1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Implements semantic analysis for C++ expressions. 11 /// 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/Template.h" 15 #include "clang/Sema/SemaInternal.h" 16 #include "TreeTransform.h" 17 #include "TypeLocBuilder.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/ASTLambda.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/ExprCXX.h" 24 #include "clang/AST/ExprObjC.h" 25 #include "clang/AST/RecursiveASTVisitor.h" 26 #include "clang/AST/TypeLoc.h" 27 #include "clang/Basic/AlignedAllocation.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Sema/DeclSpec.h" 32 #include "clang/Sema/Initialization.h" 33 #include "clang/Sema/Lookup.h" 34 #include "clang/Sema/ParsedTemplate.h" 35 #include "clang/Sema/Scope.h" 36 #include "clang/Sema/ScopeInfo.h" 37 #include "clang/Sema/SemaLambda.h" 38 #include "clang/Sema/TemplateDeduction.h" 39 #include "llvm/ADT/APInt.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include "llvm/Support/ErrorHandling.h" 42 using namespace clang; 43 using namespace sema; 44 45 /// Handle the result of the special case name lookup for inheriting 46 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as 47 /// constructor names in member using declarations, even if 'X' is not the 48 /// name of the corresponding type. 49 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, 50 SourceLocation NameLoc, 51 IdentifierInfo &Name) { 52 NestedNameSpecifier *NNS = SS.getScopeRep(); 53 54 // Convert the nested-name-specifier into a type. 55 QualType Type; 56 switch (NNS->getKind()) { 57 case NestedNameSpecifier::TypeSpec: 58 case NestedNameSpecifier::TypeSpecWithTemplate: 59 Type = QualType(NNS->getAsType(), 0); 60 break; 61 62 case NestedNameSpecifier::Identifier: 63 // Strip off the last layer of the nested-name-specifier and build a 64 // typename type for it. 65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); 66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(), 67 NNS->getAsIdentifier()); 68 break; 69 70 case NestedNameSpecifier::Global: 71 case NestedNameSpecifier::Super: 72 case NestedNameSpecifier::Namespace: 73 case NestedNameSpecifier::NamespaceAlias: 74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); 75 } 76 77 // This reference to the type is located entirely at the location of the 78 // final identifier in the qualified-id. 79 return CreateParsedType(Type, 80 Context.getTrivialTypeSourceInfo(Type, NameLoc)); 81 } 82 83 ParsedType Sema::getConstructorName(IdentifierInfo &II, 84 SourceLocation NameLoc, 85 Scope *S, CXXScopeSpec &SS, 86 bool EnteringContext) { 87 CXXRecordDecl *CurClass = getCurrentClass(S, &SS); 88 assert(CurClass && &II == CurClass->getIdentifier() && 89 "not a constructor name"); 90 91 // When naming a constructor as a member of a dependent context (eg, in a 92 // friend declaration or an inherited constructor declaration), form an 93 // unresolved "typename" type. 94 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) { 95 QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II); 96 return ParsedType::make(T); 97 } 98 99 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass)) 100 return ParsedType(); 101 102 // Find the injected-class-name declaration. Note that we make no attempt to 103 // diagnose cases where the injected-class-name is shadowed: the only 104 // declaration that can validly shadow the injected-class-name is a 105 // non-static data member, and if the class contains both a non-static data 106 // member and a constructor then it is ill-formed (we check that in 107 // CheckCompletedCXXClass). 108 CXXRecordDecl *InjectedClassName = nullptr; 109 for (NamedDecl *ND : CurClass->lookup(&II)) { 110 auto *RD = dyn_cast<CXXRecordDecl>(ND); 111 if (RD && RD->isInjectedClassName()) { 112 InjectedClassName = RD; 113 break; 114 } 115 } 116 if (!InjectedClassName) { 117 if (!CurClass->isInvalidDecl()) { 118 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts 119 // properly. Work around it here for now. 120 Diag(SS.getLastQualifierNameLoc(), 121 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange(); 122 } 123 return ParsedType(); 124 } 125 126 QualType T = Context.getTypeDeclType(InjectedClassName); 127 DiagnoseUseOfDecl(InjectedClassName, NameLoc); 128 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false); 129 130 return ParsedType::make(T); 131 } 132 133 ParsedType Sema::getDestructorName(SourceLocation TildeLoc, 134 IdentifierInfo &II, 135 SourceLocation NameLoc, 136 Scope *S, CXXScopeSpec &SS, 137 ParsedType ObjectTypePtr, 138 bool EnteringContext) { 139 // Determine where to perform name lookup. 140 141 // FIXME: This area of the standard is very messy, and the current 142 // wording is rather unclear about which scopes we search for the 143 // destructor name; see core issues 399 and 555. Issue 399 in 144 // particular shows where the current description of destructor name 145 // lookup is completely out of line with existing practice, e.g., 146 // this appears to be ill-formed: 147 // 148 // namespace N { 149 // template <typename T> struct S { 150 // ~S(); 151 // }; 152 // } 153 // 154 // void f(N::S<int>* s) { 155 // s->N::S<int>::~S(); 156 // } 157 // 158 // See also PR6358 and PR6359. 159 // 160 // For now, we accept all the cases in which the name given could plausibly 161 // be interpreted as a correct destructor name, issuing off-by-default 162 // extension diagnostics on the cases that don't strictly conform to the 163 // C++20 rules. This basically means we always consider looking in the 164 // nested-name-specifier prefix, the complete nested-name-specifier, and 165 // the scope, and accept if we find the expected type in any of the three 166 // places. 167 168 if (SS.isInvalid()) 169 return nullptr; 170 171 // Whether we've failed with a diagnostic already. 172 bool Failed = false; 173 174 llvm::SmallVector<NamedDecl*, 8> FoundDecls; 175 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet; 176 177 // If we have an object type, it's because we are in a 178 // pseudo-destructor-expression or a member access expression, and 179 // we know what type we're looking for. 180 QualType SearchType = 181 ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType(); 182 183 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType { 184 auto IsAcceptableResult = [&](NamedDecl *D) -> bool { 185 auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl()); 186 if (!Type) 187 return false; 188 189 if (SearchType.isNull() || SearchType->isDependentType()) 190 return true; 191 192 QualType T = Context.getTypeDeclType(Type); 193 return Context.hasSameUnqualifiedType(T, SearchType); 194 }; 195 196 unsigned NumAcceptableResults = 0; 197 for (NamedDecl *D : Found) { 198 if (IsAcceptableResult(D)) 199 ++NumAcceptableResults; 200 201 // Don't list a class twice in the lookup failure diagnostic if it's 202 // found by both its injected-class-name and by the name in the enclosing 203 // scope. 204 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) 205 if (RD->isInjectedClassName()) 206 D = cast<NamedDecl>(RD->getParent()); 207 208 if (FoundDeclSet.insert(D).second) 209 FoundDecls.push_back(D); 210 } 211 212 // As an extension, attempt to "fix" an ambiguity by erasing all non-type 213 // results, and all non-matching results if we have a search type. It's not 214 // clear what the right behavior is if destructor lookup hits an ambiguity, 215 // but other compilers do generally accept at least some kinds of 216 // ambiguity. 217 if (Found.isAmbiguous() && NumAcceptableResults == 1) { 218 Diag(NameLoc, diag::ext_dtor_name_ambiguous); 219 LookupResult::Filter F = Found.makeFilter(); 220 while (F.hasNext()) { 221 NamedDecl *D = F.next(); 222 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) 223 Diag(D->getLocation(), diag::note_destructor_type_here) 224 << Context.getTypeDeclType(TD); 225 else 226 Diag(D->getLocation(), diag::note_destructor_nontype_here); 227 228 if (!IsAcceptableResult(D)) 229 F.erase(); 230 } 231 F.done(); 232 } 233 234 if (Found.isAmbiguous()) 235 Failed = true; 236 237 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { 238 if (IsAcceptableResult(Type)) { 239 QualType T = Context.getTypeDeclType(Type); 240 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 241 return CreateParsedType(T, 242 Context.getTrivialTypeSourceInfo(T, NameLoc)); 243 } 244 } 245 246 return nullptr; 247 }; 248 249 bool IsDependent = false; 250 251 auto LookupInObjectType = [&]() -> ParsedType { 252 if (Failed || SearchType.isNull()) 253 return nullptr; 254 255 IsDependent |= SearchType->isDependentType(); 256 257 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 258 DeclContext *LookupCtx = computeDeclContext(SearchType); 259 if (!LookupCtx) 260 return nullptr; 261 LookupQualifiedName(Found, LookupCtx); 262 return CheckLookupResult(Found); 263 }; 264 265 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType { 266 if (Failed) 267 return nullptr; 268 269 IsDependent |= isDependentScopeSpecifier(LookupSS); 270 DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext); 271 if (!LookupCtx) 272 return nullptr; 273 274 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 275 if (RequireCompleteDeclContext(LookupSS, LookupCtx)) { 276 Failed = true; 277 return nullptr; 278 } 279 LookupQualifiedName(Found, LookupCtx); 280 return CheckLookupResult(Found); 281 }; 282 283 auto LookupInScope = [&]() -> ParsedType { 284 if (Failed || !S) 285 return nullptr; 286 287 LookupResult Found(*this, &II, NameLoc, LookupDestructorName); 288 LookupName(Found, S); 289 return CheckLookupResult(Found); 290 }; 291 292 // C++2a [basic.lookup.qual]p6: 293 // In a qualified-id of the form 294 // 295 // nested-name-specifier[opt] type-name :: ~ type-name 296 // 297 // the second type-name is looked up in the same scope as the first. 298 // 299 // We interpret this as meaning that if you do a dual-scope lookup for the 300 // first name, you also do a dual-scope lookup for the second name, per 301 // C++ [basic.lookup.classref]p4: 302 // 303 // If the id-expression in a class member access is a qualified-id of the 304 // form 305 // 306 // class-name-or-namespace-name :: ... 307 // 308 // the class-name-or-namespace-name following the . or -> is first looked 309 // up in the class of the object expression and the name, if found, is used. 310 // Otherwise, it is looked up in the context of the entire 311 // postfix-expression. 312 // 313 // This looks in the same scopes as for an unqualified destructor name: 314 // 315 // C++ [basic.lookup.classref]p3: 316 // If the unqualified-id is ~ type-name, the type-name is looked up 317 // in the context of the entire postfix-expression. If the type T 318 // of the object expression is of a class type C, the type-name is 319 // also looked up in the scope of class C. At least one of the 320 // lookups shall find a name that refers to cv T. 321 // 322 // FIXME: The intent is unclear here. Should type-name::~type-name look in 323 // the scope anyway if it finds a non-matching name declared in the class? 324 // If both lookups succeed and find a dependent result, which result should 325 // we retain? (Same question for p->~type-name().) 326 327 if (NestedNameSpecifier *Prefix = 328 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) { 329 // This is 330 // 331 // nested-name-specifier type-name :: ~ type-name 332 // 333 // Look for the second type-name in the nested-name-specifier. 334 CXXScopeSpec PrefixSS; 335 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); 336 if (ParsedType T = LookupInNestedNameSpec(PrefixSS)) 337 return T; 338 } else { 339 // This is one of 340 // 341 // type-name :: ~ type-name 342 // ~ type-name 343 // 344 // Look in the scope and (if any) the object type. 345 if (ParsedType T = LookupInScope()) 346 return T; 347 if (ParsedType T = LookupInObjectType()) 348 return T; 349 } 350 351 if (Failed) 352 return nullptr; 353 354 if (IsDependent) { 355 // We didn't find our type, but that's OK: it's dependent anyway. 356 357 // FIXME: What if we have no nested-name-specifier? 358 QualType T = CheckTypenameType(ETK_None, SourceLocation(), 359 SS.getWithLocInContext(Context), 360 II, NameLoc); 361 return ParsedType::make(T); 362 } 363 364 // The remaining cases are all non-standard extensions imitating the behavior 365 // of various other compilers. 366 unsigned NumNonExtensionDecls = FoundDecls.size(); 367 368 if (SS.isSet()) { 369 // For compatibility with older broken C++ rules and existing code, 370 // 371 // nested-name-specifier :: ~ type-name 372 // 373 // also looks for type-name within the nested-name-specifier. 374 if (ParsedType T = LookupInNestedNameSpec(SS)) { 375 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope) 376 << SS.getRange() 377 << FixItHint::CreateInsertion(SS.getEndLoc(), 378 ("::" + II.getName()).str()); 379 return T; 380 } 381 382 // For compatibility with other compilers and older versions of Clang, 383 // 384 // nested-name-specifier type-name :: ~ type-name 385 // 386 // also looks for type-name in the scope. Unfortunately, we can't 387 // reasonably apply this fallback for dependent nested-name-specifiers. 388 if (SS.getScopeRep()->getPrefix()) { 389 if (ParsedType T = LookupInScope()) { 390 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope) 391 << FixItHint::CreateRemoval(SS.getRange()); 392 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here) 393 << GetTypeFromParser(T); 394 return T; 395 } 396 } 397 } 398 399 // We didn't find anything matching; tell the user what we did find (if 400 // anything). 401 402 // Don't tell the user about declarations we shouldn't have found. 403 FoundDecls.resize(NumNonExtensionDecls); 404 405 // List types before non-types. 406 std::stable_sort(FoundDecls.begin(), FoundDecls.end(), 407 [](NamedDecl *A, NamedDecl *B) { 408 return isa<TypeDecl>(A->getUnderlyingDecl()) > 409 isa<TypeDecl>(B->getUnderlyingDecl()); 410 }); 411 412 // Suggest a fixit to properly name the destroyed type. 413 auto MakeFixItHint = [&]{ 414 const CXXRecordDecl *Destroyed = nullptr; 415 // FIXME: If we have a scope specifier, suggest its last component? 416 if (!SearchType.isNull()) 417 Destroyed = SearchType->getAsCXXRecordDecl(); 418 else if (S) 419 Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity()); 420 if (Destroyed) 421 return FixItHint::CreateReplacement(SourceRange(NameLoc), 422 Destroyed->getNameAsString()); 423 return FixItHint(); 424 }; 425 426 if (FoundDecls.empty()) { 427 // FIXME: Attempt typo-correction? 428 Diag(NameLoc, diag::err_undeclared_destructor_name) 429 << &II << MakeFixItHint(); 430 } else if (!SearchType.isNull() && FoundDecls.size() == 1) { 431 if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) { 432 assert(!SearchType.isNull() && 433 "should only reject a type result if we have a search type"); 434 QualType T = Context.getTypeDeclType(TD); 435 Diag(NameLoc, diag::err_destructor_expr_type_mismatch) 436 << T << SearchType << MakeFixItHint(); 437 } else { 438 Diag(NameLoc, diag::err_destructor_expr_nontype) 439 << &II << MakeFixItHint(); 440 } 441 } else { 442 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype 443 : diag::err_destructor_expr_mismatch) 444 << &II << SearchType << MakeFixItHint(); 445 } 446 447 for (NamedDecl *FoundD : FoundDecls) { 448 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl())) 449 Diag(FoundD->getLocation(), diag::note_destructor_type_here) 450 << Context.getTypeDeclType(TD); 451 else 452 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here) 453 << FoundD; 454 } 455 456 return nullptr; 457 } 458 459 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS, 460 ParsedType ObjectType) { 461 if (DS.getTypeSpecType() == DeclSpec::TST_error) 462 return nullptr; 463 464 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 465 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 466 return nullptr; 467 } 468 469 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype && 470 "unexpected type in getDestructorType"); 471 QualType T = BuildDecltypeType(DS.getRepAsExpr()); 472 473 // If we know the type of the object, check that the correct destructor 474 // type was named now; we can give better diagnostics this way. 475 QualType SearchType = GetTypeFromParser(ObjectType); 476 if (!SearchType.isNull() && !SearchType->isDependentType() && 477 !Context.hasSameUnqualifiedType(T, SearchType)) { 478 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) 479 << T << SearchType; 480 return nullptr; 481 } 482 483 return ParsedType::make(T); 484 } 485 486 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, 487 const UnqualifiedId &Name, bool IsUDSuffix) { 488 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId); 489 if (!IsUDSuffix) { 490 // [over.literal] p8 491 // 492 // double operator""_Bq(long double); // OK: not a reserved identifier 493 // double operator"" _Bq(long double); // ill-formed, no diagnostic required 494 IdentifierInfo *II = Name.Identifier; 495 ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts()); 496 SourceLocation Loc = Name.getEndLoc(); 497 if (isReservedInAllContexts(Status) && 498 !PP.getSourceManager().isInSystemHeader(Loc)) { 499 Diag(Loc, diag::warn_reserved_extern_symbol) 500 << II << static_cast<int>(Status) 501 << FixItHint::CreateReplacement( 502 Name.getSourceRange(), 503 (StringRef("operator\"\"") + II->getName()).str()); 504 } 505 } 506 507 if (!SS.isValid()) 508 return false; 509 510 switch (SS.getScopeRep()->getKind()) { 511 case NestedNameSpecifier::Identifier: 512 case NestedNameSpecifier::TypeSpec: 513 case NestedNameSpecifier::TypeSpecWithTemplate: 514 // Per C++11 [over.literal]p2, literal operators can only be declared at 515 // namespace scope. Therefore, this unqualified-id cannot name anything. 516 // Reject it early, because we have no AST representation for this in the 517 // case where the scope is dependent. 518 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace) 519 << SS.getScopeRep(); 520 return true; 521 522 case NestedNameSpecifier::Global: 523 case NestedNameSpecifier::Super: 524 case NestedNameSpecifier::Namespace: 525 case NestedNameSpecifier::NamespaceAlias: 526 return false; 527 } 528 529 llvm_unreachable("unknown nested name specifier kind"); 530 } 531 532 /// Build a C++ typeid expression with a type operand. 533 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 534 SourceLocation TypeidLoc, 535 TypeSourceInfo *Operand, 536 SourceLocation RParenLoc) { 537 // C++ [expr.typeid]p4: 538 // The top-level cv-qualifiers of the lvalue expression or the type-id 539 // that is the operand of typeid are always ignored. 540 // If the type of the type-id is a class type or a reference to a class 541 // type, the class shall be completely-defined. 542 Qualifiers Quals; 543 QualType T 544 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), 545 Quals); 546 if (T->getAs<RecordType>() && 547 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 548 return ExprError(); 549 550 if (T->isVariablyModifiedType()) 551 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); 552 553 if (CheckQualifiedFunctionForTypeId(T, TypeidLoc)) 554 return ExprError(); 555 556 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, 557 SourceRange(TypeidLoc, RParenLoc)); 558 } 559 560 /// Build a C++ typeid expression with an expression operand. 561 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 562 SourceLocation TypeidLoc, 563 Expr *E, 564 SourceLocation RParenLoc) { 565 bool WasEvaluated = false; 566 if (E && !E->isTypeDependent()) { 567 if (E->getType()->isPlaceholderType()) { 568 ExprResult result = CheckPlaceholderExpr(E); 569 if (result.isInvalid()) return ExprError(); 570 E = result.get(); 571 } 572 573 QualType T = E->getType(); 574 if (const RecordType *RecordT = T->getAs<RecordType>()) { 575 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); 576 // C++ [expr.typeid]p3: 577 // [...] If the type of the expression is a class type, the class 578 // shall be completely-defined. 579 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 580 return ExprError(); 581 582 // C++ [expr.typeid]p3: 583 // When typeid is applied to an expression other than an glvalue of a 584 // polymorphic class type [...] [the] expression is an unevaluated 585 // operand. [...] 586 if (RecordD->isPolymorphic() && E->isGLValue()) { 587 if (isUnevaluatedContext()) { 588 // The operand was processed in unevaluated context, switch the 589 // context and recheck the subexpression. 590 ExprResult Result = TransformToPotentiallyEvaluated(E); 591 if (Result.isInvalid()) 592 return ExprError(); 593 E = Result.get(); 594 } 595 596 // We require a vtable to query the type at run time. 597 MarkVTableUsed(TypeidLoc, RecordD); 598 WasEvaluated = true; 599 } 600 } 601 602 ExprResult Result = CheckUnevaluatedOperand(E); 603 if (Result.isInvalid()) 604 return ExprError(); 605 E = Result.get(); 606 607 // C++ [expr.typeid]p4: 608 // [...] If the type of the type-id is a reference to a possibly 609 // cv-qualified type, the result of the typeid expression refers to a 610 // std::type_info object representing the cv-unqualified referenced 611 // type. 612 Qualifiers Quals; 613 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); 614 if (!Context.hasSameType(T, UnqualT)) { 615 T = UnqualT; 616 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); 617 } 618 } 619 620 if (E->getType()->isVariablyModifiedType()) 621 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) 622 << E->getType()); 623 else if (!inTemplateInstantiation() && 624 E->HasSideEffects(Context, WasEvaluated)) { 625 // The expression operand for typeid is in an unevaluated expression 626 // context, so side effects could result in unintended consequences. 627 Diag(E->getExprLoc(), WasEvaluated 628 ? diag::warn_side_effects_typeid 629 : diag::warn_side_effects_unevaluated_context); 630 } 631 632 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, 633 SourceRange(TypeidLoc, RParenLoc)); 634 } 635 636 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); 637 ExprResult 638 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, 639 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 640 // typeid is not supported in OpenCL. 641 if (getLangOpts().OpenCLCPlusPlus) { 642 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) 643 << "typeid"); 644 } 645 646 // Find the std::type_info type. 647 if (!getStdNamespace()) 648 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 649 650 if (!CXXTypeInfoDecl) { 651 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); 652 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); 653 LookupQualifiedName(R, getStdNamespace()); 654 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 655 // Microsoft's typeinfo doesn't have type_info in std but in the global 656 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. 657 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { 658 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 659 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 660 } 661 if (!CXXTypeInfoDecl) 662 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 663 } 664 665 if (!getLangOpts().RTTI) { 666 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); 667 } 668 669 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); 670 671 if (isType) { 672 // The operand is a type; handle it as such. 673 TypeSourceInfo *TInfo = nullptr; 674 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 675 &TInfo); 676 if (T.isNull()) 677 return ExprError(); 678 679 if (!TInfo) 680 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 681 682 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); 683 } 684 685 // The operand is an expression. 686 ExprResult Result = 687 BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc); 688 689 if (!getLangOpts().RTTIData && !Result.isInvalid()) 690 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get())) 691 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context)) 692 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled) 693 << (getDiagnostics().getDiagnosticOptions().getFormat() == 694 DiagnosticOptions::MSVC); 695 return Result; 696 } 697 698 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to 699 /// a single GUID. 700 static void 701 getUuidAttrOfType(Sema &SemaRef, QualType QT, 702 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) { 703 // Optionally remove one level of pointer, reference or array indirection. 704 const Type *Ty = QT.getTypePtr(); 705 if (QT->isPointerType() || QT->isReferenceType()) 706 Ty = QT->getPointeeType().getTypePtr(); 707 else if (QT->isArrayType()) 708 Ty = Ty->getBaseElementTypeUnsafe(); 709 710 const auto *TD = Ty->getAsTagDecl(); 711 if (!TD) 712 return; 713 714 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) { 715 UuidAttrs.insert(Uuid); 716 return; 717 } 718 719 // __uuidof can grab UUIDs from template arguments. 720 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) { 721 const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); 722 for (const TemplateArgument &TA : TAL.asArray()) { 723 const UuidAttr *UuidForTA = nullptr; 724 if (TA.getKind() == TemplateArgument::Type) 725 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs); 726 else if (TA.getKind() == TemplateArgument::Declaration) 727 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs); 728 729 if (UuidForTA) 730 UuidAttrs.insert(UuidForTA); 731 } 732 } 733 } 734 735 /// Build a Microsoft __uuidof expression with a type operand. 736 ExprResult Sema::BuildCXXUuidof(QualType Type, 737 SourceLocation TypeidLoc, 738 TypeSourceInfo *Operand, 739 SourceLocation RParenLoc) { 740 MSGuidDecl *Guid = nullptr; 741 if (!Operand->getType()->isDependentType()) { 742 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 743 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs); 744 if (UuidAttrs.empty()) 745 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 746 if (UuidAttrs.size() > 1) 747 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 748 Guid = UuidAttrs.back()->getGuidDecl(); 749 } 750 751 return new (Context) 752 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc)); 753 } 754 755 /// Build a Microsoft __uuidof expression with an expression operand. 756 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc, 757 Expr *E, SourceLocation RParenLoc) { 758 MSGuidDecl *Guid = nullptr; 759 if (!E->getType()->isDependentType()) { 760 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 761 // A null pointer results in {00000000-0000-0000-0000-000000000000}. 762 Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{}); 763 } else { 764 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; 765 getUuidAttrOfType(*this, E->getType(), UuidAttrs); 766 if (UuidAttrs.empty()) 767 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 768 if (UuidAttrs.size() > 1) 769 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 770 Guid = UuidAttrs.back()->getGuidDecl(); 771 } 772 } 773 774 return new (Context) 775 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc)); 776 } 777 778 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); 779 ExprResult 780 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, 781 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 782 QualType GuidType = Context.getMSGuidType(); 783 GuidType.addConst(); 784 785 if (isType) { 786 // The operand is a type; handle it as such. 787 TypeSourceInfo *TInfo = nullptr; 788 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 789 &TInfo); 790 if (T.isNull()) 791 return ExprError(); 792 793 if (!TInfo) 794 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 795 796 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); 797 } 798 799 // The operand is an expression. 800 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 801 } 802 803 /// ActOnCXXBoolLiteral - Parse {true,false} literals. 804 ExprResult 805 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { 806 assert((Kind == tok::kw_true || Kind == tok::kw_false) && 807 "Unknown C++ Boolean value!"); 808 return new (Context) 809 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); 810 } 811 812 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. 813 ExprResult 814 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { 815 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 816 } 817 818 /// ActOnCXXThrow - Parse throw expressions. 819 ExprResult 820 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { 821 bool IsThrownVarInScope = false; 822 if (Ex) { 823 // C++0x [class.copymove]p31: 824 // When certain criteria are met, an implementation is allowed to omit the 825 // copy/move construction of a class object [...] 826 // 827 // - in a throw-expression, when the operand is the name of a 828 // non-volatile automatic object (other than a function or catch- 829 // clause parameter) whose scope does not extend beyond the end of the 830 // innermost enclosing try-block (if there is one), the copy/move 831 // operation from the operand to the exception object (15.1) can be 832 // omitted by constructing the automatic object directly into the 833 // exception object 834 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) 835 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 836 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { 837 for( ; S; S = S->getParent()) { 838 if (S->isDeclScope(Var)) { 839 IsThrownVarInScope = true; 840 break; 841 } 842 843 if (S->getFlags() & 844 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | 845 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope | 846 Scope::TryScope)) 847 break; 848 } 849 } 850 } 851 } 852 853 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); 854 } 855 856 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 857 bool IsThrownVarInScope) { 858 // Don't report an error if 'throw' is used in system headers. 859 if (!getLangOpts().CXXExceptions && 860 !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) { 861 // Delay error emission for the OpenMP device code. 862 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw"; 863 } 864 865 // Exceptions aren't allowed in CUDA device code. 866 if (getLangOpts().CUDA) 867 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions) 868 << "throw" << CurrentCUDATarget(); 869 870 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 871 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; 872 873 if (Ex && !Ex->isTypeDependent()) { 874 // Initialize the exception result. This implicitly weeds out 875 // abstract types or types with inaccessible copy constructors. 876 877 // C++0x [class.copymove]p31: 878 // When certain criteria are met, an implementation is allowed to omit the 879 // copy/move construction of a class object [...] 880 // 881 // - in a throw-expression, when the operand is the name of a 882 // non-volatile automatic object (other than a function or 883 // catch-clause 884 // parameter) whose scope does not extend beyond the end of the 885 // innermost enclosing try-block (if there is one), the copy/move 886 // operation from the operand to the exception object (15.1) can be 887 // omitted by constructing the automatic object directly into the 888 // exception object 889 NamedReturnInfo NRInfo = 890 IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo(); 891 892 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); 893 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) 894 return ExprError(); 895 896 InitializedEntity Entity = 897 InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy); 898 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex); 899 if (Res.isInvalid()) 900 return ExprError(); 901 Ex = Res.get(); 902 } 903 904 // PPC MMA non-pointer types are not allowed as throw expr types. 905 if (Ex && Context.getTargetInfo().getTriple().isPPC64()) 906 CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc()); 907 908 return new (Context) 909 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); 910 } 911 912 static void 913 collectPublicBases(CXXRecordDecl *RD, 914 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, 915 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, 916 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, 917 bool ParentIsPublic) { 918 for (const CXXBaseSpecifier &BS : RD->bases()) { 919 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 920 bool NewSubobject; 921 // Virtual bases constitute the same subobject. Non-virtual bases are 922 // always distinct subobjects. 923 if (BS.isVirtual()) 924 NewSubobject = VBases.insert(BaseDecl).second; 925 else 926 NewSubobject = true; 927 928 if (NewSubobject) 929 ++SubobjectsSeen[BaseDecl]; 930 931 // Only add subobjects which have public access throughout the entire chain. 932 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; 933 if (PublicPath) 934 PublicSubobjectsSeen.insert(BaseDecl); 935 936 // Recurse on to each base subobject. 937 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, 938 PublicPath); 939 } 940 } 941 942 static void getUnambiguousPublicSubobjects( 943 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { 944 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; 945 llvm::SmallSet<CXXRecordDecl *, 2> VBases; 946 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; 947 SubobjectsSeen[RD] = 1; 948 PublicSubobjectsSeen.insert(RD); 949 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, 950 /*ParentIsPublic=*/true); 951 952 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { 953 // Skip ambiguous objects. 954 if (SubobjectsSeen[PublicSubobject] > 1) 955 continue; 956 957 Objects.push_back(PublicSubobject); 958 } 959 } 960 961 /// CheckCXXThrowOperand - Validate the operand of a throw. 962 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, 963 QualType ExceptionObjectTy, Expr *E) { 964 // If the type of the exception would be an incomplete type or a pointer 965 // to an incomplete type other than (cv) void the program is ill-formed. 966 QualType Ty = ExceptionObjectTy; 967 bool isPointer = false; 968 if (const PointerType* Ptr = Ty->getAs<PointerType>()) { 969 Ty = Ptr->getPointeeType(); 970 isPointer = true; 971 } 972 if (!isPointer || !Ty->isVoidType()) { 973 if (RequireCompleteType(ThrowLoc, Ty, 974 isPointer ? diag::err_throw_incomplete_ptr 975 : diag::err_throw_incomplete, 976 E->getSourceRange())) 977 return true; 978 979 if (!isPointer && Ty->isSizelessType()) { 980 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange(); 981 return true; 982 } 983 984 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, 985 diag::err_throw_abstract_type, E)) 986 return true; 987 } 988 989 // If the exception has class type, we need additional handling. 990 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 991 if (!RD) 992 return false; 993 994 // If we are throwing a polymorphic class type or pointer thereof, 995 // exception handling will make use of the vtable. 996 MarkVTableUsed(ThrowLoc, RD); 997 998 // If a pointer is thrown, the referenced object will not be destroyed. 999 if (isPointer) 1000 return false; 1001 1002 // If the class has a destructor, we must be able to call it. 1003 if (!RD->hasIrrelevantDestructor()) { 1004 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 1005 MarkFunctionReferenced(E->getExprLoc(), Destructor); 1006 CheckDestructorAccess(E->getExprLoc(), Destructor, 1007 PDiag(diag::err_access_dtor_exception) << Ty); 1008 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 1009 return true; 1010 } 1011 } 1012 1013 // The MSVC ABI creates a list of all types which can catch the exception 1014 // object. This list also references the appropriate copy constructor to call 1015 // if the object is caught by value and has a non-trivial copy constructor. 1016 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1017 // We are only interested in the public, unambiguous bases contained within 1018 // the exception object. Bases which are ambiguous or otherwise 1019 // inaccessible are not catchable types. 1020 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; 1021 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); 1022 1023 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { 1024 // Attempt to lookup the copy constructor. Various pieces of machinery 1025 // will spring into action, like template instantiation, which means this 1026 // cannot be a simple walk of the class's decls. Instead, we must perform 1027 // lookup and overload resolution. 1028 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); 1029 if (!CD || CD->isDeleted()) 1030 continue; 1031 1032 // Mark the constructor referenced as it is used by this throw expression. 1033 MarkFunctionReferenced(E->getExprLoc(), CD); 1034 1035 // Skip this copy constructor if it is trivial, we don't need to record it 1036 // in the catchable type data. 1037 if (CD->isTrivial()) 1038 continue; 1039 1040 // The copy constructor is non-trivial, create a mapping from this class 1041 // type to this constructor. 1042 // N.B. The selection of copy constructor is not sensitive to this 1043 // particular throw-site. Lookup will be performed at the catch-site to 1044 // ensure that the copy constructor is, in fact, accessible (via 1045 // friendship or any other means). 1046 Context.addCopyConstructorForExceptionObject(Subobject, CD); 1047 1048 // We don't keep the instantiated default argument expressions around so 1049 // we must rebuild them here. 1050 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { 1051 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I))) 1052 return true; 1053 } 1054 } 1055 } 1056 1057 // Under the Itanium C++ ABI, memory for the exception object is allocated by 1058 // the runtime with no ability for the compiler to request additional 1059 // alignment. Warn if the exception type requires alignment beyond the minimum 1060 // guaranteed by the target C++ runtime. 1061 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) { 1062 CharUnits TypeAlign = Context.getTypeAlignInChars(Ty); 1063 CharUnits ExnObjAlign = Context.getExnObjectAlignment(); 1064 if (ExnObjAlign < TypeAlign) { 1065 Diag(ThrowLoc, diag::warn_throw_underaligned_obj); 1066 Diag(ThrowLoc, diag::note_throw_underaligned_obj) 1067 << Ty << (unsigned)TypeAlign.getQuantity() 1068 << (unsigned)ExnObjAlign.getQuantity(); 1069 } 1070 } 1071 1072 return false; 1073 } 1074 1075 static QualType adjustCVQualifiersForCXXThisWithinLambda( 1076 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy, 1077 DeclContext *CurSemaContext, ASTContext &ASTCtx) { 1078 1079 QualType ClassType = ThisTy->getPointeeType(); 1080 LambdaScopeInfo *CurLSI = nullptr; 1081 DeclContext *CurDC = CurSemaContext; 1082 1083 // Iterate through the stack of lambdas starting from the innermost lambda to 1084 // the outermost lambda, checking if '*this' is ever captured by copy - since 1085 // that could change the cv-qualifiers of the '*this' object. 1086 // The object referred to by '*this' starts out with the cv-qualifiers of its 1087 // member function. We then start with the innermost lambda and iterate 1088 // outward checking to see if any lambda performs a by-copy capture of '*this' 1089 // - and if so, any nested lambda must respect the 'constness' of that 1090 // capturing lamdbda's call operator. 1091 // 1092 1093 // Since the FunctionScopeInfo stack is representative of the lexical 1094 // nesting of the lambda expressions during initial parsing (and is the best 1095 // place for querying information about captures about lambdas that are 1096 // partially processed) and perhaps during instantiation of function templates 1097 // that contain lambda expressions that need to be transformed BUT not 1098 // necessarily during instantiation of a nested generic lambda's function call 1099 // operator (which might even be instantiated at the end of the TU) - at which 1100 // time the DeclContext tree is mature enough to query capture information 1101 // reliably - we use a two pronged approach to walk through all the lexically 1102 // enclosing lambda expressions: 1103 // 1104 // 1) Climb down the FunctionScopeInfo stack as long as each item represents 1105 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically 1106 // enclosed by the call-operator of the LSI below it on the stack (while 1107 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on 1108 // the stack represents the innermost lambda. 1109 // 1110 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext 1111 // represents a lambda's call operator. If it does, we must be instantiating 1112 // a generic lambda's call operator (represented by the Current LSI, and 1113 // should be the only scenario where an inconsistency between the LSI and the 1114 // DeclContext should occur), so climb out the DeclContexts if they 1115 // represent lambdas, while querying the corresponding closure types 1116 // regarding capture information. 1117 1118 // 1) Climb down the function scope info stack. 1119 for (int I = FunctionScopes.size(); 1120 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) && 1121 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() == 1122 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator); 1123 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) { 1124 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]); 1125 1126 if (!CurLSI->isCXXThisCaptured()) 1127 continue; 1128 1129 auto C = CurLSI->getCXXThisCapture(); 1130 1131 if (C.isCopyCapture()) { 1132 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1133 if (CurLSI->CallOperator->isConst()) 1134 ClassType.addConst(); 1135 return ASTCtx.getPointerType(ClassType); 1136 } 1137 } 1138 1139 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which 1140 // can happen during instantiation of its nested generic lambda call 1141 // operator); 2. if we're in a lambda scope (lambda body). 1142 if (CurLSI && isLambdaCallOperator(CurDC)) { 1143 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && 1144 "While computing 'this' capture-type for a generic lambda, when we " 1145 "run out of enclosing LSI's, yet the enclosing DC is a " 1146 "lambda-call-operator we must be (i.e. Current LSI) in a generic " 1147 "lambda call oeprator"); 1148 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)); 1149 1150 auto IsThisCaptured = 1151 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) { 1152 IsConst = false; 1153 IsByCopy = false; 1154 for (auto &&C : Closure->captures()) { 1155 if (C.capturesThis()) { 1156 if (C.getCaptureKind() == LCK_StarThis) 1157 IsByCopy = true; 1158 if (Closure->getLambdaCallOperator()->isConst()) 1159 IsConst = true; 1160 return true; 1161 } 1162 } 1163 return false; 1164 }; 1165 1166 bool IsByCopyCapture = false; 1167 bool IsConstCapture = false; 1168 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent()); 1169 while (Closure && 1170 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) { 1171 if (IsByCopyCapture) { 1172 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1173 if (IsConstCapture) 1174 ClassType.addConst(); 1175 return ASTCtx.getPointerType(ClassType); 1176 } 1177 Closure = isLambdaCallOperator(Closure->getParent()) 1178 ? cast<CXXRecordDecl>(Closure->getParent()->getParent()) 1179 : nullptr; 1180 } 1181 } 1182 return ASTCtx.getPointerType(ClassType); 1183 } 1184 1185 QualType Sema::getCurrentThisType() { 1186 DeclContext *DC = getFunctionLevelDeclContext(); 1187 QualType ThisTy = CXXThisTypeOverride; 1188 1189 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { 1190 if (method && method->isInstance()) 1191 ThisTy = method->getThisType(); 1192 } 1193 1194 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) && 1195 inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) { 1196 1197 // This is a lambda call operator that is being instantiated as a default 1198 // initializer. DC must point to the enclosing class type, so we can recover 1199 // the 'this' type from it. 1200 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC)); 1201 // There are no cv-qualifiers for 'this' within default initializers, 1202 // per [expr.prim.general]p4. 1203 ThisTy = Context.getPointerType(ClassTy); 1204 } 1205 1206 // If we are within a lambda's call operator, the cv-qualifiers of 'this' 1207 // might need to be adjusted if the lambda or any of its enclosing lambda's 1208 // captures '*this' by copy. 1209 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext)) 1210 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy, 1211 CurContext, Context); 1212 return ThisTy; 1213 } 1214 1215 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 1216 Decl *ContextDecl, 1217 Qualifiers CXXThisTypeQuals, 1218 bool Enabled) 1219 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) 1220 { 1221 if (!Enabled || !ContextDecl) 1222 return; 1223 1224 CXXRecordDecl *Record = nullptr; 1225 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) 1226 Record = Template->getTemplatedDecl(); 1227 else 1228 Record = cast<CXXRecordDecl>(ContextDecl); 1229 1230 QualType T = S.Context.getRecordType(Record); 1231 T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals); 1232 1233 S.CXXThisTypeOverride = S.Context.getPointerType(T); 1234 1235 this->Enabled = true; 1236 } 1237 1238 1239 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { 1240 if (Enabled) { 1241 S.CXXThisTypeOverride = OldCXXThisTypeOverride; 1242 } 1243 } 1244 1245 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) { 1246 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd(); 1247 assert(!LSI->isCXXThisCaptured()); 1248 // [=, this] {}; // until C++20: Error: this when = is the default 1249 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval && 1250 !Sema.getLangOpts().CPlusPlus20) 1251 return; 1252 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit) 1253 << FixItHint::CreateInsertion( 1254 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this"); 1255 } 1256 1257 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit, 1258 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt, 1259 const bool ByCopy) { 1260 // We don't need to capture this in an unevaluated context. 1261 if (isUnevaluatedContext() && !Explicit) 1262 return true; 1263 1264 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value"); 1265 1266 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt 1267 ? *FunctionScopeIndexToStopAt 1268 : FunctionScopes.size() - 1; 1269 1270 // Check that we can capture the *enclosing object* (referred to by '*this') 1271 // by the capturing-entity/closure (lambda/block/etc) at 1272 // MaxFunctionScopesIndex-deep on the FunctionScopes stack. 1273 1274 // Note: The *enclosing object* can only be captured by-value by a 1275 // closure that is a lambda, using the explicit notation: 1276 // [*this] { ... }. 1277 // Every other capture of the *enclosing object* results in its by-reference 1278 // capture. 1279 1280 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes 1281 // stack), we can capture the *enclosing object* only if: 1282 // - 'L' has an explicit byref or byval capture of the *enclosing object* 1283 // - or, 'L' has an implicit capture. 1284 // AND 1285 // -- there is no enclosing closure 1286 // -- or, there is some enclosing closure 'E' that has already captured the 1287 // *enclosing object*, and every intervening closure (if any) between 'E' 1288 // and 'L' can implicitly capture the *enclosing object*. 1289 // -- or, every enclosing closure can implicitly capture the 1290 // *enclosing object* 1291 1292 1293 unsigned NumCapturingClosures = 0; 1294 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) { 1295 if (CapturingScopeInfo *CSI = 1296 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { 1297 if (CSI->CXXThisCaptureIndex != 0) { 1298 // 'this' is already being captured; there isn't anything more to do. 1299 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); 1300 break; 1301 } 1302 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); 1303 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 1304 // This context can't implicitly capture 'this'; fail out. 1305 if (BuildAndDiagnose) { 1306 Diag(Loc, diag::err_this_capture) 1307 << (Explicit && idx == MaxFunctionScopesIndex); 1308 if (!Explicit) 1309 buildLambdaThisCaptureFixit(*this, LSI); 1310 } 1311 return true; 1312 } 1313 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || 1314 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || 1315 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || 1316 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || 1317 (Explicit && idx == MaxFunctionScopesIndex)) { 1318 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first 1319 // iteration through can be an explicit capture, all enclosing closures, 1320 // if any, must perform implicit captures. 1321 1322 // This closure can capture 'this'; continue looking upwards. 1323 NumCapturingClosures++; 1324 continue; 1325 } 1326 // This context can't implicitly capture 'this'; fail out. 1327 if (BuildAndDiagnose) 1328 Diag(Loc, diag::err_this_capture) 1329 << (Explicit && idx == MaxFunctionScopesIndex); 1330 1331 if (!Explicit) 1332 buildLambdaThisCaptureFixit(*this, LSI); 1333 return true; 1334 } 1335 break; 1336 } 1337 if (!BuildAndDiagnose) return false; 1338 1339 // If we got here, then the closure at MaxFunctionScopesIndex on the 1340 // FunctionScopes stack, can capture the *enclosing object*, so capture it 1341 // (including implicit by-reference captures in any enclosing closures). 1342 1343 // In the loop below, respect the ByCopy flag only for the closure requesting 1344 // the capture (i.e. first iteration through the loop below). Ignore it for 1345 // all enclosing closure's up to NumCapturingClosures (since they must be 1346 // implicitly capturing the *enclosing object* by reference (see loop 1347 // above)). 1348 assert((!ByCopy || 1349 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && 1350 "Only a lambda can capture the enclosing object (referred to by " 1351 "*this) by copy"); 1352 QualType ThisTy = getCurrentThisType(); 1353 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; 1354 --idx, --NumCapturingClosures) { 1355 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 1356 1357 // The type of the corresponding data member (not a 'this' pointer if 'by 1358 // copy'). 1359 QualType CaptureType = ThisTy; 1360 if (ByCopy) { 1361 // If we are capturing the object referred to by '*this' by copy, ignore 1362 // any cv qualifiers inherited from the type of the member function for 1363 // the type of the closure-type's corresponding data member and any use 1364 // of 'this'. 1365 CaptureType = ThisTy->getPointeeType(); 1366 CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask); 1367 } 1368 1369 bool isNested = NumCapturingClosures > 1; 1370 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); 1371 } 1372 return false; 1373 } 1374 1375 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 1376 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 1377 /// is a non-lvalue expression whose value is the address of the object for 1378 /// which the function is called. 1379 1380 QualType ThisTy = getCurrentThisType(); 1381 if (ThisTy.isNull()) 1382 return Diag(Loc, diag::err_invalid_this_use); 1383 return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false); 1384 } 1385 1386 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, 1387 bool IsImplicit) { 1388 auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit); 1389 MarkThisReferenced(This); 1390 return This; 1391 } 1392 1393 void Sema::MarkThisReferenced(CXXThisExpr *This) { 1394 CheckCXXThisCapture(This->getExprLoc()); 1395 } 1396 1397 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 1398 // If we're outside the body of a member function, then we'll have a specified 1399 // type for 'this'. 1400 if (CXXThisTypeOverride.isNull()) 1401 return false; 1402 1403 // Determine whether we're looking into a class that's currently being 1404 // defined. 1405 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 1406 return Class && Class->isBeingDefined(); 1407 } 1408 1409 /// Parse construction of a specified type. 1410 /// Can be interpreted either as function-style casting ("int(x)") 1411 /// or class type construction ("ClassType(x,y,z)") 1412 /// or creation of a value-initialized type ("int()"). 1413 ExprResult 1414 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 1415 SourceLocation LParenOrBraceLoc, 1416 MultiExprArg exprs, 1417 SourceLocation RParenOrBraceLoc, 1418 bool ListInitialization) { 1419 if (!TypeRep) 1420 return ExprError(); 1421 1422 TypeSourceInfo *TInfo; 1423 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 1424 if (!TInfo) 1425 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 1426 1427 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, 1428 RParenOrBraceLoc, ListInitialization); 1429 // Avoid creating a non-type-dependent expression that contains typos. 1430 // Non-type-dependent expressions are liable to be discarded without 1431 // checking for embedded typos. 1432 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && 1433 !Result.get()->isTypeDependent()) 1434 Result = CorrectDelayedTyposInExpr(Result.get()); 1435 else if (Result.isInvalid()) 1436 Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), 1437 RParenOrBraceLoc, exprs, Ty); 1438 return Result; 1439 } 1440 1441 ExprResult 1442 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1443 SourceLocation LParenOrBraceLoc, 1444 MultiExprArg Exprs, 1445 SourceLocation RParenOrBraceLoc, 1446 bool ListInitialization) { 1447 QualType Ty = TInfo->getType(); 1448 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1449 1450 assert((!ListInitialization || 1451 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && 1452 "List initialization must have initializer list as expression."); 1453 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); 1454 1455 InitializedEntity Entity = 1456 InitializedEntity::InitializeTemporary(Context, TInfo); 1457 InitializationKind Kind = 1458 Exprs.size() 1459 ? ListInitialization 1460 ? InitializationKind::CreateDirectList( 1461 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) 1462 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, 1463 RParenOrBraceLoc) 1464 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, 1465 RParenOrBraceLoc); 1466 1467 // C++1z [expr.type.conv]p1: 1468 // If the type is a placeholder for a deduced class type, [...perform class 1469 // template argument deduction...] 1470 DeducedType *Deduced = Ty->getContainedDeducedType(); 1471 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1472 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, 1473 Kind, Exprs); 1474 if (Ty.isNull()) 1475 return ExprError(); 1476 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); 1477 } 1478 1479 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1480 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization 1481 // directly. We work around this by dropping the locations of the braces. 1482 SourceRange Locs = ListInitialization 1483 ? SourceRange() 1484 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1485 return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(), 1486 TInfo, Locs.getBegin(), Exprs, 1487 Locs.getEnd()); 1488 } 1489 1490 // C++ [expr.type.conv]p1: 1491 // If the expression list is a parenthesized single expression, the type 1492 // conversion expression is equivalent (in definedness, and if defined in 1493 // meaning) to the corresponding cast expression. 1494 if (Exprs.size() == 1 && !ListInitialization && 1495 !isa<InitListExpr>(Exprs[0])) { 1496 Expr *Arg = Exprs[0]; 1497 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, 1498 RParenOrBraceLoc); 1499 } 1500 1501 // For an expression of the form T(), T shall not be an array type. 1502 QualType ElemTy = Ty; 1503 if (Ty->isArrayType()) { 1504 if (!ListInitialization) 1505 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) 1506 << FullRange); 1507 ElemTy = Context.getBaseElementType(Ty); 1508 } 1509 1510 // There doesn't seem to be an explicit rule against this but sanity demands 1511 // we only construct objects with object types. 1512 if (Ty->isFunctionType()) 1513 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) 1514 << Ty << FullRange); 1515 1516 // C++17 [expr.type.conv]p2: 1517 // If the type is cv void and the initializer is (), the expression is a 1518 // prvalue of the specified type that performs no initialization. 1519 if (!Ty->isVoidType() && 1520 RequireCompleteType(TyBeginLoc, ElemTy, 1521 diag::err_invalid_incomplete_type_use, FullRange)) 1522 return ExprError(); 1523 1524 // Otherwise, the expression is a prvalue of the specified type whose 1525 // result object is direct-initialized (11.6) with the initializer. 1526 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1527 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1528 1529 if (Result.isInvalid()) 1530 return Result; 1531 1532 Expr *Inner = Result.get(); 1533 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1534 Inner = BTE->getSubExpr(); 1535 if (!isa<CXXTemporaryObjectExpr>(Inner) && 1536 !isa<CXXScalarValueInitExpr>(Inner)) { 1537 // If we created a CXXTemporaryObjectExpr, that node also represents the 1538 // functional cast. Otherwise, create an explicit cast to represent 1539 // the syntactic form of a functional-style cast that was used here. 1540 // 1541 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1542 // would give a more consistent AST representation than using a 1543 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1544 // is sometimes handled by initialization and sometimes not. 1545 QualType ResultType = Result.get()->getType(); 1546 SourceRange Locs = ListInitialization 1547 ? SourceRange() 1548 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); 1549 Result = CXXFunctionalCastExpr::Create( 1550 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, 1551 Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), 1552 Locs.getBegin(), Locs.getEnd()); 1553 } 1554 1555 return Result; 1556 } 1557 1558 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { 1559 // [CUDA] Ignore this function, if we can't call it. 1560 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext); 1561 if (getLangOpts().CUDA) { 1562 auto CallPreference = IdentifyCUDAPreference(Caller, Method); 1563 // If it's not callable at all, it's not the right function. 1564 if (CallPreference < CFP_WrongSide) 1565 return false; 1566 if (CallPreference == CFP_WrongSide) { 1567 // Maybe. We have to check if there are better alternatives. 1568 DeclContext::lookup_result R = 1569 Method->getDeclContext()->lookup(Method->getDeclName()); 1570 for (const auto *D : R) { 1571 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 1572 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) 1573 return false; 1574 } 1575 } 1576 // We've found no better variants. 1577 } 1578 } 1579 1580 SmallVector<const FunctionDecl*, 4> PreventedBy; 1581 bool Result = Method->isUsualDeallocationFunction(PreventedBy); 1582 1583 if (Result || !getLangOpts().CUDA || PreventedBy.empty()) 1584 return Result; 1585 1586 // In case of CUDA, return true if none of the 1-argument deallocator 1587 // functions are actually callable. 1588 return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { 1589 assert(FD->getNumParams() == 1 && 1590 "Only single-operand functions should be in PreventedBy"); 1591 return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; 1592 }); 1593 } 1594 1595 /// Determine whether the given function is a non-placement 1596 /// deallocation function. 1597 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1598 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1599 return S.isUsualDeallocationFunction(Method); 1600 1601 if (FD->getOverloadedOperator() != OO_Delete && 1602 FD->getOverloadedOperator() != OO_Array_Delete) 1603 return false; 1604 1605 unsigned UsualParams = 1; 1606 1607 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && 1608 S.Context.hasSameUnqualifiedType( 1609 FD->getParamDecl(UsualParams)->getType(), 1610 S.Context.getSizeType())) 1611 ++UsualParams; 1612 1613 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && 1614 S.Context.hasSameUnqualifiedType( 1615 FD->getParamDecl(UsualParams)->getType(), 1616 S.Context.getTypeDeclType(S.getStdAlignValT()))) 1617 ++UsualParams; 1618 1619 return UsualParams == FD->getNumParams(); 1620 } 1621 1622 namespace { 1623 struct UsualDeallocFnInfo { 1624 UsualDeallocFnInfo() : Found(), FD(nullptr) {} 1625 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) 1626 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), 1627 Destroying(false), HasSizeT(false), HasAlignValT(false), 1628 CUDAPref(Sema::CFP_Native) { 1629 // A function template declaration is never a usual deallocation function. 1630 if (!FD) 1631 return; 1632 unsigned NumBaseParams = 1; 1633 if (FD->isDestroyingOperatorDelete()) { 1634 Destroying = true; 1635 ++NumBaseParams; 1636 } 1637 1638 if (NumBaseParams < FD->getNumParams() && 1639 S.Context.hasSameUnqualifiedType( 1640 FD->getParamDecl(NumBaseParams)->getType(), 1641 S.Context.getSizeType())) { 1642 ++NumBaseParams; 1643 HasSizeT = true; 1644 } 1645 1646 if (NumBaseParams < FD->getNumParams() && 1647 FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { 1648 ++NumBaseParams; 1649 HasAlignValT = true; 1650 } 1651 1652 // In CUDA, determine how much we'd like / dislike to call this. 1653 if (S.getLangOpts().CUDA) 1654 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 1655 CUDAPref = S.IdentifyCUDAPreference(Caller, FD); 1656 } 1657 1658 explicit operator bool() const { return FD; } 1659 1660 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, 1661 bool WantAlign) const { 1662 // C++ P0722: 1663 // A destroying operator delete is preferred over a non-destroying 1664 // operator delete. 1665 if (Destroying != Other.Destroying) 1666 return Destroying; 1667 1668 // C++17 [expr.delete]p10: 1669 // If the type has new-extended alignment, a function with a parameter 1670 // of type std::align_val_t is preferred; otherwise a function without 1671 // such a parameter is preferred 1672 if (HasAlignValT != Other.HasAlignValT) 1673 return HasAlignValT == WantAlign; 1674 1675 if (HasSizeT != Other.HasSizeT) 1676 return HasSizeT == WantSize; 1677 1678 // Use CUDA call preference as a tiebreaker. 1679 return CUDAPref > Other.CUDAPref; 1680 } 1681 1682 DeclAccessPair Found; 1683 FunctionDecl *FD; 1684 bool Destroying, HasSizeT, HasAlignValT; 1685 Sema::CUDAFunctionPreference CUDAPref; 1686 }; 1687 } 1688 1689 /// Determine whether a type has new-extended alignment. This may be called when 1690 /// the type is incomplete (for a delete-expression with an incomplete pointee 1691 /// type), in which case it will conservatively return false if the alignment is 1692 /// not known. 1693 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { 1694 return S.getLangOpts().AlignedAllocation && 1695 S.getASTContext().getTypeAlignIfKnown(AllocType) > 1696 S.getASTContext().getTargetInfo().getNewAlign(); 1697 } 1698 1699 /// Select the correct "usual" deallocation function to use from a selection of 1700 /// deallocation functions (either global or class-scope). 1701 static UsualDeallocFnInfo resolveDeallocationOverload( 1702 Sema &S, LookupResult &R, bool WantSize, bool WantAlign, 1703 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { 1704 UsualDeallocFnInfo Best; 1705 1706 for (auto I = R.begin(), E = R.end(); I != E; ++I) { 1707 UsualDeallocFnInfo Info(S, I.getPair()); 1708 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || 1709 Info.CUDAPref == Sema::CFP_Never) 1710 continue; 1711 1712 if (!Best) { 1713 Best = Info; 1714 if (BestFns) 1715 BestFns->push_back(Info); 1716 continue; 1717 } 1718 1719 if (Best.isBetterThan(Info, WantSize, WantAlign)) 1720 continue; 1721 1722 // If more than one preferred function is found, all non-preferred 1723 // functions are eliminated from further consideration. 1724 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) 1725 BestFns->clear(); 1726 1727 Best = Info; 1728 if (BestFns) 1729 BestFns->push_back(Info); 1730 } 1731 1732 return Best; 1733 } 1734 1735 /// Determine whether a given type is a class for which 'delete[]' would call 1736 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that 1737 /// we need to store the array size (even if the type is 1738 /// trivially-destructible). 1739 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1740 QualType allocType) { 1741 const RecordType *record = 1742 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1743 if (!record) return false; 1744 1745 // Try to find an operator delete[] in class scope. 1746 1747 DeclarationName deleteName = 1748 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1749 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1750 S.LookupQualifiedName(ops, record->getDecl()); 1751 1752 // We're just doing this for information. 1753 ops.suppressDiagnostics(); 1754 1755 // Very likely: there's no operator delete[]. 1756 if (ops.empty()) return false; 1757 1758 // If it's ambiguous, it should be illegal to call operator delete[] 1759 // on this thing, so it doesn't matter if we allocate extra space or not. 1760 if (ops.isAmbiguous()) return false; 1761 1762 // C++17 [expr.delete]p10: 1763 // If the deallocation functions have class scope, the one without a 1764 // parameter of type std::size_t is selected. 1765 auto Best = resolveDeallocationOverload( 1766 S, ops, /*WantSize*/false, 1767 /*WantAlign*/hasNewExtendedAlignment(S, allocType)); 1768 return Best && Best.HasSizeT; 1769 } 1770 1771 /// Parsed a C++ 'new' expression (C++ 5.3.4). 1772 /// 1773 /// E.g.: 1774 /// @code new (memory) int[size][4] @endcode 1775 /// or 1776 /// @code ::new Foo(23, "hello") @endcode 1777 /// 1778 /// \param StartLoc The first location of the expression. 1779 /// \param UseGlobal True if 'new' was prefixed with '::'. 1780 /// \param PlacementLParen Opening paren of the placement arguments. 1781 /// \param PlacementArgs Placement new arguments. 1782 /// \param PlacementRParen Closing paren of the placement arguments. 1783 /// \param TypeIdParens If the type is in parens, the source range. 1784 /// \param D The type to be allocated, as well as array dimensions. 1785 /// \param Initializer The initializing expression or initializer-list, or null 1786 /// if there is none. 1787 ExprResult 1788 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1789 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1790 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1791 Declarator &D, Expr *Initializer) { 1792 Optional<Expr *> ArraySize; 1793 // If the specified type is an array, unwrap it and save the expression. 1794 if (D.getNumTypeObjects() > 0 && 1795 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1796 DeclaratorChunk &Chunk = D.getTypeObject(0); 1797 if (D.getDeclSpec().hasAutoTypeSpec()) 1798 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1799 << D.getSourceRange()); 1800 if (Chunk.Arr.hasStatic) 1801 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1802 << D.getSourceRange()); 1803 if (!Chunk.Arr.NumElts && !Initializer) 1804 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1805 << D.getSourceRange()); 1806 1807 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1808 D.DropFirstTypeObject(); 1809 } 1810 1811 // Every dimension shall be of constant size. 1812 if (ArraySize) { 1813 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1814 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1815 break; 1816 1817 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1818 if (Expr *NumElts = (Expr *)Array.NumElts) { 1819 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1820 // FIXME: GCC permits constant folding here. We should either do so consistently 1821 // or not do so at all, rather than changing behavior in C++14 onwards. 1822 if (getLangOpts().CPlusPlus14) { 1823 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1824 // shall be a converted constant expression (5.19) of type std::size_t 1825 // and shall evaluate to a strictly positive value. 1826 llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); 1827 Array.NumElts 1828 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1829 CCEK_ArrayBound) 1830 .get(); 1831 } else { 1832 Array.NumElts = 1833 VerifyIntegerConstantExpression( 1834 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) 1835 .get(); 1836 } 1837 if (!Array.NumElts) 1838 return ExprError(); 1839 } 1840 } 1841 } 1842 } 1843 1844 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1845 QualType AllocType = TInfo->getType(); 1846 if (D.isInvalidType()) 1847 return ExprError(); 1848 1849 SourceRange DirectInitRange; 1850 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1851 DirectInitRange = List->getSourceRange(); 1852 1853 return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, 1854 PlacementLParen, PlacementArgs, PlacementRParen, 1855 TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, 1856 Initializer); 1857 } 1858 1859 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1860 Expr *Init) { 1861 if (!Init) 1862 return true; 1863 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1864 return PLE->getNumExprs() == 0; 1865 if (isa<ImplicitValueInitExpr>(Init)) 1866 return true; 1867 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1868 return !CCE->isListInitialization() && 1869 CCE->getConstructor()->isDefaultConstructor(); 1870 else if (Style == CXXNewExpr::ListInit) { 1871 assert(isa<InitListExpr>(Init) && 1872 "Shouldn't create list CXXConstructExprs for arrays."); 1873 return true; 1874 } 1875 return false; 1876 } 1877 1878 bool 1879 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { 1880 if (!getLangOpts().AlignedAllocationUnavailable) 1881 return false; 1882 if (FD.isDefined()) 1883 return false; 1884 Optional<unsigned> AlignmentParam; 1885 if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && 1886 AlignmentParam.hasValue()) 1887 return true; 1888 return false; 1889 } 1890 1891 // Emit a diagnostic if an aligned allocation/deallocation function that is not 1892 // implemented in the standard library is selected. 1893 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, 1894 SourceLocation Loc) { 1895 if (isUnavailableAlignedAllocationFunction(FD)) { 1896 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); 1897 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( 1898 getASTContext().getTargetInfo().getPlatformName()); 1899 VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); 1900 1901 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); 1902 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; 1903 Diag(Loc, diag::err_aligned_allocation_unavailable) 1904 << IsDelete << FD.getType().getAsString() << OSName 1905 << OSVersion.getAsString() << OSVersion.empty(); 1906 Diag(Loc, diag::note_silence_aligned_allocation_unavailable); 1907 } 1908 } 1909 1910 ExprResult 1911 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1912 SourceLocation PlacementLParen, 1913 MultiExprArg PlacementArgs, 1914 SourceLocation PlacementRParen, 1915 SourceRange TypeIdParens, 1916 QualType AllocType, 1917 TypeSourceInfo *AllocTypeInfo, 1918 Optional<Expr *> ArraySize, 1919 SourceRange DirectInitRange, 1920 Expr *Initializer) { 1921 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1922 SourceLocation StartLoc = Range.getBegin(); 1923 1924 CXXNewExpr::InitializationStyle initStyle; 1925 if (DirectInitRange.isValid()) { 1926 assert(Initializer && "Have parens but no initializer."); 1927 initStyle = CXXNewExpr::CallInit; 1928 } else if (Initializer && isa<InitListExpr>(Initializer)) 1929 initStyle = CXXNewExpr::ListInit; 1930 else { 1931 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || 1932 isa<CXXConstructExpr>(Initializer)) && 1933 "Initializer expression that cannot have been implicitly created."); 1934 initStyle = CXXNewExpr::NoInit; 1935 } 1936 1937 Expr **Inits = &Initializer; 1938 unsigned NumInits = Initializer ? 1 : 0; 1939 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1940 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init"); 1941 Inits = List->getExprs(); 1942 NumInits = List->getNumExprs(); 1943 } 1944 1945 // C++11 [expr.new]p15: 1946 // A new-expression that creates an object of type T initializes that 1947 // object as follows: 1948 InitializationKind Kind 1949 // - If the new-initializer is omitted, the object is default- 1950 // initialized (8.5); if no initialization is performed, 1951 // the object has indeterminate value 1952 = initStyle == CXXNewExpr::NoInit 1953 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1954 // - Otherwise, the new-initializer is interpreted according to 1955 // the 1956 // initialization rules of 8.5 for direct-initialization. 1957 : initStyle == CXXNewExpr::ListInit 1958 ? InitializationKind::CreateDirectList( 1959 TypeRange.getBegin(), Initializer->getBeginLoc(), 1960 Initializer->getEndLoc()) 1961 : InitializationKind::CreateDirect(TypeRange.getBegin(), 1962 DirectInitRange.getBegin(), 1963 DirectInitRange.getEnd()); 1964 1965 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 1966 auto *Deduced = AllocType->getContainedDeducedType(); 1967 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) { 1968 if (ArraySize) 1969 return ExprError( 1970 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), 1971 diag::err_deduced_class_template_compound_type) 1972 << /*array*/ 2 1973 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); 1974 1975 InitializedEntity Entity 1976 = InitializedEntity::InitializeNew(StartLoc, AllocType); 1977 AllocType = DeduceTemplateSpecializationFromInitializer( 1978 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits)); 1979 if (AllocType.isNull()) 1980 return ExprError(); 1981 } else if (Deduced) { 1982 bool Braced = (initStyle == CXXNewExpr::ListInit); 1983 if (NumInits == 1) { 1984 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) { 1985 Inits = p->getInits(); 1986 NumInits = p->getNumInits(); 1987 Braced = true; 1988 } 1989 } 1990 1991 if (initStyle == CXXNewExpr::NoInit || NumInits == 0) 1992 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 1993 << AllocType << TypeRange); 1994 if (NumInits > 1) { 1995 Expr *FirstBad = Inits[1]; 1996 return ExprError(Diag(FirstBad->getBeginLoc(), 1997 diag::err_auto_new_ctor_multiple_expressions) 1998 << AllocType << TypeRange); 1999 } 2000 if (Braced && !getLangOpts().CPlusPlus17) 2001 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) 2002 << AllocType << TypeRange; 2003 Expr *Deduce = Inits[0]; 2004 QualType DeducedType; 2005 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 2006 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 2007 << AllocType << Deduce->getType() 2008 << TypeRange << Deduce->getSourceRange()); 2009 if (DeducedType.isNull()) 2010 return ExprError(); 2011 AllocType = DeducedType; 2012 } 2013 2014 // Per C++0x [expr.new]p5, the type being constructed may be a 2015 // typedef of an array type. 2016 if (!ArraySize) { 2017 if (const ConstantArrayType *Array 2018 = Context.getAsConstantArrayType(AllocType)) { 2019 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 2020 Context.getSizeType(), 2021 TypeRange.getEnd()); 2022 AllocType = Array->getElementType(); 2023 } 2024 } 2025 2026 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 2027 return ExprError(); 2028 2029 // In ARC, infer 'retaining' for the allocated 2030 if (getLangOpts().ObjCAutoRefCount && 2031 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 2032 AllocType->isObjCLifetimeType()) { 2033 AllocType = Context.getLifetimeQualifiedType(AllocType, 2034 AllocType->getObjCARCImplicitLifetime()); 2035 } 2036 2037 QualType ResultType = Context.getPointerType(AllocType); 2038 2039 if (ArraySize && *ArraySize && 2040 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { 2041 ExprResult result = CheckPlaceholderExpr(*ArraySize); 2042 if (result.isInvalid()) return ExprError(); 2043 ArraySize = result.get(); 2044 } 2045 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 2046 // integral or enumeration type with a non-negative value." 2047 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 2048 // enumeration type, or a class type for which a single non-explicit 2049 // conversion function to integral or unscoped enumeration type exists. 2050 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 2051 // std::size_t. 2052 llvm::Optional<uint64_t> KnownArraySize; 2053 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { 2054 ExprResult ConvertedSize; 2055 if (getLangOpts().CPlusPlus14) { 2056 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); 2057 2058 ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), 2059 AA_Converting); 2060 2061 if (!ConvertedSize.isInvalid() && 2062 (*ArraySize)->getType()->getAs<RecordType>()) 2063 // Diagnose the compatibility of this conversion. 2064 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 2065 << (*ArraySize)->getType() << 0 << "'size_t'"; 2066 } else { 2067 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 2068 protected: 2069 Expr *ArraySize; 2070 2071 public: 2072 SizeConvertDiagnoser(Expr *ArraySize) 2073 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 2074 ArraySize(ArraySize) {} 2075 2076 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 2077 QualType T) override { 2078 return S.Diag(Loc, diag::err_array_size_not_integral) 2079 << S.getLangOpts().CPlusPlus11 << T; 2080 } 2081 2082 SemaDiagnosticBuilder diagnoseIncomplete( 2083 Sema &S, SourceLocation Loc, QualType T) override { 2084 return S.Diag(Loc, diag::err_array_size_incomplete_type) 2085 << T << ArraySize->getSourceRange(); 2086 } 2087 2088 SemaDiagnosticBuilder diagnoseExplicitConv( 2089 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 2090 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 2091 } 2092 2093 SemaDiagnosticBuilder noteExplicitConv( 2094 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2095 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2096 << ConvTy->isEnumeralType() << ConvTy; 2097 } 2098 2099 SemaDiagnosticBuilder diagnoseAmbiguous( 2100 Sema &S, SourceLocation Loc, QualType T) override { 2101 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 2102 } 2103 2104 SemaDiagnosticBuilder noteAmbiguous( 2105 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 2106 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 2107 << ConvTy->isEnumeralType() << ConvTy; 2108 } 2109 2110 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2111 QualType T, 2112 QualType ConvTy) override { 2113 return S.Diag(Loc, 2114 S.getLangOpts().CPlusPlus11 2115 ? diag::warn_cxx98_compat_array_size_conversion 2116 : diag::ext_array_size_conversion) 2117 << T << ConvTy->isEnumeralType() << ConvTy; 2118 } 2119 } SizeDiagnoser(*ArraySize); 2120 2121 ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, 2122 SizeDiagnoser); 2123 } 2124 if (ConvertedSize.isInvalid()) 2125 return ExprError(); 2126 2127 ArraySize = ConvertedSize.get(); 2128 QualType SizeType = (*ArraySize)->getType(); 2129 2130 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 2131 return ExprError(); 2132 2133 // C++98 [expr.new]p7: 2134 // The expression in a direct-new-declarator shall have integral type 2135 // with a non-negative value. 2136 // 2137 // Let's see if this is a constant < 0. If so, we reject it out of hand, 2138 // per CWG1464. Otherwise, if it's not a constant, we must have an 2139 // unparenthesized array type. 2140 2141 // We've already performed any required implicit conversion to integer or 2142 // unscoped enumeration type. 2143 // FIXME: Per CWG1464, we are required to check the value prior to 2144 // converting to size_t. This will never find a negative array size in 2145 // C++14 onwards, because Value is always unsigned here! 2146 if (Optional<llvm::APSInt> Value = 2147 (*ArraySize)->getIntegerConstantExpr(Context)) { 2148 if (Value->isSigned() && Value->isNegative()) { 2149 return ExprError(Diag((*ArraySize)->getBeginLoc(), 2150 diag::err_typecheck_negative_array_size) 2151 << (*ArraySize)->getSourceRange()); 2152 } 2153 2154 if (!AllocType->isDependentType()) { 2155 unsigned ActiveSizeBits = 2156 ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value); 2157 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) 2158 return ExprError( 2159 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) 2160 << toString(*Value, 10) << (*ArraySize)->getSourceRange()); 2161 } 2162 2163 KnownArraySize = Value->getZExtValue(); 2164 } else if (TypeIdParens.isValid()) { 2165 // Can't have dynamic array size when the type-id is in parentheses. 2166 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) 2167 << (*ArraySize)->getSourceRange() 2168 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 2169 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 2170 2171 TypeIdParens = SourceRange(); 2172 } 2173 2174 // Note that we do *not* convert the argument in any way. It can 2175 // be signed, larger than size_t, whatever. 2176 } 2177 2178 FunctionDecl *OperatorNew = nullptr; 2179 FunctionDecl *OperatorDelete = nullptr; 2180 unsigned Alignment = 2181 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); 2182 unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); 2183 bool PassAlignment = getLangOpts().AlignedAllocation && 2184 Alignment > NewAlignment; 2185 2186 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; 2187 if (!AllocType->isDependentType() && 2188 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 2189 FindAllocationFunctions( 2190 StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, 2191 AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs, 2192 OperatorNew, OperatorDelete)) 2193 return ExprError(); 2194 2195 // If this is an array allocation, compute whether the usual array 2196 // deallocation function for the type has a size_t parameter. 2197 bool UsualArrayDeleteWantsSize = false; 2198 if (ArraySize && !AllocType->isDependentType()) 2199 UsualArrayDeleteWantsSize = 2200 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 2201 2202 SmallVector<Expr *, 8> AllPlaceArgs; 2203 if (OperatorNew) { 2204 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2205 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 2206 : VariadicDoesNotApply; 2207 2208 // We've already converted the placement args, just fill in any default 2209 // arguments. Skip the first parameter because we don't have a corresponding 2210 // argument. Skip the second parameter too if we're passing in the 2211 // alignment; we've already filled it in. 2212 unsigned NumImplicitArgs = PassAlignment ? 2 : 1; 2213 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 2214 NumImplicitArgs, PlacementArgs, AllPlaceArgs, 2215 CallType)) 2216 return ExprError(); 2217 2218 if (!AllPlaceArgs.empty()) 2219 PlacementArgs = AllPlaceArgs; 2220 2221 // We would like to perform some checking on the given `operator new` call, 2222 // but the PlacementArgs does not contain the implicit arguments, 2223 // namely allocation size and maybe allocation alignment, 2224 // so we need to conjure them. 2225 2226 QualType SizeTy = Context.getSizeType(); 2227 unsigned SizeTyWidth = Context.getTypeSize(SizeTy); 2228 2229 llvm::APInt SingleEltSize( 2230 SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); 2231 2232 // How many bytes do we want to allocate here? 2233 llvm::Optional<llvm::APInt> AllocationSize; 2234 if (!ArraySize.hasValue() && !AllocType->isDependentType()) { 2235 // For non-array operator new, we only want to allocate one element. 2236 AllocationSize = SingleEltSize; 2237 } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) { 2238 // For array operator new, only deal with static array size case. 2239 bool Overflow; 2240 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) 2241 .umul_ov(SingleEltSize, Overflow); 2242 (void)Overflow; 2243 assert( 2244 !Overflow && 2245 "Expected that all the overflows would have been handled already."); 2246 } 2247 2248 IntegerLiteral AllocationSizeLiteral( 2249 Context, AllocationSize.getValueOr(llvm::APInt::getZero(SizeTyWidth)), 2250 SizeTy, SourceLocation()); 2251 // Otherwise, if we failed to constant-fold the allocation size, we'll 2252 // just give up and pass-in something opaque, that isn't a null pointer. 2253 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue, 2254 OK_Ordinary, /*SourceExpr=*/nullptr); 2255 2256 // Let's synthesize the alignment argument in case we will need it. 2257 // Since we *really* want to allocate these on stack, this is slightly ugly 2258 // because there might not be a `std::align_val_t` type. 2259 EnumDecl *StdAlignValT = getStdAlignValT(); 2260 QualType AlignValT = 2261 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; 2262 IntegerLiteral AlignmentLiteral( 2263 Context, 2264 llvm::APInt(Context.getTypeSize(SizeTy), 2265 Alignment / Context.getCharWidth()), 2266 SizeTy, SourceLocation()); 2267 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, 2268 CK_IntegralCast, &AlignmentLiteral, 2269 VK_PRValue, FPOptionsOverride()); 2270 2271 // Adjust placement args by prepending conjured size and alignment exprs. 2272 llvm::SmallVector<Expr *, 8> CallArgs; 2273 CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); 2274 CallArgs.emplace_back(AllocationSize.hasValue() 2275 ? static_cast<Expr *>(&AllocationSizeLiteral) 2276 : &OpaqueAllocationSize); 2277 if (PassAlignment) 2278 CallArgs.emplace_back(&DesiredAlignment); 2279 CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); 2280 2281 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); 2282 2283 checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, 2284 /*IsMemberFunction=*/false, StartLoc, Range, CallType); 2285 2286 // Warn if the type is over-aligned and is being allocated by (unaligned) 2287 // global operator new. 2288 if (PlacementArgs.empty() && !PassAlignment && 2289 (OperatorNew->isImplicit() || 2290 (OperatorNew->getBeginLoc().isValid() && 2291 getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { 2292 if (Alignment > NewAlignment) 2293 Diag(StartLoc, diag::warn_overaligned_type) 2294 << AllocType 2295 << unsigned(Alignment / Context.getCharWidth()) 2296 << unsigned(NewAlignment / Context.getCharWidth()); 2297 } 2298 } 2299 2300 // Array 'new' can't have any initializers except empty parentheses. 2301 // Initializer lists are also allowed, in C++11. Rely on the parser for the 2302 // dialect distinction. 2303 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) { 2304 SourceRange InitRange(Inits[0]->getBeginLoc(), 2305 Inits[NumInits - 1]->getEndLoc()); 2306 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 2307 return ExprError(); 2308 } 2309 2310 // If we can perform the initialization, and we've not already done so, 2311 // do it now. 2312 if (!AllocType->isDependentType() && 2313 !Expr::hasAnyTypeDependentArguments( 2314 llvm::makeArrayRef(Inits, NumInits))) { 2315 // The type we initialize is the complete type, including the array bound. 2316 QualType InitType; 2317 if (KnownArraySize) 2318 InitType = Context.getConstantArrayType( 2319 AllocType, 2320 llvm::APInt(Context.getTypeSize(Context.getSizeType()), 2321 *KnownArraySize), 2322 *ArraySize, ArrayType::Normal, 0); 2323 else if (ArraySize) 2324 InitType = 2325 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0); 2326 else 2327 InitType = AllocType; 2328 2329 InitializedEntity Entity 2330 = InitializedEntity::InitializeNew(StartLoc, InitType); 2331 InitializationSequence InitSeq(*this, Entity, Kind, 2332 MultiExprArg(Inits, NumInits)); 2333 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 2334 MultiExprArg(Inits, NumInits)); 2335 if (FullInit.isInvalid()) 2336 return ExprError(); 2337 2338 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 2339 // we don't want the initialized object to be destructed. 2340 // FIXME: We should not create these in the first place. 2341 if (CXXBindTemporaryExpr *Binder = 2342 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 2343 FullInit = Binder->getSubExpr(); 2344 2345 Initializer = FullInit.get(); 2346 2347 // FIXME: If we have a KnownArraySize, check that the array bound of the 2348 // initializer is no greater than that constant value. 2349 2350 if (ArraySize && !*ArraySize) { 2351 auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); 2352 if (CAT) { 2353 // FIXME: Track that the array size was inferred rather than explicitly 2354 // specified. 2355 ArraySize = IntegerLiteral::Create( 2356 Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); 2357 } else { 2358 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) 2359 << Initializer->getSourceRange(); 2360 } 2361 } 2362 } 2363 2364 // Mark the new and delete operators as referenced. 2365 if (OperatorNew) { 2366 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 2367 return ExprError(); 2368 MarkFunctionReferenced(StartLoc, OperatorNew); 2369 } 2370 if (OperatorDelete) { 2371 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 2372 return ExprError(); 2373 MarkFunctionReferenced(StartLoc, OperatorDelete); 2374 } 2375 2376 return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, 2377 PassAlignment, UsualArrayDeleteWantsSize, 2378 PlacementArgs, TypeIdParens, ArraySize, initStyle, 2379 Initializer, ResultType, AllocTypeInfo, Range, 2380 DirectInitRange); 2381 } 2382 2383 /// Checks that a type is suitable as the allocated type 2384 /// in a new-expression. 2385 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 2386 SourceRange R) { 2387 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 2388 // abstract class type or array thereof. 2389 if (AllocType->isFunctionType()) 2390 return Diag(Loc, diag::err_bad_new_type) 2391 << AllocType << 0 << R; 2392 else if (AllocType->isReferenceType()) 2393 return Diag(Loc, diag::err_bad_new_type) 2394 << AllocType << 1 << R; 2395 else if (!AllocType->isDependentType() && 2396 RequireCompleteSizedType( 2397 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) 2398 return true; 2399 else if (RequireNonAbstractType(Loc, AllocType, 2400 diag::err_allocation_of_abstract_type)) 2401 return true; 2402 else if (AllocType->isVariablyModifiedType()) 2403 return Diag(Loc, diag::err_variably_modified_new_type) 2404 << AllocType; 2405 else if (AllocType.getAddressSpace() != LangAS::Default && 2406 !getLangOpts().OpenCLCPlusPlus) 2407 return Diag(Loc, diag::err_address_space_qualified_new) 2408 << AllocType.getUnqualifiedType() 2409 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); 2410 else if (getLangOpts().ObjCAutoRefCount) { 2411 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 2412 QualType BaseAllocType = Context.getBaseElementType(AT); 2413 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 2414 BaseAllocType->isObjCLifetimeType()) 2415 return Diag(Loc, diag::err_arc_new_array_without_ownership) 2416 << BaseAllocType; 2417 } 2418 } 2419 2420 return false; 2421 } 2422 2423 static bool resolveAllocationOverload( 2424 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, 2425 bool &PassAlignment, FunctionDecl *&Operator, 2426 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { 2427 OverloadCandidateSet Candidates(R.getNameLoc(), 2428 OverloadCandidateSet::CSK_Normal); 2429 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 2430 Alloc != AllocEnd; ++Alloc) { 2431 // Even member operator new/delete are implicitly treated as 2432 // static, so don't use AddMemberCandidate. 2433 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 2434 2435 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 2436 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 2437 /*ExplicitTemplateArgs=*/nullptr, Args, 2438 Candidates, 2439 /*SuppressUserConversions=*/false); 2440 continue; 2441 } 2442 2443 FunctionDecl *Fn = cast<FunctionDecl>(D); 2444 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 2445 /*SuppressUserConversions=*/false); 2446 } 2447 2448 // Do the resolution. 2449 OverloadCandidateSet::iterator Best; 2450 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 2451 case OR_Success: { 2452 // Got one! 2453 FunctionDecl *FnDecl = Best->Function; 2454 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), 2455 Best->FoundDecl) == Sema::AR_inaccessible) 2456 return true; 2457 2458 Operator = FnDecl; 2459 return false; 2460 } 2461 2462 case OR_No_Viable_Function: 2463 // C++17 [expr.new]p13: 2464 // If no matching function is found and the allocated object type has 2465 // new-extended alignment, the alignment argument is removed from the 2466 // argument list, and overload resolution is performed again. 2467 if (PassAlignment) { 2468 PassAlignment = false; 2469 AlignArg = Args[1]; 2470 Args.erase(Args.begin() + 1); 2471 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2472 Operator, &Candidates, AlignArg, 2473 Diagnose); 2474 } 2475 2476 // MSVC will fall back on trying to find a matching global operator new 2477 // if operator new[] cannot be found. Also, MSVC will leak by not 2478 // generating a call to operator delete or operator delete[], but we 2479 // will not replicate that bug. 2480 // FIXME: Find out how this interacts with the std::align_val_t fallback 2481 // once MSVC implements it. 2482 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && 2483 S.Context.getLangOpts().MSVCCompat) { 2484 R.clear(); 2485 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); 2486 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 2487 // FIXME: This will give bad diagnostics pointing at the wrong functions. 2488 return resolveAllocationOverload(S, R, Range, Args, PassAlignment, 2489 Operator, /*Candidates=*/nullptr, 2490 /*AlignArg=*/nullptr, Diagnose); 2491 } 2492 2493 if (Diagnose) { 2494 // If this is an allocation of the form 'new (p) X' for some object 2495 // pointer p (or an expression that will decay to such a pointer), 2496 // diagnose the missing inclusion of <new>. 2497 if (!R.isClassLookup() && Args.size() == 2 && 2498 (Args[1]->getType()->isObjectPointerType() || 2499 Args[1]->getType()->isArrayType())) { 2500 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) 2501 << R.getLookupName() << Range; 2502 // Listing the candidates is unlikely to be useful; skip it. 2503 return true; 2504 } 2505 2506 // Finish checking all candidates before we note any. This checking can 2507 // produce additional diagnostics so can't be interleaved with our 2508 // emission of notes. 2509 // 2510 // For an aligned allocation, separately check the aligned and unaligned 2511 // candidates with their respective argument lists. 2512 SmallVector<OverloadCandidate*, 32> Cands; 2513 SmallVector<OverloadCandidate*, 32> AlignedCands; 2514 llvm::SmallVector<Expr*, 4> AlignedArgs; 2515 if (AlignedCandidates) { 2516 auto IsAligned = [](OverloadCandidate &C) { 2517 return C.Function->getNumParams() > 1 && 2518 C.Function->getParamDecl(1)->getType()->isAlignValT(); 2519 }; 2520 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; 2521 2522 AlignedArgs.reserve(Args.size() + 1); 2523 AlignedArgs.push_back(Args[0]); 2524 AlignedArgs.push_back(AlignArg); 2525 AlignedArgs.append(Args.begin() + 1, Args.end()); 2526 AlignedCands = AlignedCandidates->CompleteCandidates( 2527 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); 2528 2529 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2530 R.getNameLoc(), IsUnaligned); 2531 } else { 2532 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, 2533 R.getNameLoc()); 2534 } 2535 2536 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) 2537 << R.getLookupName() << Range; 2538 if (AlignedCandidates) 2539 AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", 2540 R.getNameLoc()); 2541 Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); 2542 } 2543 return true; 2544 2545 case OR_Ambiguous: 2546 if (Diagnose) { 2547 Candidates.NoteCandidates( 2548 PartialDiagnosticAt(R.getNameLoc(), 2549 S.PDiag(diag::err_ovl_ambiguous_call) 2550 << R.getLookupName() << Range), 2551 S, OCD_AmbiguousCandidates, Args); 2552 } 2553 return true; 2554 2555 case OR_Deleted: { 2556 if (Diagnose) { 2557 Candidates.NoteCandidates( 2558 PartialDiagnosticAt(R.getNameLoc(), 2559 S.PDiag(diag::err_ovl_deleted_call) 2560 << R.getLookupName() << Range), 2561 S, OCD_AllCandidates, Args); 2562 } 2563 return true; 2564 } 2565 } 2566 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 2567 } 2568 2569 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 2570 AllocationFunctionScope NewScope, 2571 AllocationFunctionScope DeleteScope, 2572 QualType AllocType, bool IsArray, 2573 bool &PassAlignment, MultiExprArg PlaceArgs, 2574 FunctionDecl *&OperatorNew, 2575 FunctionDecl *&OperatorDelete, 2576 bool Diagnose) { 2577 // --- Choosing an allocation function --- 2578 // C++ 5.3.4p8 - 14 & 18 2579 // 1) If looking in AFS_Global scope for allocation functions, only look in 2580 // the global scope. Else, if AFS_Class, only look in the scope of the 2581 // allocated class. If AFS_Both, look in both. 2582 // 2) If an array size is given, look for operator new[], else look for 2583 // operator new. 2584 // 3) The first argument is always size_t. Append the arguments from the 2585 // placement form. 2586 2587 SmallVector<Expr*, 8> AllocArgs; 2588 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); 2589 2590 // We don't care about the actual value of these arguments. 2591 // FIXME: Should the Sema create the expression and embed it in the syntax 2592 // tree? Or should the consumer just recalculate the value? 2593 // FIXME: Using a dummy value will interact poorly with attribute enable_if. 2594 IntegerLiteral Size( 2595 Context, llvm::APInt::getZero(Context.getTargetInfo().getPointerWidth(0)), 2596 Context.getSizeType(), SourceLocation()); 2597 AllocArgs.push_back(&Size); 2598 2599 QualType AlignValT = Context.VoidTy; 2600 if (PassAlignment) { 2601 DeclareGlobalNewDelete(); 2602 AlignValT = Context.getTypeDeclType(getStdAlignValT()); 2603 } 2604 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); 2605 if (PassAlignment) 2606 AllocArgs.push_back(&Align); 2607 2608 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); 2609 2610 // C++ [expr.new]p8: 2611 // If the allocated type is a non-array type, the allocation 2612 // function's name is operator new and the deallocation function's 2613 // name is operator delete. If the allocated type is an array 2614 // type, the allocation function's name is operator new[] and the 2615 // deallocation function's name is operator delete[]. 2616 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 2617 IsArray ? OO_Array_New : OO_New); 2618 2619 QualType AllocElemType = Context.getBaseElementType(AllocType); 2620 2621 // Find the allocation function. 2622 { 2623 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); 2624 2625 // C++1z [expr.new]p9: 2626 // If the new-expression begins with a unary :: operator, the allocation 2627 // function's name is looked up in the global scope. Otherwise, if the 2628 // allocated type is a class type T or array thereof, the allocation 2629 // function's name is looked up in the scope of T. 2630 if (AllocElemType->isRecordType() && NewScope != AFS_Global) 2631 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); 2632 2633 // We can see ambiguity here if the allocation function is found in 2634 // multiple base classes. 2635 if (R.isAmbiguous()) 2636 return true; 2637 2638 // If this lookup fails to find the name, or if the allocated type is not 2639 // a class type, the allocation function's name is looked up in the 2640 // global scope. 2641 if (R.empty()) { 2642 if (NewScope == AFS_Class) 2643 return true; 2644 2645 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 2646 } 2647 2648 if (getLangOpts().OpenCLCPlusPlus && R.empty()) { 2649 if (PlaceArgs.empty()) { 2650 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; 2651 } else { 2652 Diag(StartLoc, diag::err_openclcxx_placement_new); 2653 } 2654 return true; 2655 } 2656 2657 assert(!R.empty() && "implicitly declared allocation functions not found"); 2658 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 2659 2660 // We do our own custom access checks below. 2661 R.suppressDiagnostics(); 2662 2663 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, 2664 OperatorNew, /*Candidates=*/nullptr, 2665 /*AlignArg=*/nullptr, Diagnose)) 2666 return true; 2667 } 2668 2669 // We don't need an operator delete if we're running under -fno-exceptions. 2670 if (!getLangOpts().Exceptions) { 2671 OperatorDelete = nullptr; 2672 return false; 2673 } 2674 2675 // Note, the name of OperatorNew might have been changed from array to 2676 // non-array by resolveAllocationOverload. 2677 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2678 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New 2679 ? OO_Array_Delete 2680 : OO_Delete); 2681 2682 // C++ [expr.new]p19: 2683 // 2684 // If the new-expression begins with a unary :: operator, the 2685 // deallocation function's name is looked up in the global 2686 // scope. Otherwise, if the allocated type is a class type T or an 2687 // array thereof, the deallocation function's name is looked up in 2688 // the scope of T. If this lookup fails to find the name, or if 2689 // the allocated type is not a class type or array thereof, the 2690 // deallocation function's name is looked up in the global scope. 2691 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 2692 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { 2693 auto *RD = 2694 cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); 2695 LookupQualifiedName(FoundDelete, RD); 2696 } 2697 if (FoundDelete.isAmbiguous()) 2698 return true; // FIXME: clean up expressions? 2699 2700 // Filter out any destroying operator deletes. We can't possibly call such a 2701 // function in this context, because we're handling the case where the object 2702 // was not successfully constructed. 2703 // FIXME: This is not covered by the language rules yet. 2704 { 2705 LookupResult::Filter Filter = FoundDelete.makeFilter(); 2706 while (Filter.hasNext()) { 2707 auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); 2708 if (FD && FD->isDestroyingOperatorDelete()) 2709 Filter.erase(); 2710 } 2711 Filter.done(); 2712 } 2713 2714 bool FoundGlobalDelete = FoundDelete.empty(); 2715 if (FoundDelete.empty()) { 2716 FoundDelete.clear(LookupOrdinaryName); 2717 2718 if (DeleteScope == AFS_Class) 2719 return true; 2720 2721 DeclareGlobalNewDelete(); 2722 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2723 } 2724 2725 FoundDelete.suppressDiagnostics(); 2726 2727 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 2728 2729 // Whether we're looking for a placement operator delete is dictated 2730 // by whether we selected a placement operator new, not by whether 2731 // we had explicit placement arguments. This matters for things like 2732 // struct A { void *operator new(size_t, int = 0); ... }; 2733 // A *a = new A() 2734 // 2735 // We don't have any definition for what a "placement allocation function" 2736 // is, but we assume it's any allocation function whose 2737 // parameter-declaration-clause is anything other than (size_t). 2738 // 2739 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? 2740 // This affects whether an exception from the constructor of an overaligned 2741 // type uses the sized or non-sized form of aligned operator delete. 2742 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || 2743 OperatorNew->isVariadic(); 2744 2745 if (isPlacementNew) { 2746 // C++ [expr.new]p20: 2747 // A declaration of a placement deallocation function matches the 2748 // declaration of a placement allocation function if it has the 2749 // same number of parameters and, after parameter transformations 2750 // (8.3.5), all parameter types except the first are 2751 // identical. [...] 2752 // 2753 // To perform this comparison, we compute the function type that 2754 // the deallocation function should have, and use that type both 2755 // for template argument deduction and for comparison purposes. 2756 QualType ExpectedFunctionType; 2757 { 2758 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); 2759 2760 SmallVector<QualType, 4> ArgTypes; 2761 ArgTypes.push_back(Context.VoidPtrTy); 2762 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 2763 ArgTypes.push_back(Proto->getParamType(I)); 2764 2765 FunctionProtoType::ExtProtoInfo EPI; 2766 // FIXME: This is not part of the standard's rule. 2767 EPI.Variadic = Proto->isVariadic(); 2768 2769 ExpectedFunctionType 2770 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 2771 } 2772 2773 for (LookupResult::iterator D = FoundDelete.begin(), 2774 DEnd = FoundDelete.end(); 2775 D != DEnd; ++D) { 2776 FunctionDecl *Fn = nullptr; 2777 if (FunctionTemplateDecl *FnTmpl = 2778 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 2779 // Perform template argument deduction to try to match the 2780 // expected function type. 2781 TemplateDeductionInfo Info(StartLoc); 2782 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 2783 Info)) 2784 continue; 2785 } else 2786 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 2787 2788 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), 2789 ExpectedFunctionType, 2790 /*AdjustExcpetionSpec*/true), 2791 ExpectedFunctionType)) 2792 Matches.push_back(std::make_pair(D.getPair(), Fn)); 2793 } 2794 2795 if (getLangOpts().CUDA) 2796 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches); 2797 } else { 2798 // C++1y [expr.new]p22: 2799 // For a non-placement allocation function, the normal deallocation 2800 // function lookup is used 2801 // 2802 // Per [expr.delete]p10, this lookup prefers a member operator delete 2803 // without a size_t argument, but prefers a non-member operator delete 2804 // with a size_t where possible (which it always is in this case). 2805 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; 2806 UsualDeallocFnInfo Selected = resolveDeallocationOverload( 2807 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, 2808 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), 2809 &BestDeallocFns); 2810 if (Selected) 2811 Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); 2812 else { 2813 // If we failed to select an operator, all remaining functions are viable 2814 // but ambiguous. 2815 for (auto Fn : BestDeallocFns) 2816 Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); 2817 } 2818 } 2819 2820 // C++ [expr.new]p20: 2821 // [...] If the lookup finds a single matching deallocation 2822 // function, that function will be called; otherwise, no 2823 // deallocation function will be called. 2824 if (Matches.size() == 1) { 2825 OperatorDelete = Matches[0].second; 2826 2827 // C++1z [expr.new]p23: 2828 // If the lookup finds a usual deallocation function (3.7.4.2) 2829 // with a parameter of type std::size_t and that function, considered 2830 // as a placement deallocation function, would have been 2831 // selected as a match for the allocation function, the program 2832 // is ill-formed. 2833 if (getLangOpts().CPlusPlus11 && isPlacementNew && 2834 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 2835 UsualDeallocFnInfo Info(*this, 2836 DeclAccessPair::make(OperatorDelete, AS_public)); 2837 // Core issue, per mail to core reflector, 2016-10-09: 2838 // If this is a member operator delete, and there is a corresponding 2839 // non-sized member operator delete, this isn't /really/ a sized 2840 // deallocation function, it just happens to have a size_t parameter. 2841 bool IsSizedDelete = Info.HasSizeT; 2842 if (IsSizedDelete && !FoundGlobalDelete) { 2843 auto NonSizedDelete = 2844 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, 2845 /*WantAlign*/Info.HasAlignValT); 2846 if (NonSizedDelete && !NonSizedDelete.HasSizeT && 2847 NonSizedDelete.HasAlignValT == Info.HasAlignValT) 2848 IsSizedDelete = false; 2849 } 2850 2851 if (IsSizedDelete) { 2852 SourceRange R = PlaceArgs.empty() 2853 ? SourceRange() 2854 : SourceRange(PlaceArgs.front()->getBeginLoc(), 2855 PlaceArgs.back()->getEndLoc()); 2856 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; 2857 if (!OperatorDelete->isImplicit()) 2858 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 2859 << DeleteName; 2860 } 2861 } 2862 2863 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 2864 Matches[0].first); 2865 } else if (!Matches.empty()) { 2866 // We found multiple suitable operators. Per [expr.new]p20, that means we 2867 // call no 'operator delete' function, but we should at least warn the user. 2868 // FIXME: Suppress this warning if the construction cannot throw. 2869 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) 2870 << DeleteName << AllocElemType; 2871 2872 for (auto &Match : Matches) 2873 Diag(Match.second->getLocation(), 2874 diag::note_member_declared_here) << DeleteName; 2875 } 2876 2877 return false; 2878 } 2879 2880 /// DeclareGlobalNewDelete - Declare the global forms of operator new and 2881 /// delete. These are: 2882 /// @code 2883 /// // C++03: 2884 /// void* operator new(std::size_t) throw(std::bad_alloc); 2885 /// void* operator new[](std::size_t) throw(std::bad_alloc); 2886 /// void operator delete(void *) throw(); 2887 /// void operator delete[](void *) throw(); 2888 /// // C++11: 2889 /// void* operator new(std::size_t); 2890 /// void* operator new[](std::size_t); 2891 /// void operator delete(void *) noexcept; 2892 /// void operator delete[](void *) noexcept; 2893 /// // C++1y: 2894 /// void* operator new(std::size_t); 2895 /// void* operator new[](std::size_t); 2896 /// void operator delete(void *) noexcept; 2897 /// void operator delete[](void *) noexcept; 2898 /// void operator delete(void *, std::size_t) noexcept; 2899 /// void operator delete[](void *, std::size_t) noexcept; 2900 /// @endcode 2901 /// Note that the placement and nothrow forms of new are *not* implicitly 2902 /// declared. Their use requires including \<new\>. 2903 void Sema::DeclareGlobalNewDelete() { 2904 if (GlobalNewDeleteDeclared) 2905 return; 2906 2907 // The implicitly declared new and delete operators 2908 // are not supported in OpenCL. 2909 if (getLangOpts().OpenCLCPlusPlus) 2910 return; 2911 2912 // C++ [basic.std.dynamic]p2: 2913 // [...] The following allocation and deallocation functions (18.4) are 2914 // implicitly declared in global scope in each translation unit of a 2915 // program 2916 // 2917 // C++03: 2918 // void* operator new(std::size_t) throw(std::bad_alloc); 2919 // void* operator new[](std::size_t) throw(std::bad_alloc); 2920 // void operator delete(void*) throw(); 2921 // void operator delete[](void*) throw(); 2922 // C++11: 2923 // void* operator new(std::size_t); 2924 // void* operator new[](std::size_t); 2925 // void operator delete(void*) noexcept; 2926 // void operator delete[](void*) noexcept; 2927 // C++1y: 2928 // void* operator new(std::size_t); 2929 // void* operator new[](std::size_t); 2930 // void operator delete(void*) noexcept; 2931 // void operator delete[](void*) noexcept; 2932 // void operator delete(void*, std::size_t) noexcept; 2933 // void operator delete[](void*, std::size_t) noexcept; 2934 // 2935 // These implicit declarations introduce only the function names operator 2936 // new, operator new[], operator delete, operator delete[]. 2937 // 2938 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2939 // "std" or "bad_alloc" as necessary to form the exception specification. 2940 // However, we do not make these implicit declarations visible to name 2941 // lookup. 2942 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2943 // The "std::bad_alloc" class has not yet been declared, so build it 2944 // implicitly. 2945 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2946 getOrCreateStdNamespace(), 2947 SourceLocation(), SourceLocation(), 2948 &PP.getIdentifierTable().get("bad_alloc"), 2949 nullptr); 2950 getStdBadAlloc()->setImplicit(true); 2951 } 2952 if (!StdAlignValT && getLangOpts().AlignedAllocation) { 2953 // The "std::align_val_t" enum class has not yet been declared, so build it 2954 // implicitly. 2955 auto *AlignValT = EnumDecl::Create( 2956 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), 2957 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); 2958 AlignValT->setIntegerType(Context.getSizeType()); 2959 AlignValT->setPromotionType(Context.getSizeType()); 2960 AlignValT->setImplicit(true); 2961 StdAlignValT = AlignValT; 2962 } 2963 2964 GlobalNewDeleteDeclared = true; 2965 2966 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 2967 QualType SizeT = Context.getSizeType(); 2968 2969 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, 2970 QualType Return, QualType Param) { 2971 llvm::SmallVector<QualType, 3> Params; 2972 Params.push_back(Param); 2973 2974 // Create up to four variants of the function (sized/aligned). 2975 bool HasSizedVariant = getLangOpts().SizedDeallocation && 2976 (Kind == OO_Delete || Kind == OO_Array_Delete); 2977 bool HasAlignedVariant = getLangOpts().AlignedAllocation; 2978 2979 int NumSizeVariants = (HasSizedVariant ? 2 : 1); 2980 int NumAlignVariants = (HasAlignedVariant ? 2 : 1); 2981 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { 2982 if (Sized) 2983 Params.push_back(SizeT); 2984 2985 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { 2986 if (Aligned) 2987 Params.push_back(Context.getTypeDeclType(getStdAlignValT())); 2988 2989 DeclareGlobalAllocationFunction( 2990 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); 2991 2992 if (Aligned) 2993 Params.pop_back(); 2994 } 2995 } 2996 }; 2997 2998 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); 2999 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); 3000 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); 3001 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); 3002 } 3003 3004 /// DeclareGlobalAllocationFunction - Declares a single implicit global 3005 /// allocation function if it doesn't already exist. 3006 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 3007 QualType Return, 3008 ArrayRef<QualType> Params) { 3009 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 3010 3011 // Check if this function is already declared. 3012 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 3013 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 3014 Alloc != AllocEnd; ++Alloc) { 3015 // Only look at non-template functions, as it is the predefined, 3016 // non-templated allocation function we are trying to declare here. 3017 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 3018 if (Func->getNumParams() == Params.size()) { 3019 llvm::SmallVector<QualType, 3> FuncParams; 3020 for (auto *P : Func->parameters()) 3021 FuncParams.push_back( 3022 Context.getCanonicalType(P->getType().getUnqualifiedType())); 3023 if (llvm::makeArrayRef(FuncParams) == Params) { 3024 // Make the function visible to name lookup, even if we found it in 3025 // an unimported module. It either is an implicitly-declared global 3026 // allocation function, or is suppressing that function. 3027 Func->setVisibleDespiteOwningModule(); 3028 return; 3029 } 3030 } 3031 } 3032 } 3033 3034 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( 3035 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); 3036 3037 QualType BadAllocType; 3038 bool HasBadAllocExceptionSpec 3039 = (Name.getCXXOverloadedOperator() == OO_New || 3040 Name.getCXXOverloadedOperator() == OO_Array_New); 3041 if (HasBadAllocExceptionSpec) { 3042 if (!getLangOpts().CPlusPlus11) { 3043 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 3044 assert(StdBadAlloc && "Must have std::bad_alloc declared"); 3045 EPI.ExceptionSpec.Type = EST_Dynamic; 3046 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 3047 } 3048 if (getLangOpts().NewInfallible) { 3049 EPI.ExceptionSpec.Type = EST_DynamicNone; 3050 } 3051 } else { 3052 EPI.ExceptionSpec = 3053 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 3054 } 3055 3056 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { 3057 QualType FnType = Context.getFunctionType(Return, Params, EPI); 3058 FunctionDecl *Alloc = FunctionDecl::Create( 3059 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType, 3060 /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false, 3061 true); 3062 Alloc->setImplicit(); 3063 // Global allocation functions should always be visible. 3064 Alloc->setVisibleDespiteOwningModule(); 3065 3066 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible) 3067 Alloc->addAttr( 3068 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation())); 3069 3070 Alloc->addAttr(VisibilityAttr::CreateImplicit( 3071 Context, LangOpts.GlobalAllocationFunctionVisibilityHidden 3072 ? VisibilityAttr::Hidden 3073 : VisibilityAttr::Default)); 3074 3075 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; 3076 for (QualType T : Params) { 3077 ParamDecls.push_back(ParmVarDecl::Create( 3078 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, 3079 /*TInfo=*/nullptr, SC_None, nullptr)); 3080 ParamDecls.back()->setImplicit(); 3081 } 3082 Alloc->setParams(ParamDecls); 3083 if (ExtraAttr) 3084 Alloc->addAttr(ExtraAttr); 3085 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); 3086 Context.getTranslationUnitDecl()->addDecl(Alloc); 3087 IdResolver.tryAddTopLevelDecl(Alloc, Name); 3088 }; 3089 3090 if (!LangOpts.CUDA) 3091 CreateAllocationFunctionDecl(nullptr); 3092 else { 3093 // Host and device get their own declaration so each can be 3094 // defined or re-declared independently. 3095 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); 3096 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); 3097 } 3098 } 3099 3100 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 3101 bool CanProvideSize, 3102 bool Overaligned, 3103 DeclarationName Name) { 3104 DeclareGlobalNewDelete(); 3105 3106 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 3107 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 3108 3109 // FIXME: It's possible for this to result in ambiguity, through a 3110 // user-declared variadic operator delete or the enable_if attribute. We 3111 // should probably not consider those cases to be usual deallocation 3112 // functions. But for now we just make an arbitrary choice in that case. 3113 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, 3114 Overaligned); 3115 assert(Result.FD && "operator delete missing from global scope?"); 3116 return Result.FD; 3117 } 3118 3119 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, 3120 CXXRecordDecl *RD) { 3121 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 3122 3123 FunctionDecl *OperatorDelete = nullptr; 3124 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) 3125 return nullptr; 3126 if (OperatorDelete) 3127 return OperatorDelete; 3128 3129 // If there's no class-specific operator delete, look up the global 3130 // non-array delete. 3131 return FindUsualDeallocationFunction( 3132 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), 3133 Name); 3134 } 3135 3136 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 3137 DeclarationName Name, 3138 FunctionDecl *&Operator, bool Diagnose) { 3139 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 3140 // Try to find operator delete/operator delete[] in class scope. 3141 LookupQualifiedName(Found, RD); 3142 3143 if (Found.isAmbiguous()) 3144 return true; 3145 3146 Found.suppressDiagnostics(); 3147 3148 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD)); 3149 3150 // C++17 [expr.delete]p10: 3151 // If the deallocation functions have class scope, the one without a 3152 // parameter of type std::size_t is selected. 3153 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; 3154 resolveDeallocationOverload(*this, Found, /*WantSize*/ false, 3155 /*WantAlign*/ Overaligned, &Matches); 3156 3157 // If we could find an overload, use it. 3158 if (Matches.size() == 1) { 3159 Operator = cast<CXXMethodDecl>(Matches[0].FD); 3160 3161 // FIXME: DiagnoseUseOfDecl? 3162 if (Operator->isDeleted()) { 3163 if (Diagnose) { 3164 Diag(StartLoc, diag::err_deleted_function_use); 3165 NoteDeletedFunction(Operator); 3166 } 3167 return true; 3168 } 3169 3170 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 3171 Matches[0].Found, Diagnose) == AR_inaccessible) 3172 return true; 3173 3174 return false; 3175 } 3176 3177 // We found multiple suitable operators; complain about the ambiguity. 3178 // FIXME: The standard doesn't say to do this; it appears that the intent 3179 // is that this should never happen. 3180 if (!Matches.empty()) { 3181 if (Diagnose) { 3182 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 3183 << Name << RD; 3184 for (auto &Match : Matches) 3185 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; 3186 } 3187 return true; 3188 } 3189 3190 // We did find operator delete/operator delete[] declarations, but 3191 // none of them were suitable. 3192 if (!Found.empty()) { 3193 if (Diagnose) { 3194 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 3195 << Name << RD; 3196 3197 for (NamedDecl *D : Found) 3198 Diag(D->getUnderlyingDecl()->getLocation(), 3199 diag::note_member_declared_here) << Name; 3200 } 3201 return true; 3202 } 3203 3204 Operator = nullptr; 3205 return false; 3206 } 3207 3208 namespace { 3209 /// Checks whether delete-expression, and new-expression used for 3210 /// initializing deletee have the same array form. 3211 class MismatchingNewDeleteDetector { 3212 public: 3213 enum MismatchResult { 3214 /// Indicates that there is no mismatch or a mismatch cannot be proven. 3215 NoMismatch, 3216 /// Indicates that variable is initialized with mismatching form of \a new. 3217 VarInitMismatches, 3218 /// Indicates that member is initialized with mismatching form of \a new. 3219 MemberInitMismatches, 3220 /// Indicates that 1 or more constructors' definitions could not been 3221 /// analyzed, and they will be checked again at the end of translation unit. 3222 AnalyzeLater 3223 }; 3224 3225 /// \param EndOfTU True, if this is the final analysis at the end of 3226 /// translation unit. False, if this is the initial analysis at the point 3227 /// delete-expression was encountered. 3228 explicit MismatchingNewDeleteDetector(bool EndOfTU) 3229 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), 3230 HasUndefinedConstructors(false) {} 3231 3232 /// Checks whether pointee of a delete-expression is initialized with 3233 /// matching form of new-expression. 3234 /// 3235 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the 3236 /// point where delete-expression is encountered, then a warning will be 3237 /// issued immediately. If return value is \c AnalyzeLater at the point where 3238 /// delete-expression is seen, then member will be analyzed at the end of 3239 /// translation unit. \c AnalyzeLater is returned iff at least one constructor 3240 /// couldn't be analyzed. If at least one constructor initializes the member 3241 /// with matching type of new, the return value is \c NoMismatch. 3242 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); 3243 /// Analyzes a class member. 3244 /// \param Field Class member to analyze. 3245 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used 3246 /// for deleting the \p Field. 3247 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); 3248 FieldDecl *Field; 3249 /// List of mismatching new-expressions used for initialization of the pointee 3250 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; 3251 /// Indicates whether delete-expression was in array form. 3252 bool IsArrayForm; 3253 3254 private: 3255 const bool EndOfTU; 3256 /// Indicates that there is at least one constructor without body. 3257 bool HasUndefinedConstructors; 3258 /// Returns \c CXXNewExpr from given initialization expression. 3259 /// \param E Expression used for initializing pointee in delete-expression. 3260 /// E can be a single-element \c InitListExpr consisting of new-expression. 3261 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); 3262 /// Returns whether member is initialized with mismatching form of 3263 /// \c new either by the member initializer or in-class initialization. 3264 /// 3265 /// If bodies of all constructors are not visible at the end of translation 3266 /// unit or at least one constructor initializes member with the matching 3267 /// form of \c new, mismatch cannot be proven, and this function will return 3268 /// \c NoMismatch. 3269 MismatchResult analyzeMemberExpr(const MemberExpr *ME); 3270 /// Returns whether variable is initialized with mismatching form of 3271 /// \c new. 3272 /// 3273 /// If variable is initialized with matching form of \c new or variable is not 3274 /// initialized with a \c new expression, this function will return true. 3275 /// If variable is initialized with mismatching form of \c new, returns false. 3276 /// \param D Variable to analyze. 3277 bool hasMatchingVarInit(const DeclRefExpr *D); 3278 /// Checks whether the constructor initializes pointee with mismatching 3279 /// form of \c new. 3280 /// 3281 /// Returns true, if member is initialized with matching form of \c new in 3282 /// member initializer list. Returns false, if member is initialized with the 3283 /// matching form of \c new in this constructor's initializer or given 3284 /// constructor isn't defined at the point where delete-expression is seen, or 3285 /// member isn't initialized by the constructor. 3286 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); 3287 /// Checks whether member is initialized with matching form of 3288 /// \c new in member initializer list. 3289 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); 3290 /// Checks whether member is initialized with mismatching form of \c new by 3291 /// in-class initializer. 3292 MismatchResult analyzeInClassInitializer(); 3293 }; 3294 } 3295 3296 MismatchingNewDeleteDetector::MismatchResult 3297 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { 3298 NewExprs.clear(); 3299 assert(DE && "Expected delete-expression"); 3300 IsArrayForm = DE->isArrayForm(); 3301 const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); 3302 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { 3303 return analyzeMemberExpr(ME); 3304 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { 3305 if (!hasMatchingVarInit(D)) 3306 return VarInitMismatches; 3307 } 3308 return NoMismatch; 3309 } 3310 3311 const CXXNewExpr * 3312 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { 3313 assert(E != nullptr && "Expected a valid initializer expression"); 3314 E = E->IgnoreParenImpCasts(); 3315 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { 3316 if (ILE->getNumInits() == 1) 3317 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); 3318 } 3319 3320 return dyn_cast_or_null<const CXXNewExpr>(E); 3321 } 3322 3323 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( 3324 const CXXCtorInitializer *CI) { 3325 const CXXNewExpr *NE = nullptr; 3326 if (Field == CI->getMember() && 3327 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { 3328 if (NE->isArray() == IsArrayForm) 3329 return true; 3330 else 3331 NewExprs.push_back(NE); 3332 } 3333 return false; 3334 } 3335 3336 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( 3337 const CXXConstructorDecl *CD) { 3338 if (CD->isImplicit()) 3339 return false; 3340 const FunctionDecl *Definition = CD; 3341 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { 3342 HasUndefinedConstructors = true; 3343 return EndOfTU; 3344 } 3345 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { 3346 if (hasMatchingNewInCtorInit(CI)) 3347 return true; 3348 } 3349 return false; 3350 } 3351 3352 MismatchingNewDeleteDetector::MismatchResult 3353 MismatchingNewDeleteDetector::analyzeInClassInitializer() { 3354 assert(Field != nullptr && "This should be called only for members"); 3355 const Expr *InitExpr = Field->getInClassInitializer(); 3356 if (!InitExpr) 3357 return EndOfTU ? NoMismatch : AnalyzeLater; 3358 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { 3359 if (NE->isArray() != IsArrayForm) { 3360 NewExprs.push_back(NE); 3361 return MemberInitMismatches; 3362 } 3363 } 3364 return NoMismatch; 3365 } 3366 3367 MismatchingNewDeleteDetector::MismatchResult 3368 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, 3369 bool DeleteWasArrayForm) { 3370 assert(Field != nullptr && "Analysis requires a valid class member."); 3371 this->Field = Field; 3372 IsArrayForm = DeleteWasArrayForm; 3373 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); 3374 for (const auto *CD : RD->ctors()) { 3375 if (hasMatchingNewInCtor(CD)) 3376 return NoMismatch; 3377 } 3378 if (HasUndefinedConstructors) 3379 return EndOfTU ? NoMismatch : AnalyzeLater; 3380 if (!NewExprs.empty()) 3381 return MemberInitMismatches; 3382 return Field->hasInClassInitializer() ? analyzeInClassInitializer() 3383 : NoMismatch; 3384 } 3385 3386 MismatchingNewDeleteDetector::MismatchResult 3387 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { 3388 assert(ME != nullptr && "Expected a member expression"); 3389 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) 3390 return analyzeField(F, IsArrayForm); 3391 return NoMismatch; 3392 } 3393 3394 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { 3395 const CXXNewExpr *NE = nullptr; 3396 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { 3397 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && 3398 NE->isArray() != IsArrayForm) { 3399 NewExprs.push_back(NE); 3400 } 3401 } 3402 return NewExprs.empty(); 3403 } 3404 3405 static void 3406 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, 3407 const MismatchingNewDeleteDetector &Detector) { 3408 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); 3409 FixItHint H; 3410 if (!Detector.IsArrayForm) 3411 H = FixItHint::CreateInsertion(EndOfDelete, "[]"); 3412 else { 3413 SourceLocation RSquare = Lexer::findLocationAfterToken( 3414 DeleteLoc, tok::l_square, SemaRef.getSourceManager(), 3415 SemaRef.getLangOpts(), true); 3416 if (RSquare.isValid()) 3417 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); 3418 } 3419 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) 3420 << Detector.IsArrayForm << H; 3421 3422 for (const auto *NE : Detector.NewExprs) 3423 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) 3424 << Detector.IsArrayForm; 3425 } 3426 3427 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { 3428 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) 3429 return; 3430 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); 3431 switch (Detector.analyzeDeleteExpr(DE)) { 3432 case MismatchingNewDeleteDetector::VarInitMismatches: 3433 case MismatchingNewDeleteDetector::MemberInitMismatches: { 3434 DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); 3435 break; 3436 } 3437 case MismatchingNewDeleteDetector::AnalyzeLater: { 3438 DeleteExprs[Detector.Field].push_back( 3439 std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); 3440 break; 3441 } 3442 case MismatchingNewDeleteDetector::NoMismatch: 3443 break; 3444 } 3445 } 3446 3447 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, 3448 bool DeleteWasArrayForm) { 3449 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); 3450 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { 3451 case MismatchingNewDeleteDetector::VarInitMismatches: 3452 llvm_unreachable("This analysis should have been done for class members."); 3453 case MismatchingNewDeleteDetector::AnalyzeLater: 3454 llvm_unreachable("Analysis cannot be postponed any point beyond end of " 3455 "translation unit."); 3456 case MismatchingNewDeleteDetector::MemberInitMismatches: 3457 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); 3458 break; 3459 case MismatchingNewDeleteDetector::NoMismatch: 3460 break; 3461 } 3462 } 3463 3464 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 3465 /// @code ::delete ptr; @endcode 3466 /// or 3467 /// @code delete [] ptr; @endcode 3468 ExprResult 3469 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 3470 bool ArrayForm, Expr *ExE) { 3471 // C++ [expr.delete]p1: 3472 // The operand shall have a pointer type, or a class type having a single 3473 // non-explicit conversion function to a pointer type. The result has type 3474 // void. 3475 // 3476 // DR599 amends "pointer type" to "pointer to object type" in both cases. 3477 3478 ExprResult Ex = ExE; 3479 FunctionDecl *OperatorDelete = nullptr; 3480 bool ArrayFormAsWritten = ArrayForm; 3481 bool UsualArrayDeleteWantsSize = false; 3482 3483 if (!Ex.get()->isTypeDependent()) { 3484 // Perform lvalue-to-rvalue cast, if needed. 3485 Ex = DefaultLvalueConversion(Ex.get()); 3486 if (Ex.isInvalid()) 3487 return ExprError(); 3488 3489 QualType Type = Ex.get()->getType(); 3490 3491 class DeleteConverter : public ContextualImplicitConverter { 3492 public: 3493 DeleteConverter() : ContextualImplicitConverter(false, true) {} 3494 3495 bool match(QualType ConvType) override { 3496 // FIXME: If we have an operator T* and an operator void*, we must pick 3497 // the operator T*. 3498 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 3499 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 3500 return true; 3501 return false; 3502 } 3503 3504 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 3505 QualType T) override { 3506 return S.Diag(Loc, diag::err_delete_operand) << T; 3507 } 3508 3509 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 3510 QualType T) override { 3511 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 3512 } 3513 3514 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 3515 QualType T, 3516 QualType ConvTy) override { 3517 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 3518 } 3519 3520 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 3521 QualType ConvTy) override { 3522 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3523 << ConvTy; 3524 } 3525 3526 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 3527 QualType T) override { 3528 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 3529 } 3530 3531 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 3532 QualType ConvTy) override { 3533 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 3534 << ConvTy; 3535 } 3536 3537 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 3538 QualType T, 3539 QualType ConvTy) override { 3540 llvm_unreachable("conversion functions are permitted"); 3541 } 3542 } Converter; 3543 3544 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 3545 if (Ex.isInvalid()) 3546 return ExprError(); 3547 Type = Ex.get()->getType(); 3548 if (!Converter.match(Type)) 3549 // FIXME: PerformContextualImplicitConversion should return ExprError 3550 // itself in this case. 3551 return ExprError(); 3552 3553 QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); 3554 QualType PointeeElem = Context.getBaseElementType(Pointee); 3555 3556 if (Pointee.getAddressSpace() != LangAS::Default && 3557 !getLangOpts().OpenCLCPlusPlus) 3558 return Diag(Ex.get()->getBeginLoc(), 3559 diag::err_address_space_qualified_delete) 3560 << Pointee.getUnqualifiedType() 3561 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); 3562 3563 CXXRecordDecl *PointeeRD = nullptr; 3564 if (Pointee->isVoidType() && !isSFINAEContext()) { 3565 // The C++ standard bans deleting a pointer to a non-object type, which 3566 // effectively bans deletion of "void*". However, most compilers support 3567 // this, so we treat it as a warning unless we're in a SFINAE context. 3568 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 3569 << Type << Ex.get()->getSourceRange(); 3570 } else if (Pointee->isFunctionType() || Pointee->isVoidType() || 3571 Pointee->isSizelessType()) { 3572 return ExprError(Diag(StartLoc, diag::err_delete_operand) 3573 << Type << Ex.get()->getSourceRange()); 3574 } else if (!Pointee->isDependentType()) { 3575 // FIXME: This can result in errors if the definition was imported from a 3576 // module but is hidden. 3577 if (!RequireCompleteType(StartLoc, Pointee, 3578 diag::warn_delete_incomplete, Ex.get())) { 3579 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 3580 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 3581 } 3582 } 3583 3584 if (Pointee->isArrayType() && !ArrayForm) { 3585 Diag(StartLoc, diag::warn_delete_array_type) 3586 << Type << Ex.get()->getSourceRange() 3587 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); 3588 ArrayForm = true; 3589 } 3590 3591 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 3592 ArrayForm ? OO_Array_Delete : OO_Delete); 3593 3594 if (PointeeRD) { 3595 if (!UseGlobal && 3596 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 3597 OperatorDelete)) 3598 return ExprError(); 3599 3600 // If we're allocating an array of records, check whether the 3601 // usual operator delete[] has a size_t parameter. 3602 if (ArrayForm) { 3603 // If the user specifically asked to use the global allocator, 3604 // we'll need to do the lookup into the class. 3605 if (UseGlobal) 3606 UsualArrayDeleteWantsSize = 3607 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 3608 3609 // Otherwise, the usual operator delete[] should be the 3610 // function we just found. 3611 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 3612 UsualArrayDeleteWantsSize = 3613 UsualDeallocFnInfo(*this, 3614 DeclAccessPair::make(OperatorDelete, AS_public)) 3615 .HasSizeT; 3616 } 3617 3618 if (!PointeeRD->hasIrrelevantDestructor()) 3619 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3620 MarkFunctionReferenced(StartLoc, 3621 const_cast<CXXDestructorDecl*>(Dtor)); 3622 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 3623 return ExprError(); 3624 } 3625 3626 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, 3627 /*IsDelete=*/true, /*CallCanBeVirtual=*/true, 3628 /*WarnOnNonAbstractTypes=*/!ArrayForm, 3629 SourceLocation()); 3630 } 3631 3632 if (!OperatorDelete) { 3633 if (getLangOpts().OpenCLCPlusPlus) { 3634 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; 3635 return ExprError(); 3636 } 3637 3638 bool IsComplete = isCompleteType(StartLoc, Pointee); 3639 bool CanProvideSize = 3640 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || 3641 Pointee.isDestructedType()); 3642 bool Overaligned = hasNewExtendedAlignment(*this, Pointee); 3643 3644 // Look for a global declaration. 3645 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, 3646 Overaligned, DeleteName); 3647 } 3648 3649 MarkFunctionReferenced(StartLoc, OperatorDelete); 3650 3651 // Check access and ambiguity of destructor if we're going to call it. 3652 // Note that this is required even for a virtual delete. 3653 bool IsVirtualDelete = false; 3654 if (PointeeRD) { 3655 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 3656 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 3657 PDiag(diag::err_access_dtor) << PointeeElem); 3658 IsVirtualDelete = Dtor->isVirtual(); 3659 } 3660 } 3661 3662 DiagnoseUseOfDecl(OperatorDelete, StartLoc); 3663 3664 // Convert the operand to the type of the first parameter of operator 3665 // delete. This is only necessary if we selected a destroying operator 3666 // delete that we are going to call (non-virtually); converting to void* 3667 // is trivial and left to AST consumers to handle. 3668 QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); 3669 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { 3670 Qualifiers Qs = Pointee.getQualifiers(); 3671 if (Qs.hasCVRQualifiers()) { 3672 // Qualifiers are irrelevant to this conversion; we're only looking 3673 // for access and ambiguity. 3674 Qs.removeCVRQualifiers(); 3675 QualType Unqual = Context.getPointerType( 3676 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); 3677 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); 3678 } 3679 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); 3680 if (Ex.isInvalid()) 3681 return ExprError(); 3682 } 3683 } 3684 3685 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( 3686 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 3687 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 3688 AnalyzeDeleteExprMismatch(Result); 3689 return Result; 3690 } 3691 3692 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, 3693 bool IsDelete, 3694 FunctionDecl *&Operator) { 3695 3696 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( 3697 IsDelete ? OO_Delete : OO_New); 3698 3699 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); 3700 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); 3701 assert(!R.empty() && "implicitly declared allocation functions not found"); 3702 assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); 3703 3704 // We do our own custom access checks below. 3705 R.suppressDiagnostics(); 3706 3707 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end()); 3708 OverloadCandidateSet Candidates(R.getNameLoc(), 3709 OverloadCandidateSet::CSK_Normal); 3710 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); 3711 FnOvl != FnOvlEnd; ++FnOvl) { 3712 // Even member operator new/delete are implicitly treated as 3713 // static, so don't use AddMemberCandidate. 3714 NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); 3715 3716 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 3717 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), 3718 /*ExplicitTemplateArgs=*/nullptr, Args, 3719 Candidates, 3720 /*SuppressUserConversions=*/false); 3721 continue; 3722 } 3723 3724 FunctionDecl *Fn = cast<FunctionDecl>(D); 3725 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, 3726 /*SuppressUserConversions=*/false); 3727 } 3728 3729 SourceRange Range = TheCall->getSourceRange(); 3730 3731 // Do the resolution. 3732 OverloadCandidateSet::iterator Best; 3733 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { 3734 case OR_Success: { 3735 // Got one! 3736 FunctionDecl *FnDecl = Best->Function; 3737 assert(R.getNamingClass() == nullptr && 3738 "class members should not be considered"); 3739 3740 if (!FnDecl->isReplaceableGlobalAllocationFunction()) { 3741 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) 3742 << (IsDelete ? 1 : 0) << Range; 3743 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) 3744 << R.getLookupName() << FnDecl->getSourceRange(); 3745 return true; 3746 } 3747 3748 Operator = FnDecl; 3749 return false; 3750 } 3751 3752 case OR_No_Viable_Function: 3753 Candidates.NoteCandidates( 3754 PartialDiagnosticAt(R.getNameLoc(), 3755 S.PDiag(diag::err_ovl_no_viable_function_in_call) 3756 << R.getLookupName() << Range), 3757 S, OCD_AllCandidates, Args); 3758 return true; 3759 3760 case OR_Ambiguous: 3761 Candidates.NoteCandidates( 3762 PartialDiagnosticAt(R.getNameLoc(), 3763 S.PDiag(diag::err_ovl_ambiguous_call) 3764 << R.getLookupName() << Range), 3765 S, OCD_AmbiguousCandidates, Args); 3766 return true; 3767 3768 case OR_Deleted: { 3769 Candidates.NoteCandidates( 3770 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) 3771 << R.getLookupName() << Range), 3772 S, OCD_AllCandidates, Args); 3773 return true; 3774 } 3775 } 3776 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 3777 } 3778 3779 ExprResult 3780 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, 3781 bool IsDelete) { 3782 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 3783 if (!getLangOpts().CPlusPlus) { 3784 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) 3785 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") 3786 << "C++"; 3787 return ExprError(); 3788 } 3789 // CodeGen assumes it can find the global new and delete to call, 3790 // so ensure that they are declared. 3791 DeclareGlobalNewDelete(); 3792 3793 FunctionDecl *OperatorNewOrDelete = nullptr; 3794 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, 3795 OperatorNewOrDelete)) 3796 return ExprError(); 3797 assert(OperatorNewOrDelete && "should be found"); 3798 3799 DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); 3800 MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); 3801 3802 TheCall->setType(OperatorNewOrDelete->getReturnType()); 3803 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { 3804 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); 3805 InitializedEntity Entity = 3806 InitializedEntity::InitializeParameter(Context, ParamTy, false); 3807 ExprResult Arg = PerformCopyInitialization( 3808 Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); 3809 if (Arg.isInvalid()) 3810 return ExprError(); 3811 TheCall->setArg(i, Arg.get()); 3812 } 3813 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); 3814 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && 3815 "Callee expected to be implicit cast to a builtin function pointer"); 3816 Callee->setType(OperatorNewOrDelete->getType()); 3817 3818 return TheCallResult; 3819 } 3820 3821 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, 3822 bool IsDelete, bool CallCanBeVirtual, 3823 bool WarnOnNonAbstractTypes, 3824 SourceLocation DtorLoc) { 3825 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) 3826 return; 3827 3828 // C++ [expr.delete]p3: 3829 // In the first alternative (delete object), if the static type of the 3830 // object to be deleted is different from its dynamic type, the static 3831 // type shall be a base class of the dynamic type of the object to be 3832 // deleted and the static type shall have a virtual destructor or the 3833 // behavior is undefined. 3834 // 3835 const CXXRecordDecl *PointeeRD = dtor->getParent(); 3836 // Note: a final class cannot be derived from, no issue there 3837 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) 3838 return; 3839 3840 // If the superclass is in a system header, there's nothing that can be done. 3841 // The `delete` (where we emit the warning) can be in a system header, 3842 // what matters for this warning is where the deleted type is defined. 3843 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) 3844 return; 3845 3846 QualType ClassType = dtor->getThisType()->getPointeeType(); 3847 if (PointeeRD->isAbstract()) { 3848 // If the class is abstract, we warn by default, because we're 3849 // sure the code has undefined behavior. 3850 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) 3851 << ClassType; 3852 } else if (WarnOnNonAbstractTypes) { 3853 // Otherwise, if this is not an array delete, it's a bit suspect, 3854 // but not necessarily wrong. 3855 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) 3856 << ClassType; 3857 } 3858 if (!IsDelete) { 3859 std::string TypeStr; 3860 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); 3861 Diag(DtorLoc, diag::note_delete_non_virtual) 3862 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); 3863 } 3864 } 3865 3866 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, 3867 SourceLocation StmtLoc, 3868 ConditionKind CK) { 3869 ExprResult E = 3870 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); 3871 if (E.isInvalid()) 3872 return ConditionError(); 3873 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), 3874 CK == ConditionKind::ConstexprIf); 3875 } 3876 3877 /// Check the use of the given variable as a C++ condition in an if, 3878 /// while, do-while, or switch statement. 3879 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 3880 SourceLocation StmtLoc, 3881 ConditionKind CK) { 3882 if (ConditionVar->isInvalidDecl()) 3883 return ExprError(); 3884 3885 QualType T = ConditionVar->getType(); 3886 3887 // C++ [stmt.select]p2: 3888 // The declarator shall not specify a function or an array. 3889 if (T->isFunctionType()) 3890 return ExprError(Diag(ConditionVar->getLocation(), 3891 diag::err_invalid_use_of_function_type) 3892 << ConditionVar->getSourceRange()); 3893 else if (T->isArrayType()) 3894 return ExprError(Diag(ConditionVar->getLocation(), 3895 diag::err_invalid_use_of_array_type) 3896 << ConditionVar->getSourceRange()); 3897 3898 ExprResult Condition = BuildDeclRefExpr( 3899 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, 3900 ConditionVar->getLocation()); 3901 3902 switch (CK) { 3903 case ConditionKind::Boolean: 3904 return CheckBooleanCondition(StmtLoc, Condition.get()); 3905 3906 case ConditionKind::ConstexprIf: 3907 return CheckBooleanCondition(StmtLoc, Condition.get(), true); 3908 3909 case ConditionKind::Switch: 3910 return CheckSwitchCondition(StmtLoc, Condition.get()); 3911 } 3912 3913 llvm_unreachable("unexpected condition kind"); 3914 } 3915 3916 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 3917 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { 3918 // C++11 6.4p4: 3919 // The value of a condition that is an initialized declaration in a statement 3920 // other than a switch statement is the value of the declared variable 3921 // implicitly converted to type bool. If that conversion is ill-formed, the 3922 // program is ill-formed. 3923 // The value of a condition that is an expression is the value of the 3924 // expression, implicitly converted to bool. 3925 // 3926 // C++2b 8.5.2p2 3927 // If the if statement is of the form if constexpr, the value of the condition 3928 // is contextually converted to bool and the converted expression shall be 3929 // a constant expression. 3930 // 3931 3932 ExprResult E = PerformContextuallyConvertToBool(CondExpr); 3933 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) 3934 return E; 3935 3936 // FIXME: Return this value to the caller so they don't need to recompute it. 3937 llvm::APSInt Cond; 3938 E = VerifyIntegerConstantExpression( 3939 E.get(), &Cond, 3940 diag::err_constexpr_if_condition_expression_is_not_constant); 3941 return E; 3942 } 3943 3944 /// Helper function to determine whether this is the (deprecated) C++ 3945 /// conversion from a string literal to a pointer to non-const char or 3946 /// non-const wchar_t (for narrow and wide string literals, 3947 /// respectively). 3948 bool 3949 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 3950 // Look inside the implicit cast, if it exists. 3951 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 3952 From = Cast->getSubExpr(); 3953 3954 // A string literal (2.13.4) that is not a wide string literal can 3955 // be converted to an rvalue of type "pointer to char"; a wide 3956 // string literal can be converted to an rvalue of type "pointer 3957 // to wchar_t" (C++ 4.2p2). 3958 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 3959 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 3960 if (const BuiltinType *ToPointeeType 3961 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 3962 // This conversion is considered only when there is an 3963 // explicit appropriate pointer target type (C++ 4.2p2). 3964 if (!ToPtrType->getPointeeType().hasQualifiers()) { 3965 switch (StrLit->getKind()) { 3966 case StringLiteral::UTF8: 3967 case StringLiteral::UTF16: 3968 case StringLiteral::UTF32: 3969 // We don't allow UTF literals to be implicitly converted 3970 break; 3971 case StringLiteral::Ascii: 3972 return (ToPointeeType->getKind() == BuiltinType::Char_U || 3973 ToPointeeType->getKind() == BuiltinType::Char_S); 3974 case StringLiteral::Wide: 3975 return Context.typesAreCompatible(Context.getWideCharType(), 3976 QualType(ToPointeeType, 0)); 3977 } 3978 } 3979 } 3980 3981 return false; 3982 } 3983 3984 static ExprResult BuildCXXCastArgument(Sema &S, 3985 SourceLocation CastLoc, 3986 QualType Ty, 3987 CastKind Kind, 3988 CXXMethodDecl *Method, 3989 DeclAccessPair FoundDecl, 3990 bool HadMultipleCandidates, 3991 Expr *From) { 3992 switch (Kind) { 3993 default: llvm_unreachable("Unhandled cast kind!"); 3994 case CK_ConstructorConversion: { 3995 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 3996 SmallVector<Expr*, 8> ConstructorArgs; 3997 3998 if (S.RequireNonAbstractType(CastLoc, Ty, 3999 diag::err_allocation_of_abstract_type)) 4000 return ExprError(); 4001 4002 if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, 4003 ConstructorArgs)) 4004 return ExprError(); 4005 4006 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, 4007 InitializedEntity::InitializeTemporary(Ty)); 4008 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4009 return ExprError(); 4010 4011 ExprResult Result = S.BuildCXXConstructExpr( 4012 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), 4013 ConstructorArgs, HadMultipleCandidates, 4014 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4015 CXXConstructExpr::CK_Complete, SourceRange()); 4016 if (Result.isInvalid()) 4017 return ExprError(); 4018 4019 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 4020 } 4021 4022 case CK_UserDefinedConversion: { 4023 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); 4024 4025 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 4026 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 4027 return ExprError(); 4028 4029 // Create an implicit call expr that calls it. 4030 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 4031 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 4032 HadMultipleCandidates); 4033 if (Result.isInvalid()) 4034 return ExprError(); 4035 // Record usage of conversion in an implicit cast. 4036 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 4037 CK_UserDefinedConversion, Result.get(), 4038 nullptr, Result.get()->getValueKind(), 4039 S.CurFPFeatureOverrides()); 4040 4041 return S.MaybeBindToTemporary(Result.get()); 4042 } 4043 } 4044 } 4045 4046 /// PerformImplicitConversion - Perform an implicit conversion of the 4047 /// expression From to the type ToType using the pre-computed implicit 4048 /// conversion sequence ICS. Returns the converted 4049 /// expression. Action is the kind of conversion we're performing, 4050 /// used in the error message. 4051 ExprResult 4052 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4053 const ImplicitConversionSequence &ICS, 4054 AssignmentAction Action, 4055 CheckedConversionKind CCK) { 4056 // C++ [over.match.oper]p7: [...] operands of class type are converted [...] 4057 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) 4058 return From; 4059 4060 switch (ICS.getKind()) { 4061 case ImplicitConversionSequence::StandardConversion: { 4062 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 4063 Action, CCK); 4064 if (Res.isInvalid()) 4065 return ExprError(); 4066 From = Res.get(); 4067 break; 4068 } 4069 4070 case ImplicitConversionSequence::UserDefinedConversion: { 4071 4072 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 4073 CastKind CastKind; 4074 QualType BeforeToType; 4075 assert(FD && "no conversion function for user-defined conversion seq"); 4076 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 4077 CastKind = CK_UserDefinedConversion; 4078 4079 // If the user-defined conversion is specified by a conversion function, 4080 // the initial standard conversion sequence converts the source type to 4081 // the implicit object parameter of the conversion function. 4082 BeforeToType = Context.getTagDeclType(Conv->getParent()); 4083 } else { 4084 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 4085 CastKind = CK_ConstructorConversion; 4086 // Do no conversion if dealing with ... for the first conversion. 4087 if (!ICS.UserDefined.EllipsisConversion) { 4088 // If the user-defined conversion is specified by a constructor, the 4089 // initial standard conversion sequence converts the source type to 4090 // the type required by the argument of the constructor 4091 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 4092 } 4093 } 4094 // Watch out for ellipsis conversion. 4095 if (!ICS.UserDefined.EllipsisConversion) { 4096 ExprResult Res = 4097 PerformImplicitConversion(From, BeforeToType, 4098 ICS.UserDefined.Before, AA_Converting, 4099 CCK); 4100 if (Res.isInvalid()) 4101 return ExprError(); 4102 From = Res.get(); 4103 } 4104 4105 ExprResult CastArg = BuildCXXCastArgument( 4106 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, 4107 cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, 4108 ICS.UserDefined.HadMultipleCandidates, From); 4109 4110 if (CastArg.isInvalid()) 4111 return ExprError(); 4112 4113 From = CastArg.get(); 4114 4115 // C++ [over.match.oper]p7: 4116 // [...] the second standard conversion sequence of a user-defined 4117 // conversion sequence is not applied. 4118 if (CCK == CCK_ForBuiltinOverloadedOp) 4119 return From; 4120 4121 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 4122 AA_Converting, CCK); 4123 } 4124 4125 case ImplicitConversionSequence::AmbiguousConversion: 4126 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 4127 PDiag(diag::err_typecheck_ambiguous_condition) 4128 << From->getSourceRange()); 4129 return ExprError(); 4130 4131 case ImplicitConversionSequence::EllipsisConversion: 4132 llvm_unreachable("Cannot perform an ellipsis conversion"); 4133 4134 case ImplicitConversionSequence::BadConversion: 4135 Sema::AssignConvertType ConvTy = 4136 CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); 4137 bool Diagnosed = DiagnoseAssignmentResult( 4138 ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), 4139 ToType, From->getType(), From, Action); 4140 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed; 4141 return ExprError(); 4142 } 4143 4144 // Everything went well. 4145 return From; 4146 } 4147 4148 /// PerformImplicitConversion - Perform an implicit conversion of the 4149 /// expression From to the type ToType by following the standard 4150 /// conversion sequence SCS. Returns the converted 4151 /// expression. Flavor is the context in which we're performing this 4152 /// conversion, for use in error messages. 4153 ExprResult 4154 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 4155 const StandardConversionSequence& SCS, 4156 AssignmentAction Action, 4157 CheckedConversionKind CCK) { 4158 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 4159 4160 // Overall FIXME: we are recomputing too many types here and doing far too 4161 // much extra work. What this means is that we need to keep track of more 4162 // information that is computed when we try the implicit conversion initially, 4163 // so that we don't need to recompute anything here. 4164 QualType FromType = From->getType(); 4165 4166 if (SCS.CopyConstructor) { 4167 // FIXME: When can ToType be a reference type? 4168 assert(!ToType->isReferenceType()); 4169 if (SCS.Second == ICK_Derived_To_Base) { 4170 SmallVector<Expr*, 8> ConstructorArgs; 4171 if (CompleteConstructorCall( 4172 cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, 4173 /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) 4174 return ExprError(); 4175 return BuildCXXConstructExpr( 4176 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4177 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4178 ConstructorArgs, /*HadMultipleCandidates*/ false, 4179 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4180 CXXConstructExpr::CK_Complete, SourceRange()); 4181 } 4182 return BuildCXXConstructExpr( 4183 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, 4184 SCS.FoundCopyConstructor, SCS.CopyConstructor, 4185 From, /*HadMultipleCandidates*/ false, 4186 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 4187 CXXConstructExpr::CK_Complete, SourceRange()); 4188 } 4189 4190 // Resolve overloaded function references. 4191 if (Context.hasSameType(FromType, Context.OverloadTy)) { 4192 DeclAccessPair Found; 4193 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 4194 true, Found); 4195 if (!Fn) 4196 return ExprError(); 4197 4198 if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) 4199 return ExprError(); 4200 4201 From = FixOverloadedFunctionReference(From, Found, Fn); 4202 FromType = From->getType(); 4203 } 4204 4205 // If we're converting to an atomic type, first convert to the corresponding 4206 // non-atomic type. 4207 QualType ToAtomicType; 4208 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 4209 ToAtomicType = ToType; 4210 ToType = ToAtomic->getValueType(); 4211 } 4212 4213 QualType InitialFromType = FromType; 4214 // Perform the first implicit conversion. 4215 switch (SCS.First) { 4216 case ICK_Identity: 4217 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 4218 FromType = FromAtomic->getValueType().getUnqualifiedType(); 4219 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 4220 From, /*BasePath=*/nullptr, VK_PRValue, 4221 FPOptionsOverride()); 4222 } 4223 break; 4224 4225 case ICK_Lvalue_To_Rvalue: { 4226 assert(From->getObjectKind() != OK_ObjCProperty); 4227 ExprResult FromRes = DefaultLvalueConversion(From); 4228 if (FromRes.isInvalid()) 4229 return ExprError(); 4230 4231 From = FromRes.get(); 4232 FromType = From->getType(); 4233 break; 4234 } 4235 4236 case ICK_Array_To_Pointer: 4237 FromType = Context.getArrayDecayedType(FromType); 4238 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue, 4239 /*BasePath=*/nullptr, CCK) 4240 .get(); 4241 break; 4242 4243 case ICK_Function_To_Pointer: 4244 FromType = Context.getPointerType(FromType); 4245 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 4246 VK_PRValue, /*BasePath=*/nullptr, CCK) 4247 .get(); 4248 break; 4249 4250 default: 4251 llvm_unreachable("Improper first standard conversion"); 4252 } 4253 4254 // Perform the second implicit conversion 4255 switch (SCS.Second) { 4256 case ICK_Identity: 4257 // C++ [except.spec]p5: 4258 // [For] assignment to and initialization of pointers to functions, 4259 // pointers to member functions, and references to functions: the 4260 // target entity shall allow at least the exceptions allowed by the 4261 // source value in the assignment or initialization. 4262 switch (Action) { 4263 case AA_Assigning: 4264 case AA_Initializing: 4265 // Note, function argument passing and returning are initialization. 4266 case AA_Passing: 4267 case AA_Returning: 4268 case AA_Sending: 4269 case AA_Passing_CFAudited: 4270 if (CheckExceptionSpecCompatibility(From, ToType)) 4271 return ExprError(); 4272 break; 4273 4274 case AA_Casting: 4275 case AA_Converting: 4276 // Casts and implicit conversions are not initialization, so are not 4277 // checked for exception specification mismatches. 4278 break; 4279 } 4280 // Nothing else to do. 4281 break; 4282 4283 case ICK_Integral_Promotion: 4284 case ICK_Integral_Conversion: 4285 if (ToType->isBooleanType()) { 4286 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && 4287 SCS.Second == ICK_Integral_Promotion && 4288 "only enums with fixed underlying type can promote to bool"); 4289 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue, 4290 /*BasePath=*/nullptr, CCK) 4291 .get(); 4292 } else { 4293 From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue, 4294 /*BasePath=*/nullptr, CCK) 4295 .get(); 4296 } 4297 break; 4298 4299 case ICK_Floating_Promotion: 4300 case ICK_Floating_Conversion: 4301 From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue, 4302 /*BasePath=*/nullptr, CCK) 4303 .get(); 4304 break; 4305 4306 case ICK_Complex_Promotion: 4307 case ICK_Complex_Conversion: { 4308 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); 4309 QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); 4310 CastKind CK; 4311 if (FromEl->isRealFloatingType()) { 4312 if (ToEl->isRealFloatingType()) 4313 CK = CK_FloatingComplexCast; 4314 else 4315 CK = CK_FloatingComplexToIntegralComplex; 4316 } else if (ToEl->isRealFloatingType()) { 4317 CK = CK_IntegralComplexToFloatingComplex; 4318 } else { 4319 CK = CK_IntegralComplexCast; 4320 } 4321 From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr, 4322 CCK) 4323 .get(); 4324 break; 4325 } 4326 4327 case ICK_Floating_Integral: 4328 if (ToType->isRealFloatingType()) 4329 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue, 4330 /*BasePath=*/nullptr, CCK) 4331 .get(); 4332 else 4333 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue, 4334 /*BasePath=*/nullptr, CCK) 4335 .get(); 4336 break; 4337 4338 case ICK_Compatible_Conversion: 4339 From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), 4340 /*BasePath=*/nullptr, CCK).get(); 4341 break; 4342 4343 case ICK_Writeback_Conversion: 4344 case ICK_Pointer_Conversion: { 4345 if (SCS.IncompatibleObjC && Action != AA_Casting) { 4346 // Diagnose incompatible Objective-C conversions 4347 if (Action == AA_Initializing || Action == AA_Assigning) 4348 Diag(From->getBeginLoc(), 4349 diag::ext_typecheck_convert_incompatible_pointer) 4350 << ToType << From->getType() << Action << From->getSourceRange() 4351 << 0; 4352 else 4353 Diag(From->getBeginLoc(), 4354 diag::ext_typecheck_convert_incompatible_pointer) 4355 << From->getType() << ToType << Action << From->getSourceRange() 4356 << 0; 4357 4358 if (From->getType()->isObjCObjectPointerType() && 4359 ToType->isObjCObjectPointerType()) 4360 EmitRelatedResultTypeNote(From); 4361 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 4362 !CheckObjCARCUnavailableWeakConversion(ToType, 4363 From->getType())) { 4364 if (Action == AA_Initializing) 4365 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); 4366 else 4367 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) 4368 << (Action == AA_Casting) << From->getType() << ToType 4369 << From->getSourceRange(); 4370 } 4371 4372 // Defer address space conversion to the third conversion. 4373 QualType FromPteeType = From->getType()->getPointeeType(); 4374 QualType ToPteeType = ToType->getPointeeType(); 4375 QualType NewToType = ToType; 4376 if (!FromPteeType.isNull() && !ToPteeType.isNull() && 4377 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { 4378 NewToType = Context.removeAddrSpaceQualType(ToPteeType); 4379 NewToType = Context.getAddrSpaceQualType(NewToType, 4380 FromPteeType.getAddressSpace()); 4381 if (ToType->isObjCObjectPointerType()) 4382 NewToType = Context.getObjCObjectPointerType(NewToType); 4383 else if (ToType->isBlockPointerType()) 4384 NewToType = Context.getBlockPointerType(NewToType); 4385 else 4386 NewToType = Context.getPointerType(NewToType); 4387 } 4388 4389 CastKind Kind; 4390 CXXCastPath BasePath; 4391 if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) 4392 return ExprError(); 4393 4394 // Make sure we extend blocks if necessary. 4395 // FIXME: doing this here is really ugly. 4396 if (Kind == CK_BlockPointerToObjCPointerCast) { 4397 ExprResult E = From; 4398 (void) PrepareCastToObjCObjectPointer(E); 4399 From = E.get(); 4400 } 4401 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 4402 CheckObjCConversion(SourceRange(), NewToType, From, CCK); 4403 From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK) 4404 .get(); 4405 break; 4406 } 4407 4408 case ICK_Pointer_Member: { 4409 CastKind Kind; 4410 CXXCastPath BasePath; 4411 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 4412 return ExprError(); 4413 if (CheckExceptionSpecCompatibility(From, ToType)) 4414 return ExprError(); 4415 4416 // We may not have been able to figure out what this member pointer resolved 4417 // to up until this exact point. Attempt to lock-in it's inheritance model. 4418 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 4419 (void)isCompleteType(From->getExprLoc(), From->getType()); 4420 (void)isCompleteType(From->getExprLoc(), ToType); 4421 } 4422 4423 From = 4424 ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get(); 4425 break; 4426 } 4427 4428 case ICK_Boolean_Conversion: 4429 // Perform half-to-boolean conversion via float. 4430 if (From->getType()->isHalfType()) { 4431 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 4432 FromType = Context.FloatTy; 4433 } 4434 4435 From = ImpCastExprToType(From, Context.BoolTy, 4436 ScalarTypeToBooleanCastKind(FromType), VK_PRValue, 4437 /*BasePath=*/nullptr, CCK) 4438 .get(); 4439 break; 4440 4441 case ICK_Derived_To_Base: { 4442 CXXCastPath BasePath; 4443 if (CheckDerivedToBaseConversion( 4444 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), 4445 From->getSourceRange(), &BasePath, CStyle)) 4446 return ExprError(); 4447 4448 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 4449 CK_DerivedToBase, From->getValueKind(), 4450 &BasePath, CCK).get(); 4451 break; 4452 } 4453 4454 case ICK_Vector_Conversion: 4455 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4456 /*BasePath=*/nullptr, CCK) 4457 .get(); 4458 break; 4459 4460 case ICK_SVE_Vector_Conversion: 4461 From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, 4462 /*BasePath=*/nullptr, CCK) 4463 .get(); 4464 break; 4465 4466 case ICK_Vector_Splat: { 4467 // Vector splat from any arithmetic type to a vector. 4468 Expr *Elem = prepareVectorSplat(ToType, From).get(); 4469 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, 4470 /*BasePath=*/nullptr, CCK) 4471 .get(); 4472 break; 4473 } 4474 4475 case ICK_Complex_Real: 4476 // Case 1. x -> _Complex y 4477 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 4478 QualType ElType = ToComplex->getElementType(); 4479 bool isFloatingComplex = ElType->isRealFloatingType(); 4480 4481 // x -> y 4482 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 4483 // do nothing 4484 } else if (From->getType()->isRealFloatingType()) { 4485 From = ImpCastExprToType(From, ElType, 4486 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 4487 } else { 4488 assert(From->getType()->isIntegerType()); 4489 From = ImpCastExprToType(From, ElType, 4490 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 4491 } 4492 // y -> _Complex y 4493 From = ImpCastExprToType(From, ToType, 4494 isFloatingComplex ? CK_FloatingRealToComplex 4495 : CK_IntegralRealToComplex).get(); 4496 4497 // Case 2. _Complex x -> y 4498 } else { 4499 auto *FromComplex = From->getType()->castAs<ComplexType>(); 4500 QualType ElType = FromComplex->getElementType(); 4501 bool isFloatingComplex = ElType->isRealFloatingType(); 4502 4503 // _Complex x -> x 4504 From = ImpCastExprToType(From, ElType, 4505 isFloatingComplex ? CK_FloatingComplexToReal 4506 : CK_IntegralComplexToReal, 4507 VK_PRValue, /*BasePath=*/nullptr, CCK) 4508 .get(); 4509 4510 // x -> y 4511 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 4512 // do nothing 4513 } else if (ToType->isRealFloatingType()) { 4514 From = ImpCastExprToType(From, ToType, 4515 isFloatingComplex ? CK_FloatingCast 4516 : CK_IntegralToFloating, 4517 VK_PRValue, /*BasePath=*/nullptr, CCK) 4518 .get(); 4519 } else { 4520 assert(ToType->isIntegerType()); 4521 From = ImpCastExprToType(From, ToType, 4522 isFloatingComplex ? CK_FloatingToIntegral 4523 : CK_IntegralCast, 4524 VK_PRValue, /*BasePath=*/nullptr, CCK) 4525 .get(); 4526 } 4527 } 4528 break; 4529 4530 case ICK_Block_Pointer_Conversion: { 4531 LangAS AddrSpaceL = 4532 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4533 LangAS AddrSpaceR = 4534 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); 4535 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && 4536 "Invalid cast"); 4537 CastKind Kind = 4538 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; 4539 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, 4540 VK_PRValue, /*BasePath=*/nullptr, CCK) 4541 .get(); 4542 break; 4543 } 4544 4545 case ICK_TransparentUnionConversion: { 4546 ExprResult FromRes = From; 4547 Sema::AssignConvertType ConvTy = 4548 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 4549 if (FromRes.isInvalid()) 4550 return ExprError(); 4551 From = FromRes.get(); 4552 assert ((ConvTy == Sema::Compatible) && 4553 "Improper transparent union conversion"); 4554 (void)ConvTy; 4555 break; 4556 } 4557 4558 case ICK_Zero_Event_Conversion: 4559 case ICK_Zero_Queue_Conversion: 4560 From = ImpCastExprToType(From, ToType, 4561 CK_ZeroToOCLOpaqueType, 4562 From->getValueKind()).get(); 4563 break; 4564 4565 case ICK_Lvalue_To_Rvalue: 4566 case ICK_Array_To_Pointer: 4567 case ICK_Function_To_Pointer: 4568 case ICK_Function_Conversion: 4569 case ICK_Qualification: 4570 case ICK_Num_Conversion_Kinds: 4571 case ICK_C_Only_Conversion: 4572 case ICK_Incompatible_Pointer_Conversion: 4573 llvm_unreachable("Improper second standard conversion"); 4574 } 4575 4576 switch (SCS.Third) { 4577 case ICK_Identity: 4578 // Nothing to do. 4579 break; 4580 4581 case ICK_Function_Conversion: 4582 // If both sides are functions (or pointers/references to them), there could 4583 // be incompatible exception declarations. 4584 if (CheckExceptionSpecCompatibility(From, ToType)) 4585 return ExprError(); 4586 4587 From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue, 4588 /*BasePath=*/nullptr, CCK) 4589 .get(); 4590 break; 4591 4592 case ICK_Qualification: { 4593 ExprValueKind VK = From->getValueKind(); 4594 CastKind CK = CK_NoOp; 4595 4596 if (ToType->isReferenceType() && 4597 ToType->getPointeeType().getAddressSpace() != 4598 From->getType().getAddressSpace()) 4599 CK = CK_AddressSpaceConversion; 4600 4601 if (ToType->isPointerType() && 4602 ToType->getPointeeType().getAddressSpace() != 4603 From->getType()->getPointeeType().getAddressSpace()) 4604 CK = CK_AddressSpaceConversion; 4605 4606 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, 4607 /*BasePath=*/nullptr, CCK) 4608 .get(); 4609 4610 if (SCS.DeprecatedStringLiteralToCharPtr && 4611 !getLangOpts().WritableStrings) { 4612 Diag(From->getBeginLoc(), 4613 getLangOpts().CPlusPlus11 4614 ? diag::ext_deprecated_string_literal_conversion 4615 : diag::warn_deprecated_string_literal_conversion) 4616 << ToType.getNonReferenceType(); 4617 } 4618 4619 break; 4620 } 4621 4622 default: 4623 llvm_unreachable("Improper third standard conversion"); 4624 } 4625 4626 // If this conversion sequence involved a scalar -> atomic conversion, perform 4627 // that conversion now. 4628 if (!ToAtomicType.isNull()) { 4629 assert(Context.hasSameType( 4630 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); 4631 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 4632 VK_PRValue, nullptr, CCK) 4633 .get(); 4634 } 4635 4636 // Materialize a temporary if we're implicitly converting to a reference 4637 // type. This is not required by the C++ rules but is necessary to maintain 4638 // AST invariants. 4639 if (ToType->isReferenceType() && From->isPRValue()) { 4640 ExprResult Res = TemporaryMaterializationConversion(From); 4641 if (Res.isInvalid()) 4642 return ExprError(); 4643 From = Res.get(); 4644 } 4645 4646 // If this conversion sequence succeeded and involved implicitly converting a 4647 // _Nullable type to a _Nonnull one, complain. 4648 if (!isCast(CCK)) 4649 diagnoseNullableToNonnullConversion(ToType, InitialFromType, 4650 From->getBeginLoc()); 4651 4652 return From; 4653 } 4654 4655 /// Check the completeness of a type in a unary type trait. 4656 /// 4657 /// If the particular type trait requires a complete type, tries to complete 4658 /// it. If completing the type fails, a diagnostic is emitted and false 4659 /// returned. If completing the type succeeds or no completion was required, 4660 /// returns true. 4661 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 4662 SourceLocation Loc, 4663 QualType ArgTy) { 4664 // C++0x [meta.unary.prop]p3: 4665 // For all of the class templates X declared in this Clause, instantiating 4666 // that template with a template argument that is a class template 4667 // specialization may result in the implicit instantiation of the template 4668 // argument if and only if the semantics of X require that the argument 4669 // must be a complete type. 4670 // We apply this rule to all the type trait expressions used to implement 4671 // these class templates. We also try to follow any GCC documented behavior 4672 // in these expressions to ensure portability of standard libraries. 4673 switch (UTT) { 4674 default: llvm_unreachable("not a UTT"); 4675 // is_complete_type somewhat obviously cannot require a complete type. 4676 case UTT_IsCompleteType: 4677 // Fall-through 4678 4679 // These traits are modeled on the type predicates in C++0x 4680 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 4681 // requiring a complete type, as whether or not they return true cannot be 4682 // impacted by the completeness of the type. 4683 case UTT_IsVoid: 4684 case UTT_IsIntegral: 4685 case UTT_IsFloatingPoint: 4686 case UTT_IsArray: 4687 case UTT_IsPointer: 4688 case UTT_IsLvalueReference: 4689 case UTT_IsRvalueReference: 4690 case UTT_IsMemberFunctionPointer: 4691 case UTT_IsMemberObjectPointer: 4692 case UTT_IsEnum: 4693 case UTT_IsUnion: 4694 case UTT_IsClass: 4695 case UTT_IsFunction: 4696 case UTT_IsReference: 4697 case UTT_IsArithmetic: 4698 case UTT_IsFundamental: 4699 case UTT_IsObject: 4700 case UTT_IsScalar: 4701 case UTT_IsCompound: 4702 case UTT_IsMemberPointer: 4703 // Fall-through 4704 4705 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 4706 // which requires some of its traits to have the complete type. However, 4707 // the completeness of the type cannot impact these traits' semantics, and 4708 // so they don't require it. This matches the comments on these traits in 4709 // Table 49. 4710 case UTT_IsConst: 4711 case UTT_IsVolatile: 4712 case UTT_IsSigned: 4713 case UTT_IsUnsigned: 4714 4715 // This type trait always returns false, checking the type is moot. 4716 case UTT_IsInterfaceClass: 4717 return true; 4718 4719 // C++14 [meta.unary.prop]: 4720 // If T is a non-union class type, T shall be a complete type. 4721 case UTT_IsEmpty: 4722 case UTT_IsPolymorphic: 4723 case UTT_IsAbstract: 4724 if (const auto *RD = ArgTy->getAsCXXRecordDecl()) 4725 if (!RD->isUnion()) 4726 return !S.RequireCompleteType( 4727 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4728 return true; 4729 4730 // C++14 [meta.unary.prop]: 4731 // If T is a class type, T shall be a complete type. 4732 case UTT_IsFinal: 4733 case UTT_IsSealed: 4734 if (ArgTy->getAsCXXRecordDecl()) 4735 return !S.RequireCompleteType( 4736 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4737 return true; 4738 4739 // C++1z [meta.unary.prop]: 4740 // remove_all_extents_t<T> shall be a complete type or cv void. 4741 case UTT_IsAggregate: 4742 case UTT_IsTrivial: 4743 case UTT_IsTriviallyCopyable: 4744 case UTT_IsStandardLayout: 4745 case UTT_IsPOD: 4746 case UTT_IsLiteral: 4747 // Per the GCC type traits documentation, T shall be a complete type, cv void, 4748 // or an array of unknown bound. But GCC actually imposes the same constraints 4749 // as above. 4750 case UTT_HasNothrowAssign: 4751 case UTT_HasNothrowMoveAssign: 4752 case UTT_HasNothrowConstructor: 4753 case UTT_HasNothrowCopy: 4754 case UTT_HasTrivialAssign: 4755 case UTT_HasTrivialMoveAssign: 4756 case UTT_HasTrivialDefaultConstructor: 4757 case UTT_HasTrivialMoveConstructor: 4758 case UTT_HasTrivialCopy: 4759 case UTT_HasTrivialDestructor: 4760 case UTT_HasVirtualDestructor: 4761 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); 4762 LLVM_FALLTHROUGH; 4763 4764 // C++1z [meta.unary.prop]: 4765 // T shall be a complete type, cv void, or an array of unknown bound. 4766 case UTT_IsDestructible: 4767 case UTT_IsNothrowDestructible: 4768 case UTT_IsTriviallyDestructible: 4769 case UTT_HasUniqueObjectRepresentations: 4770 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) 4771 return true; 4772 4773 return !S.RequireCompleteType( 4774 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); 4775 } 4776 } 4777 4778 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 4779 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 4780 bool (CXXRecordDecl::*HasTrivial)() const, 4781 bool (CXXRecordDecl::*HasNonTrivial)() const, 4782 bool (CXXMethodDecl::*IsDesiredOp)() const) 4783 { 4784 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 4785 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 4786 return true; 4787 4788 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 4789 DeclarationNameInfo NameInfo(Name, KeyLoc); 4790 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 4791 if (Self.LookupQualifiedName(Res, RD)) { 4792 bool FoundOperator = false; 4793 Res.suppressDiagnostics(); 4794 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 4795 Op != OpEnd; ++Op) { 4796 if (isa<FunctionTemplateDecl>(*Op)) 4797 continue; 4798 4799 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 4800 if((Operator->*IsDesiredOp)()) { 4801 FoundOperator = true; 4802 auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); 4803 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 4804 if (!CPT || !CPT->isNothrow()) 4805 return false; 4806 } 4807 } 4808 return FoundOperator; 4809 } 4810 return false; 4811 } 4812 4813 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 4814 SourceLocation KeyLoc, QualType T) { 4815 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 4816 4817 ASTContext &C = Self.Context; 4818 switch(UTT) { 4819 default: llvm_unreachable("not a UTT"); 4820 // Type trait expressions corresponding to the primary type category 4821 // predicates in C++0x [meta.unary.cat]. 4822 case UTT_IsVoid: 4823 return T->isVoidType(); 4824 case UTT_IsIntegral: 4825 return T->isIntegralType(C); 4826 case UTT_IsFloatingPoint: 4827 return T->isFloatingType(); 4828 case UTT_IsArray: 4829 return T->isArrayType(); 4830 case UTT_IsPointer: 4831 return T->isAnyPointerType(); 4832 case UTT_IsLvalueReference: 4833 return T->isLValueReferenceType(); 4834 case UTT_IsRvalueReference: 4835 return T->isRValueReferenceType(); 4836 case UTT_IsMemberFunctionPointer: 4837 return T->isMemberFunctionPointerType(); 4838 case UTT_IsMemberObjectPointer: 4839 return T->isMemberDataPointerType(); 4840 case UTT_IsEnum: 4841 return T->isEnumeralType(); 4842 case UTT_IsUnion: 4843 return T->isUnionType(); 4844 case UTT_IsClass: 4845 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 4846 case UTT_IsFunction: 4847 return T->isFunctionType(); 4848 4849 // Type trait expressions which correspond to the convenient composition 4850 // predicates in C++0x [meta.unary.comp]. 4851 case UTT_IsReference: 4852 return T->isReferenceType(); 4853 case UTT_IsArithmetic: 4854 return T->isArithmeticType() && !T->isEnumeralType(); 4855 case UTT_IsFundamental: 4856 return T->isFundamentalType(); 4857 case UTT_IsObject: 4858 return T->isObjectType(); 4859 case UTT_IsScalar: 4860 // Note: semantic analysis depends on Objective-C lifetime types to be 4861 // considered scalar types. However, such types do not actually behave 4862 // like scalar types at run time (since they may require retain/release 4863 // operations), so we report them as non-scalar. 4864 if (T->isObjCLifetimeType()) { 4865 switch (T.getObjCLifetime()) { 4866 case Qualifiers::OCL_None: 4867 case Qualifiers::OCL_ExplicitNone: 4868 return true; 4869 4870 case Qualifiers::OCL_Strong: 4871 case Qualifiers::OCL_Weak: 4872 case Qualifiers::OCL_Autoreleasing: 4873 return false; 4874 } 4875 } 4876 4877 return T->isScalarType(); 4878 case UTT_IsCompound: 4879 return T->isCompoundType(); 4880 case UTT_IsMemberPointer: 4881 return T->isMemberPointerType(); 4882 4883 // Type trait expressions which correspond to the type property predicates 4884 // in C++0x [meta.unary.prop]. 4885 case UTT_IsConst: 4886 return T.isConstQualified(); 4887 case UTT_IsVolatile: 4888 return T.isVolatileQualified(); 4889 case UTT_IsTrivial: 4890 return T.isTrivialType(C); 4891 case UTT_IsTriviallyCopyable: 4892 return T.isTriviallyCopyableType(C); 4893 case UTT_IsStandardLayout: 4894 return T->isStandardLayoutType(); 4895 case UTT_IsPOD: 4896 return T.isPODType(C); 4897 case UTT_IsLiteral: 4898 return T->isLiteralType(C); 4899 case UTT_IsEmpty: 4900 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4901 return !RD->isUnion() && RD->isEmpty(); 4902 return false; 4903 case UTT_IsPolymorphic: 4904 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4905 return !RD->isUnion() && RD->isPolymorphic(); 4906 return false; 4907 case UTT_IsAbstract: 4908 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4909 return !RD->isUnion() && RD->isAbstract(); 4910 return false; 4911 case UTT_IsAggregate: 4912 // Report vector extensions and complex types as aggregates because they 4913 // support aggregate initialization. GCC mirrors this behavior for vectors 4914 // but not _Complex. 4915 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || 4916 T->isAnyComplexType(); 4917 // __is_interface_class only returns true when CL is invoked in /CLR mode and 4918 // even then only when it is used with the 'interface struct ...' syntax 4919 // Clang doesn't support /CLR which makes this type trait moot. 4920 case UTT_IsInterfaceClass: 4921 return false; 4922 case UTT_IsFinal: 4923 case UTT_IsSealed: 4924 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4925 return RD->hasAttr<FinalAttr>(); 4926 return false; 4927 case UTT_IsSigned: 4928 // Enum types should always return false. 4929 // Floating points should always return true. 4930 return T->isFloatingType() || 4931 (T->isSignedIntegerType() && !T->isEnumeralType()); 4932 case UTT_IsUnsigned: 4933 // Enum types should always return false. 4934 return T->isUnsignedIntegerType() && !T->isEnumeralType(); 4935 4936 // Type trait expressions which query classes regarding their construction, 4937 // destruction, and copying. Rather than being based directly on the 4938 // related type predicates in the standard, they are specified by both 4939 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 4940 // specifications. 4941 // 4942 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 4943 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 4944 // 4945 // Note that these builtins do not behave as documented in g++: if a class 4946 // has both a trivial and a non-trivial special member of a particular kind, 4947 // they return false! For now, we emulate this behavior. 4948 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 4949 // does not correctly compute triviality in the presence of multiple special 4950 // members of the same kind. Revisit this once the g++ bug is fixed. 4951 case UTT_HasTrivialDefaultConstructor: 4952 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4953 // If __is_pod (type) is true then the trait is true, else if type is 4954 // a cv class or union type (or array thereof) with a trivial default 4955 // constructor ([class.ctor]) then the trait is true, else it is false. 4956 if (T.isPODType(C)) 4957 return true; 4958 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4959 return RD->hasTrivialDefaultConstructor() && 4960 !RD->hasNonTrivialDefaultConstructor(); 4961 return false; 4962 case UTT_HasTrivialMoveConstructor: 4963 // This trait is implemented by MSVC 2012 and needed to parse the 4964 // standard library headers. Specifically this is used as the logic 4965 // behind std::is_trivially_move_constructible (20.9.4.3). 4966 if (T.isPODType(C)) 4967 return true; 4968 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4969 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 4970 return false; 4971 case UTT_HasTrivialCopy: 4972 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4973 // If __is_pod (type) is true or type is a reference type then 4974 // the trait is true, else if type is a cv class or union type 4975 // with a trivial copy constructor ([class.copy]) then the trait 4976 // is true, else it is false. 4977 if (T.isPODType(C) || T->isReferenceType()) 4978 return true; 4979 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4980 return RD->hasTrivialCopyConstructor() && 4981 !RD->hasNonTrivialCopyConstructor(); 4982 return false; 4983 case UTT_HasTrivialMoveAssign: 4984 // This trait is implemented by MSVC 2012 and needed to parse the 4985 // standard library headers. Specifically it is used as the logic 4986 // behind std::is_trivially_move_assignable (20.9.4.3) 4987 if (T.isPODType(C)) 4988 return true; 4989 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 4990 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 4991 return false; 4992 case UTT_HasTrivialAssign: 4993 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 4994 // If type is const qualified or is a reference type then the 4995 // trait is false. Otherwise if __is_pod (type) is true then the 4996 // trait is true, else if type is a cv class or union type with 4997 // a trivial copy assignment ([class.copy]) then the trait is 4998 // true, else it is false. 4999 // Note: the const and reference restrictions are interesting, 5000 // given that const and reference members don't prevent a class 5001 // from having a trivial copy assignment operator (but do cause 5002 // errors if the copy assignment operator is actually used, q.v. 5003 // [class.copy]p12). 5004 5005 if (T.isConstQualified()) 5006 return false; 5007 if (T.isPODType(C)) 5008 return true; 5009 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5010 return RD->hasTrivialCopyAssignment() && 5011 !RD->hasNonTrivialCopyAssignment(); 5012 return false; 5013 case UTT_IsDestructible: 5014 case UTT_IsTriviallyDestructible: 5015 case UTT_IsNothrowDestructible: 5016 // C++14 [meta.unary.prop]: 5017 // For reference types, is_destructible<T>::value is true. 5018 if (T->isReferenceType()) 5019 return true; 5020 5021 // Objective-C++ ARC: autorelease types don't require destruction. 5022 if (T->isObjCLifetimeType() && 5023 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5024 return true; 5025 5026 // C++14 [meta.unary.prop]: 5027 // For incomplete types and function types, is_destructible<T>::value is 5028 // false. 5029 if (T->isIncompleteType() || T->isFunctionType()) 5030 return false; 5031 5032 // A type that requires destruction (via a non-trivial destructor or ARC 5033 // lifetime semantics) is not trivially-destructible. 5034 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) 5035 return false; 5036 5037 // C++14 [meta.unary.prop]: 5038 // For object types and given U equal to remove_all_extents_t<T>, if the 5039 // expression std::declval<U&>().~U() is well-formed when treated as an 5040 // unevaluated operand (Clause 5), then is_destructible<T>::value is true 5041 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5042 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); 5043 if (!Destructor) 5044 return false; 5045 // C++14 [dcl.fct.def.delete]p2: 5046 // A program that refers to a deleted function implicitly or 5047 // explicitly, other than to declare it, is ill-formed. 5048 if (Destructor->isDeleted()) 5049 return false; 5050 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) 5051 return false; 5052 if (UTT == UTT_IsNothrowDestructible) { 5053 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); 5054 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5055 if (!CPT || !CPT->isNothrow()) 5056 return false; 5057 } 5058 } 5059 return true; 5060 5061 case UTT_HasTrivialDestructor: 5062 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5063 // If __is_pod (type) is true or type is a reference type 5064 // then the trait is true, else if type is a cv class or union 5065 // type (or array thereof) with a trivial destructor 5066 // ([class.dtor]) then the trait is true, else it is 5067 // false. 5068 if (T.isPODType(C) || T->isReferenceType()) 5069 return true; 5070 5071 // Objective-C++ ARC: autorelease types don't require destruction. 5072 if (T->isObjCLifetimeType() && 5073 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 5074 return true; 5075 5076 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 5077 return RD->hasTrivialDestructor(); 5078 return false; 5079 // TODO: Propagate nothrowness for implicitly declared special members. 5080 case UTT_HasNothrowAssign: 5081 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5082 // If type is const qualified or is a reference type then the 5083 // trait is false. Otherwise if __has_trivial_assign (type) 5084 // is true then the trait is true, else if type is a cv class 5085 // or union type with copy assignment operators that are known 5086 // not to throw an exception then the trait is true, else it is 5087 // false. 5088 if (C.getBaseElementType(T).isConstQualified()) 5089 return false; 5090 if (T->isReferenceType()) 5091 return false; 5092 if (T.isPODType(C) || T->isObjCLifetimeType()) 5093 return true; 5094 5095 if (const RecordType *RT = T->getAs<RecordType>()) 5096 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5097 &CXXRecordDecl::hasTrivialCopyAssignment, 5098 &CXXRecordDecl::hasNonTrivialCopyAssignment, 5099 &CXXMethodDecl::isCopyAssignmentOperator); 5100 return false; 5101 case UTT_HasNothrowMoveAssign: 5102 // This trait is implemented by MSVC 2012 and needed to parse the 5103 // standard library headers. Specifically this is used as the logic 5104 // behind std::is_nothrow_move_assignable (20.9.4.3). 5105 if (T.isPODType(C)) 5106 return true; 5107 5108 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 5109 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 5110 &CXXRecordDecl::hasTrivialMoveAssignment, 5111 &CXXRecordDecl::hasNonTrivialMoveAssignment, 5112 &CXXMethodDecl::isMoveAssignmentOperator); 5113 return false; 5114 case UTT_HasNothrowCopy: 5115 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5116 // If __has_trivial_copy (type) is true then the trait is true, else 5117 // if type is a cv class or union type with copy constructors that are 5118 // known not to throw an exception then the trait is true, else it is 5119 // false. 5120 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 5121 return true; 5122 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 5123 if (RD->hasTrivialCopyConstructor() && 5124 !RD->hasNonTrivialCopyConstructor()) 5125 return true; 5126 5127 bool FoundConstructor = false; 5128 unsigned FoundTQs; 5129 for (const auto *ND : Self.LookupConstructors(RD)) { 5130 // A template constructor is never a copy constructor. 5131 // FIXME: However, it may actually be selected at the actual overload 5132 // resolution point. 5133 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5134 continue; 5135 // UsingDecl itself is not a constructor 5136 if (isa<UsingDecl>(ND)) 5137 continue; 5138 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5139 if (Constructor->isCopyConstructor(FoundTQs)) { 5140 FoundConstructor = true; 5141 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5142 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5143 if (!CPT) 5144 return false; 5145 // TODO: check whether evaluating default arguments can throw. 5146 // For now, we'll be conservative and assume that they can throw. 5147 if (!CPT->isNothrow() || CPT->getNumParams() > 1) 5148 return false; 5149 } 5150 } 5151 5152 return FoundConstructor; 5153 } 5154 return false; 5155 case UTT_HasNothrowConstructor: 5156 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 5157 // If __has_trivial_constructor (type) is true then the trait is 5158 // true, else if type is a cv class or union type (or array 5159 // thereof) with a default constructor that is known not to 5160 // throw an exception then the trait is true, else it is false. 5161 if (T.isPODType(C) || T->isObjCLifetimeType()) 5162 return true; 5163 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 5164 if (RD->hasTrivialDefaultConstructor() && 5165 !RD->hasNonTrivialDefaultConstructor()) 5166 return true; 5167 5168 bool FoundConstructor = false; 5169 for (const auto *ND : Self.LookupConstructors(RD)) { 5170 // FIXME: In C++0x, a constructor template can be a default constructor. 5171 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) 5172 continue; 5173 // UsingDecl itself is not a constructor 5174 if (isa<UsingDecl>(ND)) 5175 continue; 5176 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); 5177 if (Constructor->isDefaultConstructor()) { 5178 FoundConstructor = true; 5179 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); 5180 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 5181 if (!CPT) 5182 return false; 5183 // FIXME: check whether evaluating default arguments can throw. 5184 // For now, we'll be conservative and assume that they can throw. 5185 if (!CPT->isNothrow() || CPT->getNumParams() > 0) 5186 return false; 5187 } 5188 } 5189 return FoundConstructor; 5190 } 5191 return false; 5192 case UTT_HasVirtualDestructor: 5193 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 5194 // If type is a class type with a virtual destructor ([class.dtor]) 5195 // then the trait is true, else it is false. 5196 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 5197 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 5198 return Destructor->isVirtual(); 5199 return false; 5200 5201 // These type trait expressions are modeled on the specifications for the 5202 // Embarcadero C++0x type trait functions: 5203 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 5204 case UTT_IsCompleteType: 5205 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 5206 // Returns True if and only if T is a complete type at the point of the 5207 // function call. 5208 return !T->isIncompleteType(); 5209 case UTT_HasUniqueObjectRepresentations: 5210 return C.hasUniqueObjectRepresentations(T); 5211 } 5212 } 5213 5214 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5215 QualType RhsT, SourceLocation KeyLoc); 5216 5217 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 5218 ArrayRef<TypeSourceInfo *> Args, 5219 SourceLocation RParenLoc) { 5220 if (Kind <= UTT_Last) 5221 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 5222 5223 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible 5224 // traits to avoid duplication. 5225 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary) 5226 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 5227 Args[1]->getType(), RParenLoc); 5228 5229 switch (Kind) { 5230 case clang::BTT_ReferenceBindsToTemporary: 5231 case clang::TT_IsConstructible: 5232 case clang::TT_IsNothrowConstructible: 5233 case clang::TT_IsTriviallyConstructible: { 5234 // C++11 [meta.unary.prop]: 5235 // is_trivially_constructible is defined as: 5236 // 5237 // is_constructible<T, Args...>::value is true and the variable 5238 // definition for is_constructible, as defined below, is known to call 5239 // no operation that is not trivial. 5240 // 5241 // The predicate condition for a template specialization 5242 // is_constructible<T, Args...> shall be satisfied if and only if the 5243 // following variable definition would be well-formed for some invented 5244 // variable t: 5245 // 5246 // T t(create<Args>()...); 5247 assert(!Args.empty()); 5248 5249 // Precondition: T and all types in the parameter pack Args shall be 5250 // complete types, (possibly cv-qualified) void, or arrays of 5251 // unknown bound. 5252 for (const auto *TSI : Args) { 5253 QualType ArgTy = TSI->getType(); 5254 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 5255 continue; 5256 5257 if (S.RequireCompleteType(KWLoc, ArgTy, 5258 diag::err_incomplete_type_used_in_type_trait_expr)) 5259 return false; 5260 } 5261 5262 // Make sure the first argument is not incomplete nor a function type. 5263 QualType T = Args[0]->getType(); 5264 if (T->isIncompleteType() || T->isFunctionType()) 5265 return false; 5266 5267 // Make sure the first argument is not an abstract type. 5268 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 5269 if (RD && RD->isAbstract()) 5270 return false; 5271 5272 llvm::BumpPtrAllocator OpaqueExprAllocator; 5273 SmallVector<Expr *, 2> ArgExprs; 5274 ArgExprs.reserve(Args.size() - 1); 5275 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 5276 QualType ArgTy = Args[I]->getType(); 5277 if (ArgTy->isObjectType() || ArgTy->isFunctionType()) 5278 ArgTy = S.Context.getRValueReferenceType(ArgTy); 5279 ArgExprs.push_back( 5280 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) 5281 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), 5282 ArgTy.getNonLValueExprType(S.Context), 5283 Expr::getValueKindForType(ArgTy))); 5284 } 5285 5286 // Perform the initialization in an unevaluated context within a SFINAE 5287 // trap at translation unit scope. 5288 EnterExpressionEvaluationContext Unevaluated( 5289 S, Sema::ExpressionEvaluationContext::Unevaluated); 5290 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 5291 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 5292 InitializedEntity To( 5293 InitializedEntity::InitializeTemporary(S.Context, Args[0])); 5294 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 5295 RParenLoc)); 5296 InitializationSequence Init(S, To, InitKind, ArgExprs); 5297 if (Init.Failed()) 5298 return false; 5299 5300 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 5301 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 5302 return false; 5303 5304 if (Kind == clang::TT_IsConstructible) 5305 return true; 5306 5307 if (Kind == clang::BTT_ReferenceBindsToTemporary) { 5308 if (!T->isReferenceType()) 5309 return false; 5310 5311 return !Init.isDirectReferenceBinding(); 5312 } 5313 5314 if (Kind == clang::TT_IsNothrowConstructible) 5315 return S.canThrow(Result.get()) == CT_Cannot; 5316 5317 if (Kind == clang::TT_IsTriviallyConstructible) { 5318 // Under Objective-C ARC and Weak, if the destination has non-trivial 5319 // Objective-C lifetime, this is a non-trivial construction. 5320 if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) 5321 return false; 5322 5323 // The initialization succeeded; now make sure there are no non-trivial 5324 // calls. 5325 return !Result.get()->hasNonTrivialCall(S.Context); 5326 } 5327 5328 llvm_unreachable("unhandled type trait"); 5329 return false; 5330 } 5331 default: llvm_unreachable("not a TT"); 5332 } 5333 5334 return false; 5335 } 5336 5337 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5338 ArrayRef<TypeSourceInfo *> Args, 5339 SourceLocation RParenLoc) { 5340 QualType ResultType = Context.getLogicalOperationType(); 5341 5342 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 5343 *this, Kind, KWLoc, Args[0]->getType())) 5344 return ExprError(); 5345 5346 bool Dependent = false; 5347 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5348 if (Args[I]->getType()->isDependentType()) { 5349 Dependent = true; 5350 break; 5351 } 5352 } 5353 5354 bool Result = false; 5355 if (!Dependent) 5356 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 5357 5358 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 5359 RParenLoc, Result); 5360 } 5361 5362 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 5363 ArrayRef<ParsedType> Args, 5364 SourceLocation RParenLoc) { 5365 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 5366 ConvertedArgs.reserve(Args.size()); 5367 5368 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 5369 TypeSourceInfo *TInfo; 5370 QualType T = GetTypeFromParser(Args[I], &TInfo); 5371 if (!TInfo) 5372 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 5373 5374 ConvertedArgs.push_back(TInfo); 5375 } 5376 5377 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 5378 } 5379 5380 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 5381 QualType RhsT, SourceLocation KeyLoc) { 5382 assert(!LhsT->isDependentType() && !RhsT->isDependentType() && 5383 "Cannot evaluate traits of dependent types"); 5384 5385 switch(BTT) { 5386 case BTT_IsBaseOf: { 5387 // C++0x [meta.rel]p2 5388 // Base is a base class of Derived without regard to cv-qualifiers or 5389 // Base and Derived are not unions and name the same class type without 5390 // regard to cv-qualifiers. 5391 5392 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 5393 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 5394 if (!rhsRecord || !lhsRecord) { 5395 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); 5396 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); 5397 if (!LHSObjTy || !RHSObjTy) 5398 return false; 5399 5400 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); 5401 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); 5402 if (!BaseInterface || !DerivedInterface) 5403 return false; 5404 5405 if (Self.RequireCompleteType( 5406 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) 5407 return false; 5408 5409 return BaseInterface->isSuperClassOf(DerivedInterface); 5410 } 5411 5412 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) 5413 == (lhsRecord == rhsRecord)); 5414 5415 // Unions are never base classes, and never have base classes. 5416 // It doesn't matter if they are complete or not. See PR#41843 5417 if (lhsRecord && lhsRecord->getDecl()->isUnion()) 5418 return false; 5419 if (rhsRecord && rhsRecord->getDecl()->isUnion()) 5420 return false; 5421 5422 if (lhsRecord == rhsRecord) 5423 return true; 5424 5425 // C++0x [meta.rel]p2: 5426 // If Base and Derived are class types and are different types 5427 // (ignoring possible cv-qualifiers) then Derived shall be a 5428 // complete type. 5429 if (Self.RequireCompleteType(KeyLoc, RhsT, 5430 diag::err_incomplete_type_used_in_type_trait_expr)) 5431 return false; 5432 5433 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 5434 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 5435 } 5436 case BTT_IsSame: 5437 return Self.Context.hasSameType(LhsT, RhsT); 5438 case BTT_TypeCompatible: { 5439 // GCC ignores cv-qualifiers on arrays for this builtin. 5440 Qualifiers LhsQuals, RhsQuals; 5441 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); 5442 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); 5443 return Self.Context.typesAreCompatible(Lhs, Rhs); 5444 } 5445 case BTT_IsConvertible: 5446 case BTT_IsConvertibleTo: { 5447 // C++0x [meta.rel]p4: 5448 // Given the following function prototype: 5449 // 5450 // template <class T> 5451 // typename add_rvalue_reference<T>::type create(); 5452 // 5453 // the predicate condition for a template specialization 5454 // is_convertible<From, To> shall be satisfied if and only if 5455 // the return expression in the following code would be 5456 // well-formed, including any implicit conversions to the return 5457 // type of the function: 5458 // 5459 // To test() { 5460 // return create<From>(); 5461 // } 5462 // 5463 // Access checking is performed as if in a context unrelated to To and 5464 // From. Only the validity of the immediate context of the expression 5465 // of the return-statement (including conversions to the return type) 5466 // is considered. 5467 // 5468 // We model the initialization as a copy-initialization of a temporary 5469 // of the appropriate type, which for this expression is identical to the 5470 // return statement (since NRVO doesn't apply). 5471 5472 // Functions aren't allowed to return function or array types. 5473 if (RhsT->isFunctionType() || RhsT->isArrayType()) 5474 return false; 5475 5476 // A return statement in a void function must have void type. 5477 if (RhsT->isVoidType()) 5478 return LhsT->isVoidType(); 5479 5480 // A function definition requires a complete, non-abstract return type. 5481 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) 5482 return false; 5483 5484 // Compute the result of add_rvalue_reference. 5485 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5486 LhsT = Self.Context.getRValueReferenceType(LhsT); 5487 5488 // Build a fake source and destination for initialization. 5489 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 5490 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5491 Expr::getValueKindForType(LhsT)); 5492 Expr *FromPtr = &From; 5493 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 5494 SourceLocation())); 5495 5496 // Perform the initialization in an unevaluated context within a SFINAE 5497 // trap at translation unit scope. 5498 EnterExpressionEvaluationContext Unevaluated( 5499 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5500 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5501 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5502 InitializationSequence Init(Self, To, Kind, FromPtr); 5503 if (Init.Failed()) 5504 return false; 5505 5506 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 5507 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 5508 } 5509 5510 case BTT_IsAssignable: 5511 case BTT_IsNothrowAssignable: 5512 case BTT_IsTriviallyAssignable: { 5513 // C++11 [meta.unary.prop]p3: 5514 // is_trivially_assignable is defined as: 5515 // is_assignable<T, U>::value is true and the assignment, as defined by 5516 // is_assignable, is known to call no operation that is not trivial 5517 // 5518 // is_assignable is defined as: 5519 // The expression declval<T>() = declval<U>() is well-formed when 5520 // treated as an unevaluated operand (Clause 5). 5521 // 5522 // For both, T and U shall be complete types, (possibly cv-qualified) 5523 // void, or arrays of unknown bound. 5524 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 5525 Self.RequireCompleteType(KeyLoc, LhsT, 5526 diag::err_incomplete_type_used_in_type_trait_expr)) 5527 return false; 5528 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 5529 Self.RequireCompleteType(KeyLoc, RhsT, 5530 diag::err_incomplete_type_used_in_type_trait_expr)) 5531 return false; 5532 5533 // cv void is never assignable. 5534 if (LhsT->isVoidType() || RhsT->isVoidType()) 5535 return false; 5536 5537 // Build expressions that emulate the effect of declval<T>() and 5538 // declval<U>(). 5539 if (LhsT->isObjectType() || LhsT->isFunctionType()) 5540 LhsT = Self.Context.getRValueReferenceType(LhsT); 5541 if (RhsT->isObjectType() || RhsT->isFunctionType()) 5542 RhsT = Self.Context.getRValueReferenceType(RhsT); 5543 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 5544 Expr::getValueKindForType(LhsT)); 5545 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 5546 Expr::getValueKindForType(RhsT)); 5547 5548 // Attempt the assignment in an unevaluated context within a SFINAE 5549 // trap at translation unit scope. 5550 EnterExpressionEvaluationContext Unevaluated( 5551 Self, Sema::ExpressionEvaluationContext::Unevaluated); 5552 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 5553 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 5554 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 5555 &Rhs); 5556 if (Result.isInvalid()) 5557 return false; 5558 5559 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. 5560 Self.CheckUnusedVolatileAssignment(Result.get()); 5561 5562 if (SFINAE.hasErrorOccurred()) 5563 return false; 5564 5565 if (BTT == BTT_IsAssignable) 5566 return true; 5567 5568 if (BTT == BTT_IsNothrowAssignable) 5569 return Self.canThrow(Result.get()) == CT_Cannot; 5570 5571 if (BTT == BTT_IsTriviallyAssignable) { 5572 // Under Objective-C ARC and Weak, if the destination has non-trivial 5573 // Objective-C lifetime, this is a non-trivial assignment. 5574 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) 5575 return false; 5576 5577 return !Result.get()->hasNonTrivialCall(Self.Context); 5578 } 5579 5580 llvm_unreachable("unhandled type trait"); 5581 return false; 5582 } 5583 default: llvm_unreachable("not a BTT"); 5584 } 5585 llvm_unreachable("Unknown type trait or not implemented"); 5586 } 5587 5588 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 5589 SourceLocation KWLoc, 5590 ParsedType Ty, 5591 Expr* DimExpr, 5592 SourceLocation RParen) { 5593 TypeSourceInfo *TSInfo; 5594 QualType T = GetTypeFromParser(Ty, &TSInfo); 5595 if (!TSInfo) 5596 TSInfo = Context.getTrivialTypeSourceInfo(T); 5597 5598 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 5599 } 5600 5601 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 5602 QualType T, Expr *DimExpr, 5603 SourceLocation KeyLoc) { 5604 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 5605 5606 switch(ATT) { 5607 case ATT_ArrayRank: 5608 if (T->isArrayType()) { 5609 unsigned Dim = 0; 5610 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5611 ++Dim; 5612 T = AT->getElementType(); 5613 } 5614 return Dim; 5615 } 5616 return 0; 5617 5618 case ATT_ArrayExtent: { 5619 llvm::APSInt Value; 5620 uint64_t Dim; 5621 if (Self.VerifyIntegerConstantExpression( 5622 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) 5623 .isInvalid()) 5624 return 0; 5625 if (Value.isSigned() && Value.isNegative()) { 5626 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 5627 << DimExpr->getSourceRange(); 5628 return 0; 5629 } 5630 Dim = Value.getLimitedValue(); 5631 5632 if (T->isArrayType()) { 5633 unsigned D = 0; 5634 bool Matched = false; 5635 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 5636 if (Dim == D) { 5637 Matched = true; 5638 break; 5639 } 5640 ++D; 5641 T = AT->getElementType(); 5642 } 5643 5644 if (Matched && T->isArrayType()) { 5645 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 5646 return CAT->getSize().getLimitedValue(); 5647 } 5648 } 5649 return 0; 5650 } 5651 } 5652 llvm_unreachable("Unknown type trait or not implemented"); 5653 } 5654 5655 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 5656 SourceLocation KWLoc, 5657 TypeSourceInfo *TSInfo, 5658 Expr* DimExpr, 5659 SourceLocation RParen) { 5660 QualType T = TSInfo->getType(); 5661 5662 // FIXME: This should likely be tracked as an APInt to remove any host 5663 // assumptions about the width of size_t on the target. 5664 uint64_t Value = 0; 5665 if (!T->isDependentType()) 5666 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 5667 5668 // While the specification for these traits from the Embarcadero C++ 5669 // compiler's documentation says the return type is 'unsigned int', Clang 5670 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 5671 // compiler, there is no difference. On several other platforms this is an 5672 // important distinction. 5673 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 5674 RParen, Context.getSizeType()); 5675 } 5676 5677 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 5678 SourceLocation KWLoc, 5679 Expr *Queried, 5680 SourceLocation RParen) { 5681 // If error parsing the expression, ignore. 5682 if (!Queried) 5683 return ExprError(); 5684 5685 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 5686 5687 return Result; 5688 } 5689 5690 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 5691 switch (ET) { 5692 case ET_IsLValueExpr: return E->isLValue(); 5693 case ET_IsRValueExpr: 5694 return E->isPRValue(); 5695 } 5696 llvm_unreachable("Expression trait not covered by switch"); 5697 } 5698 5699 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 5700 SourceLocation KWLoc, 5701 Expr *Queried, 5702 SourceLocation RParen) { 5703 if (Queried->isTypeDependent()) { 5704 // Delay type-checking for type-dependent expressions. 5705 } else if (Queried->getType()->isPlaceholderType()) { 5706 ExprResult PE = CheckPlaceholderExpr(Queried); 5707 if (PE.isInvalid()) return ExprError(); 5708 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 5709 } 5710 5711 bool Value = EvaluateExpressionTrait(ET, Queried); 5712 5713 return new (Context) 5714 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 5715 } 5716 5717 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 5718 ExprValueKind &VK, 5719 SourceLocation Loc, 5720 bool isIndirect) { 5721 assert(!LHS.get()->getType()->isPlaceholderType() && 5722 !RHS.get()->getType()->isPlaceholderType() && 5723 "placeholders should have been weeded out by now"); 5724 5725 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the 5726 // temporary materialization conversion otherwise. 5727 if (isIndirect) 5728 LHS = DefaultLvalueConversion(LHS.get()); 5729 else if (LHS.get()->isPRValue()) 5730 LHS = TemporaryMaterializationConversion(LHS.get()); 5731 if (LHS.isInvalid()) 5732 return QualType(); 5733 5734 // The RHS always undergoes lvalue conversions. 5735 RHS = DefaultLvalueConversion(RHS.get()); 5736 if (RHS.isInvalid()) return QualType(); 5737 5738 const char *OpSpelling = isIndirect ? "->*" : ".*"; 5739 // C++ 5.5p2 5740 // The binary operator .* [p3: ->*] binds its second operand, which shall 5741 // be of type "pointer to member of T" (where T is a completely-defined 5742 // class type) [...] 5743 QualType RHSType = RHS.get()->getType(); 5744 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 5745 if (!MemPtr) { 5746 Diag(Loc, diag::err_bad_memptr_rhs) 5747 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 5748 return QualType(); 5749 } 5750 5751 QualType Class(MemPtr->getClass(), 0); 5752 5753 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 5754 // member pointer points must be completely-defined. However, there is no 5755 // reason for this semantic distinction, and the rule is not enforced by 5756 // other compilers. Therefore, we do not check this property, as it is 5757 // likely to be considered a defect. 5758 5759 // C++ 5.5p2 5760 // [...] to its first operand, which shall be of class T or of a class of 5761 // which T is an unambiguous and accessible base class. [p3: a pointer to 5762 // such a class] 5763 QualType LHSType = LHS.get()->getType(); 5764 if (isIndirect) { 5765 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 5766 LHSType = Ptr->getPointeeType(); 5767 else { 5768 Diag(Loc, diag::err_bad_memptr_lhs) 5769 << OpSpelling << 1 << LHSType 5770 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 5771 return QualType(); 5772 } 5773 } 5774 5775 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 5776 // If we want to check the hierarchy, we need a complete type. 5777 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 5778 OpSpelling, (int)isIndirect)) { 5779 return QualType(); 5780 } 5781 5782 if (!IsDerivedFrom(Loc, LHSType, Class)) { 5783 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 5784 << (int)isIndirect << LHS.get()->getType(); 5785 return QualType(); 5786 } 5787 5788 CXXCastPath BasePath; 5789 if (CheckDerivedToBaseConversion( 5790 LHSType, Class, Loc, 5791 SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), 5792 &BasePath)) 5793 return QualType(); 5794 5795 // Cast LHS to type of use. 5796 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); 5797 if (isIndirect) 5798 UseType = Context.getPointerType(UseType); 5799 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind(); 5800 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 5801 &BasePath); 5802 } 5803 5804 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 5805 // Diagnose use of pointer-to-member type which when used as 5806 // the functional cast in a pointer-to-member expression. 5807 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 5808 return QualType(); 5809 } 5810 5811 // C++ 5.5p2 5812 // The result is an object or a function of the type specified by the 5813 // second operand. 5814 // The cv qualifiers are the union of those in the pointer and the left side, 5815 // in accordance with 5.5p5 and 5.2.5. 5816 QualType Result = MemPtr->getPointeeType(); 5817 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 5818 5819 // C++0x [expr.mptr.oper]p6: 5820 // In a .* expression whose object expression is an rvalue, the program is 5821 // ill-formed if the second operand is a pointer to member function with 5822 // ref-qualifier &. In a ->* expression or in a .* expression whose object 5823 // expression is an lvalue, the program is ill-formed if the second operand 5824 // is a pointer to member function with ref-qualifier &&. 5825 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 5826 switch (Proto->getRefQualifier()) { 5827 case RQ_None: 5828 // Do nothing 5829 break; 5830 5831 case RQ_LValue: 5832 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { 5833 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq 5834 // is (exactly) 'const'. 5835 if (Proto->isConst() && !Proto->isVolatile()) 5836 Diag(Loc, getLangOpts().CPlusPlus20 5837 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue 5838 : diag::ext_pointer_to_const_ref_member_on_rvalue); 5839 else 5840 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5841 << RHSType << 1 << LHS.get()->getSourceRange(); 5842 } 5843 break; 5844 5845 case RQ_RValue: 5846 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 5847 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 5848 << RHSType << 0 << LHS.get()->getSourceRange(); 5849 break; 5850 } 5851 } 5852 5853 // C++ [expr.mptr.oper]p6: 5854 // The result of a .* expression whose second operand is a pointer 5855 // to a data member is of the same value category as its 5856 // first operand. The result of a .* expression whose second 5857 // operand is a pointer to a member function is a prvalue. The 5858 // result of an ->* expression is an lvalue if its second operand 5859 // is a pointer to data member and a prvalue otherwise. 5860 if (Result->isFunctionType()) { 5861 VK = VK_PRValue; 5862 return Context.BoundMemberTy; 5863 } else if (isIndirect) { 5864 VK = VK_LValue; 5865 } else { 5866 VK = LHS.get()->getValueKind(); 5867 } 5868 5869 return Result; 5870 } 5871 5872 /// Try to convert a type to another according to C++11 5.16p3. 5873 /// 5874 /// This is part of the parameter validation for the ? operator. If either 5875 /// value operand is a class type, the two operands are attempted to be 5876 /// converted to each other. This function does the conversion in one direction. 5877 /// It returns true if the program is ill-formed and has already been diagnosed 5878 /// as such. 5879 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 5880 SourceLocation QuestionLoc, 5881 bool &HaveConversion, 5882 QualType &ToType) { 5883 HaveConversion = false; 5884 ToType = To->getType(); 5885 5886 InitializationKind Kind = 5887 InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); 5888 // C++11 5.16p3 5889 // The process for determining whether an operand expression E1 of type T1 5890 // can be converted to match an operand expression E2 of type T2 is defined 5891 // as follows: 5892 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be 5893 // implicitly converted to type "lvalue reference to T2", subject to the 5894 // constraint that in the conversion the reference must bind directly to 5895 // an lvalue. 5896 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be 5897 // implicitly converted to the type "rvalue reference to R2", subject to 5898 // the constraint that the reference must bind directly. 5899 if (To->isGLValue()) { 5900 QualType T = Self.Context.getReferenceQualifiedType(To); 5901 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 5902 5903 InitializationSequence InitSeq(Self, Entity, Kind, From); 5904 if (InitSeq.isDirectReferenceBinding()) { 5905 ToType = T; 5906 HaveConversion = true; 5907 return false; 5908 } 5909 5910 if (InitSeq.isAmbiguous()) 5911 return InitSeq.Diagnose(Self, Entity, Kind, From); 5912 } 5913 5914 // -- If E2 is an rvalue, or if the conversion above cannot be done: 5915 // -- if E1 and E2 have class type, and the underlying class types are 5916 // the same or one is a base class of the other: 5917 QualType FTy = From->getType(); 5918 QualType TTy = To->getType(); 5919 const RecordType *FRec = FTy->getAs<RecordType>(); 5920 const RecordType *TRec = TTy->getAs<RecordType>(); 5921 bool FDerivedFromT = FRec && TRec && FRec != TRec && 5922 Self.IsDerivedFrom(QuestionLoc, FTy, TTy); 5923 if (FRec && TRec && (FRec == TRec || FDerivedFromT || 5924 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { 5925 // E1 can be converted to match E2 if the class of T2 is the 5926 // same type as, or a base class of, the class of T1, and 5927 // [cv2 > cv1]. 5928 if (FRec == TRec || FDerivedFromT) { 5929 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 5930 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5931 InitializationSequence InitSeq(Self, Entity, Kind, From); 5932 if (InitSeq) { 5933 HaveConversion = true; 5934 return false; 5935 } 5936 5937 if (InitSeq.isAmbiguous()) 5938 return InitSeq.Diagnose(Self, Entity, Kind, From); 5939 } 5940 } 5941 5942 return false; 5943 } 5944 5945 // -- Otherwise: E1 can be converted to match E2 if E1 can be 5946 // implicitly converted to the type that expression E2 would have 5947 // if E2 were converted to an rvalue (or the type it has, if E2 is 5948 // an rvalue). 5949 // 5950 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 5951 // to the array-to-pointer or function-to-pointer conversions. 5952 TTy = TTy.getNonLValueExprType(Self.Context); 5953 5954 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 5955 InitializationSequence InitSeq(Self, Entity, Kind, From); 5956 HaveConversion = !InitSeq.Failed(); 5957 ToType = TTy; 5958 if (InitSeq.isAmbiguous()) 5959 return InitSeq.Diagnose(Self, Entity, Kind, From); 5960 5961 return false; 5962 } 5963 5964 /// Try to find a common type for two according to C++0x 5.16p5. 5965 /// 5966 /// This is part of the parameter validation for the ? operator. If either 5967 /// value operand is a class type, overload resolution is used to find a 5968 /// conversion to a common type. 5969 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 5970 SourceLocation QuestionLoc) { 5971 Expr *Args[2] = { LHS.get(), RHS.get() }; 5972 OverloadCandidateSet CandidateSet(QuestionLoc, 5973 OverloadCandidateSet::CSK_Operator); 5974 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 5975 CandidateSet); 5976 5977 OverloadCandidateSet::iterator Best; 5978 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 5979 case OR_Success: { 5980 // We found a match. Perform the conversions on the arguments and move on. 5981 ExprResult LHSRes = Self.PerformImplicitConversion( 5982 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], 5983 Sema::AA_Converting); 5984 if (LHSRes.isInvalid()) 5985 break; 5986 LHS = LHSRes; 5987 5988 ExprResult RHSRes = Self.PerformImplicitConversion( 5989 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], 5990 Sema::AA_Converting); 5991 if (RHSRes.isInvalid()) 5992 break; 5993 RHS = RHSRes; 5994 if (Best->Function) 5995 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 5996 return false; 5997 } 5998 5999 case OR_No_Viable_Function: 6000 6001 // Emit a better diagnostic if one of the expressions is a null pointer 6002 // constant and the other is a pointer type. In this case, the user most 6003 // likely forgot to take the address of the other expression. 6004 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6005 return true; 6006 6007 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6008 << LHS.get()->getType() << RHS.get()->getType() 6009 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6010 return true; 6011 6012 case OR_Ambiguous: 6013 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 6014 << LHS.get()->getType() << RHS.get()->getType() 6015 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6016 // FIXME: Print the possible common types by printing the return types of 6017 // the viable candidates. 6018 break; 6019 6020 case OR_Deleted: 6021 llvm_unreachable("Conditional operator has only built-in overloads"); 6022 } 6023 return true; 6024 } 6025 6026 /// Perform an "extended" implicit conversion as returned by 6027 /// TryClassUnification. 6028 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 6029 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 6030 InitializationKind Kind = 6031 InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); 6032 Expr *Arg = E.get(); 6033 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 6034 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 6035 if (Result.isInvalid()) 6036 return true; 6037 6038 E = Result; 6039 return false; 6040 } 6041 6042 // Check the condition operand of ?: to see if it is valid for the GCC 6043 // extension. 6044 static bool isValidVectorForConditionalCondition(ASTContext &Ctx, 6045 QualType CondTy) { 6046 if (!CondTy->isVectorType() && !CondTy->isExtVectorType()) 6047 return false; 6048 const QualType EltTy = 6049 cast<VectorType>(CondTy.getCanonicalType())->getElementType(); 6050 assert(!EltTy->isBooleanType() && !EltTy->isEnumeralType() && 6051 "Vectors cant be boolean or enum types"); 6052 return EltTy->isIntegralType(Ctx); 6053 } 6054 6055 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, 6056 ExprResult &RHS, 6057 SourceLocation QuestionLoc) { 6058 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6059 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6060 6061 QualType CondType = Cond.get()->getType(); 6062 const auto *CondVT = CondType->castAs<VectorType>(); 6063 QualType CondElementTy = CondVT->getElementType(); 6064 unsigned CondElementCount = CondVT->getNumElements(); 6065 QualType LHSType = LHS.get()->getType(); 6066 const auto *LHSVT = LHSType->getAs<VectorType>(); 6067 QualType RHSType = RHS.get()->getType(); 6068 const auto *RHSVT = RHSType->getAs<VectorType>(); 6069 6070 QualType ResultType; 6071 6072 6073 if (LHSVT && RHSVT) { 6074 if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) { 6075 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch) 6076 << /*isExtVector*/ isa<ExtVectorType>(CondVT); 6077 return {}; 6078 } 6079 6080 // If both are vector types, they must be the same type. 6081 if (!Context.hasSameType(LHSType, RHSType)) { 6082 Diag(QuestionLoc, diag::err_conditional_vector_mismatched) 6083 << LHSType << RHSType; 6084 return {}; 6085 } 6086 ResultType = LHSType; 6087 } else if (LHSVT || RHSVT) { 6088 ResultType = CheckVectorOperands( 6089 LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, 6090 /*AllowBoolConversions*/ false); 6091 if (ResultType.isNull()) 6092 return {}; 6093 } else { 6094 // Both are scalar. 6095 QualType ResultElementTy; 6096 LHSType = LHSType.getCanonicalType().getUnqualifiedType(); 6097 RHSType = RHSType.getCanonicalType().getUnqualifiedType(); 6098 6099 if (Context.hasSameType(LHSType, RHSType)) 6100 ResultElementTy = LHSType; 6101 else 6102 ResultElementTy = 6103 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6104 6105 if (ResultElementTy->isEnumeralType()) { 6106 Diag(QuestionLoc, diag::err_conditional_vector_operand_type) 6107 << ResultElementTy; 6108 return {}; 6109 } 6110 if (CondType->isExtVectorType()) 6111 ResultType = 6112 Context.getExtVectorType(ResultElementTy, CondVT->getNumElements()); 6113 else 6114 ResultType = Context.getVectorType( 6115 ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector); 6116 6117 LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); 6118 RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); 6119 } 6120 6121 assert(!ResultType.isNull() && ResultType->isVectorType() && 6122 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && 6123 "Result should have been a vector type"); 6124 auto *ResultVectorTy = ResultType->castAs<VectorType>(); 6125 QualType ResultElementTy = ResultVectorTy->getElementType(); 6126 unsigned ResultElementCount = ResultVectorTy->getNumElements(); 6127 6128 if (ResultElementCount != CondElementCount) { 6129 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType 6130 << ResultType; 6131 return {}; 6132 } 6133 6134 if (Context.getTypeSize(ResultElementTy) != 6135 Context.getTypeSize(CondElementTy)) { 6136 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType 6137 << ResultType; 6138 return {}; 6139 } 6140 6141 return ResultType; 6142 } 6143 6144 /// Check the operands of ?: under C++ semantics. 6145 /// 6146 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 6147 /// extension. In this case, LHS == Cond. (But they're not aliases.) 6148 /// 6149 /// This function also implements GCC's vector extension and the 6150 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions 6151 /// permit the use of a?b:c where the type of a is that of a integer vector with 6152 /// the same number of elements and size as the vectors of b and c. If one of 6153 /// either b or c is a scalar it is implicitly converted to match the type of 6154 /// the vector. Otherwise the expression is ill-formed. If both b and c are 6155 /// scalars, then b and c are checked and converted to the type of a if 6156 /// possible. 6157 /// 6158 /// The expressions are evaluated differently for GCC's and OpenCL's extensions. 6159 /// For the GCC extension, the ?: operator is evaluated as 6160 /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]). 6161 /// For the OpenCL extensions, the ?: operator is evaluated as 6162 /// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. , 6163 /// most-significant-bit-set(a[n]) ? b[n] : c[n]). 6164 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 6165 ExprResult &RHS, ExprValueKind &VK, 6166 ExprObjectKind &OK, 6167 SourceLocation QuestionLoc) { 6168 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface 6169 // pointers. 6170 6171 // Assume r-value. 6172 VK = VK_PRValue; 6173 OK = OK_Ordinary; 6174 bool IsVectorConditional = 6175 isValidVectorForConditionalCondition(Context, Cond.get()->getType()); 6176 6177 // C++11 [expr.cond]p1 6178 // The first expression is contextually converted to bool. 6179 if (!Cond.get()->isTypeDependent()) { 6180 ExprResult CondRes = IsVectorConditional 6181 ? DefaultFunctionArrayLvalueConversion(Cond.get()) 6182 : CheckCXXBooleanCondition(Cond.get()); 6183 if (CondRes.isInvalid()) 6184 return QualType(); 6185 Cond = CondRes; 6186 } else { 6187 // To implement C++, the first expression typically doesn't alter the result 6188 // type of the conditional, however the GCC compatible vector extension 6189 // changes the result type to be that of the conditional. Since we cannot 6190 // know if this is a vector extension here, delay the conversion of the 6191 // LHS/RHS below until later. 6192 return Context.DependentTy; 6193 } 6194 6195 6196 // Either of the arguments dependent? 6197 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 6198 return Context.DependentTy; 6199 6200 // C++11 [expr.cond]p2 6201 // If either the second or the third operand has type (cv) void, ... 6202 QualType LTy = LHS.get()->getType(); 6203 QualType RTy = RHS.get()->getType(); 6204 bool LVoid = LTy->isVoidType(); 6205 bool RVoid = RTy->isVoidType(); 6206 if (LVoid || RVoid) { 6207 // ... one of the following shall hold: 6208 // -- The second or the third operand (but not both) is a (possibly 6209 // parenthesized) throw-expression; the result is of the type 6210 // and value category of the other. 6211 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 6212 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 6213 6214 // Void expressions aren't legal in the vector-conditional expressions. 6215 if (IsVectorConditional) { 6216 SourceRange DiagLoc = 6217 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange(); 6218 bool IsThrow = LVoid ? LThrow : RThrow; 6219 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void) 6220 << DiagLoc << IsThrow; 6221 return QualType(); 6222 } 6223 6224 if (LThrow != RThrow) { 6225 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 6226 VK = NonThrow->getValueKind(); 6227 // DR (no number yet): the result is a bit-field if the 6228 // non-throw-expression operand is a bit-field. 6229 OK = NonThrow->getObjectKind(); 6230 return NonThrow->getType(); 6231 } 6232 6233 // -- Both the second and third operands have type void; the result is of 6234 // type void and is a prvalue. 6235 if (LVoid && RVoid) 6236 return Context.VoidTy; 6237 6238 // Neither holds, error. 6239 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 6240 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 6241 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6242 return QualType(); 6243 } 6244 6245 // Neither is void. 6246 if (IsVectorConditional) 6247 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); 6248 6249 // C++11 [expr.cond]p3 6250 // Otherwise, if the second and third operand have different types, and 6251 // either has (cv) class type [...] an attempt is made to convert each of 6252 // those operands to the type of the other. 6253 if (!Context.hasSameType(LTy, RTy) && 6254 (LTy->isRecordType() || RTy->isRecordType())) { 6255 // These return true if a single direction is already ambiguous. 6256 QualType L2RType, R2LType; 6257 bool HaveL2R, HaveR2L; 6258 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 6259 return QualType(); 6260 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 6261 return QualType(); 6262 6263 // If both can be converted, [...] the program is ill-formed. 6264 if (HaveL2R && HaveR2L) { 6265 Diag(QuestionLoc, diag::err_conditional_ambiguous) 6266 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6267 return QualType(); 6268 } 6269 6270 // If exactly one conversion is possible, that conversion is applied to 6271 // the chosen operand and the converted operands are used in place of the 6272 // original operands for the remainder of this section. 6273 if (HaveL2R) { 6274 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 6275 return QualType(); 6276 LTy = LHS.get()->getType(); 6277 } else if (HaveR2L) { 6278 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 6279 return QualType(); 6280 RTy = RHS.get()->getType(); 6281 } 6282 } 6283 6284 // C++11 [expr.cond]p3 6285 // if both are glvalues of the same value category and the same type except 6286 // for cv-qualification, an attempt is made to convert each of those 6287 // operands to the type of the other. 6288 // FIXME: 6289 // Resolving a defect in P0012R1: we extend this to cover all cases where 6290 // one of the operands is reference-compatible with the other, in order 6291 // to support conditionals between functions differing in noexcept. This 6292 // will similarly cover difference in array bounds after P0388R4. 6293 // FIXME: If LTy and RTy have a composite pointer type, should we convert to 6294 // that instead? 6295 ExprValueKind LVK = LHS.get()->getValueKind(); 6296 ExprValueKind RVK = RHS.get()->getValueKind(); 6297 if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) { 6298 // DerivedToBase was already handled by the class-specific case above. 6299 // FIXME: Should we allow ObjC conversions here? 6300 const ReferenceConversions AllowedConversions = 6301 ReferenceConversions::Qualification | 6302 ReferenceConversions::NestedQualification | 6303 ReferenceConversions::Function; 6304 6305 ReferenceConversions RefConv; 6306 if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) == 6307 Ref_Compatible && 6308 !(RefConv & ~AllowedConversions) && 6309 // [...] subject to the constraint that the reference must bind 6310 // directly [...] 6311 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) { 6312 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 6313 RTy = RHS.get()->getType(); 6314 } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) == 6315 Ref_Compatible && 6316 !(RefConv & ~AllowedConversions) && 6317 !LHS.get()->refersToBitField() && 6318 !LHS.get()->refersToVectorElement()) { 6319 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 6320 LTy = LHS.get()->getType(); 6321 } 6322 } 6323 6324 // C++11 [expr.cond]p4 6325 // If the second and third operands are glvalues of the same value 6326 // category and have the same type, the result is of that type and 6327 // value category and it is a bit-field if the second or the third 6328 // operand is a bit-field, or if both are bit-fields. 6329 // We only extend this to bitfields, not to the crazy other kinds of 6330 // l-values. 6331 bool Same = Context.hasSameType(LTy, RTy); 6332 if (Same && LVK == RVK && LVK != VK_PRValue && 6333 LHS.get()->isOrdinaryOrBitFieldObject() && 6334 RHS.get()->isOrdinaryOrBitFieldObject()) { 6335 VK = LHS.get()->getValueKind(); 6336 if (LHS.get()->getObjectKind() == OK_BitField || 6337 RHS.get()->getObjectKind() == OK_BitField) 6338 OK = OK_BitField; 6339 6340 // If we have function pointer types, unify them anyway to unify their 6341 // exception specifications, if any. 6342 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6343 Qualifiers Qs = LTy.getQualifiers(); 6344 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS, 6345 /*ConvertArgs*/false); 6346 LTy = Context.getQualifiedType(LTy, Qs); 6347 6348 assert(!LTy.isNull() && "failed to find composite pointer type for " 6349 "canonically equivalent function ptr types"); 6350 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type"); 6351 } 6352 6353 return LTy; 6354 } 6355 6356 // C++11 [expr.cond]p5 6357 // Otherwise, the result is a prvalue. If the second and third operands 6358 // do not have the same type, and either has (cv) class type, ... 6359 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 6360 // ... overload resolution is used to determine the conversions (if any) 6361 // to be applied to the operands. If the overload resolution fails, the 6362 // program is ill-formed. 6363 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 6364 return QualType(); 6365 } 6366 6367 // C++11 [expr.cond]p6 6368 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 6369 // conversions are performed on the second and third operands. 6370 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 6371 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 6372 if (LHS.isInvalid() || RHS.isInvalid()) 6373 return QualType(); 6374 LTy = LHS.get()->getType(); 6375 RTy = RHS.get()->getType(); 6376 6377 // After those conversions, one of the following shall hold: 6378 // -- The second and third operands have the same type; the result 6379 // is of that type. If the operands have class type, the result 6380 // is a prvalue temporary of the result type, which is 6381 // copy-initialized from either the second operand or the third 6382 // operand depending on the value of the first operand. 6383 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { 6384 if (LTy->isRecordType()) { 6385 // The operands have class type. Make a temporary copy. 6386 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); 6387 6388 ExprResult LHSCopy = PerformCopyInitialization(Entity, 6389 SourceLocation(), 6390 LHS); 6391 if (LHSCopy.isInvalid()) 6392 return QualType(); 6393 6394 ExprResult RHSCopy = PerformCopyInitialization(Entity, 6395 SourceLocation(), 6396 RHS); 6397 if (RHSCopy.isInvalid()) 6398 return QualType(); 6399 6400 LHS = LHSCopy; 6401 RHS = RHSCopy; 6402 } 6403 6404 // If we have function pointer types, unify them anyway to unify their 6405 // exception specifications, if any. 6406 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) { 6407 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS); 6408 assert(!LTy.isNull() && "failed to find composite pointer type for " 6409 "canonically equivalent function ptr types"); 6410 } 6411 6412 return LTy; 6413 } 6414 6415 // Extension: conditional operator involving vector types. 6416 if (LTy->isVectorType() || RTy->isVectorType()) 6417 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false, 6418 /*AllowBothBool*/true, 6419 /*AllowBoolConversions*/false); 6420 6421 // -- The second and third operands have arithmetic or enumeration type; 6422 // the usual arithmetic conversions are performed to bring them to a 6423 // common type, and the result is of that type. 6424 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 6425 QualType ResTy = 6426 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); 6427 if (LHS.isInvalid() || RHS.isInvalid()) 6428 return QualType(); 6429 if (ResTy.isNull()) { 6430 Diag(QuestionLoc, 6431 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy 6432 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6433 return QualType(); 6434 } 6435 6436 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 6437 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 6438 6439 return ResTy; 6440 } 6441 6442 // -- The second and third operands have pointer type, or one has pointer 6443 // type and the other is a null pointer constant, or both are null 6444 // pointer constants, at least one of which is non-integral; pointer 6445 // conversions and qualification conversions are performed to bring them 6446 // to their composite pointer type. The result is of the composite 6447 // pointer type. 6448 // -- The second and third operands have pointer to member type, or one has 6449 // pointer to member type and the other is a null pointer constant; 6450 // pointer to member conversions and qualification conversions are 6451 // performed to bring them to a common type, whose cv-qualification 6452 // shall match the cv-qualification of either the second or the third 6453 // operand. The result is of the common type. 6454 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS); 6455 if (!Composite.isNull()) 6456 return Composite; 6457 6458 // Similarly, attempt to find composite type of two objective-c pointers. 6459 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 6460 if (LHS.isInvalid() || RHS.isInvalid()) 6461 return QualType(); 6462 if (!Composite.isNull()) 6463 return Composite; 6464 6465 // Check if we are using a null with a non-pointer type. 6466 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 6467 return QualType(); 6468 6469 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 6470 << LHS.get()->getType() << RHS.get()->getType() 6471 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 6472 return QualType(); 6473 } 6474 6475 static FunctionProtoType::ExceptionSpecInfo 6476 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1, 6477 FunctionProtoType::ExceptionSpecInfo ESI2, 6478 SmallVectorImpl<QualType> &ExceptionTypeStorage) { 6479 ExceptionSpecificationType EST1 = ESI1.Type; 6480 ExceptionSpecificationType EST2 = ESI2.Type; 6481 6482 // If either of them can throw anything, that is the result. 6483 if (EST1 == EST_None) return ESI1; 6484 if (EST2 == EST_None) return ESI2; 6485 if (EST1 == EST_MSAny) return ESI1; 6486 if (EST2 == EST_MSAny) return ESI2; 6487 if (EST1 == EST_NoexceptFalse) return ESI1; 6488 if (EST2 == EST_NoexceptFalse) return ESI2; 6489 6490 // If either of them is non-throwing, the result is the other. 6491 if (EST1 == EST_NoThrow) return ESI2; 6492 if (EST2 == EST_NoThrow) return ESI1; 6493 if (EST1 == EST_DynamicNone) return ESI2; 6494 if (EST2 == EST_DynamicNone) return ESI1; 6495 if (EST1 == EST_BasicNoexcept) return ESI2; 6496 if (EST2 == EST_BasicNoexcept) return ESI1; 6497 if (EST1 == EST_NoexceptTrue) return ESI2; 6498 if (EST2 == EST_NoexceptTrue) return ESI1; 6499 6500 // If we're left with value-dependent computed noexcept expressions, we're 6501 // stuck. Before C++17, we can just drop the exception specification entirely, 6502 // since it's not actually part of the canonical type. And this should never 6503 // happen in C++17, because it would mean we were computing the composite 6504 // pointer type of dependent types, which should never happen. 6505 if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) { 6506 assert(!S.getLangOpts().CPlusPlus17 && 6507 "computing composite pointer type of dependent types"); 6508 return FunctionProtoType::ExceptionSpecInfo(); 6509 } 6510 6511 // Switch over the possibilities so that people adding new values know to 6512 // update this function. 6513 switch (EST1) { 6514 case EST_None: 6515 case EST_DynamicNone: 6516 case EST_MSAny: 6517 case EST_BasicNoexcept: 6518 case EST_DependentNoexcept: 6519 case EST_NoexceptFalse: 6520 case EST_NoexceptTrue: 6521 case EST_NoThrow: 6522 llvm_unreachable("handled above"); 6523 6524 case EST_Dynamic: { 6525 // This is the fun case: both exception specifications are dynamic. Form 6526 // the union of the two lists. 6527 assert(EST2 == EST_Dynamic && "other cases should already be handled"); 6528 llvm::SmallPtrSet<QualType, 8> Found; 6529 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions}) 6530 for (QualType E : Exceptions) 6531 if (Found.insert(S.Context.getCanonicalType(E)).second) 6532 ExceptionTypeStorage.push_back(E); 6533 6534 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic); 6535 Result.Exceptions = ExceptionTypeStorage; 6536 return Result; 6537 } 6538 6539 case EST_Unevaluated: 6540 case EST_Uninstantiated: 6541 case EST_Unparsed: 6542 llvm_unreachable("shouldn't see unresolved exception specifications here"); 6543 } 6544 6545 llvm_unreachable("invalid ExceptionSpecificationType"); 6546 } 6547 6548 /// Find a merged pointer type and convert the two expressions to it. 6549 /// 6550 /// This finds the composite pointer type for \p E1 and \p E2 according to 6551 /// C++2a [expr.type]p3. It converts both expressions to this type and returns 6552 /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs 6553 /// is \c true). 6554 /// 6555 /// \param Loc The location of the operator requiring these two expressions to 6556 /// be converted to the composite pointer type. 6557 /// 6558 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type. 6559 QualType Sema::FindCompositePointerType(SourceLocation Loc, 6560 Expr *&E1, Expr *&E2, 6561 bool ConvertArgs) { 6562 assert(getLangOpts().CPlusPlus && "This function assumes C++"); 6563 6564 // C++1z [expr]p14: 6565 // The composite pointer type of two operands p1 and p2 having types T1 6566 // and T2 6567 QualType T1 = E1->getType(), T2 = E2->getType(); 6568 6569 // where at least one is a pointer or pointer to member type or 6570 // std::nullptr_t is: 6571 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || 6572 T1->isNullPtrType(); 6573 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || 6574 T2->isNullPtrType(); 6575 if (!T1IsPointerLike && !T2IsPointerLike) 6576 return QualType(); 6577 6578 // - if both p1 and p2 are null pointer constants, std::nullptr_t; 6579 // This can't actually happen, following the standard, but we also use this 6580 // to implement the end of [expr.conv], which hits this case. 6581 // 6582 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; 6583 if (T1IsPointerLike && 6584 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6585 if (ConvertArgs) 6586 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType() 6587 ? CK_NullToMemberPointer 6588 : CK_NullToPointer).get(); 6589 return T1; 6590 } 6591 if (T2IsPointerLike && 6592 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 6593 if (ConvertArgs) 6594 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType() 6595 ? CK_NullToMemberPointer 6596 : CK_NullToPointer).get(); 6597 return T2; 6598 } 6599 6600 // Now both have to be pointers or member pointers. 6601 if (!T1IsPointerLike || !T2IsPointerLike) 6602 return QualType(); 6603 assert(!T1->isNullPtrType() && !T2->isNullPtrType() && 6604 "nullptr_t should be a null pointer constant"); 6605 6606 struct Step { 6607 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K; 6608 // Qualifiers to apply under the step kind. 6609 Qualifiers Quals; 6610 /// The class for a pointer-to-member; a constant array type with a bound 6611 /// (if any) for an array. 6612 const Type *ClassOrBound; 6613 6614 Step(Kind K, const Type *ClassOrBound = nullptr) 6615 : K(K), Quals(), ClassOrBound(ClassOrBound) {} 6616 QualType rebuild(ASTContext &Ctx, QualType T) const { 6617 T = Ctx.getQualifiedType(T, Quals); 6618 switch (K) { 6619 case Pointer: 6620 return Ctx.getPointerType(T); 6621 case MemberPointer: 6622 return Ctx.getMemberPointerType(T, ClassOrBound); 6623 case ObjCPointer: 6624 return Ctx.getObjCObjectPointerType(T); 6625 case Array: 6626 if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound)) 6627 return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr, 6628 ArrayType::Normal, 0); 6629 else 6630 return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0); 6631 } 6632 llvm_unreachable("unknown step kind"); 6633 } 6634 }; 6635 6636 SmallVector<Step, 8> Steps; 6637 6638 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6639 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6640 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, 6641 // respectively; 6642 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer 6643 // to member of C2 of type cv2 U2" for some non-function type U, where 6644 // C1 is reference-related to C2 or C2 is reference-related to C1, the 6645 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2, 6646 // respectively; 6647 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and 6648 // T2; 6649 // 6650 // Dismantle T1 and T2 to simultaneously determine whether they are similar 6651 // and to prepare to form the cv-combined type if so. 6652 QualType Composite1 = T1; 6653 QualType Composite2 = T2; 6654 unsigned NeedConstBefore = 0; 6655 while (true) { 6656 assert(!Composite1.isNull() && !Composite2.isNull()); 6657 6658 Qualifiers Q1, Q2; 6659 Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1); 6660 Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2); 6661 6662 // Top-level qualifiers are ignored. Merge at all lower levels. 6663 if (!Steps.empty()) { 6664 // Find the qualifier union: (approximately) the unique minimal set of 6665 // qualifiers that is compatible with both types. 6666 Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() | 6667 Q2.getCVRUQualifiers()); 6668 6669 // Under one level of pointer or pointer-to-member, we can change to an 6670 // unambiguous compatible address space. 6671 if (Q1.getAddressSpace() == Q2.getAddressSpace()) { 6672 Quals.setAddressSpace(Q1.getAddressSpace()); 6673 } else if (Steps.size() == 1) { 6674 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2); 6675 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1); 6676 if (MaybeQ1 == MaybeQ2) { 6677 // Exception for ptr size address spaces. Should be able to choose 6678 // either address space during comparison. 6679 if (isPtrSizeAddressSpace(Q1.getAddressSpace()) || 6680 isPtrSizeAddressSpace(Q2.getAddressSpace())) 6681 MaybeQ1 = true; 6682 else 6683 return QualType(); // No unique best address space. 6684 } 6685 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace() 6686 : Q2.getAddressSpace()); 6687 } else { 6688 return QualType(); 6689 } 6690 6691 // FIXME: In C, we merge __strong and none to __strong at the top level. 6692 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr()) 6693 Quals.setObjCGCAttr(Q1.getObjCGCAttr()); 6694 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6695 assert(Steps.size() == 1); 6696 else 6697 return QualType(); 6698 6699 // Mismatched lifetime qualifiers never compatibly include each other. 6700 if (Q1.getObjCLifetime() == Q2.getObjCLifetime()) 6701 Quals.setObjCLifetime(Q1.getObjCLifetime()); 6702 else if (T1->isVoidPointerType() || T2->isVoidPointerType()) 6703 assert(Steps.size() == 1); 6704 else 6705 return QualType(); 6706 6707 Steps.back().Quals = Quals; 6708 if (Q1 != Quals || Q2 != Quals) 6709 NeedConstBefore = Steps.size() - 1; 6710 } 6711 6712 // FIXME: Can we unify the following with UnwrapSimilarTypes? 6713 6714 const ArrayType *Arr1, *Arr2; 6715 if ((Arr1 = Context.getAsArrayType(Composite1)) && 6716 (Arr2 = Context.getAsArrayType(Composite2))) { 6717 auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1); 6718 auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2); 6719 if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) { 6720 Composite1 = Arr1->getElementType(); 6721 Composite2 = Arr2->getElementType(); 6722 Steps.emplace_back(Step::Array, CAT1); 6723 continue; 6724 } 6725 bool IAT1 = isa<IncompleteArrayType>(Arr1); 6726 bool IAT2 = isa<IncompleteArrayType>(Arr2); 6727 if ((IAT1 && IAT2) || 6728 (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) && 6729 ((bool)CAT1 != (bool)CAT2) && 6730 (Steps.empty() || Steps.back().K != Step::Array))) { 6731 // In C++20 onwards, we can unify an array of N T with an array of 6732 // a different or unknown bound. But we can't form an array whose 6733 // element type is an array of unknown bound by doing so. 6734 Composite1 = Arr1->getElementType(); 6735 Composite2 = Arr2->getElementType(); 6736 Steps.emplace_back(Step::Array); 6737 if (CAT1 || CAT2) 6738 NeedConstBefore = Steps.size(); 6739 continue; 6740 } 6741 } 6742 6743 const PointerType *Ptr1, *Ptr2; 6744 if ((Ptr1 = Composite1->getAs<PointerType>()) && 6745 (Ptr2 = Composite2->getAs<PointerType>())) { 6746 Composite1 = Ptr1->getPointeeType(); 6747 Composite2 = Ptr2->getPointeeType(); 6748 Steps.emplace_back(Step::Pointer); 6749 continue; 6750 } 6751 6752 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2; 6753 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) && 6754 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) { 6755 Composite1 = ObjPtr1->getPointeeType(); 6756 Composite2 = ObjPtr2->getPointeeType(); 6757 Steps.emplace_back(Step::ObjCPointer); 6758 continue; 6759 } 6760 6761 const MemberPointerType *MemPtr1, *MemPtr2; 6762 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 6763 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 6764 Composite1 = MemPtr1->getPointeeType(); 6765 Composite2 = MemPtr2->getPointeeType(); 6766 6767 // At the top level, we can perform a base-to-derived pointer-to-member 6768 // conversion: 6769 // 6770 // - [...] where C1 is reference-related to C2 or C2 is 6771 // reference-related to C1 6772 // 6773 // (Note that the only kinds of reference-relatedness in scope here are 6774 // "same type or derived from".) At any other level, the class must 6775 // exactly match. 6776 const Type *Class = nullptr; 6777 QualType Cls1(MemPtr1->getClass(), 0); 6778 QualType Cls2(MemPtr2->getClass(), 0); 6779 if (Context.hasSameType(Cls1, Cls2)) 6780 Class = MemPtr1->getClass(); 6781 else if (Steps.empty()) 6782 Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() : 6783 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr; 6784 if (!Class) 6785 return QualType(); 6786 6787 Steps.emplace_back(Step::MemberPointer, Class); 6788 continue; 6789 } 6790 6791 // Special case: at the top level, we can decompose an Objective-C pointer 6792 // and a 'cv void *'. Unify the qualifiers. 6793 if (Steps.empty() && ((Composite1->isVoidPointerType() && 6794 Composite2->isObjCObjectPointerType()) || 6795 (Composite1->isObjCObjectPointerType() && 6796 Composite2->isVoidPointerType()))) { 6797 Composite1 = Composite1->getPointeeType(); 6798 Composite2 = Composite2->getPointeeType(); 6799 Steps.emplace_back(Step::Pointer); 6800 continue; 6801 } 6802 6803 // FIXME: block pointer types? 6804 6805 // Cannot unwrap any more types. 6806 break; 6807 } 6808 6809 // - if T1 or T2 is "pointer to noexcept function" and the other type is 6810 // "pointer to function", where the function types are otherwise the same, 6811 // "pointer to function"; 6812 // - if T1 or T2 is "pointer to member of C1 of type function", the other 6813 // type is "pointer to member of C2 of type noexcept function", and C1 6814 // is reference-related to C2 or C2 is reference-related to C1, where 6815 // the function types are otherwise the same, "pointer to member of C2 of 6816 // type function" or "pointer to member of C1 of type function", 6817 // respectively; 6818 // 6819 // We also support 'noreturn' here, so as a Clang extension we generalize the 6820 // above to: 6821 // 6822 // - [Clang] If T1 and T2 are both of type "pointer to function" or 6823 // "pointer to member function" and the pointee types can be unified 6824 // by a function pointer conversion, that conversion is applied 6825 // before checking the following rules. 6826 // 6827 // We've already unwrapped down to the function types, and we want to merge 6828 // rather than just convert, so do this ourselves rather than calling 6829 // IsFunctionConversion. 6830 // 6831 // FIXME: In order to match the standard wording as closely as possible, we 6832 // currently only do this under a single level of pointers. Ideally, we would 6833 // allow this in general, and set NeedConstBefore to the relevant depth on 6834 // the side(s) where we changed anything. If we permit that, we should also 6835 // consider this conversion when determining type similarity and model it as 6836 // a qualification conversion. 6837 if (Steps.size() == 1) { 6838 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { 6839 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { 6840 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); 6841 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); 6842 6843 // The result is noreturn if both operands are. 6844 bool Noreturn = 6845 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); 6846 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn); 6847 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn); 6848 6849 // The result is nothrow if both operands are. 6850 SmallVector<QualType, 8> ExceptionTypeStorage; 6851 EPI1.ExceptionSpec = EPI2.ExceptionSpec = 6852 mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec, 6853 ExceptionTypeStorage); 6854 6855 Composite1 = Context.getFunctionType(FPT1->getReturnType(), 6856 FPT1->getParamTypes(), EPI1); 6857 Composite2 = Context.getFunctionType(FPT2->getReturnType(), 6858 FPT2->getParamTypes(), EPI2); 6859 } 6860 } 6861 } 6862 6863 // There are some more conversions we can perform under exactly one pointer. 6864 if (Steps.size() == 1 && Steps.front().K == Step::Pointer && 6865 !Context.hasSameType(Composite1, Composite2)) { 6866 // - if T1 or T2 is "pointer to cv1 void" and the other type is 6867 // "pointer to cv2 T", where T is an object type or void, 6868 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2; 6869 if (Composite1->isVoidType() && Composite2->isObjectType()) 6870 Composite2 = Composite1; 6871 else if (Composite2->isVoidType() && Composite1->isObjectType()) 6872 Composite1 = Composite2; 6873 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 6874 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), 6875 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and 6876 // T1, respectively; 6877 // 6878 // The "similar type" handling covers all of this except for the "T1 is a 6879 // base class of T2" case in the definition of reference-related. 6880 else if (IsDerivedFrom(Loc, Composite1, Composite2)) 6881 Composite1 = Composite2; 6882 else if (IsDerivedFrom(Loc, Composite2, Composite1)) 6883 Composite2 = Composite1; 6884 } 6885 6886 // At this point, either the inner types are the same or we have failed to 6887 // find a composite pointer type. 6888 if (!Context.hasSameType(Composite1, Composite2)) 6889 return QualType(); 6890 6891 // Per C++ [conv.qual]p3, add 'const' to every level before the last 6892 // differing qualifier. 6893 for (unsigned I = 0; I != NeedConstBefore; ++I) 6894 Steps[I].Quals.addConst(); 6895 6896 // Rebuild the composite type. 6897 QualType Composite = Composite1; 6898 for (auto &S : llvm::reverse(Steps)) 6899 Composite = S.rebuild(Context, Composite); 6900 6901 if (ConvertArgs) { 6902 // Convert the expressions to the composite pointer type. 6903 InitializedEntity Entity = 6904 InitializedEntity::InitializeTemporary(Composite); 6905 InitializationKind Kind = 6906 InitializationKind::CreateCopy(Loc, SourceLocation()); 6907 6908 InitializationSequence E1ToC(*this, Entity, Kind, E1); 6909 if (!E1ToC) 6910 return QualType(); 6911 6912 InitializationSequence E2ToC(*this, Entity, Kind, E2); 6913 if (!E2ToC) 6914 return QualType(); 6915 6916 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics. 6917 ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1); 6918 if (E1Result.isInvalid()) 6919 return QualType(); 6920 E1 = E1Result.get(); 6921 6922 ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2); 6923 if (E2Result.isInvalid()) 6924 return QualType(); 6925 E2 = E2Result.get(); 6926 } 6927 6928 return Composite; 6929 } 6930 6931 ExprResult Sema::MaybeBindToTemporary(Expr *E) { 6932 if (!E) 6933 return ExprError(); 6934 6935 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); 6936 6937 // If the result is a glvalue, we shouldn't bind it. 6938 if (E->isGLValue()) 6939 return E; 6940 6941 // In ARC, calls that return a retainable type can return retained, 6942 // in which case we have to insert a consuming cast. 6943 if (getLangOpts().ObjCAutoRefCount && 6944 E->getType()->isObjCRetainableType()) { 6945 6946 bool ReturnsRetained; 6947 6948 // For actual calls, we compute this by examining the type of the 6949 // called value. 6950 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 6951 Expr *Callee = Call->getCallee()->IgnoreParens(); 6952 QualType T = Callee->getType(); 6953 6954 if (T == Context.BoundMemberTy) { 6955 // Handle pointer-to-members. 6956 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 6957 T = BinOp->getRHS()->getType(); 6958 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 6959 T = Mem->getMemberDecl()->getType(); 6960 } 6961 6962 if (const PointerType *Ptr = T->getAs<PointerType>()) 6963 T = Ptr->getPointeeType(); 6964 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 6965 T = Ptr->getPointeeType(); 6966 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 6967 T = MemPtr->getPointeeType(); 6968 6969 auto *FTy = T->castAs<FunctionType>(); 6970 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 6971 6972 // ActOnStmtExpr arranges things so that StmtExprs of retainable 6973 // type always produce a +1 object. 6974 } else if (isa<StmtExpr>(E)) { 6975 ReturnsRetained = true; 6976 6977 // We hit this case with the lambda conversion-to-block optimization; 6978 // we don't want any extra casts here. 6979 } else if (isa<CastExpr>(E) && 6980 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 6981 return E; 6982 6983 // For message sends and property references, we try to find an 6984 // actual method. FIXME: we should infer retention by selector in 6985 // cases where we don't have an actual method. 6986 } else { 6987 ObjCMethodDecl *D = nullptr; 6988 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 6989 D = Send->getMethodDecl(); 6990 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 6991 D = BoxedExpr->getBoxingMethod(); 6992 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 6993 // Don't do reclaims if we're using the zero-element array 6994 // constant. 6995 if (ArrayLit->getNumElements() == 0 && 6996 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 6997 return E; 6998 6999 D = ArrayLit->getArrayWithObjectsMethod(); 7000 } else if (ObjCDictionaryLiteral *DictLit 7001 = dyn_cast<ObjCDictionaryLiteral>(E)) { 7002 // Don't do reclaims if we're using the zero-element dictionary 7003 // constant. 7004 if (DictLit->getNumElements() == 0 && 7005 Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) 7006 return E; 7007 7008 D = DictLit->getDictWithObjectsMethod(); 7009 } 7010 7011 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 7012 7013 // Don't do reclaims on performSelector calls; despite their 7014 // return type, the invoked method doesn't necessarily actually 7015 // return an object. 7016 if (!ReturnsRetained && 7017 D && D->getMethodFamily() == OMF_performSelector) 7018 return E; 7019 } 7020 7021 // Don't reclaim an object of Class type. 7022 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 7023 return E; 7024 7025 Cleanup.setExprNeedsCleanups(true); 7026 7027 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 7028 : CK_ARCReclaimReturnedObject); 7029 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 7030 VK_PRValue, FPOptionsOverride()); 7031 } 7032 7033 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 7034 Cleanup.setExprNeedsCleanups(true); 7035 7036 if (!getLangOpts().CPlusPlus) 7037 return E; 7038 7039 // Search for the base element type (cf. ASTContext::getBaseElementType) with 7040 // a fast path for the common case that the type is directly a RecordType. 7041 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 7042 const RecordType *RT = nullptr; 7043 while (!RT) { 7044 switch (T->getTypeClass()) { 7045 case Type::Record: 7046 RT = cast<RecordType>(T); 7047 break; 7048 case Type::ConstantArray: 7049 case Type::IncompleteArray: 7050 case Type::VariableArray: 7051 case Type::DependentSizedArray: 7052 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 7053 break; 7054 default: 7055 return E; 7056 } 7057 } 7058 7059 // That should be enough to guarantee that this type is complete, if we're 7060 // not processing a decltype expression. 7061 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 7062 if (RD->isInvalidDecl() || RD->isDependentContext()) 7063 return E; 7064 7065 bool IsDecltype = ExprEvalContexts.back().ExprContext == 7066 ExpressionEvaluationContextRecord::EK_Decltype; 7067 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 7068 7069 if (Destructor) { 7070 MarkFunctionReferenced(E->getExprLoc(), Destructor); 7071 CheckDestructorAccess(E->getExprLoc(), Destructor, 7072 PDiag(diag::err_access_dtor_temp) 7073 << E->getType()); 7074 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 7075 return ExprError(); 7076 7077 // If destructor is trivial, we can avoid the extra copy. 7078 if (Destructor->isTrivial()) 7079 return E; 7080 7081 // We need a cleanup, but we don't need to remember the temporary. 7082 Cleanup.setExprNeedsCleanups(true); 7083 } 7084 7085 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 7086 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 7087 7088 if (IsDecltype) 7089 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 7090 7091 return Bind; 7092 } 7093 7094 ExprResult 7095 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 7096 if (SubExpr.isInvalid()) 7097 return ExprError(); 7098 7099 return MaybeCreateExprWithCleanups(SubExpr.get()); 7100 } 7101 7102 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 7103 assert(SubExpr && "subexpression can't be null!"); 7104 7105 CleanupVarDeclMarking(); 7106 7107 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 7108 assert(ExprCleanupObjects.size() >= FirstCleanup); 7109 assert(Cleanup.exprNeedsCleanups() || 7110 ExprCleanupObjects.size() == FirstCleanup); 7111 if (!Cleanup.exprNeedsCleanups()) 7112 return SubExpr; 7113 7114 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 7115 ExprCleanupObjects.size() - FirstCleanup); 7116 7117 auto *E = ExprWithCleanups::Create( 7118 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); 7119 DiscardCleanupsInEvaluationContext(); 7120 7121 return E; 7122 } 7123 7124 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 7125 assert(SubStmt && "sub-statement can't be null!"); 7126 7127 CleanupVarDeclMarking(); 7128 7129 if (!Cleanup.exprNeedsCleanups()) 7130 return SubStmt; 7131 7132 // FIXME: In order to attach the temporaries, wrap the statement into 7133 // a StmtExpr; currently this is only used for asm statements. 7134 // This is hacky, either create a new CXXStmtWithTemporaries statement or 7135 // a new AsmStmtWithTemporaries. 7136 CompoundStmt *CompStmt = CompoundStmt::Create( 7137 Context, SubStmt, SourceLocation(), SourceLocation()); 7138 Expr *E = new (Context) 7139 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(), 7140 /*FIXME TemplateDepth=*/0); 7141 return MaybeCreateExprWithCleanups(E); 7142 } 7143 7144 /// Process the expression contained within a decltype. For such expressions, 7145 /// certain semantic checks on temporaries are delayed until this point, and 7146 /// are omitted for the 'topmost' call in the decltype expression. If the 7147 /// topmost call bound a temporary, strip that temporary off the expression. 7148 ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 7149 assert(ExprEvalContexts.back().ExprContext == 7150 ExpressionEvaluationContextRecord::EK_Decltype && 7151 "not in a decltype expression"); 7152 7153 ExprResult Result = CheckPlaceholderExpr(E); 7154 if (Result.isInvalid()) 7155 return ExprError(); 7156 E = Result.get(); 7157 7158 // C++11 [expr.call]p11: 7159 // If a function call is a prvalue of object type, 7160 // -- if the function call is either 7161 // -- the operand of a decltype-specifier, or 7162 // -- the right operand of a comma operator that is the operand of a 7163 // decltype-specifier, 7164 // a temporary object is not introduced for the prvalue. 7165 7166 // Recursively rebuild ParenExprs and comma expressions to strip out the 7167 // outermost CXXBindTemporaryExpr, if any. 7168 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 7169 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 7170 if (SubExpr.isInvalid()) 7171 return ExprError(); 7172 if (SubExpr.get() == PE->getSubExpr()) 7173 return E; 7174 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 7175 } 7176 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7177 if (BO->getOpcode() == BO_Comma) { 7178 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 7179 if (RHS.isInvalid()) 7180 return ExprError(); 7181 if (RHS.get() == BO->getRHS()) 7182 return E; 7183 return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma, 7184 BO->getType(), BO->getValueKind(), 7185 BO->getObjectKind(), BO->getOperatorLoc(), 7186 BO->getFPFeatures(getLangOpts())); 7187 } 7188 } 7189 7190 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 7191 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 7192 : nullptr; 7193 if (TopCall) 7194 E = TopCall; 7195 else 7196 TopBind = nullptr; 7197 7198 // Disable the special decltype handling now. 7199 ExprEvalContexts.back().ExprContext = 7200 ExpressionEvaluationContextRecord::EK_Other; 7201 7202 Result = CheckUnevaluatedOperand(E); 7203 if (Result.isInvalid()) 7204 return ExprError(); 7205 E = Result.get(); 7206 7207 // In MS mode, don't perform any extra checking of call return types within a 7208 // decltype expression. 7209 if (getLangOpts().MSVCCompat) 7210 return E; 7211 7212 // Perform the semantic checks we delayed until this point. 7213 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 7214 I != N; ++I) { 7215 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 7216 if (Call == TopCall) 7217 continue; 7218 7219 if (CheckCallReturnType(Call->getCallReturnType(Context), 7220 Call->getBeginLoc(), Call, Call->getDirectCallee())) 7221 return ExprError(); 7222 } 7223 7224 // Now all relevant types are complete, check the destructors are accessible 7225 // and non-deleted, and annotate them on the temporaries. 7226 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 7227 I != N; ++I) { 7228 CXXBindTemporaryExpr *Bind = 7229 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 7230 if (Bind == TopBind) 7231 continue; 7232 7233 CXXTemporary *Temp = Bind->getTemporary(); 7234 7235 CXXRecordDecl *RD = 7236 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 7237 CXXDestructorDecl *Destructor = LookupDestructor(RD); 7238 Temp->setDestructor(Destructor); 7239 7240 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 7241 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 7242 PDiag(diag::err_access_dtor_temp) 7243 << Bind->getType()); 7244 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 7245 return ExprError(); 7246 7247 // We need a cleanup, but we don't need to remember the temporary. 7248 Cleanup.setExprNeedsCleanups(true); 7249 } 7250 7251 // Possibly strip off the top CXXBindTemporaryExpr. 7252 return E; 7253 } 7254 7255 /// Note a set of 'operator->' functions that were used for a member access. 7256 static void noteOperatorArrows(Sema &S, 7257 ArrayRef<FunctionDecl *> OperatorArrows) { 7258 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 7259 // FIXME: Make this configurable? 7260 unsigned Limit = 9; 7261 if (OperatorArrows.size() > Limit) { 7262 // Produce Limit-1 normal notes and one 'skipping' note. 7263 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 7264 SkipCount = OperatorArrows.size() - (Limit - 1); 7265 } 7266 7267 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 7268 if (I == SkipStart) { 7269 S.Diag(OperatorArrows[I]->getLocation(), 7270 diag::note_operator_arrows_suppressed) 7271 << SkipCount; 7272 I += SkipCount; 7273 } else { 7274 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 7275 << OperatorArrows[I]->getCallResultType(); 7276 ++I; 7277 } 7278 } 7279 } 7280 7281 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 7282 SourceLocation OpLoc, 7283 tok::TokenKind OpKind, 7284 ParsedType &ObjectType, 7285 bool &MayBePseudoDestructor) { 7286 // Since this might be a postfix expression, get rid of ParenListExprs. 7287 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 7288 if (Result.isInvalid()) return ExprError(); 7289 Base = Result.get(); 7290 7291 Result = CheckPlaceholderExpr(Base); 7292 if (Result.isInvalid()) return ExprError(); 7293 Base = Result.get(); 7294 7295 QualType BaseType = Base->getType(); 7296 MayBePseudoDestructor = false; 7297 if (BaseType->isDependentType()) { 7298 // If we have a pointer to a dependent type and are using the -> operator, 7299 // the object type is the type that the pointer points to. We might still 7300 // have enough information about that type to do something useful. 7301 if (OpKind == tok::arrow) 7302 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 7303 BaseType = Ptr->getPointeeType(); 7304 7305 ObjectType = ParsedType::make(BaseType); 7306 MayBePseudoDestructor = true; 7307 return Base; 7308 } 7309 7310 // C++ [over.match.oper]p8: 7311 // [...] When operator->returns, the operator-> is applied to the value 7312 // returned, with the original second operand. 7313 if (OpKind == tok::arrow) { 7314 QualType StartingType = BaseType; 7315 bool NoArrowOperatorFound = false; 7316 bool FirstIteration = true; 7317 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 7318 // The set of types we've considered so far. 7319 llvm::SmallPtrSet<CanQualType,8> CTypes; 7320 SmallVector<FunctionDecl*, 8> OperatorArrows; 7321 CTypes.insert(Context.getCanonicalType(BaseType)); 7322 7323 while (BaseType->isRecordType()) { 7324 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 7325 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 7326 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 7327 noteOperatorArrows(*this, OperatorArrows); 7328 Diag(OpLoc, diag::note_operator_arrow_depth) 7329 << getLangOpts().ArrowDepth; 7330 return ExprError(); 7331 } 7332 7333 Result = BuildOverloadedArrowExpr( 7334 S, Base, OpLoc, 7335 // When in a template specialization and on the first loop iteration, 7336 // potentially give the default diagnostic (with the fixit in a 7337 // separate note) instead of having the error reported back to here 7338 // and giving a diagnostic with a fixit attached to the error itself. 7339 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 7340 ? nullptr 7341 : &NoArrowOperatorFound); 7342 if (Result.isInvalid()) { 7343 if (NoArrowOperatorFound) { 7344 if (FirstIteration) { 7345 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7346 << BaseType << 1 << Base->getSourceRange() 7347 << FixItHint::CreateReplacement(OpLoc, "."); 7348 OpKind = tok::period; 7349 break; 7350 } 7351 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 7352 << BaseType << Base->getSourceRange(); 7353 CallExpr *CE = dyn_cast<CallExpr>(Base); 7354 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 7355 Diag(CD->getBeginLoc(), 7356 diag::note_member_reference_arrow_from_operator_arrow); 7357 } 7358 } 7359 return ExprError(); 7360 } 7361 Base = Result.get(); 7362 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 7363 OperatorArrows.push_back(OpCall->getDirectCallee()); 7364 BaseType = Base->getType(); 7365 CanQualType CBaseType = Context.getCanonicalType(BaseType); 7366 if (!CTypes.insert(CBaseType).second) { 7367 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 7368 noteOperatorArrows(*this, OperatorArrows); 7369 return ExprError(); 7370 } 7371 FirstIteration = false; 7372 } 7373 7374 if (OpKind == tok::arrow) { 7375 if (BaseType->isPointerType()) 7376 BaseType = BaseType->getPointeeType(); 7377 else if (auto *AT = Context.getAsArrayType(BaseType)) 7378 BaseType = AT->getElementType(); 7379 } 7380 } 7381 7382 // Objective-C properties allow "." access on Objective-C pointer types, 7383 // so adjust the base type to the object type itself. 7384 if (BaseType->isObjCObjectPointerType()) 7385 BaseType = BaseType->getPointeeType(); 7386 7387 // C++ [basic.lookup.classref]p2: 7388 // [...] If the type of the object expression is of pointer to scalar 7389 // type, the unqualified-id is looked up in the context of the complete 7390 // postfix-expression. 7391 // 7392 // This also indicates that we could be parsing a pseudo-destructor-name. 7393 // Note that Objective-C class and object types can be pseudo-destructor 7394 // expressions or normal member (ivar or property) access expressions, and 7395 // it's legal for the type to be incomplete if this is a pseudo-destructor 7396 // call. We'll do more incomplete-type checks later in the lookup process, 7397 // so just skip this check for ObjC types. 7398 if (!BaseType->isRecordType()) { 7399 ObjectType = ParsedType::make(BaseType); 7400 MayBePseudoDestructor = true; 7401 return Base; 7402 } 7403 7404 // The object type must be complete (or dependent), or 7405 // C++11 [expr.prim.general]p3: 7406 // Unlike the object expression in other contexts, *this is not required to 7407 // be of complete type for purposes of class member access (5.2.5) outside 7408 // the member function body. 7409 if (!BaseType->isDependentType() && 7410 !isThisOutsideMemberFunctionBody(BaseType) && 7411 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access)) 7412 return ExprError(); 7413 7414 // C++ [basic.lookup.classref]p2: 7415 // If the id-expression in a class member access (5.2.5) is an 7416 // unqualified-id, and the type of the object expression is of a class 7417 // type C (or of pointer to a class type C), the unqualified-id is looked 7418 // up in the scope of class C. [...] 7419 ObjectType = ParsedType::make(BaseType); 7420 return Base; 7421 } 7422 7423 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base, 7424 tok::TokenKind &OpKind, SourceLocation OpLoc) { 7425 if (Base->hasPlaceholderType()) { 7426 ExprResult result = S.CheckPlaceholderExpr(Base); 7427 if (result.isInvalid()) return true; 7428 Base = result.get(); 7429 } 7430 ObjectType = Base->getType(); 7431 7432 // C++ [expr.pseudo]p2: 7433 // The left-hand side of the dot operator shall be of scalar type. The 7434 // left-hand side of the arrow operator shall be of pointer to scalar type. 7435 // This scalar type is the object type. 7436 // Note that this is rather different from the normal handling for the 7437 // arrow operator. 7438 if (OpKind == tok::arrow) { 7439 // The operator requires a prvalue, so perform lvalue conversions. 7440 // Only do this if we might plausibly end with a pointer, as otherwise 7441 // this was likely to be intended to be a '.'. 7442 if (ObjectType->isPointerType() || ObjectType->isArrayType() || 7443 ObjectType->isFunctionType()) { 7444 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base); 7445 if (BaseResult.isInvalid()) 7446 return true; 7447 Base = BaseResult.get(); 7448 ObjectType = Base->getType(); 7449 } 7450 7451 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 7452 ObjectType = Ptr->getPointeeType(); 7453 } else if (!Base->isTypeDependent()) { 7454 // The user wrote "p->" when they probably meant "p."; fix it. 7455 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7456 << ObjectType << true 7457 << FixItHint::CreateReplacement(OpLoc, "."); 7458 if (S.isSFINAEContext()) 7459 return true; 7460 7461 OpKind = tok::period; 7462 } 7463 } 7464 7465 return false; 7466 } 7467 7468 /// Check if it's ok to try and recover dot pseudo destructor calls on 7469 /// pointer objects. 7470 static bool 7471 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, 7472 QualType DestructedType) { 7473 // If this is a record type, check if its destructor is callable. 7474 if (auto *RD = DestructedType->getAsCXXRecordDecl()) { 7475 if (RD->hasDefinition()) 7476 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD)) 7477 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); 7478 return false; 7479 } 7480 7481 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. 7482 return DestructedType->isDependentType() || DestructedType->isScalarType() || 7483 DestructedType->isVectorType(); 7484 } 7485 7486 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 7487 SourceLocation OpLoc, 7488 tok::TokenKind OpKind, 7489 const CXXScopeSpec &SS, 7490 TypeSourceInfo *ScopeTypeInfo, 7491 SourceLocation CCLoc, 7492 SourceLocation TildeLoc, 7493 PseudoDestructorTypeStorage Destructed) { 7494 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 7495 7496 QualType ObjectType; 7497 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7498 return ExprError(); 7499 7500 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 7501 !ObjectType->isVectorType()) { 7502 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 7503 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 7504 else { 7505 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 7506 << ObjectType << Base->getSourceRange(); 7507 return ExprError(); 7508 } 7509 } 7510 7511 // C++ [expr.pseudo]p2: 7512 // [...] The cv-unqualified versions of the object type and of the type 7513 // designated by the pseudo-destructor-name shall be the same type. 7514 if (DestructedTypeInfo) { 7515 QualType DestructedType = DestructedTypeInfo->getType(); 7516 SourceLocation DestructedTypeStart 7517 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); 7518 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 7519 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 7520 // Detect dot pseudo destructor calls on pointer objects, e.g.: 7521 // Foo *foo; 7522 // foo.~Foo(); 7523 if (OpKind == tok::period && ObjectType->isPointerType() && 7524 Context.hasSameUnqualifiedType(DestructedType, 7525 ObjectType->getPointeeType())) { 7526 auto Diagnostic = 7527 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 7528 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); 7529 7530 // Issue a fixit only when the destructor is valid. 7531 if (canRecoverDotPseudoDestructorCallsOnPointerObjects( 7532 *this, DestructedType)) 7533 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->"); 7534 7535 // Recover by setting the object type to the destructed type and the 7536 // operator to '->'. 7537 ObjectType = DestructedType; 7538 OpKind = tok::arrow; 7539 } else { 7540 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 7541 << ObjectType << DestructedType << Base->getSourceRange() 7542 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7543 7544 // Recover by setting the destructed type to the object type. 7545 DestructedType = ObjectType; 7546 DestructedTypeInfo = 7547 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); 7548 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7549 } 7550 } else if (DestructedType.getObjCLifetime() != 7551 ObjectType.getObjCLifetime()) { 7552 7553 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 7554 // Okay: just pretend that the user provided the correctly-qualified 7555 // type. 7556 } else { 7557 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 7558 << ObjectType << DestructedType << Base->getSourceRange() 7559 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 7560 } 7561 7562 // Recover by setting the destructed type to the object type. 7563 DestructedType = ObjectType; 7564 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 7565 DestructedTypeStart); 7566 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7567 } 7568 } 7569 } 7570 7571 // C++ [expr.pseudo]p2: 7572 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 7573 // form 7574 // 7575 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 7576 // 7577 // shall designate the same scalar type. 7578 if (ScopeTypeInfo) { 7579 QualType ScopeType = ScopeTypeInfo->getType(); 7580 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 7581 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 7582 7583 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), 7584 diag::err_pseudo_dtor_type_mismatch) 7585 << ObjectType << ScopeType << Base->getSourceRange() 7586 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); 7587 7588 ScopeType = QualType(); 7589 ScopeTypeInfo = nullptr; 7590 } 7591 } 7592 7593 Expr *Result 7594 = new (Context) CXXPseudoDestructorExpr(Context, Base, 7595 OpKind == tok::arrow, OpLoc, 7596 SS.getWithLocInContext(Context), 7597 ScopeTypeInfo, 7598 CCLoc, 7599 TildeLoc, 7600 Destructed); 7601 7602 return Result; 7603 } 7604 7605 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7606 SourceLocation OpLoc, 7607 tok::TokenKind OpKind, 7608 CXXScopeSpec &SS, 7609 UnqualifiedId &FirstTypeName, 7610 SourceLocation CCLoc, 7611 SourceLocation TildeLoc, 7612 UnqualifiedId &SecondTypeName) { 7613 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7614 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7615 "Invalid first type name in pseudo-destructor"); 7616 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7617 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && 7618 "Invalid second type name in pseudo-destructor"); 7619 7620 QualType ObjectType; 7621 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7622 return ExprError(); 7623 7624 // Compute the object type that we should use for name lookup purposes. Only 7625 // record types and dependent types matter. 7626 ParsedType ObjectTypePtrForLookup; 7627 if (!SS.isSet()) { 7628 if (ObjectType->isRecordType()) 7629 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 7630 else if (ObjectType->isDependentType()) 7631 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 7632 } 7633 7634 // Convert the name of the type being destructed (following the ~) into a 7635 // type (with source-location information). 7636 QualType DestructedType; 7637 TypeSourceInfo *DestructedTypeInfo = nullptr; 7638 PseudoDestructorTypeStorage Destructed; 7639 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7640 ParsedType T = getTypeName(*SecondTypeName.Identifier, 7641 SecondTypeName.StartLocation, 7642 S, &SS, true, false, ObjectTypePtrForLookup, 7643 /*IsCtorOrDtorName*/true); 7644 if (!T && 7645 ((SS.isSet() && !computeDeclContext(SS, false)) || 7646 (!SS.isSet() && ObjectType->isDependentType()))) { 7647 // The name of the type being destroyed is a dependent name, and we 7648 // couldn't find anything useful in scope. Just store the identifier and 7649 // it's location, and we'll perform (qualified) name lookup again at 7650 // template instantiation time. 7651 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 7652 SecondTypeName.StartLocation); 7653 } else if (!T) { 7654 Diag(SecondTypeName.StartLocation, 7655 diag::err_pseudo_dtor_destructor_non_type) 7656 << SecondTypeName.Identifier << ObjectType; 7657 if (isSFINAEContext()) 7658 return ExprError(); 7659 7660 // Recover by assuming we had the right type all along. 7661 DestructedType = ObjectType; 7662 } else 7663 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 7664 } else { 7665 // Resolve the template-id to a type. 7666 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 7667 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7668 TemplateId->NumArgs); 7669 TypeResult T = ActOnTemplateIdType(S, 7670 SS, 7671 TemplateId->TemplateKWLoc, 7672 TemplateId->Template, 7673 TemplateId->Name, 7674 TemplateId->TemplateNameLoc, 7675 TemplateId->LAngleLoc, 7676 TemplateArgsPtr, 7677 TemplateId->RAngleLoc, 7678 /*IsCtorOrDtorName*/true); 7679 if (T.isInvalid() || !T.get()) { 7680 // Recover by assuming we had the right type all along. 7681 DestructedType = ObjectType; 7682 } else 7683 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 7684 } 7685 7686 // If we've performed some kind of recovery, (re-)build the type source 7687 // information. 7688 if (!DestructedType.isNull()) { 7689 if (!DestructedTypeInfo) 7690 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 7691 SecondTypeName.StartLocation); 7692 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 7693 } 7694 7695 // Convert the name of the scope type (the type prior to '::') into a type. 7696 TypeSourceInfo *ScopeTypeInfo = nullptr; 7697 QualType ScopeType; 7698 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || 7699 FirstTypeName.Identifier) { 7700 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { 7701 ParsedType T = getTypeName(*FirstTypeName.Identifier, 7702 FirstTypeName.StartLocation, 7703 S, &SS, true, false, ObjectTypePtrForLookup, 7704 /*IsCtorOrDtorName*/true); 7705 if (!T) { 7706 Diag(FirstTypeName.StartLocation, 7707 diag::err_pseudo_dtor_destructor_non_type) 7708 << FirstTypeName.Identifier << ObjectType; 7709 7710 if (isSFINAEContext()) 7711 return ExprError(); 7712 7713 // Just drop this type. It's unnecessary anyway. 7714 ScopeType = QualType(); 7715 } else 7716 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 7717 } else { 7718 // Resolve the template-id to a type. 7719 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 7720 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 7721 TemplateId->NumArgs); 7722 TypeResult T = ActOnTemplateIdType(S, 7723 SS, 7724 TemplateId->TemplateKWLoc, 7725 TemplateId->Template, 7726 TemplateId->Name, 7727 TemplateId->TemplateNameLoc, 7728 TemplateId->LAngleLoc, 7729 TemplateArgsPtr, 7730 TemplateId->RAngleLoc, 7731 /*IsCtorOrDtorName*/true); 7732 if (T.isInvalid() || !T.get()) { 7733 // Recover by dropping this type. 7734 ScopeType = QualType(); 7735 } else 7736 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 7737 } 7738 } 7739 7740 if (!ScopeType.isNull() && !ScopeTypeInfo) 7741 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 7742 FirstTypeName.StartLocation); 7743 7744 7745 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 7746 ScopeTypeInfo, CCLoc, TildeLoc, 7747 Destructed); 7748 } 7749 7750 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 7751 SourceLocation OpLoc, 7752 tok::TokenKind OpKind, 7753 SourceLocation TildeLoc, 7754 const DeclSpec& DS) { 7755 QualType ObjectType; 7756 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 7757 return ExprError(); 7758 7759 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { 7760 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); 7761 return true; 7762 } 7763 7764 QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false); 7765 7766 TypeLocBuilder TLB; 7767 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 7768 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); 7769 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 7770 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 7771 7772 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 7773 nullptr, SourceLocation(), TildeLoc, 7774 Destructed); 7775 } 7776 7777 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, 7778 CXXConversionDecl *Method, 7779 bool HadMultipleCandidates) { 7780 // Convert the expression to match the conversion function's implicit object 7781 // parameter. 7782 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, 7783 FoundDecl, Method); 7784 if (Exp.isInvalid()) 7785 return true; 7786 7787 if (Method->getParent()->isLambda() && 7788 Method->getConversionType()->isBlockPointerType()) { 7789 // This is a lambda conversion to block pointer; check if the argument 7790 // was a LambdaExpr. 7791 Expr *SubE = E; 7792 CastExpr *CE = dyn_cast<CastExpr>(SubE); 7793 if (CE && CE->getCastKind() == CK_NoOp) 7794 SubE = CE->getSubExpr(); 7795 SubE = SubE->IgnoreParens(); 7796 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) 7797 SubE = BE->getSubExpr(); 7798 if (isa<LambdaExpr>(SubE)) { 7799 // For the conversion to block pointer on a lambda expression, we 7800 // construct a special BlockLiteral instead; this doesn't really make 7801 // a difference in ARC, but outside of ARC the resulting block literal 7802 // follows the normal lifetime rules for block literals instead of being 7803 // autoreleased. 7804 PushExpressionEvaluationContext( 7805 ExpressionEvaluationContext::PotentiallyEvaluated); 7806 ExprResult BlockExp = BuildBlockForLambdaConversion( 7807 Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get()); 7808 PopExpressionEvaluationContext(); 7809 7810 // FIXME: This note should be produced by a CodeSynthesisContext. 7811 if (BlockExp.isInvalid()) 7812 Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv); 7813 return BlockExp; 7814 } 7815 } 7816 7817 MemberExpr *ME = 7818 BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(), 7819 NestedNameSpecifierLoc(), SourceLocation(), Method, 7820 DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()), 7821 HadMultipleCandidates, DeclarationNameInfo(), 7822 Context.BoundMemberTy, VK_PRValue, OK_Ordinary); 7823 7824 QualType ResultType = Method->getReturnType(); 7825 ExprValueKind VK = Expr::getValueKindForType(ResultType); 7826 ResultType = ResultType.getNonLValueExprType(Context); 7827 7828 CXXMemberCallExpr *CE = CXXMemberCallExpr::Create( 7829 Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(), 7830 CurFPFeatureOverrides()); 7831 7832 if (CheckFunctionCall(Method, CE, 7833 Method->getType()->castAs<FunctionProtoType>())) 7834 return ExprError(); 7835 7836 return CheckForImmediateInvocation(CE, CE->getMethodDecl()); 7837 } 7838 7839 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 7840 SourceLocation RParen) { 7841 // If the operand is an unresolved lookup expression, the expression is ill- 7842 // formed per [over.over]p1, because overloaded function names cannot be used 7843 // without arguments except in explicit contexts. 7844 ExprResult R = CheckPlaceholderExpr(Operand); 7845 if (R.isInvalid()) 7846 return R; 7847 7848 R = CheckUnevaluatedOperand(R.get()); 7849 if (R.isInvalid()) 7850 return ExprError(); 7851 7852 Operand = R.get(); 7853 7854 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() && 7855 Operand->HasSideEffects(Context, false)) { 7856 // The expression operand for noexcept is in an unevaluated expression 7857 // context, so side effects could result in unintended consequences. 7858 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 7859 } 7860 7861 CanThrowResult CanThrow = canThrow(Operand); 7862 return new (Context) 7863 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 7864 } 7865 7866 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 7867 Expr *Operand, SourceLocation RParen) { 7868 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 7869 } 7870 7871 static void MaybeDecrementCount( 7872 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { 7873 DeclRefExpr *LHS = nullptr; 7874 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 7875 if (BO->getLHS()->getType()->isDependentType() || 7876 BO->getRHS()->getType()->isDependentType()) { 7877 if (BO->getOpcode() != BO_Assign) 7878 return; 7879 } else if (!BO->isAssignmentOp()) 7880 return; 7881 LHS = dyn_cast<DeclRefExpr>(BO->getLHS()); 7882 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) { 7883 if (COCE->getOperator() != OO_Equal) 7884 return; 7885 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0)); 7886 } 7887 if (!LHS) 7888 return; 7889 VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl()); 7890 if (!VD) 7891 return; 7892 auto iter = RefsMinusAssignments.find(VD); 7893 if (iter == RefsMinusAssignments.end()) 7894 return; 7895 iter->getSecond()--; 7896 } 7897 7898 /// Perform the conversions required for an expression used in a 7899 /// context that ignores the result. 7900 ExprResult Sema::IgnoredValueConversions(Expr *E) { 7901 MaybeDecrementCount(E, RefsMinusAssignments); 7902 7903 if (E->hasPlaceholderType()) { 7904 ExprResult result = CheckPlaceholderExpr(E); 7905 if (result.isInvalid()) return E; 7906 E = result.get(); 7907 } 7908 7909 // C99 6.3.2.1: 7910 // [Except in specific positions,] an lvalue that does not have 7911 // array type is converted to the value stored in the 7912 // designated object (and is no longer an lvalue). 7913 if (E->isPRValue()) { 7914 // In C, function designators (i.e. expressions of function type) 7915 // are r-values, but we still want to do function-to-pointer decay 7916 // on them. This is both technically correct and convenient for 7917 // some clients. 7918 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 7919 return DefaultFunctionArrayConversion(E); 7920 7921 return E; 7922 } 7923 7924 if (getLangOpts().CPlusPlus) { 7925 // The C++11 standard defines the notion of a discarded-value expression; 7926 // normally, we don't need to do anything to handle it, but if it is a 7927 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 7928 // conversion. 7929 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) { 7930 ExprResult Res = DefaultLvalueConversion(E); 7931 if (Res.isInvalid()) 7932 return E; 7933 E = Res.get(); 7934 } else { 7935 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 7936 // it occurs as a discarded-value expression. 7937 CheckUnusedVolatileAssignment(E); 7938 } 7939 7940 // C++1z: 7941 // If the expression is a prvalue after this optional conversion, the 7942 // temporary materialization conversion is applied. 7943 // 7944 // We skip this step: IR generation is able to synthesize the storage for 7945 // itself in the aggregate case, and adding the extra node to the AST is 7946 // just clutter. 7947 // FIXME: We don't emit lifetime markers for the temporaries due to this. 7948 // FIXME: Do any other AST consumers care about this? 7949 return E; 7950 } 7951 7952 // GCC seems to also exclude expressions of incomplete enum type. 7953 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 7954 if (!T->getDecl()->isComplete()) { 7955 // FIXME: stupid workaround for a codegen bug! 7956 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 7957 return E; 7958 } 7959 } 7960 7961 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 7962 if (Res.isInvalid()) 7963 return E; 7964 E = Res.get(); 7965 7966 if (!E->getType()->isVoidType()) 7967 RequireCompleteType(E->getExprLoc(), E->getType(), 7968 diag::err_incomplete_type); 7969 return E; 7970 } 7971 7972 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) { 7973 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if 7974 // it occurs as an unevaluated operand. 7975 CheckUnusedVolatileAssignment(E); 7976 7977 return E; 7978 } 7979 7980 // If we can unambiguously determine whether Var can never be used 7981 // in a constant expression, return true. 7982 // - if the variable and its initializer are non-dependent, then 7983 // we can unambiguously check if the variable is a constant expression. 7984 // - if the initializer is not value dependent - we can determine whether 7985 // it can be used to initialize a constant expression. If Init can not 7986 // be used to initialize a constant expression we conclude that Var can 7987 // never be a constant expression. 7988 // - FXIME: if the initializer is dependent, we can still do some analysis and 7989 // identify certain cases unambiguously as non-const by using a Visitor: 7990 // - such as those that involve odr-use of a ParmVarDecl, involve a new 7991 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 7992 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 7993 ASTContext &Context) { 7994 if (isa<ParmVarDecl>(Var)) return true; 7995 const VarDecl *DefVD = nullptr; 7996 7997 // If there is no initializer - this can not be a constant expression. 7998 if (!Var->getAnyInitializer(DefVD)) return true; 7999 assert(DefVD); 8000 if (DefVD->isWeak()) return false; 8001 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); 8002 8003 Expr *Init = cast<Expr>(Eval->Value); 8004 8005 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 8006 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 8007 // of value-dependent expressions, and use it here to determine whether the 8008 // initializer is a potential constant expression. 8009 return false; 8010 } 8011 8012 return !Var->isUsableInConstantExpressions(Context); 8013 } 8014 8015 /// Check if the current lambda has any potential captures 8016 /// that must be captured by any of its enclosing lambdas that are ready to 8017 /// capture. If there is a lambda that can capture a nested 8018 /// potential-capture, go ahead and do so. Also, check to see if any 8019 /// variables are uncaptureable or do not involve an odr-use so do not 8020 /// need to be captured. 8021 8022 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 8023 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 8024 8025 assert(!S.isUnevaluatedContext()); 8026 assert(S.CurContext->isDependentContext()); 8027 #ifndef NDEBUG 8028 DeclContext *DC = S.CurContext; 8029 while (DC && isa<CapturedDecl>(DC)) 8030 DC = DC->getParent(); 8031 assert( 8032 CurrentLSI->CallOperator == DC && 8033 "The current call operator must be synchronized with Sema's CurContext"); 8034 #endif // NDEBUG 8035 8036 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 8037 8038 // All the potentially captureable variables in the current nested 8039 // lambda (within a generic outer lambda), must be captured by an 8040 // outer lambda that is enclosed within a non-dependent context. 8041 CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) { 8042 // If the variable is clearly identified as non-odr-used and the full 8043 // expression is not instantiation dependent, only then do we not 8044 // need to check enclosing lambda's for speculative captures. 8045 // For e.g.: 8046 // Even though 'x' is not odr-used, it should be captured. 8047 // int test() { 8048 // const int x = 10; 8049 // auto L = [=](auto a) { 8050 // (void) +x + a; 8051 // }; 8052 // } 8053 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 8054 !IsFullExprInstantiationDependent) 8055 return; 8056 8057 // If we have a capture-capable lambda for the variable, go ahead and 8058 // capture the variable in that lambda (and all its enclosing lambdas). 8059 if (const Optional<unsigned> Index = 8060 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8061 S.FunctionScopes, Var, S)) 8062 S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), 8063 Index.getValue()); 8064 const bool IsVarNeverAConstantExpression = 8065 VariableCanNeverBeAConstantExpression(Var, S.Context); 8066 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 8067 // This full expression is not instantiation dependent or the variable 8068 // can not be used in a constant expression - which means 8069 // this variable must be odr-used here, so diagnose a 8070 // capture violation early, if the variable is un-captureable. 8071 // This is purely for diagnosing errors early. Otherwise, this 8072 // error would get diagnosed when the lambda becomes capture ready. 8073 QualType CaptureType, DeclRefType; 8074 SourceLocation ExprLoc = VarExpr->getExprLoc(); 8075 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8076 /*EllipsisLoc*/ SourceLocation(), 8077 /*BuildAndDiagnose*/false, CaptureType, 8078 DeclRefType, nullptr)) { 8079 // We will never be able to capture this variable, and we need 8080 // to be able to in any and all instantiations, so diagnose it. 8081 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 8082 /*EllipsisLoc*/ SourceLocation(), 8083 /*BuildAndDiagnose*/true, CaptureType, 8084 DeclRefType, nullptr); 8085 } 8086 } 8087 }); 8088 8089 // Check if 'this' needs to be captured. 8090 if (CurrentLSI->hasPotentialThisCapture()) { 8091 // If we have a capture-capable lambda for 'this', go ahead and capture 8092 // 'this' in that lambda (and all its enclosing lambdas). 8093 if (const Optional<unsigned> Index = 8094 getStackIndexOfNearestEnclosingCaptureCapableLambda( 8095 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) { 8096 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 8097 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 8098 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 8099 &FunctionScopeIndexOfCapturableLambda); 8100 } 8101 } 8102 8103 // Reset all the potential captures at the end of each full-expression. 8104 CurrentLSI->clearPotentialCaptures(); 8105 } 8106 8107 static ExprResult attemptRecovery(Sema &SemaRef, 8108 const TypoCorrectionConsumer &Consumer, 8109 const TypoCorrection &TC) { 8110 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 8111 Consumer.getLookupResult().getLookupKind()); 8112 const CXXScopeSpec *SS = Consumer.getSS(); 8113 CXXScopeSpec NewSS; 8114 8115 // Use an approprate CXXScopeSpec for building the expr. 8116 if (auto *NNS = TC.getCorrectionSpecifier()) 8117 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 8118 else if (SS && !TC.WillReplaceSpecifier()) 8119 NewSS = *SS; 8120 8121 if (auto *ND = TC.getFoundDecl()) { 8122 R.setLookupName(ND->getDeclName()); 8123 R.addDecl(ND); 8124 if (ND->isCXXClassMember()) { 8125 // Figure out the correct naming class to add to the LookupResult. 8126 CXXRecordDecl *Record = nullptr; 8127 if (auto *NNS = TC.getCorrectionSpecifier()) 8128 Record = NNS->getAsType()->getAsCXXRecordDecl(); 8129 if (!Record) 8130 Record = 8131 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 8132 if (Record) 8133 R.setNamingClass(Record); 8134 8135 // Detect and handle the case where the decl might be an implicit 8136 // member. 8137 bool MightBeImplicitMember; 8138 if (!Consumer.isAddressOfOperand()) 8139 MightBeImplicitMember = true; 8140 else if (!NewSS.isEmpty()) 8141 MightBeImplicitMember = false; 8142 else if (R.isOverloadedResult()) 8143 MightBeImplicitMember = false; 8144 else if (R.isUnresolvableResult()) 8145 MightBeImplicitMember = true; 8146 else 8147 MightBeImplicitMember = isa<FieldDecl>(ND) || 8148 isa<IndirectFieldDecl>(ND) || 8149 isa<MSPropertyDecl>(ND); 8150 8151 if (MightBeImplicitMember) 8152 return SemaRef.BuildPossibleImplicitMemberExpr( 8153 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 8154 /*TemplateArgs*/ nullptr, /*S*/ nullptr); 8155 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 8156 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), 8157 Ivar->getIdentifier()); 8158 } 8159 } 8160 8161 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 8162 /*AcceptInvalidDecl*/ true); 8163 } 8164 8165 namespace { 8166 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 8167 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 8168 8169 public: 8170 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 8171 : TypoExprs(TypoExprs) {} 8172 bool VisitTypoExpr(TypoExpr *TE) { 8173 TypoExprs.insert(TE); 8174 return true; 8175 } 8176 }; 8177 8178 class TransformTypos : public TreeTransform<TransformTypos> { 8179 typedef TreeTransform<TransformTypos> BaseTransform; 8180 8181 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the 8182 // process of being initialized. 8183 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 8184 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 8185 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 8186 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 8187 8188 /// Emit diagnostics for all of the TypoExprs encountered. 8189 /// 8190 /// If the TypoExprs were successfully corrected, then the diagnostics should 8191 /// suggest the corrections. Otherwise the diagnostics will not suggest 8192 /// anything (having been passed an empty TypoCorrection). 8193 /// 8194 /// If we've failed to correct due to ambiguous corrections, we need to 8195 /// be sure to pass empty corrections and replacements. Otherwise it's 8196 /// possible that the Consumer has a TypoCorrection that failed to ambiguity 8197 /// and we don't want to report those diagnostics. 8198 void EmitAllDiagnostics(bool IsAmbiguous) { 8199 for (TypoExpr *TE : TypoExprs) { 8200 auto &State = SemaRef.getTypoExprState(TE); 8201 if (State.DiagHandler) { 8202 TypoCorrection TC = IsAmbiguous 8203 ? TypoCorrection() : State.Consumer->getCurrentCorrection(); 8204 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE]; 8205 8206 // Extract the NamedDecl from the transformed TypoExpr and add it to the 8207 // TypoCorrection, replacing the existing decls. This ensures the right 8208 // NamedDecl is used in diagnostics e.g. in the case where overload 8209 // resolution was used to select one from several possible decls that 8210 // had been stored in the TypoCorrection. 8211 if (auto *ND = getDeclFromExpr( 8212 Replacement.isInvalid() ? nullptr : Replacement.get())) 8213 TC.setCorrectionDecl(ND); 8214 8215 State.DiagHandler(TC); 8216 } 8217 SemaRef.clearDelayedTypo(TE); 8218 } 8219 } 8220 8221 /// Try to advance the typo correction state of the first unfinished TypoExpr. 8222 /// We allow advancement of the correction stream by removing it from the 8223 /// TransformCache which allows `TransformTypoExpr` to advance during the 8224 /// next transformation attempt. 8225 /// 8226 /// Any substitution attempts for the previous TypoExprs (which must have been 8227 /// finished) will need to be retried since it's possible that they will now 8228 /// be invalid given the latest advancement. 8229 /// 8230 /// We need to be sure that we're making progress - it's possible that the 8231 /// tree is so malformed that the transform never makes it to the 8232 /// `TransformTypoExpr`. 8233 /// 8234 /// Returns true if there are any untried correction combinations. 8235 bool CheckAndAdvanceTypoExprCorrectionStreams() { 8236 for (auto TE : TypoExprs) { 8237 auto &State = SemaRef.getTypoExprState(TE); 8238 TransformCache.erase(TE); 8239 if (!State.Consumer->hasMadeAnyCorrectionProgress()) 8240 return false; 8241 if (!State.Consumer->finished()) 8242 return true; 8243 State.Consumer->resetCorrectionStream(); 8244 } 8245 return false; 8246 } 8247 8248 NamedDecl *getDeclFromExpr(Expr *E) { 8249 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 8250 E = OverloadResolution[OE]; 8251 8252 if (!E) 8253 return nullptr; 8254 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 8255 return DRE->getFoundDecl(); 8256 if (auto *ME = dyn_cast<MemberExpr>(E)) 8257 return ME->getFoundDecl(); 8258 // FIXME: Add any other expr types that could be be seen by the delayed typo 8259 // correction TreeTransform for which the corresponding TypoCorrection could 8260 // contain multiple decls. 8261 return nullptr; 8262 } 8263 8264 ExprResult TryTransform(Expr *E) { 8265 Sema::SFINAETrap Trap(SemaRef); 8266 ExprResult Res = TransformExpr(E); 8267 if (Trap.hasErrorOccurred() || Res.isInvalid()) 8268 return ExprError(); 8269 8270 return ExprFilter(Res.get()); 8271 } 8272 8273 // Since correcting typos may intoduce new TypoExprs, this function 8274 // checks for new TypoExprs and recurses if it finds any. Note that it will 8275 // only succeed if it is able to correct all typos in the given expression. 8276 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) { 8277 if (Res.isInvalid()) { 8278 return Res; 8279 } 8280 // Check to see if any new TypoExprs were created. If so, we need to recurse 8281 // to check their validity. 8282 Expr *FixedExpr = Res.get(); 8283 8284 auto SavedTypoExprs = std::move(TypoExprs); 8285 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs); 8286 TypoExprs.clear(); 8287 AmbiguousTypoExprs.clear(); 8288 8289 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr); 8290 if (!TypoExprs.empty()) { 8291 // Recurse to handle newly created TypoExprs. If we're not able to 8292 // handle them, discard these TypoExprs. 8293 ExprResult RecurResult = 8294 RecursiveTransformLoop(FixedExpr, IsAmbiguous); 8295 if (RecurResult.isInvalid()) { 8296 Res = ExprError(); 8297 // Recursive corrections didn't work, wipe them away and don't add 8298 // them to the TypoExprs set. Remove them from Sema's TypoExpr list 8299 // since we don't want to clear them twice. Note: it's possible the 8300 // TypoExprs were created recursively and thus won't be in our 8301 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`. 8302 auto &SemaTypoExprs = SemaRef.TypoExprs; 8303 for (auto TE : TypoExprs) { 8304 TransformCache.erase(TE); 8305 SemaRef.clearDelayedTypo(TE); 8306 8307 auto SI = find(SemaTypoExprs, TE); 8308 if (SI != SemaTypoExprs.end()) { 8309 SemaTypoExprs.erase(SI); 8310 } 8311 } 8312 } else { 8313 // TypoExpr is valid: add newly created TypoExprs since we were 8314 // able to correct them. 8315 Res = RecurResult; 8316 SavedTypoExprs.set_union(TypoExprs); 8317 } 8318 } 8319 8320 TypoExprs = std::move(SavedTypoExprs); 8321 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs); 8322 8323 return Res; 8324 } 8325 8326 // Try to transform the given expression, looping through the correction 8327 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`. 8328 // 8329 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to 8330 // true and this method immediately will return an `ExprError`. 8331 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) { 8332 ExprResult Res; 8333 auto SavedTypoExprs = std::move(SemaRef.TypoExprs); 8334 SemaRef.TypoExprs.clear(); 8335 8336 while (true) { 8337 Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8338 8339 // Recursion encountered an ambiguous correction. This means that our 8340 // correction itself is ambiguous, so stop now. 8341 if (IsAmbiguous) 8342 break; 8343 8344 // If the transform is still valid after checking for any new typos, 8345 // it's good to go. 8346 if (!Res.isInvalid()) 8347 break; 8348 8349 // The transform was invalid, see if we have any TypoExprs with untried 8350 // correction candidates. 8351 if (!CheckAndAdvanceTypoExprCorrectionStreams()) 8352 break; 8353 } 8354 8355 // If we found a valid result, double check to make sure it's not ambiguous. 8356 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) { 8357 auto SavedTransformCache = 8358 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache); 8359 8360 // Ensure none of the TypoExprs have multiple typo correction candidates 8361 // with the same edit length that pass all the checks and filters. 8362 while (!AmbiguousTypoExprs.empty()) { 8363 auto TE = AmbiguousTypoExprs.back(); 8364 8365 // TryTransform itself can create new Typos, adding them to the TypoExpr map 8366 // and invalidating our TypoExprState, so always fetch it instead of storing. 8367 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition(); 8368 8369 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection(); 8370 TypoCorrection Next; 8371 do { 8372 // Fetch the next correction by erasing the typo from the cache and calling 8373 // `TryTransform` which will iterate through corrections in 8374 // `TransformTypoExpr`. 8375 TransformCache.erase(TE); 8376 ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); 8377 8378 if (!AmbigRes.isInvalid() || IsAmbiguous) { 8379 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream(); 8380 SavedTransformCache.erase(TE); 8381 Res = ExprError(); 8382 IsAmbiguous = true; 8383 break; 8384 } 8385 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) && 8386 Next.getEditDistance(false) == TC.getEditDistance(false)); 8387 8388 if (IsAmbiguous) 8389 break; 8390 8391 AmbiguousTypoExprs.remove(TE); 8392 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition(); 8393 TransformCache[TE] = SavedTransformCache[TE]; 8394 } 8395 TransformCache = std::move(SavedTransformCache); 8396 } 8397 8398 // Wipe away any newly created TypoExprs that we don't know about. Since we 8399 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only 8400 // possible if a `TypoExpr` is created during a transformation but then 8401 // fails before we can discover it. 8402 auto &SemaTypoExprs = SemaRef.TypoExprs; 8403 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) { 8404 auto TE = *Iterator; 8405 auto FI = find(TypoExprs, TE); 8406 if (FI != TypoExprs.end()) { 8407 Iterator++; 8408 continue; 8409 } 8410 SemaRef.clearDelayedTypo(TE); 8411 Iterator = SemaTypoExprs.erase(Iterator); 8412 } 8413 SemaRef.TypoExprs = std::move(SavedTypoExprs); 8414 8415 return Res; 8416 } 8417 8418 public: 8419 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) 8420 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} 8421 8422 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 8423 MultiExprArg Args, 8424 SourceLocation RParenLoc, 8425 Expr *ExecConfig = nullptr) { 8426 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 8427 RParenLoc, ExecConfig); 8428 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 8429 if (Result.isUsable()) { 8430 Expr *ResultCall = Result.get(); 8431 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 8432 ResultCall = BE->getSubExpr(); 8433 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 8434 OverloadResolution[OE] = CE->getCallee(); 8435 } 8436 } 8437 return Result; 8438 } 8439 8440 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 8441 8442 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } 8443 8444 ExprResult Transform(Expr *E) { 8445 bool IsAmbiguous = false; 8446 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous); 8447 8448 if (!Res.isUsable()) 8449 FindTypoExprs(TypoExprs).TraverseStmt(E); 8450 8451 EmitAllDiagnostics(IsAmbiguous); 8452 8453 return Res; 8454 } 8455 8456 ExprResult TransformTypoExpr(TypoExpr *E) { 8457 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 8458 // cached transformation result if there is one and the TypoExpr isn't the 8459 // first one that was encountered. 8460 auto &CacheEntry = TransformCache[E]; 8461 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 8462 return CacheEntry; 8463 } 8464 8465 auto &State = SemaRef.getTypoExprState(E); 8466 assert(State.Consumer && "Cannot transform a cleared TypoExpr"); 8467 8468 // For the first TypoExpr and an uncached TypoExpr, find the next likely 8469 // typo correction and return it. 8470 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 8471 if (InitDecl && TC.getFoundDecl() == InitDecl) 8472 continue; 8473 // FIXME: If we would typo-correct to an invalid declaration, it's 8474 // probably best to just suppress all errors from this typo correction. 8475 ExprResult NE = State.RecoveryHandler ? 8476 State.RecoveryHandler(SemaRef, E, TC) : 8477 attemptRecovery(SemaRef, *State.Consumer, TC); 8478 if (!NE.isInvalid()) { 8479 // Check whether there may be a second viable correction with the same 8480 // edit distance; if so, remember this TypoExpr may have an ambiguous 8481 // correction so it can be more thoroughly vetted later. 8482 TypoCorrection Next; 8483 if ((Next = State.Consumer->peekNextCorrection()) && 8484 Next.getEditDistance(false) == TC.getEditDistance(false)) { 8485 AmbiguousTypoExprs.insert(E); 8486 } else { 8487 AmbiguousTypoExprs.remove(E); 8488 } 8489 assert(!NE.isUnset() && 8490 "Typo was transformed into a valid-but-null ExprResult"); 8491 return CacheEntry = NE; 8492 } 8493 } 8494 return CacheEntry = ExprError(); 8495 } 8496 }; 8497 } 8498 8499 ExprResult 8500 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, 8501 bool RecoverUncorrectedTypos, 8502 llvm::function_ref<ExprResult(Expr *)> Filter) { 8503 // If the current evaluation context indicates there are uncorrected typos 8504 // and the current expression isn't guaranteed to not have typos, try to 8505 // resolve any TypoExpr nodes that might be in the expression. 8506 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 8507 (E->isTypeDependent() || E->isValueDependent() || 8508 E->isInstantiationDependent())) { 8509 auto TyposResolved = DelayedTypos.size(); 8510 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); 8511 TyposResolved -= DelayedTypos.size(); 8512 if (Result.isInvalid() || Result.get() != E) { 8513 ExprEvalContexts.back().NumTypos -= TyposResolved; 8514 if (Result.isInvalid() && RecoverUncorrectedTypos) { 8515 struct TyposReplace : TreeTransform<TyposReplace> { 8516 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {} 8517 ExprResult TransformTypoExpr(clang::TypoExpr *E) { 8518 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(), 8519 E->getEndLoc(), {}); 8520 } 8521 } TT(*this); 8522 return TT.TransformExpr(E); 8523 } 8524 return Result; 8525 } 8526 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); 8527 } 8528 return E; 8529 } 8530 8531 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 8532 bool DiscardedValue, 8533 bool IsConstexpr) { 8534 ExprResult FullExpr = FE; 8535 8536 if (!FullExpr.get()) 8537 return ExprError(); 8538 8539 if (DiagnoseUnexpandedParameterPack(FullExpr.get())) 8540 return ExprError(); 8541 8542 if (DiscardedValue) { 8543 // Top-level expressions default to 'id' when we're in a debugger. 8544 if (getLangOpts().DebuggerCastResultToId && 8545 FullExpr.get()->getType() == Context.UnknownAnyTy) { 8546 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 8547 if (FullExpr.isInvalid()) 8548 return ExprError(); 8549 } 8550 8551 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 8552 if (FullExpr.isInvalid()) 8553 return ExprError(); 8554 8555 FullExpr = IgnoredValueConversions(FullExpr.get()); 8556 if (FullExpr.isInvalid()) 8557 return ExprError(); 8558 8559 DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr); 8560 } 8561 8562 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr, 8563 /*RecoverUncorrectedTypos=*/true); 8564 if (FullExpr.isInvalid()) 8565 return ExprError(); 8566 8567 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 8568 8569 // At the end of this full expression (which could be a deeply nested 8570 // lambda), if there is a potential capture within the nested lambda, 8571 // have the outer capture-able lambda try and capture it. 8572 // Consider the following code: 8573 // void f(int, int); 8574 // void f(const int&, double); 8575 // void foo() { 8576 // const int x = 10, y = 20; 8577 // auto L = [=](auto a) { 8578 // auto M = [=](auto b) { 8579 // f(x, b); <-- requires x to be captured by L and M 8580 // f(y, a); <-- requires y to be captured by L, but not all Ms 8581 // }; 8582 // }; 8583 // } 8584 8585 // FIXME: Also consider what happens for something like this that involves 8586 // the gnu-extension statement-expressions or even lambda-init-captures: 8587 // void f() { 8588 // const int n = 0; 8589 // auto L = [&](auto a) { 8590 // +n + ({ 0; a; }); 8591 // }; 8592 // } 8593 // 8594 // Here, we see +n, and then the full-expression 0; ends, so we don't 8595 // capture n (and instead remove it from our list of potential captures), 8596 // and then the full-expression +n + ({ 0; }); ends, but it's too late 8597 // for us to see that we need to capture n after all. 8598 8599 LambdaScopeInfo *const CurrentLSI = 8600 getCurLambda(/*IgnoreCapturedRegions=*/true); 8601 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 8602 // even if CurContext is not a lambda call operator. Refer to that Bug Report 8603 // for an example of the code that might cause this asynchrony. 8604 // By ensuring we are in the context of a lambda's call operator 8605 // we can fix the bug (we only need to check whether we need to capture 8606 // if we are within a lambda's body); but per the comments in that 8607 // PR, a proper fix would entail : 8608 // "Alternative suggestion: 8609 // - Add to Sema an integer holding the smallest (outermost) scope 8610 // index that we are *lexically* within, and save/restore/set to 8611 // FunctionScopes.size() in InstantiatingTemplate's 8612 // constructor/destructor. 8613 // - Teach the handful of places that iterate over FunctionScopes to 8614 // stop at the outermost enclosing lexical scope." 8615 DeclContext *DC = CurContext; 8616 while (DC && isa<CapturedDecl>(DC)) 8617 DC = DC->getParent(); 8618 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); 8619 if (IsInLambdaDeclContext && CurrentLSI && 8620 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 8621 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 8622 *this); 8623 return MaybeCreateExprWithCleanups(FullExpr); 8624 } 8625 8626 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 8627 if (!FullStmt) return StmtError(); 8628 8629 return MaybeCreateStmtWithCleanups(FullStmt); 8630 } 8631 8632 Sema::IfExistsResult 8633 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 8634 CXXScopeSpec &SS, 8635 const DeclarationNameInfo &TargetNameInfo) { 8636 DeclarationName TargetName = TargetNameInfo.getName(); 8637 if (!TargetName) 8638 return IER_DoesNotExist; 8639 8640 // If the name itself is dependent, then the result is dependent. 8641 if (TargetName.isDependentName()) 8642 return IER_Dependent; 8643 8644 // Do the redeclaration lookup in the current scope. 8645 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 8646 Sema::NotForRedeclaration); 8647 LookupParsedName(R, S, &SS); 8648 R.suppressDiagnostics(); 8649 8650 switch (R.getResultKind()) { 8651 case LookupResult::Found: 8652 case LookupResult::FoundOverloaded: 8653 case LookupResult::FoundUnresolvedValue: 8654 case LookupResult::Ambiguous: 8655 return IER_Exists; 8656 8657 case LookupResult::NotFound: 8658 return IER_DoesNotExist; 8659 8660 case LookupResult::NotFoundInCurrentInstantiation: 8661 return IER_Dependent; 8662 } 8663 8664 llvm_unreachable("Invalid LookupResult Kind!"); 8665 } 8666 8667 Sema::IfExistsResult 8668 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 8669 bool IsIfExists, CXXScopeSpec &SS, 8670 UnqualifiedId &Name) { 8671 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 8672 8673 // Check for an unexpanded parameter pack. 8674 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; 8675 if (DiagnoseUnexpandedParameterPack(SS, UPPC) || 8676 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC)) 8677 return IER_Error; 8678 8679 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 8680 } 8681 8682 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) { 8683 return BuildExprRequirement(E, /*IsSimple=*/true, 8684 /*NoexceptLoc=*/SourceLocation(), 8685 /*ReturnTypeRequirement=*/{}); 8686 } 8687 8688 concepts::Requirement * 8689 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS, 8690 SourceLocation NameLoc, IdentifierInfo *TypeName, 8691 TemplateIdAnnotation *TemplateId) { 8692 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) && 8693 "Exactly one of TypeName and TemplateId must be specified."); 8694 TypeSourceInfo *TSI = nullptr; 8695 if (TypeName) { 8696 QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc, 8697 SS.getWithLocInContext(Context), *TypeName, 8698 NameLoc, &TSI, /*DeducedTypeContext=*/false); 8699 if (T.isNull()) 8700 return nullptr; 8701 } else { 8702 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(), 8703 TemplateId->NumArgs); 8704 TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS, 8705 TemplateId->TemplateKWLoc, 8706 TemplateId->Template, TemplateId->Name, 8707 TemplateId->TemplateNameLoc, 8708 TemplateId->LAngleLoc, ArgsPtr, 8709 TemplateId->RAngleLoc); 8710 if (T.isInvalid()) 8711 return nullptr; 8712 if (GetTypeFromParser(T.get(), &TSI).isNull()) 8713 return nullptr; 8714 } 8715 return BuildTypeRequirement(TSI); 8716 } 8717 8718 concepts::Requirement * 8719 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) { 8720 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, 8721 /*ReturnTypeRequirement=*/{}); 8722 } 8723 8724 concepts::Requirement * 8725 Sema::ActOnCompoundRequirement( 8726 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, 8727 TemplateIdAnnotation *TypeConstraint, unsigned Depth) { 8728 // C++2a [expr.prim.req.compound] p1.3.3 8729 // [..] the expression is deduced against an invented function template 8730 // F [...] F is a void function template with a single type template 8731 // parameter T declared with the constrained-parameter. Form a new 8732 // cv-qualifier-seq cv by taking the union of const and volatile specifiers 8733 // around the constrained-parameter. F has a single parameter whose 8734 // type-specifier is cv T followed by the abstract-declarator. [...] 8735 // 8736 // The cv part is done in the calling function - we get the concept with 8737 // arguments and the abstract declarator with the correct CV qualification and 8738 // have to synthesize T and the single parameter of F. 8739 auto &II = Context.Idents.get("expr-type"); 8740 auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext, 8741 SourceLocation(), 8742 SourceLocation(), Depth, 8743 /*Index=*/0, &II, 8744 /*Typename=*/true, 8745 /*ParameterPack=*/false, 8746 /*HasTypeConstraint=*/true); 8747 8748 if (BuildTypeConstraint(SS, TypeConstraint, TParam, 8749 /*EllpsisLoc=*/SourceLocation(), 8750 /*AllowUnexpandedPack=*/true)) 8751 // Just produce a requirement with no type requirements. 8752 return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {}); 8753 8754 auto *TPL = TemplateParameterList::Create(Context, SourceLocation(), 8755 SourceLocation(), 8756 ArrayRef<NamedDecl *>(TParam), 8757 SourceLocation(), 8758 /*RequiresClause=*/nullptr); 8759 return BuildExprRequirement( 8760 E, /*IsSimple=*/false, NoexceptLoc, 8761 concepts::ExprRequirement::ReturnTypeRequirement(TPL)); 8762 } 8763 8764 concepts::ExprRequirement * 8765 Sema::BuildExprRequirement( 8766 Expr *E, bool IsSimple, SourceLocation NoexceptLoc, 8767 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8768 auto Status = concepts::ExprRequirement::SS_Satisfied; 8769 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr; 8770 if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent()) 8771 Status = concepts::ExprRequirement::SS_Dependent; 8772 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can) 8773 Status = concepts::ExprRequirement::SS_NoexceptNotMet; 8774 else if (ReturnTypeRequirement.isSubstitutionFailure()) 8775 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure; 8776 else if (ReturnTypeRequirement.isTypeConstraint()) { 8777 // C++2a [expr.prim.req]p1.3.3 8778 // The immediately-declared constraint ([temp]) of decltype((E)) shall 8779 // be satisfied. 8780 TemplateParameterList *TPL = 8781 ReturnTypeRequirement.getTypeConstraintTemplateParameterList(); 8782 QualType MatchedType = 8783 Context.getReferenceQualifiedType(E).getCanonicalType(); 8784 llvm::SmallVector<TemplateArgument, 1> Args; 8785 Args.push_back(TemplateArgument(MatchedType)); 8786 TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args); 8787 MultiLevelTemplateArgumentList MLTAL(TAL); 8788 for (unsigned I = 0; I < TPL->getDepth(); ++I) 8789 MLTAL.addOuterRetainedLevel(); 8790 Expr *IDC = 8791 cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint() 8792 ->getImmediatelyDeclaredConstraint(); 8793 ExprResult Constraint = SubstExpr(IDC, MLTAL); 8794 assert(!Constraint.isInvalid() && 8795 "Substitution cannot fail as it is simply putting a type template " 8796 "argument into a concept specialization expression's parameter."); 8797 8798 SubstitutedConstraintExpr = 8799 cast<ConceptSpecializationExpr>(Constraint.get()); 8800 if (!SubstitutedConstraintExpr->isSatisfied()) 8801 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied; 8802 } 8803 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc, 8804 ReturnTypeRequirement, Status, 8805 SubstitutedConstraintExpr); 8806 } 8807 8808 concepts::ExprRequirement * 8809 Sema::BuildExprRequirement( 8810 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic, 8811 bool IsSimple, SourceLocation NoexceptLoc, 8812 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { 8813 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic, 8814 IsSimple, NoexceptLoc, 8815 ReturnTypeRequirement); 8816 } 8817 8818 concepts::TypeRequirement * 8819 Sema::BuildTypeRequirement(TypeSourceInfo *Type) { 8820 return new (Context) concepts::TypeRequirement(Type); 8821 } 8822 8823 concepts::TypeRequirement * 8824 Sema::BuildTypeRequirement( 8825 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8826 return new (Context) concepts::TypeRequirement(SubstDiag); 8827 } 8828 8829 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) { 8830 return BuildNestedRequirement(Constraint); 8831 } 8832 8833 concepts::NestedRequirement * 8834 Sema::BuildNestedRequirement(Expr *Constraint) { 8835 ConstraintSatisfaction Satisfaction; 8836 if (!Constraint->isInstantiationDependent() && 8837 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{}, 8838 Constraint->getSourceRange(), Satisfaction)) 8839 return nullptr; 8840 return new (Context) concepts::NestedRequirement(Context, Constraint, 8841 Satisfaction); 8842 } 8843 8844 concepts::NestedRequirement * 8845 Sema::BuildNestedRequirement( 8846 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { 8847 return new (Context) concepts::NestedRequirement(SubstDiag); 8848 } 8849 8850 RequiresExprBodyDecl * 8851 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, 8852 ArrayRef<ParmVarDecl *> LocalParameters, 8853 Scope *BodyScope) { 8854 assert(BodyScope); 8855 8856 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext, 8857 RequiresKWLoc); 8858 8859 PushDeclContext(BodyScope, Body); 8860 8861 for (ParmVarDecl *Param : LocalParameters) { 8862 if (Param->hasDefaultArg()) 8863 // C++2a [expr.prim.req] p4 8864 // [...] A local parameter of a requires-expression shall not have a 8865 // default argument. [...] 8866 Diag(Param->getDefaultArgRange().getBegin(), 8867 diag::err_requires_expr_local_parameter_default_argument); 8868 // Ignore default argument and move on 8869 8870 Param->setDeclContext(Body); 8871 // If this has an identifier, add it to the scope stack. 8872 if (Param->getIdentifier()) { 8873 CheckShadow(BodyScope, Param); 8874 PushOnScopeChains(Param, BodyScope); 8875 } 8876 } 8877 return Body; 8878 } 8879 8880 void Sema::ActOnFinishRequiresExpr() { 8881 assert(CurContext && "DeclContext imbalance!"); 8882 CurContext = CurContext->getLexicalParent(); 8883 assert(CurContext && "Popped translation unit!"); 8884 } 8885 8886 ExprResult 8887 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc, 8888 RequiresExprBodyDecl *Body, 8889 ArrayRef<ParmVarDecl *> LocalParameters, 8890 ArrayRef<concepts::Requirement *> Requirements, 8891 SourceLocation ClosingBraceLoc) { 8892 auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters, 8893 Requirements, ClosingBraceLoc); 8894 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE)) 8895 return ExprError(); 8896 return RE; 8897 } 8898