xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaExprCXX.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Implements semantic analysis for C++ expressions.
11 ///
12 //===----------------------------------------------------------------------===//
13 
14 #include "TreeTransform.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprConcepts.h"
23 #include "clang/AST/ExprObjC.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/Type.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/AlignedAllocation.h"
28 #include "clang/Basic/DiagnosticSema.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/TokenKinds.h"
32 #include "clang/Basic/TypeTraits.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/DeclSpec.h"
35 #include "clang/Sema/EnterExpressionEvaluationContext.h"
36 #include "clang/Sema/Initialization.h"
37 #include "clang/Sema/Lookup.h"
38 #include "clang/Sema/ParsedTemplate.h"
39 #include "clang/Sema/Scope.h"
40 #include "clang/Sema/ScopeInfo.h"
41 #include "clang/Sema/SemaInternal.h"
42 #include "clang/Sema/SemaLambda.h"
43 #include "clang/Sema/Template.h"
44 #include "clang/Sema/TemplateDeduction.h"
45 #include "llvm/ADT/APInt.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/ADT/StringExtras.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/TypeSize.h"
50 #include <optional>
51 using namespace clang;
52 using namespace sema;
53 
54 /// Handle the result of the special case name lookup for inheriting
55 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
56 /// constructor names in member using declarations, even if 'X' is not the
57 /// name of the corresponding type.
58 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
59                                               SourceLocation NameLoc,
60                                               IdentifierInfo &Name) {
61   NestedNameSpecifier *NNS = SS.getScopeRep();
62 
63   // Convert the nested-name-specifier into a type.
64   QualType Type;
65   switch (NNS->getKind()) {
66   case NestedNameSpecifier::TypeSpec:
67   case NestedNameSpecifier::TypeSpecWithTemplate:
68     Type = QualType(NNS->getAsType(), 0);
69     break;
70 
71   case NestedNameSpecifier::Identifier:
72     // Strip off the last layer of the nested-name-specifier and build a
73     // typename type for it.
74     assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
75     Type = Context.getDependentNameType(
76         ElaboratedTypeKeyword::None, NNS->getPrefix(), NNS->getAsIdentifier());
77     break;
78 
79   case NestedNameSpecifier::Global:
80   case NestedNameSpecifier::Super:
81   case NestedNameSpecifier::Namespace:
82   case NestedNameSpecifier::NamespaceAlias:
83     llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
84   }
85 
86   // This reference to the type is located entirely at the location of the
87   // final identifier in the qualified-id.
88   return CreateParsedType(Type,
89                           Context.getTrivialTypeSourceInfo(Type, NameLoc));
90 }
91 
92 ParsedType Sema::getConstructorName(IdentifierInfo &II,
93                                     SourceLocation NameLoc,
94                                     Scope *S, CXXScopeSpec &SS,
95                                     bool EnteringContext) {
96   CXXRecordDecl *CurClass = getCurrentClass(S, &SS);
97   assert(CurClass && &II == CurClass->getIdentifier() &&
98          "not a constructor name");
99 
100   // When naming a constructor as a member of a dependent context (eg, in a
101   // friend declaration or an inherited constructor declaration), form an
102   // unresolved "typename" type.
103   if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
104     QualType T = Context.getDependentNameType(ElaboratedTypeKeyword::None,
105                                               SS.getScopeRep(), &II);
106     return ParsedType::make(T);
107   }
108 
109   if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
110     return ParsedType();
111 
112   // Find the injected-class-name declaration. Note that we make no attempt to
113   // diagnose cases where the injected-class-name is shadowed: the only
114   // declaration that can validly shadow the injected-class-name is a
115   // non-static data member, and if the class contains both a non-static data
116   // member and a constructor then it is ill-formed (we check that in
117   // CheckCompletedCXXClass).
118   CXXRecordDecl *InjectedClassName = nullptr;
119   for (NamedDecl *ND : CurClass->lookup(&II)) {
120     auto *RD = dyn_cast<CXXRecordDecl>(ND);
121     if (RD && RD->isInjectedClassName()) {
122       InjectedClassName = RD;
123       break;
124     }
125   }
126   if (!InjectedClassName) {
127     if (!CurClass->isInvalidDecl()) {
128       // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
129       // properly. Work around it here for now.
130       Diag(SS.getLastQualifierNameLoc(),
131            diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
132     }
133     return ParsedType();
134   }
135 
136   QualType T = Context.getTypeDeclType(InjectedClassName);
137   DiagnoseUseOfDecl(InjectedClassName, NameLoc);
138   MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
139 
140   return ParsedType::make(T);
141 }
142 
143 ParsedType Sema::getDestructorName(IdentifierInfo &II, SourceLocation NameLoc,
144                                    Scope *S, CXXScopeSpec &SS,
145                                    ParsedType ObjectTypePtr,
146                                    bool EnteringContext) {
147   // Determine where to perform name lookup.
148 
149   // FIXME: This area of the standard is very messy, and the current
150   // wording is rather unclear about which scopes we search for the
151   // destructor name; see core issues 399 and 555. Issue 399 in
152   // particular shows where the current description of destructor name
153   // lookup is completely out of line with existing practice, e.g.,
154   // this appears to be ill-formed:
155   //
156   //   namespace N {
157   //     template <typename T> struct S {
158   //       ~S();
159   //     };
160   //   }
161   //
162   //   void f(N::S<int>* s) {
163   //     s->N::S<int>::~S();
164   //   }
165   //
166   // See also PR6358 and PR6359.
167   //
168   // For now, we accept all the cases in which the name given could plausibly
169   // be interpreted as a correct destructor name, issuing off-by-default
170   // extension diagnostics on the cases that don't strictly conform to the
171   // C++20 rules. This basically means we always consider looking in the
172   // nested-name-specifier prefix, the complete nested-name-specifier, and
173   // the scope, and accept if we find the expected type in any of the three
174   // places.
175 
176   if (SS.isInvalid())
177     return nullptr;
178 
179   // Whether we've failed with a diagnostic already.
180   bool Failed = false;
181 
182   llvm::SmallVector<NamedDecl*, 8> FoundDecls;
183   llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
184 
185   // If we have an object type, it's because we are in a
186   // pseudo-destructor-expression or a member access expression, and
187   // we know what type we're looking for.
188   QualType SearchType =
189       ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType();
190 
191   auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
192     auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
193       auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl());
194       if (!Type)
195         return false;
196 
197       if (SearchType.isNull() || SearchType->isDependentType())
198         return true;
199 
200       QualType T = Context.getTypeDeclType(Type);
201       return Context.hasSameUnqualifiedType(T, SearchType);
202     };
203 
204     unsigned NumAcceptableResults = 0;
205     for (NamedDecl *D : Found) {
206       if (IsAcceptableResult(D))
207         ++NumAcceptableResults;
208 
209       // Don't list a class twice in the lookup failure diagnostic if it's
210       // found by both its injected-class-name and by the name in the enclosing
211       // scope.
212       if (auto *RD = dyn_cast<CXXRecordDecl>(D))
213         if (RD->isInjectedClassName())
214           D = cast<NamedDecl>(RD->getParent());
215 
216       if (FoundDeclSet.insert(D).second)
217         FoundDecls.push_back(D);
218     }
219 
220     // As an extension, attempt to "fix" an ambiguity by erasing all non-type
221     // results, and all non-matching results if we have a search type. It's not
222     // clear what the right behavior is if destructor lookup hits an ambiguity,
223     // but other compilers do generally accept at least some kinds of
224     // ambiguity.
225     if (Found.isAmbiguous() && NumAcceptableResults == 1) {
226       Diag(NameLoc, diag::ext_dtor_name_ambiguous);
227       LookupResult::Filter F = Found.makeFilter();
228       while (F.hasNext()) {
229         NamedDecl *D = F.next();
230         if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
231           Diag(D->getLocation(), diag::note_destructor_type_here)
232               << Context.getTypeDeclType(TD);
233         else
234           Diag(D->getLocation(), diag::note_destructor_nontype_here);
235 
236         if (!IsAcceptableResult(D))
237           F.erase();
238       }
239       F.done();
240     }
241 
242     if (Found.isAmbiguous())
243       Failed = true;
244 
245     if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
246       if (IsAcceptableResult(Type)) {
247         QualType T = Context.getTypeDeclType(Type);
248         MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
249         return CreateParsedType(
250             Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, T),
251             Context.getTrivialTypeSourceInfo(T, NameLoc));
252       }
253     }
254 
255     return nullptr;
256   };
257 
258   bool IsDependent = false;
259 
260   auto LookupInObjectType = [&]() -> ParsedType {
261     if (Failed || SearchType.isNull())
262       return nullptr;
263 
264     IsDependent |= SearchType->isDependentType();
265 
266     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
267     DeclContext *LookupCtx = computeDeclContext(SearchType);
268     if (!LookupCtx)
269       return nullptr;
270     LookupQualifiedName(Found, LookupCtx);
271     return CheckLookupResult(Found);
272   };
273 
274   auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
275     if (Failed)
276       return nullptr;
277 
278     IsDependent |= isDependentScopeSpecifier(LookupSS);
279     DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext);
280     if (!LookupCtx)
281       return nullptr;
282 
283     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
284     if (RequireCompleteDeclContext(LookupSS, LookupCtx)) {
285       Failed = true;
286       return nullptr;
287     }
288     LookupQualifiedName(Found, LookupCtx);
289     return CheckLookupResult(Found);
290   };
291 
292   auto LookupInScope = [&]() -> ParsedType {
293     if (Failed || !S)
294       return nullptr;
295 
296     LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
297     LookupName(Found, S);
298     return CheckLookupResult(Found);
299   };
300 
301   // C++2a [basic.lookup.qual]p6:
302   //   In a qualified-id of the form
303   //
304   //     nested-name-specifier[opt] type-name :: ~ type-name
305   //
306   //   the second type-name is looked up in the same scope as the first.
307   //
308   // We interpret this as meaning that if you do a dual-scope lookup for the
309   // first name, you also do a dual-scope lookup for the second name, per
310   // C++ [basic.lookup.classref]p4:
311   //
312   //   If the id-expression in a class member access is a qualified-id of the
313   //   form
314   //
315   //     class-name-or-namespace-name :: ...
316   //
317   //   the class-name-or-namespace-name following the . or -> is first looked
318   //   up in the class of the object expression and the name, if found, is used.
319   //   Otherwise, it is looked up in the context of the entire
320   //   postfix-expression.
321   //
322   // This looks in the same scopes as for an unqualified destructor name:
323   //
324   // C++ [basic.lookup.classref]p3:
325   //   If the unqualified-id is ~ type-name, the type-name is looked up
326   //   in the context of the entire postfix-expression. If the type T
327   //   of the object expression is of a class type C, the type-name is
328   //   also looked up in the scope of class C. At least one of the
329   //   lookups shall find a name that refers to cv T.
330   //
331   // FIXME: The intent is unclear here. Should type-name::~type-name look in
332   // the scope anyway if it finds a non-matching name declared in the class?
333   // If both lookups succeed and find a dependent result, which result should
334   // we retain? (Same question for p->~type-name().)
335 
336   if (NestedNameSpecifier *Prefix =
337       SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
338     // This is
339     //
340     //   nested-name-specifier type-name :: ~ type-name
341     //
342     // Look for the second type-name in the nested-name-specifier.
343     CXXScopeSpec PrefixSS;
344     PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
345     if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
346       return T;
347   } else {
348     // This is one of
349     //
350     //   type-name :: ~ type-name
351     //   ~ type-name
352     //
353     // Look in the scope and (if any) the object type.
354     if (ParsedType T = LookupInScope())
355       return T;
356     if (ParsedType T = LookupInObjectType())
357       return T;
358   }
359 
360   if (Failed)
361     return nullptr;
362 
363   if (IsDependent) {
364     // We didn't find our type, but that's OK: it's dependent anyway.
365 
366     // FIXME: What if we have no nested-name-specifier?
367     QualType T =
368         CheckTypenameType(ElaboratedTypeKeyword::None, SourceLocation(),
369                           SS.getWithLocInContext(Context), II, NameLoc);
370     return ParsedType::make(T);
371   }
372 
373   // The remaining cases are all non-standard extensions imitating the behavior
374   // of various other compilers.
375   unsigned NumNonExtensionDecls = FoundDecls.size();
376 
377   if (SS.isSet()) {
378     // For compatibility with older broken C++ rules and existing code,
379     //
380     //   nested-name-specifier :: ~ type-name
381     //
382     // also looks for type-name within the nested-name-specifier.
383     if (ParsedType T = LookupInNestedNameSpec(SS)) {
384       Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
385           << SS.getRange()
386           << FixItHint::CreateInsertion(SS.getEndLoc(),
387                                         ("::" + II.getName()).str());
388       return T;
389     }
390 
391     // For compatibility with other compilers and older versions of Clang,
392     //
393     //   nested-name-specifier type-name :: ~ type-name
394     //
395     // also looks for type-name in the scope. Unfortunately, we can't
396     // reasonably apply this fallback for dependent nested-name-specifiers.
397     if (SS.isValid() && SS.getScopeRep()->getPrefix()) {
398       if (ParsedType T = LookupInScope()) {
399         Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
400             << FixItHint::CreateRemoval(SS.getRange());
401         Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
402             << GetTypeFromParser(T);
403         return T;
404       }
405     }
406   }
407 
408   // We didn't find anything matching; tell the user what we did find (if
409   // anything).
410 
411   // Don't tell the user about declarations we shouldn't have found.
412   FoundDecls.resize(NumNonExtensionDecls);
413 
414   // List types before non-types.
415   std::stable_sort(FoundDecls.begin(), FoundDecls.end(),
416                    [](NamedDecl *A, NamedDecl *B) {
417                      return isa<TypeDecl>(A->getUnderlyingDecl()) >
418                             isa<TypeDecl>(B->getUnderlyingDecl());
419                    });
420 
421   // Suggest a fixit to properly name the destroyed type.
422   auto MakeFixItHint = [&]{
423     const CXXRecordDecl *Destroyed = nullptr;
424     // FIXME: If we have a scope specifier, suggest its last component?
425     if (!SearchType.isNull())
426       Destroyed = SearchType->getAsCXXRecordDecl();
427     else if (S)
428       Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity());
429     if (Destroyed)
430       return FixItHint::CreateReplacement(SourceRange(NameLoc),
431                                           Destroyed->getNameAsString());
432     return FixItHint();
433   };
434 
435   if (FoundDecls.empty()) {
436     // FIXME: Attempt typo-correction?
437     Diag(NameLoc, diag::err_undeclared_destructor_name)
438       << &II << MakeFixItHint();
439   } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
440     if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) {
441       assert(!SearchType.isNull() &&
442              "should only reject a type result if we have a search type");
443       QualType T = Context.getTypeDeclType(TD);
444       Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
445           << T << SearchType << MakeFixItHint();
446     } else {
447       Diag(NameLoc, diag::err_destructor_expr_nontype)
448           << &II << MakeFixItHint();
449     }
450   } else {
451     Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
452                                       : diag::err_destructor_expr_mismatch)
453         << &II << SearchType << MakeFixItHint();
454   }
455 
456   for (NamedDecl *FoundD : FoundDecls) {
457     if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
458       Diag(FoundD->getLocation(), diag::note_destructor_type_here)
459           << Context.getTypeDeclType(TD);
460     else
461       Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
462           << FoundD;
463   }
464 
465   return nullptr;
466 }
467 
468 ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
469                                               ParsedType ObjectType) {
470   if (DS.getTypeSpecType() == DeclSpec::TST_error)
471     return nullptr;
472 
473   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
474     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
475     return nullptr;
476   }
477 
478   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
479          "unexpected type in getDestructorType");
480   QualType T = BuildDecltypeType(DS.getRepAsExpr());
481 
482   // If we know the type of the object, check that the correct destructor
483   // type was named now; we can give better diagnostics this way.
484   QualType SearchType = GetTypeFromParser(ObjectType);
485   if (!SearchType.isNull() && !SearchType->isDependentType() &&
486       !Context.hasSameUnqualifiedType(T, SearchType)) {
487     Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
488       << T << SearchType;
489     return nullptr;
490   }
491 
492   return ParsedType::make(T);
493 }
494 
495 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
496                                   const UnqualifiedId &Name, bool IsUDSuffix) {
497   assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
498   if (!IsUDSuffix) {
499     // [over.literal] p8
500     //
501     // double operator""_Bq(long double);  // OK: not a reserved identifier
502     // double operator"" _Bq(long double); // ill-formed, no diagnostic required
503     IdentifierInfo *II = Name.Identifier;
504     ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts());
505     SourceLocation Loc = Name.getEndLoc();
506     if (!PP.getSourceManager().isInSystemHeader(Loc)) {
507       if (auto Hint = FixItHint::CreateReplacement(
508               Name.getSourceRange(),
509               (StringRef("operator\"\"") + II->getName()).str());
510           isReservedInAllContexts(Status)) {
511         Diag(Loc, diag::warn_reserved_extern_symbol)
512             << II << static_cast<int>(Status) << Hint;
513       } else {
514         Diag(Loc, diag::warn_deprecated_literal_operator_id) << II << Hint;
515       }
516     }
517   }
518 
519   if (!SS.isValid())
520     return false;
521 
522   switch (SS.getScopeRep()->getKind()) {
523   case NestedNameSpecifier::Identifier:
524   case NestedNameSpecifier::TypeSpec:
525   case NestedNameSpecifier::TypeSpecWithTemplate:
526     // Per C++11 [over.literal]p2, literal operators can only be declared at
527     // namespace scope. Therefore, this unqualified-id cannot name anything.
528     // Reject it early, because we have no AST representation for this in the
529     // case where the scope is dependent.
530     Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
531         << SS.getScopeRep();
532     return true;
533 
534   case NestedNameSpecifier::Global:
535   case NestedNameSpecifier::Super:
536   case NestedNameSpecifier::Namespace:
537   case NestedNameSpecifier::NamespaceAlias:
538     return false;
539   }
540 
541   llvm_unreachable("unknown nested name specifier kind");
542 }
543 
544 /// Build a C++ typeid expression with a type operand.
545 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
546                                 SourceLocation TypeidLoc,
547                                 TypeSourceInfo *Operand,
548                                 SourceLocation RParenLoc) {
549   // C++ [expr.typeid]p4:
550   //   The top-level cv-qualifiers of the lvalue expression or the type-id
551   //   that is the operand of typeid are always ignored.
552   //   If the type of the type-id is a class type or a reference to a class
553   //   type, the class shall be completely-defined.
554   Qualifiers Quals;
555   QualType T
556     = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
557                                       Quals);
558   if (T->getAs<RecordType>() &&
559       RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
560     return ExprError();
561 
562   if (T->isVariablyModifiedType())
563     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
564 
565   if (CheckQualifiedFunctionForTypeId(T, TypeidLoc))
566     return ExprError();
567 
568   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
569                                      SourceRange(TypeidLoc, RParenLoc));
570 }
571 
572 /// Build a C++ typeid expression with an expression operand.
573 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
574                                 SourceLocation TypeidLoc,
575                                 Expr *E,
576                                 SourceLocation RParenLoc) {
577   bool WasEvaluated = false;
578   if (E && !E->isTypeDependent()) {
579     if (E->hasPlaceholderType()) {
580       ExprResult result = CheckPlaceholderExpr(E);
581       if (result.isInvalid()) return ExprError();
582       E = result.get();
583     }
584 
585     QualType T = E->getType();
586     if (const RecordType *RecordT = T->getAs<RecordType>()) {
587       CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
588       // C++ [expr.typeid]p3:
589       //   [...] If the type of the expression is a class type, the class
590       //   shall be completely-defined.
591       if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
592         return ExprError();
593 
594       // C++ [expr.typeid]p3:
595       //   When typeid is applied to an expression other than an glvalue of a
596       //   polymorphic class type [...] [the] expression is an unevaluated
597       //   operand. [...]
598       if (RecordD->isPolymorphic() && E->isGLValue()) {
599         if (isUnevaluatedContext()) {
600           // The operand was processed in unevaluated context, switch the
601           // context and recheck the subexpression.
602           ExprResult Result = TransformToPotentiallyEvaluated(E);
603           if (Result.isInvalid())
604             return ExprError();
605           E = Result.get();
606         }
607 
608         // We require a vtable to query the type at run time.
609         MarkVTableUsed(TypeidLoc, RecordD);
610         WasEvaluated = true;
611       }
612     }
613 
614     ExprResult Result = CheckUnevaluatedOperand(E);
615     if (Result.isInvalid())
616       return ExprError();
617     E = Result.get();
618 
619     // C++ [expr.typeid]p4:
620     //   [...] If the type of the type-id is a reference to a possibly
621     //   cv-qualified type, the result of the typeid expression refers to a
622     //   std::type_info object representing the cv-unqualified referenced
623     //   type.
624     Qualifiers Quals;
625     QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
626     if (!Context.hasSameType(T, UnqualT)) {
627       T = UnqualT;
628       E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
629     }
630   }
631 
632   if (E->getType()->isVariablyModifiedType())
633     return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
634                      << E->getType());
635   else if (!inTemplateInstantiation() &&
636            E->HasSideEffects(Context, WasEvaluated)) {
637     // The expression operand for typeid is in an unevaluated expression
638     // context, so side effects could result in unintended consequences.
639     Diag(E->getExprLoc(), WasEvaluated
640                               ? diag::warn_side_effects_typeid
641                               : diag::warn_side_effects_unevaluated_context);
642   }
643 
644   return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
645                                      SourceRange(TypeidLoc, RParenLoc));
646 }
647 
648 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
649 ExprResult
650 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
651                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
652   // typeid is not supported in OpenCL.
653   if (getLangOpts().OpenCLCPlusPlus) {
654     return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
655                      << "typeid");
656   }
657 
658   // Find the std::type_info type.
659   if (!getStdNamespace())
660     return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
661 
662   if (!CXXTypeInfoDecl) {
663     IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
664     LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
665     LookupQualifiedName(R, getStdNamespace());
666     CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
667     // Microsoft's typeinfo doesn't have type_info in std but in the global
668     // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
669     if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
670       LookupQualifiedName(R, Context.getTranslationUnitDecl());
671       CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
672     }
673     if (!CXXTypeInfoDecl)
674       return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
675   }
676 
677   if (!getLangOpts().RTTI) {
678     return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
679   }
680 
681   QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
682 
683   if (isType) {
684     // The operand is a type; handle it as such.
685     TypeSourceInfo *TInfo = nullptr;
686     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
687                                    &TInfo);
688     if (T.isNull())
689       return ExprError();
690 
691     if (!TInfo)
692       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
693 
694     return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
695   }
696 
697   // The operand is an expression.
698   ExprResult Result =
699       BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc);
700 
701   if (!getLangOpts().RTTIData && !Result.isInvalid())
702     if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
703       if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
704         Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
705             << (getDiagnostics().getDiagnosticOptions().getFormat() ==
706                 DiagnosticOptions::MSVC);
707   return Result;
708 }
709 
710 /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
711 /// a single GUID.
712 static void
713 getUuidAttrOfType(Sema &SemaRef, QualType QT,
714                   llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
715   // Optionally remove one level of pointer, reference or array indirection.
716   const Type *Ty = QT.getTypePtr();
717   if (QT->isPointerType() || QT->isReferenceType())
718     Ty = QT->getPointeeType().getTypePtr();
719   else if (QT->isArrayType())
720     Ty = Ty->getBaseElementTypeUnsafe();
721 
722   const auto *TD = Ty->getAsTagDecl();
723   if (!TD)
724     return;
725 
726   if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
727     UuidAttrs.insert(Uuid);
728     return;
729   }
730 
731   // __uuidof can grab UUIDs from template arguments.
732   if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
733     const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
734     for (const TemplateArgument &TA : TAL.asArray()) {
735       const UuidAttr *UuidForTA = nullptr;
736       if (TA.getKind() == TemplateArgument::Type)
737         getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
738       else if (TA.getKind() == TemplateArgument::Declaration)
739         getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
740 
741       if (UuidForTA)
742         UuidAttrs.insert(UuidForTA);
743     }
744   }
745 }
746 
747 /// Build a Microsoft __uuidof expression with a type operand.
748 ExprResult Sema::BuildCXXUuidof(QualType Type,
749                                 SourceLocation TypeidLoc,
750                                 TypeSourceInfo *Operand,
751                                 SourceLocation RParenLoc) {
752   MSGuidDecl *Guid = nullptr;
753   if (!Operand->getType()->isDependentType()) {
754     llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
755     getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
756     if (UuidAttrs.empty())
757       return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
758     if (UuidAttrs.size() > 1)
759       return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
760     Guid = UuidAttrs.back()->getGuidDecl();
761   }
762 
763   return new (Context)
764       CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
765 }
766 
767 /// Build a Microsoft __uuidof expression with an expression operand.
768 ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
769                                 Expr *E, SourceLocation RParenLoc) {
770   MSGuidDecl *Guid = nullptr;
771   if (!E->getType()->isDependentType()) {
772     if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
773       // A null pointer results in {00000000-0000-0000-0000-000000000000}.
774       Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{});
775     } else {
776       llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
777       getUuidAttrOfType(*this, E->getType(), UuidAttrs);
778       if (UuidAttrs.empty())
779         return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
780       if (UuidAttrs.size() > 1)
781         return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
782       Guid = UuidAttrs.back()->getGuidDecl();
783     }
784   }
785 
786   return new (Context)
787       CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
788 }
789 
790 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
791 ExprResult
792 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
793                      bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
794   QualType GuidType = Context.getMSGuidType();
795   GuidType.addConst();
796 
797   if (isType) {
798     // The operand is a type; handle it as such.
799     TypeSourceInfo *TInfo = nullptr;
800     QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
801                                    &TInfo);
802     if (T.isNull())
803       return ExprError();
804 
805     if (!TInfo)
806       TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
807 
808     return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
809   }
810 
811   // The operand is an expression.
812   return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
813 }
814 
815 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
816 ExprResult
817 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
818   assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
819          "Unknown C++ Boolean value!");
820   return new (Context)
821       CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
822 }
823 
824 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
825 ExprResult
826 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
827   return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
828 }
829 
830 /// ActOnCXXThrow - Parse throw expressions.
831 ExprResult
832 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
833   bool IsThrownVarInScope = false;
834   if (Ex) {
835     // C++0x [class.copymove]p31:
836     //   When certain criteria are met, an implementation is allowed to omit the
837     //   copy/move construction of a class object [...]
838     //
839     //     - in a throw-expression, when the operand is the name of a
840     //       non-volatile automatic object (other than a function or catch-
841     //       clause parameter) whose scope does not extend beyond the end of the
842     //       innermost enclosing try-block (if there is one), the copy/move
843     //       operation from the operand to the exception object (15.1) can be
844     //       omitted by constructing the automatic object directly into the
845     //       exception object
846     if (const auto *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
847       if (const auto *Var = dyn_cast<VarDecl>(DRE->getDecl());
848           Var && Var->hasLocalStorage() &&
849           !Var->getType().isVolatileQualified()) {
850         for (; S; S = S->getParent()) {
851           if (S->isDeclScope(Var)) {
852             IsThrownVarInScope = true;
853             break;
854           }
855 
856           // FIXME: Many of the scope checks here seem incorrect.
857           if (S->getFlags() &
858               (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
859                Scope::ObjCMethodScope | Scope::TryScope))
860             break;
861         }
862       }
863   }
864 
865   return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
866 }
867 
868 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
869                                bool IsThrownVarInScope) {
870   const llvm::Triple &T = Context.getTargetInfo().getTriple();
871   const bool IsOpenMPGPUTarget =
872       getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN());
873   // Don't report an error if 'throw' is used in system headers or in an OpenMP
874   // target region compiled for a GPU architecture.
875   if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions &&
876       !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) {
877     // Delay error emission for the OpenMP device code.
878     targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
879   }
880 
881   // In OpenMP target regions, we replace 'throw' with a trap on GPU targets.
882   if (IsOpenMPGPUTarget)
883     targetDiag(OpLoc, diag::warn_throw_not_valid_on_target) << T.str();
884 
885   // Exceptions aren't allowed in CUDA device code.
886   if (getLangOpts().CUDA)
887     CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
888         << "throw" << CurrentCUDATarget();
889 
890   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
891     Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
892 
893   if (Ex && !Ex->isTypeDependent()) {
894     // Initialize the exception result.  This implicitly weeds out
895     // abstract types or types with inaccessible copy constructors.
896 
897     // C++0x [class.copymove]p31:
898     //   When certain criteria are met, an implementation is allowed to omit the
899     //   copy/move construction of a class object [...]
900     //
901     //     - in a throw-expression, when the operand is the name of a
902     //       non-volatile automatic object (other than a function or
903     //       catch-clause
904     //       parameter) whose scope does not extend beyond the end of the
905     //       innermost enclosing try-block (if there is one), the copy/move
906     //       operation from the operand to the exception object (15.1) can be
907     //       omitted by constructing the automatic object directly into the
908     //       exception object
909     NamedReturnInfo NRInfo =
910         IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo();
911 
912     QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
913     if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
914       return ExprError();
915 
916     InitializedEntity Entity =
917         InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy);
918     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex);
919     if (Res.isInvalid())
920       return ExprError();
921     Ex = Res.get();
922   }
923 
924   // PPC MMA non-pointer types are not allowed as throw expr types.
925   if (Ex && Context.getTargetInfo().getTriple().isPPC64())
926     CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc());
927 
928   return new (Context)
929       CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
930 }
931 
932 static void
933 collectPublicBases(CXXRecordDecl *RD,
934                    llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
935                    llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
936                    llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
937                    bool ParentIsPublic) {
938   for (const CXXBaseSpecifier &BS : RD->bases()) {
939     CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
940     bool NewSubobject;
941     // Virtual bases constitute the same subobject.  Non-virtual bases are
942     // always distinct subobjects.
943     if (BS.isVirtual())
944       NewSubobject = VBases.insert(BaseDecl).second;
945     else
946       NewSubobject = true;
947 
948     if (NewSubobject)
949       ++SubobjectsSeen[BaseDecl];
950 
951     // Only add subobjects which have public access throughout the entire chain.
952     bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
953     if (PublicPath)
954       PublicSubobjectsSeen.insert(BaseDecl);
955 
956     // Recurse on to each base subobject.
957     collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
958                        PublicPath);
959   }
960 }
961 
962 static void getUnambiguousPublicSubobjects(
963     CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
964   llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
965   llvm::SmallSet<CXXRecordDecl *, 2> VBases;
966   llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
967   SubobjectsSeen[RD] = 1;
968   PublicSubobjectsSeen.insert(RD);
969   collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
970                      /*ParentIsPublic=*/true);
971 
972   for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
973     // Skip ambiguous objects.
974     if (SubobjectsSeen[PublicSubobject] > 1)
975       continue;
976 
977     Objects.push_back(PublicSubobject);
978   }
979 }
980 
981 /// CheckCXXThrowOperand - Validate the operand of a throw.
982 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
983                                 QualType ExceptionObjectTy, Expr *E) {
984   //   If the type of the exception would be an incomplete type or a pointer
985   //   to an incomplete type other than (cv) void the program is ill-formed.
986   QualType Ty = ExceptionObjectTy;
987   bool isPointer = false;
988   if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
989     Ty = Ptr->getPointeeType();
990     isPointer = true;
991   }
992 
993   // Cannot throw WebAssembly reference type.
994   if (Ty.isWebAssemblyReferenceType()) {
995     Diag(ThrowLoc, diag::err_wasm_reftype_tc) << 0 << E->getSourceRange();
996     return true;
997   }
998 
999   // Cannot throw WebAssembly table.
1000   if (isPointer && Ty.isWebAssemblyReferenceType()) {
1001     Diag(ThrowLoc, diag::err_wasm_table_art) << 2 << E->getSourceRange();
1002     return true;
1003   }
1004 
1005   if (!isPointer || !Ty->isVoidType()) {
1006     if (RequireCompleteType(ThrowLoc, Ty,
1007                             isPointer ? diag::err_throw_incomplete_ptr
1008                                       : diag::err_throw_incomplete,
1009                             E->getSourceRange()))
1010       return true;
1011 
1012     if (!isPointer && Ty->isSizelessType()) {
1013       Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
1014       return true;
1015     }
1016 
1017     if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
1018                                diag::err_throw_abstract_type, E))
1019       return true;
1020   }
1021 
1022   // If the exception has class type, we need additional handling.
1023   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1024   if (!RD)
1025     return false;
1026 
1027   // If we are throwing a polymorphic class type or pointer thereof,
1028   // exception handling will make use of the vtable.
1029   MarkVTableUsed(ThrowLoc, RD);
1030 
1031   // If a pointer is thrown, the referenced object will not be destroyed.
1032   if (isPointer)
1033     return false;
1034 
1035   // If the class has a destructor, we must be able to call it.
1036   if (!RD->hasIrrelevantDestructor()) {
1037     if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
1038       MarkFunctionReferenced(E->getExprLoc(), Destructor);
1039       CheckDestructorAccess(E->getExprLoc(), Destructor,
1040                             PDiag(diag::err_access_dtor_exception) << Ty);
1041       if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1042         return true;
1043     }
1044   }
1045 
1046   // The MSVC ABI creates a list of all types which can catch the exception
1047   // object.  This list also references the appropriate copy constructor to call
1048   // if the object is caught by value and has a non-trivial copy constructor.
1049   if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1050     // We are only interested in the public, unambiguous bases contained within
1051     // the exception object.  Bases which are ambiguous or otherwise
1052     // inaccessible are not catchable types.
1053     llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1054     getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
1055 
1056     for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1057       // Attempt to lookup the copy constructor.  Various pieces of machinery
1058       // will spring into action, like template instantiation, which means this
1059       // cannot be a simple walk of the class's decls.  Instead, we must perform
1060       // lookup and overload resolution.
1061       CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
1062       if (!CD || CD->isDeleted())
1063         continue;
1064 
1065       // Mark the constructor referenced as it is used by this throw expression.
1066       MarkFunctionReferenced(E->getExprLoc(), CD);
1067 
1068       // Skip this copy constructor if it is trivial, we don't need to record it
1069       // in the catchable type data.
1070       if (CD->isTrivial())
1071         continue;
1072 
1073       // The copy constructor is non-trivial, create a mapping from this class
1074       // type to this constructor.
1075       // N.B.  The selection of copy constructor is not sensitive to this
1076       // particular throw-site.  Lookup will be performed at the catch-site to
1077       // ensure that the copy constructor is, in fact, accessible (via
1078       // friendship or any other means).
1079       Context.addCopyConstructorForExceptionObject(Subobject, CD);
1080 
1081       // We don't keep the instantiated default argument expressions around so
1082       // we must rebuild them here.
1083       for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1084         if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
1085           return true;
1086       }
1087     }
1088   }
1089 
1090   // Under the Itanium C++ ABI, memory for the exception object is allocated by
1091   // the runtime with no ability for the compiler to request additional
1092   // alignment. Warn if the exception type requires alignment beyond the minimum
1093   // guaranteed by the target C++ runtime.
1094   if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1095     CharUnits TypeAlign = Context.getTypeAlignInChars(Ty);
1096     CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1097     if (ExnObjAlign < TypeAlign) {
1098       Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1099       Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1100           << Ty << (unsigned)TypeAlign.getQuantity()
1101           << (unsigned)ExnObjAlign.getQuantity();
1102     }
1103   }
1104   if (!isPointer && getLangOpts().AssumeNothrowExceptionDtor) {
1105     if (CXXDestructorDecl *Dtor = RD->getDestructor()) {
1106       auto Ty = Dtor->getType();
1107       if (auto *FT = Ty.getTypePtr()->getAs<FunctionProtoType>()) {
1108         if (!isUnresolvedExceptionSpec(FT->getExceptionSpecType()) &&
1109             !FT->isNothrow())
1110           Diag(ThrowLoc, diag::err_throw_object_throwing_dtor) << RD;
1111       }
1112     }
1113   }
1114 
1115   return false;
1116 }
1117 
1118 static QualType adjustCVQualifiersForCXXThisWithinLambda(
1119     ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1120     DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1121 
1122   QualType ClassType = ThisTy->getPointeeType();
1123   LambdaScopeInfo *CurLSI = nullptr;
1124   DeclContext *CurDC = CurSemaContext;
1125 
1126   // Iterate through the stack of lambdas starting from the innermost lambda to
1127   // the outermost lambda, checking if '*this' is ever captured by copy - since
1128   // that could change the cv-qualifiers of the '*this' object.
1129   // The object referred to by '*this' starts out with the cv-qualifiers of its
1130   // member function.  We then start with the innermost lambda and iterate
1131   // outward checking to see if any lambda performs a by-copy capture of '*this'
1132   // - and if so, any nested lambda must respect the 'constness' of that
1133   // capturing lamdbda's call operator.
1134   //
1135 
1136   // Since the FunctionScopeInfo stack is representative of the lexical
1137   // nesting of the lambda expressions during initial parsing (and is the best
1138   // place for querying information about captures about lambdas that are
1139   // partially processed) and perhaps during instantiation of function templates
1140   // that contain lambda expressions that need to be transformed BUT not
1141   // necessarily during instantiation of a nested generic lambda's function call
1142   // operator (which might even be instantiated at the end of the TU) - at which
1143   // time the DeclContext tree is mature enough to query capture information
1144   // reliably - we use a two pronged approach to walk through all the lexically
1145   // enclosing lambda expressions:
1146   //
1147   //  1) Climb down the FunctionScopeInfo stack as long as each item represents
1148   //  a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1149   //  enclosed by the call-operator of the LSI below it on the stack (while
1150   //  tracking the enclosing DC for step 2 if needed).  Note the topmost LSI on
1151   //  the stack represents the innermost lambda.
1152   //
1153   //  2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1154   //  represents a lambda's call operator.  If it does, we must be instantiating
1155   //  a generic lambda's call operator (represented by the Current LSI, and
1156   //  should be the only scenario where an inconsistency between the LSI and the
1157   //  DeclContext should occur), so climb out the DeclContexts if they
1158   //  represent lambdas, while querying the corresponding closure types
1159   //  regarding capture information.
1160 
1161   // 1) Climb down the function scope info stack.
1162   for (int I = FunctionScopes.size();
1163        I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
1164        (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1165                        cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
1166        CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
1167     CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
1168 
1169     if (!CurLSI->isCXXThisCaptured())
1170         continue;
1171 
1172     auto C = CurLSI->getCXXThisCapture();
1173 
1174     if (C.isCopyCapture()) {
1175       if (CurLSI->lambdaCaptureShouldBeConst())
1176         ClassType.addConst();
1177       return ASTCtx.getPointerType(ClassType);
1178     }
1179   }
1180 
1181   // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1182   //    can happen during instantiation of its nested generic lambda call
1183   //    operator); 2. if we're in a lambda scope (lambda body).
1184   if (CurLSI && isLambdaCallOperator(CurDC)) {
1185     assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1186            "While computing 'this' capture-type for a generic lambda, when we "
1187            "run out of enclosing LSI's, yet the enclosing DC is a "
1188            "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1189            "lambda call oeprator");
1190     assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1191 
1192     auto IsThisCaptured =
1193         [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1194       IsConst = false;
1195       IsByCopy = false;
1196       for (auto &&C : Closure->captures()) {
1197         if (C.capturesThis()) {
1198           if (C.getCaptureKind() == LCK_StarThis)
1199             IsByCopy = true;
1200           if (Closure->getLambdaCallOperator()->isConst())
1201             IsConst = true;
1202           return true;
1203         }
1204       }
1205       return false;
1206     };
1207 
1208     bool IsByCopyCapture = false;
1209     bool IsConstCapture = false;
1210     CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
1211     while (Closure &&
1212            IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1213       if (IsByCopyCapture) {
1214         if (IsConstCapture)
1215           ClassType.addConst();
1216         return ASTCtx.getPointerType(ClassType);
1217       }
1218       Closure = isLambdaCallOperator(Closure->getParent())
1219                     ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1220                     : nullptr;
1221     }
1222   }
1223   return ASTCtx.getPointerType(ClassType);
1224 }
1225 
1226 QualType Sema::getCurrentThisType() {
1227   DeclContext *DC = getFunctionLevelDeclContext();
1228   QualType ThisTy = CXXThisTypeOverride;
1229 
1230   if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1231     if (method && method->isImplicitObjectMemberFunction())
1232       ThisTy = method->getThisType().getNonReferenceType();
1233   }
1234 
1235   if (ThisTy.isNull() && isLambdaCallWithImplicitObjectParameter(CurContext) &&
1236       inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) {
1237 
1238     // This is a lambda call operator that is being instantiated as a default
1239     // initializer. DC must point to the enclosing class type, so we can recover
1240     // the 'this' type from it.
1241     QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1242     // There are no cv-qualifiers for 'this' within default initializers,
1243     // per [expr.prim.general]p4.
1244     ThisTy = Context.getPointerType(ClassTy);
1245   }
1246 
1247   // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1248   // might need to be adjusted if the lambda or any of its enclosing lambda's
1249   // captures '*this' by copy.
1250   if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1251     return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1252                                                     CurContext, Context);
1253   return ThisTy;
1254 }
1255 
1256 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1257                                          Decl *ContextDecl,
1258                                          Qualifiers CXXThisTypeQuals,
1259                                          bool Enabled)
1260   : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1261 {
1262   if (!Enabled || !ContextDecl)
1263     return;
1264 
1265   CXXRecordDecl *Record = nullptr;
1266   if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1267     Record = Template->getTemplatedDecl();
1268   else
1269     Record = cast<CXXRecordDecl>(ContextDecl);
1270 
1271   QualType T = S.Context.getRecordType(Record);
1272   T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals);
1273 
1274   S.CXXThisTypeOverride =
1275       S.Context.getLangOpts().HLSL ? T : S.Context.getPointerType(T);
1276 
1277   this->Enabled = true;
1278 }
1279 
1280 
1281 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1282   if (Enabled) {
1283     S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1284   }
1285 }
1286 
1287 static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1288   SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1289   assert(!LSI->isCXXThisCaptured());
1290   //  [=, this] {};   // until C++20: Error: this when = is the default
1291   if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1292       !Sema.getLangOpts().CPlusPlus20)
1293     return;
1294   Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1295       << FixItHint::CreateInsertion(
1296              DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1297 }
1298 
1299 bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1300     bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1301     const bool ByCopy) {
1302   // We don't need to capture this in an unevaluated context.
1303   if (isUnevaluatedContext() && !Explicit)
1304     return true;
1305 
1306   assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1307 
1308   const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1309                                          ? *FunctionScopeIndexToStopAt
1310                                          : FunctionScopes.size() - 1;
1311 
1312   // Check that we can capture the *enclosing object* (referred to by '*this')
1313   // by the capturing-entity/closure (lambda/block/etc) at
1314   // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1315 
1316   // Note: The *enclosing object* can only be captured by-value by a
1317   // closure that is a lambda, using the explicit notation:
1318   //    [*this] { ... }.
1319   // Every other capture of the *enclosing object* results in its by-reference
1320   // capture.
1321 
1322   // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1323   // stack), we can capture the *enclosing object* only if:
1324   // - 'L' has an explicit byref or byval capture of the *enclosing object*
1325   // -  or, 'L' has an implicit capture.
1326   // AND
1327   //   -- there is no enclosing closure
1328   //   -- or, there is some enclosing closure 'E' that has already captured the
1329   //      *enclosing object*, and every intervening closure (if any) between 'E'
1330   //      and 'L' can implicitly capture the *enclosing object*.
1331   //   -- or, every enclosing closure can implicitly capture the
1332   //      *enclosing object*
1333 
1334 
1335   unsigned NumCapturingClosures = 0;
1336   for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1337     if (CapturingScopeInfo *CSI =
1338             dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1339       if (CSI->CXXThisCaptureIndex != 0) {
1340         // 'this' is already being captured; there isn't anything more to do.
1341         CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1342         break;
1343       }
1344       LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1345       if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1346         // This context can't implicitly capture 'this'; fail out.
1347         if (BuildAndDiagnose) {
1348           LSI->CallOperator->setInvalidDecl();
1349           Diag(Loc, diag::err_this_capture)
1350               << (Explicit && idx == MaxFunctionScopesIndex);
1351           if (!Explicit)
1352             buildLambdaThisCaptureFixit(*this, LSI);
1353         }
1354         return true;
1355       }
1356       if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1357           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1358           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1359           CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1360           (Explicit && idx == MaxFunctionScopesIndex)) {
1361         // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1362         // iteration through can be an explicit capture, all enclosing closures,
1363         // if any, must perform implicit captures.
1364 
1365         // This closure can capture 'this'; continue looking upwards.
1366         NumCapturingClosures++;
1367         continue;
1368       }
1369       // This context can't implicitly capture 'this'; fail out.
1370       if (BuildAndDiagnose) {
1371         LSI->CallOperator->setInvalidDecl();
1372         Diag(Loc, diag::err_this_capture)
1373             << (Explicit && idx == MaxFunctionScopesIndex);
1374       }
1375       if (!Explicit)
1376         buildLambdaThisCaptureFixit(*this, LSI);
1377       return true;
1378     }
1379     break;
1380   }
1381   if (!BuildAndDiagnose) return false;
1382 
1383   // If we got here, then the closure at MaxFunctionScopesIndex on the
1384   // FunctionScopes stack, can capture the *enclosing object*, so capture it
1385   // (including implicit by-reference captures in any enclosing closures).
1386 
1387   // In the loop below, respect the ByCopy flag only for the closure requesting
1388   // the capture (i.e. first iteration through the loop below).  Ignore it for
1389   // all enclosing closure's up to NumCapturingClosures (since they must be
1390   // implicitly capturing the *enclosing  object* by reference (see loop
1391   // above)).
1392   assert((!ByCopy ||
1393           isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1394          "Only a lambda can capture the enclosing object (referred to by "
1395          "*this) by copy");
1396   QualType ThisTy = getCurrentThisType();
1397   for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1398        --idx, --NumCapturingClosures) {
1399     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1400 
1401     // The type of the corresponding data member (not a 'this' pointer if 'by
1402     // copy').
1403     QualType CaptureType = ByCopy ? ThisTy->getPointeeType() : ThisTy;
1404 
1405     bool isNested = NumCapturingClosures > 1;
1406     CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1407   }
1408   return false;
1409 }
1410 
1411 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1412   /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1413   /// is a non-lvalue expression whose value is the address of the object for
1414   /// which the function is called.
1415   QualType ThisTy = getCurrentThisType();
1416 
1417   if (ThisTy.isNull()) {
1418     DeclContext *DC = getFunctionLevelDeclContext();
1419 
1420     if (const auto *Method = dyn_cast<CXXMethodDecl>(DC);
1421         Method && Method->isExplicitObjectMemberFunction()) {
1422       return Diag(Loc, diag::err_invalid_this_use) << 1;
1423     }
1424 
1425     if (isLambdaCallWithExplicitObjectParameter(CurContext))
1426       return Diag(Loc, diag::err_invalid_this_use) << 1;
1427 
1428     return Diag(Loc, diag::err_invalid_this_use) << 0;
1429   }
1430 
1431   return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false);
1432 }
1433 
1434 Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1435                              bool IsImplicit) {
1436   auto *This = CXXThisExpr::Create(Context, Loc, Type, IsImplicit);
1437   MarkThisReferenced(This);
1438   return This;
1439 }
1440 
1441 void Sema::MarkThisReferenced(CXXThisExpr *This) {
1442   CheckCXXThisCapture(This->getExprLoc());
1443 }
1444 
1445 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1446   // If we're outside the body of a member function, then we'll have a specified
1447   // type for 'this'.
1448   if (CXXThisTypeOverride.isNull())
1449     return false;
1450 
1451   // Determine whether we're looking into a class that's currently being
1452   // defined.
1453   CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1454   return Class && Class->isBeingDefined();
1455 }
1456 
1457 /// Parse construction of a specified type.
1458 /// Can be interpreted either as function-style casting ("int(x)")
1459 /// or class type construction ("ClassType(x,y,z)")
1460 /// or creation of a value-initialized type ("int()").
1461 ExprResult
1462 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1463                                 SourceLocation LParenOrBraceLoc,
1464                                 MultiExprArg exprs,
1465                                 SourceLocation RParenOrBraceLoc,
1466                                 bool ListInitialization) {
1467   if (!TypeRep)
1468     return ExprError();
1469 
1470   TypeSourceInfo *TInfo;
1471   QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1472   if (!TInfo)
1473     TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1474 
1475   auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1476                                           RParenOrBraceLoc, ListInitialization);
1477   // Avoid creating a non-type-dependent expression that contains typos.
1478   // Non-type-dependent expressions are liable to be discarded without
1479   // checking for embedded typos.
1480   if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1481       !Result.get()->isTypeDependent())
1482     Result = CorrectDelayedTyposInExpr(Result.get());
1483   else if (Result.isInvalid())
1484     Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(),
1485                                 RParenOrBraceLoc, exprs, Ty);
1486   return Result;
1487 }
1488 
1489 ExprResult
1490 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1491                                 SourceLocation LParenOrBraceLoc,
1492                                 MultiExprArg Exprs,
1493                                 SourceLocation RParenOrBraceLoc,
1494                                 bool ListInitialization) {
1495   QualType Ty = TInfo->getType();
1496   SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1497 
1498   assert((!ListInitialization || Exprs.size() == 1) &&
1499          "List initialization must have exactly one expression.");
1500   SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1501 
1502   InitializedEntity Entity =
1503       InitializedEntity::InitializeTemporary(Context, TInfo);
1504   InitializationKind Kind =
1505       Exprs.size()
1506           ? ListInitialization
1507                 ? InitializationKind::CreateDirectList(
1508                       TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1509                 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1510                                                    RParenOrBraceLoc)
1511           : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1512                                             RParenOrBraceLoc);
1513 
1514   // C++17 [expr.type.conv]p1:
1515   //   If the type is a placeholder for a deduced class type, [...perform class
1516   //   template argument deduction...]
1517   // C++23:
1518   //   Otherwise, if the type contains a placeholder type, it is replaced by the
1519   //   type determined by placeholder type deduction.
1520   DeducedType *Deduced = Ty->getContainedDeducedType();
1521   if (Deduced && !Deduced->isDeduced() &&
1522       isa<DeducedTemplateSpecializationType>(Deduced)) {
1523     Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1524                                                      Kind, Exprs);
1525     if (Ty.isNull())
1526       return ExprError();
1527     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1528   } else if (Deduced && !Deduced->isDeduced()) {
1529     MultiExprArg Inits = Exprs;
1530     if (ListInitialization) {
1531       auto *ILE = cast<InitListExpr>(Exprs[0]);
1532       Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
1533     }
1534 
1535     if (Inits.empty())
1536       return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
1537                        << Ty << FullRange);
1538     if (Inits.size() > 1) {
1539       Expr *FirstBad = Inits[1];
1540       return ExprError(Diag(FirstBad->getBeginLoc(),
1541                             diag::err_auto_expr_init_multiple_expressions)
1542                        << Ty << FullRange);
1543     }
1544     if (getLangOpts().CPlusPlus23) {
1545       if (Ty->getAs<AutoType>())
1546         Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
1547     }
1548     Expr *Deduce = Inits[0];
1549     if (isa<InitListExpr>(Deduce))
1550       return ExprError(
1551           Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
1552           << ListInitialization << Ty << FullRange);
1553     QualType DeducedType;
1554     TemplateDeductionInfo Info(Deduce->getExprLoc());
1555     TemplateDeductionResult Result =
1556         DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info);
1557     if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
1558       return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
1559                        << Ty << Deduce->getType() << FullRange
1560                        << Deduce->getSourceRange());
1561     if (DeducedType.isNull()) {
1562       assert(Result == TDK_AlreadyDiagnosed);
1563       return ExprError();
1564     }
1565 
1566     Ty = DeducedType;
1567     Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1568   }
1569 
1570   if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs))
1571     return CXXUnresolvedConstructExpr::Create(
1572         Context, Ty.getNonReferenceType(), TInfo, LParenOrBraceLoc, Exprs,
1573         RParenOrBraceLoc, ListInitialization);
1574 
1575   // C++ [expr.type.conv]p1:
1576   // If the expression list is a parenthesized single expression, the type
1577   // conversion expression is equivalent (in definedness, and if defined in
1578   // meaning) to the corresponding cast expression.
1579   if (Exprs.size() == 1 && !ListInitialization &&
1580       !isa<InitListExpr>(Exprs[0])) {
1581     Expr *Arg = Exprs[0];
1582     return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1583                                       RParenOrBraceLoc);
1584   }
1585 
1586   //   For an expression of the form T(), T shall not be an array type.
1587   QualType ElemTy = Ty;
1588   if (Ty->isArrayType()) {
1589     if (!ListInitialization)
1590       return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1591                          << FullRange);
1592     ElemTy = Context.getBaseElementType(Ty);
1593   }
1594 
1595   // Only construct objects with object types.
1596   // The standard doesn't explicitly forbid function types here, but that's an
1597   // obvious oversight, as there's no way to dynamically construct a function
1598   // in general.
1599   if (Ty->isFunctionType())
1600     return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1601                        << Ty << FullRange);
1602 
1603   // C++17 [expr.type.conv]p2:
1604   //   If the type is cv void and the initializer is (), the expression is a
1605   //   prvalue of the specified type that performs no initialization.
1606   if (!Ty->isVoidType() &&
1607       RequireCompleteType(TyBeginLoc, ElemTy,
1608                           diag::err_invalid_incomplete_type_use, FullRange))
1609     return ExprError();
1610 
1611   //   Otherwise, the expression is a prvalue of the specified type whose
1612   //   result object is direct-initialized (11.6) with the initializer.
1613   InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1614   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1615 
1616   if (Result.isInvalid())
1617     return Result;
1618 
1619   Expr *Inner = Result.get();
1620   if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1621     Inner = BTE->getSubExpr();
1622   if (auto *CE = dyn_cast<ConstantExpr>(Inner);
1623       CE && CE->isImmediateInvocation())
1624     Inner = CE->getSubExpr();
1625   if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1626       !isa<CXXScalarValueInitExpr>(Inner)) {
1627     // If we created a CXXTemporaryObjectExpr, that node also represents the
1628     // functional cast. Otherwise, create an explicit cast to represent
1629     // the syntactic form of a functional-style cast that was used here.
1630     //
1631     // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1632     // would give a more consistent AST representation than using a
1633     // CXXTemporaryObjectExpr. It's also weird that the functional cast
1634     // is sometimes handled by initialization and sometimes not.
1635     QualType ResultType = Result.get()->getType();
1636     SourceRange Locs = ListInitialization
1637                            ? SourceRange()
1638                            : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1639     Result = CXXFunctionalCastExpr::Create(
1640         Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1641         Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(),
1642         Locs.getBegin(), Locs.getEnd());
1643   }
1644 
1645   return Result;
1646 }
1647 
1648 bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1649   // [CUDA] Ignore this function, if we can't call it.
1650   const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
1651   if (getLangOpts().CUDA) {
1652     auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1653     // If it's not callable at all, it's not the right function.
1654     if (CallPreference < CFP_WrongSide)
1655       return false;
1656     if (CallPreference == CFP_WrongSide) {
1657       // Maybe. We have to check if there are better alternatives.
1658       DeclContext::lookup_result R =
1659           Method->getDeclContext()->lookup(Method->getDeclName());
1660       for (const auto *D : R) {
1661         if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1662           if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1663             return false;
1664         }
1665       }
1666       // We've found no better variants.
1667     }
1668   }
1669 
1670   SmallVector<const FunctionDecl*, 4> PreventedBy;
1671   bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1672 
1673   if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1674     return Result;
1675 
1676   // In case of CUDA, return true if none of the 1-argument deallocator
1677   // functions are actually callable.
1678   return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) {
1679     assert(FD->getNumParams() == 1 &&
1680            "Only single-operand functions should be in PreventedBy");
1681     return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice;
1682   });
1683 }
1684 
1685 /// Determine whether the given function is a non-placement
1686 /// deallocation function.
1687 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1688   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1689     return S.isUsualDeallocationFunction(Method);
1690 
1691   if (FD->getOverloadedOperator() != OO_Delete &&
1692       FD->getOverloadedOperator() != OO_Array_Delete)
1693     return false;
1694 
1695   unsigned UsualParams = 1;
1696 
1697   if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1698       S.Context.hasSameUnqualifiedType(
1699           FD->getParamDecl(UsualParams)->getType(),
1700           S.Context.getSizeType()))
1701     ++UsualParams;
1702 
1703   if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1704       S.Context.hasSameUnqualifiedType(
1705           FD->getParamDecl(UsualParams)->getType(),
1706           S.Context.getTypeDeclType(S.getStdAlignValT())))
1707     ++UsualParams;
1708 
1709   return UsualParams == FD->getNumParams();
1710 }
1711 
1712 namespace {
1713   struct UsualDeallocFnInfo {
1714     UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1715     UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1716         : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1717           Destroying(false), HasSizeT(false), HasAlignValT(false),
1718           CUDAPref(Sema::CFP_Native) {
1719       // A function template declaration is never a usual deallocation function.
1720       if (!FD)
1721         return;
1722       unsigned NumBaseParams = 1;
1723       if (FD->isDestroyingOperatorDelete()) {
1724         Destroying = true;
1725         ++NumBaseParams;
1726       }
1727 
1728       if (NumBaseParams < FD->getNumParams() &&
1729           S.Context.hasSameUnqualifiedType(
1730               FD->getParamDecl(NumBaseParams)->getType(),
1731               S.Context.getSizeType())) {
1732         ++NumBaseParams;
1733         HasSizeT = true;
1734       }
1735 
1736       if (NumBaseParams < FD->getNumParams() &&
1737           FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) {
1738         ++NumBaseParams;
1739         HasAlignValT = true;
1740       }
1741 
1742       // In CUDA, determine how much we'd like / dislike to call this.
1743       if (S.getLangOpts().CUDA)
1744         CUDAPref = S.IdentifyCUDAPreference(
1745             S.getCurFunctionDecl(/*AllowLambda=*/true), FD);
1746     }
1747 
1748     explicit operator bool() const { return FD; }
1749 
1750     bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1751                       bool WantAlign) const {
1752       // C++ P0722:
1753       //   A destroying operator delete is preferred over a non-destroying
1754       //   operator delete.
1755       if (Destroying != Other.Destroying)
1756         return Destroying;
1757 
1758       // C++17 [expr.delete]p10:
1759       //   If the type has new-extended alignment, a function with a parameter
1760       //   of type std::align_val_t is preferred; otherwise a function without
1761       //   such a parameter is preferred
1762       if (HasAlignValT != Other.HasAlignValT)
1763         return HasAlignValT == WantAlign;
1764 
1765       if (HasSizeT != Other.HasSizeT)
1766         return HasSizeT == WantSize;
1767 
1768       // Use CUDA call preference as a tiebreaker.
1769       return CUDAPref > Other.CUDAPref;
1770     }
1771 
1772     DeclAccessPair Found;
1773     FunctionDecl *FD;
1774     bool Destroying, HasSizeT, HasAlignValT;
1775     Sema::CUDAFunctionPreference CUDAPref;
1776   };
1777 }
1778 
1779 /// Determine whether a type has new-extended alignment. This may be called when
1780 /// the type is incomplete (for a delete-expression with an incomplete pointee
1781 /// type), in which case it will conservatively return false if the alignment is
1782 /// not known.
1783 static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1784   return S.getLangOpts().AlignedAllocation &&
1785          S.getASTContext().getTypeAlignIfKnown(AllocType) >
1786              S.getASTContext().getTargetInfo().getNewAlign();
1787 }
1788 
1789 /// Select the correct "usual" deallocation function to use from a selection of
1790 /// deallocation functions (either global or class-scope).
1791 static UsualDeallocFnInfo resolveDeallocationOverload(
1792     Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1793     llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1794   UsualDeallocFnInfo Best;
1795 
1796   for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1797     UsualDeallocFnInfo Info(S, I.getPair());
1798     if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1799         Info.CUDAPref == Sema::CFP_Never)
1800       continue;
1801 
1802     if (!Best) {
1803       Best = Info;
1804       if (BestFns)
1805         BestFns->push_back(Info);
1806       continue;
1807     }
1808 
1809     if (Best.isBetterThan(Info, WantSize, WantAlign))
1810       continue;
1811 
1812     //   If more than one preferred function is found, all non-preferred
1813     //   functions are eliminated from further consideration.
1814     if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1815       BestFns->clear();
1816 
1817     Best = Info;
1818     if (BestFns)
1819       BestFns->push_back(Info);
1820   }
1821 
1822   return Best;
1823 }
1824 
1825 /// Determine whether a given type is a class for which 'delete[]' would call
1826 /// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1827 /// we need to store the array size (even if the type is
1828 /// trivially-destructible).
1829 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1830                                          QualType allocType) {
1831   const RecordType *record =
1832     allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1833   if (!record) return false;
1834 
1835   // Try to find an operator delete[] in class scope.
1836 
1837   DeclarationName deleteName =
1838     S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1839   LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1840   S.LookupQualifiedName(ops, record->getDecl());
1841 
1842   // We're just doing this for information.
1843   ops.suppressDiagnostics();
1844 
1845   // Very likely: there's no operator delete[].
1846   if (ops.empty()) return false;
1847 
1848   // If it's ambiguous, it should be illegal to call operator delete[]
1849   // on this thing, so it doesn't matter if we allocate extra space or not.
1850   if (ops.isAmbiguous()) return false;
1851 
1852   // C++17 [expr.delete]p10:
1853   //   If the deallocation functions have class scope, the one without a
1854   //   parameter of type std::size_t is selected.
1855   auto Best = resolveDeallocationOverload(
1856       S, ops, /*WantSize*/false,
1857       /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1858   return Best && Best.HasSizeT;
1859 }
1860 
1861 /// Parsed a C++ 'new' expression (C++ 5.3.4).
1862 ///
1863 /// E.g.:
1864 /// @code new (memory) int[size][4] @endcode
1865 /// or
1866 /// @code ::new Foo(23, "hello") @endcode
1867 ///
1868 /// \param StartLoc The first location of the expression.
1869 /// \param UseGlobal True if 'new' was prefixed with '::'.
1870 /// \param PlacementLParen Opening paren of the placement arguments.
1871 /// \param PlacementArgs Placement new arguments.
1872 /// \param PlacementRParen Closing paren of the placement arguments.
1873 /// \param TypeIdParens If the type is in parens, the source range.
1874 /// \param D The type to be allocated, as well as array dimensions.
1875 /// \param Initializer The initializing expression or initializer-list, or null
1876 ///   if there is none.
1877 ExprResult
1878 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1879                   SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1880                   SourceLocation PlacementRParen, SourceRange TypeIdParens,
1881                   Declarator &D, Expr *Initializer) {
1882   std::optional<Expr *> ArraySize;
1883   // If the specified type is an array, unwrap it and save the expression.
1884   if (D.getNumTypeObjects() > 0 &&
1885       D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1886     DeclaratorChunk &Chunk = D.getTypeObject(0);
1887     if (D.getDeclSpec().hasAutoTypeSpec())
1888       return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1889         << D.getSourceRange());
1890     if (Chunk.Arr.hasStatic)
1891       return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1892         << D.getSourceRange());
1893     if (!Chunk.Arr.NumElts && !Initializer)
1894       return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1895         << D.getSourceRange());
1896 
1897     ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1898     D.DropFirstTypeObject();
1899   }
1900 
1901   // Every dimension shall be of constant size.
1902   if (ArraySize) {
1903     for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1904       if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1905         break;
1906 
1907       DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1908       if (Expr *NumElts = (Expr *)Array.NumElts) {
1909         if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1910           // FIXME: GCC permits constant folding here. We should either do so consistently
1911           // or not do so at all, rather than changing behavior in C++14 onwards.
1912           if (getLangOpts().CPlusPlus14) {
1913             // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1914             //   shall be a converted constant expression (5.19) of type std::size_t
1915             //   and shall evaluate to a strictly positive value.
1916             llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
1917             Array.NumElts
1918              = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1919                                                 CCEK_ArrayBound)
1920                  .get();
1921           } else {
1922             Array.NumElts =
1923                 VerifyIntegerConstantExpression(
1924                     NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1925                     .get();
1926           }
1927           if (!Array.NumElts)
1928             return ExprError();
1929         }
1930       }
1931     }
1932   }
1933 
1934   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1935   QualType AllocType = TInfo->getType();
1936   if (D.isInvalidType())
1937     return ExprError();
1938 
1939   SourceRange DirectInitRange;
1940   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1941     DirectInitRange = List->getSourceRange();
1942 
1943   return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1944                      PlacementLParen, PlacementArgs, PlacementRParen,
1945                      TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange,
1946                      Initializer);
1947 }
1948 
1949 static bool isLegalArrayNewInitializer(CXXNewInitializationStyle Style,
1950                                        Expr *Init) {
1951   if (!Init)
1952     return true;
1953   if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1954     return PLE->getNumExprs() == 0;
1955   if (isa<ImplicitValueInitExpr>(Init))
1956     return true;
1957   else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1958     return !CCE->isListInitialization() &&
1959            CCE->getConstructor()->isDefaultConstructor();
1960   else if (Style == CXXNewInitializationStyle::List) {
1961     assert(isa<InitListExpr>(Init) &&
1962            "Shouldn't create list CXXConstructExprs for arrays.");
1963     return true;
1964   }
1965   return false;
1966 }
1967 
1968 bool
1969 Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1970   if (!getLangOpts().AlignedAllocationUnavailable)
1971     return false;
1972   if (FD.isDefined())
1973     return false;
1974   std::optional<unsigned> AlignmentParam;
1975   if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) &&
1976       AlignmentParam)
1977     return true;
1978   return false;
1979 }
1980 
1981 // Emit a diagnostic if an aligned allocation/deallocation function that is not
1982 // implemented in the standard library is selected.
1983 void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1984                                                 SourceLocation Loc) {
1985   if (isUnavailableAlignedAllocationFunction(FD)) {
1986     const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1987     StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1988         getASTContext().getTargetInfo().getPlatformName());
1989     VersionTuple OSVersion = alignedAllocMinVersion(T.getOS());
1990 
1991     OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1992     bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1993     Diag(Loc, diag::err_aligned_allocation_unavailable)
1994         << IsDelete << FD.getType().getAsString() << OSName
1995         << OSVersion.getAsString() << OSVersion.empty();
1996     Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1997   }
1998 }
1999 
2000 ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
2001                              SourceLocation PlacementLParen,
2002                              MultiExprArg PlacementArgs,
2003                              SourceLocation PlacementRParen,
2004                              SourceRange TypeIdParens, QualType AllocType,
2005                              TypeSourceInfo *AllocTypeInfo,
2006                              std::optional<Expr *> ArraySize,
2007                              SourceRange DirectInitRange, Expr *Initializer) {
2008   SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
2009   SourceLocation StartLoc = Range.getBegin();
2010 
2011   CXXNewInitializationStyle InitStyle;
2012   if (DirectInitRange.isValid()) {
2013     assert(Initializer && "Have parens but no initializer.");
2014     InitStyle = CXXNewInitializationStyle::Call;
2015   } else if (Initializer && isa<InitListExpr>(Initializer))
2016     InitStyle = CXXNewInitializationStyle::List;
2017   else {
2018     assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
2019             isa<CXXConstructExpr>(Initializer)) &&
2020            "Initializer expression that cannot have been implicitly created.");
2021     InitStyle = CXXNewInitializationStyle::None;
2022   }
2023 
2024   MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0);
2025   if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
2026     assert(InitStyle == CXXNewInitializationStyle::Call &&
2027            "paren init for non-call init");
2028     Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
2029   }
2030 
2031   // C++11 [expr.new]p15:
2032   //   A new-expression that creates an object of type T initializes that
2033   //   object as follows:
2034   InitializationKind Kind = [&] {
2035     switch (InitStyle) {
2036     //     - If the new-initializer is omitted, the object is default-
2037     //       initialized (8.5); if no initialization is performed,
2038     //       the object has indeterminate value
2039     case CXXNewInitializationStyle::None:
2040     case CXXNewInitializationStyle::Implicit:
2041       return InitializationKind::CreateDefault(TypeRange.getBegin());
2042     //     - Otherwise, the new-initializer is interpreted according to the
2043     //       initialization rules of 8.5 for direct-initialization.
2044     case CXXNewInitializationStyle::Call:
2045       return InitializationKind::CreateDirect(TypeRange.getBegin(),
2046                                               DirectInitRange.getBegin(),
2047                                               DirectInitRange.getEnd());
2048     case CXXNewInitializationStyle::List:
2049       return InitializationKind::CreateDirectList(TypeRange.getBegin(),
2050                                                   Initializer->getBeginLoc(),
2051                                                   Initializer->getEndLoc());
2052     }
2053     llvm_unreachable("Unknown initialization kind");
2054   }();
2055 
2056   // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2057   auto *Deduced = AllocType->getContainedDeducedType();
2058   if (Deduced && !Deduced->isDeduced() &&
2059       isa<DeducedTemplateSpecializationType>(Deduced)) {
2060     if (ArraySize)
2061       return ExprError(
2062           Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
2063                diag::err_deduced_class_template_compound_type)
2064           << /*array*/ 2
2065           << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
2066 
2067     InitializedEntity Entity
2068       = InitializedEntity::InitializeNew(StartLoc, AllocType);
2069     AllocType = DeduceTemplateSpecializationFromInitializer(
2070         AllocTypeInfo, Entity, Kind, Exprs);
2071     if (AllocType.isNull())
2072       return ExprError();
2073   } else if (Deduced && !Deduced->isDeduced()) {
2074     MultiExprArg Inits = Exprs;
2075     bool Braced = (InitStyle == CXXNewInitializationStyle::List);
2076     if (Braced) {
2077       auto *ILE = cast<InitListExpr>(Exprs[0]);
2078       Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2079     }
2080 
2081     if (InitStyle == CXXNewInitializationStyle::None ||
2082         InitStyle == CXXNewInitializationStyle::Implicit || Inits.empty())
2083       return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
2084                        << AllocType << TypeRange);
2085     if (Inits.size() > 1) {
2086       Expr *FirstBad = Inits[1];
2087       return ExprError(Diag(FirstBad->getBeginLoc(),
2088                             diag::err_auto_new_ctor_multiple_expressions)
2089                        << AllocType << TypeRange);
2090     }
2091     if (Braced && !getLangOpts().CPlusPlus17)
2092       Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2093           << AllocType << TypeRange;
2094     Expr *Deduce = Inits[0];
2095     if (isa<InitListExpr>(Deduce))
2096       return ExprError(
2097           Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
2098           << Braced << AllocType << TypeRange);
2099     QualType DeducedType;
2100     TemplateDeductionInfo Info(Deduce->getExprLoc());
2101     TemplateDeductionResult Result =
2102         DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info);
2103     if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed)
2104       return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2105                        << AllocType << Deduce->getType() << TypeRange
2106                        << Deduce->getSourceRange());
2107     if (DeducedType.isNull()) {
2108       assert(Result == TDK_AlreadyDiagnosed);
2109       return ExprError();
2110     }
2111     AllocType = DeducedType;
2112   }
2113 
2114   // Per C++0x [expr.new]p5, the type being constructed may be a
2115   // typedef of an array type.
2116   if (!ArraySize) {
2117     if (const ConstantArrayType *Array
2118                               = Context.getAsConstantArrayType(AllocType)) {
2119       ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
2120                                          Context.getSizeType(),
2121                                          TypeRange.getEnd());
2122       AllocType = Array->getElementType();
2123     }
2124   }
2125 
2126   if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
2127     return ExprError();
2128 
2129   if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin()))
2130     return ExprError();
2131 
2132   // In ARC, infer 'retaining' for the allocated
2133   if (getLangOpts().ObjCAutoRefCount &&
2134       AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2135       AllocType->isObjCLifetimeType()) {
2136     AllocType = Context.getLifetimeQualifiedType(AllocType,
2137                                     AllocType->getObjCARCImplicitLifetime());
2138   }
2139 
2140   QualType ResultType = Context.getPointerType(AllocType);
2141 
2142   if (ArraySize && *ArraySize &&
2143       (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2144     ExprResult result = CheckPlaceholderExpr(*ArraySize);
2145     if (result.isInvalid()) return ExprError();
2146     ArraySize = result.get();
2147   }
2148   // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2149   //   integral or enumeration type with a non-negative value."
2150   // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2151   //   enumeration type, or a class type for which a single non-explicit
2152   //   conversion function to integral or unscoped enumeration type exists.
2153   // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2154   //   std::size_t.
2155   std::optional<uint64_t> KnownArraySize;
2156   if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2157     ExprResult ConvertedSize;
2158     if (getLangOpts().CPlusPlus14) {
2159       assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2160 
2161       ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(),
2162                                                 AA_Converting);
2163 
2164       if (!ConvertedSize.isInvalid() &&
2165           (*ArraySize)->getType()->getAs<RecordType>())
2166         // Diagnose the compatibility of this conversion.
2167         Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2168           << (*ArraySize)->getType() << 0 << "'size_t'";
2169     } else {
2170       class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2171       protected:
2172         Expr *ArraySize;
2173 
2174       public:
2175         SizeConvertDiagnoser(Expr *ArraySize)
2176             : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2177               ArraySize(ArraySize) {}
2178 
2179         SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2180                                              QualType T) override {
2181           return S.Diag(Loc, diag::err_array_size_not_integral)
2182                    << S.getLangOpts().CPlusPlus11 << T;
2183         }
2184 
2185         SemaDiagnosticBuilder diagnoseIncomplete(
2186             Sema &S, SourceLocation Loc, QualType T) override {
2187           return S.Diag(Loc, diag::err_array_size_incomplete_type)
2188                    << T << ArraySize->getSourceRange();
2189         }
2190 
2191         SemaDiagnosticBuilder diagnoseExplicitConv(
2192             Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2193           return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2194         }
2195 
2196         SemaDiagnosticBuilder noteExplicitConv(
2197             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2198           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2199                    << ConvTy->isEnumeralType() << ConvTy;
2200         }
2201 
2202         SemaDiagnosticBuilder diagnoseAmbiguous(
2203             Sema &S, SourceLocation Loc, QualType T) override {
2204           return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2205         }
2206 
2207         SemaDiagnosticBuilder noteAmbiguous(
2208             Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2209           return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2210                    << ConvTy->isEnumeralType() << ConvTy;
2211         }
2212 
2213         SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2214                                                  QualType T,
2215                                                  QualType ConvTy) override {
2216           return S.Diag(Loc,
2217                         S.getLangOpts().CPlusPlus11
2218                           ? diag::warn_cxx98_compat_array_size_conversion
2219                           : diag::ext_array_size_conversion)
2220                    << T << ConvTy->isEnumeralType() << ConvTy;
2221         }
2222       } SizeDiagnoser(*ArraySize);
2223 
2224       ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize,
2225                                                           SizeDiagnoser);
2226     }
2227     if (ConvertedSize.isInvalid())
2228       return ExprError();
2229 
2230     ArraySize = ConvertedSize.get();
2231     QualType SizeType = (*ArraySize)->getType();
2232 
2233     if (!SizeType->isIntegralOrUnscopedEnumerationType())
2234       return ExprError();
2235 
2236     // C++98 [expr.new]p7:
2237     //   The expression in a direct-new-declarator shall have integral type
2238     //   with a non-negative value.
2239     //
2240     // Let's see if this is a constant < 0. If so, we reject it out of hand,
2241     // per CWG1464. Otherwise, if it's not a constant, we must have an
2242     // unparenthesized array type.
2243 
2244     // We've already performed any required implicit conversion to integer or
2245     // unscoped enumeration type.
2246     // FIXME: Per CWG1464, we are required to check the value prior to
2247     // converting to size_t. This will never find a negative array size in
2248     // C++14 onwards, because Value is always unsigned here!
2249     if (std::optional<llvm::APSInt> Value =
2250             (*ArraySize)->getIntegerConstantExpr(Context)) {
2251       if (Value->isSigned() && Value->isNegative()) {
2252         return ExprError(Diag((*ArraySize)->getBeginLoc(),
2253                               diag::err_typecheck_negative_array_size)
2254                          << (*ArraySize)->getSourceRange());
2255       }
2256 
2257       if (!AllocType->isDependentType()) {
2258         unsigned ActiveSizeBits =
2259             ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value);
2260         if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2261           return ExprError(
2262               Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2263               << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2264       }
2265 
2266       KnownArraySize = Value->getZExtValue();
2267     } else if (TypeIdParens.isValid()) {
2268       // Can't have dynamic array size when the type-id is in parentheses.
2269       Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2270           << (*ArraySize)->getSourceRange()
2271           << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2272           << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2273 
2274       TypeIdParens = SourceRange();
2275     }
2276 
2277     // Note that we do *not* convert the argument in any way.  It can
2278     // be signed, larger than size_t, whatever.
2279   }
2280 
2281   FunctionDecl *OperatorNew = nullptr;
2282   FunctionDecl *OperatorDelete = nullptr;
2283   unsigned Alignment =
2284       AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
2285   unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2286   bool PassAlignment = getLangOpts().AlignedAllocation &&
2287                        Alignment > NewAlignment;
2288 
2289   AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2290   if (!AllocType->isDependentType() &&
2291       !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
2292       FindAllocationFunctions(
2293           StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope,
2294           AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs,
2295           OperatorNew, OperatorDelete))
2296     return ExprError();
2297 
2298   // If this is an array allocation, compute whether the usual array
2299   // deallocation function for the type has a size_t parameter.
2300   bool UsualArrayDeleteWantsSize = false;
2301   if (ArraySize && !AllocType->isDependentType())
2302     UsualArrayDeleteWantsSize =
2303         doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
2304 
2305   SmallVector<Expr *, 8> AllPlaceArgs;
2306   if (OperatorNew) {
2307     auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2308     VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2309                                                     : VariadicDoesNotApply;
2310 
2311     // We've already converted the placement args, just fill in any default
2312     // arguments. Skip the first parameter because we don't have a corresponding
2313     // argument. Skip the second parameter too if we're passing in the
2314     // alignment; we've already filled it in.
2315     unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2316     if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2317                                NumImplicitArgs, PlacementArgs, AllPlaceArgs,
2318                                CallType))
2319       return ExprError();
2320 
2321     if (!AllPlaceArgs.empty())
2322       PlacementArgs = AllPlaceArgs;
2323 
2324     // We would like to perform some checking on the given `operator new` call,
2325     // but the PlacementArgs does not contain the implicit arguments,
2326     // namely allocation size and maybe allocation alignment,
2327     // so we need to conjure them.
2328 
2329     QualType SizeTy = Context.getSizeType();
2330     unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2331 
2332     llvm::APInt SingleEltSize(
2333         SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity());
2334 
2335     // How many bytes do we want to allocate here?
2336     std::optional<llvm::APInt> AllocationSize;
2337     if (!ArraySize && !AllocType->isDependentType()) {
2338       // For non-array operator new, we only want to allocate one element.
2339       AllocationSize = SingleEltSize;
2340     } else if (KnownArraySize && !AllocType->isDependentType()) {
2341       // For array operator new, only deal with static array size case.
2342       bool Overflow;
2343       AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2344                            .umul_ov(SingleEltSize, Overflow);
2345       (void)Overflow;
2346       assert(
2347           !Overflow &&
2348           "Expected that all the overflows would have been handled already.");
2349     }
2350 
2351     IntegerLiteral AllocationSizeLiteral(
2352         Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)),
2353         SizeTy, SourceLocation());
2354     // Otherwise, if we failed to constant-fold the allocation size, we'll
2355     // just give up and pass-in something opaque, that isn't a null pointer.
2356     OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2357                                          OK_Ordinary, /*SourceExpr=*/nullptr);
2358 
2359     // Let's synthesize the alignment argument in case we will need it.
2360     // Since we *really* want to allocate these on stack, this is slightly ugly
2361     // because there might not be a `std::align_val_t` type.
2362     EnumDecl *StdAlignValT = getStdAlignValT();
2363     QualType AlignValT =
2364         StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2365     IntegerLiteral AlignmentLiteral(
2366         Context,
2367         llvm::APInt(Context.getTypeSize(SizeTy),
2368                     Alignment / Context.getCharWidth()),
2369         SizeTy, SourceLocation());
2370     ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2371                                       CK_IntegralCast, &AlignmentLiteral,
2372                                       VK_PRValue, FPOptionsOverride());
2373 
2374     // Adjust placement args by prepending conjured size and alignment exprs.
2375     llvm::SmallVector<Expr *, 8> CallArgs;
2376     CallArgs.reserve(NumImplicitArgs + PlacementArgs.size());
2377     CallArgs.emplace_back(AllocationSize
2378                               ? static_cast<Expr *>(&AllocationSizeLiteral)
2379                               : &OpaqueAllocationSize);
2380     if (PassAlignment)
2381       CallArgs.emplace_back(&DesiredAlignment);
2382     CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end());
2383 
2384     DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2385 
2386     checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs,
2387               /*IsMemberFunction=*/false, StartLoc, Range, CallType);
2388 
2389     // Warn if the type is over-aligned and is being allocated by (unaligned)
2390     // global operator new.
2391     if (PlacementArgs.empty() && !PassAlignment &&
2392         (OperatorNew->isImplicit() ||
2393          (OperatorNew->getBeginLoc().isValid() &&
2394           getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) {
2395       if (Alignment > NewAlignment)
2396         Diag(StartLoc, diag::warn_overaligned_type)
2397             << AllocType
2398             << unsigned(Alignment / Context.getCharWidth())
2399             << unsigned(NewAlignment / Context.getCharWidth());
2400     }
2401   }
2402 
2403   // Array 'new' can't have any initializers except empty parentheses.
2404   // Initializer lists are also allowed, in C++11. Rely on the parser for the
2405   // dialect distinction.
2406   if (ArraySize && !isLegalArrayNewInitializer(InitStyle, Initializer)) {
2407     SourceRange InitRange(Exprs.front()->getBeginLoc(),
2408                           Exprs.back()->getEndLoc());
2409     Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2410     return ExprError();
2411   }
2412 
2413   // If we can perform the initialization, and we've not already done so,
2414   // do it now.
2415   if (!AllocType->isDependentType() &&
2416       !Expr::hasAnyTypeDependentArguments(Exprs)) {
2417     // The type we initialize is the complete type, including the array bound.
2418     QualType InitType;
2419     if (KnownArraySize)
2420       InitType = Context.getConstantArrayType(
2421           AllocType,
2422           llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2423                       *KnownArraySize),
2424           *ArraySize, ArraySizeModifier::Normal, 0);
2425     else if (ArraySize)
2426       InitType = Context.getIncompleteArrayType(AllocType,
2427                                                 ArraySizeModifier::Normal, 0);
2428     else
2429       InitType = AllocType;
2430 
2431     InitializedEntity Entity
2432       = InitializedEntity::InitializeNew(StartLoc, InitType);
2433     InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
2434     ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs);
2435     if (FullInit.isInvalid())
2436       return ExprError();
2437 
2438     // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2439     // we don't want the initialized object to be destructed.
2440     // FIXME: We should not create these in the first place.
2441     if (CXXBindTemporaryExpr *Binder =
2442             dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2443       FullInit = Binder->getSubExpr();
2444 
2445     Initializer = FullInit.get();
2446     // We don't know that we're generating an implicit initializer until now, so
2447     // we have to update the initialization style as well.
2448     //
2449     // FIXME: it would be nice to determine the correct initialization style
2450     // earlier so InitStyle doesn't need adjusting.
2451     if (InitStyle == CXXNewInitializationStyle::None && Initializer) {
2452       InitStyle = CXXNewInitializationStyle::Implicit;
2453     }
2454 
2455     // FIXME: If we have a KnownArraySize, check that the array bound of the
2456     // initializer is no greater than that constant value.
2457 
2458     if (ArraySize && !*ArraySize) {
2459       auto *CAT = Context.getAsConstantArrayType(Initializer->getType());
2460       if (CAT) {
2461         // FIXME: Track that the array size was inferred rather than explicitly
2462         // specified.
2463         ArraySize = IntegerLiteral::Create(
2464             Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd());
2465       } else {
2466         Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2467             << Initializer->getSourceRange();
2468       }
2469     }
2470   }
2471 
2472   // Mark the new and delete operators as referenced.
2473   if (OperatorNew) {
2474     if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2475       return ExprError();
2476     MarkFunctionReferenced(StartLoc, OperatorNew);
2477   }
2478   if (OperatorDelete) {
2479     if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2480       return ExprError();
2481     MarkFunctionReferenced(StartLoc, OperatorDelete);
2482   }
2483 
2484   return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete,
2485                             PassAlignment, UsualArrayDeleteWantsSize,
2486                             PlacementArgs, TypeIdParens, ArraySize, InitStyle,
2487                             Initializer, ResultType, AllocTypeInfo, Range,
2488                             DirectInitRange);
2489 }
2490 
2491 /// Checks that a type is suitable as the allocated type
2492 /// in a new-expression.
2493 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2494                               SourceRange R) {
2495   // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2496   //   abstract class type or array thereof.
2497   if (AllocType->isFunctionType())
2498     return Diag(Loc, diag::err_bad_new_type)
2499       << AllocType << 0 << R;
2500   else if (AllocType->isReferenceType())
2501     return Diag(Loc, diag::err_bad_new_type)
2502       << AllocType << 1 << R;
2503   else if (!AllocType->isDependentType() &&
2504            RequireCompleteSizedType(
2505                Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2506     return true;
2507   else if (RequireNonAbstractType(Loc, AllocType,
2508                                   diag::err_allocation_of_abstract_type))
2509     return true;
2510   else if (AllocType->isVariablyModifiedType())
2511     return Diag(Loc, diag::err_variably_modified_new_type)
2512              << AllocType;
2513   else if (AllocType.getAddressSpace() != LangAS::Default &&
2514            !getLangOpts().OpenCLCPlusPlus)
2515     return Diag(Loc, diag::err_address_space_qualified_new)
2516       << AllocType.getUnqualifiedType()
2517       << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2518   else if (getLangOpts().ObjCAutoRefCount) {
2519     if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2520       QualType BaseAllocType = Context.getBaseElementType(AT);
2521       if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2522           BaseAllocType->isObjCLifetimeType())
2523         return Diag(Loc, diag::err_arc_new_array_without_ownership)
2524           << BaseAllocType;
2525     }
2526   }
2527 
2528   return false;
2529 }
2530 
2531 static bool resolveAllocationOverload(
2532     Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2533     bool &PassAlignment, FunctionDecl *&Operator,
2534     OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2535   OverloadCandidateSet Candidates(R.getNameLoc(),
2536                                   OverloadCandidateSet::CSK_Normal);
2537   for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2538        Alloc != AllocEnd; ++Alloc) {
2539     // Even member operator new/delete are implicitly treated as
2540     // static, so don't use AddMemberCandidate.
2541     NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2542 
2543     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2544       S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2545                                      /*ExplicitTemplateArgs=*/nullptr, Args,
2546                                      Candidates,
2547                                      /*SuppressUserConversions=*/false);
2548       continue;
2549     }
2550 
2551     FunctionDecl *Fn = cast<FunctionDecl>(D);
2552     S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2553                            /*SuppressUserConversions=*/false);
2554   }
2555 
2556   // Do the resolution.
2557   OverloadCandidateSet::iterator Best;
2558   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2559   case OR_Success: {
2560     // Got one!
2561     FunctionDecl *FnDecl = Best->Function;
2562     if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2563                                 Best->FoundDecl) == Sema::AR_inaccessible)
2564       return true;
2565 
2566     Operator = FnDecl;
2567     return false;
2568   }
2569 
2570   case OR_No_Viable_Function:
2571     // C++17 [expr.new]p13:
2572     //   If no matching function is found and the allocated object type has
2573     //   new-extended alignment, the alignment argument is removed from the
2574     //   argument list, and overload resolution is performed again.
2575     if (PassAlignment) {
2576       PassAlignment = false;
2577       AlignArg = Args[1];
2578       Args.erase(Args.begin() + 1);
2579       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2580                                        Operator, &Candidates, AlignArg,
2581                                        Diagnose);
2582     }
2583 
2584     // MSVC will fall back on trying to find a matching global operator new
2585     // if operator new[] cannot be found.  Also, MSVC will leak by not
2586     // generating a call to operator delete or operator delete[], but we
2587     // will not replicate that bug.
2588     // FIXME: Find out how this interacts with the std::align_val_t fallback
2589     // once MSVC implements it.
2590     if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2591         S.Context.getLangOpts().MSVCCompat) {
2592       R.clear();
2593       R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2594       S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2595       // FIXME: This will give bad diagnostics pointing at the wrong functions.
2596       return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2597                                        Operator, /*Candidates=*/nullptr,
2598                                        /*AlignArg=*/nullptr, Diagnose);
2599     }
2600 
2601     if (Diagnose) {
2602       // If this is an allocation of the form 'new (p) X' for some object
2603       // pointer p (or an expression that will decay to such a pointer),
2604       // diagnose the missing inclusion of <new>.
2605       if (!R.isClassLookup() && Args.size() == 2 &&
2606           (Args[1]->getType()->isObjectPointerType() ||
2607            Args[1]->getType()->isArrayType())) {
2608         S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2609             << R.getLookupName() << Range;
2610         // Listing the candidates is unlikely to be useful; skip it.
2611         return true;
2612       }
2613 
2614       // Finish checking all candidates before we note any. This checking can
2615       // produce additional diagnostics so can't be interleaved with our
2616       // emission of notes.
2617       //
2618       // For an aligned allocation, separately check the aligned and unaligned
2619       // candidates with their respective argument lists.
2620       SmallVector<OverloadCandidate*, 32> Cands;
2621       SmallVector<OverloadCandidate*, 32> AlignedCands;
2622       llvm::SmallVector<Expr*, 4> AlignedArgs;
2623       if (AlignedCandidates) {
2624         auto IsAligned = [](OverloadCandidate &C) {
2625           return C.Function->getNumParams() > 1 &&
2626                  C.Function->getParamDecl(1)->getType()->isAlignValT();
2627         };
2628         auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2629 
2630         AlignedArgs.reserve(Args.size() + 1);
2631         AlignedArgs.push_back(Args[0]);
2632         AlignedArgs.push_back(AlignArg);
2633         AlignedArgs.append(Args.begin() + 1, Args.end());
2634         AlignedCands = AlignedCandidates->CompleteCandidates(
2635             S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2636 
2637         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2638                                               R.getNameLoc(), IsUnaligned);
2639       } else {
2640         Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2641                                               R.getNameLoc());
2642       }
2643 
2644       S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2645           << R.getLookupName() << Range;
2646       if (AlignedCandidates)
2647         AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "",
2648                                           R.getNameLoc());
2649       Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc());
2650     }
2651     return true;
2652 
2653   case OR_Ambiguous:
2654     if (Diagnose) {
2655       Candidates.NoteCandidates(
2656           PartialDiagnosticAt(R.getNameLoc(),
2657                               S.PDiag(diag::err_ovl_ambiguous_call)
2658                                   << R.getLookupName() << Range),
2659           S, OCD_AmbiguousCandidates, Args);
2660     }
2661     return true;
2662 
2663   case OR_Deleted: {
2664     if (Diagnose) {
2665       Candidates.NoteCandidates(
2666           PartialDiagnosticAt(R.getNameLoc(),
2667                               S.PDiag(diag::err_ovl_deleted_call)
2668                                   << R.getLookupName() << Range),
2669           S, OCD_AllCandidates, Args);
2670     }
2671     return true;
2672   }
2673   }
2674   llvm_unreachable("Unreachable, bad result from BestViableFunction");
2675 }
2676 
2677 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2678                                    AllocationFunctionScope NewScope,
2679                                    AllocationFunctionScope DeleteScope,
2680                                    QualType AllocType, bool IsArray,
2681                                    bool &PassAlignment, MultiExprArg PlaceArgs,
2682                                    FunctionDecl *&OperatorNew,
2683                                    FunctionDecl *&OperatorDelete,
2684                                    bool Diagnose) {
2685   // --- Choosing an allocation function ---
2686   // C++ 5.3.4p8 - 14 & 18
2687   // 1) If looking in AFS_Global scope for allocation functions, only look in
2688   //    the global scope. Else, if AFS_Class, only look in the scope of the
2689   //    allocated class. If AFS_Both, look in both.
2690   // 2) If an array size is given, look for operator new[], else look for
2691   //   operator new.
2692   // 3) The first argument is always size_t. Append the arguments from the
2693   //   placement form.
2694 
2695   SmallVector<Expr*, 8> AllocArgs;
2696   AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2697 
2698   // We don't care about the actual value of these arguments.
2699   // FIXME: Should the Sema create the expression and embed it in the syntax
2700   // tree? Or should the consumer just recalculate the value?
2701   // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2702   QualType SizeTy = Context.getSizeType();
2703   unsigned SizeTyWidth = Context.getTypeSize(SizeTy);
2704   IntegerLiteral Size(Context, llvm::APInt::getZero(SizeTyWidth), SizeTy,
2705                       SourceLocation());
2706   AllocArgs.push_back(&Size);
2707 
2708   QualType AlignValT = Context.VoidTy;
2709   if (PassAlignment) {
2710     DeclareGlobalNewDelete();
2711     AlignValT = Context.getTypeDeclType(getStdAlignValT());
2712   }
2713   CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2714   if (PassAlignment)
2715     AllocArgs.push_back(&Align);
2716 
2717   AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2718 
2719   // C++ [expr.new]p8:
2720   //   If the allocated type is a non-array type, the allocation
2721   //   function's name is operator new and the deallocation function's
2722   //   name is operator delete. If the allocated type is an array
2723   //   type, the allocation function's name is operator new[] and the
2724   //   deallocation function's name is operator delete[].
2725   DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2726       IsArray ? OO_Array_New : OO_New);
2727 
2728   QualType AllocElemType = Context.getBaseElementType(AllocType);
2729 
2730   // Find the allocation function.
2731   {
2732     LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2733 
2734     // C++1z [expr.new]p9:
2735     //   If the new-expression begins with a unary :: operator, the allocation
2736     //   function's name is looked up in the global scope. Otherwise, if the
2737     //   allocated type is a class type T or array thereof, the allocation
2738     //   function's name is looked up in the scope of T.
2739     if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2740       LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2741 
2742     // We can see ambiguity here if the allocation function is found in
2743     // multiple base classes.
2744     if (R.isAmbiguous())
2745       return true;
2746 
2747     //   If this lookup fails to find the name, or if the allocated type is not
2748     //   a class type, the allocation function's name is looked up in the
2749     //   global scope.
2750     if (R.empty()) {
2751       if (NewScope == AFS_Class)
2752         return true;
2753 
2754       LookupQualifiedName(R, Context.getTranslationUnitDecl());
2755     }
2756 
2757     if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2758       if (PlaceArgs.empty()) {
2759         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2760       } else {
2761         Diag(StartLoc, diag::err_openclcxx_placement_new);
2762       }
2763       return true;
2764     }
2765 
2766     assert(!R.empty() && "implicitly declared allocation functions not found");
2767     assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2768 
2769     // We do our own custom access checks below.
2770     R.suppressDiagnostics();
2771 
2772     if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2773                                   OperatorNew, /*Candidates=*/nullptr,
2774                                   /*AlignArg=*/nullptr, Diagnose))
2775       return true;
2776   }
2777 
2778   // We don't need an operator delete if we're running under -fno-exceptions.
2779   if (!getLangOpts().Exceptions) {
2780     OperatorDelete = nullptr;
2781     return false;
2782   }
2783 
2784   // Note, the name of OperatorNew might have been changed from array to
2785   // non-array by resolveAllocationOverload.
2786   DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2787       OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2788           ? OO_Array_Delete
2789           : OO_Delete);
2790 
2791   // C++ [expr.new]p19:
2792   //
2793   //   If the new-expression begins with a unary :: operator, the
2794   //   deallocation function's name is looked up in the global
2795   //   scope. Otherwise, if the allocated type is a class type T or an
2796   //   array thereof, the deallocation function's name is looked up in
2797   //   the scope of T. If this lookup fails to find the name, or if
2798   //   the allocated type is not a class type or array thereof, the
2799   //   deallocation function's name is looked up in the global scope.
2800   LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2801   if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2802     auto *RD =
2803         cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl());
2804     LookupQualifiedName(FoundDelete, RD);
2805   }
2806   if (FoundDelete.isAmbiguous())
2807     return true; // FIXME: clean up expressions?
2808 
2809   // Filter out any destroying operator deletes. We can't possibly call such a
2810   // function in this context, because we're handling the case where the object
2811   // was not successfully constructed.
2812   // FIXME: This is not covered by the language rules yet.
2813   {
2814     LookupResult::Filter Filter = FoundDelete.makeFilter();
2815     while (Filter.hasNext()) {
2816       auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl());
2817       if (FD && FD->isDestroyingOperatorDelete())
2818         Filter.erase();
2819     }
2820     Filter.done();
2821   }
2822 
2823   bool FoundGlobalDelete = FoundDelete.empty();
2824   if (FoundDelete.empty()) {
2825     FoundDelete.clear(LookupOrdinaryName);
2826 
2827     if (DeleteScope == AFS_Class)
2828       return true;
2829 
2830     DeclareGlobalNewDelete();
2831     LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2832   }
2833 
2834   FoundDelete.suppressDiagnostics();
2835 
2836   SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2837 
2838   // Whether we're looking for a placement operator delete is dictated
2839   // by whether we selected a placement operator new, not by whether
2840   // we had explicit placement arguments.  This matters for things like
2841   //   struct A { void *operator new(size_t, int = 0); ... };
2842   //   A *a = new A()
2843   //
2844   // We don't have any definition for what a "placement allocation function"
2845   // is, but we assume it's any allocation function whose
2846   // parameter-declaration-clause is anything other than (size_t).
2847   //
2848   // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2849   // This affects whether an exception from the constructor of an overaligned
2850   // type uses the sized or non-sized form of aligned operator delete.
2851   bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2852                         OperatorNew->isVariadic();
2853 
2854   if (isPlacementNew) {
2855     // C++ [expr.new]p20:
2856     //   A declaration of a placement deallocation function matches the
2857     //   declaration of a placement allocation function if it has the
2858     //   same number of parameters and, after parameter transformations
2859     //   (8.3.5), all parameter types except the first are
2860     //   identical. [...]
2861     //
2862     // To perform this comparison, we compute the function type that
2863     // the deallocation function should have, and use that type both
2864     // for template argument deduction and for comparison purposes.
2865     QualType ExpectedFunctionType;
2866     {
2867       auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2868 
2869       SmallVector<QualType, 4> ArgTypes;
2870       ArgTypes.push_back(Context.VoidPtrTy);
2871       for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2872         ArgTypes.push_back(Proto->getParamType(I));
2873 
2874       FunctionProtoType::ExtProtoInfo EPI;
2875       // FIXME: This is not part of the standard's rule.
2876       EPI.Variadic = Proto->isVariadic();
2877 
2878       ExpectedFunctionType
2879         = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2880     }
2881 
2882     for (LookupResult::iterator D = FoundDelete.begin(),
2883                              DEnd = FoundDelete.end();
2884          D != DEnd; ++D) {
2885       FunctionDecl *Fn = nullptr;
2886       if (FunctionTemplateDecl *FnTmpl =
2887               dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2888         // Perform template argument deduction to try to match the
2889         // expected function type.
2890         TemplateDeductionInfo Info(StartLoc);
2891         if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2892                                     Info))
2893           continue;
2894       } else
2895         Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2896 
2897       if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2898                                                   ExpectedFunctionType,
2899                                                   /*AdjustExcpetionSpec*/true),
2900                               ExpectedFunctionType))
2901         Matches.push_back(std::make_pair(D.getPair(), Fn));
2902     }
2903 
2904     if (getLangOpts().CUDA)
2905       EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true),
2906                                Matches);
2907   } else {
2908     // C++1y [expr.new]p22:
2909     //   For a non-placement allocation function, the normal deallocation
2910     //   function lookup is used
2911     //
2912     // Per [expr.delete]p10, this lookup prefers a member operator delete
2913     // without a size_t argument, but prefers a non-member operator delete
2914     // with a size_t where possible (which it always is in this case).
2915     llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2916     UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2917         *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2918         /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2919         &BestDeallocFns);
2920     if (Selected)
2921       Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2922     else {
2923       // If we failed to select an operator, all remaining functions are viable
2924       // but ambiguous.
2925       for (auto Fn : BestDeallocFns)
2926         Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2927     }
2928   }
2929 
2930   // C++ [expr.new]p20:
2931   //   [...] If the lookup finds a single matching deallocation
2932   //   function, that function will be called; otherwise, no
2933   //   deallocation function will be called.
2934   if (Matches.size() == 1) {
2935     OperatorDelete = Matches[0].second;
2936 
2937     // C++1z [expr.new]p23:
2938     //   If the lookup finds a usual deallocation function (3.7.4.2)
2939     //   with a parameter of type std::size_t and that function, considered
2940     //   as a placement deallocation function, would have been
2941     //   selected as a match for the allocation function, the program
2942     //   is ill-formed.
2943     if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2944         isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2945       UsualDeallocFnInfo Info(*this,
2946                               DeclAccessPair::make(OperatorDelete, AS_public));
2947       // Core issue, per mail to core reflector, 2016-10-09:
2948       //   If this is a member operator delete, and there is a corresponding
2949       //   non-sized member operator delete, this isn't /really/ a sized
2950       //   deallocation function, it just happens to have a size_t parameter.
2951       bool IsSizedDelete = Info.HasSizeT;
2952       if (IsSizedDelete && !FoundGlobalDelete) {
2953         auto NonSizedDelete =
2954             resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2955                                         /*WantAlign*/Info.HasAlignValT);
2956         if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2957             NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2958           IsSizedDelete = false;
2959       }
2960 
2961       if (IsSizedDelete) {
2962         SourceRange R = PlaceArgs.empty()
2963                             ? SourceRange()
2964                             : SourceRange(PlaceArgs.front()->getBeginLoc(),
2965                                           PlaceArgs.back()->getEndLoc());
2966         Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2967         if (!OperatorDelete->isImplicit())
2968           Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2969               << DeleteName;
2970       }
2971     }
2972 
2973     CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2974                           Matches[0].first);
2975   } else if (!Matches.empty()) {
2976     // We found multiple suitable operators. Per [expr.new]p20, that means we
2977     // call no 'operator delete' function, but we should at least warn the user.
2978     // FIXME: Suppress this warning if the construction cannot throw.
2979     Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2980       << DeleteName << AllocElemType;
2981 
2982     for (auto &Match : Matches)
2983       Diag(Match.second->getLocation(),
2984            diag::note_member_declared_here) << DeleteName;
2985   }
2986 
2987   return false;
2988 }
2989 
2990 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2991 /// delete. These are:
2992 /// @code
2993 ///   // C++03:
2994 ///   void* operator new(std::size_t) throw(std::bad_alloc);
2995 ///   void* operator new[](std::size_t) throw(std::bad_alloc);
2996 ///   void operator delete(void *) throw();
2997 ///   void operator delete[](void *) throw();
2998 ///   // C++11:
2999 ///   void* operator new(std::size_t);
3000 ///   void* operator new[](std::size_t);
3001 ///   void operator delete(void *) noexcept;
3002 ///   void operator delete[](void *) noexcept;
3003 ///   // C++1y:
3004 ///   void* operator new(std::size_t);
3005 ///   void* operator new[](std::size_t);
3006 ///   void operator delete(void *) noexcept;
3007 ///   void operator delete[](void *) noexcept;
3008 ///   void operator delete(void *, std::size_t) noexcept;
3009 ///   void operator delete[](void *, std::size_t) noexcept;
3010 /// @endcode
3011 /// Note that the placement and nothrow forms of new are *not* implicitly
3012 /// declared. Their use requires including \<new\>.
3013 void Sema::DeclareGlobalNewDelete() {
3014   if (GlobalNewDeleteDeclared)
3015     return;
3016 
3017   // The implicitly declared new and delete operators
3018   // are not supported in OpenCL.
3019   if (getLangOpts().OpenCLCPlusPlus)
3020     return;
3021 
3022   // C++ [basic.stc.dynamic.general]p2:
3023   //   The library provides default definitions for the global allocation
3024   //   and deallocation functions. Some global allocation and deallocation
3025   //   functions are replaceable ([new.delete]); these are attached to the
3026   //   global module ([module.unit]).
3027   if (getLangOpts().CPlusPlusModules && getCurrentModule())
3028     PushGlobalModuleFragment(SourceLocation());
3029 
3030   // C++ [basic.std.dynamic]p2:
3031   //   [...] The following allocation and deallocation functions (18.4) are
3032   //   implicitly declared in global scope in each translation unit of a
3033   //   program
3034   //
3035   //     C++03:
3036   //     void* operator new(std::size_t) throw(std::bad_alloc);
3037   //     void* operator new[](std::size_t) throw(std::bad_alloc);
3038   //     void  operator delete(void*) throw();
3039   //     void  operator delete[](void*) throw();
3040   //     C++11:
3041   //     void* operator new(std::size_t);
3042   //     void* operator new[](std::size_t);
3043   //     void  operator delete(void*) noexcept;
3044   //     void  operator delete[](void*) noexcept;
3045   //     C++1y:
3046   //     void* operator new(std::size_t);
3047   //     void* operator new[](std::size_t);
3048   //     void  operator delete(void*) noexcept;
3049   //     void  operator delete[](void*) noexcept;
3050   //     void  operator delete(void*, std::size_t) noexcept;
3051   //     void  operator delete[](void*, std::size_t) noexcept;
3052   //
3053   //   These implicit declarations introduce only the function names operator
3054   //   new, operator new[], operator delete, operator delete[].
3055   //
3056   // Here, we need to refer to std::bad_alloc, so we will implicitly declare
3057   // "std" or "bad_alloc" as necessary to form the exception specification.
3058   // However, we do not make these implicit declarations visible to name
3059   // lookup.
3060   if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
3061     // The "std::bad_alloc" class has not yet been declared, so build it
3062     // implicitly.
3063     StdBadAlloc = CXXRecordDecl::Create(
3064         Context, TagTypeKind::Class, getOrCreateStdNamespace(),
3065         SourceLocation(), SourceLocation(),
3066         &PP.getIdentifierTable().get("bad_alloc"), nullptr);
3067     getStdBadAlloc()->setImplicit(true);
3068 
3069     // The implicitly declared "std::bad_alloc" should live in global module
3070     // fragment.
3071     if (TheGlobalModuleFragment) {
3072       getStdBadAlloc()->setModuleOwnershipKind(
3073           Decl::ModuleOwnershipKind::ReachableWhenImported);
3074       getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment);
3075     }
3076   }
3077   if (!StdAlignValT && getLangOpts().AlignedAllocation) {
3078     // The "std::align_val_t" enum class has not yet been declared, so build it
3079     // implicitly.
3080     auto *AlignValT = EnumDecl::Create(
3081         Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
3082         &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
3083 
3084     // The implicitly declared "std::align_val_t" should live in global module
3085     // fragment.
3086     if (TheGlobalModuleFragment) {
3087       AlignValT->setModuleOwnershipKind(
3088           Decl::ModuleOwnershipKind::ReachableWhenImported);
3089       AlignValT->setLocalOwningModule(TheGlobalModuleFragment);
3090     }
3091 
3092     AlignValT->setIntegerType(Context.getSizeType());
3093     AlignValT->setPromotionType(Context.getSizeType());
3094     AlignValT->setImplicit(true);
3095 
3096     StdAlignValT = AlignValT;
3097   }
3098 
3099   GlobalNewDeleteDeclared = true;
3100 
3101   QualType VoidPtr = Context.getPointerType(Context.VoidTy);
3102   QualType SizeT = Context.getSizeType();
3103 
3104   auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
3105                                               QualType Return, QualType Param) {
3106     llvm::SmallVector<QualType, 3> Params;
3107     Params.push_back(Param);
3108 
3109     // Create up to four variants of the function (sized/aligned).
3110     bool HasSizedVariant = getLangOpts().SizedDeallocation &&
3111                            (Kind == OO_Delete || Kind == OO_Array_Delete);
3112     bool HasAlignedVariant = getLangOpts().AlignedAllocation;
3113 
3114     int NumSizeVariants = (HasSizedVariant ? 2 : 1);
3115     int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
3116     for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
3117       if (Sized)
3118         Params.push_back(SizeT);
3119 
3120       for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
3121         if (Aligned)
3122           Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
3123 
3124         DeclareGlobalAllocationFunction(
3125             Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
3126 
3127         if (Aligned)
3128           Params.pop_back();
3129       }
3130     }
3131   };
3132 
3133   DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3134   DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3135   DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3136   DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3137 
3138   if (getLangOpts().CPlusPlusModules && getCurrentModule())
3139     PopGlobalModuleFragment();
3140 }
3141 
3142 /// DeclareGlobalAllocationFunction - Declares a single implicit global
3143 /// allocation function if it doesn't already exist.
3144 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3145                                            QualType Return,
3146                                            ArrayRef<QualType> Params) {
3147   DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3148 
3149   // Check if this function is already declared.
3150   DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3151   for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3152        Alloc != AllocEnd; ++Alloc) {
3153     // Only look at non-template functions, as it is the predefined,
3154     // non-templated allocation function we are trying to declare here.
3155     if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
3156       if (Func->getNumParams() == Params.size()) {
3157         llvm::SmallVector<QualType, 3> FuncParams;
3158         for (auto *P : Func->parameters())
3159           FuncParams.push_back(
3160               Context.getCanonicalType(P->getType().getUnqualifiedType()));
3161         if (llvm::ArrayRef(FuncParams) == Params) {
3162           // Make the function visible to name lookup, even if we found it in
3163           // an unimported module. It either is an implicitly-declared global
3164           // allocation function, or is suppressing that function.
3165           Func->setVisibleDespiteOwningModule();
3166           return;
3167         }
3168       }
3169     }
3170   }
3171 
3172   FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3173       /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3174 
3175   QualType BadAllocType;
3176   bool HasBadAllocExceptionSpec
3177     = (Name.getCXXOverloadedOperator() == OO_New ||
3178        Name.getCXXOverloadedOperator() == OO_Array_New);
3179   if (HasBadAllocExceptionSpec) {
3180     if (!getLangOpts().CPlusPlus11) {
3181       BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3182       assert(StdBadAlloc && "Must have std::bad_alloc declared");
3183       EPI.ExceptionSpec.Type = EST_Dynamic;
3184       EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType);
3185     }
3186     if (getLangOpts().NewInfallible) {
3187       EPI.ExceptionSpec.Type = EST_DynamicNone;
3188     }
3189   } else {
3190     EPI.ExceptionSpec =
3191         getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3192   }
3193 
3194   auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3195     QualType FnType = Context.getFunctionType(Return, Params, EPI);
3196     FunctionDecl *Alloc = FunctionDecl::Create(
3197         Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType,
3198         /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false,
3199         true);
3200     Alloc->setImplicit();
3201     // Global allocation functions should always be visible.
3202     Alloc->setVisibleDespiteOwningModule();
3203 
3204     if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible &&
3205         !getLangOpts().CheckNew)
3206       Alloc->addAttr(
3207           ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3208 
3209     // C++ [basic.stc.dynamic.general]p2:
3210     //   The library provides default definitions for the global allocation
3211     //   and deallocation functions. Some global allocation and deallocation
3212     //   functions are replaceable ([new.delete]); these are attached to the
3213     //   global module ([module.unit]).
3214     //
3215     // In the language wording, these functions are attched to the global
3216     // module all the time. But in the implementation, the global module
3217     // is only meaningful when we're in a module unit. So here we attach
3218     // these allocation functions to global module conditionally.
3219     if (TheGlobalModuleFragment) {
3220       Alloc->setModuleOwnershipKind(
3221           Decl::ModuleOwnershipKind::ReachableWhenImported);
3222       Alloc->setLocalOwningModule(TheGlobalModuleFragment);
3223     }
3224 
3225     Alloc->addAttr(VisibilityAttr::CreateImplicit(
3226         Context, LangOpts.GlobalAllocationFunctionVisibilityHidden
3227                      ? VisibilityAttr::Hidden
3228                      : VisibilityAttr::Default));
3229 
3230     llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3231     for (QualType T : Params) {
3232       ParamDecls.push_back(ParmVarDecl::Create(
3233           Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3234           /*TInfo=*/nullptr, SC_None, nullptr));
3235       ParamDecls.back()->setImplicit();
3236     }
3237     Alloc->setParams(ParamDecls);
3238     if (ExtraAttr)
3239       Alloc->addAttr(ExtraAttr);
3240     AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc);
3241     Context.getTranslationUnitDecl()->addDecl(Alloc);
3242     IdResolver.tryAddTopLevelDecl(Alloc, Name);
3243   };
3244 
3245   if (!LangOpts.CUDA)
3246     CreateAllocationFunctionDecl(nullptr);
3247   else {
3248     // Host and device get their own declaration so each can be
3249     // defined or re-declared independently.
3250     CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3251     CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3252   }
3253 }
3254 
3255 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3256                                                   bool CanProvideSize,
3257                                                   bool Overaligned,
3258                                                   DeclarationName Name) {
3259   DeclareGlobalNewDelete();
3260 
3261   LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3262   LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3263 
3264   // FIXME: It's possible for this to result in ambiguity, through a
3265   // user-declared variadic operator delete or the enable_if attribute. We
3266   // should probably not consider those cases to be usual deallocation
3267   // functions. But for now we just make an arbitrary choice in that case.
3268   auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
3269                                             Overaligned);
3270   assert(Result.FD && "operator delete missing from global scope?");
3271   return Result.FD;
3272 }
3273 
3274 FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3275                                                           CXXRecordDecl *RD) {
3276   DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3277 
3278   FunctionDecl *OperatorDelete = nullptr;
3279   if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3280     return nullptr;
3281   if (OperatorDelete)
3282     return OperatorDelete;
3283 
3284   // If there's no class-specific operator delete, look up the global
3285   // non-array delete.
3286   return FindUsualDeallocationFunction(
3287       Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
3288       Name);
3289 }
3290 
3291 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3292                                     DeclarationName Name,
3293                                     FunctionDecl *&Operator, bool Diagnose,
3294                                     bool WantSize, bool WantAligned) {
3295   LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3296   // Try to find operator delete/operator delete[] in class scope.
3297   LookupQualifiedName(Found, RD);
3298 
3299   if (Found.isAmbiguous())
3300     return true;
3301 
3302   Found.suppressDiagnostics();
3303 
3304   bool Overaligned =
3305       WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD));
3306 
3307   // C++17 [expr.delete]p10:
3308   //   If the deallocation functions have class scope, the one without a
3309   //   parameter of type std::size_t is selected.
3310   llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3311   resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize,
3312                               /*WantAlign*/ Overaligned, &Matches);
3313 
3314   // If we could find an overload, use it.
3315   if (Matches.size() == 1) {
3316     Operator = cast<CXXMethodDecl>(Matches[0].FD);
3317 
3318     // FIXME: DiagnoseUseOfDecl?
3319     if (Operator->isDeleted()) {
3320       if (Diagnose) {
3321         Diag(StartLoc, diag::err_deleted_function_use);
3322         NoteDeletedFunction(Operator);
3323       }
3324       return true;
3325     }
3326 
3327     if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
3328                               Matches[0].Found, Diagnose) == AR_inaccessible)
3329       return true;
3330 
3331     return false;
3332   }
3333 
3334   // We found multiple suitable operators; complain about the ambiguity.
3335   // FIXME: The standard doesn't say to do this; it appears that the intent
3336   // is that this should never happen.
3337   if (!Matches.empty()) {
3338     if (Diagnose) {
3339       Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3340         << Name << RD;
3341       for (auto &Match : Matches)
3342         Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3343     }
3344     return true;
3345   }
3346 
3347   // We did find operator delete/operator delete[] declarations, but
3348   // none of them were suitable.
3349   if (!Found.empty()) {
3350     if (Diagnose) {
3351       Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3352         << Name << RD;
3353 
3354       for (NamedDecl *D : Found)
3355         Diag(D->getUnderlyingDecl()->getLocation(),
3356              diag::note_member_declared_here) << Name;
3357     }
3358     return true;
3359   }
3360 
3361   Operator = nullptr;
3362   return false;
3363 }
3364 
3365 namespace {
3366 /// Checks whether delete-expression, and new-expression used for
3367 ///  initializing deletee have the same array form.
3368 class MismatchingNewDeleteDetector {
3369 public:
3370   enum MismatchResult {
3371     /// Indicates that there is no mismatch or a mismatch cannot be proven.
3372     NoMismatch,
3373     /// Indicates that variable is initialized with mismatching form of \a new.
3374     VarInitMismatches,
3375     /// Indicates that member is initialized with mismatching form of \a new.
3376     MemberInitMismatches,
3377     /// Indicates that 1 or more constructors' definitions could not been
3378     /// analyzed, and they will be checked again at the end of translation unit.
3379     AnalyzeLater
3380   };
3381 
3382   /// \param EndOfTU True, if this is the final analysis at the end of
3383   /// translation unit. False, if this is the initial analysis at the point
3384   /// delete-expression was encountered.
3385   explicit MismatchingNewDeleteDetector(bool EndOfTU)
3386       : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3387         HasUndefinedConstructors(false) {}
3388 
3389   /// Checks whether pointee of a delete-expression is initialized with
3390   /// matching form of new-expression.
3391   ///
3392   /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3393   /// point where delete-expression is encountered, then a warning will be
3394   /// issued immediately. If return value is \c AnalyzeLater at the point where
3395   /// delete-expression is seen, then member will be analyzed at the end of
3396   /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3397   /// couldn't be analyzed. If at least one constructor initializes the member
3398   /// with matching type of new, the return value is \c NoMismatch.
3399   MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3400   /// Analyzes a class member.
3401   /// \param Field Class member to analyze.
3402   /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3403   /// for deleting the \p Field.
3404   MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3405   FieldDecl *Field;
3406   /// List of mismatching new-expressions used for initialization of the pointee
3407   llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3408   /// Indicates whether delete-expression was in array form.
3409   bool IsArrayForm;
3410 
3411 private:
3412   const bool EndOfTU;
3413   /// Indicates that there is at least one constructor without body.
3414   bool HasUndefinedConstructors;
3415   /// Returns \c CXXNewExpr from given initialization expression.
3416   /// \param E Expression used for initializing pointee in delete-expression.
3417   /// E can be a single-element \c InitListExpr consisting of new-expression.
3418   const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3419   /// Returns whether member is initialized with mismatching form of
3420   /// \c new either by the member initializer or in-class initialization.
3421   ///
3422   /// If bodies of all constructors are not visible at the end of translation
3423   /// unit or at least one constructor initializes member with the matching
3424   /// form of \c new, mismatch cannot be proven, and this function will return
3425   /// \c NoMismatch.
3426   MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3427   /// Returns whether variable is initialized with mismatching form of
3428   /// \c new.
3429   ///
3430   /// If variable is initialized with matching form of \c new or variable is not
3431   /// initialized with a \c new expression, this function will return true.
3432   /// If variable is initialized with mismatching form of \c new, returns false.
3433   /// \param D Variable to analyze.
3434   bool hasMatchingVarInit(const DeclRefExpr *D);
3435   /// Checks whether the constructor initializes pointee with mismatching
3436   /// form of \c new.
3437   ///
3438   /// Returns true, if member is initialized with matching form of \c new in
3439   /// member initializer list. Returns false, if member is initialized with the
3440   /// matching form of \c new in this constructor's initializer or given
3441   /// constructor isn't defined at the point where delete-expression is seen, or
3442   /// member isn't initialized by the constructor.
3443   bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3444   /// Checks whether member is initialized with matching form of
3445   /// \c new in member initializer list.
3446   bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3447   /// Checks whether member is initialized with mismatching form of \c new by
3448   /// in-class initializer.
3449   MismatchResult analyzeInClassInitializer();
3450 };
3451 }
3452 
3453 MismatchingNewDeleteDetector::MismatchResult
3454 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3455   NewExprs.clear();
3456   assert(DE && "Expected delete-expression");
3457   IsArrayForm = DE->isArrayForm();
3458   const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3459   if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
3460     return analyzeMemberExpr(ME);
3461   } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
3462     if (!hasMatchingVarInit(D))
3463       return VarInitMismatches;
3464   }
3465   return NoMismatch;
3466 }
3467 
3468 const CXXNewExpr *
3469 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3470   assert(E != nullptr && "Expected a valid initializer expression");
3471   E = E->IgnoreParenImpCasts();
3472   if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
3473     if (ILE->getNumInits() == 1)
3474       E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
3475   }
3476 
3477   return dyn_cast_or_null<const CXXNewExpr>(E);
3478 }
3479 
3480 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3481     const CXXCtorInitializer *CI) {
3482   const CXXNewExpr *NE = nullptr;
3483   if (Field == CI->getMember() &&
3484       (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
3485     if (NE->isArray() == IsArrayForm)
3486       return true;
3487     else
3488       NewExprs.push_back(NE);
3489   }
3490   return false;
3491 }
3492 
3493 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3494     const CXXConstructorDecl *CD) {
3495   if (CD->isImplicit())
3496     return false;
3497   const FunctionDecl *Definition = CD;
3498   if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3499     HasUndefinedConstructors = true;
3500     return EndOfTU;
3501   }
3502   for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3503     if (hasMatchingNewInCtorInit(CI))
3504       return true;
3505   }
3506   return false;
3507 }
3508 
3509 MismatchingNewDeleteDetector::MismatchResult
3510 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3511   assert(Field != nullptr && "This should be called only for members");
3512   const Expr *InitExpr = Field->getInClassInitializer();
3513   if (!InitExpr)
3514     return EndOfTU ? NoMismatch : AnalyzeLater;
3515   if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3516     if (NE->isArray() != IsArrayForm) {
3517       NewExprs.push_back(NE);
3518       return MemberInitMismatches;
3519     }
3520   }
3521   return NoMismatch;
3522 }
3523 
3524 MismatchingNewDeleteDetector::MismatchResult
3525 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3526                                            bool DeleteWasArrayForm) {
3527   assert(Field != nullptr && "Analysis requires a valid class member.");
3528   this->Field = Field;
3529   IsArrayForm = DeleteWasArrayForm;
3530   const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3531   for (const auto *CD : RD->ctors()) {
3532     if (hasMatchingNewInCtor(CD))
3533       return NoMismatch;
3534   }
3535   if (HasUndefinedConstructors)
3536     return EndOfTU ? NoMismatch : AnalyzeLater;
3537   if (!NewExprs.empty())
3538     return MemberInitMismatches;
3539   return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3540                                         : NoMismatch;
3541 }
3542 
3543 MismatchingNewDeleteDetector::MismatchResult
3544 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3545   assert(ME != nullptr && "Expected a member expression");
3546   if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3547     return analyzeField(F, IsArrayForm);
3548   return NoMismatch;
3549 }
3550 
3551 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3552   const CXXNewExpr *NE = nullptr;
3553   if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3554     if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3555         NE->isArray() != IsArrayForm) {
3556       NewExprs.push_back(NE);
3557     }
3558   }
3559   return NewExprs.empty();
3560 }
3561 
3562 static void
3563 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3564                             const MismatchingNewDeleteDetector &Detector) {
3565   SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3566   FixItHint H;
3567   if (!Detector.IsArrayForm)
3568     H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3569   else {
3570     SourceLocation RSquare = Lexer::findLocationAfterToken(
3571         DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3572         SemaRef.getLangOpts(), true);
3573     if (RSquare.isValid())
3574       H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3575   }
3576   SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3577       << Detector.IsArrayForm << H;
3578 
3579   for (const auto *NE : Detector.NewExprs)
3580     SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3581         << Detector.IsArrayForm;
3582 }
3583 
3584 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3585   if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3586     return;
3587   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3588   switch (Detector.analyzeDeleteExpr(DE)) {
3589   case MismatchingNewDeleteDetector::VarInitMismatches:
3590   case MismatchingNewDeleteDetector::MemberInitMismatches: {
3591     DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector);
3592     break;
3593   }
3594   case MismatchingNewDeleteDetector::AnalyzeLater: {
3595     DeleteExprs[Detector.Field].push_back(
3596         std::make_pair(DE->getBeginLoc(), DE->isArrayForm()));
3597     break;
3598   }
3599   case MismatchingNewDeleteDetector::NoMismatch:
3600     break;
3601   }
3602 }
3603 
3604 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3605                                      bool DeleteWasArrayForm) {
3606   MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3607   switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3608   case MismatchingNewDeleteDetector::VarInitMismatches:
3609     llvm_unreachable("This analysis should have been done for class members.");
3610   case MismatchingNewDeleteDetector::AnalyzeLater:
3611     llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3612                      "translation unit.");
3613   case MismatchingNewDeleteDetector::MemberInitMismatches:
3614     DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3615     break;
3616   case MismatchingNewDeleteDetector::NoMismatch:
3617     break;
3618   }
3619 }
3620 
3621 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3622 /// @code ::delete ptr; @endcode
3623 /// or
3624 /// @code delete [] ptr; @endcode
3625 ExprResult
3626 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3627                      bool ArrayForm, Expr *ExE) {
3628   // C++ [expr.delete]p1:
3629   //   The operand shall have a pointer type, or a class type having a single
3630   //   non-explicit conversion function to a pointer type. The result has type
3631   //   void.
3632   //
3633   // DR599 amends "pointer type" to "pointer to object type" in both cases.
3634 
3635   ExprResult Ex = ExE;
3636   FunctionDecl *OperatorDelete = nullptr;
3637   bool ArrayFormAsWritten = ArrayForm;
3638   bool UsualArrayDeleteWantsSize = false;
3639 
3640   if (!Ex.get()->isTypeDependent()) {
3641     // Perform lvalue-to-rvalue cast, if needed.
3642     Ex = DefaultLvalueConversion(Ex.get());
3643     if (Ex.isInvalid())
3644       return ExprError();
3645 
3646     QualType Type = Ex.get()->getType();
3647 
3648     class DeleteConverter : public ContextualImplicitConverter {
3649     public:
3650       DeleteConverter() : ContextualImplicitConverter(false, true) {}
3651 
3652       bool match(QualType ConvType) override {
3653         // FIXME: If we have an operator T* and an operator void*, we must pick
3654         // the operator T*.
3655         if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3656           if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3657             return true;
3658         return false;
3659       }
3660 
3661       SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3662                                             QualType T) override {
3663         return S.Diag(Loc, diag::err_delete_operand) << T;
3664       }
3665 
3666       SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3667                                                QualType T) override {
3668         return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3669       }
3670 
3671       SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3672                                                  QualType T,
3673                                                  QualType ConvTy) override {
3674         return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3675       }
3676 
3677       SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3678                                              QualType ConvTy) override {
3679         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3680           << ConvTy;
3681       }
3682 
3683       SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3684                                               QualType T) override {
3685         return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3686       }
3687 
3688       SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3689                                           QualType ConvTy) override {
3690         return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3691           << ConvTy;
3692       }
3693 
3694       SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3695                                                QualType T,
3696                                                QualType ConvTy) override {
3697         llvm_unreachable("conversion functions are permitted");
3698       }
3699     } Converter;
3700 
3701     Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3702     if (Ex.isInvalid())
3703       return ExprError();
3704     Type = Ex.get()->getType();
3705     if (!Converter.match(Type))
3706       // FIXME: PerformContextualImplicitConversion should return ExprError
3707       //        itself in this case.
3708       return ExprError();
3709 
3710     QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3711     QualType PointeeElem = Context.getBaseElementType(Pointee);
3712 
3713     if (Pointee.getAddressSpace() != LangAS::Default &&
3714         !getLangOpts().OpenCLCPlusPlus)
3715       return Diag(Ex.get()->getBeginLoc(),
3716                   diag::err_address_space_qualified_delete)
3717              << Pointee.getUnqualifiedType()
3718              << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3719 
3720     CXXRecordDecl *PointeeRD = nullptr;
3721     if (Pointee->isVoidType() && !isSFINAEContext()) {
3722       // The C++ standard bans deleting a pointer to a non-object type, which
3723       // effectively bans deletion of "void*". However, most compilers support
3724       // this, so we treat it as a warning unless we're in a SFINAE context.
3725       Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3726         << Type << Ex.get()->getSourceRange();
3727     } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3728                Pointee->isSizelessType()) {
3729       return ExprError(Diag(StartLoc, diag::err_delete_operand)
3730         << Type << Ex.get()->getSourceRange());
3731     } else if (!Pointee->isDependentType()) {
3732       // FIXME: This can result in errors if the definition was imported from a
3733       // module but is hidden.
3734       if (!RequireCompleteType(StartLoc, Pointee,
3735                                diag::warn_delete_incomplete, Ex.get())) {
3736         if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3737           PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3738       }
3739     }
3740 
3741     if (Pointee->isArrayType() && !ArrayForm) {
3742       Diag(StartLoc, diag::warn_delete_array_type)
3743           << Type << Ex.get()->getSourceRange()
3744           << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3745       ArrayForm = true;
3746     }
3747 
3748     DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3749                                       ArrayForm ? OO_Array_Delete : OO_Delete);
3750 
3751     if (PointeeRD) {
3752       if (!UseGlobal &&
3753           FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3754                                    OperatorDelete))
3755         return ExprError();
3756 
3757       // If we're allocating an array of records, check whether the
3758       // usual operator delete[] has a size_t parameter.
3759       if (ArrayForm) {
3760         // If the user specifically asked to use the global allocator,
3761         // we'll need to do the lookup into the class.
3762         if (UseGlobal)
3763           UsualArrayDeleteWantsSize =
3764             doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3765 
3766         // Otherwise, the usual operator delete[] should be the
3767         // function we just found.
3768         else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3769           UsualArrayDeleteWantsSize =
3770             UsualDeallocFnInfo(*this,
3771                                DeclAccessPair::make(OperatorDelete, AS_public))
3772               .HasSizeT;
3773       }
3774 
3775       if (!PointeeRD->hasIrrelevantDestructor())
3776         if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3777           MarkFunctionReferenced(StartLoc,
3778                                     const_cast<CXXDestructorDecl*>(Dtor));
3779           if (DiagnoseUseOfDecl(Dtor, StartLoc))
3780             return ExprError();
3781         }
3782 
3783       CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3784                            /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3785                            /*WarnOnNonAbstractTypes=*/!ArrayForm,
3786                            SourceLocation());
3787     }
3788 
3789     if (!OperatorDelete) {
3790       if (getLangOpts().OpenCLCPlusPlus) {
3791         Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3792         return ExprError();
3793       }
3794 
3795       bool IsComplete = isCompleteType(StartLoc, Pointee);
3796       bool CanProvideSize =
3797           IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3798                          Pointee.isDestructedType());
3799       bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3800 
3801       // Look for a global declaration.
3802       OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3803                                                      Overaligned, DeleteName);
3804     }
3805 
3806     MarkFunctionReferenced(StartLoc, OperatorDelete);
3807 
3808     // Check access and ambiguity of destructor if we're going to call it.
3809     // Note that this is required even for a virtual delete.
3810     bool IsVirtualDelete = false;
3811     if (PointeeRD) {
3812       if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3813         CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3814                               PDiag(diag::err_access_dtor) << PointeeElem);
3815         IsVirtualDelete = Dtor->isVirtual();
3816       }
3817     }
3818 
3819     DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3820 
3821     // Convert the operand to the type of the first parameter of operator
3822     // delete. This is only necessary if we selected a destroying operator
3823     // delete that we are going to call (non-virtually); converting to void*
3824     // is trivial and left to AST consumers to handle.
3825     QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3826     if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3827       Qualifiers Qs = Pointee.getQualifiers();
3828       if (Qs.hasCVRQualifiers()) {
3829         // Qualifiers are irrelevant to this conversion; we're only looking
3830         // for access and ambiguity.
3831         Qs.removeCVRQualifiers();
3832         QualType Unqual = Context.getPointerType(
3833             Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3834         Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3835       }
3836       Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3837       if (Ex.isInvalid())
3838         return ExprError();
3839     }
3840   }
3841 
3842   CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3843       Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3844       UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3845   AnalyzeDeleteExprMismatch(Result);
3846   return Result;
3847 }
3848 
3849 static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3850                                             bool IsDelete,
3851                                             FunctionDecl *&Operator) {
3852 
3853   DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3854       IsDelete ? OO_Delete : OO_New);
3855 
3856   LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3857   S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3858   assert(!R.empty() && "implicitly declared allocation functions not found");
3859   assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3860 
3861   // We do our own custom access checks below.
3862   R.suppressDiagnostics();
3863 
3864   SmallVector<Expr *, 8> Args(TheCall->arguments());
3865   OverloadCandidateSet Candidates(R.getNameLoc(),
3866                                   OverloadCandidateSet::CSK_Normal);
3867   for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3868        FnOvl != FnOvlEnd; ++FnOvl) {
3869     // Even member operator new/delete are implicitly treated as
3870     // static, so don't use AddMemberCandidate.
3871     NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3872 
3873     if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3874       S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3875                                      /*ExplicitTemplateArgs=*/nullptr, Args,
3876                                      Candidates,
3877                                      /*SuppressUserConversions=*/false);
3878       continue;
3879     }
3880 
3881     FunctionDecl *Fn = cast<FunctionDecl>(D);
3882     S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3883                            /*SuppressUserConversions=*/false);
3884   }
3885 
3886   SourceRange Range = TheCall->getSourceRange();
3887 
3888   // Do the resolution.
3889   OverloadCandidateSet::iterator Best;
3890   switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3891   case OR_Success: {
3892     // Got one!
3893     FunctionDecl *FnDecl = Best->Function;
3894     assert(R.getNamingClass() == nullptr &&
3895            "class members should not be considered");
3896 
3897     if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3898       S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3899           << (IsDelete ? 1 : 0) << Range;
3900       S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3901           << R.getLookupName() << FnDecl->getSourceRange();
3902       return true;
3903     }
3904 
3905     Operator = FnDecl;
3906     return false;
3907   }
3908 
3909   case OR_No_Viable_Function:
3910     Candidates.NoteCandidates(
3911         PartialDiagnosticAt(R.getNameLoc(),
3912                             S.PDiag(diag::err_ovl_no_viable_function_in_call)
3913                                 << R.getLookupName() << Range),
3914         S, OCD_AllCandidates, Args);
3915     return true;
3916 
3917   case OR_Ambiguous:
3918     Candidates.NoteCandidates(
3919         PartialDiagnosticAt(R.getNameLoc(),
3920                             S.PDiag(diag::err_ovl_ambiguous_call)
3921                                 << R.getLookupName() << Range),
3922         S, OCD_AmbiguousCandidates, Args);
3923     return true;
3924 
3925   case OR_Deleted: {
3926     Candidates.NoteCandidates(
3927         PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3928                                                 << R.getLookupName() << Range),
3929         S, OCD_AllCandidates, Args);
3930     return true;
3931   }
3932   }
3933   llvm_unreachable("Unreachable, bad result from BestViableFunction");
3934 }
3935 
3936 ExprResult
3937 Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3938                                              bool IsDelete) {
3939   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3940   if (!getLangOpts().CPlusPlus) {
3941     Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3942         << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3943         << "C++";
3944     return ExprError();
3945   }
3946   // CodeGen assumes it can find the global new and delete to call,
3947   // so ensure that they are declared.
3948   DeclareGlobalNewDelete();
3949 
3950   FunctionDecl *OperatorNewOrDelete = nullptr;
3951   if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3952                                       OperatorNewOrDelete))
3953     return ExprError();
3954   assert(OperatorNewOrDelete && "should be found");
3955 
3956   DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc());
3957   MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete);
3958 
3959   TheCall->setType(OperatorNewOrDelete->getReturnType());
3960   for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3961     QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3962     InitializedEntity Entity =
3963         InitializedEntity::InitializeParameter(Context, ParamTy, false);
3964     ExprResult Arg = PerformCopyInitialization(
3965         Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i));
3966     if (Arg.isInvalid())
3967       return ExprError();
3968     TheCall->setArg(i, Arg.get());
3969   }
3970   auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3971   assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3972          "Callee expected to be implicit cast to a builtin function pointer");
3973   Callee->setType(OperatorNewOrDelete->getType());
3974 
3975   return TheCallResult;
3976 }
3977 
3978 void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3979                                 bool IsDelete, bool CallCanBeVirtual,
3980                                 bool WarnOnNonAbstractTypes,
3981                                 SourceLocation DtorLoc) {
3982   if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3983     return;
3984 
3985   // C++ [expr.delete]p3:
3986   //   In the first alternative (delete object), if the static type of the
3987   //   object to be deleted is different from its dynamic type, the static
3988   //   type shall be a base class of the dynamic type of the object to be
3989   //   deleted and the static type shall have a virtual destructor or the
3990   //   behavior is undefined.
3991   //
3992   const CXXRecordDecl *PointeeRD = dtor->getParent();
3993   // Note: a final class cannot be derived from, no issue there
3994   if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3995     return;
3996 
3997   // If the superclass is in a system header, there's nothing that can be done.
3998   // The `delete` (where we emit the warning) can be in a system header,
3999   // what matters for this warning is where the deleted type is defined.
4000   if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
4001     return;
4002 
4003   QualType ClassType = dtor->getFunctionObjectParameterType();
4004   if (PointeeRD->isAbstract()) {
4005     // If the class is abstract, we warn by default, because we're
4006     // sure the code has undefined behavior.
4007     Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
4008                                                            << ClassType;
4009   } else if (WarnOnNonAbstractTypes) {
4010     // Otherwise, if this is not an array delete, it's a bit suspect,
4011     // but not necessarily wrong.
4012     Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
4013                                                   << ClassType;
4014   }
4015   if (!IsDelete) {
4016     std::string TypeStr;
4017     ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
4018     Diag(DtorLoc, diag::note_delete_non_virtual)
4019         << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
4020   }
4021 }
4022 
4023 Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
4024                                                    SourceLocation StmtLoc,
4025                                                    ConditionKind CK) {
4026   ExprResult E =
4027       CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
4028   if (E.isInvalid())
4029     return ConditionError();
4030   return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
4031                          CK == ConditionKind::ConstexprIf);
4032 }
4033 
4034 /// Check the use of the given variable as a C++ condition in an if,
4035 /// while, do-while, or switch statement.
4036 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
4037                                         SourceLocation StmtLoc,
4038                                         ConditionKind CK) {
4039   if (ConditionVar->isInvalidDecl())
4040     return ExprError();
4041 
4042   QualType T = ConditionVar->getType();
4043 
4044   // C++ [stmt.select]p2:
4045   //   The declarator shall not specify a function or an array.
4046   if (T->isFunctionType())
4047     return ExprError(Diag(ConditionVar->getLocation(),
4048                           diag::err_invalid_use_of_function_type)
4049                        << ConditionVar->getSourceRange());
4050   else if (T->isArrayType())
4051     return ExprError(Diag(ConditionVar->getLocation(),
4052                           diag::err_invalid_use_of_array_type)
4053                      << ConditionVar->getSourceRange());
4054 
4055   ExprResult Condition = BuildDeclRefExpr(
4056       ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
4057       ConditionVar->getLocation());
4058 
4059   switch (CK) {
4060   case ConditionKind::Boolean:
4061     return CheckBooleanCondition(StmtLoc, Condition.get());
4062 
4063   case ConditionKind::ConstexprIf:
4064     return CheckBooleanCondition(StmtLoc, Condition.get(), true);
4065 
4066   case ConditionKind::Switch:
4067     return CheckSwitchCondition(StmtLoc, Condition.get());
4068   }
4069 
4070   llvm_unreachable("unexpected condition kind");
4071 }
4072 
4073 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
4074 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
4075   // C++11 6.4p4:
4076   // The value of a condition that is an initialized declaration in a statement
4077   // other than a switch statement is the value of the declared variable
4078   // implicitly converted to type bool. If that conversion is ill-formed, the
4079   // program is ill-formed.
4080   // The value of a condition that is an expression is the value of the
4081   // expression, implicitly converted to bool.
4082   //
4083   // C++23 8.5.2p2
4084   // If the if statement is of the form if constexpr, the value of the condition
4085   // is contextually converted to bool and the converted expression shall be
4086   // a constant expression.
4087   //
4088 
4089   ExprResult E = PerformContextuallyConvertToBool(CondExpr);
4090   if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
4091     return E;
4092 
4093   // FIXME: Return this value to the caller so they don't need to recompute it.
4094   llvm::APSInt Cond;
4095   E = VerifyIntegerConstantExpression(
4096       E.get(), &Cond,
4097       diag::err_constexpr_if_condition_expression_is_not_constant);
4098   return E;
4099 }
4100 
4101 /// Helper function to determine whether this is the (deprecated) C++
4102 /// conversion from a string literal to a pointer to non-const char or
4103 /// non-const wchar_t (for narrow and wide string literals,
4104 /// respectively).
4105 bool
4106 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
4107   // Look inside the implicit cast, if it exists.
4108   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
4109     From = Cast->getSubExpr();
4110 
4111   // A string literal (2.13.4) that is not a wide string literal can
4112   // be converted to an rvalue of type "pointer to char"; a wide
4113   // string literal can be converted to an rvalue of type "pointer
4114   // to wchar_t" (C++ 4.2p2).
4115   if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
4116     if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
4117       if (const BuiltinType *ToPointeeType
4118           = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
4119         // This conversion is considered only when there is an
4120         // explicit appropriate pointer target type (C++ 4.2p2).
4121         if (!ToPtrType->getPointeeType().hasQualifiers()) {
4122           switch (StrLit->getKind()) {
4123           case StringLiteralKind::UTF8:
4124           case StringLiteralKind::UTF16:
4125           case StringLiteralKind::UTF32:
4126             // We don't allow UTF literals to be implicitly converted
4127             break;
4128           case StringLiteralKind::Ordinary:
4129             return (ToPointeeType->getKind() == BuiltinType::Char_U ||
4130                     ToPointeeType->getKind() == BuiltinType::Char_S);
4131           case StringLiteralKind::Wide:
4132             return Context.typesAreCompatible(Context.getWideCharType(),
4133                                               QualType(ToPointeeType, 0));
4134           case StringLiteralKind::Unevaluated:
4135             assert(false && "Unevaluated string literal in expression");
4136             break;
4137           }
4138         }
4139       }
4140 
4141   return false;
4142 }
4143 
4144 static ExprResult BuildCXXCastArgument(Sema &S,
4145                                        SourceLocation CastLoc,
4146                                        QualType Ty,
4147                                        CastKind Kind,
4148                                        CXXMethodDecl *Method,
4149                                        DeclAccessPair FoundDecl,
4150                                        bool HadMultipleCandidates,
4151                                        Expr *From) {
4152   switch (Kind) {
4153   default: llvm_unreachable("Unhandled cast kind!");
4154   case CK_ConstructorConversion: {
4155     CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
4156     SmallVector<Expr*, 8> ConstructorArgs;
4157 
4158     if (S.RequireNonAbstractType(CastLoc, Ty,
4159                                  diag::err_allocation_of_abstract_type))
4160       return ExprError();
4161 
4162     if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc,
4163                                   ConstructorArgs))
4164       return ExprError();
4165 
4166     S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
4167                              InitializedEntity::InitializeTemporary(Ty));
4168     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4169       return ExprError();
4170 
4171     ExprResult Result = S.BuildCXXConstructExpr(
4172         CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
4173         ConstructorArgs, HadMultipleCandidates,
4174         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4175         CXXConstructionKind::Complete, SourceRange());
4176     if (Result.isInvalid())
4177       return ExprError();
4178 
4179     return S.MaybeBindToTemporary(Result.getAs<Expr>());
4180   }
4181 
4182   case CK_UserDefinedConversion: {
4183     assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
4184 
4185     S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
4186     if (S.DiagnoseUseOfDecl(Method, CastLoc))
4187       return ExprError();
4188 
4189     // Create an implicit call expr that calls it.
4190     CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
4191     ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
4192                                                  HadMultipleCandidates);
4193     if (Result.isInvalid())
4194       return ExprError();
4195     // Record usage of conversion in an implicit cast.
4196     Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
4197                                       CK_UserDefinedConversion, Result.get(),
4198                                       nullptr, Result.get()->getValueKind(),
4199                                       S.CurFPFeatureOverrides());
4200 
4201     return S.MaybeBindToTemporary(Result.get());
4202   }
4203   }
4204 }
4205 
4206 /// PerformImplicitConversion - Perform an implicit conversion of the
4207 /// expression From to the type ToType using the pre-computed implicit
4208 /// conversion sequence ICS. Returns the converted
4209 /// expression. Action is the kind of conversion we're performing,
4210 /// used in the error message.
4211 ExprResult
4212 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4213                                 const ImplicitConversionSequence &ICS,
4214                                 AssignmentAction Action,
4215                                 CheckedConversionKind CCK) {
4216   // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4217   if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4218     return From;
4219 
4220   switch (ICS.getKind()) {
4221   case ImplicitConversionSequence::StandardConversion: {
4222     ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
4223                                                Action, CCK);
4224     if (Res.isInvalid())
4225       return ExprError();
4226     From = Res.get();
4227     break;
4228   }
4229 
4230   case ImplicitConversionSequence::UserDefinedConversion: {
4231 
4232       FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4233       CastKind CastKind;
4234       QualType BeforeToType;
4235       assert(FD && "no conversion function for user-defined conversion seq");
4236       if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
4237         CastKind = CK_UserDefinedConversion;
4238 
4239         // If the user-defined conversion is specified by a conversion function,
4240         // the initial standard conversion sequence converts the source type to
4241         // the implicit object parameter of the conversion function.
4242         BeforeToType = Context.getTagDeclType(Conv->getParent());
4243       } else {
4244         const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
4245         CastKind = CK_ConstructorConversion;
4246         // Do no conversion if dealing with ... for the first conversion.
4247         if (!ICS.UserDefined.EllipsisConversion) {
4248           // If the user-defined conversion is specified by a constructor, the
4249           // initial standard conversion sequence converts the source type to
4250           // the type required by the argument of the constructor
4251           BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4252         }
4253       }
4254       // Watch out for ellipsis conversion.
4255       if (!ICS.UserDefined.EllipsisConversion) {
4256         ExprResult Res =
4257           PerformImplicitConversion(From, BeforeToType,
4258                                     ICS.UserDefined.Before, AA_Converting,
4259                                     CCK);
4260         if (Res.isInvalid())
4261           return ExprError();
4262         From = Res.get();
4263       }
4264 
4265       ExprResult CastArg = BuildCXXCastArgument(
4266           *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4267           cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction,
4268           ICS.UserDefined.HadMultipleCandidates, From);
4269 
4270       if (CastArg.isInvalid())
4271         return ExprError();
4272 
4273       From = CastArg.get();
4274 
4275       // C++ [over.match.oper]p7:
4276       //   [...] the second standard conversion sequence of a user-defined
4277       //   conversion sequence is not applied.
4278       if (CCK == CCK_ForBuiltinOverloadedOp)
4279         return From;
4280 
4281       return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
4282                                        AA_Converting, CCK);
4283   }
4284 
4285   case ImplicitConversionSequence::AmbiguousConversion:
4286     ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4287                           PDiag(diag::err_typecheck_ambiguous_condition)
4288                             << From->getSourceRange());
4289     return ExprError();
4290 
4291   case ImplicitConversionSequence::EllipsisConversion:
4292   case ImplicitConversionSequence::StaticObjectArgumentConversion:
4293     llvm_unreachable("bad conversion");
4294 
4295   case ImplicitConversionSequence::BadConversion:
4296     Sema::AssignConvertType ConvTy =
4297         CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType());
4298     bool Diagnosed = DiagnoseAssignmentResult(
4299         ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(),
4300         ToType, From->getType(), From, Action);
4301     assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4302     return ExprError();
4303   }
4304 
4305   // Everything went well.
4306   return From;
4307 }
4308 
4309 /// PerformImplicitConversion - Perform an implicit conversion of the
4310 /// expression From to the type ToType by following the standard
4311 /// conversion sequence SCS. Returns the converted
4312 /// expression. Flavor is the context in which we're performing this
4313 /// conversion, for use in error messages.
4314 ExprResult
4315 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4316                                 const StandardConversionSequence& SCS,
4317                                 AssignmentAction Action,
4318                                 CheckedConversionKind CCK) {
4319   bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4320 
4321   // Overall FIXME: we are recomputing too many types here and doing far too
4322   // much extra work. What this means is that we need to keep track of more
4323   // information that is computed when we try the implicit conversion initially,
4324   // so that we don't need to recompute anything here.
4325   QualType FromType = From->getType();
4326 
4327   if (SCS.CopyConstructor) {
4328     // FIXME: When can ToType be a reference type?
4329     assert(!ToType->isReferenceType());
4330     if (SCS.Second == ICK_Derived_To_Base) {
4331       SmallVector<Expr*, 8> ConstructorArgs;
4332       if (CompleteConstructorCall(
4333               cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From,
4334               /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs))
4335         return ExprError();
4336       return BuildCXXConstructExpr(
4337           /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4338           SCS.FoundCopyConstructor, SCS.CopyConstructor, ConstructorArgs,
4339           /*HadMultipleCandidates*/ false,
4340           /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4341           CXXConstructionKind::Complete, SourceRange());
4342     }
4343     return BuildCXXConstructExpr(
4344         /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
4345         SCS.FoundCopyConstructor, SCS.CopyConstructor, From,
4346         /*HadMultipleCandidates*/ false,
4347         /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
4348         CXXConstructionKind::Complete, SourceRange());
4349   }
4350 
4351   // Resolve overloaded function references.
4352   if (Context.hasSameType(FromType, Context.OverloadTy)) {
4353     DeclAccessPair Found;
4354     FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
4355                                                           true, Found);
4356     if (!Fn)
4357       return ExprError();
4358 
4359     if (DiagnoseUseOfDecl(Fn, From->getBeginLoc()))
4360       return ExprError();
4361 
4362     ExprResult Res = FixOverloadedFunctionReference(From, Found, Fn);
4363     if (Res.isInvalid())
4364       return ExprError();
4365 
4366     // We might get back another placeholder expression if we resolved to a
4367     // builtin.
4368     Res = CheckPlaceholderExpr(Res.get());
4369     if (Res.isInvalid())
4370       return ExprError();
4371 
4372     From = Res.get();
4373     FromType = From->getType();
4374   }
4375 
4376   // If we're converting to an atomic type, first convert to the corresponding
4377   // non-atomic type.
4378   QualType ToAtomicType;
4379   if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4380     ToAtomicType = ToType;
4381     ToType = ToAtomic->getValueType();
4382   }
4383 
4384   QualType InitialFromType = FromType;
4385   // Perform the first implicit conversion.
4386   switch (SCS.First) {
4387   case ICK_Identity:
4388     if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4389       FromType = FromAtomic->getValueType().getUnqualifiedType();
4390       From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
4391                                       From, /*BasePath=*/nullptr, VK_PRValue,
4392                                       FPOptionsOverride());
4393     }
4394     break;
4395 
4396   case ICK_Lvalue_To_Rvalue: {
4397     assert(From->getObjectKind() != OK_ObjCProperty);
4398     ExprResult FromRes = DefaultLvalueConversion(From);
4399     if (FromRes.isInvalid())
4400       return ExprError();
4401 
4402     From = FromRes.get();
4403     FromType = From->getType();
4404     break;
4405   }
4406 
4407   case ICK_Array_To_Pointer:
4408     FromType = Context.getArrayDecayedType(FromType);
4409     From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue,
4410                              /*BasePath=*/nullptr, CCK)
4411                .get();
4412     break;
4413 
4414   case ICK_Function_To_Pointer:
4415     FromType = Context.getPointerType(FromType);
4416     From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
4417                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4418                .get();
4419     break;
4420 
4421   default:
4422     llvm_unreachable("Improper first standard conversion");
4423   }
4424 
4425   // Perform the second implicit conversion
4426   switch (SCS.Second) {
4427   case ICK_Identity:
4428     // C++ [except.spec]p5:
4429     //   [For] assignment to and initialization of pointers to functions,
4430     //   pointers to member functions, and references to functions: the
4431     //   target entity shall allow at least the exceptions allowed by the
4432     //   source value in the assignment or initialization.
4433     switch (Action) {
4434     case AA_Assigning:
4435     case AA_Initializing:
4436       // Note, function argument passing and returning are initialization.
4437     case AA_Passing:
4438     case AA_Returning:
4439     case AA_Sending:
4440     case AA_Passing_CFAudited:
4441       if (CheckExceptionSpecCompatibility(From, ToType))
4442         return ExprError();
4443       break;
4444 
4445     case AA_Casting:
4446     case AA_Converting:
4447       // Casts and implicit conversions are not initialization, so are not
4448       // checked for exception specification mismatches.
4449       break;
4450     }
4451     // Nothing else to do.
4452     break;
4453 
4454   case ICK_Integral_Promotion:
4455   case ICK_Integral_Conversion:
4456     if (ToType->isBooleanType()) {
4457       assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4458              SCS.Second == ICK_Integral_Promotion &&
4459              "only enums with fixed underlying type can promote to bool");
4460       From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue,
4461                                /*BasePath=*/nullptr, CCK)
4462                  .get();
4463     } else {
4464       From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue,
4465                                /*BasePath=*/nullptr, CCK)
4466                  .get();
4467     }
4468     break;
4469 
4470   case ICK_Floating_Promotion:
4471   case ICK_Floating_Conversion:
4472     From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue,
4473                              /*BasePath=*/nullptr, CCK)
4474                .get();
4475     break;
4476 
4477   case ICK_Complex_Promotion:
4478   case ICK_Complex_Conversion: {
4479     QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4480     QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4481     CastKind CK;
4482     if (FromEl->isRealFloatingType()) {
4483       if (ToEl->isRealFloatingType())
4484         CK = CK_FloatingComplexCast;
4485       else
4486         CK = CK_FloatingComplexToIntegralComplex;
4487     } else if (ToEl->isRealFloatingType()) {
4488       CK = CK_IntegralComplexToFloatingComplex;
4489     } else {
4490       CK = CK_IntegralComplexCast;
4491     }
4492     From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr,
4493                              CCK)
4494                .get();
4495     break;
4496   }
4497 
4498   case ICK_Floating_Integral:
4499     if (ToType->isRealFloatingType())
4500       From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue,
4501                                /*BasePath=*/nullptr, CCK)
4502                  .get();
4503     else
4504       From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue,
4505                                /*BasePath=*/nullptr, CCK)
4506                  .get();
4507     break;
4508 
4509   case ICK_Fixed_Point_Conversion:
4510     assert((FromType->isFixedPointType() || ToType->isFixedPointType()) &&
4511            "Attempting implicit fixed point conversion without a fixed "
4512            "point operand");
4513     if (FromType->isFloatingType())
4514       From = ImpCastExprToType(From, ToType, CK_FloatingToFixedPoint,
4515                                VK_PRValue,
4516                                /*BasePath=*/nullptr, CCK).get();
4517     else if (ToType->isFloatingType())
4518       From = ImpCastExprToType(From, ToType, CK_FixedPointToFloating,
4519                                VK_PRValue,
4520                                /*BasePath=*/nullptr, CCK).get();
4521     else if (FromType->isIntegralType(Context))
4522       From = ImpCastExprToType(From, ToType, CK_IntegralToFixedPoint,
4523                                VK_PRValue,
4524                                /*BasePath=*/nullptr, CCK).get();
4525     else if (ToType->isIntegralType(Context))
4526       From = ImpCastExprToType(From, ToType, CK_FixedPointToIntegral,
4527                                VK_PRValue,
4528                                /*BasePath=*/nullptr, CCK).get();
4529     else if (ToType->isBooleanType())
4530       From = ImpCastExprToType(From, ToType, CK_FixedPointToBoolean,
4531                                VK_PRValue,
4532                                /*BasePath=*/nullptr, CCK).get();
4533     else
4534       From = ImpCastExprToType(From, ToType, CK_FixedPointCast,
4535                                VK_PRValue,
4536                                /*BasePath=*/nullptr, CCK).get();
4537     break;
4538 
4539   case ICK_Compatible_Conversion:
4540     From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(),
4541                              /*BasePath=*/nullptr, CCK).get();
4542     break;
4543 
4544   case ICK_Writeback_Conversion:
4545   case ICK_Pointer_Conversion: {
4546     if (SCS.IncompatibleObjC && Action != AA_Casting) {
4547       // Diagnose incompatible Objective-C conversions
4548       if (Action == AA_Initializing || Action == AA_Assigning)
4549         Diag(From->getBeginLoc(),
4550              diag::ext_typecheck_convert_incompatible_pointer)
4551             << ToType << From->getType() << Action << From->getSourceRange()
4552             << 0;
4553       else
4554         Diag(From->getBeginLoc(),
4555              diag::ext_typecheck_convert_incompatible_pointer)
4556             << From->getType() << ToType << Action << From->getSourceRange()
4557             << 0;
4558 
4559       if (From->getType()->isObjCObjectPointerType() &&
4560           ToType->isObjCObjectPointerType())
4561         EmitRelatedResultTypeNote(From);
4562     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4563                !CheckObjCARCUnavailableWeakConversion(ToType,
4564                                                       From->getType())) {
4565       if (Action == AA_Initializing)
4566         Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4567       else
4568         Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4569             << (Action == AA_Casting) << From->getType() << ToType
4570             << From->getSourceRange();
4571     }
4572 
4573     // Defer address space conversion to the third conversion.
4574     QualType FromPteeType = From->getType()->getPointeeType();
4575     QualType ToPteeType = ToType->getPointeeType();
4576     QualType NewToType = ToType;
4577     if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4578         FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4579       NewToType = Context.removeAddrSpaceQualType(ToPteeType);
4580       NewToType = Context.getAddrSpaceQualType(NewToType,
4581                                                FromPteeType.getAddressSpace());
4582       if (ToType->isObjCObjectPointerType())
4583         NewToType = Context.getObjCObjectPointerType(NewToType);
4584       else if (ToType->isBlockPointerType())
4585         NewToType = Context.getBlockPointerType(NewToType);
4586       else
4587         NewToType = Context.getPointerType(NewToType);
4588     }
4589 
4590     CastKind Kind;
4591     CXXCastPath BasePath;
4592     if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle))
4593       return ExprError();
4594 
4595     // Make sure we extend blocks if necessary.
4596     // FIXME: doing this here is really ugly.
4597     if (Kind == CK_BlockPointerToObjCPointerCast) {
4598       ExprResult E = From;
4599       (void) PrepareCastToObjCObjectPointer(E);
4600       From = E.get();
4601     }
4602     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4603       CheckObjCConversion(SourceRange(), NewToType, From, CCK);
4604     From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK)
4605                .get();
4606     break;
4607   }
4608 
4609   case ICK_Pointer_Member: {
4610     CastKind Kind;
4611     CXXCastPath BasePath;
4612     if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4613       return ExprError();
4614     if (CheckExceptionSpecCompatibility(From, ToType))
4615       return ExprError();
4616 
4617     // We may not have been able to figure out what this member pointer resolved
4618     // to up until this exact point.  Attempt to lock-in it's inheritance model.
4619     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4620       (void)isCompleteType(From->getExprLoc(), From->getType());
4621       (void)isCompleteType(From->getExprLoc(), ToType);
4622     }
4623 
4624     From =
4625         ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get();
4626     break;
4627   }
4628 
4629   case ICK_Boolean_Conversion:
4630     // Perform half-to-boolean conversion via float.
4631     if (From->getType()->isHalfType()) {
4632       From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4633       FromType = Context.FloatTy;
4634     }
4635 
4636     From = ImpCastExprToType(From, Context.BoolTy,
4637                              ScalarTypeToBooleanCastKind(FromType), VK_PRValue,
4638                              /*BasePath=*/nullptr, CCK)
4639                .get();
4640     break;
4641 
4642   case ICK_Derived_To_Base: {
4643     CXXCastPath BasePath;
4644     if (CheckDerivedToBaseConversion(
4645             From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4646             From->getSourceRange(), &BasePath, CStyle))
4647       return ExprError();
4648 
4649     From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4650                       CK_DerivedToBase, From->getValueKind(),
4651                       &BasePath, CCK).get();
4652     break;
4653   }
4654 
4655   case ICK_Vector_Conversion:
4656     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4657                              /*BasePath=*/nullptr, CCK)
4658                .get();
4659     break;
4660 
4661   case ICK_SVE_Vector_Conversion:
4662   case ICK_RVV_Vector_Conversion:
4663     From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue,
4664                              /*BasePath=*/nullptr, CCK)
4665                .get();
4666     break;
4667 
4668   case ICK_Vector_Splat: {
4669     // Vector splat from any arithmetic type to a vector.
4670     Expr *Elem = prepareVectorSplat(ToType, From).get();
4671     From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue,
4672                              /*BasePath=*/nullptr, CCK)
4673                .get();
4674     break;
4675   }
4676 
4677   case ICK_Complex_Real:
4678     // Case 1.  x -> _Complex y
4679     if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4680       QualType ElType = ToComplex->getElementType();
4681       bool isFloatingComplex = ElType->isRealFloatingType();
4682 
4683       // x -> y
4684       if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4685         // do nothing
4686       } else if (From->getType()->isRealFloatingType()) {
4687         From = ImpCastExprToType(From, ElType,
4688                 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4689       } else {
4690         assert(From->getType()->isIntegerType());
4691         From = ImpCastExprToType(From, ElType,
4692                 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4693       }
4694       // y -> _Complex y
4695       From = ImpCastExprToType(From, ToType,
4696                    isFloatingComplex ? CK_FloatingRealToComplex
4697                                      : CK_IntegralRealToComplex).get();
4698 
4699     // Case 2.  _Complex x -> y
4700     } else {
4701       auto *FromComplex = From->getType()->castAs<ComplexType>();
4702       QualType ElType = FromComplex->getElementType();
4703       bool isFloatingComplex = ElType->isRealFloatingType();
4704 
4705       // _Complex x -> x
4706       From = ImpCastExprToType(From, ElType,
4707                                isFloatingComplex ? CK_FloatingComplexToReal
4708                                                  : CK_IntegralComplexToReal,
4709                                VK_PRValue, /*BasePath=*/nullptr, CCK)
4710                  .get();
4711 
4712       // x -> y
4713       if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4714         // do nothing
4715       } else if (ToType->isRealFloatingType()) {
4716         From = ImpCastExprToType(From, ToType,
4717                                  isFloatingComplex ? CK_FloatingCast
4718                                                    : CK_IntegralToFloating,
4719                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4720                    .get();
4721       } else {
4722         assert(ToType->isIntegerType());
4723         From = ImpCastExprToType(From, ToType,
4724                                  isFloatingComplex ? CK_FloatingToIntegral
4725                                                    : CK_IntegralCast,
4726                                  VK_PRValue, /*BasePath=*/nullptr, CCK)
4727                    .get();
4728       }
4729     }
4730     break;
4731 
4732   case ICK_Block_Pointer_Conversion: {
4733     LangAS AddrSpaceL =
4734         ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4735     LangAS AddrSpaceR =
4736         FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4737     assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4738            "Invalid cast");
4739     CastKind Kind =
4740         AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4741     From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind,
4742                              VK_PRValue, /*BasePath=*/nullptr, CCK)
4743                .get();
4744     break;
4745   }
4746 
4747   case ICK_TransparentUnionConversion: {
4748     ExprResult FromRes = From;
4749     Sema::AssignConvertType ConvTy =
4750       CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4751     if (FromRes.isInvalid())
4752       return ExprError();
4753     From = FromRes.get();
4754     assert ((ConvTy == Sema::Compatible) &&
4755             "Improper transparent union conversion");
4756     (void)ConvTy;
4757     break;
4758   }
4759 
4760   case ICK_Zero_Event_Conversion:
4761   case ICK_Zero_Queue_Conversion:
4762     From = ImpCastExprToType(From, ToType,
4763                              CK_ZeroToOCLOpaqueType,
4764                              From->getValueKind()).get();
4765     break;
4766 
4767   case ICK_Lvalue_To_Rvalue:
4768   case ICK_Array_To_Pointer:
4769   case ICK_Function_To_Pointer:
4770   case ICK_Function_Conversion:
4771   case ICK_Qualification:
4772   case ICK_Num_Conversion_Kinds:
4773   case ICK_C_Only_Conversion:
4774   case ICK_Incompatible_Pointer_Conversion:
4775     llvm_unreachable("Improper second standard conversion");
4776   }
4777 
4778   switch (SCS.Third) {
4779   case ICK_Identity:
4780     // Nothing to do.
4781     break;
4782 
4783   case ICK_Function_Conversion:
4784     // If both sides are functions (or pointers/references to them), there could
4785     // be incompatible exception declarations.
4786     if (CheckExceptionSpecCompatibility(From, ToType))
4787       return ExprError();
4788 
4789     From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue,
4790                              /*BasePath=*/nullptr, CCK)
4791                .get();
4792     break;
4793 
4794   case ICK_Qualification: {
4795     ExprValueKind VK = From->getValueKind();
4796     CastKind CK = CK_NoOp;
4797 
4798     if (ToType->isReferenceType() &&
4799         ToType->getPointeeType().getAddressSpace() !=
4800             From->getType().getAddressSpace())
4801       CK = CK_AddressSpaceConversion;
4802 
4803     if (ToType->isPointerType() &&
4804         ToType->getPointeeType().getAddressSpace() !=
4805             From->getType()->getPointeeType().getAddressSpace())
4806       CK = CK_AddressSpaceConversion;
4807 
4808     if (!isCast(CCK) &&
4809         !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
4810         From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4811       Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
4812           << InitialFromType << ToType;
4813     }
4814 
4815     From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK,
4816                              /*BasePath=*/nullptr, CCK)
4817                .get();
4818 
4819     if (SCS.DeprecatedStringLiteralToCharPtr &&
4820         !getLangOpts().WritableStrings) {
4821       Diag(From->getBeginLoc(),
4822            getLangOpts().CPlusPlus11
4823                ? diag::ext_deprecated_string_literal_conversion
4824                : diag::warn_deprecated_string_literal_conversion)
4825           << ToType.getNonReferenceType();
4826     }
4827 
4828     break;
4829   }
4830 
4831   default:
4832     llvm_unreachable("Improper third standard conversion");
4833   }
4834 
4835   // If this conversion sequence involved a scalar -> atomic conversion, perform
4836   // that conversion now.
4837   if (!ToAtomicType.isNull()) {
4838     assert(Context.hasSameType(
4839         ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4840     From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4841                              VK_PRValue, nullptr, CCK)
4842                .get();
4843   }
4844 
4845   // Materialize a temporary if we're implicitly converting to a reference
4846   // type. This is not required by the C++ rules but is necessary to maintain
4847   // AST invariants.
4848   if (ToType->isReferenceType() && From->isPRValue()) {
4849     ExprResult Res = TemporaryMaterializationConversion(From);
4850     if (Res.isInvalid())
4851       return ExprError();
4852     From = Res.get();
4853   }
4854 
4855   // If this conversion sequence succeeded and involved implicitly converting a
4856   // _Nullable type to a _Nonnull one, complain.
4857   if (!isCast(CCK))
4858     diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4859                                         From->getBeginLoc());
4860 
4861   return From;
4862 }
4863 
4864 /// Check the completeness of a type in a unary type trait.
4865 ///
4866 /// If the particular type trait requires a complete type, tries to complete
4867 /// it. If completing the type fails, a diagnostic is emitted and false
4868 /// returned. If completing the type succeeds or no completion was required,
4869 /// returns true.
4870 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4871                                                 SourceLocation Loc,
4872                                                 QualType ArgTy) {
4873   // C++0x [meta.unary.prop]p3:
4874   //   For all of the class templates X declared in this Clause, instantiating
4875   //   that template with a template argument that is a class template
4876   //   specialization may result in the implicit instantiation of the template
4877   //   argument if and only if the semantics of X require that the argument
4878   //   must be a complete type.
4879   // We apply this rule to all the type trait expressions used to implement
4880   // these class templates. We also try to follow any GCC documented behavior
4881   // in these expressions to ensure portability of standard libraries.
4882   switch (UTT) {
4883   default: llvm_unreachable("not a UTT");
4884     // is_complete_type somewhat obviously cannot require a complete type.
4885   case UTT_IsCompleteType:
4886     // Fall-through
4887 
4888     // These traits are modeled on the type predicates in C++0x
4889     // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4890     // requiring a complete type, as whether or not they return true cannot be
4891     // impacted by the completeness of the type.
4892   case UTT_IsVoid:
4893   case UTT_IsIntegral:
4894   case UTT_IsFloatingPoint:
4895   case UTT_IsArray:
4896   case UTT_IsBoundedArray:
4897   case UTT_IsPointer:
4898   case UTT_IsNullPointer:
4899   case UTT_IsReferenceable:
4900   case UTT_IsLvalueReference:
4901   case UTT_IsRvalueReference:
4902   case UTT_IsMemberFunctionPointer:
4903   case UTT_IsMemberObjectPointer:
4904   case UTT_IsEnum:
4905   case UTT_IsScopedEnum:
4906   case UTT_IsUnion:
4907   case UTT_IsClass:
4908   case UTT_IsFunction:
4909   case UTT_IsReference:
4910   case UTT_IsArithmetic:
4911   case UTT_IsFundamental:
4912   case UTT_IsObject:
4913   case UTT_IsScalar:
4914   case UTT_IsCompound:
4915   case UTT_IsMemberPointer:
4916     // Fall-through
4917 
4918     // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4919     // which requires some of its traits to have the complete type. However,
4920     // the completeness of the type cannot impact these traits' semantics, and
4921     // so they don't require it. This matches the comments on these traits in
4922     // Table 49.
4923   case UTT_IsConst:
4924   case UTT_IsVolatile:
4925   case UTT_IsSigned:
4926   case UTT_IsUnboundedArray:
4927   case UTT_IsUnsigned:
4928 
4929   // This type trait always returns false, checking the type is moot.
4930   case UTT_IsInterfaceClass:
4931     return true;
4932 
4933   // C++14 [meta.unary.prop]:
4934   //   If T is a non-union class type, T shall be a complete type.
4935   case UTT_IsEmpty:
4936   case UTT_IsPolymorphic:
4937   case UTT_IsAbstract:
4938     if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4939       if (!RD->isUnion())
4940         return !S.RequireCompleteType(
4941             Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4942     return true;
4943 
4944   // C++14 [meta.unary.prop]:
4945   //   If T is a class type, T shall be a complete type.
4946   case UTT_IsFinal:
4947   case UTT_IsSealed:
4948     if (ArgTy->getAsCXXRecordDecl())
4949       return !S.RequireCompleteType(
4950           Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4951     return true;
4952 
4953   // LWG3823: T shall be an array type, a complete type, or cv void.
4954   case UTT_IsAggregate:
4955     if (ArgTy->isArrayType() || ArgTy->isVoidType())
4956       return true;
4957 
4958     return !S.RequireCompleteType(
4959         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4960 
4961   // C++1z [meta.unary.prop]:
4962   //   remove_all_extents_t<T> shall be a complete type or cv void.
4963   case UTT_IsTrivial:
4964   case UTT_IsTriviallyCopyable:
4965   case UTT_IsStandardLayout:
4966   case UTT_IsPOD:
4967   case UTT_IsLiteral:
4968   // By analogy, is_trivially_relocatable and is_trivially_equality_comparable
4969   // impose the same constraints.
4970   case UTT_IsTriviallyRelocatable:
4971   case UTT_IsTriviallyEqualityComparable:
4972   case UTT_CanPassInRegs:
4973   // Per the GCC type traits documentation, T shall be a complete type, cv void,
4974   // or an array of unknown bound. But GCC actually imposes the same constraints
4975   // as above.
4976   case UTT_HasNothrowAssign:
4977   case UTT_HasNothrowMoveAssign:
4978   case UTT_HasNothrowConstructor:
4979   case UTT_HasNothrowCopy:
4980   case UTT_HasTrivialAssign:
4981   case UTT_HasTrivialMoveAssign:
4982   case UTT_HasTrivialDefaultConstructor:
4983   case UTT_HasTrivialMoveConstructor:
4984   case UTT_HasTrivialCopy:
4985   case UTT_HasTrivialDestructor:
4986   case UTT_HasVirtualDestructor:
4987     ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4988     [[fallthrough]];
4989 
4990   // C++1z [meta.unary.prop]:
4991   //   T shall be a complete type, cv void, or an array of unknown bound.
4992   case UTT_IsDestructible:
4993   case UTT_IsNothrowDestructible:
4994   case UTT_IsTriviallyDestructible:
4995   case UTT_HasUniqueObjectRepresentations:
4996     if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4997       return true;
4998 
4999     return !S.RequireCompleteType(
5000         Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
5001   }
5002 }
5003 
5004 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
5005                                Sema &Self, SourceLocation KeyLoc, ASTContext &C,
5006                                bool (CXXRecordDecl::*HasTrivial)() const,
5007                                bool (CXXRecordDecl::*HasNonTrivial)() const,
5008                                bool (CXXMethodDecl::*IsDesiredOp)() const)
5009 {
5010   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5011   if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
5012     return true;
5013 
5014   DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
5015   DeclarationNameInfo NameInfo(Name, KeyLoc);
5016   LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
5017   if (Self.LookupQualifiedName(Res, RD)) {
5018     bool FoundOperator = false;
5019     Res.suppressDiagnostics();
5020     for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
5021          Op != OpEnd; ++Op) {
5022       if (isa<FunctionTemplateDecl>(*Op))
5023         continue;
5024 
5025       CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
5026       if((Operator->*IsDesiredOp)()) {
5027         FoundOperator = true;
5028         auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
5029         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5030         if (!CPT || !CPT->isNothrow())
5031           return false;
5032       }
5033     }
5034     return FoundOperator;
5035   }
5036   return false;
5037 }
5038 
5039 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
5040                                    SourceLocation KeyLoc, QualType T) {
5041   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5042 
5043   ASTContext &C = Self.Context;
5044   switch(UTT) {
5045   default: llvm_unreachable("not a UTT");
5046     // Type trait expressions corresponding to the primary type category
5047     // predicates in C++0x [meta.unary.cat].
5048   case UTT_IsVoid:
5049     return T->isVoidType();
5050   case UTT_IsIntegral:
5051     return T->isIntegralType(C);
5052   case UTT_IsFloatingPoint:
5053     return T->isFloatingType();
5054   case UTT_IsArray:
5055     return T->isArrayType();
5056   case UTT_IsBoundedArray:
5057     if (!T->isVariableArrayType()) {
5058       return T->isArrayType() && !T->isIncompleteArrayType();
5059     }
5060 
5061     Self.Diag(KeyLoc, diag::err_vla_unsupported)
5062         << 1 << tok::kw___is_bounded_array;
5063     return false;
5064   case UTT_IsUnboundedArray:
5065     if (!T->isVariableArrayType()) {
5066       return T->isIncompleteArrayType();
5067     }
5068 
5069     Self.Diag(KeyLoc, diag::err_vla_unsupported)
5070         << 1 << tok::kw___is_unbounded_array;
5071     return false;
5072   case UTT_IsPointer:
5073     return T->isAnyPointerType();
5074   case UTT_IsNullPointer:
5075     return T->isNullPtrType();
5076   case UTT_IsLvalueReference:
5077     return T->isLValueReferenceType();
5078   case UTT_IsRvalueReference:
5079     return T->isRValueReferenceType();
5080   case UTT_IsMemberFunctionPointer:
5081     return T->isMemberFunctionPointerType();
5082   case UTT_IsMemberObjectPointer:
5083     return T->isMemberDataPointerType();
5084   case UTT_IsEnum:
5085     return T->isEnumeralType();
5086   case UTT_IsScopedEnum:
5087     return T->isScopedEnumeralType();
5088   case UTT_IsUnion:
5089     return T->isUnionType();
5090   case UTT_IsClass:
5091     return T->isClassType() || T->isStructureType() || T->isInterfaceType();
5092   case UTT_IsFunction:
5093     return T->isFunctionType();
5094 
5095     // Type trait expressions which correspond to the convenient composition
5096     // predicates in C++0x [meta.unary.comp].
5097   case UTT_IsReference:
5098     return T->isReferenceType();
5099   case UTT_IsArithmetic:
5100     return T->isArithmeticType() && !T->isEnumeralType();
5101   case UTT_IsFundamental:
5102     return T->isFundamentalType();
5103   case UTT_IsObject:
5104     return T->isObjectType();
5105   case UTT_IsScalar:
5106     // Note: semantic analysis depends on Objective-C lifetime types to be
5107     // considered scalar types. However, such types do not actually behave
5108     // like scalar types at run time (since they may require retain/release
5109     // operations), so we report them as non-scalar.
5110     if (T->isObjCLifetimeType()) {
5111       switch (T.getObjCLifetime()) {
5112       case Qualifiers::OCL_None:
5113       case Qualifiers::OCL_ExplicitNone:
5114         return true;
5115 
5116       case Qualifiers::OCL_Strong:
5117       case Qualifiers::OCL_Weak:
5118       case Qualifiers::OCL_Autoreleasing:
5119         return false;
5120       }
5121     }
5122 
5123     return T->isScalarType();
5124   case UTT_IsCompound:
5125     return T->isCompoundType();
5126   case UTT_IsMemberPointer:
5127     return T->isMemberPointerType();
5128 
5129     // Type trait expressions which correspond to the type property predicates
5130     // in C++0x [meta.unary.prop].
5131   case UTT_IsConst:
5132     return T.isConstQualified();
5133   case UTT_IsVolatile:
5134     return T.isVolatileQualified();
5135   case UTT_IsTrivial:
5136     return T.isTrivialType(C);
5137   case UTT_IsTriviallyCopyable:
5138     return T.isTriviallyCopyableType(C);
5139   case UTT_IsStandardLayout:
5140     return T->isStandardLayoutType();
5141   case UTT_IsPOD:
5142     return T.isPODType(C);
5143   case UTT_IsLiteral:
5144     return T->isLiteralType(C);
5145   case UTT_IsEmpty:
5146     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5147       return !RD->isUnion() && RD->isEmpty();
5148     return false;
5149   case UTT_IsPolymorphic:
5150     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5151       return !RD->isUnion() && RD->isPolymorphic();
5152     return false;
5153   case UTT_IsAbstract:
5154     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5155       return !RD->isUnion() && RD->isAbstract();
5156     return false;
5157   case UTT_IsAggregate:
5158     // Report vector extensions and complex types as aggregates because they
5159     // support aggregate initialization. GCC mirrors this behavior for vectors
5160     // but not _Complex.
5161     return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
5162            T->isAnyComplexType();
5163   // __is_interface_class only returns true when CL is invoked in /CLR mode and
5164   // even then only when it is used with the 'interface struct ...' syntax
5165   // Clang doesn't support /CLR which makes this type trait moot.
5166   case UTT_IsInterfaceClass:
5167     return false;
5168   case UTT_IsFinal:
5169   case UTT_IsSealed:
5170     if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5171       return RD->hasAttr<FinalAttr>();
5172     return false;
5173   case UTT_IsSigned:
5174     // Enum types should always return false.
5175     // Floating points should always return true.
5176     return T->isFloatingType() ||
5177            (T->isSignedIntegerType() && !T->isEnumeralType());
5178   case UTT_IsUnsigned:
5179     // Enum types should always return false.
5180     return T->isUnsignedIntegerType() && !T->isEnumeralType();
5181 
5182     // Type trait expressions which query classes regarding their construction,
5183     // destruction, and copying. Rather than being based directly on the
5184     // related type predicates in the standard, they are specified by both
5185     // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
5186     // specifications.
5187     //
5188     //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
5189     //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5190     //
5191     // Note that these builtins do not behave as documented in g++: if a class
5192     // has both a trivial and a non-trivial special member of a particular kind,
5193     // they return false! For now, we emulate this behavior.
5194     // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5195     // does not correctly compute triviality in the presence of multiple special
5196     // members of the same kind. Revisit this once the g++ bug is fixed.
5197   case UTT_HasTrivialDefaultConstructor:
5198     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5199     //   If __is_pod (type) is true then the trait is true, else if type is
5200     //   a cv class or union type (or array thereof) with a trivial default
5201     //   constructor ([class.ctor]) then the trait is true, else it is false.
5202     if (T.isPODType(C))
5203       return true;
5204     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5205       return RD->hasTrivialDefaultConstructor() &&
5206              !RD->hasNonTrivialDefaultConstructor();
5207     return false;
5208   case UTT_HasTrivialMoveConstructor:
5209     //  This trait is implemented by MSVC 2012 and needed to parse the
5210     //  standard library headers. Specifically this is used as the logic
5211     //  behind std::is_trivially_move_constructible (20.9.4.3).
5212     if (T.isPODType(C))
5213       return true;
5214     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5215       return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
5216     return false;
5217   case UTT_HasTrivialCopy:
5218     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5219     //   If __is_pod (type) is true or type is a reference type then
5220     //   the trait is true, else if type is a cv class or union type
5221     //   with a trivial copy constructor ([class.copy]) then the trait
5222     //   is true, else it is false.
5223     if (T.isPODType(C) || T->isReferenceType())
5224       return true;
5225     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5226       return RD->hasTrivialCopyConstructor() &&
5227              !RD->hasNonTrivialCopyConstructor();
5228     return false;
5229   case UTT_HasTrivialMoveAssign:
5230     //  This trait is implemented by MSVC 2012 and needed to parse the
5231     //  standard library headers. Specifically it is used as the logic
5232     //  behind std::is_trivially_move_assignable (20.9.4.3)
5233     if (T.isPODType(C))
5234       return true;
5235     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5236       return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
5237     return false;
5238   case UTT_HasTrivialAssign:
5239     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5240     //   If type is const qualified or is a reference type then the
5241     //   trait is false. Otherwise if __is_pod (type) is true then the
5242     //   trait is true, else if type is a cv class or union type with
5243     //   a trivial copy assignment ([class.copy]) then the trait is
5244     //   true, else it is false.
5245     // Note: the const and reference restrictions are interesting,
5246     // given that const and reference members don't prevent a class
5247     // from having a trivial copy assignment operator (but do cause
5248     // errors if the copy assignment operator is actually used, q.v.
5249     // [class.copy]p12).
5250 
5251     if (T.isConstQualified())
5252       return false;
5253     if (T.isPODType(C))
5254       return true;
5255     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5256       return RD->hasTrivialCopyAssignment() &&
5257              !RD->hasNonTrivialCopyAssignment();
5258     return false;
5259   case UTT_IsDestructible:
5260   case UTT_IsTriviallyDestructible:
5261   case UTT_IsNothrowDestructible:
5262     // C++14 [meta.unary.prop]:
5263     //   For reference types, is_destructible<T>::value is true.
5264     if (T->isReferenceType())
5265       return true;
5266 
5267     // Objective-C++ ARC: autorelease types don't require destruction.
5268     if (T->isObjCLifetimeType() &&
5269         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5270       return true;
5271 
5272     // C++14 [meta.unary.prop]:
5273     //   For incomplete types and function types, is_destructible<T>::value is
5274     //   false.
5275     if (T->isIncompleteType() || T->isFunctionType())
5276       return false;
5277 
5278     // A type that requires destruction (via a non-trivial destructor or ARC
5279     // lifetime semantics) is not trivially-destructible.
5280     if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5281       return false;
5282 
5283     // C++14 [meta.unary.prop]:
5284     //   For object types and given U equal to remove_all_extents_t<T>, if the
5285     //   expression std::declval<U&>().~U() is well-formed when treated as an
5286     //   unevaluated operand (Clause 5), then is_destructible<T>::value is true
5287     if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5288       CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
5289       if (!Destructor)
5290         return false;
5291       //  C++14 [dcl.fct.def.delete]p2:
5292       //    A program that refers to a deleted function implicitly or
5293       //    explicitly, other than to declare it, is ill-formed.
5294       if (Destructor->isDeleted())
5295         return false;
5296       if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5297         return false;
5298       if (UTT == UTT_IsNothrowDestructible) {
5299         auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5300         CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5301         if (!CPT || !CPT->isNothrow())
5302           return false;
5303       }
5304     }
5305     return true;
5306 
5307   case UTT_HasTrivialDestructor:
5308     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5309     //   If __is_pod (type) is true or type is a reference type
5310     //   then the trait is true, else if type is a cv class or union
5311     //   type (or array thereof) with a trivial destructor
5312     //   ([class.dtor]) then the trait is true, else it is
5313     //   false.
5314     if (T.isPODType(C) || T->isReferenceType())
5315       return true;
5316 
5317     // Objective-C++ ARC: autorelease types don't require destruction.
5318     if (T->isObjCLifetimeType() &&
5319         T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5320       return true;
5321 
5322     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
5323       return RD->hasTrivialDestructor();
5324     return false;
5325   // TODO: Propagate nothrowness for implicitly declared special members.
5326   case UTT_HasNothrowAssign:
5327     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5328     //   If type is const qualified or is a reference type then the
5329     //   trait is false. Otherwise if __has_trivial_assign (type)
5330     //   is true then the trait is true, else if type is a cv class
5331     //   or union type with copy assignment operators that are known
5332     //   not to throw an exception then the trait is true, else it is
5333     //   false.
5334     if (C.getBaseElementType(T).isConstQualified())
5335       return false;
5336     if (T->isReferenceType())
5337       return false;
5338     if (T.isPODType(C) || T->isObjCLifetimeType())
5339       return true;
5340 
5341     if (const RecordType *RT = T->getAs<RecordType>())
5342       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5343                                 &CXXRecordDecl::hasTrivialCopyAssignment,
5344                                 &CXXRecordDecl::hasNonTrivialCopyAssignment,
5345                                 &CXXMethodDecl::isCopyAssignmentOperator);
5346     return false;
5347   case UTT_HasNothrowMoveAssign:
5348     //  This trait is implemented by MSVC 2012 and needed to parse the
5349     //  standard library headers. Specifically this is used as the logic
5350     //  behind std::is_nothrow_move_assignable (20.9.4.3).
5351     if (T.isPODType(C))
5352       return true;
5353 
5354     if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
5355       return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
5356                                 &CXXRecordDecl::hasTrivialMoveAssignment,
5357                                 &CXXRecordDecl::hasNonTrivialMoveAssignment,
5358                                 &CXXMethodDecl::isMoveAssignmentOperator);
5359     return false;
5360   case UTT_HasNothrowCopy:
5361     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5362     //   If __has_trivial_copy (type) is true then the trait is true, else
5363     //   if type is a cv class or union type with copy constructors that are
5364     //   known not to throw an exception then the trait is true, else it is
5365     //   false.
5366     if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
5367       return true;
5368     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5369       if (RD->hasTrivialCopyConstructor() &&
5370           !RD->hasNonTrivialCopyConstructor())
5371         return true;
5372 
5373       bool FoundConstructor = false;
5374       unsigned FoundTQs;
5375       for (const auto *ND : Self.LookupConstructors(RD)) {
5376         // A template constructor is never a copy constructor.
5377         // FIXME: However, it may actually be selected at the actual overload
5378         // resolution point.
5379         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5380           continue;
5381         // UsingDecl itself is not a constructor
5382         if (isa<UsingDecl>(ND))
5383           continue;
5384         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5385         if (Constructor->isCopyConstructor(FoundTQs)) {
5386           FoundConstructor = true;
5387           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5388           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5389           if (!CPT)
5390             return false;
5391           // TODO: check whether evaluating default arguments can throw.
5392           // For now, we'll be conservative and assume that they can throw.
5393           if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5394             return false;
5395         }
5396       }
5397 
5398       return FoundConstructor;
5399     }
5400     return false;
5401   case UTT_HasNothrowConstructor:
5402     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5403     //   If __has_trivial_constructor (type) is true then the trait is
5404     //   true, else if type is a cv class or union type (or array
5405     //   thereof) with a default constructor that is known not to
5406     //   throw an exception then the trait is true, else it is false.
5407     if (T.isPODType(C) || T->isObjCLifetimeType())
5408       return true;
5409     if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
5410       if (RD->hasTrivialDefaultConstructor() &&
5411           !RD->hasNonTrivialDefaultConstructor())
5412         return true;
5413 
5414       bool FoundConstructor = false;
5415       for (const auto *ND : Self.LookupConstructors(RD)) {
5416         // FIXME: In C++0x, a constructor template can be a default constructor.
5417         if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
5418           continue;
5419         // UsingDecl itself is not a constructor
5420         if (isa<UsingDecl>(ND))
5421           continue;
5422         auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
5423         if (Constructor->isDefaultConstructor()) {
5424           FoundConstructor = true;
5425           auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5426           CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
5427           if (!CPT)
5428             return false;
5429           // FIXME: check whether evaluating default arguments can throw.
5430           // For now, we'll be conservative and assume that they can throw.
5431           if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5432             return false;
5433         }
5434       }
5435       return FoundConstructor;
5436     }
5437     return false;
5438   case UTT_HasVirtualDestructor:
5439     // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5440     //   If type is a class type with a virtual destructor ([class.dtor])
5441     //   then the trait is true, else it is false.
5442     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5443       if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
5444         return Destructor->isVirtual();
5445     return false;
5446 
5447     // These type trait expressions are modeled on the specifications for the
5448     // Embarcadero C++0x type trait functions:
5449     //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5450   case UTT_IsCompleteType:
5451     // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5452     //   Returns True if and only if T is a complete type at the point of the
5453     //   function call.
5454     return !T->isIncompleteType();
5455   case UTT_HasUniqueObjectRepresentations:
5456     return C.hasUniqueObjectRepresentations(T);
5457   case UTT_IsTriviallyRelocatable:
5458     return T.isTriviallyRelocatableType(C);
5459   case UTT_IsReferenceable:
5460     return T.isReferenceable();
5461   case UTT_CanPassInRegs:
5462     if (CXXRecordDecl *RD = T->getAsCXXRecordDecl(); RD && !T.hasQualifiers())
5463       return RD->canPassInRegisters();
5464     Self.Diag(KeyLoc, diag::err_builtin_pass_in_regs_non_class) << T;
5465     return false;
5466   case UTT_IsTriviallyEqualityComparable:
5467     return T.isTriviallyEqualityComparableType(C);
5468   }
5469 }
5470 
5471 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5472                                     QualType RhsT, SourceLocation KeyLoc);
5473 
5474 static bool EvaluateBooleanTypeTrait(Sema &S, TypeTrait Kind,
5475                                      SourceLocation KWLoc,
5476                                      ArrayRef<TypeSourceInfo *> Args,
5477                                      SourceLocation RParenLoc,
5478                                      bool IsDependent) {
5479   if (IsDependent)
5480     return false;
5481 
5482   if (Kind <= UTT_Last)
5483     return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
5484 
5485   // Evaluate ReferenceBindsToTemporary and ReferenceConstructsFromTemporary
5486   // alongside the IsConstructible traits to avoid duplication.
5487   if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary && Kind != BTT_ReferenceConstructsFromTemporary)
5488     return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
5489                                    Args[1]->getType(), RParenLoc);
5490 
5491   switch (Kind) {
5492   case clang::BTT_ReferenceBindsToTemporary:
5493   case clang::BTT_ReferenceConstructsFromTemporary:
5494   case clang::TT_IsConstructible:
5495   case clang::TT_IsNothrowConstructible:
5496   case clang::TT_IsTriviallyConstructible: {
5497     // C++11 [meta.unary.prop]:
5498     //   is_trivially_constructible is defined as:
5499     //
5500     //     is_constructible<T, Args...>::value is true and the variable
5501     //     definition for is_constructible, as defined below, is known to call
5502     //     no operation that is not trivial.
5503     //
5504     //   The predicate condition for a template specialization
5505     //   is_constructible<T, Args...> shall be satisfied if and only if the
5506     //   following variable definition would be well-formed for some invented
5507     //   variable t:
5508     //
5509     //     T t(create<Args>()...);
5510     assert(!Args.empty());
5511 
5512     // Precondition: T and all types in the parameter pack Args shall be
5513     // complete types, (possibly cv-qualified) void, or arrays of
5514     // unknown bound.
5515     for (const auto *TSI : Args) {
5516       QualType ArgTy = TSI->getType();
5517       if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5518         continue;
5519 
5520       if (S.RequireCompleteType(KWLoc, ArgTy,
5521           diag::err_incomplete_type_used_in_type_trait_expr))
5522         return false;
5523     }
5524 
5525     // Make sure the first argument is not incomplete nor a function type.
5526     QualType T = Args[0]->getType();
5527     if (T->isIncompleteType() || T->isFunctionType())
5528       return false;
5529 
5530     // Make sure the first argument is not an abstract type.
5531     CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5532     if (RD && RD->isAbstract())
5533       return false;
5534 
5535     llvm::BumpPtrAllocator OpaqueExprAllocator;
5536     SmallVector<Expr *, 2> ArgExprs;
5537     ArgExprs.reserve(Args.size() - 1);
5538     for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5539       QualType ArgTy = Args[I]->getType();
5540       if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5541         ArgTy = S.Context.getRValueReferenceType(ArgTy);
5542       ArgExprs.push_back(
5543           new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5544               OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5545                               ArgTy.getNonLValueExprType(S.Context),
5546                               Expr::getValueKindForType(ArgTy)));
5547     }
5548 
5549     // Perform the initialization in an unevaluated context within a SFINAE
5550     // trap at translation unit scope.
5551     EnterExpressionEvaluationContext Unevaluated(
5552         S, Sema::ExpressionEvaluationContext::Unevaluated);
5553     Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5554     Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5555     InitializedEntity To(
5556         InitializedEntity::InitializeTemporary(S.Context, Args[0]));
5557     InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
5558                                                                  RParenLoc));
5559     InitializationSequence Init(S, To, InitKind, ArgExprs);
5560     if (Init.Failed())
5561       return false;
5562 
5563     ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
5564     if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5565       return false;
5566 
5567     if (Kind == clang::TT_IsConstructible)
5568       return true;
5569 
5570     if (Kind == clang::BTT_ReferenceBindsToTemporary || Kind == clang::BTT_ReferenceConstructsFromTemporary) {
5571       if (!T->isReferenceType())
5572         return false;
5573 
5574       if (!Init.isDirectReferenceBinding())
5575         return true;
5576 
5577       if (Kind == clang::BTT_ReferenceBindsToTemporary)
5578         return false;
5579 
5580       QualType U = Args[1]->getType();
5581       if (U->isReferenceType())
5582         return false;
5583 
5584       QualType TPtr = S.Context.getPointerType(S.BuiltinRemoveReference(T, UnaryTransformType::RemoveCVRef, {}));
5585       QualType UPtr = S.Context.getPointerType(S.BuiltinRemoveReference(U, UnaryTransformType::RemoveCVRef, {}));
5586       return EvaluateBinaryTypeTrait(S, TypeTrait::BTT_IsConvertibleTo, UPtr, TPtr, RParenLoc);
5587     }
5588 
5589     if (Kind == clang::TT_IsNothrowConstructible)
5590       return S.canThrow(Result.get()) == CT_Cannot;
5591 
5592     if (Kind == clang::TT_IsTriviallyConstructible) {
5593       // Under Objective-C ARC and Weak, if the destination has non-trivial
5594       // Objective-C lifetime, this is a non-trivial construction.
5595       if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5596         return false;
5597 
5598       // The initialization succeeded; now make sure there are no non-trivial
5599       // calls.
5600       return !Result.get()->hasNonTrivialCall(S.Context);
5601     }
5602 
5603     llvm_unreachable("unhandled type trait");
5604     return false;
5605   }
5606     default: llvm_unreachable("not a TT");
5607   }
5608 
5609   return false;
5610 }
5611 
5612 namespace {
5613 void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind,
5614                                 SourceLocation KWLoc) {
5615   TypeTrait Replacement;
5616   switch (Kind) {
5617     case UTT_HasNothrowAssign:
5618     case UTT_HasNothrowMoveAssign:
5619       Replacement = BTT_IsNothrowAssignable;
5620       break;
5621     case UTT_HasNothrowCopy:
5622     case UTT_HasNothrowConstructor:
5623       Replacement = TT_IsNothrowConstructible;
5624       break;
5625     case UTT_HasTrivialAssign:
5626     case UTT_HasTrivialMoveAssign:
5627       Replacement = BTT_IsTriviallyAssignable;
5628       break;
5629     case UTT_HasTrivialCopy:
5630       Replacement = UTT_IsTriviallyCopyable;
5631       break;
5632     case UTT_HasTrivialDefaultConstructor:
5633     case UTT_HasTrivialMoveConstructor:
5634       Replacement = TT_IsTriviallyConstructible;
5635       break;
5636     case UTT_HasTrivialDestructor:
5637       Replacement = UTT_IsTriviallyDestructible;
5638       break;
5639     default:
5640       return;
5641   }
5642   S.Diag(KWLoc, diag::warn_deprecated_builtin)
5643     << getTraitSpelling(Kind) << getTraitSpelling(Replacement);
5644 }
5645 }
5646 
5647 bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) {
5648   if (Arity && N != Arity) {
5649     Diag(Loc, diag::err_type_trait_arity)
5650         << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc);
5651     return false;
5652   }
5653 
5654   if (!Arity && N == 0) {
5655     Diag(Loc, diag::err_type_trait_arity)
5656         << 1 << 1 << 1 << (int)N << SourceRange(Loc);
5657     return false;
5658   }
5659   return true;
5660 }
5661 
5662 enum class TypeTraitReturnType {
5663   Bool,
5664 };
5665 
5666 static TypeTraitReturnType GetReturnType(TypeTrait Kind) {
5667   return TypeTraitReturnType::Bool;
5668 }
5669 
5670 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5671                                 ArrayRef<TypeSourceInfo *> Args,
5672                                 SourceLocation RParenLoc) {
5673   if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size()))
5674     return ExprError();
5675 
5676   if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5677                                *this, Kind, KWLoc, Args[0]->getType()))
5678     return ExprError();
5679 
5680   DiagnoseBuiltinDeprecation(*this, Kind, KWLoc);
5681 
5682   bool Dependent = false;
5683   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5684     if (Args[I]->getType()->isDependentType()) {
5685       Dependent = true;
5686       break;
5687     }
5688   }
5689 
5690   switch (GetReturnType(Kind)) {
5691   case TypeTraitReturnType::Bool: {
5692     bool Result = EvaluateBooleanTypeTrait(*this, Kind, KWLoc, Args, RParenLoc,
5693                                            Dependent);
5694     return TypeTraitExpr::Create(Context, Context.getLogicalOperationType(),
5695                                  KWLoc, Kind, Args, RParenLoc, Result);
5696   }
5697   }
5698   llvm_unreachable("unhandled type trait return type");
5699 }
5700 
5701 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5702                                 ArrayRef<ParsedType> Args,
5703                                 SourceLocation RParenLoc) {
5704   SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5705   ConvertedArgs.reserve(Args.size());
5706 
5707   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5708     TypeSourceInfo *TInfo;
5709     QualType T = GetTypeFromParser(Args[I], &TInfo);
5710     if (!TInfo)
5711       TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
5712 
5713     ConvertedArgs.push_back(TInfo);
5714   }
5715 
5716   return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
5717 }
5718 
5719 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5720                                     QualType RhsT, SourceLocation KeyLoc) {
5721   assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5722          "Cannot evaluate traits of dependent types");
5723 
5724   switch(BTT) {
5725   case BTT_IsBaseOf: {
5726     // C++0x [meta.rel]p2
5727     // Base is a base class of Derived without regard to cv-qualifiers or
5728     // Base and Derived are not unions and name the same class type without
5729     // regard to cv-qualifiers.
5730 
5731     const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5732     const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5733     if (!rhsRecord || !lhsRecord) {
5734       const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5735       const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5736       if (!LHSObjTy || !RHSObjTy)
5737         return false;
5738 
5739       ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5740       ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5741       if (!BaseInterface || !DerivedInterface)
5742         return false;
5743 
5744       if (Self.RequireCompleteType(
5745               KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5746         return false;
5747 
5748       return BaseInterface->isSuperClassOf(DerivedInterface);
5749     }
5750 
5751     assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5752              == (lhsRecord == rhsRecord));
5753 
5754     // Unions are never base classes, and never have base classes.
5755     // It doesn't matter if they are complete or not. See PR#41843
5756     if (lhsRecord && lhsRecord->getDecl()->isUnion())
5757       return false;
5758     if (rhsRecord && rhsRecord->getDecl()->isUnion())
5759       return false;
5760 
5761     if (lhsRecord == rhsRecord)
5762       return true;
5763 
5764     // C++0x [meta.rel]p2:
5765     //   If Base and Derived are class types and are different types
5766     //   (ignoring possible cv-qualifiers) then Derived shall be a
5767     //   complete type.
5768     if (Self.RequireCompleteType(KeyLoc, RhsT,
5769                           diag::err_incomplete_type_used_in_type_trait_expr))
5770       return false;
5771 
5772     return cast<CXXRecordDecl>(rhsRecord->getDecl())
5773       ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5774   }
5775   case BTT_IsSame:
5776     return Self.Context.hasSameType(LhsT, RhsT);
5777   case BTT_TypeCompatible: {
5778     // GCC ignores cv-qualifiers on arrays for this builtin.
5779     Qualifiers LhsQuals, RhsQuals;
5780     QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5781     QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5782     return Self.Context.typesAreCompatible(Lhs, Rhs);
5783   }
5784   case BTT_IsConvertible:
5785   case BTT_IsConvertibleTo: {
5786     // C++0x [meta.rel]p4:
5787     //   Given the following function prototype:
5788     //
5789     //     template <class T>
5790     //       typename add_rvalue_reference<T>::type create();
5791     //
5792     //   the predicate condition for a template specialization
5793     //   is_convertible<From, To> shall be satisfied if and only if
5794     //   the return expression in the following code would be
5795     //   well-formed, including any implicit conversions to the return
5796     //   type of the function:
5797     //
5798     //     To test() {
5799     //       return create<From>();
5800     //     }
5801     //
5802     //   Access checking is performed as if in a context unrelated to To and
5803     //   From. Only the validity of the immediate context of the expression
5804     //   of the return-statement (including conversions to the return type)
5805     //   is considered.
5806     //
5807     // We model the initialization as a copy-initialization of a temporary
5808     // of the appropriate type, which for this expression is identical to the
5809     // return statement (since NRVO doesn't apply).
5810 
5811     // Functions aren't allowed to return function or array types.
5812     if (RhsT->isFunctionType() || RhsT->isArrayType())
5813       return false;
5814 
5815     // A return statement in a void function must have void type.
5816     if (RhsT->isVoidType())
5817       return LhsT->isVoidType();
5818 
5819     // A function definition requires a complete, non-abstract return type.
5820     if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5821       return false;
5822 
5823     // Compute the result of add_rvalue_reference.
5824     if (LhsT->isObjectType() || LhsT->isFunctionType())
5825       LhsT = Self.Context.getRValueReferenceType(LhsT);
5826 
5827     // Build a fake source and destination for initialization.
5828     InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5829     OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5830                          Expr::getValueKindForType(LhsT));
5831     Expr *FromPtr = &From;
5832     InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5833                                                            SourceLocation()));
5834 
5835     // Perform the initialization in an unevaluated context within a SFINAE
5836     // trap at translation unit scope.
5837     EnterExpressionEvaluationContext Unevaluated(
5838         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5839     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5840     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5841     InitializationSequence Init(Self, To, Kind, FromPtr);
5842     if (Init.Failed())
5843       return false;
5844 
5845     ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5846     return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5847   }
5848 
5849   case BTT_IsAssignable:
5850   case BTT_IsNothrowAssignable:
5851   case BTT_IsTriviallyAssignable: {
5852     // C++11 [meta.unary.prop]p3:
5853     //   is_trivially_assignable is defined as:
5854     //     is_assignable<T, U>::value is true and the assignment, as defined by
5855     //     is_assignable, is known to call no operation that is not trivial
5856     //
5857     //   is_assignable is defined as:
5858     //     The expression declval<T>() = declval<U>() is well-formed when
5859     //     treated as an unevaluated operand (Clause 5).
5860     //
5861     //   For both, T and U shall be complete types, (possibly cv-qualified)
5862     //   void, or arrays of unknown bound.
5863     if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5864         Self.RequireCompleteType(KeyLoc, LhsT,
5865           diag::err_incomplete_type_used_in_type_trait_expr))
5866       return false;
5867     if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5868         Self.RequireCompleteType(KeyLoc, RhsT,
5869           diag::err_incomplete_type_used_in_type_trait_expr))
5870       return false;
5871 
5872     // cv void is never assignable.
5873     if (LhsT->isVoidType() || RhsT->isVoidType())
5874       return false;
5875 
5876     // Build expressions that emulate the effect of declval<T>() and
5877     // declval<U>().
5878     if (LhsT->isObjectType() || LhsT->isFunctionType())
5879       LhsT = Self.Context.getRValueReferenceType(LhsT);
5880     if (RhsT->isObjectType() || RhsT->isFunctionType())
5881       RhsT = Self.Context.getRValueReferenceType(RhsT);
5882     OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5883                         Expr::getValueKindForType(LhsT));
5884     OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5885                         Expr::getValueKindForType(RhsT));
5886 
5887     // Attempt the assignment in an unevaluated context within a SFINAE
5888     // trap at translation unit scope.
5889     EnterExpressionEvaluationContext Unevaluated(
5890         Self, Sema::ExpressionEvaluationContext::Unevaluated);
5891     Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5892     Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5893     ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5894                                         &Rhs);
5895     if (Result.isInvalid())
5896       return false;
5897 
5898     // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5899     Self.CheckUnusedVolatileAssignment(Result.get());
5900 
5901     if (SFINAE.hasErrorOccurred())
5902       return false;
5903 
5904     if (BTT == BTT_IsAssignable)
5905       return true;
5906 
5907     if (BTT == BTT_IsNothrowAssignable)
5908       return Self.canThrow(Result.get()) == CT_Cannot;
5909 
5910     if (BTT == BTT_IsTriviallyAssignable) {
5911       // Under Objective-C ARC and Weak, if the destination has non-trivial
5912       // Objective-C lifetime, this is a non-trivial assignment.
5913       if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5914         return false;
5915 
5916       return !Result.get()->hasNonTrivialCall(Self.Context);
5917     }
5918 
5919     llvm_unreachable("unhandled type trait");
5920     return false;
5921   }
5922     default: llvm_unreachable("not a BTT");
5923   }
5924   llvm_unreachable("Unknown type trait or not implemented");
5925 }
5926 
5927 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5928                                      SourceLocation KWLoc,
5929                                      ParsedType Ty,
5930                                      Expr* DimExpr,
5931                                      SourceLocation RParen) {
5932   TypeSourceInfo *TSInfo;
5933   QualType T = GetTypeFromParser(Ty, &TSInfo);
5934   if (!TSInfo)
5935     TSInfo = Context.getTrivialTypeSourceInfo(T);
5936 
5937   return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5938 }
5939 
5940 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5941                                            QualType T, Expr *DimExpr,
5942                                            SourceLocation KeyLoc) {
5943   assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5944 
5945   switch(ATT) {
5946   case ATT_ArrayRank:
5947     if (T->isArrayType()) {
5948       unsigned Dim = 0;
5949       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5950         ++Dim;
5951         T = AT->getElementType();
5952       }
5953       return Dim;
5954     }
5955     return 0;
5956 
5957   case ATT_ArrayExtent: {
5958     llvm::APSInt Value;
5959     uint64_t Dim;
5960     if (Self.VerifyIntegerConstantExpression(
5961                 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5962             .isInvalid())
5963       return 0;
5964     if (Value.isSigned() && Value.isNegative()) {
5965       Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5966         << DimExpr->getSourceRange();
5967       return 0;
5968     }
5969     Dim = Value.getLimitedValue();
5970 
5971     if (T->isArrayType()) {
5972       unsigned D = 0;
5973       bool Matched = false;
5974       while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5975         if (Dim == D) {
5976           Matched = true;
5977           break;
5978         }
5979         ++D;
5980         T = AT->getElementType();
5981       }
5982 
5983       if (Matched && T->isArrayType()) {
5984         if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5985           return CAT->getSize().getLimitedValue();
5986       }
5987     }
5988     return 0;
5989   }
5990   }
5991   llvm_unreachable("Unknown type trait or not implemented");
5992 }
5993 
5994 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5995                                      SourceLocation KWLoc,
5996                                      TypeSourceInfo *TSInfo,
5997                                      Expr* DimExpr,
5998                                      SourceLocation RParen) {
5999   QualType T = TSInfo->getType();
6000 
6001   // FIXME: This should likely be tracked as an APInt to remove any host
6002   // assumptions about the width of size_t on the target.
6003   uint64_t Value = 0;
6004   if (!T->isDependentType())
6005     Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
6006 
6007   // While the specification for these traits from the Embarcadero C++
6008   // compiler's documentation says the return type is 'unsigned int', Clang
6009   // returns 'size_t'. On Windows, the primary platform for the Embarcadero
6010   // compiler, there is no difference. On several other platforms this is an
6011   // important distinction.
6012   return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
6013                                           RParen, Context.getSizeType());
6014 }
6015 
6016 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
6017                                       SourceLocation KWLoc,
6018                                       Expr *Queried,
6019                                       SourceLocation RParen) {
6020   // If error parsing the expression, ignore.
6021   if (!Queried)
6022     return ExprError();
6023 
6024   ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
6025 
6026   return Result;
6027 }
6028 
6029 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
6030   switch (ET) {
6031   case ET_IsLValueExpr: return E->isLValue();
6032   case ET_IsRValueExpr:
6033     return E->isPRValue();
6034   }
6035   llvm_unreachable("Expression trait not covered by switch");
6036 }
6037 
6038 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
6039                                       SourceLocation KWLoc,
6040                                       Expr *Queried,
6041                                       SourceLocation RParen) {
6042   if (Queried->isTypeDependent()) {
6043     // Delay type-checking for type-dependent expressions.
6044   } else if (Queried->hasPlaceholderType()) {
6045     ExprResult PE = CheckPlaceholderExpr(Queried);
6046     if (PE.isInvalid()) return ExprError();
6047     return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
6048   }
6049 
6050   bool Value = EvaluateExpressionTrait(ET, Queried);
6051 
6052   return new (Context)
6053       ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
6054 }
6055 
6056 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
6057                                             ExprValueKind &VK,
6058                                             SourceLocation Loc,
6059                                             bool isIndirect) {
6060   assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&
6061          "placeholders should have been weeded out by now");
6062 
6063   // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
6064   // temporary materialization conversion otherwise.
6065   if (isIndirect)
6066     LHS = DefaultLvalueConversion(LHS.get());
6067   else if (LHS.get()->isPRValue())
6068     LHS = TemporaryMaterializationConversion(LHS.get());
6069   if (LHS.isInvalid())
6070     return QualType();
6071 
6072   // The RHS always undergoes lvalue conversions.
6073   RHS = DefaultLvalueConversion(RHS.get());
6074   if (RHS.isInvalid()) return QualType();
6075 
6076   const char *OpSpelling = isIndirect ? "->*" : ".*";
6077   // C++ 5.5p2
6078   //   The binary operator .* [p3: ->*] binds its second operand, which shall
6079   //   be of type "pointer to member of T" (where T is a completely-defined
6080   //   class type) [...]
6081   QualType RHSType = RHS.get()->getType();
6082   const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
6083   if (!MemPtr) {
6084     Diag(Loc, diag::err_bad_memptr_rhs)
6085       << OpSpelling << RHSType << RHS.get()->getSourceRange();
6086     return QualType();
6087   }
6088 
6089   QualType Class(MemPtr->getClass(), 0);
6090 
6091   // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
6092   // member pointer points must be completely-defined. However, there is no
6093   // reason for this semantic distinction, and the rule is not enforced by
6094   // other compilers. Therefore, we do not check this property, as it is
6095   // likely to be considered a defect.
6096 
6097   // C++ 5.5p2
6098   //   [...] to its first operand, which shall be of class T or of a class of
6099   //   which T is an unambiguous and accessible base class. [p3: a pointer to
6100   //   such a class]
6101   QualType LHSType = LHS.get()->getType();
6102   if (isIndirect) {
6103     if (const PointerType *Ptr = LHSType->getAs<PointerType>())
6104       LHSType = Ptr->getPointeeType();
6105     else {
6106       Diag(Loc, diag::err_bad_memptr_lhs)
6107         << OpSpelling << 1 << LHSType
6108         << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
6109       return QualType();
6110     }
6111   }
6112 
6113   if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
6114     // If we want to check the hierarchy, we need a complete type.
6115     if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
6116                             OpSpelling, (int)isIndirect)) {
6117       return QualType();
6118     }
6119 
6120     if (!IsDerivedFrom(Loc, LHSType, Class)) {
6121       Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
6122         << (int)isIndirect << LHS.get()->getType();
6123       return QualType();
6124     }
6125 
6126     CXXCastPath BasePath;
6127     if (CheckDerivedToBaseConversion(
6128             LHSType, Class, Loc,
6129             SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
6130             &BasePath))
6131       return QualType();
6132 
6133     // Cast LHS to type of use.
6134     QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
6135     if (isIndirect)
6136       UseType = Context.getPointerType(UseType);
6137     ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
6138     LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
6139                             &BasePath);
6140   }
6141 
6142   if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
6143     // Diagnose use of pointer-to-member type which when used as
6144     // the functional cast in a pointer-to-member expression.
6145     Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
6146      return QualType();
6147   }
6148 
6149   // C++ 5.5p2
6150   //   The result is an object or a function of the type specified by the
6151   //   second operand.
6152   // The cv qualifiers are the union of those in the pointer and the left side,
6153   // in accordance with 5.5p5 and 5.2.5.
6154   QualType Result = MemPtr->getPointeeType();
6155   Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
6156 
6157   // C++0x [expr.mptr.oper]p6:
6158   //   In a .* expression whose object expression is an rvalue, the program is
6159   //   ill-formed if the second operand is a pointer to member function with
6160   //   ref-qualifier &. In a ->* expression or in a .* expression whose object
6161   //   expression is an lvalue, the program is ill-formed if the second operand
6162   //   is a pointer to member function with ref-qualifier &&.
6163   if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
6164     switch (Proto->getRefQualifier()) {
6165     case RQ_None:
6166       // Do nothing
6167       break;
6168 
6169     case RQ_LValue:
6170       if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
6171         // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
6172         // is (exactly) 'const'.
6173         if (Proto->isConst() && !Proto->isVolatile())
6174           Diag(Loc, getLangOpts().CPlusPlus20
6175                         ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
6176                         : diag::ext_pointer_to_const_ref_member_on_rvalue);
6177         else
6178           Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6179               << RHSType << 1 << LHS.get()->getSourceRange();
6180       }
6181       break;
6182 
6183     case RQ_RValue:
6184       if (isIndirect || !LHS.get()->Classify(Context).isRValue())
6185         Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6186           << RHSType << 0 << LHS.get()->getSourceRange();
6187       break;
6188     }
6189   }
6190 
6191   // C++ [expr.mptr.oper]p6:
6192   //   The result of a .* expression whose second operand is a pointer
6193   //   to a data member is of the same value category as its
6194   //   first operand. The result of a .* expression whose second
6195   //   operand is a pointer to a member function is a prvalue. The
6196   //   result of an ->* expression is an lvalue if its second operand
6197   //   is a pointer to data member and a prvalue otherwise.
6198   if (Result->isFunctionType()) {
6199     VK = VK_PRValue;
6200     return Context.BoundMemberTy;
6201   } else if (isIndirect) {
6202     VK = VK_LValue;
6203   } else {
6204     VK = LHS.get()->getValueKind();
6205   }
6206 
6207   return Result;
6208 }
6209 
6210 /// Try to convert a type to another according to C++11 5.16p3.
6211 ///
6212 /// This is part of the parameter validation for the ? operator. If either
6213 /// value operand is a class type, the two operands are attempted to be
6214 /// converted to each other. This function does the conversion in one direction.
6215 /// It returns true if the program is ill-formed and has already been diagnosed
6216 /// as such.
6217 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
6218                                 SourceLocation QuestionLoc,
6219                                 bool &HaveConversion,
6220                                 QualType &ToType) {
6221   HaveConversion = false;
6222   ToType = To->getType();
6223 
6224   InitializationKind Kind =
6225       InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation());
6226   // C++11 5.16p3
6227   //   The process for determining whether an operand expression E1 of type T1
6228   //   can be converted to match an operand expression E2 of type T2 is defined
6229   //   as follows:
6230   //   -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
6231   //      implicitly converted to type "lvalue reference to T2", subject to the
6232   //      constraint that in the conversion the reference must bind directly to
6233   //      an lvalue.
6234   //   -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
6235   //      implicitly converted to the type "rvalue reference to R2", subject to
6236   //      the constraint that the reference must bind directly.
6237   if (To->isGLValue()) {
6238     QualType T = Self.Context.getReferenceQualifiedType(To);
6239     InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6240 
6241     InitializationSequence InitSeq(Self, Entity, Kind, From);
6242     if (InitSeq.isDirectReferenceBinding()) {
6243       ToType = T;
6244       HaveConversion = true;
6245       return false;
6246     }
6247 
6248     if (InitSeq.isAmbiguous())
6249       return InitSeq.Diagnose(Self, Entity, Kind, From);
6250   }
6251 
6252   //   -- If E2 is an rvalue, or if the conversion above cannot be done:
6253   //      -- if E1 and E2 have class type, and the underlying class types are
6254   //         the same or one is a base class of the other:
6255   QualType FTy = From->getType();
6256   QualType TTy = To->getType();
6257   const RecordType *FRec = FTy->getAs<RecordType>();
6258   const RecordType *TRec = TTy->getAs<RecordType>();
6259   bool FDerivedFromT = FRec && TRec && FRec != TRec &&
6260                        Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
6261   if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
6262                        Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
6263     //         E1 can be converted to match E2 if the class of T2 is the
6264     //         same type as, or a base class of, the class of T1, and
6265     //         [cv2 > cv1].
6266     if (FRec == TRec || FDerivedFromT) {
6267       if (TTy.isAtLeastAsQualifiedAs(FTy)) {
6268         InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6269         InitializationSequence InitSeq(Self, Entity, Kind, From);
6270         if (InitSeq) {
6271           HaveConversion = true;
6272           return false;
6273         }
6274 
6275         if (InitSeq.isAmbiguous())
6276           return InitSeq.Diagnose(Self, Entity, Kind, From);
6277       }
6278     }
6279 
6280     return false;
6281   }
6282 
6283   //     -- Otherwise: E1 can be converted to match E2 if E1 can be
6284   //        implicitly converted to the type that expression E2 would have
6285   //        if E2 were converted to an rvalue (or the type it has, if E2 is
6286   //        an rvalue).
6287   //
6288   // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
6289   // to the array-to-pointer or function-to-pointer conversions.
6290   TTy = TTy.getNonLValueExprType(Self.Context);
6291 
6292   InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
6293   InitializationSequence InitSeq(Self, Entity, Kind, From);
6294   HaveConversion = !InitSeq.Failed();
6295   ToType = TTy;
6296   if (InitSeq.isAmbiguous())
6297     return InitSeq.Diagnose(Self, Entity, Kind, From);
6298 
6299   return false;
6300 }
6301 
6302 /// Try to find a common type for two according to C++0x 5.16p5.
6303 ///
6304 /// This is part of the parameter validation for the ? operator. If either
6305 /// value operand is a class type, overload resolution is used to find a
6306 /// conversion to a common type.
6307 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
6308                                     SourceLocation QuestionLoc) {
6309   Expr *Args[2] = { LHS.get(), RHS.get() };
6310   OverloadCandidateSet CandidateSet(QuestionLoc,
6311                                     OverloadCandidateSet::CSK_Operator);
6312   Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
6313                                     CandidateSet);
6314 
6315   OverloadCandidateSet::iterator Best;
6316   switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
6317     case OR_Success: {
6318       // We found a match. Perform the conversions on the arguments and move on.
6319       ExprResult LHSRes = Self.PerformImplicitConversion(
6320           LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
6321           Sema::AA_Converting);
6322       if (LHSRes.isInvalid())
6323         break;
6324       LHS = LHSRes;
6325 
6326       ExprResult RHSRes = Self.PerformImplicitConversion(
6327           RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
6328           Sema::AA_Converting);
6329       if (RHSRes.isInvalid())
6330         break;
6331       RHS = RHSRes;
6332       if (Best->Function)
6333         Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
6334       return false;
6335     }
6336 
6337     case OR_No_Viable_Function:
6338 
6339       // Emit a better diagnostic if one of the expressions is a null pointer
6340       // constant and the other is a pointer type. In this case, the user most
6341       // likely forgot to take the address of the other expression.
6342       if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6343         return true;
6344 
6345       Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6346         << LHS.get()->getType() << RHS.get()->getType()
6347         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6348       return true;
6349 
6350     case OR_Ambiguous:
6351       Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6352         << LHS.get()->getType() << RHS.get()->getType()
6353         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6354       // FIXME: Print the possible common types by printing the return types of
6355       // the viable candidates.
6356       break;
6357 
6358     case OR_Deleted:
6359       llvm_unreachable("Conditional operator has only built-in overloads");
6360   }
6361   return true;
6362 }
6363 
6364 /// Perform an "extended" implicit conversion as returned by
6365 /// TryClassUnification.
6366 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6367   InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
6368   InitializationKind Kind =
6369       InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation());
6370   Expr *Arg = E.get();
6371   InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6372   ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
6373   if (Result.isInvalid())
6374     return true;
6375 
6376   E = Result;
6377   return false;
6378 }
6379 
6380 // Check the condition operand of ?: to see if it is valid for the GCC
6381 // extension.
6382 static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6383                                                  QualType CondTy) {
6384   if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6385     return false;
6386   const QualType EltTy =
6387       cast<VectorType>(CondTy.getCanonicalType())->getElementType();
6388   assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6389   return EltTy->isIntegralType(Ctx);
6390 }
6391 
6392 static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx,
6393                                                          QualType CondTy) {
6394   if (!CondTy->isSveVLSBuiltinType())
6395     return false;
6396   const QualType EltTy =
6397       cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx);
6398   assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6399   return EltTy->isIntegralType(Ctx);
6400 }
6401 
6402 QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6403                                            ExprResult &RHS,
6404                                            SourceLocation QuestionLoc) {
6405   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6406   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6407 
6408   QualType CondType = Cond.get()->getType();
6409   const auto *CondVT = CondType->castAs<VectorType>();
6410   QualType CondElementTy = CondVT->getElementType();
6411   unsigned CondElementCount = CondVT->getNumElements();
6412   QualType LHSType = LHS.get()->getType();
6413   const auto *LHSVT = LHSType->getAs<VectorType>();
6414   QualType RHSType = RHS.get()->getType();
6415   const auto *RHSVT = RHSType->getAs<VectorType>();
6416 
6417   QualType ResultType;
6418 
6419 
6420   if (LHSVT && RHSVT) {
6421     if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) {
6422       Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6423           << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6424       return {};
6425     }
6426 
6427     // If both are vector types, they must be the same type.
6428     if (!Context.hasSameType(LHSType, RHSType)) {
6429       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6430           << LHSType << RHSType;
6431       return {};
6432     }
6433     ResultType = Context.getCommonSugaredType(LHSType, RHSType);
6434   } else if (LHSVT || RHSVT) {
6435     ResultType = CheckVectorOperands(
6436         LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true,
6437         /*AllowBoolConversions*/ false,
6438         /*AllowBoolOperation*/ true,
6439         /*ReportInvalid*/ true);
6440     if (ResultType.isNull())
6441       return {};
6442   } else {
6443     // Both are scalar.
6444     LHSType = LHSType.getUnqualifiedType();
6445     RHSType = RHSType.getUnqualifiedType();
6446     QualType ResultElementTy =
6447         Context.hasSameType(LHSType, RHSType)
6448             ? Context.getCommonSugaredType(LHSType, RHSType)
6449             : UsualArithmeticConversions(LHS, RHS, QuestionLoc,
6450                                          ACK_Conditional);
6451 
6452     if (ResultElementTy->isEnumeralType()) {
6453       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6454           << ResultElementTy;
6455       return {};
6456     }
6457     if (CondType->isExtVectorType())
6458       ResultType =
6459           Context.getExtVectorType(ResultElementTy, CondVT->getNumElements());
6460     else
6461       ResultType = Context.getVectorType(
6462           ResultElementTy, CondVT->getNumElements(), VectorKind::Generic);
6463 
6464     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6465     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6466   }
6467 
6468   assert(!ResultType.isNull() && ResultType->isVectorType() &&
6469          (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6470          "Result should have been a vector type");
6471   auto *ResultVectorTy = ResultType->castAs<VectorType>();
6472   QualType ResultElementTy = ResultVectorTy->getElementType();
6473   unsigned ResultElementCount = ResultVectorTy->getNumElements();
6474 
6475   if (ResultElementCount != CondElementCount) {
6476     Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6477                                                          << ResultType;
6478     return {};
6479   }
6480 
6481   if (Context.getTypeSize(ResultElementTy) !=
6482       Context.getTypeSize(CondElementTy)) {
6483     Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6484                                                                  << ResultType;
6485     return {};
6486   }
6487 
6488   return ResultType;
6489 }
6490 
6491 QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond,
6492                                                    ExprResult &LHS,
6493                                                    ExprResult &RHS,
6494                                                    SourceLocation QuestionLoc) {
6495   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6496   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6497 
6498   QualType CondType = Cond.get()->getType();
6499   const auto *CondBT = CondType->castAs<BuiltinType>();
6500   QualType CondElementTy = CondBT->getSveEltType(Context);
6501   llvm::ElementCount CondElementCount =
6502       Context.getBuiltinVectorTypeInfo(CondBT).EC;
6503 
6504   QualType LHSType = LHS.get()->getType();
6505   const auto *LHSBT =
6506       LHSType->isSveVLSBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr;
6507   QualType RHSType = RHS.get()->getType();
6508   const auto *RHSBT =
6509       RHSType->isSveVLSBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr;
6510 
6511   QualType ResultType;
6512 
6513   if (LHSBT && RHSBT) {
6514     // If both are sizeless vector types, they must be the same type.
6515     if (!Context.hasSameType(LHSType, RHSType)) {
6516       Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6517           << LHSType << RHSType;
6518       return QualType();
6519     }
6520     ResultType = LHSType;
6521   } else if (LHSBT || RHSBT) {
6522     ResultType = CheckSizelessVectorOperands(
6523         LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional);
6524     if (ResultType.isNull())
6525       return QualType();
6526   } else {
6527     // Both are scalar so splat
6528     QualType ResultElementTy;
6529     LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6530     RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6531 
6532     if (Context.hasSameType(LHSType, RHSType))
6533       ResultElementTy = LHSType;
6534     else
6535       ResultElementTy =
6536           UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6537 
6538     if (ResultElementTy->isEnumeralType()) {
6539       Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6540           << ResultElementTy;
6541       return QualType();
6542     }
6543 
6544     ResultType = Context.getScalableVectorType(
6545         ResultElementTy, CondElementCount.getKnownMinValue());
6546 
6547     LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat);
6548     RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat);
6549   }
6550 
6551   assert(!ResultType.isNull() && ResultType->isSveVLSBuiltinType() &&
6552          "Result should have been a vector type");
6553   auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>();
6554   QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context);
6555   llvm::ElementCount ResultElementCount =
6556       Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC;
6557 
6558   if (ResultElementCount != CondElementCount) {
6559     Diag(QuestionLoc, diag::err_conditional_vector_size)
6560         << CondType << ResultType;
6561     return QualType();
6562   }
6563 
6564   if (Context.getTypeSize(ResultElementTy) !=
6565       Context.getTypeSize(CondElementTy)) {
6566     Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6567         << CondType << ResultType;
6568     return QualType();
6569   }
6570 
6571   return ResultType;
6572 }
6573 
6574 /// Check the operands of ?: under C++ semantics.
6575 ///
6576 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6577 /// extension. In this case, LHS == Cond. (But they're not aliases.)
6578 ///
6579 /// This function also implements GCC's vector extension and the
6580 /// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6581 /// permit the use of a?b:c where the type of a is that of a integer vector with
6582 /// the same number of elements and size as the vectors of b and c. If one of
6583 /// either b or c is a scalar it is implicitly converted to match the type of
6584 /// the vector. Otherwise the expression is ill-formed. If both b and c are
6585 /// scalars, then b and c are checked and converted to the type of a if
6586 /// possible.
6587 ///
6588 /// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6589 /// For the GCC extension, the ?: operator is evaluated as
6590 ///   (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6591 /// For the OpenCL extensions, the ?: operator is evaluated as
6592 ///   (most-significant-bit-set(a[0])  ? b[0] : c[0], .. ,
6593 ///    most-significant-bit-set(a[n]) ? b[n] : c[n]).
6594 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6595                                            ExprResult &RHS, ExprValueKind &VK,
6596                                            ExprObjectKind &OK,
6597                                            SourceLocation QuestionLoc) {
6598   // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6599   // pointers.
6600 
6601   // Assume r-value.
6602   VK = VK_PRValue;
6603   OK = OK_Ordinary;
6604   bool IsVectorConditional =
6605       isValidVectorForConditionalCondition(Context, Cond.get()->getType());
6606 
6607   bool IsSizelessVectorConditional =
6608       isValidSizelessVectorForConditionalCondition(Context,
6609                                                    Cond.get()->getType());
6610 
6611   // C++11 [expr.cond]p1
6612   //   The first expression is contextually converted to bool.
6613   if (!Cond.get()->isTypeDependent()) {
6614     ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional
6615                              ? DefaultFunctionArrayLvalueConversion(Cond.get())
6616                              : CheckCXXBooleanCondition(Cond.get());
6617     if (CondRes.isInvalid())
6618       return QualType();
6619     Cond = CondRes;
6620   } else {
6621     // To implement C++, the first expression typically doesn't alter the result
6622     // type of the conditional, however the GCC compatible vector extension
6623     // changes the result type to be that of the conditional. Since we cannot
6624     // know if this is a vector extension here, delay the conversion of the
6625     // LHS/RHS below until later.
6626     return Context.DependentTy;
6627   }
6628 
6629 
6630   // Either of the arguments dependent?
6631   if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6632     return Context.DependentTy;
6633 
6634   // C++11 [expr.cond]p2
6635   //   If either the second or the third operand has type (cv) void, ...
6636   QualType LTy = LHS.get()->getType();
6637   QualType RTy = RHS.get()->getType();
6638   bool LVoid = LTy->isVoidType();
6639   bool RVoid = RTy->isVoidType();
6640   if (LVoid || RVoid) {
6641     //   ... one of the following shall hold:
6642     //   -- The second or the third operand (but not both) is a (possibly
6643     //      parenthesized) throw-expression; the result is of the type
6644     //      and value category of the other.
6645     bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
6646     bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
6647 
6648     // Void expressions aren't legal in the vector-conditional expressions.
6649     if (IsVectorConditional) {
6650       SourceRange DiagLoc =
6651           LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6652       bool IsThrow = LVoid ? LThrow : RThrow;
6653       Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6654           << DiagLoc << IsThrow;
6655       return QualType();
6656     }
6657 
6658     if (LThrow != RThrow) {
6659       Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6660       VK = NonThrow->getValueKind();
6661       // DR (no number yet): the result is a bit-field if the
6662       // non-throw-expression operand is a bit-field.
6663       OK = NonThrow->getObjectKind();
6664       return NonThrow->getType();
6665     }
6666 
6667     //   -- Both the second and third operands have type void; the result is of
6668     //      type void and is a prvalue.
6669     if (LVoid && RVoid)
6670       return Context.getCommonSugaredType(LTy, RTy);
6671 
6672     // Neither holds, error.
6673     Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6674       << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6675       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6676     return QualType();
6677   }
6678 
6679   // Neither is void.
6680   if (IsVectorConditional)
6681     return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6682 
6683   if (IsSizelessVectorConditional)
6684     return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6685 
6686   // WebAssembly tables are not allowed as conditional LHS or RHS.
6687   if (LTy->isWebAssemblyTableType() || RTy->isWebAssemblyTableType()) {
6688     Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
6689         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6690     return QualType();
6691   }
6692 
6693   // C++11 [expr.cond]p3
6694   //   Otherwise, if the second and third operand have different types, and
6695   //   either has (cv) class type [...] an attempt is made to convert each of
6696   //   those operands to the type of the other.
6697   if (!Context.hasSameType(LTy, RTy) &&
6698       (LTy->isRecordType() || RTy->isRecordType())) {
6699     // These return true if a single direction is already ambiguous.
6700     QualType L2RType, R2LType;
6701     bool HaveL2R, HaveR2L;
6702     if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
6703       return QualType();
6704     if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
6705       return QualType();
6706 
6707     //   If both can be converted, [...] the program is ill-formed.
6708     if (HaveL2R && HaveR2L) {
6709       Diag(QuestionLoc, diag::err_conditional_ambiguous)
6710         << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6711       return QualType();
6712     }
6713 
6714     //   If exactly one conversion is possible, that conversion is applied to
6715     //   the chosen operand and the converted operands are used in place of the
6716     //   original operands for the remainder of this section.
6717     if (HaveL2R) {
6718       if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
6719         return QualType();
6720       LTy = LHS.get()->getType();
6721     } else if (HaveR2L) {
6722       if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
6723         return QualType();
6724       RTy = RHS.get()->getType();
6725     }
6726   }
6727 
6728   // C++11 [expr.cond]p3
6729   //   if both are glvalues of the same value category and the same type except
6730   //   for cv-qualification, an attempt is made to convert each of those
6731   //   operands to the type of the other.
6732   // FIXME:
6733   //   Resolving a defect in P0012R1: we extend this to cover all cases where
6734   //   one of the operands is reference-compatible with the other, in order
6735   //   to support conditionals between functions differing in noexcept. This
6736   //   will similarly cover difference in array bounds after P0388R4.
6737   // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6738   //   that instead?
6739   ExprValueKind LVK = LHS.get()->getValueKind();
6740   ExprValueKind RVK = RHS.get()->getValueKind();
6741   if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) {
6742     // DerivedToBase was already handled by the class-specific case above.
6743     // FIXME: Should we allow ObjC conversions here?
6744     const ReferenceConversions AllowedConversions =
6745         ReferenceConversions::Qualification |
6746         ReferenceConversions::NestedQualification |
6747         ReferenceConversions::Function;
6748 
6749     ReferenceConversions RefConv;
6750     if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) ==
6751             Ref_Compatible &&
6752         !(RefConv & ~AllowedConversions) &&
6753         // [...] subject to the constraint that the reference must bind
6754         // directly [...]
6755         !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6756       RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
6757       RTy = RHS.get()->getType();
6758     } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) ==
6759                    Ref_Compatible &&
6760                !(RefConv & ~AllowedConversions) &&
6761                !LHS.get()->refersToBitField() &&
6762                !LHS.get()->refersToVectorElement()) {
6763       LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
6764       LTy = LHS.get()->getType();
6765     }
6766   }
6767 
6768   // C++11 [expr.cond]p4
6769   //   If the second and third operands are glvalues of the same value
6770   //   category and have the same type, the result is of that type and
6771   //   value category and it is a bit-field if the second or the third
6772   //   operand is a bit-field, or if both are bit-fields.
6773   // We only extend this to bitfields, not to the crazy other kinds of
6774   // l-values.
6775   bool Same = Context.hasSameType(LTy, RTy);
6776   if (Same && LVK == RVK && LVK != VK_PRValue &&
6777       LHS.get()->isOrdinaryOrBitFieldObject() &&
6778       RHS.get()->isOrdinaryOrBitFieldObject()) {
6779     VK = LHS.get()->getValueKind();
6780     if (LHS.get()->getObjectKind() == OK_BitField ||
6781         RHS.get()->getObjectKind() == OK_BitField)
6782       OK = OK_BitField;
6783     return Context.getCommonSugaredType(LTy, RTy);
6784   }
6785 
6786   // C++11 [expr.cond]p5
6787   //   Otherwise, the result is a prvalue. If the second and third operands
6788   //   do not have the same type, and either has (cv) class type, ...
6789   if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6790     //   ... overload resolution is used to determine the conversions (if any)
6791     //   to be applied to the operands. If the overload resolution fails, the
6792     //   program is ill-formed.
6793     if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
6794       return QualType();
6795   }
6796 
6797   // C++11 [expr.cond]p6
6798   //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6799   //   conversions are performed on the second and third operands.
6800   LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
6801   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
6802   if (LHS.isInvalid() || RHS.isInvalid())
6803     return QualType();
6804   LTy = LHS.get()->getType();
6805   RTy = RHS.get()->getType();
6806 
6807   //   After those conversions, one of the following shall hold:
6808   //   -- The second and third operands have the same type; the result
6809   //      is of that type. If the operands have class type, the result
6810   //      is a prvalue temporary of the result type, which is
6811   //      copy-initialized from either the second operand or the third
6812   //      operand depending on the value of the first operand.
6813   if (Context.hasSameType(LTy, RTy)) {
6814     if (LTy->isRecordType()) {
6815       // The operands have class type. Make a temporary copy.
6816       ExprResult LHSCopy = PerformCopyInitialization(
6817           InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS);
6818       if (LHSCopy.isInvalid())
6819         return QualType();
6820 
6821       ExprResult RHSCopy = PerformCopyInitialization(
6822           InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS);
6823       if (RHSCopy.isInvalid())
6824         return QualType();
6825 
6826       LHS = LHSCopy;
6827       RHS = RHSCopy;
6828     }
6829     return Context.getCommonSugaredType(LTy, RTy);
6830   }
6831 
6832   // Extension: conditional operator involving vector types.
6833   if (LTy->isVectorType() || RTy->isVectorType())
6834     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
6835                                /*AllowBothBool*/ true,
6836                                /*AllowBoolConversions*/ false,
6837                                /*AllowBoolOperation*/ false,
6838                                /*ReportInvalid*/ true);
6839 
6840   //   -- The second and third operands have arithmetic or enumeration type;
6841   //      the usual arithmetic conversions are performed to bring them to a
6842   //      common type, and the result is of that type.
6843   if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6844     QualType ResTy =
6845         UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
6846     if (LHS.isInvalid() || RHS.isInvalid())
6847       return QualType();
6848     if (ResTy.isNull()) {
6849       Diag(QuestionLoc,
6850            diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6851         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6852       return QualType();
6853     }
6854 
6855     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
6856     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
6857 
6858     return ResTy;
6859   }
6860 
6861   //   -- The second and third operands have pointer type, or one has pointer
6862   //      type and the other is a null pointer constant, or both are null
6863   //      pointer constants, at least one of which is non-integral; pointer
6864   //      conversions and qualification conversions are performed to bring them
6865   //      to their composite pointer type. The result is of the composite
6866   //      pointer type.
6867   //   -- The second and third operands have pointer to member type, or one has
6868   //      pointer to member type and the other is a null pointer constant;
6869   //      pointer to member conversions and qualification conversions are
6870   //      performed to bring them to a common type, whose cv-qualification
6871   //      shall match the cv-qualification of either the second or the third
6872   //      operand. The result is of the common type.
6873   QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
6874   if (!Composite.isNull())
6875     return Composite;
6876 
6877   // Similarly, attempt to find composite type of two objective-c pointers.
6878   Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6879   if (LHS.isInvalid() || RHS.isInvalid())
6880     return QualType();
6881   if (!Composite.isNull())
6882     return Composite;
6883 
6884   // Check if we are using a null with a non-pointer type.
6885   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
6886     return QualType();
6887 
6888   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6889     << LHS.get()->getType() << RHS.get()->getType()
6890     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6891   return QualType();
6892 }
6893 
6894 /// Find a merged pointer type and convert the two expressions to it.
6895 ///
6896 /// This finds the composite pointer type for \p E1 and \p E2 according to
6897 /// C++2a [expr.type]p3. It converts both expressions to this type and returns
6898 /// it.  It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6899 /// is \c true).
6900 ///
6901 /// \param Loc The location of the operator requiring these two expressions to
6902 /// be converted to the composite pointer type.
6903 ///
6904 /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6905 QualType Sema::FindCompositePointerType(SourceLocation Loc,
6906                                         Expr *&E1, Expr *&E2,
6907                                         bool ConvertArgs) {
6908   assert(getLangOpts().CPlusPlus && "This function assumes C++");
6909 
6910   // C++1z [expr]p14:
6911   //   The composite pointer type of two operands p1 and p2 having types T1
6912   //   and T2
6913   QualType T1 = E1->getType(), T2 = E2->getType();
6914 
6915   //   where at least one is a pointer or pointer to member type or
6916   //   std::nullptr_t is:
6917   bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6918                          T1->isNullPtrType();
6919   bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6920                          T2->isNullPtrType();
6921   if (!T1IsPointerLike && !T2IsPointerLike)
6922     return QualType();
6923 
6924   //   - if both p1 and p2 are null pointer constants, std::nullptr_t;
6925   // This can't actually happen, following the standard, but we also use this
6926   // to implement the end of [expr.conv], which hits this case.
6927   //
6928   //   - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6929   if (T1IsPointerLike &&
6930       E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6931     if (ConvertArgs)
6932       E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
6933                                          ? CK_NullToMemberPointer
6934                                          : CK_NullToPointer).get();
6935     return T1;
6936   }
6937   if (T2IsPointerLike &&
6938       E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
6939     if (ConvertArgs)
6940       E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
6941                                          ? CK_NullToMemberPointer
6942                                          : CK_NullToPointer).get();
6943     return T2;
6944   }
6945 
6946   // Now both have to be pointers or member pointers.
6947   if (!T1IsPointerLike || !T2IsPointerLike)
6948     return QualType();
6949   assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6950          "nullptr_t should be a null pointer constant");
6951 
6952   struct Step {
6953     enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6954     // Qualifiers to apply under the step kind.
6955     Qualifiers Quals;
6956     /// The class for a pointer-to-member; a constant array type with a bound
6957     /// (if any) for an array.
6958     const Type *ClassOrBound;
6959 
6960     Step(Kind K, const Type *ClassOrBound = nullptr)
6961         : K(K), ClassOrBound(ClassOrBound) {}
6962     QualType rebuild(ASTContext &Ctx, QualType T) const {
6963       T = Ctx.getQualifiedType(T, Quals);
6964       switch (K) {
6965       case Pointer:
6966         return Ctx.getPointerType(T);
6967       case MemberPointer:
6968         return Ctx.getMemberPointerType(T, ClassOrBound);
6969       case ObjCPointer:
6970         return Ctx.getObjCObjectPointerType(T);
6971       case Array:
6972         if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound))
6973           return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr,
6974                                           ArraySizeModifier::Normal, 0);
6975         else
6976           return Ctx.getIncompleteArrayType(T, ArraySizeModifier::Normal, 0);
6977       }
6978       llvm_unreachable("unknown step kind");
6979     }
6980   };
6981 
6982   SmallVector<Step, 8> Steps;
6983 
6984   //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6985   //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6986   //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6987   //    respectively;
6988   //  - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6989   //    to member of C2 of type cv2 U2" for some non-function type U, where
6990   //    C1 is reference-related to C2 or C2 is reference-related to C1, the
6991   //    cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6992   //    respectively;
6993   //  - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
6994   //    T2;
6995   //
6996   // Dismantle T1 and T2 to simultaneously determine whether they are similar
6997   // and to prepare to form the cv-combined type if so.
6998   QualType Composite1 = T1;
6999   QualType Composite2 = T2;
7000   unsigned NeedConstBefore = 0;
7001   while (true) {
7002     assert(!Composite1.isNull() && !Composite2.isNull());
7003 
7004     Qualifiers Q1, Q2;
7005     Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1);
7006     Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2);
7007 
7008     // Top-level qualifiers are ignored. Merge at all lower levels.
7009     if (!Steps.empty()) {
7010       // Find the qualifier union: (approximately) the unique minimal set of
7011       // qualifiers that is compatible with both types.
7012       Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() |
7013                                                   Q2.getCVRUQualifiers());
7014 
7015       // Under one level of pointer or pointer-to-member, we can change to an
7016       // unambiguous compatible address space.
7017       if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
7018         Quals.setAddressSpace(Q1.getAddressSpace());
7019       } else if (Steps.size() == 1) {
7020         bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2);
7021         bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1);
7022         if (MaybeQ1 == MaybeQ2) {
7023           // Exception for ptr size address spaces. Should be able to choose
7024           // either address space during comparison.
7025           if (isPtrSizeAddressSpace(Q1.getAddressSpace()) ||
7026               isPtrSizeAddressSpace(Q2.getAddressSpace()))
7027             MaybeQ1 = true;
7028           else
7029             return QualType(); // No unique best address space.
7030         }
7031         Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
7032                                       : Q2.getAddressSpace());
7033       } else {
7034         return QualType();
7035       }
7036 
7037       // FIXME: In C, we merge __strong and none to __strong at the top level.
7038       if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
7039         Quals.setObjCGCAttr(Q1.getObjCGCAttr());
7040       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
7041         assert(Steps.size() == 1);
7042       else
7043         return QualType();
7044 
7045       // Mismatched lifetime qualifiers never compatibly include each other.
7046       if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
7047         Quals.setObjCLifetime(Q1.getObjCLifetime());
7048       else if (T1->isVoidPointerType() || T2->isVoidPointerType())
7049         assert(Steps.size() == 1);
7050       else
7051         return QualType();
7052 
7053       Steps.back().Quals = Quals;
7054       if (Q1 != Quals || Q2 != Quals)
7055         NeedConstBefore = Steps.size() - 1;
7056     }
7057 
7058     // FIXME: Can we unify the following with UnwrapSimilarTypes?
7059 
7060     const ArrayType *Arr1, *Arr2;
7061     if ((Arr1 = Context.getAsArrayType(Composite1)) &&
7062         (Arr2 = Context.getAsArrayType(Composite2))) {
7063       auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1);
7064       auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2);
7065       if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
7066         Composite1 = Arr1->getElementType();
7067         Composite2 = Arr2->getElementType();
7068         Steps.emplace_back(Step::Array, CAT1);
7069         continue;
7070       }
7071       bool IAT1 = isa<IncompleteArrayType>(Arr1);
7072       bool IAT2 = isa<IncompleteArrayType>(Arr2);
7073       if ((IAT1 && IAT2) ||
7074           (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
7075            ((bool)CAT1 != (bool)CAT2) &&
7076            (Steps.empty() || Steps.back().K != Step::Array))) {
7077         // In C++20 onwards, we can unify an array of N T with an array of
7078         // a different or unknown bound. But we can't form an array whose
7079         // element type is an array of unknown bound by doing so.
7080         Composite1 = Arr1->getElementType();
7081         Composite2 = Arr2->getElementType();
7082         Steps.emplace_back(Step::Array);
7083         if (CAT1 || CAT2)
7084           NeedConstBefore = Steps.size();
7085         continue;
7086       }
7087     }
7088 
7089     const PointerType *Ptr1, *Ptr2;
7090     if ((Ptr1 = Composite1->getAs<PointerType>()) &&
7091         (Ptr2 = Composite2->getAs<PointerType>())) {
7092       Composite1 = Ptr1->getPointeeType();
7093       Composite2 = Ptr2->getPointeeType();
7094       Steps.emplace_back(Step::Pointer);
7095       continue;
7096     }
7097 
7098     const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
7099     if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
7100         (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
7101       Composite1 = ObjPtr1->getPointeeType();
7102       Composite2 = ObjPtr2->getPointeeType();
7103       Steps.emplace_back(Step::ObjCPointer);
7104       continue;
7105     }
7106 
7107     const MemberPointerType *MemPtr1, *MemPtr2;
7108     if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
7109         (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
7110       Composite1 = MemPtr1->getPointeeType();
7111       Composite2 = MemPtr2->getPointeeType();
7112 
7113       // At the top level, we can perform a base-to-derived pointer-to-member
7114       // conversion:
7115       //
7116       //  - [...] where C1 is reference-related to C2 or C2 is
7117       //    reference-related to C1
7118       //
7119       // (Note that the only kinds of reference-relatedness in scope here are
7120       // "same type or derived from".) At any other level, the class must
7121       // exactly match.
7122       const Type *Class = nullptr;
7123       QualType Cls1(MemPtr1->getClass(), 0);
7124       QualType Cls2(MemPtr2->getClass(), 0);
7125       if (Context.hasSameType(Cls1, Cls2))
7126         Class = MemPtr1->getClass();
7127       else if (Steps.empty())
7128         Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() :
7129                 IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr;
7130       if (!Class)
7131         return QualType();
7132 
7133       Steps.emplace_back(Step::MemberPointer, Class);
7134       continue;
7135     }
7136 
7137     // Special case: at the top level, we can decompose an Objective-C pointer
7138     // and a 'cv void *'. Unify the qualifiers.
7139     if (Steps.empty() && ((Composite1->isVoidPointerType() &&
7140                            Composite2->isObjCObjectPointerType()) ||
7141                           (Composite1->isObjCObjectPointerType() &&
7142                            Composite2->isVoidPointerType()))) {
7143       Composite1 = Composite1->getPointeeType();
7144       Composite2 = Composite2->getPointeeType();
7145       Steps.emplace_back(Step::Pointer);
7146       continue;
7147     }
7148 
7149     // FIXME: block pointer types?
7150 
7151     // Cannot unwrap any more types.
7152     break;
7153   }
7154 
7155   //  - if T1 or T2 is "pointer to noexcept function" and the other type is
7156   //    "pointer to function", where the function types are otherwise the same,
7157   //    "pointer to function";
7158   //  - if T1 or T2 is "pointer to member of C1 of type function", the other
7159   //    type is "pointer to member of C2 of type noexcept function", and C1
7160   //    is reference-related to C2 or C2 is reference-related to C1, where
7161   //    the function types are otherwise the same, "pointer to member of C2 of
7162   //    type function" or "pointer to member of C1 of type function",
7163   //    respectively;
7164   //
7165   // We also support 'noreturn' here, so as a Clang extension we generalize the
7166   // above to:
7167   //
7168   //  - [Clang] If T1 and T2 are both of type "pointer to function" or
7169   //    "pointer to member function" and the pointee types can be unified
7170   //    by a function pointer conversion, that conversion is applied
7171   //    before checking the following rules.
7172   //
7173   // We've already unwrapped down to the function types, and we want to merge
7174   // rather than just convert, so do this ourselves rather than calling
7175   // IsFunctionConversion.
7176   //
7177   // FIXME: In order to match the standard wording as closely as possible, we
7178   // currently only do this under a single level of pointers. Ideally, we would
7179   // allow this in general, and set NeedConstBefore to the relevant depth on
7180   // the side(s) where we changed anything. If we permit that, we should also
7181   // consider this conversion when determining type similarity and model it as
7182   // a qualification conversion.
7183   if (Steps.size() == 1) {
7184     if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
7185       if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
7186         FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
7187         FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
7188 
7189         // The result is noreturn if both operands are.
7190         bool Noreturn =
7191             EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
7192         EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
7193         EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
7194 
7195         // The result is nothrow if both operands are.
7196         SmallVector<QualType, 8> ExceptionTypeStorage;
7197         EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs(
7198             EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage,
7199             getLangOpts().CPlusPlus17);
7200 
7201         Composite1 = Context.getFunctionType(FPT1->getReturnType(),
7202                                              FPT1->getParamTypes(), EPI1);
7203         Composite2 = Context.getFunctionType(FPT2->getReturnType(),
7204                                              FPT2->getParamTypes(), EPI2);
7205       }
7206     }
7207   }
7208 
7209   // There are some more conversions we can perform under exactly one pointer.
7210   if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
7211       !Context.hasSameType(Composite1, Composite2)) {
7212     //  - if T1 or T2 is "pointer to cv1 void" and the other type is
7213     //    "pointer to cv2 T", where T is an object type or void,
7214     //    "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
7215     if (Composite1->isVoidType() && Composite2->isObjectType())
7216       Composite2 = Composite1;
7217     else if (Composite2->isVoidType() && Composite1->isObjectType())
7218       Composite1 = Composite2;
7219     //  - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7220     //    is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7221     //    the cv-combined type of T1 and T2 or the cv-combined type of T2 and
7222     //    T1, respectively;
7223     //
7224     // The "similar type" handling covers all of this except for the "T1 is a
7225     // base class of T2" case in the definition of reference-related.
7226     else if (IsDerivedFrom(Loc, Composite1, Composite2))
7227       Composite1 = Composite2;
7228     else if (IsDerivedFrom(Loc, Composite2, Composite1))
7229       Composite2 = Composite1;
7230   }
7231 
7232   // At this point, either the inner types are the same or we have failed to
7233   // find a composite pointer type.
7234   if (!Context.hasSameType(Composite1, Composite2))
7235     return QualType();
7236 
7237   // Per C++ [conv.qual]p3, add 'const' to every level before the last
7238   // differing qualifier.
7239   for (unsigned I = 0; I != NeedConstBefore; ++I)
7240     Steps[I].Quals.addConst();
7241 
7242   // Rebuild the composite type.
7243   QualType Composite = Context.getCommonSugaredType(Composite1, Composite2);
7244   for (auto &S : llvm::reverse(Steps))
7245     Composite = S.rebuild(Context, Composite);
7246 
7247   if (ConvertArgs) {
7248     // Convert the expressions to the composite pointer type.
7249     InitializedEntity Entity =
7250         InitializedEntity::InitializeTemporary(Composite);
7251     InitializationKind Kind =
7252         InitializationKind::CreateCopy(Loc, SourceLocation());
7253 
7254     InitializationSequence E1ToC(*this, Entity, Kind, E1);
7255     if (!E1ToC)
7256       return QualType();
7257 
7258     InitializationSequence E2ToC(*this, Entity, Kind, E2);
7259     if (!E2ToC)
7260       return QualType();
7261 
7262     // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
7263     ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1);
7264     if (E1Result.isInvalid())
7265       return QualType();
7266     E1 = E1Result.get();
7267 
7268     ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2);
7269     if (E2Result.isInvalid())
7270       return QualType();
7271     E2 = E2Result.get();
7272   }
7273 
7274   return Composite;
7275 }
7276 
7277 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
7278   if (!E)
7279     return ExprError();
7280 
7281   assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
7282 
7283   // If the result is a glvalue, we shouldn't bind it.
7284   if (E->isGLValue())
7285     return E;
7286 
7287   // In ARC, calls that return a retainable type can return retained,
7288   // in which case we have to insert a consuming cast.
7289   if (getLangOpts().ObjCAutoRefCount &&
7290       E->getType()->isObjCRetainableType()) {
7291 
7292     bool ReturnsRetained;
7293 
7294     // For actual calls, we compute this by examining the type of the
7295     // called value.
7296     if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
7297       Expr *Callee = Call->getCallee()->IgnoreParens();
7298       QualType T = Callee->getType();
7299 
7300       if (T == Context.BoundMemberTy) {
7301         // Handle pointer-to-members.
7302         if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
7303           T = BinOp->getRHS()->getType();
7304         else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
7305           T = Mem->getMemberDecl()->getType();
7306       }
7307 
7308       if (const PointerType *Ptr = T->getAs<PointerType>())
7309         T = Ptr->getPointeeType();
7310       else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
7311         T = Ptr->getPointeeType();
7312       else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
7313         T = MemPtr->getPointeeType();
7314 
7315       auto *FTy = T->castAs<FunctionType>();
7316       ReturnsRetained = FTy->getExtInfo().getProducesResult();
7317 
7318     // ActOnStmtExpr arranges things so that StmtExprs of retainable
7319     // type always produce a +1 object.
7320     } else if (isa<StmtExpr>(E)) {
7321       ReturnsRetained = true;
7322 
7323     // We hit this case with the lambda conversion-to-block optimization;
7324     // we don't want any extra casts here.
7325     } else if (isa<CastExpr>(E) &&
7326                isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
7327       return E;
7328 
7329     // For message sends and property references, we try to find an
7330     // actual method.  FIXME: we should infer retention by selector in
7331     // cases where we don't have an actual method.
7332     } else {
7333       ObjCMethodDecl *D = nullptr;
7334       if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
7335         D = Send->getMethodDecl();
7336       } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
7337         D = BoxedExpr->getBoxingMethod();
7338       } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
7339         // Don't do reclaims if we're using the zero-element array
7340         // constant.
7341         if (ArrayLit->getNumElements() == 0 &&
7342             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7343           return E;
7344 
7345         D = ArrayLit->getArrayWithObjectsMethod();
7346       } else if (ObjCDictionaryLiteral *DictLit
7347                                         = dyn_cast<ObjCDictionaryLiteral>(E)) {
7348         // Don't do reclaims if we're using the zero-element dictionary
7349         // constant.
7350         if (DictLit->getNumElements() == 0 &&
7351             Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7352           return E;
7353 
7354         D = DictLit->getDictWithObjectsMethod();
7355       }
7356 
7357       ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7358 
7359       // Don't do reclaims on performSelector calls; despite their
7360       // return type, the invoked method doesn't necessarily actually
7361       // return an object.
7362       if (!ReturnsRetained &&
7363           D && D->getMethodFamily() == OMF_performSelector)
7364         return E;
7365     }
7366 
7367     // Don't reclaim an object of Class type.
7368     if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7369       return E;
7370 
7371     Cleanup.setExprNeedsCleanups(true);
7372 
7373     CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7374                                    : CK_ARCReclaimReturnedObject);
7375     return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
7376                                     VK_PRValue, FPOptionsOverride());
7377   }
7378 
7379   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7380     Cleanup.setExprNeedsCleanups(true);
7381 
7382   if (!getLangOpts().CPlusPlus)
7383     return E;
7384 
7385   // Search for the base element type (cf. ASTContext::getBaseElementType) with
7386   // a fast path for the common case that the type is directly a RecordType.
7387   const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
7388   const RecordType *RT = nullptr;
7389   while (!RT) {
7390     switch (T->getTypeClass()) {
7391     case Type::Record:
7392       RT = cast<RecordType>(T);
7393       break;
7394     case Type::ConstantArray:
7395     case Type::IncompleteArray:
7396     case Type::VariableArray:
7397     case Type::DependentSizedArray:
7398       T = cast<ArrayType>(T)->getElementType().getTypePtr();
7399       break;
7400     default:
7401       return E;
7402     }
7403   }
7404 
7405   // That should be enough to guarantee that this type is complete, if we're
7406   // not processing a decltype expression.
7407   CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
7408   if (RD->isInvalidDecl() || RD->isDependentContext())
7409     return E;
7410 
7411   bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7412                     ExpressionEvaluationContextRecord::EK_Decltype;
7413   CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
7414 
7415   if (Destructor) {
7416     MarkFunctionReferenced(E->getExprLoc(), Destructor);
7417     CheckDestructorAccess(E->getExprLoc(), Destructor,
7418                           PDiag(diag::err_access_dtor_temp)
7419                             << E->getType());
7420     if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7421       return ExprError();
7422 
7423     // If destructor is trivial, we can avoid the extra copy.
7424     if (Destructor->isTrivial())
7425       return E;
7426 
7427     // We need a cleanup, but we don't need to remember the temporary.
7428     Cleanup.setExprNeedsCleanups(true);
7429   }
7430 
7431   CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
7432   CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
7433 
7434   if (IsDecltype)
7435     ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
7436 
7437   return Bind;
7438 }
7439 
7440 ExprResult
7441 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7442   if (SubExpr.isInvalid())
7443     return ExprError();
7444 
7445   return MaybeCreateExprWithCleanups(SubExpr.get());
7446 }
7447 
7448 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7449   assert(SubExpr && "subexpression can't be null!");
7450 
7451   CleanupVarDeclMarking();
7452 
7453   unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7454   assert(ExprCleanupObjects.size() >= FirstCleanup);
7455   assert(Cleanup.exprNeedsCleanups() ||
7456          ExprCleanupObjects.size() == FirstCleanup);
7457   if (!Cleanup.exprNeedsCleanups())
7458     return SubExpr;
7459 
7460   auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7461                                  ExprCleanupObjects.size() - FirstCleanup);
7462 
7463   auto *E = ExprWithCleanups::Create(
7464       Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
7465   DiscardCleanupsInEvaluationContext();
7466 
7467   return E;
7468 }
7469 
7470 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7471   assert(SubStmt && "sub-statement can't be null!");
7472 
7473   CleanupVarDeclMarking();
7474 
7475   if (!Cleanup.exprNeedsCleanups())
7476     return SubStmt;
7477 
7478   // FIXME: In order to attach the temporaries, wrap the statement into
7479   // a StmtExpr; currently this is only used for asm statements.
7480   // This is hacky, either create a new CXXStmtWithTemporaries statement or
7481   // a new AsmStmtWithTemporaries.
7482   CompoundStmt *CompStmt =
7483       CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(),
7484                            SourceLocation(), SourceLocation());
7485   Expr *E = new (Context)
7486       StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7487                /*FIXME TemplateDepth=*/0);
7488   return MaybeCreateExprWithCleanups(E);
7489 }
7490 
7491 /// Process the expression contained within a decltype. For such expressions,
7492 /// certain semantic checks on temporaries are delayed until this point, and
7493 /// are omitted for the 'topmost' call in the decltype expression. If the
7494 /// topmost call bound a temporary, strip that temporary off the expression.
7495 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7496   assert(ExprEvalContexts.back().ExprContext ==
7497              ExpressionEvaluationContextRecord::EK_Decltype &&
7498          "not in a decltype expression");
7499 
7500   ExprResult Result = CheckPlaceholderExpr(E);
7501   if (Result.isInvalid())
7502     return ExprError();
7503   E = Result.get();
7504 
7505   // C++11 [expr.call]p11:
7506   //   If a function call is a prvalue of object type,
7507   // -- if the function call is either
7508   //   -- the operand of a decltype-specifier, or
7509   //   -- the right operand of a comma operator that is the operand of a
7510   //      decltype-specifier,
7511   //   a temporary object is not introduced for the prvalue.
7512 
7513   // Recursively rebuild ParenExprs and comma expressions to strip out the
7514   // outermost CXXBindTemporaryExpr, if any.
7515   if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
7516     ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
7517     if (SubExpr.isInvalid())
7518       return ExprError();
7519     if (SubExpr.get() == PE->getSubExpr())
7520       return E;
7521     return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
7522   }
7523   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
7524     if (BO->getOpcode() == BO_Comma) {
7525       ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
7526       if (RHS.isInvalid())
7527         return ExprError();
7528       if (RHS.get() == BO->getRHS())
7529         return E;
7530       return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma,
7531                                     BO->getType(), BO->getValueKind(),
7532                                     BO->getObjectKind(), BO->getOperatorLoc(),
7533                                     BO->getFPFeatures());
7534     }
7535   }
7536 
7537   CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
7538   CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
7539                               : nullptr;
7540   if (TopCall)
7541     E = TopCall;
7542   else
7543     TopBind = nullptr;
7544 
7545   // Disable the special decltype handling now.
7546   ExprEvalContexts.back().ExprContext =
7547       ExpressionEvaluationContextRecord::EK_Other;
7548 
7549   Result = CheckUnevaluatedOperand(E);
7550   if (Result.isInvalid())
7551     return ExprError();
7552   E = Result.get();
7553 
7554   // In MS mode, don't perform any extra checking of call return types within a
7555   // decltype expression.
7556   if (getLangOpts().MSVCCompat)
7557     return E;
7558 
7559   // Perform the semantic checks we delayed until this point.
7560   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7561        I != N; ++I) {
7562     CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7563     if (Call == TopCall)
7564       continue;
7565 
7566     if (CheckCallReturnType(Call->getCallReturnType(Context),
7567                             Call->getBeginLoc(), Call, Call->getDirectCallee()))
7568       return ExprError();
7569   }
7570 
7571   // Now all relevant types are complete, check the destructors are accessible
7572   // and non-deleted, and annotate them on the temporaries.
7573   for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7574        I != N; ++I) {
7575     CXXBindTemporaryExpr *Bind =
7576       ExprEvalContexts.back().DelayedDecltypeBinds[I];
7577     if (Bind == TopBind)
7578       continue;
7579 
7580     CXXTemporary *Temp = Bind->getTemporary();
7581 
7582     CXXRecordDecl *RD =
7583       Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7584     CXXDestructorDecl *Destructor = LookupDestructor(RD);
7585     Temp->setDestructor(Destructor);
7586 
7587     MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
7588     CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7589                           PDiag(diag::err_access_dtor_temp)
7590                             << Bind->getType());
7591     if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
7592       return ExprError();
7593 
7594     // We need a cleanup, but we don't need to remember the temporary.
7595     Cleanup.setExprNeedsCleanups(true);
7596   }
7597 
7598   // Possibly strip off the top CXXBindTemporaryExpr.
7599   return E;
7600 }
7601 
7602 /// Note a set of 'operator->' functions that were used for a member access.
7603 static void noteOperatorArrows(Sema &S,
7604                                ArrayRef<FunctionDecl *> OperatorArrows) {
7605   unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7606   // FIXME: Make this configurable?
7607   unsigned Limit = 9;
7608   if (OperatorArrows.size() > Limit) {
7609     // Produce Limit-1 normal notes and one 'skipping' note.
7610     SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7611     SkipCount = OperatorArrows.size() - (Limit - 1);
7612   }
7613 
7614   for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7615     if (I == SkipStart) {
7616       S.Diag(OperatorArrows[I]->getLocation(),
7617              diag::note_operator_arrows_suppressed)
7618           << SkipCount;
7619       I += SkipCount;
7620     } else {
7621       S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7622           << OperatorArrows[I]->getCallResultType();
7623       ++I;
7624     }
7625   }
7626 }
7627 
7628 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7629                                               SourceLocation OpLoc,
7630                                               tok::TokenKind OpKind,
7631                                               ParsedType &ObjectType,
7632                                               bool &MayBePseudoDestructor) {
7633   // Since this might be a postfix expression, get rid of ParenListExprs.
7634   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
7635   if (Result.isInvalid()) return ExprError();
7636   Base = Result.get();
7637 
7638   Result = CheckPlaceholderExpr(Base);
7639   if (Result.isInvalid()) return ExprError();
7640   Base = Result.get();
7641 
7642   QualType BaseType = Base->getType();
7643   MayBePseudoDestructor = false;
7644   if (BaseType->isDependentType()) {
7645     // If we have a pointer to a dependent type and are using the -> operator,
7646     // the object type is the type that the pointer points to. We might still
7647     // have enough information about that type to do something useful.
7648     if (OpKind == tok::arrow)
7649       if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7650         BaseType = Ptr->getPointeeType();
7651 
7652     ObjectType = ParsedType::make(BaseType);
7653     MayBePseudoDestructor = true;
7654     return Base;
7655   }
7656 
7657   // C++ [over.match.oper]p8:
7658   //   [...] When operator->returns, the operator-> is applied  to the value
7659   //   returned, with the original second operand.
7660   if (OpKind == tok::arrow) {
7661     QualType StartingType = BaseType;
7662     bool NoArrowOperatorFound = false;
7663     bool FirstIteration = true;
7664     FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
7665     // The set of types we've considered so far.
7666     llvm::SmallPtrSet<CanQualType,8> CTypes;
7667     SmallVector<FunctionDecl*, 8> OperatorArrows;
7668     CTypes.insert(Context.getCanonicalType(BaseType));
7669 
7670     while (BaseType->isRecordType()) {
7671       if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7672         Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7673           << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7674         noteOperatorArrows(*this, OperatorArrows);
7675         Diag(OpLoc, diag::note_operator_arrow_depth)
7676           << getLangOpts().ArrowDepth;
7677         return ExprError();
7678       }
7679 
7680       Result = BuildOverloadedArrowExpr(
7681           S, Base, OpLoc,
7682           // When in a template specialization and on the first loop iteration,
7683           // potentially give the default diagnostic (with the fixit in a
7684           // separate note) instead of having the error reported back to here
7685           // and giving a diagnostic with a fixit attached to the error itself.
7686           (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7687               ? nullptr
7688               : &NoArrowOperatorFound);
7689       if (Result.isInvalid()) {
7690         if (NoArrowOperatorFound) {
7691           if (FirstIteration) {
7692             Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7693               << BaseType << 1 << Base->getSourceRange()
7694               << FixItHint::CreateReplacement(OpLoc, ".");
7695             OpKind = tok::period;
7696             break;
7697           }
7698           Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7699             << BaseType << Base->getSourceRange();
7700           CallExpr *CE = dyn_cast<CallExpr>(Base);
7701           if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7702             Diag(CD->getBeginLoc(),
7703                  diag::note_member_reference_arrow_from_operator_arrow);
7704           }
7705         }
7706         return ExprError();
7707       }
7708       Base = Result.get();
7709       if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
7710         OperatorArrows.push_back(OpCall->getDirectCallee());
7711       BaseType = Base->getType();
7712       CanQualType CBaseType = Context.getCanonicalType(BaseType);
7713       if (!CTypes.insert(CBaseType).second) {
7714         Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7715         noteOperatorArrows(*this, OperatorArrows);
7716         return ExprError();
7717       }
7718       FirstIteration = false;
7719     }
7720 
7721     if (OpKind == tok::arrow) {
7722       if (BaseType->isPointerType())
7723         BaseType = BaseType->getPointeeType();
7724       else if (auto *AT = Context.getAsArrayType(BaseType))
7725         BaseType = AT->getElementType();
7726     }
7727   }
7728 
7729   // Objective-C properties allow "." access on Objective-C pointer types,
7730   // so adjust the base type to the object type itself.
7731   if (BaseType->isObjCObjectPointerType())
7732     BaseType = BaseType->getPointeeType();
7733 
7734   // C++ [basic.lookup.classref]p2:
7735   //   [...] If the type of the object expression is of pointer to scalar
7736   //   type, the unqualified-id is looked up in the context of the complete
7737   //   postfix-expression.
7738   //
7739   // This also indicates that we could be parsing a pseudo-destructor-name.
7740   // Note that Objective-C class and object types can be pseudo-destructor
7741   // expressions or normal member (ivar or property) access expressions, and
7742   // it's legal for the type to be incomplete if this is a pseudo-destructor
7743   // call.  We'll do more incomplete-type checks later in the lookup process,
7744   // so just skip this check for ObjC types.
7745   if (!BaseType->isRecordType()) {
7746     ObjectType = ParsedType::make(BaseType);
7747     MayBePseudoDestructor = true;
7748     return Base;
7749   }
7750 
7751   // The object type must be complete (or dependent), or
7752   // C++11 [expr.prim.general]p3:
7753   //   Unlike the object expression in other contexts, *this is not required to
7754   //   be of complete type for purposes of class member access (5.2.5) outside
7755   //   the member function body.
7756   if (!BaseType->isDependentType() &&
7757       !isThisOutsideMemberFunctionBody(BaseType) &&
7758       RequireCompleteType(OpLoc, BaseType,
7759                           diag::err_incomplete_member_access)) {
7760     return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base});
7761   }
7762 
7763   // C++ [basic.lookup.classref]p2:
7764   //   If the id-expression in a class member access (5.2.5) is an
7765   //   unqualified-id, and the type of the object expression is of a class
7766   //   type C (or of pointer to a class type C), the unqualified-id is looked
7767   //   up in the scope of class C. [...]
7768   ObjectType = ParsedType::make(BaseType);
7769   return Base;
7770 }
7771 
7772 static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7773                        tok::TokenKind &OpKind, SourceLocation OpLoc) {
7774   if (Base->hasPlaceholderType()) {
7775     ExprResult result = S.CheckPlaceholderExpr(Base);
7776     if (result.isInvalid()) return true;
7777     Base = result.get();
7778   }
7779   ObjectType = Base->getType();
7780 
7781   // C++ [expr.pseudo]p2:
7782   //   The left-hand side of the dot operator shall be of scalar type. The
7783   //   left-hand side of the arrow operator shall be of pointer to scalar type.
7784   //   This scalar type is the object type.
7785   // Note that this is rather different from the normal handling for the
7786   // arrow operator.
7787   if (OpKind == tok::arrow) {
7788     // The operator requires a prvalue, so perform lvalue conversions.
7789     // Only do this if we might plausibly end with a pointer, as otherwise
7790     // this was likely to be intended to be a '.'.
7791     if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7792         ObjectType->isFunctionType()) {
7793       ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base);
7794       if (BaseResult.isInvalid())
7795         return true;
7796       Base = BaseResult.get();
7797       ObjectType = Base->getType();
7798     }
7799 
7800     if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7801       ObjectType = Ptr->getPointeeType();
7802     } else if (!Base->isTypeDependent()) {
7803       // The user wrote "p->" when they probably meant "p."; fix it.
7804       S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7805         << ObjectType << true
7806         << FixItHint::CreateReplacement(OpLoc, ".");
7807       if (S.isSFINAEContext())
7808         return true;
7809 
7810       OpKind = tok::period;
7811     }
7812   }
7813 
7814   return false;
7815 }
7816 
7817 /// Check if it's ok to try and recover dot pseudo destructor calls on
7818 /// pointer objects.
7819 static bool
7820 canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7821                                                    QualType DestructedType) {
7822   // If this is a record type, check if its destructor is callable.
7823   if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7824     if (RD->hasDefinition())
7825       if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
7826         return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7827     return false;
7828   }
7829 
7830   // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7831   return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7832          DestructedType->isVectorType();
7833 }
7834 
7835 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7836                                            SourceLocation OpLoc,
7837                                            tok::TokenKind OpKind,
7838                                            const CXXScopeSpec &SS,
7839                                            TypeSourceInfo *ScopeTypeInfo,
7840                                            SourceLocation CCLoc,
7841                                            SourceLocation TildeLoc,
7842                                          PseudoDestructorTypeStorage Destructed) {
7843   TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7844 
7845   QualType ObjectType;
7846   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7847     return ExprError();
7848 
7849   if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7850       !ObjectType->isVectorType()) {
7851     if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7852       Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7853     else {
7854       Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7855         << ObjectType << Base->getSourceRange();
7856       return ExprError();
7857     }
7858   }
7859 
7860   // C++ [expr.pseudo]p2:
7861   //   [...] The cv-unqualified versions of the object type and of the type
7862   //   designated by the pseudo-destructor-name shall be the same type.
7863   if (DestructedTypeInfo) {
7864     QualType DestructedType = DestructedTypeInfo->getType();
7865     SourceLocation DestructedTypeStart =
7866         DestructedTypeInfo->getTypeLoc().getBeginLoc();
7867     if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7868       if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
7869         // Detect dot pseudo destructor calls on pointer objects, e.g.:
7870         //   Foo *foo;
7871         //   foo.~Foo();
7872         if (OpKind == tok::period && ObjectType->isPointerType() &&
7873             Context.hasSameUnqualifiedType(DestructedType,
7874                                            ObjectType->getPointeeType())) {
7875           auto Diagnostic =
7876               Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7877               << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7878 
7879           // Issue a fixit only when the destructor is valid.
7880           if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7881                   *this, DestructedType))
7882             Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
7883 
7884           // Recover by setting the object type to the destructed type and the
7885           // operator to '->'.
7886           ObjectType = DestructedType;
7887           OpKind = tok::arrow;
7888         } else {
7889           Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7890               << ObjectType << DestructedType << Base->getSourceRange()
7891               << DestructedTypeInfo->getTypeLoc().getSourceRange();
7892 
7893           // Recover by setting the destructed type to the object type.
7894           DestructedType = ObjectType;
7895           DestructedTypeInfo =
7896               Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
7897           Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7898         }
7899       } else if (DestructedType.getObjCLifetime() !=
7900                                                 ObjectType.getObjCLifetime()) {
7901 
7902         if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7903           // Okay: just pretend that the user provided the correctly-qualified
7904           // type.
7905         } else {
7906           Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7907               << ObjectType << DestructedType << Base->getSourceRange()
7908               << DestructedTypeInfo->getTypeLoc().getSourceRange();
7909         }
7910 
7911         // Recover by setting the destructed type to the object type.
7912         DestructedType = ObjectType;
7913         DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
7914                                                            DestructedTypeStart);
7915         Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7916       }
7917     }
7918   }
7919 
7920   // C++ [expr.pseudo]p2:
7921   //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7922   //   form
7923   //
7924   //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7925   //
7926   //   shall designate the same scalar type.
7927   if (ScopeTypeInfo) {
7928     QualType ScopeType = ScopeTypeInfo->getType();
7929     if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7930         !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
7931 
7932       Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(),
7933            diag::err_pseudo_dtor_type_mismatch)
7934           << ObjectType << ScopeType << Base->getSourceRange()
7935           << ScopeTypeInfo->getTypeLoc().getSourceRange();
7936 
7937       ScopeType = QualType();
7938       ScopeTypeInfo = nullptr;
7939     }
7940   }
7941 
7942   Expr *Result
7943     = new (Context) CXXPseudoDestructorExpr(Context, Base,
7944                                             OpKind == tok::arrow, OpLoc,
7945                                             SS.getWithLocInContext(Context),
7946                                             ScopeTypeInfo,
7947                                             CCLoc,
7948                                             TildeLoc,
7949                                             Destructed);
7950 
7951   return Result;
7952 }
7953 
7954 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7955                                            SourceLocation OpLoc,
7956                                            tok::TokenKind OpKind,
7957                                            CXXScopeSpec &SS,
7958                                            UnqualifiedId &FirstTypeName,
7959                                            SourceLocation CCLoc,
7960                                            SourceLocation TildeLoc,
7961                                            UnqualifiedId &SecondTypeName) {
7962   assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7963           FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7964          "Invalid first type name in pseudo-destructor");
7965   assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7966           SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7967          "Invalid second type name in pseudo-destructor");
7968 
7969   QualType ObjectType;
7970   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
7971     return ExprError();
7972 
7973   // Compute the object type that we should use for name lookup purposes. Only
7974   // record types and dependent types matter.
7975   ParsedType ObjectTypePtrForLookup;
7976   if (!SS.isSet()) {
7977     if (ObjectType->isRecordType())
7978       ObjectTypePtrForLookup = ParsedType::make(ObjectType);
7979     else if (ObjectType->isDependentType())
7980       ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
7981   }
7982 
7983   // Convert the name of the type being destructed (following the ~) into a
7984   // type (with source-location information).
7985   QualType DestructedType;
7986   TypeSourceInfo *DestructedTypeInfo = nullptr;
7987   PseudoDestructorTypeStorage Destructed;
7988   if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7989     ParsedType T = getTypeName(*SecondTypeName.Identifier,
7990                                SecondTypeName.StartLocation,
7991                                S, &SS, true, false, ObjectTypePtrForLookup,
7992                                /*IsCtorOrDtorName*/true);
7993     if (!T &&
7994         ((SS.isSet() && !computeDeclContext(SS, false)) ||
7995          (!SS.isSet() && ObjectType->isDependentType()))) {
7996       // The name of the type being destroyed is a dependent name, and we
7997       // couldn't find anything useful in scope. Just store the identifier and
7998       // it's location, and we'll perform (qualified) name lookup again at
7999       // template instantiation time.
8000       Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
8001                                                SecondTypeName.StartLocation);
8002     } else if (!T) {
8003       Diag(SecondTypeName.StartLocation,
8004            diag::err_pseudo_dtor_destructor_non_type)
8005         << SecondTypeName.Identifier << ObjectType;
8006       if (isSFINAEContext())
8007         return ExprError();
8008 
8009       // Recover by assuming we had the right type all along.
8010       DestructedType = ObjectType;
8011     } else
8012       DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
8013   } else {
8014     // Resolve the template-id to a type.
8015     TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
8016     ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8017                                        TemplateId->NumArgs);
8018     TypeResult T = ActOnTemplateIdType(S,
8019                                        SS,
8020                                        TemplateId->TemplateKWLoc,
8021                                        TemplateId->Template,
8022                                        TemplateId->Name,
8023                                        TemplateId->TemplateNameLoc,
8024                                        TemplateId->LAngleLoc,
8025                                        TemplateArgsPtr,
8026                                        TemplateId->RAngleLoc,
8027                                        /*IsCtorOrDtorName*/true);
8028     if (T.isInvalid() || !T.get()) {
8029       // Recover by assuming we had the right type all along.
8030       DestructedType = ObjectType;
8031     } else
8032       DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
8033   }
8034 
8035   // If we've performed some kind of recovery, (re-)build the type source
8036   // information.
8037   if (!DestructedType.isNull()) {
8038     if (!DestructedTypeInfo)
8039       DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
8040                                                   SecondTypeName.StartLocation);
8041     Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
8042   }
8043 
8044   // Convert the name of the scope type (the type prior to '::') into a type.
8045   TypeSourceInfo *ScopeTypeInfo = nullptr;
8046   QualType ScopeType;
8047   if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
8048       FirstTypeName.Identifier) {
8049     if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
8050       ParsedType T = getTypeName(*FirstTypeName.Identifier,
8051                                  FirstTypeName.StartLocation,
8052                                  S, &SS, true, false, ObjectTypePtrForLookup,
8053                                  /*IsCtorOrDtorName*/true);
8054       if (!T) {
8055         Diag(FirstTypeName.StartLocation,
8056              diag::err_pseudo_dtor_destructor_non_type)
8057           << FirstTypeName.Identifier << ObjectType;
8058 
8059         if (isSFINAEContext())
8060           return ExprError();
8061 
8062         // Just drop this type. It's unnecessary anyway.
8063         ScopeType = QualType();
8064       } else
8065         ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
8066     } else {
8067       // Resolve the template-id to a type.
8068       TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
8069       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8070                                          TemplateId->NumArgs);
8071       TypeResult T = ActOnTemplateIdType(S,
8072                                          SS,
8073                                          TemplateId->TemplateKWLoc,
8074                                          TemplateId->Template,
8075                                          TemplateId->Name,
8076                                          TemplateId->TemplateNameLoc,
8077                                          TemplateId->LAngleLoc,
8078                                          TemplateArgsPtr,
8079                                          TemplateId->RAngleLoc,
8080                                          /*IsCtorOrDtorName*/true);
8081       if (T.isInvalid() || !T.get()) {
8082         // Recover by dropping this type.
8083         ScopeType = QualType();
8084       } else
8085         ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
8086     }
8087   }
8088 
8089   if (!ScopeType.isNull() && !ScopeTypeInfo)
8090     ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
8091                                                   FirstTypeName.StartLocation);
8092 
8093 
8094   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
8095                                    ScopeTypeInfo, CCLoc, TildeLoc,
8096                                    Destructed);
8097 }
8098 
8099 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
8100                                            SourceLocation OpLoc,
8101                                            tok::TokenKind OpKind,
8102                                            SourceLocation TildeLoc,
8103                                            const DeclSpec& DS) {
8104   QualType ObjectType;
8105   if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
8106     return ExprError();
8107 
8108   if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
8109     Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
8110     return true;
8111   }
8112 
8113   QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false);
8114 
8115   TypeLocBuilder TLB;
8116   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
8117   DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
8118   DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
8119   TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
8120   PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
8121 
8122   return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
8123                                    nullptr, SourceLocation(), TildeLoc,
8124                                    Destructed);
8125 }
8126 
8127 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
8128                                       SourceLocation RParen) {
8129   // If the operand is an unresolved lookup expression, the expression is ill-
8130   // formed per [over.over]p1, because overloaded function names cannot be used
8131   // without arguments except in explicit contexts.
8132   ExprResult R = CheckPlaceholderExpr(Operand);
8133   if (R.isInvalid())
8134     return R;
8135 
8136   R = CheckUnevaluatedOperand(R.get());
8137   if (R.isInvalid())
8138     return ExprError();
8139 
8140   Operand = R.get();
8141 
8142   if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
8143       Operand->HasSideEffects(Context, false)) {
8144     // The expression operand for noexcept is in an unevaluated expression
8145     // context, so side effects could result in unintended consequences.
8146     Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8147   }
8148 
8149   CanThrowResult CanThrow = canThrow(Operand);
8150   return new (Context)
8151       CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
8152 }
8153 
8154 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
8155                                    Expr *Operand, SourceLocation RParen) {
8156   return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
8157 }
8158 
8159 static void MaybeDecrementCount(
8160     Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
8161   DeclRefExpr *LHS = nullptr;
8162   bool IsCompoundAssign = false;
8163   bool isIncrementDecrementUnaryOp = false;
8164   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8165     if (BO->getLHS()->getType()->isDependentType() ||
8166         BO->getRHS()->getType()->isDependentType()) {
8167       if (BO->getOpcode() != BO_Assign)
8168         return;
8169     } else if (!BO->isAssignmentOp())
8170       return;
8171     else
8172       IsCompoundAssign = BO->isCompoundAssignmentOp();
8173     LHS = dyn_cast<DeclRefExpr>(BO->getLHS());
8174   } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) {
8175     if (COCE->getOperator() != OO_Equal)
8176       return;
8177     LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
8178   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
8179     if (!UO->isIncrementDecrementOp())
8180       return;
8181     isIncrementDecrementUnaryOp = true;
8182     LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr());
8183   }
8184   if (!LHS)
8185     return;
8186   VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl());
8187   if (!VD)
8188     return;
8189   // Don't decrement RefsMinusAssignments if volatile variable with compound
8190   // assignment (+=, ...) or increment/decrement unary operator to avoid
8191   // potential unused-but-set-variable warning.
8192   if ((IsCompoundAssign || isIncrementDecrementUnaryOp) &&
8193       VD->getType().isVolatileQualified())
8194     return;
8195   auto iter = RefsMinusAssignments.find(VD);
8196   if (iter == RefsMinusAssignments.end())
8197     return;
8198   iter->getSecond()--;
8199 }
8200 
8201 /// Perform the conversions required for an expression used in a
8202 /// context that ignores the result.
8203 ExprResult Sema::IgnoredValueConversions(Expr *E) {
8204   MaybeDecrementCount(E, RefsMinusAssignments);
8205 
8206   if (E->hasPlaceholderType()) {
8207     ExprResult result = CheckPlaceholderExpr(E);
8208     if (result.isInvalid()) return E;
8209     E = result.get();
8210   }
8211 
8212   // C99 6.3.2.1:
8213   //   [Except in specific positions,] an lvalue that does not have
8214   //   array type is converted to the value stored in the
8215   //   designated object (and is no longer an lvalue).
8216   if (E->isPRValue()) {
8217     // In C, function designators (i.e. expressions of function type)
8218     // are r-values, but we still want to do function-to-pointer decay
8219     // on them.  This is both technically correct and convenient for
8220     // some clients.
8221     if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
8222       return DefaultFunctionArrayConversion(E);
8223 
8224     return E;
8225   }
8226 
8227   if (getLangOpts().CPlusPlus) {
8228     // The C++11 standard defines the notion of a discarded-value expression;
8229     // normally, we don't need to do anything to handle it, but if it is a
8230     // volatile lvalue with a special form, we perform an lvalue-to-rvalue
8231     // conversion.
8232     if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
8233       ExprResult Res = DefaultLvalueConversion(E);
8234       if (Res.isInvalid())
8235         return E;
8236       E = Res.get();
8237     } else {
8238       // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8239       // it occurs as a discarded-value expression.
8240       CheckUnusedVolatileAssignment(E);
8241     }
8242 
8243     // C++1z:
8244     //   If the expression is a prvalue after this optional conversion, the
8245     //   temporary materialization conversion is applied.
8246     //
8247     // We skip this step: IR generation is able to synthesize the storage for
8248     // itself in the aggregate case, and adding the extra node to the AST is
8249     // just clutter.
8250     // FIXME: We don't emit lifetime markers for the temporaries due to this.
8251     // FIXME: Do any other AST consumers care about this?
8252     return E;
8253   }
8254 
8255   // GCC seems to also exclude expressions of incomplete enum type.
8256   if (const EnumType *T = E->getType()->getAs<EnumType>()) {
8257     if (!T->getDecl()->isComplete()) {
8258       // FIXME: stupid workaround for a codegen bug!
8259       E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
8260       return E;
8261     }
8262   }
8263 
8264   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
8265   if (Res.isInvalid())
8266     return E;
8267   E = Res.get();
8268 
8269   if (!E->getType()->isVoidType())
8270     RequireCompleteType(E->getExprLoc(), E->getType(),
8271                         diag::err_incomplete_type);
8272   return E;
8273 }
8274 
8275 ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
8276   // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8277   // it occurs as an unevaluated operand.
8278   CheckUnusedVolatileAssignment(E);
8279 
8280   return E;
8281 }
8282 
8283 // If we can unambiguously determine whether Var can never be used
8284 // in a constant expression, return true.
8285 //  - if the variable and its initializer are non-dependent, then
8286 //    we can unambiguously check if the variable is a constant expression.
8287 //  - if the initializer is not value dependent - we can determine whether
8288 //    it can be used to initialize a constant expression.  If Init can not
8289 //    be used to initialize a constant expression we conclude that Var can
8290 //    never be a constant expression.
8291 //  - FXIME: if the initializer is dependent, we can still do some analysis and
8292 //    identify certain cases unambiguously as non-const by using a Visitor:
8293 //      - such as those that involve odr-use of a ParmVarDecl, involve a new
8294 //        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
8295 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
8296     ASTContext &Context) {
8297   if (isa<ParmVarDecl>(Var)) return true;
8298   const VarDecl *DefVD = nullptr;
8299 
8300   // If there is no initializer - this can not be a constant expression.
8301   const Expr *Init = Var->getAnyInitializer(DefVD);
8302   if (!Init)
8303     return true;
8304   assert(DefVD);
8305   if (DefVD->isWeak())
8306     return false;
8307 
8308   if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8309     // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8310     // of value-dependent expressions, and use it here to determine whether the
8311     // initializer is a potential constant expression.
8312     return false;
8313   }
8314 
8315   return !Var->isUsableInConstantExpressions(Context);
8316 }
8317 
8318 /// Check if the current lambda has any potential captures
8319 /// that must be captured by any of its enclosing lambdas that are ready to
8320 /// capture. If there is a lambda that can capture a nested
8321 /// potential-capture, go ahead and do so.  Also, check to see if any
8322 /// variables are uncaptureable or do not involve an odr-use so do not
8323 /// need to be captured.
8324 
8325 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8326     Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8327 
8328   assert(!S.isUnevaluatedContext());
8329   assert(S.CurContext->isDependentContext());
8330 #ifndef NDEBUG
8331   DeclContext *DC = S.CurContext;
8332   while (DC && isa<CapturedDecl>(DC))
8333     DC = DC->getParent();
8334   assert(
8335       CurrentLSI->CallOperator == DC &&
8336       "The current call operator must be synchronized with Sema's CurContext");
8337 #endif // NDEBUG
8338 
8339   const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8340 
8341   // All the potentially captureable variables in the current nested
8342   // lambda (within a generic outer lambda), must be captured by an
8343   // outer lambda that is enclosed within a non-dependent context.
8344   CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) {
8345     // If the variable is clearly identified as non-odr-used and the full
8346     // expression is not instantiation dependent, only then do we not
8347     // need to check enclosing lambda's for speculative captures.
8348     // For e.g.:
8349     // Even though 'x' is not odr-used, it should be captured.
8350     // int test() {
8351     //   const int x = 10;
8352     //   auto L = [=](auto a) {
8353     //     (void) +x + a;
8354     //   };
8355     // }
8356     if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
8357         !IsFullExprInstantiationDependent)
8358       return;
8359 
8360     VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl();
8361     if (!UnderlyingVar)
8362       return;
8363 
8364     // If we have a capture-capable lambda for the variable, go ahead and
8365     // capture the variable in that lambda (and all its enclosing lambdas).
8366     if (const std::optional<unsigned> Index =
8367             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8368                 S.FunctionScopes, Var, S))
8369       S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index);
8370     const bool IsVarNeverAConstantExpression =
8371         VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context);
8372     if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8373       // This full expression is not instantiation dependent or the variable
8374       // can not be used in a constant expression - which means
8375       // this variable must be odr-used here, so diagnose a
8376       // capture violation early, if the variable is un-captureable.
8377       // This is purely for diagnosing errors early.  Otherwise, this
8378       // error would get diagnosed when the lambda becomes capture ready.
8379       QualType CaptureType, DeclRefType;
8380       SourceLocation ExprLoc = VarExpr->getExprLoc();
8381       if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8382                           /*EllipsisLoc*/ SourceLocation(),
8383                           /*BuildAndDiagnose*/false, CaptureType,
8384                           DeclRefType, nullptr)) {
8385         // We will never be able to capture this variable, and we need
8386         // to be able to in any and all instantiations, so diagnose it.
8387         S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
8388                           /*EllipsisLoc*/ SourceLocation(),
8389                           /*BuildAndDiagnose*/true, CaptureType,
8390                           DeclRefType, nullptr);
8391       }
8392     }
8393   });
8394 
8395   // Check if 'this' needs to be captured.
8396   if (CurrentLSI->hasPotentialThisCapture()) {
8397     // If we have a capture-capable lambda for 'this', go ahead and capture
8398     // 'this' in that lambda (and all its enclosing lambdas).
8399     if (const std::optional<unsigned> Index =
8400             getStackIndexOfNearestEnclosingCaptureCapableLambda(
8401                 S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) {
8402       const unsigned FunctionScopeIndexOfCapturableLambda = *Index;
8403       S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
8404                             /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8405                             &FunctionScopeIndexOfCapturableLambda);
8406     }
8407   }
8408 
8409   // Reset all the potential captures at the end of each full-expression.
8410   CurrentLSI->clearPotentialCaptures();
8411 }
8412 
8413 static ExprResult attemptRecovery(Sema &SemaRef,
8414                                   const TypoCorrectionConsumer &Consumer,
8415                                   const TypoCorrection &TC) {
8416   LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8417                  Consumer.getLookupResult().getLookupKind());
8418   const CXXScopeSpec *SS = Consumer.getSS();
8419   CXXScopeSpec NewSS;
8420 
8421   // Use an approprate CXXScopeSpec for building the expr.
8422   if (auto *NNS = TC.getCorrectionSpecifier())
8423     NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
8424   else if (SS && !TC.WillReplaceSpecifier())
8425     NewSS = *SS;
8426 
8427   if (auto *ND = TC.getFoundDecl()) {
8428     R.setLookupName(ND->getDeclName());
8429     R.addDecl(ND);
8430     if (ND->isCXXClassMember()) {
8431       // Figure out the correct naming class to add to the LookupResult.
8432       CXXRecordDecl *Record = nullptr;
8433       if (auto *NNS = TC.getCorrectionSpecifier())
8434         Record = NNS->getAsType()->getAsCXXRecordDecl();
8435       if (!Record)
8436         Record =
8437             dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8438       if (Record)
8439         R.setNamingClass(Record);
8440 
8441       // Detect and handle the case where the decl might be an implicit
8442       // member.
8443       bool MightBeImplicitMember;
8444       if (!Consumer.isAddressOfOperand())
8445         MightBeImplicitMember = true;
8446       else if (!NewSS.isEmpty())
8447         MightBeImplicitMember = false;
8448       else if (R.isOverloadedResult())
8449         MightBeImplicitMember = false;
8450       else if (R.isUnresolvableResult())
8451         MightBeImplicitMember = true;
8452       else
8453         MightBeImplicitMember = isa<FieldDecl>(ND) ||
8454                                 isa<IndirectFieldDecl>(ND) ||
8455                                 isa<MSPropertyDecl>(ND);
8456 
8457       if (MightBeImplicitMember)
8458         return SemaRef.BuildPossibleImplicitMemberExpr(
8459             NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8460             /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8461     } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
8462       return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
8463                                         Ivar->getIdentifier());
8464     }
8465   }
8466 
8467   return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
8468                                           /*AcceptInvalidDecl*/ true);
8469 }
8470 
8471 namespace {
8472 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8473   llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8474 
8475 public:
8476   explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8477       : TypoExprs(TypoExprs) {}
8478   bool VisitTypoExpr(TypoExpr *TE) {
8479     TypoExprs.insert(TE);
8480     return true;
8481   }
8482 };
8483 
8484 class TransformTypos : public TreeTransform<TransformTypos> {
8485   typedef TreeTransform<TransformTypos> BaseTransform;
8486 
8487   VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8488                      // process of being initialized.
8489   llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8490   llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8491   llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8492   llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8493 
8494   /// Emit diagnostics for all of the TypoExprs encountered.
8495   ///
8496   /// If the TypoExprs were successfully corrected, then the diagnostics should
8497   /// suggest the corrections. Otherwise the diagnostics will not suggest
8498   /// anything (having been passed an empty TypoCorrection).
8499   ///
8500   /// If we've failed to correct due to ambiguous corrections, we need to
8501   /// be sure to pass empty corrections and replacements. Otherwise it's
8502   /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8503   /// and we don't want to report those diagnostics.
8504   void EmitAllDiagnostics(bool IsAmbiguous) {
8505     for (TypoExpr *TE : TypoExprs) {
8506       auto &State = SemaRef.getTypoExprState(TE);
8507       if (State.DiagHandler) {
8508         TypoCorrection TC = IsAmbiguous
8509             ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8510         ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8511 
8512         // Extract the NamedDecl from the transformed TypoExpr and add it to the
8513         // TypoCorrection, replacing the existing decls. This ensures the right
8514         // NamedDecl is used in diagnostics e.g. in the case where overload
8515         // resolution was used to select one from several possible decls that
8516         // had been stored in the TypoCorrection.
8517         if (auto *ND = getDeclFromExpr(
8518                 Replacement.isInvalid() ? nullptr : Replacement.get()))
8519           TC.setCorrectionDecl(ND);
8520 
8521         State.DiagHandler(TC);
8522       }
8523       SemaRef.clearDelayedTypo(TE);
8524     }
8525   }
8526 
8527   /// Try to advance the typo correction state of the first unfinished TypoExpr.
8528   /// We allow advancement of the correction stream by removing it from the
8529   /// TransformCache which allows `TransformTypoExpr` to advance during the
8530   /// next transformation attempt.
8531   ///
8532   /// Any substitution attempts for the previous TypoExprs (which must have been
8533   /// finished) will need to be retried since it's possible that they will now
8534   /// be invalid given the latest advancement.
8535   ///
8536   /// We need to be sure that we're making progress - it's possible that the
8537   /// tree is so malformed that the transform never makes it to the
8538   /// `TransformTypoExpr`.
8539   ///
8540   /// Returns true if there are any untried correction combinations.
8541   bool CheckAndAdvanceTypoExprCorrectionStreams() {
8542     for (auto *TE : TypoExprs) {
8543       auto &State = SemaRef.getTypoExprState(TE);
8544       TransformCache.erase(TE);
8545       if (!State.Consumer->hasMadeAnyCorrectionProgress())
8546         return false;
8547       if (!State.Consumer->finished())
8548         return true;
8549       State.Consumer->resetCorrectionStream();
8550     }
8551     return false;
8552   }
8553 
8554   NamedDecl *getDeclFromExpr(Expr *E) {
8555     if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
8556       E = OverloadResolution[OE];
8557 
8558     if (!E)
8559       return nullptr;
8560     if (auto *DRE = dyn_cast<DeclRefExpr>(E))
8561       return DRE->getFoundDecl();
8562     if (auto *ME = dyn_cast<MemberExpr>(E))
8563       return ME->getFoundDecl();
8564     // FIXME: Add any other expr types that could be seen by the delayed typo
8565     // correction TreeTransform for which the corresponding TypoCorrection could
8566     // contain multiple decls.
8567     return nullptr;
8568   }
8569 
8570   ExprResult TryTransform(Expr *E) {
8571     Sema::SFINAETrap Trap(SemaRef);
8572     ExprResult Res = TransformExpr(E);
8573     if (Trap.hasErrorOccurred() || Res.isInvalid())
8574       return ExprError();
8575 
8576     return ExprFilter(Res.get());
8577   }
8578 
8579   // Since correcting typos may intoduce new TypoExprs, this function
8580   // checks for new TypoExprs and recurses if it finds any. Note that it will
8581   // only succeed if it is able to correct all typos in the given expression.
8582   ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8583     if (Res.isInvalid()) {
8584       return Res;
8585     }
8586     // Check to see if any new TypoExprs were created. If so, we need to recurse
8587     // to check their validity.
8588     Expr *FixedExpr = Res.get();
8589 
8590     auto SavedTypoExprs = std::move(TypoExprs);
8591     auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8592     TypoExprs.clear();
8593     AmbiguousTypoExprs.clear();
8594 
8595     FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8596     if (!TypoExprs.empty()) {
8597       // Recurse to handle newly created TypoExprs. If we're not able to
8598       // handle them, discard these TypoExprs.
8599       ExprResult RecurResult =
8600           RecursiveTransformLoop(FixedExpr, IsAmbiguous);
8601       if (RecurResult.isInvalid()) {
8602         Res = ExprError();
8603         // Recursive corrections didn't work, wipe them away and don't add
8604         // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8605         // since we don't want to clear them twice. Note: it's possible the
8606         // TypoExprs were created recursively and thus won't be in our
8607         // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8608         auto &SemaTypoExprs = SemaRef.TypoExprs;
8609         for (auto *TE : TypoExprs) {
8610           TransformCache.erase(TE);
8611           SemaRef.clearDelayedTypo(TE);
8612 
8613           auto SI = find(SemaTypoExprs, TE);
8614           if (SI != SemaTypoExprs.end()) {
8615             SemaTypoExprs.erase(SI);
8616           }
8617         }
8618       } else {
8619         // TypoExpr is valid: add newly created TypoExprs since we were
8620         // able to correct them.
8621         Res = RecurResult;
8622         SavedTypoExprs.set_union(TypoExprs);
8623       }
8624     }
8625 
8626     TypoExprs = std::move(SavedTypoExprs);
8627     AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8628 
8629     return Res;
8630   }
8631 
8632   // Try to transform the given expression, looping through the correction
8633   // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8634   //
8635   // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8636   // true and this method immediately will return an `ExprError`.
8637   ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8638     ExprResult Res;
8639     auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8640     SemaRef.TypoExprs.clear();
8641 
8642     while (true) {
8643       Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8644 
8645       // Recursion encountered an ambiguous correction. This means that our
8646       // correction itself is ambiguous, so stop now.
8647       if (IsAmbiguous)
8648         break;
8649 
8650       // If the transform is still valid after checking for any new typos,
8651       // it's good to go.
8652       if (!Res.isInvalid())
8653         break;
8654 
8655       // The transform was invalid, see if we have any TypoExprs with untried
8656       // correction candidates.
8657       if (!CheckAndAdvanceTypoExprCorrectionStreams())
8658         break;
8659     }
8660 
8661     // If we found a valid result, double check to make sure it's not ambiguous.
8662     if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8663       auto SavedTransformCache =
8664           llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8665 
8666       // Ensure none of the TypoExprs have multiple typo correction candidates
8667       // with the same edit length that pass all the checks and filters.
8668       while (!AmbiguousTypoExprs.empty()) {
8669         auto TE  = AmbiguousTypoExprs.back();
8670 
8671         // TryTransform itself can create new Typos, adding them to the TypoExpr map
8672         // and invalidating our TypoExprState, so always fetch it instead of storing.
8673         SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8674 
8675         TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8676         TypoCorrection Next;
8677         do {
8678           // Fetch the next correction by erasing the typo from the cache and calling
8679           // `TryTransform` which will iterate through corrections in
8680           // `TransformTypoExpr`.
8681           TransformCache.erase(TE);
8682           ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous);
8683 
8684           if (!AmbigRes.isInvalid() || IsAmbiguous) {
8685             SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8686             SavedTransformCache.erase(TE);
8687             Res = ExprError();
8688             IsAmbiguous = true;
8689             break;
8690           }
8691         } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8692                  Next.getEditDistance(false) == TC.getEditDistance(false));
8693 
8694         if (IsAmbiguous)
8695           break;
8696 
8697         AmbiguousTypoExprs.remove(TE);
8698         SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8699         TransformCache[TE] = SavedTransformCache[TE];
8700       }
8701       TransformCache = std::move(SavedTransformCache);
8702     }
8703 
8704     // Wipe away any newly created TypoExprs that we don't know about. Since we
8705     // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8706     // possible if a `TypoExpr` is created during a transformation but then
8707     // fails before we can discover it.
8708     auto &SemaTypoExprs = SemaRef.TypoExprs;
8709     for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8710       auto TE = *Iterator;
8711       auto FI = find(TypoExprs, TE);
8712       if (FI != TypoExprs.end()) {
8713         Iterator++;
8714         continue;
8715       }
8716       SemaRef.clearDelayedTypo(TE);
8717       Iterator = SemaTypoExprs.erase(Iterator);
8718     }
8719     SemaRef.TypoExprs = std::move(SavedTypoExprs);
8720 
8721     return Res;
8722   }
8723 
8724 public:
8725   TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8726       : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8727 
8728   ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8729                                    MultiExprArg Args,
8730                                    SourceLocation RParenLoc,
8731                                    Expr *ExecConfig = nullptr) {
8732     auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8733                                                  RParenLoc, ExecConfig);
8734     if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
8735       if (Result.isUsable()) {
8736         Expr *ResultCall = Result.get();
8737         if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8738           ResultCall = BE->getSubExpr();
8739         if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8740           OverloadResolution[OE] = CE->getCallee();
8741       }
8742     }
8743     return Result;
8744   }
8745 
8746   ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8747 
8748   ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8749 
8750   ExprResult Transform(Expr *E) {
8751     bool IsAmbiguous = false;
8752     ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8753 
8754     if (!Res.isUsable())
8755       FindTypoExprs(TypoExprs).TraverseStmt(E);
8756 
8757     EmitAllDiagnostics(IsAmbiguous);
8758 
8759     return Res;
8760   }
8761 
8762   ExprResult TransformTypoExpr(TypoExpr *E) {
8763     // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8764     // cached transformation result if there is one and the TypoExpr isn't the
8765     // first one that was encountered.
8766     auto &CacheEntry = TransformCache[E];
8767     if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
8768       return CacheEntry;
8769     }
8770 
8771     auto &State = SemaRef.getTypoExprState(E);
8772     assert(State.Consumer && "Cannot transform a cleared TypoExpr");
8773 
8774     // For the first TypoExpr and an uncached TypoExpr, find the next likely
8775     // typo correction and return it.
8776     while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8777       if (InitDecl && TC.getFoundDecl() == InitDecl)
8778         continue;
8779       // FIXME: If we would typo-correct to an invalid declaration, it's
8780       // probably best to just suppress all errors from this typo correction.
8781       ExprResult NE = State.RecoveryHandler ?
8782           State.RecoveryHandler(SemaRef, E, TC) :
8783           attemptRecovery(SemaRef, *State.Consumer, TC);
8784       if (!NE.isInvalid()) {
8785         // Check whether there may be a second viable correction with the same
8786         // edit distance; if so, remember this TypoExpr may have an ambiguous
8787         // correction so it can be more thoroughly vetted later.
8788         TypoCorrection Next;
8789         if ((Next = State.Consumer->peekNextCorrection()) &&
8790             Next.getEditDistance(false) == TC.getEditDistance(false)) {
8791           AmbiguousTypoExprs.insert(E);
8792         } else {
8793           AmbiguousTypoExprs.remove(E);
8794         }
8795         assert(!NE.isUnset() &&
8796                "Typo was transformed into a valid-but-null ExprResult");
8797         return CacheEntry = NE;
8798       }
8799     }
8800     return CacheEntry = ExprError();
8801   }
8802 };
8803 }
8804 
8805 ExprResult
8806 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8807                                 bool RecoverUncorrectedTypos,
8808                                 llvm::function_ref<ExprResult(Expr *)> Filter) {
8809   // If the current evaluation context indicates there are uncorrected typos
8810   // and the current expression isn't guaranteed to not have typos, try to
8811   // resolve any TypoExpr nodes that might be in the expression.
8812   if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8813       (E->isTypeDependent() || E->isValueDependent() ||
8814        E->isInstantiationDependent())) {
8815     auto TyposResolved = DelayedTypos.size();
8816     auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8817     TyposResolved -= DelayedTypos.size();
8818     if (Result.isInvalid() || Result.get() != E) {
8819       ExprEvalContexts.back().NumTypos -= TyposResolved;
8820       if (Result.isInvalid() && RecoverUncorrectedTypos) {
8821         struct TyposReplace : TreeTransform<TyposReplace> {
8822           TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8823           ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8824             return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8825                                                     E->getEndLoc(), {});
8826           }
8827         } TT(*this);
8828         return TT.TransformExpr(E);
8829       }
8830       return Result;
8831     }
8832     assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
8833   }
8834   return E;
8835 }
8836 
8837 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8838                                      bool DiscardedValue, bool IsConstexpr,
8839                                      bool IsTemplateArgument) {
8840   ExprResult FullExpr = FE;
8841 
8842   if (!FullExpr.get())
8843     return ExprError();
8844 
8845   if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get()))
8846     return ExprError();
8847 
8848   if (DiscardedValue) {
8849     // Top-level expressions default to 'id' when we're in a debugger.
8850     if (getLangOpts().DebuggerCastResultToId &&
8851         FullExpr.get()->getType() == Context.UnknownAnyTy) {
8852       FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
8853       if (FullExpr.isInvalid())
8854         return ExprError();
8855     }
8856 
8857     FullExpr = CheckPlaceholderExpr(FullExpr.get());
8858     if (FullExpr.isInvalid())
8859       return ExprError();
8860 
8861     FullExpr = IgnoredValueConversions(FullExpr.get());
8862     if (FullExpr.isInvalid())
8863       return ExprError();
8864 
8865     DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
8866   }
8867 
8868   FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr,
8869                                        /*RecoverUncorrectedTypos=*/true);
8870   if (FullExpr.isInvalid())
8871     return ExprError();
8872 
8873   CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
8874 
8875   // At the end of this full expression (which could be a deeply nested
8876   // lambda), if there is a potential capture within the nested lambda,
8877   // have the outer capture-able lambda try and capture it.
8878   // Consider the following code:
8879   // void f(int, int);
8880   // void f(const int&, double);
8881   // void foo() {
8882   //  const int x = 10, y = 20;
8883   //  auto L = [=](auto a) {
8884   //      auto M = [=](auto b) {
8885   //         f(x, b); <-- requires x to be captured by L and M
8886   //         f(y, a); <-- requires y to be captured by L, but not all Ms
8887   //      };
8888   //   };
8889   // }
8890 
8891   // FIXME: Also consider what happens for something like this that involves
8892   // the gnu-extension statement-expressions or even lambda-init-captures:
8893   //   void f() {
8894   //     const int n = 0;
8895   //     auto L =  [&](auto a) {
8896   //       +n + ({ 0; a; });
8897   //     };
8898   //   }
8899   //
8900   // Here, we see +n, and then the full-expression 0; ends, so we don't
8901   // capture n (and instead remove it from our list of potential captures),
8902   // and then the full-expression +n + ({ 0; }); ends, but it's too late
8903   // for us to see that we need to capture n after all.
8904 
8905   LambdaScopeInfo *const CurrentLSI =
8906       getCurLambda(/*IgnoreCapturedRegions=*/true);
8907   // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8908   // even if CurContext is not a lambda call operator. Refer to that Bug Report
8909   // for an example of the code that might cause this asynchrony.
8910   // By ensuring we are in the context of a lambda's call operator
8911   // we can fix the bug (we only need to check whether we need to capture
8912   // if we are within a lambda's body); but per the comments in that
8913   // PR, a proper fix would entail :
8914   //   "Alternative suggestion:
8915   //   - Add to Sema an integer holding the smallest (outermost) scope
8916   //     index that we are *lexically* within, and save/restore/set to
8917   //     FunctionScopes.size() in InstantiatingTemplate's
8918   //     constructor/destructor.
8919   //  - Teach the handful of places that iterate over FunctionScopes to
8920   //    stop at the outermost enclosing lexical scope."
8921   DeclContext *DC = CurContext;
8922   while (DC && isa<CapturedDecl>(DC))
8923     DC = DC->getParent();
8924   const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8925   if (IsInLambdaDeclContext && CurrentLSI &&
8926       CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8927     CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8928                                                               *this);
8929   return MaybeCreateExprWithCleanups(FullExpr);
8930 }
8931 
8932 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8933   if (!FullStmt) return StmtError();
8934 
8935   return MaybeCreateStmtWithCleanups(FullStmt);
8936 }
8937 
8938 Sema::IfExistsResult
8939 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8940                                    CXXScopeSpec &SS,
8941                                    const DeclarationNameInfo &TargetNameInfo) {
8942   DeclarationName TargetName = TargetNameInfo.getName();
8943   if (!TargetName)
8944     return IER_DoesNotExist;
8945 
8946   // If the name itself is dependent, then the result is dependent.
8947   if (TargetName.isDependentName())
8948     return IER_Dependent;
8949 
8950   // Do the redeclaration lookup in the current scope.
8951   LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8952                  Sema::NotForRedeclaration);
8953   LookupParsedName(R, S, &SS);
8954   R.suppressDiagnostics();
8955 
8956   switch (R.getResultKind()) {
8957   case LookupResult::Found:
8958   case LookupResult::FoundOverloaded:
8959   case LookupResult::FoundUnresolvedValue:
8960   case LookupResult::Ambiguous:
8961     return IER_Exists;
8962 
8963   case LookupResult::NotFound:
8964     return IER_DoesNotExist;
8965 
8966   case LookupResult::NotFoundInCurrentInstantiation:
8967     return IER_Dependent;
8968   }
8969 
8970   llvm_unreachable("Invalid LookupResult Kind!");
8971 }
8972 
8973 Sema::IfExistsResult
8974 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
8975                                    bool IsIfExists, CXXScopeSpec &SS,
8976                                    UnqualifiedId &Name) {
8977   DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
8978 
8979   // Check for an unexpanded parameter pack.
8980   auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
8981   if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
8982       DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
8983     return IER_Error;
8984 
8985   return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
8986 }
8987 
8988 concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
8989   return BuildExprRequirement(E, /*IsSimple=*/true,
8990                               /*NoexceptLoc=*/SourceLocation(),
8991                               /*ReturnTypeRequirement=*/{});
8992 }
8993 
8994 concepts::Requirement *
8995 Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
8996                            SourceLocation NameLoc, IdentifierInfo *TypeName,
8997                            TemplateIdAnnotation *TemplateId) {
8998   assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
8999          "Exactly one of TypeName and TemplateId must be specified.");
9000   TypeSourceInfo *TSI = nullptr;
9001   if (TypeName) {
9002     QualType T =
9003         CheckTypenameType(ElaboratedTypeKeyword::Typename, TypenameKWLoc,
9004                           SS.getWithLocInContext(Context), *TypeName, NameLoc,
9005                           &TSI, /*DeducedTSTContext=*/false);
9006     if (T.isNull())
9007       return nullptr;
9008   } else {
9009     ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
9010                                TemplateId->NumArgs);
9011     TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS,
9012                                      TemplateId->TemplateKWLoc,
9013                                      TemplateId->Template, TemplateId->Name,
9014                                      TemplateId->TemplateNameLoc,
9015                                      TemplateId->LAngleLoc, ArgsPtr,
9016                                      TemplateId->RAngleLoc);
9017     if (T.isInvalid())
9018       return nullptr;
9019     if (GetTypeFromParser(T.get(), &TSI).isNull())
9020       return nullptr;
9021   }
9022   return BuildTypeRequirement(TSI);
9023 }
9024 
9025 concepts::Requirement *
9026 Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
9027   return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc,
9028                               /*ReturnTypeRequirement=*/{});
9029 }
9030 
9031 concepts::Requirement *
9032 Sema::ActOnCompoundRequirement(
9033     Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
9034     TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
9035   // C++2a [expr.prim.req.compound] p1.3.3
9036   //   [..] the expression is deduced against an invented function template
9037   //   F [...] F is a void function template with a single type template
9038   //   parameter T declared with the constrained-parameter. Form a new
9039   //   cv-qualifier-seq cv by taking the union of const and volatile specifiers
9040   //   around the constrained-parameter. F has a single parameter whose
9041   //   type-specifier is cv T followed by the abstract-declarator. [...]
9042   //
9043   // The cv part is done in the calling function - we get the concept with
9044   // arguments and the abstract declarator with the correct CV qualification and
9045   // have to synthesize T and the single parameter of F.
9046   auto &II = Context.Idents.get("expr-type");
9047   auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext,
9048                                               SourceLocation(),
9049                                               SourceLocation(), Depth,
9050                                               /*Index=*/0, &II,
9051                                               /*Typename=*/true,
9052                                               /*ParameterPack=*/false,
9053                                               /*HasTypeConstraint=*/true);
9054 
9055   if (BuildTypeConstraint(SS, TypeConstraint, TParam,
9056                           /*EllipsisLoc=*/SourceLocation(),
9057                           /*AllowUnexpandedPack=*/true))
9058     // Just produce a requirement with no type requirements.
9059     return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {});
9060 
9061   auto *TPL = TemplateParameterList::Create(Context, SourceLocation(),
9062                                             SourceLocation(),
9063                                             ArrayRef<NamedDecl *>(TParam),
9064                                             SourceLocation(),
9065                                             /*RequiresClause=*/nullptr);
9066   return BuildExprRequirement(
9067       E, /*IsSimple=*/false, NoexceptLoc,
9068       concepts::ExprRequirement::ReturnTypeRequirement(TPL));
9069 }
9070 
9071 concepts::ExprRequirement *
9072 Sema::BuildExprRequirement(
9073     Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
9074     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9075   auto Status = concepts::ExprRequirement::SS_Satisfied;
9076   ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
9077   if (E->isInstantiationDependent() || E->getType()->isPlaceholderType() ||
9078       ReturnTypeRequirement.isDependent())
9079     Status = concepts::ExprRequirement::SS_Dependent;
9080   else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
9081     Status = concepts::ExprRequirement::SS_NoexceptNotMet;
9082   else if (ReturnTypeRequirement.isSubstitutionFailure())
9083     Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
9084   else if (ReturnTypeRequirement.isTypeConstraint()) {
9085     // C++2a [expr.prim.req]p1.3.3
9086     //     The immediately-declared constraint ([temp]) of decltype((E)) shall
9087     //     be satisfied.
9088     TemplateParameterList *TPL =
9089         ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
9090     QualType MatchedType =
9091         Context.getReferenceQualifiedType(E).getCanonicalType();
9092     llvm::SmallVector<TemplateArgument, 1> Args;
9093     Args.push_back(TemplateArgument(MatchedType));
9094 
9095     auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0));
9096 
9097     TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args);
9098     MultiLevelTemplateArgumentList MLTAL(Param, TAL.asArray(),
9099                                          /*Final=*/false);
9100     MLTAL.addOuterRetainedLevels(TPL->getDepth());
9101     const TypeConstraint *TC = Param->getTypeConstraint();
9102     assert(TC && "Type Constraint cannot be null here");
9103     auto *IDC = TC->getImmediatelyDeclaredConstraint();
9104     assert(IDC && "ImmediatelyDeclaredConstraint can't be null here.");
9105     ExprResult Constraint = SubstExpr(IDC, MLTAL);
9106     if (Constraint.isInvalid()) {
9107       return new (Context) concepts::ExprRequirement(
9108           concepts::createSubstDiagAt(*this, IDC->getExprLoc(),
9109                                       [&](llvm::raw_ostream &OS) {
9110                                         IDC->printPretty(OS, /*Helper=*/nullptr,
9111                                                          getPrintingPolicy());
9112                                       }),
9113           IsSimple, NoexceptLoc, ReturnTypeRequirement);
9114     }
9115     SubstitutedConstraintExpr =
9116         cast<ConceptSpecializationExpr>(Constraint.get());
9117     if (!SubstitutedConstraintExpr->isSatisfied())
9118       Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
9119   }
9120   return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
9121                                                  ReturnTypeRequirement, Status,
9122                                                  SubstitutedConstraintExpr);
9123 }
9124 
9125 concepts::ExprRequirement *
9126 Sema::BuildExprRequirement(
9127     concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
9128     bool IsSimple, SourceLocation NoexceptLoc,
9129     concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9130   return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
9131                                                  IsSimple, NoexceptLoc,
9132                                                  ReturnTypeRequirement);
9133 }
9134 
9135 concepts::TypeRequirement *
9136 Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
9137   return new (Context) concepts::TypeRequirement(Type);
9138 }
9139 
9140 concepts::TypeRequirement *
9141 Sema::BuildTypeRequirement(
9142     concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
9143   return new (Context) concepts::TypeRequirement(SubstDiag);
9144 }
9145 
9146 concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
9147   return BuildNestedRequirement(Constraint);
9148 }
9149 
9150 concepts::NestedRequirement *
9151 Sema::BuildNestedRequirement(Expr *Constraint) {
9152   ConstraintSatisfaction Satisfaction;
9153   if (!Constraint->isInstantiationDependent() &&
9154       CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
9155                                   Constraint->getSourceRange(), Satisfaction))
9156     return nullptr;
9157   return new (Context) concepts::NestedRequirement(Context, Constraint,
9158                                                    Satisfaction);
9159 }
9160 
9161 concepts::NestedRequirement *
9162 Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity,
9163                        const ASTConstraintSatisfaction &Satisfaction) {
9164   return new (Context) concepts::NestedRequirement(
9165       InvalidConstraintEntity,
9166       ASTConstraintSatisfaction::Rebuild(Context, Satisfaction));
9167 }
9168 
9169 RequiresExprBodyDecl *
9170 Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
9171                              ArrayRef<ParmVarDecl *> LocalParameters,
9172                              Scope *BodyScope) {
9173   assert(BodyScope);
9174 
9175   RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext,
9176                                                             RequiresKWLoc);
9177 
9178   PushDeclContext(BodyScope, Body);
9179 
9180   for (ParmVarDecl *Param : LocalParameters) {
9181     if (Param->hasDefaultArg())
9182       // C++2a [expr.prim.req] p4
9183       //     [...] A local parameter of a requires-expression shall not have a
9184       //     default argument. [...]
9185       Diag(Param->getDefaultArgRange().getBegin(),
9186            diag::err_requires_expr_local_parameter_default_argument);
9187     // Ignore default argument and move on
9188 
9189     Param->setDeclContext(Body);
9190     // If this has an identifier, add it to the scope stack.
9191     if (Param->getIdentifier()) {
9192       CheckShadow(BodyScope, Param);
9193       PushOnScopeChains(Param, BodyScope);
9194     }
9195   }
9196   return Body;
9197 }
9198 
9199 void Sema::ActOnFinishRequiresExpr() {
9200   assert(CurContext && "DeclContext imbalance!");
9201   CurContext = CurContext->getLexicalParent();
9202   assert(CurContext && "Popped translation unit!");
9203 }
9204 
9205 ExprResult Sema::ActOnRequiresExpr(
9206     SourceLocation RequiresKWLoc, RequiresExprBodyDecl *Body,
9207     SourceLocation LParenLoc, ArrayRef<ParmVarDecl *> LocalParameters,
9208     SourceLocation RParenLoc, ArrayRef<concepts::Requirement *> Requirements,
9209     SourceLocation ClosingBraceLoc) {
9210   auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LParenLoc,
9211                                   LocalParameters, RParenLoc, Requirements,
9212                                   ClosingBraceLoc);
9213   if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
9214     return ExprError();
9215   return RE;
9216 }
9217