xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaExprCXX.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Template.h"
15 #include "clang/Sema/SemaInternal.h"
16 #include "TreeTransform.h"
17 #include "TypeLocBuilder.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/RecursiveASTVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Preprocessor.h"
31 #include "clang/Sema/DeclSpec.h"
32 #include "clang/Sema/Initialization.h"
33 #include "clang/Sema/Lookup.h"
34 #include "clang/Sema/ParsedTemplate.h"
35 #include "clang/Sema/Scope.h"
36 #include "clang/Sema/ScopeInfo.h"
37 #include "clang/Sema/SemaLambda.h"
38 #include "clang/Sema/TemplateDeduction.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/Support/ErrorHandling.h"
42 using namespace clang;
43 using namespace sema;
44 
45 /// Handle the result of the special case name lookup for inheriting
46 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47 /// constructor names in member using declarations, even if 'X' is not the
48 /// name of the corresponding type.
49 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50                                               SourceLocation NameLoc,
51                                               IdentifierInfo &Name) {
52   NestedNameSpecifier *NNS = SS.getScopeRep();
53 
54   // Convert the nested-name-specifier into a type.
55   QualType Type;
56   switch (NNS->getKind()) {
57   case NestedNameSpecifier::TypeSpec:
58   case NestedNameSpecifier::TypeSpecWithTemplate:
59     Type = QualType(NNS->getAsType(), 0);
60     break;
61 
62   case NestedNameSpecifier::Identifier:
63     // Strip off the last layer of the nested-name-specifier and build a
64     // typename type for it.
65     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
66     Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67                                         NNS->getAsIdentifier());
68     break;
69 
70   case NestedNameSpecifier::Global:
71   case NestedNameSpecifier::Super:
72   case NestedNameSpecifier::Namespace:
73   case NestedNameSpecifier::NamespaceAlias:
74     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
75   }
76 
77   // This reference to the type is located entirely at the location of the
78   // final identifier in the qualified-id.
79   return CreateParsedType(Type,
80                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
81 }
82 
83 ParsedType Sema::getConstructorName(IdentifierInfo &II,
84                                     SourceLocation NameLoc,
85                                     Scope *S, CXXScopeSpec &SS,
86                                     bool EnteringContext) {
87   CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
88   assert(CurClass && &II == CurClass->getIdentifier() &&
89          "not a constructor name");
90 
91   // When naming a constructor as a member of a dependent context (eg, in a
92   // friend declaration or an inherited constructor declaration), form an
93   // unresolved "typename" type.
94   if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
95     QualType T = Context.getDependentNameType(ETK_None, SS.getScopeRep(), &II);
96     return ParsedType::make(T);
97   }
98 
99   if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
100     return ParsedType();
101 
102   // Find the injected-class-name declaration. Note that we make no attempt to
103   // diagnose cases where the injected-class-name is shadowed: the only
104   // declaration that can validly shadow the injected-class-name is a
105   // non-static data member, and if the class contains both a non-static data
106   // member and a constructor then it is ill-formed (we check that in
107   // CheckCompletedCXXClass).
108   CXXRecordDecl *InjectedClassName = nullptr;
109   for (NamedDecl *ND : CurClass->lookup(&II)) {
110     auto *RD = dyn_cast<CXXRecordDecl>(ND);
111     if (RD && RD->isInjectedClassName()) {
112       InjectedClassName = RD;
113       break;
114     }
115   }
116   if (!InjectedClassName) {
117     if (!CurClass->isInvalidDecl()) {
118       // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
119       // properly. Work around it here for now.
120       Diag(SS.getLastQualifierNameLoc(),
121            diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
122     }
123     return ParsedType();
124   }
125 
126   QualType T = Context.getTypeDeclType(InjectedClassName);
127   DiagnoseUseOfDecl(InjectedClassName, NameLoc);
128   MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
129 
130   return ParsedType::make(T);
131 }
132 
133 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
134                                    IdentifierInfo &II,
135                                    SourceLocation NameLoc,
136                                    Scope *S, CXXScopeSpec &SS,
137                                    ParsedType ObjectTypePtr,
138                                    bool EnteringContext) {
139   // Determine where to perform name lookup.
140 
141   // FIXME: This area of the standard is very messy, and the current
142   // wording is rather unclear about which scopes we search for the
143   // destructor name; see core issues 399 and 555. Issue 399 in
144   // particular shows where the current description of destructor name
145   // lookup is completely out of line with existing practice, e.g.,
146   // this appears to be ill-formed:
147   //
148   //   namespace N {
149   //     template <typename T> struct S {
150   //       ~S();
151   //     };
152   //   }
153   //
154   //   void f(N::S<int>* s) {
155   //     s->N::S<int>::~S();
156   //   }
157   //
158   // See also PR6358 and PR6359.
159   //
160   // For now, we accept all the cases in which the name given could plausibly
161   // be interpreted as a correct destructor name, issuing off-by-default
162   // extension diagnostics on the cases that don't strictly conform to the
163   // C++20 rules. This basically means we always consider looking in the
164   // nested-name-specifier prefix, the complete nested-name-specifier, and
165   // the scope, and accept if we find the expected type in any of the three
166   // places.
167 
168   if (SS.isInvalid())
169     return nullptr;
170 
171   // Whether we've failed with a diagnostic already.
172   bool Failed = false;
173 
174   llvm::SmallVector<NamedDecl*, 8> FoundDecls;
175   llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
176 
177   // If we have an object type, it's because we are in a
178   // pseudo-destructor-expression or a member access expression, and
179   // we know what type we're looking for.
180   QualType SearchType =
181       ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
182 
183   auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
184     auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
185       auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
186       if (!Type)
187         return false;
188 
189       if (SearchType.isNull() || SearchType->isDependentType())
190         return true;
191 
192       QualType T = Context.getTypeDeclType(Type);
193       return Context.hasSameUnqualifiedType(T, SearchType);
194     };
195 
196     unsigned NumAcceptableResults = 0;
197     for (NamedDecl *D : Found) {
198       if (IsAcceptableResult(D))
199         ++NumAcceptableResults;
200 
201       // Don't list a class twice in the lookup failure diagnostic if it's
202       // found by both its injected-class-name and by the name in the enclosing
203       // scope.
204       if (auto *RD = dyn_cast<CXXRecordDecl>(D))
205         if (RD->isInjectedClassName())
206           D = cast<NamedDecl>(RD->getParent());
207 
208       if (FoundDeclSet.insert(D).second)
209         FoundDecls.push_back(D);
210     }
211 
212     // As an extension, attempt to "fix" an ambiguity by erasing all non-type
213     // results, and all non-matching results if we have a search type. It's not
214     // clear what the right behavior is if destructor lookup hits an ambiguity,
215     // but other compilers do generally accept at least some kinds of
216     // ambiguity.
217     if (Found.isAmbiguous() && NumAcceptableResults == 1) {
218       Diag(NameLoc, diag::ext_dtor_name_ambiguous);
219       LookupResult::Filter F = Found.makeFilter();
220       while (F.hasNext()) {
221         NamedDecl *D = F.next();
222         if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
223           Diag(D->getLocation(), diag::note_destructor_type_here)
224               << Context.getTypeDeclType(TD);
225         else
226           Diag(D->getLocation(), diag::note_destructor_nontype_here);
227 
228         if (!IsAcceptableResult(D))
229           F.erase();
230       }
231       F.done();
232     }
233 
234     if (Found.isAmbiguous())
235       Failed = true;
236 
237     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
238       if (IsAcceptableResult(Type)) {
239         QualType T = Context.getTypeDeclType(Type);
240         MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
241         return CreateParsedType(T,
242                                 Context.getTrivialTypeSourceInfo(T, NameLoc));
243       }
244     }
245 
246     return nullptr;
247   };
248 
249   bool IsDependent = false;
250 
251   auto LookupInObjectType = [&]() -> ParsedType {
252     if (Failed || SearchType.isNull())
253       return nullptr;
254 
255     IsDependent |= SearchType->isDependentType();
256 
257     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
258     DeclContext *LookupCtx = computeDeclContext(SearchType);
259     if (!LookupCtx)
260       return nullptr;
261     LookupQualifiedName(Found, LookupCtx);
262     return CheckLookupResult(Found);
263   };
264 
265   auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
266     if (Failed)
267       return nullptr;
268 
269     IsDependent |= isDependentScopeSpecifier(LookupSS);
270     DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
271     if (!LookupCtx)
272       return nullptr;
273 
274     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
275     if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
276       Failed = true;
277       return nullptr;
278     }
279     LookupQualifiedName(Found, LookupCtx);
280     return CheckLookupResult(Found);
281   };
282 
283   auto LookupInScope = [&]() -> ParsedType {
284     if (Failed || !S)
285       return nullptr;
286 
287     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
288     LookupName(Found, S);
289     return CheckLookupResult(Found);
290   };
291 
292   // C++2a [basic.lookup.qual]p6:
293   //   In a qualified-id of the form
294   //
295   //     nested-name-specifier[opt] type-name :: ~ type-name
296   //
297   //   the second type-name is looked up in the same scope as the first.
298   //
299   // We interpret this as meaning that if you do a dual-scope lookup for the
300   // first name, you also do a dual-scope lookup for the second name, per
301   // C++ [basic.lookup.classref]p4:
302   //
303   //   If the id-expression in a class member access is a qualified-id of the
304   //   form
305   //
306   //     class-name-or-namespace-name :: ...
307   //
308   //   the class-name-or-namespace-name following the . or -> is first looked
309   //   up in the class of the object expression and the name, if found, is used.
310   //   Otherwise, it is looked up in the context of the entire
311   //   postfix-expression.
312   //
313   // This looks in the same scopes as for an unqualified destructor name:
314   //
315   // C++ [basic.lookup.classref]p3:
316   //   If the unqualified-id is ~ type-name, the type-name is looked up
317   //   in the context of the entire postfix-expression. If the type T
318   //   of the object expression is of a class type C, the type-name is
319   //   also looked up in the scope of class C. At least one of the
320   //   lookups shall find a name that refers to cv T.
321   //
322   // FIXME: The intent is unclear here. Should type-name::~type-name look in
323   // the scope anyway if it finds a non-matching name declared in the class?
324   // If both lookups succeed and find a dependent result, which result should
325   // we retain? (Same question for p->~type-name().)
326 
327   if (NestedNameSpecifier *Prefix =
328       SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
329     // This is
330     //
331     //   nested-name-specifier type-name :: ~ type-name
332     //
333     // Look for the second type-name in the nested-name-specifier.
334     CXXScopeSpec PrefixSS;
335     PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
336     if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
337       return T;
338   } else {
339     // This is one of
340     //
341     //   type-name :: ~ type-name
342     //   ~ type-name
343     //
344     // Look in the scope and (if any) the object type.
345     if (ParsedType T = LookupInScope())
346       return T;
347     if (ParsedType T = LookupInObjectType())
348       return T;
349   }
350 
351   if (Failed)
352     return nullptr;
353 
354   if (IsDependent) {
355     // We didn't find our type, but that's OK: it's dependent anyway.
356 
357     // FIXME: What if we have no nested-name-specifier?
358     QualType T = CheckTypenameType(ETK_None, SourceLocation(),
359                                    SS.getWithLocInContext(Context),
360                                    II, NameLoc);
361     return ParsedType::make(T);
362   }
363 
364   // The remaining cases are all non-standard extensions imitating the behavior
365   // of various other compilers.
366   unsigned NumNonExtensionDecls = FoundDecls.size();
367 
368   if (SS.isSet()) {
369     // For compatibility with older broken C++ rules and existing code,
370     //
371     //   nested-name-specifier :: ~ type-name
372     //
373     // also looks for type-name within the nested-name-specifier.
374     if (ParsedType T = LookupInNestedNameSpec(SS)) {
375       Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
376           << SS.getRange()
377           << FixItHint::CreateInsertion(SS.getEndLoc(),
378                                         ("::" + II.getName()).str());
379       return T;
380     }
381 
382     // For compatibility with other compilers and older versions of Clang,
383     //
384     //   nested-name-specifier type-name :: ~ type-name
385     //
386     // also looks for type-name in the scope. Unfortunately, we can't
387     // reasonably apply this fallback for dependent nested-name-specifiers.
388     if (SS.getScopeRep()->getPrefix()) {
389       if (ParsedType T = LookupInScope()) {
390         Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
391             << FixItHint::CreateRemoval(SS.getRange());
392         Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
393             << GetTypeFromParser(T);
394         return T;
395       }
396     }
397   }
398 
399   // We didn't find anything matching; tell the user what we did find (if
400   // anything).
401 
402   // Don't tell the user about declarations we shouldn't have found.
403   FoundDecls.resize(NumNonExtensionDecls);
404 
405   // List types before non-types.
406   std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
407                    [](NamedDecl *A, NamedDecl *B) {
408                      return isa<TypeDecl>(A->getUnderlyingDecl()) >
409                             isa<TypeDecl>(B->getUnderlyingDecl());
410                    });
411 
412   // Suggest a fixit to properly name the destroyed type.
413   auto MakeFixItHint = [&]{
414     const CXXRecordDecl *Destroyed = nullptr;
415     // FIXME: If we have a scope specifier, suggest its last component?
416     if (!SearchType.isNull())
417       Destroyed = SearchType->getAsCXXRecordDecl();
418     else if (S)
419       Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
420     if (Destroyed)
421       return FixItHint::CreateReplacement(SourceRange(NameLoc),
422                                           Destroyed->getNameAsString());
423     return FixItHint();
424   };
425 
426   if (FoundDecls.empty()) {
427     // FIXME: Attempt typo-correction?
428     Diag(NameLoc, diag::err_undeclared_destructor_name)
429       << &II << MakeFixItHint();
430   } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
431     if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
432       assert(!SearchType.isNull() &&
433              "should only reject a type result if we have a search type");
434       QualType T = Context.getTypeDeclType(TD);
435       Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
436           << T << SearchType << MakeFixItHint();
437     } else {
438       Diag(NameLoc, diag::err_destructor_expr_nontype)
439           << &II << MakeFixItHint();
440     }
441   } else {
442     Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
443                                       : diag::err_destructor_expr_mismatch)
444         << &II << SearchType << MakeFixItHint();
445   }
446 
447   for (NamedDecl *FoundD : FoundDecls) {
448     if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
449       Diag(FoundD->getLocation(), diag::note_destructor_type_here)
450           << Context.getTypeDeclType(TD);
451     else
452       Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
453           << FoundD;
454   }
455 
456   return nullptr;
457 }
458 
459 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
460                                               ParsedType ObjectType) {
461   if (DS.getTypeSpecType() == DeclSpec::TST_error)
462     return nullptr;
463 
464   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
465     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
466     return nullptr;
467   }
468 
469   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
470          "unexpected type in getDestructorType");
471   QualType T = BuildDecltypeType(DS.getRepAsExpr());
472 
473   // If we know the type of the object, check that the correct destructor
474   // type was named now; we can give better diagnostics this way.
475   QualType SearchType = GetTypeFromParser(ObjectType);
476   if (!SearchType.isNull() && !SearchType->isDependentType() &&
477       !Context.hasSameUnqualifiedType(T, SearchType)) {
478     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
479       << T << SearchType;
480     return nullptr;
481   }
482 
483   return ParsedType::make(T);
484 }
485 
486 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
487                                   const UnqualifiedId &Name, bool IsUDSuffix) {
488   assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
489   if (!IsUDSuffix) {
490     // [over.literal] p8
491     //
492     // double operator""_Bq(long double);  // OK: not a reserved identifier
493     // double operator"" _Bq(long double); // ill-formed, no diagnostic required
494     IdentifierInfo *II = Name.Identifier;
495     ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
496     SourceLocation Loc = Name.getEndLoc();
497     if (isReservedInAllContexts(Status) &&
498         !PP.getSourceManager().isInSystemHeader(Loc)) {
499       Diag(Loc, diag::warn_reserved_extern_symbol)
500           << II << static_cast<int>(Status)
501           << FixItHint::CreateReplacement(
502                  Name.getSourceRange(),
503                  (StringRef("operator\"\"") + II->getName()).str());
504     }
505   }
506 
507   if (!SS.isValid())
508     return false;
509 
510   switch (SS.getScopeRep()->getKind()) {
511   case NestedNameSpecifier::Identifier:
512   case NestedNameSpecifier::TypeSpec:
513   case NestedNameSpecifier::TypeSpecWithTemplate:
514     // Per C++11 [over.literal]p2, literal operators can only be declared at
515     // namespace scope. Therefore, this unqualified-id cannot name anything.
516     // Reject it early, because we have no AST representation for this in the
517     // case where the scope is dependent.
518     Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
519         << SS.getScopeRep();
520     return true;
521 
522   case NestedNameSpecifier::Global:
523   case NestedNameSpecifier::Super:
524   case NestedNameSpecifier::Namespace:
525   case NestedNameSpecifier::NamespaceAlias:
526     return false;
527   }
528 
529   llvm_unreachable("unknown nested name specifier kind");
530 }
531 
532 /// Build a C++ typeid expression with a type operand.
533 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
534                                 SourceLocation TypeidLoc,
535                                 TypeSourceInfo *Operand,
536                                 SourceLocation RParenLoc) {
537   // C++ [expr.typeid]p4:
538   //   The top-level cv-qualifiers of the lvalue expression or the type-id
539   //   that is the operand of typeid are always ignored.
540   //   If the type of the type-id is a class type or a reference to a class
541   //   type, the class shall be completely-defined.
542   Qualifiers Quals;
543   QualType T
544     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
545                                       Quals);
546   if (T->getAs<RecordType>() &&
547       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
548     return ExprError();
549 
550   if (T->isVariablyModifiedType())
551     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
552 
553   if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
554     return ExprError();
555 
556   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
557                                      SourceRange(TypeidLoc, RParenLoc));
558 }
559 
560 /// Build a C++ typeid expression with an expression operand.
561 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
562                                 SourceLocation TypeidLoc,
563                                 Expr *E,
564                                 SourceLocation RParenLoc) {
565   bool WasEvaluated = false;
566   if (E && !E->isTypeDependent()) {
567     if (E->hasPlaceholderType()) {
568       ExprResult result = CheckPlaceholderExpr(E);
569       if (result.isInvalid()) return ExprError();
570       E = result.get();
571     }
572 
573     QualType T = E->getType();
574     if (const RecordType *RecordT = T->getAs<RecordType>()) {
575       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
576       // C++ [expr.typeid]p3:
577       //   [...] If the type of the expression is a class type, the class
578       //   shall be completely-defined.
579       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
580         return ExprError();
581 
582       // C++ [expr.typeid]p3:
583       //   When typeid is applied to an expression other than an glvalue of a
584       //   polymorphic class type [...] [the] expression is an unevaluated
585       //   operand. [...]
586       if (RecordD->isPolymorphic() && E->isGLValue()) {
587         if (isUnevaluatedContext()) {
588           // The operand was processed in unevaluated context, switch the
589           // context and recheck the subexpression.
590           ExprResult Result = TransformToPotentiallyEvaluated(E);
591           if (Result.isInvalid())
592             return ExprError();
593           E = Result.get();
594         }
595 
596         // We require a vtable to query the type at run time.
597         MarkVTableUsed(TypeidLoc, RecordD);
598         WasEvaluated = true;
599       }
600     }
601 
602     ExprResult Result = CheckUnevaluatedOperand(E);
603     if (Result.isInvalid())
604       return ExprError();
605     E = Result.get();
606 
607     // C++ [expr.typeid]p4:
608     //   [...] If the type of the type-id is a reference to a possibly
609     //   cv-qualified type, the result of the typeid expression refers to a
610     //   std::type_info object representing the cv-unqualified referenced
611     //   type.
612     Qualifiers Quals;
613     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
614     if (!Context.hasSameType(T, UnqualT)) {
615       T = UnqualT;
616       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
617     }
618   }
619 
620   if (E->getType()->isVariablyModifiedType())
621     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
622                      << E->getType());
623   else if (!inTemplateInstantiation() &&
624            E->HasSideEffects(Context, WasEvaluated)) {
625     // The expression operand for typeid is in an unevaluated expression
626     // context, so side effects could result in unintended consequences.
627     Diag(E->getExprLoc(), WasEvaluated
628                               ? diag::warn_side_effects_typeid
629                               : diag::warn_side_effects_unevaluated_context);
630   }
631 
632   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
633                                      SourceRange(TypeidLoc, RParenLoc));
634 }
635 
636 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
637 ExprResult
638 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
639                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
640   // typeid is not supported in OpenCL.
641   if (getLangOpts().OpenCLCPlusPlus) {
642     return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
643                      << "typeid");
644   }
645 
646   // Find the std::type_info type.
647   if (!getStdNamespace())
648     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
649 
650   if (!CXXTypeInfoDecl) {
651     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
652     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
653     LookupQualifiedName(R, getStdNamespace());
654     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
655     // Microsoft's typeinfo doesn't have type_info in std but in the global
656     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
657     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
658       LookupQualifiedName(R, Context.getTranslationUnitDecl());
659       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
660     }
661     if (!CXXTypeInfoDecl)
662       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
663   }
664 
665   if (!getLangOpts().RTTI) {
666     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
667   }
668 
669   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
670 
671   if (isType) {
672     // The operand is a type; handle it as such.
673     TypeSourceInfo *TInfo = nullptr;
674     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
675                                    &TInfo);
676     if (T.isNull())
677       return ExprError();
678 
679     if (!TInfo)
680       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
681 
682     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
683   }
684 
685   // The operand is an expression.
686   ExprResult Result =
687       BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
688 
689   if (!getLangOpts().RTTIData && !Result.isInvalid())
690     if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
691       if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
692         Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
693             << (getDiagnostics().getDiagnosticOptions().getFormat() ==
694                 DiagnosticOptions::MSVC);
695   return Result;
696 }
697 
698 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
699 /// a single GUID.
700 static void
701 getUuidAttrOfType(Sema &SemaRef, QualType QT,
702                   llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
703   // Optionally remove one level of pointer, reference or array indirection.
704   const Type *Ty = QT.getTypePtr();
705   if (QT->isPointerType() || QT->isReferenceType())
706     Ty = QT->getPointeeType().getTypePtr();
707   else if (QT->isArrayType())
708     Ty = Ty->getBaseElementTypeUnsafe();
709 
710   const auto *TD = Ty->getAsTagDecl();
711   if (!TD)
712     return;
713 
714   if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
715     UuidAttrs.insert(Uuid);
716     return;
717   }
718 
719   // __uuidof can grab UUIDs from template arguments.
720   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
721     const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
722     for (const TemplateArgument &TA : TAL.asArray()) {
723       const UuidAttr *UuidForTA = nullptr;
724       if (TA.getKind() == TemplateArgument::Type)
725         getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
726       else if (TA.getKind() == TemplateArgument::Declaration)
727         getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
728 
729       if (UuidForTA)
730         UuidAttrs.insert(UuidForTA);
731     }
732   }
733 }
734 
735 /// Build a Microsoft __uuidof expression with a type operand.
736 ExprResult Sema::BuildCXXUuidof(QualType Type,
737                                 SourceLocation TypeidLoc,
738                                 TypeSourceInfo *Operand,
739                                 SourceLocation RParenLoc) {
740   MSGuidDecl *Guid = nullptr;
741   if (!Operand->getType()->isDependentType()) {
742     llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
743     getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
744     if (UuidAttrs.empty())
745       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
746     if (UuidAttrs.size() > 1)
747       return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
748     Guid = UuidAttrs.back()->getGuidDecl();
749   }
750 
751   return new (Context)
752       CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
753 }
754 
755 /// Build a Microsoft __uuidof expression with an expression operand.
756 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
757                                 Expr *E, SourceLocation RParenLoc) {
758   MSGuidDecl *Guid = nullptr;
759   if (!E->getType()->isDependentType()) {
760     if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
761       // A null pointer results in {00000000-0000-0000-0000-000000000000}.
762       Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
763     } else {
764       llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
765       getUuidAttrOfType(*this, E->getType(), UuidAttrs);
766       if (UuidAttrs.empty())
767         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
768       if (UuidAttrs.size() > 1)
769         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
770       Guid = UuidAttrs.back()->getGuidDecl();
771     }
772   }
773 
774   return new (Context)
775       CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
776 }
777 
778 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
779 ExprResult
780 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
781                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
782   QualType GuidType = Context.getMSGuidType();
783   GuidType.addConst();
784 
785   if (isType) {
786     // The operand is a type; handle it as such.
787     TypeSourceInfo *TInfo = nullptr;
788     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
789                                    &TInfo);
790     if (T.isNull())
791       return ExprError();
792 
793     if (!TInfo)
794       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
795 
796     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
797   }
798 
799   // The operand is an expression.
800   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
801 }
802 
803 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
804 ExprResult
805 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
806   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
807          "Unknown C++ Boolean value!");
808   return new (Context)
809       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
810 }
811 
812 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
813 ExprResult
814 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
815   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
816 }
817 
818 /// ActOnCXXThrow - Parse throw expressions.
819 ExprResult
820 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
821   bool IsThrownVarInScope = false;
822   if (Ex) {
823     // C++0x [class.copymove]p31:
824     //   When certain criteria are met, an implementation is allowed to omit the
825     //   copy/move construction of a class object [...]
826     //
827     //     - in a throw-expression, when the operand is the name of a
828     //       non-volatile automatic object (other than a function or catch-
829     //       clause parameter) whose scope does not extend beyond the end of the
830     //       innermost enclosing try-block (if there is one), the copy/move
831     //       operation from the operand to the exception object (15.1) can be
832     //       omitted by constructing the automatic object directly into the
833     //       exception object
834     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
835       if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
836         if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
837           for( ; S; S = S->getParent()) {
838             if (S->isDeclScope(Var)) {
839               IsThrownVarInScope = true;
840               break;
841             }
842 
843             if (S->getFlags() &
844                 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
845                  Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
846                  Scope::TryScope))
847               break;
848           }
849         }
850       }
851   }
852 
853   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
854 }
855 
856 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
857                                bool IsThrownVarInScope) {
858   // Don't report an error if 'throw' is used in system headers.
859   if (!getLangOpts().CXXExceptions &&
860       !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
861     // Delay error emission for the OpenMP device code.
862     targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
863   }
864 
865   // Exceptions aren't allowed in CUDA device code.
866   if (getLangOpts().CUDA)
867     CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
868         << "throw" << CurrentCUDATarget();
869 
870   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
871     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
872 
873   if (Ex && !Ex->isTypeDependent()) {
874     // Initialize the exception result.  This implicitly weeds out
875     // abstract types or types with inaccessible copy constructors.
876 
877     // C++0x [class.copymove]p31:
878     //   When certain criteria are met, an implementation is allowed to omit the
879     //   copy/move construction of a class object [...]
880     //
881     //     - in a throw-expression, when the operand is the name of a
882     //       non-volatile automatic object (other than a function or
883     //       catch-clause
884     //       parameter) whose scope does not extend beyond the end of the
885     //       innermost enclosing try-block (if there is one), the copy/move
886     //       operation from the operand to the exception object (15.1) can be
887     //       omitted by constructing the automatic object directly into the
888     //       exception object
889     NamedReturnInfo NRInfo =
890         IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
891 
892     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
893     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
894       return ExprError();
895 
896     InitializedEntity Entity =
897         InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
898     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
899     if (Res.isInvalid())
900       return ExprError();
901     Ex = Res.get();
902   }
903 
904   // PPC MMA non-pointer types are not allowed as throw expr types.
905   if (Ex && Context.getTargetInfo().getTriple().isPPC64())
906     CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
907 
908   return new (Context)
909       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
910 }
911 
912 static void
913 collectPublicBases(CXXRecordDecl *RD,
914                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
915                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
916                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
917                    bool ParentIsPublic) {
918   for (const CXXBaseSpecifier &BS : RD->bases()) {
919     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
920     bool NewSubobject;
921     // Virtual bases constitute the same subobject.  Non-virtual bases are
922     // always distinct subobjects.
923     if (BS.isVirtual())
924       NewSubobject = VBases.insert(BaseDecl).second;
925     else
926       NewSubobject = true;
927 
928     if (NewSubobject)
929       ++SubobjectsSeen[BaseDecl];
930 
931     // Only add subobjects which have public access throughout the entire chain.
932     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
933     if (PublicPath)
934       PublicSubobjectsSeen.insert(BaseDecl);
935 
936     // Recurse on to each base subobject.
937     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
938                        PublicPath);
939   }
940 }
941 
942 static void getUnambiguousPublicSubobjects(
943     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
944   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
945   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
946   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
947   SubobjectsSeen[RD] = 1;
948   PublicSubobjectsSeen.insert(RD);
949   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
950                      /*ParentIsPublic=*/true);
951 
952   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
953     // Skip ambiguous objects.
954     if (SubobjectsSeen[PublicSubobject] > 1)
955       continue;
956 
957     Objects.push_back(PublicSubobject);
958   }
959 }
960 
961 /// CheckCXXThrowOperand - Validate the operand of a throw.
962 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
963                                 QualType ExceptionObjectTy, Expr *E) {
964   //   If the type of the exception would be an incomplete type or a pointer
965   //   to an incomplete type other than (cv) void the program is ill-formed.
966   QualType Ty = ExceptionObjectTy;
967   bool isPointer = false;
968   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
969     Ty = Ptr->getPointeeType();
970     isPointer = true;
971   }
972   if (!isPointer || !Ty->isVoidType()) {
973     if (RequireCompleteType(ThrowLoc, Ty,
974                             isPointer ? diag::err_throw_incomplete_ptr
975                                       : diag::err_throw_incomplete,
976                             E->getSourceRange()))
977       return true;
978 
979     if (!isPointer && Ty->isSizelessType()) {
980       Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
981       return true;
982     }
983 
984     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
985                                diag::err_throw_abstract_type, E))
986       return true;
987   }
988 
989   // If the exception has class type, we need additional handling.
990   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
991   if (!RD)
992     return false;
993 
994   // If we are throwing a polymorphic class type or pointer thereof,
995   // exception handling will make use of the vtable.
996   MarkVTableUsed(ThrowLoc, RD);
997 
998   // If a pointer is thrown, the referenced object will not be destroyed.
999   if (isPointer)
1000     return false;
1001 
1002   // If the class has a destructor, we must be able to call it.
1003   if (!RD->hasIrrelevantDestructor()) {
1004     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1005       MarkFunctionReferenced(E->getExprLoc(), Destructor);
1006       CheckDestructorAccess(E->getExprLoc(), Destructor,
1007                             PDiag(diag::err_access_dtor_exception) << Ty);
1008       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1009         return true;
1010     }
1011   }
1012 
1013   // The MSVC ABI creates a list of all types which can catch the exception
1014   // object.  This list also references the appropriate copy constructor to call
1015   // if the object is caught by value and has a non-trivial copy constructor.
1016   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1017     // We are only interested in the public, unambiguous bases contained within
1018     // the exception object.  Bases which are ambiguous or otherwise
1019     // inaccessible are not catchable types.
1020     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1021     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1022 
1023     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1024       // Attempt to lookup the copy constructor.  Various pieces of machinery
1025       // will spring into action, like template instantiation, which means this
1026       // cannot be a simple walk of the class's decls.  Instead, we must perform
1027       // lookup and overload resolution.
1028       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1029       if (!CD || CD->isDeleted())
1030         continue;
1031 
1032       // Mark the constructor referenced as it is used by this throw expression.
1033       MarkFunctionReferenced(E->getExprLoc(), CD);
1034 
1035       // Skip this copy constructor if it is trivial, we don't need to record it
1036       // in the catchable type data.
1037       if (CD->isTrivial())
1038         continue;
1039 
1040       // The copy constructor is non-trivial, create a mapping from this class
1041       // type to this constructor.
1042       // N.B.  The selection of copy constructor is not sensitive to this
1043       // particular throw-site.  Lookup will be performed at the catch-site to
1044       // ensure that the copy constructor is, in fact, accessible (via
1045       // friendship or any other means).
1046       Context.addCopyConstructorForExceptionObject(Subobject, CD);
1047 
1048       // We don't keep the instantiated default argument expressions around so
1049       // we must rebuild them here.
1050       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1051         if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1052           return true;
1053       }
1054     }
1055   }
1056 
1057   // Under the Itanium C++ ABI, memory for the exception object is allocated by
1058   // the runtime with no ability for the compiler to request additional
1059   // alignment. Warn if the exception type requires alignment beyond the minimum
1060   // guaranteed by the target C++ runtime.
1061   if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1062     CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1063     CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1064     if (ExnObjAlign < TypeAlign) {
1065       Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1066       Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1067           << Ty << (unsigned)TypeAlign.getQuantity()
1068           << (unsigned)ExnObjAlign.getQuantity();
1069     }
1070   }
1071 
1072   return false;
1073 }
1074 
1075 static QualType adjustCVQualifiersForCXXThisWithinLambda(
1076     ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1077     DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1078 
1079   QualType ClassType = ThisTy->getPointeeType();
1080   LambdaScopeInfo *CurLSI = nullptr;
1081   DeclContext *CurDC = CurSemaContext;
1082 
1083   // Iterate through the stack of lambdas starting from the innermost lambda to
1084   // the outermost lambda, checking if '*this' is ever captured by copy - since
1085   // that could change the cv-qualifiers of the '*this' object.
1086   // The object referred to by '*this' starts out with the cv-qualifiers of its
1087   // member function.  We then start with the innermost lambda and iterate
1088   // outward checking to see if any lambda performs a by-copy capture of '*this'
1089   // - and if so, any nested lambda must respect the 'constness' of that
1090   // capturing lamdbda's call operator.
1091   //
1092 
1093   // Since the FunctionScopeInfo stack is representative of the lexical
1094   // nesting of the lambda expressions during initial parsing (and is the best
1095   // place for querying information about captures about lambdas that are
1096   // partially processed) and perhaps during instantiation of function templates
1097   // that contain lambda expressions that need to be transformed BUT not
1098   // necessarily during instantiation of a nested generic lambda's function call
1099   // operator (which might even be instantiated at the end of the TU) - at which
1100   // time the DeclContext tree is mature enough to query capture information
1101   // reliably - we use a two pronged approach to walk through all the lexically
1102   // enclosing lambda expressions:
1103   //
1104   //  1) Climb down the FunctionScopeInfo stack as long as each item represents
1105   //  a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1106   //  enclosed by the call-operator of the LSI below it on the stack (while
1107   //  tracking the enclosing DC for step 2 if needed).  Note the topmost LSI on
1108   //  the stack represents the innermost lambda.
1109   //
1110   //  2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1111   //  represents a lambda's call operator.  If it does, we must be instantiating
1112   //  a generic lambda's call operator (represented by the Current LSI, and
1113   //  should be the only scenario where an inconsistency between the LSI and the
1114   //  DeclContext should occur), so climb out the DeclContexts if they
1115   //  represent lambdas, while querying the corresponding closure types
1116   //  regarding capture information.
1117 
1118   // 1) Climb down the function scope info stack.
1119   for (int I = FunctionScopes.size();
1120        I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1121        (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1122                        cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1123        CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1124     CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1125 
1126     if (!CurLSI->isCXXThisCaptured())
1127         continue;
1128 
1129     auto C = CurLSI->getCXXThisCapture();
1130 
1131     if (C.isCopyCapture()) {
1132       ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1133       if (CurLSI->CallOperator->isConst())
1134         ClassType.addConst();
1135       return ASTCtx.getPointerType(ClassType);
1136     }
1137   }
1138 
1139   // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1140   //    can happen during instantiation of its nested generic lambda call
1141   //    operator); 2. if we're in a lambda scope (lambda body).
1142   if (CurLSI && isLambdaCallOperator(CurDC)) {
1143     assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1144            "While computing 'this' capture-type for a generic lambda, when we "
1145            "run out of enclosing LSI's, yet the enclosing DC is a "
1146            "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1147            "lambda call oeprator");
1148     assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1149 
1150     auto IsThisCaptured =
1151         [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1152       IsConst = false;
1153       IsByCopy = false;
1154       for (auto &&C : Closure->captures()) {
1155         if (C.capturesThis()) {
1156           if (C.getCaptureKind() == LCK_StarThis)
1157             IsByCopy = true;
1158           if (Closure->getLambdaCallOperator()->isConst())
1159             IsConst = true;
1160           return true;
1161         }
1162       }
1163       return false;
1164     };
1165 
1166     bool IsByCopyCapture = false;
1167     bool IsConstCapture = false;
1168     CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1169     while (Closure &&
1170            IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1171       if (IsByCopyCapture) {
1172         ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1173         if (IsConstCapture)
1174           ClassType.addConst();
1175         return ASTCtx.getPointerType(ClassType);
1176       }
1177       Closure = isLambdaCallOperator(Closure->getParent())
1178                     ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1179                     : nullptr;
1180     }
1181   }
1182   return ASTCtx.getPointerType(ClassType);
1183 }
1184 
1185 QualType Sema::getCurrentThisType() {
1186   DeclContext *DC = getFunctionLevelDeclContext();
1187   QualType ThisTy = CXXThisTypeOverride;
1188 
1189   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1190     if (method && method->isInstance())
1191       ThisTy = method->getThisType();
1192   }
1193 
1194   if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1195       inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1196 
1197     // This is a lambda call operator that is being instantiated as a default
1198     // initializer. DC must point to the enclosing class type, so we can recover
1199     // the 'this' type from it.
1200     QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1201     // There are no cv-qualifiers for 'this' within default initializers,
1202     // per [expr.prim.general]p4.
1203     ThisTy = Context.getPointerType(ClassTy);
1204   }
1205 
1206   // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1207   // might need to be adjusted if the lambda or any of its enclosing lambda's
1208   // captures '*this' by copy.
1209   if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1210     return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1211                                                     CurContext, Context);
1212   return ThisTy;
1213 }
1214 
1215 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1216                                          Decl *ContextDecl,
1217                                          Qualifiers CXXThisTypeQuals,
1218                                          bool Enabled)
1219   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1220 {
1221   if (!Enabled || !ContextDecl)
1222     return;
1223 
1224   CXXRecordDecl *Record = nullptr;
1225   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1226     Record = Template->getTemplatedDecl();
1227   else
1228     Record = cast<CXXRecordDecl>(ContextDecl);
1229 
1230   QualType T = S.Context.getRecordType(Record);
1231   T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1232 
1233   S.CXXThisTypeOverride = S.Context.getPointerType(T);
1234 
1235   this->Enabled = true;
1236 }
1237 
1238 
1239 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1240   if (Enabled) {
1241     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1242   }
1243 }
1244 
1245 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1246   SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1247   assert(!LSI->isCXXThisCaptured());
1248   //  [=, this] {};   // until C++20: Error: this when = is the default
1249   if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1250       !Sema.getLangOpts().CPlusPlus20)
1251     return;
1252   Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1253       << FixItHint::CreateInsertion(
1254              DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1255 }
1256 
1257 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1258     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1259     const bool ByCopy) {
1260   // We don't need to capture this in an unevaluated context.
1261   if (isUnevaluatedContext() && !Explicit)
1262     return true;
1263 
1264   assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1265 
1266   const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1267                                          ? *FunctionScopeIndexToStopAt
1268                                          : FunctionScopes.size() - 1;
1269 
1270   // Check that we can capture the *enclosing object* (referred to by '*this')
1271   // by the capturing-entity/closure (lambda/block/etc) at
1272   // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1273 
1274   // Note: The *enclosing object* can only be captured by-value by a
1275   // closure that is a lambda, using the explicit notation:
1276   //    [*this] { ... }.
1277   // Every other capture of the *enclosing object* results in its by-reference
1278   // capture.
1279 
1280   // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1281   // stack), we can capture the *enclosing object* only if:
1282   // - 'L' has an explicit byref or byval capture of the *enclosing object*
1283   // -  or, 'L' has an implicit capture.
1284   // AND
1285   //   -- there is no enclosing closure
1286   //   -- or, there is some enclosing closure 'E' that has already captured the
1287   //      *enclosing object*, and every intervening closure (if any) between 'E'
1288   //      and 'L' can implicitly capture the *enclosing object*.
1289   //   -- or, every enclosing closure can implicitly capture the
1290   //      *enclosing object*
1291 
1292 
1293   unsigned NumCapturingClosures = 0;
1294   for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1295     if (CapturingScopeInfo *CSI =
1296             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1297       if (CSI->CXXThisCaptureIndex != 0) {
1298         // 'this' is already being captured; there isn't anything more to do.
1299         CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1300         break;
1301       }
1302       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1303       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1304         // This context can't implicitly capture 'this'; fail out.
1305         if (BuildAndDiagnose) {
1306           Diag(Loc, diag::err_this_capture)
1307               << (Explicit && idx == MaxFunctionScopesIndex);
1308           if (!Explicit)
1309             buildLambdaThisCaptureFixit(*this, LSI);
1310         }
1311         return true;
1312       }
1313       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1314           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1315           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1316           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1317           (Explicit && idx == MaxFunctionScopesIndex)) {
1318         // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1319         // iteration through can be an explicit capture, all enclosing closures,
1320         // if any, must perform implicit captures.
1321 
1322         // This closure can capture 'this'; continue looking upwards.
1323         NumCapturingClosures++;
1324         continue;
1325       }
1326       // This context can't implicitly capture 'this'; fail out.
1327       if (BuildAndDiagnose)
1328         Diag(Loc, diag::err_this_capture)
1329             << (Explicit && idx == MaxFunctionScopesIndex);
1330 
1331       if (!Explicit)
1332         buildLambdaThisCaptureFixit(*this, LSI);
1333       return true;
1334     }
1335     break;
1336   }
1337   if (!BuildAndDiagnose) return false;
1338 
1339   // If we got here, then the closure at MaxFunctionScopesIndex on the
1340   // FunctionScopes stack, can capture the *enclosing object*, so capture it
1341   // (including implicit by-reference captures in any enclosing closures).
1342 
1343   // In the loop below, respect the ByCopy flag only for the closure requesting
1344   // the capture (i.e. first iteration through the loop below).  Ignore it for
1345   // all enclosing closure's up to NumCapturingClosures (since they must be
1346   // implicitly capturing the *enclosing  object* by reference (see loop
1347   // above)).
1348   assert((!ByCopy ||
1349           isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1350          "Only a lambda can capture the enclosing object (referred to by "
1351          "*this) by copy");
1352   QualType ThisTy = getCurrentThisType();
1353   for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1354        --idx, --NumCapturingClosures) {
1355     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1356 
1357     // The type of the corresponding data member (not a 'this' pointer if 'by
1358     // copy').
1359     QualType CaptureType = ThisTy;
1360     if (ByCopy) {
1361       // If we are capturing the object referred to by '*this' by copy, ignore
1362       // any cv qualifiers inherited from the type of the member function for
1363       // the type of the closure-type's corresponding data member and any use
1364       // of 'this'.
1365       CaptureType = ThisTy->getPointeeType();
1366       CaptureType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1367     }
1368 
1369     bool isNested = NumCapturingClosures > 1;
1370     CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1371   }
1372   return false;
1373 }
1374 
1375 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1376   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1377   /// is a non-lvalue expression whose value is the address of the object for
1378   /// which the function is called.
1379 
1380   QualType ThisTy = getCurrentThisType();
1381   if (ThisTy.isNull())
1382     return Diag(Loc, diag::err_invalid_this_use);
1383   return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1384 }
1385 
1386 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1387                              bool IsImplicit) {
1388   auto *This = new (Context) CXXThisExpr(Loc, Type, IsImplicit);
1389   MarkThisReferenced(This);
1390   return This;
1391 }
1392 
1393 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1394   CheckCXXThisCapture(This->getExprLoc());
1395 }
1396 
1397 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1398   // If we're outside the body of a member function, then we'll have a specified
1399   // type for 'this'.
1400   if (CXXThisTypeOverride.isNull())
1401     return false;
1402 
1403   // Determine whether we're looking into a class that's currently being
1404   // defined.
1405   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1406   return Class && Class->isBeingDefined();
1407 }
1408 
1409 /// Parse construction of a specified type.
1410 /// Can be interpreted either as function-style casting ("int(x)")
1411 /// or class type construction ("ClassType(x,y,z)")
1412 /// or creation of a value-initialized type ("int()").
1413 ExprResult
1414 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1415                                 SourceLocation LParenOrBraceLoc,
1416                                 MultiExprArg exprs,
1417                                 SourceLocation RParenOrBraceLoc,
1418                                 bool ListInitialization) {
1419   if (!TypeRep)
1420     return ExprError();
1421 
1422   TypeSourceInfo *TInfo;
1423   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1424   if (!TInfo)
1425     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1426 
1427   auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1428                                           RParenOrBraceLoc, ListInitialization);
1429   // Avoid creating a non-type-dependent expression that contains typos.
1430   // Non-type-dependent expressions are liable to be discarded without
1431   // checking for embedded typos.
1432   if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1433       !Result.get()->isTypeDependent())
1434     Result = CorrectDelayedTyposInExpr(Result.get());
1435   else if (Result.isInvalid())
1436     Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1437                                 RParenOrBraceLoc, exprs, Ty);
1438   return Result;
1439 }
1440 
1441 ExprResult
1442 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1443                                 SourceLocation LParenOrBraceLoc,
1444                                 MultiExprArg Exprs,
1445                                 SourceLocation RParenOrBraceLoc,
1446                                 bool ListInitialization) {
1447   QualType Ty = TInfo->getType();
1448   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1449 
1450   assert((!ListInitialization ||
1451           (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&
1452          "List initialization must have initializer list as expression.");
1453   SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1454 
1455   InitializedEntity Entity =
1456       InitializedEntity::InitializeTemporary(Context, TInfo);
1457   InitializationKind Kind =
1458       Exprs.size()
1459           ? ListInitialization
1460                 ? InitializationKind::CreateDirectList(
1461                       TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1462                 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1463                                                    RParenOrBraceLoc)
1464           : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1465                                             RParenOrBraceLoc);
1466 
1467   // C++1z [expr.type.conv]p1:
1468   //   If the type is a placeholder for a deduced class type, [...perform class
1469   //   template argument deduction...]
1470   DeducedType *Deduced = Ty->getContainedDeducedType();
1471   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1472     Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1473                                                      Kind, Exprs);
1474     if (Ty.isNull())
1475       return ExprError();
1476     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1477   }
1478 
1479   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1480     // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1481     // directly. We work around this by dropping the locations of the braces.
1482     SourceRange Locs = ListInitialization
1483                            ? SourceRange()
1484                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1485     return CXXUnresolvedConstructExpr::Create(Context, Ty.getNonReferenceType(),
1486                                               TInfo, Locs.getBegin(), Exprs,
1487                                               Locs.getEnd());
1488   }
1489 
1490   // C++ [expr.type.conv]p1:
1491   // If the expression list is a parenthesized single expression, the type
1492   // conversion expression is equivalent (in definedness, and if defined in
1493   // meaning) to the corresponding cast expression.
1494   if (Exprs.size() == 1 && !ListInitialization &&
1495       !isa<InitListExpr>(Exprs[0])) {
1496     Expr *Arg = Exprs[0];
1497     return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1498                                       RParenOrBraceLoc);
1499   }
1500 
1501   //   For an expression of the form T(), T shall not be an array type.
1502   QualType ElemTy = Ty;
1503   if (Ty->isArrayType()) {
1504     if (!ListInitialization)
1505       return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1506                          << FullRange);
1507     ElemTy = Context.getBaseElementType(Ty);
1508   }
1509 
1510   // Only construct objects with object types.
1511   // The standard doesn't explicitly forbid function types here, but that's an
1512   // obvious oversight, as there's no way to dynamically construct a function
1513   // in general.
1514   if (Ty->isFunctionType())
1515     return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1516                        << Ty << FullRange);
1517 
1518   // C++17 [expr.type.conv]p2:
1519   //   If the type is cv void and the initializer is (), the expression is a
1520   //   prvalue of the specified type that performs no initialization.
1521   if (!Ty->isVoidType() &&
1522       RequireCompleteType(TyBeginLoc, ElemTy,
1523                           diag::err_invalid_incomplete_type_use, FullRange))
1524     return ExprError();
1525 
1526   //   Otherwise, the expression is a prvalue of the specified type whose
1527   //   result object is direct-initialized (11.6) with the initializer.
1528   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1529   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1530 
1531   if (Result.isInvalid())
1532     return Result;
1533 
1534   Expr *Inner = Result.get();
1535   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1536     Inner = BTE->getSubExpr();
1537   if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1538       !isa<CXXScalarValueInitExpr>(Inner)) {
1539     // If we created a CXXTemporaryObjectExpr, that node also represents the
1540     // functional cast. Otherwise, create an explicit cast to represent
1541     // the syntactic form of a functional-style cast that was used here.
1542     //
1543     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1544     // would give a more consistent AST representation than using a
1545     // CXXTemporaryObjectExpr. It's also weird that the functional cast
1546     // is sometimes handled by initialization and sometimes not.
1547     QualType ResultType = Result.get()->getType();
1548     SourceRange Locs = ListInitialization
1549                            ? SourceRange()
1550                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1551     Result = CXXFunctionalCastExpr::Create(
1552         Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1553         Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1554         Locs.getBegin(), Locs.getEnd());
1555   }
1556 
1557   return Result;
1558 }
1559 
1560 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1561   // [CUDA] Ignore this function, if we can't call it.
1562   const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
1563   if (getLangOpts().CUDA) {
1564     auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1565     // If it's not callable at all, it's not the right function.
1566     if (CallPreference < CFP_WrongSide)
1567       return false;
1568     if (CallPreference == CFP_WrongSide) {
1569       // Maybe. We have to check if there are better alternatives.
1570       DeclContext::lookup_result R =
1571           Method->getDeclContext()->lookup(Method->getDeclName());
1572       for (const auto *D : R) {
1573         if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1574           if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1575             return false;
1576         }
1577       }
1578       // We've found no better variants.
1579     }
1580   }
1581 
1582   SmallVector<const FunctionDecl*, 4> PreventedBy;
1583   bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1584 
1585   if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1586     return Result;
1587 
1588   // In case of CUDA, return true if none of the 1-argument deallocator
1589   // functions are actually callable.
1590   return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1591     assert(FD->getNumParams() == 1 &&
1592            "Only single-operand functions should be in PreventedBy");
1593     return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1594   });
1595 }
1596 
1597 /// Determine whether the given function is a non-placement
1598 /// deallocation function.
1599 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1600   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1601     return S.isUsualDeallocationFunction(Method);
1602 
1603   if (FD->getOverloadedOperator() != OO_Delete &&
1604       FD->getOverloadedOperator() != OO_Array_Delete)
1605     return false;
1606 
1607   unsigned UsualParams = 1;
1608 
1609   if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1610       S.Context.hasSameUnqualifiedType(
1611           FD->getParamDecl(UsualParams)->getType(),
1612           S.Context.getSizeType()))
1613     ++UsualParams;
1614 
1615   if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1616       S.Context.hasSameUnqualifiedType(
1617           FD->getParamDecl(UsualParams)->getType(),
1618           S.Context.getTypeDeclType(S.getStdAlignValT())))
1619     ++UsualParams;
1620 
1621   return UsualParams == FD->getNumParams();
1622 }
1623 
1624 namespace {
1625   struct UsualDeallocFnInfo {
1626     UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1627     UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1628         : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1629           Destroying(false), HasSizeT(false), HasAlignValT(false),
1630           CUDAPref(Sema::CFP_Native) {
1631       // A function template declaration is never a usual deallocation function.
1632       if (!FD)
1633         return;
1634       unsigned NumBaseParams = 1;
1635       if (FD->isDestroyingOperatorDelete()) {
1636         Destroying = true;
1637         ++NumBaseParams;
1638       }
1639 
1640       if (NumBaseParams < FD->getNumParams() &&
1641           S.Context.hasSameUnqualifiedType(
1642               FD->getParamDecl(NumBaseParams)->getType(),
1643               S.Context.getSizeType())) {
1644         ++NumBaseParams;
1645         HasSizeT = true;
1646       }
1647 
1648       if (NumBaseParams < FD->getNumParams() &&
1649           FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1650         ++NumBaseParams;
1651         HasAlignValT = true;
1652       }
1653 
1654       // In CUDA, determine how much we'd like / dislike to call this.
1655       if (S.getLangOpts().CUDA)
1656         if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1657           CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1658     }
1659 
1660     explicit operator bool() const { return FD; }
1661 
1662     bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1663                       bool WantAlign) const {
1664       // C++ P0722:
1665       //   A destroying operator delete is preferred over a non-destroying
1666       //   operator delete.
1667       if (Destroying != Other.Destroying)
1668         return Destroying;
1669 
1670       // C++17 [expr.delete]p10:
1671       //   If the type has new-extended alignment, a function with a parameter
1672       //   of type std::align_val_t is preferred; otherwise a function without
1673       //   such a parameter is preferred
1674       if (HasAlignValT != Other.HasAlignValT)
1675         return HasAlignValT == WantAlign;
1676 
1677       if (HasSizeT != Other.HasSizeT)
1678         return HasSizeT == WantSize;
1679 
1680       // Use CUDA call preference as a tiebreaker.
1681       return CUDAPref > Other.CUDAPref;
1682     }
1683 
1684     DeclAccessPair Found;
1685     FunctionDecl *FD;
1686     bool Destroying, HasSizeT, HasAlignValT;
1687     Sema::CUDAFunctionPreference CUDAPref;
1688   };
1689 }
1690 
1691 /// Determine whether a type has new-extended alignment. This may be called when
1692 /// the type is incomplete (for a delete-expression with an incomplete pointee
1693 /// type), in which case it will conservatively return false if the alignment is
1694 /// not known.
1695 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1696   return S.getLangOpts().AlignedAllocation &&
1697          S.getASTContext().getTypeAlignIfKnown(AllocType) >
1698              S.getASTContext().getTargetInfo().getNewAlign();
1699 }
1700 
1701 /// Select the correct "usual" deallocation function to use from a selection of
1702 /// deallocation functions (either global or class-scope).
1703 static UsualDeallocFnInfo resolveDeallocationOverload(
1704     Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1705     llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1706   UsualDeallocFnInfo Best;
1707 
1708   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1709     UsualDeallocFnInfo Info(S, I.getPair());
1710     if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1711         Info.CUDAPref == Sema::CFP_Never)
1712       continue;
1713 
1714     if (!Best) {
1715       Best = Info;
1716       if (BestFns)
1717         BestFns->push_back(Info);
1718       continue;
1719     }
1720 
1721     if (Best.isBetterThan(Info, WantSize, WantAlign))
1722       continue;
1723 
1724     //   If more than one preferred function is found, all non-preferred
1725     //   functions are eliminated from further consideration.
1726     if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1727       BestFns->clear();
1728 
1729     Best = Info;
1730     if (BestFns)
1731       BestFns->push_back(Info);
1732   }
1733 
1734   return Best;
1735 }
1736 
1737 /// Determine whether a given type is a class for which 'delete[]' would call
1738 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1739 /// we need to store the array size (even if the type is
1740 /// trivially-destructible).
1741 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1742                                          QualType allocType) {
1743   const RecordType *record =
1744     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1745   if (!record) return false;
1746 
1747   // Try to find an operator delete[] in class scope.
1748 
1749   DeclarationName deleteName =
1750     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1751   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1752   S.LookupQualifiedName(ops, record->getDecl());
1753 
1754   // We're just doing this for information.
1755   ops.suppressDiagnostics();
1756 
1757   // Very likely: there's no operator delete[].
1758   if (ops.empty()) return false;
1759 
1760   // If it's ambiguous, it should be illegal to call operator delete[]
1761   // on this thing, so it doesn't matter if we allocate extra space or not.
1762   if (ops.isAmbiguous()) return false;
1763 
1764   // C++17 [expr.delete]p10:
1765   //   If the deallocation functions have class scope, the one without a
1766   //   parameter of type std::size_t is selected.
1767   auto Best = resolveDeallocationOverload(
1768       S, ops, /*WantSize*/false,
1769       /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1770   return Best && Best.HasSizeT;
1771 }
1772 
1773 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1774 ///
1775 /// E.g.:
1776 /// @code new (memory) int[size][4] @endcode
1777 /// or
1778 /// @code ::new Foo(23, "hello") @endcode
1779 ///
1780 /// \param StartLoc The first location of the expression.
1781 /// \param UseGlobal True if 'new' was prefixed with '::'.
1782 /// \param PlacementLParen Opening paren of the placement arguments.
1783 /// \param PlacementArgs Placement new arguments.
1784 /// \param PlacementRParen Closing paren of the placement arguments.
1785 /// \param TypeIdParens If the type is in parens, the source range.
1786 /// \param D The type to be allocated, as well as array dimensions.
1787 /// \param Initializer The initializing expression or initializer-list, or null
1788 ///   if there is none.
1789 ExprResult
1790 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1791                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1792                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
1793                   Declarator &D, Expr *Initializer) {
1794   Optional<Expr *> ArraySize;
1795   // If the specified type is an array, unwrap it and save the expression.
1796   if (D.getNumTypeObjects() > 0 &&
1797       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1798     DeclaratorChunk &Chunk = D.getTypeObject(0);
1799     if (D.getDeclSpec().hasAutoTypeSpec())
1800       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1801         << D.getSourceRange());
1802     if (Chunk.Arr.hasStatic)
1803       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1804         << D.getSourceRange());
1805     if (!Chunk.Arr.NumElts && !Initializer)
1806       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1807         << D.getSourceRange());
1808 
1809     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1810     D.DropFirstTypeObject();
1811   }
1812 
1813   // Every dimension shall be of constant size.
1814   if (ArraySize) {
1815     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1816       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1817         break;
1818 
1819       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1820       if (Expr *NumElts = (Expr *)Array.NumElts) {
1821         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1822           // FIXME: GCC permits constant folding here. We should either do so consistently
1823           // or not do so at all, rather than changing behavior in C++14 onwards.
1824           if (getLangOpts().CPlusPlus14) {
1825             // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1826             //   shall be a converted constant expression (5.19) of type std::size_t
1827             //   and shall evaluate to a strictly positive value.
1828             llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1829             Array.NumElts
1830              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1831                                                 CCEK_ArrayBound)
1832                  .get();
1833           } else {
1834             Array.NumElts =
1835                 VerifyIntegerConstantExpression(
1836                     NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1837                     .get();
1838           }
1839           if (!Array.NumElts)
1840             return ExprError();
1841         }
1842       }
1843     }
1844   }
1845 
1846   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1847   QualType AllocType = TInfo->getType();
1848   if (D.isInvalidType())
1849     return ExprError();
1850 
1851   SourceRange DirectInitRange;
1852   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1853     DirectInitRange = List->getSourceRange();
1854 
1855   return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1856                      PlacementLParen, PlacementArgs, PlacementRParen,
1857                      TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1858                      Initializer);
1859 }
1860 
1861 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1862                                        Expr *Init) {
1863   if (!Init)
1864     return true;
1865   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1866     return PLE->getNumExprs() == 0;
1867   if (isa<ImplicitValueInitExpr>(Init))
1868     return true;
1869   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1870     return !CCE->isListInitialization() &&
1871            CCE->getConstructor()->isDefaultConstructor();
1872   else if (Style == CXXNewExpr::ListInit) {
1873     assert(isa<InitListExpr>(Init) &&
1874            "Shouldn't create list CXXConstructExprs for arrays.");
1875     return true;
1876   }
1877   return false;
1878 }
1879 
1880 bool
1881 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1882   if (!getLangOpts().AlignedAllocationUnavailable)
1883     return false;
1884   if (FD.isDefined())
1885     return false;
1886   Optional<unsigned> AlignmentParam;
1887   if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1888       AlignmentParam.hasValue())
1889     return true;
1890   return false;
1891 }
1892 
1893 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1894 // implemented in the standard library is selected.
1895 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1896                                                 SourceLocation Loc) {
1897   if (isUnavailableAlignedAllocationFunction(FD)) {
1898     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1899     StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1900         getASTContext().getTargetInfo().getPlatformName());
1901     VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1902 
1903     OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1904     bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1905     Diag(Loc, diag::err_aligned_allocation_unavailable)
1906         << IsDelete << FD.getType().getAsString() << OSName
1907         << OSVersion.getAsString() << OSVersion.empty();
1908     Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1909   }
1910 }
1911 
1912 ExprResult
1913 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1914                   SourceLocation PlacementLParen,
1915                   MultiExprArg PlacementArgs,
1916                   SourceLocation PlacementRParen,
1917                   SourceRange TypeIdParens,
1918                   QualType AllocType,
1919                   TypeSourceInfo *AllocTypeInfo,
1920                   Optional<Expr *> ArraySize,
1921                   SourceRange DirectInitRange,
1922                   Expr *Initializer) {
1923   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1924   SourceLocation StartLoc = Range.getBegin();
1925 
1926   CXXNewExpr::InitializationStyle initStyle;
1927   if (DirectInitRange.isValid()) {
1928     assert(Initializer && "Have parens but no initializer.");
1929     initStyle = CXXNewExpr::CallInit;
1930   } else if (Initializer && isa<InitListExpr>(Initializer))
1931     initStyle = CXXNewExpr::ListInit;
1932   else {
1933     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1934             isa<CXXConstructExpr>(Initializer)) &&
1935            "Initializer expression that cannot have been implicitly created.");
1936     initStyle = CXXNewExpr::NoInit;
1937   }
1938 
1939   Expr **Inits = &Initializer;
1940   unsigned NumInits = Initializer ? 1 : 0;
1941   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1942     assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1943     Inits = List->getExprs();
1944     NumInits = List->getNumExprs();
1945   }
1946 
1947   // C++11 [expr.new]p15:
1948   //   A new-expression that creates an object of type T initializes that
1949   //   object as follows:
1950   InitializationKind Kind
1951       //     - If the new-initializer is omitted, the object is default-
1952       //       initialized (8.5); if no initialization is performed,
1953       //       the object has indeterminate value
1954       = initStyle == CXXNewExpr::NoInit
1955             ? InitializationKind::CreateDefault(TypeRange.getBegin())
1956             //     - Otherwise, the new-initializer is interpreted according to
1957             //     the
1958             //       initialization rules of 8.5 for direct-initialization.
1959             : initStyle == CXXNewExpr::ListInit
1960                   ? InitializationKind::CreateDirectList(
1961                         TypeRange.getBegin(), Initializer->getBeginLoc(),
1962                         Initializer->getEndLoc())
1963                   : InitializationKind::CreateDirect(TypeRange.getBegin(),
1964                                                      DirectInitRange.getBegin(),
1965                                                      DirectInitRange.getEnd());
1966 
1967   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1968   auto *Deduced = AllocType->getContainedDeducedType();
1969   if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1970     if (ArraySize)
1971       return ExprError(
1972           Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
1973                diag::err_deduced_class_template_compound_type)
1974           << /*array*/ 2
1975           << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
1976 
1977     InitializedEntity Entity
1978       = InitializedEntity::InitializeNew(StartLoc, AllocType);
1979     AllocType = DeduceTemplateSpecializationFromInitializer(
1980         AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1981     if (AllocType.isNull())
1982       return ExprError();
1983   } else if (Deduced) {
1984     bool Braced = (initStyle == CXXNewExpr::ListInit);
1985     if (NumInits == 1) {
1986       if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1987         Inits = p->getInits();
1988         NumInits = p->getNumInits();
1989         Braced = true;
1990       }
1991     }
1992 
1993     if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1994       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1995                        << AllocType << TypeRange);
1996     if (NumInits > 1) {
1997       Expr *FirstBad = Inits[1];
1998       return ExprError(Diag(FirstBad->getBeginLoc(),
1999                             diag::err_auto_new_ctor_multiple_expressions)
2000                        << AllocType << TypeRange);
2001     }
2002     if (Braced && !getLangOpts().CPlusPlus17)
2003       Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2004           << AllocType << TypeRange;
2005     Expr *Deduce = Inits[0];
2006     QualType DeducedType;
2007     if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
2008       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2009                        << AllocType << Deduce->getType()
2010                        << TypeRange << Deduce->getSourceRange());
2011     if (DeducedType.isNull())
2012       return ExprError();
2013     AllocType = DeducedType;
2014   }
2015 
2016   // Per C++0x [expr.new]p5, the type being constructed may be a
2017   // typedef of an array type.
2018   if (!ArraySize) {
2019     if (const ConstantArrayType *Array
2020                               = Context.getAsConstantArrayType(AllocType)) {
2021       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2022                                          Context.getSizeType(),
2023                                          TypeRange.getEnd());
2024       AllocType = Array->getElementType();
2025     }
2026   }
2027 
2028   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2029     return ExprError();
2030 
2031   // In ARC, infer 'retaining' for the allocated
2032   if (getLangOpts().ObjCAutoRefCount &&
2033       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2034       AllocType->isObjCLifetimeType()) {
2035     AllocType = Context.getLifetimeQualifiedType(AllocType,
2036                                     AllocType->getObjCARCImplicitLifetime());
2037   }
2038 
2039   QualType ResultType = Context.getPointerType(AllocType);
2040 
2041   if (ArraySize && *ArraySize &&
2042       (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2043     ExprResult result = CheckPlaceholderExpr(*ArraySize);
2044     if (result.isInvalid()) return ExprError();
2045     ArraySize = result.get();
2046   }
2047   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2048   //   integral or enumeration type with a non-negative value."
2049   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2050   //   enumeration type, or a class type for which a single non-explicit
2051   //   conversion function to integral or unscoped enumeration type exists.
2052   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2053   //   std::size_t.
2054   llvm::Optional<uint64_t> KnownArraySize;
2055   if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2056     ExprResult ConvertedSize;
2057     if (getLangOpts().CPlusPlus14) {
2058       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2059 
2060       ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2061                                                 AA_Converting);
2062 
2063       if (!ConvertedSize.isInvalid() &&
2064           (*ArraySize)->getType()->getAs<RecordType>())
2065         // Diagnose the compatibility of this conversion.
2066         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2067           << (*ArraySize)->getType() << 0 << "'size_t'";
2068     } else {
2069       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2070       protected:
2071         Expr *ArraySize;
2072 
2073       public:
2074         SizeConvertDiagnoser(Expr *ArraySize)
2075             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2076               ArraySize(ArraySize) {}
2077 
2078         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2079                                              QualType T) override {
2080           return S.Diag(Loc, diag::err_array_size_not_integral)
2081                    << S.getLangOpts().CPlusPlus11 << T;
2082         }
2083 
2084         SemaDiagnosticBuilder diagnoseIncomplete(
2085             Sema &S, SourceLocation Loc, QualType T) override {
2086           return S.Diag(Loc, diag::err_array_size_incomplete_type)
2087                    << T << ArraySize->getSourceRange();
2088         }
2089 
2090         SemaDiagnosticBuilder diagnoseExplicitConv(
2091             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2092           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2093         }
2094 
2095         SemaDiagnosticBuilder noteExplicitConv(
2096             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2097           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2098                    << ConvTy->isEnumeralType() << ConvTy;
2099         }
2100 
2101         SemaDiagnosticBuilder diagnoseAmbiguous(
2102             Sema &S, SourceLocation Loc, QualType T) override {
2103           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2104         }
2105 
2106         SemaDiagnosticBuilder noteAmbiguous(
2107             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2108           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2109                    << ConvTy->isEnumeralType() << ConvTy;
2110         }
2111 
2112         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2113                                                  QualType T,
2114                                                  QualType ConvTy) override {
2115           return S.Diag(Loc,
2116                         S.getLangOpts().CPlusPlus11
2117                           ? diag::warn_cxx98_compat_array_size_conversion
2118                           : diag::ext_array_size_conversion)
2119                    << T << ConvTy->isEnumeralType() << ConvTy;
2120         }
2121       } SizeDiagnoser(*ArraySize);
2122 
2123       ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2124                                                           SizeDiagnoser);
2125     }
2126     if (ConvertedSize.isInvalid())
2127       return ExprError();
2128 
2129     ArraySize = ConvertedSize.get();
2130     QualType SizeType = (*ArraySize)->getType();
2131 
2132     if (!SizeType->isIntegralOrUnscopedEnumerationType())
2133       return ExprError();
2134 
2135     // C++98 [expr.new]p7:
2136     //   The expression in a direct-new-declarator shall have integral type
2137     //   with a non-negative value.
2138     //
2139     // Let's see if this is a constant < 0. If so, we reject it out of hand,
2140     // per CWG1464. Otherwise, if it's not a constant, we must have an
2141     // unparenthesized array type.
2142 
2143     // We've already performed any required implicit conversion to integer or
2144     // unscoped enumeration type.
2145     // FIXME: Per CWG1464, we are required to check the value prior to
2146     // converting to size_t. This will never find a negative array size in
2147     // C++14 onwards, because Value is always unsigned here!
2148     if (Optional<llvm::APSInt> Value =
2149             (*ArraySize)->getIntegerConstantExpr(Context)) {
2150       if (Value->isSigned() && Value->isNegative()) {
2151         return ExprError(Diag((*ArraySize)->getBeginLoc(),
2152                               diag::err_typecheck_negative_array_size)
2153                          << (*ArraySize)->getSourceRange());
2154       }
2155 
2156       if (!AllocType->isDependentType()) {
2157         unsigned ActiveSizeBits =
2158             ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2159         if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2160           return ExprError(
2161               Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2162               << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2163       }
2164 
2165       KnownArraySize = Value->getZExtValue();
2166     } else if (TypeIdParens.isValid()) {
2167       // Can't have dynamic array size when the type-id is in parentheses.
2168       Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2169           << (*ArraySize)->getSourceRange()
2170           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2171           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2172 
2173       TypeIdParens = SourceRange();
2174     }
2175 
2176     // Note that we do *not* convert the argument in any way.  It can
2177     // be signed, larger than size_t, whatever.
2178   }
2179 
2180   FunctionDecl *OperatorNew = nullptr;
2181   FunctionDecl *OperatorDelete = nullptr;
2182   unsigned Alignment =
2183       AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2184   unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2185   bool PassAlignment = getLangOpts().AlignedAllocation &&
2186                        Alignment > NewAlignment;
2187 
2188   AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2189   if (!AllocType->isDependentType() &&
2190       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2191       FindAllocationFunctions(
2192           StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2193           AllocType, ArraySize.hasValue(), PassAlignment, PlacementArgs,
2194           OperatorNew, OperatorDelete))
2195     return ExprError();
2196 
2197   // If this is an array allocation, compute whether the usual array
2198   // deallocation function for the type has a size_t parameter.
2199   bool UsualArrayDeleteWantsSize = false;
2200   if (ArraySize && !AllocType->isDependentType())
2201     UsualArrayDeleteWantsSize =
2202         doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2203 
2204   SmallVector<Expr *, 8> AllPlaceArgs;
2205   if (OperatorNew) {
2206     auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2207     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2208                                                     : VariadicDoesNotApply;
2209 
2210     // We've already converted the placement args, just fill in any default
2211     // arguments. Skip the first parameter because we don't have a corresponding
2212     // argument. Skip the second parameter too if we're passing in the
2213     // alignment; we've already filled it in.
2214     unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2215     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2216                                NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2217                                CallType))
2218       return ExprError();
2219 
2220     if (!AllPlaceArgs.empty())
2221       PlacementArgs = AllPlaceArgs;
2222 
2223     // We would like to perform some checking on the given `operator new` call,
2224     // but the PlacementArgs does not contain the implicit arguments,
2225     // namely allocation size and maybe allocation alignment,
2226     // so we need to conjure them.
2227 
2228     QualType SizeTy = Context.getSizeType();
2229     unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2230 
2231     llvm::APInt SingleEltSize(
2232         SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2233 
2234     // How many bytes do we want to allocate here?
2235     llvm::Optional<llvm::APInt> AllocationSize;
2236     if (!ArraySize.hasValue() && !AllocType->isDependentType()) {
2237       // For non-array operator new, we only want to allocate one element.
2238       AllocationSize = SingleEltSize;
2239     } else if (KnownArraySize.hasValue() && !AllocType->isDependentType()) {
2240       // For array operator new, only deal with static array size case.
2241       bool Overflow;
2242       AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2243                            .umul_ov(SingleEltSize, Overflow);
2244       (void)Overflow;
2245       assert(
2246           !Overflow &&
2247           "Expected that all the overflows would have been handled already.");
2248     }
2249 
2250     IntegerLiteral AllocationSizeLiteral(
2251         Context, AllocationSize.getValueOr(llvm::APInt::getZero(SizeTyWidth)),
2252         SizeTy, SourceLocation());
2253     // Otherwise, if we failed to constant-fold the allocation size, we'll
2254     // just give up and pass-in something opaque, that isn't a null pointer.
2255     OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2256                                          OK_Ordinary, /*SourceExpr=*/nullptr);
2257 
2258     // Let's synthesize the alignment argument in case we will need it.
2259     // Since we *really* want to allocate these on stack, this is slightly ugly
2260     // because there might not be a `std::align_val_t` type.
2261     EnumDecl *StdAlignValT = getStdAlignValT();
2262     QualType AlignValT =
2263         StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2264     IntegerLiteral AlignmentLiteral(
2265         Context,
2266         llvm::APInt(Context.getTypeSize(SizeTy),
2267                     Alignment / Context.getCharWidth()),
2268         SizeTy, SourceLocation());
2269     ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2270                                       CK_IntegralCast, &AlignmentLiteral,
2271                                       VK_PRValue, FPOptionsOverride());
2272 
2273     // Adjust placement args by prepending conjured size and alignment exprs.
2274     llvm::SmallVector<Expr *, 8> CallArgs;
2275     CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2276     CallArgs.emplace_back(AllocationSize.hasValue()
2277                               ? static_cast<Expr *>(&AllocationSizeLiteral)
2278                               : &OpaqueAllocationSize);
2279     if (PassAlignment)
2280       CallArgs.emplace_back(&DesiredAlignment);
2281     CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2282 
2283     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2284 
2285     checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2286               /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2287 
2288     // Warn if the type is over-aligned and is being allocated by (unaligned)
2289     // global operator new.
2290     if (PlacementArgs.empty() && !PassAlignment &&
2291         (OperatorNew->isImplicit() ||
2292          (OperatorNew->getBeginLoc().isValid() &&
2293           getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2294       if (Alignment > NewAlignment)
2295         Diag(StartLoc, diag::warn_overaligned_type)
2296             << AllocType
2297             << unsigned(Alignment / Context.getCharWidth())
2298             << unsigned(NewAlignment / Context.getCharWidth());
2299     }
2300   }
2301 
2302   // Array 'new' can't have any initializers except empty parentheses.
2303   // Initializer lists are also allowed, in C++11. Rely on the parser for the
2304   // dialect distinction.
2305   if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2306     SourceRange InitRange(Inits[0]->getBeginLoc(),
2307                           Inits[NumInits - 1]->getEndLoc());
2308     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2309     return ExprError();
2310   }
2311 
2312   // If we can perform the initialization, and we've not already done so,
2313   // do it now.
2314   if (!AllocType->isDependentType() &&
2315       !Expr::hasAnyTypeDependentArguments(
2316           llvm::makeArrayRef(Inits, NumInits))) {
2317     // The type we initialize is the complete type, including the array bound.
2318     QualType InitType;
2319     if (KnownArraySize)
2320       InitType = Context.getConstantArrayType(
2321           AllocType,
2322           llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2323                       *KnownArraySize),
2324           *ArraySize, ArrayType::Normal, 0);
2325     else if (ArraySize)
2326       InitType =
2327           Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2328     else
2329       InitType = AllocType;
2330 
2331     InitializedEntity Entity
2332       = InitializedEntity::InitializeNew(StartLoc, InitType);
2333     InitializationSequence InitSeq(*this, Entity, Kind,
2334                                    MultiExprArg(Inits, NumInits));
2335     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2336                                           MultiExprArg(Inits, NumInits));
2337     if (FullInit.isInvalid())
2338       return ExprError();
2339 
2340     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2341     // we don't want the initialized object to be destructed.
2342     // FIXME: We should not create these in the first place.
2343     if (CXXBindTemporaryExpr *Binder =
2344             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2345       FullInit = Binder->getSubExpr();
2346 
2347     Initializer = FullInit.get();
2348 
2349     // FIXME: If we have a KnownArraySize, check that the array bound of the
2350     // initializer is no greater than that constant value.
2351 
2352     if (ArraySize && !*ArraySize) {
2353       auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2354       if (CAT) {
2355         // FIXME: Track that the array size was inferred rather than explicitly
2356         // specified.
2357         ArraySize = IntegerLiteral::Create(
2358             Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2359       } else {
2360         Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2361             << Initializer->getSourceRange();
2362       }
2363     }
2364   }
2365 
2366   // Mark the new and delete operators as referenced.
2367   if (OperatorNew) {
2368     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2369       return ExprError();
2370     MarkFunctionReferenced(StartLoc, OperatorNew);
2371   }
2372   if (OperatorDelete) {
2373     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2374       return ExprError();
2375     MarkFunctionReferenced(StartLoc, OperatorDelete);
2376   }
2377 
2378   return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2379                             PassAlignment, UsualArrayDeleteWantsSize,
2380                             PlacementArgs, TypeIdParens, ArraySize, initStyle,
2381                             Initializer, ResultType, AllocTypeInfo, Range,
2382                             DirectInitRange);
2383 }
2384 
2385 /// Checks that a type is suitable as the allocated type
2386 /// in a new-expression.
2387 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2388                               SourceRange R) {
2389   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2390   //   abstract class type or array thereof.
2391   if (AllocType->isFunctionType())
2392     return Diag(Loc, diag::err_bad_new_type)
2393       << AllocType << 0 << R;
2394   else if (AllocType->isReferenceType())
2395     return Diag(Loc, diag::err_bad_new_type)
2396       << AllocType << 1 << R;
2397   else if (!AllocType->isDependentType() &&
2398            RequireCompleteSizedType(
2399                Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2400     return true;
2401   else if (RequireNonAbstractType(Loc, AllocType,
2402                                   diag::err_allocation_of_abstract_type))
2403     return true;
2404   else if (AllocType->isVariablyModifiedType())
2405     return Diag(Loc, diag::err_variably_modified_new_type)
2406              << AllocType;
2407   else if (AllocType.getAddressSpace() != LangAS::Default &&
2408            !getLangOpts().OpenCLCPlusPlus)
2409     return Diag(Loc, diag::err_address_space_qualified_new)
2410       << AllocType.getUnqualifiedType()
2411       << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2412   else if (getLangOpts().ObjCAutoRefCount) {
2413     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2414       QualType BaseAllocType = Context.getBaseElementType(AT);
2415       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2416           BaseAllocType->isObjCLifetimeType())
2417         return Diag(Loc, diag::err_arc_new_array_without_ownership)
2418           << BaseAllocType;
2419     }
2420   }
2421 
2422   return false;
2423 }
2424 
2425 static bool resolveAllocationOverload(
2426     Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2427     bool &PassAlignment, FunctionDecl *&Operator,
2428     OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2429   OverloadCandidateSet Candidates(R.getNameLoc(),
2430                                   OverloadCandidateSet::CSK_Normal);
2431   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2432        Alloc != AllocEnd; ++Alloc) {
2433     // Even member operator new/delete are implicitly treated as
2434     // static, so don't use AddMemberCandidate.
2435     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2436 
2437     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2438       S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2439                                      /*ExplicitTemplateArgs=*/nullptr, Args,
2440                                      Candidates,
2441                                      /*SuppressUserConversions=*/false);
2442       continue;
2443     }
2444 
2445     FunctionDecl *Fn = cast<FunctionDecl>(D);
2446     S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2447                            /*SuppressUserConversions=*/false);
2448   }
2449 
2450   // Do the resolution.
2451   OverloadCandidateSet::iterator Best;
2452   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2453   case OR_Success: {
2454     // Got one!
2455     FunctionDecl *FnDecl = Best->Function;
2456     if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2457                                 Best->FoundDecl) == Sema::AR_inaccessible)
2458       return true;
2459 
2460     Operator = FnDecl;
2461     return false;
2462   }
2463 
2464   case OR_No_Viable_Function:
2465     // C++17 [expr.new]p13:
2466     //   If no matching function is found and the allocated object type has
2467     //   new-extended alignment, the alignment argument is removed from the
2468     //   argument list, and overload resolution is performed again.
2469     if (PassAlignment) {
2470       PassAlignment = false;
2471       AlignArg = Args[1];
2472       Args.erase(Args.begin() + 1);
2473       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2474                                        Operator, &Candidates, AlignArg,
2475                                        Diagnose);
2476     }
2477 
2478     // MSVC will fall back on trying to find a matching global operator new
2479     // if operator new[] cannot be found.  Also, MSVC will leak by not
2480     // generating a call to operator delete or operator delete[], but we
2481     // will not replicate that bug.
2482     // FIXME: Find out how this interacts with the std::align_val_t fallback
2483     // once MSVC implements it.
2484     if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2485         S.Context.getLangOpts().MSVCCompat) {
2486       R.clear();
2487       R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2488       S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2489       // FIXME: This will give bad diagnostics pointing at the wrong functions.
2490       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2491                                        Operator, /*Candidates=*/nullptr,
2492                                        /*AlignArg=*/nullptr, Diagnose);
2493     }
2494 
2495     if (Diagnose) {
2496       // If this is an allocation of the form 'new (p) X' for some object
2497       // pointer p (or an expression that will decay to such a pointer),
2498       // diagnose the missing inclusion of <new>.
2499       if (!R.isClassLookup() && Args.size() == 2 &&
2500           (Args[1]->getType()->isObjectPointerType() ||
2501            Args[1]->getType()->isArrayType())) {
2502         S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2503             << R.getLookupName() << Range;
2504         // Listing the candidates is unlikely to be useful; skip it.
2505         return true;
2506       }
2507 
2508       // Finish checking all candidates before we note any. This checking can
2509       // produce additional diagnostics so can't be interleaved with our
2510       // emission of notes.
2511       //
2512       // For an aligned allocation, separately check the aligned and unaligned
2513       // candidates with their respective argument lists.
2514       SmallVector<OverloadCandidate*, 32> Cands;
2515       SmallVector<OverloadCandidate*, 32> AlignedCands;
2516       llvm::SmallVector<Expr*, 4> AlignedArgs;
2517       if (AlignedCandidates) {
2518         auto IsAligned = [](OverloadCandidate &C) {
2519           return C.Function->getNumParams() > 1 &&
2520                  C.Function->getParamDecl(1)->getType()->isAlignValT();
2521         };
2522         auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2523 
2524         AlignedArgs.reserve(Args.size() + 1);
2525         AlignedArgs.push_back(Args[0]);
2526         AlignedArgs.push_back(AlignArg);
2527         AlignedArgs.append(Args.begin() + 1, Args.end());
2528         AlignedCands = AlignedCandidates->CompleteCandidates(
2529             S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2530 
2531         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2532                                               R.getNameLoc(), IsUnaligned);
2533       } else {
2534         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2535                                               R.getNameLoc());
2536       }
2537 
2538       S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2539           << R.getLookupName() << Range;
2540       if (AlignedCandidates)
2541         AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2542                                           R.getNameLoc());
2543       Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2544     }
2545     return true;
2546 
2547   case OR_Ambiguous:
2548     if (Diagnose) {
2549       Candidates.NoteCandidates(
2550           PartialDiagnosticAt(R.getNameLoc(),
2551                               S.PDiag(diag::err_ovl_ambiguous_call)
2552                                   << R.getLookupName() << Range),
2553           S, OCD_AmbiguousCandidates, Args);
2554     }
2555     return true;
2556 
2557   case OR_Deleted: {
2558     if (Diagnose) {
2559       Candidates.NoteCandidates(
2560           PartialDiagnosticAt(R.getNameLoc(),
2561                               S.PDiag(diag::err_ovl_deleted_call)
2562                                   << R.getLookupName() << Range),
2563           S, OCD_AllCandidates, Args);
2564     }
2565     return true;
2566   }
2567   }
2568   llvm_unreachable("Unreachable, bad result from BestViableFunction");
2569 }
2570 
2571 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2572                                    AllocationFunctionScope NewScope,
2573                                    AllocationFunctionScope DeleteScope,
2574                                    QualType AllocType, bool IsArray,
2575                                    bool &PassAlignment, MultiExprArg PlaceArgs,
2576                                    FunctionDecl *&OperatorNew,
2577                                    FunctionDecl *&OperatorDelete,
2578                                    bool Diagnose) {
2579   // --- Choosing an allocation function ---
2580   // C++ 5.3.4p8 - 14 & 18
2581   // 1) If looking in AFS_Global scope for allocation functions, only look in
2582   //    the global scope. Else, if AFS_Class, only look in the scope of the
2583   //    allocated class. If AFS_Both, look in both.
2584   // 2) If an array size is given, look for operator new[], else look for
2585   //   operator new.
2586   // 3) The first argument is always size_t. Append the arguments from the
2587   //   placement form.
2588 
2589   SmallVector<Expr*, 8> AllocArgs;
2590   AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2591 
2592   // We don't care about the actual value of these arguments.
2593   // FIXME: Should the Sema create the expression and embed it in the syntax
2594   // tree? Or should the consumer just recalculate the value?
2595   // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2596   IntegerLiteral Size(
2597       Context, llvm::APInt::getZero(Context.getTargetInfo().getPointerWidth(0)),
2598       Context.getSizeType(), SourceLocation());
2599   AllocArgs.push_back(&Size);
2600 
2601   QualType AlignValT = Context.VoidTy;
2602   if (PassAlignment) {
2603     DeclareGlobalNewDelete();
2604     AlignValT = Context.getTypeDeclType(getStdAlignValT());
2605   }
2606   CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2607   if (PassAlignment)
2608     AllocArgs.push_back(&Align);
2609 
2610   AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2611 
2612   // C++ [expr.new]p8:
2613   //   If the allocated type is a non-array type, the allocation
2614   //   function's name is operator new and the deallocation function's
2615   //   name is operator delete. If the allocated type is an array
2616   //   type, the allocation function's name is operator new[] and the
2617   //   deallocation function's name is operator delete[].
2618   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2619       IsArray ? OO_Array_New : OO_New);
2620 
2621   QualType AllocElemType = Context.getBaseElementType(AllocType);
2622 
2623   // Find the allocation function.
2624   {
2625     LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2626 
2627     // C++1z [expr.new]p9:
2628     //   If the new-expression begins with a unary :: operator, the allocation
2629     //   function's name is looked up in the global scope. Otherwise, if the
2630     //   allocated type is a class type T or array thereof, the allocation
2631     //   function's name is looked up in the scope of T.
2632     if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2633       LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2634 
2635     // We can see ambiguity here if the allocation function is found in
2636     // multiple base classes.
2637     if (R.isAmbiguous())
2638       return true;
2639 
2640     //   If this lookup fails to find the name, or if the allocated type is not
2641     //   a class type, the allocation function's name is looked up in the
2642     //   global scope.
2643     if (R.empty()) {
2644       if (NewScope == AFS_Class)
2645         return true;
2646 
2647       LookupQualifiedName(R, Context.getTranslationUnitDecl());
2648     }
2649 
2650     if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2651       if (PlaceArgs.empty()) {
2652         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2653       } else {
2654         Diag(StartLoc, diag::err_openclcxx_placement_new);
2655       }
2656       return true;
2657     }
2658 
2659     assert(!R.empty() && "implicitly declared allocation functions not found");
2660     assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2661 
2662     // We do our own custom access checks below.
2663     R.suppressDiagnostics();
2664 
2665     if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2666                                   OperatorNew, /*Candidates=*/nullptr,
2667                                   /*AlignArg=*/nullptr, Diagnose))
2668       return true;
2669   }
2670 
2671   // We don't need an operator delete if we're running under -fno-exceptions.
2672   if (!getLangOpts().Exceptions) {
2673     OperatorDelete = nullptr;
2674     return false;
2675   }
2676 
2677   // Note, the name of OperatorNew might have been changed from array to
2678   // non-array by resolveAllocationOverload.
2679   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2680       OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2681           ? OO_Array_Delete
2682           : OO_Delete);
2683 
2684   // C++ [expr.new]p19:
2685   //
2686   //   If the new-expression begins with a unary :: operator, the
2687   //   deallocation function's name is looked up in the global
2688   //   scope. Otherwise, if the allocated type is a class type T or an
2689   //   array thereof, the deallocation function's name is looked up in
2690   //   the scope of T. If this lookup fails to find the name, or if
2691   //   the allocated type is not a class type or array thereof, the
2692   //   deallocation function's name is looked up in the global scope.
2693   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2694   if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2695     auto *RD =
2696         cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2697     LookupQualifiedName(FoundDelete, RD);
2698   }
2699   if (FoundDelete.isAmbiguous())
2700     return true; // FIXME: clean up expressions?
2701 
2702   // Filter out any destroying operator deletes. We can't possibly call such a
2703   // function in this context, because we're handling the case where the object
2704   // was not successfully constructed.
2705   // FIXME: This is not covered by the language rules yet.
2706   {
2707     LookupResult::Filter Filter = FoundDelete.makeFilter();
2708     while (Filter.hasNext()) {
2709       auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2710       if (FD && FD->isDestroyingOperatorDelete())
2711         Filter.erase();
2712     }
2713     Filter.done();
2714   }
2715 
2716   bool FoundGlobalDelete = FoundDelete.empty();
2717   if (FoundDelete.empty()) {
2718     FoundDelete.clear(LookupOrdinaryName);
2719 
2720     if (DeleteScope == AFS_Class)
2721       return true;
2722 
2723     DeclareGlobalNewDelete();
2724     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2725   }
2726 
2727   FoundDelete.suppressDiagnostics();
2728 
2729   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2730 
2731   // Whether we're looking for a placement operator delete is dictated
2732   // by whether we selected a placement operator new, not by whether
2733   // we had explicit placement arguments.  This matters for things like
2734   //   struct A { void *operator new(size_t, int = 0); ... };
2735   //   A *a = new A()
2736   //
2737   // We don't have any definition for what a "placement allocation function"
2738   // is, but we assume it's any allocation function whose
2739   // parameter-declaration-clause is anything other than (size_t).
2740   //
2741   // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2742   // This affects whether an exception from the constructor of an overaligned
2743   // type uses the sized or non-sized form of aligned operator delete.
2744   bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2745                         OperatorNew->isVariadic();
2746 
2747   if (isPlacementNew) {
2748     // C++ [expr.new]p20:
2749     //   A declaration of a placement deallocation function matches the
2750     //   declaration of a placement allocation function if it has the
2751     //   same number of parameters and, after parameter transformations
2752     //   (8.3.5), all parameter types except the first are
2753     //   identical. [...]
2754     //
2755     // To perform this comparison, we compute the function type that
2756     // the deallocation function should have, and use that type both
2757     // for template argument deduction and for comparison purposes.
2758     QualType ExpectedFunctionType;
2759     {
2760       auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2761 
2762       SmallVector<QualType, 4> ArgTypes;
2763       ArgTypes.push_back(Context.VoidPtrTy);
2764       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2765         ArgTypes.push_back(Proto->getParamType(I));
2766 
2767       FunctionProtoType::ExtProtoInfo EPI;
2768       // FIXME: This is not part of the standard's rule.
2769       EPI.Variadic = Proto->isVariadic();
2770 
2771       ExpectedFunctionType
2772         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2773     }
2774 
2775     for (LookupResult::iterator D = FoundDelete.begin(),
2776                              DEnd = FoundDelete.end();
2777          D != DEnd; ++D) {
2778       FunctionDecl *Fn = nullptr;
2779       if (FunctionTemplateDecl *FnTmpl =
2780               dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2781         // Perform template argument deduction to try to match the
2782         // expected function type.
2783         TemplateDeductionInfo Info(StartLoc);
2784         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2785                                     Info))
2786           continue;
2787       } else
2788         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2789 
2790       if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2791                                                   ExpectedFunctionType,
2792                                                   /*AdjustExcpetionSpec*/true),
2793                               ExpectedFunctionType))
2794         Matches.push_back(std::make_pair(D.getPair(), Fn));
2795     }
2796 
2797     if (getLangOpts().CUDA)
2798       EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2799   } else {
2800     // C++1y [expr.new]p22:
2801     //   For a non-placement allocation function, the normal deallocation
2802     //   function lookup is used
2803     //
2804     // Per [expr.delete]p10, this lookup prefers a member operator delete
2805     // without a size_t argument, but prefers a non-member operator delete
2806     // with a size_t where possible (which it always is in this case).
2807     llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2808     UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2809         *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2810         /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2811         &BestDeallocFns);
2812     if (Selected)
2813       Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2814     else {
2815       // If we failed to select an operator, all remaining functions are viable
2816       // but ambiguous.
2817       for (auto Fn : BestDeallocFns)
2818         Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2819     }
2820   }
2821 
2822   // C++ [expr.new]p20:
2823   //   [...] If the lookup finds a single matching deallocation
2824   //   function, that function will be called; otherwise, no
2825   //   deallocation function will be called.
2826   if (Matches.size() == 1) {
2827     OperatorDelete = Matches[0].second;
2828 
2829     // C++1z [expr.new]p23:
2830     //   If the lookup finds a usual deallocation function (3.7.4.2)
2831     //   with a parameter of type std::size_t and that function, considered
2832     //   as a placement deallocation function, would have been
2833     //   selected as a match for the allocation function, the program
2834     //   is ill-formed.
2835     if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2836         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2837       UsualDeallocFnInfo Info(*this,
2838                               DeclAccessPair::make(OperatorDelete, AS_public));
2839       // Core issue, per mail to core reflector, 2016-10-09:
2840       //   If this is a member operator delete, and there is a corresponding
2841       //   non-sized member operator delete, this isn't /really/ a sized
2842       //   deallocation function, it just happens to have a size_t parameter.
2843       bool IsSizedDelete = Info.HasSizeT;
2844       if (IsSizedDelete && !FoundGlobalDelete) {
2845         auto NonSizedDelete =
2846             resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2847                                         /*WantAlign*/Info.HasAlignValT);
2848         if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2849             NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2850           IsSizedDelete = false;
2851       }
2852 
2853       if (IsSizedDelete) {
2854         SourceRange R = PlaceArgs.empty()
2855                             ? SourceRange()
2856                             : SourceRange(PlaceArgs.front()->getBeginLoc(),
2857                                           PlaceArgs.back()->getEndLoc());
2858         Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2859         if (!OperatorDelete->isImplicit())
2860           Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2861               << DeleteName;
2862       }
2863     }
2864 
2865     CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2866                           Matches[0].first);
2867   } else if (!Matches.empty()) {
2868     // We found multiple suitable operators. Per [expr.new]p20, that means we
2869     // call no 'operator delete' function, but we should at least warn the user.
2870     // FIXME: Suppress this warning if the construction cannot throw.
2871     Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2872       << DeleteName << AllocElemType;
2873 
2874     for (auto &Match : Matches)
2875       Diag(Match.second->getLocation(),
2876            diag::note_member_declared_here) << DeleteName;
2877   }
2878 
2879   return false;
2880 }
2881 
2882 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2883 /// delete. These are:
2884 /// @code
2885 ///   // C++03:
2886 ///   void* operator new(std::size_t) throw(std::bad_alloc);
2887 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
2888 ///   void operator delete(void *) throw();
2889 ///   void operator delete[](void *) throw();
2890 ///   // C++11:
2891 ///   void* operator new(std::size_t);
2892 ///   void* operator new[](std::size_t);
2893 ///   void operator delete(void *) noexcept;
2894 ///   void operator delete[](void *) noexcept;
2895 ///   // C++1y:
2896 ///   void* operator new(std::size_t);
2897 ///   void* operator new[](std::size_t);
2898 ///   void operator delete(void *) noexcept;
2899 ///   void operator delete[](void *) noexcept;
2900 ///   void operator delete(void *, std::size_t) noexcept;
2901 ///   void operator delete[](void *, std::size_t) noexcept;
2902 /// @endcode
2903 /// Note that the placement and nothrow forms of new are *not* implicitly
2904 /// declared. Their use requires including \<new\>.
2905 void Sema::DeclareGlobalNewDelete() {
2906   if (GlobalNewDeleteDeclared)
2907     return;
2908 
2909   // The implicitly declared new and delete operators
2910   // are not supported in OpenCL.
2911   if (getLangOpts().OpenCLCPlusPlus)
2912     return;
2913 
2914   // C++ [basic.std.dynamic]p2:
2915   //   [...] The following allocation and deallocation functions (18.4) are
2916   //   implicitly declared in global scope in each translation unit of a
2917   //   program
2918   //
2919   //     C++03:
2920   //     void* operator new(std::size_t) throw(std::bad_alloc);
2921   //     void* operator new[](std::size_t) throw(std::bad_alloc);
2922   //     void  operator delete(void*) throw();
2923   //     void  operator delete[](void*) throw();
2924   //     C++11:
2925   //     void* operator new(std::size_t);
2926   //     void* operator new[](std::size_t);
2927   //     void  operator delete(void*) noexcept;
2928   //     void  operator delete[](void*) noexcept;
2929   //     C++1y:
2930   //     void* operator new(std::size_t);
2931   //     void* operator new[](std::size_t);
2932   //     void  operator delete(void*) noexcept;
2933   //     void  operator delete[](void*) noexcept;
2934   //     void  operator delete(void*, std::size_t) noexcept;
2935   //     void  operator delete[](void*, std::size_t) noexcept;
2936   //
2937   //   These implicit declarations introduce only the function names operator
2938   //   new, operator new[], operator delete, operator delete[].
2939   //
2940   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2941   // "std" or "bad_alloc" as necessary to form the exception specification.
2942   // However, we do not make these implicit declarations visible to name
2943   // lookup.
2944   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2945     // The "std::bad_alloc" class has not yet been declared, so build it
2946     // implicitly.
2947     StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2948                                         getOrCreateStdNamespace(),
2949                                         SourceLocation(), SourceLocation(),
2950                                       &PP.getIdentifierTable().get("bad_alloc"),
2951                                         nullptr);
2952     getStdBadAlloc()->setImplicit(true);
2953   }
2954   if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2955     // The "std::align_val_t" enum class has not yet been declared, so build it
2956     // implicitly.
2957     auto *AlignValT = EnumDecl::Create(
2958         Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2959         &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2960     AlignValT->setIntegerType(Context.getSizeType());
2961     AlignValT->setPromotionType(Context.getSizeType());
2962     AlignValT->setImplicit(true);
2963     StdAlignValT = AlignValT;
2964   }
2965 
2966   GlobalNewDeleteDeclared = true;
2967 
2968   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2969   QualType SizeT = Context.getSizeType();
2970 
2971   auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2972                                               QualType Return, QualType Param) {
2973     llvm::SmallVector<QualType, 3> Params;
2974     Params.push_back(Param);
2975 
2976     // Create up to four variants of the function (sized/aligned).
2977     bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2978                            (Kind == OO_Delete || Kind == OO_Array_Delete);
2979     bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2980 
2981     int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2982     int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2983     for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2984       if (Sized)
2985         Params.push_back(SizeT);
2986 
2987       for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2988         if (Aligned)
2989           Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2990 
2991         DeclareGlobalAllocationFunction(
2992             Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2993 
2994         if (Aligned)
2995           Params.pop_back();
2996       }
2997     }
2998   };
2999 
3000   DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3001   DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3002   DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3003   DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3004 }
3005 
3006 /// DeclareGlobalAllocationFunction - Declares a single implicit global
3007 /// allocation function if it doesn't already exist.
3008 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3009                                            QualType Return,
3010                                            ArrayRef<QualType> Params) {
3011   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3012 
3013   // Check if this function is already declared.
3014   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3015   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3016        Alloc != AllocEnd; ++Alloc) {
3017     // Only look at non-template functions, as it is the predefined,
3018     // non-templated allocation function we are trying to declare here.
3019     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3020       if (Func->getNumParams() == Params.size()) {
3021         llvm::SmallVector<QualType, 3> FuncParams;
3022         for (auto *P : Func->parameters())
3023           FuncParams.push_back(
3024               Context.getCanonicalType(P->getType().getUnqualifiedType()));
3025         if (llvm::makeArrayRef(FuncParams) == Params) {
3026           // Make the function visible to name lookup, even if we found it in
3027           // an unimported module. It either is an implicitly-declared global
3028           // allocation function, or is suppressing that function.
3029           Func->setVisibleDespiteOwningModule();
3030           return;
3031         }
3032       }
3033     }
3034   }
3035 
3036   FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3037       /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3038 
3039   QualType BadAllocType;
3040   bool HasBadAllocExceptionSpec
3041     = (Name.getCXXOverloadedOperator() == OO_New ||
3042        Name.getCXXOverloadedOperator() == OO_Array_New);
3043   if (HasBadAllocExceptionSpec) {
3044     if (!getLangOpts().CPlusPlus11) {
3045       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3046       assert(StdBadAlloc && "Must have std::bad_alloc declared");
3047       EPI.ExceptionSpec.Type = EST_Dynamic;
3048       EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
3049     }
3050     if (getLangOpts().NewInfallible) {
3051       EPI.ExceptionSpec.Type = EST_DynamicNone;
3052     }
3053   } else {
3054     EPI.ExceptionSpec =
3055         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3056   }
3057 
3058   auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3059     QualType FnType = Context.getFunctionType(Return, Params, EPI);
3060     FunctionDecl *Alloc = FunctionDecl::Create(
3061         Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3062         /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3063         true);
3064     Alloc->setImplicit();
3065     // Global allocation functions should always be visible.
3066     Alloc->setVisibleDespiteOwningModule();
3067 
3068     if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible)
3069       Alloc->addAttr(
3070           ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3071 
3072     Alloc->addAttr(VisibilityAttr::CreateImplicit(
3073         Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3074                      ? VisibilityAttr::Hidden
3075                      : VisibilityAttr::Default));
3076 
3077     llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3078     for (QualType T : Params) {
3079       ParamDecls.push_back(ParmVarDecl::Create(
3080           Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3081           /*TInfo=*/nullptr, SC_None, nullptr));
3082       ParamDecls.back()->setImplicit();
3083     }
3084     Alloc->setParams(ParamDecls);
3085     if (ExtraAttr)
3086       Alloc->addAttr(ExtraAttr);
3087     AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3088     Context.getTranslationUnitDecl()->addDecl(Alloc);
3089     IdResolver.tryAddTopLevelDecl(Alloc, Name);
3090   };
3091 
3092   if (!LangOpts.CUDA)
3093     CreateAllocationFunctionDecl(nullptr);
3094   else {
3095     // Host and device get their own declaration so each can be
3096     // defined or re-declared independently.
3097     CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3098     CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3099   }
3100 }
3101 
3102 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3103                                                   bool CanProvideSize,
3104                                                   bool Overaligned,
3105                                                   DeclarationName Name) {
3106   DeclareGlobalNewDelete();
3107 
3108   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3109   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3110 
3111   // FIXME: It's possible for this to result in ambiguity, through a
3112   // user-declared variadic operator delete or the enable_if attribute. We
3113   // should probably not consider those cases to be usual deallocation
3114   // functions. But for now we just make an arbitrary choice in that case.
3115   auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3116                                             Overaligned);
3117   assert(Result.FD && "operator delete missing from global scope?");
3118   return Result.FD;
3119 }
3120 
3121 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3122                                                           CXXRecordDecl *RD) {
3123   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3124 
3125   FunctionDecl *OperatorDelete = nullptr;
3126   if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3127     return nullptr;
3128   if (OperatorDelete)
3129     return OperatorDelete;
3130 
3131   // If there's no class-specific operator delete, look up the global
3132   // non-array delete.
3133   return FindUsualDeallocationFunction(
3134       Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3135       Name);
3136 }
3137 
3138 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3139                                     DeclarationName Name,
3140                                     FunctionDecl *&Operator, bool Diagnose) {
3141   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3142   // Try to find operator delete/operator delete[] in class scope.
3143   LookupQualifiedName(Found, RD);
3144 
3145   if (Found.isAmbiguous())
3146     return true;
3147 
3148   Found.suppressDiagnostics();
3149 
3150   bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3151 
3152   // C++17 [expr.delete]p10:
3153   //   If the deallocation functions have class scope, the one without a
3154   //   parameter of type std::size_t is selected.
3155   llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3156   resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
3157                               /*WantAlign*/ Overaligned, &Matches);
3158 
3159   // If we could find an overload, use it.
3160   if (Matches.size() == 1) {
3161     Operator = cast<CXXMethodDecl>(Matches[0].FD);
3162 
3163     // FIXME: DiagnoseUseOfDecl?
3164     if (Operator->isDeleted()) {
3165       if (Diagnose) {
3166         Diag(StartLoc, diag::err_deleted_function_use);
3167         NoteDeletedFunction(Operator);
3168       }
3169       return true;
3170     }
3171 
3172     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3173                               Matches[0].Found, Diagnose) == AR_inaccessible)
3174       return true;
3175 
3176     return false;
3177   }
3178 
3179   // We found multiple suitable operators; complain about the ambiguity.
3180   // FIXME: The standard doesn't say to do this; it appears that the intent
3181   // is that this should never happen.
3182   if (!Matches.empty()) {
3183     if (Diagnose) {
3184       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3185         << Name << RD;
3186       for (auto &Match : Matches)
3187         Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3188     }
3189     return true;
3190   }
3191 
3192   // We did find operator delete/operator delete[] declarations, but
3193   // none of them were suitable.
3194   if (!Found.empty()) {
3195     if (Diagnose) {
3196       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3197         << Name << RD;
3198 
3199       for (NamedDecl *D : Found)
3200         Diag(D->getUnderlyingDecl()->getLocation(),
3201              diag::note_member_declared_here) << Name;
3202     }
3203     return true;
3204   }
3205 
3206   Operator = nullptr;
3207   return false;
3208 }
3209 
3210 namespace {
3211 /// Checks whether delete-expression, and new-expression used for
3212 ///  initializing deletee have the same array form.
3213 class MismatchingNewDeleteDetector {
3214 public:
3215   enum MismatchResult {
3216     /// Indicates that there is no mismatch or a mismatch cannot be proven.
3217     NoMismatch,
3218     /// Indicates that variable is initialized with mismatching form of \a new.
3219     VarInitMismatches,
3220     /// Indicates that member is initialized with mismatching form of \a new.
3221     MemberInitMismatches,
3222     /// Indicates that 1 or more constructors' definitions could not been
3223     /// analyzed, and they will be checked again at the end of translation unit.
3224     AnalyzeLater
3225   };
3226 
3227   /// \param EndOfTU True, if this is the final analysis at the end of
3228   /// translation unit. False, if this is the initial analysis at the point
3229   /// delete-expression was encountered.
3230   explicit MismatchingNewDeleteDetector(bool EndOfTU)
3231       : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3232         HasUndefinedConstructors(false) {}
3233 
3234   /// Checks whether pointee of a delete-expression is initialized with
3235   /// matching form of new-expression.
3236   ///
3237   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3238   /// point where delete-expression is encountered, then a warning will be
3239   /// issued immediately. If return value is \c AnalyzeLater at the point where
3240   /// delete-expression is seen, then member will be analyzed at the end of
3241   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3242   /// couldn't be analyzed. If at least one constructor initializes the member
3243   /// with matching type of new, the return value is \c NoMismatch.
3244   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3245   /// Analyzes a class member.
3246   /// \param Field Class member to analyze.
3247   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3248   /// for deleting the \p Field.
3249   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3250   FieldDecl *Field;
3251   /// List of mismatching new-expressions used for initialization of the pointee
3252   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3253   /// Indicates whether delete-expression was in array form.
3254   bool IsArrayForm;
3255 
3256 private:
3257   const bool EndOfTU;
3258   /// Indicates that there is at least one constructor without body.
3259   bool HasUndefinedConstructors;
3260   /// Returns \c CXXNewExpr from given initialization expression.
3261   /// \param E Expression used for initializing pointee in delete-expression.
3262   /// E can be a single-element \c InitListExpr consisting of new-expression.
3263   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3264   /// Returns whether member is initialized with mismatching form of
3265   /// \c new either by the member initializer or in-class initialization.
3266   ///
3267   /// If bodies of all constructors are not visible at the end of translation
3268   /// unit or at least one constructor initializes member with the matching
3269   /// form of \c new, mismatch cannot be proven, and this function will return
3270   /// \c NoMismatch.
3271   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3272   /// Returns whether variable is initialized with mismatching form of
3273   /// \c new.
3274   ///
3275   /// If variable is initialized with matching form of \c new or variable is not
3276   /// initialized with a \c new expression, this function will return true.
3277   /// If variable is initialized with mismatching form of \c new, returns false.
3278   /// \param D Variable to analyze.
3279   bool hasMatchingVarInit(const DeclRefExpr *D);
3280   /// Checks whether the constructor initializes pointee with mismatching
3281   /// form of \c new.
3282   ///
3283   /// Returns true, if member is initialized with matching form of \c new in
3284   /// member initializer list. Returns false, if member is initialized with the
3285   /// matching form of \c new in this constructor's initializer or given
3286   /// constructor isn't defined at the point where delete-expression is seen, or
3287   /// member isn't initialized by the constructor.
3288   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3289   /// Checks whether member is initialized with matching form of
3290   /// \c new in member initializer list.
3291   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3292   /// Checks whether member is initialized with mismatching form of \c new by
3293   /// in-class initializer.
3294   MismatchResult analyzeInClassInitializer();
3295 };
3296 }
3297 
3298 MismatchingNewDeleteDetector::MismatchResult
3299 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3300   NewExprs.clear();
3301   assert(DE && "Expected delete-expression");
3302   IsArrayForm = DE->isArrayForm();
3303   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3304   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3305     return analyzeMemberExpr(ME);
3306   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3307     if (!hasMatchingVarInit(D))
3308       return VarInitMismatches;
3309   }
3310   return NoMismatch;
3311 }
3312 
3313 const CXXNewExpr *
3314 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3315   assert(E != nullptr && "Expected a valid initializer expression");
3316   E = E->IgnoreParenImpCasts();
3317   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3318     if (ILE->getNumInits() == 1)
3319       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3320   }
3321 
3322   return dyn_cast_or_null<const CXXNewExpr>(E);
3323 }
3324 
3325 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3326     const CXXCtorInitializer *CI) {
3327   const CXXNewExpr *NE = nullptr;
3328   if (Field == CI->getMember() &&
3329       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3330     if (NE->isArray() == IsArrayForm)
3331       return true;
3332     else
3333       NewExprs.push_back(NE);
3334   }
3335   return false;
3336 }
3337 
3338 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3339     const CXXConstructorDecl *CD) {
3340   if (CD->isImplicit())
3341     return false;
3342   const FunctionDecl *Definition = CD;
3343   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3344     HasUndefinedConstructors = true;
3345     return EndOfTU;
3346   }
3347   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3348     if (hasMatchingNewInCtorInit(CI))
3349       return true;
3350   }
3351   return false;
3352 }
3353 
3354 MismatchingNewDeleteDetector::MismatchResult
3355 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3356   assert(Field != nullptr && "This should be called only for members");
3357   const Expr *InitExpr = Field->getInClassInitializer();
3358   if (!InitExpr)
3359     return EndOfTU ? NoMismatch : AnalyzeLater;
3360   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3361     if (NE->isArray() != IsArrayForm) {
3362       NewExprs.push_back(NE);
3363       return MemberInitMismatches;
3364     }
3365   }
3366   return NoMismatch;
3367 }
3368 
3369 MismatchingNewDeleteDetector::MismatchResult
3370 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3371                                            bool DeleteWasArrayForm) {
3372   assert(Field != nullptr && "Analysis requires a valid class member.");
3373   this->Field = Field;
3374   IsArrayForm = DeleteWasArrayForm;
3375   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3376   for (const auto *CD : RD->ctors()) {
3377     if (hasMatchingNewInCtor(CD))
3378       return NoMismatch;
3379   }
3380   if (HasUndefinedConstructors)
3381     return EndOfTU ? NoMismatch : AnalyzeLater;
3382   if (!NewExprs.empty())
3383     return MemberInitMismatches;
3384   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3385                                         : NoMismatch;
3386 }
3387 
3388 MismatchingNewDeleteDetector::MismatchResult
3389 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3390   assert(ME != nullptr && "Expected a member expression");
3391   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3392     return analyzeField(F, IsArrayForm);
3393   return NoMismatch;
3394 }
3395 
3396 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3397   const CXXNewExpr *NE = nullptr;
3398   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3399     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3400         NE->isArray() != IsArrayForm) {
3401       NewExprs.push_back(NE);
3402     }
3403   }
3404   return NewExprs.empty();
3405 }
3406 
3407 static void
3408 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3409                             const MismatchingNewDeleteDetector &Detector) {
3410   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3411   FixItHint H;
3412   if (!Detector.IsArrayForm)
3413     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3414   else {
3415     SourceLocation RSquare = Lexer::findLocationAfterToken(
3416         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3417         SemaRef.getLangOpts(), true);
3418     if (RSquare.isValid())
3419       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3420   }
3421   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3422       << Detector.IsArrayForm << H;
3423 
3424   for (const auto *NE : Detector.NewExprs)
3425     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3426         << Detector.IsArrayForm;
3427 }
3428 
3429 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3430   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3431     return;
3432   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3433   switch (Detector.analyzeDeleteExpr(DE)) {
3434   case MismatchingNewDeleteDetector::VarInitMismatches:
3435   case MismatchingNewDeleteDetector::MemberInitMismatches: {
3436     DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3437     break;
3438   }
3439   case MismatchingNewDeleteDetector::AnalyzeLater: {
3440     DeleteExprs[Detector.Field].push_back(
3441         std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3442     break;
3443   }
3444   case MismatchingNewDeleteDetector::NoMismatch:
3445     break;
3446   }
3447 }
3448 
3449 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3450                                      bool DeleteWasArrayForm) {
3451   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3452   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3453   case MismatchingNewDeleteDetector::VarInitMismatches:
3454     llvm_unreachable("This analysis should have been done for class members.");
3455   case MismatchingNewDeleteDetector::AnalyzeLater:
3456     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3457                      "translation unit.");
3458   case MismatchingNewDeleteDetector::MemberInitMismatches:
3459     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3460     break;
3461   case MismatchingNewDeleteDetector::NoMismatch:
3462     break;
3463   }
3464 }
3465 
3466 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3467 /// @code ::delete ptr; @endcode
3468 /// or
3469 /// @code delete [] ptr; @endcode
3470 ExprResult
3471 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3472                      bool ArrayForm, Expr *ExE) {
3473   // C++ [expr.delete]p1:
3474   //   The operand shall have a pointer type, or a class type having a single
3475   //   non-explicit conversion function to a pointer type. The result has type
3476   //   void.
3477   //
3478   // DR599 amends "pointer type" to "pointer to object type" in both cases.
3479 
3480   ExprResult Ex = ExE;
3481   FunctionDecl *OperatorDelete = nullptr;
3482   bool ArrayFormAsWritten = ArrayForm;
3483   bool UsualArrayDeleteWantsSize = false;
3484 
3485   if (!Ex.get()->isTypeDependent()) {
3486     // Perform lvalue-to-rvalue cast, if needed.
3487     Ex = DefaultLvalueConversion(Ex.get());
3488     if (Ex.isInvalid())
3489       return ExprError();
3490 
3491     QualType Type = Ex.get()->getType();
3492 
3493     class DeleteConverter : public ContextualImplicitConverter {
3494     public:
3495       DeleteConverter() : ContextualImplicitConverter(false, true) {}
3496 
3497       bool match(QualType ConvType) override {
3498         // FIXME: If we have an operator T* and an operator void*, we must pick
3499         // the operator T*.
3500         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3501           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3502             return true;
3503         return false;
3504       }
3505 
3506       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3507                                             QualType T) override {
3508         return S.Diag(Loc, diag::err_delete_operand) << T;
3509       }
3510 
3511       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3512                                                QualType T) override {
3513         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3514       }
3515 
3516       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3517                                                  QualType T,
3518                                                  QualType ConvTy) override {
3519         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3520       }
3521 
3522       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3523                                              QualType ConvTy) override {
3524         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3525           << ConvTy;
3526       }
3527 
3528       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3529                                               QualType T) override {
3530         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3531       }
3532 
3533       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3534                                           QualType ConvTy) override {
3535         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3536           << ConvTy;
3537       }
3538 
3539       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3540                                                QualType T,
3541                                                QualType ConvTy) override {
3542         llvm_unreachable("conversion functions are permitted");
3543       }
3544     } Converter;
3545 
3546     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3547     if (Ex.isInvalid())
3548       return ExprError();
3549     Type = Ex.get()->getType();
3550     if (!Converter.match(Type))
3551       // FIXME: PerformContextualImplicitConversion should return ExprError
3552       //        itself in this case.
3553       return ExprError();
3554 
3555     QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3556     QualType PointeeElem = Context.getBaseElementType(Pointee);
3557 
3558     if (Pointee.getAddressSpace() != LangAS::Default &&
3559         !getLangOpts().OpenCLCPlusPlus)
3560       return Diag(Ex.get()->getBeginLoc(),
3561                   diag::err_address_space_qualified_delete)
3562              << Pointee.getUnqualifiedType()
3563              << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3564 
3565     CXXRecordDecl *PointeeRD = nullptr;
3566     if (Pointee->isVoidType() && !isSFINAEContext()) {
3567       // The C++ standard bans deleting a pointer to a non-object type, which
3568       // effectively bans deletion of "void*". However, most compilers support
3569       // this, so we treat it as a warning unless we're in a SFINAE context.
3570       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3571         << Type << Ex.get()->getSourceRange();
3572     } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3573                Pointee->isSizelessType()) {
3574       return ExprError(Diag(StartLoc, diag::err_delete_operand)
3575         << Type << Ex.get()->getSourceRange());
3576     } else if (!Pointee->isDependentType()) {
3577       // FIXME: This can result in errors if the definition was imported from a
3578       // module but is hidden.
3579       if (!RequireCompleteType(StartLoc, Pointee,
3580                                diag::warn_delete_incomplete, Ex.get())) {
3581         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3582           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3583       }
3584     }
3585 
3586     if (Pointee->isArrayType() && !ArrayForm) {
3587       Diag(StartLoc, diag::warn_delete_array_type)
3588           << Type << Ex.get()->getSourceRange()
3589           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3590       ArrayForm = true;
3591     }
3592 
3593     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3594                                       ArrayForm ? OO_Array_Delete : OO_Delete);
3595 
3596     if (PointeeRD) {
3597       if (!UseGlobal &&
3598           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3599                                    OperatorDelete))
3600         return ExprError();
3601 
3602       // If we're allocating an array of records, check whether the
3603       // usual operator delete[] has a size_t parameter.
3604       if (ArrayForm) {
3605         // If the user specifically asked to use the global allocator,
3606         // we'll need to do the lookup into the class.
3607         if (UseGlobal)
3608           UsualArrayDeleteWantsSize =
3609             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3610 
3611         // Otherwise, the usual operator delete[] should be the
3612         // function we just found.
3613         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3614           UsualArrayDeleteWantsSize =
3615             UsualDeallocFnInfo(*this,
3616                                DeclAccessPair::make(OperatorDelete, AS_public))
3617               .HasSizeT;
3618       }
3619 
3620       if (!PointeeRD->hasIrrelevantDestructor())
3621         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3622           MarkFunctionReferenced(StartLoc,
3623                                     const_cast<CXXDestructorDecl*>(Dtor));
3624           if (DiagnoseUseOfDecl(Dtor, StartLoc))
3625             return ExprError();
3626         }
3627 
3628       CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3629                            /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3630                            /*WarnOnNonAbstractTypes=*/!ArrayForm,
3631                            SourceLocation());
3632     }
3633 
3634     if (!OperatorDelete) {
3635       if (getLangOpts().OpenCLCPlusPlus) {
3636         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3637         return ExprError();
3638       }
3639 
3640       bool IsComplete = isCompleteType(StartLoc, Pointee);
3641       bool CanProvideSize =
3642           IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3643                          Pointee.isDestructedType());
3644       bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3645 
3646       // Look for a global declaration.
3647       OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3648                                                      Overaligned, DeleteName);
3649     }
3650 
3651     MarkFunctionReferenced(StartLoc, OperatorDelete);
3652 
3653     // Check access and ambiguity of destructor if we're going to call it.
3654     // Note that this is required even for a virtual delete.
3655     bool IsVirtualDelete = false;
3656     if (PointeeRD) {
3657       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3658         CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3659                               PDiag(diag::err_access_dtor) << PointeeElem);
3660         IsVirtualDelete = Dtor->isVirtual();
3661       }
3662     }
3663 
3664     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3665 
3666     // Convert the operand to the type of the first parameter of operator
3667     // delete. This is only necessary if we selected a destroying operator
3668     // delete that we are going to call (non-virtually); converting to void*
3669     // is trivial and left to AST consumers to handle.
3670     QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3671     if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3672       Qualifiers Qs = Pointee.getQualifiers();
3673       if (Qs.hasCVRQualifiers()) {
3674         // Qualifiers are irrelevant to this conversion; we're only looking
3675         // for access and ambiguity.
3676         Qs.removeCVRQualifiers();
3677         QualType Unqual = Context.getPointerType(
3678             Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3679         Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3680       }
3681       Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3682       if (Ex.isInvalid())
3683         return ExprError();
3684     }
3685   }
3686 
3687   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3688       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3689       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3690   AnalyzeDeleteExprMismatch(Result);
3691   return Result;
3692 }
3693 
3694 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3695                                             bool IsDelete,
3696                                             FunctionDecl *&Operator) {
3697 
3698   DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3699       IsDelete ? OO_Delete : OO_New);
3700 
3701   LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3702   S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3703   assert(!R.empty() && "implicitly declared allocation functions not found");
3704   assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3705 
3706   // We do our own custom access checks below.
3707   R.suppressDiagnostics();
3708 
3709   SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3710   OverloadCandidateSet Candidates(R.getNameLoc(),
3711                                   OverloadCandidateSet::CSK_Normal);
3712   for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3713        FnOvl != FnOvlEnd; ++FnOvl) {
3714     // Even member operator new/delete are implicitly treated as
3715     // static, so don't use AddMemberCandidate.
3716     NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3717 
3718     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3719       S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3720                                      /*ExplicitTemplateArgs=*/nullptr, Args,
3721                                      Candidates,
3722                                      /*SuppressUserConversions=*/false);
3723       continue;
3724     }
3725 
3726     FunctionDecl *Fn = cast<FunctionDecl>(D);
3727     S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3728                            /*SuppressUserConversions=*/false);
3729   }
3730 
3731   SourceRange Range = TheCall->getSourceRange();
3732 
3733   // Do the resolution.
3734   OverloadCandidateSet::iterator Best;
3735   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3736   case OR_Success: {
3737     // Got one!
3738     FunctionDecl *FnDecl = Best->Function;
3739     assert(R.getNamingClass() == nullptr &&
3740            "class members should not be considered");
3741 
3742     if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3743       S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3744           << (IsDelete ? 1 : 0) << Range;
3745       S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3746           << R.getLookupName() << FnDecl->getSourceRange();
3747       return true;
3748     }
3749 
3750     Operator = FnDecl;
3751     return false;
3752   }
3753 
3754   case OR_No_Viable_Function:
3755     Candidates.NoteCandidates(
3756         PartialDiagnosticAt(R.getNameLoc(),
3757                             S.PDiag(diag::err_ovl_no_viable_function_in_call)
3758                                 << R.getLookupName() << Range),
3759         S, OCD_AllCandidates, Args);
3760     return true;
3761 
3762   case OR_Ambiguous:
3763     Candidates.NoteCandidates(
3764         PartialDiagnosticAt(R.getNameLoc(),
3765                             S.PDiag(diag::err_ovl_ambiguous_call)
3766                                 << R.getLookupName() << Range),
3767         S, OCD_AmbiguousCandidates, Args);
3768     return true;
3769 
3770   case OR_Deleted: {
3771     Candidates.NoteCandidates(
3772         PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3773                                                 << R.getLookupName() << Range),
3774         S, OCD_AllCandidates, Args);
3775     return true;
3776   }
3777   }
3778   llvm_unreachable("Unreachable, bad result from BestViableFunction");
3779 }
3780 
3781 ExprResult
3782 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3783                                              bool IsDelete) {
3784   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3785   if (!getLangOpts().CPlusPlus) {
3786     Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3787         << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3788         << "C++";
3789     return ExprError();
3790   }
3791   // CodeGen assumes it can find the global new and delete to call,
3792   // so ensure that they are declared.
3793   DeclareGlobalNewDelete();
3794 
3795   FunctionDecl *OperatorNewOrDelete = nullptr;
3796   if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3797                                       OperatorNewOrDelete))
3798     return ExprError();
3799   assert(OperatorNewOrDelete && "should be found");
3800 
3801   DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3802   MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3803 
3804   TheCall->setType(OperatorNewOrDelete->getReturnType());
3805   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3806     QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3807     InitializedEntity Entity =
3808         InitializedEntity::InitializeParameter(Context, ParamTy, false);
3809     ExprResult Arg = PerformCopyInitialization(
3810         Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3811     if (Arg.isInvalid())
3812       return ExprError();
3813     TheCall->setArg(i, Arg.get());
3814   }
3815   auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3816   assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3817          "Callee expected to be implicit cast to a builtin function pointer");
3818   Callee->setType(OperatorNewOrDelete->getType());
3819 
3820   return TheCallResult;
3821 }
3822 
3823 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3824                                 bool IsDelete, bool CallCanBeVirtual,
3825                                 bool WarnOnNonAbstractTypes,
3826                                 SourceLocation DtorLoc) {
3827   if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3828     return;
3829 
3830   // C++ [expr.delete]p3:
3831   //   In the first alternative (delete object), if the static type of the
3832   //   object to be deleted is different from its dynamic type, the static
3833   //   type shall be a base class of the dynamic type of the object to be
3834   //   deleted and the static type shall have a virtual destructor or the
3835   //   behavior is undefined.
3836   //
3837   const CXXRecordDecl *PointeeRD = dtor->getParent();
3838   // Note: a final class cannot be derived from, no issue there
3839   if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3840     return;
3841 
3842   // If the superclass is in a system header, there's nothing that can be done.
3843   // The `delete` (where we emit the warning) can be in a system header,
3844   // what matters for this warning is where the deleted type is defined.
3845   if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3846     return;
3847 
3848   QualType ClassType = dtor->getThisType()->getPointeeType();
3849   if (PointeeRD->isAbstract()) {
3850     // If the class is abstract, we warn by default, because we're
3851     // sure the code has undefined behavior.
3852     Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3853                                                            << ClassType;
3854   } else if (WarnOnNonAbstractTypes) {
3855     // Otherwise, if this is not an array delete, it's a bit suspect,
3856     // but not necessarily wrong.
3857     Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3858                                                   << ClassType;
3859   }
3860   if (!IsDelete) {
3861     std::string TypeStr;
3862     ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3863     Diag(DtorLoc, diag::note_delete_non_virtual)
3864         << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3865   }
3866 }
3867 
3868 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3869                                                    SourceLocation StmtLoc,
3870                                                    ConditionKind CK) {
3871   ExprResult E =
3872       CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3873   if (E.isInvalid())
3874     return ConditionError();
3875   return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3876                          CK == ConditionKind::ConstexprIf);
3877 }
3878 
3879 /// Check the use of the given variable as a C++ condition in an if,
3880 /// while, do-while, or switch statement.
3881 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3882                                         SourceLocation StmtLoc,
3883                                         ConditionKind CK) {
3884   if (ConditionVar->isInvalidDecl())
3885     return ExprError();
3886 
3887   QualType T = ConditionVar->getType();
3888 
3889   // C++ [stmt.select]p2:
3890   //   The declarator shall not specify a function or an array.
3891   if (T->isFunctionType())
3892     return ExprError(Diag(ConditionVar->getLocation(),
3893                           diag::err_invalid_use_of_function_type)
3894                        << ConditionVar->getSourceRange());
3895   else if (T->isArrayType())
3896     return ExprError(Diag(ConditionVar->getLocation(),
3897                           diag::err_invalid_use_of_array_type)
3898                      << ConditionVar->getSourceRange());
3899 
3900   ExprResult Condition = BuildDeclRefExpr(
3901       ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
3902       ConditionVar->getLocation());
3903 
3904   switch (CK) {
3905   case ConditionKind::Boolean:
3906     return CheckBooleanCondition(StmtLoc, Condition.get());
3907 
3908   case ConditionKind::ConstexprIf:
3909     return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3910 
3911   case ConditionKind::Switch:
3912     return CheckSwitchCondition(StmtLoc, Condition.get());
3913   }
3914 
3915   llvm_unreachable("unexpected condition kind");
3916 }
3917 
3918 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3919 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3920   // C++11 6.4p4:
3921   // The value of a condition that is an initialized declaration in a statement
3922   // other than a switch statement is the value of the declared variable
3923   // implicitly converted to type bool. If that conversion is ill-formed, the
3924   // program is ill-formed.
3925   // The value of a condition that is an expression is the value of the
3926   // expression, implicitly converted to bool.
3927   //
3928   // C++2b 8.5.2p2
3929   // If the if statement is of the form if constexpr, the value of the condition
3930   // is contextually converted to bool and the converted expression shall be
3931   // a constant expression.
3932   //
3933 
3934   ExprResult E = PerformContextuallyConvertToBool(CondExpr);
3935   if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
3936     return E;
3937 
3938   // FIXME: Return this value to the caller so they don't need to recompute it.
3939   llvm::APSInt Cond;
3940   E = VerifyIntegerConstantExpression(
3941       E.get(), &Cond,
3942       diag::err_constexpr_if_condition_expression_is_not_constant);
3943   return E;
3944 }
3945 
3946 /// Helper function to determine whether this is the (deprecated) C++
3947 /// conversion from a string literal to a pointer to non-const char or
3948 /// non-const wchar_t (for narrow and wide string literals,
3949 /// respectively).
3950 bool
3951 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3952   // Look inside the implicit cast, if it exists.
3953   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3954     From = Cast->getSubExpr();
3955 
3956   // A string literal (2.13.4) that is not a wide string literal can
3957   // be converted to an rvalue of type "pointer to char"; a wide
3958   // string literal can be converted to an rvalue of type "pointer
3959   // to wchar_t" (C++ 4.2p2).
3960   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3961     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3962       if (const BuiltinType *ToPointeeType
3963           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3964         // This conversion is considered only when there is an
3965         // explicit appropriate pointer target type (C++ 4.2p2).
3966         if (!ToPtrType->getPointeeType().hasQualifiers()) {
3967           switch (StrLit->getKind()) {
3968             case StringLiteral::UTF8:
3969             case StringLiteral::UTF16:
3970             case StringLiteral::UTF32:
3971               // We don't allow UTF literals to be implicitly converted
3972               break;
3973             case StringLiteral::Ascii:
3974               return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3975                       ToPointeeType->getKind() == BuiltinType::Char_S);
3976             case StringLiteral::Wide:
3977               return Context.typesAreCompatible(Context.getWideCharType(),
3978                                                 QualType(ToPointeeType, 0));
3979           }
3980         }
3981       }
3982 
3983   return false;
3984 }
3985 
3986 static ExprResult BuildCXXCastArgument(Sema &S,
3987                                        SourceLocation CastLoc,
3988                                        QualType Ty,
3989                                        CastKind Kind,
3990                                        CXXMethodDecl *Method,
3991                                        DeclAccessPair FoundDecl,
3992                                        bool HadMultipleCandidates,
3993                                        Expr *From) {
3994   switch (Kind) {
3995   default: llvm_unreachable("Unhandled cast kind!");
3996   case CK_ConstructorConversion: {
3997     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3998     SmallVector<Expr*, 8> ConstructorArgs;
3999 
4000     if (S.RequireNonAbstractType(CastLoc, Ty,
4001                                  diag::err_allocation_of_abstract_type))
4002       return ExprError();
4003 
4004     if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4005                                   ConstructorArgs))
4006       return ExprError();
4007 
4008     S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4009                              InitializedEntity::InitializeTemporary(Ty));
4010     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4011       return ExprError();
4012 
4013     ExprResult Result = S.BuildCXXConstructExpr(
4014         CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4015         ConstructorArgs, HadMultipleCandidates,
4016         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4017         CXXConstructExpr::CK_Complete, SourceRange());
4018     if (Result.isInvalid())
4019       return ExprError();
4020 
4021     return S.MaybeBindToTemporary(Result.getAs<Expr>());
4022   }
4023 
4024   case CK_UserDefinedConversion: {
4025     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
4026 
4027     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4028     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4029       return ExprError();
4030 
4031     // Create an implicit call expr that calls it.
4032     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4033     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4034                                                  HadMultipleCandidates);
4035     if (Result.isInvalid())
4036       return ExprError();
4037     // Record usage of conversion in an implicit cast.
4038     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4039                                       CK_UserDefinedConversion, Result.get(),
4040                                       nullptr, Result.get()->getValueKind(),
4041                                       S.CurFPFeatureOverrides());
4042 
4043     return S.MaybeBindToTemporary(Result.get());
4044   }
4045   }
4046 }
4047 
4048 /// PerformImplicitConversion - Perform an implicit conversion of the
4049 /// expression From to the type ToType using the pre-computed implicit
4050 /// conversion sequence ICS. Returns the converted
4051 /// expression. Action is the kind of conversion we're performing,
4052 /// used in the error message.
4053 ExprResult
4054 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4055                                 const ImplicitConversionSequence &ICS,
4056                                 AssignmentAction Action,
4057                                 CheckedConversionKind CCK) {
4058   // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4059   if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4060     return From;
4061 
4062   switch (ICS.getKind()) {
4063   case ImplicitConversionSequence::StandardConversion: {
4064     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4065                                                Action, CCK);
4066     if (Res.isInvalid())
4067       return ExprError();
4068     From = Res.get();
4069     break;
4070   }
4071 
4072   case ImplicitConversionSequence::UserDefinedConversion: {
4073 
4074       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4075       CastKind CastKind;
4076       QualType BeforeToType;
4077       assert(FD && "no conversion function for user-defined conversion seq");
4078       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4079         CastKind = CK_UserDefinedConversion;
4080 
4081         // If the user-defined conversion is specified by a conversion function,
4082         // the initial standard conversion sequence converts the source type to
4083         // the implicit object parameter of the conversion function.
4084         BeforeToType = Context.getTagDeclType(Conv->getParent());
4085       } else {
4086         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4087         CastKind = CK_ConstructorConversion;
4088         // Do no conversion if dealing with ... for the first conversion.
4089         if (!ICS.UserDefined.EllipsisConversion) {
4090           // If the user-defined conversion is specified by a constructor, the
4091           // initial standard conversion sequence converts the source type to
4092           // the type required by the argument of the constructor
4093           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4094         }
4095       }
4096       // Watch out for ellipsis conversion.
4097       if (!ICS.UserDefined.EllipsisConversion) {
4098         ExprResult Res =
4099           PerformImplicitConversion(From, BeforeToType,
4100                                     ICS.UserDefined.Before, AA_Converting,
4101                                     CCK);
4102         if (Res.isInvalid())
4103           return ExprError();
4104         From = Res.get();
4105       }
4106 
4107       ExprResult CastArg = BuildCXXCastArgument(
4108           *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4109           cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4110           ICS.UserDefined.HadMultipleCandidates, From);
4111 
4112       if (CastArg.isInvalid())
4113         return ExprError();
4114 
4115       From = CastArg.get();
4116 
4117       // C++ [over.match.oper]p7:
4118       //   [...] the second standard conversion sequence of a user-defined
4119       //   conversion sequence is not applied.
4120       if (CCK == CCK_ForBuiltinOverloadedOp)
4121         return From;
4122 
4123       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4124                                        AA_Converting, CCK);
4125   }
4126 
4127   case ImplicitConversionSequence::AmbiguousConversion:
4128     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4129                           PDiag(diag::err_typecheck_ambiguous_condition)
4130                             << From->getSourceRange());
4131     return ExprError();
4132 
4133   case ImplicitConversionSequence::EllipsisConversion:
4134     llvm_unreachable("Cannot perform an ellipsis conversion");
4135 
4136   case ImplicitConversionSequence::BadConversion:
4137     Sema::AssignConvertType ConvTy =
4138         CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4139     bool Diagnosed = DiagnoseAssignmentResult(
4140         ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4141         ToType, From->getType(), From, Action);
4142     assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4143     return ExprError();
4144   }
4145 
4146   // Everything went well.
4147   return From;
4148 }
4149 
4150 /// PerformImplicitConversion - Perform an implicit conversion of the
4151 /// expression From to the type ToType by following the standard
4152 /// conversion sequence SCS. Returns the converted
4153 /// expression. Flavor is the context in which we're performing this
4154 /// conversion, for use in error messages.
4155 ExprResult
4156 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4157                                 const StandardConversionSequence& SCS,
4158                                 AssignmentAction Action,
4159                                 CheckedConversionKind CCK) {
4160   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4161 
4162   // Overall FIXME: we are recomputing too many types here and doing far too
4163   // much extra work. What this means is that we need to keep track of more
4164   // information that is computed when we try the implicit conversion initially,
4165   // so that we don't need to recompute anything here.
4166   QualType FromType = From->getType();
4167 
4168   if (SCS.CopyConstructor) {
4169     // FIXME: When can ToType be a reference type?
4170     assert(!ToType->isReferenceType());
4171     if (SCS.Second == ICK_Derived_To_Base) {
4172       SmallVector<Expr*, 8> ConstructorArgs;
4173       if (CompleteConstructorCall(
4174               cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4175               /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4176         return ExprError();
4177       return BuildCXXConstructExpr(
4178           /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4179           SCS.FoundCopyConstructor, SCS.CopyConstructor,
4180           ConstructorArgs, /*HadMultipleCandidates*/ false,
4181           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4182           CXXConstructExpr::CK_Complete, SourceRange());
4183     }
4184     return BuildCXXConstructExpr(
4185         /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4186         SCS.FoundCopyConstructor, SCS.CopyConstructor,
4187         From, /*HadMultipleCandidates*/ false,
4188         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4189         CXXConstructExpr::CK_Complete, SourceRange());
4190   }
4191 
4192   // Resolve overloaded function references.
4193   if (Context.hasSameType(FromType, Context.OverloadTy)) {
4194     DeclAccessPair Found;
4195     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4196                                                           true, Found);
4197     if (!Fn)
4198       return ExprError();
4199 
4200     if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4201       return ExprError();
4202 
4203     From = FixOverloadedFunctionReference(From, Found, Fn);
4204     FromType = From->getType();
4205   }
4206 
4207   // If we're converting to an atomic type, first convert to the corresponding
4208   // non-atomic type.
4209   QualType ToAtomicType;
4210   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4211     ToAtomicType = ToType;
4212     ToType = ToAtomic->getValueType();
4213   }
4214 
4215   QualType InitialFromType = FromType;
4216   // Perform the first implicit conversion.
4217   switch (SCS.First) {
4218   case ICK_Identity:
4219     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4220       FromType = FromAtomic->getValueType().getUnqualifiedType();
4221       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4222                                       From, /*BasePath=*/nullptr, VK_PRValue,
4223                                       FPOptionsOverride());
4224     }
4225     break;
4226 
4227   case ICK_Lvalue_To_Rvalue: {
4228     assert(From->getObjectKind() != OK_ObjCProperty);
4229     ExprResult FromRes = DefaultLvalueConversion(From);
4230     if (FromRes.isInvalid())
4231       return ExprError();
4232 
4233     From = FromRes.get();
4234     FromType = From->getType();
4235     break;
4236   }
4237 
4238   case ICK_Array_To_Pointer:
4239     FromType = Context.getArrayDecayedType(FromType);
4240     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4241                              /*BasePath=*/nullptr, CCK)
4242                .get();
4243     break;
4244 
4245   case ICK_Function_To_Pointer:
4246     FromType = Context.getPointerType(FromType);
4247     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4248                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4249                .get();
4250     break;
4251 
4252   default:
4253     llvm_unreachable("Improper first standard conversion");
4254   }
4255 
4256   // Perform the second implicit conversion
4257   switch (SCS.Second) {
4258   case ICK_Identity:
4259     // C++ [except.spec]p5:
4260     //   [For] assignment to and initialization of pointers to functions,
4261     //   pointers to member functions, and references to functions: the
4262     //   target entity shall allow at least the exceptions allowed by the
4263     //   source value in the assignment or initialization.
4264     switch (Action) {
4265     case AA_Assigning:
4266     case AA_Initializing:
4267       // Note, function argument passing and returning are initialization.
4268     case AA_Passing:
4269     case AA_Returning:
4270     case AA_Sending:
4271     case AA_Passing_CFAudited:
4272       if (CheckExceptionSpecCompatibility(From, ToType))
4273         return ExprError();
4274       break;
4275 
4276     case AA_Casting:
4277     case AA_Converting:
4278       // Casts and implicit conversions are not initialization, so are not
4279       // checked for exception specification mismatches.
4280       break;
4281     }
4282     // Nothing else to do.
4283     break;
4284 
4285   case ICK_Integral_Promotion:
4286   case ICK_Integral_Conversion:
4287     if (ToType->isBooleanType()) {
4288       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4289              SCS.Second == ICK_Integral_Promotion &&
4290              "only enums with fixed underlying type can promote to bool");
4291       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4292                                /*BasePath=*/nullptr, CCK)
4293                  .get();
4294     } else {
4295       From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4296                                /*BasePath=*/nullptr, CCK)
4297                  .get();
4298     }
4299     break;
4300 
4301   case ICK_Floating_Promotion:
4302   case ICK_Floating_Conversion:
4303     From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4304                              /*BasePath=*/nullptr, CCK)
4305                .get();
4306     break;
4307 
4308   case ICK_Complex_Promotion:
4309   case ICK_Complex_Conversion: {
4310     QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4311     QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4312     CastKind CK;
4313     if (FromEl->isRealFloatingType()) {
4314       if (ToEl->isRealFloatingType())
4315         CK = CK_FloatingComplexCast;
4316       else
4317         CK = CK_FloatingComplexToIntegralComplex;
4318     } else if (ToEl->isRealFloatingType()) {
4319       CK = CK_IntegralComplexToFloatingComplex;
4320     } else {
4321       CK = CK_IntegralComplexCast;
4322     }
4323     From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4324                              CCK)
4325                .get();
4326     break;
4327   }
4328 
4329   case ICK_Floating_Integral:
4330     if (ToType->isRealFloatingType())
4331       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4332                                /*BasePath=*/nullptr, CCK)
4333                  .get();
4334     else
4335       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4336                                /*BasePath=*/nullptr, CCK)
4337                  .get();
4338     break;
4339 
4340   case ICK_Compatible_Conversion:
4341     From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4342                              /*BasePath=*/nullptr, CCK).get();
4343     break;
4344 
4345   case ICK_Writeback_Conversion:
4346   case ICK_Pointer_Conversion: {
4347     if (SCS.IncompatibleObjC && Action != AA_Casting) {
4348       // Diagnose incompatible Objective-C conversions
4349       if (Action == AA_Initializing || Action == AA_Assigning)
4350         Diag(From->getBeginLoc(),
4351              diag::ext_typecheck_convert_incompatible_pointer)
4352             << ToType << From->getType() << Action << From->getSourceRange()
4353             << 0;
4354       else
4355         Diag(From->getBeginLoc(),
4356              diag::ext_typecheck_convert_incompatible_pointer)
4357             << From->getType() << ToType << Action << From->getSourceRange()
4358             << 0;
4359 
4360       if (From->getType()->isObjCObjectPointerType() &&
4361           ToType->isObjCObjectPointerType())
4362         EmitRelatedResultTypeNote(From);
4363     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4364                !CheckObjCARCUnavailableWeakConversion(ToType,
4365                                                       From->getType())) {
4366       if (Action == AA_Initializing)
4367         Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4368       else
4369         Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4370             << (Action == AA_Casting) << From->getType() << ToType
4371             << From->getSourceRange();
4372     }
4373 
4374     // Defer address space conversion to the third conversion.
4375     QualType FromPteeType = From->getType()->getPointeeType();
4376     QualType ToPteeType = ToType->getPointeeType();
4377     QualType NewToType = ToType;
4378     if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4379         FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4380       NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4381       NewToType = Context.getAddrSpaceQualType(NewToType,
4382                                                FromPteeType.getAddressSpace());
4383       if (ToType->isObjCObjectPointerType())
4384         NewToType = Context.getObjCObjectPointerType(NewToType);
4385       else if (ToType->isBlockPointerType())
4386         NewToType = Context.getBlockPointerType(NewToType);
4387       else
4388         NewToType = Context.getPointerType(NewToType);
4389     }
4390 
4391     CastKind Kind;
4392     CXXCastPath BasePath;
4393     if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4394       return ExprError();
4395 
4396     // Make sure we extend blocks if necessary.
4397     // FIXME: doing this here is really ugly.
4398     if (Kind == CK_BlockPointerToObjCPointerCast) {
4399       ExprResult E = From;
4400       (void) PrepareCastToObjCObjectPointer(E);
4401       From = E.get();
4402     }
4403     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4404       CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4405     From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4406                .get();
4407     break;
4408   }
4409 
4410   case ICK_Pointer_Member: {
4411     CastKind Kind;
4412     CXXCastPath BasePath;
4413     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4414       return ExprError();
4415     if (CheckExceptionSpecCompatibility(From, ToType))
4416       return ExprError();
4417 
4418     // We may not have been able to figure out what this member pointer resolved
4419     // to up until this exact point.  Attempt to lock-in it's inheritance model.
4420     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4421       (void)isCompleteType(From->getExprLoc(), From->getType());
4422       (void)isCompleteType(From->getExprLoc(), ToType);
4423     }
4424 
4425     From =
4426         ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4427     break;
4428   }
4429 
4430   case ICK_Boolean_Conversion:
4431     // Perform half-to-boolean conversion via float.
4432     if (From->getType()->isHalfType()) {
4433       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4434       FromType = Context.FloatTy;
4435     }
4436 
4437     From = ImpCastExprToType(From, Context.BoolTy,
4438                              ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4439                              /*BasePath=*/nullptr, CCK)
4440                .get();
4441     break;
4442 
4443   case ICK_Derived_To_Base: {
4444     CXXCastPath BasePath;
4445     if (CheckDerivedToBaseConversion(
4446             From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4447             From->getSourceRange(), &BasePath, CStyle))
4448       return ExprError();
4449 
4450     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4451                       CK_DerivedToBase, From->getValueKind(),
4452                       &BasePath, CCK).get();
4453     break;
4454   }
4455 
4456   case ICK_Vector_Conversion:
4457     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4458                              /*BasePath=*/nullptr, CCK)
4459                .get();
4460     break;
4461 
4462   case ICK_SVE_Vector_Conversion:
4463     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4464                              /*BasePath=*/nullptr, CCK)
4465                .get();
4466     break;
4467 
4468   case ICK_Vector_Splat: {
4469     // Vector splat from any arithmetic type to a vector.
4470     Expr *Elem = prepareVectorSplat(ToType, From).get();
4471     From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4472                              /*BasePath=*/nullptr, CCK)
4473                .get();
4474     break;
4475   }
4476 
4477   case ICK_Complex_Real:
4478     // Case 1.  x -> _Complex y
4479     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4480       QualType ElType = ToComplex->getElementType();
4481       bool isFloatingComplex = ElType->isRealFloatingType();
4482 
4483       // x -> y
4484       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4485         // do nothing
4486       } else if (From->getType()->isRealFloatingType()) {
4487         From = ImpCastExprToType(From, ElType,
4488                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4489       } else {
4490         assert(From->getType()->isIntegerType());
4491         From = ImpCastExprToType(From, ElType,
4492                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4493       }
4494       // y -> _Complex y
4495       From = ImpCastExprToType(From, ToType,
4496                    isFloatingComplex ? CK_FloatingRealToComplex
4497                                      : CK_IntegralRealToComplex).get();
4498 
4499     // Case 2.  _Complex x -> y
4500     } else {
4501       auto *FromComplex = From->getType()->castAs<ComplexType>();
4502       QualType ElType = FromComplex->getElementType();
4503       bool isFloatingComplex = ElType->isRealFloatingType();
4504 
4505       // _Complex x -> x
4506       From = ImpCastExprToType(From, ElType,
4507                                isFloatingComplex ? CK_FloatingComplexToReal
4508                                                  : CK_IntegralComplexToReal,
4509                                VK_PRValue, /*BasePath=*/nullptr, CCK)
4510                  .get();
4511 
4512       // x -> y
4513       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4514         // do nothing
4515       } else if (ToType->isRealFloatingType()) {
4516         From = ImpCastExprToType(From, ToType,
4517                                  isFloatingComplex ? CK_FloatingCast
4518                                                    : CK_IntegralToFloating,
4519                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4520                    .get();
4521       } else {
4522         assert(ToType->isIntegerType());
4523         From = ImpCastExprToType(From, ToType,
4524                                  isFloatingComplex ? CK_FloatingToIntegral
4525                                                    : CK_IntegralCast,
4526                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4527                    .get();
4528       }
4529     }
4530     break;
4531 
4532   case ICK_Block_Pointer_Conversion: {
4533     LangAS AddrSpaceL =
4534         ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4535     LangAS AddrSpaceR =
4536         FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4537     assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4538            "Invalid cast");
4539     CastKind Kind =
4540         AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4541     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4542                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4543                .get();
4544     break;
4545   }
4546 
4547   case ICK_TransparentUnionConversion: {
4548     ExprResult FromRes = From;
4549     Sema::AssignConvertType ConvTy =
4550       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4551     if (FromRes.isInvalid())
4552       return ExprError();
4553     From = FromRes.get();
4554     assert ((ConvTy == Sema::Compatible) &&
4555             "Improper transparent union conversion");
4556     (void)ConvTy;
4557     break;
4558   }
4559 
4560   case ICK_Zero_Event_Conversion:
4561   case ICK_Zero_Queue_Conversion:
4562     From = ImpCastExprToType(From, ToType,
4563                              CK_ZeroToOCLOpaqueType,
4564                              From->getValueKind()).get();
4565     break;
4566 
4567   case ICK_Lvalue_To_Rvalue:
4568   case ICK_Array_To_Pointer:
4569   case ICK_Function_To_Pointer:
4570   case ICK_Function_Conversion:
4571   case ICK_Qualification:
4572   case ICK_Num_Conversion_Kinds:
4573   case ICK_C_Only_Conversion:
4574   case ICK_Incompatible_Pointer_Conversion:
4575     llvm_unreachable("Improper second standard conversion");
4576   }
4577 
4578   switch (SCS.Third) {
4579   case ICK_Identity:
4580     // Nothing to do.
4581     break;
4582 
4583   case ICK_Function_Conversion:
4584     // If both sides are functions (or pointers/references to them), there could
4585     // be incompatible exception declarations.
4586     if (CheckExceptionSpecCompatibility(From, ToType))
4587       return ExprError();
4588 
4589     From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4590                              /*BasePath=*/nullptr, CCK)
4591                .get();
4592     break;
4593 
4594   case ICK_Qualification: {
4595     ExprValueKind VK = From->getValueKind();
4596     CastKind CK = CK_NoOp;
4597 
4598     if (ToType->isReferenceType() &&
4599         ToType->getPointeeType().getAddressSpace() !=
4600             From->getType().getAddressSpace())
4601       CK = CK_AddressSpaceConversion;
4602 
4603     if (ToType->isPointerType() &&
4604         ToType->getPointeeType().getAddressSpace() !=
4605             From->getType()->getPointeeType().getAddressSpace())
4606       CK = CK_AddressSpaceConversion;
4607 
4608     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4609                              /*BasePath=*/nullptr, CCK)
4610                .get();
4611 
4612     if (SCS.DeprecatedStringLiteralToCharPtr &&
4613         !getLangOpts().WritableStrings) {
4614       Diag(From->getBeginLoc(),
4615            getLangOpts().CPlusPlus11
4616                ? diag::ext_deprecated_string_literal_conversion
4617                : diag::warn_deprecated_string_literal_conversion)
4618           << ToType.getNonReferenceType();
4619     }
4620 
4621     break;
4622   }
4623 
4624   default:
4625     llvm_unreachable("Improper third standard conversion");
4626   }
4627 
4628   // If this conversion sequence involved a scalar -> atomic conversion, perform
4629   // that conversion now.
4630   if (!ToAtomicType.isNull()) {
4631     assert(Context.hasSameType(
4632         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4633     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4634                              VK_PRValue, nullptr, CCK)
4635                .get();
4636   }
4637 
4638   // Materialize a temporary if we're implicitly converting to a reference
4639   // type. This is not required by the C++ rules but is necessary to maintain
4640   // AST invariants.
4641   if (ToType->isReferenceType() && From->isPRValue()) {
4642     ExprResult Res = TemporaryMaterializationConversion(From);
4643     if (Res.isInvalid())
4644       return ExprError();
4645     From = Res.get();
4646   }
4647 
4648   // If this conversion sequence succeeded and involved implicitly converting a
4649   // _Nullable type to a _Nonnull one, complain.
4650   if (!isCast(CCK))
4651     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4652                                         From->getBeginLoc());
4653 
4654   return From;
4655 }
4656 
4657 /// Check the completeness of a type in a unary type trait.
4658 ///
4659 /// If the particular type trait requires a complete type, tries to complete
4660 /// it. If completing the type fails, a diagnostic is emitted and false
4661 /// returned. If completing the type succeeds or no completion was required,
4662 /// returns true.
4663 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4664                                                 SourceLocation Loc,
4665                                                 QualType ArgTy) {
4666   // C++0x [meta.unary.prop]p3:
4667   //   For all of the class templates X declared in this Clause, instantiating
4668   //   that template with a template argument that is a class template
4669   //   specialization may result in the implicit instantiation of the template
4670   //   argument if and only if the semantics of X require that the argument
4671   //   must be a complete type.
4672   // We apply this rule to all the type trait expressions used to implement
4673   // these class templates. We also try to follow any GCC documented behavior
4674   // in these expressions to ensure portability of standard libraries.
4675   switch (UTT) {
4676   default: llvm_unreachable("not a UTT");
4677     // is_complete_type somewhat obviously cannot require a complete type.
4678   case UTT_IsCompleteType:
4679     // Fall-through
4680 
4681     // These traits are modeled on the type predicates in C++0x
4682     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4683     // requiring a complete type, as whether or not they return true cannot be
4684     // impacted by the completeness of the type.
4685   case UTT_IsVoid:
4686   case UTT_IsIntegral:
4687   case UTT_IsFloatingPoint:
4688   case UTT_IsArray:
4689   case UTT_IsPointer:
4690   case UTT_IsLvalueReference:
4691   case UTT_IsRvalueReference:
4692   case UTT_IsMemberFunctionPointer:
4693   case UTT_IsMemberObjectPointer:
4694   case UTT_IsEnum:
4695   case UTT_IsUnion:
4696   case UTT_IsClass:
4697   case UTT_IsFunction:
4698   case UTT_IsReference:
4699   case UTT_IsArithmetic:
4700   case UTT_IsFundamental:
4701   case UTT_IsObject:
4702   case UTT_IsScalar:
4703   case UTT_IsCompound:
4704   case UTT_IsMemberPointer:
4705     // Fall-through
4706 
4707     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4708     // which requires some of its traits to have the complete type. However,
4709     // the completeness of the type cannot impact these traits' semantics, and
4710     // so they don't require it. This matches the comments on these traits in
4711     // Table 49.
4712   case UTT_IsConst:
4713   case UTT_IsVolatile:
4714   case UTT_IsSigned:
4715   case UTT_IsUnsigned:
4716 
4717   // This type trait always returns false, checking the type is moot.
4718   case UTT_IsInterfaceClass:
4719     return true;
4720 
4721   // C++14 [meta.unary.prop]:
4722   //   If T is a non-union class type, T shall be a complete type.
4723   case UTT_IsEmpty:
4724   case UTT_IsPolymorphic:
4725   case UTT_IsAbstract:
4726     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4727       if (!RD->isUnion())
4728         return !S.RequireCompleteType(
4729             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4730     return true;
4731 
4732   // C++14 [meta.unary.prop]:
4733   //   If T is a class type, T shall be a complete type.
4734   case UTT_IsFinal:
4735   case UTT_IsSealed:
4736     if (ArgTy->getAsCXXRecordDecl())
4737       return !S.RequireCompleteType(
4738           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4739     return true;
4740 
4741   // C++1z [meta.unary.prop]:
4742   //   remove_all_extents_t<T> shall be a complete type or cv void.
4743   case UTT_IsAggregate:
4744   case UTT_IsTrivial:
4745   case UTT_IsTriviallyCopyable:
4746   case UTT_IsStandardLayout:
4747   case UTT_IsPOD:
4748   case UTT_IsLiteral:
4749   // Per the GCC type traits documentation, T shall be a complete type, cv void,
4750   // or an array of unknown bound. But GCC actually imposes the same constraints
4751   // as above.
4752   case UTT_HasNothrowAssign:
4753   case UTT_HasNothrowMoveAssign:
4754   case UTT_HasNothrowConstructor:
4755   case UTT_HasNothrowCopy:
4756   case UTT_HasTrivialAssign:
4757   case UTT_HasTrivialMoveAssign:
4758   case UTT_HasTrivialDefaultConstructor:
4759   case UTT_HasTrivialMoveConstructor:
4760   case UTT_HasTrivialCopy:
4761   case UTT_HasTrivialDestructor:
4762   case UTT_HasVirtualDestructor:
4763     ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4764     LLVM_FALLTHROUGH;
4765 
4766   // C++1z [meta.unary.prop]:
4767   //   T shall be a complete type, cv void, or an array of unknown bound.
4768   case UTT_IsDestructible:
4769   case UTT_IsNothrowDestructible:
4770   case UTT_IsTriviallyDestructible:
4771   case UTT_HasUniqueObjectRepresentations:
4772     if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4773       return true;
4774 
4775     return !S.RequireCompleteType(
4776         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4777   }
4778 }
4779 
4780 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4781                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4782                                bool (CXXRecordDecl::*HasTrivial)() const,
4783                                bool (CXXRecordDecl::*HasNonTrivial)() const,
4784                                bool (CXXMethodDecl::*IsDesiredOp)() const)
4785 {
4786   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4787   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4788     return true;
4789 
4790   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4791   DeclarationNameInfo NameInfo(Name, KeyLoc);
4792   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4793   if (Self.LookupQualifiedName(Res, RD)) {
4794     bool FoundOperator = false;
4795     Res.suppressDiagnostics();
4796     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4797          Op != OpEnd; ++Op) {
4798       if (isa<FunctionTemplateDecl>(*Op))
4799         continue;
4800 
4801       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4802       if((Operator->*IsDesiredOp)()) {
4803         FoundOperator = true;
4804         auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
4805         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4806         if (!CPT || !CPT->isNothrow())
4807           return false;
4808       }
4809     }
4810     return FoundOperator;
4811   }
4812   return false;
4813 }
4814 
4815 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4816                                    SourceLocation KeyLoc, QualType T) {
4817   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4818 
4819   ASTContext &C = Self.Context;
4820   switch(UTT) {
4821   default: llvm_unreachable("not a UTT");
4822     // Type trait expressions corresponding to the primary type category
4823     // predicates in C++0x [meta.unary.cat].
4824   case UTT_IsVoid:
4825     return T->isVoidType();
4826   case UTT_IsIntegral:
4827     return T->isIntegralType(C);
4828   case UTT_IsFloatingPoint:
4829     return T->isFloatingType();
4830   case UTT_IsArray:
4831     return T->isArrayType();
4832   case UTT_IsPointer:
4833     return T->isAnyPointerType();
4834   case UTT_IsLvalueReference:
4835     return T->isLValueReferenceType();
4836   case UTT_IsRvalueReference:
4837     return T->isRValueReferenceType();
4838   case UTT_IsMemberFunctionPointer:
4839     return T->isMemberFunctionPointerType();
4840   case UTT_IsMemberObjectPointer:
4841     return T->isMemberDataPointerType();
4842   case UTT_IsEnum:
4843     return T->isEnumeralType();
4844   case UTT_IsUnion:
4845     return T->isUnionType();
4846   case UTT_IsClass:
4847     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4848   case UTT_IsFunction:
4849     return T->isFunctionType();
4850 
4851     // Type trait expressions which correspond to the convenient composition
4852     // predicates in C++0x [meta.unary.comp].
4853   case UTT_IsReference:
4854     return T->isReferenceType();
4855   case UTT_IsArithmetic:
4856     return T->isArithmeticType() && !T->isEnumeralType();
4857   case UTT_IsFundamental:
4858     return T->isFundamentalType();
4859   case UTT_IsObject:
4860     return T->isObjectType();
4861   case UTT_IsScalar:
4862     // Note: semantic analysis depends on Objective-C lifetime types to be
4863     // considered scalar types. However, such types do not actually behave
4864     // like scalar types at run time (since they may require retain/release
4865     // operations), so we report them as non-scalar.
4866     if (T->isObjCLifetimeType()) {
4867       switch (T.getObjCLifetime()) {
4868       case Qualifiers::OCL_None:
4869       case Qualifiers::OCL_ExplicitNone:
4870         return true;
4871 
4872       case Qualifiers::OCL_Strong:
4873       case Qualifiers::OCL_Weak:
4874       case Qualifiers::OCL_Autoreleasing:
4875         return false;
4876       }
4877     }
4878 
4879     return T->isScalarType();
4880   case UTT_IsCompound:
4881     return T->isCompoundType();
4882   case UTT_IsMemberPointer:
4883     return T->isMemberPointerType();
4884 
4885     // Type trait expressions which correspond to the type property predicates
4886     // in C++0x [meta.unary.prop].
4887   case UTT_IsConst:
4888     return T.isConstQualified();
4889   case UTT_IsVolatile:
4890     return T.isVolatileQualified();
4891   case UTT_IsTrivial:
4892     return T.isTrivialType(C);
4893   case UTT_IsTriviallyCopyable:
4894     return T.isTriviallyCopyableType(C);
4895   case UTT_IsStandardLayout:
4896     return T->isStandardLayoutType();
4897   case UTT_IsPOD:
4898     return T.isPODType(C);
4899   case UTT_IsLiteral:
4900     return T->isLiteralType(C);
4901   case UTT_IsEmpty:
4902     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4903       return !RD->isUnion() && RD->isEmpty();
4904     return false;
4905   case UTT_IsPolymorphic:
4906     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4907       return !RD->isUnion() && RD->isPolymorphic();
4908     return false;
4909   case UTT_IsAbstract:
4910     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4911       return !RD->isUnion() && RD->isAbstract();
4912     return false;
4913   case UTT_IsAggregate:
4914     // Report vector extensions and complex types as aggregates because they
4915     // support aggregate initialization. GCC mirrors this behavior for vectors
4916     // but not _Complex.
4917     return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4918            T->isAnyComplexType();
4919   // __is_interface_class only returns true when CL is invoked in /CLR mode and
4920   // even then only when it is used with the 'interface struct ...' syntax
4921   // Clang doesn't support /CLR which makes this type trait moot.
4922   case UTT_IsInterfaceClass:
4923     return false;
4924   case UTT_IsFinal:
4925   case UTT_IsSealed:
4926     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4927       return RD->hasAttr<FinalAttr>();
4928     return false;
4929   case UTT_IsSigned:
4930     // Enum types should always return false.
4931     // Floating points should always return true.
4932     return T->isFloatingType() ||
4933            (T->isSignedIntegerType() && !T->isEnumeralType());
4934   case UTT_IsUnsigned:
4935     // Enum types should always return false.
4936     return T->isUnsignedIntegerType() && !T->isEnumeralType();
4937 
4938     // Type trait expressions which query classes regarding their construction,
4939     // destruction, and copying. Rather than being based directly on the
4940     // related type predicates in the standard, they are specified by both
4941     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4942     // specifications.
4943     //
4944     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4945     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4946     //
4947     // Note that these builtins do not behave as documented in g++: if a class
4948     // has both a trivial and a non-trivial special member of a particular kind,
4949     // they return false! For now, we emulate this behavior.
4950     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4951     // does not correctly compute triviality in the presence of multiple special
4952     // members of the same kind. Revisit this once the g++ bug is fixed.
4953   case UTT_HasTrivialDefaultConstructor:
4954     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4955     //   If __is_pod (type) is true then the trait is true, else if type is
4956     //   a cv class or union type (or array thereof) with a trivial default
4957     //   constructor ([class.ctor]) then the trait is true, else it is false.
4958     if (T.isPODType(C))
4959       return true;
4960     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4961       return RD->hasTrivialDefaultConstructor() &&
4962              !RD->hasNonTrivialDefaultConstructor();
4963     return false;
4964   case UTT_HasTrivialMoveConstructor:
4965     //  This trait is implemented by MSVC 2012 and needed to parse the
4966     //  standard library headers. Specifically this is used as the logic
4967     //  behind std::is_trivially_move_constructible (20.9.4.3).
4968     if (T.isPODType(C))
4969       return true;
4970     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4971       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4972     return false;
4973   case UTT_HasTrivialCopy:
4974     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4975     //   If __is_pod (type) is true or type is a reference type then
4976     //   the trait is true, else if type is a cv class or union type
4977     //   with a trivial copy constructor ([class.copy]) then the trait
4978     //   is true, else it is false.
4979     if (T.isPODType(C) || T->isReferenceType())
4980       return true;
4981     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4982       return RD->hasTrivialCopyConstructor() &&
4983              !RD->hasNonTrivialCopyConstructor();
4984     return false;
4985   case UTT_HasTrivialMoveAssign:
4986     //  This trait is implemented by MSVC 2012 and needed to parse the
4987     //  standard library headers. Specifically it is used as the logic
4988     //  behind std::is_trivially_move_assignable (20.9.4.3)
4989     if (T.isPODType(C))
4990       return true;
4991     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4992       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4993     return false;
4994   case UTT_HasTrivialAssign:
4995     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4996     //   If type is const qualified or is a reference type then the
4997     //   trait is false. Otherwise if __is_pod (type) is true then the
4998     //   trait is true, else if type is a cv class or union type with
4999     //   a trivial copy assignment ([class.copy]) then the trait is
5000     //   true, else it is false.
5001     // Note: the const and reference restrictions are interesting,
5002     // given that const and reference members don't prevent a class
5003     // from having a trivial copy assignment operator (but do cause
5004     // errors if the copy assignment operator is actually used, q.v.
5005     // [class.copy]p12).
5006 
5007     if (T.isConstQualified())
5008       return false;
5009     if (T.isPODType(C))
5010       return true;
5011     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5012       return RD->hasTrivialCopyAssignment() &&
5013              !RD->hasNonTrivialCopyAssignment();
5014     return false;
5015   case UTT_IsDestructible:
5016   case UTT_IsTriviallyDestructible:
5017   case UTT_IsNothrowDestructible:
5018     // C++14 [meta.unary.prop]:
5019     //   For reference types, is_destructible<T>::value is true.
5020     if (T->isReferenceType())
5021       return true;
5022 
5023     // Objective-C++ ARC: autorelease types don't require destruction.
5024     if (T->isObjCLifetimeType() &&
5025         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5026       return true;
5027 
5028     // C++14 [meta.unary.prop]:
5029     //   For incomplete types and function types, is_destructible<T>::value is
5030     //   false.
5031     if (T->isIncompleteType() || T->isFunctionType())
5032       return false;
5033 
5034     // A type that requires destruction (via a non-trivial destructor or ARC
5035     // lifetime semantics) is not trivially-destructible.
5036     if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5037       return false;
5038 
5039     // C++14 [meta.unary.prop]:
5040     //   For object types and given U equal to remove_all_extents_t<T>, if the
5041     //   expression std::declval<U&>().~U() is well-formed when treated as an
5042     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
5043     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5044       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5045       if (!Destructor)
5046         return false;
5047       //  C++14 [dcl.fct.def.delete]p2:
5048       //    A program that refers to a deleted function implicitly or
5049       //    explicitly, other than to declare it, is ill-formed.
5050       if (Destructor->isDeleted())
5051         return false;
5052       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5053         return false;
5054       if (UTT == UTT_IsNothrowDestructible) {
5055         auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5056         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5057         if (!CPT || !CPT->isNothrow())
5058           return false;
5059       }
5060     }
5061     return true;
5062 
5063   case UTT_HasTrivialDestructor:
5064     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5065     //   If __is_pod (type) is true or type is a reference type
5066     //   then the trait is true, else if type is a cv class or union
5067     //   type (or array thereof) with a trivial destructor
5068     //   ([class.dtor]) then the trait is true, else it is
5069     //   false.
5070     if (T.isPODType(C) || T->isReferenceType())
5071       return true;
5072 
5073     // Objective-C++ ARC: autorelease types don't require destruction.
5074     if (T->isObjCLifetimeType() &&
5075         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5076       return true;
5077 
5078     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5079       return RD->hasTrivialDestructor();
5080     return false;
5081   // TODO: Propagate nothrowness for implicitly declared special members.
5082   case UTT_HasNothrowAssign:
5083     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5084     //   If type is const qualified or is a reference type then the
5085     //   trait is false. Otherwise if __has_trivial_assign (type)
5086     //   is true then the trait is true, else if type is a cv class
5087     //   or union type with copy assignment operators that are known
5088     //   not to throw an exception then the trait is true, else it is
5089     //   false.
5090     if (C.getBaseElementType(T).isConstQualified())
5091       return false;
5092     if (T->isReferenceType())
5093       return false;
5094     if (T.isPODType(C) || T->isObjCLifetimeType())
5095       return true;
5096 
5097     if (const RecordType *RT = T->getAs<RecordType>())
5098       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5099                                 &CXXRecordDecl::hasTrivialCopyAssignment,
5100                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5101                                 &CXXMethodDecl::isCopyAssignmentOperator);
5102     return false;
5103   case UTT_HasNothrowMoveAssign:
5104     //  This trait is implemented by MSVC 2012 and needed to parse the
5105     //  standard library headers. Specifically this is used as the logic
5106     //  behind std::is_nothrow_move_assignable (20.9.4.3).
5107     if (T.isPODType(C))
5108       return true;
5109 
5110     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5111       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5112                                 &CXXRecordDecl::hasTrivialMoveAssignment,
5113                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5114                                 &CXXMethodDecl::isMoveAssignmentOperator);
5115     return false;
5116   case UTT_HasNothrowCopy:
5117     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5118     //   If __has_trivial_copy (type) is true then the trait is true, else
5119     //   if type is a cv class or union type with copy constructors that are
5120     //   known not to throw an exception then the trait is true, else it is
5121     //   false.
5122     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5123       return true;
5124     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5125       if (RD->hasTrivialCopyConstructor() &&
5126           !RD->hasNonTrivialCopyConstructor())
5127         return true;
5128 
5129       bool FoundConstructor = false;
5130       unsigned FoundTQs;
5131       for (const auto *ND : Self.LookupConstructors(RD)) {
5132         // A template constructor is never a copy constructor.
5133         // FIXME: However, it may actually be selected at the actual overload
5134         // resolution point.
5135         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5136           continue;
5137         // UsingDecl itself is not a constructor
5138         if (isa<UsingDecl>(ND))
5139           continue;
5140         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5141         if (Constructor->isCopyConstructor(FoundTQs)) {
5142           FoundConstructor = true;
5143           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5144           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5145           if (!CPT)
5146             return false;
5147           // TODO: check whether evaluating default arguments can throw.
5148           // For now, we'll be conservative and assume that they can throw.
5149           if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5150             return false;
5151         }
5152       }
5153 
5154       return FoundConstructor;
5155     }
5156     return false;
5157   case UTT_HasNothrowConstructor:
5158     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5159     //   If __has_trivial_constructor (type) is true then the trait is
5160     //   true, else if type is a cv class or union type (or array
5161     //   thereof) with a default constructor that is known not to
5162     //   throw an exception then the trait is true, else it is false.
5163     if (T.isPODType(C) || T->isObjCLifetimeType())
5164       return true;
5165     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5166       if (RD->hasTrivialDefaultConstructor() &&
5167           !RD->hasNonTrivialDefaultConstructor())
5168         return true;
5169 
5170       bool FoundConstructor = false;
5171       for (const auto *ND : Self.LookupConstructors(RD)) {
5172         // FIXME: In C++0x, a constructor template can be a default constructor.
5173         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5174           continue;
5175         // UsingDecl itself is not a constructor
5176         if (isa<UsingDecl>(ND))
5177           continue;
5178         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5179         if (Constructor->isDefaultConstructor()) {
5180           FoundConstructor = true;
5181           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5182           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5183           if (!CPT)
5184             return false;
5185           // FIXME: check whether evaluating default arguments can throw.
5186           // For now, we'll be conservative and assume that they can throw.
5187           if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5188             return false;
5189         }
5190       }
5191       return FoundConstructor;
5192     }
5193     return false;
5194   case UTT_HasVirtualDestructor:
5195     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5196     //   If type is a class type with a virtual destructor ([class.dtor])
5197     //   then the trait is true, else it is false.
5198     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5199       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5200         return Destructor->isVirtual();
5201     return false;
5202 
5203     // These type trait expressions are modeled on the specifications for the
5204     // Embarcadero C++0x type trait functions:
5205     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5206   case UTT_IsCompleteType:
5207     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5208     //   Returns True if and only if T is a complete type at the point of the
5209     //   function call.
5210     return !T->isIncompleteType();
5211   case UTT_HasUniqueObjectRepresentations:
5212     return C.hasUniqueObjectRepresentations(T);
5213   }
5214 }
5215 
5216 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5217                                     QualType RhsT, SourceLocation KeyLoc);
5218 
5219 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
5220                               ArrayRef<TypeSourceInfo *> Args,
5221                               SourceLocation RParenLoc) {
5222   if (Kind <= UTT_Last)
5223     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5224 
5225   // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
5226   // traits to avoid duplication.
5227   if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
5228     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5229                                    Args[1]->getType(), RParenLoc);
5230 
5231   switch (Kind) {
5232   case clang::BTT_ReferenceBindsToTemporary:
5233   case clang::TT_IsConstructible:
5234   case clang::TT_IsNothrowConstructible:
5235   case clang::TT_IsTriviallyConstructible: {
5236     // C++11 [meta.unary.prop]:
5237     //   is_trivially_constructible is defined as:
5238     //
5239     //     is_constructible<T, Args...>::value is true and the variable
5240     //     definition for is_constructible, as defined below, is known to call
5241     //     no operation that is not trivial.
5242     //
5243     //   The predicate condition for a template specialization
5244     //   is_constructible<T, Args...> shall be satisfied if and only if the
5245     //   following variable definition would be well-formed for some invented
5246     //   variable t:
5247     //
5248     //     T t(create<Args>()...);
5249     assert(!Args.empty());
5250 
5251     // Precondition: T and all types in the parameter pack Args shall be
5252     // complete types, (possibly cv-qualified) void, or arrays of
5253     // unknown bound.
5254     for (const auto *TSI : Args) {
5255       QualType ArgTy = TSI->getType();
5256       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5257         continue;
5258 
5259       if (S.RequireCompleteType(KWLoc, ArgTy,
5260           diag::err_incomplete_type_used_in_type_trait_expr))
5261         return false;
5262     }
5263 
5264     // Make sure the first argument is not incomplete nor a function type.
5265     QualType T = Args[0]->getType();
5266     if (T->isIncompleteType() || T->isFunctionType())
5267       return false;
5268 
5269     // Make sure the first argument is not an abstract type.
5270     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5271     if (RD && RD->isAbstract())
5272       return false;
5273 
5274     llvm::BumpPtrAllocator OpaqueExprAllocator;
5275     SmallVector<Expr *, 2> ArgExprs;
5276     ArgExprs.reserve(Args.size() - 1);
5277     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5278       QualType ArgTy = Args[I]->getType();
5279       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5280         ArgTy = S.Context.getRValueReferenceType(ArgTy);
5281       ArgExprs.push_back(
5282           new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5283               OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5284                               ArgTy.getNonLValueExprType(S.Context),
5285                               Expr::getValueKindForType(ArgTy)));
5286     }
5287 
5288     // Perform the initialization in an unevaluated context within a SFINAE
5289     // trap at translation unit scope.
5290     EnterExpressionEvaluationContext Unevaluated(
5291         S, Sema::ExpressionEvaluationContext::Unevaluated);
5292     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5293     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5294     InitializedEntity To(
5295         InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5296     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5297                                                                  RParenLoc));
5298     InitializationSequence Init(S, To, InitKind, ArgExprs);
5299     if (Init.Failed())
5300       return false;
5301 
5302     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5303     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5304       return false;
5305 
5306     if (Kind == clang::TT_IsConstructible)
5307       return true;
5308 
5309     if (Kind == clang::BTT_ReferenceBindsToTemporary) {
5310       if (!T->isReferenceType())
5311         return false;
5312 
5313       return !Init.isDirectReferenceBinding();
5314     }
5315 
5316     if (Kind == clang::TT_IsNothrowConstructible)
5317       return S.canThrow(Result.get()) == CT_Cannot;
5318 
5319     if (Kind == clang::TT_IsTriviallyConstructible) {
5320       // Under Objective-C ARC and Weak, if the destination has non-trivial
5321       // Objective-C lifetime, this is a non-trivial construction.
5322       if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5323         return false;
5324 
5325       // The initialization succeeded; now make sure there are no non-trivial
5326       // calls.
5327       return !Result.get()->hasNonTrivialCall(S.Context);
5328     }
5329 
5330     llvm_unreachable("unhandled type trait");
5331     return false;
5332   }
5333     default: llvm_unreachable("not a TT");
5334   }
5335 
5336   return false;
5337 }
5338 
5339 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5340                                 ArrayRef<TypeSourceInfo *> Args,
5341                                 SourceLocation RParenLoc) {
5342   QualType ResultType = Context.getLogicalOperationType();
5343 
5344   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5345                                *this, Kind, KWLoc, Args[0]->getType()))
5346     return ExprError();
5347 
5348   bool Dependent = false;
5349   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5350     if (Args[I]->getType()->isDependentType()) {
5351       Dependent = true;
5352       break;
5353     }
5354   }
5355 
5356   bool Result = false;
5357   if (!Dependent)
5358     Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
5359 
5360   return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
5361                                RParenLoc, Result);
5362 }
5363 
5364 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5365                                 ArrayRef<ParsedType> Args,
5366                                 SourceLocation RParenLoc) {
5367   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5368   ConvertedArgs.reserve(Args.size());
5369 
5370   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5371     TypeSourceInfo *TInfo;
5372     QualType T = GetTypeFromParser(Args[I], &TInfo);
5373     if (!TInfo)
5374       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5375 
5376     ConvertedArgs.push_back(TInfo);
5377   }
5378 
5379   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5380 }
5381 
5382 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5383                                     QualType RhsT, SourceLocation KeyLoc) {
5384   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5385          "Cannot evaluate traits of dependent types");
5386 
5387   switch(BTT) {
5388   case BTT_IsBaseOf: {
5389     // C++0x [meta.rel]p2
5390     // Base is a base class of Derived without regard to cv-qualifiers or
5391     // Base and Derived are not unions and name the same class type without
5392     // regard to cv-qualifiers.
5393 
5394     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5395     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5396     if (!rhsRecord || !lhsRecord) {
5397       const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5398       const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5399       if (!LHSObjTy || !RHSObjTy)
5400         return false;
5401 
5402       ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5403       ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5404       if (!BaseInterface || !DerivedInterface)
5405         return false;
5406 
5407       if (Self.RequireCompleteType(
5408               KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5409         return false;
5410 
5411       return BaseInterface->isSuperClassOf(DerivedInterface);
5412     }
5413 
5414     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5415              == (lhsRecord == rhsRecord));
5416 
5417     // Unions are never base classes, and never have base classes.
5418     // It doesn't matter if they are complete or not. See PR#41843
5419     if (lhsRecord && lhsRecord->getDecl()->isUnion())
5420       return false;
5421     if (rhsRecord && rhsRecord->getDecl()->isUnion())
5422       return false;
5423 
5424     if (lhsRecord == rhsRecord)
5425       return true;
5426 
5427     // C++0x [meta.rel]p2:
5428     //   If Base and Derived are class types and are different types
5429     //   (ignoring possible cv-qualifiers) then Derived shall be a
5430     //   complete type.
5431     if (Self.RequireCompleteType(KeyLoc, RhsT,
5432                           diag::err_incomplete_type_used_in_type_trait_expr))
5433       return false;
5434 
5435     return cast<CXXRecordDecl>(rhsRecord->getDecl())
5436       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5437   }
5438   case BTT_IsSame:
5439     return Self.Context.hasSameType(LhsT, RhsT);
5440   case BTT_TypeCompatible: {
5441     // GCC ignores cv-qualifiers on arrays for this builtin.
5442     Qualifiers LhsQuals, RhsQuals;
5443     QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5444     QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5445     return Self.Context.typesAreCompatible(Lhs, Rhs);
5446   }
5447   case BTT_IsConvertible:
5448   case BTT_IsConvertibleTo: {
5449     // C++0x [meta.rel]p4:
5450     //   Given the following function prototype:
5451     //
5452     //     template <class T>
5453     //       typename add_rvalue_reference<T>::type create();
5454     //
5455     //   the predicate condition for a template specialization
5456     //   is_convertible<From, To> shall be satisfied if and only if
5457     //   the return expression in the following code would be
5458     //   well-formed, including any implicit conversions to the return
5459     //   type of the function:
5460     //
5461     //     To test() {
5462     //       return create<From>();
5463     //     }
5464     //
5465     //   Access checking is performed as if in a context unrelated to To and
5466     //   From. Only the validity of the immediate context of the expression
5467     //   of the return-statement (including conversions to the return type)
5468     //   is considered.
5469     //
5470     // We model the initialization as a copy-initialization of a temporary
5471     // of the appropriate type, which for this expression is identical to the
5472     // return statement (since NRVO doesn't apply).
5473 
5474     // Functions aren't allowed to return function or array types.
5475     if (RhsT->isFunctionType() || RhsT->isArrayType())
5476       return false;
5477 
5478     // A return statement in a void function must have void type.
5479     if (RhsT->isVoidType())
5480       return LhsT->isVoidType();
5481 
5482     // A function definition requires a complete, non-abstract return type.
5483     if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5484       return false;
5485 
5486     // Compute the result of add_rvalue_reference.
5487     if (LhsT->isObjectType() || LhsT->isFunctionType())
5488       LhsT = Self.Context.getRValueReferenceType(LhsT);
5489 
5490     // Build a fake source and destination for initialization.
5491     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5492     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5493                          Expr::getValueKindForType(LhsT));
5494     Expr *FromPtr = &From;
5495     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5496                                                            SourceLocation()));
5497 
5498     // Perform the initialization in an unevaluated context within a SFINAE
5499     // trap at translation unit scope.
5500     EnterExpressionEvaluationContext Unevaluated(
5501         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5502     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5503     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5504     InitializationSequence Init(Self, To, Kind, FromPtr);
5505     if (Init.Failed())
5506       return false;
5507 
5508     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5509     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5510   }
5511 
5512   case BTT_IsAssignable:
5513   case BTT_IsNothrowAssignable:
5514   case BTT_IsTriviallyAssignable: {
5515     // C++11 [meta.unary.prop]p3:
5516     //   is_trivially_assignable is defined as:
5517     //     is_assignable<T, U>::value is true and the assignment, as defined by
5518     //     is_assignable, is known to call no operation that is not trivial
5519     //
5520     //   is_assignable is defined as:
5521     //     The expression declval<T>() = declval<U>() is well-formed when
5522     //     treated as an unevaluated operand (Clause 5).
5523     //
5524     //   For both, T and U shall be complete types, (possibly cv-qualified)
5525     //   void, or arrays of unknown bound.
5526     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5527         Self.RequireCompleteType(KeyLoc, LhsT,
5528           diag::err_incomplete_type_used_in_type_trait_expr))
5529       return false;
5530     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5531         Self.RequireCompleteType(KeyLoc, RhsT,
5532           diag::err_incomplete_type_used_in_type_trait_expr))
5533       return false;
5534 
5535     // cv void is never assignable.
5536     if (LhsT->isVoidType() || RhsT->isVoidType())
5537       return false;
5538 
5539     // Build expressions that emulate the effect of declval<T>() and
5540     // declval<U>().
5541     if (LhsT->isObjectType() || LhsT->isFunctionType())
5542       LhsT = Self.Context.getRValueReferenceType(LhsT);
5543     if (RhsT->isObjectType() || RhsT->isFunctionType())
5544       RhsT = Self.Context.getRValueReferenceType(RhsT);
5545     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5546                         Expr::getValueKindForType(LhsT));
5547     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5548                         Expr::getValueKindForType(RhsT));
5549 
5550     // Attempt the assignment in an unevaluated context within a SFINAE
5551     // trap at translation unit scope.
5552     EnterExpressionEvaluationContext Unevaluated(
5553         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5554     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5555     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5556     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5557                                         &Rhs);
5558     if (Result.isInvalid())
5559       return false;
5560 
5561     // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5562     Self.CheckUnusedVolatileAssignment(Result.get());
5563 
5564     if (SFINAE.hasErrorOccurred())
5565       return false;
5566 
5567     if (BTT == BTT_IsAssignable)
5568       return true;
5569 
5570     if (BTT == BTT_IsNothrowAssignable)
5571       return Self.canThrow(Result.get()) == CT_Cannot;
5572 
5573     if (BTT == BTT_IsTriviallyAssignable) {
5574       // Under Objective-C ARC and Weak, if the destination has non-trivial
5575       // Objective-C lifetime, this is a non-trivial assignment.
5576       if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5577         return false;
5578 
5579       return !Result.get()->hasNonTrivialCall(Self.Context);
5580     }
5581 
5582     llvm_unreachable("unhandled type trait");
5583     return false;
5584   }
5585     default: llvm_unreachable("not a BTT");
5586   }
5587   llvm_unreachable("Unknown type trait or not implemented");
5588 }
5589 
5590 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5591                                      SourceLocation KWLoc,
5592                                      ParsedType Ty,
5593                                      Expr* DimExpr,
5594                                      SourceLocation RParen) {
5595   TypeSourceInfo *TSInfo;
5596   QualType T = GetTypeFromParser(Ty, &TSInfo);
5597   if (!TSInfo)
5598     TSInfo = Context.getTrivialTypeSourceInfo(T);
5599 
5600   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5601 }
5602 
5603 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5604                                            QualType T, Expr *DimExpr,
5605                                            SourceLocation KeyLoc) {
5606   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5607 
5608   switch(ATT) {
5609   case ATT_ArrayRank:
5610     if (T->isArrayType()) {
5611       unsigned Dim = 0;
5612       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5613         ++Dim;
5614         T = AT->getElementType();
5615       }
5616       return Dim;
5617     }
5618     return 0;
5619 
5620   case ATT_ArrayExtent: {
5621     llvm::APSInt Value;
5622     uint64_t Dim;
5623     if (Self.VerifyIntegerConstantExpression(
5624                 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5625             .isInvalid())
5626       return 0;
5627     if (Value.isSigned() && Value.isNegative()) {
5628       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5629         << DimExpr->getSourceRange();
5630       return 0;
5631     }
5632     Dim = Value.getLimitedValue();
5633 
5634     if (T->isArrayType()) {
5635       unsigned D = 0;
5636       bool Matched = false;
5637       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5638         if (Dim == D) {
5639           Matched = true;
5640           break;
5641         }
5642         ++D;
5643         T = AT->getElementType();
5644       }
5645 
5646       if (Matched && T->isArrayType()) {
5647         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5648           return CAT->getSize().getLimitedValue();
5649       }
5650     }
5651     return 0;
5652   }
5653   }
5654   llvm_unreachable("Unknown type trait or not implemented");
5655 }
5656 
5657 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5658                                      SourceLocation KWLoc,
5659                                      TypeSourceInfo *TSInfo,
5660                                      Expr* DimExpr,
5661                                      SourceLocation RParen) {
5662   QualType T = TSInfo->getType();
5663 
5664   // FIXME: This should likely be tracked as an APInt to remove any host
5665   // assumptions about the width of size_t on the target.
5666   uint64_t Value = 0;
5667   if (!T->isDependentType())
5668     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5669 
5670   // While the specification for these traits from the Embarcadero C++
5671   // compiler's documentation says the return type is 'unsigned int', Clang
5672   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5673   // compiler, there is no difference. On several other platforms this is an
5674   // important distinction.
5675   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5676                                           RParen, Context.getSizeType());
5677 }
5678 
5679 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5680                                       SourceLocation KWLoc,
5681                                       Expr *Queried,
5682                                       SourceLocation RParen) {
5683   // If error parsing the expression, ignore.
5684   if (!Queried)
5685     return ExprError();
5686 
5687   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5688 
5689   return Result;
5690 }
5691 
5692 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5693   switch (ET) {
5694   case ET_IsLValueExpr: return E->isLValue();
5695   case ET_IsRValueExpr:
5696     return E->isPRValue();
5697   }
5698   llvm_unreachable("Expression trait not covered by switch");
5699 }
5700 
5701 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5702                                       SourceLocation KWLoc,
5703                                       Expr *Queried,
5704                                       SourceLocation RParen) {
5705   if (Queried->isTypeDependent()) {
5706     // Delay type-checking for type-dependent expressions.
5707   } else if (Queried->hasPlaceholderType()) {
5708     ExprResult PE = CheckPlaceholderExpr(Queried);
5709     if (PE.isInvalid()) return ExprError();
5710     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5711   }
5712 
5713   bool Value = EvaluateExpressionTrait(ET, Queried);
5714 
5715   return new (Context)
5716       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5717 }
5718 
5719 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5720                                             ExprValueKind &VK,
5721                                             SourceLocation Loc,
5722                                             bool isIndirect) {
5723   assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&
5724          "placeholders should have been weeded out by now");
5725 
5726   // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5727   // temporary materialization conversion otherwise.
5728   if (isIndirect)
5729     LHS = DefaultLvalueConversion(LHS.get());
5730   else if (LHS.get()->isPRValue())
5731     LHS = TemporaryMaterializationConversion(LHS.get());
5732   if (LHS.isInvalid())
5733     return QualType();
5734 
5735   // The RHS always undergoes lvalue conversions.
5736   RHS = DefaultLvalueConversion(RHS.get());
5737   if (RHS.isInvalid()) return QualType();
5738 
5739   const char *OpSpelling = isIndirect ? "->*" : ".*";
5740   // C++ 5.5p2
5741   //   The binary operator .* [p3: ->*] binds its second operand, which shall
5742   //   be of type "pointer to member of T" (where T is a completely-defined
5743   //   class type) [...]
5744   QualType RHSType = RHS.get()->getType();
5745   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5746   if (!MemPtr) {
5747     Diag(Loc, diag::err_bad_memptr_rhs)
5748       << OpSpelling << RHSType << RHS.get()->getSourceRange();
5749     return QualType();
5750   }
5751 
5752   QualType Class(MemPtr->getClass(), 0);
5753 
5754   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5755   // member pointer points must be completely-defined. However, there is no
5756   // reason for this semantic distinction, and the rule is not enforced by
5757   // other compilers. Therefore, we do not check this property, as it is
5758   // likely to be considered a defect.
5759 
5760   // C++ 5.5p2
5761   //   [...] to its first operand, which shall be of class T or of a class of
5762   //   which T is an unambiguous and accessible base class. [p3: a pointer to
5763   //   such a class]
5764   QualType LHSType = LHS.get()->getType();
5765   if (isIndirect) {
5766     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5767       LHSType = Ptr->getPointeeType();
5768     else {
5769       Diag(Loc, diag::err_bad_memptr_lhs)
5770         << OpSpelling << 1 << LHSType
5771         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5772       return QualType();
5773     }
5774   }
5775 
5776   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5777     // If we want to check the hierarchy, we need a complete type.
5778     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5779                             OpSpelling, (int)isIndirect)) {
5780       return QualType();
5781     }
5782 
5783     if (!IsDerivedFrom(Loc, LHSType, Class)) {
5784       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5785         << (int)isIndirect << LHS.get()->getType();
5786       return QualType();
5787     }
5788 
5789     CXXCastPath BasePath;
5790     if (CheckDerivedToBaseConversion(
5791             LHSType, Class, Loc,
5792             SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
5793             &BasePath))
5794       return QualType();
5795 
5796     // Cast LHS to type of use.
5797     QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5798     if (isIndirect)
5799       UseType = Context.getPointerType(UseType);
5800     ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
5801     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5802                             &BasePath);
5803   }
5804 
5805   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5806     // Diagnose use of pointer-to-member type which when used as
5807     // the functional cast in a pointer-to-member expression.
5808     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5809      return QualType();
5810   }
5811 
5812   // C++ 5.5p2
5813   //   The result is an object or a function of the type specified by the
5814   //   second operand.
5815   // The cv qualifiers are the union of those in the pointer and the left side,
5816   // in accordance with 5.5p5 and 5.2.5.
5817   QualType Result = MemPtr->getPointeeType();
5818   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5819 
5820   // C++0x [expr.mptr.oper]p6:
5821   //   In a .* expression whose object expression is an rvalue, the program is
5822   //   ill-formed if the second operand is a pointer to member function with
5823   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
5824   //   expression is an lvalue, the program is ill-formed if the second operand
5825   //   is a pointer to member function with ref-qualifier &&.
5826   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5827     switch (Proto->getRefQualifier()) {
5828     case RQ_None:
5829       // Do nothing
5830       break;
5831 
5832     case RQ_LValue:
5833       if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5834         // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
5835         // is (exactly) 'const'.
5836         if (Proto->isConst() && !Proto->isVolatile())
5837           Diag(Loc, getLangOpts().CPlusPlus20
5838                         ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5839                         : diag::ext_pointer_to_const_ref_member_on_rvalue);
5840         else
5841           Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5842               << RHSType << 1 << LHS.get()->getSourceRange();
5843       }
5844       break;
5845 
5846     case RQ_RValue:
5847       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5848         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5849           << RHSType << 0 << LHS.get()->getSourceRange();
5850       break;
5851     }
5852   }
5853 
5854   // C++ [expr.mptr.oper]p6:
5855   //   The result of a .* expression whose second operand is a pointer
5856   //   to a data member is of the same value category as its
5857   //   first operand. The result of a .* expression whose second
5858   //   operand is a pointer to a member function is a prvalue. The
5859   //   result of an ->* expression is an lvalue if its second operand
5860   //   is a pointer to data member and a prvalue otherwise.
5861   if (Result->isFunctionType()) {
5862     VK = VK_PRValue;
5863     return Context.BoundMemberTy;
5864   } else if (isIndirect) {
5865     VK = VK_LValue;
5866   } else {
5867     VK = LHS.get()->getValueKind();
5868   }
5869 
5870   return Result;
5871 }
5872 
5873 /// Try to convert a type to another according to C++11 5.16p3.
5874 ///
5875 /// This is part of the parameter validation for the ? operator. If either
5876 /// value operand is a class type, the two operands are attempted to be
5877 /// converted to each other. This function does the conversion in one direction.
5878 /// It returns true if the program is ill-formed and has already been diagnosed
5879 /// as such.
5880 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5881                                 SourceLocation QuestionLoc,
5882                                 bool &HaveConversion,
5883                                 QualType &ToType) {
5884   HaveConversion = false;
5885   ToType = To->getType();
5886 
5887   InitializationKind Kind =
5888       InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
5889   // C++11 5.16p3
5890   //   The process for determining whether an operand expression E1 of type T1
5891   //   can be converted to match an operand expression E2 of type T2 is defined
5892   //   as follows:
5893   //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5894   //      implicitly converted to type "lvalue reference to T2", subject to the
5895   //      constraint that in the conversion the reference must bind directly to
5896   //      an lvalue.
5897   //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5898   //      implicitly converted to the type "rvalue reference to R2", subject to
5899   //      the constraint that the reference must bind directly.
5900   if (To->isGLValue()) {
5901     QualType T = Self.Context.getReferenceQualifiedType(To);
5902     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5903 
5904     InitializationSequence InitSeq(Self, Entity, Kind, From);
5905     if (InitSeq.isDirectReferenceBinding()) {
5906       ToType = T;
5907       HaveConversion = true;
5908       return false;
5909     }
5910 
5911     if (InitSeq.isAmbiguous())
5912       return InitSeq.Diagnose(Self, Entity, Kind, From);
5913   }
5914 
5915   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
5916   //      -- if E1 and E2 have class type, and the underlying class types are
5917   //         the same or one is a base class of the other:
5918   QualType FTy = From->getType();
5919   QualType TTy = To->getType();
5920   const RecordType *FRec = FTy->getAs<RecordType>();
5921   const RecordType *TRec = TTy->getAs<RecordType>();
5922   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5923                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5924   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5925                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5926     //         E1 can be converted to match E2 if the class of T2 is the
5927     //         same type as, or a base class of, the class of T1, and
5928     //         [cv2 > cv1].
5929     if (FRec == TRec || FDerivedFromT) {
5930       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5931         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5932         InitializationSequence InitSeq(Self, Entity, Kind, From);
5933         if (InitSeq) {
5934           HaveConversion = true;
5935           return false;
5936         }
5937 
5938         if (InitSeq.isAmbiguous())
5939           return InitSeq.Diagnose(Self, Entity, Kind, From);
5940       }
5941     }
5942 
5943     return false;
5944   }
5945 
5946   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
5947   //        implicitly converted to the type that expression E2 would have
5948   //        if E2 were converted to an rvalue (or the type it has, if E2 is
5949   //        an rvalue).
5950   //
5951   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5952   // to the array-to-pointer or function-to-pointer conversions.
5953   TTy = TTy.getNonLValueExprType(Self.Context);
5954 
5955   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5956   InitializationSequence InitSeq(Self, Entity, Kind, From);
5957   HaveConversion = !InitSeq.Failed();
5958   ToType = TTy;
5959   if (InitSeq.isAmbiguous())
5960     return InitSeq.Diagnose(Self, Entity, Kind, From);
5961 
5962   return false;
5963 }
5964 
5965 /// Try to find a common type for two according to C++0x 5.16p5.
5966 ///
5967 /// This is part of the parameter validation for the ? operator. If either
5968 /// value operand is a class type, overload resolution is used to find a
5969 /// conversion to a common type.
5970 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5971                                     SourceLocation QuestionLoc) {
5972   Expr *Args[2] = { LHS.get(), RHS.get() };
5973   OverloadCandidateSet CandidateSet(QuestionLoc,
5974                                     OverloadCandidateSet::CSK_Operator);
5975   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5976                                     CandidateSet);
5977 
5978   OverloadCandidateSet::iterator Best;
5979   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5980     case OR_Success: {
5981       // We found a match. Perform the conversions on the arguments and move on.
5982       ExprResult LHSRes = Self.PerformImplicitConversion(
5983           LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
5984           Sema::AA_Converting);
5985       if (LHSRes.isInvalid())
5986         break;
5987       LHS = LHSRes;
5988 
5989       ExprResult RHSRes = Self.PerformImplicitConversion(
5990           RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
5991           Sema::AA_Converting);
5992       if (RHSRes.isInvalid())
5993         break;
5994       RHS = RHSRes;
5995       if (Best->Function)
5996         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5997       return false;
5998     }
5999 
6000     case OR_No_Viable_Function:
6001 
6002       // Emit a better diagnostic if one of the expressions is a null pointer
6003       // constant and the other is a pointer type. In this case, the user most
6004       // likely forgot to take the address of the other expression.
6005       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6006         return true;
6007 
6008       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6009         << LHS.get()->getType() << RHS.get()->getType()
6010         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6011       return true;
6012 
6013     case OR_Ambiguous:
6014       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6015         << LHS.get()->getType() << RHS.get()->getType()
6016         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6017       // FIXME: Print the possible common types by printing the return types of
6018       // the viable candidates.
6019       break;
6020 
6021     case OR_Deleted:
6022       llvm_unreachable("Conditional operator has only built-in overloads");
6023   }
6024   return true;
6025 }
6026 
6027 /// Perform an "extended" implicit conversion as returned by
6028 /// TryClassUnification.
6029 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6030   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6031   InitializationKind Kind =
6032       InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6033   Expr *Arg = E.get();
6034   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6035   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6036   if (Result.isInvalid())
6037     return true;
6038 
6039   E = Result;
6040   return false;
6041 }
6042 
6043 // Check the condition operand of ?: to see if it is valid for the GCC
6044 // extension.
6045 static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6046                                                  QualType CondTy) {
6047   if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6048     return false;
6049   const QualType EltTy =
6050       cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6051   assert(!EltTy->isBooleanType() && !EltTy->isEnumeralType() &&
6052          "Vectors cant be boolean or enum types");
6053   return EltTy->isIntegralType(Ctx);
6054 }
6055 
6056 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6057                                            ExprResult &RHS,
6058                                            SourceLocation QuestionLoc) {
6059   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6060   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6061 
6062   QualType CondType = Cond.get()->getType();
6063   const auto *CondVT = CondType->castAs<VectorType>();
6064   QualType CondElementTy = CondVT->getElementType();
6065   unsigned CondElementCount = CondVT->getNumElements();
6066   QualType LHSType = LHS.get()->getType();
6067   const auto *LHSVT = LHSType->getAs<VectorType>();
6068   QualType RHSType = RHS.get()->getType();
6069   const auto *RHSVT = RHSType->getAs<VectorType>();
6070 
6071   QualType ResultType;
6072 
6073 
6074   if (LHSVT && RHSVT) {
6075     if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6076       Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6077           << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6078       return {};
6079     }
6080 
6081     // If both are vector types, they must be the same type.
6082     if (!Context.hasSameType(LHSType, RHSType)) {
6083       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6084           << LHSType << RHSType;
6085       return {};
6086     }
6087     ResultType = LHSType;
6088   } else if (LHSVT || RHSVT) {
6089     ResultType = CheckVectorOperands(
6090         LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6091         /*AllowBoolConversions*/ false);
6092     if (ResultType.isNull())
6093       return {};
6094   } else {
6095     // Both are scalar.
6096     QualType ResultElementTy;
6097     LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6098     RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6099 
6100     if (Context.hasSameType(LHSType, RHSType))
6101       ResultElementTy = LHSType;
6102     else
6103       ResultElementTy =
6104           UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6105 
6106     if (ResultElementTy->isEnumeralType()) {
6107       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6108           << ResultElementTy;
6109       return {};
6110     }
6111     if (CondType->isExtVectorType())
6112       ResultType =
6113           Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6114     else
6115       ResultType = Context.getVectorType(
6116           ResultElementTy, CondVT->getNumElements(), VectorType::GenericVector);
6117 
6118     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6119     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6120   }
6121 
6122   assert(!ResultType.isNull() && ResultType->isVectorType() &&
6123          (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6124          "Result should have been a vector type");
6125   auto *ResultVectorTy = ResultType->castAs<VectorType>();
6126   QualType ResultElementTy = ResultVectorTy->getElementType();
6127   unsigned ResultElementCount = ResultVectorTy->getNumElements();
6128 
6129   if (ResultElementCount != CondElementCount) {
6130     Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6131                                                          << ResultType;
6132     return {};
6133   }
6134 
6135   if (Context.getTypeSize(ResultElementTy) !=
6136       Context.getTypeSize(CondElementTy)) {
6137     Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6138                                                                  << ResultType;
6139     return {};
6140   }
6141 
6142   return ResultType;
6143 }
6144 
6145 /// Check the operands of ?: under C++ semantics.
6146 ///
6147 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6148 /// extension. In this case, LHS == Cond. (But they're not aliases.)
6149 ///
6150 /// This function also implements GCC's vector extension and the
6151 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6152 /// permit the use of a?b:c where the type of a is that of a integer vector with
6153 /// the same number of elements and size as the vectors of b and c. If one of
6154 /// either b or c is a scalar it is implicitly converted to match the type of
6155 /// the vector. Otherwise the expression is ill-formed. If both b and c are
6156 /// scalars, then b and c are checked and converted to the type of a if
6157 /// possible.
6158 ///
6159 /// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6160 /// For the GCC extension, the ?: operator is evaluated as
6161 ///   (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6162 /// For the OpenCL extensions, the ?: operator is evaluated as
6163 ///   (most-significant-bit-set(a[0])  ? b[0] : c[0], .. ,
6164 ///    most-significant-bit-set(a[n]) ? b[n] : c[n]).
6165 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6166                                            ExprResult &RHS, ExprValueKind &VK,
6167                                            ExprObjectKind &OK,
6168                                            SourceLocation QuestionLoc) {
6169   // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6170   // pointers.
6171 
6172   // Assume r-value.
6173   VK = VK_PRValue;
6174   OK = OK_Ordinary;
6175   bool IsVectorConditional =
6176       isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6177 
6178   // C++11 [expr.cond]p1
6179   //   The first expression is contextually converted to bool.
6180   if (!Cond.get()->isTypeDependent()) {
6181     ExprResult CondRes = IsVectorConditional
6182                              ? DefaultFunctionArrayLvalueConversion(Cond.get())
6183                              : CheckCXXBooleanCondition(Cond.get());
6184     if (CondRes.isInvalid())
6185       return QualType();
6186     Cond = CondRes;
6187   } else {
6188     // To implement C++, the first expression typically doesn't alter the result
6189     // type of the conditional, however the GCC compatible vector extension
6190     // changes the result type to be that of the conditional. Since we cannot
6191     // know if this is a vector extension here, delay the conversion of the
6192     // LHS/RHS below until later.
6193     return Context.DependentTy;
6194   }
6195 
6196 
6197   // Either of the arguments dependent?
6198   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6199     return Context.DependentTy;
6200 
6201   // C++11 [expr.cond]p2
6202   //   If either the second or the third operand has type (cv) void, ...
6203   QualType LTy = LHS.get()->getType();
6204   QualType RTy = RHS.get()->getType();
6205   bool LVoid = LTy->isVoidType();
6206   bool RVoid = RTy->isVoidType();
6207   if (LVoid || RVoid) {
6208     //   ... one of the following shall hold:
6209     //   -- The second or the third operand (but not both) is a (possibly
6210     //      parenthesized) throw-expression; the result is of the type
6211     //      and value category of the other.
6212     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6213     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6214 
6215     // Void expressions aren't legal in the vector-conditional expressions.
6216     if (IsVectorConditional) {
6217       SourceRange DiagLoc =
6218           LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6219       bool IsThrow = LVoid ? LThrow : RThrow;
6220       Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6221           << DiagLoc << IsThrow;
6222       return QualType();
6223     }
6224 
6225     if (LThrow != RThrow) {
6226       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6227       VK = NonThrow->getValueKind();
6228       // DR (no number yet): the result is a bit-field if the
6229       // non-throw-expression operand is a bit-field.
6230       OK = NonThrow->getObjectKind();
6231       return NonThrow->getType();
6232     }
6233 
6234     //   -- Both the second and third operands have type void; the result is of
6235     //      type void and is a prvalue.
6236     if (LVoid && RVoid)
6237       return Context.VoidTy;
6238 
6239     // Neither holds, error.
6240     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6241       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6242       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6243     return QualType();
6244   }
6245 
6246   // Neither is void.
6247   if (IsVectorConditional)
6248     return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6249 
6250   // C++11 [expr.cond]p3
6251   //   Otherwise, if the second and third operand have different types, and
6252   //   either has (cv) class type [...] an attempt is made to convert each of
6253   //   those operands to the type of the other.
6254   if (!Context.hasSameType(LTy, RTy) &&
6255       (LTy->isRecordType() || RTy->isRecordType())) {
6256     // These return true if a single direction is already ambiguous.
6257     QualType L2RType, R2LType;
6258     bool HaveL2R, HaveR2L;
6259     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6260       return QualType();
6261     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6262       return QualType();
6263 
6264     //   If both can be converted, [...] the program is ill-formed.
6265     if (HaveL2R && HaveR2L) {
6266       Diag(QuestionLoc, diag::err_conditional_ambiguous)
6267         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6268       return QualType();
6269     }
6270 
6271     //   If exactly one conversion is possible, that conversion is applied to
6272     //   the chosen operand and the converted operands are used in place of the
6273     //   original operands for the remainder of this section.
6274     if (HaveL2R) {
6275       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6276         return QualType();
6277       LTy = LHS.get()->getType();
6278     } else if (HaveR2L) {
6279       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6280         return QualType();
6281       RTy = RHS.get()->getType();
6282     }
6283   }
6284 
6285   // C++11 [expr.cond]p3
6286   //   if both are glvalues of the same value category and the same type except
6287   //   for cv-qualification, an attempt is made to convert each of those
6288   //   operands to the type of the other.
6289   // FIXME:
6290   //   Resolving a defect in P0012R1: we extend this to cover all cases where
6291   //   one of the operands is reference-compatible with the other, in order
6292   //   to support conditionals between functions differing in noexcept. This
6293   //   will similarly cover difference in array bounds after P0388R4.
6294   // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6295   //   that instead?
6296   ExprValueKind LVK = LHS.get()->getValueKind();
6297   ExprValueKind RVK = RHS.get()->getValueKind();
6298   if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
6299     // DerivedToBase was already handled by the class-specific case above.
6300     // FIXME: Should we allow ObjC conversions here?
6301     const ReferenceConversions AllowedConversions =
6302         ReferenceConversions::Qualification |
6303         ReferenceConversions::NestedQualification |
6304         ReferenceConversions::Function;
6305 
6306     ReferenceConversions RefConv;
6307     if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6308             Ref_Compatible &&
6309         !(RefConv & ~AllowedConversions) &&
6310         // [...] subject to the constraint that the reference must bind
6311         // directly [...]
6312         !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6313       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6314       RTy = RHS.get()->getType();
6315     } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6316                    Ref_Compatible &&
6317                !(RefConv & ~AllowedConversions) &&
6318                !LHS.get()->refersToBitField() &&
6319                !LHS.get()->refersToVectorElement()) {
6320       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6321       LTy = LHS.get()->getType();
6322     }
6323   }
6324 
6325   // C++11 [expr.cond]p4
6326   //   If the second and third operands are glvalues of the same value
6327   //   category and have the same type, the result is of that type and
6328   //   value category and it is a bit-field if the second or the third
6329   //   operand is a bit-field, or if both are bit-fields.
6330   // We only extend this to bitfields, not to the crazy other kinds of
6331   // l-values.
6332   bool Same = Context.hasSameType(LTy, RTy);
6333   if (Same && LVK == RVK && LVK != VK_PRValue &&
6334       LHS.get()->isOrdinaryOrBitFieldObject() &&
6335       RHS.get()->isOrdinaryOrBitFieldObject()) {
6336     VK = LHS.get()->getValueKind();
6337     if (LHS.get()->getObjectKind() == OK_BitField ||
6338         RHS.get()->getObjectKind() == OK_BitField)
6339       OK = OK_BitField;
6340 
6341     // If we have function pointer types, unify them anyway to unify their
6342     // exception specifications, if any.
6343     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6344       Qualifiers Qs = LTy.getQualifiers();
6345       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
6346                                      /*ConvertArgs*/false);
6347       LTy = Context.getQualifiedType(LTy, Qs);
6348 
6349       assert(!LTy.isNull() && "failed to find composite pointer type for "
6350                               "canonically equivalent function ptr types");
6351       assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type");
6352     }
6353 
6354     return LTy;
6355   }
6356 
6357   // C++11 [expr.cond]p5
6358   //   Otherwise, the result is a prvalue. If the second and third operands
6359   //   do not have the same type, and either has (cv) class type, ...
6360   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6361     //   ... overload resolution is used to determine the conversions (if any)
6362     //   to be applied to the operands. If the overload resolution fails, the
6363     //   program is ill-formed.
6364     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
6365       return QualType();
6366   }
6367 
6368   // C++11 [expr.cond]p6
6369   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6370   //   conversions are performed on the second and third operands.
6371   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6372   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6373   if (LHS.isInvalid() || RHS.isInvalid())
6374     return QualType();
6375   LTy = LHS.get()->getType();
6376   RTy = RHS.get()->getType();
6377 
6378   //   After those conversions, one of the following shall hold:
6379   //   -- The second and third operands have the same type; the result
6380   //      is of that type. If the operands have class type, the result
6381   //      is a prvalue temporary of the result type, which is
6382   //      copy-initialized from either the second operand or the third
6383   //      operand depending on the value of the first operand.
6384   if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
6385     if (LTy->isRecordType()) {
6386       // The operands have class type. Make a temporary copy.
6387       InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
6388 
6389       ExprResult LHSCopy = PerformCopyInitialization(Entity,
6390                                                      SourceLocation(),
6391                                                      LHS);
6392       if (LHSCopy.isInvalid())
6393         return QualType();
6394 
6395       ExprResult RHSCopy = PerformCopyInitialization(Entity,
6396                                                      SourceLocation(),
6397                                                      RHS);
6398       if (RHSCopy.isInvalid())
6399         return QualType();
6400 
6401       LHS = LHSCopy;
6402       RHS = RHSCopy;
6403     }
6404 
6405     // If we have function pointer types, unify them anyway to unify their
6406     // exception specifications, if any.
6407     if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
6408       LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
6409       assert(!LTy.isNull() && "failed to find composite pointer type for "
6410                               "canonically equivalent function ptr types");
6411     }
6412 
6413     return LTy;
6414   }
6415 
6416   // Extension: conditional operator involving vector types.
6417   if (LTy->isVectorType() || RTy->isVectorType())
6418     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
6419                                /*AllowBothBool*/true,
6420                                /*AllowBoolConversions*/false);
6421 
6422   //   -- The second and third operands have arithmetic or enumeration type;
6423   //      the usual arithmetic conversions are performed to bring them to a
6424   //      common type, and the result is of that type.
6425   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6426     QualType ResTy =
6427         UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6428     if (LHS.isInvalid() || RHS.isInvalid())
6429       return QualType();
6430     if (ResTy.isNull()) {
6431       Diag(QuestionLoc,
6432            diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6433         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6434       return QualType();
6435     }
6436 
6437     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6438     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6439 
6440     return ResTy;
6441   }
6442 
6443   //   -- The second and third operands have pointer type, or one has pointer
6444   //      type and the other is a null pointer constant, or both are null
6445   //      pointer constants, at least one of which is non-integral; pointer
6446   //      conversions and qualification conversions are performed to bring them
6447   //      to their composite pointer type. The result is of the composite
6448   //      pointer type.
6449   //   -- The second and third operands have pointer to member type, or one has
6450   //      pointer to member type and the other is a null pointer constant;
6451   //      pointer to member conversions and qualification conversions are
6452   //      performed to bring them to a common type, whose cv-qualification
6453   //      shall match the cv-qualification of either the second or the third
6454   //      operand. The result is of the common type.
6455   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6456   if (!Composite.isNull())
6457     return Composite;
6458 
6459   // Similarly, attempt to find composite type of two objective-c pointers.
6460   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6461   if (LHS.isInvalid() || RHS.isInvalid())
6462     return QualType();
6463   if (!Composite.isNull())
6464     return Composite;
6465 
6466   // Check if we are using a null with a non-pointer type.
6467   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6468     return QualType();
6469 
6470   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6471     << LHS.get()->getType() << RHS.get()->getType()
6472     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6473   return QualType();
6474 }
6475 
6476 static FunctionProtoType::ExceptionSpecInfo
6477 mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
6478                     FunctionProtoType::ExceptionSpecInfo ESI2,
6479                     SmallVectorImpl<QualType> &ExceptionTypeStorage) {
6480   ExceptionSpecificationType EST1 = ESI1.Type;
6481   ExceptionSpecificationType EST2 = ESI2.Type;
6482 
6483   // If either of them can throw anything, that is the result.
6484   if (EST1 == EST_None) return ESI1;
6485   if (EST2 == EST_None) return ESI2;
6486   if (EST1 == EST_MSAny) return ESI1;
6487   if (EST2 == EST_MSAny) return ESI2;
6488   if (EST1 == EST_NoexceptFalse) return ESI1;
6489   if (EST2 == EST_NoexceptFalse) return ESI2;
6490 
6491   // If either of them is non-throwing, the result is the other.
6492   if (EST1 == EST_NoThrow) return ESI2;
6493   if (EST2 == EST_NoThrow) return ESI1;
6494   if (EST1 == EST_DynamicNone) return ESI2;
6495   if (EST2 == EST_DynamicNone) return ESI1;
6496   if (EST1 == EST_BasicNoexcept) return ESI2;
6497   if (EST2 == EST_BasicNoexcept) return ESI1;
6498   if (EST1 == EST_NoexceptTrue) return ESI2;
6499   if (EST2 == EST_NoexceptTrue) return ESI1;
6500 
6501   // If we're left with value-dependent computed noexcept expressions, we're
6502   // stuck. Before C++17, we can just drop the exception specification entirely,
6503   // since it's not actually part of the canonical type. And this should never
6504   // happen in C++17, because it would mean we were computing the composite
6505   // pointer type of dependent types, which should never happen.
6506   if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
6507     assert(!S.getLangOpts().CPlusPlus17 &&
6508            "computing composite pointer type of dependent types");
6509     return FunctionProtoType::ExceptionSpecInfo();
6510   }
6511 
6512   // Switch over the possibilities so that people adding new values know to
6513   // update this function.
6514   switch (EST1) {
6515   case EST_None:
6516   case EST_DynamicNone:
6517   case EST_MSAny:
6518   case EST_BasicNoexcept:
6519   case EST_DependentNoexcept:
6520   case EST_NoexceptFalse:
6521   case EST_NoexceptTrue:
6522   case EST_NoThrow:
6523     llvm_unreachable("handled above");
6524 
6525   case EST_Dynamic: {
6526     // This is the fun case: both exception specifications are dynamic. Form
6527     // the union of the two lists.
6528     assert(EST2 == EST_Dynamic && "other cases should already be handled");
6529     llvm::SmallPtrSet<QualType, 8> Found;
6530     for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
6531       for (QualType E : Exceptions)
6532         if (Found.insert(S.Context.getCanonicalType(E)).second)
6533           ExceptionTypeStorage.push_back(E);
6534 
6535     FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
6536     Result.Exceptions = ExceptionTypeStorage;
6537     return Result;
6538   }
6539 
6540   case EST_Unevaluated:
6541   case EST_Uninstantiated:
6542   case EST_Unparsed:
6543     llvm_unreachable("shouldn't see unresolved exception specifications here");
6544   }
6545 
6546   llvm_unreachable("invalid ExceptionSpecificationType");
6547 }
6548 
6549 /// Find a merged pointer type and convert the two expressions to it.
6550 ///
6551 /// This finds the composite pointer type for \p E1 and \p E2 according to
6552 /// C++2a [expr.type]p3. It converts both expressions to this type and returns
6553 /// it.  It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6554 /// is \c true).
6555 ///
6556 /// \param Loc The location of the operator requiring these two expressions to
6557 /// be converted to the composite pointer type.
6558 ///
6559 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6560 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6561                                         Expr *&E1, Expr *&E2,
6562                                         bool ConvertArgs) {
6563   assert(getLangOpts().CPlusPlus && "This function assumes C++");
6564 
6565   // C++1z [expr]p14:
6566   //   The composite pointer type of two operands p1 and p2 having types T1
6567   //   and T2
6568   QualType T1 = E1->getType(), T2 = E2->getType();
6569 
6570   //   where at least one is a pointer or pointer to member type or
6571   //   std::nullptr_t is:
6572   bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6573                          T1->isNullPtrType();
6574   bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6575                          T2->isNullPtrType();
6576   if (!T1IsPointerLike && !T2IsPointerLike)
6577     return QualType();
6578 
6579   //   - if both p1 and p2 are null pointer constants, std::nullptr_t;
6580   // This can't actually happen, following the standard, but we also use this
6581   // to implement the end of [expr.conv], which hits this case.
6582   //
6583   //   - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6584   if (T1IsPointerLike &&
6585       E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6586     if (ConvertArgs)
6587       E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6588                                          ? CK_NullToMemberPointer
6589                                          : CK_NullToPointer).get();
6590     return T1;
6591   }
6592   if (T2IsPointerLike &&
6593       E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6594     if (ConvertArgs)
6595       E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6596                                          ? CK_NullToMemberPointer
6597                                          : CK_NullToPointer).get();
6598     return T2;
6599   }
6600 
6601   // Now both have to be pointers or member pointers.
6602   if (!T1IsPointerLike || !T2IsPointerLike)
6603     return QualType();
6604   assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6605          "nullptr_t should be a null pointer constant");
6606 
6607   struct Step {
6608     enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6609     // Qualifiers to apply under the step kind.
6610     Qualifiers Quals;
6611     /// The class for a pointer-to-member; a constant array type with a bound
6612     /// (if any) for an array.
6613     const Type *ClassOrBound;
6614 
6615     Step(Kind K, const Type *ClassOrBound = nullptr)
6616         : K(K), ClassOrBound(ClassOrBound) {}
6617     QualType rebuild(ASTContext &Ctx, QualType T) const {
6618       T = Ctx.getQualifiedType(T, Quals);
6619       switch (K) {
6620       case Pointer:
6621         return Ctx.getPointerType(T);
6622       case MemberPointer:
6623         return Ctx.getMemberPointerType(T, ClassOrBound);
6624       case ObjCPointer:
6625         return Ctx.getObjCObjectPointerType(T);
6626       case Array:
6627         if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
6628           return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
6629                                           ArrayType::Normal, 0);
6630         else
6631           return Ctx.getIncompleteArrayType(T, ArrayType::Normal, 0);
6632       }
6633       llvm_unreachable("unknown step kind");
6634     }
6635   };
6636 
6637   SmallVector<Step, 8> Steps;
6638 
6639   //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6640   //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6641   //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6642   //    respectively;
6643   //  - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6644   //    to member of C2 of type cv2 U2" for some non-function type U, where
6645   //    C1 is reference-related to C2 or C2 is reference-related to C1, the
6646   //    cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6647   //    respectively;
6648   //  - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6649   //    T2;
6650   //
6651   // Dismantle T1 and T2 to simultaneously determine whether they are similar
6652   // and to prepare to form the cv-combined type if so.
6653   QualType Composite1 = T1;
6654   QualType Composite2 = T2;
6655   unsigned NeedConstBefore = 0;
6656   while (true) {
6657     assert(!Composite1.isNull() && !Composite2.isNull());
6658 
6659     Qualifiers Q1, Q2;
6660     Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
6661     Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
6662 
6663     // Top-level qualifiers are ignored. Merge at all lower levels.
6664     if (!Steps.empty()) {
6665       // Find the qualifier union: (approximately) the unique minimal set of
6666       // qualifiers that is compatible with both types.
6667       Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
6668                                                   Q2.getCVRUQualifiers());
6669 
6670       // Under one level of pointer or pointer-to-member, we can change to an
6671       // unambiguous compatible address space.
6672       if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
6673         Quals.setAddressSpace(Q1.getAddressSpace());
6674       } else if (Steps.size() == 1) {
6675         bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
6676         bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
6677         if (MaybeQ1 == MaybeQ2) {
6678           // Exception for ptr size address spaces. Should be able to choose
6679           // either address space during comparison.
6680           if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
6681               isPtrSizeAddressSpace(Q2.getAddressSpace()))
6682             MaybeQ1 = true;
6683           else
6684             return QualType(); // No unique best address space.
6685         }
6686         Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
6687                                       : Q2.getAddressSpace());
6688       } else {
6689         return QualType();
6690       }
6691 
6692       // FIXME: In C, we merge __strong and none to __strong at the top level.
6693       if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
6694         Quals.setObjCGCAttr(Q1.getObjCGCAttr());
6695       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6696         assert(Steps.size() == 1);
6697       else
6698         return QualType();
6699 
6700       // Mismatched lifetime qualifiers never compatibly include each other.
6701       if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
6702         Quals.setObjCLifetime(Q1.getObjCLifetime());
6703       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
6704         assert(Steps.size() == 1);
6705       else
6706         return QualType();
6707 
6708       Steps.back().Quals = Quals;
6709       if (Q1 != Quals || Q2 != Quals)
6710         NeedConstBefore = Steps.size() - 1;
6711     }
6712 
6713     // FIXME: Can we unify the following with UnwrapSimilarTypes?
6714 
6715     const ArrayType *Arr1, *Arr2;
6716     if ((Arr1 = Context.getAsArrayType(Composite1)) &&
6717         (Arr2 = Context.getAsArrayType(Composite2))) {
6718       auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
6719       auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
6720       if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
6721         Composite1 = Arr1->getElementType();
6722         Composite2 = Arr2->getElementType();
6723         Steps.emplace_back(Step::Array, CAT1);
6724         continue;
6725       }
6726       bool IAT1 = isa<IncompleteArrayType>(Arr1);
6727       bool IAT2 = isa<IncompleteArrayType>(Arr2);
6728       if ((IAT1 && IAT2) ||
6729           (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
6730            ((bool)CAT1 != (bool)CAT2) &&
6731            (Steps.empty() || Steps.back().K != Step::Array))) {
6732         // In C++20 onwards, we can unify an array of N T with an array of
6733         // a different or unknown bound. But we can't form an array whose
6734         // element type is an array of unknown bound by doing so.
6735         Composite1 = Arr1->getElementType();
6736         Composite2 = Arr2->getElementType();
6737         Steps.emplace_back(Step::Array);
6738         if (CAT1 || CAT2)
6739           NeedConstBefore = Steps.size();
6740         continue;
6741       }
6742     }
6743 
6744     const PointerType *Ptr1, *Ptr2;
6745     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
6746         (Ptr2 = Composite2->getAs<PointerType>())) {
6747       Composite1 = Ptr1->getPointeeType();
6748       Composite2 = Ptr2->getPointeeType();
6749       Steps.emplace_back(Step::Pointer);
6750       continue;
6751     }
6752 
6753     const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
6754     if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
6755         (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
6756       Composite1 = ObjPtr1->getPointeeType();
6757       Composite2 = ObjPtr2->getPointeeType();
6758       Steps.emplace_back(Step::ObjCPointer);
6759       continue;
6760     }
6761 
6762     const MemberPointerType *MemPtr1, *MemPtr2;
6763     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
6764         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
6765       Composite1 = MemPtr1->getPointeeType();
6766       Composite2 = MemPtr2->getPointeeType();
6767 
6768       // At the top level, we can perform a base-to-derived pointer-to-member
6769       // conversion:
6770       //
6771       //  - [...] where C1 is reference-related to C2 or C2 is
6772       //    reference-related to C1
6773       //
6774       // (Note that the only kinds of reference-relatedness in scope here are
6775       // "same type or derived from".) At any other level, the class must
6776       // exactly match.
6777       const Type *Class = nullptr;
6778       QualType Cls1(MemPtr1->getClass(), 0);
6779       QualType Cls2(MemPtr2->getClass(), 0);
6780       if (Context.hasSameType(Cls1, Cls2))
6781         Class = MemPtr1->getClass();
6782       else if (Steps.empty())
6783         Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
6784                 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
6785       if (!Class)
6786         return QualType();
6787 
6788       Steps.emplace_back(Step::MemberPointer, Class);
6789       continue;
6790     }
6791 
6792     // Special case: at the top level, we can decompose an Objective-C pointer
6793     // and a 'cv void *'. Unify the qualifiers.
6794     if (Steps.empty() && ((Composite1->isVoidPointerType() &&
6795                            Composite2->isObjCObjectPointerType()) ||
6796                           (Composite1->isObjCObjectPointerType() &&
6797                            Composite2->isVoidPointerType()))) {
6798       Composite1 = Composite1->getPointeeType();
6799       Composite2 = Composite2->getPointeeType();
6800       Steps.emplace_back(Step::Pointer);
6801       continue;
6802     }
6803 
6804     // FIXME: block pointer types?
6805 
6806     // Cannot unwrap any more types.
6807     break;
6808   }
6809 
6810   //  - if T1 or T2 is "pointer to noexcept function" and the other type is
6811   //    "pointer to function", where the function types are otherwise the same,
6812   //    "pointer to function";
6813   //  - if T1 or T2 is "pointer to member of C1 of type function", the other
6814   //    type is "pointer to member of C2 of type noexcept function", and C1
6815   //    is reference-related to C2 or C2 is reference-related to C1, where
6816   //    the function types are otherwise the same, "pointer to member of C2 of
6817   //    type function" or "pointer to member of C1 of type function",
6818   //    respectively;
6819   //
6820   // We also support 'noreturn' here, so as a Clang extension we generalize the
6821   // above to:
6822   //
6823   //  - [Clang] If T1 and T2 are both of type "pointer to function" or
6824   //    "pointer to member function" and the pointee types can be unified
6825   //    by a function pointer conversion, that conversion is applied
6826   //    before checking the following rules.
6827   //
6828   // We've already unwrapped down to the function types, and we want to merge
6829   // rather than just convert, so do this ourselves rather than calling
6830   // IsFunctionConversion.
6831   //
6832   // FIXME: In order to match the standard wording as closely as possible, we
6833   // currently only do this under a single level of pointers. Ideally, we would
6834   // allow this in general, and set NeedConstBefore to the relevant depth on
6835   // the side(s) where we changed anything. If we permit that, we should also
6836   // consider this conversion when determining type similarity and model it as
6837   // a qualification conversion.
6838   if (Steps.size() == 1) {
6839     if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
6840       if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
6841         FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
6842         FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
6843 
6844         // The result is noreturn if both operands are.
6845         bool Noreturn =
6846             EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
6847         EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
6848         EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
6849 
6850         // The result is nothrow if both operands are.
6851         SmallVector<QualType, 8> ExceptionTypeStorage;
6852         EPI1.ExceptionSpec = EPI2.ExceptionSpec =
6853             mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec,
6854                                 ExceptionTypeStorage);
6855 
6856         Composite1 = Context.getFunctionType(FPT1->getReturnType(),
6857                                              FPT1->getParamTypes(), EPI1);
6858         Composite2 = Context.getFunctionType(FPT2->getReturnType(),
6859                                              FPT2->getParamTypes(), EPI2);
6860       }
6861     }
6862   }
6863 
6864   // There are some more conversions we can perform under exactly one pointer.
6865   if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
6866       !Context.hasSameType(Composite1, Composite2)) {
6867     //  - if T1 or T2 is "pointer to cv1 void" and the other type is
6868     //    "pointer to cv2 T", where T is an object type or void,
6869     //    "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
6870     if (Composite1->isVoidType() && Composite2->isObjectType())
6871       Composite2 = Composite1;
6872     else if (Composite2->isVoidType() && Composite1->isObjectType())
6873       Composite1 = Composite2;
6874     //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6875     //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6876     //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and
6877     //    T1, respectively;
6878     //
6879     // The "similar type" handling covers all of this except for the "T1 is a
6880     // base class of T2" case in the definition of reference-related.
6881     else if (IsDerivedFrom(Loc, Composite1, Composite2))
6882       Composite1 = Composite2;
6883     else if (IsDerivedFrom(Loc, Composite2, Composite1))
6884       Composite2 = Composite1;
6885   }
6886 
6887   // At this point, either the inner types are the same or we have failed to
6888   // find a composite pointer type.
6889   if (!Context.hasSameType(Composite1, Composite2))
6890     return QualType();
6891 
6892   // Per C++ [conv.qual]p3, add 'const' to every level before the last
6893   // differing qualifier.
6894   for (unsigned I = 0; I != NeedConstBefore; ++I)
6895     Steps[I].Quals.addConst();
6896 
6897   // Rebuild the composite type.
6898   QualType Composite = Composite1;
6899   for (auto &S : llvm::reverse(Steps))
6900     Composite = S.rebuild(Context, Composite);
6901 
6902   if (ConvertArgs) {
6903     // Convert the expressions to the composite pointer type.
6904     InitializedEntity Entity =
6905         InitializedEntity::InitializeTemporary(Composite);
6906     InitializationKind Kind =
6907         InitializationKind::CreateCopy(Loc, SourceLocation());
6908 
6909     InitializationSequence E1ToC(*this, Entity, Kind, E1);
6910     if (!E1ToC)
6911       return QualType();
6912 
6913     InitializationSequence E2ToC(*this, Entity, Kind, E2);
6914     if (!E2ToC)
6915       return QualType();
6916 
6917     // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
6918     ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
6919     if (E1Result.isInvalid())
6920       return QualType();
6921     E1 = E1Result.get();
6922 
6923     ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
6924     if (E2Result.isInvalid())
6925       return QualType();
6926     E2 = E2Result.get();
6927   }
6928 
6929   return Composite;
6930 }
6931 
6932 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
6933   if (!E)
6934     return ExprError();
6935 
6936   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
6937 
6938   // If the result is a glvalue, we shouldn't bind it.
6939   if (E->isGLValue())
6940     return E;
6941 
6942   // In ARC, calls that return a retainable type can return retained,
6943   // in which case we have to insert a consuming cast.
6944   if (getLangOpts().ObjCAutoRefCount &&
6945       E->getType()->isObjCRetainableType()) {
6946 
6947     bool ReturnsRetained;
6948 
6949     // For actual calls, we compute this by examining the type of the
6950     // called value.
6951     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
6952       Expr *Callee = Call->getCallee()->IgnoreParens();
6953       QualType T = Callee->getType();
6954 
6955       if (T == Context.BoundMemberTy) {
6956         // Handle pointer-to-members.
6957         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
6958           T = BinOp->getRHS()->getType();
6959         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
6960           T = Mem->getMemberDecl()->getType();
6961       }
6962 
6963       if (const PointerType *Ptr = T->getAs<PointerType>())
6964         T = Ptr->getPointeeType();
6965       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
6966         T = Ptr->getPointeeType();
6967       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
6968         T = MemPtr->getPointeeType();
6969 
6970       auto *FTy = T->castAs<FunctionType>();
6971       ReturnsRetained = FTy->getExtInfo().getProducesResult();
6972 
6973     // ActOnStmtExpr arranges things so that StmtExprs of retainable
6974     // type always produce a +1 object.
6975     } else if (isa<StmtExpr>(E)) {
6976       ReturnsRetained = true;
6977 
6978     // We hit this case with the lambda conversion-to-block optimization;
6979     // we don't want any extra casts here.
6980     } else if (isa<CastExpr>(E) &&
6981                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
6982       return E;
6983 
6984     // For message sends and property references, we try to find an
6985     // actual method.  FIXME: we should infer retention by selector in
6986     // cases where we don't have an actual method.
6987     } else {
6988       ObjCMethodDecl *D = nullptr;
6989       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
6990         D = Send->getMethodDecl();
6991       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
6992         D = BoxedExpr->getBoxingMethod();
6993       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
6994         // Don't do reclaims if we're using the zero-element array
6995         // constant.
6996         if (ArrayLit->getNumElements() == 0 &&
6997             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
6998           return E;
6999 
7000         D = ArrayLit->getArrayWithObjectsMethod();
7001       } else if (ObjCDictionaryLiteral *DictLit
7002                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
7003         // Don't do reclaims if we're using the zero-element dictionary
7004         // constant.
7005         if (DictLit->getNumElements() == 0 &&
7006             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7007           return E;
7008 
7009         D = DictLit->getDictWithObjectsMethod();
7010       }
7011 
7012       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7013 
7014       // Don't do reclaims on performSelector calls; despite their
7015       // return type, the invoked method doesn't necessarily actually
7016       // return an object.
7017       if (!ReturnsRetained &&
7018           D && D->getMethodFamily() == OMF_performSelector)
7019         return E;
7020     }
7021 
7022     // Don't reclaim an object of Class type.
7023     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7024       return E;
7025 
7026     Cleanup.setExprNeedsCleanups(true);
7027 
7028     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7029                                    : CK_ARCReclaimReturnedObject);
7030     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
7031                                     VK_PRValue, FPOptionsOverride());
7032   }
7033 
7034   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7035     Cleanup.setExprNeedsCleanups(true);
7036 
7037   if (!getLangOpts().CPlusPlus)
7038     return E;
7039 
7040   // Search for the base element type (cf. ASTContext::getBaseElementType) with
7041   // a fast path for the common case that the type is directly a RecordType.
7042   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7043   const RecordType *RT = nullptr;
7044   while (!RT) {
7045     switch (T->getTypeClass()) {
7046     case Type::Record:
7047       RT = cast<RecordType>(T);
7048       break;
7049     case Type::ConstantArray:
7050     case Type::IncompleteArray:
7051     case Type::VariableArray:
7052     case Type::DependentSizedArray:
7053       T = cast<ArrayType>(T)->getElementType().getTypePtr();
7054       break;
7055     default:
7056       return E;
7057     }
7058   }
7059 
7060   // That should be enough to guarantee that this type is complete, if we're
7061   // not processing a decltype expression.
7062   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7063   if (RD->isInvalidDecl() || RD->isDependentContext())
7064     return E;
7065 
7066   bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7067                     ExpressionEvaluationContextRecord::EK_Decltype;
7068   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7069 
7070   if (Destructor) {
7071     MarkFunctionReferenced(E->getExprLoc(), Destructor);
7072     CheckDestructorAccess(E->getExprLoc(), Destructor,
7073                           PDiag(diag::err_access_dtor_temp)
7074                             << E->getType());
7075     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7076       return ExprError();
7077 
7078     // If destructor is trivial, we can avoid the extra copy.
7079     if (Destructor->isTrivial())
7080       return E;
7081 
7082     // We need a cleanup, but we don't need to remember the temporary.
7083     Cleanup.setExprNeedsCleanups(true);
7084   }
7085 
7086   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7087   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7088 
7089   if (IsDecltype)
7090     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7091 
7092   return Bind;
7093 }
7094 
7095 ExprResult
7096 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7097   if (SubExpr.isInvalid())
7098     return ExprError();
7099 
7100   return MaybeCreateExprWithCleanups(SubExpr.get());
7101 }
7102 
7103 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7104   assert(SubExpr && "subexpression can't be null!");
7105 
7106   CleanupVarDeclMarking();
7107 
7108   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7109   assert(ExprCleanupObjects.size() >= FirstCleanup);
7110   assert(Cleanup.exprNeedsCleanups() ||
7111          ExprCleanupObjects.size() == FirstCleanup);
7112   if (!Cleanup.exprNeedsCleanups())
7113     return SubExpr;
7114 
7115   auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7116                                      ExprCleanupObjects.size() - FirstCleanup);
7117 
7118   auto *E = ExprWithCleanups::Create(
7119       Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7120   DiscardCleanupsInEvaluationContext();
7121 
7122   return E;
7123 }
7124 
7125 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7126   assert(SubStmt && "sub-statement can't be null!");
7127 
7128   CleanupVarDeclMarking();
7129 
7130   if (!Cleanup.exprNeedsCleanups())
7131     return SubStmt;
7132 
7133   // FIXME: In order to attach the temporaries, wrap the statement into
7134   // a StmtExpr; currently this is only used for asm statements.
7135   // This is hacky, either create a new CXXStmtWithTemporaries statement or
7136   // a new AsmStmtWithTemporaries.
7137   CompoundStmt *CompStmt = CompoundStmt::Create(
7138       Context, SubStmt, SourceLocation(), SourceLocation());
7139   Expr *E = new (Context)
7140       StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7141                /*FIXME TemplateDepth=*/0);
7142   return MaybeCreateExprWithCleanups(E);
7143 }
7144 
7145 /// Process the expression contained within a decltype. For such expressions,
7146 /// certain semantic checks on temporaries are delayed until this point, and
7147 /// are omitted for the 'topmost' call in the decltype expression. If the
7148 /// topmost call bound a temporary, strip that temporary off the expression.
7149 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7150   assert(ExprEvalContexts.back().ExprContext ==
7151              ExpressionEvaluationContextRecord::EK_Decltype &&
7152          "not in a decltype expression");
7153 
7154   ExprResult Result = CheckPlaceholderExpr(E);
7155   if (Result.isInvalid())
7156     return ExprError();
7157   E = Result.get();
7158 
7159   // C++11 [expr.call]p11:
7160   //   If a function call is a prvalue of object type,
7161   // -- if the function call is either
7162   //   -- the operand of a decltype-specifier, or
7163   //   -- the right operand of a comma operator that is the operand of a
7164   //      decltype-specifier,
7165   //   a temporary object is not introduced for the prvalue.
7166 
7167   // Recursively rebuild ParenExprs and comma expressions to strip out the
7168   // outermost CXXBindTemporaryExpr, if any.
7169   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7170     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7171     if (SubExpr.isInvalid())
7172       return ExprError();
7173     if (SubExpr.get() == PE->getSubExpr())
7174       return E;
7175     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7176   }
7177   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7178     if (BO->getOpcode() == BO_Comma) {
7179       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7180       if (RHS.isInvalid())
7181         return ExprError();
7182       if (RHS.get() == BO->getRHS())
7183         return E;
7184       return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7185                                     BO->getType(), BO->getValueKind(),
7186                                     BO->getObjectKind(), BO->getOperatorLoc(),
7187                                     BO->getFPFeatures(getLangOpts()));
7188     }
7189   }
7190 
7191   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7192   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7193                               : nullptr;
7194   if (TopCall)
7195     E = TopCall;
7196   else
7197     TopBind = nullptr;
7198 
7199   // Disable the special decltype handling now.
7200   ExprEvalContexts.back().ExprContext =
7201       ExpressionEvaluationContextRecord::EK_Other;
7202 
7203   Result = CheckUnevaluatedOperand(E);
7204   if (Result.isInvalid())
7205     return ExprError();
7206   E = Result.get();
7207 
7208   // In MS mode, don't perform any extra checking of call return types within a
7209   // decltype expression.
7210   if (getLangOpts().MSVCCompat)
7211     return E;
7212 
7213   // Perform the semantic checks we delayed until this point.
7214   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7215        I != N; ++I) {
7216     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7217     if (Call == TopCall)
7218       continue;
7219 
7220     if (CheckCallReturnType(Call->getCallReturnType(Context),
7221                             Call->getBeginLoc(), Call, Call->getDirectCallee()))
7222       return ExprError();
7223   }
7224 
7225   // Now all relevant types are complete, check the destructors are accessible
7226   // and non-deleted, and annotate them on the temporaries.
7227   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7228        I != N; ++I) {
7229     CXXBindTemporaryExpr *Bind =
7230       ExprEvalContexts.back().DelayedDecltypeBinds[I];
7231     if (Bind == TopBind)
7232       continue;
7233 
7234     CXXTemporary *Temp = Bind->getTemporary();
7235 
7236     CXXRecordDecl *RD =
7237       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7238     CXXDestructorDecl *Destructor = LookupDestructor(RD);
7239     Temp->setDestructor(Destructor);
7240 
7241     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7242     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7243                           PDiag(diag::err_access_dtor_temp)
7244                             << Bind->getType());
7245     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7246       return ExprError();
7247 
7248     // We need a cleanup, but we don't need to remember the temporary.
7249     Cleanup.setExprNeedsCleanups(true);
7250   }
7251 
7252   // Possibly strip off the top CXXBindTemporaryExpr.
7253   return E;
7254 }
7255 
7256 /// Note a set of 'operator->' functions that were used for a member access.
7257 static void noteOperatorArrows(Sema &S,
7258                                ArrayRef<FunctionDecl *> OperatorArrows) {
7259   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7260   // FIXME: Make this configurable?
7261   unsigned Limit = 9;
7262   if (OperatorArrows.size() > Limit) {
7263     // Produce Limit-1 normal notes and one 'skipping' note.
7264     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7265     SkipCount = OperatorArrows.size() - (Limit - 1);
7266   }
7267 
7268   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7269     if (I == SkipStart) {
7270       S.Diag(OperatorArrows[I]->getLocation(),
7271              diag::note_operator_arrows_suppressed)
7272           << SkipCount;
7273       I += SkipCount;
7274     } else {
7275       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7276           << OperatorArrows[I]->getCallResultType();
7277       ++I;
7278     }
7279   }
7280 }
7281 
7282 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7283                                               SourceLocation OpLoc,
7284                                               tok::TokenKind OpKind,
7285                                               ParsedType &ObjectType,
7286                                               bool &MayBePseudoDestructor) {
7287   // Since this might be a postfix expression, get rid of ParenListExprs.
7288   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7289   if (Result.isInvalid()) return ExprError();
7290   Base = Result.get();
7291 
7292   Result = CheckPlaceholderExpr(Base);
7293   if (Result.isInvalid()) return ExprError();
7294   Base = Result.get();
7295 
7296   QualType BaseType = Base->getType();
7297   MayBePseudoDestructor = false;
7298   if (BaseType->isDependentType()) {
7299     // If we have a pointer to a dependent type and are using the -> operator,
7300     // the object type is the type that the pointer points to. We might still
7301     // have enough information about that type to do something useful.
7302     if (OpKind == tok::arrow)
7303       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7304         BaseType = Ptr->getPointeeType();
7305 
7306     ObjectType = ParsedType::make(BaseType);
7307     MayBePseudoDestructor = true;
7308     return Base;
7309   }
7310 
7311   // C++ [over.match.oper]p8:
7312   //   [...] When operator->returns, the operator-> is applied  to the value
7313   //   returned, with the original second operand.
7314   if (OpKind == tok::arrow) {
7315     QualType StartingType = BaseType;
7316     bool NoArrowOperatorFound = false;
7317     bool FirstIteration = true;
7318     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7319     // The set of types we've considered so far.
7320     llvm::SmallPtrSet<CanQualType,8> CTypes;
7321     SmallVector<FunctionDecl*, 8> OperatorArrows;
7322     CTypes.insert(Context.getCanonicalType(BaseType));
7323 
7324     while (BaseType->isRecordType()) {
7325       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7326         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7327           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7328         noteOperatorArrows(*this, OperatorArrows);
7329         Diag(OpLoc, diag::note_operator_arrow_depth)
7330           << getLangOpts().ArrowDepth;
7331         return ExprError();
7332       }
7333 
7334       Result = BuildOverloadedArrowExpr(
7335           S, Base, OpLoc,
7336           // When in a template specialization and on the first loop iteration,
7337           // potentially give the default diagnostic (with the fixit in a
7338           // separate note) instead of having the error reported back to here
7339           // and giving a diagnostic with a fixit attached to the error itself.
7340           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7341               ? nullptr
7342               : &NoArrowOperatorFound);
7343       if (Result.isInvalid()) {
7344         if (NoArrowOperatorFound) {
7345           if (FirstIteration) {
7346             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7347               << BaseType << 1 << Base->getSourceRange()
7348               << FixItHint::CreateReplacement(OpLoc, ".");
7349             OpKind = tok::period;
7350             break;
7351           }
7352           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7353             << BaseType << Base->getSourceRange();
7354           CallExpr *CE = dyn_cast<CallExpr>(Base);
7355           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7356             Diag(CD->getBeginLoc(),
7357                  diag::note_member_reference_arrow_from_operator_arrow);
7358           }
7359         }
7360         return ExprError();
7361       }
7362       Base = Result.get();
7363       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7364         OperatorArrows.push_back(OpCall->getDirectCallee());
7365       BaseType = Base->getType();
7366       CanQualType CBaseType = Context.getCanonicalType(BaseType);
7367       if (!CTypes.insert(CBaseType).second) {
7368         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7369         noteOperatorArrows(*this, OperatorArrows);
7370         return ExprError();
7371       }
7372       FirstIteration = false;
7373     }
7374 
7375     if (OpKind == tok::arrow) {
7376       if (BaseType->isPointerType())
7377         BaseType = BaseType->getPointeeType();
7378       else if (auto *AT = Context.getAsArrayType(BaseType))
7379         BaseType = AT->getElementType();
7380     }
7381   }
7382 
7383   // Objective-C properties allow "." access on Objective-C pointer types,
7384   // so adjust the base type to the object type itself.
7385   if (BaseType->isObjCObjectPointerType())
7386     BaseType = BaseType->getPointeeType();
7387 
7388   // C++ [basic.lookup.classref]p2:
7389   //   [...] If the type of the object expression is of pointer to scalar
7390   //   type, the unqualified-id is looked up in the context of the complete
7391   //   postfix-expression.
7392   //
7393   // This also indicates that we could be parsing a pseudo-destructor-name.
7394   // Note that Objective-C class and object types can be pseudo-destructor
7395   // expressions or normal member (ivar or property) access expressions, and
7396   // it's legal for the type to be incomplete if this is a pseudo-destructor
7397   // call.  We'll do more incomplete-type checks later in the lookup process,
7398   // so just skip this check for ObjC types.
7399   if (!BaseType->isRecordType()) {
7400     ObjectType = ParsedType::make(BaseType);
7401     MayBePseudoDestructor = true;
7402     return Base;
7403   }
7404 
7405   // The object type must be complete (or dependent), or
7406   // C++11 [expr.prim.general]p3:
7407   //   Unlike the object expression in other contexts, *this is not required to
7408   //   be of complete type for purposes of class member access (5.2.5) outside
7409   //   the member function body.
7410   if (!BaseType->isDependentType() &&
7411       !isThisOutsideMemberFunctionBody(BaseType) &&
7412       RequireCompleteType(OpLoc, BaseType,
7413                           diag::err_incomplete_member_access)) {
7414     return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base});
7415   }
7416 
7417   // C++ [basic.lookup.classref]p2:
7418   //   If the id-expression in a class member access (5.2.5) is an
7419   //   unqualified-id, and the type of the object expression is of a class
7420   //   type C (or of pointer to a class type C), the unqualified-id is looked
7421   //   up in the scope of class C. [...]
7422   ObjectType = ParsedType::make(BaseType);
7423   return Base;
7424 }
7425 
7426 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7427                        tok::TokenKind &OpKind, SourceLocation OpLoc) {
7428   if (Base->hasPlaceholderType()) {
7429     ExprResult result = S.CheckPlaceholderExpr(Base);
7430     if (result.isInvalid()) return true;
7431     Base = result.get();
7432   }
7433   ObjectType = Base->getType();
7434 
7435   // C++ [expr.pseudo]p2:
7436   //   The left-hand side of the dot operator shall be of scalar type. The
7437   //   left-hand side of the arrow operator shall be of pointer to scalar type.
7438   //   This scalar type is the object type.
7439   // Note that this is rather different from the normal handling for the
7440   // arrow operator.
7441   if (OpKind == tok::arrow) {
7442     // The operator requires a prvalue, so perform lvalue conversions.
7443     // Only do this if we might plausibly end with a pointer, as otherwise
7444     // this was likely to be intended to be a '.'.
7445     if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7446         ObjectType->isFunctionType()) {
7447       ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
7448       if (BaseResult.isInvalid())
7449         return true;
7450       Base = BaseResult.get();
7451       ObjectType = Base->getType();
7452     }
7453 
7454     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7455       ObjectType = Ptr->getPointeeType();
7456     } else if (!Base->isTypeDependent()) {
7457       // The user wrote "p->" when they probably meant "p."; fix it.
7458       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7459         << ObjectType << true
7460         << FixItHint::CreateReplacement(OpLoc, ".");
7461       if (S.isSFINAEContext())
7462         return true;
7463 
7464       OpKind = tok::period;
7465     }
7466   }
7467 
7468   return false;
7469 }
7470 
7471 /// Check if it's ok to try and recover dot pseudo destructor calls on
7472 /// pointer objects.
7473 static bool
7474 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7475                                                    QualType DestructedType) {
7476   // If this is a record type, check if its destructor is callable.
7477   if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7478     if (RD->hasDefinition())
7479       if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
7480         return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7481     return false;
7482   }
7483 
7484   // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7485   return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7486          DestructedType->isVectorType();
7487 }
7488 
7489 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7490                                            SourceLocation OpLoc,
7491                                            tok::TokenKind OpKind,
7492                                            const CXXScopeSpec &SS,
7493                                            TypeSourceInfo *ScopeTypeInfo,
7494                                            SourceLocation CCLoc,
7495                                            SourceLocation TildeLoc,
7496                                          PseudoDestructorTypeStorage Destructed) {
7497   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7498 
7499   QualType ObjectType;
7500   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7501     return ExprError();
7502 
7503   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7504       !ObjectType->isVectorType()) {
7505     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7506       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7507     else {
7508       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7509         << ObjectType << Base->getSourceRange();
7510       return ExprError();
7511     }
7512   }
7513 
7514   // C++ [expr.pseudo]p2:
7515   //   [...] The cv-unqualified versions of the object type and of the type
7516   //   designated by the pseudo-destructor-name shall be the same type.
7517   if (DestructedTypeInfo) {
7518     QualType DestructedType = DestructedTypeInfo->getType();
7519     SourceLocation DestructedTypeStart
7520       = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
7521     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7522       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
7523         // Detect dot pseudo destructor calls on pointer objects, e.g.:
7524         //   Foo *foo;
7525         //   foo.~Foo();
7526         if (OpKind == tok::period && ObjectType->isPointerType() &&
7527             Context.hasSameUnqualifiedType(DestructedType,
7528                                            ObjectType->getPointeeType())) {
7529           auto Diagnostic =
7530               Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7531               << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7532 
7533           // Issue a fixit only when the destructor is valid.
7534           if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7535                   *this, DestructedType))
7536             Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
7537 
7538           // Recover by setting the object type to the destructed type and the
7539           // operator to '->'.
7540           ObjectType = DestructedType;
7541           OpKind = tok::arrow;
7542         } else {
7543           Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7544               << ObjectType << DestructedType << Base->getSourceRange()
7545               << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7546 
7547           // Recover by setting the destructed type to the object type.
7548           DestructedType = ObjectType;
7549           DestructedTypeInfo =
7550               Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
7551           Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7552         }
7553       } else if (DestructedType.getObjCLifetime() !=
7554                                                 ObjectType.getObjCLifetime()) {
7555 
7556         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7557           // Okay: just pretend that the user provided the correctly-qualified
7558           // type.
7559         } else {
7560           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7561             << ObjectType << DestructedType << Base->getSourceRange()
7562             << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
7563         }
7564 
7565         // Recover by setting the destructed type to the object type.
7566         DestructedType = ObjectType;
7567         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
7568                                                            DestructedTypeStart);
7569         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7570       }
7571     }
7572   }
7573 
7574   // C++ [expr.pseudo]p2:
7575   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7576   //   form
7577   //
7578   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7579   //
7580   //   shall designate the same scalar type.
7581   if (ScopeTypeInfo) {
7582     QualType ScopeType = ScopeTypeInfo->getType();
7583     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7584         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
7585 
7586       Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
7587            diag::err_pseudo_dtor_type_mismatch)
7588         << ObjectType << ScopeType << Base->getSourceRange()
7589         << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
7590 
7591       ScopeType = QualType();
7592       ScopeTypeInfo = nullptr;
7593     }
7594   }
7595 
7596   Expr *Result
7597     = new (Context) CXXPseudoDestructorExpr(Context, Base,
7598                                             OpKind == tok::arrow, OpLoc,
7599                                             SS.getWithLocInContext(Context),
7600                                             ScopeTypeInfo,
7601                                             CCLoc,
7602                                             TildeLoc,
7603                                             Destructed);
7604 
7605   return Result;
7606 }
7607 
7608 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7609                                            SourceLocation OpLoc,
7610                                            tok::TokenKind OpKind,
7611                                            CXXScopeSpec &SS,
7612                                            UnqualifiedId &FirstTypeName,
7613                                            SourceLocation CCLoc,
7614                                            SourceLocation TildeLoc,
7615                                            UnqualifiedId &SecondTypeName) {
7616   assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7617           FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7618          "Invalid first type name in pseudo-destructor");
7619   assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7620           SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7621          "Invalid second type name in pseudo-destructor");
7622 
7623   QualType ObjectType;
7624   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7625     return ExprError();
7626 
7627   // Compute the object type that we should use for name lookup purposes. Only
7628   // record types and dependent types matter.
7629   ParsedType ObjectTypePtrForLookup;
7630   if (!SS.isSet()) {
7631     if (ObjectType->isRecordType())
7632       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7633     else if (ObjectType->isDependentType())
7634       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7635   }
7636 
7637   // Convert the name of the type being destructed (following the ~) into a
7638   // type (with source-location information).
7639   QualType DestructedType;
7640   TypeSourceInfo *DestructedTypeInfo = nullptr;
7641   PseudoDestructorTypeStorage Destructed;
7642   if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7643     ParsedType T = getTypeName(*SecondTypeName.Identifier,
7644                                SecondTypeName.StartLocation,
7645                                S, &SS, true, false, ObjectTypePtrForLookup,
7646                                /*IsCtorOrDtorName*/true);
7647     if (!T &&
7648         ((SS.isSet() && !computeDeclContext(SS, false)) ||
7649          (!SS.isSet() && ObjectType->isDependentType()))) {
7650       // The name of the type being destroyed is a dependent name, and we
7651       // couldn't find anything useful in scope. Just store the identifier and
7652       // it's location, and we'll perform (qualified) name lookup again at
7653       // template instantiation time.
7654       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
7655                                                SecondTypeName.StartLocation);
7656     } else if (!T) {
7657       Diag(SecondTypeName.StartLocation,
7658            diag::err_pseudo_dtor_destructor_non_type)
7659         << SecondTypeName.Identifier << ObjectType;
7660       if (isSFINAEContext())
7661         return ExprError();
7662 
7663       // Recover by assuming we had the right type all along.
7664       DestructedType = ObjectType;
7665     } else
7666       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
7667   } else {
7668     // Resolve the template-id to a type.
7669     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
7670     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7671                                        TemplateId->NumArgs);
7672     TypeResult T = ActOnTemplateIdType(S,
7673                                        SS,
7674                                        TemplateId->TemplateKWLoc,
7675                                        TemplateId->Template,
7676                                        TemplateId->Name,
7677                                        TemplateId->TemplateNameLoc,
7678                                        TemplateId->LAngleLoc,
7679                                        TemplateArgsPtr,
7680                                        TemplateId->RAngleLoc,
7681                                        /*IsCtorOrDtorName*/true);
7682     if (T.isInvalid() || !T.get()) {
7683       // Recover by assuming we had the right type all along.
7684       DestructedType = ObjectType;
7685     } else
7686       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
7687   }
7688 
7689   // If we've performed some kind of recovery, (re-)build the type source
7690   // information.
7691   if (!DestructedType.isNull()) {
7692     if (!DestructedTypeInfo)
7693       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
7694                                                   SecondTypeName.StartLocation);
7695     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7696   }
7697 
7698   // Convert the name of the scope type (the type prior to '::') into a type.
7699   TypeSourceInfo *ScopeTypeInfo = nullptr;
7700   QualType ScopeType;
7701   if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7702       FirstTypeName.Identifier) {
7703     if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7704       ParsedType T = getTypeName(*FirstTypeName.Identifier,
7705                                  FirstTypeName.StartLocation,
7706                                  S, &SS, true, false, ObjectTypePtrForLookup,
7707                                  /*IsCtorOrDtorName*/true);
7708       if (!T) {
7709         Diag(FirstTypeName.StartLocation,
7710              diag::err_pseudo_dtor_destructor_non_type)
7711           << FirstTypeName.Identifier << ObjectType;
7712 
7713         if (isSFINAEContext())
7714           return ExprError();
7715 
7716         // Just drop this type. It's unnecessary anyway.
7717         ScopeType = QualType();
7718       } else
7719         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
7720     } else {
7721       // Resolve the template-id to a type.
7722       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
7723       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7724                                          TemplateId->NumArgs);
7725       TypeResult T = ActOnTemplateIdType(S,
7726                                          SS,
7727                                          TemplateId->TemplateKWLoc,
7728                                          TemplateId->Template,
7729                                          TemplateId->Name,
7730                                          TemplateId->TemplateNameLoc,
7731                                          TemplateId->LAngleLoc,
7732                                          TemplateArgsPtr,
7733                                          TemplateId->RAngleLoc,
7734                                          /*IsCtorOrDtorName*/true);
7735       if (T.isInvalid() || !T.get()) {
7736         // Recover by dropping this type.
7737         ScopeType = QualType();
7738       } else
7739         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
7740     }
7741   }
7742 
7743   if (!ScopeType.isNull() && !ScopeTypeInfo)
7744     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
7745                                                   FirstTypeName.StartLocation);
7746 
7747 
7748   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
7749                                    ScopeTypeInfo, CCLoc, TildeLoc,
7750                                    Destructed);
7751 }
7752 
7753 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7754                                            SourceLocation OpLoc,
7755                                            tok::TokenKind OpKind,
7756                                            SourceLocation TildeLoc,
7757                                            const DeclSpec& DS) {
7758   QualType ObjectType;
7759   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7760     return ExprError();
7761 
7762   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
7763     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
7764     return true;
7765   }
7766 
7767   QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false);
7768 
7769   TypeLocBuilder TLB;
7770   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
7771   DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
7772   DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
7773   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
7774   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
7775 
7776   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
7777                                    nullptr, SourceLocation(), TildeLoc,
7778                                    Destructed);
7779 }
7780 
7781 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
7782                                         CXXConversionDecl *Method,
7783                                         bool HadMultipleCandidates) {
7784   // Convert the expression to match the conversion function's implicit object
7785   // parameter.
7786   ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
7787                                           FoundDecl, Method);
7788   if (Exp.isInvalid())
7789     return true;
7790 
7791   if (Method->getParent()->isLambda() &&
7792       Method->getConversionType()->isBlockPointerType()) {
7793     // This is a lambda conversion to block pointer; check if the argument
7794     // was a LambdaExpr.
7795     Expr *SubE = E;
7796     CastExpr *CE = dyn_cast<CastExpr>(SubE);
7797     if (CE && CE->getCastKind() == CK_NoOp)
7798       SubE = CE->getSubExpr();
7799     SubE = SubE->IgnoreParens();
7800     if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
7801       SubE = BE->getSubExpr();
7802     if (isa<LambdaExpr>(SubE)) {
7803       // For the conversion to block pointer on a lambda expression, we
7804       // construct a special BlockLiteral instead; this doesn't really make
7805       // a difference in ARC, but outside of ARC the resulting block literal
7806       // follows the normal lifetime rules for block literals instead of being
7807       // autoreleased.
7808       PushExpressionEvaluationContext(
7809           ExpressionEvaluationContext::PotentiallyEvaluated);
7810       ExprResult BlockExp = BuildBlockForLambdaConversion(
7811           Exp.get()->getExprLoc(), Exp.get()->getExprLoc(), Method, Exp.get());
7812       PopExpressionEvaluationContext();
7813 
7814       // FIXME: This note should be produced by a CodeSynthesisContext.
7815       if (BlockExp.isInvalid())
7816         Diag(Exp.get()->getExprLoc(), diag::note_lambda_to_block_conv);
7817       return BlockExp;
7818     }
7819   }
7820 
7821   MemberExpr *ME =
7822       BuildMemberExpr(Exp.get(), /*IsArrow=*/false, SourceLocation(),
7823                       NestedNameSpecifierLoc(), SourceLocation(), Method,
7824                       DeclAccessPair::make(FoundDecl, FoundDecl->getAccess()),
7825                       HadMultipleCandidates, DeclarationNameInfo(),
7826                       Context.BoundMemberTy, VK_PRValue, OK_Ordinary);
7827 
7828   QualType ResultType = Method->getReturnType();
7829   ExprValueKind VK = Expr::getValueKindForType(ResultType);
7830   ResultType = ResultType.getNonLValueExprType(Context);
7831 
7832   CXXMemberCallExpr *CE = CXXMemberCallExpr::Create(
7833       Context, ME, /*Args=*/{}, ResultType, VK, Exp.get()->getEndLoc(),
7834       CurFPFeatureOverrides());
7835 
7836   if (CheckFunctionCall(Method, CE,
7837                         Method->getType()->castAs<FunctionProtoType>()))
7838     return ExprError();
7839 
7840   return CheckForImmediateInvocation(CE, CE->getMethodDecl());
7841 }
7842 
7843 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
7844                                       SourceLocation RParen) {
7845   // If the operand is an unresolved lookup expression, the expression is ill-
7846   // formed per [over.over]p1, because overloaded function names cannot be used
7847   // without arguments except in explicit contexts.
7848   ExprResult R = CheckPlaceholderExpr(Operand);
7849   if (R.isInvalid())
7850     return R;
7851 
7852   R = CheckUnevaluatedOperand(R.get());
7853   if (R.isInvalid())
7854     return ExprError();
7855 
7856   Operand = R.get();
7857 
7858   if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
7859       Operand->HasSideEffects(Context, false)) {
7860     // The expression operand for noexcept is in an unevaluated expression
7861     // context, so side effects could result in unintended consequences.
7862     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
7863   }
7864 
7865   CanThrowResult CanThrow = canThrow(Operand);
7866   return new (Context)
7867       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
7868 }
7869 
7870 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
7871                                    Expr *Operand, SourceLocation RParen) {
7872   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
7873 }
7874 
7875 static void MaybeDecrementCount(
7876     Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
7877   DeclRefExpr *LHS = nullptr;
7878   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7879     if (BO->getLHS()->getType()->isDependentType() ||
7880         BO->getRHS()->getType()->isDependentType()) {
7881       if (BO->getOpcode() != BO_Assign)
7882         return;
7883     } else if (!BO->isAssignmentOp())
7884       return;
7885     LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
7886   } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
7887     if (COCE->getOperator() != OO_Equal)
7888       return;
7889     LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
7890   }
7891   if (!LHS)
7892     return;
7893   VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
7894   if (!VD)
7895     return;
7896   auto iter = RefsMinusAssignments.find(VD);
7897   if (iter == RefsMinusAssignments.end())
7898     return;
7899   iter->getSecond()--;
7900 }
7901 
7902 /// Perform the conversions required for an expression used in a
7903 /// context that ignores the result.
7904 ExprResult Sema::IgnoredValueConversions(Expr *E) {
7905   MaybeDecrementCount(E, RefsMinusAssignments);
7906 
7907   if (E->hasPlaceholderType()) {
7908     ExprResult result = CheckPlaceholderExpr(E);
7909     if (result.isInvalid()) return E;
7910     E = result.get();
7911   }
7912 
7913   // C99 6.3.2.1:
7914   //   [Except in specific positions,] an lvalue that does not have
7915   //   array type is converted to the value stored in the
7916   //   designated object (and is no longer an lvalue).
7917   if (E->isPRValue()) {
7918     // In C, function designators (i.e. expressions of function type)
7919     // are r-values, but we still want to do function-to-pointer decay
7920     // on them.  This is both technically correct and convenient for
7921     // some clients.
7922     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
7923       return DefaultFunctionArrayConversion(E);
7924 
7925     return E;
7926   }
7927 
7928   if (getLangOpts().CPlusPlus) {
7929     // The C++11 standard defines the notion of a discarded-value expression;
7930     // normally, we don't need to do anything to handle it, but if it is a
7931     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
7932     // conversion.
7933     if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
7934       ExprResult Res = DefaultLvalueConversion(E);
7935       if (Res.isInvalid())
7936         return E;
7937       E = Res.get();
7938     } else {
7939       // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7940       // it occurs as a discarded-value expression.
7941       CheckUnusedVolatileAssignment(E);
7942     }
7943 
7944     // C++1z:
7945     //   If the expression is a prvalue after this optional conversion, the
7946     //   temporary materialization conversion is applied.
7947     //
7948     // We skip this step: IR generation is able to synthesize the storage for
7949     // itself in the aggregate case, and adding the extra node to the AST is
7950     // just clutter.
7951     // FIXME: We don't emit lifetime markers for the temporaries due to this.
7952     // FIXME: Do any other AST consumers care about this?
7953     return E;
7954   }
7955 
7956   // GCC seems to also exclude expressions of incomplete enum type.
7957   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
7958     if (!T->getDecl()->isComplete()) {
7959       // FIXME: stupid workaround for a codegen bug!
7960       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
7961       return E;
7962     }
7963   }
7964 
7965   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
7966   if (Res.isInvalid())
7967     return E;
7968   E = Res.get();
7969 
7970   if (!E->getType()->isVoidType())
7971     RequireCompleteType(E->getExprLoc(), E->getType(),
7972                         diag::err_incomplete_type);
7973   return E;
7974 }
7975 
7976 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
7977   // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
7978   // it occurs as an unevaluated operand.
7979   CheckUnusedVolatileAssignment(E);
7980 
7981   return E;
7982 }
7983 
7984 // If we can unambiguously determine whether Var can never be used
7985 // in a constant expression, return true.
7986 //  - if the variable and its initializer are non-dependent, then
7987 //    we can unambiguously check if the variable is a constant expression.
7988 //  - if the initializer is not value dependent - we can determine whether
7989 //    it can be used to initialize a constant expression.  If Init can not
7990 //    be used to initialize a constant expression we conclude that Var can
7991 //    never be a constant expression.
7992 //  - FXIME: if the initializer is dependent, we can still do some analysis and
7993 //    identify certain cases unambiguously as non-const by using a Visitor:
7994 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
7995 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
7996 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
7997     ASTContext &Context) {
7998   if (isa<ParmVarDecl>(Var)) return true;
7999   const VarDecl *DefVD = nullptr;
8000 
8001   // If there is no initializer - this can not be a constant expression.
8002   if (!Var->getAnyInitializer(DefVD)) return true;
8003   assert(DefVD);
8004   if (DefVD->isWeak()) return false;
8005   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
8006 
8007   Expr *Init = cast<Expr>(Eval->Value);
8008 
8009   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8010     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8011     // of value-dependent expressions, and use it here to determine whether the
8012     // initializer is a potential constant expression.
8013     return false;
8014   }
8015 
8016   return !Var->isUsableInConstantExpressions(Context);
8017 }
8018 
8019 /// Check if the current lambda has any potential captures
8020 /// that must be captured by any of its enclosing lambdas that are ready to
8021 /// capture. If there is a lambda that can capture a nested
8022 /// potential-capture, go ahead and do so.  Also, check to see if any
8023 /// variables are uncaptureable or do not involve an odr-use so do not
8024 /// need to be captured.
8025 
8026 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8027     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8028 
8029   assert(!S.isUnevaluatedContext());
8030   assert(S.CurContext->isDependentContext());
8031 #ifndef NDEBUG
8032   DeclContext *DC = S.CurContext;
8033   while (DC && isa<CapturedDecl>(DC))
8034     DC = DC->getParent();
8035   assert(
8036       CurrentLSI->CallOperator == DC &&
8037       "The current call operator must be synchronized with Sema's CurContext");
8038 #endif // NDEBUG
8039 
8040   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8041 
8042   // All the potentially captureable variables in the current nested
8043   // lambda (within a generic outer lambda), must be captured by an
8044   // outer lambda that is enclosed within a non-dependent context.
8045   CurrentLSI->visitPotentialCaptures([&] (VarDecl *Var, Expr *VarExpr) {
8046     // If the variable is clearly identified as non-odr-used and the full
8047     // expression is not instantiation dependent, only then do we not
8048     // need to check enclosing lambda's for speculative captures.
8049     // For e.g.:
8050     // Even though 'x' is not odr-used, it should be captured.
8051     // int test() {
8052     //   const int x = 10;
8053     //   auto L = [=](auto a) {
8054     //     (void) +x + a;
8055     //   };
8056     // }
8057     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8058         !IsFullExprInstantiationDependent)
8059       return;
8060 
8061     // If we have a capture-capable lambda for the variable, go ahead and
8062     // capture the variable in that lambda (and all its enclosing lambdas).
8063     if (const Optional<unsigned> Index =
8064             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8065                 S.FunctionScopes, Var, S))
8066       S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(),
8067                                           Index.getValue());
8068     const bool IsVarNeverAConstantExpression =
8069         VariableCanNeverBeAConstantExpression(Var, S.Context);
8070     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8071       // This full expression is not instantiation dependent or the variable
8072       // can not be used in a constant expression - which means
8073       // this variable must be odr-used here, so diagnose a
8074       // capture violation early, if the variable is un-captureable.
8075       // This is purely for diagnosing errors early.  Otherwise, this
8076       // error would get diagnosed when the lambda becomes capture ready.
8077       QualType CaptureType, DeclRefType;
8078       SourceLocation ExprLoc = VarExpr->getExprLoc();
8079       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8080                           /*EllipsisLoc*/ SourceLocation(),
8081                           /*BuildAndDiagnose*/false, CaptureType,
8082                           DeclRefType, nullptr)) {
8083         // We will never be able to capture this variable, and we need
8084         // to be able to in any and all instantiations, so diagnose it.
8085         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8086                           /*EllipsisLoc*/ SourceLocation(),
8087                           /*BuildAndDiagnose*/true, CaptureType,
8088                           DeclRefType, nullptr);
8089       }
8090     }
8091   });
8092 
8093   // Check if 'this' needs to be captured.
8094   if (CurrentLSI->hasPotentialThisCapture()) {
8095     // If we have a capture-capable lambda for 'this', go ahead and capture
8096     // 'this' in that lambda (and all its enclosing lambdas).
8097     if (const Optional<unsigned> Index =
8098             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8099                 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8100       const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
8101       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8102                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8103                             &FunctionScopeIndexOfCapturableLambda);
8104     }
8105   }
8106 
8107   // Reset all the potential captures at the end of each full-expression.
8108   CurrentLSI->clearPotentialCaptures();
8109 }
8110 
8111 static ExprResult attemptRecovery(Sema &SemaRef,
8112                                   const TypoCorrectionConsumer &Consumer,
8113                                   const TypoCorrection &TC) {
8114   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8115                  Consumer.getLookupResult().getLookupKind());
8116   const CXXScopeSpec *SS = Consumer.getSS();
8117   CXXScopeSpec NewSS;
8118 
8119   // Use an approprate CXXScopeSpec for building the expr.
8120   if (auto *NNS = TC.getCorrectionSpecifier())
8121     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8122   else if (SS && !TC.WillReplaceSpecifier())
8123     NewSS = *SS;
8124 
8125   if (auto *ND = TC.getFoundDecl()) {
8126     R.setLookupName(ND->getDeclName());
8127     R.addDecl(ND);
8128     if (ND->isCXXClassMember()) {
8129       // Figure out the correct naming class to add to the LookupResult.
8130       CXXRecordDecl *Record = nullptr;
8131       if (auto *NNS = TC.getCorrectionSpecifier())
8132         Record = NNS->getAsType()->getAsCXXRecordDecl();
8133       if (!Record)
8134         Record =
8135             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8136       if (Record)
8137         R.setNamingClass(Record);
8138 
8139       // Detect and handle the case where the decl might be an implicit
8140       // member.
8141       bool MightBeImplicitMember;
8142       if (!Consumer.isAddressOfOperand())
8143         MightBeImplicitMember = true;
8144       else if (!NewSS.isEmpty())
8145         MightBeImplicitMember = false;
8146       else if (R.isOverloadedResult())
8147         MightBeImplicitMember = false;
8148       else if (R.isUnresolvableResult())
8149         MightBeImplicitMember = true;
8150       else
8151         MightBeImplicitMember = isa<FieldDecl>(ND) ||
8152                                 isa<IndirectFieldDecl>(ND) ||
8153                                 isa<MSPropertyDecl>(ND);
8154 
8155       if (MightBeImplicitMember)
8156         return SemaRef.BuildPossibleImplicitMemberExpr(
8157             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8158             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8159     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8160       return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
8161                                         Ivar->getIdentifier());
8162     }
8163   }
8164 
8165   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8166                                           /*AcceptInvalidDecl*/ true);
8167 }
8168 
8169 namespace {
8170 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8171   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8172 
8173 public:
8174   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8175       : TypoExprs(TypoExprs) {}
8176   bool VisitTypoExpr(TypoExpr *TE) {
8177     TypoExprs.insert(TE);
8178     return true;
8179   }
8180 };
8181 
8182 class TransformTypos : public TreeTransform<TransformTypos> {
8183   typedef TreeTransform<TransformTypos> BaseTransform;
8184 
8185   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8186                      // process of being initialized.
8187   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8188   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8189   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8190   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8191 
8192   /// Emit diagnostics for all of the TypoExprs encountered.
8193   ///
8194   /// If the TypoExprs were successfully corrected, then the diagnostics should
8195   /// suggest the corrections. Otherwise the diagnostics will not suggest
8196   /// anything (having been passed an empty TypoCorrection).
8197   ///
8198   /// If we've failed to correct due to ambiguous corrections, we need to
8199   /// be sure to pass empty corrections and replacements. Otherwise it's
8200   /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8201   /// and we don't want to report those diagnostics.
8202   void EmitAllDiagnostics(bool IsAmbiguous) {
8203     for (TypoExpr *TE : TypoExprs) {
8204       auto &State = SemaRef.getTypoExprState(TE);
8205       if (State.DiagHandler) {
8206         TypoCorrection TC = IsAmbiguous
8207             ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8208         ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8209 
8210         // Extract the NamedDecl from the transformed TypoExpr and add it to the
8211         // TypoCorrection, replacing the existing decls. This ensures the right
8212         // NamedDecl is used in diagnostics e.g. in the case where overload
8213         // resolution was used to select one from several possible decls that
8214         // had been stored in the TypoCorrection.
8215         if (auto *ND = getDeclFromExpr(
8216                 Replacement.isInvalid() ? nullptr : Replacement.get()))
8217           TC.setCorrectionDecl(ND);
8218 
8219         State.DiagHandler(TC);
8220       }
8221       SemaRef.clearDelayedTypo(TE);
8222     }
8223   }
8224 
8225   /// Try to advance the typo correction state of the first unfinished TypoExpr.
8226   /// We allow advancement of the correction stream by removing it from the
8227   /// TransformCache which allows `TransformTypoExpr` to advance during the
8228   /// next transformation attempt.
8229   ///
8230   /// Any substitution attempts for the previous TypoExprs (which must have been
8231   /// finished) will need to be retried since it's possible that they will now
8232   /// be invalid given the latest advancement.
8233   ///
8234   /// We need to be sure that we're making progress - it's possible that the
8235   /// tree is so malformed that the transform never makes it to the
8236   /// `TransformTypoExpr`.
8237   ///
8238   /// Returns true if there are any untried correction combinations.
8239   bool CheckAndAdvanceTypoExprCorrectionStreams() {
8240     for (auto TE : TypoExprs) {
8241       auto &State = SemaRef.getTypoExprState(TE);
8242       TransformCache.erase(TE);
8243       if (!State.Consumer->hasMadeAnyCorrectionProgress())
8244         return false;
8245       if (!State.Consumer->finished())
8246         return true;
8247       State.Consumer->resetCorrectionStream();
8248     }
8249     return false;
8250   }
8251 
8252   NamedDecl *getDeclFromExpr(Expr *E) {
8253     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8254       E = OverloadResolution[OE];
8255 
8256     if (!E)
8257       return nullptr;
8258     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8259       return DRE->getFoundDecl();
8260     if (auto *ME = dyn_cast<MemberExpr>(E))
8261       return ME->getFoundDecl();
8262     // FIXME: Add any other expr types that could be be seen by the delayed typo
8263     // correction TreeTransform for which the corresponding TypoCorrection could
8264     // contain multiple decls.
8265     return nullptr;
8266   }
8267 
8268   ExprResult TryTransform(Expr *E) {
8269     Sema::SFINAETrap Trap(SemaRef);
8270     ExprResult Res = TransformExpr(E);
8271     if (Trap.hasErrorOccurred() || Res.isInvalid())
8272       return ExprError();
8273 
8274     return ExprFilter(Res.get());
8275   }
8276 
8277   // Since correcting typos may intoduce new TypoExprs, this function
8278   // checks for new TypoExprs and recurses if it finds any. Note that it will
8279   // only succeed if it is able to correct all typos in the given expression.
8280   ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8281     if (Res.isInvalid()) {
8282       return Res;
8283     }
8284     // Check to see if any new TypoExprs were created. If so, we need to recurse
8285     // to check their validity.
8286     Expr *FixedExpr = Res.get();
8287 
8288     auto SavedTypoExprs = std::move(TypoExprs);
8289     auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8290     TypoExprs.clear();
8291     AmbiguousTypoExprs.clear();
8292 
8293     FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8294     if (!TypoExprs.empty()) {
8295       // Recurse to handle newly created TypoExprs. If we're not able to
8296       // handle them, discard these TypoExprs.
8297       ExprResult RecurResult =
8298           RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8299       if (RecurResult.isInvalid()) {
8300         Res = ExprError();
8301         // Recursive corrections didn't work, wipe them away and don't add
8302         // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8303         // since we don't want to clear them twice. Note: it's possible the
8304         // TypoExprs were created recursively and thus won't be in our
8305         // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8306         auto &SemaTypoExprs = SemaRef.TypoExprs;
8307         for (auto TE : TypoExprs) {
8308           TransformCache.erase(TE);
8309           SemaRef.clearDelayedTypo(TE);
8310 
8311           auto SI = find(SemaTypoExprs, TE);
8312           if (SI != SemaTypoExprs.end()) {
8313             SemaTypoExprs.erase(SI);
8314           }
8315         }
8316       } else {
8317         // TypoExpr is valid: add newly created TypoExprs since we were
8318         // able to correct them.
8319         Res = RecurResult;
8320         SavedTypoExprs.set_union(TypoExprs);
8321       }
8322     }
8323 
8324     TypoExprs = std::move(SavedTypoExprs);
8325     AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8326 
8327     return Res;
8328   }
8329 
8330   // Try to transform the given expression, looping through the correction
8331   // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8332   //
8333   // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8334   // true and this method immediately will return an `ExprError`.
8335   ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8336     ExprResult Res;
8337     auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8338     SemaRef.TypoExprs.clear();
8339 
8340     while (true) {
8341       Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8342 
8343       // Recursion encountered an ambiguous correction. This means that our
8344       // correction itself is ambiguous, so stop now.
8345       if (IsAmbiguous)
8346         break;
8347 
8348       // If the transform is still valid after checking for any new typos,
8349       // it's good to go.
8350       if (!Res.isInvalid())
8351         break;
8352 
8353       // The transform was invalid, see if we have any TypoExprs with untried
8354       // correction candidates.
8355       if (!CheckAndAdvanceTypoExprCorrectionStreams())
8356         break;
8357     }
8358 
8359     // If we found a valid result, double check to make sure it's not ambiguous.
8360     if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8361       auto SavedTransformCache =
8362           llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8363 
8364       // Ensure none of the TypoExprs have multiple typo correction candidates
8365       // with the same edit length that pass all the checks and filters.
8366       while (!AmbiguousTypoExprs.empty()) {
8367         auto TE  = AmbiguousTypoExprs.back();
8368 
8369         // TryTransform itself can create new Typos, adding them to the TypoExpr map
8370         // and invalidating our TypoExprState, so always fetch it instead of storing.
8371         SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8372 
8373         TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8374         TypoCorrection Next;
8375         do {
8376           // Fetch the next correction by erasing the typo from the cache and calling
8377           // `TryTransform` which will iterate through corrections in
8378           // `TransformTypoExpr`.
8379           TransformCache.erase(TE);
8380           ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8381 
8382           if (!AmbigRes.isInvalid() || IsAmbiguous) {
8383             SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8384             SavedTransformCache.erase(TE);
8385             Res = ExprError();
8386             IsAmbiguous = true;
8387             break;
8388           }
8389         } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8390                  Next.getEditDistance(false) == TC.getEditDistance(false));
8391 
8392         if (IsAmbiguous)
8393           break;
8394 
8395         AmbiguousTypoExprs.remove(TE);
8396         SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8397         TransformCache[TE] = SavedTransformCache[TE];
8398       }
8399       TransformCache = std::move(SavedTransformCache);
8400     }
8401 
8402     // Wipe away any newly created TypoExprs that we don't know about. Since we
8403     // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8404     // possible if a `TypoExpr` is created during a transformation but then
8405     // fails before we can discover it.
8406     auto &SemaTypoExprs = SemaRef.TypoExprs;
8407     for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8408       auto TE = *Iterator;
8409       auto FI = find(TypoExprs, TE);
8410       if (FI != TypoExprs.end()) {
8411         Iterator++;
8412         continue;
8413       }
8414       SemaRef.clearDelayedTypo(TE);
8415       Iterator = SemaTypoExprs.erase(Iterator);
8416     }
8417     SemaRef.TypoExprs = std::move(SavedTypoExprs);
8418 
8419     return Res;
8420   }
8421 
8422 public:
8423   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8424       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8425 
8426   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8427                                    MultiExprArg Args,
8428                                    SourceLocation RParenLoc,
8429                                    Expr *ExecConfig = nullptr) {
8430     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8431                                                  RParenLoc, ExecConfig);
8432     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8433       if (Result.isUsable()) {
8434         Expr *ResultCall = Result.get();
8435         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8436           ResultCall = BE->getSubExpr();
8437         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8438           OverloadResolution[OE] = CE->getCallee();
8439       }
8440     }
8441     return Result;
8442   }
8443 
8444   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8445 
8446   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8447 
8448   ExprResult Transform(Expr *E) {
8449     bool IsAmbiguous = false;
8450     ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8451 
8452     if (!Res.isUsable())
8453       FindTypoExprs(TypoExprs).TraverseStmt(E);
8454 
8455     EmitAllDiagnostics(IsAmbiguous);
8456 
8457     return Res;
8458   }
8459 
8460   ExprResult TransformTypoExpr(TypoExpr *E) {
8461     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8462     // cached transformation result if there is one and the TypoExpr isn't the
8463     // first one that was encountered.
8464     auto &CacheEntry = TransformCache[E];
8465     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8466       return CacheEntry;
8467     }
8468 
8469     auto &State = SemaRef.getTypoExprState(E);
8470     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
8471 
8472     // For the first TypoExpr and an uncached TypoExpr, find the next likely
8473     // typo correction and return it.
8474     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8475       if (InitDecl && TC.getFoundDecl() == InitDecl)
8476         continue;
8477       // FIXME: If we would typo-correct to an invalid declaration, it's
8478       // probably best to just suppress all errors from this typo correction.
8479       ExprResult NE = State.RecoveryHandler ?
8480           State.RecoveryHandler(SemaRef, E, TC) :
8481           attemptRecovery(SemaRef, *State.Consumer, TC);
8482       if (!NE.isInvalid()) {
8483         // Check whether there may be a second viable correction with the same
8484         // edit distance; if so, remember this TypoExpr may have an ambiguous
8485         // correction so it can be more thoroughly vetted later.
8486         TypoCorrection Next;
8487         if ((Next = State.Consumer->peekNextCorrection()) &&
8488             Next.getEditDistance(false) == TC.getEditDistance(false)) {
8489           AmbiguousTypoExprs.insert(E);
8490         } else {
8491           AmbiguousTypoExprs.remove(E);
8492         }
8493         assert(!NE.isUnset() &&
8494                "Typo was transformed into a valid-but-null ExprResult");
8495         return CacheEntry = NE;
8496       }
8497     }
8498     return CacheEntry = ExprError();
8499   }
8500 };
8501 }
8502 
8503 ExprResult
8504 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8505                                 bool RecoverUncorrectedTypos,
8506                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
8507   // If the current evaluation context indicates there are uncorrected typos
8508   // and the current expression isn't guaranteed to not have typos, try to
8509   // resolve any TypoExpr nodes that might be in the expression.
8510   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8511       (E->isTypeDependent() || E->isValueDependent() ||
8512        E->isInstantiationDependent())) {
8513     auto TyposResolved = DelayedTypos.size();
8514     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8515     TyposResolved -= DelayedTypos.size();
8516     if (Result.isInvalid() || Result.get() != E) {
8517       ExprEvalContexts.back().NumTypos -= TyposResolved;
8518       if (Result.isInvalid() && RecoverUncorrectedTypos) {
8519         struct TyposReplace : TreeTransform<TyposReplace> {
8520           TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8521           ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8522             return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8523                                                     E->getEndLoc(), {});
8524           }
8525         } TT(*this);
8526         return TT.TransformExpr(E);
8527       }
8528       return Result;
8529     }
8530     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
8531   }
8532   return E;
8533 }
8534 
8535 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8536                                      bool DiscardedValue,
8537                                      bool IsConstexpr) {
8538   ExprResult FullExpr = FE;
8539 
8540   if (!FullExpr.get())
8541     return ExprError();
8542 
8543   if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
8544     return ExprError();
8545 
8546   if (DiscardedValue) {
8547     // Top-level expressions default to 'id' when we're in a debugger.
8548     if (getLangOpts().DebuggerCastResultToId &&
8549         FullExpr.get()->getType() == Context.UnknownAnyTy) {
8550       FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
8551       if (FullExpr.isInvalid())
8552         return ExprError();
8553     }
8554 
8555     FullExpr = CheckPlaceholderExpr(FullExpr.get());
8556     if (FullExpr.isInvalid())
8557       return ExprError();
8558 
8559     FullExpr = IgnoredValueConversions(FullExpr.get());
8560     if (FullExpr.isInvalid())
8561       return ExprError();
8562 
8563     DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
8564   }
8565 
8566   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
8567                                        /*RecoverUncorrectedTypos=*/true);
8568   if (FullExpr.isInvalid())
8569     return ExprError();
8570 
8571   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
8572 
8573   // At the end of this full expression (which could be a deeply nested
8574   // lambda), if there is a potential capture within the nested lambda,
8575   // have the outer capture-able lambda try and capture it.
8576   // Consider the following code:
8577   // void f(int, int);
8578   // void f(const int&, double);
8579   // void foo() {
8580   //  const int x = 10, y = 20;
8581   //  auto L = [=](auto a) {
8582   //      auto M = [=](auto b) {
8583   //         f(x, b); <-- requires x to be captured by L and M
8584   //         f(y, a); <-- requires y to be captured by L, but not all Ms
8585   //      };
8586   //   };
8587   // }
8588 
8589   // FIXME: Also consider what happens for something like this that involves
8590   // the gnu-extension statement-expressions or even lambda-init-captures:
8591   //   void f() {
8592   //     const int n = 0;
8593   //     auto L =  [&](auto a) {
8594   //       +n + ({ 0; a; });
8595   //     };
8596   //   }
8597   //
8598   // Here, we see +n, and then the full-expression 0; ends, so we don't
8599   // capture n (and instead remove it from our list of potential captures),
8600   // and then the full-expression +n + ({ 0; }); ends, but it's too late
8601   // for us to see that we need to capture n after all.
8602 
8603   LambdaScopeInfo *const CurrentLSI =
8604       getCurLambda(/*IgnoreCapturedRegions=*/true);
8605   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8606   // even if CurContext is not a lambda call operator. Refer to that Bug Report
8607   // for an example of the code that might cause this asynchrony.
8608   // By ensuring we are in the context of a lambda's call operator
8609   // we can fix the bug (we only need to check whether we need to capture
8610   // if we are within a lambda's body); but per the comments in that
8611   // PR, a proper fix would entail :
8612   //   "Alternative suggestion:
8613   //   - Add to Sema an integer holding the smallest (outermost) scope
8614   //     index that we are *lexically* within, and save/restore/set to
8615   //     FunctionScopes.size() in InstantiatingTemplate's
8616   //     constructor/destructor.
8617   //  - Teach the handful of places that iterate over FunctionScopes to
8618   //    stop at the outermost enclosing lexical scope."
8619   DeclContext *DC = CurContext;
8620   while (DC && isa<CapturedDecl>(DC))
8621     DC = DC->getParent();
8622   const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8623   if (IsInLambdaDeclContext && CurrentLSI &&
8624       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8625     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8626                                                               *this);
8627   return MaybeCreateExprWithCleanups(FullExpr);
8628 }
8629 
8630 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8631   if (!FullStmt) return StmtError();
8632 
8633   return MaybeCreateStmtWithCleanups(FullStmt);
8634 }
8635 
8636 Sema::IfExistsResult
8637 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8638                                    CXXScopeSpec &SS,
8639                                    const DeclarationNameInfo &TargetNameInfo) {
8640   DeclarationName TargetName = TargetNameInfo.getName();
8641   if (!TargetName)
8642     return IER_DoesNotExist;
8643 
8644   // If the name itself is dependent, then the result is dependent.
8645   if (TargetName.isDependentName())
8646     return IER_Dependent;
8647 
8648   // Do the redeclaration lookup in the current scope.
8649   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8650                  Sema::NotForRedeclaration);
8651   LookupParsedName(R, S, &SS);
8652   R.suppressDiagnostics();
8653 
8654   switch (R.getResultKind()) {
8655   case LookupResult::Found:
8656   case LookupResult::FoundOverloaded:
8657   case LookupResult::FoundUnresolvedValue:
8658   case LookupResult::Ambiguous:
8659     return IER_Exists;
8660 
8661   case LookupResult::NotFound:
8662     return IER_DoesNotExist;
8663 
8664   case LookupResult::NotFoundInCurrentInstantiation:
8665     return IER_Dependent;
8666   }
8667 
8668   llvm_unreachable("Invalid LookupResult Kind!");
8669 }
8670 
8671 Sema::IfExistsResult
8672 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8673                                    bool IsIfExists, CXXScopeSpec &SS,
8674                                    UnqualifiedId &Name) {
8675   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8676 
8677   // Check for an unexpanded parameter pack.
8678   auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8679   if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8680       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8681     return IER_Error;
8682 
8683   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8684 }
8685 
8686 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
8687   return BuildExprRequirement(E, /*IsSimple=*/true,
8688                               /*NoexceptLoc=*/SourceLocation(),
8689                               /*ReturnTypeRequirement=*/{});
8690 }
8691 
8692 concepts::Requirement *
8693 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
8694                            SourceLocation NameLoc, IdentifierInfo *TypeName,
8695                            TemplateIdAnnotation *TemplateId) {
8696   assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
8697          "Exactly one of TypeName and TemplateId must be specified.");
8698   TypeSourceInfo *TSI = nullptr;
8699   if (TypeName) {
8700     QualType T = CheckTypenameType(ETK_Typename, TypenameKWLoc,
8701                                    SS.getWithLocInContext(Context), *TypeName,
8702                                    NameLoc, &TSI, /*DeducedTSTContext=*/false);
8703     if (T.isNull())
8704       return nullptr;
8705   } else {
8706     ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
8707                                TemplateId->NumArgs);
8708     TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
8709                                      TemplateId->TemplateKWLoc,
8710                                      TemplateId->Template, TemplateId->Name,
8711                                      TemplateId->TemplateNameLoc,
8712                                      TemplateId->LAngleLoc, ArgsPtr,
8713                                      TemplateId->RAngleLoc);
8714     if (T.isInvalid())
8715       return nullptr;
8716     if (GetTypeFromParser(T.get(), &TSI).isNull())
8717       return nullptr;
8718   }
8719   return BuildTypeRequirement(TSI);
8720 }
8721 
8722 concepts::Requirement *
8723 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
8724   return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
8725                               /*ReturnTypeRequirement=*/{});
8726 }
8727 
8728 concepts::Requirement *
8729 Sema::ActOnCompoundRequirement(
8730     Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
8731     TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
8732   // C++2a [expr.prim.req.compound] p1.3.3
8733   //   [..] the expression is deduced against an invented function template
8734   //   F [...] F is a void function template with a single type template
8735   //   parameter T declared with the constrained-parameter. Form a new
8736   //   cv-qualifier-seq cv by taking the union of const and volatile specifiers
8737   //   around the constrained-parameter. F has a single parameter whose
8738   //   type-specifier is cv T followed by the abstract-declarator. [...]
8739   //
8740   // The cv part is done in the calling function - we get the concept with
8741   // arguments and the abstract declarator with the correct CV qualification and
8742   // have to synthesize T and the single parameter of F.
8743   auto &II = Context.Idents.get("expr-type");
8744   auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
8745                                               SourceLocation(),
8746                                               SourceLocation(), Depth,
8747                                               /*Index=*/0, &II,
8748                                               /*Typename=*/true,
8749                                               /*ParameterPack=*/false,
8750                                               /*HasTypeConstraint=*/true);
8751 
8752   if (BuildTypeConstraint(SS, TypeConstraint, TParam,
8753                           /*EllipsisLoc=*/SourceLocation(),
8754                           /*AllowUnexpandedPack=*/true))
8755     // Just produce a requirement with no type requirements.
8756     return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
8757 
8758   auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
8759                                             SourceLocation(),
8760                                             ArrayRef<NamedDecl *>(TParam),
8761                                             SourceLocation(),
8762                                             /*RequiresClause=*/nullptr);
8763   return BuildExprRequirement(
8764       E, /*IsSimple=*/false, NoexceptLoc,
8765       concepts::ExprRequirement::ReturnTypeRequirement(TPL));
8766 }
8767 
8768 concepts::ExprRequirement *
8769 Sema::BuildExprRequirement(
8770     Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
8771     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
8772   auto Status = concepts::ExprRequirement::SS_Satisfied;
8773   ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
8774   if (E->isInstantiationDependent() || ReturnTypeRequirement.isDependent())
8775     Status = concepts::ExprRequirement::SS_Dependent;
8776   else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
8777     Status = concepts::ExprRequirement::SS_NoexceptNotMet;
8778   else if (ReturnTypeRequirement.isSubstitutionFailure())
8779     Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
8780   else if (ReturnTypeRequirement.isTypeConstraint()) {
8781     // C++2a [expr.prim.req]p1.3.3
8782     //     The immediately-declared constraint ([temp]) of decltype((E)) shall
8783     //     be satisfied.
8784     TemplateParameterList *TPL =
8785         ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
8786     QualType MatchedType =
8787         Context.getReferenceQualifiedType(E).getCanonicalType();
8788     llvm::SmallVector<TemplateArgument, 1> Args;
8789     Args.push_back(TemplateArgument(MatchedType));
8790     TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
8791     MultiLevelTemplateArgumentList MLTAL(TAL);
8792     for (unsigned I = 0; I < TPL->getDepth(); ++I)
8793       MLTAL.addOuterRetainedLevel();
8794     Expr *IDC =
8795         cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint()
8796             ->getImmediatelyDeclaredConstraint();
8797     ExprResult Constraint = SubstExpr(IDC, MLTAL);
8798     assert(!Constraint.isInvalid() &&
8799            "Substitution cannot fail as it is simply putting a type template "
8800            "argument into a concept specialization expression's parameter.");
8801 
8802     SubstitutedConstraintExpr =
8803         cast<ConceptSpecializationExpr>(Constraint.get());
8804     if (!SubstitutedConstraintExpr->isSatisfied())
8805       Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
8806   }
8807   return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
8808                                                  ReturnTypeRequirement, Status,
8809                                                  SubstitutedConstraintExpr);
8810 }
8811 
8812 concepts::ExprRequirement *
8813 Sema::BuildExprRequirement(
8814     concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
8815     bool IsSimple, SourceLocation NoexceptLoc,
8816     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
8817   return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
8818                                                  IsSimple, NoexceptLoc,
8819                                                  ReturnTypeRequirement);
8820 }
8821 
8822 concepts::TypeRequirement *
8823 Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
8824   return new (Context) concepts::TypeRequirement(Type);
8825 }
8826 
8827 concepts::TypeRequirement *
8828 Sema::BuildTypeRequirement(
8829     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
8830   return new (Context) concepts::TypeRequirement(SubstDiag);
8831 }
8832 
8833 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
8834   return BuildNestedRequirement(Constraint);
8835 }
8836 
8837 concepts::NestedRequirement *
8838 Sema::BuildNestedRequirement(Expr *Constraint) {
8839   ConstraintSatisfaction Satisfaction;
8840   if (!Constraint->isInstantiationDependent() &&
8841       CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
8842                                   Constraint->getSourceRange(), Satisfaction))
8843     return nullptr;
8844   return new (Context) concepts::NestedRequirement(Context, Constraint,
8845                                                    Satisfaction);
8846 }
8847 
8848 concepts::NestedRequirement *
8849 Sema::BuildNestedRequirement(
8850     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
8851   return new (Context) concepts::NestedRequirement(SubstDiag);
8852 }
8853 
8854 RequiresExprBodyDecl *
8855 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
8856                              ArrayRef<ParmVarDecl *> LocalParameters,
8857                              Scope *BodyScope) {
8858   assert(BodyScope);
8859 
8860   RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
8861                                                             RequiresKWLoc);
8862 
8863   PushDeclContext(BodyScope, Body);
8864 
8865   for (ParmVarDecl *Param : LocalParameters) {
8866     if (Param->hasDefaultArg())
8867       // C++2a [expr.prim.req] p4
8868       //     [...] A local parameter of a requires-expression shall not have a
8869       //     default argument. [...]
8870       Diag(Param->getDefaultArgRange().getBegin(),
8871            diag::err_requires_expr_local_parameter_default_argument);
8872     // Ignore default argument and move on
8873 
8874     Param->setDeclContext(Body);
8875     // If this has an identifier, add it to the scope stack.
8876     if (Param->getIdentifier()) {
8877       CheckShadow(BodyScope, Param);
8878       PushOnScopeChains(Param, BodyScope);
8879     }
8880   }
8881   return Body;
8882 }
8883 
8884 void Sema::ActOnFinishRequiresExpr() {
8885   assert(CurContext && "DeclContext imbalance!");
8886   CurContext = CurContext->getLexicalParent();
8887   assert(CurContext && "Popped translation unit!");
8888 }
8889 
8890 ExprResult
8891 Sema::ActOnRequiresExpr(SourceLocation RequiresKWLoc,
8892                         RequiresExprBodyDecl *Body,
8893                         ArrayRef<ParmVarDecl *> LocalParameters,
8894                         ArrayRef<concepts::Requirement *> Requirements,
8895                         SourceLocation ClosingBraceLoc) {
8896   auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LocalParameters,
8897                                   Requirements, ClosingBraceLoc);
8898   if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
8899     return ExprError();
8900   return RE;
8901 }
8902