, if member is initialized with matching form of \c new in
3436   /// member initializer list. Returns false, if member is initialized with the
3437   /// matching form of \c new in this constructor's initializer or given
3438   /// constructor isn't defined at the point where delete-expression is seen, or
3439   /// member isn't initialized by the constructor.
3440   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3441   /// Checks whether member is initialized with matching form of
3442   /// \c new in member initializer list.
3443   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3444   /// Checks whether member is initialized with mismatching form of \c new by
3445   /// in-class initializer.
3446   MismatchResult analyzeInClassInitializer();
3447 };
3448 }
3449 
3450 MismatchingNewDeleteDetector::MismatchResult
3451 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3452   NewExprs.clear();
3453   assert(DE && "Expected delete-expression");
3454   IsArrayForm = DE->isArrayForm();
3455   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3456   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3457     return analyzeMemberExpr(ME);
3458   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3459     if (!hasMatchingVarInit(D))
3460       return VarInitMismatches;
3461   }
3462   return NoMismatch;
3463 }
3464 
3465 const CXXNewExpr *
3466 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3467   assert(E != nullptr && "Expected a valid initializer expression");
3468   E = E->IgnoreParenImpCasts();
3469   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3470     if (ILE->getNumInits() == 1)
3471       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3472   }
3473 
3474   return dyn_cast_or_null<const CXXNewExpr>(E);
3475 }
3476 
3477 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3478     const CXXCtorInitializer *CI) {
3479   const CXXNewExpr *NE = nullptr;
3480   if (Field == CI->getMember() &&
3481       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3482     if (NE->isArray() == IsArrayForm)
3483       return true;
3484     else
3485       NewExprs.push_back(NE);
3486   }
3487   return false;
3488 }
3489 
3490 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3491     const CXXConstructorDecl *CD) {
3492   if (CD->isImplicit())
3493     return false;
3494   const FunctionDecl *Definition = CD;
3495   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3496     HasUndefinedConstructors = true;
3497     return EndOfTU;
3498   }
3499   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3500     if (hasMatchingNewInCtorInit(CI))
3501       return true;
3502   }
3503   return false;
3504 }
3505 
3506 MismatchingNewDeleteDetector::MismatchResult
3507 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3508   assert(Field != nullptr && "This should be called only for members");
3509   const Expr *InitExpr = Field->getInClassInitializer();
3510   if (!InitExpr)
3511     return EndOfTU ? NoMismatch : AnalyzeLater;
3512   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3513     if (NE->isArray() != IsArrayForm) {
3514       NewExprs.push_back(NE);
3515       return MemberInitMismatches;
3516     }
3517   }
3518   return NoMismatch;
3519 }
3520 
3521 MismatchingNewDeleteDetector::MismatchResult
3522 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3523                                            bool DeleteWasArrayForm) {
3524   assert(Field != nullptr && "Analysis requires a valid class member.");
3525   this->Field = Field;
3526   IsArrayForm = DeleteWasArrayForm;
3527   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3528   for (const auto *CD : RD->ctors()) {
3529     if (hasMatchingNewInCtor(CD))
3530       return NoMismatch;
3531   }
3532   if (HasUndefinedConstructors)
3533     return EndOfTU ? NoMismatch : AnalyzeLater;
3534   if (!NewExprs.empty())
3535     return MemberInitMismatches;
3536   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3537                                         : NoMismatch;
3538 }
3539 
3540 MismatchingNewDeleteDetector::MismatchResult
3541 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3542   assert(ME != nullptr && "Expected a member expression");
3543   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3544     return analyzeField(F, IsArrayForm);
3545   return NoMismatch;
3546 }
3547 
3548 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3549   const CXXNewExpr *NE = nullptr;
3550   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3551     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3552         NE->isArray() != IsArrayForm) {
3553       NewExprs.push_back(NE);
3554     }
3555   }
3556   return NewExprs.empty();
3557 }
3558 
3559 static void
3560 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3561                             const MismatchingNewDeleteDetector &Detector) {
3562   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3563   FixItHint H;
3564   if (!Detector.IsArrayForm)
3565     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3566   else {
3567     SourceLocation RSquare = Lexer::findLocationAfterToken(
3568         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3569         SemaRef.getLangOpts(), true);
3570     if (RSquare.isValid())
3571       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3572   }
3573   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3574       << Detector.IsArrayForm << H;
3575 
3576   for (const auto *NE : Detector.NewExprs)
3577     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3578         << Detector.IsArrayForm;
3579 }
3580 
3581 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3582   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3583     return;
3584   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3585   switch (Detector.analyzeDeleteExpr(DE)) {
3586   case MismatchingNewDeleteDetector::VarInitMismatches:
3587   case MismatchingNewDeleteDetector::MemberInitMismatches: {
3588     DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3589     break;
3590   }
3591   case MismatchingNewDeleteDetector::AnalyzeLater: {
3592     DeleteExprs[Detector.Field].push_back(
3593         std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3594     break;
3595   }
3596   case MismatchingNewDeleteDetector::NoMismatch:
3597     break;
3598   }
3599 }
3600 
3601 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3602                                      bool DeleteWasArrayForm) {
3603   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3604   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3605   case MismatchingNewDeleteDetector::VarInitMismatches:
3606     llvm_unreachable("This analysis should have been done for class members.");
3607   case MismatchingNewDeleteDetector::AnalyzeLater:
3608     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3609                      "translation unit.");
3610   case MismatchingNewDeleteDetector::MemberInitMismatches:
3611     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3612     break;
3613   case MismatchingNewDeleteDetector::NoMismatch:
3614     break;
3615   }
3616 }
3617 
3618 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3619 /// @code ::delete ptr; @endcode
3620 /// or
3621 /// @code delete [] ptr; @endcode
3622 ExprResult
3623 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3624                      bool ArrayForm, Expr *ExE) {
3625   // C++ [expr.delete]p1:
3626   //   The operand shall have a pointer type, or a class type having a single
3627   //   non-explicit conversion function to a pointer type. The result has type
3628   //   void.
3629   //
3630   // DR599 amends "pointer type" to "pointer to object type" in both cases.
3631 
3632   ExprResult Ex = ExE;
3633   FunctionDecl *OperatorDelete = nullptr;
3634   bool ArrayFormAsWritten = ArrayForm;
3635   bool UsualArrayDeleteWantsSize = false;
3636 
3637   if (!Ex.get()->isTypeDependent()) {
3638     // Perform lvalue-to-rvalue cast, if needed.
3639     Ex = DefaultLvalueConversion(Ex.get());
3640     if (Ex.isInvalid())
3641       return ExprError();
3642 
3643     QualType Type = Ex.get()->getType();
3644 
3645     class DeleteConverter : public ContextualImplicitConverter {
3646     public:
3647       DeleteConverter() : ContextualImplicitConverter(false, true) {}
3648 
3649       bool match(QualType ConvType) override {
3650         // FIXME: If we have an operator T* and an operator void*, we must pick
3651         // the operator T*.
3652         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3653           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3654             return true;
3655         return false;
3656       }
3657 
3658       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3659                                             QualType T) override {
3660         return S.Diag(Loc, diag::err_delete_operand) << T;
3661       }
3662 
3663       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3664                                                QualType T) override {
3665         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3666       }
3667 
3668       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3669                                                  QualType T,
3670                                                  QualType ConvTy) override {
3671         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3672       }
3673 
3674       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3675                                              QualType ConvTy) override {
3676         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3677           << ConvTy;
3678       }
3679 
3680       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3681                                               QualType T) override {
3682         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3683       }
3684 
3685       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3686                                           QualType ConvTy) override {
3687         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3688           << ConvTy;
3689       }
3690 
3691       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3692                                                QualType T,
3693                                                QualType ConvTy) override {
3694         llvm_unreachable("conversion functions are permitted");
3695       }
3696     } Converter;
3697 
3698     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3699     if (Ex.isInvalid())
3700       return ExprError();
3701     Type = Ex.get()->getType();
3702     if (!Converter.match(Type))
3703       // FIXME: PerformContextualImplicitConversion should return ExprError
3704       //        itself in this case.
3705       return ExprError();
3706 
3707     QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3708     QualType PointeeElem = Context.getBaseElementType(Pointee);
3709 
3710     if (Pointee.getAddressSpace() != LangAS::Default &&
3711         !getLangOpts().OpenCLCPlusPlus)
3712       return Diag(Ex.get()->getBeginLoc(),
3713                   diag::err_address_space_qualified_delete)
3714              << Pointee.getUnqualifiedType()
3715              << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3716 
3717     CXXRecordDecl *PointeeRD = nullptr;
3718     if (Pointee->isVoidType() && !isSFINAEContext()) {
3719       // The C++ standard bans deleting a pointer to a non-object type, which
3720       // effectively bans deletion of "void*". However, most compilers support
3721       // this, so we treat it as a warning unless we're in a SFINAE context.
3722       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3723         << Type << Ex.get()->getSourceRange();
3724     } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3725                Pointee->isSizelessType()) {
3726       return ExprError(Diag(StartLoc, diag::err_delete_operand)
3727         << Type << Ex.get()->getSourceRange());
3728     } else if (!Pointee->isDependentType()) {
3729       // FIXME: This can result in errors if the definition was imported from a
3730       // module but is hidden.
3731       if (!RequireCompleteType(StartLoc, Pointee,
3732                                diag::warn_delete_incomplete, Ex.get())) {
3733         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3734           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3735       }
3736     }
3737 
3738     if (Pointee->isArrayType() && !ArrayForm) {
3739       Diag(StartLoc, diag::warn_delete_array_type)
3740           << Type << Ex.get()->getSourceRange()
3741           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3742       ArrayForm = true;
3743     }
3744 
3745     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3746                                       ArrayForm ? OO_Array_Delete : OO_Delete);
3747 
3748     if (PointeeRD) {
3749       if (!UseGlobal &&
3750           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3751                                    OperatorDelete))
3752         return ExprError();
3753 
3754       // If we're allocating an array of records, check whether the
3755       // usual operator delete[] has a size_t parameter.
3756       if (ArrayForm) {
3757         // If the user specifically asked to use the global allocator,
3758         // we'll need to do the lookup into the class.
3759         if (UseGlobal)
3760           UsualArrayDeleteWantsSize =
3761             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3762 
3763         // Otherwise, the usual operator delete[] should be the
3764         // function we just found.
3765         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3766           UsualArrayDeleteWantsSize =
3767             UsualDeallocFnInfo(*this,
3768                                DeclAccessPair::make(OperatorDelete, AS_public))
3769               .HasSizeT;
3770       }
3771 
3772       if (!PointeeRD->hasIrrelevantDestructor())
3773         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3774           MarkFunctionReferenced(StartLoc,
3775                                     const_cast<CXXDestructorDecl*>(Dtor));
3776           if (DiagnoseUseOfDecl(Dtor, StartLoc))
3777             return ExprError();
3778         }
3779 
3780       CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3781                            /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3782                            /*WarnOnNonAbstractTypes=*/!ArrayForm,
3783                            SourceLocation());
3784     }
3785 
3786     if (!OperatorDelete) {
3787       if (getLangOpts().OpenCLCPlusPlus) {
3788         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3789         return ExprError();
3790       }
3791 
3792       bool IsComplete = isCompleteType(StartLoc, Pointee);
3793       bool CanProvideSize =
3794           IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3795                          Pointee.isDestructedType());
3796       bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3797 
3798       // Look for a global declaration.
3799       OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3800                                                      Overaligned, DeleteName);
3801     }
3802 
3803     MarkFunctionReferenced(StartLoc, OperatorDelete);
3804 
3805     // Check access and ambiguity of destructor if we're going to call it.
3806     // Note that this is required even for a virtual delete.
3807     bool IsVirtualDelete = false;
3808     if (PointeeRD) {
3809       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3810         CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3811                               PDiag(diag::err_access_dtor) << PointeeElem);
3812         IsVirtualDelete = Dtor->isVirtual();
3813       }
3814     }
3815 
3816     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3817 
3818     // Convert the operand to the type of the first parameter of operator
3819     // delete. This is only necessary if we selected a destroying operator
3820     // delete that we are going to call (non-virtually); converting to void*
3821     // is trivial and left to AST consumers to handle.
3822     QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3823     if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3824       Qualifiers Qs = Pointee.getQualifiers();
3825       if (Qs.hasCVRQualifiers()) {
3826         // Qualifiers are irrelevant to this conversion; we're only looking
3827         // for access and ambiguity.
3828         Qs.removeCVRQualifiers();
3829         QualType Unqual = Context.getPointerType(
3830             Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3831         Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3832       }
3833       Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3834       if (Ex.isInvalid())
3835         return ExprError();
3836     }
3837   }
3838 
3839   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3840       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3841       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3842   AnalyzeDeleteExprMismatch(Result);
3843   return Result;
3844 }
3845 
3846 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3847                                             bool IsDelete,
3848                                             FunctionDecl *&Operator) {
3849 
3850   DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3851       IsDelete ? OO_Delete : OO_New);
3852 
3853   LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3854   S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3855   assert(!R.empty() && "implicitly declared allocation functions not found");
3856   assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3857 
3858   // We do our own custom access checks below.
3859   R.suppressDiagnostics();
3860 
3861   SmallVector<Expr *, 8> Args(TheCall->arguments());
3862   OverloadCandidateSet Candidates(R.getNameLoc(),
3863                                   OverloadCandidateSet::CSK_Normal);
3864   for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3865        FnOvl != FnOvlEnd; ++FnOvl) {
3866     // Even member operator new/delete are implicitly treated as
3867     // static, so don't use AddMemberCandidate.
3868     NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3869 
3870     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3871       S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3872                                      /*ExplicitTemplateArgs=*/nullptr, Args,
3873                                      Candidates,
3874                                      /*SuppressUserConversions=*/false);
3875       continue;
3876     }
3877 
3878     FunctionDecl *Fn = cast<FunctionDecl>(D);
3879     S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3880                            /*SuppressUserConversions=*/false);
3881   }
3882 
3883   SourceRange Range = TheCall->getSourceRange();
3884 
3885   // Do the resolution.
3886   OverloadCandidateSet::iterator Best;
3887   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3888   case OR_Success: {
3889     // Got one!
3890     FunctionDecl *FnDecl = Best->Function;
3891     assert(R.getNamingClass() == nullptr &&
3892            "class members should not be considered");
3893 
3894     if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3895       S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3896           << (IsDelete ? 1 : 0) << Range;
3897       S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3898           << R.getLookupName() << FnDecl->getSourceRange();
3899       return true;
3900     }
3901 
3902     Operator = FnDecl;
3903     return false;
3904   }
3905 
3906   case OR_No_Viable_Function:
3907     Candidates.NoteCandidates(
3908         PartialDiagnosticAt(R.getNameLoc(),
3909                             S.PDiag(diag::err_ovl_no_viable_function_in_call)
3910                                 << R.getLookupName() << Range),
3911         S, OCD_AllCandidates, Args);
3912     return true;
3913 
3914   case OR_Ambiguous:
3915     Candidates.NoteCandidates(
3916         PartialDiagnosticAt(R.getNameLoc(),
3917                             S.PDiag(diag::err_ovl_ambiguous_call)
3918                                 << R.getLookupName() << Range),
3919         S, OCD_AmbiguousCandidates, Args);
3920     return true;
3921 
3922   case OR_Deleted: {
3923     Candidates.NoteCandidates(
3924         PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3925                                                 << R.getLookupName() << Range),
3926         S, OCD_AllCandidates, Args);
3927     return true;
3928   }
3929   }
3930   llvm_unreachable("Unreachable, bad result from BestViableFunction");
3931 }
3932 
3933 ExprResult
3934 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3935                                              bool IsDelete) {
3936   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3937   if (!getLangOpts().CPlusPlus) {
3938     Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3939         << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3940         << "C++";
3941     return ExprError();
3942   }
3943   // CodeGen assumes it can find the global new and delete to call,
3944   // so ensure that they are declared.
3945   DeclareGlobalNewDelete();
3946 
3947   FunctionDecl *OperatorNewOrDelete = nullptr;
3948   if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3949                                       OperatorNewOrDelete))
3950     return ExprError();
3951   assert(OperatorNewOrDelete && "should be found");
3952 
3953   DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3954   MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3955 
3956   TheCall->setType(OperatorNewOrDelete->getReturnType());
3957   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3958     QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3959     InitializedEntity Entity =
3960         InitializedEntity::InitializeParameter(Context, ParamTy, false);
3961     ExprResult Arg = PerformCopyInitialization(
3962         Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3963     if (Arg.isInvalid())
3964       return ExprError();
3965     TheCall->setArg(i, Arg.get());
3966   }
3967   auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3968   assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3969          "Callee expected to be implicit cast to a builtin function pointer");
3970   Callee->setType(OperatorNewOrDelete->getType());
3971 
3972   return TheCallResult;
3973 }
3974 
3975 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3976                                 bool IsDelete, bool CallCanBeVirtual,
3977                                 bool WarnOnNonAbstractTypes,
3978                                 SourceLocation DtorLoc) {
3979   if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3980     return;
3981 
3982   // C++ [expr.delete]p3:
3983   //   In the first alternative (delete object), if the static type of the
3984   //   object to be deleted is different from its dynamic type, the static
3985   //   type shall be a base class of the dynamic type of the object to be
3986   //   deleted and the static type shall have a virtual destructor or the
3987   //   behavior is undefined.
3988   //
3989   const CXXRecordDecl *PointeeRD = dtor->getParent();
3990   // Note: a final class cannot be derived from, no issue there
3991   if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3992     return;
3993 
3994   // If the superclass is in a system header, there's nothing that can be done.
3995   // The `delete` (where we emit the warning) can be in a system header,
3996   // what matters for this warning is where the deleted type is defined.
3997   if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3998     return;
3999 
4000   QualType ClassType = dtor->getFunctionObjectParameterType();
4001   if (PointeeRD->isAbstract()) {
4002     // If the class is abstract, we warn by default, because we're
4003     // sure the code has undefined behavior.
4004     Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
4005                                                            << ClassType;
4006   } else if (WarnOnNonAbstractTypes) {
4007     // Otherwise, if this is not an array delete, it's a bit suspect,
4008     // but not necessarily wrong.
4009     Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
4010                                                   << ClassType;
4011   }
4012   if (!IsDelete) {
4013     std::string TypeStr;
4014     ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
4015     Diag(DtorLoc, diag::note_delete_non_virtual)
4016         << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
4017   }
4018 }
4019 
4020 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
4021                                                    SourceLocation StmtLoc,
4022                                                    ConditionKind CK) {
4023   ExprResult E =
4024       CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
4025   if (E.isInvalid())
4026     return ConditionError();
4027   return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
4028                          CK == ConditionKind::ConstexprIf);
4029 }
4030 
4031 /// Check the use of the given variable as a C++ condition in an if,
4032 /// while, do-while, or switch statement.
4033 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
4034                                         SourceLocation StmtLoc,
4035                                         ConditionKind CK) {
4036   if (ConditionVar->isInvalidDecl())
4037     return ExprError();
4038 
4039   QualType T = ConditionVar->getType();
4040 
4041   // C++ [stmt.select]p2:
4042   //   The declarator shall not specify a function or an array.
4043   if (T->isFunctionType())
4044     return ExprError(Diag(ConditionVar->getLocation(),
4045                           diag::err_invalid_use_of_function_type)
4046                        << ConditionVar->getSourceRange());
4047   else if (T->isArrayType())
4048     return ExprError(Diag(ConditionVar->getLocation(),
4049                           diag::err_invalid_use_of_array_type)
4050                      << ConditionVar->getSourceRange());
4051 
4052   ExprResult Condition = BuildDeclRefExpr(
4053       ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
4054       ConditionVar->getLocation());
4055 
4056   switch (CK) {
4057   case ConditionKind::Boolean:
4058     return CheckBooleanCondition(StmtLoc, Condition.get());
4059 
4060   case ConditionKind::ConstexprIf:
4061     return CheckBooleanCondition(StmtLoc, Condition.get(), true);
4062 
4063   case ConditionKind::Switch:
4064     return CheckSwitchCondition(StmtLoc, Condition.get());
4065   }
4066 
4067   llvm_unreachable("unexpected condition kind");
4068 }
4069 
4070 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
4071 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
4072   // C++11 6.4p4:
4073   // The value of a condition that is an initialized declaration in a statement
4074   // other than a switch statement is the value of the declared variable
4075   // implicitly converted to type bool. If that conversion is ill-formed, the
4076   // program is ill-formed.
4077   // The value of a condition that is an expression is the value of the
4078   // expression, implicitly converted to bool.
4079   //
4080   // C++23 8.5.2p2
4081   // If the if statement is of the form if constexpr, the value of the condition
4082   // is contextually converted to bool and the converted expression shall be
4083   // a constant expression.
4084   //
4085 
4086   ExprResult E = PerformContextuallyConvertToBool(CondExpr);
4087   if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
4088     return E;
4089 
4090   // FIXME: Return this value to the caller so they don't need to recompute it.
4091   llvm::APSInt Cond;
4092   E = VerifyIntegerConstantExpression(
4093       E.get(), &Cond,
4094       diag::err_constexpr_if_condition_expression_is_not_constant);
4095   return E;
4096 }
4097 
4098 /// Helper function to determine whether this is the (deprecated) C++
4099 /// conversion from a string literal to a pointer to non-const char or
4100 /// non-const wchar_t (for narrow and wide string literals,
4101 /// respectively).
4102 bool
4103 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
4104   // Look inside the implicit cast, if it exists.
4105   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
4106     From = Cast->getSubExpr();
4107 
4108   // A string literal (2.13.4) that is not a wide string literal can
4109   // be converted to an rvalue of type "pointer to char"; a wide
4110   // string literal can be converted to an rvalue of type "pointer
4111   // to wchar_t" (C++ 4.2p2).
4112   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
4113     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
4114       if (const BuiltinType *ToPointeeType
4115           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
4116         // This conversion is considered only when there is an
4117         // explicit appropriate pointer target type (C++ 4.2p2).
4118         if (!ToPtrType->getPointeeType().hasQualifiers()) {
4119           switch (StrLit->getKind()) {
4120           case StringLiteralKind::UTF8:
4121           case StringLiteralKind::UTF16:
4122           case StringLiteralKind::UTF32:
4123             // We don't allow UTF literals to be implicitly converted
4124             break;
4125           case StringLiteralKind::Ordinary:
4126             return (ToPointeeType->getKind() == BuiltinType::Char_U ||
4127                     ToPointeeType->getKind() == BuiltinType::Char_S);
4128           case StringLiteralKind::Wide:
4129             return Context.typesAreCompatible(Context.getWideCharType(),
4130                                               QualType(ToPointeeType, 0));
4131           case StringLiteralKind::Unevaluated:
4132             assert(false && "Unevaluated string literal in expression");
4133             break;
4134           }
4135         }
4136       }
4137 
4138   return false;
4139 }
4140 
4141 static ExprResult BuildCXXCastArgument(Sema &S,
4142                                        SourceLocation CastLoc,
4143                                        QualType Ty,
4144                                        CastKind Kind,
4145                                        CXXMethodDecl *Method,
4146                                        DeclAccessPair FoundDecl,
4147                                        bool HadMultipleCandidates,
4148                                        Expr *From) {
4149   switch (Kind) {
4150   default: llvm_unreachable("Unhandled cast kind!");
4151   case CK_ConstructorConversion: {
4152     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
4153     SmallVector<Expr*, 8> ConstructorArgs;
4154 
4155     if (S.RequireNonAbstractType(CastLoc, Ty,
4156                                  diag::err_allocation_of_abstract_type))
4157       return ExprError();
4158 
4159     if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4160                                   ConstructorArgs))
4161       return ExprError();
4162 
4163     S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4164                              InitializedEntity::InitializeTemporary(Ty));
4165     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4166       return ExprError();
4167 
4168     ExprResult Result = S.BuildCXXConstructExpr(
4169         CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4170         ConstructorArgs, HadMultipleCandidates,
4171         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4172         CXXConstructionKind::Complete, SourceRange());
4173     if (Result.isInvalid())
4174       return ExprError();
4175 
4176     return S.MaybeBindToTemporary(Result.getAs<Expr>());
4177   }
4178 
4179   case CK_UserDefinedConversion: {
4180     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
4181 
4182     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4183     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4184       return ExprError();
4185 
4186     // Create an implicit call expr that calls it.
4187     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4188     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4189                                                  HadMultipleCandidates);
4190     if (Result.isInvalid())
4191       return ExprError();
4192     // Record usage of conversion in an implicit cast.
4193     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4194                                       CK_UserDefinedConversion, Result.get(),
4195                                       nullptr, Result.get()->getValueKind(),
4196                                       S.CurFPFeatureOverrides());
4197 
4198     return S.MaybeBindToTemporary(Result.get());
4199   }
4200   }
4201 }
4202 
4203 /// PerformImplicitConversion - Perform an implicit conversion of the
4204 /// expression From to the type ToType using the pre-computed implicit
4205 /// conversion sequence ICS. Returns the converted
4206 /// expression. Action is the kind of conversion we're performing,
4207 /// used in the error message.
4208 ExprResult
4209 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4210                                 const ImplicitConversionSequence &ICS,
4211                                 AssignmentAction Action,
4212                                 CheckedConversionKind CCK) {
4213   // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4214   if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4215     return From;
4216 
4217   switch (ICS.getKind()) {
4218   case ImplicitConversionSequence::StandardConversion: {
4219     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4220                                                Action, CCK);
4221     if (Res.isInvalid())
4222       return ExprError();
4223     From = Res.get();
4224     break;
4225   }
4226 
4227   case ImplicitConversionSequence::UserDefinedConversion: {
4228 
4229       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4230       CastKind CastKind;
4231       QualType BeforeToType;
4232       assert(FD && "no conversion function for user-defined conversion seq");
4233       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4234         CastKind = CK_UserDefinedConversion;
4235 
4236         // If the user-defined conversion is specified by a conversion function,
4237         // the initial standard conversion sequence converts the source type to
4238         // the implicit object parameter of the conversion function.
4239         BeforeToType = Context.getTagDeclType(Conv->getParent());
4240       } else {
4241         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4242         CastKind = CK_ConstructorConversion;
4243         // Do no conversion if dealing with ... for the first conversion.
4244         if (!ICS.UserDefined.EllipsisConversion) {
4245           // If the user-defined conversion is specified by a constructor, the
4246           // initial standard conversion sequence converts the source type to
4247           // the type required by the argument of the constructor
4248           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4249         }
4250       }
4251       // Watch out for ellipsis conversion.
4252       if (!ICS.UserDefined.EllipsisConversion) {
4253         ExprResult Res =
4254           PerformImplicitConversion(From, BeforeToType,
4255                                     ICS.UserDefined.Before, AA_Converting,
4256                                     CCK);
4257         if (Res.isInvalid())
4258           return ExprError();
4259         From = Res.get();
4260       }
4261 
4262       ExprResult CastArg = BuildCXXCastArgument(
4263           *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4264           cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4265           ICS.UserDefined.HadMultipleCandidates, From);
4266 
4267       if (CastArg.isInvalid())
4268         return ExprError();
4269 
4270       From = CastArg.get();
4271 
4272       // C++ [over.match.oper]p7:
4273       //   [...] the second standard conversion sequence of a user-defined
4274       //   conversion sequence is not applied.
4275       if (CCK == CCK_ForBuiltinOverloadedOp)
4276         return From;
4277 
4278       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4279                                        AA_Converting, CCK);
4280   }
4281 
4282   case ImplicitConversionSequence::AmbiguousConversion:
4283     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4284                           PDiag(diag::err_typecheck_ambiguous_condition)
4285                             << From->getSourceRange());
4286     return ExprError();
4287 
4288   case ImplicitConversionSequence::EllipsisConversion:
4289   case ImplicitConversionSequence::StaticObjectArgumentConversion:
4290     llvm_unreachable("bad conversion");
4291 
4292   case ImplicitConversionSequence::BadConversion:
4293     Sema::AssignConvertType ConvTy =
4294         CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4295     bool Diagnosed = DiagnoseAssignmentResult(
4296         ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4297         ToType, From->getType(), From, Action);
4298     assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4299     return ExprError();
4300   }
4301 
4302   // Everything went well.
4303   return From;
4304 }
4305 
4306 /// PerformImplicitConversion - Perform an implicit conversion of the
4307 /// expression From to the type ToType by following the standard
4308 /// conversion sequence SCS. Returns the converted
4309 /// expression. Flavor is the context in which we're performing this
4310 /// conversion, for use in error messages.
4311 ExprResult
4312 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4313                                 const StandardConversionSequence& SCS,
4314                                 AssignmentAction Action,
4315                                 CheckedConversionKind CCK) {
4316   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4317 
4318   // Overall FIXME: we are recomputing too many types here and doing far too
4319   // much extra work. What this means is that we need to keep track of more
4320   // information that is computed when we try the implicit conversion initially,
4321   // so that we don't need to recompute anything here.
4322   QualType FromType = From->getType();
4323 
4324   if (SCS.CopyConstructor) {
4325     // FIXME: When can ToType be a reference type?
4326     assert(!ToType->isReferenceType());
4327     if (SCS.Second == ICK_Derived_To_Base) {
4328       SmallVector<Expr*, 8> ConstructorArgs;
4329       if (CompleteConstructorCall(
4330               cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4331               /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4332         return ExprError();
4333       return BuildCXXConstructExpr(
4334           /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4335           SCS.FoundCopyConstructor, SCS.CopyConstructor, ConstructorArgs,
4336           /*HadMultipleCandidates*/ false,
4337           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4338           CXXConstructionKind::Complete, SourceRange());
4339     }
4340     return BuildCXXConstructExpr(
4341         /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4342         SCS.FoundCopyConstructor, SCS.CopyConstructor, From,
4343         /*HadMultipleCandidates*/ false,
4344         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4345         CXXConstructionKind::Complete, SourceRange());
4346   }
4347 
4348   // Resolve overloaded function references.
4349   if (Context.hasSameType(FromType, Context.OverloadTy)) {
4350     DeclAccessPair Found;
4351     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4352                                                           true, Found);
4353     if (!Fn)
4354       return ExprError();
4355 
4356     if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4357       return ExprError();
4358 
4359     ExprResult Res = FixOverloadedFunctionReference(From, Found, Fn);
4360     if (Res.isInvalid())
4361       return ExprError();
4362 
4363     // We might get back another placeholder expression if we resolved to a
4364     // builtin.
4365     Res = CheckPlaceholderExpr(Res.get());
4366     if (Res.isInvalid())
4367       return ExprError();
4368 
4369     From = Res.get();
4370     FromType = From->getType();
4371   }
4372 
4373   // If we're converting to an atomic type, first convert to the corresponding
4374   // non-atomic type.
4375   QualType ToAtomicType;
4376   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4377     ToAtomicType = ToType;
4378     ToType = ToAtomic->getValueType();
4379   }
4380 
4381   QualType InitialFromType = FromType;
4382   // Perform the first implicit conversion.
4383   switch (SCS.First) {
4384   case ICK_Identity:
4385     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4386       FromType = FromAtomic->getValueType().getUnqualifiedType();
4387       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4388                                       From, /*BasePath=*/nullptr, VK_PRValue,
4389                                       FPOptionsOverride());
4390     }
4391     break;
4392 
4393   case ICK_Lvalue_To_Rvalue: {
4394     assert(From->getObjectKind() != OK_ObjCProperty);
4395     ExprResult FromRes = DefaultLvalueConversion(From);
4396     if (FromRes.isInvalid())
4397       return ExprError();
4398 
4399     From = FromRes.get();
4400     FromType = From->getType();
4401     break;
4402   }
4403 
4404   case ICK_Array_To_Pointer:
4405     FromType = Context.getArrayDecayedType(FromType);
4406     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4407                              /*BasePath=*/nullptr, CCK)
4408                .get();
4409     break;
4410 
4411   case ICK_Function_To_Pointer:
4412     FromType = Context.getPointerType(FromType);
4413     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4414                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4415                .get();
4416     break;
4417 
4418   default:
4419     llvm_unreachable("Improper first standard conversion");
4420   }
4421 
4422   // Perform the second implicit conversion
4423   switch (SCS.Second) {
4424   case ICK_Identity:
4425     // C++ [except.spec]p5:
4426     //   [For] assignment to and initialization of pointers to functions,
4427     //   pointers to member functions, and references to functions: the
4428     //   target entity shall allow at least the exceptions allowed by the
4429     //   source value in the assignment or initialization.
4430     switch (Action) {
4431     case AA_Assigning:
4432     case AA_Initializing:
4433       // Note, function argument passing and returning are initialization.
4434     case AA_Passing:
4435     case AA_Returning:
4436     case AA_Sending:
4437     case AA_Passing_CFAudited:
4438       if (CheckExceptionSpecCompatibility(From, ToType))
4439         return ExprError();
4440       break;
4441 
4442     case AA_Casting:
4443     case AA_Converting:
4444       // Casts and implicit conversions are not initialization, so are not
4445       // checked for exception specification mismatches.
4446       break;
4447     }
4448     // Nothing else to do.
4449     break;
4450 
4451   case ICK_Integral_Promotion:
4452   case ICK_Integral_Conversion:
4453     if (ToType->isBooleanType()) {
4454       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4455              SCS.Second == ICK_Integral_Promotion &&
4456              "only enums with fixed underlying type can promote to bool");
4457       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4458                                /*BasePath=*/nullptr, CCK)
4459                  .get();
4460     } else {
4461       From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4462                                /*BasePath=*/nullptr, CCK)
4463                  .get();
4464     }
4465     break;
4466 
4467   case ICK_Floating_Promotion:
4468   case ICK_Floating_Conversion:
4469     From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4470                              /*BasePath=*/nullptr, CCK)
4471                .get();
4472     break;
4473 
4474   case ICK_Complex_Promotion:
4475   case ICK_Complex_Conversion: {
4476     QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4477     QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4478     CastKind CK;
4479     if (FromEl->isRealFloatingType()) {
4480       if (ToEl->isRealFloatingType())
4481         CK = CK_FloatingComplexCast;
4482       else
4483         CK = CK_FloatingComplexToIntegralComplex;
4484     } else if (ToEl->isRealFloatingType()) {
4485       CK = CK_IntegralComplexToFloatingComplex;
4486     } else {
4487       CK = CK_IntegralComplexCast;
4488     }
4489     From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4490                              CCK)
4491                .get();
4492     break;
4493   }
4494 
4495   case ICK_Floating_Integral:
4496     if (ToType->isRealFloatingType())
4497       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4498                                /*BasePath=*/nullptr, CCK)
4499                  .get();
4500     else
4501       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4502                                /*BasePath=*/nullptr, CCK)
4503                  .get();
4504     break;
4505 
4506   case ICK_Fixed_Point_Conversion:
4507     assert((FromType->isFixedPointType() || ToType->isFixedPointType()) &&
4508            "Attempting implicit fixed point conversion without a fixed "
4509            "point operand");
4510     if (FromType->isFloatingType())
4511       From = ImpCastExprToType(From, ToType, CK_FloatingToFixedPoint,
4512                                VK_PRValue,
4513                                /*BasePath=*/nullptr, CCK).get();
4514     else if (ToType->isFloatingType())
4515       From = ImpCastExprToType(From, ToType, CK_FixedPointToFloating,
4516                                VK_PRValue,
4517                                /*BasePath=*/nullptr, CCK).get();
4518     else if (FromType->isIntegralType(Context))
4519       From = ImpCastExprToType(From, ToType, CK_IntegralToFixedPoint,
4520                                VK_PRValue,
4521                                /*BasePath=*/nullptr, CCK).get();
4522     else if (ToType->isIntegralType(Context))
4523       From = ImpCastExprToType(From, ToType, CK_FixedPointToIntegral,
4524                                VK_PRValue,
4525                                /*BasePath=*/nullptr, CCK).get();
4526     else if (ToType->isBooleanType())
4527       From = ImpCastExprToType(From, ToType, CK_FixedPointToBoolean,
4528                                VK_PRValue,
4529                                /*BasePath=*/nullptr, CCK).get();
4530     else
4531       From = ImpCastExprToType(From, ToType, CK_FixedPointCast,
4532                                VK_PRValue,
4533                                /*BasePath=*/nullptr, CCK).get();
4534     break;
4535 
4536   case ICK_Compatible_Conversion:
4537     From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4538                              /*BasePath=*/nullptr, CCK).get();
4539     break;
4540 
4541   case ICK_Writeback_Conversion:
4542   case ICK_Pointer_Conversion: {
4543     if (SCS.IncompatibleObjC && Action != AA_Casting) {
4544       // Diagnose incompatible Objective-C conversions
4545       if (Action == AA_Initializing || Action == AA_Assigning)
4546         Diag(From->getBeginLoc(),
4547              diag::ext_typecheck_convert_incompatible_pointer)
4548             << ToType << From->getType() << Action << From->getSourceRange()
4549             << 0;
4550       else
4551         Diag(From->getBeginLoc(),
4552              diag::ext_typecheck_convert_incompatible_pointer)
4553             << From->getType() << ToType << Action << From->getSourceRange()
4554             << 0;
4555 
4556       if (From->getType()->isObjCObjectPointerType() &&
4557           ToType->isObjCObjectPointerType())
4558         EmitRelatedResultTypeNote(From);
4559     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4560                !CheckObjCARCUnavailableWeakConversion(ToType,
4561                                                       From->getType())) {
4562       if (Action == AA_Initializing)
4563         Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4564       else
4565         Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4566             << (Action == AA_Casting) << From->getType() << ToType
4567             << From->getSourceRange();
4568     }
4569 
4570     // Defer address space conversion to the third conversion.
4571     QualType FromPteeType = From->getType()->getPointeeType();
4572     QualType ToPteeType = ToType->getPointeeType();
4573     QualType NewToType = ToType;
4574     if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4575         FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4576       NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4577       NewToType = Context.getAddrSpaceQualType(NewToType,
4578                                                FromPteeType.getAddressSpace());
4579       if (ToType->isObjCObjectPointerType())
4580         NewToType = Context.getObjCObjectPointerType(NewToType);
4581       else if (ToType->isBlockPointerType())
4582         NewToType = Context.getBlockPointerType(NewToType);
4583       else
4584         NewToType = Context.getPointerType(NewToType);
4585     }
4586 
4587     CastKind Kind;
4588     CXXCastPath BasePath;
4589     if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4590       return ExprError();
4591 
4592     // Make sure we extend blocks if necessary.
4593     // FIXME: doing this here is really ugly.
4594     if (Kind == CK_BlockPointerToObjCPointerCast) {
4595       ExprResult E = From;
4596       (void) PrepareCastToObjCObjectPointer(E);
4597       From = E.get();
4598     }
4599     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4600       CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4601     From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4602                .get();
4603     break;
4604   }
4605 
4606   case ICK_Pointer_Member: {
4607     CastKind Kind;
4608     CXXCastPath BasePath;
4609     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4610       return ExprError();
4611     if (CheckExceptionSpecCompatibility(From, ToType))
4612       return ExprError();
4613 
4614     // We may not have been able to figure out what this member pointer resolved
4615     // to up until this exact point.  Attempt to lock-in it's inheritance model.
4616     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4617       (void)isCompleteType(From->getExprLoc(), From->getType());
4618       (void)isCompleteType(From->getExprLoc(), ToType);
4619     }
4620 
4621     From =
4622         ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4623     break;
4624   }
4625 
4626   case ICK_Boolean_Conversion:
4627     // Perform half-to-boolean conversion via float.
4628     if (From->getType()->isHalfType()) {
4629       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4630       FromType = Context.FloatTy;
4631     }
4632 
4633     From = ImpCastExprToType(From, Context.BoolTy,
4634                              ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4635                              /*BasePath=*/nullptr, CCK)
4636                .get();
4637     break;
4638 
4639   case ICK_Derived_To_Base: {
4640     CXXCastPath BasePath;
4641     if (CheckDerivedToBaseConversion(
4642             From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4643             From->getSourceRange(), &BasePath, CStyle))
4644       return ExprError();
4645 
4646     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4647                       CK_DerivedToBase, From->getValueKind(),
4648                       &BasePath, CCK).get();
4649     break;
4650   }
4651 
4652   case ICK_Vector_Conversion:
4653     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4654                              /*BasePath=*/nullptr, CCK)
4655                .get();
4656     break;
4657 
4658   case ICK_SVE_Vector_Conversion:
4659   case ICK_RVV_Vector_Conversion:
4660     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4661                              /*BasePath=*/nullptr, CCK)
4662                .get();
4663     break;
4664 
4665   case ICK_Vector_Splat: {
4666     // Vector splat from any arithmetic type to a vector.
4667     Expr *Elem = prepareVectorSplat(ToType, From).get();
4668     From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4669                              /*BasePath=*/nullptr, CCK)
4670                .get();
4671     break;
4672   }
4673 
4674   case ICK_Complex_Real:
4675     // Case 1.  x -> _Complex y
4676     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4677       QualType ElType = ToComplex->getElementType();
4678       bool isFloatingComplex = ElType->isRealFloatingType();
4679 
4680       // x -> y
4681       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4682         // do nothing
4683       } else if (From->getType()->isRealFloatingType()) {
4684         From = ImpCastExprToType(From, ElType,
4685                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4686       } else {
4687         assert(From->getType()->isIntegerType());
4688         From = ImpCastExprToType(From, ElType,
4689                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4690       }
4691       // y -> _Complex y
4692       From = ImpCastExprToType(From, ToType,
4693                    isFloatingComplex ? CK_FloatingRealToComplex
4694                                      : CK_IntegralRealToComplex).get();
4695 
4696     // Case 2.  _Complex x -> y
4697     } else {
4698       auto *FromComplex = From->getType()->castAs<ComplexType>();
4699       QualType ElType = FromComplex->getElementType();
4700       bool isFloatingComplex = ElType->isRealFloatingType();
4701 
4702       // _Complex x -> x
4703       From = ImpCastExprToType(From, ElType,
4704                                isFloatingComplex ? CK_FloatingComplexToReal
4705                                                  : CK_IntegralComplexToReal,
4706                                VK_PRValue, /*BasePath=*/nullptr, CCK)
4707                  .get();
4708 
4709       // x -> y
4710       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4711         // do nothing
4712       } else if (ToType->isRealFloatingType()) {
4713         From = ImpCastExprToType(From, ToType,
4714                                  isFloatingComplex ? CK_FloatingCast
4715                                                    : CK_IntegralToFloating,
4716                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4717                    .get();
4718       } else {
4719         assert(ToType->isIntegerType());
4720         From = ImpCastExprToType(From, ToType,
4721                                  isFloatingComplex ? CK_FloatingToIntegral
4722                                                    : CK_IntegralCast,
4723                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4724                    .get();
4725       }
4726     }
4727     break;
4728 
4729   case ICK_Block_Pointer_Conversion: {
4730     LangAS AddrSpaceL =
4731         ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4732     LangAS AddrSpaceR =
4733         FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4734     assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4735            "Invalid cast");
4736     CastKind Kind =
4737         AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4738     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4739                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4740                .get();
4741     break;
4742   }
4743 
4744   case ICK_TransparentUnionConversion: {
4745     ExprResult FromRes = From;
4746     Sema::AssignConvertType ConvTy =
4747       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4748     if (FromRes.isInvalid())
4749       return ExprError();
4750     From = FromRes.get();
4751     assert ((ConvTy == Sema::Compatible) &&
4752             "Improper transparent union conversion");
4753     (void)ConvTy;
4754     break;
4755   }
4756 
4757   case ICK_Zero_Event_Conversion:
4758   case ICK_Zero_Queue_Conversion:
4759     From = ImpCastExprToType(From, ToType,
4760                              CK_ZeroToOCLOpaqueType,
4761                              From->getValueKind()).get();
4762     break;
4763 
4764   case ICK_Lvalue_To_Rvalue:
4765   case ICK_Array_To_Pointer:
4766   case ICK_Function_To_Pointer:
4767   case ICK_Function_Conversion:
4768   case ICK_Qualification:
4769   case ICK_Num_Conversion_Kinds:
4770   case ICK_C_Only_Conversion:
4771   case ICK_Incompatible_Pointer_Conversion:
4772     llvm_unreachable("Improper second standard conversion");
4773   }
4774 
4775   switch (SCS.Third) {
4776   case ICK_Identity:
4777     // Nothing to do.
4778     break;
4779 
4780   case ICK_Function_Conversion:
4781     // If both sides are functions (or pointers/references to them), there could
4782     // be incompatible exception declarations.
4783     if (CheckExceptionSpecCompatibility(From, ToType))
4784       return ExprError();
4785 
4786     From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4787                              /*BasePath=*/nullptr, CCK)
4788                .get();
4789     break;
4790 
4791   case ICK_Qualification: {
4792     ExprValueKind VK = From->getValueKind();
4793     CastKind CK = CK_NoOp;
4794 
4795     if (ToType->isReferenceType() &&
4796         ToType->getPointeeType().getAddressSpace() !=
4797             From->getType().getAddressSpace())
4798       CK = CK_AddressSpaceConversion;
4799 
4800     if (ToType->isPointerType() &&
4801         ToType->getPointeeType().getAddressSpace() !=
4802             From->getType()->getPointeeType().getAddressSpace())
4803       CK = CK_AddressSpaceConversion;
4804 
4805     if (!isCast(CCK) &&
4806         !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
4807         From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4808       Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
4809           << InitialFromType << ToType;
4810     }
4811 
4812     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4813                              /*BasePath=*/nullptr, CCK)
4814                .get();
4815 
4816     if (SCS.DeprecatedStringLiteralToCharPtr &&
4817         !getLangOpts().WritableStrings) {
4818       Diag(From->getBeginLoc(),
4819            getLangOpts().CPlusPlus11
4820                ? diag::ext_deprecated_string_literal_conversion
4821                : diag::warn_deprecated_string_literal_conversion)
4822           << ToType.getNonReferenceType();
4823     }
4824 
4825     break;
4826   }
4827 
4828   default:
4829     llvm_unreachable("Improper third standard conversion");
4830   }
4831 
4832   // If this conversion sequence involved a scalar -> atomic conversion, perform
4833   // that conversion now.
4834   if (!ToAtomicType.isNull()) {
4835     assert(Context.hasSameType(
4836         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4837     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4838                              VK_PRValue, nullptr, CCK)
4839                .get();
4840   }
4841 
4842   // Materialize a temporary if we're implicitly converting to a reference
4843   // type. This is not required by the C++ rules but is necessary to maintain
4844   // AST invariants.
4845   if (ToType->isReferenceType() && From->isPRValue()) {
4846     ExprResult Res = TemporaryMaterializationConversion(From);
4847     if (Res.isInvalid())
4848       return ExprError();
4849     From = Res.get();
4850   }
4851 
4852   // If this conversion sequence succeeded and involved implicitly converting a
4853   // _Nullable type to a _Nonnull one, complain.
4854   if (!isCast(CCK))
4855     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4856                                         From->getBeginLoc());
4857 
4858   return From;
4859 }
4860 
4861 /// Check the completeness of a type in a unary type trait.
4862 ///
4863 /// If the particular type trait requires a complete type, tries to complete
4864 /// it. If completing the type fails, a diagnostic is emitted and false
4865 /// returned. If completing the type succeeds or no completion was required,
4866 /// returns true.
4867 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4868                                                 SourceLocation Loc,
4869                                                 QualType ArgTy) {
4870   // C++0x [meta.unary.prop]p3:
4871   //   For all of the class templates X declared in this Clause, instantiating
4872   //   that template with a template argument that is a class template
4873   //   specialization may result in the implicit instantiation of the template
4874   //   argument if and only if the semantics of X require that the argument
4875   //   must be a complete type.
4876   // We apply this rule to all the type trait expressions used to implement
4877   // these class templates. We also try to follow any GCC documented behavior
4878   // in these expressions to ensure portability of standard libraries.
4879   switch (UTT) {
4880   default: llvm_unreachable("not a UTT");
4881     // is_complete_type somewhat obviously cannot require a complete type.
4882   case UTT_IsCompleteType:
4883     // Fall-through
4884 
4885     // These traits are modeled on the type predicates in C++0x
4886     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4887     // requiring a complete type, as whether or not they return true cannot be
4888     // impacted by the completeness of the type.
4889   case UTT_IsVoid:
4890   case UTT_IsIntegral:
4891   case UTT_IsFloatingPoint:
4892   case UTT_IsArray:
4893   case UTT_IsBoundedArray:
4894   case UTT_IsPointer:
4895   case UTT_IsNullPointer:
4896   case UTT_IsReferenceable:
4897   case UTT_IsLvalueReference:
4898   case UTT_IsRvalueReference:
4899   case UTT_IsMemberFunctionPointer:
4900   case UTT_IsMemberObjectPointer:
4901   case UTT_IsEnum:
4902   case UTT_IsScopedEnum:
4903   case UTT_IsUnion:
4904   case UTT_IsClass:
4905   case UTT_IsFunction:
4906   case UTT_IsReference:
4907   case UTT_IsArithmetic:
4908   case UTT_IsFundamental:
4909   case UTT_IsObject:
4910   case UTT_IsScalar:
4911   case UTT_IsCompound:
4912   case UTT_IsMemberPointer:
4913     // Fall-through
4914 
4915     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4916     // which requires some of its traits to have the complete type. However,
4917     // the completeness of the type cannot impact these traits' semantics, and
4918     // so they don't require it. This matches the comments on these traits in
4919     // Table 49.
4920   case UTT_IsConst:
4921   case UTT_IsVolatile:
4922   case UTT_IsSigned:
4923   case UTT_IsUnboundedArray:
4924   case UTT_IsUnsigned:
4925 
4926   // This type trait always returns false, checking the type is moot.
4927   case UTT_IsInterfaceClass:
4928     return true;
4929 
4930   // C++14 [meta.unary.prop]:
4931   //   If T is a non-union class type, T shall be a complete type.
4932   case UTT_IsEmpty:
4933   case UTT_IsPolymorphic:
4934   case UTT_IsAbstract:
4935     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4936       if (!RD->isUnion())
4937         return !S.RequireCompleteType(
4938             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4939     return true;
4940 
4941   // C++14 [meta.unary.prop]:
4942   //   If T is a class type, T shall be a complete type.
4943   case UTT_IsFinal:
4944   case UTT_IsSealed:
4945     if (ArgTy->getAsCXXRecordDecl())
4946       return !S.RequireCompleteType(
4947           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4948     return true;
4949 
4950   // LWG3823: T shall be an array type, a complete type, or cv void.
4951   case UTT_IsAggregate:
4952     if (ArgTy->isArrayType() || ArgTy->isVoidType())
4953       return true;
4954 
4955     return !S.RequireCompleteType(
4956         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4957 
4958   // C++1z [meta.unary.prop]:
4959   //   remove_all_extents_t<T> shall be a complete type or cv void.
4960   case UTT_IsTrivial:
4961   case UTT_IsTriviallyCopyable:
4962   case UTT_IsStandardLayout:
4963   case UTT_IsPOD:
4964   case UTT_IsLiteral:
4965   // By analogy, is_trivially_relocatable and is_trivially_equality_comparable
4966   // impose the same constraints.
4967   case UTT_IsTriviallyRelocatable:
4968   case UTT_IsTriviallyEqualityComparable:
4969   case UTT_CanPassInRegs:
4970   // Per the GCC type traits documentation, T shall be a complete type, cv void,
4971   // or an array of unknown bound. But GCC actually imposes the same constraints
4972   // as above.
4973   case UTT_HasNothrowAssign:
4974   case UTT_HasNothrowMoveAssign:
4975   case UTT_HasNothrowConstructor:
4976   case UTT_HasNothrowCopy:
4977   case UTT_HasTrivialAssign:
4978   case UTT_HasTrivialMoveAssign:
4979   case UTT_HasTrivialDefaultConstructor:
4980   case UTT_HasTrivialMoveConstructor:
4981   case UTT_HasTrivialCopy:
4982   case UTT_HasTrivialDestructor:
4983   case UTT_HasVirtualDestructor:
4984     ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4985     [[fallthrough]];
4986 
4987   // C++1z [meta.unary.prop]:
4988   //   T shall be a complete type, cv void, or an array of unknown bound.
4989   case UTT_IsDestructible:
4990   case UTT_IsNothrowDestructible:
4991   case UTT_IsTriviallyDestructible:
4992   case UTT_HasUniqueObjectRepresentations:
4993     if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4994       return true;
4995 
4996     return !S.RequireCompleteType(
4997         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4998   }
4999 }
5000 
5001 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
5002                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
5003                                bool (CXXRecordDecl::*HasTrivial)() const,
5004                                bool (CXXRecordDecl::*HasNonTrivial)() const,
5005                                bool (CXXMethodDecl::*IsDesiredOp)() const)
5006 {
5007   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5008   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
5009     return true;
5010 
5011   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
5012   DeclarationNameInfo NameInfo(Name, KeyLoc);
5013   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
5014   if (Self.LookupQualifiedName(Res, RD)) {
5015     bool FoundOperator = false;
5016     Res.suppressDiagnostics();
5017     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
5018          Op != OpEnd; ++Op) {
5019       if (isa<FunctionTemplateDecl>(*Op))
5020         continue;
5021 
5022       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
5023       if((Operator->*IsDesiredOp)()) {
5024         FoundOperator = true;
5025         auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
5026         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5027         if (!CPT || !CPT->isNothrow())
5028           return false;
5029       }
5030     }
5031     return FoundOperator;
5032   }
5033   return false;
5034 }
5035 
5036 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
5037                                    SourceLocation KeyLoc, QualType T) {
5038   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5039 
5040   ASTContext &C = Self.Context;
5041   switch(UTT) {
5042   default: llvm_unreachable("not a UTT");
5043     // Type trait expressions corresponding to the primary type category
5044     // predicates in C++0x [meta.unary.cat].
5045   case UTT_IsVoid:
5046     return T->isVoidType();
5047   case UTT_IsIntegral:
5048     return T->isIntegralType(C);
5049   case UTT_IsFloatingPoint:
5050     return T->isFloatingType();
5051   case UTT_IsArray:
5052     return T->isArrayType();
5053   case UTT_IsBoundedArray:
5054     if (!T->isVariableArrayType()) {
5055       return T->isArrayType() && !T->isIncompleteArrayType();
5056     }
5057 
5058     Self.Diag(KeyLoc, diag::err_vla_unsupported)
5059         << 1 << tok::kw___is_bounded_array;
5060     return false;
5061   case UTT_IsUnboundedArray:
5062     if (!T->isVariableArrayType()) {
5063       return T->isIncompleteArrayType();
5064     }
5065 
5066     Self.Diag(KeyLoc, diag::err_vla_unsupported)
5067         << 1 << tok::kw___is_unbounded_array;
5068     return false;
5069   case UTT_IsPointer:
5070     return T->isAnyPointerType();
5071   case UTT_IsNullPointer:
5072     return T->isNullPtrType();
5073   case UTT_IsLvalueReference:
5074     return T->isLValueReferenceType();
5075   case UTT_IsRvalueReference:
5076     return T->isRValueReferenceType();
5077   case UTT_IsMemberFunctionPointer:
5078     return T->isMemberFunctionPointerType();
5079   case UTT_IsMemberObjectPointer:
5080     return T->isMemberDataPointerType();
5081   case UTT_IsEnum:
5082     return T->isEnumeralType();
5083   case UTT_IsScopedEnum:
5084     return T->isScopedEnumeralType();
5085   case UTT_IsUnion:
5086     return T->isUnionType();
5087   case UTT_IsClass:
5088     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
5089   case UTT_IsFunction:
5090     return T->isFunctionType();
5091 
5092     // Type trait expressions which correspond to the convenient composition
5093     // predicates in C++0x [meta.unary.comp].
5094   case UTT_IsReference:
5095     return T->isReferenceType();
5096   case UTT_IsArithmetic:
5097     return T->isArithmeticType() && !T->isEnumeralType();
5098   case UTT_IsFundamental:
5099     return T->isFundamentalType();
5100   case UTT_IsObject:
5101     return T->isObjectType();
5102   case UTT_IsScalar:
5103     // Note: semantic analysis depends on Objective-C lifetime types to be
5104     // considered scalar types. However, such types do not actually behave
5105     // like scalar types at run time (since they may require retain/release
5106     // operations), so we report them as non-scalar.
5107     if (T->isObjCLifetimeType()) {
5108       switch (T.getObjCLifetime()) {
5109       case Qualifiers::OCL_None:
5110       case Qualifiers::OCL_ExplicitNone:
5111         return true;
5112 
5113       case Qualifiers::OCL_Strong:
5114       case Qualifiers::OCL_Weak:
5115       case Qualifiers::OCL_Autoreleasing:
5116         return false;
5117       }
5118     }
5119 
5120     return T->isScalarType();
5121   case UTT_IsCompound:
5122     return T->isCompoundType();
5123   case UTT_IsMemberPointer:
5124     return T->isMemberPointerType();
5125 
5126     // Type trait expressions which correspond to the type property predicates
5127     // in C++0x [meta.unary.prop].
5128   case UTT_IsConst:
5129     return T.isConstQualified();
5130   case UTT_IsVolatile:
5131     return T.isVolatileQualified();
5132   case UTT_IsTrivial:
5133     return T.isTrivialType(C);
5134   case UTT_IsTriviallyCopyable:
5135     return T.isTriviallyCopyableType(C);
5136   case UTT_IsStandardLayout:
5137     return T->isStandardLayoutType();
5138   case UTT_IsPOD:
5139     return T.isPODType(C);
5140   case UTT_IsLiteral:
5141     return T->isLiteralType(C);
5142   case UTT_IsEmpty:
5143     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5144       return !RD->isUnion() && RD->isEmpty();
5145     return false;
5146   case UTT_IsPolymorphic:
5147     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5148       return !RD->isUnion() && RD->isPolymorphic();
5149     return false;
5150   case UTT_IsAbstract:
5151     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5152       return !RD->isUnion() && RD->isAbstract();
5153     return false;
5154   case UTT_IsAggregate:
5155     // Report vector extensions and complex types as aggregates because they
5156     // support aggregate initialization. GCC mirrors this behavior for vectors
5157     // but not _Complex.
5158     return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
5159            T->isAnyComplexType();
5160   // __is_interface_class only returns true when CL is invoked in /CLR mode and
5161   // even then only when it is used with the 'interface struct ...' syntax
5162   // Clang doesn't support /CLR which makes this type trait moot.
5163   case UTT_IsInterfaceClass:
5164     return false;
5165   case UTT_IsFinal:
5166   case UTT_IsSealed:
5167     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5168       return RD->hasAttr<FinalAttr>();
5169     return false;
5170   case UTT_IsSigned:
5171     // Enum types should always return false.
5172     // Floating points should always return true.
5173     return T->isFloatingType() ||
5174            (T->isSignedIntegerType() && !T->isEnumeralType());
5175   case UTT_IsUnsigned:
5176     // Enum types should always return false.
5177     return T->isUnsignedIntegerType() && !T->isEnumeralType();
5178 
5179     // Type trait expressions which query classes regarding their construction,
5180     // destruction, and copying. Rather than being based directly on the
5181     // related type predicates in the standard, they are specified by both
5182     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
5183     // specifications.
5184     //
5185     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
5186     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5187     //
5188     // Note that these builtins do not behave as documented in g++: if a class
5189     // has both a trivial and a non-trivial special member of a particular kind,
5190     // they return false! For now, we emulate this behavior.
5191     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5192     // does not correctly compute triviality in the presence of multiple special
5193     // members of the same kind. Revisit this once the g++ bug is fixed.
5194   case UTT_HasTrivialDefaultConstructor:
5195     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5196     //   If __is_pod (type) is true then the trait is true, else if type is
5197     //   a cv class or union type (or array thereof) with a trivial default
5198     //   constructor ([class.ctor]) then the trait is true, else it is false.
5199     if (T.isPODType(C))
5200       return true;
5201     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5202       return RD->hasTrivialDefaultConstructor() &&
5203              !RD->hasNonTrivialDefaultConstructor();
5204     return false;
5205   case UTT_HasTrivialMoveConstructor:
5206     //  This trait is implemented by MSVC 2012 and needed to parse the
5207     //  standard library headers. Specifically this is used as the logic
5208     //  behind std::is_trivially_move_constructible (20.9.4.3).
5209     if (T.isPODType(C))
5210       return true;
5211     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5212       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
5213     return false;
5214   case UTT_HasTrivialCopy:
5215     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5216     //   If __is_pod (type) is true or type is a reference type then
5217     //   the trait is true, else if type is a cv class or union type
5218     //   with a trivial copy constructor ([class.copy]) then the trait
5219     //   is true, else it is false.
5220     if (T.isPODType(C) || T->isReferenceType())
5221       return true;
5222     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5223       return RD->hasTrivialCopyConstructor() &&
5224              !RD->hasNonTrivialCopyConstructor();
5225     return false;
5226   case UTT_HasTrivialMoveAssign:
5227     //  This trait is implemented by MSVC 2012 and needed to parse the
5228     //  standard library headers. Specifically it is used as the logic
5229     //  behind std::is_trivially_move_assignable (20.9.4.3)
5230     if (T.isPODType(C))
5231       return true;
5232     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5233       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
5234     return false;
5235   case UTT_HasTrivialAssign:
5236     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5237     //   If type is const qualified or is a reference type then the
5238     //   trait is false. Otherwise if __is_pod (type) is true then the
5239     //   trait is true, else if type is a cv class or union type with
5240     //   a trivial copy assignment ([class.copy]) then the trait is
5241     //   true, else it is false.
5242     // Note: the const and reference restrictions are interesting,
5243     // given that const and reference members don't prevent a class
5244     // from having a trivial copy assignment operator (but do cause
5245     // errors if the copy assignment operator is actually used, q.v.
5246     // [class.copy]p12).
5247 
5248     if (T.isConstQualified())
5249       return false;
5250     if (T.isPODType(C))
5251       return true;
5252     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5253       return RD->hasTrivialCopyAssignment() &&
5254              !RD->hasNonTrivialCopyAssignment();
5255     return false;
5256   case UTT_IsDestructible:
5257   case UTT_IsTriviallyDestructible:
5258   case UTT_IsNothrowDestructible:
5259     // C++14 [meta.unary.prop]:
5260     //   For reference types, is_destructible<T>::value is true.
5261     if (T->isReferenceType())
5262       return true;
5263 
5264     // Objective-C++ ARC: autorelease types don't require destruction.
5265     if (T->isObjCLifetimeType() &&
5266         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5267       return true;
5268 
5269     // C++14 [meta.unary.prop]:
5270     //   For incomplete types and function types, is_destructible<T>::value is
5271     //   false.
5272     if (T->isIncompleteType() || T->isFunctionType())
5273       return false;
5274 
5275     // A type that requires destruction (via a non-trivial destructor or ARC
5276     // lifetime semantics) is not trivially-destructible.
5277     if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5278       return false;
5279 
5280     // C++14 [meta.unary.prop]:
5281     //   For object types and given U equal to remove_all_extents_t<T>, if the
5282     //   expression std::declval<U&>().~U() is well-formed when treated as an
5283     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
5284     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5285       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5286       if (!Destructor)
5287         return false;
5288       //  C++14 [dcl.fct.def.delete]p2:
5289       //    A program that refers to a deleted function implicitly or
5290       //    explicitly, other than to declare it, is ill-formed.
5291       if (Destructor->isDeleted())
5292         return false;
5293       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5294         return false;
5295       if (UTT == UTT_IsNothrowDestructible) {
5296         auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5297         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5298         if (!CPT || !CPT->isNothrow())
5299           return false;
5300       }
5301     }
5302     return true;
5303 
5304   case UTT_HasTrivialDestructor:
5305     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5306     //   If __is_pod (type) is true or type is a reference type
5307     //   then the trait is true, else if type is a cv class or union
5308     //   type (or array thereof) with a trivial destructor
5309     //   ([class.dtor]) then the trait is true, else it is
5310     //   false.
5311     if (T.isPODType(C) || T->isReferenceType())
5312       return true;
5313 
5314     // Objective-C++ ARC: autorelease types don't require destruction.
5315     if (T->isObjCLifetimeType() &&
5316         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5317       return true;
5318 
5319     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5320       return RD->hasTrivialDestructor();
5321     return false;
5322   // TODO: Propagate nothrowness for implicitly declared special members.
5323   case UTT_HasNothrowAssign:
5324     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5325     //   If type is const qualified or is a reference type then the
5326     //   trait is false. Otherwise if __has_trivial_assign (type)
5327     //   is true then the trait is true, else if type is a cv class
5328     //   or union type with copy assignment operators that are known
5329     //   not to throw an exception then the trait is true, else it is
5330     //   false.
5331     if (C.getBaseElementType(T).isConstQualified())
5332       return false;
5333     if (T->isReferenceType())
5334       return false;
5335     if (T.isPODType(C) || T->isObjCLifetimeType())
5336       return true;
5337 
5338     if (const RecordType *RT = T->getAs<RecordType>())
5339       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5340                                 &CXXRecordDecl::hasTrivialCopyAssignment,
5341                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5342                                 &CXXMethodDecl::isCopyAssignmentOperator);
5343     return false;
5344   case UTT_HasNothrowMoveAssign:
5345     //  This trait is implemented by MSVC 2012 and needed to parse the
5346     //  standard library headers. Specifically this is used as the logic
5347     //  behind std::is_nothrow_move_assignable (20.9.4.3).
5348     if (T.isPODType(C))
5349       return true;
5350 
5351     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5352       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5353                                 &CXXRecordDecl::hasTrivialMoveAssignment,
5354                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5355                                 &CXXMethodDecl::isMoveAssignmentOperator);
5356     return false;
5357   case UTT_HasNothrowCopy:
5358     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5359     //   If __has_trivial_copy (type) is true then the trait is true, else
5360     //   if type is a cv class or union type with copy constructors that are
5361     //   known not to throw an exception then the trait is true, else it is
5362     //   false.
5363     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5364       return true;
5365     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5366       if (RD->hasTrivialCopyConstructor() &&
5367           !RD->hasNonTrivialCopyConstructor())
5368         return true;
5369 
5370       bool FoundConstructor = false;
5371       unsigned FoundTQs;
5372       for (const auto *ND : Self.LookupConstructors(RD)) {
5373         // A template constructor is never a copy constructor.
5374         // FIXME: However, it may actually be selected at the actual overload
5375         // resolution point.
5376         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5377           continue;
5378         // UsingDecl itself is not a constructor
5379         if (isa<UsingDecl>(ND))
5380           continue;
5381         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5382         if (Constructor->isCopyConstructor(FoundTQs)) {
5383           FoundConstructor = true;
5384           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5385           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5386           if (!CPT)
5387             return false;
5388           // TODO: check whether evaluating default arguments can throw.
5389           // For now, we'll be conservative and assume that they can throw.
5390           if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5391             return false;
5392         }
5393       }
5394 
5395       return FoundConstructor;
5396     }
5397     return false;
5398   case UTT_HasNothrowConstructor:
5399     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5400     //   If __has_trivial_constructor (type) is true then the trait is
5401     //   true, else if type is a cv class or union type (or array
5402     //   thereof) with a default constructor that is known not to
5403     //   throw an exception then the trait is true, else it is false.
5404     if (T.isPODType(C) || T->isObjCLifetimeType())
5405       return true;
5406     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5407       if (RD->hasTrivialDefaultConstructor() &&
5408           !RD->hasNonTrivialDefaultConstructor())
5409         return true;
5410 
5411       bool FoundConstructor = false;
5412       for (const auto *ND : Self.LookupConstructors(RD)) {
5413         // FIXME: In C++0x, a constructor template can be a default constructor.
5414         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5415           continue;
5416         // UsingDecl itself is not a constructor
5417         if (isa<UsingDecl>(ND))
5418           continue;
5419         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5420         if (Constructor->isDefaultConstructor()) {
5421           FoundConstructor = true;
5422           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5423           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5424           if (!CPT)
5425             return false;
5426           // FIXME: check whether evaluating default arguments can throw.
5427           // For now, we'll be conservative and assume that they can throw.
5428           if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5429             return false;
5430         }
5431       }
5432       return FoundConstructor;
5433     }
5434     return false;
5435   case UTT_HasVirtualDestructor:
5436     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5437     //   If type is a class type with a virtual destructor ([class.dtor])
5438     //   then the trait is true, else it is false.
5439     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5440       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5441         return Destructor->isVirtual();
5442     return false;
5443 
5444     // These type trait expressions are modeled on the specifications for the
5445     // Embarcadero C++0x type trait functions:
5446     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5447   case UTT_IsCompleteType:
5448     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5449     //   Returns True if and only if T is a complete type at the point of the
5450     //   function call.
5451     return !T->isIncompleteType();
5452   case UTT_HasUniqueObjectRepresentations:
5453     return C.hasUniqueObjectRepresentations(T);
5454   case UTT_IsTriviallyRelocatable:
5455     return T.isTriviallyRelocatableType(C);
5456   case UTT_IsReferenceable:
5457     return T.isReferenceable();
5458   case UTT_CanPassInRegs:
5459     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl(); RD && !T.hasQualifiers())
5460       return RD->canPassInRegisters();
5461     Self.Diag(KeyLoc, diag::err_builtin_pass_in_regs_non_class) << T;
5462     return false;
5463   case UTT_IsTriviallyEqualityComparable:
5464     return T.isTriviallyEqualityComparableType(C);
5465   }
5466 }
5467 
5468 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5469                                     QualType RhsT, SourceLocation KeyLoc);
5470 
5471 static bool EvaluateBooleanTypeTrait(Sema &S, TypeTrait Kind,
5472                                      SourceLocation KWLoc,
5473                                      ArrayRef<TypeSourceInfo *> Args,
5474                                      SourceLocation RParenLoc,
5475                                      bool IsDependent) {
5476   if (IsDependent)
5477     return false;
5478 
5479   if (Kind <= UTT_Last)
5480     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5481 
5482   // Evaluate ReferenceBindsToTemporary and ReferenceConstructsFromTemporary
5483   // alongside the IsConstructible traits to avoid duplication.
5484   if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary && Kind != BTT_ReferenceConstructsFromTemporary)
5485     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5486                                    Args[1]->getType(), RParenLoc);
5487 
5488   switch (Kind) {
5489   case clang::BTT_ReferenceBindsToTemporary:
5490   case clang::BTT_ReferenceConstructsFromTemporary:
5491   case clang::TT_IsConstructible:
5492   case clang::TT_IsNothrowConstructible:
5493   case clang::TT_IsTriviallyConstructible: {
5494     // C++11 [meta.unary.prop]:
5495     //   is_trivially_constructible is defined as:
5496     //
5497     //     is_constructible<T, Args...>::value is true and the variable
5498     //     definition for is_constructible, as defined below, is known to call
5499     //     no operation that is not trivial.
5500     //
5501     //   The predicate condition for a template specialization
5502     //   is_constructible<T, Args...> shall be satisfied if and only if the
5503     //   following variable definition would be well-formed for some invented
5504     //   variable t:
5505     //
5506     //     T t(create<Args>()...);
5507     assert(!Args.empty());
5508 
5509     // Precondition: T and all types in the parameter pack Args shall be
5510     // complete types, (possibly cv-qualified) void, or arrays of
5511     // unknown bound.
5512     for (const auto *TSI : Args) {
5513       QualType ArgTy = TSI->getType();
5514       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5515         continue;
5516 
5517       if (S.RequireCompleteType(KWLoc, ArgTy,
5518           diag::err_incomplete_type_used_in_type_trait_expr))
5519         return false;
5520     }
5521 
5522     // Make sure the first argument is not incomplete nor a function type.
5523     QualType T = Args[0]->getType();
5524     if (T->isIncompleteType() || T->isFunctionType())
5525       return false;
5526 
5527     // Make sure the first argument is not an abstract type.
5528     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5529     if (RD && RD->isAbstract())
5530       return false;
5531 
5532     llvm::BumpPtrAllocator OpaqueExprAllocator;
5533     SmallVector<Expr *, 2> ArgExprs;
5534     ArgExprs.reserve(Args.size() - 1);
5535     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5536       QualType ArgTy = Args[I]->getType();
5537       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5538         ArgTy = S.Context.getRValueReferenceType(ArgTy);
5539       ArgExprs.push_back(
5540           new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5541               OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5542                               ArgTy.getNonLValueExprType(S.Context),
5543                               Expr::getValueKindForType(ArgTy)));
5544     }
5545 
5546     // Perform the initialization in an unevaluated context within a SFINAE
5547     // trap at translation unit scope.
5548     EnterExpressionEvaluationContext Unevaluated(
5549         S, Sema::ExpressionEvaluationContext::Unevaluated);
5550     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5551     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5552     InitializedEntity To(
5553         InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5554     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5555                                                                  RParenLoc));
5556     InitializationSequence Init(S, To, InitKind, ArgExprs);
5557     if (Init.Failed())
5558       return false;
5559 
5560     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5561     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5562       return false;
5563 
5564     if (Kind == clang::TT_IsConstructible)
5565       return true;
5566 
5567     if (Kind == clang::BTT_ReferenceBindsToTemporary || Kind == clang::BTT_ReferenceConstructsFromTemporary) {
5568       if (!T->isReferenceType())
5569         return false;
5570 
5571       if (!Init.isDirectReferenceBinding())
5572         return true;
5573 
5574       if (Kind == clang::BTT_ReferenceBindsToTemporary)
5575         return false;
5576 
5577       QualType U = Args[1]->getType();
5578       if (U->isReferenceType())
5579         return false;
5580 
5581       QualType TPtr = S.Context.getPointerType(S.BuiltinRemoveReference(T, UnaryTransformType::RemoveCVRef, {}));
5582       QualType UPtr = S.Context.getPointerType(S.BuiltinRemoveReference(U, UnaryTransformType::RemoveCVRef, {}));
5583       return EvaluateBinaryTypeTrait(S, TypeTrait::BTT_IsConvertibleTo, UPtr, TPtr, RParenLoc);
5584     }
5585 
5586     if (Kind == clang::TT_IsNothrowConstructible)
5587       return S.canThrow(Result.get()) == CT_Cannot;
5588 
5589     if (Kind == clang::TT_IsTriviallyConstructible) {
5590       // Under Objective-C ARC and Weak, if the destination has non-trivial
5591       // Objective-C lifetime, this is a non-trivial construction.
5592       if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5593         return false;
5594 
5595       // The initialization succeeded; now make sure there are no non-trivial
5596       // calls.
5597       return !Result.get()->hasNonTrivialCall(S.Context);
5598     }
5599 
5600     llvm_unreachable("unhandled type trait");
5601     return false;
5602   }
5603     default: llvm_unreachable("not a TT");
5604   }
5605 
5606   return false;
5607 }
5608 
5609 namespace {
5610 void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind,
5611                                 SourceLocation KWLoc) {
5612   TypeTrait Replacement;
5613   switch (Kind) {
5614     case UTT_HasNothrowAssign:
5615     case UTT_HasNothrowMoveAssign:
5616       Replacement = BTT_IsNothrowAssignable;
5617       break;
5618     case UTT_HasNothrowCopy:
5619     case UTT_HasNothrowConstructor:
5620       Replacement = TT_IsNothrowConstructible;
5621       break;
5622     case UTT_HasTrivialAssign:
5623     case UTT_HasTrivialMoveAssign:
5624       Replacement = BTT_IsTriviallyAssignable;
5625       break;
5626     case UTT_HasTrivialCopy:
5627       Replacement = UTT_IsTriviallyCopyable;
5628       break;
5629     case UTT_HasTrivialDefaultConstructor:
5630     case UTT_HasTrivialMoveConstructor:
5631       Replacement = TT_IsTriviallyConstructible;
5632       break;
5633     case UTT_HasTrivialDestructor:
5634       Replacement = UTT_IsTriviallyDestructible;
5635       break;
5636     default:
5637       return;
5638   }
5639   S.Diag(KWLoc, diag::warn_deprecated_builtin)
5640     << getTraitSpelling(Kind) << getTraitSpelling(Replacement);
5641 }
5642 }
5643 
5644 bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) {
5645   if (Arity && N != Arity) {
5646     Diag(Loc, diag::err_type_trait_arity)
5647         << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc);
5648     return false;
5649   }
5650 
5651   if (!Arity && N == 0) {
5652     Diag(Loc, diag::err_type_trait_arity)
5653         << 1 << 1 << 1 << (int)N << SourceRange(Loc);
5654     return false;
5655   }
5656   return true;
5657 }
5658 
5659 enum class TypeTraitReturnType {
5660   Bool,
5661 };
5662 
5663 static TypeTraitReturnType GetReturnType(TypeTrait Kind) {
5664   return TypeTraitReturnType::Bool;
5665 }
5666 
5667 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5668                                 ArrayRef<TypeSourceInfo *> Args,
5669                                 SourceLocation RParenLoc) {
5670   if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size()))
5671     return ExprError();
5672 
5673   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5674                                *this, Kind, KWLoc, Args[0]->getType()))
5675     return ExprError();
5676 
5677   DiagnoseBuiltinDeprecation(*this, Kind, KWLoc);
5678 
5679   bool Dependent = false;
5680   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5681     if (Args[I]->getType()->isDependentType()) {
5682       Dependent = true;
5683       break;
5684     }
5685   }
5686 
5687   switch (GetReturnType(Kind)) {
5688   case TypeTraitReturnType::Bool: {
5689     bool Result = EvaluateBooleanTypeTrait(*this, Kind, KWLoc, Args, RParenLoc,
5690                                            Dependent);
5691     return TypeTraitExpr::Create(Context, Context.getLogicalOperationType(),
5692                                  KWLoc, Kind, Args, RParenLoc, Result);
5693   }
5694   }
5695   llvm_unreachable("unhandled type trait return type");
5696 }
5697 
5698 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5699                                 ArrayRef<ParsedType> Args,
5700                                 SourceLocation RParenLoc) {
5701   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5702   ConvertedArgs.reserve(Args.size());
5703 
5704   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5705     TypeSourceInfo *TInfo;
5706     QualType T = GetTypeFromParser(Args[I], &TInfo);
5707     if (!TInfo)
5708       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5709 
5710     ConvertedArgs.push_back(TInfo);
5711   }
5712 
5713   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5714 }
5715 
5716 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5717                                     QualType RhsT, SourceLocation KeyLoc) {
5718   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5719          "Cannot evaluate traits of dependent types");
5720 
5721   switch(BTT) {
5722   case BTT_IsBaseOf: {
5723     // C++0x [meta.rel]p2
5724     // Base is a base class of Derived without regard to cv-qualifiers or
5725     // Base and Derived are not unions and name the same class type without
5726     // regard to cv-qualifiers.
5727 
5728     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5729     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5730     if (!rhsRecord || !lhsRecord) {
5731       const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5732       const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5733       if (!LHSObjTy || !RHSObjTy)
5734         return false;
5735 
5736       ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5737       ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5738       if (!BaseInterface || !DerivedInterface)
5739         return false;
5740 
5741       if (Self.RequireCompleteType(
5742               KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5743         return false;
5744 
5745       return BaseInterface->isSuperClassOf(DerivedInterface);
5746     }
5747 
5748     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5749              == (lhsRecord == rhsRecord));
5750 
5751     // Unions are never base classes, and never have base classes.
5752     // It doesn't matter if they are complete or not. See PR#41843
5753     if (lhsRecord && lhsRecord->getDecl()->isUnion())
5754       return false;
5755     if (rhsRecord && rhsRecord->getDecl()->isUnion())
5756       return false;
5757 
5758     if (lhsRecord == rhsRecord)
5759       return true;
5760 
5761     // C++0x [meta.rel]p2:
5762     //   If Base and Derived are class types and are different types
5763     //   (ignoring possible cv-qualifiers) then Derived shall be a
5764     //   complete type.
5765     if (Self.RequireCompleteType(KeyLoc, RhsT,
5766                           diag::err_incomplete_type_used_in_type_trait_expr))
5767       return false;
5768 
5769     return cast<CXXRecordDecl>(rhsRecord->getDecl())
5770       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5771   }
5772   case BTT_IsSame:
5773     return Self.Context.hasSameType(LhsT, RhsT);
5774   case BTT_TypeCompatible: {
5775     // GCC ignores cv-qualifiers on arrays for this builtin.
5776     Qualifiers LhsQuals, RhsQuals;
5777     QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5778     QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5779     return Self.Context.typesAreCompatible(Lhs, Rhs);
5780   }
5781   case BTT_IsConvertible:
5782   case BTT_IsConvertibleTo: {
5783     // C++0x [meta.rel]p4:
5784     //   Given the following function prototype:
5785     //
5786     //     template <class T>
5787     //       typename add_rvalue_reference<T>::type create();
5788     //
5789     //   the predicate condition for a template specialization
5790     //   is_convertible<From, To> shall be satisfied if and only if
5791     //   the return expression in the following code would be
5792     //   well-formed, including any implicit conversions to the return
5793     //   type of the function:
5794     //
5795     //     To test() {
5796     //       return create<From>();
5797     //     }
5798     //
5799     //   Access checking is performed as if in a context unrelated to To and
5800     //   From. Only the validity of the immediate context of the expression
5801     //   of the return-statement (including conversions to the return type)
5802     //   is considered.
5803     //
5804     // We model the initialization as a copy-initialization of a temporary
5805     // of the appropriate type, which for this expression is identical to the
5806     // return statement (since NRVO doesn't apply).
5807 
5808     // Functions aren't allowed to return function or array types.
5809     if (RhsT->isFunctionType() || RhsT->isArrayType())
5810       return false;
5811 
5812     // A return statement in a void function must have void type.
5813     if (RhsT->isVoidType())
5814       return LhsT->isVoidType();
5815 
5816     // A function definition requires a complete, non-abstract return type.
5817     if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5818       return false;
5819 
5820     // Compute the result of add_rvalue_reference.
5821     if (LhsT->isObjectType() || LhsT->isFunctionType())
5822       LhsT = Self.Context.getRValueReferenceType(LhsT);
5823 
5824     // Build a fake source and destination for initialization.
5825     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5826     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5827                          Expr::getValueKindForType(LhsT));
5828     Expr *FromPtr = &From;
5829     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5830                                                            SourceLocation()));
5831 
5832     // Perform the initialization in an unevaluated context within a SFINAE
5833     // trap at translation unit scope.
5834     EnterExpressionEvaluationContext Unevaluated(
5835         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5836     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5837     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5838     InitializationSequence Init(Self, To, Kind, FromPtr);
5839     if (Init.Failed())
5840       return false;
5841 
5842     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5843     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5844   }
5845 
5846   case BTT_IsAssignable:
5847   case BTT_IsNothrowAssignable:
5848   case BTT_IsTriviallyAssignable: {
5849     // C++11 [meta.unary.prop]p3:
5850     //   is_trivially_assignable is defined as:
5851     //     is_assignable<T, U>::value is true and the assignment, as defined by
5852     //     is_assignable, is known to call no operation that is not trivial
5853     //
5854     //   is_assignable is defined as:
5855     //     The expression declval<T>() = declval<U>() is well-formed when
5856     //     treated as an unevaluated operand (Clause 5).
5857     //
5858     //   For both, T and U shall be complete types, (possibly cv-qualified)
5859     //   void, or arrays of unknown bound.
5860     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5861         Self.RequireCompleteType(KeyLoc, LhsT,
5862           diag::err_incomplete_type_used_in_type_trait_expr))
5863       return false;
5864     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5865         Self.RequireCompleteType(KeyLoc, RhsT,
5866           diag::err_incomplete_type_used_in_type_trait_expr))
5867       return false;
5868 
5869     // cv void is never assignable.
5870     if (LhsT->isVoidType() || RhsT->isVoidType())
5871       return false;
5872 
5873     // Build expressions that emulate the effect of declval<T>() and
5874     // declval<U>().
5875     if (LhsT->isObjectType() || LhsT->isFunctionType())
5876       LhsT = Self.Context.getRValueReferenceType(LhsT);
5877     if (RhsT->isObjectType() || RhsT->isFunctionType())
5878       RhsT = Self.Context.getRValueReferenceType(RhsT);
5879     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5880                         Expr::getValueKindForType(LhsT));
5881     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5882                         Expr::getValueKindForType(RhsT));
5883 
5884     // Attempt the assignment in an unevaluated context within a SFINAE
5885     // trap at translation unit scope.
5886     EnterExpressionEvaluationContext Unevaluated(
5887         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5888     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5889     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5890     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5891                                         &Rhs);
5892     if (Result.isInvalid())
5893       return false;
5894 
5895     // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5896     Self.CheckUnusedVolatileAssignment(Result.get());
5897 
5898     if (SFINAE.hasErrorOccurred())
5899       return false;
5900 
5901     if (BTT == BTT_IsAssignable)
5902       return true;
5903 
5904     if (BTT == BTT_IsNothrowAssignable)
5905       return Self.canThrow(Result.get()) == CT_Cannot;
5906 
5907     if (BTT == BTT_IsTriviallyAssignable) {
5908       // Under Objective-C ARC and Weak, if the destination has non-trivial
5909       // Objective-C lifetime, this is a non-trivial assignment.
5910       if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5911         return false;
5912 
5913       return !Result.get()->hasNonTrivialCall(Self.Context);
5914     }
5915 
5916     llvm_unreachable("unhandled type trait");
5917     return false;
5918   }
5919     default: llvm_unreachable("not a BTT");
5920   }
5921   llvm_unreachable("Unknown type trait or not implemented");
5922 }
5923 
5924 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5925                                      SourceLocation KWLoc,
5926                                      ParsedType Ty,
5927                                      Expr* DimExpr,
5928                                      SourceLocation RParen) {
5929   TypeSourceInfo *TSInfo;
5930   QualType T = GetTypeFromParser(Ty, &TSInfo);
5931   if (!TSInfo)
5932     TSInfo = Context.getTrivialTypeSourceInfo(T);
5933 
5934   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5935 }
5936 
5937 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5938                                            QualType T, Expr *DimExpr,
5939                                            SourceLocation KeyLoc) {
5940   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5941 
5942   switch(ATT) {
5943   case ATT_ArrayRank:
5944     if (T->isArrayType()) {
5945       unsigned Dim = 0;
5946       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5947         ++Dim;
5948         T = AT->getElementType();
5949       }
5950       return Dim;
5951     }
5952     return 0;
5953 
5954   case ATT_ArrayExtent: {
5955     llvm::APSInt Value;
5956     uint64_t Dim;
5957     if (Self.VerifyIntegerConstantExpression(
5958                 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5959             .isInvalid())
5960       return 0;
5961     if (Value.isSigned() && Value.isNegative()) {
5962       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5963         << DimExpr->getSourceRange();
5964       return 0;
5965     }
5966     Dim = Value.getLimitedValue();
5967 
5968     if (T->isArrayType()) {
5969       unsigned D = 0;
5970       bool Matched = false;
5971       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5972         if (Dim == D) {
5973           Matched = true;
5974           break;
5975         }
5976         ++D;
5977         T = AT->getElementType();
5978       }
5979 
5980       if (Matched && T->isArrayType()) {
5981         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5982           return CAT->getSize().getLimitedValue();
5983       }
5984     }
5985     return 0;
5986   }
5987   }
5988   llvm_unreachable("Unknown type trait or not implemented");
5989 }
5990 
5991 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5992                                      SourceLocation KWLoc,
5993                                      TypeSourceInfo *TSInfo,
5994                                      Expr* DimExpr,
5995                                      SourceLocation RParen) {
5996   QualType T = TSInfo->getType();
5997 
5998   // FIXME: This should likely be tracked as an APInt to remove any host
5999   // assumptions about the width of size_t on the target.
6000   uint64_t Value = 0;
6001   if (!T->isDependentType())
6002     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
6003 
6004   // While the specification for these traits from the Embarcadero C++
6005   // compiler's documentation says the return type is 'unsigned int', Clang
6006   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
6007   // compiler, there is no difference. On several other platforms this is an
6008   // important distinction.
6009   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
6010                                           RParen, Context.getSizeType());
6011 }
6012 
6013 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
6014                                       SourceLocation KWLoc,
6015                                       Expr *Queried,
6016                                       SourceLocation RParen) {
6017   // If error parsing the expression, ignore.
6018   if (!Queried)
6019     return ExprError();
6020 
6021   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
6022 
6023   return Result;
6024 }
6025 
6026 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
6027   switch (ET) {
6028   case ET_IsLValueExpr: return E->isLValue();
6029   case ET_IsRValueExpr:
6030     return E->isPRValue();
6031   }
6032   llvm_unreachable("Expression trait not covered by switch");
6033 }
6034 
6035 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
6036                                       SourceLocation KWLoc,
6037                                       Expr *Queried,
6038                                       SourceLocation RParen) {
6039   if (Queried->isTypeDependent()) {
6040     // Delay type-checking for type-dependent expressions.
6041   } else if (Queried->hasPlaceholderType()) {
6042     ExprResult PE = CheckPlaceholderExpr(Queried);
6043     if (PE.isInvalid()) return ExprError();
6044     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
6045   }
6046 
6047   bool Value = EvaluateExpressionTrait(ET, Queried);
6048 
6049   return new (Context)
6050       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
6051 }
6052 
6053 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
6054                                             ExprValueKind &VK,
6055                                             SourceLocation Loc,
6056                                             bool isIndirect) {
6057   assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&
6058          "placeholders should have been weeded out by now");
6059 
6060   // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
6061   // temporary materialization conversion otherwise.
6062   if (isIndirect)
6063     LHS = DefaultLvalueConversion(LHS.get());
6064   else if (LHS.get()->isPRValue())
6065     LHS = TemporaryMaterializationConversion(LHS.get());
6066   if (LHS.isInvalid())
6067     return QualType();
6068 
6069   // The RHS always undergoes lvalue conversions.
6070   RHS = DefaultLvalueConversion(RHS.get());
6071   if (RHS.isInvalid()) return QualType();
6072 
6073   const char *OpSpelling = isIndirect ? "->*" : ".*";
6074   // C++ 5.5p2
6075   //   The binary operator .* [p3: ->*] binds its second operand, which shall
6076   //   be of type "pointer to member of T" (where T is a completely-defined
6077   //   class type) [...]
6078   QualType RHSType = RHS.get()->getType();
6079   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
6080   if (!MemPtr) {
6081     Diag(Loc, diag::err_bad_memptr_rhs)
6082       << OpSpelling << RHSType << RHS.get()->getSourceRange();
6083     return QualType();
6084   }
6085 
6086   QualType Class(MemPtr->getClass(), 0);
6087 
6088   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
6089   // member pointer points must be completely-defined. However, there is no
6090   // reason for this semantic distinction, and the rule is not enforced by
6091   // other compilers. Therefore, we do not check this property, as it is
6092   // likely to be considered a defect.
6093 
6094   // C++ 5.5p2
6095   //   [...] to its first operand, which shall be of class T or of a class of
6096   //   which T is an unambiguous and accessible base class. [p3: a pointer to
6097   //   such a class]
6098   QualType LHSType = LHS.get()->getType();
6099   if (isIndirect) {
6100     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
6101       LHSType = Ptr->getPointeeType();
6102     else {
6103       Diag(Loc, diag::err_bad_memptr_lhs)
6104         << OpSpelling << 1 << LHSType
6105         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
6106       return QualType();
6107     }
6108   }
6109 
6110   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
6111     // If we want to check the hierarchy, we need a complete type.
6112     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
6113                             OpSpelling, (int)isIndirect)) {
6114       return QualType();
6115     }
6116 
6117     if (!IsDerivedFrom(Loc, LHSType, Class)) {
6118       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
6119         << (int)isIndirect << LHS.get()->getType();
6120       return QualType();
6121     }
6122 
6123     CXXCastPath BasePath;
6124     if (CheckDerivedToBaseConversion(
6125             LHSType, Class, Loc,
6126             SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
6127             &BasePath))
6128       return QualType();
6129 
6130     // Cast LHS to type of use.
6131     QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
6132     if (isIndirect)
6133       UseType = Context.getPointerType(UseType);
6134     ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
6135     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
6136                             &BasePath);
6137   }
6138 
6139   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
6140     // Diagnose use of pointer-to-member type which when used as
6141     // the functional cast in a pointer-to-member expression.
6142     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
6143      return QualType();
6144   }
6145 
6146   // C++ 5.5p2
6147   //   The result is an object or a function of the type specified by the
6148   //   second operand.
6149   // The cv qualifiers are the union of those in the pointer and the left side,
6150   // in accordance with 5.5p5 and 5.2.5.
6151   QualType Result = MemPtr->getPointeeType();
6152   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
6153 
6154   // C++0x [expr.mptr.oper]p6:
6155   //   In a .* expression whose object expression is an rvalue, the program is
6156   //   ill-formed if the second operand is a pointer to member function with
6157   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
6158   //   expression is an lvalue, the program is ill-formed if the second operand
6159   //   is a pointer to member function with ref-qualifier &&.
6160   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
6161     switch (Proto->getRefQualifier()) {
6162     case RQ_None:
6163       // Do nothing
6164       break;
6165 
6166     case RQ_LValue:
6167       if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
6168         // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
6169         // is (exactly) 'const'.
6170         if (Proto->isConst() && !Proto->isVolatile())
6171           Diag(Loc, getLangOpts().CPlusPlus20
6172                         ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
6173                         : diag::ext_pointer_to_const_ref_member_on_rvalue);
6174         else
6175           Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6176               << RHSType << 1 << LHS.get()->getSourceRange();
6177       }
6178       break;
6179 
6180     case RQ_RValue:
6181       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
6182         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6183           << RHSType << 0 << LHS.get()->getSourceRange();
6184       break;
6185     }
6186   }
6187 
6188   // C++ [expr.mptr.oper]p6:
6189   //   The result of a .* expression whose second operand is a pointer
6190   //   to a data member is of the same value category as its
6191   //   first operand. The result of a .* expression whose second
6192   //   operand is a pointer to a member function is a prvalue. The
6193   //   result of an ->* expression is an lvalue if its second operand
6194   //   is a pointer to data member and a prvalue otherwise.
6195   if (Result->isFunctionType()) {
6196     VK = VK_PRValue;
6197     return Context.BoundMemberTy;
6198   } else if (isIndirect) {
6199     VK = VK_LValue;
6200   } else {
6201     VK = LHS.get()->getValueKind();
6202   }
6203 
6204   return Result;
6205 }
6206 
6207 /// Try to convert a type to another according to C++11 5.16p3.
6208 ///
6209 /// This is part of the parameter validation for the ? operator. If either
6210 /// value operand is a class type, the two operands are attempted to be
6211 /// converted to each other. This function does the conversion in one direction.
6212 /// It returns true if the program is ill-formed and has already been diagnosed
6213 /// as such.
6214 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
6215                                 SourceLocation QuestionLoc,
6216                                 bool &HaveConversion,
6217                                 QualType &ToType) {
6218   HaveConversion = false;
6219   ToType = To->getType();
6220 
6221   InitializationKind Kind =
6222       InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
6223   // C++11 5.16p3
6224   //   The process for determining whether an operand expression E1 of type T1
6225   //   can be converted to match an operand expression E2 of type T2 is defined
6226   //   as follows:
6227   //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
6228   //      implicitly converted to type "lvalue reference to T2", subject to the
6229   //      constraint that in the conversion the reference must bind directly to
6230   //      an lvalue.
6231   //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
6232   //      implicitly converted to the type "rvalue reference to R2", subject to
6233   //      the constraint that the reference must bind directly.
6234   if (To->isGLValue()) {
6235     QualType T = Self.Context.getReferenceQualifiedType(To);
6236     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6237 
6238     InitializationSequence InitSeq(Self, Entity, Kind, From);
6239     if (InitSeq.isDirectReferenceBinding()) {
6240       ToType = T;
6241       HaveConversion = true;
6242       return false;
6243     }
6244 
6245     if (InitSeq.isAmbiguous())
6246       return InitSeq.Diagnose(Self, Entity, Kind, From);
6247   }
6248 
6249   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
6250   //      -- if E1 and E2 have class type, and the underlying class types are
6251   //         the same or one is a base class of the other:
6252   QualType FTy = From->getType();
6253   QualType TTy = To->getType();
6254   const RecordType *FRec = FTy->getAs<RecordType>();
6255   const RecordType *TRec = TTy->getAs<RecordType>();
6256   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
6257                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
6258   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
6259                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
6260     //         E1 can be converted to match E2 if the class of T2 is the
6261     //         same type as, or a base class of, the class of T1, and
6262     //         [cv2 > cv1].
6263     if (FRec == TRec || FDerivedFromT) {
6264       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
6265         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6266         InitializationSequence InitSeq(Self, Entity, Kind, From);
6267         if (InitSeq) {
6268           HaveConversion = true;
6269           return false;
6270         }
6271 
6272         if (InitSeq.isAmbiguous())
6273           return InitSeq.Diagnose(Self, Entity, Kind, From);
6274       }
6275     }
6276 
6277     return false;
6278   }
6279 
6280   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
6281   //        implicitly converted to the type that expression E2 would have
6282   //        if E2 were converted to an rvalue (or the type it has, if E2 is
6283   //        an rvalue).
6284   //
6285   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
6286   // to the array-to-pointer or function-to-pointer conversions.
6287   TTy = TTy.getNonLValueExprType(Self.Context);
6288 
6289   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6290   InitializationSequence InitSeq(Self, Entity, Kind, From);
6291   HaveConversion = !InitSeq.Failed();
6292   ToType = TTy;
6293   if (InitSeq.isAmbiguous())
6294     return InitSeq.Diagnose(Self, Entity, Kind, From);
6295 
6296   return false;
6297 }
6298 
6299 /// Try to find a common type for two according to C++0x 5.16p5.
6300 ///
6301 /// This is part of the parameter validation for the ? operator. If either
6302 /// value operand is a class type, overload resolution is used to find a
6303 /// conversion to a common type.
6304 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
6305                                     SourceLocation QuestionLoc) {
6306   Expr *Args[2] = { LHS.get(), RHS.get() };
6307   OverloadCandidateSet CandidateSet(QuestionLoc,
6308                                     OverloadCandidateSet::CSK_Operator);
6309   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
6310                                     CandidateSet);
6311 
6312   OverloadCandidateSet::iterator Best;
6313   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
6314     case OR_Success: {
6315       // We found a match. Perform the conversions on the arguments and move on.
6316       ExprResult LHSRes = Self.PerformImplicitConversion(
6317           LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
6318           Sema::AA_Converting);
6319       if (LHSRes.isInvalid())
6320         break;
6321       LHS = LHSRes;
6322 
6323       ExprResult RHSRes = Self.PerformImplicitConversion(
6324           RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
6325           Sema::AA_Converting);
6326       if (RHSRes.isInvalid())
6327         break;
6328       RHS = RHSRes;
6329       if (Best->Function)
6330         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
6331       return false;
6332     }
6333 
6334     case OR_No_Viable_Function:
6335 
6336       // Emit a better diagnostic if one of the expressions is a null pointer
6337       // constant and the other is a pointer type. In this case, the user most
6338       // likely forgot to take the address of the other expression.
6339       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6340         return true;
6341 
6342       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6343         << LHS.get()->getType() << RHS.get()->getType()
6344         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6345       return true;
6346 
6347     case OR_Ambiguous:
6348       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6349         << LHS.get()->getType() << RHS.get()->getType()
6350         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6351       // FIXME: Print the possible common types by printing the return types of
6352       // the viable candidates.
6353       break;
6354 
6355     case OR_Deleted:
6356       llvm_unreachable("Conditional operator has only built-in overloads");
6357   }
6358   return true;
6359 }
6360 
6361 /// Perform an "extended" implicit conversion as returned by
6362 /// TryClassUnification.
6363 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6364   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6365   InitializationKind Kind =
6366       InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6367   Expr *Arg = E.get();
6368   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6369   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6370   if (Result.isInvalid())
6371     return true;
6372 
6373   E = Result;
6374   return false;
6375 }
6376 
6377 // Check the condition operand of ?: to see if it is valid for the GCC
6378 // extension.
6379 static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6380                                                  QualType CondTy) {
6381   if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6382     return false;
6383   const QualType EltTy =
6384       cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6385   assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6386   return EltTy->isIntegralType(Ctx);
6387 }
6388 
6389 static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx,
6390                                                          QualType CondTy) {
6391   if (!CondTy->isSveVLSBuiltinType())
6392     return false;
6393   const QualType EltTy =
6394       cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx);
6395   assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6396   return EltTy->isIntegralType(Ctx);
6397 }
6398 
6399 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6400                                            ExprResult &RHS,
6401                                            SourceLocation QuestionLoc) {
6402   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6403   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6404 
6405   QualType CondType = Cond.get()->getType();
6406   const auto *CondVT = CondType->castAs<VectorType>();
6407   QualType CondElementTy = CondVT->getElementType();
6408   unsigned CondElementCount = CondVT->getNumElements();
6409   QualType LHSType = LHS.get()->getType();
6410   const auto *LHSVT = LHSType->getAs<VectorType>();
6411   QualType RHSType = RHS.get()->getType();
6412   const auto *RHSVT = RHSType->getAs<VectorType>();
6413 
6414   QualType ResultType;
6415 
6416 
6417   if (LHSVT && RHSVT) {
6418     if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6419       Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6420           << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6421       return {};
6422     }
6423 
6424     // If both are vector types, they must be the same type.
6425     if (!Context.hasSameType(LHSType, RHSType)) {
6426       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6427           << LHSType << RHSType;
6428       return {};
6429     }
6430     ResultType = Context.getCommonSugaredType(LHSType, RHSType);
6431   } else if (LHSVT || RHSVT) {
6432     ResultType = CheckVectorOperands(
6433         LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6434         /*AllowBoolConversions*/ false,
6435         /*AllowBoolOperation*/ true,
6436         /*ReportInvalid*/ true);
6437     if (ResultType.isNull())
6438       return {};
6439   } else {
6440     // Both are scalar.
6441     LHSType = LHSType.getUnqualifiedType();
6442     RHSType = RHSType.getUnqualifiedType();
6443     QualType ResultElementTy =
6444         Context.hasSameType(LHSType, RHSType)
6445             ? Context.getCommonSugaredType(LHSType, RHSType)
6446             : UsualArithmeticConversions(LHS, RHS, QuestionLoc,
6447                                          ACK_Conditional);
6448 
6449     if (ResultElementTy->isEnumeralType()) {
6450       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6451           << ResultElementTy;
6452       return {};
6453     }
6454     if (CondType->isExtVectorType())
6455       ResultType =
6456           Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6457     else
6458       ResultType = Context.getVectorType(
6459           ResultElementTy, CondVT->getNumElements(), VectorKind::Generic);
6460 
6461     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6462     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6463   }
6464 
6465   assert(!ResultType.isNull() && ResultType->isVectorType() &&
6466          (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6467          "Result should have been a vector type");
6468   auto *ResultVectorTy = ResultType->castAs<VectorType>();
6469   QualType ResultElementTy = ResultVectorTy->getElementType();
6470   unsigned ResultElementCount = ResultVectorTy->getNumElements();
6471 
6472   if (ResultElementCount != CondElementCount) {
6473     Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6474                                                          << ResultType;
6475     return {};
6476   }
6477 
6478   if (Context.getTypeSize(ResultElementTy) !=
6479       Context.getTypeSize(CondElementTy)) {
6480     Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6481                                                                  << ResultType;
6482     return {};
6483   }
6484 
6485   return ResultType;
6486 }
6487 
6488 QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond,
6489                                                    ExprResult &LHS,
6490                                                    ExprResult &RHS,
6491                                                    SourceLocation QuestionLoc) {
6492   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6493   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6494 
6495   QualType CondType = Cond.get()->getType();
6496   const auto *CondBT = CondType->castAs<BuiltinType>();
6497   QualType CondElementTy = CondBT->getSveEltType(Context);
6498   llvm::ElementCount CondElementCount =
6499       Context.getBuiltinVectorTypeInfo(CondBT).EC;
6500 
6501   QualType LHSType = LHS.get()->getType();
6502   const auto *LHSBT =
6503       LHSType->isSveVLSBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr;
6504   QualType RHSType = RHS.get()->getType();
6505   const auto *RHSBT =
6506       RHSType->isSveVLSBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr;
6507 
6508   QualType ResultType;
6509 
6510   if (LHSBT && RHSBT) {
6511     // If both are sizeless vector types, they must be the same type.
6512     if (!Context.hasSameType(LHSType, RHSType)) {
6513       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6514           << LHSType << RHSType;
6515       return QualType();
6516     }
6517     ResultType = LHSType;
6518   } else if (LHSBT || RHSBT) {
6519     ResultType = CheckSizelessVectorOperands(
6520         LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional);
6521     if (ResultType.isNull())
6522       return QualType();
6523   } else {
6524     // Both are scalar so splat
6525     QualType ResultElementTy;
6526     LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6527     RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6528 
6529     if (Context.hasSameType(LHSType, RHSType))
6530       ResultElementTy = LHSType;
6531     else
6532       ResultElementTy =
6533           UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6534 
6535     if (ResultElementTy->isEnumeralType()) {
6536       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6537           << ResultElementTy;
6538       return QualType();
6539     }
6540 
6541     ResultType = Context.getScalableVectorType(
6542         ResultElementTy, CondElementCount.getKnownMinValue());
6543 
6544     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6545     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6546   }
6547 
6548   assert(!ResultType.isNull() && ResultType->isSveVLSBuiltinType() &&
6549          "Result should have been a vector type");
6550   auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>();
6551   QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context);
6552   llvm::ElementCount ResultElementCount =
6553       Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC;
6554 
6555   if (ResultElementCount != CondElementCount) {
6556     Diag(QuestionLoc, diag::err_conditional_vector_size)
6557         << CondType << ResultType;
6558     return QualType();
6559   }
6560 
6561   if (Context.getTypeSize(ResultElementTy) !=
6562       Context.getTypeSize(CondElementTy)) {
6563     Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6564         << CondType << ResultType;
6565     return QualType();
6566   }
6567 
6568   return ResultType;
6569 }
6570 
6571 /// Check the operands of ?: under C++ semantics.
6572 ///
6573 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6574 /// extension. In this case, LHS == Cond. (But they're not aliases.)
6575 ///
6576 /// This function also implements GCC's vector extension and the
6577 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6578 /// permit the use of a?b:c where the type of a is that of a integer vector with
6579 /// the same number of elements and size as the vectors of b and c. If one of
6580 /// either b or c is a scalar it is implicitly converted to match the type of
6581 /// the vector. Otherwise the expression is ill-formed. If both b and c are
6582 /// scalars, then b and c are checked and converted to the type of a if
6583 /// possible.
6584 ///
6585 /// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6586 /// For the GCC extension, the ?: operator is evaluated as
6587 ///   (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6588 /// For the OpenCL extensions, the ?: operator is evaluated as
6589 ///   (most-significant-bit-set(a[0])  ? b[0] : c[0], .. ,
6590 ///    most-significant-bit-set(a[n]) ? b[n] : c[n]).
6591 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6592                                            ExprResult &RHS, ExprValueKind &VK,
6593                                            ExprObjectKind &OK,
6594                                            SourceLocation QuestionLoc) {
6595   // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6596   // pointers.
6597 
6598   // Assume r-value.
6599   VK = VK_PRValue;
6600   OK = OK_Ordinary;
6601   bool IsVectorConditional =
6602       isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6603 
6604   bool IsSizelessVectorConditional =
6605       isValidSizelessVectorForConditionalCondition(Context,
6606                                                    Cond.get()->getType());
6607 
6608   // C++11 [expr.cond]p1
6609   //   The first expression is contextually converted to bool.
6610   if (!Cond.get()->isTypeDependent()) {
6611     ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional
6612                              ? DefaultFunctionArrayLvalueConversion(Cond.get())
6613                              : CheckCXXBooleanCondition(Cond.get());
6614     if (CondRes.isInvalid())
6615       return QualType();
6616     Cond = CondRes;
6617   } else {
6618     // To implement C++, the first expression typically doesn't alter the result
6619     // type of the conditional, however the GCC compatible vector extension
6620     // changes the result type to be that of the conditional. Since we cannot
6621     // know if this is a vector extension here, delay the conversion of the
6622     // LHS/RHS below until later.
6623     return Context.DependentTy;
6624   }
6625 
6626 
6627   // Either of the arguments dependent?
6628   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6629     return Context.DependentTy;
6630 
6631   // C++11 [expr.cond]p2
6632   //   If either the second or the third operand has type (cv) void, ...
6633   QualType LTy = LHS.get()->getType();
6634   QualType RTy = RHS.get()->getType();
6635   bool LVoid = LTy->isVoidType();
6636   bool RVoid = RTy->isVoidType();
6637   if (LVoid || RVoid) {
6638     //   ... one of the following shall hold:
6639     //   -- The second or the third operand (but not both) is a (possibly
6640     //      parenthesized) throw-expression; the result is of the type
6641     //      and value category of the other.
6642     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6643     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6644 
6645     // Void expressions aren't legal in the vector-conditional expressions.
6646     if (IsVectorConditional) {
6647       SourceRange DiagLoc =
6648           LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6649       bool IsThrow = LVoid ? LThrow : RThrow;
6650       Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6651           << DiagLoc << IsThrow;
6652       return QualType();
6653     }
6654 
6655     if (LThrow != RThrow) {
6656       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6657       VK = NonThrow->getValueKind();
6658       // DR (no number yet): the result is a bit-field if the
6659       // non-throw-expression operand is a bit-field.
6660       OK = NonThrow->getObjectKind();
6661       return NonThrow->getType();
6662     }
6663 
6664     //   -- Both the second and third operands have type void; the result is of
6665     //      type void and is a prvalue.
6666     if (LVoid && RVoid)
6667       return Context.getCommonSugaredType(LTy, RTy);
6668 
6669     // Neither holds, error.
6670     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6671       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6672       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6673     return QualType();
6674   }
6675 
6676   // Neither is void.
6677   if (IsVectorConditional)
6678     return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6679 
6680   if (IsSizelessVectorConditional)
6681     return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6682 
6683   // WebAssembly tables are not allowed as conditional LHS or RHS.
6684   if (LTy->isWebAssemblyTableType() || RTy->isWebAssemblyTableType()) {
6685     Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
6686         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6687     return QualType();
6688   }
6689 
6690   // C++11 [expr.cond]p3
6691   //   Otherwise, if the second and third operand have different types, and
6692   //   either has (cv) class type [...] an attempt is made to convert each of
6693   //   those operands to the type of the other.
6694   if (!Context.hasSameType(LTy, RTy) &&
6695       (LTy->isRecordType() || RTy->isRecordType())) {
6696     // These return true if a single direction is already ambiguous.
6697     QualType L2RType, R2LType;
6698     bool HaveL2R, HaveR2L;
6699     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6700       return QualType();
6701     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6702       return QualType();
6703 
6704     //   If both can be converted, [...] the program is ill-formed.
6705     if (HaveL2R && HaveR2L) {
6706       Diag(QuestionLoc, diag::err_conditional_ambiguous)
6707         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6708       return QualType();
6709     }
6710 
6711     //   If exactly one conversion is possible, that conversion is applied to
6712     //   the chosen operand and the converted operands are used in place of the
6713     //   original operands for the remainder of this section.
6714     if (HaveL2R) {
6715       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6716         return QualType();
6717       LTy = LHS.get()->getType();
6718     } else if (HaveR2L) {
6719       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6720         return QualType();
6721       RTy = RHS.get()->getType();
6722     }
6723   }
6724 
6725   // C++11 [expr.cond]p3
6726   //   if both are glvalues of the same value category and the same type except
6727   //   for cv-qualification, an attempt is made to convert each of those
6728   //   operands to the type of the other.
6729   // FIXME:
6730   //   Resolving a defect in P0012R1: we extend this to cover all cases where
6731   //   one of the operands is reference-compatible with the other, in order
6732   //   to support conditionals between functions differing in noexcept. This
6733   //   will similarly cover difference in array bounds after P0388R4.
6734   // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6735   //   that instead?
6736   ExprValueKind LVK = LHS.get()->getValueKind();
6737   ExprValueKind RVK = RHS.get()->getValueKind();
6738   if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
6739     // DerivedToBase was already handled by the class-specific case above.
6740     // FIXME: Should we allow ObjC conversions here?
6741     const ReferenceConversions AllowedConversions =
6742         ReferenceConversions::Qualification |
6743         ReferenceConversions::NestedQualification |
6744         ReferenceConversions::Function;
6745 
6746     ReferenceConversions RefConv;
6747     if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6748             Ref_Compatible &&
6749         !(RefConv & ~AllowedConversions) &&
6750         // [...] subject to the constraint that the reference must bind
6751         // directly [...]
6752         !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6753       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6754       RTy = RHS.get()->getType();
6755     } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6756                    Ref_Compatible &&
6757                !(RefConv & ~AllowedConversions) &&
6758                !LHS.get()->refersToBitField() &&
6759                !LHS.get()->refersToVectorElement()) {
6760       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6761       LTy = LHS.get()->getType();
6762     }
6763   }
6764 
6765   // C++11 [expr.cond]p4
6766   //   If the second and third operands are glvalues of the same value
6767   //   category and have the same type, the result is of that type and
6768   //   value category and it is a bit-field if the second or the third
6769   //   operand is a bit-field, or if both are bit-fields.
6770   // We only extend this to bitfields, not to the crazy other kinds of
6771   // l-values.
6772   bool Same = Context.hasSameType(LTy, RTy);
6773   if (Same && LVK == RVK && LVK != VK_PRValue &&
6774       LHS.get()->isOrdinaryOrBitFieldObject() &&
6775       RHS.get()->isOrdinaryOrBitFieldObject()) {
6776     VK = LHS.get()->getValueKind();
6777     if (LHS.get()->getObjectKind() == OK_BitField ||
6778         RHS.get()->getObjectKind() == OK_BitField)
6779       OK = OK_BitField;
6780     return Context.getCommonSugaredType(LTy, RTy);
6781   }
6782 
6783   // C++11 [expr.cond]p5
6784   //   Otherwise, the result is a prvalue. If the second and third operands
6785   //   do not have the same type, and either has (cv) class type, ...
6786   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6787     //   ... overload resolution is used to determine the conversions (if any)
6788     //   to be applied to the operands. If the overload resolution fails, the
6789     //   program is ill-formed.
6790     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
6791       return QualType();
6792   }
6793 
6794   // C++11 [expr.cond]p6
6795   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6796   //   conversions are performed on the second and third operands.
6797   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6798   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6799   if (LHS.isInvalid() || RHS.isInvalid())
6800     return QualType();
6801   LTy = LHS.get()->getType();
6802   RTy = RHS.get()->getType();
6803 
6804   //   After those conversions, one of the following shall hold:
6805   //   -- The second and third operands have the same type; the result
6806   //      is of that type. If the operands have class type, the result
6807   //      is a prvalue temporary of the result type, which is
6808   //      copy-initialized from either the second operand or the third
6809   //      operand depending on the value of the first operand.
6810   if (Context.hasSameType(LTy, RTy)) {
6811     if (LTy->isRecordType()) {
6812       // The operands have class type. Make a temporary copy.
6813       ExprResult LHSCopy = PerformCopyInitialization(
6814           InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS);
6815       if (LHSCopy.isInvalid())
6816         return QualType();
6817 
6818       ExprResult RHSCopy = PerformCopyInitialization(
6819           InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS);
6820       if (RHSCopy.isInvalid())
6821         return QualType();
6822 
6823       LHS = LHSCopy;
6824       RHS = RHSCopy;
6825     }
6826     return Context.getCommonSugaredType(LTy, RTy);
6827   }
6828 
6829   // Extension: conditional operator involving vector types.
6830   if (LTy->isVectorType() || RTy->isVectorType())
6831     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
6832                                /*AllowBothBool*/ true,
6833                                /*AllowBoolConversions*/ false,
6834                                /*AllowBoolOperation*/ false,
6835                                /*ReportInvalid*/ true);
6836 
6837   //   -- The second and third operands have arithmetic or enumeration type;
6838   //      the usual arithmetic conversions are performed to bring them to a
6839   //      common type, and the result is of that type.
6840   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6841     QualType ResTy =
6842         UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6843     if (LHS.isInvalid() || RHS.isInvalid())
6844       return QualType();
6845     if (ResTy.isNull()) {
6846       Diag(QuestionLoc,
6847            diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6848         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6849       return QualType();
6850     }
6851 
6852     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6853     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6854 
6855     return ResTy;
6856   }
6857 
6858   //   -- The second and third operands have pointer type, or one has pointer
6859   //      type and the other is a null pointer constant, or both are null
6860   //      pointer constants, at least one of which is non-integral; pointer
6861   //      conversions and qualification conversions are performed to bring them
6862   //      to their composite pointer type. The result is of the composite
6863   //      pointer type.
6864   //   -- The second and third operands have pointer to member type, or one has
6865   //      pointer to member type and the other is a null pointer constant;
6866   //      pointer to member conversions and qualification conversions are
6867   //      performed to bring them to a common type, whose cv-qualification
6868   //      shall match the cv-qualification of either the second or the third
6869   //      operand. The result is of the common type.
6870   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6871   if (!Composite.isNull())
6872     return Composite;
6873 
6874   // Similarly, attempt to find composite type of two objective-c pointers.
6875   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6876   if (LHS.isInvalid() || RHS.isInvalid())
6877     return QualType();
6878   if (!Composite.isNull())
6879     return Composite;
6880 
6881   // Check if we are using a null with a non-pointer type.
6882   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6883     return QualType();
6884 
6885   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6886     << LHS.get()->getType() << RHS.get()->getType()
6887     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6888   return QualType();
6889 }
6890 
6891 /// Find a merged pointer type and convert the two expressions to it.
6892 ///
6893 /// This finds the composite pointer type for \p E1 and \p E2 according to
6894 /// C++2a [expr.type]p3. It converts both expressions to this type and returns
6895 /// it.  It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6896 /// is \c true).
6897 ///
6898 /// \param Loc The location of the operator requiring these two expressions to
6899 /// be converted to the composite pointer type.
6900 ///
6901 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6902 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6903                                         Expr *&E1, Expr *&E2,
6904                                         bool ConvertArgs) {
6905   assert(getLangOpts().CPlusPlus && "This function assumes C++");
6906 
6907   // C++1z [expr]p14:
6908   //   The composite pointer type of two operands p1 and p2 having types T1
6909   //   and T2
6910   QualType T1 = E1->getType(), T2 = E2->getType();
6911 
6912   //   where at least one is a pointer or pointer to member type or
6913   //   std::nullptr_t is:
6914   bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6915                          T1->isNullPtrType();
6916   bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6917                          T2->isNullPtrType();
6918   if (!T1IsPointerLike && !T2IsPointerLike)
6919     return QualType();
6920 
6921   //   - if both p1 and p2 are null pointer constants, std::nullptr_t;
6922   // This can't actually happen, following the standard, but we also use this
6923   // to implement the end of [expr.conv], which hits this case.
6924   //
6925   //   - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6926   if (T1IsPointerLike &&
6927       E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6928     if (ConvertArgs)
6929       E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6930                                          ? CK_NullToMemberPointer
6931                                          : CK_NullToPointer).get();
6932     return T1;
6933   }
6934   if (T2IsPointerLike &&
6935       E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6936     if (ConvertArgs)
6937       E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6938                                          ? CK_NullToMemberPointer
6939                                          : CK_NullToPointer).get();
6940     return T2;
6941   }
6942 
6943   // Now both have to be pointers or member pointers.
6944   if (!T1IsPointerLike || !T2IsPointerLike)
6945     return QualType();
6946   assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6947          "nullptr_t should be a null pointer constant");
6948 
6949   struct Step {
6950     enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6951     // Qualifiers to apply under the step kind.
6952     Qualifiers Quals;
6953     /// The class for a pointer-to-member; a constant array type with a bound
6954     /// (if any) for an array.
6955     const Type *ClassOrBound;
6956 
6957     Step(Kind K, const Type *ClassOrBound = nullptr)
6958         : K(K), ClassOrBound(ClassOrBound) {}
6959     QualType rebuild(ASTContext &Ctx, QualType T) const {
6960       T = Ctx.getQualifiedType(T, Quals);
6961       switch (K) {
6962       case Pointer:
6963         return Ctx.getPointerType(T);
6964       case MemberPointer:
6965         return Ctx.getMemberPointerType(T, ClassOrBound);
6966       case ObjCPointer:
6967         return Ctx.getObjCObjectPointerType(T);
6968       case Array:
6969         if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
6970           return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
6971                                           ArraySizeModifier::Normal, 0);
6972         else
6973           return Ctx.getIncompleteArrayType(T, ArraySizeModifier::Normal, 0);
6974       }
6975       llvm_unreachable("unknown step kind");
6976     }
6977   };
6978 
6979   SmallVector<Step, 8> Steps;
6980 
6981   //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6982   //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6983   //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6984   //    respectively;
6985   //  - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6986   //    to member of C2 of type cv2 U2" for some non-function type U, where
6987   //    C1 is reference-related to C2 or C2 is reference-related to C1, the
6988   //    cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6989   //    respectively;
6990   //  - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6991   //    T2;
6992   //
6993   // Dismantle T1 and T2 to simultaneously determine whether they are similar
6994   // and to prepare to form the cv-combined type if so.
6995   QualType Composite1 = T1;
6996   QualType Composite2 = T2;
6997   unsigned NeedConstBefore = 0;
6998   while (true) {
6999     assert(!Composite1.isNull() && !Composite2.isNull());
7000 
7001     Qualifiers Q1, Q2;
7002     Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
7003     Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
7004 
7005     // Top-level qualifiers are ignored. Merge at all lower levels.
7006     if (!Steps.empty()) {
7007       // Find the qualifier union: (approximately) the unique minimal set of
7008       // qualifiers that is compatible with both types.
7009       Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
7010                                                   Q2.getCVRUQualifiers());
7011 
7012       // Under one level of pointer or pointer-to-member, we can change to an
7013       // unambiguous compatible address space.
7014       if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
7015         Quals.setAddressSpace(Q1.getAddressSpace());
7016       } else if (Steps.size() == 1) {
7017         bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
7018         bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
7019         if (MaybeQ1 == MaybeQ2) {
7020           // Exception for ptr size address spaces. Should be able to choose
7021           // either address space during comparison.
7022           if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
7023               isPtrSizeAddressSpace(Q2.getAddressSpace()))
7024             MaybeQ1 = true;
7025           else
7026             return QualType(); // No unique best address space.
7027         }
7028         Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
7029                                       : Q2.getAddressSpace());
7030       } else {
7031         return QualType();
7032       }
7033 
7034       // FIXME: In C, we merge __strong and none to __strong at the top level.
7035       if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
7036         Quals.setObjCGCAttr(Q1.getObjCGCAttr());
7037       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
7038         assert(Steps.size() == 1);
7039       else
7040         return QualType();
7041 
7042       // Mismatched lifetime qualifiers never compatibly include each other.
7043       if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
7044         Quals.setObjCLifetime(Q1.getObjCLifetime());
7045       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
7046         assert(Steps.size() == 1);
7047       else
7048         return QualType();
7049 
7050       Steps.back().Quals = Quals;
7051       if (Q1 != Quals || Q2 != Quals)
7052         NeedConstBefore = Steps.size() - 1;
7053     }
7054 
7055     // FIXME: Can we unify the following with UnwrapSimilarTypes?
7056 
7057     const ArrayType *Arr1, *Arr2;
7058     if ((Arr1 = Context.getAsArrayType(Composite1)) &&
7059         (Arr2 = Context.getAsArrayType(Composite2))) {
7060       auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
7061       auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
7062       if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
7063         Composite1 = Arr1->getElementType();
7064         Composite2 = Arr2->getElementType();
7065         Steps.emplace_back(Step::Array, CAT1);
7066         continue;
7067       }
7068       bool IAT1 = isa<IncompleteArrayType>(Arr1);
7069       bool IAT2 = isa<IncompleteArrayType>(Arr2);
7070       if ((IAT1 && IAT2) ||
7071           (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
7072            ((bool)CAT1 != (bool)CAT2) &&
7073            (Steps.empty() || Steps.back().K != Step::Array))) {
7074         // In C++20 onwards, we can unify an array of N T with an array of
7075         // a different or unknown bound. But we can't form an array whose
7076         // element type is an array of unknown bound by doing so.
7077         Composite1 = Arr1->getElementType();
7078         Composite2 = Arr2->getElementType();
7079         Steps.emplace_back(Step::Array);
7080         if (CAT1 || CAT2)
7081           NeedConstBefore = Steps.size();
7082         continue;
7083       }
7084     }
7085 
7086     const PointerType *Ptr1, *Ptr2;
7087     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
7088         (Ptr2 = Composite2->getAs<PointerType>())) {
7089       Composite1 = Ptr1->getPointeeType();
7090       Composite2 = Ptr2->getPointeeType();
7091       Steps.emplace_back(Step::Pointer);
7092       continue;
7093     }
7094 
7095     const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
7096     if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
7097         (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
7098       Composite1 = ObjPtr1->getPointeeType();
7099       Composite2 = ObjPtr2->getPointeeType();
7100       Steps.emplace_back(Step::ObjCPointer);
7101       continue;
7102     }
7103 
7104     const MemberPointerType *MemPtr1, *MemPtr2;
7105     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
7106         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
7107       Composite1 = MemPtr1->getPointeeType();
7108       Composite2 = MemPtr2->getPointeeType();
7109 
7110       // At the top level, we can perform a base-to-derived pointer-to-member
7111       // conversion:
7112       //
7113       //  - [...] where C1 is reference-related to C2 or C2 is
7114       //    reference-related to C1
7115       //
7116       // (Note that the only kinds of reference-relatedness in scope here are
7117       // "same type or derived from".) At any other level, the class must
7118       // exactly match.
7119       const Type *Class = nullptr;
7120       QualType Cls1(MemPtr1->getClass(), 0);
7121       QualType Cls2(MemPtr2->getClass(), 0);
7122       if (Context.hasSameType(Cls1, Cls2))
7123         Class = MemPtr1->getClass();
7124       else if (Steps.empty())
7125         Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
7126                 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
7127       if (!Class)
7128         return QualType();
7129 
7130       Steps.emplace_back(Step::MemberPointer, Class);
7131       continue;
7132     }
7133 
7134     // Special case: at the top level, we can decompose an Objective-C pointer
7135     // and a 'cv void *'. Unify the qualifiers.
7136     if (Steps.empty() && ((Composite1->isVoidPointerType() &&
7137                            Composite2->isObjCObjectPointerType()) ||
7138                           (Composite1->isObjCObjectPointerType() &&
7139                            Composite2->isVoidPointerType()))) {
7140       Composite1 = Composite1->getPointeeType();
7141       Composite2 = Composite2->getPointeeType();
7142       Steps.emplace_back(Step::Pointer);
7143       continue;
7144     }
7145 
7146     // FIXME: block pointer types?
7147 
7148     // Cannot unwrap any more types.
7149     break;
7150   }
7151 
7152   //  - if T1 or T2 is "pointer to noexcept function" and the other type is
7153   //    "pointer to function", where the function types are otherwise the same,
7154   //    "pointer to function";
7155   //  - if T1 or T2 is "pointer to member of C1 of type function", the other
7156   //    type is "pointer to member of C2 of type noexcept function", and C1
7157   //    is reference-related to C2 or C2 is reference-related to C1, where
7158   //    the function types are otherwise the same, "pointer to member of C2 of
7159   //    type function" or "pointer to member of C1 of type function",
7160   //    respectively;
7161   //
7162   // We also support 'noreturn' here, so as a Clang extension we generalize the
7163   // above to:
7164   //
7165   //  - [Clang] If T1 and T2 are both of type "pointer to function" or
7166   //    "pointer to member function" and the pointee types can be unified
7167   //    by a function pointer conversion, that conversion is applied
7168   //    before checking the following rules.
7169   //
7170   // We've already unwrapped down to the function types, and we want to merge
7171   // rather than just convert, so do this ourselves rather than calling
7172   // IsFunctionConversion.
7173   //
7174   // FIXME: In order to match the standard wording as closely as possible, we
7175   // currently only do this under a single level of pointers. Ideally, we would
7176   // allow this in general, and set NeedConstBefore to the relevant depth on
7177   // the side(s) where we changed anything. If we permit that, we should also
7178   // consider this conversion when determining type similarity and model it as
7179   // a qualification conversion.
7180   if (Steps.size() == 1) {
7181     if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
7182       if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
7183         FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
7184         FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
7185 
7186         // The result is noreturn if both operands are.
7187         bool Noreturn =
7188             EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
7189         EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
7190         EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
7191 
7192         // The result is nothrow if both operands are.
7193         SmallVector<QualType, 8> ExceptionTypeStorage;
7194         EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs(
7195             EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage,
7196             getLangOpts().CPlusPlus17);
7197 
7198         Composite1 = Context.getFunctionType(FPT1->getReturnType(),
7199                                              FPT1->getParamTypes(), EPI1);
7200         Composite2 = Context.getFunctionType(FPT2->getReturnType(),
7201                                              FPT2->getParamTypes(), EPI2);
7202       }
7203     }
7204   }
7205 
7206   // There are some more conversions we can perform under exactly one pointer.
7207   if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
7208       !Context.hasSameType(Composite1, Composite2)) {
7209     //  - if T1 or T2 is "pointer to cv1 void" and the other type is
7210     //    "pointer to cv2 T", where T is an object type or void,
7211     //    "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
7212     if (Composite1->isVoidType() && Composite2->isObjectType())
7213       Composite2 = Composite1;
7214     else if (Composite2->isVoidType() && Composite1->isObjectType())
7215       Composite1 = Composite2;
7216     //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7217     //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7218     //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and
7219     //    T1, respectively;
7220     //
7221     // The "similar type" handling covers all of this except for the "T1 is a
7222     // base class of T2" case in the definition of reference-related.
7223     else if (IsDerivedFrom(Loc, Composite1, Composite2))
7224       Composite1 = Composite2;
7225     else if (IsDerivedFrom(Loc, Composite2, Composite1))
7226       Composite2 = Composite1;
7227   }
7228 
7229   // At this point, either the inner types are the same or we have failed to
7230   // find a composite pointer type.
7231   if (!Context.hasSameType(Composite1, Composite2))
7232     return QualType();
7233 
7234   // Per C++ [conv.qual]p3, add 'const' to every level before the last
7235   // differing qualifier.
7236   for (unsigned I = 0; I != NeedConstBefore; ++I)
7237     Steps[I].Quals.addConst();
7238 
7239   // Rebuild the composite type.
7240   QualType Composite = Context.getCommonSugaredType(Composite1, Composite2);
7241   for (auto &S : llvm::reverse(Steps))
7242     Composite = S.rebuild(Context, Composite);
7243 
7244   if (ConvertArgs) {
7245     // Convert the expressions to the composite pointer type.
7246     InitializedEntity Entity =
7247         InitializedEntity::InitializeTemporary(Composite);
7248     InitializationKind Kind =
7249         InitializationKind::CreateCopy(Loc, SourceLocation());
7250 
7251     InitializationSequence E1ToC(*this, Entity, Kind, E1);
7252     if (!E1ToC)
7253       return QualType();
7254 
7255     InitializationSequence E2ToC(*this, Entity, Kind, E2);
7256     if (!E2ToC)
7257       return QualType();
7258 
7259     // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
7260     ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
7261     if (E1Result.isInvalid())
7262       return QualType();
7263     E1 = E1Result.get();
7264 
7265     ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
7266     if (E2Result.isInvalid())
7267       return QualType();
7268     E2 = E2Result.get();
7269   }
7270 
7271   return Composite;
7272 }
7273 
7274 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
7275   if (!E)
7276     return ExprError();
7277 
7278   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
7279 
7280   // If the result is a glvalue, we shouldn't bind it.
7281   if (E->isGLValue())
7282     return E;
7283 
7284   // In ARC, calls that return a retainable type can return retained,
7285   // in which case we have to insert a consuming cast.
7286   if (getLangOpts().ObjCAutoRefCount &&
7287       E->getType()->isObjCRetainableType()) {
7288 
7289     bool ReturnsRetained;
7290 
7291     // For actual calls, we compute this by examining the type of the
7292     // called value.
7293     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
7294       Expr *Callee = Call->getCallee()->IgnoreParens();
7295       QualType T = Callee->getType();
7296 
7297       if (T == Context.BoundMemberTy) {
7298         // Handle pointer-to-members.
7299         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
7300           T = BinOp->getRHS()->getType();
7301         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
7302           T = Mem->getMemberDecl()->getType();
7303       }
7304 
7305       if (const PointerType *Ptr = T->getAs<PointerType>())
7306         T = Ptr->getPointeeType();
7307       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
7308         T = Ptr->getPointeeType();
7309       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
7310         T = MemPtr->getPointeeType();
7311 
7312       auto *FTy = T->castAs<FunctionType>();
7313       ReturnsRetained = FTy->getExtInfo().getProducesResult();
7314 
7315     // ActOnStmtExpr arranges things so that StmtExprs of retainable
7316     // type always produce a +1 object.
7317     } else if (isa<StmtExpr>(E)) {
7318       ReturnsRetained = true;
7319 
7320     // We hit this case with the lambda conversion-to-block optimization;
7321     // we don't want any extra casts here.
7322     } else if (isa<CastExpr>(E) &&
7323                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
7324       return E;
7325 
7326     // For message sends and property references, we try to find an
7327     // actual method.  FIXME: we should infer retention by selector in
7328     // cases where we don't have an actual method.
7329     } else {
7330       ObjCMethodDecl *D = nullptr;
7331       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
7332         D = Send->getMethodDecl();
7333       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
7334         D = BoxedExpr->getBoxingMethod();
7335       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
7336         // Don't do reclaims if we're using the zero-element array
7337         // constant.
7338         if (ArrayLit->getNumElements() == 0 &&
7339             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7340           return E;
7341 
7342         D = ArrayLit->getArrayWithObjectsMethod();
7343       } else if (ObjCDictionaryLiteral *DictLit
7344                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
7345         // Don't do reclaims if we're using the zero-element dictionary
7346         // constant.
7347         if (DictLit->getNumElements() == 0 &&
7348             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7349           return E;
7350 
7351         D = DictLit->getDictWithObjectsMethod();
7352       }
7353 
7354       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7355 
7356       // Don't do reclaims on performSelector calls; despite their
7357       // return type, the invoked method doesn't necessarily actually
7358       // return an object.
7359       if (!ReturnsRetained &&
7360           D && D->getMethodFamily() == OMF_performSelector)
7361         return E;
7362     }
7363 
7364     // Don't reclaim an object of Class type.
7365     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7366       return E;
7367 
7368     Cleanup.setExprNeedsCleanups(true);
7369 
7370     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7371                                    : CK_ARCReclaimReturnedObject);
7372     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
7373                                     VK_PRValue, FPOptionsOverride());
7374   }
7375 
7376   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7377     Cleanup.setExprNeedsCleanups(true);
7378 
7379   if (!getLangOpts().CPlusPlus)
7380     return E;
7381 
7382   // Search for the base element type (cf. ASTContext::getBaseElementType) with
7383   // a fast path for the common case that the type is directly a RecordType.
7384   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7385   const RecordType *RT = nullptr;
7386   while (!RT) {
7387     switch (T->getTypeClass()) {
7388     case Type::Record:
7389       RT = cast<RecordType>(T);
7390       break;
7391     case Type::ConstantArray:
7392     case Type::IncompleteArray:
7393     case Type::VariableArray:
7394     case Type::DependentSizedArray:
7395       T = cast<ArrayType>(T)->getElementType().getTypePtr();
7396       break;
7397     default:
7398       return E;
7399     }
7400   }
7401 
7402   // That should be enough to guarantee that this type is complete, if we're
7403   // not processing a decltype expression.
7404   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7405   if (RD->isInvalidDecl() || RD->isDependentContext())
7406     return E;
7407 
7408   bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7409                     ExpressionEvaluationContextRecord::EK_Decltype;
7410   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7411 
7412   if (Destructor) {
7413     MarkFunctionReferenced(E->getExprLoc(), Destructor);
7414     CheckDestructorAccess(E->getExprLoc(), Destructor,
7415                           PDiag(diag::err_access_dtor_temp)
7416                             << E->getType());
7417     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7418       return ExprError();
7419 
7420     // If destructor is trivial, we can avoid the extra copy.
7421     if (Destructor->isTrivial())
7422       return E;
7423 
7424     // We need a cleanup, but we don't need to remember the temporary.
7425     Cleanup.setExprNeedsCleanups(true);
7426   }
7427 
7428   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7429   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7430 
7431   if (IsDecltype)
7432     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7433 
7434   return Bind;
7435 }
7436 
7437 ExprResult
7438 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7439   if (SubExpr.isInvalid())
7440     return ExprError();
7441 
7442   return MaybeCreateExprWithCleanups(SubExpr.get());
7443 }
7444 
7445 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7446   assert(SubExpr && "subexpression can't be null!");
7447 
7448   CleanupVarDeclMarking();
7449 
7450   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7451   assert(ExprCleanupObjects.size() >= FirstCleanup);
7452   assert(Cleanup.exprNeedsCleanups() ||
7453          ExprCleanupObjects.size() == FirstCleanup);
7454   if (!Cleanup.exprNeedsCleanups())
7455     return SubExpr;
7456 
7457   auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7458                                  ExprCleanupObjects.size() - FirstCleanup);
7459 
7460   auto *E = ExprWithCleanups::Create(
7461       Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7462   DiscardCleanupsInEvaluationContext();
7463 
7464   return E;
7465 }
7466 
7467 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7468   assert(SubStmt && "sub-statement can't be null!");
7469 
7470   CleanupVarDeclMarking();
7471 
7472   if (!Cleanup.exprNeedsCleanups())
7473     return SubStmt;
7474 
7475   // FIXME: In order to attach the temporaries, wrap the statement into
7476   // a StmtExpr; currently this is only used for asm statements.
7477   // This is hacky, either create a new CXXStmtWithTemporaries statement or
7478   // a new AsmStmtWithTemporaries.
7479   CompoundStmt *CompStmt =
7480       CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(),
7481                            SourceLocation(), SourceLocation());
7482   Expr *E = new (Context)
7483       StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7484                /*FIXME TemplateDepth=*/0);
7485   return MaybeCreateExprWithCleanups(E);
7486 }
7487 
7488 /// Process the expression contained within a decltype. For such expressions,
7489 /// certain semantic checks on temporaries are delayed until this point, and
7490 /// are omitted for the 'topmost' call in the decltype expression. If the
7491 /// topmost call bound a temporary, strip that temporary off the expression.
7492 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7493   assert(ExprEvalContexts.back().ExprContext ==
7494              ExpressionEvaluationContextRecord::EK_Decltype &&
7495          "not in a decltype expression");
7496 
7497   ExprResult Result = CheckPlaceholderExpr(E);
7498   if (Result.isInvalid())
7499     return ExprError();
7500   E = Result.get();
7501 
7502   // C++11 [expr.call]p11:
7503   //   If a function call is a prvalue of object type,
7504   // -- if the function call is either
7505   //   -- the operand of a decltype-specifier, or
7506   //   -- the right operand of a comma operator that is the operand of a
7507   //      decltype-specifier,
7508   //   a temporary object is not introduced for the prvalue.
7509 
7510   // Recursively rebuild ParenExprs and comma expressions to strip out the
7511   // outermost CXXBindTemporaryExpr, if any.
7512   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7513     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7514     if (SubExpr.isInvalid())
7515       return ExprError();
7516     if (SubExpr.get() == PE->getSubExpr())
7517       return E;
7518     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7519   }
7520   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7521     if (BO->getOpcode() == BO_Comma) {
7522       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7523       if (RHS.isInvalid())
7524         return ExprError();
7525       if (RHS.get() == BO->getRHS())
7526         return E;
7527       return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7528                                     BO->getType(), BO->getValueKind(),
7529                                     BO->getObjectKind(), BO->getOperatorLoc(),
7530                                     BO->getFPFeatures());
7531     }
7532   }
7533 
7534   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7535   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7536                               : nullptr;
7537   if (TopCall)
7538     E = TopCall;
7539   else
7540     TopBind = nullptr;
7541 
7542   // Disable the special decltype handling now.
7543   ExprEvalContexts.back().ExprContext =
7544       ExpressionEvaluationContextRecord::EK_Other;
7545 
7546   Result = CheckUnevaluatedOperand(E);
7547   if (Result.isInvalid())
7548     return ExprError();
7549   E = Result.get();
7550 
7551   // In MS mode, don't perform any extra checking of call return types within a
7552   // decltype expression.
7553   if (getLangOpts().MSVCCompat)
7554     return E;
7555 
7556   // Perform the semantic checks we delayed until this point.
7557   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7558        I != N; ++I) {
7559     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7560     if (Call == TopCall)
7561       continue;
7562 
7563     if (CheckCallReturnType(Call->getCallReturnType(Context),
7564                             Call->getBeginLoc(), Call, Call->getDirectCallee()))
7565       return ExprError();
7566   }
7567 
7568   // Now all relevant types are complete, check the destructors are accessible
7569   // and non-deleted, and annotate them on the temporaries.
7570   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7571        I != N; ++I) {
7572     CXXBindTemporaryExpr *Bind =
7573       ExprEvalContexts.back().DelayedDecltypeBinds[I];
7574     if (Bind == TopBind)
7575       continue;
7576 
7577     CXXTemporary *Temp = Bind->getTemporary();
7578 
7579     CXXRecordDecl *RD =
7580       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7581     CXXDestructorDecl *Destructor = LookupDestructor(RD);
7582     Temp->setDestructor(Destructor);
7583 
7584     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7585     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7586                           PDiag(diag::err_access_dtor_temp)
7587                             << Bind->getType());
7588     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7589       return ExprError();
7590 
7591     // We need a cleanup, but we don't need to remember the temporary.
7592     Cleanup.setExprNeedsCleanups(true);
7593   }
7594 
7595   // Possibly strip off the top CXXBindTemporaryExpr.
7596   return E;
7597 }
7598 
7599 /// Note a set of 'operator->' functions that were used for a member access.
7600 static void noteOperatorArrows(Sema &S,
7601                                ArrayRef<FunctionDecl *> OperatorArrows) {
7602   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7603   // FIXME: Make this configurable?
7604   unsigned Limit = 9;
7605   if (OperatorArrows.size() > Limit) {
7606     // Produce Limit-1 normal notes and one 'skipping' note.
7607     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7608     SkipCount = OperatorArrows.size() - (Limit - 1);
7609   }
7610 
7611   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7612     if (I == SkipStart) {
7613       S.Diag(OperatorArrows[I]->getLocation(),
7614              diag::note_operator_arrows_suppressed)
7615           << SkipCount;
7616       I += SkipCount;
7617     } else {
7618       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7619           << OperatorArrows[I]->getCallResultType();
7620       ++I;
7621     }
7622   }
7623 }
7624 
7625 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7626                                               SourceLocation OpLoc,
7627                                               tok::TokenKind OpKind,
7628                                               ParsedType &ObjectType,
7629                                               bool &MayBePseudoDestructor) {
7630   // Since this might be a postfix expression, get rid of ParenListExprs.
7631   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7632   if (Result.isInvalid()) return ExprError();
7633   Base = Result.get();
7634 
7635   Result = CheckPlaceholderExpr(Base);
7636   if (Result.isInvalid()) return ExprError();
7637   Base = Result.get();
7638 
7639   QualType BaseType = Base->getType();
7640   MayBePseudoDestructor = false;
7641   if (BaseType->isDependentType()) {
7642     // If we have a pointer to a dependent type and are using the -> operator,
7643     // the object type is the type that the pointer points to. We might still
7644     // have enough information about that type to do something useful.
7645     if (OpKind == tok::arrow)
7646       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7647         BaseType = Ptr->getPointeeType();
7648 
7649     ObjectType = ParsedType::make(BaseType);
7650     MayBePseudoDestructor = true;
7651     return Base;
7652   }
7653 
7654   // C++ [over.match.oper]p8:
7655   //   [...] When operator->returns, the operator-> is applied  to the value
7656   //   returned, with the original second operand.
7657   if (OpKind == tok::arrow) {
7658     QualType StartingType = BaseType;
7659     bool NoArrowOperatorFound = false;
7660     bool FirstIteration = true;
7661     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7662     // The set of types we've considered so far.
7663     llvm::SmallPtrSet<CanQualType,8> CTypes;
7664     SmallVector<FunctionDecl*, 8> OperatorArrows;
7665     CTypes.insert(Context.getCanonicalType(BaseType));
7666 
7667     while (BaseType->isRecordType()) {
7668       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7669         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7670           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7671         noteOperatorArrows(*this, OperatorArrows);
7672         Diag(OpLoc, diag::note_operator_arrow_depth)
7673           << getLangOpts().ArrowDepth;
7674         return ExprError();
7675       }
7676 
7677       Result = BuildOverloadedArrowExpr(
7678           S, Base, OpLoc,
7679           // When in a template specialization and on the first loop iteration,
7680           // potentially give the default diagnostic (with the fixit in a
7681           // separate note) instead of having the error reported back to here
7682           // and giving a diagnostic with a fixit attached to the error itself.
7683           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7684               ? nullptr
7685               : &NoArrowOperatorFound);
7686       if (Result.isInvalid()) {
7687         if (NoArrowOperatorFound) {
7688           if (FirstIteration) {
7689             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7690               << BaseType << 1 << Base->getSourceRange()
7691               << FixItHint::CreateReplacement(OpLoc, ".");
7692             OpKind = tok::period;
7693             break;
7694           }
7695           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7696             << BaseType << Base->getSourceRange();
7697           CallExpr *CE = dyn_cast<CallExpr>(Base);
7698           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7699             Diag(CD->getBeginLoc(),
7700                  diag::note_member_reference_arrow_from_operator_arrow);
7701           }
7702         }
7703         return ExprError();
7704       }
7705       Base = Result.get();
7706       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7707         OperatorArrows.push_back(OpCall->getDirectCallee());
7708       BaseType = Base->getType();
7709       CanQualType CBaseType = Context.getCanonicalType(BaseType);
7710       if (!CTypes.insert(CBaseType).second) {
7711         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7712         noteOperatorArrows(*this, OperatorArrows);
7713         return ExprError();
7714       }
7715       FirstIteration = false;
7716     }
7717 
7718     if (OpKind == tok::arrow) {
7719       if (BaseType->isPointerType())
7720         BaseType = BaseType->getPointeeType();
7721       else if (auto *AT = Context.getAsArrayType(BaseType))
7722         BaseType = AT->getElementType();
7723     }
7724   }
7725 
7726   // Objective-C properties allow "." access on Objective-C pointer types,
7727   // so adjust the base type to the object type itself.
7728   if (BaseType->isObjCObjectPointerType())
7729     BaseType = BaseType->getPointeeType();
7730 
7731   // C++ [basic.lookup.classref]p2:
7732   //   [...] If the type of the object expression is of pointer to scalar
7733   //   type, the unqualified-id is looked up in the context of the complete
7734   //   postfix-expression.
7735   //
7736   // This also indicates that we could be parsing a pseudo-destructor-name.
7737   // Note that Objective-C class and object types can be pseudo-destructor
7738   // expressions or normal member (ivar or property) access expressions, and
7739   // it's legal for the type to be incomplete if this is a pseudo-destructor
7740   // call.  We'll do more incomplete-type checks later in the lookup process,
7741   // so just skip this check for ObjC types.
7742   if (!BaseType->isRecordType()) {
7743     ObjectType = ParsedType::make(BaseType);
7744     MayBePseudoDestructor = true;
7745     return Base;
7746   }
7747 
7748   // The object type must be complete (or dependent), or
7749   // C++11 [expr.prim.general]p3:
7750   //   Unlike the object expression in other contexts, *this is not required to
7751   //   be of complete type for purposes of class member access (5.2.5) outside
7752   //   the member function body.
7753   if (!BaseType->isDependentType() &&
7754       !isThisOutsideMemberFunctionBody(BaseType) &&
7755       RequireCompleteType(OpLoc, BaseType,
7756                           diag::err_incomplete_member_access)) {
7757     return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base});
7758   }
7759 
7760   // C++ [basic.lookup.classref]p2:
7761   //   If the id-expression in a class member access (5.2.5) is an
7762   //   unqualified-id, and the type of the object expression is of a class
7763   //   type C (or of pointer to a class type C), the unqualified-id is looked
7764   //   up in the scope of class C. [...]
7765   ObjectType = ParsedType::make(BaseType);
7766   return Base;
7767 }
7768 
7769 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7770                        tok::TokenKind &OpKind, SourceLocation OpLoc) {
7771   if (Base->hasPlaceholderType()) {
7772     ExprResult result = S.CheckPlaceholderExpr(Base);
7773     if (result.isInvalid()) return true;
7774     Base = result.get();
7775   }
7776   ObjectType = Base->getType();
7777 
7778   // C++ [expr.pseudo]p2:
7779   //   The left-hand side of the dot operator shall be of scalar type. The
7780   //   left-hand side of the arrow operator shall be of pointer to scalar type.
7781   //   This scalar type is the object type.
7782   // Note that this is rather different from the normal handling for the
7783   // arrow operator.
7784   if (OpKind == tok::arrow) {
7785     // The operator requires a prvalue, so perform lvalue conversions.
7786     // Only do this if we might plausibly end with a pointer, as otherwise
7787     // this was likely to be intended to be a '.'.
7788     if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7789         ObjectType->isFunctionType()) {
7790       ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
7791       if (BaseResult.isInvalid())
7792         return true;
7793       Base = BaseResult.get();
7794       ObjectType = Base->getType();
7795     }
7796 
7797     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7798       ObjectType = Ptr->getPointeeType();
7799     } else if (!Base->isTypeDependent()) {
7800       // The user wrote "p->" when they probably meant "p."; fix it.
7801       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7802         << ObjectType << true
7803         << FixItHint::CreateReplacement(OpLoc, ".");
7804       if (S.isSFINAEContext())
7805         return true;
7806 
7807       OpKind = tok::period;
7808     }
7809   }
7810 
7811   return false;
7812 }
7813 
7814 /// Check if it's ok to try and recover dot pseudo destructor calls on
7815 /// pointer objects.
7816 static bool
7817 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7818                                                    QualType DestructedType) {
7819   // If this is a record type, check if its destructor is callable.
7820   if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7821     if (RD->hasDefinition())
7822       if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
7823         return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7824     return false;
7825   }
7826 
7827   // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7828   return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7829          DestructedType->isVectorType();
7830 }
7831 
7832 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7833                                            SourceLocation OpLoc,
7834                                            tok::TokenKind OpKind,
7835                                            const CXXScopeSpec &SS,
7836                                            TypeSourceInfo *ScopeTypeInfo,
7837                                            SourceLocation CCLoc,
7838                                            SourceLocation TildeLoc,
7839                                          PseudoDestructorTypeStorage Destructed) {
7840   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7841 
7842   QualType ObjectType;
7843   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7844     return ExprError();
7845 
7846   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7847       !ObjectType->isVectorType()) {
7848     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7849       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7850     else {
7851       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7852         << ObjectType << Base->getSourceRange();
7853       return ExprError();
7854     }
7855   }
7856 
7857   // C++ [expr.pseudo]p2:
7858   //   [...] The cv-unqualified versions of the object type and of the type
7859   //   designated by the pseudo-destructor-name shall be the same type.
7860   if (DestructedTypeInfo) {
7861     QualType DestructedType = DestructedTypeInfo->getType();
7862     SourceLocation DestructedTypeStart =
7863         DestructedTypeInfo->getTypeLoc().getBeginLoc();
7864     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7865       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
7866         // Detect dot pseudo destructor calls on pointer objects, e.g.:
7867         //   Foo *foo;
7868         //   foo.~Foo();
7869         if (OpKind == tok::period && ObjectType->isPointerType() &&
7870             Context.hasSameUnqualifiedType(DestructedType,
7871                                            ObjectType->getPointeeType())) {
7872           auto Diagnostic =
7873               Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7874               << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7875 
7876           // Issue a fixit only when the destructor is valid.
7877           if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7878                   *this, DestructedType))
7879             Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
7880 
7881           // Recover by setting the object type to the destructed type and the
7882           // operator to '->'.
7883           ObjectType = DestructedType;
7884           OpKind = tok::arrow;
7885         } else {
7886           Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7887               << ObjectType << DestructedType << Base->getSourceRange()
7888               << DestructedTypeInfo->getTypeLoc().getSourceRange();
7889 
7890           // Recover by setting the destructed type to the object type.
7891           DestructedType = ObjectType;
7892           DestructedTypeInfo =
7893               Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
7894           Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7895         }
7896       } else if (DestructedType.getObjCLifetime() !=
7897                                                 ObjectType.getObjCLifetime()) {
7898 
7899         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7900           // Okay: just pretend that the user provided the correctly-qualified
7901           // type.
7902         } else {
7903           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7904               << ObjectType << DestructedType << Base->getSourceRange()
7905               << DestructedTypeInfo->getTypeLoc().getSourceRange();
7906         }
7907 
7908         // Recover by setting the destructed type to the object type.
7909         DestructedType = ObjectType;
7910         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
7911                                                            DestructedTypeStart);
7912         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7913       }
7914     }
7915   }
7916 
7917   // C++ [expr.pseudo]p2:
7918   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7919   //   form
7920   //
7921   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7922   //
7923   //   shall designate the same scalar type.
7924   if (ScopeTypeInfo) {
7925     QualType ScopeType = ScopeTypeInfo->getType();
7926     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7927         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
7928 
7929       Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(),
7930            diag::err_pseudo_dtor_type_mismatch)
7931           << ObjectType << ScopeType << Base->getSourceRange()
7932           << ScopeTypeInfo->getTypeLoc().getSourceRange();
7933 
7934       ScopeType = QualType();
7935       ScopeTypeInfo = nullptr;
7936     }
7937   }
7938 
7939   Expr *Result
7940     = new (Context) CXXPseudoDestructorExpr(Context, Base,
7941                                             OpKind == tok::arrow, OpLoc,
7942                                             SS.getWithLocInContext(Context),
7943                                             ScopeTypeInfo,
7944                                             CCLoc,
7945                                             TildeLoc,
7946                                             Destructed);
7947 
7948   return Result;
7949 }
7950 
7951 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7952                                            SourceLocation OpLoc,
7953                                            tok::TokenKind OpKind,
7954                                            CXXScopeSpec &SS,
7955                                            UnqualifiedId &FirstTypeName,
7956                                            SourceLocation CCLoc,
7957                                            SourceLocation TildeLoc,
7958                                            UnqualifiedId &SecondTypeName) {
7959   assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7960           FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7961          "Invalid first type name in pseudo-destructor");
7962   assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7963           SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7964          "Invalid second type name in pseudo-destructor");
7965 
7966   QualType ObjectType;
7967   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7968     return ExprError();
7969 
7970   // Compute the object type that we should use for name lookup purposes. Only
7971   // record types and dependent types matter.
7972   ParsedType ObjectTypePtrForLookup;
7973   if (!SS.isSet()) {
7974     if (ObjectType->isRecordType())
7975       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7976     else if (ObjectType->isDependentType())
7977       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7978   }
7979 
7980   // Convert the name of the type being destructed (following the ~) into a
7981   // type (with source-location information).
7982   QualType DestructedType;
7983   TypeSourceInfo *DestructedTypeInfo = nullptr;
7984   PseudoDestructorTypeStorage Destructed;
7985   if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7986     ParsedType T = getTypeName(*SecondTypeName.Identifier,
7987                                SecondTypeName.StartLocation,
7988                                S, &SS, true, false, ObjectTypePtrForLookup,
7989                                /*IsCtorOrDtorName*/true);
7990     if (!T &&
7991         ((SS.isSet() && !computeDeclContext(SS, false)) ||
7992          (!SS.isSet() && ObjectType->isDependentType()))) {
7993       // The name of the type being destroyed is a dependent name, and we
7994       // couldn't find anything useful in scope. Just store the identifier and
7995       // it's location, and we'll perform (qualified) name lookup again at
7996       // template instantiation time.
7997       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7998                                                SecondTypeName.StartLocation);
7999     } else if (!T) {
8000       Diag(SecondTypeName.StartLocation,
8001            diag::err_pseudo_dtor_destructor_non_type)
8002         << SecondTypeName.Identifier << ObjectType;
8003       if (isSFINAEContext())
8004         return ExprError();
8005 
8006       // Recover by assuming we had the right type all along.
8007       DestructedType = ObjectType;
8008     } else
8009       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
8010   } else {
8011     // Resolve the template-id to a type.
8012     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
8013     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8014                                        TemplateId->NumArgs);
8015     TypeResult T = ActOnTemplateIdType(S,
8016                                        SS,
8017                                        TemplateId->TemplateKWLoc,
8018                                        TemplateId->Template,
8019                                        TemplateId->Name,
8020                                        TemplateId->TemplateNameLoc,
8021                                        TemplateId->LAngleLoc,
8022                                        TemplateArgsPtr,
8023                                        TemplateId->RAngleLoc,
8024                                        /*IsCtorOrDtorName*/true);
8025     if (T.isInvalid() || !T.get()) {
8026       // Recover by assuming we had the right type all along.
8027       DestructedType = ObjectType;
8028     } else
8029       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
8030   }
8031 
8032   // If we've performed some kind of recovery, (re-)build the type source
8033   // information.
8034   if (!DestructedType.isNull()) {
8035     if (!DestructedTypeInfo)
8036       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
8037                                                   SecondTypeName.StartLocation);
8038     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
8039   }
8040 
8041   // Convert the name of the scope type (the type prior to '::') into a type.
8042   TypeSourceInfo *ScopeTypeInfo = nullptr;
8043   QualType ScopeType;
8044   if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
8045       FirstTypeName.Identifier) {
8046     if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
8047       ParsedType T = getTypeName(*FirstTypeName.Identifier,
8048                                  FirstTypeName.StartLocation,
8049                                  S, &SS, true, false, ObjectTypePtrForLookup,
8050                                  /*IsCtorOrDtorName*/true);
8051       if (!T) {
8052         Diag(FirstTypeName.StartLocation,
8053              diag::err_pseudo_dtor_destructor_non_type)
8054           << FirstTypeName.Identifier << ObjectType;
8055 
8056         if (isSFINAEContext())
8057           return ExprError();
8058 
8059         // Just drop this type. It's unnecessary anyway.
8060         ScopeType = QualType();
8061       } else
8062         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
8063     } else {
8064       // Resolve the template-id to a type.
8065       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
8066       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8067                                          TemplateId->NumArgs);
8068       TypeResult T = ActOnTemplateIdType(S,
8069                                          SS,
8070                                          TemplateId->TemplateKWLoc,
8071                                          TemplateId->Template,
8072                                          TemplateId->Name,
8073                                          TemplateId->TemplateNameLoc,
8074                                          TemplateId->LAngleLoc,
8075                                          TemplateArgsPtr,
8076                                          TemplateId->RAngleLoc,
8077                                          /*IsCtorOrDtorName*/true);
8078       if (T.isInvalid() || !T.get()) {
8079         // Recover by dropping this type.
8080         ScopeType = QualType();
8081       } else
8082         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
8083     }
8084   }
8085 
8086   if (!ScopeType.isNull() && !ScopeTypeInfo)
8087     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
8088                                                   FirstTypeName.StartLocation);
8089 
8090 
8091   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
8092                                    ScopeTypeInfo, CCLoc, TildeLoc,
8093                                    Destructed);
8094 }
8095 
8096 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
8097                                            SourceLocation OpLoc,
8098                                            tok::TokenKind OpKind,
8099                                            SourceLocation TildeLoc,
8100                                            const DeclSpec& DS) {
8101   QualType ObjectType;
8102   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
8103     return ExprError();
8104 
8105   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
8106     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
8107     return true;
8108   }
8109 
8110   QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false);
8111 
8112   TypeLocBuilder TLB;
8113   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
8114   DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
8115   DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
8116   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
8117   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
8118 
8119   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
8120                                    nullptr, SourceLocation(), TildeLoc,
8121                                    Destructed);
8122 }
8123 
8124 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
8125                                       SourceLocation RParen) {
8126   // If the operand is an unresolved lookup expression, the expression is ill-
8127   // formed per [over.over]p1, because overloaded function names cannot be used
8128   // without arguments except in explicit contexts.
8129   ExprResult R = CheckPlaceholderExpr(Operand);
8130   if (R.isInvalid())
8131     return R;
8132 
8133   R = CheckUnevaluatedOperand(R.get());
8134   if (R.isInvalid())
8135     return ExprError();
8136 
8137   Operand = R.get();
8138 
8139   if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
8140       Operand->HasSideEffects(Context, false)) {
8141     // The expression operand for noexcept is in an unevaluated expression
8142     // context, so side effects could result in unintended consequences.
8143     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8144   }
8145 
8146   CanThrowResult CanThrow = canThrow(Operand);
8147   return new (Context)
8148       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
8149 }
8150 
8151 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
8152                                    Expr *Operand, SourceLocation RParen) {
8153   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
8154 }
8155 
8156 static void MaybeDecrementCount(
8157     Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
8158   DeclRefExpr *LHS = nullptr;
8159   bool IsCompoundAssign = false;
8160   bool isIncrementDecrementUnaryOp = false;
8161   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8162     if (BO->getLHS()->getType()->isDependentType() ||
8163         BO->getRHS()->getType()->isDependentType()) {
8164       if (BO->getOpcode() != BO_Assign)
8165         return;
8166     } else if (!BO->isAssignmentOp())
8167       return;
8168     else
8169       IsCompoundAssign = BO->isCompoundAssignmentOp();
8170     LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
8171   } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
8172     if (COCE->getOperator() != OO_Equal)
8173       return;
8174     LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
8175   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
8176     if (!UO->isIncrementDecrementOp())
8177       return;
8178     isIncrementDecrementUnaryOp = true;
8179     LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr());
8180   }
8181   if (!LHS)
8182     return;
8183   VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
8184   if (!VD)
8185     return;
8186   // Don't decrement RefsMinusAssignments if volatile variable with compound
8187   // assignment (+=, ...) or increment/decrement unary operator to avoid
8188   // potential unused-but-set-variable warning.
8189   if ((IsCompoundAssign || isIncrementDecrementUnaryOp) &&
8190       VD->getType().isVolatileQualified())
8191     return;
8192   auto iter = RefsMinusAssignments.find(VD);
8193   if (iter == RefsMinusAssignments.end())
8194     return;
8195   iter->getSecond()--;
8196 }
8197 
8198 /// Perform the conversions required for an expression used in a
8199 /// context that ignores the result.
8200 ExprResult Sema::IgnoredValueConversions(Expr *E) {
8201   MaybeDecrementCount(E, RefsMinusAssignments);
8202 
8203   if (E->hasPlaceholderType()) {
8204     ExprResult result = CheckPlaceholderExpr(E);
8205     if (result.isInvalid()) return E;
8206     E = result.get();
8207   }
8208 
8209   // C99 6.3.2.1:
8210   //   [Except in specific positions,] an lvalue that does not have
8211   //   array type is converted to the value stored in the
8212   //   designated object (and is no longer an lvalue).
8213   if (E->isPRValue()) {
8214     // In C, function designators (i.e. expressions of function type)
8215     // are r-values, but we still want to do function-to-pointer decay
8216     // on them.  This is both technically correct and convenient for
8217     // some clients.
8218     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
8219       return DefaultFunctionArrayConversion(E);
8220 
8221     return E;
8222   }
8223 
8224   if (getLangOpts().CPlusPlus) {
8225     // The C++11 standard defines the notion of a discarded-value expression;
8226     // normally, we don't need to do anything to handle it, but if it is a
8227     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
8228     // conversion.
8229     if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
8230       ExprResult Res = DefaultLvalueConversion(E);
8231       if (Res.isInvalid())
8232         return E;
8233       E = Res.get();
8234     } else {
8235       // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8236       // it occurs as a discarded-value expression.
8237       CheckUnusedVolatileAssignment(E);
8238     }
8239 
8240     // C++1z:
8241     //   If the expression is a prvalue after this optional conversion, the
8242     //   temporary materialization conversion is applied.
8243     //
8244     // We skip this step: IR generation is able to synthesize the storage for
8245     // itself in the aggregate case, and adding the extra node to the AST is
8246     // just clutter.
8247     // FIXME: We don't emit lifetime markers for the temporaries due to this.
8248     // FIXME: Do any other AST consumers care about this?
8249     return E;
8250   }
8251 
8252   // GCC seems to also exclude expressions of incomplete enum type.
8253   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
8254     if (!T->getDecl()->isComplete()) {
8255       // FIXME: stupid workaround for a codegen bug!
8256       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
8257       return E;
8258     }
8259   }
8260 
8261   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
8262   if (Res.isInvalid())
8263     return E;
8264   E = Res.get();
8265 
8266   if (!E->getType()->isVoidType())
8267     RequireCompleteType(E->getExprLoc(), E->getType(),
8268                         diag::err_incomplete_type);
8269   return E;
8270 }
8271 
8272 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
8273   // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8274   // it occurs as an unevaluated operand.
8275   CheckUnusedVolatileAssignment(E);
8276 
8277   return E;
8278 }
8279 
8280 // If we can unambiguously determine whether Var can never be used
8281 // in a constant expression, return true.
8282 //  - if the variable and its initializer are non-dependent, then
8283 //    we can unambiguously check if the variable is a constant expression.
8284 //  - if the initializer is not value dependent - we can determine whether
8285 //    it can be used to initialize a constant expression.  If Init can not
8286 //    be used to initialize a constant expression we conclude that Var can
8287 //    never be a constant expression.
8288 //  - FXIME: if the initializer is dependent, we can still do some analysis and
8289 //    identify certain cases unambiguously as non-const by using a Visitor:
8290 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
8291 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
8292 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
8293     ASTContext &Context) {
8294   if (isa<ParmVarDecl>(Var)) return true;
8295   const VarDecl *DefVD = nullptr;
8296 
8297   // If there is no initializer - this can not be a constant expression.
8298   const Expr *Init = Var->getAnyInitializer(DefVD);
8299   if (!Init)
8300     return true;
8301   assert(DefVD);
8302   if (DefVD->isWeak())
8303     return false;
8304 
8305   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8306     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8307     // of value-dependent expressions, and use it here to determine whether the
8308     // initializer is a potential constant expression.
8309     return false;
8310   }
8311 
8312   return !Var->isUsableInConstantExpressions(Context);
8313 }
8314 
8315 /// Check if the current lambda has any potential captures
8316 /// that must be captured by any of its enclosing lambdas that are ready to
8317 /// capture. If there is a lambda that can capture a nested
8318 /// potential-capture, go ahead and do so.  Also, check to see if any
8319 /// variables are uncaptureable or do not involve an odr-use so do not
8320 /// need to be captured.
8321 
8322 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8323     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8324 
8325   assert(!S.isUnevaluatedContext());
8326   assert(S.CurContext->isDependentContext());
8327 #ifndef NDEBUG
8328   DeclContext *DC = S.CurContext;
8329   while (DC && isa<CapturedDecl>(DC))
8330     DC = DC->getParent();
8331   assert(
8332       CurrentLSI->CallOperator == DC &&
8333       "The current call operator must be synchronized with Sema's CurContext");
8334 #endif // NDEBUG
8335 
8336   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8337 
8338   // All the potentially captureable variables in the current nested
8339   // lambda (within a generic outer lambda), must be captured by an
8340   // outer lambda that is enclosed within a non-dependent context.
8341   CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) {
8342     // If the variable is clearly identified as non-odr-used and the full
8343     // expression is not instantiation dependent, only then do we not
8344     // need to check enclosing lambda's for speculative captures.
8345     // For e.g.:
8346     // Even though 'x' is not odr-used, it should be captured.
8347     // int test() {
8348     //   const int x = 10;
8349     //   auto L = [=](auto a) {
8350     //     (void) +x + a;
8351     //   };
8352     // }
8353     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8354         !IsFullExprInstantiationDependent)
8355       return;
8356 
8357     VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl();
8358     if (!UnderlyingVar)
8359       return;
8360 
8361     // If we have a capture-capable lambda for the variable, go ahead and
8362     // capture the variable in that lambda (and all its enclosing lambdas).
8363     if (const std::optional<unsigned> Index =
8364             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8365                 S.FunctionScopes, Var, S))
8366       S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index);
8367     const bool IsVarNeverAConstantExpression =
8368         VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context);
8369     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8370       // This full expression is not instantiation dependent or the variable
8371       // can not be used in a constant expression - which means
8372       // this variable must be odr-used here, so diagnose a
8373       // capture violation early, if the variable is un-captureable.
8374       // This is purely for diagnosing errors early.  Otherwise, this
8375       // error would get diagnosed when the lambda becomes capture ready.
8376       QualType CaptureType, DeclRefType;
8377       SourceLocation ExprLoc = VarExpr->getExprLoc();
8378       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8379                           /*EllipsisLoc*/ SourceLocation(),
8380                           /*BuildAndDiagnose*/false, CaptureType,
8381                           DeclRefType, nullptr)) {
8382         // We will never be able to capture this variable, and we need
8383         // to be able to in any and all instantiations, so diagnose it.
8384         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8385                           /*EllipsisLoc*/ SourceLocation(),
8386                           /*BuildAndDiagnose*/true, CaptureType,
8387                           DeclRefType, nullptr);
8388       }
8389     }
8390   });
8391 
8392   // Check if 'this' needs to be captured.
8393   if (CurrentLSI->hasPotentialThisCapture()) {
8394     // If we have a capture-capable lambda for 'this', go ahead and capture
8395     // 'this' in that lambda (and all its enclosing lambdas).
8396     if (const std::optional<unsigned> Index =
8397             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8398                 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8399       const unsigned FunctionScopeIndexOfCapturableLambda = *Index;
8400       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8401                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8402                             &FunctionScopeIndexOfCapturableLambda);
8403     }
8404   }
8405 
8406   // Reset all the potential captures at the end of each full-expression.
8407   CurrentLSI->clearPotentialCaptures();
8408 }
8409 
8410 static ExprResult attemptRecovery(Sema &SemaRef,
8411                                   const TypoCorrectionConsumer &Consumer,
8412                                   const TypoCorrection &TC) {
8413   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8414                  Consumer.getLookupResult().getLookupKind());
8415   const CXXScopeSpec *SS = Consumer.getSS();
8416   CXXScopeSpec NewSS;
8417 
8418   // Use an approprate CXXScopeSpec for building the expr.
8419   if (auto *NNS = TC.getCorrectionSpecifier())
8420     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8421   else if (SS && !TC.WillReplaceSpecifier())
8422     NewSS = *SS;
8423 
8424   if (auto *ND = TC.getFoundDecl()) {
8425     R.setLookupName(ND->getDeclName());
8426     R.addDecl(ND);
8427     if (ND->isCXXClassMember()) {
8428       // Figure out the correct naming class to add to the LookupResult.
8429       CXXRecordDecl *Record = nullptr;
8430       if (auto *NNS = TC.getCorrectionSpecifier())
8431         Record = NNS->getAsType()->getAsCXXRecordDecl();
8432       if (!Record)
8433         Record =
8434             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8435       if (Record)
8436         R.setNamingClass(Record);
8437 
8438       // Detect and handle the case where the decl might be an implicit
8439       // member.
8440       bool MightBeImplicitMember;
8441       if (!Consumer.isAddressOfOperand())
8442         MightBeImplicitMember = true;
8443       else if (!NewSS.isEmpty())
8444         MightBeImplicitMember = false;
8445       else if (R.isOverloadedResult())
8446         MightBeImplicitMember = false;
8447       else if (R.isUnresolvableResult())
8448         MightBeImplicitMember = true;
8449       else
8450         MightBeImplicitMember = isa<FieldDecl>(ND) ||
8451                                 isa<IndirectFieldDecl>(ND) ||
8452                                 isa<MSPropertyDecl>(ND);
8453 
8454       if (MightBeImplicitMember)
8455         return SemaRef.BuildPossibleImplicitMemberExpr(
8456             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8457             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8458     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8459       return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
8460                                         Ivar->getIdentifier());
8461     }
8462   }
8463 
8464   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8465                                           /*AcceptInvalidDecl*/ true);
8466 }
8467 
8468 namespace {
8469 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8470   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8471 
8472 public:
8473   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8474       : TypoExprs(TypoExprs) {}
8475   bool VisitTypoExpr(TypoExpr *TE) {
8476     TypoExprs.insert(TE);
8477     return true;
8478   }
8479 };
8480 
8481 class TransformTypos : public TreeTransform<TransformTypos> {
8482   typedef TreeTransform<TransformTypos> BaseTransform;
8483 
8484   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8485                      // process of being initialized.
8486   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8487   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8488   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8489   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8490 
8491   /// Emit diagnostics for all of the TypoExprs encountered.
8492   ///
8493   /// If the TypoExprs were successfully corrected, then the diagnostics should
8494   /// suggest the corrections. Otherwise the diagnostics will not suggest
8495   /// anything (having been passed an empty TypoCorrection).
8496   ///
8497   /// If we've failed to correct due to ambiguous corrections, we need to
8498   /// be sure to pass empty corrections and replacements. Otherwise it's
8499   /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8500   /// and we don't want to report those diagnostics.
8501   void EmitAllDiagnostics(bool IsAmbiguous) {
8502     for (TypoExpr *TE : TypoExprs) {
8503       auto &State = SemaRef.getTypoExprState(TE);
8504       if (State.DiagHandler) {
8505         TypoCorrection TC = IsAmbiguous
8506             ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8507         ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8508 
8509         // Extract the NamedDecl from the transformed TypoExpr and add it to the
8510         // TypoCorrection, replacing the existing decls. This ensures the right
8511         // NamedDecl is used in diagnostics e.g. in the case where overload
8512         // resolution was used to select one from several possible decls that
8513         // had been stored in the TypoCorrection.
8514         if (auto *ND = getDeclFromExpr(
8515                 Replacement.isInvalid() ? nullptr : Replacement.get()))
8516           TC.setCorrectionDecl(ND);
8517 
8518         State.DiagHandler(TC);
8519       }
8520       SemaRef.clearDelayedTypo(TE);
8521     }
8522   }
8523 
8524   /// Try to advance the typo correction state of the first unfinished TypoExpr.
8525   /// We allow advancement of the correction stream by removing it from the
8526   /// TransformCache which allows `TransformTypoExpr` to advance during the
8527   /// next transformation attempt.
8528   ///
8529   /// Any substitution attempts for the previous TypoExprs (which must have been
8530   /// finished) will need to be retried since it's possible that they will now
8531   /// be invalid given the latest advancement.
8532   ///
8533   /// We need to be sure that we're making progress - it's possible that the
8534   /// tree is so malformed that the transform never makes it to the
8535   /// `TransformTypoExpr`.
8536   ///
8537   /// Returns true if there are any untried correction combinations.
8538   bool CheckAndAdvanceTypoExprCorrectionStreams() {
8539     for (auto *TE : TypoExprs) {
8540       auto &State = SemaRef.getTypoExprState(TE);
8541       TransformCache.erase(TE);
8542       if (!State.Consumer->hasMadeAnyCorrectionProgress())
8543         return false;
8544       if (!State.Consumer->finished())
8545         return true;
8546       State.Consumer->resetCorrectionStream();
8547     }
8548     return false;
8549   }
8550 
8551   NamedDecl *getDeclFromExpr(Expr *E) {
8552     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8553       E = OverloadResolution[OE];
8554 
8555     if (!E)
8556       return nullptr;
8557     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8558       return DRE->getFoundDecl();
8559     if (auto *ME = dyn_cast<MemberExpr>(E))
8560       return ME->getFoundDecl();
8561     // FIXME: Add any other expr types that could be seen by the delayed typo
8562     // correction TreeTransform for which the corresponding TypoCorrection could
8563     // contain multiple decls.
8564     return nullptr;
8565   }
8566 
8567   ExprResult TryTransform(Expr *E) {
8568     Sema::SFINAETrap Trap(SemaRef);
8569     ExprResult Res = TransformExpr(E);
8570     if (Trap.hasErrorOccurred() || Res.isInvalid())
8571       return ExprError();
8572 
8573     return ExprFilter(Res.get());
8574   }
8575 
8576   // Since correcting typos may intoduce new TypoExprs, this function
8577   // checks for new TypoExprs and recurses if it finds any. Note that it will
8578   // only succeed if it is able to correct all typos in the given expression.
8579   ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8580     if (Res.isInvalid()) {
8581       return Res;
8582     }
8583     // Check to see if any new TypoExprs were created. If so, we need to recurse
8584     // to check their validity.
8585     Expr *FixedExpr = Res.get();
8586 
8587     auto SavedTypoExprs = std::move(TypoExprs);
8588     auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8589     TypoExprs.clear();
8590     AmbiguousTypoExprs.clear();
8591 
8592     FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8593     if (!TypoExprs.empty()) {
8594       // Recurse to handle newly created TypoExprs. If we're not able to
8595       // handle them, discard these TypoExprs.
8596       ExprResult RecurResult =
8597           RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8598       if (RecurResult.isInvalid()) {
8599         Res = ExprError();
8600         // Recursive corrections didn't work, wipe them away and don't add
8601         // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8602         // since we don't want to clear them twice. Note: it's possible the
8603         // TypoExprs were created recursively and thus won't be in our
8604         // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8605         auto &SemaTypoExprs = SemaRef.TypoExprs;
8606         for (auto *TE : TypoExprs) {
8607           TransformCache.erase(TE);
8608           SemaRef.clearDelayedTypo(TE);
8609 
8610           auto SI = find(SemaTypoExprs, TE);
8611           if (SI != SemaTypoExprs.end()) {
8612             SemaTypoExprs.erase(SI);
8613           }
8614         }
8615       } else {
8616         // TypoExpr is valid: add newly created TypoExprs since we were
8617         // able to correct them.
8618         Res = RecurResult;
8619         SavedTypoExprs.set_union(TypoExprs);
8620       }
8621     }
8622 
8623     TypoExprs = std::move(SavedTypoExprs);
8624     AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8625 
8626     return Res;
8627   }
8628 
8629   // Try to transform the given expression, looping through the correction
8630   // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8631   //
8632   // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8633   // true and this method immediately will return an `ExprError`.
8634   ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8635     ExprResult Res;
8636     auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8637     SemaRef.TypoExprs.clear();
8638 
8639     while (true) {
8640       Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8641 
8642       // Recursion encountered an ambiguous correction. This means that our
8643       // correction itself is ambiguous, so stop now.
8644       if (IsAmbiguous)
8645         break;
8646 
8647       // If the transform is still valid after checking for any new typos,
8648       // it's good to go.
8649       if (!Res.isInvalid())
8650         break;
8651 
8652       // The transform was invalid, see if we have any TypoExprs with untried
8653       // correction candidates.
8654       if (!CheckAndAdvanceTypoExprCorrectionStreams())
8655         break;
8656     }
8657 
8658     // If we found a valid result, double check to make sure it's not ambiguous.
8659     if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8660       auto SavedTransformCache =
8661           llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8662 
8663       // Ensure none of the TypoExprs have multiple typo correction candidates
8664       // with the same edit length that pass all the checks and filters.
8665       while (!AmbiguousTypoExprs.empty()) {
8666         auto TE  = AmbiguousTypoExprs.back();
8667 
8668         // TryTransform itself can create new Typos, adding them to the TypoExpr map
8669         // and invalidating our TypoExprState, so always fetch it instead of storing.
8670         SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8671 
8672         TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8673         TypoCorrection Next;
8674         do {
8675           // Fetch the next correction by erasing the typo from the cache and calling
8676           // `TryTransform` which will iterate through corrections in
8677           // `TransformTypoExpr`.
8678           TransformCache.erase(TE);
8679           ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8680 
8681           if (!AmbigRes.isInvalid() || IsAmbiguous) {
8682             SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8683             SavedTransformCache.erase(TE);
8684             Res = ExprError();
8685             IsAmbiguous = true;
8686             break;
8687           }
8688         } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8689                  Next.getEditDistance(false) == TC.getEditDistance(false));
8690 
8691         if (IsAmbiguous)
8692           break;
8693 
8694         AmbiguousTypoExprs.remove(TE);
8695         SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8696         TransformCache[TE] = SavedTransformCache[TE];
8697       }
8698       TransformCache = std::move(SavedTransformCache);
8699     }
8700 
8701     // Wipe away any newly created TypoExprs that we don't know about. Since we
8702     // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8703     // possible if a `TypoExpr` is created during a transformation but then
8704     // fails before we can discover it.
8705     auto &SemaTypoExprs = SemaRef.TypoExprs;
8706     for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8707       auto TE = *Iterator;
8708       auto FI = find(TypoExprs, TE);
8709       if (FI != TypoExprs.end()) {
8710         Iterator++;
8711         continue;
8712       }
8713       SemaRef.clearDelayedTypo(TE);
8714       Iterator = SemaTypoExprs.erase(Iterator);
8715     }
8716     SemaRef.TypoExprs = std::move(SavedTypoExprs);
8717 
8718     return Res;
8719   }
8720 
8721 public:
8722   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8723       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8724 
8725   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8726                                    MultiExprArg Args,
8727                                    SourceLocation RParenLoc,
8728                                    Expr *ExecConfig = nullptr) {
8729     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8730                                                  RParenLoc, ExecConfig);
8731     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8732       if (Result.isUsable()) {
8733         Expr *ResultCall = Result.get();
8734         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8735           ResultCall = BE->getSubExpr();
8736         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8737           OverloadResolution[OE] = CE->getCallee();
8738       }
8739     }
8740     return Result;
8741   }
8742 
8743   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8744 
8745   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8746 
8747   ExprResult Transform(Expr *E) {
8748     bool IsAmbiguous = false;
8749     ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8750 
8751     if (!Res.isUsable())
8752       FindTypoExprs(TypoExprs).TraverseStmt(E);
8753 
8754     EmitAllDiagnostics(IsAmbiguous);
8755 
8756     return Res;
8757   }
8758 
8759   ExprResult TransformTypoExpr(TypoExpr *E) {
8760     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8761     // cached transformation result if there is one and the TypoExpr isn't the
8762     // first one that was encountered.
8763     auto &CacheEntry = TransformCache[E];
8764     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8765       return CacheEntry;
8766     }
8767 
8768     auto &State = SemaRef.getTypoExprState(E);
8769     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
8770 
8771     // For the first TypoExpr and an uncached TypoExpr, find the next likely
8772     // typo correction and return it.
8773     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8774       if (InitDecl && TC.getFoundDecl() == InitDecl)
8775         continue;
8776       // FIXME: If we would typo-correct to an invalid declaration, it's
8777       // probably best to just suppress all errors from this typo correction.
8778       ExprResult NE = State.RecoveryHandler ?
8779           State.RecoveryHandler(SemaRef, E, TC) :
8780           attemptRecovery(SemaRef, *State.Consumer, TC);
8781       if (!NE.isInvalid()) {
8782         // Check whether there may be a second viable correction with the same
8783         // edit distance; if so, remember this TypoExpr may have an ambiguous
8784         // correction so it can be more thoroughly vetted later.
8785         TypoCorrection Next;
8786         if ((Next = State.Consumer->peekNextCorrection()) &&
8787             Next.getEditDistance(false) == TC.getEditDistance(false)) {
8788           AmbiguousTypoExprs.insert(E);
8789         } else {
8790           AmbiguousTypoExprs.remove(E);
8791         }
8792         assert(!NE.isUnset() &&
8793                "Typo was transformed into a valid-but-null ExprResult");
8794         return CacheEntry = NE;
8795       }
8796     }
8797     return CacheEntry = ExprError();
8798   }
8799 };
8800 }
8801 
8802 ExprResult
8803 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8804                                 bool RecoverUncorrectedTypos,
8805                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
8806   // If the current evaluation context indicates there are uncorrected typos
8807   // and the current expression isn't guaranteed to not have typos, try to
8808   // resolve any TypoExpr nodes that might be in the expression.
8809   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8810       (E->isTypeDependent() || E->isValueDependent() ||
8811        E->isInstantiationDependent())) {
8812     auto TyposResolved = DelayedTypos.size();
8813     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8814     TyposResolved -= DelayedTypos.size();
8815     if (Result.isInvalid() || Result.get() != E) {
8816       ExprEvalContexts.back().NumTypos -= TyposResolved;
8817       if (Result.isInvalid() && RecoverUncorrectedTypos) {
8818         struct TyposReplace : TreeTransform<TyposReplace> {
8819           TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8820           ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8821             return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8822                                                     E->getEndLoc(), {});
8823           }
8824         } TT(*this);
8825         return TT.TransformExpr(E);
8826       }
8827       return Result;
8828     }
8829     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
8830   }
8831   return E;
8832 }
8833 
8834 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8835                                      bool DiscardedValue, bool IsConstexpr,
8836                                      bool IsTemplateArgument) {
8837   ExprResult FullExpr = FE;
8838 
8839   if (!FullExpr.get())
8840     return ExprError();
8841 
8842   if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get()))
8843     return ExprError();
8844 
8845   if (DiscardedValue) {
8846     // Top-level expressions default to 'id' when we're in a debugger.
8847     if (getLangOpts().DebuggerCastResultToId &&
8848         FullExpr.get()->getType() == Context.UnknownAnyTy) {
8849       FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
8850       if (FullExpr.isInvalid())
8851         return ExprError();
8852     }
8853 
8854     FullExpr = CheckPlaceholderExpr(FullExpr.get());
8855     if (FullExpr.isInvalid())
8856       return ExprError();
8857 
8858     FullExpr = IgnoredValueConversions(FullExpr.get());
8859     if (FullExpr.isInvalid())
8860       return ExprError();
8861 
8862     DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
8863   }
8864 
8865   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
8866                                        /*RecoverUncorrectedTypos=*/true);
8867   if (FullExpr.isInvalid())
8868     return ExprError();
8869 
8870   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
8871 
8872   // At the end of this full expression (which could be a deeply nested
8873   // lambda), if there is a potential capture within the nested lambda,
8874   // have the outer capture-able lambda try and capture it.
8875   // Consider the following code:
8876   // void f(int, int);
8877   // void f(const int&, double);
8878   // void foo() {
8879   //  const int x = 10, y = 20;
8880   //  auto L = [=](auto a) {
8881   //      auto M = [=](auto b) {
8882   //         f(x, b); <-- requires x to be captured by L and M
8883   //         f(y, a); <-- requires y to be captured by L, but not all Ms
8884   //      };
8885   //   };
8886   // }
8887 
8888   // FIXME: Also consider what happens for something like this that involves
8889   // the gnu-extension statement-expressions or even lambda-init-captures:
8890   //   void f() {
8891   //     const int n = 0;
8892   //     auto L =  [&](auto a) {
8893   //       +n + ({ 0; a; });
8894   //     };
8895   //   }
8896   //
8897   // Here, we see +n, and then the full-expression 0; ends, so we don't
8898   // capture n (and instead remove it from our list of potential captures),
8899   // and then the full-expression +n + ({ 0; }); ends, but it's too late
8900   // for us to see that we need to capture n after all.
8901 
8902   LambdaScopeInfo *const CurrentLSI =
8903       getCurLambda(/*IgnoreCapturedRegions=*/true);
8904   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8905   // even if CurContext is not a lambda call operator. Refer to that Bug Report
8906   // for an example of the code that might cause this asynchrony.
8907   // By ensuring we are in the context of a lambda's call operator
8908   // we can fix the bug (we only need to check whether we need to capture
8909   // if we are within a lambda's body); but per the comments in that
8910   // PR, a proper fix would entail :
8911   //   "Alternative suggestion:
8912   //   - Add to Sema an integer holding the smallest (outermost) scope
8913   //     index that we are *lexically* within, and save/restore/set to
8914   //     FunctionScopes.size() in InstantiatingTemplate's
8915   //     constructor/destructor.
8916   //  - Teach the handful of places that iterate over FunctionScopes to
8917   //    stop at the outermost enclosing lexical scope."
8918   DeclContext *DC = CurContext;
8919   while (DC && isa<CapturedDecl>(DC))
8920     DC = DC->getParent();
8921   const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8922   if (IsInLambdaDeclContext && CurrentLSI &&
8923       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8924     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8925                                                               *this);
8926   return MaybeCreateExprWithCleanups(FullExpr);
8927 }
8928 
8929 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8930   if (!FullStmt) return StmtError();
8931 
8932   return MaybeCreateStmtWithCleanups(FullStmt);
8933 }
8934 
8935 Sema::IfExistsResult
8936 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8937                                    CXXScopeSpec &SS,
8938                                    const DeclarationNameInfo &TargetNameInfo) {
8939   DeclarationName TargetName = TargetNameInfo.getName();
8940   if (!TargetName)
8941     return IER_DoesNotExist;
8942 
8943   // If the name itself is dependent, then the result is dependent.
8944   if (TargetName.isDependentName())
8945     return IER_Dependent;
8946 
8947   // Do the redeclaration lookup in the current scope.
8948   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8949                  Sema::NotForRedeclaration);
8950   LookupParsedName(R, S, &SS);
8951   R.suppressDiagnostics();
8952 
8953   switch (R.getResultKind()) {
8954   case LookupResult::Found:
8955   case LookupResult::FoundOverloaded:
8956   case LookupResult::FoundUnresolvedValue:
8957   case LookupResult::Ambiguous:
8958     return IER_Exists;
8959 
8960   case LookupResult::NotFound:
8961     return IER_DoesNotExist;
8962 
8963   case LookupResult::NotFoundInCurrentInstantiation:
8964     return IER_Dependent;
8965   }
8966 
8967   llvm_unreachable("Invalid LookupResult Kind!");
8968 }
8969 
8970 Sema::IfExistsResult
8971 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8972                                    bool IsIfExists, CXXScopeSpec &SS,
8973                                    UnqualifiedId &Name) {
8974   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8975 
8976   // Check for an unexpanded parameter pack.
8977   auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8978   if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8979       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8980     return IER_Error;
8981 
8982   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8983 }
8984 
8985 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
8986   return BuildExprRequirement(E, /*IsSimple=*/true,
8987                               /*NoexceptLoc=*/SourceLocation(),
8988                               /*ReturnTypeRequirement=*/{});
8989 }
8990 
8991 concepts::Requirement *
8992 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
8993                            SourceLocation NameLoc, IdentifierInfo *TypeName,
8994                            TemplateIdAnnotation *TemplateId) {
8995   assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
8996          "Exactly one of TypeName and TemplateId must be specified.");
8997   TypeSourceInfo *TSI = nullptr;
8998   if (TypeName) {
8999     QualType T =
9000         CheckTypenameType(ElaboratedTypeKeyword::Typename, TypenameKWLoc,
9001                           SS.getWithLocInContext(Context), *TypeName, NameLoc,
9002                           &TSI, /*DeducedTSTContext=*/false);
9003     if (T.isNull())
9004       return nullptr;
9005   } else {
9006     ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
9007                                TemplateId->NumArgs);
9008     TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
9009                                      TemplateId->TemplateKWLoc,
9010                                      TemplateId->Template, TemplateId->Name,
9011                                      TemplateId->TemplateNameLoc,
9012                                      TemplateId->LAngleLoc, ArgsPtr,
9013                                      TemplateId->RAngleLoc);
9014     if (T.isInvalid())
9015       return nullptr;
9016     if (GetTypeFromParser(T.get(), &TSI).isNull())
9017       return nullptr;
9018   }
9019   return BuildTypeRequirement(TSI);
9020 }
9021 
9022 concepts::Requirement *
9023 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
9024   return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
9025                               /*ReturnTypeRequirement=*/{});
9026 }
9027 
9028 concepts::Requirement *
9029 Sema::ActOnCompoundRequirement(
9030     Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
9031     TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
9032   // C++2a [expr.prim.req.compound] p1.3.3
9033   //   [..] the expression is deduced against an invented function template
9034   //   F [...] F is a void function template with a single type template
9035   //   parameter T declared with the constrained-parameter. Form a new
9036   //   cv-qualifier-seq cv by taking the union of const and volatile specifiers
9037   //   around the constrained-parameter. F has a single parameter whose
9038   //   type-specifier is cv T followed by the abstract-declarator. [...]
9039   //
9040   // The cv part is done in the calling function - we get the concept with
9041   // arguments and the abstract declarator with the correct CV qualification and
9042   // have to synthesize T and the single parameter of F.
9043   auto &II = Context.Idents.get("expr-type");
9044   auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
9045                                               SourceLocation(),
9046                                               SourceLocation(), Depth,
9047                                               /*Index=*/0, &II,
9048                                               /*Typename=*/true,
9049                                               /*ParameterPack=*/false,
9050                                               /*HasTypeConstraint=*/true);
9051 
9052   if (BuildTypeConstraint(SS, TypeConstraint, TParam,
9053                           /*EllipsisLoc=*/SourceLocation(),
9054                           /*AllowUnexpandedPack=*/true))
9055     // Just produce a requirement with no type requirements.
9056     return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
9057 
9058   auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
9059                                             SourceLocation(),
9060                                             ArrayRef<NamedDecl *>(TParam),
9061                                             SourceLocation(),
9062                                             /*RequiresClause=*/nullptr);
9063   return BuildExprRequirement(
9064       E, /*IsSimple=*/false, NoexceptLoc,
9065       concepts::ExprRequirement::ReturnTypeRequirement(TPL));
9066 }
9067 
9068 concepts::ExprRequirement *
9069 Sema::BuildExprRequirement(
9070     Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
9071     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9072   auto Status = concepts::ExprRequirement::SS_Satisfied;
9073   ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
9074   if (E->isInstantiationDependent() || E->getType()->isPlaceholderType() ||
9075       ReturnTypeRequirement.isDependent())
9076     Status = concepts::ExprRequirement::SS_Dependent;
9077   else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
9078     Status = concepts::ExprRequirement::SS_NoexceptNotMet;
9079   else if (ReturnTypeRequirement.isSubstitutionFailure())
9080     Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
9081   else if (ReturnTypeRequirement.isTypeConstraint()) {
9082     // C++2a [expr.prim.req]p1.3.3
9083     //     The immediately-declared constraint ([temp]) of decltype((E)) shall
9084     //     be satisfied.
9085     TemplateParameterList *TPL =
9086         ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
9087     QualType MatchedType =
9088         Context.getReferenceQualifiedType(E).getCanonicalType();
9089     llvm::SmallVector<TemplateArgument, 1> Args;
9090     Args.push_back(TemplateArgument(MatchedType));
9091 
9092     auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0));
9093 
9094     TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
9095     MultiLevelTemplateArgumentList MLTAL(Param, TAL.asArray(),
9096                                          /*Final=*/false);
9097     MLTAL.addOuterRetainedLevels(TPL->getDepth());
9098     const TypeConstraint *TC = Param->getTypeConstraint();
9099     assert(TC && "Type Constraint cannot be null here");
9100     auto *IDC = TC->getImmediatelyDeclaredConstraint();
9101     assert(IDC && "ImmediatelyDeclaredConstraint can't be null here.");
9102     ExprResult Constraint = SubstExpr(IDC, MLTAL);
9103     if (Constraint.isInvalid()) {
9104       return new (Context) concepts::ExprRequirement(
9105           concepts::createSubstDiagAt(*this, IDC->getExprLoc(),
9106                                       [&](llvm::raw_ostream &OS) {
9107                                         IDC->printPretty(OS, /*Helper=*/nullptr,
9108                                                          getPrintingPolicy());
9109                                       }),
9110           IsSimple, NoexceptLoc, ReturnTypeRequirement);
9111     }
9112     SubstitutedConstraintExpr =
9113         cast<ConceptSpecializationExpr>(Constraint.get());
9114     if (!SubstitutedConstraintExpr->isSatisfied())
9115       Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
9116   }
9117   return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
9118                                                  ReturnTypeRequirement, Status,
9119                                                  SubstitutedConstraintExpr);
9120 }
9121 
9122 concepts::ExprRequirement *
9123 Sema::BuildExprRequirement(
9124     concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
9125     bool IsSimple, SourceLocation NoexceptLoc,
9126     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9127   return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
9128                                                  IsSimple, NoexceptLoc,
9129                                                  ReturnTypeRequirement);
9130 }
9131 
9132 concepts::TypeRequirement *
9133 Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
9134   return new (Context) concepts::TypeRequirement(Type);
9135 }
9136 
9137 concepts::TypeRequirement *
9138 Sema::BuildTypeRequirement(
9139     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
9140   return new (Context) concepts::TypeRequirement(SubstDiag);
9141 }
9142 
9143 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
9144   return BuildNestedRequirement(Constraint);
9145 }
9146 
9147 concepts::NestedRequirement *
9148 Sema::BuildNestedRequirement(Expr *Constraint) {
9149   ConstraintSatisfaction Satisfaction;
9150   if (!Constraint->isInstantiationDependent() &&
9151       CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
9152                                   Constraint->getSourceRange(), Satisfaction))
9153     return nullptr;
9154   return new (Context) concepts::NestedRequirement(Context, Constraint,
9155                                                    Satisfaction);
9156 }
9157 
9158 concepts::NestedRequirement *
9159 Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity,
9160                        const ASTConstraintSatisfaction &Satisfaction) {
9161   return new (Context) concepts::NestedRequirement(
9162       InvalidConstraintEntity,
9163       ASTConstraintSatisfaction::Rebuild(Context, Satisfaction));
9164 }
9165 
9166 RequiresExprBodyDecl *
9167 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
9168                              ArrayRef<ParmVarDecl *> LocalParameters,
9169                              Scope *BodyScope) {
9170   assert(BodyScope);
9171 
9172   RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
9173                                                             RequiresKWLoc);
9174 
9175   PushDeclContext(BodyScope, Body);
9176 
9177   for (ParmVarDecl *Param : LocalParameters) {
9178     if (Param->hasDefaultArg())
9179       // C++2a [expr.prim.req] p4
9180       //     [...] A local parameter of a requires-expression shall not have a
9181       //     default argument. [...]
9182       Diag(Param->getDefaultArgRange().getBegin(),
9183            diag::err_requires_expr_local_parameter_default_argument);
9184     // Ignore default argument and move on
9185 
9186     Param->setDeclContext(Body);
9187     // If this has an identifier, add it to the scope stack.
9188     if (Param->getIdentifier()) {
9189       CheckShadow(BodyScope, Param);
9190       PushOnScopeChains(Param, BodyScope);
9191     }
9192   }
9193   return Body;
9194 }
9195 
9196 void Sema::ActOnFinishRequiresExpr() {
9197   assert(CurContext && "DeclContext imbalance!");
9198   CurContext = CurContext->getLexicalParent();
9199   assert(CurContext && "Popped translation unit!");
9200 }
9201 
9202 ExprResult Sema::ActOnRequiresExpr(
9203     SourceLocation RequiresKWLoc, RequiresExprBodyDecl *Body,
9204     SourceLocation LParenLoc, ArrayRef<ParmVarDecl *> LocalParameters,
9205     SourceLocation RParenLoc, ArrayRef<concepts::Requirement *> Requirements,
9206     SourceLocation ClosingBraceLoc) {
9207   auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LParenLoc,
9208                                   LocalParameters, RParenLoc, Requirements,
9209                                   ClosingBraceLoc);
9210   if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
9211     return ExprError();
9212   return RE;
9213 }
9214