xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaExprCXX.cpp (revision 349cc55c9796c4596a5b9904cd3281af295f878f)
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Template.h"
15 #include "clang/Sema/SemaInternal.h"
16 #include "TreeTransform.h"
17 #include "TypeLocBuilder.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/RecursiveASTVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/Initialization.h"
33 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/ParsedTemplate.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/ScopeInfo.h"
37 #include "clang/Sema/SemaLambda.h"
38 #include "clang/Sema/TemplateDeduction.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/Support/ErrorHandling.h"
42 using namespace clang;
43 using namespace sema;
44 
45 /// Handle the result of the special case name lookup for inheriting
46 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47 /// constructor names in member using declarations, even if 'X' is not the
48 /// name of the corresponding type.
49 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50                                               SourceLocation NameLoc,
51                                               IdentifierInfo &Name) {
52   NestedNameSpecifier *NNS = SS.getScopeRep();
53 
54   // Convert the nested-name-specifier into a type.
55   QualType Type;
56   switch (NNS->getKind()) {
57   case NestedNameSpecifier::TypeSpec:
58   case NestedNameSpecifier::TypeSpecWithTemplate:
59     Type = QualType(NNS->getAsType(), 0);
60     break;
61 
62   case NestedNameSpecifier::Identifier:
63     // Strip off the last layer of the nested-name-specifier and build a
64     // typename type for it.
65     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
66     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67                                         NNS->getAsIdentifier());
68     break;
69 
70   case NestedNameSpecifier::Global:
71   case NestedNameSpecifier::Super:
72   case NestedNameSpecifier::Namespace:
73   case NestedNameSpecifier::NamespaceAlias:
74     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
75   }
76 
77   // This reference to the type is located entirely at the location of the
78   // final identifier in the qualified-id.
79   return CreateParsedType(Type,
80                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
81 }
82 
83 ParsedType Sema::getConstructorName(IdentifierInfo &II,
84                                     SourceLocation NameLoc,
85                                     Scope *S, CXXScopeSpec &SS,
86                                     bool EnteringContext) {
87   CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88   assert(CurClass && &II == CurClass->getIdentifier() &&
89          "not a constructor name");
90 
91   // When naming a constructor as a member of a dependent context (eg, in a
92   // friend declaration or an inherited constructor declaration), form an
93   // unresolved "typename" type.
94   if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
95     QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96     return ParsedType::make(T);
97   }
98 
99   if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100     return ParsedType();
101 
102   // Find the injected-class-name declaration. Note that we make no attempt to
103   // diagnose cases where the injected-class-name is shadowed: the only
104   // declaration that can validly shadow the injected-class-name is a
105   // non-static data member, and if the class contains both a non-static data
106   // member and a constructor then it is ill-formed (we check that in
107   // CheckCompletedCXXClass).
108   CXXRecordDecl *InjectedClassName = nullptr;
109   for (NamedDecl *ND : CurClass->lookup(&II)) {
110     auto *RD = dyn_cast<CXXRecordDecl>(ND);
111     if (RD && RD->isInjectedClassName()) {
112       InjectedClassName = RD;
113       break;
114     }
115   }
116   if (!InjectedClassName) {
117     if (!CurClass->isInvalidDecl()) {
118       // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119       // properly. Work around it here for now.
120       Diag(SS.getLastQualifierNameLoc(),
121            diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122     }
123     return ParsedType();
124   }
125 
126   QualType T = Context.getTypeDeclType(InjectedClassName);
127   DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128   MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129 
130   return ParsedType::make(T);
131 }
132 
133 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134                                    IdentifierInfo &II,
135                                    SourceLocation NameLoc,
136                                    Scope *S, CXXScopeSpec &SS,
137                                    ParsedType ObjectTypePtr,
138                                    bool EnteringContext) {
139   // Determine where to perform name lookup.
140 
141   // FIXME: This area of the standard is very messy, and the current
142   // wording is rather unclear about which scopes we search for the
143   // destructor name; see core issues 399 and 555. Issue 399 in
144   // particular shows where the current description of destructor name
145   // lookup is completely out of line with existing practice, e.g.,
146   // this appears to be ill-formed:
147   //
148   //   namespace N {
149   //     template <typename T> struct S {
150   //       ~S();
151   //     };
152   //   }
153   //
154   //   void f(N::S<int>* s) {
155   //     s->N::S<int>::~S();
156   //   }
157   //
158   // See also PR6358 and PR6359.
159   //
160   // For now, we accept all the cases in which the name given could plausibly
161   // be interpreted as a correct destructor name, issuing off-by-default
162   // extension diagnostics on the cases that don't strictly conform to the
163   // C++20 rules. This basically means we always consider looking in the
164   // nested-name-specifier prefix, the complete nested-name-specifier, and
165   // the scope, and accept if we find the expected type in any of the three
166   // places.
167 
168   if (SS.isInvalid())
169     return nullptr;
170 
171   // Whether we've failed with a diagnostic already.
172   bool Failed = false;
173 
174   llvm::SmallVector<NamedDecl*, 8> FoundDecls;
175   llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
176 
177   // If we have an object type, it's because we are in a
178   // pseudo-destructor-expression or a member access expression, and
179   // we know what type we're looking for.
180   QualType SearchType =
181       ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
182 
183   auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
184     auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
185       auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
186       if (!Type)
187         return false;
188 
189       if (SearchType.isNull() || SearchType->isDependentType())
190         return true;
191 
192       QualType T = Context.getTypeDeclType(Type);
193       return Context.hasSameUnqualifiedType(T, SearchType);
194     };
195 
196     unsigned NumAcceptableResults = 0;
197     for (NamedDecl *D : Found) {
198       if (IsAcceptableResult(D))
199         ++NumAcceptableResults;
200 
201       // Don't list a class twice in the lookup failure diagnostic if it's
202       // found by both its injected-class-name and by the name in the enclosing
203       // scope.
204       if (auto *RD = dyn_cast<CXXRecordDecl>(D))
205         if (RD->isInjectedClassName())
206           D = cast<NamedDecl>(RD->getParent());
207 
208       if (FoundDeclSet.insert(D).second)
209         FoundDecls.push_back(D);
210     }
211 
212     // As an extension, attempt to "fix" an ambiguity by erasing all non-type
213     // results, and all non-matching results if we have a search type. It's not
214     // clear what the right behavior is if destructor lookup hits an ambiguity,
215     // but other compilers do generally accept at least some kinds of
216     // ambiguity.
217     if (Found.isAmbiguous() && NumAcceptableResults == 1) {
218       Diag(NameLoc, diag::ext_dtor_name_ambiguous);
219       LookupResult::Filter F = Found.makeFilter();
220       while (F.hasNext()) {
221         NamedDecl *D = F.next();
222         if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
223           Diag(D->getLocation(), diag::note_destructor_type_here)
224               << Context.getTypeDeclType(TD);
225         else
226           Diag(D->getLocation(), diag::note_destructor_nontype_here);
227 
228         if (!IsAcceptableResult(D))
229           F.erase();
230       }
231       F.done();
232     }
233 
234     if (Found.isAmbiguous())
235       Failed = true;
236 
237     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
238       if (IsAcceptableResult(Type)) {
239         QualType T = Context.getTypeDeclType(Type);
240         MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
241         return CreateParsedType(T,
242                                 Context.getTrivialTypeSourceInfo(T, NameLoc));
243       }
244     }
245 
246     return nullptr;
247   };
248 
249   bool IsDependent = false;
250 
251   auto LookupInObjectType = [&]() -> ParsedType {
252     if (Failed || SearchType.isNull())
253       return nullptr;
254 
255     IsDependent |= SearchType->isDependentType();
256 
257     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
258     DeclContext *LookupCtx = computeDeclContext(SearchType);
259     if (!LookupCtx)
260       return nullptr;
261     LookupQualifiedName(Found, LookupCtx);
262     return CheckLookupResult(Found);
263   };
264 
265   auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
266     if (Failed)
267       return nullptr;
268 
269     IsDependent |= isDependentScopeSpecifier(LookupSS);
270     DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
271     if (!LookupCtx)
272       return nullptr;
273 
274     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
275     if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
276       Failed = true;
277       return nullptr;
278     }
279     LookupQualifiedName(Found, LookupCtx);
280     return CheckLookupResult(Found);
281   };
282 
283   auto LookupInScope = [&]() -> ParsedType {
284     if (Failed || !S)
285       return nullptr;
286 
287     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
288     LookupName(Found, S);
289     return CheckLookupResult(Found);
290   };
291 
292   // C++2a [basic.lookup.qual]p6:
293   //   In a qualified-id of the form
294   //
295   //     nested-name-specifier[opt] type-name :: ~ type-name
296   //
297   //   the second type-name is looked up in the same scope as the first.
298   //
299   // We interpret this as meaning that if you do a dual-scope lookup for the
300   // first name, you also do a dual-scope lookup for the second name, per
301   // C++ [basic.lookup.classref]p4:
302   //
303   //   If the id-expression in a class member access is a qualified-id of the
304   //   form
305   //
306   //     class-name-or-namespace-name :: ...
307   //
308   //   the class-name-or-namespace-name following the . or -> is first looked
309   //   up in the class of the object expression and the name, if found, is used.
310   //   Otherwise, it is looked up in the context of the entire
311   //   postfix-expression.
312   //
313   // This looks in the same scopes as for an unqualified destructor name:
314   //
315   // C++ [basic.lookup.classref]p3:
316   //   If the unqualified-id is ~ type-name, the type-name is looked up
317   //   in the context of the entire postfix-expression. If the type T
318   //   of the object expression is of a class type C, the type-name is
319   //   also looked up in the scope of class C. At least one of the
320   //   lookups shall find a name that refers to cv T.
321   //
322   // FIXME: The intent is unclear here. Should type-name::~type-name look in
323   // the scope anyway if it finds a non-matching name declared in the class?
324   // If both lookups succeed and find a dependent result, which result should
325   // we retain? (Same question for p->~type-name().)
326 
327   if (NestedNameSpecifier *Prefix =
328       SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
329     // This is
330     //
331     //   nested-name-specifier type-name :: ~ type-name
332     //
333     // Look for the second type-name in the nested-name-specifier.
334     CXXScopeSpec PrefixSS;
335     PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
336     if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
337       return T;
338   } else {
339     // This is one of
340     //
341     //   type-name :: ~ type-name
342     //   ~ type-name
343     //
344     // Look in the scope and (if any) the object type.
345     if (ParsedType T = LookupInScope())
346       return T;
347     if (ParsedType T = LookupInObjectType())
348       return T;
349   }
350 
351   if (Failed)
352     return nullptr;
353 
354   if (IsDependent) {
355     // We didn't find our type, but that's OK: it's dependent anyway.
356 
357     // FIXME: What if we have no nested-name-specifier?
358     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
359                                    SS.getWithLocInContext(Context),
360                                    II, NameLoc);
361     return ParsedType::make(T);
362   }
363 
364   // The remaining cases are all non-standard extensions imitating the behavior
365   // of various other compilers.
366   unsigned NumNonExtensionDecls = FoundDecls.size();
367 
368   if (SS.isSet()) {
369     // For compatibility with older broken C++ rules and existing code,
370     //
371     //   nested-name-specifier :: ~ type-name
372     //
373     // also looks for type-name within the nested-name-specifier.
374     if (ParsedType T = LookupInNestedNameSpec(SS)) {
375       Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
376           << SS.getRange()
377           << FixItHint::CreateInsertion(SS.getEndLoc(),
378                                         ("::" + II.getName()).str());
379       return T;
380     }
381 
382     // For compatibility with other compilers and older versions of Clang,
383     //
384     //   nested-name-specifier type-name :: ~ type-name
385     //
386     // also looks for type-name in the scope. Unfortunately, we can't
387     // reasonably apply this fallback for dependent nested-name-specifiers.
388     if (SS.getScopeRep()->getPrefix()) {
389       if (ParsedType T = LookupInScope()) {
390         Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
391             << FixItHint::CreateRemoval(SS.getRange());
392         Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
393             << GetTypeFromParser(T);
394         return T;
395       }
396     }
397   }
398 
399   // We didn't find anything matching; tell the user what we did find (if
400   // anything).
401 
402   // Don't tell the user about declarations we shouldn't have found.
403   FoundDecls.resize(NumNonExtensionDecls);
404 
405   // List types before non-types.
406   std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
407                    [](NamedDecl *A, NamedDecl *B) {
408                      return isa<TypeDecl>(A->getUnderlyingDecl()) >
409                             isa<TypeDecl>(B->getUnderlyingDecl());
410                    });
411 
412   // Suggest a fixit to properly name the destroyed type.
413   auto MakeFixItHint = [&]{
414     const CXXRecordDecl *Destroyed = nullptr;
415     // FIXME: If we have a scope specifier, suggest its last component?
416     if (!SearchType.isNull())
417       Destroyed = SearchType->getAsCXXRecordDecl();
418     else if (S)
419       Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
420     if (Destroyed)
421       return FixItHint::CreateReplacement(SourceRange(NameLoc),
422                                           Destroyed->getNameAsString());
423     return FixItHint();
424   };
425 
426   if (FoundDecls.empty()) {
427     // FIXME: Attempt typo-correction?
428     Diag(NameLoc, diag::err_undeclared_destructor_name)
429       << &II << MakeFixItHint();
430   } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
431     if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
432       assert(!SearchType.isNull() &&
433              "should only reject a type result if we have a search type");
434       QualType T = Context.getTypeDeclType(TD);
435       Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
436           << T << SearchType << MakeFixItHint();
437     } else {
438       Diag(NameLoc, diag::err_destructor_expr_nontype)
439           << &II << MakeFixItHint();
440     }
441   } else {
442     Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
443                                       : diag::err_destructor_expr_mismatch)
444         << &II << SearchType << MakeFixItHint();
445   }
446 
447   for (NamedDecl *FoundD : FoundDecls) {
448     if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
449       Diag(FoundD->getLocation(), diag::note_destructor_type_here)
450           << Context.getTypeDeclType(TD);
451     else
452       Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
453           << FoundD;
454   }
455 
456   return nullptr;
457 }
458 
459 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
460                                               ParsedType ObjectType) {
461   if (DS.getTypeSpecType() == DeclSpec::TST_error)
462     return nullptr;
463 
464   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
465     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
466     return nullptr;
467   }
468 
469   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
470          "unexpected type in getDestructorType");
471   QualType T = BuildDecltypeType(DS.getRepAsExpr());
472 
473   // If we know the type of the object, check that the correct destructor
474   // type was named now; we can give better diagnostics this way.
475   QualType SearchType = GetTypeFromParser(ObjectType);
476   if (!SearchType.isNull() && !SearchType->isDependentType() &&
477       !Context.hasSameUnqualifiedType(T, SearchType)) {
478     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
479       << T << SearchType;
480     return nullptr;
481   }
482 
483   return ParsedType::make(T);
484 }
485 
486 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
487                                   const UnqualifiedId &Name, bool IsUDSuffix) {
488   assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
489   if (!IsUDSuffix) {
490     // [over.literal] p8
491     //
492     // double operator""_Bq(long double);  // OK: not a reserved identifier
493     // double operator"" _Bq(long double); // ill-formed, no diagnostic required
494     IdentifierInfo *II = Name.Identifier;
495     ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
496     SourceLocation Loc = Name.getEndLoc();
497     if (isReservedInAllContexts(Status) &&
498         !PP.getSourceManager().isInSystemHeader(Loc)) {
499       Diag(Loc, diag::warn_reserved_extern_symbol)
500           << II << static_cast<int>(Status)
501           << FixItHint::CreateReplacement(
502                  Name.getSourceRange(),
503                  (StringRef("operator\"\"") + II->getName()).str());
504     }
505   }
506 
507   if (!SS.isValid())
508     return false;
509 
510   switch (SS.getScopeRep()->getKind()) {
511   case NestedNameSpecifier::Identifier:
512   case NestedNameSpecifier::TypeSpec:
513   case NestedNameSpecifier::TypeSpecWithTemplate:
514     // Per C++11 [over.literal]p2, literal operators can only be declared at
515     // namespace scope. Therefore, this unqualified-id cannot name anything.
516     // Reject it early, because we have no AST representation for this in the
517     // case where the scope is dependent.
518     Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
519         << SS.getScopeRep();
520     return true;
521 
522   case NestedNameSpecifier::Global:
523   case NestedNameSpecifier::Super:
524   case NestedNameSpecifier::Namespace:
525   case NestedNameSpecifier::NamespaceAlias:
526     return false;
527   }
528 
529   llvm_unreachable("unknown nested name specifier kind");
530 }
531 
532 /// Build a C++ typeid expression with a type operand.
533 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
534                                 SourceLocation TypeidLoc,
535                                 TypeSourceInfo *Operand,
536                                 SourceLocation RParenLoc) {
537   // C++ [expr.typeid]p4:
538   //   The top-level cv-qualifiers of the lvalue expression or the type-id
539   //   that is the operand of typeid are always ignored.
540   //   If the type of the type-id is a class type or a reference to a class
541   //   type, the class shall be completely-defined.
542   Qualifiers Quals;
543   QualType T
544     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
545                                       Quals);
546   if (T->getAs<RecordType>() &&
547       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
548     return ExprError();
549 
550   if (T->isVariablyModifiedType())
551     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
552 
553   if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
554     return ExprError();
555 
556   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
557                                      SourceRange(TypeidLoc, RParenLoc));
558 }
559 
560 /// Build a C++ typeid expression with an expression operand.
561 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
562                                 SourceLocation TypeidLoc,
563                                 Expr *E,
564                                 SourceLocation RParenLoc) {
565   bool WasEvaluated = false;
566   if (E && !E->isTypeDependent()) {
567     if (E->getType()->isPlaceholderType()) {
568       ExprResult result = CheckPlaceholderExpr(E);
569       if (result.isInvalid()) return ExprError();
570       E = result.get();
571     }
572 
573     QualType T = E->getType();
574     if (const RecordType *RecordT = T->getAs<RecordType>()) {
575       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
576       // C++ [expr.typeid]p3:
577       //   [...] If the type of the expression is a class type, the class
578       //   shall be completely-defined.
579       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
580         return ExprError();
581 
582       // C++ [expr.typeid]p3:
583       //   When typeid is applied to an expression other than an glvalue of a
584       //   polymorphic class type [...] [the] expression is an unevaluated
585       //   operand. [...]
586       if (RecordD->isPolymorphic() && E->isGLValue()) {
587         if (isUnevaluatedContext()) {
588           // The operand was processed in unevaluated context, switch the
589           // context and recheck the subexpression.
590           ExprResult Result = TransformToPotentiallyEvaluated(E);
591           if (Result.isInvalid())
592             return ExprError();
593           E = Result.get();
594         }
595 
596         // We require a vtable to query the type at run time.
597         MarkVTableUsed(TypeidLoc, RecordD);
598         WasEvaluated = true;
599       }
600     }
601 
602     ExprResult Result = CheckUnevaluatedOperand(E);
603     if (Result.isInvalid())
604       return ExprError();
605     E = Result.get();
606 
607     // C++ [expr.typeid]p4:
608     //   [...] If the type of the type-id is a reference to a possibly
609     //   cv-qualified type, the result of the typeid expression refers to a
610     //   std::type_info object representing the cv-unqualified referenced
611     //   type.
612     Qualifiers Quals;
613     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
614     if (!Context.hasSameType(T, UnqualT)) {
615       T = UnqualT;
616       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
617     }
618   }
619 
620   if (E->getType()->isVariablyModifiedType())
621     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
622                      << E->getType());
623   else if (!inTemplateInstantiation() &&
624            E->HasSideEffects(Context, WasEvaluated)) {
625     // The expression operand for typeid is in an unevaluated expression
626     // context, so side effects could result in unintended consequences.
627     Diag(E->getExprLoc(), WasEvaluated
628                               ? diag::warn_side_effects_typeid
629                               : diag::warn_side_effects_unevaluated_context);
630   }
631 
632   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
633                                      SourceRange(TypeidLoc, RParenLoc));
634 }
635 
636 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
637 ExprResult
638 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
639                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
640   // typeid is not supported in OpenCL.
641   if (getLangOpts().OpenCLCPlusPlus) {
642     return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
643                      << "typeid");
644   }
645 
646   // Find the std::type_info type.
647   if (!getStdNamespace())
648     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
649 
650   if (!CXXTypeInfoDecl) {
651     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
652     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
653     LookupQualifiedName(R, getStdNamespace());
654     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
655     // Microsoft's typeinfo doesn't have type_info in std but in the global
656     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
657     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
658       LookupQualifiedName(R, Context.getTranslationUnitDecl());
659       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
660     }
661     if (!CXXTypeInfoDecl)
662       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
663   }
664 
665   if (!getLangOpts().RTTI) {
666     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
667   }
668 
669   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
670 
671   if (isType) {
672     // The operand is a type; handle it as such.
673     TypeSourceInfo *TInfo = nullptr;
674     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
675                                    &TInfo);
676     if (T.isNull())
677       return ExprError();
678 
679     if (!TInfo)
680       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
681 
682     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
683   }
684 
685   // The operand is an expression.
686   ExprResult Result =
687       BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
688 
689   if (!getLangOpts().RTTIData && !Result.isInvalid())
690     if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
691       if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
692         Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
693             << (getDiagnostics().getDiagnosticOptions().getFormat() ==
694                 DiagnosticOptions::MSVC);
695   return Result;
696 }
697 
698 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
699 /// a single GUID.
700 static void
701 getUuidAttrOfType(Sema &SemaRef, QualType QT,
702                   llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
703   // Optionally remove one level of pointer, reference or array indirection.
704   const Type *Ty = QT.getTypePtr();
705   if (QT->isPointerType() || QT->isReferenceType())
706     Ty = QT->getPointeeType().getTypePtr();
707   else if (QT->isArrayType())
708     Ty = Ty->getBaseElementTypeUnsafe();
709 
710   const auto *TD = Ty->getAsTagDecl();
711   if (!TD)
712     return;
713 
714   if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
715     UuidAttrs.insert(Uuid);
716     return;
717   }
718 
719   // __uuidof can grab UUIDs from template arguments.
720   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
721     const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
722     for (const TemplateArgument &TA : TAL.asArray()) {
723       const UuidAttr *UuidForTA = nullptr;
724       if (TA.getKind() == TemplateArgument::Type)
725         getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
726       else if (TA.getKind() == TemplateArgument::Declaration)
727         getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
728 
729       if (UuidForTA)
730         UuidAttrs.insert(UuidForTA);
731     }
732   }
733 }
734 
735 /// Build a Microsoft __uuidof expression with a type operand.
736 ExprResult Sema::BuildCXXUuidof(QualType Type,
737                                 SourceLocation TypeidLoc,
738                                 TypeSourceInfo *Operand,
739                                 SourceLocation RParenLoc) {
740   MSGuidDecl *Guid = nullptr;
741   if (!Operand->getType()->isDependentType()) {
742     llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
743     getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
744     if (UuidAttrs.empty())
745       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
746     if (UuidAttrs.size() > 1)
747       return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
748     Guid = UuidAttrs.back()->getGuidDecl();
749   }
750 
751   return new (Context)
752       CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
753 }
754 
755 /// Build a Microsoft __uuidof expression with an expression operand.
756 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
757                                 Expr *E, SourceLocation RParenLoc) {
758   MSGuidDecl *Guid = nullptr;
759   if (!E->getType()->isDependentType()) {
760     if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
761       // A null pointer results in {00000000-0000-0000-0000-000000000000}.
762       Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
763     } else {
764       llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
765       getUuidAttrOfType(*this, E->getType(), UuidAttrs);
766       if (UuidAttrs.empty())
767         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
768       if (UuidAttrs.size() > 1)
769         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
770       Guid = UuidAttrs.back()->getGuidDecl();
771     }
772   }
773 
774   return new (Context)
775       CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
776 }
777 
778 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
779 ExprResult
780 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
781                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
782   QualType GuidType = Context.getMSGuidType();
783   GuidType.addConst();
784 
785   if (isType) {
786     // The operand is a type; handle it as such.
787     TypeSourceInfo *TInfo = nullptr;
788     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
789                                    &TInfo);
790     if (T.isNull())
791       return ExprError();
792 
793     if (!TInfo)
794       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
795 
796     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
797   }
798 
799   // The operand is an expression.
800   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
801 }
802 
803 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
804 ExprResult
805 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
806   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
807          "Unknown C++ Boolean value!");
808   return new (Context)
809       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
810 }
811 
812 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
813 ExprResult
814 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
815   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
816 }
817 
818 /// ActOnCXXThrow - Parse throw expressions.
819 ExprResult
820 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
821   bool IsThrownVarInScope = false;
822   if (Ex) {
823     // C++0x [class.copymove]p31:
824     //   When certain criteria are met, an implementation is allowed to omit the
825     //   copy/move construction of a class object [...]
826     //
827     //     - in a throw-expression, when the operand is the name of a
828     //       non-volatile automatic object (other than a function or catch-
829     //       clause parameter) whose scope does not extend beyond the end of the
830     //       innermost enclosing try-block (if there is one), the copy/move
831     //       operation from the operand to the exception object (15.1) can be
832     //       omitted by constructing the automatic object directly into the
833     //       exception object
834     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
835       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
836         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
837           for( ; S; S = S->getParent()) {
838             if (S->isDeclScope(Var)) {
839               IsThrownVarInScope = true;
840               break;
841             }
842 
843             if (S->getFlags() &
844                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
845                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
846                  Scope::TryScope))
847               break;
848           }
849         }
850       }
851   }
852 
853   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
854 }
855 
856 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
857                                bool IsThrownVarInScope) {
858   // Don't report an error if 'throw' is used in system headers.
859   if (!getLangOpts().CXXExceptions &&
860       !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
861     // Delay error emission for the OpenMP device code.
862     targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
863   }
864 
865   // Exceptions aren't allowed in CUDA device code.
866   if (getLangOpts().CUDA)
867     CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
868         << "throw" << CurrentCUDATarget();
869 
870   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
871     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
872 
873   if (Ex && !Ex->isTypeDependent()) {
874     // Initialize the exception result.  This implicitly weeds out
875     // abstract types or types with inaccessible copy constructors.
876 
877     // C++0x [class.copymove]p31:
878     //   When certain criteria are met, an implementation is allowed to omit the
879     //   copy/move construction of a class object [...]
880     //
881     //     - in a throw-expression, when the operand is the name of a
882     //       non-volatile automatic object (other than a function or
883     //       catch-clause
884     //       parameter) whose scope does not extend beyond the end of the
885     //       innermost enclosing try-block (if there is one), the copy/move
886     //       operation from the operand to the exception object (15.1) can be
887     //       omitted by constructing the automatic object directly into the
888     //       exception object
889     NamedReturnInfo NRInfo =
890         IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
891 
892     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
893     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
894       return ExprError();
895 
896     InitializedEntity Entity =
897         InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
898     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
899     if (Res.isInvalid())
900       return ExprError();
901     Ex = Res.get();
902   }
903 
904   // PPC MMA non-pointer types are not allowed as throw expr types.
905   if (Ex && Context.getTargetInfo().getTriple().isPPC64())
906     CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
907 
908   return new (Context)
909       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
910 }
911 
912 static void
913 collectPublicBases(CXXRecordDecl *RD,
914                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
915                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
916                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
917                    bool ParentIsPublic) {
918   for (const CXXBaseSpecifier &BS : RD->bases()) {
919     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
920     bool NewSubobject;
921     // Virtual bases constitute the same subobject.  Non-virtual bases are
922     // always distinct subobjects.
923     if (BS.isVirtual())
924       NewSubobject = VBases.insert(BaseDecl).second;
925     else
926       NewSubobject = true;
927 
928     if (NewSubobject)
929       ++SubobjectsSeen[BaseDecl];
930 
931     // Only add subobjects which have public access throughout the entire chain.
932     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
933     if (PublicPath)
934       PublicSubobjectsSeen.insert(BaseDecl);
935 
936     // Recurse on to each base subobject.
937     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
938                        PublicPath);
939   }
940 }
941 
942 static void getUnambiguousPublicSubobjects(
943     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
944   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
945   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
946   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
947   SubobjectsSeen[RD] = 1;
948   PublicSubobjectsSeen.insert(RD);
949   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
950                      /*ParentIsPublic=*/true);
951 
952   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
953     // Skip ambiguous objects.
954     if (SubobjectsSeen[PublicSubobject] > 1)
955       continue;
956 
957     Objects.push_back(PublicSubobject);
958   }
959 }
960 
961 /// CheckCXXThrowOperand - Validate the operand of a throw.
962 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
963                                 QualType ExceptionObjectTy, Expr *E) {
964   //   If the type of the exception would be an incomplete type or a pointer
965   //   to an incomplete type other than (cv) void the program is ill-formed.
966   QualType Ty = ExceptionObjectTy;
967   bool isPointer = false;
968   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
969     Ty = Ptr->getPointeeType();
970     isPointer = true;
971   }
972   if (!isPointer || !Ty->isVoidType()) {
973     if (RequireCompleteType(ThrowLoc, Ty,
974                             isPointer ? diag::err_throw_incomplete_ptr
975                                       : diag::err_throw_incomplete,
976                             E->getSourceRange()))
977       return true;
978 
979     if (!isPointer && Ty->isSizelessType()) {
980       Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
981       return true;
982     }
983 
984     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
985                                diag::err_throw_abstract_type, E))
986       return true;
987   }
988 
989   // If the exception has class type, we need additional handling.
990   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
991   if (!RD)
992     return false;
993 
994   // If we are throwing a polymorphic class type or pointer thereof,
995   // exception handling will make use of the vtable.
996   MarkVTableUsed(ThrowLoc, RD);
997 
998   // If a pointer is thrown, the referenced object will not be destroyed.
999   if (isPointer)
1000     return false;
1001 
1002   // If the class has a destructor, we must be able to call it.
1003   if (!RD->hasIrrelevantDestructor()) {
1004     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1005       MarkFunctionReferenced(E->getExprLoc(), Destructor);
1006       CheckDestructorAccess(E->getExprLoc(), Destructor,
1007                             PDiag(diag::err_access_dtor_exception) << Ty);
1008       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1009         return true;
1010     }
1011   }
1012 
1013   // The MSVC ABI creates a list of all types which can catch the exception
1014   // object.  This list also references the appropriate copy constructor to call
1015   // if the object is caught by value and has a non-trivial copy constructor.
1016   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1017     // We are only interested in the public, unambiguous bases contained within
1018     // the exception object.  Bases which are ambiguous or otherwise
1019     // inaccessible are not catchable types.
1020     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1021     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1022 
1023     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1024       // Attempt to lookup the copy constructor.  Various pieces of machinery
1025       // will spring into action, like template instantiation, which means this
1026       // cannot be a simple walk of the class's decls.  Instead, we must perform
1027       // lookup and overload resolution.
1028       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1029       if (!CD || CD->isDeleted())
1030         continue;
1031 
1032       // Mark the constructor referenced as it is used by this throw expression.
1033       MarkFunctionReferenced(E->getExprLoc(), CD);
1034 
1035       // Skip this copy constructor if it is trivial, we don't need to record it
1036       // in the catchable type data.
1037       if (CD->isTrivial())
1038         continue;
1039 
1040       // The copy constructor is non-trivial, create a mapping from this class
1041       // type to this constructor.
1042       // N.B.  The selection of copy constructor is not sensitive to this
1043       // particular throw-site.  Lookup will be performed at the catch-site to
1044       // ensure that the copy constructor is, in fact, accessible (via
1045       // friendship or any other means).
1046       Context.addCopyConstructorForExceptionObject(Subobject, CD);
1047 
1048       // We don't keep the instantiated default argument expressions around so
1049       // we must rebuild them here.
1050       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1051         if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1052           return true;
1053       }
1054     }
1055   }
1056 
1057   // Under the Itanium C++ ABI, memory for the exception object is allocated by
1058   // the runtime with no ability for the compiler to request additional
1059   // alignment. Warn if the exception type requires alignment beyond the minimum
1060   // guaranteed by the target C++ runtime.
1061   if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1062     CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1063     CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1064     if (ExnObjAlign < TypeAlign) {
1065       Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1066       Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1067           << Ty << (unsigned)TypeAlign.getQuantity()
1068           << (unsigned)ExnObjAlign.getQuantity();
1069     }
1070   }
1071 
1072   return false;
1073 }
1074 
1075 static QualType adjustCVQualifiersForCXXThisWithinLambda(
1076     ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1077     DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1078 
1079   QualType ClassType = ThisTy->getPointeeType();
1080   LambdaScopeInfo *CurLSI = nullptr;
1081   DeclContext *CurDC = CurSemaContext;
1082 
1083   // Iterate through the stack of lambdas starting from the innermost lambda to
1084   // the outermost lambda, checking if '*this' is ever captured by copy - since
1085   // that could change the cv-qualifiers of the '*this' object.
1086   // The object referred to by '*this' starts out with the cv-qualifiers of its
1087   // member function.  We then start with the innermost lambda and iterate
1088   // outward checking to see if any lambda performs a by-copy capture of '*this'
1089   // - and if so, any nested lambda must respect the 'constness' of that
1090   // capturing lamdbda's call operator.
1091   //
1092 
1093   // Since the FunctionScopeInfo stack is representative of the lexical
1094   // nesting of the lambda expressions during initial parsing (and is the best
1095   // place for querying information about captures about lambdas that are
1096   // partially processed) and perhaps during instantiation of function templates
1097   // that contain lambda expressions that need to be transformed BUT not
1098   // necessarily during instantiation of a nested generic lambda's function call
1099   // operator (which might even be instantiated at the end of the TU) - at which
1100   // time the DeclContext tree is mature enough to query capture information
1101   // reliably - we use a two pronged approach to walk through all the lexically
1102   // enclosing lambda expressions:
1103   //
1104   //  1) Climb down the FunctionScopeInfo stack as long as each item represents
1105   //  a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1106   //  enclosed by the call-operator of the LSI below it on the stack (while
1107   //  tracking the enclosing DC for step 2 if needed).  Note the topmost LSI on
1108   //  the stack represents the innermost lambda.
1109   //
1110   //  2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1111   //  represents a lambda's call operator.  If it does, we must be instantiating
1112   //  a generic lambda's call operator (represented by the Current LSI, and
1113   //  should be the only scenario where an inconsistency between the LSI and the
1114   //  DeclContext should occur), so climb out the DeclContexts if they
1115   //  represent lambdas, while querying the corresponding closure types
1116   //  regarding capture information.
1117 
1118   // 1) Climb down the function scope info stack.
1119   for (int I = FunctionScopes.size();
1120        I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1121        (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1122                        cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1123        CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1124     CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1125 
1126     if (!CurLSI->isCXXThisCaptured())
1127         continue;
1128 
1129     auto C = CurLSI->getCXXThisCapture();
1130 
1131     if (C.isCopyCapture()) {
1132       ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1133       if (CurLSI->CallOperator->isConst())
1134         ClassType.addConst();
1135       return ASTCtx.getPointerType(ClassType);
1136     }
1137   }
1138 
1139   // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1140   //    can happen during instantiation of its nested generic lambda call
1141   //    operator); 2. if we're in a lambda scope (lambda body).
1142   if (CurLSI && isLambdaCallOperator(CurDC)) {
1143     assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1144            "While computing 'this' capture-type for a generic lambda, when we "
1145            "run out of enclosing LSI's, yet the enclosing DC is a "
1146            "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1147            "lambda call oeprator");
1148     assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1149 
1150     auto IsThisCaptured =
1151         [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1152       IsConst = false;
1153       IsByCopy = false;
1154       for (auto &&C : Closure->captures()) {
1155         if (C.capturesThis()) {
1156           if (C.getCaptureKind() == LCK_StarThis)
1157             IsByCopy = true;
1158           if (Closure->getLambdaCallOperator()->isConst())
1159             IsConst = true;
1160           return true;
1161         }
1162       }
1163       return false;
1164     };
1165 
1166     bool IsByCopyCapture = false;
1167     bool IsConstCapture = false;
1168     CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1169     while (Closure &&
1170            IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1171       if (IsByCopyCapture) {
1172         ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1173         if (IsConstCapture)
1174           ClassType.addConst();
1175         return ASTCtx.getPointerType(ClassType);
1176       }
1177       Closure = isLambdaCallOperator(Closure->getParent())
1178                     ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1179                     : nullptr;
1180     }
1181   }
1182   return ASTCtx.getPointerType(ClassType);
1183 }
1184 
1185 QualType Sema::getCurrentThisType() {
1186   DeclContext *DC = getFunctionLevelDeclContext();
1187   QualType ThisTy = CXXThisTypeOverride;
1188 
1189   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1190     if (method && method->isInstance())
1191       ThisTy = method->getThisType();
1192   }
1193 
1194   if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1195       inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1196 
1197     // This is a lambda call operator that is being instantiated as a default
1198     // initializer. DC must point to the enclosing class type, so we can recover
1199     // the 'this' type from it.
1200     QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1201     // There are no cv-qualifiers for 'this' within default initializers,
1202     // per [expr.prim.general]p4.
1203     ThisTy = Context.getPointerType(ClassTy);
1204   }
1205 
1206   // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1207   // might need to be adjusted if the lambda or any of its enclosing lambda's
1208   // captures '*this' by copy.
1209   if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1210     return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1211                                                     CurContext, Context);
1212   return ThisTy;
1213 }
1214 
1215 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1216                                          Decl *ContextDecl,
1217                                          Qualifiers CXXThisTypeQuals,
1218                                          bool Enabled)
1219   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1220 {
1221   if (!Enabled || !ContextDecl)
1222     return;
1223 
1224   CXXRecordDecl *Record = nullptr;
1225   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1226     Record = Template->getTemplatedDecl();
1227   else
1228     Record = cast<CXXRecordDecl>(ContextDecl);
1229 
1230   QualType T = S.Context.getRecordType(Record);
1231   T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1232 
1233   S.CXXThisTypeOverride = S.Context.getPointerType(T);
1234 
1235   this->Enabled = true;
1236 }
1237 
1238 
1239 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1240   if (Enabled) {
1241     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1242   }
1243 }
1244 
1245 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1246   SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1247   assert(!LSI->isCXXThisCaptured());
1248   //  [=, this] {};   // until C++20: Error: this when = is the default
1249   if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1250       !Sema.getLangOpts().CPlusPlus20)
1251     return;
1252   Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1253       << FixItHint::CreateInsertion(
1254              DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1255 }
1256 
1257 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1258     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1259     const bool ByCopy) {
1260   // We don't need to capture this in an unevaluated context.
1261   if (isUnevaluatedContext() && !Explicit)
1262     return true;
1263 
1264   assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1265 
1266   const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1267                                          ? *FunctionScopeIndexToStopAt
1268                                          : FunctionScopes.size() - 1;
1269 
1270   // Check that we can capture the *enclosing object* (referred to by '*this')
1271   // by the capturing-entity/closure (lambda/block/etc) at
1272   // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1273 
1274   // Note: The *enclosing object* can only be captured by-value by a
1275   // closure that is a lambda, using the explicit notation:
1276   //    [*this] { ... }.
1277   // Every other capture of the *enclosing object* results in its by-reference
1278   // capture.
1279 
1280   // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1281   // stack), we can capture the *enclosing object* only if:
1282   // - 'L' has an explicit byref or byval capture of the *enclosing object*
1283   // -  or, 'L' has an implicit capture.
1284   // AND
1285   //   -- there is no enclosing closure
1286   //   -- or, there is some enclosing closure 'E' that has already captured the
1287   //      *enclosing object*, and every intervening closure (if any) between 'E'
1288   //      and 'L' can implicitly capture the *enclosing object*.
1289   //   -- or, every enclosing closure can implicitly capture the
1290   //      *enclosing object*
1291 
1292 
1293   unsigned NumCapturingClosures = 0;
1294   for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1295     if (CapturingScopeInfo *CSI =
1296             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1297       if (CSI->CXXThisCaptureIndex != 0) {
1298         // 'this' is already being captured; there isn't anything more to do.
1299         CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1300         break;
1301       }
1302       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1303       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1304         // This context can't implicitly capture 'this'; fail out.
1305         if (BuildAndDiagnose) {
1306           Diag(Loc, diag::err_this_capture)
1307               << (Explicit && idx == MaxFunctionScopesIndex);
1308           if (!Explicit)
1309             buildLambdaThisCaptureFixit(*this, LSI);
1310         }
1311         return true;
1312       }
1313       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1314           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1315           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1316           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1317           (Explicit && idx == MaxFunctionScopesIndex)) {
1318         // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1319         // iteration through can be an explicit capture, all enclosing closures,
1320         // if any, must perform implicit captures.
1321 
1322         // This closure can capture 'this'; continue looking upwards.
1323         NumCapturingClosures++;
1324         continue;
1325       }
1326       // This context can't implicitly capture 'this'; fail out.
1327       if (BuildAndDiagnose)
1328         Diag(Loc, diag::err_this_capture)
1329             << (Explicit && idx == MaxFunctionScopesIndex);
1330 
1331       if (!Explicit)
1332         buildLambdaThisCaptureFixit(*this, LSI);
1333       return true;
1334     }
1335     break;
1336   }
1337   if (!BuildAndDiagnose) return false;
1338 
1339   // If we got here, then the closure at MaxFunctionScopesIndex on the
1340   // FunctionScopes stack, can capture the *enclosing object*, so capture it
1341   // (including implicit by-reference captures in any enclosing closures).
1342 
1343   // In the loop below, respect the ByCopy flag only for the closure requesting
1344   // the capture (i.e. first iteration through the loop below).  Ignore it for
1345   // all enclosing closure's up to NumCapturingClosures (since they must be
1346   // implicitly capturing the *enclosing  object* by reference (see loop
1347   // above)).
1348   assert((!ByCopy ||
1349           dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1350          "Only a lambda can capture the enclosing object (referred to by "
1351          "*this) by copy");
1352   QualType ThisTy = getCurrentThisType();
1353   for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1354        --idx, --NumCapturingClosures) {
1355     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1356 
1357     // The type of the corresponding data member (not a 'this' pointer if 'by
1358     // copy').
1359     QualType CaptureType = ThisTy;
1360     if (ByCopy) {
1361       // If we are capturing the object referred to by '*this' by copy, ignore
1362       // any cv qualifiers inherited from the type of the member function for
1363       // the type of the closure-type's corresponding data member and any use
1364       // of 'this'.
1365       CaptureType = ThisTy->getPointeeType();
1366       CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1367     }
1368 
1369     bool isNested = NumCapturingClosures > 1;
1370     CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1371   }
1372   return false;
1373 }
1374 
1375 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1376   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1377   /// is a non-lvalue expression whose value is the address of the object for
1378   /// which the function is called.
1379 
1380   QualType ThisTy = getCurrentThisType();
1381   if (ThisTy.isNull())
1382     return Diag(Loc, diag::err_invalid_this_use);
1383   return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1384 }
1385 
1386 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1387                              bool IsImplicit) {
1388   auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1389   MarkThisReferenced(This);
1390   return This;
1391 }
1392 
1393 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1394   CheckCXXThisCapture(This->getExprLoc());
1395 }
1396 
1397 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1398   // If we're outside the body of a member function, then we'll have a specified
1399   // type for 'this'.
1400   if (CXXThisTypeOverride.isNull())
1401     return false;
1402 
1403   // Determine whether we're looking into a class that's currently being
1404   // defined.
1405   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1406   return Class && Class->isBeingDefined();
1407 }
1408 
1409 /// Parse construction of a specified type.
1410 /// Can be interpreted either as function-style casting ("int(x)")
1411 /// or class type construction ("ClassType(x,y,z)")
1412 /// or creation of a value-initialized type ("int()").
1413 ExprResult
1414 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1415                                 SourceLocation LParenOrBraceLoc,
1416                                 MultiExprArg exprs,
1417                                 SourceLocation RParenOrBraceLoc,
1418                                 bool ListInitialization) {
1419   if (!TypeRep)
1420     return ExprError();
1421 
1422   TypeSourceInfo *TInfo;
1423   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1424   if (!TInfo)
1425     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1426 
1427   auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1428                                           RParenOrBraceLoc, ListInitialization);
1429   // Avoid creating a non-type-dependent expression that contains typos.
1430   // Non-type-dependent expressions are liable to be discarded without
1431   // checking for embedded typos.
1432   if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1433       !Result.get()->isTypeDependent())
1434     Result = CorrectDelayedTyposInExpr(Result.get());
1435   else if (Result.isInvalid())
1436     Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1437                                 RParenOrBraceLoc, exprs, Ty);
1438   return Result;
1439 }
1440 
1441 ExprResult
1442 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1443                                 SourceLocation LParenOrBraceLoc,
1444                                 MultiExprArg Exprs,
1445                                 SourceLocation RParenOrBraceLoc,
1446                                 bool ListInitialization) {
1447   QualType Ty = TInfo->getType();
1448   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1449 
1450   assert((!ListInitialization ||
1451           (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&
1452          "List initialization must have initializer list as expression.");
1453   SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1454 
1455   InitializedEntity Entity =
1456       InitializedEntity::InitializeTemporary(Context, TInfo);
1457   InitializationKind Kind =
1458       Exprs.size()
1459           ? ListInitialization
1460                 ? InitializationKind::CreateDirectList(
1461                       TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1462                 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1463                                                    RParenOrBraceLoc)
1464           : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1465                                             RParenOrBraceLoc);
1466 
1467   // C++1z [expr.type.conv]p1:
1468   //   If the type is a placeholder for a deduced class type, [...perform class
1469   //   template argument deduction...]
1470   DeducedType *Deduced = Ty->getContainedDeducedType();
1471   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1472     Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1473                                                      Kind, Exprs);
1474     if (Ty.isNull())
1475       return ExprError();
1476     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1477   }
1478 
1479   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1480     // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1481     // directly. We work around this by dropping the locations of the braces.
1482     SourceRange Locs = ListInitialization
1483                            ? SourceRange()
1484                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1485     return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(),
1486                                               TInfo, Locs.getBegin(), Exprs,
1487                                               Locs.getEnd());
1488   }
1489 
1490   // C++ [expr.type.conv]p1:
1491   // If the expression list is a parenthesized single expression, the type
1492   // conversion expression is equivalent (in definedness, and if defined in
1493   // meaning) to the corresponding cast expression.
1494   if (Exprs.size() == 1 && !ListInitialization &&
1495       !isa<InitListExpr>(Exprs[0])) {
1496     Expr *Arg = Exprs[0];
1497     return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1498                                       RParenOrBraceLoc);
1499   }
1500 
1501   //   For an expression of the form T(), T shall not be an array type.
1502   QualType ElemTy = Ty;
1503   if (Ty->isArrayType()) {
1504     if (!ListInitialization)
1505       return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1506                          << FullRange);
1507     ElemTy = Context.getBaseElementType(Ty);
1508   }
1509 
1510   // There doesn't seem to be an explicit rule against this but sanity demands
1511   // we only construct objects with object types.
1512   if (Ty->isFunctionType())
1513     return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1514                        << Ty << FullRange);
1515 
1516   // C++17 [expr.type.conv]p2:
1517   //   If the type is cv void and the initializer is (), the expression is a
1518   //   prvalue of the specified type that performs no initialization.
1519   if (!Ty->isVoidType() &&
1520       RequireCompleteType(TyBeginLoc, ElemTy,
1521                           diag::err_invalid_incomplete_type_use, FullRange))
1522     return ExprError();
1523 
1524   //   Otherwise, the expression is a prvalue of the specified type whose
1525   //   result object is direct-initialized (11.6) with the initializer.
1526   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1527   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1528 
1529   if (Result.isInvalid())
1530     return Result;
1531 
1532   Expr *Inner = Result.get();
1533   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1534     Inner = BTE->getSubExpr();
1535   if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1536       !isa<CXXScalarValueInitExpr>(Inner)) {
1537     // If we created a CXXTemporaryObjectExpr, that node also represents the
1538     // functional cast. Otherwise, create an explicit cast to represent
1539     // the syntactic form of a functional-style cast that was used here.
1540     //
1541     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1542     // would give a more consistent AST representation than using a
1543     // CXXTemporaryObjectExpr. It's also weird that the functional cast
1544     // is sometimes handled by initialization and sometimes not.
1545     QualType ResultType = Result.get()->getType();
1546     SourceRange Locs = ListInitialization
1547                            ? SourceRange()
1548                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1549     Result = CXXFunctionalCastExpr::Create(
1550         Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1551         Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1552         Locs.getBegin(), Locs.getEnd());
1553   }
1554 
1555   return Result;
1556 }
1557 
1558 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1559   // [CUDA] Ignore this function, if we can't call it.
1560   const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1561   if (getLangOpts().CUDA) {
1562     auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1563     // If it's not callable at all, it's not the right function.
1564     if (CallPreference < CFP_WrongSide)
1565       return false;
1566     if (CallPreference == CFP_WrongSide) {
1567       // Maybe. We have to check if there are better alternatives.
1568       DeclContext::lookup_result R =
1569           Method->getDeclContext()->lookup(Method->getDeclName());
1570       for (const auto *D : R) {
1571         if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1572           if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1573             return false;
1574         }
1575       }
1576       // We've found no better variants.
1577     }
1578   }
1579 
1580   SmallVector<const FunctionDecl*, 4> PreventedBy;
1581   bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1582 
1583   if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1584     return Result;
1585 
1586   // In case of CUDA, return true if none of the 1-argument deallocator
1587   // functions are actually callable.
1588   return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1589     assert(FD->getNumParams() == 1 &&
1590            "Only single-operand functions should be in PreventedBy");
1591     return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1592   });
1593 }
1594 
1595 /// Determine whether the given function is a non-placement
1596 /// deallocation function.
1597 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1598   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1599     return S.isUsualDeallocationFunction(Method);
1600 
1601   if (FD->getOverloadedOperator() != OO_Delete &&
1602       FD->getOverloadedOperator() != OO_Array_Delete)
1603     return false;
1604 
1605   unsigned UsualParams = 1;
1606 
1607   if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1608       S.Context.hasSameUnqualifiedType(
1609           FD->getParamDecl(UsualParams)->getType(),
1610           S.Context.getSizeType()))
1611     ++UsualParams;
1612 
1613   if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1614       S.Context.hasSameUnqualifiedType(
1615           FD->getParamDecl(UsualParams)->getType(),
1616           S.Context.getTypeDeclType(S.getStdAlignValT())))
1617     ++UsualParams;
1618 
1619   return UsualParams == FD->getNumParams();
1620 }
1621 
1622 namespace {
1623   struct UsualDeallocFnInfo {
1624     UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1625     UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1626         : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1627           Destroying(false), HasSizeT(false), HasAlignValT(false),
1628           CUDAPref(Sema::CFP_Native) {
1629       // A function template declaration is never a usual deallocation function.
1630       if (!FD)
1631         return;
1632       unsigned NumBaseParams = 1;
1633       if (FD->isDestroyingOperatorDelete()) {
1634         Destroying = true;
1635         ++NumBaseParams;
1636       }
1637 
1638       if (NumBaseParams < FD->getNumParams() &&
1639           S.Context.hasSameUnqualifiedType(
1640               FD->getParamDecl(NumBaseParams)->getType(),
1641               S.Context.getSizeType())) {
1642         ++NumBaseParams;
1643         HasSizeT = true;
1644       }
1645 
1646       if (NumBaseParams < FD->getNumParams() &&
1647           FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1648         ++NumBaseParams;
1649         HasAlignValT = true;
1650       }
1651 
1652       // In CUDA, determine how much we'd like / dislike to call this.
1653       if (S.getLangOpts().CUDA)
1654         if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1655           CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1656     }
1657 
1658     explicit operator bool() const { return FD; }
1659 
1660     bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1661                       bool WantAlign) const {
1662       // C++ P0722:
1663       //   A destroying operator delete is preferred over a non-destroying
1664       //   operator delete.
1665       if (Destroying != Other.Destroying)
1666         return Destroying;
1667 
1668       // C++17 [expr.delete]p10:
1669       //   If the type has new-extended alignment, a function with a parameter
1670       //   of type std::align_val_t is preferred; otherwise a function without
1671       //   such a parameter is preferred
1672       if (HasAlignValT != Other.HasAlignValT)
1673         return HasAlignValT == WantAlign;
1674 
1675       if (HasSizeT != Other.HasSizeT)
1676         return HasSizeT == WantSize;
1677 
1678       // Use CUDA call preference as a tiebreaker.
1679       return CUDAPref > Other.CUDAPref;
1680     }
1681 
1682     DeclAccessPair Found;
1683     FunctionDecl *FD;
1684     bool Destroying, HasSizeT, HasAlignValT;
1685     Sema::CUDAFunctionPreference CUDAPref;
1686   };
1687 }
1688 
1689 /// Determine whether a type has new-extended alignment. This may be called when
1690 /// the type is incomplete (for a delete-expression with an incomplete pointee
1691 /// type), in which case it will conservatively return false if the alignment is
1692 /// not known.
1693 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1694   return S.getLangOpts().AlignedAllocation &&
1695          S.getASTContext().getTypeAlignIfKnown(AllocType) >
1696              S.getASTContext().getTargetInfo().getNewAlign();
1697 }
1698 
1699 /// Select the correct "usual" deallocation function to use from a selection of
1700 /// deallocation functions (either global or class-scope).
1701 static UsualDeallocFnInfo resolveDeallocationOverload(
1702     Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1703     llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1704   UsualDeallocFnInfo Best;
1705 
1706   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1707     UsualDeallocFnInfo Info(S, I.getPair());
1708     if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1709         Info.CUDAPref == Sema::CFP_Never)
1710       continue;
1711 
1712     if (!Best) {
1713       Best = Info;
1714       if (BestFns)
1715         BestFns->push_back(Info);
1716       continue;
1717     }
1718 
1719     if (Best.isBetterThan(Info, WantSize, WantAlign))
1720       continue;
1721 
1722     //   If more than one preferred function is found, all non-preferred
1723     //   functions are eliminated from further consideration.
1724     if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1725       BestFns->clear();
1726 
1727     Best = Info;
1728     if (BestFns)
1729       BestFns->push_back(Info);
1730   }
1731 
1732   return Best;
1733 }
1734 
1735 /// Determine whether a given type is a class for which 'delete[]' would call
1736 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1737 /// we need to store the array size (even if the type is
1738 /// trivially-destructible).
1739 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1740                                          QualType allocType) {
1741   const RecordType *record =
1742     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1743   if (!record) return false;
1744 
1745   // Try to find an operator delete[] in class scope.
1746 
1747   DeclarationName deleteName =
1748     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1749   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1750   S.LookupQualifiedName(ops, record->getDecl());
1751 
1752   // We're just doing this for information.
1753   ops.suppressDiagnostics();
1754 
1755   // Very likely: there's no operator delete[].
1756   if (ops.empty()) return false;
1757 
1758   // If it's ambiguous, it should be illegal to call operator delete[]
1759   // on this thing, so it doesn't matter if we allocate extra space or not.
1760   if (ops.isAmbiguous()) return false;
1761 
1762   // C++17 [expr.delete]p10:
1763   //   If the deallocation functions have class scope, the one without a
1764   //   parameter of type std::size_t is selected.
1765   auto Best = resolveDeallocationOverload(
1766       S, ops, /*WantSize*/false,
1767       /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1768   return Best && Best.HasSizeT;
1769 }
1770 
1771 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1772 ///
1773 /// E.g.:
1774 /// @code new (memory) int[size][4] @endcode
1775 /// or
1776 /// @code ::new Foo(23, "hello") @endcode
1777 ///
1778 /// \param StartLoc The first location of the expression.
1779 /// \param UseGlobal True if 'new' was prefixed with '::'.
1780 /// \param PlacementLParen Opening paren of the placement arguments.
1781 /// \param PlacementArgs Placement new arguments.
1782 /// \param PlacementRParen Closing paren of the placement arguments.
1783 /// \param TypeIdParens If the type is in parens, the source range.
1784 /// \param D The type to be allocated, as well as array dimensions.
1785 /// \param Initializer The initializing expression or initializer-list, or null
1786 ///   if there is none.
1787 ExprResult
1788 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1789                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1790                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
1791                   Declarator &D, Expr *Initializer) {
1792   Optional<Expr *> ArraySize;
1793   // If the specified type is an array, unwrap it and save the expression.
1794   if (D.getNumTypeObjects() > 0 &&
1795       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1796     DeclaratorChunk &Chunk = D.getTypeObject(0);
1797     if (D.getDeclSpec().hasAutoTypeSpec())
1798       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1799         << D.getSourceRange());
1800     if (Chunk.Arr.hasStatic)
1801       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1802         << D.getSourceRange());
1803     if (!Chunk.Arr.NumElts && !Initializer)
1804       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1805         << D.getSourceRange());
1806 
1807     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1808     D.DropFirstTypeObject();
1809   }
1810 
1811   // Every dimension shall be of constant size.
1812   if (ArraySize) {
1813     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1814       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1815         break;
1816 
1817       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1818       if (Expr *NumElts = (Expr *)Array.NumElts) {
1819         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1820           // FIXME: GCC permits constant folding here. We should either do so consistently
1821           // or not do so at all, rather than changing behavior in C++14 onwards.
1822           if (getLangOpts().CPlusPlus14) {
1823             // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1824             //   shall be a converted constant expression (5.19) of type std::size_t
1825             //   and shall evaluate to a strictly positive value.
1826             llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1827             Array.NumElts
1828              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1829                                                 CCEK_ArrayBound)
1830                  .get();
1831           } else {
1832             Array.NumElts =
1833                 VerifyIntegerConstantExpression(
1834                     NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1835                     .get();
1836           }
1837           if (!Array.NumElts)
1838             return ExprError();
1839         }
1840       }
1841     }
1842   }
1843 
1844   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1845   QualType AllocType = TInfo->getType();
1846   if (D.isInvalidType())
1847     return ExprError();
1848 
1849   SourceRange DirectInitRange;
1850   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1851     DirectInitRange = List->getSourceRange();
1852 
1853   return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1854                      PlacementLParen, PlacementArgs, PlacementRParen,
1855                      TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1856                      Initializer);
1857 }
1858 
1859 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1860                                        Expr *Init) {
1861   if (!Init)
1862     return true;
1863   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1864     return PLE->getNumExprs() == 0;
1865   if (isa<ImplicitValueInitExpr>(Init))
1866     return true;
1867   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1868     return !CCE->isListInitialization() &&
1869            CCE->getConstructor()->isDefaultConstructor();
1870   else if (Style == CXXNewExpr::ListInit) {
1871     assert(isa<InitListExpr>(Init) &&
1872            "Shouldn't create list CXXConstructExprs for arrays.");
1873     return true;
1874   }
1875   return false;
1876 }
1877 
1878 bool
1879 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1880   if (!getLangOpts().AlignedAllocationUnavailable)
1881     return false;
1882   if (FD.isDefined())
1883     return false;
1884   Optional<unsigned> AlignmentParam;
1885   if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1886       AlignmentParam.hasValue())
1887     return true;
1888   return false;
1889 }
1890 
1891 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1892 // implemented in the standard library is selected.
1893 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1894                                                 SourceLocation Loc) {
1895   if (isUnavailableAlignedAllocationFunction(FD)) {
1896     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1897     StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1898         getASTContext().getTargetInfo().getPlatformName());
1899     VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1900 
1901     OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1902     bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1903     Diag(Loc, diag::err_aligned_allocation_unavailable)
1904         << IsDelete << FD.getType().getAsString() << OSName
1905         << OSVersion.getAsString() << OSVersion.empty();
1906     Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1907   }
1908 }
1909 
1910 ExprResult
1911 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1912                   SourceLocation PlacementLParen,
1913                   MultiExprArg PlacementArgs,
1914                   SourceLocation PlacementRParen,
1915                   SourceRange TypeIdParens,
1916                   QualType AllocType,
1917                   TypeSourceInfo *AllocTypeInfo,
1918                   Optional<Expr *> ArraySize,
1919                   SourceRange DirectInitRange,
1920                   Expr *Initializer) {
1921   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1922   SourceLocation StartLoc = Range.getBegin();
1923 
1924   CXXNewExpr::InitializationStyle initStyle;
1925   if (DirectInitRange.isValid()) {
1926     assert(Initializer && "Have parens but no initializer.");
1927     initStyle = CXXNewExpr::CallInit;
1928   } else if (Initializer && isa<InitListExpr>(Initializer))
1929     initStyle = CXXNewExpr::ListInit;
1930   else {
1931     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1932             isa<CXXConstructExpr>(Initializer)) &&
1933            "Initializer expression that cannot have been implicitly created.");
1934     initStyle = CXXNewExpr::NoInit;
1935   }
1936 
1937   Expr **Inits = &Initializer;
1938   unsigned NumInits = Initializer ? 1 : 0;
1939   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1940     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1941     Inits = List->getExprs();
1942     NumInits = List->getNumExprs();
1943   }
1944 
1945   // C++11 [expr.new]p15:
1946   //   A new-expression that creates an object of type T initializes that
1947   //   object as follows:
1948   InitializationKind Kind
1949       //     - If the new-initializer is omitted, the object is default-
1950       //       initialized (8.5); if no initialization is performed,
1951       //       the object has indeterminate value
1952       = initStyle == CXXNewExpr::NoInit
1953             ? InitializationKind::CreateDefault(TypeRange.getBegin())
1954             //     - Otherwise, the new-initializer is interpreted according to
1955             //     the
1956             //       initialization rules of 8.5 for direct-initialization.
1957             : initStyle == CXXNewExpr::ListInit
1958                   ? InitializationKind::CreateDirectList(
1959                         TypeRange.getBegin(), Initializer->getBeginLoc(),
1960                         Initializer->getEndLoc())
1961                   : InitializationKind::CreateDirect(TypeRange.getBegin(),
1962                                                      DirectInitRange.getBegin(),
1963                                                      DirectInitRange.getEnd());
1964 
1965   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1966   auto *Deduced = AllocType->getContainedDeducedType();
1967   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1968     if (ArraySize)
1969       return ExprError(
1970           Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
1971                diag::err_deduced_class_template_compound_type)
1972           << /*array*/ 2
1973           << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
1974 
1975     InitializedEntity Entity
1976       = InitializedEntity::InitializeNew(StartLoc, AllocType);
1977     AllocType = DeduceTemplateSpecializationFromInitializer(
1978         AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1979     if (AllocType.isNull())
1980       return ExprError();
1981   } else if (Deduced) {
1982     bool Braced = (initStyle == CXXNewExpr::ListInit);
1983     if (NumInits == 1) {
1984       if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1985         Inits = p->getInits();
1986         NumInits = p->getNumInits();
1987         Braced = true;
1988       }
1989     }
1990 
1991     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1992       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1993                        << AllocType << TypeRange);
1994     if (NumInits > 1) {
1995       Expr *FirstBad = Inits[1];
1996       return ExprError(Diag(FirstBad->getBeginLoc(),
1997                             diag::err_auto_new_ctor_multiple_expressions)
1998                        << AllocType << TypeRange);
1999     }
2000     if (Braced && !getLangOpts().CPlusPlus17)
2001       Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2002           << AllocType << TypeRange;
2003     Expr *Deduce = Inits[0];
2004     QualType DeducedType;
2005     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
2006       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2007                        << AllocType << Deduce->getType()
2008                        << TypeRange << Deduce->getSourceRange());
2009     if (DeducedType.isNull())
2010       return ExprError();
2011     AllocType = DeducedType;
2012   }
2013 
2014   // Per C++0x [expr.new]p5, the type being constructed may be a
2015   // typedef of an array type.
2016   if (!ArraySize) {
2017     if (const ConstantArrayType *Array
2018                               = Context.getAsConstantArrayType(AllocType)) {
2019       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2020                                          Context.getSizeType(),
2021                                          TypeRange.getEnd());
2022       AllocType = Array->getElementType();
2023     }
2024   }
2025 
2026   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2027     return ExprError();
2028 
2029   // In ARC, infer 'retaining' for the allocated
2030   if (getLangOpts().ObjCAutoRefCount &&
2031       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2032       AllocType->isObjCLifetimeType()) {
2033     AllocType = Context.getLifetimeQualifiedType(AllocType,
2034                                     AllocType->getObjCARCImplicitLifetime());
2035   }
2036 
2037   QualType ResultType = Context.getPointerType(AllocType);
2038 
2039   if (ArraySize && *ArraySize &&
2040       (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2041     ExprResult result = CheckPlaceholderExpr(*ArraySize);
2042     if (result.isInvalid()) return ExprError();
2043     ArraySize = result.get();
2044   }
2045   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2046   //   integral or enumeration type with a non-negative value."
2047   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2048   //   enumeration type, or a class type for which a single non-explicit
2049   //   conversion function to integral or unscoped enumeration type exists.
2050   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2051   //   std::size_t.
2052   llvm::Optional<uint64_t> KnownArraySize;
2053   if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2054     ExprResult ConvertedSize;
2055     if (getLangOpts().CPlusPlus14) {
2056       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2057 
2058       ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2059                                                 AA_Converting);
2060 
2061       if (!ConvertedSize.isInvalid() &&
2062           (*ArraySize)->getType()->getAs<RecordType>())
2063         // Diagnose the compatibility of this conversion.
2064         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2065           << (*ArraySize)->getType() << 0 << "'size_t'";
2066     } else {
2067       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2068       protected:
2069         Expr *ArraySize;
2070 
2071       public:
2072         SizeConvertDiagnoser(Expr *ArraySize)
2073             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2074               ArraySize(ArraySize) {}
2075 
2076         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2077                                              QualType T) override {
2078           return S.Diag(Loc, diag::err_array_size_not_integral)
2079                    << S.getLangOpts().CPlusPlus11 << T;
2080         }
2081 
2082         SemaDiagnosticBuilder diagnoseIncomplete(
2083             Sema &S, SourceLocation Loc, QualType T) override {
2084           return S.Diag(Loc, diag::err_array_size_incomplete_type)
2085                    << T << ArraySize->getSourceRange();
2086         }
2087 
2088         SemaDiagnosticBuilder diagnoseExplicitConv(
2089             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2090           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2091         }
2092 
2093         SemaDiagnosticBuilder noteExplicitConv(
2094             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2095           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2096                    << ConvTy->isEnumeralType() << ConvTy;
2097         }
2098 
2099         SemaDiagnosticBuilder diagnoseAmbiguous(
2100             Sema &S, SourceLocation Loc, QualType T) override {
2101           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2102         }
2103 
2104         SemaDiagnosticBuilder noteAmbiguous(
2105             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2106           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2107                    << ConvTy->isEnumeralType() << ConvTy;
2108         }
2109 
2110         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2111                                                  QualType T,
2112                                                  QualType ConvTy) override {
2113           return S.Diag(Loc,
2114                         S.getLangOpts().CPlusPlus11
2115                           ? diag::warn_cxx98_compat_array_size_conversion
2116                           : diag::ext_array_size_conversion)
2117                    << T << ConvTy->isEnumeralType() << ConvTy;
2118         }
2119       } SizeDiagnoser(*ArraySize);
2120 
2121       ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2122                                                           SizeDiagnoser);
2123     }
2124     if (ConvertedSize.isInvalid())
2125       return ExprError();
2126 
2127     ArraySize = ConvertedSize.get();
2128     QualType SizeType = (*ArraySize)->getType();
2129 
2130     if (!SizeType->isIntegralOrUnscopedEnumerationType())
2131       return ExprError();
2132 
2133     // C++98 [expr.new]p7:
2134     //   The expression in a direct-new-declarator shall have integral type
2135     //   with a non-negative value.
2136     //
2137     // Let's see if this is a constant < 0. If so, we reject it out of hand,
2138     // per CWG1464. Otherwise, if it's not a constant, we must have an
2139     // unparenthesized array type.
2140 
2141     // We've already performed any required implicit conversion to integer or
2142     // unscoped enumeration type.
2143     // FIXME: Per CWG1464, we are required to check the value prior to
2144     // converting to size_t. This will never find a negative array size in
2145     // C++14 onwards, because Value is always unsigned here!
2146     if (Optional<llvm::APSInt> Value =
2147             (*ArraySize)->getIntegerConstantExpr(Context)) {
2148       if (Value->isSigned() && Value->isNegative()) {
2149         return ExprError(Diag((*ArraySize)->getBeginLoc(),
2150                               diag::err_typecheck_negative_array_size)
2151                          << (*ArraySize)->getSourceRange());
2152       }
2153 
2154       if (!AllocType->isDependentType()) {
2155         unsigned ActiveSizeBits =
2156             ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2157         if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2158           return ExprError(
2159               Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2160               << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2161       }
2162 
2163       KnownArraySize = Value->getZExtValue();
2164     } else if (TypeIdParens.isValid()) {
2165       // Can't have dynamic array size when the type-id is in parentheses.
2166       Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2167           << (*ArraySize)->getSourceRange()
2168           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2169           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2170 
2171       TypeIdParens = SourceRange();
2172     }
2173 
2174     // Note that we do *not* convert the argument in any way.  It can
2175     // be signed, larger than size_t, whatever.
2176   }
2177 
2178   FunctionDecl *OperatorNew = nullptr;
2179   FunctionDecl *OperatorDelete = nullptr;
2180   unsigned Alignment =
2181       AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2182   unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2183   bool PassAlignment = getLangOpts().AlignedAllocation &&
2184                        Alignment > NewAlignment;
2185 
2186   AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2187   if (!AllocType->isDependentType() &&
2188       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2189       FindAllocationFunctions(
2190           StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2191           AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs,
2192           OperatorNew, OperatorDelete))
2193     return ExprError();
2194 
2195   // If this is an array allocation, compute whether the usual array
2196   // deallocation function for the type has a size_t parameter.
2197   bool UsualArrayDeleteWantsSize = false;
2198   if (ArraySize && !AllocType->isDependentType())
2199     UsualArrayDeleteWantsSize =
2200         doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2201 
2202   SmallVector<Expr *, 8> AllPlaceArgs;
2203   if (OperatorNew) {
2204     auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2205     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2206                                                     : VariadicDoesNotApply;
2207 
2208     // We've already converted the placement args, just fill in any default
2209     // arguments. Skip the first parameter because we don't have a corresponding
2210     // argument. Skip the second parameter too if we're passing in the
2211     // alignment; we've already filled it in.
2212     unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2213     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2214                                NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2215                                CallType))
2216       return ExprError();
2217 
2218     if (!AllPlaceArgs.empty())
2219       PlacementArgs = AllPlaceArgs;
2220 
2221     // We would like to perform some checking on the given `operator new` call,
2222     // but the PlacementArgs does not contain the implicit arguments,
2223     // namely allocation size and maybe allocation alignment,
2224     // so we need to conjure them.
2225 
2226     QualType SizeTy = Context.getSizeType();
2227     unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2228 
2229     llvm::APInt SingleEltSize(
2230         SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2231 
2232     // How many bytes do we want to allocate here?
2233     llvm::Optional<llvm::APInt> AllocationSize;
2234     if (!ArraySize.hasValue() && !AllocType->isDependentType()) {
2235       // For non-array operator new, we only want to allocate one element.
2236       AllocationSize = SingleEltSize;
2237     } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) {
2238       // For array operator new, only deal with static array size case.
2239       bool Overflow;
2240       AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2241                            .umul_ov(SingleEltSize, Overflow);
2242       (void)Overflow;
2243       assert(
2244           !Overflow &&
2245           "Expected that all the overflows would have been handled already.");
2246     }
2247 
2248     IntegerLiteral AllocationSizeLiteral(
2249         Context, AllocationSize.getValueOr(llvm::APInt::getZero(SizeTyWidth)),
2250         SizeTy, SourceLocation());
2251     // Otherwise, if we failed to constant-fold the allocation size, we'll
2252     // just give up and pass-in something opaque, that isn't a null pointer.
2253     OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2254                                          OK_Ordinary, /*SourceExpr=*/nullptr);
2255 
2256     // Let's synthesize the alignment argument in case we will need it.
2257     // Since we *really* want to allocate these on stack, this is slightly ugly
2258     // because there might not be a `std::align_val_t` type.
2259     EnumDecl *StdAlignValT = getStdAlignValT();
2260     QualType AlignValT =
2261         StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2262     IntegerLiteral AlignmentLiteral(
2263         Context,
2264         llvm::APInt(Context.getTypeSize(SizeTy),
2265                     Alignment / Context.getCharWidth()),
2266         SizeTy, SourceLocation());
2267     ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2268                                       CK_IntegralCast, &AlignmentLiteral,
2269                                       VK_PRValue, FPOptionsOverride());
2270 
2271     // Adjust placement args by prepending conjured size and alignment exprs.
2272     llvm::SmallVector<Expr *, 8> CallArgs;
2273     CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2274     CallArgs.emplace_back(AllocationSize.hasValue()
2275                               ? static_cast<Expr *>(&AllocationSizeLiteral)
2276                               : &OpaqueAllocationSize);
2277     if (PassAlignment)
2278       CallArgs.emplace_back(&DesiredAlignment);
2279     CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2280 
2281     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2282 
2283     checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2284               /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2285 
2286     // Warn if the type is over-aligned and is being allocated by (unaligned)
2287     // global operator new.
2288     if (PlacementArgs.empty() && !PassAlignment &&
2289         (OperatorNew->isImplicit() ||
2290          (OperatorNew->getBeginLoc().isValid() &&
2291           getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2292       if (Alignment > NewAlignment)
2293         Diag(StartLoc, diag::warn_overaligned_type)
2294             << AllocType
2295             << unsigned(Alignment / Context.getCharWidth())
2296             << unsigned(NewAlignment / Context.getCharWidth());
2297     }
2298   }
2299 
2300   // Array 'new' can't have any initializers except empty parentheses.
2301   // Initializer lists are also allowed, in C++11. Rely on the parser for the
2302   // dialect distinction.
2303   if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2304     SourceRange InitRange(Inits[0]->getBeginLoc(),
2305                           Inits[NumInits - 1]->getEndLoc());
2306     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2307     return ExprError();
2308   }
2309 
2310   // If we can perform the initialization, and we've not already done so,
2311   // do it now.
2312   if (!AllocType->isDependentType() &&
2313       !Expr::hasAnyTypeDependentArguments(
2314           llvm::makeArrayRef(Inits, NumInits))) {
2315     // The type we initialize is the complete type, including the array bound.
2316     QualType InitType;
2317     if (KnownArraySize)
2318       InitType = Context.getConstantArrayType(
2319           AllocType,
2320           llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2321                       *KnownArraySize),
2322           *ArraySize, ArrayType::Normal, 0);
2323     else if (ArraySize)
2324       InitType =
2325           Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2326     else
2327       InitType = AllocType;
2328 
2329     InitializedEntity Entity
2330       = InitializedEntity::InitializeNew(StartLoc, InitType);
2331     InitializationSequence InitSeq(*this, Entity, Kind,
2332                                    MultiExprArg(Inits, NumInits));
2333     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2334                                           MultiExprArg(Inits, NumInits));
2335     if (FullInit.isInvalid())
2336       return ExprError();
2337 
2338     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2339     // we don't want the initialized object to be destructed.
2340     // FIXME: We should not create these in the first place.
2341     if (CXXBindTemporaryExpr *Binder =
2342             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2343       FullInit = Binder->getSubExpr();
2344 
2345     Initializer = FullInit.get();
2346 
2347     // FIXME: If we have a KnownArraySize, check that the array bound of the
2348     // initializer is no greater than that constant value.
2349 
2350     if (ArraySize && !*ArraySize) {
2351       auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2352       if (CAT) {
2353         // FIXME: Track that the array size was inferred rather than explicitly
2354         // specified.
2355         ArraySize = IntegerLiteral::Create(
2356             Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2357       } else {
2358         Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2359             << Initializer->getSourceRange();
2360       }
2361     }
2362   }
2363 
2364   // Mark the new and delete operators as referenced.
2365   if (OperatorNew) {
2366     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2367       return ExprError();
2368     MarkFunctionReferenced(StartLoc, OperatorNew);
2369   }
2370   if (OperatorDelete) {
2371     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2372       return ExprError();
2373     MarkFunctionReferenced(StartLoc, OperatorDelete);
2374   }
2375 
2376   return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2377                             PassAlignment, UsualArrayDeleteWantsSize,
2378                             PlacementArgs, TypeIdParens, ArraySize, initStyle,
2379                             Initializer, ResultType, AllocTypeInfo, Range,
2380                             DirectInitRange);
2381 }
2382 
2383 /// Checks that a type is suitable as the allocated type
2384 /// in a new-expression.
2385 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2386                               SourceRange R) {
2387   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2388   //   abstract class type or array thereof.
2389   if (AllocType->isFunctionType())
2390     return Diag(Loc, diag::err_bad_new_type)
2391       << AllocType << 0 << R;
2392   else if (AllocType->isReferenceType())
2393     return Diag(Loc, diag::err_bad_new_type)
2394       << AllocType << 1 << R;
2395   else if (!AllocType->isDependentType() &&
2396            RequireCompleteSizedType(
2397                Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2398     return true;
2399   else if (RequireNonAbstractType(Loc, AllocType,
2400                                   diag::err_allocation_of_abstract_type))
2401     return true;
2402   else if (AllocType->isVariablyModifiedType())
2403     return Diag(Loc, diag::err_variably_modified_new_type)
2404              << AllocType;
2405   else if (AllocType.getAddressSpace() != LangAS::Default &&
2406            !getLangOpts().OpenCLCPlusPlus)
2407     return Diag(Loc, diag::err_address_space_qualified_new)
2408       << AllocType.getUnqualifiedType()
2409       << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2410   else if (getLangOpts().ObjCAutoRefCount) {
2411     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2412       QualType BaseAllocType = Context.getBaseElementType(AT);
2413       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2414           BaseAllocType->isObjCLifetimeType())
2415         return Diag(Loc, diag::err_arc_new_array_without_ownership)
2416           << BaseAllocType;
2417     }
2418   }
2419 
2420   return false;
2421 }
2422 
2423 static bool resolveAllocationOverload(
2424     Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2425     bool &PassAlignment, FunctionDecl *&Operator,
2426     OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2427   OverloadCandidateSet Candidates(R.getNameLoc(),
2428                                   OverloadCandidateSet::CSK_Normal);
2429   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2430        Alloc != AllocEnd; ++Alloc) {
2431     // Even member operator new/delete are implicitly treated as
2432     // static, so don't use AddMemberCandidate.
2433     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2434 
2435     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2436       S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2437                                      /*ExplicitTemplateArgs=*/nullptr, Args,
2438                                      Candidates,
2439                                      /*SuppressUserConversions=*/false);
2440       continue;
2441     }
2442 
2443     FunctionDecl *Fn = cast<FunctionDecl>(D);
2444     S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2445                            /*SuppressUserConversions=*/false);
2446   }
2447 
2448   // Do the resolution.
2449   OverloadCandidateSet::iterator Best;
2450   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2451   case OR_Success: {
2452     // Got one!
2453     FunctionDecl *FnDecl = Best->Function;
2454     if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2455                                 Best->FoundDecl) == Sema::AR_inaccessible)
2456       return true;
2457 
2458     Operator = FnDecl;
2459     return false;
2460   }
2461 
2462   case OR_No_Viable_Function:
2463     // C++17 [expr.new]p13:
2464     //   If no matching function is found and the allocated object type has
2465     //   new-extended alignment, the alignment argument is removed from the
2466     //   argument list, and overload resolution is performed again.
2467     if (PassAlignment) {
2468       PassAlignment = false;
2469       AlignArg = Args[1];
2470       Args.erase(Args.begin() + 1);
2471       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2472                                        Operator, &Candidates, AlignArg,
2473                                        Diagnose);
2474     }
2475 
2476     // MSVC will fall back on trying to find a matching global operator new
2477     // if operator new[] cannot be found.  Also, MSVC will leak by not
2478     // generating a call to operator delete or operator delete[], but we
2479     // will not replicate that bug.
2480     // FIXME: Find out how this interacts with the std::align_val_t fallback
2481     // once MSVC implements it.
2482     if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2483         S.Context.getLangOpts().MSVCCompat) {
2484       R.clear();
2485       R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2486       S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2487       // FIXME: This will give bad diagnostics pointing at the wrong functions.
2488       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2489                                        Operator, /*Candidates=*/nullptr,
2490                                        /*AlignArg=*/nullptr, Diagnose);
2491     }
2492 
2493     if (Diagnose) {
2494       // If this is an allocation of the form 'new (p) X' for some object
2495       // pointer p (or an expression that will decay to such a pointer),
2496       // diagnose the missing inclusion of <new>.
2497       if (!R.isClassLookup() && Args.size() == 2 &&
2498           (Args[1]->getType()->isObjectPointerType() ||
2499            Args[1]->getType()->isArrayType())) {
2500         S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2501             << R.getLookupName() << Range;
2502         // Listing the candidates is unlikely to be useful; skip it.
2503         return true;
2504       }
2505 
2506       // Finish checking all candidates before we note any. This checking can
2507       // produce additional diagnostics so can't be interleaved with our
2508       // emission of notes.
2509       //
2510       // For an aligned allocation, separately check the aligned and unaligned
2511       // candidates with their respective argument lists.
2512       SmallVector<OverloadCandidate*, 32> Cands;
2513       SmallVector<OverloadCandidate*, 32> AlignedCands;
2514       llvm::SmallVector<Expr*, 4> AlignedArgs;
2515       if (AlignedCandidates) {
2516         auto IsAligned = [](OverloadCandidate &C) {
2517           return C.Function->getNumParams() > 1 &&
2518                  C.Function->getParamDecl(1)->getType()->isAlignValT();
2519         };
2520         auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2521 
2522         AlignedArgs.reserve(Args.size() + 1);
2523         AlignedArgs.push_back(Args[0]);
2524         AlignedArgs.push_back(AlignArg);
2525         AlignedArgs.append(Args.begin() + 1, Args.end());
2526         AlignedCands = AlignedCandidates->CompleteCandidates(
2527             S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2528 
2529         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2530                                               R.getNameLoc(), IsUnaligned);
2531       } else {
2532         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2533                                               R.getNameLoc());
2534       }
2535 
2536       S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2537           << R.getLookupName() << Range;
2538       if (AlignedCandidates)
2539         AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2540                                           R.getNameLoc());
2541       Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2542     }
2543     return true;
2544 
2545   case OR_Ambiguous:
2546     if (Diagnose) {
2547       Candidates.NoteCandidates(
2548           PartialDiagnosticAt(R.getNameLoc(),
2549                               S.PDiag(diag::err_ovl_ambiguous_call)
2550                                   << R.getLookupName() << Range),
2551           S, OCD_AmbiguousCandidates, Args);
2552     }
2553     return true;
2554 
2555   case OR_Deleted: {
2556     if (Diagnose) {
2557       Candidates.NoteCandidates(
2558           PartialDiagnosticAt(R.getNameLoc(),
2559                               S.PDiag(diag::err_ovl_deleted_call)
2560                                   << R.getLookupName() << Range),
2561           S, OCD_AllCandidates, Args);
2562     }
2563     return true;
2564   }
2565   }
2566   llvm_unreachable("Unreachable, bad result from BestViableFunction");
2567 }
2568 
2569 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2570                                    AllocationFunctionScope NewScope,
2571                                    AllocationFunctionScope DeleteScope,
2572                                    QualType AllocType, bool IsArray,
2573                                    bool &PassAlignment, MultiExprArg PlaceArgs,
2574                                    FunctionDecl *&OperatorNew,
2575                                    FunctionDecl *&OperatorDelete,
2576                                    bool Diagnose) {
2577   // --- Choosing an allocation function ---
2578   // C++ 5.3.4p8 - 14 & 18
2579   // 1) If looking in AFS_Global scope for allocation functions, only look in
2580   //    the global scope. Else, if AFS_Class, only look in the scope of the
2581   //    allocated class. If AFS_Both, look in both.
2582   // 2) If an array size is given, look for operator new[], else look for
2583   //   operator new.
2584   // 3) The first argument is always size_t. Append the arguments from the
2585   //   placement form.
2586 
2587   SmallVector<Expr*, 8> AllocArgs;
2588   AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2589 
2590   // We don't care about the actual value of these arguments.
2591   // FIXME: Should the Sema create the expression and embed it in the syntax
2592   // tree? Or should the consumer just recalculate the value?
2593   // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2594   IntegerLiteral Size(
2595       Context, llvm::APInt::getZero(Context.getTargetInfo().getPointerWidth(0)),
2596       Context.getSizeType(), SourceLocation());
2597   AllocArgs.push_back(&Size);
2598 
2599   QualType AlignValT = Context.VoidTy;
2600   if (PassAlignment) {
2601     DeclareGlobalNewDelete();
2602     AlignValT = Context.getTypeDeclType(getStdAlignValT());
2603   }
2604   CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2605   if (PassAlignment)
2606     AllocArgs.push_back(&Align);
2607 
2608   AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2609 
2610   // C++ [expr.new]p8:
2611   //   If the allocated type is a non-array type, the allocation
2612   //   function's name is operator new and the deallocation function's
2613   //   name is operator delete. If the allocated type is an array
2614   //   type, the allocation function's name is operator new[] and the
2615   //   deallocation function's name is operator delete[].
2616   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2617       IsArray ? OO_Array_New : OO_New);
2618 
2619   QualType AllocElemType = Context.getBaseElementType(AllocType);
2620 
2621   // Find the allocation function.
2622   {
2623     LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2624 
2625     // C++1z [expr.new]p9:
2626     //   If the new-expression begins with a unary :: operator, the allocation
2627     //   function's name is looked up in the global scope. Otherwise, if the
2628     //   allocated type is a class type T or array thereof, the allocation
2629     //   function's name is looked up in the scope of T.
2630     if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2631       LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2632 
2633     // We can see ambiguity here if the allocation function is found in
2634     // multiple base classes.
2635     if (R.isAmbiguous())
2636       return true;
2637 
2638     //   If this lookup fails to find the name, or if the allocated type is not
2639     //   a class type, the allocation function's name is looked up in the
2640     //   global scope.
2641     if (R.empty()) {
2642       if (NewScope == AFS_Class)
2643         return true;
2644 
2645       LookupQualifiedName(R, Context.getTranslationUnitDecl());
2646     }
2647 
2648     if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2649       if (PlaceArgs.empty()) {
2650         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2651       } else {
2652         Diag(StartLoc, diag::err_openclcxx_placement_new);
2653       }
2654       return true;
2655     }
2656 
2657     assert(!R.empty() && "implicitly declared allocation functions not found");
2658     assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2659 
2660     // We do our own custom access checks below.
2661     R.suppressDiagnostics();
2662 
2663     if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2664                                   OperatorNew, /*Candidates=*/nullptr,
2665                                   /*AlignArg=*/nullptr, Diagnose))
2666       return true;
2667   }
2668 
2669   // We don't need an operator delete if we're running under -fno-exceptions.
2670   if (!getLangOpts().Exceptions) {
2671     OperatorDelete = nullptr;
2672     return false;
2673   }
2674 
2675   // Note, the name of OperatorNew might have been changed from array to
2676   // non-array by resolveAllocationOverload.
2677   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2678       OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2679           ? OO_Array_Delete
2680           : OO_Delete);
2681 
2682   // C++ [expr.new]p19:
2683   //
2684   //   If the new-expression begins with a unary :: operator, the
2685   //   deallocation function's name is looked up in the global
2686   //   scope. Otherwise, if the allocated type is a class type T or an
2687   //   array thereof, the deallocation function's name is looked up in
2688   //   the scope of T. If this lookup fails to find the name, or if
2689   //   the allocated type is not a class type or array thereof, the
2690   //   deallocation function's name is looked up in the global scope.
2691   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2692   if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2693     auto *RD =
2694         cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2695     LookupQualifiedName(FoundDelete, RD);
2696   }
2697   if (FoundDelete.isAmbiguous())
2698     return true; // FIXME: clean up expressions?
2699 
2700   // Filter out any destroying operator deletes. We can't possibly call such a
2701   // function in this context, because we're handling the case where the object
2702   // was not successfully constructed.
2703   // FIXME: This is not covered by the language rules yet.
2704   {
2705     LookupResult::Filter Filter = FoundDelete.makeFilter();
2706     while (Filter.hasNext()) {
2707       auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2708       if (FD && FD->isDestroyingOperatorDelete())
2709         Filter.erase();
2710     }
2711     Filter.done();
2712   }
2713 
2714   bool FoundGlobalDelete = FoundDelete.empty();
2715   if (FoundDelete.empty()) {
2716     FoundDelete.clear(LookupOrdinaryName);
2717 
2718     if (DeleteScope == AFS_Class)
2719       return true;
2720 
2721     DeclareGlobalNewDelete();
2722     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2723   }
2724 
2725   FoundDelete.suppressDiagnostics();
2726 
2727   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2728 
2729   // Whether we're looking for a placement operator delete is dictated
2730   // by whether we selected a placement operator new, not by whether
2731   // we had explicit placement arguments.  This matters for things like
2732   //   struct A { void *operator new(size_t, int = 0); ... };
2733   //   A *a = new A()
2734   //
2735   // We don't have any definition for what a "placement allocation function"
2736   // is, but we assume it's any allocation function whose
2737   // parameter-declaration-clause is anything other than (size_t).
2738   //
2739   // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2740   // This affects whether an exception from the constructor of an overaligned
2741   // type uses the sized or non-sized form of aligned operator delete.
2742   bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2743                         OperatorNew->isVariadic();
2744 
2745   if (isPlacementNew) {
2746     // C++ [expr.new]p20:
2747     //   A declaration of a placement deallocation function matches the
2748     //   declaration of a placement allocation function if it has the
2749     //   same number of parameters and, after parameter transformations
2750     //   (8.3.5), all parameter types except the first are
2751     //   identical. [...]
2752     //
2753     // To perform this comparison, we compute the function type that
2754     // the deallocation function should have, and use that type both
2755     // for template argument deduction and for comparison purposes.
2756     QualType ExpectedFunctionType;
2757     {
2758       auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2759 
2760       SmallVector<QualType, 4> ArgTypes;
2761       ArgTypes.push_back(Context.VoidPtrTy);
2762       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2763         ArgTypes.push_back(Proto->getParamType(I));
2764 
2765       FunctionProtoType::ExtProtoInfo EPI;
2766       // FIXME: This is not part of the standard's rule.
2767       EPI.Variadic = Proto->isVariadic();
2768 
2769       ExpectedFunctionType
2770         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2771     }
2772 
2773     for (LookupResult::iterator D = FoundDelete.begin(),
2774                              DEnd = FoundDelete.end();
2775          D != DEnd; ++D) {
2776       FunctionDecl *Fn = nullptr;
2777       if (FunctionTemplateDecl *FnTmpl =
2778               dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2779         // Perform template argument deduction to try to match the
2780         // expected function type.
2781         TemplateDeductionInfo Info(StartLoc);
2782         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2783                                     Info))
2784           continue;
2785       } else
2786         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2787 
2788       if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2789                                                   ExpectedFunctionType,
2790                                                   /*AdjustExcpetionSpec*/true),
2791                               ExpectedFunctionType))
2792         Matches.push_back(std::make_pair(D.getPair(), Fn));
2793     }
2794 
2795     if (getLangOpts().CUDA)
2796       EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2797   } else {
2798     // C++1y [expr.new]p22:
2799     //   For a non-placement allocation function, the normal deallocation
2800     //   function lookup is used
2801     //
2802     // Per [expr.delete]p10, this lookup prefers a member operator delete
2803     // without a size_t argument, but prefers a non-member operator delete
2804     // with a size_t where possible (which it always is in this case).
2805     llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2806     UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2807         *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2808         /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2809         &BestDeallocFns);
2810     if (Selected)
2811       Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2812     else {
2813       // If we failed to select an operator, all remaining functions are viable
2814       // but ambiguous.
2815       for (auto Fn : BestDeallocFns)
2816         Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2817     }
2818   }
2819 
2820   // C++ [expr.new]p20:
2821   //   [...] If the lookup finds a single matching deallocation
2822   //   function, that function will be called; otherwise, no
2823   //   deallocation function will be called.
2824   if (Matches.size() == 1) {
2825     OperatorDelete = Matches[0].second;
2826 
2827     // C++1z [expr.new]p23:
2828     //   If the lookup finds a usual deallocation function (3.7.4.2)
2829     //   with a parameter of type std::size_t and that function, considered
2830     //   as a placement deallocation function, would have been
2831     //   selected as a match for the allocation function, the program
2832     //   is ill-formed.
2833     if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2834         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2835       UsualDeallocFnInfo Info(*this,
2836                               DeclAccessPair::make(OperatorDelete, AS_public));
2837       // Core issue, per mail to core reflector, 2016-10-09:
2838       //   If this is a member operator delete, and there is a corresponding
2839       //   non-sized member operator delete, this isn't /really/ a sized
2840       //   deallocation function, it just happens to have a size_t parameter.
2841       bool IsSizedDelete = Info.HasSizeT;
2842       if (IsSizedDelete && !FoundGlobalDelete) {
2843         auto NonSizedDelete =
2844             resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2845                                         /*WantAlign*/Info.HasAlignValT);
2846         if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2847             NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2848           IsSizedDelete = false;
2849       }
2850 
2851       if (IsSizedDelete) {
2852         SourceRange R = PlaceArgs.empty()
2853                             ? SourceRange()
2854                             : SourceRange(PlaceArgs.front()->getBeginLoc(),
2855                                           PlaceArgs.back()->getEndLoc());
2856         Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2857         if (!OperatorDelete->isImplicit())
2858           Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2859               << DeleteName;
2860       }
2861     }
2862 
2863     CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2864                           Matches[0].first);
2865   } else if (!Matches.empty()) {
2866     // We found multiple suitable operators. Per [expr.new]p20, that means we
2867     // call no 'operator delete' function, but we should at least warn the user.
2868     // FIXME: Suppress this warning if the construction cannot throw.
2869     Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2870       << DeleteName << AllocElemType;
2871 
2872     for (auto &Match : Matches)
2873       Diag(Match.second->getLocation(),
2874            diag::note_member_declared_here) << DeleteName;
2875   }
2876 
2877   return false;
2878 }
2879 
2880 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2881 /// delete. These are:
2882 /// @code
2883 ///   // C++03:
2884 ///   void* operator new(std::size_t) throw(std::bad_alloc);
2885 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
2886 ///   void operator delete(void *) throw();
2887 ///   void operator delete[](void *) throw();
2888 ///   // C++11:
2889 ///   void* operator new(std::size_t);
2890 ///   void* operator new[](std::size_t);
2891 ///   void operator delete(void *) noexcept;
2892 ///   void operator delete[](void *) noexcept;
2893 ///   // C++1y:
2894 ///   void* operator new(std::size_t);
2895 ///   void* operator new[](std::size_t);
2896 ///   void operator delete(void *) noexcept;
2897 ///   void operator delete[](void *) noexcept;
2898 ///   void operator delete(void *, std::size_t) noexcept;
2899 ///   void operator delete[](void *, std::size_t) noexcept;
2900 /// @endcode
2901 /// Note that the placement and nothrow forms of new are *not* implicitly
2902 /// declared. Their use requires including \<new\>.
2903 void Sema::DeclareGlobalNewDelete() {
2904   if (GlobalNewDeleteDeclared)
2905     return;
2906 
2907   // The implicitly declared new and delete operators
2908   // are not supported in OpenCL.
2909   if (getLangOpts().OpenCLCPlusPlus)
2910     return;
2911 
2912   // C++ [basic.std.dynamic]p2:
2913   //   [...] The following allocation and deallocation functions (18.4) are
2914   //   implicitly declared in global scope in each translation unit of a
2915   //   program
2916   //
2917   //     C++03:
2918   //     void* operator new(std::size_t) throw(std::bad_alloc);
2919   //     void* operator new[](std::size_t) throw(std::bad_alloc);
2920   //     void  operator delete(void*) throw();
2921   //     void  operator delete[](void*) throw();
2922   //     C++11:
2923   //     void* operator new(std::size_t);
2924   //     void* operator new[](std::size_t);
2925   //     void  operator delete(void*) noexcept;
2926   //     void  operator delete[](void*) noexcept;
2927   //     C++1y:
2928   //     void* operator new(std::size_t);
2929   //     void* operator new[](std::size_t);
2930   //     void  operator delete(void*) noexcept;
2931   //     void  operator delete[](void*) noexcept;
2932   //     void  operator delete(void*, std::size_t) noexcept;
2933   //     void  operator delete[](void*, std::size_t) noexcept;
2934   //
2935   //   These implicit declarations introduce only the function names operator
2936   //   new, operator new[], operator delete, operator delete[].
2937   //
2938   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2939   // "std" or "bad_alloc" as necessary to form the exception specification.
2940   // However, we do not make these implicit declarations visible to name
2941   // lookup.
2942   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2943     // The "std::bad_alloc" class has not yet been declared, so build it
2944     // implicitly.
2945     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2946                                         getOrCreateStdNamespace(),
2947                                         SourceLocation(), SourceLocation(),
2948                                       &PP.getIdentifierTable().get("bad_alloc"),
2949                                         nullptr);
2950     getStdBadAlloc()->setImplicit(true);
2951   }
2952   if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2953     // The "std::align_val_t" enum class has not yet been declared, so build it
2954     // implicitly.
2955     auto *AlignValT = EnumDecl::Create(
2956         Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2957         &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2958     AlignValT->setIntegerType(Context.getSizeType());
2959     AlignValT->setPromotionType(Context.getSizeType());
2960     AlignValT->setImplicit(true);
2961     StdAlignValT = AlignValT;
2962   }
2963 
2964   GlobalNewDeleteDeclared = true;
2965 
2966   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2967   QualType SizeT = Context.getSizeType();
2968 
2969   auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2970                                               QualType Return, QualType Param) {
2971     llvm::SmallVector<QualType, 3> Params;
2972     Params.push_back(Param);
2973 
2974     // Create up to four variants of the function (sized/aligned).
2975     bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2976                            (Kind == OO_Delete || Kind == OO_Array_Delete);
2977     bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2978 
2979     int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2980     int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2981     for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2982       if (Sized)
2983         Params.push_back(SizeT);
2984 
2985       for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2986         if (Aligned)
2987           Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2988 
2989         DeclareGlobalAllocationFunction(
2990             Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2991 
2992         if (Aligned)
2993           Params.pop_back();
2994       }
2995     }
2996   };
2997 
2998   DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
2999   DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3000   DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3001   DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3002 }
3003 
3004 /// DeclareGlobalAllocationFunction - Declares a single implicit global
3005 /// allocation function if it doesn't already exist.
3006 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3007                                            QualType Return,
3008                                            ArrayRef<QualType> Params) {
3009   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3010 
3011   // Check if this function is already declared.
3012   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3013   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3014        Alloc != AllocEnd; ++Alloc) {
3015     // Only look at non-template functions, as it is the predefined,
3016     // non-templated allocation function we are trying to declare here.
3017     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3018       if (Func->getNumParams() == Params.size()) {
3019         llvm::SmallVector<QualType, 3> FuncParams;
3020         for (auto *P : Func->parameters())
3021           FuncParams.push_back(
3022               Context.getCanonicalType(P->getType().getUnqualifiedType()));
3023         if (llvm::makeArrayRef(FuncParams) == Params) {
3024           // Make the function visible to name lookup, even if we found it in
3025           // an unimported module. It either is an implicitly-declared global
3026           // allocation function, or is suppressing that function.
3027           Func->setVisibleDespiteOwningModule();
3028           return;
3029         }
3030       }
3031     }
3032   }
3033 
3034   FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3035       /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3036 
3037   QualType BadAllocType;
3038   bool HasBadAllocExceptionSpec
3039     = (Name.getCXXOverloadedOperator() == OO_New ||
3040        Name.getCXXOverloadedOperator() == OO_Array_New);
3041   if (HasBadAllocExceptionSpec) {
3042     if (!getLangOpts().CPlusPlus11) {
3043       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3044       assert(StdBadAlloc && "Must have std::bad_alloc declared");
3045       EPI.ExceptionSpec.Type = EST_Dynamic;
3046       EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
3047     }
3048     if (getLangOpts().NewInfallible) {
3049       EPI.ExceptionSpec.Type = EST_DynamicNone;
3050     }
3051   } else {
3052     EPI.ExceptionSpec =
3053         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3054   }
3055 
3056   auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3057     QualType FnType = Context.getFunctionType(Return, Params, EPI);
3058     FunctionDecl *Alloc = FunctionDecl::Create(
3059         Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3060         /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3061         true);
3062     Alloc->setImplicit();
3063     // Global allocation functions should always be visible.
3064     Alloc->setVisibleDespiteOwningModule();
3065 
3066     if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible)
3067       Alloc->addAttr(
3068           ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3069 
3070     Alloc->addAttr(VisibilityAttr::CreateImplicit(
3071         Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3072                      ? VisibilityAttr::Hidden
3073                      : VisibilityAttr::Default));
3074 
3075     llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3076     for (QualType T : Params) {
3077       ParamDecls.push_back(ParmVarDecl::Create(
3078           Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3079           /*TInfo=*/nullptr, SC_None, nullptr));
3080       ParamDecls.back()->setImplicit();
3081     }
3082     Alloc->setParams(ParamDecls);
3083     if (ExtraAttr)
3084       Alloc->addAttr(ExtraAttr);
3085     AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3086     Context.getTranslationUnitDecl()->addDecl(Alloc);
3087     IdResolver.tryAddTopLevelDecl(Alloc, Name);
3088   };
3089 
3090   if (!LangOpts.CUDA)
3091     CreateAllocationFunctionDecl(nullptr);
3092   else {
3093     // Host and device get their own declaration so each can be
3094     // defined or re-declared independently.
3095     CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3096     CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3097   }
3098 }
3099 
3100 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3101                                                   bool CanProvideSize,
3102                                                   bool Overaligned,
3103                                                   DeclarationName Name) {
3104   DeclareGlobalNewDelete();
3105 
3106   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3107   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3108 
3109   // FIXME: It's possible for this to result in ambiguity, through a
3110   // user-declared variadic operator delete or the enable_if attribute. We
3111   // should probably not consider those cases to be usual deallocation
3112   // functions. But for now we just make an arbitrary choice in that case.
3113   auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3114                                             Overaligned);
3115   assert(Result.FD && "operator delete missing from global scope?");
3116   return Result.FD;
3117 }
3118 
3119 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3120                                                           CXXRecordDecl *RD) {
3121   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3122 
3123   FunctionDecl *OperatorDelete = nullptr;
3124   if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3125     return nullptr;
3126   if (OperatorDelete)
3127     return OperatorDelete;
3128 
3129   // If there's no class-specific operator delete, look up the global
3130   // non-array delete.
3131   return FindUsualDeallocationFunction(
3132       Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3133       Name);
3134 }
3135 
3136 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3137                                     DeclarationName Name,
3138                                     FunctionDecl *&Operator, bool Diagnose) {
3139   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3140   // Try to find operator delete/operator delete[] in class scope.
3141   LookupQualifiedName(Found, RD);
3142 
3143   if (Found.isAmbiguous())
3144     return true;
3145 
3146   Found.suppressDiagnostics();
3147 
3148   bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3149 
3150   // C++17 [expr.delete]p10:
3151   //   If the deallocation functions have class scope, the one without a
3152   //   parameter of type std::size_t is selected.
3153   llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3154   resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
3155                               /*WantAlign*/ Overaligned, &Matches);
3156 
3157   // If we could find an overload, use it.
3158   if (Matches.size() == 1) {
3159     Operator = cast<CXXMethodDecl>(Matches[0].FD);
3160 
3161     // FIXME: DiagnoseUseOfDecl?
3162     if (Operator->isDeleted()) {
3163       if (Diagnose) {
3164         Diag(StartLoc, diag::err_deleted_function_use);
3165         NoteDeletedFunction(Operator);
3166       }
3167       return true;
3168     }
3169 
3170     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3171                               Matches[0].Found, Diagnose) == AR_inaccessible)
3172       return true;
3173 
3174     return false;
3175   }
3176 
3177   // We found multiple suitable operators; complain about the ambiguity.
3178   // FIXME: The standard doesn't say to do this; it appears that the intent
3179   // is that this should never happen.
3180   if (!Matches.empty()) {
3181     if (Diagnose) {
3182       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3183         << Name << RD;
3184       for (auto &Match : Matches)
3185         Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3186     }
3187     return true;
3188   }
3189 
3190   // We did find operator delete/operator delete[] declarations, but
3191   // none of them were suitable.
3192   if (!Found.empty()) {
3193     if (Diagnose) {
3194       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3195         << Name << RD;
3196 
3197       for (NamedDecl *D : Found)
3198         Diag(D->getUnderlyingDecl()->getLocation(),
3199              diag::note_member_declared_here) << Name;
3200     }
3201     return true;
3202   }
3203 
3204   Operator = nullptr;
3205   return false;
3206 }
3207 
3208 namespace {
3209 /// Checks whether delete-expression, and new-expression used for
3210 ///  initializing deletee have the same array form.
3211 class MismatchingNewDeleteDetector {
3212 public:
3213   enum MismatchResult {
3214     /// Indicates that there is no mismatch or a mismatch cannot be proven.
3215     NoMismatch,
3216     /// Indicates that variable is initialized with mismatching form of \a new.
3217     VarInitMismatches,
3218     /// Indicates that member is initialized with mismatching form of \a new.
3219     MemberInitMismatches,
3220     /// Indicates that 1 or more constructors' definitions could not been
3221     /// analyzed, and they will be checked again at the end of translation unit.
3222     AnalyzeLater
3223   };
3224 
3225   /// \param EndOfTU True, if this is the final analysis at the end of
3226   /// translation unit. False, if this is the initial analysis at the point
3227   /// delete-expression was encountered.
3228   explicit MismatchingNewDeleteDetector(bool EndOfTU)
3229       : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3230         HasUndefinedConstructors(false) {}
3231 
3232   /// Checks whether pointee of a delete-expression is initialized with
3233   /// matching form of new-expression.
3234   ///
3235   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3236   /// point where delete-expression is encountered, then a warning will be
3237   /// issued immediately. If return value is \c AnalyzeLater at the point where
3238   /// delete-expression is seen, then member will be analyzed at the end of
3239   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3240   /// couldn't be analyzed. If at least one constructor initializes the member
3241   /// with matching type of new, the return value is \c NoMismatch.
3242   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3243   /// Analyzes a class member.
3244   /// \param Field Class member to analyze.
3245   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3246   /// for deleting the \p Field.
3247   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3248   FieldDecl *Field;
3249   /// List of mismatching new-expressions used for initialization of the pointee
3250   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3251   /// Indicates whether delete-expression was in array form.
3252   bool IsArrayForm;
3253 
3254 private:
3255   const bool EndOfTU;
3256   /// Indicates that there is at least one constructor without body.
3257   bool HasUndefinedConstructors;
3258   /// Returns \c CXXNewExpr from given initialization expression.
3259   /// \param E Expression used for initializing pointee in delete-expression.
3260   /// E can be a single-element \c InitListExpr consisting of new-expression.
3261   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3262   /// Returns whether member is initialized with mismatching form of
3263   /// \c new either by the member initializer or in-class initialization.
3264   ///
3265   /// If bodies of all constructors are not visible at the end of translation
3266   /// unit or at least one constructor initializes member with the matching
3267   /// form of \c new, mismatch cannot be proven, and this function will return
3268   /// \c NoMismatch.
3269   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3270   /// Returns whether variable is initialized with mismatching form of
3271   /// \c new.
3272   ///
3273   /// If variable is initialized with matching form of \c new or variable is not
3274   /// initialized with a \c new expression, this function will return true.
3275   /// If variable is initialized with mismatching form of \c new, returns false.
3276   /// \param D Variable to analyze.
3277   bool hasMatchingVarInit(const DeclRefExpr *D);
3278   /// Checks whether the constructor initializes pointee with mismatching
3279   /// form of \c new.
3280   ///
3281   /// Returns true, if member is initialized with matching form of \c new in
3282   /// member initializer list. Returns false, if member is initialized with the
3283   /// matching form of \c new in this constructor's initializer or given
3284   /// constructor isn't defined at the point where delete-expression is seen, or
3285   /// member isn't initialized by the constructor.
3286   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3287   /// Checks whether member is initialized with matching form of
3288   /// \c new in member initializer list.
3289   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3290   /// Checks whether member is initialized with mismatching form of \c new by
3291   /// in-class initializer.
3292   MismatchResult analyzeInClassInitializer();
3293 };
3294 }
3295 
3296 MismatchingNewDeleteDetector::MismatchResult
3297 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3298   NewExprs.clear();
3299   assert(DE && "Expected delete-expression");
3300   IsArrayForm = DE->isArrayForm();
3301   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3302   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3303     return analyzeMemberExpr(ME);
3304   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3305     if (!hasMatchingVarInit(D))
3306       return VarInitMismatches;
3307   }
3308   return NoMismatch;
3309 }
3310 
3311 const CXXNewExpr *
3312 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3313   assert(E != nullptr && "Expected a valid initializer expression");
3314   E = E->IgnoreParenImpCasts();
3315   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3316     if (ILE->getNumInits() == 1)
3317       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3318   }
3319 
3320   return dyn_cast_or_null<const CXXNewExpr>(E);
3321 }
3322 
3323 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3324     const CXXCtorInitializer *CI) {
3325   const CXXNewExpr *NE = nullptr;
3326   if (Field == CI->getMember() &&
3327       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3328     if (NE->isArray() == IsArrayForm)
3329       return true;
3330     else
3331       NewExprs.push_back(NE);
3332   }
3333   return false;
3334 }
3335 
3336 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3337     const CXXConstructorDecl *CD) {
3338   if (CD->isImplicit())
3339     return false;
3340   const FunctionDecl *Definition = CD;
3341   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3342     HasUndefinedConstructors = true;
3343     return EndOfTU;
3344   }
3345   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3346     if (hasMatchingNewInCtorInit(CI))
3347       return true;
3348   }
3349   return false;
3350 }
3351 
3352 MismatchingNewDeleteDetector::MismatchResult
3353 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3354   assert(Field != nullptr && "This should be called only for members");
3355   const Expr *InitExpr = Field->getInClassInitializer();
3356   if (!InitExpr)
3357     return EndOfTU ? NoMismatch : AnalyzeLater;
3358   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3359     if (NE->isArray() != IsArrayForm) {
3360       NewExprs.push_back(NE);
3361       return MemberInitMismatches;
3362     }
3363   }
3364   return NoMismatch;
3365 }
3366 
3367 MismatchingNewDeleteDetector::MismatchResult
3368 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3369                                            bool DeleteWasArrayForm) {
3370   assert(Field != nullptr && "Analysis requires a valid class member.");
3371   this->Field = Field;
3372   IsArrayForm = DeleteWasArrayForm;
3373   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3374   for (const auto *CD : RD->ctors()) {
3375     if (hasMatchingNewInCtor(CD))
3376       return NoMismatch;
3377   }
3378   if (HasUndefinedConstructors)
3379     return EndOfTU ? NoMismatch : AnalyzeLater;
3380   if (!NewExprs.empty())
3381     return MemberInitMismatches;
3382   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3383                                         : NoMismatch;
3384 }
3385 
3386 MismatchingNewDeleteDetector::MismatchResult
3387 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3388   assert(ME != nullptr && "Expected a member expression");
3389   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3390     return analyzeField(F, IsArrayForm);
3391   return NoMismatch;
3392 }
3393 
3394 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3395   const CXXNewExpr *NE = nullptr;
3396   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3397     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3398         NE->isArray() != IsArrayForm) {
3399       NewExprs.push_back(NE);
3400     }
3401   }
3402   return NewExprs.empty();
3403 }
3404 
3405 static void
3406 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3407                             const MismatchingNewDeleteDetector &Detector) {
3408   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3409   FixItHint H;
3410   if (!Detector.IsArrayForm)
3411     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3412   else {
3413     SourceLocation RSquare = Lexer::findLocationAfterToken(
3414         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3415         SemaRef.getLangOpts(), true);
3416     if (RSquare.isValid())
3417       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3418   }
3419   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3420       << Detector.IsArrayForm << H;
3421 
3422   for (const auto *NE : Detector.NewExprs)
3423     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3424         << Detector.IsArrayForm;
3425 }
3426 
3427 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3428   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3429     return;
3430   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3431   switch (Detector.analyzeDeleteExpr(DE)) {
3432   case MismatchingNewDeleteDetector::VarInitMismatches:
3433   case MismatchingNewDeleteDetector::MemberInitMismatches: {
3434     DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3435     break;
3436   }
3437   case MismatchingNewDeleteDetector::AnalyzeLater: {
3438     DeleteExprs[Detector.Field].push_back(
3439         std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3440     break;
3441   }
3442   case MismatchingNewDeleteDetector::NoMismatch:
3443     break;
3444   }
3445 }
3446 
3447 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3448                                      bool DeleteWasArrayForm) {
3449   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3450   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3451   case MismatchingNewDeleteDetector::VarInitMismatches:
3452     llvm_unreachable("This analysis should have been done for class members.");
3453   case MismatchingNewDeleteDetector::AnalyzeLater:
3454     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3455                      "translation unit.");
3456   case MismatchingNewDeleteDetector::MemberInitMismatches:
3457     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3458     break;
3459   case MismatchingNewDeleteDetector::NoMismatch:
3460     break;
3461   }
3462 }
3463 
3464 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3465 /// @code ::delete ptr; @endcode
3466 /// or
3467 /// @code delete [] ptr; @endcode
3468 ExprResult
3469 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3470                      bool ArrayForm, Expr *ExE) {
3471   // C++ [expr.delete]p1:
3472   //   The operand shall have a pointer type, or a class type having a single
3473   //   non-explicit conversion function to a pointer type. The result has type
3474   //   void.
3475   //
3476   // DR599 amends "pointer type" to "pointer to object type" in both cases.
3477 
3478   ExprResult Ex = ExE;
3479   FunctionDecl *OperatorDelete = nullptr;
3480   bool ArrayFormAsWritten = ArrayForm;
3481   bool UsualArrayDeleteWantsSize = false;
3482 
3483   if (!Ex.get()->isTypeDependent()) {
3484     // Perform lvalue-to-rvalue cast, if needed.
3485     Ex = DefaultLvalueConversion(Ex.get());
3486     if (Ex.isInvalid())
3487       return ExprError();
3488 
3489     QualType Type = Ex.get()->getType();
3490 
3491     class DeleteConverter : public ContextualImplicitConverter {
3492     public:
3493       DeleteConverter() : ContextualImplicitConverter(false, true) {}
3494 
3495       bool match(QualType ConvType) override {
3496         // FIXME: If we have an operator T* and an operator void*, we must pick
3497         // the operator T*.
3498         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3499           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3500             return true;
3501         return false;
3502       }
3503 
3504       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3505                                             QualType T) override {
3506         return S.Diag(Loc, diag::err_delete_operand) << T;
3507       }
3508 
3509       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3510                                                QualType T) override {
3511         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3512       }
3513 
3514       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3515                                                  QualType T,
3516                                                  QualType ConvTy) override {
3517         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3518       }
3519 
3520       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3521                                              QualType ConvTy) override {
3522         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3523           << ConvTy;
3524       }
3525 
3526       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3527                                               QualType T) override {
3528         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3529       }
3530 
3531       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3532                                           QualType ConvTy) override {
3533         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3534           << ConvTy;
3535       }
3536 
3537       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3538                                                QualType T,
3539                                                QualType ConvTy) override {
3540         llvm_unreachable("conversion functions are permitted");
3541       }
3542     } Converter;
3543 
3544     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3545     if (Ex.isInvalid())
3546       return ExprError();
3547     Type = Ex.get()->getType();
3548     if (!Converter.match(Type))
3549       // FIXME: PerformContextualImplicitConversion should return ExprError
3550       //        itself in this case.
3551       return ExprError();
3552 
3553     QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3554     QualType PointeeElem = Context.getBaseElementType(Pointee);
3555 
3556     if (Pointee.getAddressSpace() != LangAS::Default &&
3557         !getLangOpts().OpenCLCPlusPlus)
3558       return Diag(Ex.get()->getBeginLoc(),
3559                   diag::err_address_space_qualified_delete)
3560              << Pointee.getUnqualifiedType()
3561              << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3562 
3563     CXXRecordDecl *PointeeRD = nullptr;
3564     if (Pointee->isVoidType() && !isSFINAEContext()) {
3565       // The C++ standard bans deleting a pointer to a non-object type, which
3566       // effectively bans deletion of "void*". However, most compilers support
3567       // this, so we treat it as a warning unless we're in a SFINAE context.
3568       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3569         << Type << Ex.get()->getSourceRange();
3570     } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3571                Pointee->isSizelessType()) {
3572       return ExprError(Diag(StartLoc, diag::err_delete_operand)
3573         << Type << Ex.get()->getSourceRange());
3574     } else if (!Pointee->isDependentType()) {
3575       // FIXME: This can result in errors if the definition was imported from a
3576       // module but is hidden.
3577       if (!RequireCompleteType(StartLoc, Pointee,
3578                                diag::warn_delete_incomplete, Ex.get())) {
3579         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3580           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3581       }
3582     }
3583 
3584     if (Pointee->isArrayType() && !ArrayForm) {
3585       Diag(StartLoc, diag::warn_delete_array_type)
3586           << Type << Ex.get()->getSourceRange()
3587           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3588       ArrayForm = true;
3589     }
3590 
3591     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3592                                       ArrayForm ? OO_Array_Delete : OO_Delete);
3593 
3594     if (PointeeRD) {
3595       if (!UseGlobal &&
3596           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3597                                    OperatorDelete))
3598         return ExprError();
3599 
3600       // If we're allocating an array of records, check whether the
3601       // usual operator delete[] has a size_t parameter.
3602       if (ArrayForm) {
3603         // If the user specifically asked to use the global allocator,
3604         // we'll need to do the lookup into the class.
3605         if (UseGlobal)
3606           UsualArrayDeleteWantsSize =
3607             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3608 
3609         // Otherwise, the usual operator delete[] should be the
3610         // function we just found.
3611         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3612           UsualArrayDeleteWantsSize =
3613             UsualDeallocFnInfo(*this,
3614                                DeclAccessPair::make(OperatorDelete, AS_public))
3615               .HasSizeT;
3616       }
3617 
3618       if (!PointeeRD->hasIrrelevantDestructor())
3619         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3620           MarkFunctionReferenced(StartLoc,
3621                                     const_cast<CXXDestructorDecl*>(Dtor));
3622           if (DiagnoseUseOfDecl(Dtor, StartLoc))
3623             return ExprError();
3624         }
3625 
3626       CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3627                            /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3628                            /*WarnOnNonAbstractTypes=*/!ArrayForm,
3629                            SourceLocation());
3630     }
3631 
3632     if (!OperatorDelete) {
3633       if (getLangOpts().OpenCLCPlusPlus) {
3634         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3635         return ExprError();
3636       }
3637 
3638       bool IsComplete = isCompleteType(StartLoc, Pointee);
3639       bool CanProvideSize =
3640           IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3641                          Pointee.isDestructedType());
3642       bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3643 
3644       // Look for a global declaration.
3645       OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3646                                                      Overaligned, DeleteName);
3647     }
3648 
3649     MarkFunctionReferenced(StartLoc, OperatorDelete);
3650 
3651     // Check access and ambiguity of destructor if we're going to call it.
3652     // Note that this is required even for a virtual delete.
3653     bool IsVirtualDelete = false;
3654     if (PointeeRD) {
3655       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3656         CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3657                               PDiag(diag::err_access_dtor) << PointeeElem);
3658         IsVirtualDelete = Dtor->isVirtual();
3659       }
3660     }
3661 
3662     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3663 
3664     // Convert the operand to the type of the first parameter of operator
3665     // delete. This is only necessary if we selected a destroying operator
3666     // delete that we are going to call (non-virtually); converting to void*
3667     // is trivial and left to AST consumers to handle.
3668     QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3669     if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3670       Qualifiers Qs = Pointee.getQualifiers();
3671       if (Qs.hasCVRQualifiers()) {
3672         // Qualifiers are irrelevant to this conversion; we're only looking
3673         // for access and ambiguity.
3674         Qs.removeCVRQualifiers();
3675         QualType Unqual = Context.getPointerType(
3676             Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3677         Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3678       }
3679       Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3680       if (Ex.isInvalid())
3681         return ExprError();
3682     }
3683   }
3684 
3685   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3686       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3687       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3688   AnalyzeDeleteExprMismatch(Result);
3689   return Result;
3690 }
3691 
3692 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3693                                             bool IsDelete,
3694                                             FunctionDecl *&Operator) {
3695 
3696   DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3697       IsDelete ? OO_Delete : OO_New);
3698 
3699   LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3700   S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3701   assert(!R.empty() && "implicitly declared allocation functions not found");
3702   assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3703 
3704   // We do our own custom access checks below.
3705   R.suppressDiagnostics();
3706 
3707   SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3708   OverloadCandidateSet Candidates(R.getNameLoc(),
3709                                   OverloadCandidateSet::CSK_Normal);
3710   for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3711        FnOvl != FnOvlEnd; ++FnOvl) {
3712     // Even member operator new/delete are implicitly treated as
3713     // static, so don't use AddMemberCandidate.
3714     NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3715 
3716     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3717       S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3718                                      /*ExplicitTemplateArgs=*/nullptr, Args,
3719                                      Candidates,
3720                                      /*SuppressUserConversions=*/false);
3721       continue;
3722     }
3723 
3724     FunctionDecl *Fn = cast<FunctionDecl>(D);
3725     S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3726                            /*SuppressUserConversions=*/false);
3727   }
3728 
3729   SourceRange Range = TheCall->getSourceRange();
3730 
3731   // Do the resolution.
3732   OverloadCandidateSet::iterator Best;
3733   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3734   case OR_Success: {
3735     // Got one!
3736     FunctionDecl *FnDecl = Best->Function;
3737     assert(R.getNamingClass() == nullptr &&
3738            "class members should not be considered");
3739 
3740     if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3741       S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3742           << (IsDelete ? 1 : 0) << Range;
3743       S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3744           << R.getLookupName() << FnDecl->getSourceRange();
3745       return true;
3746     }
3747 
3748     Operator = FnDecl;
3749     return false;
3750   }
3751 
3752   case OR_No_Viable_Function:
3753     Candidates.NoteCandidates(
3754         PartialDiagnosticAt(R.getNameLoc(),
3755                             S.PDiag(diag::err_ovl_no_viable_function_in_call)
3756                                 << R.getLookupName() << Range),
3757         S, OCD_AllCandidates, Args);
3758     return true;
3759 
3760   case OR_Ambiguous:
3761     Candidates.NoteCandidates(
3762         PartialDiagnosticAt(R.getNameLoc(),
3763                             S.PDiag(diag::err_ovl_ambiguous_call)
3764                                 << R.getLookupName() << Range),
3765         S, OCD_AmbiguousCandidates, Args);
3766     return true;
3767 
3768   case OR_Deleted: {
3769     Candidates.NoteCandidates(
3770         PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3771                                                 << R.getLookupName() << Range),
3772         S, OCD_AllCandidates, Args);
3773     return true;
3774   }
3775   }
3776   llvm_unreachable("Unreachable, bad result from BestViableFunction");
3777 }
3778 
3779 ExprResult
3780 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3781                                              bool IsDelete) {
3782   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3783   if (!getLangOpts().CPlusPlus) {
3784     Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3785         << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3786         << "C++";
3787     return ExprError();
3788   }
3789   // CodeGen assumes it can find the global new and delete to call,
3790   // so ensure that they are declared.
3791   DeclareGlobalNewDelete();
3792 
3793   FunctionDecl *OperatorNewOrDelete = nullptr;
3794   if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3795                                       OperatorNewOrDelete))
3796     return ExprError();
3797   assert(OperatorNewOrDelete && "should be found");
3798 
3799   DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3800   MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3801 
3802   TheCall->setType(OperatorNewOrDelete->getReturnType());
3803   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3804     QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3805     InitializedEntity Entity =
3806         InitializedEntity::InitializeParameter(Context, ParamTy, false);
3807     ExprResult Arg = PerformCopyInitialization(
3808         Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3809     if (Arg.isInvalid())
3810       return ExprError();
3811     TheCall->setArg(i, Arg.get());
3812   }
3813   auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3814   assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3815          "Callee expected to be implicit cast to a builtin function pointer");
3816   Callee->setType(OperatorNewOrDelete->getType());
3817 
3818   return TheCallResult;
3819 }
3820 
3821 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3822                                 bool IsDelete, bool CallCanBeVirtual,
3823                                 bool WarnOnNonAbstractTypes,
3824                                 SourceLocation DtorLoc) {
3825   if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3826     return;
3827 
3828   // C++ [expr.delete]p3:
3829   //   In the first alternative (delete object), if the static type of the
3830   //   object to be deleted is different from its dynamic type, the static
3831   //   type shall be a base class of the dynamic type of the object to be
3832   //   deleted and the static type shall have a virtual destructor or the
3833   //   behavior is undefined.
3834   //
3835   const CXXRecordDecl *PointeeRD = dtor->getParent();
3836   // Note: a final class cannot be derived from, no issue there
3837   if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3838     return;
3839 
3840   // If the superclass is in a system header, there's nothing that can be done.
3841   // The `delete` (where we emit the warning) can be in a system header,
3842   // what matters for this warning is where the deleted type is defined.
3843   if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3844     return;
3845 
3846   QualType ClassType = dtor->getThisType()->getPointeeType();
3847   if (PointeeRD->isAbstract()) {
3848     // If the class is abstract, we warn by default, because we're
3849     // sure the code has undefined behavior.
3850     Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3851                                                            << ClassType;
3852   } else if (WarnOnNonAbstractTypes) {
3853     // Otherwise, if this is not an array delete, it's a bit suspect,
3854     // but not necessarily wrong.
3855     Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3856                                                   << ClassType;
3857   }
3858   if (!IsDelete) {
3859     std::string TypeStr;
3860     ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3861     Diag(DtorLoc, diag::note_delete_non_virtual)
3862         << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3863   }
3864 }
3865 
3866 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3867                                                    SourceLocation StmtLoc,
3868                                                    ConditionKind CK) {
3869   ExprResult E =
3870       CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3871   if (E.isInvalid())
3872     return ConditionError();
3873   return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3874                          CK == ConditionKind::ConstexprIf);
3875 }
3876 
3877 /// Check the use of the given variable as a C++ condition in an if,
3878 /// while, do-while, or switch statement.
3879 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3880                                         SourceLocation StmtLoc,
3881                                         ConditionKind CK) {
3882   if (ConditionVar->isInvalidDecl())
3883     return ExprError();
3884 
3885   QualType T = ConditionVar->getType();
3886 
3887   // C++ [stmt.select]p2:
3888   //   The declarator shall not specify a function or an array.
3889   if (T->isFunctionType())
3890     return ExprError(Diag(ConditionVar->getLocation(),
3891                           diag::err_invalid_use_of_function_type)
3892                        << ConditionVar->getSourceRange());
3893   else if (T->isArrayType())
3894     return ExprError(Diag(ConditionVar->getLocation(),
3895                           diag::err_invalid_use_of_array_type)
3896                      << ConditionVar->getSourceRange());
3897 
3898   ExprResult Condition = BuildDeclRefExpr(
3899       ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3900       ConditionVar->getLocation());
3901 
3902   switch (CK) {
3903   case ConditionKind::Boolean:
3904     return CheckBooleanCondition(StmtLoc, Condition.get());
3905 
3906   case ConditionKind::ConstexprIf:
3907     return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3908 
3909   case ConditionKind::Switch:
3910     return CheckSwitchCondition(StmtLoc, Condition.get());
3911   }
3912 
3913   llvm_unreachable("unexpected condition kind");
3914 }
3915 
3916 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3917 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3918   // C++11 6.4p4:
3919   // The value of a condition that is an initialized declaration in a statement
3920   // other than a switch statement is the value of the declared variable
3921   // implicitly converted to type bool. If that conversion is ill-formed, the
3922   // program is ill-formed.
3923   // The value of a condition that is an expression is the value of the
3924   // expression, implicitly converted to bool.
3925   //
3926   // C++2b 8.5.2p2
3927   // If the if statement is of the form if constexpr, the value of the condition
3928   // is contextually converted to bool and the converted expression shall be
3929   // a constant expression.
3930   //
3931 
3932   ExprResult E = PerformContextuallyConvertToBool(CondExpr);
3933   if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
3934     return E;
3935 
3936   // FIXME: Return this value to the caller so they don't need to recompute it.
3937   llvm::APSInt Cond;
3938   E = VerifyIntegerConstantExpression(
3939       E.get(), &Cond,
3940       diag::err_constexpr_if_condition_expression_is_not_constant);
3941   return E;
3942 }
3943 
3944 /// Helper function to determine whether this is the (deprecated) C++
3945 /// conversion from a string literal to a pointer to non-const char or
3946 /// non-const wchar_t (for narrow and wide string literals,
3947 /// respectively).
3948 bool
3949 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3950   // Look inside the implicit cast, if it exists.
3951   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3952     From = Cast->getSubExpr();
3953 
3954   // A string literal (2.13.4) that is not a wide string literal can
3955   // be converted to an rvalue of type "pointer to char"; a wide
3956   // string literal can be converted to an rvalue of type "pointer
3957   // to wchar_t" (C++ 4.2p2).
3958   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3959     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3960       if (const BuiltinType *ToPointeeType
3961           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3962         // This conversion is considered only when there is an
3963         // explicit appropriate pointer target type (C++ 4.2p2).
3964         if (!ToPtrType->getPointeeType().hasQualifiers()) {
3965           switch (StrLit->getKind()) {
3966             case StringLiteral::UTF8:
3967             case StringLiteral::UTF16:
3968             case StringLiteral::UTF32:
3969               // We don't allow UTF literals to be implicitly converted
3970               break;
3971             case StringLiteral::Ascii:
3972               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3973                       ToPointeeType->getKind() == BuiltinType::Char_S);
3974             case StringLiteral::Wide:
3975               return Context.typesAreCompatible(Context.getWideCharType(),
3976                                                 QualType(ToPointeeType, 0));
3977           }
3978         }
3979       }
3980 
3981   return false;
3982 }
3983 
3984 static ExprResult BuildCXXCastArgument(Sema &S,
3985                                        SourceLocation CastLoc,
3986                                        QualType Ty,
3987                                        CastKind Kind,
3988                                        CXXMethodDecl *Method,
3989                                        DeclAccessPair FoundDecl,
3990                                        bool HadMultipleCandidates,
3991                                        Expr *From) {
3992   switch (Kind) {
3993   default: llvm_unreachable("Unhandled cast kind!");
3994   case CK_ConstructorConversion: {
3995     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3996     SmallVector<Expr*, 8> ConstructorArgs;
3997 
3998     if (S.RequireNonAbstractType(CastLoc, Ty,
3999                                  diag::err_allocation_of_abstract_type))
4000       return ExprError();
4001 
4002     if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4003                                   ConstructorArgs))
4004       return ExprError();
4005 
4006     S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4007                              InitializedEntity::InitializeTemporary(Ty));
4008     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4009       return ExprError();
4010 
4011     ExprResult Result = S.BuildCXXConstructExpr(
4012         CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4013         ConstructorArgs, HadMultipleCandidates,
4014         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4015         CXXConstructExpr::CK_Complete, SourceRange());
4016     if (Result.isInvalid())
4017       return ExprError();
4018 
4019     return S.MaybeBindToTemporary(Result.getAs<Expr>());
4020   }
4021 
4022   case CK_UserDefinedConversion: {
4023     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
4024 
4025     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4026     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4027       return ExprError();
4028 
4029     // Create an implicit call expr that calls it.
4030     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4031     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4032                                                  HadMultipleCandidates);
4033     if (Result.isInvalid())
4034       return ExprError();
4035     // Record usage of conversion in an implicit cast.
4036     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4037                                       CK_UserDefinedConversion, Result.get(),
4038                                       nullptr, Result.get()->getValueKind(),
4039                                       S.CurFPFeatureOverrides());
4040 
4041     return S.MaybeBindToTemporary(Result.get());
4042   }
4043   }
4044 }
4045 
4046 /// PerformImplicitConversion - Perform an implicit conversion of the
4047 /// expression From to the type ToType using the pre-computed implicit
4048 /// conversion sequence ICS. Returns the converted
4049 /// expression. Action is the kind of conversion we're performing,
4050 /// used in the error message.
4051 ExprResult
4052 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4053                                 const ImplicitConversionSequence &ICS,
4054                                 AssignmentAction Action,
4055                                 CheckedConversionKind CCK) {
4056   // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4057   if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4058     return From;
4059 
4060   switch (ICS.getKind()) {
4061   case ImplicitConversionSequence::StandardConversion: {
4062     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4063                                                Action, CCK);
4064     if (Res.isInvalid())
4065       return ExprError();
4066     From = Res.get();
4067     break;
4068   }
4069 
4070   case ImplicitConversionSequence::UserDefinedConversion: {
4071 
4072       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4073       CastKind CastKind;
4074       QualType BeforeToType;
4075       assert(FD && "no conversion function for user-defined conversion seq");
4076       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4077         CastKind = CK_UserDefinedConversion;
4078 
4079         // If the user-defined conversion is specified by a conversion function,
4080         // the initial standard conversion sequence converts the source type to
4081         // the implicit object parameter of the conversion function.
4082         BeforeToType = Context.getTagDeclType(Conv->getParent());
4083       } else {
4084         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4085         CastKind = CK_ConstructorConversion;
4086         // Do no conversion if dealing with ... for the first conversion.
4087         if (!ICS.UserDefined.EllipsisConversion) {
4088           // If the user-defined conversion is specified by a constructor, the
4089           // initial standard conversion sequence converts the source type to
4090           // the type required by the argument of the constructor
4091           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4092         }
4093       }
4094       // Watch out for ellipsis conversion.
4095       if (!ICS.UserDefined.EllipsisConversion) {
4096         ExprResult Res =
4097           PerformImplicitConversion(From, BeforeToType,
4098                                     ICS.UserDefined.Before, AA_Converting,
4099                                     CCK);
4100         if (Res.isInvalid())
4101           return ExprError();
4102         From = Res.get();
4103       }
4104 
4105       ExprResult CastArg = BuildCXXCastArgument(
4106           *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4107           cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4108           ICS.UserDefined.HadMultipleCandidates, From);
4109 
4110       if (CastArg.isInvalid())
4111         return ExprError();
4112 
4113       From = CastArg.get();
4114 
4115       // C++ [over.match.oper]p7:
4116       //   [...] the second standard conversion sequence of a user-defined
4117       //   conversion sequence is not applied.
4118       if (CCK == CCK_ForBuiltinOverloadedOp)
4119         return From;
4120 
4121       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4122                                        AA_Converting, CCK);
4123   }
4124 
4125   case ImplicitConversionSequence::AmbiguousConversion:
4126     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4127                           PDiag(diag::err_typecheck_ambiguous_condition)
4128                             << From->getSourceRange());
4129     return ExprError();
4130 
4131   case ImplicitConversionSequence::EllipsisConversion:
4132     llvm_unreachable("Cannot perform an ellipsis conversion");
4133 
4134   case ImplicitConversionSequence::BadConversion:
4135     Sema::AssignConvertType ConvTy =
4136         CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4137     bool Diagnosed = DiagnoseAssignmentResult(
4138         ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4139         ToType, From->getType(), From, Action);
4140     assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4141     return ExprError();
4142   }
4143 
4144   // Everything went well.
4145   return From;
4146 }
4147 
4148 /// PerformImplicitConversion - Perform an implicit conversion of the
4149 /// expression From to the type ToType by following the standard
4150 /// conversion sequence SCS. Returns the converted
4151 /// expression. Flavor is the context in which we're performing this
4152 /// conversion, for use in error messages.
4153 ExprResult
4154 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4155                                 const StandardConversionSequence& SCS,
4156                                 AssignmentAction Action,
4157                                 CheckedConversionKind CCK) {
4158   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4159 
4160   // Overall FIXME: we are recomputing too many types here and doing far too
4161   // much extra work. What this means is that we need to keep track of more
4162   // information that is computed when we try the implicit conversion initially,
4163   // so that we don't need to recompute anything here.
4164   QualType FromType = From->getType();
4165 
4166   if (SCS.CopyConstructor) {
4167     // FIXME: When can ToType be a reference type?
4168     assert(!ToType->isReferenceType());
4169     if (SCS.Second == ICK_Derived_To_Base) {
4170       SmallVector<Expr*, 8> ConstructorArgs;
4171       if (CompleteConstructorCall(
4172               cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4173               /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4174         return ExprError();
4175       return BuildCXXConstructExpr(
4176           /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4177           SCS.FoundCopyConstructor, SCS.CopyConstructor,
4178           ConstructorArgs, /*HadMultipleCandidates*/ false,
4179           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4180           CXXConstructExpr::CK_Complete, SourceRange());
4181     }
4182     return BuildCXXConstructExpr(
4183         /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4184         SCS.FoundCopyConstructor, SCS.CopyConstructor,
4185         From, /*HadMultipleCandidates*/ false,
4186         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4187         CXXConstructExpr::CK_Complete, SourceRange());
4188   }
4189 
4190   // Resolve overloaded function references.
4191   if (Context.hasSameType(FromType, Context.OverloadTy)) {
4192     DeclAccessPair Found;
4193     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4194                                                           true, Found);
4195     if (!Fn)
4196       return ExprError();
4197 
4198     if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4199       return ExprError();
4200 
4201     From = FixOverloadedFunctionReference(From, Found, Fn);
4202     FromType = From->getType();
4203   }
4204 
4205   // If we're converting to an atomic type, first convert to the corresponding
4206   // non-atomic type.
4207   QualType ToAtomicType;
4208   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4209     ToAtomicType = ToType;
4210     ToType = ToAtomic->getValueType();
4211   }
4212 
4213   QualType InitialFromType = FromType;
4214   // Perform the first implicit conversion.
4215   switch (SCS.First) {
4216   case ICK_Identity:
4217     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4218       FromType = FromAtomic->getValueType().getUnqualifiedType();
4219       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4220                                       From, /*BasePath=*/nullptr, VK_PRValue,
4221                                       FPOptionsOverride());
4222     }
4223     break;
4224 
4225   case ICK_Lvalue_To_Rvalue: {
4226     assert(From->getObjectKind() != OK_ObjCProperty);
4227     ExprResult FromRes = DefaultLvalueConversion(From);
4228     if (FromRes.isInvalid())
4229       return ExprError();
4230 
4231     From = FromRes.get();
4232     FromType = From->getType();
4233     break;
4234   }
4235 
4236   case ICK_Array_To_Pointer:
4237     FromType = Context.getArrayDecayedType(FromType);
4238     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4239                              /*BasePath=*/nullptr, CCK)
4240                .get();
4241     break;
4242 
4243   case ICK_Function_To_Pointer:
4244     FromType = Context.getPointerType(FromType);
4245     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4246                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4247                .get();
4248     break;
4249 
4250   default:
4251     llvm_unreachable("Improper first standard conversion");
4252   }
4253 
4254   // Perform the second implicit conversion
4255   switch (SCS.Second) {
4256   case ICK_Identity:
4257     // C++ [except.spec]p5:
4258     //   [For] assignment to and initialization of pointers to functions,
4259     //   pointers to member functions, and references to functions: the
4260     //   target entity shall allow at least the exceptions allowed by the
4261     //   source value in the assignment or initialization.
4262     switch (Action) {
4263     case AA_Assigning:
4264     case AA_Initializing:
4265       // Note, function argument passing and returning are initialization.
4266     case AA_Passing:
4267     case AA_Returning:
4268     case AA_Sending:
4269     case AA_Passing_CFAudited:
4270       if (CheckExceptionSpecCompatibility(From, ToType))
4271         return ExprError();
4272       break;
4273 
4274     case AA_Casting:
4275     case AA_Converting:
4276       // Casts and implicit conversions are not initialization, so are not
4277       // checked for exception specification mismatches.
4278       break;
4279     }
4280     // Nothing else to do.
4281     break;
4282 
4283   case ICK_Integral_Promotion:
4284   case ICK_Integral_Conversion:
4285     if (ToType->isBooleanType()) {
4286       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4287              SCS.Second == ICK_Integral_Promotion &&
4288              "only enums with fixed underlying type can promote to bool");
4289       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4290                                /*BasePath=*/nullptr, CCK)
4291                  .get();
4292     } else {
4293       From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4294                                /*BasePath=*/nullptr, CCK)
4295                  .get();
4296     }
4297     break;
4298 
4299   case ICK_Floating_Promotion:
4300   case ICK_Floating_Conversion:
4301     From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4302                              /*BasePath=*/nullptr, CCK)
4303                .get();
4304     break;
4305 
4306   case ICK_Complex_Promotion:
4307   case ICK_Complex_Conversion: {
4308     QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4309     QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4310     CastKind CK;
4311     if (FromEl->isRealFloatingType()) {
4312       if (ToEl->isRealFloatingType())
4313         CK = CK_FloatingComplexCast;
4314       else
4315         CK = CK_FloatingComplexToIntegralComplex;
4316     } else if (ToEl->isRealFloatingType()) {
4317       CK = CK_IntegralComplexToFloatingComplex;
4318     } else {
4319       CK = CK_IntegralComplexCast;
4320     }
4321     From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4322                              CCK)
4323                .get();
4324     break;
4325   }
4326 
4327   case ICK_Floating_Integral:
4328     if (ToType->isRealFloatingType())
4329       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4330                                /*BasePath=*/nullptr, CCK)
4331                  .get();
4332     else
4333       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4334                                /*BasePath=*/nullptr, CCK)
4335                  .get();
4336     break;
4337 
4338   case ICK_Compatible_Conversion:
4339     From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4340                              /*BasePath=*/nullptr, CCK).get();
4341     break;
4342 
4343   case ICK_Writeback_Conversion:
4344   case ICK_Pointer_Conversion: {
4345     if (SCS.IncompatibleObjC && Action != AA_Casting) {
4346       // Diagnose incompatible Objective-C conversions
4347       if (Action == AA_Initializing || Action == AA_Assigning)
4348         Diag(From->getBeginLoc(),
4349              diag::ext_typecheck_convert_incompatible_pointer)
4350             << ToType << From->getType() << Action << From->getSourceRange()
4351             << 0;
4352       else
4353         Diag(From->getBeginLoc(),
4354              diag::ext_typecheck_convert_incompatible_pointer)
4355             << From->getType() << ToType << Action << From->getSourceRange()
4356             << 0;
4357 
4358       if (From->getType()->isObjCObjectPointerType() &&
4359           ToType->isObjCObjectPointerType())
4360         EmitRelatedResultTypeNote(From);
4361     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4362                !CheckObjCARCUnavailableWeakConversion(ToType,
4363                                                       From->getType())) {
4364       if (Action == AA_Initializing)
4365         Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4366       else
4367         Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4368             << (Action == AA_Casting) << From->getType() << ToType
4369             << From->getSourceRange();
4370     }
4371 
4372     // Defer address space conversion to the third conversion.
4373     QualType FromPteeType = From->getType()->getPointeeType();
4374     QualType ToPteeType = ToType->getPointeeType();
4375     QualType NewToType = ToType;
4376     if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4377         FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4378       NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4379       NewToType = Context.getAddrSpaceQualType(NewToType,
4380                                                FromPteeType.getAddressSpace());
4381       if (ToType->isObjCObjectPointerType())
4382         NewToType = Context.getObjCObjectPointerType(NewToType);
4383       else if (ToType->isBlockPointerType())
4384         NewToType = Context.getBlockPointerType(NewToType);
4385       else
4386         NewToType = Context.getPointerType(NewToType);
4387     }
4388 
4389     CastKind Kind;
4390     CXXCastPath BasePath;
4391     if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4392       return ExprError();
4393 
4394     // Make sure we extend blocks if necessary.
4395     // FIXME: doing this here is really ugly.
4396     if (Kind == CK_BlockPointerToObjCPointerCast) {
4397       ExprResult E = From;
4398       (void) PrepareCastToObjCObjectPointer(E);
4399       From = E.get();
4400     }
4401     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4402       CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4403     From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4404                .get();
4405     break;
4406   }
4407 
4408   case ICK_Pointer_Member: {
4409     CastKind Kind;
4410     CXXCastPath BasePath;
4411     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4412       return ExprError();
4413     if (CheckExceptionSpecCompatibility(From, ToType))
4414       return ExprError();
4415 
4416     // We may not have been able to figure out what this member pointer resolved
4417     // to up until this exact point.  Attempt to lock-in it's inheritance model.
4418     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4419       (void)isCompleteType(From->getExprLoc(), From->getType());
4420       (void)isCompleteType(From->getExprLoc(), ToType);
4421     }
4422 
4423     From =
4424         ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4425     break;
4426   }
4427 
4428   case ICK_Boolean_Conversion:
4429     // Perform half-to-boolean conversion via float.
4430     if (From->getType()->isHalfType()) {
4431       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4432       FromType = Context.FloatTy;
4433     }
4434 
4435     From = ImpCastExprToType(From, Context.BoolTy,
4436                              ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4437                              /*BasePath=*/nullptr, CCK)
4438                .get();
4439     break;
4440 
4441   case ICK_Derived_To_Base: {
4442     CXXCastPath BasePath;
4443     if (CheckDerivedToBaseConversion(
4444             From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4445             From->getSourceRange(), &BasePath, CStyle))
4446       return ExprError();
4447 
4448     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4449                       CK_DerivedToBase, From->getValueKind(),
4450                       &BasePath, CCK).get();
4451     break;
4452   }
4453 
4454   case ICK_Vector_Conversion:
4455     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4456                              /*BasePath=*/nullptr, CCK)
4457                .get();
4458     break;
4459 
4460   case ICK_SVE_Vector_Conversion:
4461     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4462                              /*BasePath=*/nullptr, CCK)
4463                .get();
4464     break;
4465 
4466   case ICK_Vector_Splat: {
4467     // Vector splat from any arithmetic type to a vector.
4468     Expr *Elem = prepareVectorSplat(ToType, From).get();
4469     From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4470                              /*BasePath=*/nullptr, CCK)
4471                .get();
4472     break;
4473   }
4474 
4475   case ICK_Complex_Real:
4476     // Case 1.  x -> _Complex y
4477     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4478       QualType ElType = ToComplex->getElementType();
4479       bool isFloatingComplex = ElType->isRealFloatingType();
4480 
4481       // x -> y
4482       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4483         // do nothing
4484       } else if (From->getType()->isRealFloatingType()) {
4485         From = ImpCastExprToType(From, ElType,
4486                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4487       } else {
4488         assert(From->getType()->isIntegerType());
4489         From = ImpCastExprToType(From, ElType,
4490                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4491       }
4492       // y -> _Complex y
4493       From = ImpCastExprToType(From, ToType,
4494                    isFloatingComplex ? CK_FloatingRealToComplex
4495                                      : CK_IntegralRealToComplex).get();
4496 
4497     // Case 2.  _Complex x -> y
4498     } else {
4499       auto *FromComplex = From->getType()->castAs<ComplexType>();
4500       QualType ElType = FromComplex->getElementType();
4501       bool isFloatingComplex = ElType->isRealFloatingType();
4502 
4503       // _Complex x -> x
4504       From = ImpCastExprToType(From, ElType,
4505                                isFloatingComplex ? CK_FloatingComplexToReal
4506                                                  : CK_IntegralComplexToReal,
4507                                VK_PRValue, /*BasePath=*/nullptr, CCK)
4508                  .get();
4509 
4510       // x -> y
4511       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4512         // do nothing
4513       } else if (ToType->isRealFloatingType()) {
4514         From = ImpCastExprToType(From, ToType,
4515                                  isFloatingComplex ? CK_FloatingCast
4516                                                    : CK_IntegralToFloating,
4517                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4518                    .get();
4519       } else {
4520         assert(ToType->isIntegerType());
4521         From = ImpCastExprToType(From, ToType,
4522                                  isFloatingComplex ? CK_FloatingToIntegral
4523                                                    : CK_IntegralCast,
4524                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4525                    .get();
4526       }
4527     }
4528     break;
4529 
4530   case ICK_Block_Pointer_Conversion: {
4531     LangAS AddrSpaceL =
4532         ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4533     LangAS AddrSpaceR =
4534         FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4535     assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4536            "Invalid cast");
4537     CastKind Kind =
4538         AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4539     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4540                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4541                .get();
4542     break;
4543   }
4544 
4545   case ICK_TransparentUnionConversion: {
4546     ExprResult FromRes = From;
4547     Sema::AssignConvertType ConvTy =
4548       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4549     if (FromRes.isInvalid())
4550       return ExprError();
4551     From = FromRes.get();
4552     assert ((ConvTy == Sema::Compatible) &&
4553             "Improper transparent union conversion");
4554     (void)ConvTy;
4555     break;
4556   }
4557 
4558   case ICK_Zero_Event_Conversion:
4559   case ICK_Zero_Queue_Conversion:
4560     From = ImpCastExprToType(From, ToType,
4561                              CK_ZeroToOCLOpaqueType,
4562                              From->getValueKind()).get();
4563     break;
4564 
4565   case ICK_Lvalue_To_Rvalue:
4566   case ICK_Array_To_Pointer:
4567   case ICK_Function_To_Pointer:
4568   case ICK_Function_Conversion:
4569   case ICK_Qualification:
4570   case ICK_Num_Conversion_Kinds:
4571   case ICK_C_Only_Conversion:
4572   case ICK_Incompatible_Pointer_Conversion:
4573     llvm_unreachable("Improper second standard conversion");
4574   }
4575 
4576   switch (SCS.Third) {
4577   case ICK_Identity:
4578     // Nothing to do.
4579     break;
4580 
4581   case ICK_Function_Conversion:
4582     // If both sides are functions (or pointers/references to them), there could
4583     // be incompatible exception declarations.
4584     if (CheckExceptionSpecCompatibility(From, ToType))
4585       return ExprError();
4586 
4587     From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4588                              /*BasePath=*/nullptr, CCK)
4589                .get();
4590     break;
4591 
4592   case ICK_Qualification: {
4593     ExprValueKind VK = From->getValueKind();
4594     CastKind CK = CK_NoOp;
4595 
4596     if (ToType->isReferenceType() &&
4597         ToType->getPointeeType().getAddressSpace() !=
4598             From->getType().getAddressSpace())
4599       CK = CK_AddressSpaceConversion;
4600 
4601     if (ToType->isPointerType() &&
4602         ToType->getPointeeType().getAddressSpace() !=
4603             From->getType()->getPointeeType().getAddressSpace())
4604       CK = CK_AddressSpaceConversion;
4605 
4606     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4607                              /*BasePath=*/nullptr, CCK)
4608                .get();
4609 
4610     if (SCS.DeprecatedStringLiteralToCharPtr &&
4611         !getLangOpts().WritableStrings) {
4612       Diag(From->getBeginLoc(),
4613            getLangOpts().CPlusPlus11
4614                ? diag::ext_deprecated_string_literal_conversion
4615                : diag::warn_deprecated_string_literal_conversion)
4616           << ToType.getNonReferenceType();
4617     }
4618 
4619     break;
4620   }
4621 
4622   default:
4623     llvm_unreachable("Improper third standard conversion");
4624   }
4625 
4626   // If this conversion sequence involved a scalar -> atomic conversion, perform
4627   // that conversion now.
4628   if (!ToAtomicType.isNull()) {
4629     assert(Context.hasSameType(
4630         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4631     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4632                              VK_PRValue, nullptr, CCK)
4633                .get();
4634   }
4635 
4636   // Materialize a temporary if we're implicitly converting to a reference
4637   // type. This is not required by the C++ rules but is necessary to maintain
4638   // AST invariants.
4639   if (ToType->isReferenceType() && From->isPRValue()) {
4640     ExprResult Res = TemporaryMaterializationConversion(From);
4641     if (Res.isInvalid())
4642       return ExprError();
4643     From = Res.get();
4644   }
4645 
4646   // If this conversion sequence succeeded and involved implicitly converting a
4647   // _Nullable type to a _Nonnull one, complain.
4648   if (!isCast(CCK))
4649     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4650                                         From->getBeginLoc());
4651 
4652   return From;
4653 }
4654 
4655 /// Check the completeness of a type in a unary type trait.
4656 ///
4657 /// If the particular type trait requires a complete type, tries to complete
4658 /// it. If completing the type fails, a diagnostic is emitted and false
4659 /// returned. If completing the type succeeds or no completion was required,
4660 /// returns true.
4661 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4662                                                 SourceLocation Loc,
4663                                                 QualType ArgTy) {
4664   // C++0x [meta.unary.prop]p3:
4665   //   For all of the class templates X declared in this Clause, instantiating
4666   //   that template with a template argument that is a class template
4667   //   specialization may result in the implicit instantiation of the template
4668   //   argument if and only if the semantics of X require that the argument
4669   //   must be a complete type.
4670   // We apply this rule to all the type trait expressions used to implement
4671   // these class templates. We also try to follow any GCC documented behavior
4672   // in these expressions to ensure portability of standard libraries.
4673   switch (UTT) {
4674   default: llvm_unreachable("not a UTT");
4675     // is_complete_type somewhat obviously cannot require a complete type.
4676   case UTT_IsCompleteType:
4677     // Fall-through
4678 
4679     // These traits are modeled on the type predicates in C++0x
4680     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4681     // requiring a complete type, as whether or not they return true cannot be
4682     // impacted by the completeness of the type.
4683   case UTT_IsVoid:
4684   case UTT_IsIntegral:
4685   case UTT_IsFloatingPoint:
4686   case UTT_IsArray:
4687   case UTT_IsPointer:
4688   case UTT_IsLvalueReference:
4689   case UTT_IsRvalueReference:
4690   case UTT_IsMemberFunctionPointer:
4691   case UTT_IsMemberObjectPointer:
4692   case UTT_IsEnum:
4693   case UTT_IsUnion:
4694   case UTT_IsClass:
4695   case UTT_IsFunction:
4696   case UTT_IsReference:
4697   case UTT_IsArithmetic:
4698   case UTT_IsFundamental:
4699   case UTT_IsObject:
4700   case UTT_IsScalar:
4701   case UTT_IsCompound:
4702   case UTT_IsMemberPointer:
4703     // Fall-through
4704 
4705     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4706     // which requires some of its traits to have the complete type. However,
4707     // the completeness of the type cannot impact these traits' semantics, and
4708     // so they don't require it. This matches the comments on these traits in
4709     // Table 49.
4710   case UTT_IsConst:
4711   case UTT_IsVolatile:
4712   case UTT_IsSigned:
4713   case UTT_IsUnsigned:
4714 
4715   // This type trait always returns false, checking the type is moot.
4716   case UTT_IsInterfaceClass:
4717     return true;
4718 
4719   // C++14 [meta.unary.prop]:
4720   //   If T is a non-union class type, T shall be a complete type.
4721   case UTT_IsEmpty:
4722   case UTT_IsPolymorphic:
4723   case UTT_IsAbstract:
4724     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4725       if (!RD->isUnion())
4726         return !S.RequireCompleteType(
4727             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4728     return true;
4729 
4730   // C++14 [meta.unary.prop]:
4731   //   If T is a class type, T shall be a complete type.
4732   case UTT_IsFinal:
4733   case UTT_IsSealed:
4734     if (ArgTy->getAsCXXRecordDecl())
4735       return !S.RequireCompleteType(
4736           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4737     return true;
4738 
4739   // C++1z [meta.unary.prop]:
4740   //   remove_all_extents_t<T> shall be a complete type or cv void.
4741   case UTT_IsAggregate:
4742   case UTT_IsTrivial:
4743   case UTT_IsTriviallyCopyable:
4744   case UTT_IsStandardLayout:
4745   case UTT_IsPOD:
4746   case UTT_IsLiteral:
4747   // Per the GCC type traits documentation, T shall be a complete type, cv void,
4748   // or an array of unknown bound. But GCC actually imposes the same constraints
4749   // as above.
4750   case UTT_HasNothrowAssign:
4751   case UTT_HasNothrowMoveAssign:
4752   case UTT_HasNothrowConstructor:
4753   case UTT_HasNothrowCopy:
4754   case UTT_HasTrivialAssign:
4755   case UTT_HasTrivialMoveAssign:
4756   case UTT_HasTrivialDefaultConstructor:
4757   case UTT_HasTrivialMoveConstructor:
4758   case UTT_HasTrivialCopy:
4759   case UTT_HasTrivialDestructor:
4760   case UTT_HasVirtualDestructor:
4761     ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4762     LLVM_FALLTHROUGH;
4763 
4764   // C++1z [meta.unary.prop]:
4765   //   T shall be a complete type, cv void, or an array of unknown bound.
4766   case UTT_IsDestructible:
4767   case UTT_IsNothrowDestructible:
4768   case UTT_IsTriviallyDestructible:
4769   case UTT_HasUniqueObjectRepresentations:
4770     if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4771       return true;
4772 
4773     return !S.RequireCompleteType(
4774         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4775   }
4776 }
4777 
4778 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4779                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4780                                bool (CXXRecordDecl::*HasTrivial)() const,
4781                                bool (CXXRecordDecl::*HasNonTrivial)() const,
4782                                bool (CXXMethodDecl::*IsDesiredOp)() const)
4783 {
4784   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4785   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4786     return true;
4787 
4788   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4789   DeclarationNameInfo NameInfo(Name, KeyLoc);
4790   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4791   if (Self.LookupQualifiedName(Res, RD)) {
4792     bool FoundOperator = false;
4793     Res.suppressDiagnostics();
4794     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4795          Op != OpEnd; ++Op) {
4796       if (isa<FunctionTemplateDecl>(*Op))
4797         continue;
4798 
4799       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4800       if((Operator->*IsDesiredOp)()) {
4801         FoundOperator = true;
4802         auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4803         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4804         if (!CPT || !CPT->isNothrow())
4805           return false;
4806       }
4807     }
4808     return FoundOperator;
4809   }
4810   return false;
4811 }
4812 
4813 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4814                                    SourceLocation KeyLoc, QualType T) {
4815   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4816 
4817   ASTContext &C = Self.Context;
4818   switch(UTT) {
4819   default: llvm_unreachable("not a UTT");
4820     // Type trait expressions corresponding to the primary type category
4821     // predicates in C++0x [meta.unary.cat].
4822   case UTT_IsVoid:
4823     return T->isVoidType();
4824   case UTT_IsIntegral:
4825     return T->isIntegralType(C);
4826   case UTT_IsFloatingPoint:
4827     return T->isFloatingType();
4828   case UTT_IsArray:
4829     return T->isArrayType();
4830   case UTT_IsPointer:
4831     return T->isAnyPointerType();
4832   case UTT_IsLvalueReference:
4833     return T->isLValueReferenceType();
4834   case UTT_IsRvalueReference:
4835     return T->isRValueReferenceType();
4836   case UTT_IsMemberFunctionPointer:
4837     return T->isMemberFunctionPointerType();
4838   case UTT_IsMemberObjectPointer:
4839     return T->isMemberDataPointerType();
4840   case UTT_IsEnum:
4841     return T->isEnumeralType();
4842   case UTT_IsUnion:
4843     return T->isUnionType();
4844   case UTT_IsClass:
4845     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4846   case UTT_IsFunction:
4847     return T->isFunctionType();
4848 
4849     // Type trait expressions which correspond to the convenient composition
4850     // predicates in C++0x [meta.unary.comp].
4851   case UTT_IsReference:
4852     return T->isReferenceType();
4853   case UTT_IsArithmetic:
4854     return T->isArithmeticType() && !T->isEnumeralType();
4855   case UTT_IsFundamental:
4856     return T->isFundamentalType();
4857   case UTT_IsObject:
4858     return T->isObjectType();
4859   case UTT_IsScalar:
4860     // Note: semantic analysis depends on Objective-C lifetime types to be
4861     // considered scalar types. However, such types do not actually behave
4862     // like scalar types at run time (since they may require retain/release
4863     // operations), so we report them as non-scalar.
4864     if (T->isObjCLifetimeType()) {
4865       switch (T.getObjCLifetime()) {
4866       case Qualifiers::OCL_None:
4867       case Qualifiers::OCL_ExplicitNone:
4868         return true;
4869 
4870       case Qualifiers::OCL_Strong:
4871       case Qualifiers::OCL_Weak:
4872       case Qualifiers::OCL_Autoreleasing:
4873         return false;
4874       }
4875     }
4876 
4877     return T->isScalarType();
4878   case UTT_IsCompound:
4879     return T->isCompoundType();
4880   case UTT_IsMemberPointer:
4881     return T->isMemberPointerType();
4882 
4883     // Type trait expressions which correspond to the type property predicates
4884     // in C++0x [meta.unary.prop].
4885   case UTT_IsConst:
4886     return T.isConstQualified();
4887   case UTT_IsVolatile:
4888     return T.isVolatileQualified();
4889   case UTT_IsTrivial:
4890     return T.isTrivialType(C);
4891   case UTT_IsTriviallyCopyable:
4892     return T.isTriviallyCopyableType(C);
4893   case UTT_IsStandardLayout:
4894     return T->isStandardLayoutType();
4895   case UTT_IsPOD:
4896     return T.isPODType(C);
4897   case UTT_IsLiteral:
4898     return T->isLiteralType(C);
4899   case UTT_IsEmpty:
4900     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4901       return !RD->isUnion() && RD->isEmpty();
4902     return false;
4903   case UTT_IsPolymorphic:
4904     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4905       return !RD->isUnion() && RD->isPolymorphic();
4906     return false;
4907   case UTT_IsAbstract:
4908     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4909       return !RD->isUnion() && RD->isAbstract();
4910     return false;
4911   case UTT_IsAggregate:
4912     // Report vector extensions and complex types as aggregates because they
4913     // support aggregate initialization. GCC mirrors this behavior for vectors
4914     // but not _Complex.
4915     return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4916            T->isAnyComplexType();
4917   // __is_interface_class only returns true when CL is invoked in /CLR mode and
4918   // even then only when it is used with the 'interface struct ...' syntax
4919   // Clang doesn't support /CLR which makes this type trait moot.
4920   case UTT_IsInterfaceClass:
4921     return false;
4922   case UTT_IsFinal:
4923   case UTT_IsSealed:
4924     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4925       return RD->hasAttr<FinalAttr>();
4926     return false;
4927   case UTT_IsSigned:
4928     // Enum types should always return false.
4929     // Floating points should always return true.
4930     return T->isFloatingType() ||
4931            (T->isSignedIntegerType() && !T->isEnumeralType());
4932   case UTT_IsUnsigned:
4933     // Enum types should always return false.
4934     return T->isUnsignedIntegerType() && !T->isEnumeralType();
4935 
4936     // Type trait expressions which query classes regarding their construction,
4937     // destruction, and copying. Rather than being based directly on the
4938     // related type predicates in the standard, they are specified by both
4939     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4940     // specifications.
4941     //
4942     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4943     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4944     //
4945     // Note that these builtins do not behave as documented in g++: if a class
4946     // has both a trivial and a non-trivial special member of a particular kind,
4947     // they return false! For now, we emulate this behavior.
4948     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4949     // does not correctly compute triviality in the presence of multiple special
4950     // members of the same kind. Revisit this once the g++ bug is fixed.
4951   case UTT_HasTrivialDefaultConstructor:
4952     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4953     //   If __is_pod (type) is true then the trait is true, else if type is
4954     //   a cv class or union type (or array thereof) with a trivial default
4955     //   constructor ([class.ctor]) then the trait is true, else it is false.
4956     if (T.isPODType(C))
4957       return true;
4958     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4959       return RD->hasTrivialDefaultConstructor() &&
4960              !RD->hasNonTrivialDefaultConstructor();
4961     return false;
4962   case UTT_HasTrivialMoveConstructor:
4963     //  This trait is implemented by MSVC 2012 and needed to parse the
4964     //  standard library headers. Specifically this is used as the logic
4965     //  behind std::is_trivially_move_constructible (20.9.4.3).
4966     if (T.isPODType(C))
4967       return true;
4968     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4969       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4970     return false;
4971   case UTT_HasTrivialCopy:
4972     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4973     //   If __is_pod (type) is true or type is a reference type then
4974     //   the trait is true, else if type is a cv class or union type
4975     //   with a trivial copy constructor ([class.copy]) then the trait
4976     //   is true, else it is false.
4977     if (T.isPODType(C) || T->isReferenceType())
4978       return true;
4979     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4980       return RD->hasTrivialCopyConstructor() &&
4981              !RD->hasNonTrivialCopyConstructor();
4982     return false;
4983   case UTT_HasTrivialMoveAssign:
4984     //  This trait is implemented by MSVC 2012 and needed to parse the
4985     //  standard library headers. Specifically it is used as the logic
4986     //  behind std::is_trivially_move_assignable (20.9.4.3)
4987     if (T.isPODType(C))
4988       return true;
4989     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4990       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4991     return false;
4992   case UTT_HasTrivialAssign:
4993     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4994     //   If type is const qualified or is a reference type then the
4995     //   trait is false. Otherwise if __is_pod (type) is true then the
4996     //   trait is true, else if type is a cv class or union type with
4997     //   a trivial copy assignment ([class.copy]) then the trait is
4998     //   true, else it is false.
4999     // Note: the const and reference restrictions are interesting,
5000     // given that const and reference members don't prevent a class
5001     // from having a trivial copy assignment operator (but do cause
5002     // errors if the copy assignment operator is actually used, q.v.
5003     // [class.copy]p12).
5004 
5005     if (T.isConstQualified())
5006       return false;
5007     if (T.isPODType(C))
5008       return true;
5009     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5010       return RD->hasTrivialCopyAssignment() &&
5011              !RD->hasNonTrivialCopyAssignment();
5012     return false;
5013   case UTT_IsDestructible:
5014   case UTT_IsTriviallyDestructible:
5015   case UTT_IsNothrowDestructible:
5016     // C++14 [meta.unary.prop]:
5017     //   For reference types, is_destructible<T>::value is true.
5018     if (T->isReferenceType())
5019       return true;
5020 
5021     // Objective-C++ ARC: autorelease types don't require destruction.
5022     if (T->isObjCLifetimeType() &&
5023         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5024       return true;
5025 
5026     // C++14 [meta.unary.prop]:
5027     //   For incomplete types and function types, is_destructible<T>::value is
5028     //   false.
5029     if (T->isIncompleteType() || T->isFunctionType())
5030       return false;
5031 
5032     // A type that requires destruction (via a non-trivial destructor or ARC
5033     // lifetime semantics) is not trivially-destructible.
5034     if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5035       return false;
5036 
5037     // C++14 [meta.unary.prop]:
5038     //   For object types and given U equal to remove_all_extents_t<T>, if the
5039     //   expression std::declval<U&>().~U() is well-formed when treated as an
5040     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
5041     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5042       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5043       if (!Destructor)
5044         return false;
5045       //  C++14 [dcl.fct.def.delete]p2:
5046       //    A program that refers to a deleted function implicitly or
5047       //    explicitly, other than to declare it, is ill-formed.
5048       if (Destructor->isDeleted())
5049         return false;
5050       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5051         return false;
5052       if (UTT == UTT_IsNothrowDestructible) {
5053         auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5054         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5055         if (!CPT || !CPT->isNothrow())
5056           return false;
5057       }
5058     }
5059     return true;
5060 
5061   case UTT_HasTrivialDestructor:
5062     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5063     //   If __is_pod (type) is true or type is a reference type
5064     //   then the trait is true, else if type is a cv class or union
5065     //   type (or array thereof) with a trivial destructor
5066     //   ([class.dtor]) then the trait is true, else it is
5067     //   false.
5068     if (T.isPODType(C) || T->isReferenceType())
5069       return true;
5070 
5071     // Objective-C++ ARC: autorelease types don't require destruction.
5072     if (T->isObjCLifetimeType() &&
5073         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5074       return true;
5075 
5076     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5077       return RD->hasTrivialDestructor();
5078     return false;
5079   // TODO: Propagate nothrowness for implicitly declared special members.
5080   case UTT_HasNothrowAssign:
5081     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5082     //   If type is const qualified or is a reference type then the
5083     //   trait is false. Otherwise if __has_trivial_assign (type)
5084     //   is true then the trait is true, else if type is a cv class
5085     //   or union type with copy assignment operators that are known
5086     //   not to throw an exception then the trait is true, else it is
5087     //   false.
5088     if (C.getBaseElementType(T).isConstQualified())
5089       return false;
5090     if (T->isReferenceType())
5091       return false;
5092     if (T.isPODType(C) || T->isObjCLifetimeType())
5093       return true;
5094 
5095     if (const RecordType *RT = T->getAs<RecordType>())
5096       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5097                                 &CXXRecordDecl::hasTrivialCopyAssignment,
5098                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5099                                 &CXXMethodDecl::isCopyAssignmentOperator);
5100     return false;
5101   case UTT_HasNothrowMoveAssign:
5102     //  This trait is implemented by MSVC 2012 and needed to parse the
5103     //  standard library headers. Specifically this is used as the logic
5104     //  behind std::is_nothrow_move_assignable (20.9.4.3).
5105     if (T.isPODType(C))
5106       return true;
5107 
5108     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5109       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5110                                 &CXXRecordDecl::hasTrivialMoveAssignment,
5111                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5112                                 &CXXMethodDecl::isMoveAssignmentOperator);
5113     return false;
5114   case UTT_HasNothrowCopy:
5115     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5116     //   If __has_trivial_copy (type) is true then the trait is true, else
5117     //   if type is a cv class or union type with copy constructors that are
5118     //   known not to throw an exception then the trait is true, else it is
5119     //   false.
5120     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5121       return true;
5122     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5123       if (RD->hasTrivialCopyConstructor() &&
5124           !RD->hasNonTrivialCopyConstructor())
5125         return true;
5126 
5127       bool FoundConstructor = false;
5128       unsigned FoundTQs;
5129       for (const auto *ND : Self.LookupConstructors(RD)) {
5130         // A template constructor is never a copy constructor.
5131         // FIXME: However, it may actually be selected at the actual overload
5132         // resolution point.
5133         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5134           continue;
5135         // UsingDecl itself is not a constructor
5136         if (isa<UsingDecl>(ND))
5137           continue;
5138         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5139         if (Constructor->isCopyConstructor(FoundTQs)) {
5140           FoundConstructor = true;
5141           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5142           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5143           if (!CPT)
5144             return false;
5145           // TODO: check whether evaluating default arguments can throw.
5146           // For now, we'll be conservative and assume that they can throw.
5147           if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5148             return false;
5149         }
5150       }
5151 
5152       return FoundConstructor;
5153     }
5154     return false;
5155   case UTT_HasNothrowConstructor:
5156     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5157     //   If __has_trivial_constructor (type) is true then the trait is
5158     //   true, else if type is a cv class or union type (or array
5159     //   thereof) with a default constructor that is known not to
5160     //   throw an exception then the trait is true, else it is false.
5161     if (T.isPODType(C) || T->isObjCLifetimeType())
5162       return true;
5163     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5164       if (RD->hasTrivialDefaultConstructor() &&
5165           !RD->hasNonTrivialDefaultConstructor())
5166         return true;
5167 
5168       bool FoundConstructor = false;
5169       for (const auto *ND : Self.LookupConstructors(RD)) {
5170         // FIXME: In C++0x, a constructor template can be a default constructor.
5171         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5172           continue;
5173         // UsingDecl itself is not a constructor
5174         if (isa<UsingDecl>(ND))
5175           continue;
5176         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5177         if (Constructor->isDefaultConstructor()) {
5178           FoundConstructor = true;
5179           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5180           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5181           if (!CPT)
5182             return false;
5183           // FIXME: check whether evaluating default arguments can throw.
5184           // For now, we'll be conservative and assume that they can throw.
5185           if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5186             return false;
5187         }
5188       }
5189       return FoundConstructor;
5190     }
5191     return false;
5192   case UTT_HasVirtualDestructor:
5193     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5194     //   If type is a class type with a virtual destructor ([class.dtor])
5195     //   then the trait is true, else it is false.
5196     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5197       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5198         return Destructor->isVirtual();
5199     return false;
5200 
5201     // These type trait expressions are modeled on the specifications for the
5202     // Embarcadero C++0x type trait functions:
5203     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5204   case UTT_IsCompleteType:
5205     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5206     //   Returns True if and only if T is a complete type at the point of the
5207     //   function call.
5208     return !T->isIncompleteType();
5209   case UTT_HasUniqueObjectRepresentations:
5210     return C.hasUniqueObjectRepresentations(T);
5211   }
5212 }
5213 
5214 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5215                                     QualType RhsT, SourceLocation KeyLoc);
5216 
5217 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
5218                               ArrayRef<TypeSourceInfo *> Args,
5219                               SourceLocation RParenLoc) {
5220   if (Kind <= UTT_Last)
5221     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5222 
5223   // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
5224   // traits to avoid duplication.
5225   if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
5226     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5227                                    Args[1]->getType(), RParenLoc);
5228 
5229   switch (Kind) {
5230   case clang::BTT_ReferenceBindsToTemporary:
5231   case clang::TT_IsConstructible:
5232   case clang::TT_IsNothrowConstructible:
5233   case clang::TT_IsTriviallyConstructible: {
5234     // C++11 [meta.unary.prop]:
5235     //   is_trivially_constructible is defined as:
5236     //
5237     //     is_constructible<T, Args...>::value is true and the variable
5238     //     definition for is_constructible, as defined below, is known to call
5239     //     no operation that is not trivial.
5240     //
5241     //   The predicate condition for a template specialization
5242     //   is_constructible<T, Args...> shall be satisfied if and only if the
5243     //   following variable definition would be well-formed for some invented
5244     //   variable t:
5245     //
5246     //     T t(create<Args>()...);
5247     assert(!Args.empty());
5248 
5249     // Precondition: T and all types in the parameter pack Args shall be
5250     // complete types, (possibly cv-qualified) void, or arrays of
5251     // unknown bound.
5252     for (const auto *TSI : Args) {
5253       QualType ArgTy = TSI->getType();
5254       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5255         continue;
5256 
5257       if (S.RequireCompleteType(KWLoc, ArgTy,
5258           diag::err_incomplete_type_used_in_type_trait_expr))
5259         return false;
5260     }
5261 
5262     // Make sure the first argument is not incomplete nor a function type.
5263     QualType T = Args[0]->getType();
5264     if (T->isIncompleteType() || T->isFunctionType())
5265       return false;
5266 
5267     // Make sure the first argument is not an abstract type.
5268     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5269     if (RD && RD->isAbstract())
5270       return false;
5271 
5272     llvm::BumpPtrAllocator OpaqueExprAllocator;
5273     SmallVector<Expr *, 2> ArgExprs;
5274     ArgExprs.reserve(Args.size() - 1);
5275     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5276       QualType ArgTy = Args[I]->getType();
5277       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5278         ArgTy = S.Context.getRValueReferenceType(ArgTy);
5279       ArgExprs.push_back(
5280           new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5281               OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5282                               ArgTy.getNonLValueExprType(S.Context),
5283                               Expr::getValueKindForType(ArgTy)));
5284     }
5285 
5286     // Perform the initialization in an unevaluated context within a SFINAE
5287     // trap at translation unit scope.
5288     EnterExpressionEvaluationContext Unevaluated(
5289         S, Sema::ExpressionEvaluationContext::Unevaluated);
5290     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5291     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5292     InitializedEntity To(
5293         InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5294     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5295                                                                  RParenLoc));
5296     InitializationSequence Init(S, To, InitKind, ArgExprs);
5297     if (Init.Failed())
5298       return false;
5299 
5300     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5301     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5302       return false;
5303 
5304     if (Kind == clang::TT_IsConstructible)
5305       return true;
5306 
5307     if (Kind == clang::BTT_ReferenceBindsToTemporary) {
5308       if (!T->isReferenceType())
5309         return false;
5310 
5311       return !Init.isDirectReferenceBinding();
5312     }
5313 
5314     if (Kind == clang::TT_IsNothrowConstructible)
5315       return S.canThrow(Result.get()) == CT_Cannot;
5316 
5317     if (Kind == clang::TT_IsTriviallyConstructible) {
5318       // Under Objective-C ARC and Weak, if the destination has non-trivial
5319       // Objective-C lifetime, this is a non-trivial construction.
5320       if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5321         return false;
5322 
5323       // The initialization succeeded; now make sure there are no non-trivial
5324       // calls.
5325       return !Result.get()->hasNonTrivialCall(S.Context);
5326     }
5327 
5328     llvm_unreachable("unhandled type trait");
5329     return false;
5330   }
5331     default: llvm_unreachable("not a TT");
5332   }
5333 
5334   return false;
5335 }
5336 
5337 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5338                                 ArrayRef<TypeSourceInfo *> Args,
5339                                 SourceLocation RParenLoc) {
5340   QualType ResultType = Context.getLogicalOperationType();
5341 
5342   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5343                                *this, Kind, KWLoc, Args[0]->getType()))
5344     return ExprError();
5345 
5346   bool Dependent = false;
5347   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5348     if (Args[I]->getType()->isDependentType()) {
5349       Dependent = true;
5350       break;
5351     }
5352   }
5353 
5354   bool Result = false;
5355   if (!Dependent)
5356     Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5357 
5358   return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5359                                RParenLoc, Result);
5360 }
5361 
5362 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5363                                 ArrayRef<ParsedType> Args,
5364                                 SourceLocation RParenLoc) {
5365   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5366   ConvertedArgs.reserve(Args.size());
5367 
5368   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5369     TypeSourceInfo *TInfo;
5370     QualType T = GetTypeFromParser(Args[I], &TInfo);
5371     if (!TInfo)
5372       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5373 
5374     ConvertedArgs.push_back(TInfo);
5375   }
5376 
5377   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5378 }
5379 
5380 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5381                                     QualType RhsT, SourceLocation KeyLoc) {
5382   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5383          "Cannot evaluate traits of dependent types");
5384 
5385   switch(BTT) {
5386   case BTT_IsBaseOf: {
5387     // C++0x [meta.rel]p2
5388     // Base is a base class of Derived without regard to cv-qualifiers or
5389     // Base and Derived are not unions and name the same class type without
5390     // regard to cv-qualifiers.
5391 
5392     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5393     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5394     if (!rhsRecord || !lhsRecord) {
5395       const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5396       const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5397       if (!LHSObjTy || !RHSObjTy)
5398         return false;
5399 
5400       ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5401       ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5402       if (!BaseInterface || !DerivedInterface)
5403         return false;
5404 
5405       if (Self.RequireCompleteType(
5406               KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5407         return false;
5408 
5409       return BaseInterface->isSuperClassOf(DerivedInterface);
5410     }
5411 
5412     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5413              == (lhsRecord == rhsRecord));
5414 
5415     // Unions are never base classes, and never have base classes.
5416     // It doesn't matter if they are complete or not. See PR#41843
5417     if (lhsRecord && lhsRecord->getDecl()->isUnion())
5418       return false;
5419     if (rhsRecord && rhsRecord->getDecl()->isUnion())
5420       return false;
5421 
5422     if (lhsRecord == rhsRecord)
5423       return true;
5424 
5425     // C++0x [meta.rel]p2:
5426     //   If Base and Derived are class types and are different types
5427     //   (ignoring possible cv-qualifiers) then Derived shall be a
5428     //   complete type.
5429     if (Self.RequireCompleteType(KeyLoc, RhsT,
5430                           diag::err_incomplete_type_used_in_type_trait_expr))
5431       return false;
5432 
5433     return cast<CXXRecordDecl>(rhsRecord->getDecl())
5434       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5435   }
5436   case BTT_IsSame:
5437     return Self.Context.hasSameType(LhsT, RhsT);
5438   case BTT_TypeCompatible: {
5439     // GCC ignores cv-qualifiers on arrays for this builtin.
5440     Qualifiers LhsQuals, RhsQuals;
5441     QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5442     QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5443     return Self.Context.typesAreCompatible(Lhs, Rhs);
5444   }
5445   case BTT_IsConvertible:
5446   case BTT_IsConvertibleTo: {
5447     // C++0x [meta.rel]p4:
5448     //   Given the following function prototype:
5449     //
5450     //     template <class T>
5451     //       typename add_rvalue_reference<T>::type create();
5452     //
5453     //   the predicate condition for a template specialization
5454     //   is_convertible<From, To> shall be satisfied if and only if
5455     //   the return expression in the following code would be
5456     //   well-formed, including any implicit conversions to the return
5457     //   type of the function:
5458     //
5459     //     To test() {
5460     //       return create<From>();
5461     //     }
5462     //
5463     //   Access checking is performed as if in a context unrelated to To and
5464     //   From. Only the validity of the immediate context of the expression
5465     //   of the return-statement (including conversions to the return type)
5466     //   is considered.
5467     //
5468     // We model the initialization as a copy-initialization of a temporary
5469     // of the appropriate type, which for this expression is identical to the
5470     // return statement (since NRVO doesn't apply).
5471 
5472     // Functions aren't allowed to return function or array types.
5473     if (RhsT->isFunctionType() || RhsT->isArrayType())
5474       return false;
5475 
5476     // A return statement in a void function must have void type.
5477     if (RhsT->isVoidType())
5478       return LhsT->isVoidType();
5479 
5480     // A function definition requires a complete, non-abstract return type.
5481     if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5482       return false;
5483 
5484     // Compute the result of add_rvalue_reference.
5485     if (LhsT->isObjectType() || LhsT->isFunctionType())
5486       LhsT = Self.Context.getRValueReferenceType(LhsT);
5487 
5488     // Build a fake source and destination for initialization.
5489     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5490     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5491                          Expr::getValueKindForType(LhsT));
5492     Expr *FromPtr = &From;
5493     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5494                                                            SourceLocation()));
5495 
5496     // Perform the initialization in an unevaluated context within a SFINAE
5497     // trap at translation unit scope.
5498     EnterExpressionEvaluationContext Unevaluated(
5499         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5500     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5501     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5502     InitializationSequence Init(Self, To, Kind, FromPtr);
5503     if (Init.Failed())
5504       return false;
5505 
5506     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5507     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5508   }
5509 
5510   case BTT_IsAssignable:
5511   case BTT_IsNothrowAssignable:
5512   case BTT_IsTriviallyAssignable: {
5513     // C++11 [meta.unary.prop]p3:
5514     //   is_trivially_assignable is defined as:
5515     //     is_assignable<T, U>::value is true and the assignment, as defined by
5516     //     is_assignable, is known to call no operation that is not trivial
5517     //
5518     //   is_assignable is defined as:
5519     //     The expression declval<T>() = declval<U>() is well-formed when
5520     //     treated as an unevaluated operand (Clause 5).
5521     //
5522     //   For both, T and U shall be complete types, (possibly cv-qualified)
5523     //   void, or arrays of unknown bound.
5524     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5525         Self.RequireCompleteType(KeyLoc, LhsT,
5526           diag::err_incomplete_type_used_in_type_trait_expr))
5527       return false;
5528     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5529         Self.RequireCompleteType(KeyLoc, RhsT,
5530           diag::err_incomplete_type_used_in_type_trait_expr))
5531       return false;
5532 
5533     // cv void is never assignable.
5534     if (LhsT->isVoidType() || RhsT->isVoidType())
5535       return false;
5536 
5537     // Build expressions that emulate the effect of declval<T>() and
5538     // declval<U>().
5539     if (LhsT->isObjectType() || LhsT->isFunctionType())
5540       LhsT = Self.Context.getRValueReferenceType(LhsT);
5541     if (RhsT->isObjectType() || RhsT->isFunctionType())
5542       RhsT = Self.Context.getRValueReferenceType(RhsT);
5543     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5544                         Expr::getValueKindForType(LhsT));
5545     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5546                         Expr::getValueKindForType(RhsT));
5547 
5548     // Attempt the assignment in an unevaluated context within a SFINAE
5549     // trap at translation unit scope.
5550     EnterExpressionEvaluationContext Unevaluated(
5551         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5552     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5553     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5554     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5555                                         &Rhs);
5556     if (Result.isInvalid())
5557       return false;
5558 
5559     // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5560     Self.CheckUnusedVolatileAssignment(Result.get());
5561 
5562     if (SFINAE.hasErrorOccurred())
5563       return false;
5564 
5565     if (BTT == BTT_IsAssignable)
5566       return true;
5567 
5568     if (BTT == BTT_IsNothrowAssignable)
5569       return Self.canThrow(Result.get()) == CT_Cannot;
5570 
5571     if (BTT == BTT_IsTriviallyAssignable) {
5572       // Under Objective-C ARC and Weak, if the destination has non-trivial
5573       // Objective-C lifetime, this is a non-trivial assignment.
5574       if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5575         return false;
5576 
5577       return !Result.get()->hasNonTrivialCall(Self.Context);
5578     }
5579 
5580     llvm_unreachable("unhandled type trait");
5581     return false;
5582   }
5583     default: llvm_unreachable("not a BTT");
5584   }
5585   llvm_unreachable("Unknown type trait or not implemented");
5586 }
5587 
5588 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5589                                      SourceLocation KWLoc,
5590                                      ParsedType Ty,
5591                                      Expr* DimExpr,
5592                                      SourceLocation RParen) {
5593   TypeSourceInfo *TSInfo;
5594   QualType T = GetTypeFromParser(Ty, &TSInfo);
5595   if (!TSInfo)
5596     TSInfo = Context.getTrivialTypeSourceInfo(T);
5597 
5598   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5599 }
5600 
5601 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5602                                            QualType T, Expr *DimExpr,
5603                                            SourceLocation KeyLoc) {
5604   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5605 
5606   switch(ATT) {
5607   case ATT_ArrayRank:
5608     if (T->isArrayType()) {
5609       unsigned Dim = 0;
5610       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5611         ++Dim;
5612         T = AT->getElementType();
5613       }
5614       return Dim;
5615     }
5616     return 0;
5617 
5618   case ATT_ArrayExtent: {
5619     llvm::APSInt Value;
5620     uint64_t Dim;
5621     if (Self.VerifyIntegerConstantExpression(
5622                 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5623             .isInvalid())
5624       return 0;
5625     if (Value.isSigned() && Value.isNegative()) {
5626       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5627         << DimExpr->getSourceRange();
5628       return 0;
5629     }
5630     Dim = Value.getLimitedValue();
5631 
5632     if (T->isArrayType()) {
5633       unsigned D = 0;
5634       bool Matched = false;
5635       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5636         if (Dim == D) {
5637           Matched = true;
5638           break;
5639         }
5640         ++D;
5641         T = AT->getElementType();
5642       }
5643 
5644       if (Matched && T->isArrayType()) {
5645         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5646           return CAT->getSize().getLimitedValue();
5647       }
5648     }
5649     return 0;
5650   }
5651   }
5652   llvm_unreachable("Unknown type trait or not implemented");
5653 }
5654 
5655 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5656                                      SourceLocation KWLoc,
5657                                      TypeSourceInfo *TSInfo,
5658                                      Expr* DimExpr,
5659                                      SourceLocation RParen) {
5660   QualType T = TSInfo->getType();
5661 
5662   // FIXME: This should likely be tracked as an APInt to remove any host
5663   // assumptions about the width of size_t on the target.
5664   uint64_t Value = 0;
5665   if (!T->isDependentType())
5666     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5667 
5668   // While the specification for these traits from the Embarcadero C++
5669   // compiler's documentation says the return type is 'unsigned int', Clang
5670   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5671   // compiler, there is no difference. On several other platforms this is an
5672   // important distinction.
5673   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5674                                           RParen, Context.getSizeType());
5675 }
5676 
5677 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5678                                       SourceLocation KWLoc,
5679                                       Expr *Queried,
5680                                       SourceLocation RParen) {
5681   // If error parsing the expression, ignore.
5682   if (!Queried)
5683     return ExprError();
5684 
5685   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5686 
5687   return Result;
5688 }
5689 
5690 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5691   switch (ET) {
5692   case ET_IsLValueExpr: return E->isLValue();
5693   case ET_IsRValueExpr:
5694     return E->isPRValue();
5695   }
5696   llvm_unreachable("Expression trait not covered by switch");
5697 }
5698 
5699 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5700                                       SourceLocation KWLoc,
5701                                       Expr *Queried,
5702                                       SourceLocation RParen) {
5703   if (Queried->isTypeDependent()) {
5704     // Delay type-checking for type-dependent expressions.
5705   } else if (Queried->getType()->isPlaceholderType()) {
5706     ExprResult PE = CheckPlaceholderExpr(Queried);
5707     if (PE.isInvalid()) return ExprError();
5708     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5709   }
5710 
5711   bool Value = EvaluateExpressionTrait(ET, Queried);
5712 
5713   return new (Context)
5714       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5715 }
5716 
5717 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5718                                             ExprValueKind &VK,
5719                                             SourceLocation Loc,
5720                                             bool isIndirect) {
5721   assert(!LHS.get()->getType()->isPlaceholderType() &&
5722          !RHS.get()->getType()->isPlaceholderType() &&
5723          "placeholders should have been weeded out by now");
5724 
5725   // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5726   // temporary materialization conversion otherwise.
5727   if (isIndirect)
5728     LHS = DefaultLvalueConversion(LHS.get());
5729   else if (LHS.get()->isPRValue())
5730     LHS = TemporaryMaterializationConversion(LHS.get());
5731   if (LHS.isInvalid())
5732     return QualType();
5733 
5734   // The RHS always undergoes lvalue conversions.
5735   RHS = DefaultLvalueConversion(RHS.get());
5736   if (RHS.isInvalid()) return QualType();
5737 
5738   const char *OpSpelling = isIndirect ? "->*" : ".*";
5739   // C++ 5.5p2
5740   //   The binary operator .* [p3: ->*] binds its second operand, which shall
5741   //   be of type "pointer to member of T" (where T is a completely-defined
5742   //   class type) [...]
5743   QualType RHSType = RHS.get()->getType();
5744   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5745   if (!MemPtr) {
5746     Diag(Loc, diag::err_bad_memptr_rhs)
5747       << OpSpelling << RHSType << RHS.get()->getSourceRange();
5748     return QualType();
5749   }
5750 
5751   QualType Class(MemPtr->getClass(), 0);
5752 
5753   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5754   // member pointer points must be completely-defined. However, there is no
5755   // reason for this semantic distinction, and the rule is not enforced by
5756   // other compilers. Therefore, we do not check this property, as it is
5757   // likely to be considered a defect.
5758 
5759   // C++ 5.5p2
5760   //   [...] to its first operand, which shall be of class T or of a class of
5761   //   which T is an unambiguous and accessible base class. [p3: a pointer to
5762   //   such a class]
5763   QualType LHSType = LHS.get()->getType();
5764   if (isIndirect) {
5765     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5766       LHSType = Ptr->getPointeeType();
5767     else {
5768       Diag(Loc, diag::err_bad_memptr_lhs)
5769         << OpSpelling << 1 << LHSType
5770         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5771       return QualType();
5772     }
5773   }
5774 
5775   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5776     // If we want to check the hierarchy, we need a complete type.
5777     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5778                             OpSpelling, (int)isIndirect)) {
5779       return QualType();
5780     }
5781 
5782     if (!IsDerivedFrom(Loc, LHSType, Class)) {
5783       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5784         << (int)isIndirect << LHS.get()->getType();
5785       return QualType();
5786     }
5787 
5788     CXXCastPath BasePath;
5789     if (CheckDerivedToBaseConversion(
5790             LHSType, Class, Loc,
5791             SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5792             &BasePath))
5793       return QualType();
5794 
5795     // Cast LHS to type of use.
5796     QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5797     if (isIndirect)
5798       UseType = Context.getPointerType(UseType);
5799     ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
5800     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5801                             &BasePath);
5802   }
5803 
5804   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5805     // Diagnose use of pointer-to-member type which when used as
5806     // the functional cast in a pointer-to-member expression.
5807     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5808      return QualType();
5809   }
5810 
5811   // C++ 5.5p2
5812   //   The result is an object or a function of the type specified by the
5813   //   second operand.
5814   // The cv qualifiers are the union of those in the pointer and the left side,
5815   // in accordance with 5.5p5 and 5.2.5.
5816   QualType Result = MemPtr->getPointeeType();
5817   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5818 
5819   // C++0x [expr.mptr.oper]p6:
5820   //   In a .* expression whose object expression is an rvalue, the program is
5821   //   ill-formed if the second operand is a pointer to member function with
5822   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
5823   //   expression is an lvalue, the program is ill-formed if the second operand
5824   //   is a pointer to member function with ref-qualifier &&.
5825   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5826     switch (Proto->getRefQualifier()) {
5827     case RQ_None:
5828       // Do nothing
5829       break;
5830 
5831     case RQ_LValue:
5832       if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5833         // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
5834         // is (exactly) 'const'.
5835         if (Proto->isConst() && !Proto->isVolatile())
5836           Diag(Loc, getLangOpts().CPlusPlus20
5837                         ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5838                         : diag::ext_pointer_to_const_ref_member_on_rvalue);
5839         else
5840           Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5841               << RHSType << 1 << LHS.get()->getSourceRange();
5842       }
5843       break;
5844 
5845     case RQ_RValue:
5846       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5847         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5848           << RHSType << 0 << LHS.get()->getSourceRange();
5849       break;
5850     }
5851   }
5852 
5853   // C++ [expr.mptr.oper]p6:
5854   //   The result of a .* expression whose second operand is a pointer
5855   //   to a data member is of the same value category as its
5856   //   first operand. The result of a .* expression whose second
5857   //   operand is a pointer to a member function is a prvalue. The
5858   //   result of an ->* expression is an lvalue if its second operand
5859   //   is a pointer to data member and a prvalue otherwise.
5860   if (Result->isFunctionType()) {
5861     VK = VK_PRValue;
5862     return Context.BoundMemberTy;
5863   } else if (isIndirect) {
5864     VK = VK_LValue;
5865   } else {
5866     VK = LHS.get()->getValueKind();
5867   }
5868 
5869   return Result;
5870 }
5871 
5872 /// Try to convert a type to another according to C++11 5.16p3.
5873 ///
5874 /// This is part of the parameter validation for the ? operator. If either
5875 /// value operand is a class type, the two operands are attempted to be
5876 /// converted to each other. This function does the conversion in one direction.
5877 /// It returns true if the program is ill-formed and has already been diagnosed
5878 /// as such.
5879 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5880                                 SourceLocation QuestionLoc,
5881                                 bool &HaveConversion,
5882                                 QualType &ToType) {
5883   HaveConversion = false;
5884   ToType = To->getType();
5885 
5886   InitializationKind Kind =
5887       InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
5888   // C++11 5.16p3
5889   //   The process for determining whether an operand expression E1 of type T1
5890   //   can be converted to match an operand expression E2 of type T2 is defined
5891   //   as follows:
5892   //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5893   //      implicitly converted to type "lvalue reference to T2", subject to the
5894   //      constraint that in the conversion the reference must bind directly to
5895   //      an lvalue.
5896   //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5897   //      implicitly converted to the type "rvalue reference to R2", subject to
5898   //      the constraint that the reference must bind directly.
5899   if (To->isGLValue()) {
5900     QualType T = Self.Context.getReferenceQualifiedType(To);
5901     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5902 
5903     InitializationSequence InitSeq(Self, Entity, Kind, From);
5904     if (InitSeq.isDirectReferenceBinding()) {
5905       ToType = T;
5906       HaveConversion = true;
5907       return false;
5908     }
5909 
5910     if (InitSeq.isAmbiguous())
5911       return InitSeq.Diagnose(Self, Entity, Kind, From);
5912   }
5913 
5914   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
5915   //      -- if E1 and E2 have class type, and the underlying class types are
5916   //         the same or one is a base class of the other:
5917   QualType FTy = From->getType();
5918   QualType TTy = To->getType();
5919   const RecordType *FRec = FTy->getAs<RecordType>();
5920   const RecordType *TRec = TTy->getAs<RecordType>();
5921   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5922                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5923   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5924                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5925     //         E1 can be converted to match E2 if the class of T2 is the
5926     //         same type as, or a base class of, the class of T1, and
5927     //         [cv2 > cv1].
5928     if (FRec == TRec || FDerivedFromT) {
5929       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5930         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5931         InitializationSequence InitSeq(Self, Entity, Kind, From);
5932         if (InitSeq) {
5933           HaveConversion = true;
5934           return false;
5935         }
5936 
5937         if (InitSeq.isAmbiguous())
5938           return InitSeq.Diagnose(Self, Entity, Kind, From);
5939       }
5940     }
5941 
5942     return false;
5943   }
5944 
5945   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
5946   //        implicitly converted to the type that expression E2 would have
5947   //        if E2 were converted to an rvalue (or the type it has, if E2 is
5948   //        an rvalue).
5949   //
5950   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5951   // to the array-to-pointer or function-to-pointer conversions.
5952   TTy = TTy.getNonLValueExprType(Self.Context);
5953 
5954   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5955   InitializationSequence InitSeq(Self, Entity, Kind, From);
5956   HaveConversion = !InitSeq.Failed();
5957   ToType = TTy;
5958   if (InitSeq.isAmbiguous())
5959     return InitSeq.Diagnose(Self, Entity, Kind, From);
5960 
5961   return false;
5962 }
5963 
5964 /// Try to find a common type for two according to C++0x 5.16p5.
5965 ///
5966 /// This is part of the parameter validation for the ? operator. If either
5967 /// value operand is a class type, overload resolution is used to find a
5968 /// conversion to a common type.
5969 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5970                                     SourceLocation QuestionLoc) {
5971   Expr *Args[2] = { LHS.get(), RHS.get() };
5972   OverloadCandidateSet CandidateSet(QuestionLoc,
5973                                     OverloadCandidateSet::CSK_Operator);
5974   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5975                                     CandidateSet);
5976 
5977   OverloadCandidateSet::iterator Best;
5978   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5979     case OR_Success: {
5980       // We found a match. Perform the conversions on the arguments and move on.
5981       ExprResult LHSRes = Self.PerformImplicitConversion(
5982           LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
5983           Sema::AA_Converting);
5984       if (LHSRes.isInvalid())
5985         break;
5986       LHS = LHSRes;
5987 
5988       ExprResult RHSRes = Self.PerformImplicitConversion(
5989           RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
5990           Sema::AA_Converting);
5991       if (RHSRes.isInvalid())
5992         break;
5993       RHS = RHSRes;
5994       if (Best->Function)
5995         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5996       return false;
5997     }
5998 
5999     case OR_No_Viable_Function:
6000 
6001       // Emit a better diagnostic if one of the expressions is a null pointer
6002       // constant and the other is a pointer type. In this case, the user most
6003       // likely forgot to take the address of the other expression.
6004       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6005         return true;
6006 
6007       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6008         << LHS.get()->getType() << RHS.get()->getType()
6009         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6010       return true;
6011 
6012     case OR_Ambiguous:
6013       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6014         << LHS.get()->getType() << RHS.get()->getType()
6015         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6016       // FIXME: Print the possible common types by printing the return types of
6017       // the viable candidates.
6018       break;
6019 
6020     case OR_Deleted:
6021       llvm_unreachable("Conditional operator has only built-in overloads");
6022   }
6023   return true;
6024 }
6025 
6026 /// Perform an "extended" implicit conversion as returned by
6027 /// TryClassUnification.
6028 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6029   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6030   InitializationKind Kind =
6031       InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6032   Expr *Arg = E.get();
6033   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6034   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6035   if (Result.isInvalid())
6036     return true;
6037 
6038   E = Result;
6039   return false;
6040 }
6041 
6042 // Check the condition operand of ?: to see if it is valid for the GCC
6043 // extension.
6044 static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6045                                                  QualType CondTy) {
6046   if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6047     return false;
6048   const QualType EltTy =
6049       cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6050   assert(!EltTy->isBooleanType() && !EltTy->isEnumeralType() &&
6051          "Vectors cant be boolean or enum types");
6052   return EltTy->isIntegralType(Ctx);
6053 }
6054 
6055 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6056                                            ExprResult &RHS,
6057                                            SourceLocation QuestionLoc) {
6058   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6059   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6060 
6061   QualType CondType = Cond.get()->getType();
6062   const auto *CondVT = CondType->castAs<VectorType>();
6063   QualType CondElementTy = CondVT->getElementType();
6064   unsigned CondElementCount = CondVT->getNumElements();
6065   QualType LHSType = LHS.get()->getType();
6066   const auto *LHSVT = LHSType->getAs<VectorType>();
6067   QualType RHSType = RHS.get()->getType();
6068   const auto *RHSVT = RHSType->getAs<VectorType>();
6069 
6070   QualType ResultType;
6071 
6072 
6073   if (LHSVT && RHSVT) {
6074     if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6075       Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6076           << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6077       return {};
6078     }
6079 
6080     // If both are vector types, they must be the same type.
6081     if (!Context.hasSameType(LHSType, RHSType)) {
6082       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6083           << LHSType << RHSType;
6084       return {};
6085     }
6086     ResultType = LHSType;
6087   } else if (LHSVT || RHSVT) {
6088     ResultType = CheckVectorOperands(
6089         LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6090         /*AllowBoolConversions*/ false);
6091     if (ResultType.isNull())
6092       return {};
6093   } else {
6094     // Both are scalar.
6095     QualType ResultElementTy;
6096     LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6097     RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6098 
6099     if (Context.hasSameType(LHSType, RHSType))
6100       ResultElementTy = LHSType;
6101     else
6102       ResultElementTy =
6103           UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6104 
6105     if (ResultElementTy->isEnumeralType()) {
6106       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6107           << ResultElementTy;
6108       return {};
6109     }
6110     if (CondType->isExtVectorType())
6111       ResultType =
6112           Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6113     else
6114       ResultType = Context.getVectorType(
6115           ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector);
6116 
6117     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6118     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6119   }
6120 
6121   assert(!ResultType.isNull() && ResultType->isVectorType() &&
6122          (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6123          "Result should have been a vector type");
6124   auto *ResultVectorTy = ResultType->castAs<VectorType>();
6125   QualType ResultElementTy = ResultVectorTy->getElementType();
6126   unsigned ResultElementCount = ResultVectorTy->getNumElements();
6127 
6128   if (ResultElementCount != CondElementCount) {
6129     Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6130                                                          << ResultType;
6131     return {};
6132   }
6133 
6134   if (Context.getTypeSize(ResultElementTy) !=
6135       Context.getTypeSize(CondElementTy)) {
6136     Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6137                                                                  << ResultType;
6138     return {};
6139   }
6140 
6141   return ResultType;
6142 }
6143 
6144 /// Check the operands of ?: under C++ semantics.
6145 ///
6146 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6147 /// extension. In this case, LHS == Cond. (But they're not aliases.)
6148 ///
6149 /// This function also implements GCC's vector extension and the
6150 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6151 /// permit the use of a?b:c where the type of a is that of a integer vector with
6152 /// the same number of elements and size as the vectors of b and c. If one of
6153 /// either b or c is a scalar it is implicitly converted to match the type of
6154 /// the vector. Otherwise the expression is ill-formed. If both b and c are
6155 /// scalars, then b and c are checked and converted to the type of a if
6156 /// possible.
6157 ///
6158 /// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6159 /// For the GCC extension, the ?: operator is evaluated as
6160 ///   (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6161 /// For the OpenCL extensions, the ?: operator is evaluated as
6162 ///   (most-significant-bit-set(a[0])  ? b[0] : c[0], .. ,
6163 ///    most-significant-bit-set(a[n]) ? b[n] : c[n]).
6164 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6165                                            ExprResult &RHS, ExprValueKind &VK,
6166                                            ExprObjectKind &OK,
6167                                            SourceLocation QuestionLoc) {
6168   // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6169   // pointers.
6170 
6171   // Assume r-value.
6172   VK = VK_PRValue;
6173   OK = OK_Ordinary;
6174   bool IsVectorConditional =
6175       isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6176 
6177   // C++11 [expr.cond]p1
6178   //   The first expression is contextually converted to bool.
6179   if (!Cond.get()->isTypeDependent()) {
6180     ExprResult CondRes = IsVectorConditional
6181                              ? DefaultFunctionArrayLvalueConversion(Cond.get())
6182                              : CheckCXXBooleanCondition(Cond.get());
6183     if (CondRes.isInvalid())
6184       return QualType();
6185     Cond = CondRes;
6186   } else {
6187     // To implement C++, the first expression typically doesn't alter the result
6188     // type of the conditional, however the GCC compatible vector extension
6189     // changes the result type to be that of the conditional. Since we cannot
6190     // know if this is a vector extension here, delay the conversion of the
6191     // LHS/RHS below until later.
6192     return Context.DependentTy;
6193   }
6194 
6195 
6196   // Either of the arguments dependent?
6197   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6198     return Context.DependentTy;
6199 
6200   // C++11 [expr.cond]p2
6201   //   If either the second or the third operand has type (cv) void, ...
6202   QualType LTy = LHS.get()->getType();
6203   QualType RTy = RHS.get()->getType();
6204   bool LVoid = LTy->isVoidType();
6205   bool RVoid = RTy->isVoidType();
6206   if (LVoid || RVoid) {
6207     //   ... one of the following shall hold:
6208     //   -- The second or the third operand (but not both) is a (possibly
6209     //      parenthesized) throw-expression; the result is of the type
6210     //      and value category of the other.
6211     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6212     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6213 
6214     // Void expressions aren't legal in the vector-conditional expressions.
6215     if (IsVectorConditional) {
6216       SourceRange DiagLoc =
6217           LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6218       bool IsThrow = LVoid ? LThrow : RThrow;
6219       Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6220           << DiagLoc << IsThrow;
6221       return QualType();
6222     }
6223 
6224     if (LThrow != RThrow) {
6225       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6226       VK = NonThrow->getValueKind();
6227       // DR (no number yet): the result is a bit-field if the
6228       // non-throw-expression operand is a bit-field.
6229       OK = NonThrow->getObjectKind();
6230       return NonThrow->getType();
6231     }
6232 
6233     //   -- Both the second and third operands have type void; the result is of
6234     //      type void and is a prvalue.
6235     if (LVoid && RVoid)
6236       return Context.VoidTy;
6237 
6238     // Neither holds, error.
6239     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6240       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6241       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6242     return QualType();
6243   }
6244 
6245   // Neither is void.
6246   if (IsVectorConditional)
6247     return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6248 
6249   // C++11 [expr.cond]p3
6250   //   Otherwise, if the second and third operand have different types, and
6251   //   either has (cv) class type [...] an attempt is made to convert each of
6252   //   those operands to the type of the other.
6253   if (!Context.hasSameType(LTy, RTy) &&
6254       (LTy->isRecordType() || RTy->isRecordType())) {
6255     // These return true if a single direction is already ambiguous.
6256     QualType L2RType, R2LType;
6257     bool HaveL2R, HaveR2L;
6258     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6259       return QualType();
6260     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6261       return QualType();
6262 
6263     //   If both can be converted, [...] the program is ill-formed.
6264     if (HaveL2R && HaveR2L) {
6265       Diag(QuestionLoc, diag::err_conditional_ambiguous)
6266         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6267       return QualType();
6268     }
6269 
6270     //   If exactly one conversion is possible, that conversion is applied to
6271     //   the chosen operand and the converted operands are used in place of the
6272     //   original operands for the remainder of this section.
6273     if (HaveL2R) {
6274       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6275         return QualType();
6276       LTy = LHS.get()->getType();
6277     } else if (HaveR2L) {
6278       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6279         return QualType();
6280       RTy = RHS.get()->getType();
6281     }
6282   }
6283 
6284   // C++11 [expr.cond]p3
6285   //   if both are glvalues of the same value category and the same type except
6286   //   for cv-qualification, an attempt is made to convert each of those
6287   //   operands to the type of the other.
6288   // FIXME:
6289   //   Resolving a defect in P0012R1: we extend this to cover all cases where
6290   //   one of the operands is reference-compatible with the other, in order
6291   //   to support conditionals between functions differing in noexcept. This
6292   //   will similarly cover difference in array bounds after P0388R4.
6293   // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6294   //   that instead?
6295   ExprValueKind LVK = LHS.get()->getValueKind();
6296   ExprValueKind RVK = RHS.get()->getValueKind();
6297   if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
6298     // DerivedToBase was already handled by the class-specific case above.
6299     // FIXME: Should we allow ObjC conversions here?
6300     const ReferenceConversions AllowedConversions =
6301         ReferenceConversions::Qualification |
6302         ReferenceConversions::NestedQualification |
6303         ReferenceConversions::Function;
6304 
6305     ReferenceConversions RefConv;
6306     if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6307             Ref_Compatible &&
6308         !(RefConv & ~AllowedConversions) &&
6309         // [...] subject to the constraint that the reference must bind
6310         // directly [...]
6311         !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6312       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6313       RTy = RHS.get()->getType();
6314     } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6315                    Ref_Compatible &&
6316                !(RefConv & ~AllowedConversions) &&
6317                !LHS.get()->refersToBitField() &&
6318                !LHS.get()->refersToVectorElement()) {
6319       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6320       LTy = LHS.get()->getType();
6321     }
6322   }
6323 
6324   // C++11 [expr.cond]p4
6325   //   If the second and third operands are glvalues of the same value
6326   //   category and have the same type, the result is of that type and
6327   //   value category and it is a bit-field if the second or the third
6328   //   operand is a bit-field, or if both are bit-fields.
6329   // We only extend this to bitfields, not to the crazy other kinds of
6330   // l-values.
6331   bool Same = Context.hasSameType(LTy, RTy);
6332   if (Same && LVK == RVK && LVK != VK_PRValue &&
6333       LHS.get()->isOrdinaryOrBitFieldObject() &&
6334       RHS.get()->isOrdinaryOrBitFieldObject()) {
6335     VK = LHS.get()->getValueKind();
6336     if (LHS.get()->getObjectKind() == OK_BitField ||
6337         RHS.get()->getObjectKind() == OK_BitField)
6338       OK = OK_BitField;
6339 
6340     // If we have function pointer types, unify them anyway to unify their
6341     // exception specifications, if any.
6342     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6343       Qualifiers Qs = LTy.getQualifiers();
6344       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
6345                                      /*ConvertArgs*/false);
6346       LTy = Context.getQualifiedType(LTy, Qs);
6347 
6348       assert(!LTy.isNull() && "failed to find composite pointer type for "
6349                               "canonically equivalent function ptr types");
6350       assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type");
6351     }
6352 
6353     return LTy;
6354   }
6355 
6356   // C++11 [expr.cond]p5
6357   //   Otherwise, the result is a prvalue. If the second and third operands
6358   //   do not have the same type, and either has (cv) class type, ...
6359   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6360     //   ... overload resolution is used to determine the conversions (if any)
6361     //   to be applied to the operands. If the overload resolution fails, the
6362     //   program is ill-formed.
6363     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
6364       return QualType();
6365   }
6366 
6367   // C++11 [expr.cond]p6
6368   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6369   //   conversions are performed on the second and third operands.
6370   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6371   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6372   if (LHS.isInvalid() || RHS.isInvalid())
6373     return QualType();
6374   LTy = LHS.get()->getType();
6375   RTy = RHS.get()->getType();
6376 
6377   //   After those conversions, one of the following shall hold:
6378   //   -- The second and third operands have the same type; the result
6379   //      is of that type. If the operands have class type, the result
6380   //      is a prvalue temporary of the result type, which is
6381   //      copy-initialized from either the second operand or the third
6382   //      operand depending on the value of the first operand.
6383   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
6384     if (LTy->isRecordType()) {
6385       // The operands have class type. Make a temporary copy.
6386       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
6387 
6388       ExprResult LHSCopy = PerformCopyInitialization(Entity,
6389                                                      SourceLocation(),
6390                                                      LHS);
6391       if (LHSCopy.isInvalid())
6392         return QualType();
6393 
6394       ExprResult RHSCopy = PerformCopyInitialization(Entity,
6395                                                      SourceLocation(),
6396                                                      RHS);
6397       if (RHSCopy.isInvalid())
6398         return QualType();
6399 
6400       LHS = LHSCopy;
6401       RHS = RHSCopy;
6402     }
6403 
6404     // If we have function pointer types, unify them anyway to unify their
6405     // exception specifications, if any.
6406     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6407       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
6408       assert(!LTy.isNull() && "failed to find composite pointer type for "
6409                               "canonically equivalent function ptr types");
6410     }
6411 
6412     return LTy;
6413   }
6414 
6415   // Extension: conditional operator involving vector types.
6416   if (LTy->isVectorType() || RTy->isVectorType())
6417     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
6418                                /*AllowBothBool*/true,
6419                                /*AllowBoolConversions*/false);
6420 
6421   //   -- The second and third operands have arithmetic or enumeration type;
6422   //      the usual arithmetic conversions are performed to bring them to a
6423   //      common type, and the result is of that type.
6424   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6425     QualType ResTy =
6426         UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6427     if (LHS.isInvalid() || RHS.isInvalid())
6428       return QualType();
6429     if (ResTy.isNull()) {
6430       Diag(QuestionLoc,
6431            diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6432         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6433       return QualType();
6434     }
6435 
6436     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6437     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6438 
6439     return ResTy;
6440   }
6441 
6442   //   -- The second and third operands have pointer type, or one has pointer
6443   //      type and the other is a null pointer constant, or both are null
6444   //      pointer constants, at least one of which is non-integral; pointer
6445   //      conversions and qualification conversions are performed to bring them
6446   //      to their composite pointer type. The result is of the composite
6447   //      pointer type.
6448   //   -- The second and third operands have pointer to member type, or one has
6449   //      pointer to member type and the other is a null pointer constant;
6450   //      pointer to member conversions and qualification conversions are
6451   //      performed to bring them to a common type, whose cv-qualification
6452   //      shall match the cv-qualification of either the second or the third
6453   //      operand. The result is of the common type.
6454   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6455   if (!Composite.isNull())
6456     return Composite;
6457 
6458   // Similarly, attempt to find composite type of two objective-c pointers.
6459   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6460   if (LHS.isInvalid() || RHS.isInvalid())
6461     return QualType();
6462   if (!Composite.isNull())
6463     return Composite;
6464 
6465   // Check if we are using a null with a non-pointer type.
6466   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6467     return QualType();
6468 
6469   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6470     << LHS.get()->getType() << RHS.get()->getType()
6471     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6472   return QualType();
6473 }
6474 
6475 static FunctionProtoType::ExceptionSpecInfo
6476 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
6477                     FunctionProtoType::ExceptionSpecInfo ESI2,
6478                     SmallVectorImpl<QualType> &ExceptionTypeStorage) {
6479   ExceptionSpecificationType EST1 = ESI1.Type;
6480   ExceptionSpecificationType EST2 = ESI2.Type;
6481 
6482   // If either of them can throw anything, that is the result.
6483   if (EST1 == EST_None) return ESI1;
6484   if (EST2 == EST_None) return ESI2;
6485   if (EST1 == EST_MSAny) return ESI1;
6486   if (EST2 == EST_MSAny) return ESI2;
6487   if (EST1 == EST_NoexceptFalse) return ESI1;
6488   if (EST2 == EST_NoexceptFalse) return ESI2;
6489 
6490   // If either of them is non-throwing, the result is the other.
6491   if (EST1 == EST_NoThrow) return ESI2;
6492   if (EST2 == EST_NoThrow) return ESI1;
6493   if (EST1 == EST_DynamicNone) return ESI2;
6494   if (EST2 == EST_DynamicNone) return ESI1;
6495   if (EST1 == EST_BasicNoexcept) return ESI2;
6496   if (EST2 == EST_BasicNoexcept) return ESI1;
6497   if (EST1 == EST_NoexceptTrue) return ESI2;
6498   if (EST2 == EST_NoexceptTrue) return ESI1;
6499 
6500   // If we're left with value-dependent computed noexcept expressions, we're
6501   // stuck. Before C++17, we can just drop the exception specification entirely,
6502   // since it's not actually part of the canonical type. And this should never
6503   // happen in C++17, because it would mean we were computing the composite
6504   // pointer type of dependent types, which should never happen.
6505   if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
6506     assert(!S.getLangOpts().CPlusPlus17 &&
6507            "computing composite pointer type of dependent types");
6508     return FunctionProtoType::ExceptionSpecInfo();
6509   }
6510 
6511   // Switch over the possibilities so that people adding new values know to
6512   // update this function.
6513   switch (EST1) {
6514   case EST_None:
6515   case EST_DynamicNone:
6516   case EST_MSAny:
6517   case EST_BasicNoexcept:
6518   case EST_DependentNoexcept:
6519   case EST_NoexceptFalse:
6520   case EST_NoexceptTrue:
6521   case EST_NoThrow:
6522     llvm_unreachable("handled above");
6523 
6524   case EST_Dynamic: {
6525     // This is the fun case: both exception specifications are dynamic. Form
6526     // the union of the two lists.
6527     assert(EST2 == EST_Dynamic && "other cases should already be handled");
6528     llvm::SmallPtrSet<QualType, 8> Found;
6529     for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
6530       for (QualType E : Exceptions)
6531         if (Found.insert(S.Context.getCanonicalType(E)).second)
6532           ExceptionTypeStorage.push_back(E);
6533 
6534     FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
6535     Result.Exceptions = ExceptionTypeStorage;
6536     return Result;
6537   }
6538 
6539   case EST_Unevaluated:
6540   case EST_Uninstantiated:
6541   case EST_Unparsed:
6542     llvm_unreachable("shouldn't see unresolved exception specifications here");
6543   }
6544 
6545   llvm_unreachable("invalid ExceptionSpecificationType");
6546 }
6547 
6548 /// Find a merged pointer type and convert the two expressions to it.
6549 ///
6550 /// This finds the composite pointer type for \p E1 and \p E2 according to
6551 /// C++2a [expr.type]p3. It converts both expressions to this type and returns
6552 /// it.  It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6553 /// is \c true).
6554 ///
6555 /// \param Loc The location of the operator requiring these two expressions to
6556 /// be converted to the composite pointer type.
6557 ///
6558 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6559 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6560                                         Expr *&E1, Expr *&E2,
6561                                         bool ConvertArgs) {
6562   assert(getLangOpts().CPlusPlus && "This function assumes C++");
6563 
6564   // C++1z [expr]p14:
6565   //   The composite pointer type of two operands p1 and p2 having types T1
6566   //   and T2
6567   QualType T1 = E1->getType(), T2 = E2->getType();
6568 
6569   //   where at least one is a pointer or pointer to member type or
6570   //   std::nullptr_t is:
6571   bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6572                          T1->isNullPtrType();
6573   bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6574                          T2->isNullPtrType();
6575   if (!T1IsPointerLike && !T2IsPointerLike)
6576     return QualType();
6577 
6578   //   - if both p1 and p2 are null pointer constants, std::nullptr_t;
6579   // This can't actually happen, following the standard, but we also use this
6580   // to implement the end of [expr.conv], which hits this case.
6581   //
6582   //   - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6583   if (T1IsPointerLike &&
6584       E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6585     if (ConvertArgs)
6586       E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6587                                          ? CK_NullToMemberPointer
6588                                          : CK_NullToPointer).get();
6589     return T1;
6590   }
6591   if (T2IsPointerLike &&
6592       E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6593     if (ConvertArgs)
6594       E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6595                                          ? CK_NullToMemberPointer
6596                                          : CK_NullToPointer).get();
6597     return T2;
6598   }
6599 
6600   // Now both have to be pointers or member pointers.
6601   if (!T1IsPointerLike || !T2IsPointerLike)
6602     return QualType();
6603   assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6604          "nullptr_t should be a null pointer constant");
6605 
6606   struct Step {
6607     enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6608     // Qualifiers to apply under the step kind.
6609     Qualifiers Quals;
6610     /// The class for a pointer-to-member; a constant array type with a bound
6611     /// (if any) for an array.
6612     const Type *ClassOrBound;
6613 
6614     Step(Kind K, const Type *ClassOrBound = nullptr)
6615         : K(K), Quals(), ClassOrBound(ClassOrBound) {}
6616     QualType rebuild(ASTContext &Ctx, QualType T) const {
6617       T = Ctx.getQualifiedType(T, Quals);
6618       switch (K) {
6619       case Pointer:
6620         return Ctx.getPointerType(T);
6621       case MemberPointer:
6622         return Ctx.getMemberPointerType(T, ClassOrBound);
6623       case ObjCPointer:
6624         return Ctx.getObjCObjectPointerType(T);
6625       case Array:
6626         if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
6627           return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
6628                                           ArrayType::Normal, 0);
6629         else
6630           return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0);
6631       }
6632       llvm_unreachable("unknown step kind");
6633     }
6634   };
6635 
6636   SmallVector<Step, 8> Steps;
6637 
6638   //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6639   //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6640   //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6641   //    respectively;
6642   //  - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6643   //    to member of C2 of type cv2 U2" for some non-function type U, where
6644   //    C1 is reference-related to C2 or C2 is reference-related to C1, the
6645   //    cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6646   //    respectively;
6647   //  - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6648   //    T2;
6649   //
6650   // Dismantle T1 and T2 to simultaneously determine whether they are similar
6651   // and to prepare to form the cv-combined type if so.
6652   QualType Composite1 = T1;
6653   QualType Composite2 = T2;
6654   unsigned NeedConstBefore = 0;
6655   while (true) {
6656     assert(!Composite1.isNull() && !Composite2.isNull());
6657 
6658     Qualifiers Q1, Q2;
6659     Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
6660     Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
6661 
6662     // Top-level qualifiers are ignored. Merge at all lower levels.
6663     if (!Steps.empty()) {
6664       // Find the qualifier union: (approximately) the unique minimal set of
6665       // qualifiers that is compatible with both types.
6666       Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
6667                                                   Q2.getCVRUQualifiers());
6668 
6669       // Under one level of pointer or pointer-to-member, we can change to an
6670       // unambiguous compatible address space.
6671       if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
6672         Quals.setAddressSpace(Q1.getAddressSpace());
6673       } else if (Steps.size() == 1) {
6674         bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
6675         bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
6676         if (MaybeQ1 == MaybeQ2) {
6677           // Exception for ptr size address spaces. Should be able to choose
6678           // either address space during comparison.
6679           if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
6680               isPtrSizeAddressSpace(Q2.getAddressSpace()))
6681             MaybeQ1 = true;
6682           else
6683             return QualType(); // No unique best address space.
6684         }
6685         Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
6686                                       : Q2.getAddressSpace());
6687       } else {
6688         return QualType();
6689       }
6690 
6691       // FIXME: In C, we merge __strong and none to __strong at the top level.
6692       if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
6693         Quals.setObjCGCAttr(Q1.getObjCGCAttr());
6694       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6695         assert(Steps.size() == 1);
6696       else
6697         return QualType();
6698 
6699       // Mismatched lifetime qualifiers never compatibly include each other.
6700       if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
6701         Quals.setObjCLifetime(Q1.getObjCLifetime());
6702       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6703         assert(Steps.size() == 1);
6704       else
6705         return QualType();
6706 
6707       Steps.back().Quals = Quals;
6708       if (Q1 != Quals || Q2 != Quals)
6709         NeedConstBefore = Steps.size() - 1;
6710     }
6711 
6712     // FIXME: Can we unify the following with UnwrapSimilarTypes?
6713 
6714     const ArrayType *Arr1, *Arr2;
6715     if ((Arr1 = Context.getAsArrayType(Composite1)) &&
6716         (Arr2 = Context.getAsArrayType(Composite2))) {
6717       auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
6718       auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
6719       if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
6720         Composite1 = Arr1->getElementType();
6721         Composite2 = Arr2->getElementType();
6722         Steps.emplace_back(Step::Array, CAT1);
6723         continue;
6724       }
6725       bool IAT1 = isa<IncompleteArrayType>(Arr1);
6726       bool IAT2 = isa<IncompleteArrayType>(Arr2);
6727       if ((IAT1 && IAT2) ||
6728           (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
6729            ((bool)CAT1 != (bool)CAT2) &&
6730            (Steps.empty() || Steps.back().K != Step::Array))) {
6731         // In C++20 onwards, we can unify an array of N T with an array of
6732         // a different or unknown bound. But we can't form an array whose
6733         // element type is an array of unknown bound by doing so.
6734         Composite1 = Arr1->getElementType();
6735         Composite2 = Arr2->getElementType();
6736         Steps.emplace_back(Step::Array);
6737         if (CAT1 || CAT2)
6738           NeedConstBefore = Steps.size();
6739         continue;
6740       }
6741     }
6742 
6743     const PointerType *Ptr1, *Ptr2;
6744     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
6745         (Ptr2 = Composite2->getAs<PointerType>())) {
6746       Composite1 = Ptr1->getPointeeType();
6747       Composite2 = Ptr2->getPointeeType();
6748       Steps.emplace_back(Step::Pointer);
6749       continue;
6750     }
6751 
6752     const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
6753     if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
6754         (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
6755       Composite1 = ObjPtr1->getPointeeType();
6756       Composite2 = ObjPtr2->getPointeeType();
6757       Steps.emplace_back(Step::ObjCPointer);
6758       continue;
6759     }
6760 
6761     const MemberPointerType *MemPtr1, *MemPtr2;
6762     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
6763         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
6764       Composite1 = MemPtr1->getPointeeType();
6765       Composite2 = MemPtr2->getPointeeType();
6766 
6767       // At the top level, we can perform a base-to-derived pointer-to-member
6768       // conversion:
6769       //
6770       //  - [...] where C1 is reference-related to C2 or C2 is
6771       //    reference-related to C1
6772       //
6773       // (Note that the only kinds of reference-relatedness in scope here are
6774       // "same type or derived from".) At any other level, the class must
6775       // exactly match.
6776       const Type *Class = nullptr;
6777       QualType Cls1(MemPtr1->getClass(), 0);
6778       QualType Cls2(MemPtr2->getClass(), 0);
6779       if (Context.hasSameType(Cls1, Cls2))
6780         Class = MemPtr1->getClass();
6781       else if (Steps.empty())
6782         Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
6783                 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
6784       if (!Class)
6785         return QualType();
6786 
6787       Steps.emplace_back(Step::MemberPointer, Class);
6788       continue;
6789     }
6790 
6791     // Special case: at the top level, we can decompose an Objective-C pointer
6792     // and a 'cv void *'. Unify the qualifiers.
6793     if (Steps.empty() && ((Composite1->isVoidPointerType() &&
6794                            Composite2->isObjCObjectPointerType()) ||
6795                           (Composite1->isObjCObjectPointerType() &&
6796                            Composite2->isVoidPointerType()))) {
6797       Composite1 = Composite1->getPointeeType();
6798       Composite2 = Composite2->getPointeeType();
6799       Steps.emplace_back(Step::Pointer);
6800       continue;
6801     }
6802 
6803     // FIXME: block pointer types?
6804 
6805     // Cannot unwrap any more types.
6806     break;
6807   }
6808 
6809   //  - if T1 or T2 is "pointer to noexcept function" and the other type is
6810   //    "pointer to function", where the function types are otherwise the same,
6811   //    "pointer to function";
6812   //  - if T1 or T2 is "pointer to member of C1 of type function", the other
6813   //    type is "pointer to member of C2 of type noexcept function", and C1
6814   //    is reference-related to C2 or C2 is reference-related to C1, where
6815   //    the function types are otherwise the same, "pointer to member of C2 of
6816   //    type function" or "pointer to member of C1 of type function",
6817   //    respectively;
6818   //
6819   // We also support 'noreturn' here, so as a Clang extension we generalize the
6820   // above to:
6821   //
6822   //  - [Clang] If T1 and T2 are both of type "pointer to function" or
6823   //    "pointer to member function" and the pointee types can be unified
6824   //    by a function pointer conversion, that conversion is applied
6825   //    before checking the following rules.
6826   //
6827   // We've already unwrapped down to the function types, and we want to merge
6828   // rather than just convert, so do this ourselves rather than calling
6829   // IsFunctionConversion.
6830   //
6831   // FIXME: In order to match the standard wording as closely as possible, we
6832   // currently only do this under a single level of pointers. Ideally, we would
6833   // allow this in general, and set NeedConstBefore to the relevant depth on
6834   // the side(s) where we changed anything. If we permit that, we should also
6835   // consider this conversion when determining type similarity and model it as
6836   // a qualification conversion.
6837   if (Steps.size() == 1) {
6838     if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
6839       if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
6840         FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
6841         FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
6842 
6843         // The result is noreturn if both operands are.
6844         bool Noreturn =
6845             EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
6846         EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
6847         EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
6848 
6849         // The result is nothrow if both operands are.
6850         SmallVector<QualType, 8> ExceptionTypeStorage;
6851         EPI1.ExceptionSpec = EPI2.ExceptionSpec =
6852             mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec,
6853                                 ExceptionTypeStorage);
6854 
6855         Composite1 = Context.getFunctionType(FPT1->getReturnType(),
6856                                              FPT1->getParamTypes(), EPI1);
6857         Composite2 = Context.getFunctionType(FPT2->getReturnType(),
6858                                              FPT2->getParamTypes(), EPI2);
6859       }
6860     }
6861   }
6862 
6863   // There are some more conversions we can perform under exactly one pointer.
6864   if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
6865       !Context.hasSameType(Composite1, Composite2)) {
6866     //  - if T1 or T2 is "pointer to cv1 void" and the other type is
6867     //    "pointer to cv2 T", where T is an object type or void,
6868     //    "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
6869     if (Composite1->isVoidType() && Composite2->isObjectType())
6870       Composite2 = Composite1;
6871     else if (Composite2->isVoidType() && Composite1->isObjectType())
6872       Composite1 = Composite2;
6873     //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6874     //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6875     //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and
6876     //    T1, respectively;
6877     //
6878     // The "similar type" handling covers all of this except for the "T1 is a
6879     // base class of T2" case in the definition of reference-related.
6880     else if (IsDerivedFrom(Loc, Composite1, Composite2))
6881       Composite1 = Composite2;
6882     else if (IsDerivedFrom(Loc, Composite2, Composite1))
6883       Composite2 = Composite1;
6884   }
6885 
6886   // At this point, either the inner types are the same or we have failed to
6887   // find a composite pointer type.
6888   if (!Context.hasSameType(Composite1, Composite2))
6889     return QualType();
6890 
6891   // Per C++ [conv.qual]p3, add 'const' to every level before the last
6892   // differing qualifier.
6893   for (unsigned I = 0; I != NeedConstBefore; ++I)
6894     Steps[I].Quals.addConst();
6895 
6896   // Rebuild the composite type.
6897   QualType Composite = Composite1;
6898   for (auto &S : llvm::reverse(Steps))
6899     Composite = S.rebuild(Context, Composite);
6900 
6901   if (ConvertArgs) {
6902     // Convert the expressions to the composite pointer type.
6903     InitializedEntity Entity =
6904         InitializedEntity::InitializeTemporary(Composite);
6905     InitializationKind Kind =
6906         InitializationKind::CreateCopy(Loc, SourceLocation());
6907 
6908     InitializationSequence E1ToC(*this, Entity, Kind, E1);
6909     if (!E1ToC)
6910       return QualType();
6911 
6912     InitializationSequence E2ToC(*this, Entity, Kind, E2);
6913     if (!E2ToC)
6914       return QualType();
6915 
6916     // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
6917     ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
6918     if (E1Result.isInvalid())
6919       return QualType();
6920     E1 = E1Result.get();
6921 
6922     ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
6923     if (E2Result.isInvalid())
6924       return QualType();
6925     E2 = E2Result.get();
6926   }
6927 
6928   return Composite;
6929 }
6930 
6931 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
6932   if (!E)
6933     return ExprError();
6934 
6935   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
6936 
6937   // If the result is a glvalue, we shouldn't bind it.
6938   if (E->isGLValue())
6939     return E;
6940 
6941   // In ARC, calls that return a retainable type can return retained,
6942   // in which case we have to insert a consuming cast.
6943   if (getLangOpts().ObjCAutoRefCount &&
6944       E->getType()->isObjCRetainableType()) {
6945 
6946     bool ReturnsRetained;
6947 
6948     // For actual calls, we compute this by examining the type of the
6949     // called value.
6950     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
6951       Expr *Callee = Call->getCallee()->IgnoreParens();
6952       QualType T = Callee->getType();
6953 
6954       if (T == Context.BoundMemberTy) {
6955         // Handle pointer-to-members.
6956         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
6957           T = BinOp->getRHS()->getType();
6958         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
6959           T = Mem->getMemberDecl()->getType();
6960       }
6961 
6962       if (const PointerType *Ptr = T->getAs<PointerType>())
6963         T = Ptr->getPointeeType();
6964       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
6965         T = Ptr->getPointeeType();
6966       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
6967         T = MemPtr->getPointeeType();
6968 
6969       auto *FTy = T->castAs<FunctionType>();
6970       ReturnsRetained = FTy->getExtInfo().getProducesResult();
6971 
6972     // ActOnStmtExpr arranges things so that StmtExprs of retainable
6973     // type always produce a +1 object.
6974     } else if (isa<StmtExpr>(E)) {
6975       ReturnsRetained = true;
6976 
6977     // We hit this case with the lambda conversion-to-block optimization;
6978     // we don't want any extra casts here.
6979     } else if (isa<CastExpr>(E) &&
6980                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
6981       return E;
6982 
6983     // For message sends and property references, we try to find an
6984     // actual method.  FIXME: we should infer retention by selector in
6985     // cases where we don't have an actual method.
6986     } else {
6987       ObjCMethodDecl *D = nullptr;
6988       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
6989         D = Send->getMethodDecl();
6990       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
6991         D = BoxedExpr->getBoxingMethod();
6992       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
6993         // Don't do reclaims if we're using the zero-element array
6994         // constant.
6995         if (ArrayLit->getNumElements() == 0 &&
6996             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6997           return E;
6998 
6999         D = ArrayLit->getArrayWithObjectsMethod();
7000       } else if (ObjCDictionaryLiteral *DictLit
7001                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
7002         // Don't do reclaims if we're using the zero-element dictionary
7003         // constant.
7004         if (DictLit->getNumElements() == 0 &&
7005             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7006           return E;
7007 
7008         D = DictLit->getDictWithObjectsMethod();
7009       }
7010 
7011       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7012 
7013       // Don't do reclaims on performSelector calls; despite their
7014       // return type, the invoked method doesn't necessarily actually
7015       // return an object.
7016       if (!ReturnsRetained &&
7017           D && D->getMethodFamily() == OMF_performSelector)
7018         return E;
7019     }
7020 
7021     // Don't reclaim an object of Class type.
7022     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7023       return E;
7024 
7025     Cleanup.setExprNeedsCleanups(true);
7026 
7027     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7028                                    : CK_ARCReclaimReturnedObject);
7029     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
7030                                     VK_PRValue, FPOptionsOverride());
7031   }
7032 
7033   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7034     Cleanup.setExprNeedsCleanups(true);
7035 
7036   if (!getLangOpts().CPlusPlus)
7037     return E;
7038 
7039   // Search for the base element type (cf. ASTContext::getBaseElementType) with
7040   // a fast path for the common case that the type is directly a RecordType.
7041   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7042   const RecordType *RT = nullptr;
7043   while (!RT) {
7044     switch (T->getTypeClass()) {
7045     case Type::Record:
7046       RT = cast<RecordType>(T);
7047       break;
7048     case Type::ConstantArray:
7049     case Type::IncompleteArray:
7050     case Type::VariableArray:
7051     case Type::DependentSizedArray:
7052       T = cast<ArrayType>(T)->getElementType().getTypePtr();
7053       break;
7054     default:
7055       return E;
7056     }
7057   }
7058 
7059   // That should be enough to guarantee that this type is complete, if we're
7060   // not processing a decltype expression.
7061   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7062   if (RD->isInvalidDecl() || RD->isDependentContext())
7063     return E;
7064 
7065   bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7066                     ExpressionEvaluationContextRecord::EK_Decltype;
7067   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7068 
7069   if (Destructor) {
7070     MarkFunctionReferenced(E->getExprLoc(), Destructor);
7071     CheckDestructorAccess(E->getExprLoc(), Destructor,
7072                           PDiag(diag::err_access_dtor_temp)
7073                             << E->getType());
7074     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7075       return ExprError();
7076 
7077     // If destructor is trivial, we can avoid the extra copy.
7078     if (Destructor->isTrivial())
7079       return E;
7080 
7081     // We need a cleanup, but we don't need to remember the temporary.
7082     Cleanup.setExprNeedsCleanups(true);
7083   }
7084 
7085   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7086   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7087 
7088   if (IsDecltype)
7089     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7090 
7091   return Bind;
7092 }
7093 
7094 ExprResult
7095 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7096   if (SubExpr.isInvalid())
7097     return ExprError();
7098 
7099   return MaybeCreateExprWithCleanups(SubExpr.get());
7100 }
7101 
7102 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7103   assert(SubExpr && "subexpression can't be null!");
7104 
7105   CleanupVarDeclMarking();
7106 
7107   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7108   assert(ExprCleanupObjects.size() >= FirstCleanup);
7109   assert(Cleanup.exprNeedsCleanups() ||
7110          ExprCleanupObjects.size() == FirstCleanup);
7111   if (!Cleanup.exprNeedsCleanups())
7112     return SubExpr;
7113 
7114   auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7115                                      ExprCleanupObjects.size() - FirstCleanup);
7116 
7117   auto *E = ExprWithCleanups::Create(
7118       Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7119   DiscardCleanupsInEvaluationContext();
7120 
7121   return E;
7122 }
7123 
7124 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7125   assert(SubStmt && "sub-statement can't be null!");
7126 
7127   CleanupVarDeclMarking();
7128 
7129   if (!Cleanup.exprNeedsCleanups())
7130     return SubStmt;
7131 
7132   // FIXME: In order to attach the temporaries, wrap the statement into
7133   // a StmtExpr; currently this is only used for asm statements.
7134   // This is hacky, either create a new CXXStmtWithTemporaries statement or
7135   // a new AsmStmtWithTemporaries.
7136   CompoundStmt *CompStmt = CompoundStmt::Create(
7137       Context, SubStmt, SourceLocation(), SourceLocation());
7138   Expr *E = new (Context)
7139       StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7140                /*FIXME TemplateDepth=*/0);
7141   return MaybeCreateExprWithCleanups(E);
7142 }
7143 
7144 /// Process the expression contained within a decltype. For such expressions,
7145 /// certain semantic checks on temporaries are delayed until this point, and
7146 /// are omitted for the 'topmost' call in the decltype expression. If the
7147 /// topmost call bound a temporary, strip that temporary off the expression.
7148 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7149   assert(ExprEvalContexts.back().ExprContext ==
7150              ExpressionEvaluationContextRecord::EK_Decltype &&
7151          "not in a decltype expression");
7152 
7153   ExprResult Result = CheckPlaceholderExpr(E);
7154   if (Result.isInvalid())
7155     return ExprError();
7156   E = Result.get();
7157 
7158   // C++11 [expr.call]p11:
7159   //   If a function call is a prvalue of object type,
7160   // -- if the function call is either
7161   //   -- the operand of a decltype-specifier, or
7162   //   -- the right operand of a comma operator that is the operand of a
7163   //      decltype-specifier,
7164   //   a temporary object is not introduced for the prvalue.
7165 
7166   // Recursively rebuild ParenExprs and comma expressions to strip out the
7167   // outermost CXXBindTemporaryExpr, if any.
7168   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7169     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7170     if (SubExpr.isInvalid())
7171       return ExprError();
7172     if (SubExpr.get() == PE->getSubExpr())
7173       return E;
7174     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7175   }
7176   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7177     if (BO->getOpcode() == BO_Comma) {
7178       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7179       if (RHS.isInvalid())
7180         return ExprError();
7181       if (RHS.get() == BO->getRHS())
7182         return E;
7183       return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7184                                     BO->getType(), BO->getValueKind(),
7185                                     BO->getObjectKind(), BO->getOperatorLoc(),
7186                                     BO->getFPFeatures(getLangOpts()));
7187     }
7188   }
7189 
7190   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7191   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7192                               : nullptr;
7193   if (TopCall)
7194     E = TopCall;
7195   else
7196     TopBind = nullptr;
7197 
7198   // Disable the special decltype handling now.
7199   ExprEvalContexts.back().ExprContext =
7200       ExpressionEvaluationContextRecord::EK_Other;
7201 
7202   Result = CheckUnevaluatedOperand(E);
7203   if (Result.isInvalid())
7204     return ExprError();
7205   E = Result.get();
7206 
7207   // In MS mode, don't perform any extra checking of call return types within a
7208   // decltype expression.
7209   if (getLangOpts().MSVCCompat)
7210     return E;
7211 
7212   // Perform the semantic checks we delayed until this point.
7213   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7214        I != N; ++I) {
7215     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7216     if (Call == TopCall)
7217       continue;
7218 
7219     if (CheckCallReturnType(Call->getCallReturnType(Context),
7220                             Call->getBeginLoc(), Call, Call->getDirectCallee()))
7221       return ExprError();
7222   }
7223 
7224   // Now all relevant types are complete, check the destructors are accessible
7225   // and non-deleted, and annotate them on the temporaries.
7226   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7227        I != N; ++I) {
7228     CXXBindTemporaryExpr *Bind =
7229       ExprEvalContexts.back().DelayedDecltypeBinds[I];
7230     if (Bind == TopBind)
7231       continue;
7232 
7233     CXXTemporary *Temp = Bind->getTemporary();
7234 
7235     CXXRecordDecl *RD =
7236       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7237     CXXDestructorDecl *Destructor = LookupDestructor(RD);
7238     Temp->setDestructor(Destructor);
7239 
7240     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7241     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7242                           PDiag(diag::err_access_dtor_temp)
7243                             << Bind->getType());
7244     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7245       return ExprError();
7246 
7247     // We need a cleanup, but we don't need to remember the temporary.
7248     Cleanup.setExprNeedsCleanups(true);
7249   }
7250 
7251   // Possibly strip off the top CXXBindTemporaryExpr.
7252   return E;
7253 }
7254 
7255 /// Note a set of 'operator->' functions that were used for a member access.
7256 static void noteOperatorArrows(Sema &S,
7257                                ArrayRef<FunctionDecl *> OperatorArrows) {
7258   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7259   // FIXME: Make this configurable?
7260   unsigned Limit = 9;
7261   if (OperatorArrows.size() > Limit) {
7262     // Produce Limit-1 normal notes and one 'skipping' note.
7263     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7264     SkipCount = OperatorArrows.size() - (Limit - 1);
7265   }
7266 
7267   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7268     if (I == SkipStart) {
7269       S.Diag(OperatorArrows[I]->getLocation(),
7270              diag::note_operator_arrows_suppressed)
7271           << SkipCount;
7272       I += SkipCount;
7273     } else {
7274       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7275           << OperatorArrows[I]->getCallResultType();
7276       ++I;
7277     }
7278   }
7279 }
7280 
7281 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7282                                               SourceLocation OpLoc,
7283                                               tok::TokenKind OpKind,
7284                                               ParsedType &ObjectType,
7285                                               bool &MayBePseudoDestructor) {
7286   // Since this might be a postfix expression, get rid of ParenListExprs.
7287   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7288   if (Result.isInvalid()) return ExprError();
7289   Base = Result.get();
7290 
7291   Result = CheckPlaceholderExpr(Base);
7292   if (Result.isInvalid()) return ExprError();
7293   Base = Result.get();
7294 
7295   QualType BaseType = Base->getType();
7296   MayBePseudoDestructor = false;
7297   if (BaseType->isDependentType()) {
7298     // If we have a pointer to a dependent type and are using the -> operator,
7299     // the object type is the type that the pointer points to. We might still
7300     // have enough information about that type to do something useful.
7301     if (OpKind == tok::arrow)
7302       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7303         BaseType = Ptr->getPointeeType();
7304 
7305     ObjectType = ParsedType::make(BaseType);
7306     MayBePseudoDestructor = true;
7307     return Base;
7308   }
7309 
7310   // C++ [over.match.oper]p8:
7311   //   [...] When operator->returns, the operator-> is applied  to the value
7312   //   returned, with the original second operand.
7313   if (OpKind == tok::arrow) {
7314     QualType StartingType = BaseType;
7315     bool NoArrowOperatorFound = false;
7316     bool FirstIteration = true;
7317     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7318     // The set of types we've considered so far.
7319     llvm::SmallPtrSet<CanQualType,8> CTypes;
7320     SmallVector<FunctionDecl*, 8> OperatorArrows;
7321     CTypes.insert(Context.getCanonicalType(BaseType));
7322 
7323     while (BaseType->isRecordType()) {
7324       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7325         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7326           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7327         noteOperatorArrows(*this, OperatorArrows);
7328         Diag(OpLoc, diag::note_operator_arrow_depth)
7329           << getLangOpts().ArrowDepth;
7330         return ExprError();
7331       }
7332 
7333       Result = BuildOverloadedArrowExpr(
7334           S, Base, OpLoc,
7335           // When in a template specialization and on the first loop iteration,
7336           // potentially give the default diagnostic (with the fixit in a
7337           // separate note) instead of having the error reported back to here
7338           // and giving a diagnostic with a fixit attached to the error itself.
7339           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7340               ? nullptr
7341               : &NoArrowOperatorFound);
7342       if (Result.isInvalid()) {
7343         if (NoArrowOperatorFound) {
7344           if (FirstIteration) {
7345             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7346               << BaseType << 1 << Base->getSourceRange()
7347               << FixItHint::CreateReplacement(OpLoc, ".");
7348             OpKind = tok::period;
7349             break;
7350           }
7351           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7352             << BaseType << Base->getSourceRange();
7353           CallExpr *CE = dyn_cast<CallExpr>(Base);
7354           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7355             Diag(CD->getBeginLoc(),
7356                  diag::note_member_reference_arrow_from_operator_arrow);
7357           }
7358         }
7359         return ExprError();
7360       }
7361       Base = Result.get();
7362       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7363         OperatorArrows.push_back(OpCall->getDirectCallee());
7364       BaseType = Base->getType();
7365       CanQualType CBaseType = Context.getCanonicalType(BaseType);
7366       if (!CTypes.insert(CBaseType).second) {
7367         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7368         noteOperatorArrows(*this, OperatorArrows);
7369         return ExprError();
7370       }
7371       FirstIteration = false;
7372     }
7373 
7374     if (OpKind == tok::arrow) {
7375       if (BaseType->isPointerType())
7376         BaseType = BaseType->getPointeeType();
7377       else if (auto *AT = Context.getAsArrayType(BaseType))
7378         BaseType = AT->getElementType();
7379     }
7380   }
7381 
7382   // Objective-C properties allow "." access on Objective-C pointer types,
7383   // so adjust the base type to the object type itself.
7384   if (BaseType->isObjCObjectPointerType())
7385     BaseType = BaseType->getPointeeType();
7386 
7387   // C++ [basic.lookup.classref]p2:
7388   //   [...] If the type of the object expression is of pointer to scalar
7389   //   type, the unqualified-id is looked up in the context of the complete
7390   //   postfix-expression.
7391   //
7392   // This also indicates that we could be parsing a pseudo-destructor-name.
7393   // Note that Objective-C class and object types can be pseudo-destructor
7394   // expressions or normal member (ivar or property) access expressions, and
7395   // it's legal for the type to be incomplete if this is a pseudo-destructor
7396   // call.  We'll do more incomplete-type checks later in the lookup process,
7397   // so just skip this check for ObjC types.
7398   if (!BaseType->isRecordType()) {
7399     ObjectType = ParsedType::make(BaseType);
7400     MayBePseudoDestructor = true;
7401     return Base;
7402   }
7403 
7404   // The object type must be complete (or dependent), or
7405   // C++11 [expr.prim.general]p3:
7406   //   Unlike the object expression in other contexts, *this is not required to
7407   //   be of complete type for purposes of class member access (5.2.5) outside
7408   //   the member function body.
7409   if (!BaseType->isDependentType() &&
7410       !isThisOutsideMemberFunctionBody(BaseType) &&
7411       RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
7412     return ExprError();
7413 
7414   // C++ [basic.lookup.classref]p2:
7415   //   If the id-expression in a class member access (5.2.5) is an
7416   //   unqualified-id, and the type of the object expression is of a class
7417   //   type C (or of pointer to a class type C), the unqualified-id is looked
7418   //   up in the scope of class C. [...]
7419   ObjectType = ParsedType::make(BaseType);
7420   return Base;
7421 }
7422 
7423 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7424                        tok::TokenKind &OpKind, SourceLocation OpLoc) {
7425   if (Base->hasPlaceholderType()) {
7426     ExprResult result = S.CheckPlaceholderExpr(Base);
7427     if (result.isInvalid()) return true;
7428     Base = result.get();
7429   }
7430   ObjectType = Base->getType();
7431 
7432   // C++ [expr.pseudo]p2:
7433   //   The left-hand side of the dot operator shall be of scalar type. The
7434   //   left-hand side of the arrow operator shall be of pointer to scalar type.
7435   //   This scalar type is the object type.
7436   // Note that this is rather different from the normal handling for the
7437   // arrow operator.
7438   if (OpKind == tok::arrow) {
7439     // The operator requires a prvalue, so perform lvalue conversions.
7440     // Only do this if we might plausibly end with a pointer, as otherwise
7441     // this was likely to be intended to be a '.'.
7442     if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7443         ObjectType->isFunctionType()) {
7444       ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
7445       if (BaseResult.isInvalid())
7446         return true;
7447       Base = BaseResult.get();
7448       ObjectType = Base->getType();
7449     }
7450 
7451     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7452       ObjectType = Ptr->getPointeeType();
7453     } else if (!Base->isTypeDependent()) {
7454       // The user wrote "p->" when they probably meant "p."; fix it.
7455       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7456         << ObjectType << true
7457         << FixItHint::CreateReplacement(OpLoc, ".");
7458       if (S.isSFINAEContext())
7459         return true;
7460 
7461       OpKind = tok::period;
7462     }
7463   }
7464 
7465   return false;
7466 }
7467 
7468 /// Check if it's ok to try and recover dot pseudo destructor calls on
7469 /// pointer objects.
7470 static bool
7471 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7472                                                    QualType DestructedType) {
7473   // If this is a record type, check if its destructor is callable.
7474   if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7475     if (RD->hasDefinition())
7476       if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
7477         return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7478     return false;
7479   }
7480 
7481   // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7482   return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7483          DestructedType->isVectorType();
7484 }
7485 
7486 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7487                                            SourceLocation OpLoc,
7488                                            tok::TokenKind OpKind,
7489                                            const CXXScopeSpec &SS,
7490                                            TypeSourceInfo *ScopeTypeInfo,
7491                                            SourceLocation CCLoc,
7492                                            SourceLocation TildeLoc,
7493                                          PseudoDestructorTypeStorage Destructed) {
7494   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7495 
7496   QualType ObjectType;
7497   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7498     return ExprError();
7499 
7500   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7501       !ObjectType->isVectorType()) {
7502     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7503       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7504     else {
7505       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7506         << ObjectType << Base->getSourceRange();
7507       return ExprError();
7508     }
7509   }
7510 
7511   // C++ [expr.pseudo]p2:
7512   //   [...] The cv-unqualified versions of the object type and of the type
7513   //   designated by the pseudo-destructor-name shall be the same type.
7514   if (DestructedTypeInfo) {
7515     QualType DestructedType = DestructedTypeInfo->getType();
7516     SourceLocation DestructedTypeStart
7517       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
7518     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7519       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
7520         // Detect dot pseudo destructor calls on pointer objects, e.g.:
7521         //   Foo *foo;
7522         //   foo.~Foo();
7523         if (OpKind == tok::period && ObjectType->isPointerType() &&
7524             Context.hasSameUnqualifiedType(DestructedType,
7525                                            ObjectType->getPointeeType())) {
7526           auto Diagnostic =
7527               Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7528               << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7529 
7530           // Issue a fixit only when the destructor is valid.
7531           if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7532                   *this, DestructedType))
7533             Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
7534 
7535           // Recover by setting the object type to the destructed type and the
7536           // operator to '->'.
7537           ObjectType = DestructedType;
7538           OpKind = tok::arrow;
7539         } else {
7540           Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7541               << ObjectType << DestructedType << Base->getSourceRange()
7542               << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7543 
7544           // Recover by setting the destructed type to the object type.
7545           DestructedType = ObjectType;
7546           DestructedTypeInfo =
7547               Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
7548           Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7549         }
7550       } else if (DestructedType.getObjCLifetime() !=
7551                                                 ObjectType.getObjCLifetime()) {
7552 
7553         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7554           // Okay: just pretend that the user provided the correctly-qualified
7555           // type.
7556         } else {
7557           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7558             << ObjectType << DestructedType << Base->getSourceRange()
7559             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7560         }
7561 
7562         // Recover by setting the destructed type to the object type.
7563         DestructedType = ObjectType;
7564         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
7565                                                            DestructedTypeStart);
7566         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7567       }
7568     }
7569   }
7570 
7571   // C++ [expr.pseudo]p2:
7572   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7573   //   form
7574   //
7575   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7576   //
7577   //   shall designate the same scalar type.
7578   if (ScopeTypeInfo) {
7579     QualType ScopeType = ScopeTypeInfo->getType();
7580     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7581         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
7582 
7583       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
7584            diag::err_pseudo_dtor_type_mismatch)
7585         << ObjectType << ScopeType << Base->getSourceRange()
7586         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
7587 
7588       ScopeType = QualType();
7589       ScopeTypeInfo = nullptr;
7590     }
7591   }
7592 
7593   Expr *Result
7594     = new (Context) CXXPseudoDestructorExpr(Context, Base,
7595                                             OpKind == tok::arrow, OpLoc,
7596                                             SS.getWithLocInContext(Context),
7597                                             ScopeTypeInfo,
7598                                             CCLoc,
7599                                             TildeLoc,
7600                                             Destructed);
7601 
7602   return Result;
7603 }
7604 
7605 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7606                                            SourceLocation OpLoc,
7607                                            tok::TokenKind OpKind,
7608                                            CXXScopeSpec &SS,
7609                                            UnqualifiedId &FirstTypeName,
7610                                            SourceLocation CCLoc,
7611                                            SourceLocation TildeLoc,
7612                                            UnqualifiedId &SecondTypeName) {
7613   assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7614           FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7615          "Invalid first type name in pseudo-destructor");
7616   assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7617           SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7618          "Invalid second type name in pseudo-destructor");
7619 
7620   QualType ObjectType;
7621   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7622     return ExprError();
7623 
7624   // Compute the object type that we should use for name lookup purposes. Only
7625   // record types and dependent types matter.
7626   ParsedType ObjectTypePtrForLookup;
7627   if (!SS.isSet()) {
7628     if (ObjectType->isRecordType())
7629       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7630     else if (ObjectType->isDependentType())
7631       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7632   }
7633 
7634   // Convert the name of the type being destructed (following the ~) into a
7635   // type (with source-location information).
7636   QualType DestructedType;
7637   TypeSourceInfo *DestructedTypeInfo = nullptr;
7638   PseudoDestructorTypeStorage Destructed;
7639   if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7640     ParsedType T = getTypeName(*SecondTypeName.Identifier,
7641                                SecondTypeName.StartLocation,
7642                                S, &SS, true, false, ObjectTypePtrForLookup,
7643                                /*IsCtorOrDtorName*/true);
7644     if (!T &&
7645         ((SS.isSet() && !computeDeclContext(SS, false)) ||
7646          (!SS.isSet() && ObjectType->isDependentType()))) {
7647       // The name of the type being destroyed is a dependent name, and we
7648       // couldn't find anything useful in scope. Just store the identifier and
7649       // it's location, and we'll perform (qualified) name lookup again at
7650       // template instantiation time.
7651       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7652                                                SecondTypeName.StartLocation);
7653     } else if (!T) {
7654       Diag(SecondTypeName.StartLocation,
7655            diag::err_pseudo_dtor_destructor_non_type)
7656         << SecondTypeName.Identifier << ObjectType;
7657       if (isSFINAEContext())
7658         return ExprError();
7659 
7660       // Recover by assuming we had the right type all along.
7661       DestructedType = ObjectType;
7662     } else
7663       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7664   } else {
7665     // Resolve the template-id to a type.
7666     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7667     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7668                                        TemplateId->NumArgs);
7669     TypeResult T = ActOnTemplateIdType(S,
7670                                        SS,
7671                                        TemplateId->TemplateKWLoc,
7672                                        TemplateId->Template,
7673                                        TemplateId->Name,
7674                                        TemplateId->TemplateNameLoc,
7675                                        TemplateId->LAngleLoc,
7676                                        TemplateArgsPtr,
7677                                        TemplateId->RAngleLoc,
7678                                        /*IsCtorOrDtorName*/true);
7679     if (T.isInvalid() || !T.get()) {
7680       // Recover by assuming we had the right type all along.
7681       DestructedType = ObjectType;
7682     } else
7683       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7684   }
7685 
7686   // If we've performed some kind of recovery, (re-)build the type source
7687   // information.
7688   if (!DestructedType.isNull()) {
7689     if (!DestructedTypeInfo)
7690       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7691                                                   SecondTypeName.StartLocation);
7692     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7693   }
7694 
7695   // Convert the name of the scope type (the type prior to '::') into a type.
7696   TypeSourceInfo *ScopeTypeInfo = nullptr;
7697   QualType ScopeType;
7698   if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7699       FirstTypeName.Identifier) {
7700     if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7701       ParsedType T = getTypeName(*FirstTypeName.Identifier,
7702                                  FirstTypeName.StartLocation,
7703                                  S, &SS, true, false, ObjectTypePtrForLookup,
7704                                  /*IsCtorOrDtorName*/true);
7705       if (!T) {
7706         Diag(FirstTypeName.StartLocation,
7707              diag::err_pseudo_dtor_destructor_non_type)
7708           << FirstTypeName.Identifier << ObjectType;
7709 
7710         if (isSFINAEContext())
7711           return ExprError();
7712 
7713         // Just drop this type. It's unnecessary anyway.
7714         ScopeType = QualType();
7715       } else
7716         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7717     } else {
7718       // Resolve the template-id to a type.
7719       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7720       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7721                                          TemplateId->NumArgs);
7722       TypeResult T = ActOnTemplateIdType(S,
7723                                          SS,
7724                                          TemplateId->TemplateKWLoc,
7725                                          TemplateId->Template,
7726                                          TemplateId->Name,
7727                                          TemplateId->TemplateNameLoc,
7728                                          TemplateId->LAngleLoc,
7729                                          TemplateArgsPtr,
7730                                          TemplateId->RAngleLoc,
7731                                          /*IsCtorOrDtorName*/true);
7732       if (T.isInvalid() || !T.get()) {
7733         // Recover by dropping this type.
7734         ScopeType = QualType();
7735       } else
7736         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
7737     }
7738   }
7739 
7740   if (!ScopeType.isNull() && !ScopeTypeInfo)
7741     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
7742                                                   FirstTypeName.StartLocation);
7743 
7744 
7745   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
7746                                    ScopeTypeInfo, CCLoc, TildeLoc,
7747                                    Destructed);
7748 }
7749 
7750 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7751                                            SourceLocation OpLoc,
7752                                            tok::TokenKind OpKind,
7753                                            SourceLocation TildeLoc,
7754                                            const DeclSpec& DS) {
7755   QualType ObjectType;
7756   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7757     return ExprError();
7758 
7759   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
7760     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
7761     return true;
7762   }
7763 
7764   QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false);
7765 
7766   TypeLocBuilder TLB;
7767   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
7768   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
7769   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
7770   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
7771 
7772   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
7773                                    nullptr, SourceLocation(), TildeLoc,
7774                                    Destructed);
7775 }
7776 
7777 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
7778                                         CXXConversionDecl *Method,
7779                                         bool HadMultipleCandidates) {
7780   // Convert the expression to match the conversion function's implicit object
7781   // parameter.
7782   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
7783                                           FoundDecl, Method);
7784   if (Exp.isInvalid())
7785     return true;
7786 
7787   if (Method->getParent()->isLambda() &&
7788       Method->getConversionType()->isBlockPointerType()) {
7789     // This is a lambda conversion to block pointer; check if the argument
7790     // was a LambdaExpr.
7791     Expr *SubE = E;
7792     CastExpr *CE = dyn_cast<CastExpr>(SubE);
7793     if (CE && CE->getCastKind() == CK_NoOp)
7794       SubE = CE->getSubExpr();
7795     SubE = SubE->IgnoreParens();
7796     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
7797       SubE = BE->getSubExpr();
7798     if (isa<LambdaExpr>(SubE)) {
7799       // For the conversion to block pointer on a lambda expression, we
7800       // construct a special BlockLiteral instead; this doesn't really make
7801       // a difference in ARC, but outside of ARC the resulting block literal
7802       // follows the normal lifetime rules for block literals instead of being
7803       // autoreleased.
7804       PushExpressionEvaluationContext(
7805           ExpressionEvaluationContext::PotentiallyEvaluated);
7806       ExprResult BlockExp = BuildBlockForLambdaConversion(
7807           Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
7808       PopExpressionEvaluationContext();
7809 
7810       // FIXME: This note should be produced by a CodeSynthesisContext.
7811       if (BlockExp.isInvalid())
7812         Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
7813       return BlockExp;
7814     }
7815   }
7816 
7817   MemberExpr *ME =
7818       BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
7819                       NestedNameSpecifierLoc(), SourceLocation(), Method,
7820                       DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
7821                       HadMultipleCandidates, DeclarationNameInfo(),
7822                       Context.BoundMemberTy, VK_PRValue, OK_Ordinary);
7823 
7824   QualType ResultType = Method->getReturnType();
7825   ExprValueKind VK = Expr::getValueKindForType(ResultType);
7826   ResultType = ResultType.getNonLValueExprType(Context);
7827 
7828   CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
7829       Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(),
7830       CurFPFeatureOverrides());
7831 
7832   if (CheckFunctionCall(Method, CE,
7833                         Method->getType()->castAs<FunctionProtoType>()))
7834     return ExprError();
7835 
7836   return CheckForImmediateInvocation(CE, CE->getMethodDecl());
7837 }
7838 
7839 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
7840                                       SourceLocation RParen) {
7841   // If the operand is an unresolved lookup expression, the expression is ill-
7842   // formed per [over.over]p1, because overloaded function names cannot be used
7843   // without arguments except in explicit contexts.
7844   ExprResult R = CheckPlaceholderExpr(Operand);
7845   if (R.isInvalid())
7846     return R;
7847 
7848   R = CheckUnevaluatedOperand(R.get());
7849   if (R.isInvalid())
7850     return ExprError();
7851 
7852   Operand = R.get();
7853 
7854   if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
7855       Operand->HasSideEffects(Context, false)) {
7856     // The expression operand for noexcept is in an unevaluated expression
7857     // context, so side effects could result in unintended consequences.
7858     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
7859   }
7860 
7861   CanThrowResult CanThrow = canThrow(Operand);
7862   return new (Context)
7863       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
7864 }
7865 
7866 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
7867                                    Expr *Operand, SourceLocation RParen) {
7868   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
7869 }
7870 
7871 static void MaybeDecrementCount(
7872     Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
7873   DeclRefExpr *LHS = nullptr;
7874   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7875     if (BO->getLHS()->getType()->isDependentType() ||
7876         BO->getRHS()->getType()->isDependentType()) {
7877       if (BO->getOpcode() != BO_Assign)
7878         return;
7879     } else if (!BO->isAssignmentOp())
7880       return;
7881     LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
7882   } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
7883     if (COCE->getOperator() != OO_Equal)
7884       return;
7885     LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
7886   }
7887   if (!LHS)
7888     return;
7889   VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
7890   if (!VD)
7891     return;
7892   auto iter = RefsMinusAssignments.find(VD);
7893   if (iter == RefsMinusAssignments.end())
7894     return;
7895   iter->getSecond()--;
7896 }
7897 
7898 /// Perform the conversions required for an expression used in a
7899 /// context that ignores the result.
7900 ExprResult Sema::IgnoredValueConversions(Expr *E) {
7901   MaybeDecrementCount(E, RefsMinusAssignments);
7902 
7903   if (E->hasPlaceholderType()) {
7904     ExprResult result = CheckPlaceholderExpr(E);
7905     if (result.isInvalid()) return E;
7906     E = result.get();
7907   }
7908 
7909   // C99 6.3.2.1:
7910   //   [Except in specific positions,] an lvalue that does not have
7911   //   array type is converted to the value stored in the
7912   //   designated object (and is no longer an lvalue).
7913   if (E->isPRValue()) {
7914     // In C, function designators (i.e. expressions of function type)
7915     // are r-values, but we still want to do function-to-pointer decay
7916     // on them.  This is both technically correct and convenient for
7917     // some clients.
7918     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
7919       return DefaultFunctionArrayConversion(E);
7920 
7921     return E;
7922   }
7923 
7924   if (getLangOpts().CPlusPlus) {
7925     // The C++11 standard defines the notion of a discarded-value expression;
7926     // normally, we don't need to do anything to handle it, but if it is a
7927     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
7928     // conversion.
7929     if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
7930       ExprResult Res = DefaultLvalueConversion(E);
7931       if (Res.isInvalid())
7932         return E;
7933       E = Res.get();
7934     } else {
7935       // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7936       // it occurs as a discarded-value expression.
7937       CheckUnusedVolatileAssignment(E);
7938     }
7939 
7940     // C++1z:
7941     //   If the expression is a prvalue after this optional conversion, the
7942     //   temporary materialization conversion is applied.
7943     //
7944     // We skip this step: IR generation is able to synthesize the storage for
7945     // itself in the aggregate case, and adding the extra node to the AST is
7946     // just clutter.
7947     // FIXME: We don't emit lifetime markers for the temporaries due to this.
7948     // FIXME: Do any other AST consumers care about this?
7949     return E;
7950   }
7951 
7952   // GCC seems to also exclude expressions of incomplete enum type.
7953   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
7954     if (!T->getDecl()->isComplete()) {
7955       // FIXME: stupid workaround for a codegen bug!
7956       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
7957       return E;
7958     }
7959   }
7960 
7961   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
7962   if (Res.isInvalid())
7963     return E;
7964   E = Res.get();
7965 
7966   if (!E->getType()->isVoidType())
7967     RequireCompleteType(E->getExprLoc(), E->getType(),
7968                         diag::err_incomplete_type);
7969   return E;
7970 }
7971 
7972 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
7973   // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7974   // it occurs as an unevaluated operand.
7975   CheckUnusedVolatileAssignment(E);
7976 
7977   return E;
7978 }
7979 
7980 // If we can unambiguously determine whether Var can never be used
7981 // in a constant expression, return true.
7982 //  - if the variable and its initializer are non-dependent, then
7983 //    we can unambiguously check if the variable is a constant expression.
7984 //  - if the initializer is not value dependent - we can determine whether
7985 //    it can be used to initialize a constant expression.  If Init can not
7986 //    be used to initialize a constant expression we conclude that Var can
7987 //    never be a constant expression.
7988 //  - FXIME: if the initializer is dependent, we can still do some analysis and
7989 //    identify certain cases unambiguously as non-const by using a Visitor:
7990 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
7991 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
7992 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
7993     ASTContext &Context) {
7994   if (isa<ParmVarDecl>(Var)) return true;
7995   const VarDecl *DefVD = nullptr;
7996 
7997   // If there is no initializer - this can not be a constant expression.
7998   if (!Var->getAnyInitializer(DefVD)) return true;
7999   assert(DefVD);
8000   if (DefVD->isWeak()) return false;
8001   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
8002 
8003   Expr *Init = cast<Expr>(Eval->Value);
8004 
8005   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8006     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8007     // of value-dependent expressions, and use it here to determine whether the
8008     // initializer is a potential constant expression.
8009     return false;
8010   }
8011 
8012   return !Var->isUsableInConstantExpressions(Context);
8013 }
8014 
8015 /// Check if the current lambda has any potential captures
8016 /// that must be captured by any of its enclosing lambdas that are ready to
8017 /// capture. If there is a lambda that can capture a nested
8018 /// potential-capture, go ahead and do so.  Also, check to see if any
8019 /// variables are uncaptureable or do not involve an odr-use so do not
8020 /// need to be captured.
8021 
8022 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8023     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8024 
8025   assert(!S.isUnevaluatedContext());
8026   assert(S.CurContext->isDependentContext());
8027 #ifndef NDEBUG
8028   DeclContext *DC = S.CurContext;
8029   while (DC && isa<CapturedDecl>(DC))
8030     DC = DC->getParent();
8031   assert(
8032       CurrentLSI->CallOperator == DC &&
8033       "The current call operator must be synchronized with Sema's CurContext");
8034 #endif // NDEBUG
8035 
8036   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8037 
8038   // All the potentially captureable variables in the current nested
8039   // lambda (within a generic outer lambda), must be captured by an
8040   // outer lambda that is enclosed within a non-dependent context.
8041   CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) {
8042     // If the variable is clearly identified as non-odr-used and the full
8043     // expression is not instantiation dependent, only then do we not
8044     // need to check enclosing lambda's for speculative captures.
8045     // For e.g.:
8046     // Even though 'x' is not odr-used, it should be captured.
8047     // int test() {
8048     //   const int x = 10;
8049     //   auto L = [=](auto a) {
8050     //     (void) +x + a;
8051     //   };
8052     // }
8053     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8054         !IsFullExprInstantiationDependent)
8055       return;
8056 
8057     // If we have a capture-capable lambda for the variable, go ahead and
8058     // capture the variable in that lambda (and all its enclosing lambdas).
8059     if (const Optional<unsigned> Index =
8060             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8061                 S.FunctionScopes, Var, S))
8062       S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(),
8063                                           Index.getValue());
8064     const bool IsVarNeverAConstantExpression =
8065         VariableCanNeverBeAConstantExpression(Var, S.Context);
8066     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8067       // This full expression is not instantiation dependent or the variable
8068       // can not be used in a constant expression - which means
8069       // this variable must be odr-used here, so diagnose a
8070       // capture violation early, if the variable is un-captureable.
8071       // This is purely for diagnosing errors early.  Otherwise, this
8072       // error would get diagnosed when the lambda becomes capture ready.
8073       QualType CaptureType, DeclRefType;
8074       SourceLocation ExprLoc = VarExpr->getExprLoc();
8075       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8076                           /*EllipsisLoc*/ SourceLocation(),
8077                           /*BuildAndDiagnose*/false, CaptureType,
8078                           DeclRefType, nullptr)) {
8079         // We will never be able to capture this variable, and we need
8080         // to be able to in any and all instantiations, so diagnose it.
8081         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8082                           /*EllipsisLoc*/ SourceLocation(),
8083                           /*BuildAndDiagnose*/true, CaptureType,
8084                           DeclRefType, nullptr);
8085       }
8086     }
8087   });
8088 
8089   // Check if 'this' needs to be captured.
8090   if (CurrentLSI->hasPotentialThisCapture()) {
8091     // If we have a capture-capable lambda for 'this', go ahead and capture
8092     // 'this' in that lambda (and all its enclosing lambdas).
8093     if (const Optional<unsigned> Index =
8094             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8095                 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8096       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
8097       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8098                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8099                             &FunctionScopeIndexOfCapturableLambda);
8100     }
8101   }
8102 
8103   // Reset all the potential captures at the end of each full-expression.
8104   CurrentLSI->clearPotentialCaptures();
8105 }
8106 
8107 static ExprResult attemptRecovery(Sema &SemaRef,
8108                                   const TypoCorrectionConsumer &Consumer,
8109                                   const TypoCorrection &TC) {
8110   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8111                  Consumer.getLookupResult().getLookupKind());
8112   const CXXScopeSpec *SS = Consumer.getSS();
8113   CXXScopeSpec NewSS;
8114 
8115   // Use an approprate CXXScopeSpec for building the expr.
8116   if (auto *NNS = TC.getCorrectionSpecifier())
8117     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8118   else if (SS && !TC.WillReplaceSpecifier())
8119     NewSS = *SS;
8120 
8121   if (auto *ND = TC.getFoundDecl()) {
8122     R.setLookupName(ND->getDeclName());
8123     R.addDecl(ND);
8124     if (ND->isCXXClassMember()) {
8125       // Figure out the correct naming class to add to the LookupResult.
8126       CXXRecordDecl *Record = nullptr;
8127       if (auto *NNS = TC.getCorrectionSpecifier())
8128         Record = NNS->getAsType()->getAsCXXRecordDecl();
8129       if (!Record)
8130         Record =
8131             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8132       if (Record)
8133         R.setNamingClass(Record);
8134 
8135       // Detect and handle the case where the decl might be an implicit
8136       // member.
8137       bool MightBeImplicitMember;
8138       if (!Consumer.isAddressOfOperand())
8139         MightBeImplicitMember = true;
8140       else if (!NewSS.isEmpty())
8141         MightBeImplicitMember = false;
8142       else if (R.isOverloadedResult())
8143         MightBeImplicitMember = false;
8144       else if (R.isUnresolvableResult())
8145         MightBeImplicitMember = true;
8146       else
8147         MightBeImplicitMember = isa<FieldDecl>(ND) ||
8148                                 isa<IndirectFieldDecl>(ND) ||
8149                                 isa<MSPropertyDecl>(ND);
8150 
8151       if (MightBeImplicitMember)
8152         return SemaRef.BuildPossibleImplicitMemberExpr(
8153             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8154             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8155     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8156       return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
8157                                         Ivar->getIdentifier());
8158     }
8159   }
8160 
8161   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8162                                           /*AcceptInvalidDecl*/ true);
8163 }
8164 
8165 namespace {
8166 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8167   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8168 
8169 public:
8170   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8171       : TypoExprs(TypoExprs) {}
8172   bool VisitTypoExpr(TypoExpr *TE) {
8173     TypoExprs.insert(TE);
8174     return true;
8175   }
8176 };
8177 
8178 class TransformTypos : public TreeTransform<TransformTypos> {
8179   typedef TreeTransform<TransformTypos> BaseTransform;
8180 
8181   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8182                      // process of being initialized.
8183   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8184   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8185   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8186   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8187 
8188   /// Emit diagnostics for all of the TypoExprs encountered.
8189   ///
8190   /// If the TypoExprs were successfully corrected, then the diagnostics should
8191   /// suggest the corrections. Otherwise the diagnostics will not suggest
8192   /// anything (having been passed an empty TypoCorrection).
8193   ///
8194   /// If we've failed to correct due to ambiguous corrections, we need to
8195   /// be sure to pass empty corrections and replacements. Otherwise it's
8196   /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8197   /// and we don't want to report those diagnostics.
8198   void EmitAllDiagnostics(bool IsAmbiguous) {
8199     for (TypoExpr *TE : TypoExprs) {
8200       auto &State = SemaRef.getTypoExprState(TE);
8201       if (State.DiagHandler) {
8202         TypoCorrection TC = IsAmbiguous
8203             ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8204         ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8205 
8206         // Extract the NamedDecl from the transformed TypoExpr and add it to the
8207         // TypoCorrection, replacing the existing decls. This ensures the right
8208         // NamedDecl is used in diagnostics e.g. in the case where overload
8209         // resolution was used to select one from several possible decls that
8210         // had been stored in the TypoCorrection.
8211         if (auto *ND = getDeclFromExpr(
8212                 Replacement.isInvalid() ? nullptr : Replacement.get()))
8213           TC.setCorrectionDecl(ND);
8214 
8215         State.DiagHandler(TC);
8216       }
8217       SemaRef.clearDelayedTypo(TE);
8218     }
8219   }
8220 
8221   /// Try to advance the typo correction state of the first unfinished TypoExpr.
8222   /// We allow advancement of the correction stream by removing it from the
8223   /// TransformCache which allows `TransformTypoExpr` to advance during the
8224   /// next transformation attempt.
8225   ///
8226   /// Any substitution attempts for the previous TypoExprs (which must have been
8227   /// finished) will need to be retried since it's possible that they will now
8228   /// be invalid given the latest advancement.
8229   ///
8230   /// We need to be sure that we're making progress - it's possible that the
8231   /// tree is so malformed that the transform never makes it to the
8232   /// `TransformTypoExpr`.
8233   ///
8234   /// Returns true if there are any untried correction combinations.
8235   bool CheckAndAdvanceTypoExprCorrectionStreams() {
8236     for (auto TE : TypoExprs) {
8237       auto &State = SemaRef.getTypoExprState(TE);
8238       TransformCache.erase(TE);
8239       if (!State.Consumer->hasMadeAnyCorrectionProgress())
8240         return false;
8241       if (!State.Consumer->finished())
8242         return true;
8243       State.Consumer->resetCorrectionStream();
8244     }
8245     return false;
8246   }
8247 
8248   NamedDecl *getDeclFromExpr(Expr *E) {
8249     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8250       E = OverloadResolution[OE];
8251 
8252     if (!E)
8253       return nullptr;
8254     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8255       return DRE->getFoundDecl();
8256     if (auto *ME = dyn_cast<MemberExpr>(E))
8257       return ME->getFoundDecl();
8258     // FIXME: Add any other expr types that could be be seen by the delayed typo
8259     // correction TreeTransform for which the corresponding TypoCorrection could
8260     // contain multiple decls.
8261     return nullptr;
8262   }
8263 
8264   ExprResult TryTransform(Expr *E) {
8265     Sema::SFINAETrap Trap(SemaRef);
8266     ExprResult Res = TransformExpr(E);
8267     if (Trap.hasErrorOccurred() || Res.isInvalid())
8268       return ExprError();
8269 
8270     return ExprFilter(Res.get());
8271   }
8272 
8273   // Since correcting typos may intoduce new TypoExprs, this function
8274   // checks for new TypoExprs and recurses if it finds any. Note that it will
8275   // only succeed if it is able to correct all typos in the given expression.
8276   ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8277     if (Res.isInvalid()) {
8278       return Res;
8279     }
8280     // Check to see if any new TypoExprs were created. If so, we need to recurse
8281     // to check their validity.
8282     Expr *FixedExpr = Res.get();
8283 
8284     auto SavedTypoExprs = std::move(TypoExprs);
8285     auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8286     TypoExprs.clear();
8287     AmbiguousTypoExprs.clear();
8288 
8289     FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8290     if (!TypoExprs.empty()) {
8291       // Recurse to handle newly created TypoExprs. If we're not able to
8292       // handle them, discard these TypoExprs.
8293       ExprResult RecurResult =
8294           RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8295       if (RecurResult.isInvalid()) {
8296         Res = ExprError();
8297         // Recursive corrections didn't work, wipe them away and don't add
8298         // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8299         // since we don't want to clear them twice. Note: it's possible the
8300         // TypoExprs were created recursively and thus won't be in our
8301         // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8302         auto &SemaTypoExprs = SemaRef.TypoExprs;
8303         for (auto TE : TypoExprs) {
8304           TransformCache.erase(TE);
8305           SemaRef.clearDelayedTypo(TE);
8306 
8307           auto SI = find(SemaTypoExprs, TE);
8308           if (SI != SemaTypoExprs.end()) {
8309             SemaTypoExprs.erase(SI);
8310           }
8311         }
8312       } else {
8313         // TypoExpr is valid: add newly created TypoExprs since we were
8314         // able to correct them.
8315         Res = RecurResult;
8316         SavedTypoExprs.set_union(TypoExprs);
8317       }
8318     }
8319 
8320     TypoExprs = std::move(SavedTypoExprs);
8321     AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8322 
8323     return Res;
8324   }
8325 
8326   // Try to transform the given expression, looping through the correction
8327   // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8328   //
8329   // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8330   // true and this method immediately will return an `ExprError`.
8331   ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8332     ExprResult Res;
8333     auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8334     SemaRef.TypoExprs.clear();
8335 
8336     while (true) {
8337       Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8338 
8339       // Recursion encountered an ambiguous correction. This means that our
8340       // correction itself is ambiguous, so stop now.
8341       if (IsAmbiguous)
8342         break;
8343 
8344       // If the transform is still valid after checking for any new typos,
8345       // it's good to go.
8346       if (!Res.isInvalid())
8347         break;
8348 
8349       // The transform was invalid, see if we have any TypoExprs with untried
8350       // correction candidates.
8351       if (!CheckAndAdvanceTypoExprCorrectionStreams())
8352         break;
8353     }
8354 
8355     // If we found a valid result, double check to make sure it's not ambiguous.
8356     if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8357       auto SavedTransformCache =
8358           llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8359 
8360       // Ensure none of the TypoExprs have multiple typo correction candidates
8361       // with the same edit length that pass all the checks and filters.
8362       while (!AmbiguousTypoExprs.empty()) {
8363         auto TE  = AmbiguousTypoExprs.back();
8364 
8365         // TryTransform itself can create new Typos, adding them to the TypoExpr map
8366         // and invalidating our TypoExprState, so always fetch it instead of storing.
8367         SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8368 
8369         TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8370         TypoCorrection Next;
8371         do {
8372           // Fetch the next correction by erasing the typo from the cache and calling
8373           // `TryTransform` which will iterate through corrections in
8374           // `TransformTypoExpr`.
8375           TransformCache.erase(TE);
8376           ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8377 
8378           if (!AmbigRes.isInvalid() || IsAmbiguous) {
8379             SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8380             SavedTransformCache.erase(TE);
8381             Res = ExprError();
8382             IsAmbiguous = true;
8383             break;
8384           }
8385         } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8386                  Next.getEditDistance(false) == TC.getEditDistance(false));
8387 
8388         if (IsAmbiguous)
8389           break;
8390 
8391         AmbiguousTypoExprs.remove(TE);
8392         SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8393         TransformCache[TE] = SavedTransformCache[TE];
8394       }
8395       TransformCache = std::move(SavedTransformCache);
8396     }
8397 
8398     // Wipe away any newly created TypoExprs that we don't know about. Since we
8399     // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8400     // possible if a `TypoExpr` is created during a transformation but then
8401     // fails before we can discover it.
8402     auto &SemaTypoExprs = SemaRef.TypoExprs;
8403     for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8404       auto TE = *Iterator;
8405       auto FI = find(TypoExprs, TE);
8406       if (FI != TypoExprs.end()) {
8407         Iterator++;
8408         continue;
8409       }
8410       SemaRef.clearDelayedTypo(TE);
8411       Iterator = SemaTypoExprs.erase(Iterator);
8412     }
8413     SemaRef.TypoExprs = std::move(SavedTypoExprs);
8414 
8415     return Res;
8416   }
8417 
8418 public:
8419   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8420       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8421 
8422   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8423                                    MultiExprArg Args,
8424                                    SourceLocation RParenLoc,
8425                                    Expr *ExecConfig = nullptr) {
8426     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8427                                                  RParenLoc, ExecConfig);
8428     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8429       if (Result.isUsable()) {
8430         Expr *ResultCall = Result.get();
8431         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8432           ResultCall = BE->getSubExpr();
8433         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8434           OverloadResolution[OE] = CE->getCallee();
8435       }
8436     }
8437     return Result;
8438   }
8439 
8440   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8441 
8442   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8443 
8444   ExprResult Transform(Expr *E) {
8445     bool IsAmbiguous = false;
8446     ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8447 
8448     if (!Res.isUsable())
8449       FindTypoExprs(TypoExprs).TraverseStmt(E);
8450 
8451     EmitAllDiagnostics(IsAmbiguous);
8452 
8453     return Res;
8454   }
8455 
8456   ExprResult TransformTypoExpr(TypoExpr *E) {
8457     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8458     // cached transformation result if there is one and the TypoExpr isn't the
8459     // first one that was encountered.
8460     auto &CacheEntry = TransformCache[E];
8461     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8462       return CacheEntry;
8463     }
8464 
8465     auto &State = SemaRef.getTypoExprState(E);
8466     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
8467 
8468     // For the first TypoExpr and an uncached TypoExpr, find the next likely
8469     // typo correction and return it.
8470     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8471       if (InitDecl && TC.getFoundDecl() == InitDecl)
8472         continue;
8473       // FIXME: If we would typo-correct to an invalid declaration, it's
8474       // probably best to just suppress all errors from this typo correction.
8475       ExprResult NE = State.RecoveryHandler ?
8476           State.RecoveryHandler(SemaRef, E, TC) :
8477           attemptRecovery(SemaRef, *State.Consumer, TC);
8478       if (!NE.isInvalid()) {
8479         // Check whether there may be a second viable correction with the same
8480         // edit distance; if so, remember this TypoExpr may have an ambiguous
8481         // correction so it can be more thoroughly vetted later.
8482         TypoCorrection Next;
8483         if ((Next = State.Consumer->peekNextCorrection()) &&
8484             Next.getEditDistance(false) == TC.getEditDistance(false)) {
8485           AmbiguousTypoExprs.insert(E);
8486         } else {
8487           AmbiguousTypoExprs.remove(E);
8488         }
8489         assert(!NE.isUnset() &&
8490                "Typo was transformed into a valid-but-null ExprResult");
8491         return CacheEntry = NE;
8492       }
8493     }
8494     return CacheEntry = ExprError();
8495   }
8496 };
8497 }
8498 
8499 ExprResult
8500 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8501                                 bool RecoverUncorrectedTypos,
8502                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
8503   // If the current evaluation context indicates there are uncorrected typos
8504   // and the current expression isn't guaranteed to not have typos, try to
8505   // resolve any TypoExpr nodes that might be in the expression.
8506   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8507       (E->isTypeDependent() || E->isValueDependent() ||
8508        E->isInstantiationDependent())) {
8509     auto TyposResolved = DelayedTypos.size();
8510     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8511     TyposResolved -= DelayedTypos.size();
8512     if (Result.isInvalid() || Result.get() != E) {
8513       ExprEvalContexts.back().NumTypos -= TyposResolved;
8514       if (Result.isInvalid() && RecoverUncorrectedTypos) {
8515         struct TyposReplace : TreeTransform<TyposReplace> {
8516           TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8517           ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8518             return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8519                                                     E->getEndLoc(), {});
8520           }
8521         } TT(*this);
8522         return TT.TransformExpr(E);
8523       }
8524       return Result;
8525     }
8526     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
8527   }
8528   return E;
8529 }
8530 
8531 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8532                                      bool DiscardedValue,
8533                                      bool IsConstexpr) {
8534   ExprResult FullExpr = FE;
8535 
8536   if (!FullExpr.get())
8537     return ExprError();
8538 
8539   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
8540     return ExprError();
8541 
8542   if (DiscardedValue) {
8543     // Top-level expressions default to 'id' when we're in a debugger.
8544     if (getLangOpts().DebuggerCastResultToId &&
8545         FullExpr.get()->getType() == Context.UnknownAnyTy) {
8546       FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
8547       if (FullExpr.isInvalid())
8548         return ExprError();
8549     }
8550 
8551     FullExpr = CheckPlaceholderExpr(FullExpr.get());
8552     if (FullExpr.isInvalid())
8553       return ExprError();
8554 
8555     FullExpr = IgnoredValueConversions(FullExpr.get());
8556     if (FullExpr.isInvalid())
8557       return ExprError();
8558 
8559     DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
8560   }
8561 
8562   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
8563                                        /*RecoverUncorrectedTypos=*/true);
8564   if (FullExpr.isInvalid())
8565     return ExprError();
8566 
8567   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
8568 
8569   // At the end of this full expression (which could be a deeply nested
8570   // lambda), if there is a potential capture within the nested lambda,
8571   // have the outer capture-able lambda try and capture it.
8572   // Consider the following code:
8573   // void f(int, int);
8574   // void f(const int&, double);
8575   // void foo() {
8576   //  const int x = 10, y = 20;
8577   //  auto L = [=](auto a) {
8578   //      auto M = [=](auto b) {
8579   //         f(x, b); <-- requires x to be captured by L and M
8580   //         f(y, a); <-- requires y to be captured by L, but not all Ms
8581   //      };
8582   //   };
8583   // }
8584 
8585   // FIXME: Also consider what happens for something like this that involves
8586   // the gnu-extension statement-expressions or even lambda-init-captures:
8587   //   void f() {
8588   //     const int n = 0;
8589   //     auto L =  [&](auto a) {
8590   //       +n + ({ 0; a; });
8591   //     };
8592   //   }
8593   //
8594   // Here, we see +n, and then the full-expression 0; ends, so we don't
8595   // capture n (and instead remove it from our list of potential captures),
8596   // and then the full-expression +n + ({ 0; }); ends, but it's too late
8597   // for us to see that we need to capture n after all.
8598 
8599   LambdaScopeInfo *const CurrentLSI =
8600       getCurLambda(/*IgnoreCapturedRegions=*/true);
8601   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8602   // even if CurContext is not a lambda call operator. Refer to that Bug Report
8603   // for an example of the code that might cause this asynchrony.
8604   // By ensuring we are in the context of a lambda's call operator
8605   // we can fix the bug (we only need to check whether we need to capture
8606   // if we are within a lambda's body); but per the comments in that
8607   // PR, a proper fix would entail :
8608   //   "Alternative suggestion:
8609   //   - Add to Sema an integer holding the smallest (outermost) scope
8610   //     index that we are *lexically* within, and save/restore/set to
8611   //     FunctionScopes.size() in InstantiatingTemplate's
8612   //     constructor/destructor.
8613   //  - Teach the handful of places that iterate over FunctionScopes to
8614   //    stop at the outermost enclosing lexical scope."
8615   DeclContext *DC = CurContext;
8616   while (DC && isa<CapturedDecl>(DC))
8617     DC = DC->getParent();
8618   const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8619   if (IsInLambdaDeclContext && CurrentLSI &&
8620       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8621     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8622                                                               *this);
8623   return MaybeCreateExprWithCleanups(FullExpr);
8624 }
8625 
8626 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8627   if (!FullStmt) return StmtError();
8628 
8629   return MaybeCreateStmtWithCleanups(FullStmt);
8630 }
8631 
8632 Sema::IfExistsResult
8633 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8634                                    CXXScopeSpec &SS,
8635                                    const DeclarationNameInfo &TargetNameInfo) {
8636   DeclarationName TargetName = TargetNameInfo.getName();
8637   if (!TargetName)
8638     return IER_DoesNotExist;
8639 
8640   // If the name itself is dependent, then the result is dependent.
8641   if (TargetName.isDependentName())
8642     return IER_Dependent;
8643 
8644   // Do the redeclaration lookup in the current scope.
8645   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8646                  Sema::NotForRedeclaration);
8647   LookupParsedName(R, S, &SS);
8648   R.suppressDiagnostics();
8649 
8650   switch (R.getResultKind()) {
8651   case LookupResult::Found:
8652   case LookupResult::FoundOverloaded:
8653   case LookupResult::FoundUnresolvedValue:
8654   case LookupResult::Ambiguous:
8655     return IER_Exists;
8656 
8657   case LookupResult::NotFound:
8658     return IER_DoesNotExist;
8659 
8660   case LookupResult::NotFoundInCurrentInstantiation:
8661     return IER_Dependent;
8662   }
8663 
8664   llvm_unreachable("Invalid LookupResult Kind!");
8665 }
8666 
8667 Sema::IfExistsResult
8668 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8669                                    bool IsIfExists, CXXScopeSpec &SS,
8670                                    UnqualifiedId &Name) {
8671   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8672 
8673   // Check for an unexpanded parameter pack.
8674   auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8675   if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8676       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8677     return IER_Error;
8678 
8679   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8680 }
8681 
8682 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
8683   return BuildExprRequirement(E, /*IsSimple=*/true,
8684                               /*NoexceptLoc=*/SourceLocation(),
8685                               /*ReturnTypeRequirement=*/{});
8686 }
8687 
8688 concepts::Requirement *
8689 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
8690                            SourceLocation NameLoc, IdentifierInfo *TypeName,
8691                            TemplateIdAnnotation *TemplateId) {
8692   assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
8693          "Exactly one of TypeName and TemplateId must be specified.");
8694   TypeSourceInfo *TSI = nullptr;
8695   if (TypeName) {
8696     QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc,
8697                                    SS.getWithLocInContext(Context), *TypeName,
8698                                    NameLoc, &TSI, /*DeducedTypeContext=*/false);
8699     if (T.isNull())
8700       return nullptr;
8701   } else {
8702     ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
8703                                TemplateId->NumArgs);
8704     TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
8705                                      TemplateId->TemplateKWLoc,
8706                                      TemplateId->Template, TemplateId->Name,
8707                                      TemplateId->TemplateNameLoc,
8708                                      TemplateId->LAngleLoc, ArgsPtr,
8709                                      TemplateId->RAngleLoc);
8710     if (T.isInvalid())
8711       return nullptr;
8712     if (GetTypeFromParser(T.get(), &TSI).isNull())
8713       return nullptr;
8714   }
8715   return BuildTypeRequirement(TSI);
8716 }
8717 
8718 concepts::Requirement *
8719 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
8720   return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
8721                               /*ReturnTypeRequirement=*/{});
8722 }
8723 
8724 concepts::Requirement *
8725 Sema::ActOnCompoundRequirement(
8726     Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
8727     TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
8728   // C++2a [expr.prim.req.compound] p1.3.3
8729   //   [..] the expression is deduced against an invented function template
8730   //   F [...] F is a void function template with a single type template
8731   //   parameter T declared with the constrained-parameter. Form a new
8732   //   cv-qualifier-seq cv by taking the union of const and volatile specifiers
8733   //   around the constrained-parameter. F has a single parameter whose
8734   //   type-specifier is cv T followed by the abstract-declarator. [...]
8735   //
8736   // The cv part is done in the calling function - we get the concept with
8737   // arguments and the abstract declarator with the correct CV qualification and
8738   // have to synthesize T and the single parameter of F.
8739   auto &II = Context.Idents.get("expr-type");
8740   auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
8741                                               SourceLocation(),
8742                                               SourceLocation(), Depth,
8743                                               /*Index=*/0, &II,
8744                                               /*Typename=*/true,
8745                                               /*ParameterPack=*/false,
8746                                               /*HasTypeConstraint=*/true);
8747 
8748   if (BuildTypeConstraint(SS, TypeConstraint, TParam,
8749                           /*EllpsisLoc=*/SourceLocation(),
8750                           /*AllowUnexpandedPack=*/true))
8751     // Just produce a requirement with no type requirements.
8752     return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
8753 
8754   auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
8755                                             SourceLocation(),
8756                                             ArrayRef<NamedDecl *>(TParam),
8757                                             SourceLocation(),
8758                                             /*RequiresClause=*/nullptr);
8759   return BuildExprRequirement(
8760       E, /*IsSimple=*/false, NoexceptLoc,
8761       concepts::ExprRequirement::ReturnTypeRequirement(TPL));
8762 }
8763 
8764 concepts::ExprRequirement *
8765 Sema::BuildExprRequirement(
8766     Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
8767     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
8768   auto Status = concepts::ExprRequirement::SS_Satisfied;
8769   ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
8770   if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent())
8771     Status = concepts::ExprRequirement::SS_Dependent;
8772   else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
8773     Status = concepts::ExprRequirement::SS_NoexceptNotMet;
8774   else if (ReturnTypeRequirement.isSubstitutionFailure())
8775     Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
8776   else if (ReturnTypeRequirement.isTypeConstraint()) {
8777     // C++2a [expr.prim.req]p1.3.3
8778     //     The immediately-declared constraint ([temp]) of decltype((E)) shall
8779     //     be satisfied.
8780     TemplateParameterList *TPL =
8781         ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
8782     QualType MatchedType =
8783         Context.getReferenceQualifiedType(E).getCanonicalType();
8784     llvm::SmallVector<TemplateArgument, 1> Args;
8785     Args.push_back(TemplateArgument(MatchedType));
8786     TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
8787     MultiLevelTemplateArgumentList MLTAL(TAL);
8788     for (unsigned I = 0; I < TPL->getDepth(); ++I)
8789       MLTAL.addOuterRetainedLevel();
8790     Expr *IDC =
8791         cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint()
8792             ->getImmediatelyDeclaredConstraint();
8793     ExprResult Constraint = SubstExpr(IDC, MLTAL);
8794     assert(!Constraint.isInvalid() &&
8795            "Substitution cannot fail as it is simply putting a type template "
8796            "argument into a concept specialization expression's parameter.");
8797 
8798     SubstitutedConstraintExpr =
8799         cast<ConceptSpecializationExpr>(Constraint.get());
8800     if (!SubstitutedConstraintExpr->isSatisfied())
8801       Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
8802   }
8803   return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
8804                                                  ReturnTypeRequirement, Status,
8805                                                  SubstitutedConstraintExpr);
8806 }
8807 
8808 concepts::ExprRequirement *
8809 Sema::BuildExprRequirement(
8810     concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
8811     bool IsSimple, SourceLocation NoexceptLoc,
8812     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
8813   return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
8814                                                  IsSimple, NoexceptLoc,
8815                                                  ReturnTypeRequirement);
8816 }
8817 
8818 concepts::TypeRequirement *
8819 Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
8820   return new (Context) concepts::TypeRequirement(Type);
8821 }
8822 
8823 concepts::TypeRequirement *
8824 Sema::BuildTypeRequirement(
8825     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
8826   return new (Context) concepts::TypeRequirement(SubstDiag);
8827 }
8828 
8829 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
8830   return BuildNestedRequirement(Constraint);
8831 }
8832 
8833 concepts::NestedRequirement *
8834 Sema::BuildNestedRequirement(Expr *Constraint) {
8835   ConstraintSatisfaction Satisfaction;
8836   if (!Constraint->isInstantiationDependent() &&
8837       CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
8838                                   Constraint->getSourceRange(), Satisfaction))
8839     return nullptr;
8840   return new (Context) concepts::NestedRequirement(Context, Constraint,
8841                                                    Satisfaction);
8842 }
8843 
8844 concepts::NestedRequirement *
8845 Sema::BuildNestedRequirement(
8846     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
8847   return new (Context) concepts::NestedRequirement(SubstDiag);
8848 }
8849 
8850 RequiresExprBodyDecl *
8851 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
8852                              ArrayRef<ParmVarDecl *> LocalParameters,
8853                              Scope *BodyScope) {
8854   assert(BodyScope);
8855 
8856   RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
8857                                                             RequiresKWLoc);
8858 
8859   PushDeclContext(BodyScope, Body);
8860 
8861   for (ParmVarDecl *Param : LocalParameters) {
8862     if (Param->hasDefaultArg())
8863       // C++2a [expr.prim.req] p4
8864       //     [...] A local parameter of a requires-expression shall not have a
8865       //     default argument. [...]
8866       Diag(Param->getDefaultArgRange().getBegin(),
8867            diag::err_requires_expr_local_parameter_default_argument);
8868     // Ignore default argument and move on
8869 
8870     Param->setDeclContext(Body);
8871     // If this has an identifier, add it to the scope stack.
8872     if (Param->getIdentifier()) {
8873       CheckShadow(BodyScope, Param);
8874       PushOnScopeChains(Param, BodyScope);
8875     }
8876   }
8877   return Body;
8878 }
8879 
8880 void Sema::ActOnFinishRequiresExpr() {
8881   assert(CurContext && "DeclContext imbalance!");
8882   CurContext = CurContext->getLexicalParent();
8883   assert(CurContext && "Popped translation unit!");
8884 }
8885 
8886 ExprResult
8887 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc,
8888                         RequiresExprBodyDecl *Body,
8889                         ArrayRef<ParmVarDecl *> LocalParameters,
8890                         ArrayRef<concepts::Requirement *> Requirements,
8891                         SourceLocation ClosingBraceLoc) {
8892   auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters,
8893                                   Requirements, ClosingBraceLoc);
8894   if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
8895     return ExprError();
8896   return RE;
8897 }
8898