xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaExpr.cpp (revision 972a253a57b6f144b0e4a3e2080a2a0076ec55a0)
1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TreeTransform.h"
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/OperationKinds.h"
28 #include "clang/AST/ParentMapContext.h"
29 #include "clang/AST/RecursiveASTVisitor.h"
30 #include "clang/AST/Type.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/DiagnosticSema.h"
34 #include "clang/Basic/PartialDiagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Lex/LiteralSupport.h"
39 #include "clang/Lex/Preprocessor.h"
40 #include "clang/Sema/AnalysisBasedWarnings.h"
41 #include "clang/Sema/DeclSpec.h"
42 #include "clang/Sema/DelayedDiagnostic.h"
43 #include "clang/Sema/Designator.h"
44 #include "clang/Sema/Initialization.h"
45 #include "clang/Sema/Lookup.h"
46 #include "clang/Sema/Overload.h"
47 #include "clang/Sema/ParsedTemplate.h"
48 #include "clang/Sema/Scope.h"
49 #include "clang/Sema/ScopeInfo.h"
50 #include "clang/Sema/SemaFixItUtils.h"
51 #include "clang/Sema/SemaInternal.h"
52 #include "clang/Sema/Template.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/SaveAndRestore.h"
58 #include "llvm/Support/TypeSize.h"
59 
60 using namespace clang;
61 using namespace sema;
62 
63 /// Determine whether the use of this declaration is valid, without
64 /// emitting diagnostics.
65 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
66   // See if this is an auto-typed variable whose initializer we are parsing.
67   if (ParsingInitForAutoVars.count(D))
68     return false;
69 
70   // See if this is a deleted function.
71   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
72     if (FD->isDeleted())
73       return false;
74 
75     // If the function has a deduced return type, and we can't deduce it,
76     // then we can't use it either.
77     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
78         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
79       return false;
80 
81     // See if this is an aligned allocation/deallocation function that is
82     // unavailable.
83     if (TreatUnavailableAsInvalid &&
84         isUnavailableAlignedAllocationFunction(*FD))
85       return false;
86   }
87 
88   // See if this function is unavailable.
89   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
90       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
91     return false;
92 
93   if (isa<UnresolvedUsingIfExistsDecl>(D))
94     return false;
95 
96   return true;
97 }
98 
99 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
100   // Warn if this is used but marked unused.
101   if (const auto *A = D->getAttr<UnusedAttr>()) {
102     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
103     // should diagnose them.
104     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
105         A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
106       const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
107       if (DC && !DC->hasAttr<UnusedAttr>())
108         S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
109     }
110   }
111 }
112 
113 /// Emit a note explaining that this function is deleted.
114 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
115   assert(Decl && Decl->isDeleted());
116 
117   if (Decl->isDefaulted()) {
118     // If the method was explicitly defaulted, point at that declaration.
119     if (!Decl->isImplicit())
120       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
121 
122     // Try to diagnose why this special member function was implicitly
123     // deleted. This might fail, if that reason no longer applies.
124     DiagnoseDeletedDefaultedFunction(Decl);
125     return;
126   }
127 
128   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
129   if (Ctor && Ctor->isInheritingConstructor())
130     return NoteDeletedInheritingConstructor(Ctor);
131 
132   Diag(Decl->getLocation(), diag::note_availability_specified_here)
133     << Decl << 1;
134 }
135 
136 /// Determine whether a FunctionDecl was ever declared with an
137 /// explicit storage class.
138 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
139   for (auto I : D->redecls()) {
140     if (I->getStorageClass() != SC_None)
141       return true;
142   }
143   return false;
144 }
145 
146 /// Check whether we're in an extern inline function and referring to a
147 /// variable or function with internal linkage (C11 6.7.4p3).
148 ///
149 /// This is only a warning because we used to silently accept this code, but
150 /// in many cases it will not behave correctly. This is not enabled in C++ mode
151 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
152 /// and so while there may still be user mistakes, most of the time we can't
153 /// prove that there are errors.
154 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
155                                                       const NamedDecl *D,
156                                                       SourceLocation Loc) {
157   // This is disabled under C++; there are too many ways for this to fire in
158   // contexts where the warning is a false positive, or where it is technically
159   // correct but benign.
160   if (S.getLangOpts().CPlusPlus)
161     return;
162 
163   // Check if this is an inlined function or method.
164   FunctionDecl *Current = S.getCurFunctionDecl();
165   if (!Current)
166     return;
167   if (!Current->isInlined())
168     return;
169   if (!Current->isExternallyVisible())
170     return;
171 
172   // Check if the decl has internal linkage.
173   if (D->getFormalLinkage() != InternalLinkage)
174     return;
175 
176   // Downgrade from ExtWarn to Extension if
177   //  (1) the supposedly external inline function is in the main file,
178   //      and probably won't be included anywhere else.
179   //  (2) the thing we're referencing is a pure function.
180   //  (3) the thing we're referencing is another inline function.
181   // This last can give us false negatives, but it's better than warning on
182   // wrappers for simple C library functions.
183   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
184   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
185   if (!DowngradeWarning && UsedFn)
186     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
187 
188   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
189                                : diag::ext_internal_in_extern_inline)
190     << /*IsVar=*/!UsedFn << D;
191 
192   S.MaybeSuggestAddingStaticToDecl(Current);
193 
194   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
195       << D;
196 }
197 
198 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
199   const FunctionDecl *First = Cur->getFirstDecl();
200 
201   // Suggest "static" on the function, if possible.
202   if (!hasAnyExplicitStorageClass(First)) {
203     SourceLocation DeclBegin = First->getSourceRange().getBegin();
204     Diag(DeclBegin, diag::note_convert_inline_to_static)
205       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
206   }
207 }
208 
209 /// Determine whether the use of this declaration is valid, and
210 /// emit any corresponding diagnostics.
211 ///
212 /// This routine diagnoses various problems with referencing
213 /// declarations that can occur when using a declaration. For example,
214 /// it might warn if a deprecated or unavailable declaration is being
215 /// used, or produce an error (and return true) if a C++0x deleted
216 /// function is being used.
217 ///
218 /// \returns true if there was an error (this declaration cannot be
219 /// referenced), false otherwise.
220 ///
221 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
222                              const ObjCInterfaceDecl *UnknownObjCClass,
223                              bool ObjCPropertyAccess,
224                              bool AvoidPartialAvailabilityChecks,
225                              ObjCInterfaceDecl *ClassReceiver) {
226   SourceLocation Loc = Locs.front();
227   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
228     // If there were any diagnostics suppressed by template argument deduction,
229     // emit them now.
230     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
231     if (Pos != SuppressedDiagnostics.end()) {
232       for (const PartialDiagnosticAt &Suppressed : Pos->second)
233         Diag(Suppressed.first, Suppressed.second);
234 
235       // Clear out the list of suppressed diagnostics, so that we don't emit
236       // them again for this specialization. However, we don't obsolete this
237       // entry from the table, because we want to avoid ever emitting these
238       // diagnostics again.
239       Pos->second.clear();
240     }
241 
242     // C++ [basic.start.main]p3:
243     //   The function 'main' shall not be used within a program.
244     if (cast<FunctionDecl>(D)->isMain())
245       Diag(Loc, diag::ext_main_used);
246 
247     diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
248   }
249 
250   // See if this is an auto-typed variable whose initializer we are parsing.
251   if (ParsingInitForAutoVars.count(D)) {
252     if (isa<BindingDecl>(D)) {
253       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
254         << D->getDeclName();
255     } else {
256       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
257         << D->getDeclName() << cast<VarDecl>(D)->getType();
258     }
259     return true;
260   }
261 
262   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
263     // See if this is a deleted function.
264     if (FD->isDeleted()) {
265       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
266       if (Ctor && Ctor->isInheritingConstructor())
267         Diag(Loc, diag::err_deleted_inherited_ctor_use)
268             << Ctor->getParent()
269             << Ctor->getInheritedConstructor().getConstructor()->getParent();
270       else
271         Diag(Loc, diag::err_deleted_function_use);
272       NoteDeletedFunction(FD);
273       return true;
274     }
275 
276     // [expr.prim.id]p4
277     //   A program that refers explicitly or implicitly to a function with a
278     //   trailing requires-clause whose constraint-expression is not satisfied,
279     //   other than to declare it, is ill-formed. [...]
280     //
281     // See if this is a function with constraints that need to be satisfied.
282     // Check this before deducing the return type, as it might instantiate the
283     // definition.
284     if (FD->getTrailingRequiresClause()) {
285       ConstraintSatisfaction Satisfaction;
286       if (CheckFunctionConstraints(FD, Satisfaction, Loc))
287         // A diagnostic will have already been generated (non-constant
288         // constraint expression, for example)
289         return true;
290       if (!Satisfaction.IsSatisfied) {
291         Diag(Loc,
292              diag::err_reference_to_function_with_unsatisfied_constraints)
293             << D;
294         DiagnoseUnsatisfiedConstraint(Satisfaction);
295         return true;
296       }
297     }
298 
299     // If the function has a deduced return type, and we can't deduce it,
300     // then we can't use it either.
301     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
302         DeduceReturnType(FD, Loc))
303       return true;
304 
305     if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
306       return true;
307 
308     if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD))
309       return true;
310   }
311 
312   if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
313     // Lambdas are only default-constructible or assignable in C++2a onwards.
314     if (MD->getParent()->isLambda() &&
315         ((isa<CXXConstructorDecl>(MD) &&
316           cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
317          MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
318       Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
319         << !isa<CXXConstructorDecl>(MD);
320     }
321   }
322 
323   auto getReferencedObjCProp = [](const NamedDecl *D) ->
324                                       const ObjCPropertyDecl * {
325     if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
326       return MD->findPropertyDecl();
327     return nullptr;
328   };
329   if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
330     if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
331       return true;
332   } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
333       return true;
334   }
335 
336   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
337   // Only the variables omp_in and omp_out are allowed in the combiner.
338   // Only the variables omp_priv and omp_orig are allowed in the
339   // initializer-clause.
340   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
341   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
342       isa<VarDecl>(D)) {
343     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
344         << getCurFunction()->HasOMPDeclareReductionCombiner;
345     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
346     return true;
347   }
348 
349   // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
350   //  List-items in map clauses on this construct may only refer to the declared
351   //  variable var and entities that could be referenced by a procedure defined
352   //  at the same location
353   if (LangOpts.OpenMP && isa<VarDecl>(D) &&
354       !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
355     Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
356         << getOpenMPDeclareMapperVarName();
357     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
358     return true;
359   }
360 
361   if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
362     Diag(Loc, diag::err_use_of_empty_using_if_exists);
363     Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
364     return true;
365   }
366 
367   DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
368                              AvoidPartialAvailabilityChecks, ClassReceiver);
369 
370   DiagnoseUnusedOfDecl(*this, D, Loc);
371 
372   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
373 
374   if (auto *VD = dyn_cast<ValueDecl>(D))
375     checkTypeSupport(VD->getType(), Loc, VD);
376 
377   if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) {
378     if (!Context.getTargetInfo().isTLSSupported())
379       if (const auto *VD = dyn_cast<VarDecl>(D))
380         if (VD->getTLSKind() != VarDecl::TLS_None)
381           targetDiag(*Locs.begin(), diag::err_thread_unsupported);
382   }
383 
384   if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
385       !isUnevaluatedContext()) {
386     // C++ [expr.prim.req.nested] p3
387     //   A local parameter shall only appear as an unevaluated operand
388     //   (Clause 8) within the constraint-expression.
389     Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
390         << D;
391     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
392     return true;
393   }
394 
395   return false;
396 }
397 
398 /// DiagnoseSentinelCalls - This routine checks whether a call or
399 /// message-send is to a declaration with the sentinel attribute, and
400 /// if so, it checks that the requirements of the sentinel are
401 /// satisfied.
402 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
403                                  ArrayRef<Expr *> Args) {
404   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
405   if (!attr)
406     return;
407 
408   // The number of formal parameters of the declaration.
409   unsigned numFormalParams;
410 
411   // The kind of declaration.  This is also an index into a %select in
412   // the diagnostic.
413   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
414 
415   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
416     numFormalParams = MD->param_size();
417     calleeType = CT_Method;
418   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
419     numFormalParams = FD->param_size();
420     calleeType = CT_Function;
421   } else if (isa<VarDecl>(D)) {
422     QualType type = cast<ValueDecl>(D)->getType();
423     const FunctionType *fn = nullptr;
424     if (const PointerType *ptr = type->getAs<PointerType>()) {
425       fn = ptr->getPointeeType()->getAs<FunctionType>();
426       if (!fn) return;
427       calleeType = CT_Function;
428     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
429       fn = ptr->getPointeeType()->castAs<FunctionType>();
430       calleeType = CT_Block;
431     } else {
432       return;
433     }
434 
435     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
436       numFormalParams = proto->getNumParams();
437     } else {
438       numFormalParams = 0;
439     }
440   } else {
441     return;
442   }
443 
444   // "nullPos" is the number of formal parameters at the end which
445   // effectively count as part of the variadic arguments.  This is
446   // useful if you would prefer to not have *any* formal parameters,
447   // but the language forces you to have at least one.
448   unsigned nullPos = attr->getNullPos();
449   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
450   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
451 
452   // The number of arguments which should follow the sentinel.
453   unsigned numArgsAfterSentinel = attr->getSentinel();
454 
455   // If there aren't enough arguments for all the formal parameters,
456   // the sentinel, and the args after the sentinel, complain.
457   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
458     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
459     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
460     return;
461   }
462 
463   // Otherwise, find the sentinel expression.
464   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
465   if (!sentinelExpr) return;
466   if (sentinelExpr->isValueDependent()) return;
467   if (Context.isSentinelNullExpr(sentinelExpr)) return;
468 
469   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
470   // or 'NULL' if those are actually defined in the context.  Only use
471   // 'nil' for ObjC methods, where it's much more likely that the
472   // variadic arguments form a list of object pointers.
473   SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
474   std::string NullValue;
475   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
476     NullValue = "nil";
477   else if (getLangOpts().CPlusPlus11)
478     NullValue = "nullptr";
479   else if (PP.isMacroDefined("NULL"))
480     NullValue = "NULL";
481   else
482     NullValue = "(void*) 0";
483 
484   if (MissingNilLoc.isInvalid())
485     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
486   else
487     Diag(MissingNilLoc, diag::warn_missing_sentinel)
488       << int(calleeType)
489       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
490   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
491 }
492 
493 SourceRange Sema::getExprRange(Expr *E) const {
494   return E ? E->getSourceRange() : SourceRange();
495 }
496 
497 //===----------------------------------------------------------------------===//
498 //  Standard Promotions and Conversions
499 //===----------------------------------------------------------------------===//
500 
501 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
502 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
503   // Handle any placeholder expressions which made it here.
504   if (E->hasPlaceholderType()) {
505     ExprResult result = CheckPlaceholderExpr(E);
506     if (result.isInvalid()) return ExprError();
507     E = result.get();
508   }
509 
510   QualType Ty = E->getType();
511   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
512 
513   if (Ty->isFunctionType()) {
514     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
515       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
516         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
517           return ExprError();
518 
519     E = ImpCastExprToType(E, Context.getPointerType(Ty),
520                           CK_FunctionToPointerDecay).get();
521   } else if (Ty->isArrayType()) {
522     // In C90 mode, arrays only promote to pointers if the array expression is
523     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
524     // type 'array of type' is converted to an expression that has type 'pointer
525     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
526     // that has type 'array of type' ...".  The relevant change is "an lvalue"
527     // (C90) to "an expression" (C99).
528     //
529     // C++ 4.2p1:
530     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
531     // T" can be converted to an rvalue of type "pointer to T".
532     //
533     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
534       ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
535                                          CK_ArrayToPointerDecay);
536       if (Res.isInvalid())
537         return ExprError();
538       E = Res.get();
539     }
540   }
541   return E;
542 }
543 
544 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
545   // Check to see if we are dereferencing a null pointer.  If so,
546   // and if not volatile-qualified, this is undefined behavior that the
547   // optimizer will delete, so warn about it.  People sometimes try to use this
548   // to get a deterministic trap and are surprised by clang's behavior.  This
549   // only handles the pattern "*null", which is a very syntactic check.
550   const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
551   if (UO && UO->getOpcode() == UO_Deref &&
552       UO->getSubExpr()->getType()->isPointerType()) {
553     const LangAS AS =
554         UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
555     if ((!isTargetAddressSpace(AS) ||
556          (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
557         UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
558             S.Context, Expr::NPC_ValueDependentIsNotNull) &&
559         !UO->getType().isVolatileQualified()) {
560       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
561                             S.PDiag(diag::warn_indirection_through_null)
562                                 << UO->getSubExpr()->getSourceRange());
563       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
564                             S.PDiag(diag::note_indirection_through_null));
565     }
566   }
567 }
568 
569 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
570                                     SourceLocation AssignLoc,
571                                     const Expr* RHS) {
572   const ObjCIvarDecl *IV = OIRE->getDecl();
573   if (!IV)
574     return;
575 
576   DeclarationName MemberName = IV->getDeclName();
577   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
578   if (!Member || !Member->isStr("isa"))
579     return;
580 
581   const Expr *Base = OIRE->getBase();
582   QualType BaseType = Base->getType();
583   if (OIRE->isArrow())
584     BaseType = BaseType->getPointeeType();
585   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
586     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
587       ObjCInterfaceDecl *ClassDeclared = nullptr;
588       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
589       if (!ClassDeclared->getSuperClass()
590           && (*ClassDeclared->ivar_begin()) == IV) {
591         if (RHS) {
592           NamedDecl *ObjectSetClass =
593             S.LookupSingleName(S.TUScope,
594                                &S.Context.Idents.get("object_setClass"),
595                                SourceLocation(), S.LookupOrdinaryName);
596           if (ObjectSetClass) {
597             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
598             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
599                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
600                                               "object_setClass(")
601                 << FixItHint::CreateReplacement(
602                        SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
603                 << FixItHint::CreateInsertion(RHSLocEnd, ")");
604           }
605           else
606             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
607         } else {
608           NamedDecl *ObjectGetClass =
609             S.LookupSingleName(S.TUScope,
610                                &S.Context.Idents.get("object_getClass"),
611                                SourceLocation(), S.LookupOrdinaryName);
612           if (ObjectGetClass)
613             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
614                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
615                                               "object_getClass(")
616                 << FixItHint::CreateReplacement(
617                        SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
618           else
619             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
620         }
621         S.Diag(IV->getLocation(), diag::note_ivar_decl);
622       }
623     }
624 }
625 
626 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
627   // Handle any placeholder expressions which made it here.
628   if (E->hasPlaceholderType()) {
629     ExprResult result = CheckPlaceholderExpr(E);
630     if (result.isInvalid()) return ExprError();
631     E = result.get();
632   }
633 
634   // C++ [conv.lval]p1:
635   //   A glvalue of a non-function, non-array type T can be
636   //   converted to a prvalue.
637   if (!E->isGLValue()) return E;
638 
639   QualType T = E->getType();
640   assert(!T.isNull() && "r-value conversion on typeless expression?");
641 
642   // lvalue-to-rvalue conversion cannot be applied to function or array types.
643   if (T->isFunctionType() || T->isArrayType())
644     return E;
645 
646   // We don't want to throw lvalue-to-rvalue casts on top of
647   // expressions of certain types in C++.
648   if (getLangOpts().CPlusPlus &&
649       (E->getType() == Context.OverloadTy ||
650        T->isDependentType() ||
651        T->isRecordType()))
652     return E;
653 
654   // The C standard is actually really unclear on this point, and
655   // DR106 tells us what the result should be but not why.  It's
656   // generally best to say that void types just doesn't undergo
657   // lvalue-to-rvalue at all.  Note that expressions of unqualified
658   // 'void' type are never l-values, but qualified void can be.
659   if (T->isVoidType())
660     return E;
661 
662   // OpenCL usually rejects direct accesses to values of 'half' type.
663   if (getLangOpts().OpenCL &&
664       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
665       T->isHalfType()) {
666     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
667       << 0 << T;
668     return ExprError();
669   }
670 
671   CheckForNullPointerDereference(*this, E);
672   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
673     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
674                                      &Context.Idents.get("object_getClass"),
675                                      SourceLocation(), LookupOrdinaryName);
676     if (ObjectGetClass)
677       Diag(E->getExprLoc(), diag::warn_objc_isa_use)
678           << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
679           << FixItHint::CreateReplacement(
680                  SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
681     else
682       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
683   }
684   else if (const ObjCIvarRefExpr *OIRE =
685             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
686     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
687 
688   // C++ [conv.lval]p1:
689   //   [...] If T is a non-class type, the type of the prvalue is the
690   //   cv-unqualified version of T. Otherwise, the type of the
691   //   rvalue is T.
692   //
693   // C99 6.3.2.1p2:
694   //   If the lvalue has qualified type, the value has the unqualified
695   //   version of the type of the lvalue; otherwise, the value has the
696   //   type of the lvalue.
697   if (T.hasQualifiers())
698     T = T.getUnqualifiedType();
699 
700   // Under the MS ABI, lock down the inheritance model now.
701   if (T->isMemberPointerType() &&
702       Context.getTargetInfo().getCXXABI().isMicrosoft())
703     (void)isCompleteType(E->getExprLoc(), T);
704 
705   ExprResult Res = CheckLValueToRValueConversionOperand(E);
706   if (Res.isInvalid())
707     return Res;
708   E = Res.get();
709 
710   // Loading a __weak object implicitly retains the value, so we need a cleanup to
711   // balance that.
712   if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
713     Cleanup.setExprNeedsCleanups(true);
714 
715   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
716     Cleanup.setExprNeedsCleanups(true);
717 
718   // C++ [conv.lval]p3:
719   //   If T is cv std::nullptr_t, the result is a null pointer constant.
720   CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
721   Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
722                                  CurFPFeatureOverrides());
723 
724   // C11 6.3.2.1p2:
725   //   ... if the lvalue has atomic type, the value has the non-atomic version
726   //   of the type of the lvalue ...
727   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
728     T = Atomic->getValueType().getUnqualifiedType();
729     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
730                                    nullptr, VK_PRValue, FPOptionsOverride());
731   }
732 
733   return Res;
734 }
735 
736 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
737   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
738   if (Res.isInvalid())
739     return ExprError();
740   Res = DefaultLvalueConversion(Res.get());
741   if (Res.isInvalid())
742     return ExprError();
743   return Res;
744 }
745 
746 /// CallExprUnaryConversions - a special case of an unary conversion
747 /// performed on a function designator of a call expression.
748 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
749   QualType Ty = E->getType();
750   ExprResult Res = E;
751   // Only do implicit cast for a function type, but not for a pointer
752   // to function type.
753   if (Ty->isFunctionType()) {
754     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
755                             CK_FunctionToPointerDecay);
756     if (Res.isInvalid())
757       return ExprError();
758   }
759   Res = DefaultLvalueConversion(Res.get());
760   if (Res.isInvalid())
761     return ExprError();
762   return Res.get();
763 }
764 
765 /// UsualUnaryConversions - Performs various conversions that are common to most
766 /// operators (C99 6.3). The conversions of array and function types are
767 /// sometimes suppressed. For example, the array->pointer conversion doesn't
768 /// apply if the array is an argument to the sizeof or address (&) operators.
769 /// In these instances, this routine should *not* be called.
770 ExprResult Sema::UsualUnaryConversions(Expr *E) {
771   // First, convert to an r-value.
772   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
773   if (Res.isInvalid())
774     return ExprError();
775   E = Res.get();
776 
777   QualType Ty = E->getType();
778   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
779 
780   LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
781   if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
782       (getLangOpts().getFPEvalMethod() !=
783            LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
784        PP.getLastFPEvalPragmaLocation().isValid())) {
785     switch (EvalMethod) {
786     default:
787       llvm_unreachable("Unrecognized float evaluation method");
788       break;
789     case LangOptions::FEM_UnsetOnCommandLine:
790       llvm_unreachable("Float evaluation method should be set by now");
791       break;
792     case LangOptions::FEM_Double:
793       if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
794         // Widen the expression to double.
795         return Ty->isComplexType()
796                    ? ImpCastExprToType(E,
797                                        Context.getComplexType(Context.DoubleTy),
798                                        CK_FloatingComplexCast)
799                    : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
800       break;
801     case LangOptions::FEM_Extended:
802       if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
803         // Widen the expression to long double.
804         return Ty->isComplexType()
805                    ? ImpCastExprToType(
806                          E, Context.getComplexType(Context.LongDoubleTy),
807                          CK_FloatingComplexCast)
808                    : ImpCastExprToType(E, Context.LongDoubleTy,
809                                        CK_FloatingCast);
810       break;
811     }
812   }
813 
814   // Half FP have to be promoted to float unless it is natively supported
815   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
816     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
817 
818   // Try to perform integral promotions if the object has a theoretically
819   // promotable type.
820   if (Ty->isIntegralOrUnscopedEnumerationType()) {
821     // C99 6.3.1.1p2:
822     //
823     //   The following may be used in an expression wherever an int or
824     //   unsigned int may be used:
825     //     - an object or expression with an integer type whose integer
826     //       conversion rank is less than or equal to the rank of int
827     //       and unsigned int.
828     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
829     //
830     //   If an int can represent all values of the original type, the
831     //   value is converted to an int; otherwise, it is converted to an
832     //   unsigned int. These are called the integer promotions. All
833     //   other types are unchanged by the integer promotions.
834 
835     QualType PTy = Context.isPromotableBitField(E);
836     if (!PTy.isNull()) {
837       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
838       return E;
839     }
840     if (Ty->isPromotableIntegerType()) {
841       QualType PT = Context.getPromotedIntegerType(Ty);
842       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
843       return E;
844     }
845   }
846   return E;
847 }
848 
849 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
850 /// do not have a prototype. Arguments that have type float or __fp16
851 /// are promoted to double. All other argument types are converted by
852 /// UsualUnaryConversions().
853 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
854   QualType Ty = E->getType();
855   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
856 
857   ExprResult Res = UsualUnaryConversions(E);
858   if (Res.isInvalid())
859     return ExprError();
860   E = Res.get();
861 
862   // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
863   // promote to double.
864   // Note that default argument promotion applies only to float (and
865   // half/fp16); it does not apply to _Float16.
866   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
867   if (BTy && (BTy->getKind() == BuiltinType::Half ||
868               BTy->getKind() == BuiltinType::Float)) {
869     if (getLangOpts().OpenCL &&
870         !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
871       if (BTy->getKind() == BuiltinType::Half) {
872         E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
873       }
874     } else {
875       E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
876     }
877   }
878   if (BTy &&
879       getLangOpts().getExtendIntArgs() ==
880           LangOptions::ExtendArgsKind::ExtendTo64 &&
881       Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
882       Context.getTypeSizeInChars(BTy) <
883           Context.getTypeSizeInChars(Context.LongLongTy)) {
884     E = (Ty->isUnsignedIntegerType())
885             ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
886                   .get()
887             : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
888     assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
889            "Unexpected typesize for LongLongTy");
890   }
891 
892   // C++ performs lvalue-to-rvalue conversion as a default argument
893   // promotion, even on class types, but note:
894   //   C++11 [conv.lval]p2:
895   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
896   //     operand or a subexpression thereof the value contained in the
897   //     referenced object is not accessed. Otherwise, if the glvalue
898   //     has a class type, the conversion copy-initializes a temporary
899   //     of type T from the glvalue and the result of the conversion
900   //     is a prvalue for the temporary.
901   // FIXME: add some way to gate this entire thing for correctness in
902   // potentially potentially evaluated contexts.
903   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
904     ExprResult Temp = PerformCopyInitialization(
905                        InitializedEntity::InitializeTemporary(E->getType()),
906                                                 E->getExprLoc(), E);
907     if (Temp.isInvalid())
908       return ExprError();
909     E = Temp.get();
910   }
911 
912   return E;
913 }
914 
915 /// Determine the degree of POD-ness for an expression.
916 /// Incomplete types are considered POD, since this check can be performed
917 /// when we're in an unevaluated context.
918 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
919   if (Ty->isIncompleteType()) {
920     // C++11 [expr.call]p7:
921     //   After these conversions, if the argument does not have arithmetic,
922     //   enumeration, pointer, pointer to member, or class type, the program
923     //   is ill-formed.
924     //
925     // Since we've already performed array-to-pointer and function-to-pointer
926     // decay, the only such type in C++ is cv void. This also handles
927     // initializer lists as variadic arguments.
928     if (Ty->isVoidType())
929       return VAK_Invalid;
930 
931     if (Ty->isObjCObjectType())
932       return VAK_Invalid;
933     return VAK_Valid;
934   }
935 
936   if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
937     return VAK_Invalid;
938 
939   if (Ty.isCXX98PODType(Context))
940     return VAK_Valid;
941 
942   // C++11 [expr.call]p7:
943   //   Passing a potentially-evaluated argument of class type (Clause 9)
944   //   having a non-trivial copy constructor, a non-trivial move constructor,
945   //   or a non-trivial destructor, with no corresponding parameter,
946   //   is conditionally-supported with implementation-defined semantics.
947   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
948     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
949       if (!Record->hasNonTrivialCopyConstructor() &&
950           !Record->hasNonTrivialMoveConstructor() &&
951           !Record->hasNonTrivialDestructor())
952         return VAK_ValidInCXX11;
953 
954   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
955     return VAK_Valid;
956 
957   if (Ty->isObjCObjectType())
958     return VAK_Invalid;
959 
960   if (getLangOpts().MSVCCompat)
961     return VAK_MSVCUndefined;
962 
963   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
964   // permitted to reject them. We should consider doing so.
965   return VAK_Undefined;
966 }
967 
968 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
969   // Don't allow one to pass an Objective-C interface to a vararg.
970   const QualType &Ty = E->getType();
971   VarArgKind VAK = isValidVarArgType(Ty);
972 
973   // Complain about passing non-POD types through varargs.
974   switch (VAK) {
975   case VAK_ValidInCXX11:
976     DiagRuntimeBehavior(
977         E->getBeginLoc(), nullptr,
978         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
979     LLVM_FALLTHROUGH;
980   case VAK_Valid:
981     if (Ty->isRecordType()) {
982       // This is unlikely to be what the user intended. If the class has a
983       // 'c_str' member function, the user probably meant to call that.
984       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
985                           PDiag(diag::warn_pass_class_arg_to_vararg)
986                               << Ty << CT << hasCStrMethod(E) << ".c_str()");
987     }
988     break;
989 
990   case VAK_Undefined:
991   case VAK_MSVCUndefined:
992     DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
993                         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
994                             << getLangOpts().CPlusPlus11 << Ty << CT);
995     break;
996 
997   case VAK_Invalid:
998     if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
999       Diag(E->getBeginLoc(),
1000            diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1001           << Ty << CT;
1002     else if (Ty->isObjCObjectType())
1003       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1004                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1005                               << Ty << CT);
1006     else
1007       Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1008           << isa<InitListExpr>(E) << Ty << CT;
1009     break;
1010   }
1011 }
1012 
1013 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
1014 /// will create a trap if the resulting type is not a POD type.
1015 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1016                                                   FunctionDecl *FDecl) {
1017   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1018     // Strip the unbridged-cast placeholder expression off, if applicable.
1019     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1020         (CT == VariadicMethod ||
1021          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1022       E = stripARCUnbridgedCast(E);
1023 
1024     // Otherwise, do normal placeholder checking.
1025     } else {
1026       ExprResult ExprRes = CheckPlaceholderExpr(E);
1027       if (ExprRes.isInvalid())
1028         return ExprError();
1029       E = ExprRes.get();
1030     }
1031   }
1032 
1033   ExprResult ExprRes = DefaultArgumentPromotion(E);
1034   if (ExprRes.isInvalid())
1035     return ExprError();
1036 
1037   // Copy blocks to the heap.
1038   if (ExprRes.get()->getType()->isBlockPointerType())
1039     maybeExtendBlockObject(ExprRes);
1040 
1041   E = ExprRes.get();
1042 
1043   // Diagnostics regarding non-POD argument types are
1044   // emitted along with format string checking in Sema::CheckFunctionCall().
1045   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1046     // Turn this into a trap.
1047     CXXScopeSpec SS;
1048     SourceLocation TemplateKWLoc;
1049     UnqualifiedId Name;
1050     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1051                        E->getBeginLoc());
1052     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1053                                           /*HasTrailingLParen=*/true,
1054                                           /*IsAddressOfOperand=*/false);
1055     if (TrapFn.isInvalid())
1056       return ExprError();
1057 
1058     ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1059                                     None, E->getEndLoc());
1060     if (Call.isInvalid())
1061       return ExprError();
1062 
1063     ExprResult Comma =
1064         ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1065     if (Comma.isInvalid())
1066       return ExprError();
1067     return Comma.get();
1068   }
1069 
1070   if (!getLangOpts().CPlusPlus &&
1071       RequireCompleteType(E->getExprLoc(), E->getType(),
1072                           diag::err_call_incomplete_argument))
1073     return ExprError();
1074 
1075   return E;
1076 }
1077 
1078 /// Converts an integer to complex float type.  Helper function of
1079 /// UsualArithmeticConversions()
1080 ///
1081 /// \return false if the integer expression is an integer type and is
1082 /// successfully converted to the complex type.
1083 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1084                                                   ExprResult &ComplexExpr,
1085                                                   QualType IntTy,
1086                                                   QualType ComplexTy,
1087                                                   bool SkipCast) {
1088   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1089   if (SkipCast) return false;
1090   if (IntTy->isIntegerType()) {
1091     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
1092     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1093     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1094                                   CK_FloatingRealToComplex);
1095   } else {
1096     assert(IntTy->isComplexIntegerType());
1097     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1098                                   CK_IntegralComplexToFloatingComplex);
1099   }
1100   return false;
1101 }
1102 
1103 /// Handle arithmetic conversion with complex types.  Helper function of
1104 /// UsualArithmeticConversions()
1105 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
1106                                              ExprResult &RHS, QualType LHSType,
1107                                              QualType RHSType,
1108                                              bool IsCompAssign) {
1109   // if we have an integer operand, the result is the complex type.
1110   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1111                                              /*skipCast*/false))
1112     return LHSType;
1113   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1114                                              /*skipCast*/IsCompAssign))
1115     return RHSType;
1116 
1117   // This handles complex/complex, complex/float, or float/complex.
1118   // When both operands are complex, the shorter operand is converted to the
1119   // type of the longer, and that is the type of the result. This corresponds
1120   // to what is done when combining two real floating-point operands.
1121   // The fun begins when size promotion occur across type domains.
1122   // From H&S 6.3.4: When one operand is complex and the other is a real
1123   // floating-point type, the less precise type is converted, within it's
1124   // real or complex domain, to the precision of the other type. For example,
1125   // when combining a "long double" with a "double _Complex", the
1126   // "double _Complex" is promoted to "long double _Complex".
1127 
1128   // Compute the rank of the two types, regardless of whether they are complex.
1129   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1130 
1131   auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
1132   auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1133   QualType LHSElementType =
1134       LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1135   QualType RHSElementType =
1136       RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1137 
1138   QualType ResultType = S.Context.getComplexType(LHSElementType);
1139   if (Order < 0) {
1140     // Promote the precision of the LHS if not an assignment.
1141     ResultType = S.Context.getComplexType(RHSElementType);
1142     if (!IsCompAssign) {
1143       if (LHSComplexType)
1144         LHS =
1145             S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1146       else
1147         LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1148     }
1149   } else if (Order > 0) {
1150     // Promote the precision of the RHS.
1151     if (RHSComplexType)
1152       RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1153     else
1154       RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1155   }
1156   return ResultType;
1157 }
1158 
1159 /// Handle arithmetic conversion from integer to float.  Helper function
1160 /// of UsualArithmeticConversions()
1161 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1162                                            ExprResult &IntExpr,
1163                                            QualType FloatTy, QualType IntTy,
1164                                            bool ConvertFloat, bool ConvertInt) {
1165   if (IntTy->isIntegerType()) {
1166     if (ConvertInt)
1167       // Convert intExpr to the lhs floating point type.
1168       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1169                                     CK_IntegralToFloating);
1170     return FloatTy;
1171   }
1172 
1173   // Convert both sides to the appropriate complex float.
1174   assert(IntTy->isComplexIntegerType());
1175   QualType result = S.Context.getComplexType(FloatTy);
1176 
1177   // _Complex int -> _Complex float
1178   if (ConvertInt)
1179     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1180                                   CK_IntegralComplexToFloatingComplex);
1181 
1182   // float -> _Complex float
1183   if (ConvertFloat)
1184     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1185                                     CK_FloatingRealToComplex);
1186 
1187   return result;
1188 }
1189 
1190 /// Handle arithmethic conversion with floating point types.  Helper
1191 /// function of UsualArithmeticConversions()
1192 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1193                                       ExprResult &RHS, QualType LHSType,
1194                                       QualType RHSType, bool IsCompAssign) {
1195   bool LHSFloat = LHSType->isRealFloatingType();
1196   bool RHSFloat = RHSType->isRealFloatingType();
1197 
1198   // N1169 4.1.4: If one of the operands has a floating type and the other
1199   //              operand has a fixed-point type, the fixed-point operand
1200   //              is converted to the floating type [...]
1201   if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1202     if (LHSFloat)
1203       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1204     else if (!IsCompAssign)
1205       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1206     return LHSFloat ? LHSType : RHSType;
1207   }
1208 
1209   // If we have two real floating types, convert the smaller operand
1210   // to the bigger result.
1211   if (LHSFloat && RHSFloat) {
1212     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1213     if (order > 0) {
1214       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1215       return LHSType;
1216     }
1217 
1218     assert(order < 0 && "illegal float comparison");
1219     if (!IsCompAssign)
1220       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1221     return RHSType;
1222   }
1223 
1224   if (LHSFloat) {
1225     // Half FP has to be promoted to float unless it is natively supported
1226     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1227       LHSType = S.Context.FloatTy;
1228 
1229     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1230                                       /*ConvertFloat=*/!IsCompAssign,
1231                                       /*ConvertInt=*/ true);
1232   }
1233   assert(RHSFloat);
1234   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1235                                     /*ConvertFloat=*/ true,
1236                                     /*ConvertInt=*/!IsCompAssign);
1237 }
1238 
1239 /// Diagnose attempts to convert between __float128, __ibm128 and
1240 /// long double if there is no support for such conversion.
1241 /// Helper function of UsualArithmeticConversions().
1242 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1243                                       QualType RHSType) {
1244   // No issue if either is not a floating point type.
1245   if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1246     return false;
1247 
1248   // No issue if both have the same 128-bit float semantics.
1249   auto *LHSComplex = LHSType->getAs<ComplexType>();
1250   auto *RHSComplex = RHSType->getAs<ComplexType>();
1251 
1252   QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1253   QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1254 
1255   const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1256   const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1257 
1258   if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1259        &RHSSem != &llvm::APFloat::IEEEquad()) &&
1260       (&LHSSem != &llvm::APFloat::IEEEquad() ||
1261        &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1262     return false;
1263 
1264   return true;
1265 }
1266 
1267 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1268 
1269 namespace {
1270 /// These helper callbacks are placed in an anonymous namespace to
1271 /// permit their use as function template parameters.
1272 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1273   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1274 }
1275 
1276 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1277   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1278                              CK_IntegralComplexCast);
1279 }
1280 }
1281 
1282 /// Handle integer arithmetic conversions.  Helper function of
1283 /// UsualArithmeticConversions()
1284 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1285 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1286                                         ExprResult &RHS, QualType LHSType,
1287                                         QualType RHSType, bool IsCompAssign) {
1288   // The rules for this case are in C99 6.3.1.8
1289   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1290   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1291   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1292   if (LHSSigned == RHSSigned) {
1293     // Same signedness; use the higher-ranked type
1294     if (order >= 0) {
1295       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1296       return LHSType;
1297     } else if (!IsCompAssign)
1298       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1299     return RHSType;
1300   } else if (order != (LHSSigned ? 1 : -1)) {
1301     // The unsigned type has greater than or equal rank to the
1302     // signed type, so use the unsigned type
1303     if (RHSSigned) {
1304       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1305       return LHSType;
1306     } else if (!IsCompAssign)
1307       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1308     return RHSType;
1309   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1310     // The two types are different widths; if we are here, that
1311     // means the signed type is larger than the unsigned type, so
1312     // use the signed type.
1313     if (LHSSigned) {
1314       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1315       return LHSType;
1316     } else if (!IsCompAssign)
1317       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1318     return RHSType;
1319   } else {
1320     // The signed type is higher-ranked than the unsigned type,
1321     // but isn't actually any bigger (like unsigned int and long
1322     // on most 32-bit systems).  Use the unsigned type corresponding
1323     // to the signed type.
1324     QualType result =
1325       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1326     RHS = (*doRHSCast)(S, RHS.get(), result);
1327     if (!IsCompAssign)
1328       LHS = (*doLHSCast)(S, LHS.get(), result);
1329     return result;
1330   }
1331 }
1332 
1333 /// Handle conversions with GCC complex int extension.  Helper function
1334 /// of UsualArithmeticConversions()
1335 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1336                                            ExprResult &RHS, QualType LHSType,
1337                                            QualType RHSType,
1338                                            bool IsCompAssign) {
1339   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1340   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1341 
1342   if (LHSComplexInt && RHSComplexInt) {
1343     QualType LHSEltType = LHSComplexInt->getElementType();
1344     QualType RHSEltType = RHSComplexInt->getElementType();
1345     QualType ScalarType =
1346       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1347         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1348 
1349     return S.Context.getComplexType(ScalarType);
1350   }
1351 
1352   if (LHSComplexInt) {
1353     QualType LHSEltType = LHSComplexInt->getElementType();
1354     QualType ScalarType =
1355       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1356         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1357     QualType ComplexType = S.Context.getComplexType(ScalarType);
1358     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1359                               CK_IntegralRealToComplex);
1360 
1361     return ComplexType;
1362   }
1363 
1364   assert(RHSComplexInt);
1365 
1366   QualType RHSEltType = RHSComplexInt->getElementType();
1367   QualType ScalarType =
1368     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1369       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1370   QualType ComplexType = S.Context.getComplexType(ScalarType);
1371 
1372   if (!IsCompAssign)
1373     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1374                               CK_IntegralRealToComplex);
1375   return ComplexType;
1376 }
1377 
1378 /// Return the rank of a given fixed point or integer type. The value itself
1379 /// doesn't matter, but the values must be increasing with proper increasing
1380 /// rank as described in N1169 4.1.1.
1381 static unsigned GetFixedPointRank(QualType Ty) {
1382   const auto *BTy = Ty->getAs<BuiltinType>();
1383   assert(BTy && "Expected a builtin type.");
1384 
1385   switch (BTy->getKind()) {
1386   case BuiltinType::ShortFract:
1387   case BuiltinType::UShortFract:
1388   case BuiltinType::SatShortFract:
1389   case BuiltinType::SatUShortFract:
1390     return 1;
1391   case BuiltinType::Fract:
1392   case BuiltinType::UFract:
1393   case BuiltinType::SatFract:
1394   case BuiltinType::SatUFract:
1395     return 2;
1396   case BuiltinType::LongFract:
1397   case BuiltinType::ULongFract:
1398   case BuiltinType::SatLongFract:
1399   case BuiltinType::SatULongFract:
1400     return 3;
1401   case BuiltinType::ShortAccum:
1402   case BuiltinType::UShortAccum:
1403   case BuiltinType::SatShortAccum:
1404   case BuiltinType::SatUShortAccum:
1405     return 4;
1406   case BuiltinType::Accum:
1407   case BuiltinType::UAccum:
1408   case BuiltinType::SatAccum:
1409   case BuiltinType::SatUAccum:
1410     return 5;
1411   case BuiltinType::LongAccum:
1412   case BuiltinType::ULongAccum:
1413   case BuiltinType::SatLongAccum:
1414   case BuiltinType::SatULongAccum:
1415     return 6;
1416   default:
1417     if (BTy->isInteger())
1418       return 0;
1419     llvm_unreachable("Unexpected fixed point or integer type");
1420   }
1421 }
1422 
1423 /// handleFixedPointConversion - Fixed point operations between fixed
1424 /// point types and integers or other fixed point types do not fall under
1425 /// usual arithmetic conversion since these conversions could result in loss
1426 /// of precsision (N1169 4.1.4). These operations should be calculated with
1427 /// the full precision of their result type (N1169 4.1.6.2.1).
1428 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1429                                            QualType RHSTy) {
1430   assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1431          "Expected at least one of the operands to be a fixed point type");
1432   assert((LHSTy->isFixedPointOrIntegerType() ||
1433           RHSTy->isFixedPointOrIntegerType()) &&
1434          "Special fixed point arithmetic operation conversions are only "
1435          "applied to ints or other fixed point types");
1436 
1437   // If one operand has signed fixed-point type and the other operand has
1438   // unsigned fixed-point type, then the unsigned fixed-point operand is
1439   // converted to its corresponding signed fixed-point type and the resulting
1440   // type is the type of the converted operand.
1441   if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1442     LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1443   else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1444     RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1445 
1446   // The result type is the type with the highest rank, whereby a fixed-point
1447   // conversion rank is always greater than an integer conversion rank; if the
1448   // type of either of the operands is a saturating fixedpoint type, the result
1449   // type shall be the saturating fixed-point type corresponding to the type
1450   // with the highest rank; the resulting value is converted (taking into
1451   // account rounding and overflow) to the precision of the resulting type.
1452   // Same ranks between signed and unsigned types are resolved earlier, so both
1453   // types are either signed or both unsigned at this point.
1454   unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1455   unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1456 
1457   QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1458 
1459   if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1460     ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1461 
1462   return ResultTy;
1463 }
1464 
1465 /// Check that the usual arithmetic conversions can be performed on this pair of
1466 /// expressions that might be of enumeration type.
1467 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1468                                            SourceLocation Loc,
1469                                            Sema::ArithConvKind ACK) {
1470   // C++2a [expr.arith.conv]p1:
1471   //   If one operand is of enumeration type and the other operand is of a
1472   //   different enumeration type or a floating-point type, this behavior is
1473   //   deprecated ([depr.arith.conv.enum]).
1474   //
1475   // Warn on this in all language modes. Produce a deprecation warning in C++20.
1476   // Eventually we will presumably reject these cases (in C++23 onwards?).
1477   QualType L = LHS->getType(), R = RHS->getType();
1478   bool LEnum = L->isUnscopedEnumerationType(),
1479        REnum = R->isUnscopedEnumerationType();
1480   bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1481   if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1482       (REnum && L->isFloatingType())) {
1483     S.Diag(Loc, S.getLangOpts().CPlusPlus20
1484                     ? diag::warn_arith_conv_enum_float_cxx20
1485                     : diag::warn_arith_conv_enum_float)
1486         << LHS->getSourceRange() << RHS->getSourceRange()
1487         << (int)ACK << LEnum << L << R;
1488   } else if (!IsCompAssign && LEnum && REnum &&
1489              !S.Context.hasSameUnqualifiedType(L, R)) {
1490     unsigned DiagID;
1491     if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1492         !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1493       // If either enumeration type is unnamed, it's less likely that the
1494       // user cares about this, but this situation is still deprecated in
1495       // C++2a. Use a different warning group.
1496       DiagID = S.getLangOpts().CPlusPlus20
1497                     ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1498                     : diag::warn_arith_conv_mixed_anon_enum_types;
1499     } else if (ACK == Sema::ACK_Conditional) {
1500       // Conditional expressions are separated out because they have
1501       // historically had a different warning flag.
1502       DiagID = S.getLangOpts().CPlusPlus20
1503                    ? diag::warn_conditional_mixed_enum_types_cxx20
1504                    : diag::warn_conditional_mixed_enum_types;
1505     } else if (ACK == Sema::ACK_Comparison) {
1506       // Comparison expressions are separated out because they have
1507       // historically had a different warning flag.
1508       DiagID = S.getLangOpts().CPlusPlus20
1509                    ? diag::warn_comparison_mixed_enum_types_cxx20
1510                    : diag::warn_comparison_mixed_enum_types;
1511     } else {
1512       DiagID = S.getLangOpts().CPlusPlus20
1513                    ? diag::warn_arith_conv_mixed_enum_types_cxx20
1514                    : diag::warn_arith_conv_mixed_enum_types;
1515     }
1516     S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1517                         << (int)ACK << L << R;
1518   }
1519 }
1520 
1521 /// UsualArithmeticConversions - Performs various conversions that are common to
1522 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1523 /// routine returns the first non-arithmetic type found. The client is
1524 /// responsible for emitting appropriate error diagnostics.
1525 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1526                                           SourceLocation Loc,
1527                                           ArithConvKind ACK) {
1528   checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1529 
1530   if (ACK != ACK_CompAssign) {
1531     LHS = UsualUnaryConversions(LHS.get());
1532     if (LHS.isInvalid())
1533       return QualType();
1534   }
1535 
1536   RHS = UsualUnaryConversions(RHS.get());
1537   if (RHS.isInvalid())
1538     return QualType();
1539 
1540   // For conversion purposes, we ignore any qualifiers.
1541   // For example, "const float" and "float" are equivalent.
1542   QualType LHSType =
1543     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1544   QualType RHSType =
1545     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1546 
1547   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1548   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1549     LHSType = AtomicLHS->getValueType();
1550 
1551   // If both types are identical, no conversion is needed.
1552   if (LHSType == RHSType)
1553     return LHSType;
1554 
1555   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1556   // The caller can deal with this (e.g. pointer + int).
1557   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1558     return QualType();
1559 
1560   // Apply unary and bitfield promotions to the LHS's type.
1561   QualType LHSUnpromotedType = LHSType;
1562   if (LHSType->isPromotableIntegerType())
1563     LHSType = Context.getPromotedIntegerType(LHSType);
1564   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1565   if (!LHSBitfieldPromoteTy.isNull())
1566     LHSType = LHSBitfieldPromoteTy;
1567   if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1568     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1569 
1570   // If both types are identical, no conversion is needed.
1571   if (LHSType == RHSType)
1572     return LHSType;
1573 
1574   // At this point, we have two different arithmetic types.
1575 
1576   // Diagnose attempts to convert between __ibm128, __float128 and long double
1577   // where such conversions currently can't be handled.
1578   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1579     return QualType();
1580 
1581   // Handle complex types first (C99 6.3.1.8p1).
1582   if (LHSType->isComplexType() || RHSType->isComplexType())
1583     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1584                                         ACK == ACK_CompAssign);
1585 
1586   // Now handle "real" floating types (i.e. float, double, long double).
1587   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1588     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1589                                  ACK == ACK_CompAssign);
1590 
1591   // Handle GCC complex int extension.
1592   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1593     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1594                                       ACK == ACK_CompAssign);
1595 
1596   if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1597     return handleFixedPointConversion(*this, LHSType, RHSType);
1598 
1599   // Finally, we have two differing integer types.
1600   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1601            (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1602 }
1603 
1604 //===----------------------------------------------------------------------===//
1605 //  Semantic Analysis for various Expression Types
1606 //===----------------------------------------------------------------------===//
1607 
1608 
1609 ExprResult
1610 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1611                                 SourceLocation DefaultLoc,
1612                                 SourceLocation RParenLoc,
1613                                 Expr *ControllingExpr,
1614                                 ArrayRef<ParsedType> ArgTypes,
1615                                 ArrayRef<Expr *> ArgExprs) {
1616   unsigned NumAssocs = ArgTypes.size();
1617   assert(NumAssocs == ArgExprs.size());
1618 
1619   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1620   for (unsigned i = 0; i < NumAssocs; ++i) {
1621     if (ArgTypes[i])
1622       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1623     else
1624       Types[i] = nullptr;
1625   }
1626 
1627   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1628                                              ControllingExpr,
1629                                              llvm::makeArrayRef(Types, NumAssocs),
1630                                              ArgExprs);
1631   delete [] Types;
1632   return ER;
1633 }
1634 
1635 ExprResult
1636 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1637                                  SourceLocation DefaultLoc,
1638                                  SourceLocation RParenLoc,
1639                                  Expr *ControllingExpr,
1640                                  ArrayRef<TypeSourceInfo *> Types,
1641                                  ArrayRef<Expr *> Exprs) {
1642   unsigned NumAssocs = Types.size();
1643   assert(NumAssocs == Exprs.size());
1644 
1645   // Decay and strip qualifiers for the controlling expression type, and handle
1646   // placeholder type replacement. See committee discussion from WG14 DR423.
1647   {
1648     EnterExpressionEvaluationContext Unevaluated(
1649         *this, Sema::ExpressionEvaluationContext::Unevaluated);
1650     ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1651     if (R.isInvalid())
1652       return ExprError();
1653     ControllingExpr = R.get();
1654   }
1655 
1656   bool TypeErrorFound = false,
1657        IsResultDependent = ControllingExpr->isTypeDependent(),
1658        ContainsUnexpandedParameterPack
1659          = ControllingExpr->containsUnexpandedParameterPack();
1660 
1661   // The controlling expression is an unevaluated operand, so side effects are
1662   // likely unintended.
1663   if (!inTemplateInstantiation() && !IsResultDependent &&
1664       ControllingExpr->HasSideEffects(Context, false))
1665     Diag(ControllingExpr->getExprLoc(),
1666          diag::warn_side_effects_unevaluated_context);
1667 
1668   for (unsigned i = 0; i < NumAssocs; ++i) {
1669     if (Exprs[i]->containsUnexpandedParameterPack())
1670       ContainsUnexpandedParameterPack = true;
1671 
1672     if (Types[i]) {
1673       if (Types[i]->getType()->containsUnexpandedParameterPack())
1674         ContainsUnexpandedParameterPack = true;
1675 
1676       if (Types[i]->getType()->isDependentType()) {
1677         IsResultDependent = true;
1678       } else {
1679         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1680         // complete object type other than a variably modified type."
1681         unsigned D = 0;
1682         if (Types[i]->getType()->isIncompleteType())
1683           D = diag::err_assoc_type_incomplete;
1684         else if (!Types[i]->getType()->isObjectType())
1685           D = diag::err_assoc_type_nonobject;
1686         else if (Types[i]->getType()->isVariablyModifiedType())
1687           D = diag::err_assoc_type_variably_modified;
1688         else {
1689           // Because the controlling expression undergoes lvalue conversion,
1690           // array conversion, and function conversion, an association which is
1691           // of array type, function type, or is qualified can never be
1692           // reached. We will warn about this so users are less surprised by
1693           // the unreachable association. However, we don't have to handle
1694           // function types; that's not an object type, so it's handled above.
1695           //
1696           // The logic is somewhat different for C++ because C++ has different
1697           // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1698           // If T is a non-class type, the type of the prvalue is the cv-
1699           // unqualified version of T. Otherwise, the type of the prvalue is T.
1700           // The result of these rules is that all qualified types in an
1701           // association in C are unreachable, and in C++, only qualified non-
1702           // class types are unreachable.
1703           unsigned Reason = 0;
1704           QualType QT = Types[i]->getType();
1705           if (QT->isArrayType())
1706             Reason = 1;
1707           else if (QT.hasQualifiers() &&
1708                    (!LangOpts.CPlusPlus || !QT->isRecordType()))
1709             Reason = 2;
1710 
1711           if (Reason)
1712             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1713                  diag::warn_unreachable_association)
1714                 << QT << (Reason - 1);
1715         }
1716 
1717         if (D != 0) {
1718           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1719             << Types[i]->getTypeLoc().getSourceRange()
1720             << Types[i]->getType();
1721           TypeErrorFound = true;
1722         }
1723 
1724         // C11 6.5.1.1p2 "No two generic associations in the same generic
1725         // selection shall specify compatible types."
1726         for (unsigned j = i+1; j < NumAssocs; ++j)
1727           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1728               Context.typesAreCompatible(Types[i]->getType(),
1729                                          Types[j]->getType())) {
1730             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1731                  diag::err_assoc_compatible_types)
1732               << Types[j]->getTypeLoc().getSourceRange()
1733               << Types[j]->getType()
1734               << Types[i]->getType();
1735             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1736                  diag::note_compat_assoc)
1737               << Types[i]->getTypeLoc().getSourceRange()
1738               << Types[i]->getType();
1739             TypeErrorFound = true;
1740           }
1741       }
1742     }
1743   }
1744   if (TypeErrorFound)
1745     return ExprError();
1746 
1747   // If we determined that the generic selection is result-dependent, don't
1748   // try to compute the result expression.
1749   if (IsResultDependent)
1750     return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1751                                         Exprs, DefaultLoc, RParenLoc,
1752                                         ContainsUnexpandedParameterPack);
1753 
1754   SmallVector<unsigned, 1> CompatIndices;
1755   unsigned DefaultIndex = -1U;
1756   // Look at the canonical type of the controlling expression in case it was a
1757   // deduced type like __auto_type. However, when issuing diagnostics, use the
1758   // type the user wrote in source rather than the canonical one.
1759   for (unsigned i = 0; i < NumAssocs; ++i) {
1760     if (!Types[i])
1761       DefaultIndex = i;
1762     else if (Context.typesAreCompatible(
1763                  ControllingExpr->getType().getCanonicalType(),
1764                                         Types[i]->getType()))
1765       CompatIndices.push_back(i);
1766   }
1767 
1768   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1769   // type compatible with at most one of the types named in its generic
1770   // association list."
1771   if (CompatIndices.size() > 1) {
1772     // We strip parens here because the controlling expression is typically
1773     // parenthesized in macro definitions.
1774     ControllingExpr = ControllingExpr->IgnoreParens();
1775     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1776         << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1777         << (unsigned)CompatIndices.size();
1778     for (unsigned I : CompatIndices) {
1779       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1780            diag::note_compat_assoc)
1781         << Types[I]->getTypeLoc().getSourceRange()
1782         << Types[I]->getType();
1783     }
1784     return ExprError();
1785   }
1786 
1787   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1788   // its controlling expression shall have type compatible with exactly one of
1789   // the types named in its generic association list."
1790   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1791     // We strip parens here because the controlling expression is typically
1792     // parenthesized in macro definitions.
1793     ControllingExpr = ControllingExpr->IgnoreParens();
1794     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1795         << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1796     return ExprError();
1797   }
1798 
1799   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1800   // type name that is compatible with the type of the controlling expression,
1801   // then the result expression of the generic selection is the expression
1802   // in that generic association. Otherwise, the result expression of the
1803   // generic selection is the expression in the default generic association."
1804   unsigned ResultIndex =
1805     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1806 
1807   return GenericSelectionExpr::Create(
1808       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1809       ContainsUnexpandedParameterPack, ResultIndex);
1810 }
1811 
1812 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1813 /// location of the token and the offset of the ud-suffix within it.
1814 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1815                                      unsigned Offset) {
1816   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1817                                         S.getLangOpts());
1818 }
1819 
1820 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1821 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1822 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1823                                                  IdentifierInfo *UDSuffix,
1824                                                  SourceLocation UDSuffixLoc,
1825                                                  ArrayRef<Expr*> Args,
1826                                                  SourceLocation LitEndLoc) {
1827   assert(Args.size() <= 2 && "too many arguments for literal operator");
1828 
1829   QualType ArgTy[2];
1830   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1831     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1832     if (ArgTy[ArgIdx]->isArrayType())
1833       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1834   }
1835 
1836   DeclarationName OpName =
1837     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1838   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1839   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1840 
1841   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1842   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1843                               /*AllowRaw*/ false, /*AllowTemplate*/ false,
1844                               /*AllowStringTemplatePack*/ false,
1845                               /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1846     return ExprError();
1847 
1848   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1849 }
1850 
1851 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1852 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1853 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1854 /// multiple tokens.  However, the common case is that StringToks points to one
1855 /// string.
1856 ///
1857 ExprResult
1858 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1859   assert(!StringToks.empty() && "Must have at least one string!");
1860 
1861   StringLiteralParser Literal(StringToks, PP);
1862   if (Literal.hadError)
1863     return ExprError();
1864 
1865   SmallVector<SourceLocation, 4> StringTokLocs;
1866   for (const Token &Tok : StringToks)
1867     StringTokLocs.push_back(Tok.getLocation());
1868 
1869   QualType CharTy = Context.CharTy;
1870   StringLiteral::StringKind Kind = StringLiteral::Ordinary;
1871   if (Literal.isWide()) {
1872     CharTy = Context.getWideCharType();
1873     Kind = StringLiteral::Wide;
1874   } else if (Literal.isUTF8()) {
1875     if (getLangOpts().Char8)
1876       CharTy = Context.Char8Ty;
1877     Kind = StringLiteral::UTF8;
1878   } else if (Literal.isUTF16()) {
1879     CharTy = Context.Char16Ty;
1880     Kind = StringLiteral::UTF16;
1881   } else if (Literal.isUTF32()) {
1882     CharTy = Context.Char32Ty;
1883     Kind = StringLiteral::UTF32;
1884   } else if (Literal.isPascal()) {
1885     CharTy = Context.UnsignedCharTy;
1886   }
1887 
1888   // Warn on initializing an array of char from a u8 string literal; this
1889   // becomes ill-formed in C++2a.
1890   if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
1891       !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1892     Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
1893 
1894     // Create removals for all 'u8' prefixes in the string literal(s). This
1895     // ensures C++2a compatibility (but may change the program behavior when
1896     // built by non-Clang compilers for which the execution character set is
1897     // not always UTF-8).
1898     auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
1899     SourceLocation RemovalDiagLoc;
1900     for (const Token &Tok : StringToks) {
1901       if (Tok.getKind() == tok::utf8_string_literal) {
1902         if (RemovalDiagLoc.isInvalid())
1903           RemovalDiagLoc = Tok.getLocation();
1904         RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1905             Tok.getLocation(),
1906             Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1907                                            getSourceManager(), getLangOpts())));
1908       }
1909     }
1910     Diag(RemovalDiagLoc, RemovalDiag);
1911   }
1912 
1913   QualType StrTy =
1914       Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1915 
1916   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1917   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1918                                              Kind, Literal.Pascal, StrTy,
1919                                              &StringTokLocs[0],
1920                                              StringTokLocs.size());
1921   if (Literal.getUDSuffix().empty())
1922     return Lit;
1923 
1924   // We're building a user-defined literal.
1925   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1926   SourceLocation UDSuffixLoc =
1927     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1928                    Literal.getUDSuffixOffset());
1929 
1930   // Make sure we're allowed user-defined literals here.
1931   if (!UDLScope)
1932     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1933 
1934   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1935   //   operator "" X (str, len)
1936   QualType SizeType = Context.getSizeType();
1937 
1938   DeclarationName OpName =
1939     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1940   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1941   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1942 
1943   QualType ArgTy[] = {
1944     Context.getArrayDecayedType(StrTy), SizeType
1945   };
1946 
1947   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1948   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1949                                 /*AllowRaw*/ false, /*AllowTemplate*/ true,
1950                                 /*AllowStringTemplatePack*/ true,
1951                                 /*DiagnoseMissing*/ true, Lit)) {
1952 
1953   case LOLR_Cooked: {
1954     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1955     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1956                                                     StringTokLocs[0]);
1957     Expr *Args[] = { Lit, LenArg };
1958 
1959     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1960   }
1961 
1962   case LOLR_Template: {
1963     TemplateArgumentListInfo ExplicitArgs;
1964     TemplateArgument Arg(Lit);
1965     TemplateArgumentLocInfo ArgInfo(Lit);
1966     ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1967     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1968                                     &ExplicitArgs);
1969   }
1970 
1971   case LOLR_StringTemplatePack: {
1972     TemplateArgumentListInfo ExplicitArgs;
1973 
1974     unsigned CharBits = Context.getIntWidth(CharTy);
1975     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1976     llvm::APSInt Value(CharBits, CharIsUnsigned);
1977 
1978     TemplateArgument TypeArg(CharTy);
1979     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1980     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1981 
1982     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1983       Value = Lit->getCodeUnit(I);
1984       TemplateArgument Arg(Context, Value, CharTy);
1985       TemplateArgumentLocInfo ArgInfo;
1986       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1987     }
1988     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1989                                     &ExplicitArgs);
1990   }
1991   case LOLR_Raw:
1992   case LOLR_ErrorNoDiagnostic:
1993     llvm_unreachable("unexpected literal operator lookup result");
1994   case LOLR_Error:
1995     return ExprError();
1996   }
1997   llvm_unreachable("unexpected literal operator lookup result");
1998 }
1999 
2000 DeclRefExpr *
2001 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2002                        SourceLocation Loc,
2003                        const CXXScopeSpec *SS) {
2004   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2005   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2006 }
2007 
2008 DeclRefExpr *
2009 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2010                        const DeclarationNameInfo &NameInfo,
2011                        const CXXScopeSpec *SS, NamedDecl *FoundD,
2012                        SourceLocation TemplateKWLoc,
2013                        const TemplateArgumentListInfo *TemplateArgs) {
2014   NestedNameSpecifierLoc NNS =
2015       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2016   return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2017                           TemplateArgs);
2018 }
2019 
2020 // CUDA/HIP: Check whether a captured reference variable is referencing a
2021 // host variable in a device or host device lambda.
2022 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2023                                                             VarDecl *VD) {
2024   if (!S.getLangOpts().CUDA || !VD->hasInit())
2025     return false;
2026   assert(VD->getType()->isReferenceType());
2027 
2028   // Check whether the reference variable is referencing a host variable.
2029   auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2030   if (!DRE)
2031     return false;
2032   auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2033   if (!Referee || !Referee->hasGlobalStorage() ||
2034       Referee->hasAttr<CUDADeviceAttr>())
2035     return false;
2036 
2037   // Check whether the current function is a device or host device lambda.
2038   // Check whether the reference variable is a capture by getDeclContext()
2039   // since refersToEnclosingVariableOrCapture() is not ready at this point.
2040   auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2041   if (MD && MD->getParent()->isLambda() &&
2042       MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2043       VD->getDeclContext() != MD)
2044     return true;
2045 
2046   return false;
2047 }
2048 
2049 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2050   // A declaration named in an unevaluated operand never constitutes an odr-use.
2051   if (isUnevaluatedContext())
2052     return NOUR_Unevaluated;
2053 
2054   // C++2a [basic.def.odr]p4:
2055   //   A variable x whose name appears as a potentially-evaluated expression e
2056   //   is odr-used by e unless [...] x is a reference that is usable in
2057   //   constant expressions.
2058   // CUDA/HIP:
2059   //   If a reference variable referencing a host variable is captured in a
2060   //   device or host device lambda, the value of the referee must be copied
2061   //   to the capture and the reference variable must be treated as odr-use
2062   //   since the value of the referee is not known at compile time and must
2063   //   be loaded from the captured.
2064   if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2065     if (VD->getType()->isReferenceType() &&
2066         !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
2067         !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2068         VD->isUsableInConstantExpressions(Context))
2069       return NOUR_Constant;
2070   }
2071 
2072   // All remaining non-variable cases constitute an odr-use. For variables, we
2073   // need to wait and see how the expression is used.
2074   return NOUR_None;
2075 }
2076 
2077 /// BuildDeclRefExpr - Build an expression that references a
2078 /// declaration that does not require a closure capture.
2079 DeclRefExpr *
2080 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2081                        const DeclarationNameInfo &NameInfo,
2082                        NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2083                        SourceLocation TemplateKWLoc,
2084                        const TemplateArgumentListInfo *TemplateArgs) {
2085   bool RefersToCapturedVariable =
2086       isa<VarDecl>(D) &&
2087       NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
2088 
2089   DeclRefExpr *E = DeclRefExpr::Create(
2090       Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2091       VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2092   MarkDeclRefReferenced(E);
2093 
2094   // C++ [except.spec]p17:
2095   //   An exception-specification is considered to be needed when:
2096   //   - in an expression, the function is the unique lookup result or
2097   //     the selected member of a set of overloaded functions.
2098   //
2099   // We delay doing this until after we've built the function reference and
2100   // marked it as used so that:
2101   //  a) if the function is defaulted, we get errors from defining it before /
2102   //     instead of errors from computing its exception specification, and
2103   //  b) if the function is a defaulted comparison, we can use the body we
2104   //     build when defining it as input to the exception specification
2105   //     computation rather than computing a new body.
2106   if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
2107     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2108       if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2109         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2110     }
2111   }
2112 
2113   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2114       Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2115       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2116     getCurFunction()->recordUseOfWeak(E);
2117 
2118   FieldDecl *FD = dyn_cast<FieldDecl>(D);
2119   if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
2120     FD = IFD->getAnonField();
2121   if (FD) {
2122     UnusedPrivateFields.remove(FD);
2123     // Just in case we're building an illegal pointer-to-member.
2124     if (FD->isBitField())
2125       E->setObjectKind(OK_BitField);
2126   }
2127 
2128   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2129   // designates a bit-field.
2130   if (auto *BD = dyn_cast<BindingDecl>(D))
2131     if (auto *BE = BD->getBinding())
2132       E->setObjectKind(BE->getObjectKind());
2133 
2134   return E;
2135 }
2136 
2137 /// Decomposes the given name into a DeclarationNameInfo, its location, and
2138 /// possibly a list of template arguments.
2139 ///
2140 /// If this produces template arguments, it is permitted to call
2141 /// DecomposeTemplateName.
2142 ///
2143 /// This actually loses a lot of source location information for
2144 /// non-standard name kinds; we should consider preserving that in
2145 /// some way.
2146 void
2147 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2148                              TemplateArgumentListInfo &Buffer,
2149                              DeclarationNameInfo &NameInfo,
2150                              const TemplateArgumentListInfo *&TemplateArgs) {
2151   if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2152     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2153     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2154 
2155     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2156                                        Id.TemplateId->NumArgs);
2157     translateTemplateArguments(TemplateArgsPtr, Buffer);
2158 
2159     TemplateName TName = Id.TemplateId->Template.get();
2160     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2161     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2162     TemplateArgs = &Buffer;
2163   } else {
2164     NameInfo = GetNameFromUnqualifiedId(Id);
2165     TemplateArgs = nullptr;
2166   }
2167 }
2168 
2169 static void emitEmptyLookupTypoDiagnostic(
2170     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2171     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2172     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2173   DeclContext *Ctx =
2174       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2175   if (!TC) {
2176     // Emit a special diagnostic for failed member lookups.
2177     // FIXME: computing the declaration context might fail here (?)
2178     if (Ctx)
2179       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2180                                                  << SS.getRange();
2181     else
2182       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2183     return;
2184   }
2185 
2186   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2187   bool DroppedSpecifier =
2188       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2189   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2190                         ? diag::note_implicit_param_decl
2191                         : diag::note_previous_decl;
2192   if (!Ctx)
2193     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2194                          SemaRef.PDiag(NoteID));
2195   else
2196     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2197                                  << Typo << Ctx << DroppedSpecifier
2198                                  << SS.getRange(),
2199                          SemaRef.PDiag(NoteID));
2200 }
2201 
2202 /// Diagnose a lookup that found results in an enclosing class during error
2203 /// recovery. This usually indicates that the results were found in a dependent
2204 /// base class that could not be searched as part of a template definition.
2205 /// Always issues a diagnostic (though this may be only a warning in MS
2206 /// compatibility mode).
2207 ///
2208 /// Return \c true if the error is unrecoverable, or \c false if the caller
2209 /// should attempt to recover using these lookup results.
2210 bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) {
2211   // During a default argument instantiation the CurContext points
2212   // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2213   // function parameter list, hence add an explicit check.
2214   bool isDefaultArgument =
2215       !CodeSynthesisContexts.empty() &&
2216       CodeSynthesisContexts.back().Kind ==
2217           CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2218   CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2219   bool isInstance = CurMethod && CurMethod->isInstance() &&
2220                     R.getNamingClass() == CurMethod->getParent() &&
2221                     !isDefaultArgument;
2222 
2223   // There are two ways we can find a class-scope declaration during template
2224   // instantiation that we did not find in the template definition: if it is a
2225   // member of a dependent base class, or if it is declared after the point of
2226   // use in the same class. Distinguish these by comparing the class in which
2227   // the member was found to the naming class of the lookup.
2228   unsigned DiagID = diag::err_found_in_dependent_base;
2229   unsigned NoteID = diag::note_member_declared_at;
2230   if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2231     DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2232                                       : diag::err_found_later_in_class;
2233   } else if (getLangOpts().MSVCCompat) {
2234     DiagID = diag::ext_found_in_dependent_base;
2235     NoteID = diag::note_dependent_member_use;
2236   }
2237 
2238   if (isInstance) {
2239     // Give a code modification hint to insert 'this->'.
2240     Diag(R.getNameLoc(), DiagID)
2241         << R.getLookupName()
2242         << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2243     CheckCXXThisCapture(R.getNameLoc());
2244   } else {
2245     // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2246     // they're not shadowed).
2247     Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2248   }
2249 
2250   for (NamedDecl *D : R)
2251     Diag(D->getLocation(), NoteID);
2252 
2253   // Return true if we are inside a default argument instantiation
2254   // and the found name refers to an instance member function, otherwise
2255   // the caller will try to create an implicit member call and this is wrong
2256   // for default arguments.
2257   //
2258   // FIXME: Is this special case necessary? We could allow the caller to
2259   // diagnose this.
2260   if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2261     Diag(R.getNameLoc(), diag::err_member_call_without_object);
2262     return true;
2263   }
2264 
2265   // Tell the callee to try to recover.
2266   return false;
2267 }
2268 
2269 /// Diagnose an empty lookup.
2270 ///
2271 /// \return false if new lookup candidates were found
2272 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2273                                CorrectionCandidateCallback &CCC,
2274                                TemplateArgumentListInfo *ExplicitTemplateArgs,
2275                                ArrayRef<Expr *> Args, TypoExpr **Out) {
2276   DeclarationName Name = R.getLookupName();
2277 
2278   unsigned diagnostic = diag::err_undeclared_var_use;
2279   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2280   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2281       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2282       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2283     diagnostic = diag::err_undeclared_use;
2284     diagnostic_suggest = diag::err_undeclared_use_suggest;
2285   }
2286 
2287   // If the original lookup was an unqualified lookup, fake an
2288   // unqualified lookup.  This is useful when (for example) the
2289   // original lookup would not have found something because it was a
2290   // dependent name.
2291   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2292   while (DC) {
2293     if (isa<CXXRecordDecl>(DC)) {
2294       LookupQualifiedName(R, DC);
2295 
2296       if (!R.empty()) {
2297         // Don't give errors about ambiguities in this lookup.
2298         R.suppressDiagnostics();
2299 
2300         // If there's a best viable function among the results, only mention
2301         // that one in the notes.
2302         OverloadCandidateSet Candidates(R.getNameLoc(),
2303                                         OverloadCandidateSet::CSK_Normal);
2304         AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2305         OverloadCandidateSet::iterator Best;
2306         if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2307             OR_Success) {
2308           R.clear();
2309           R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2310           R.resolveKind();
2311         }
2312 
2313         return DiagnoseDependentMemberLookup(R);
2314       }
2315 
2316       R.clear();
2317     }
2318 
2319     DC = DC->getLookupParent();
2320   }
2321 
2322   // We didn't find anything, so try to correct for a typo.
2323   TypoCorrection Corrected;
2324   if (S && Out) {
2325     SourceLocation TypoLoc = R.getNameLoc();
2326     assert(!ExplicitTemplateArgs &&
2327            "Diagnosing an empty lookup with explicit template args!");
2328     *Out = CorrectTypoDelayed(
2329         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2330         [=](const TypoCorrection &TC) {
2331           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2332                                         diagnostic, diagnostic_suggest);
2333         },
2334         nullptr, CTK_ErrorRecovery);
2335     if (*Out)
2336       return true;
2337   } else if (S &&
2338              (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2339                                       S, &SS, CCC, CTK_ErrorRecovery))) {
2340     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2341     bool DroppedSpecifier =
2342         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2343     R.setLookupName(Corrected.getCorrection());
2344 
2345     bool AcceptableWithRecovery = false;
2346     bool AcceptableWithoutRecovery = false;
2347     NamedDecl *ND = Corrected.getFoundDecl();
2348     if (ND) {
2349       if (Corrected.isOverloaded()) {
2350         OverloadCandidateSet OCS(R.getNameLoc(),
2351                                  OverloadCandidateSet::CSK_Normal);
2352         OverloadCandidateSet::iterator Best;
2353         for (NamedDecl *CD : Corrected) {
2354           if (FunctionTemplateDecl *FTD =
2355                    dyn_cast<FunctionTemplateDecl>(CD))
2356             AddTemplateOverloadCandidate(
2357                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2358                 Args, OCS);
2359           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2360             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2361               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2362                                    Args, OCS);
2363         }
2364         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2365         case OR_Success:
2366           ND = Best->FoundDecl;
2367           Corrected.setCorrectionDecl(ND);
2368           break;
2369         default:
2370           // FIXME: Arbitrarily pick the first declaration for the note.
2371           Corrected.setCorrectionDecl(ND);
2372           break;
2373         }
2374       }
2375       R.addDecl(ND);
2376       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2377         CXXRecordDecl *Record = nullptr;
2378         if (Corrected.getCorrectionSpecifier()) {
2379           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2380           Record = Ty->getAsCXXRecordDecl();
2381         }
2382         if (!Record)
2383           Record = cast<CXXRecordDecl>(
2384               ND->getDeclContext()->getRedeclContext());
2385         R.setNamingClass(Record);
2386       }
2387 
2388       auto *UnderlyingND = ND->getUnderlyingDecl();
2389       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2390                                isa<FunctionTemplateDecl>(UnderlyingND);
2391       // FIXME: If we ended up with a typo for a type name or
2392       // Objective-C class name, we're in trouble because the parser
2393       // is in the wrong place to recover. Suggest the typo
2394       // correction, but don't make it a fix-it since we're not going
2395       // to recover well anyway.
2396       AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2397                                   getAsTypeTemplateDecl(UnderlyingND) ||
2398                                   isa<ObjCInterfaceDecl>(UnderlyingND);
2399     } else {
2400       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2401       // because we aren't able to recover.
2402       AcceptableWithoutRecovery = true;
2403     }
2404 
2405     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2406       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2407                             ? diag::note_implicit_param_decl
2408                             : diag::note_previous_decl;
2409       if (SS.isEmpty())
2410         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2411                      PDiag(NoteID), AcceptableWithRecovery);
2412       else
2413         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2414                                   << Name << computeDeclContext(SS, false)
2415                                   << DroppedSpecifier << SS.getRange(),
2416                      PDiag(NoteID), AcceptableWithRecovery);
2417 
2418       // Tell the callee whether to try to recover.
2419       return !AcceptableWithRecovery;
2420     }
2421   }
2422   R.clear();
2423 
2424   // Emit a special diagnostic for failed member lookups.
2425   // FIXME: computing the declaration context might fail here (?)
2426   if (!SS.isEmpty()) {
2427     Diag(R.getNameLoc(), diag::err_no_member)
2428       << Name << computeDeclContext(SS, false)
2429       << SS.getRange();
2430     return true;
2431   }
2432 
2433   // Give up, we can't recover.
2434   Diag(R.getNameLoc(), diagnostic) << Name;
2435   return true;
2436 }
2437 
2438 /// In Microsoft mode, if we are inside a template class whose parent class has
2439 /// dependent base classes, and we can't resolve an unqualified identifier, then
2440 /// assume the identifier is a member of a dependent base class.  We can only
2441 /// recover successfully in static methods, instance methods, and other contexts
2442 /// where 'this' is available.  This doesn't precisely match MSVC's
2443 /// instantiation model, but it's close enough.
2444 static Expr *
2445 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2446                                DeclarationNameInfo &NameInfo,
2447                                SourceLocation TemplateKWLoc,
2448                                const TemplateArgumentListInfo *TemplateArgs) {
2449   // Only try to recover from lookup into dependent bases in static methods or
2450   // contexts where 'this' is available.
2451   QualType ThisType = S.getCurrentThisType();
2452   const CXXRecordDecl *RD = nullptr;
2453   if (!ThisType.isNull())
2454     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2455   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2456     RD = MD->getParent();
2457   if (!RD || !RD->hasAnyDependentBases())
2458     return nullptr;
2459 
2460   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2461   // is available, suggest inserting 'this->' as a fixit.
2462   SourceLocation Loc = NameInfo.getLoc();
2463   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2464   DB << NameInfo.getName() << RD;
2465 
2466   if (!ThisType.isNull()) {
2467     DB << FixItHint::CreateInsertion(Loc, "this->");
2468     return CXXDependentScopeMemberExpr::Create(
2469         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2470         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2471         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2472   }
2473 
2474   // Synthesize a fake NNS that points to the derived class.  This will
2475   // perform name lookup during template instantiation.
2476   CXXScopeSpec SS;
2477   auto *NNS =
2478       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2479   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2480   return DependentScopeDeclRefExpr::Create(
2481       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2482       TemplateArgs);
2483 }
2484 
2485 ExprResult
2486 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2487                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2488                         bool HasTrailingLParen, bool IsAddressOfOperand,
2489                         CorrectionCandidateCallback *CCC,
2490                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2491   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2492          "cannot be direct & operand and have a trailing lparen");
2493   if (SS.isInvalid())
2494     return ExprError();
2495 
2496   TemplateArgumentListInfo TemplateArgsBuffer;
2497 
2498   // Decompose the UnqualifiedId into the following data.
2499   DeclarationNameInfo NameInfo;
2500   const TemplateArgumentListInfo *TemplateArgs;
2501   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2502 
2503   DeclarationName Name = NameInfo.getName();
2504   IdentifierInfo *II = Name.getAsIdentifierInfo();
2505   SourceLocation NameLoc = NameInfo.getLoc();
2506 
2507   if (II && II->isEditorPlaceholder()) {
2508     // FIXME: When typed placeholders are supported we can create a typed
2509     // placeholder expression node.
2510     return ExprError();
2511   }
2512 
2513   // C++ [temp.dep.expr]p3:
2514   //   An id-expression is type-dependent if it contains:
2515   //     -- an identifier that was declared with a dependent type,
2516   //        (note: handled after lookup)
2517   //     -- a template-id that is dependent,
2518   //        (note: handled in BuildTemplateIdExpr)
2519   //     -- a conversion-function-id that specifies a dependent type,
2520   //     -- a nested-name-specifier that contains a class-name that
2521   //        names a dependent type.
2522   // Determine whether this is a member of an unknown specialization;
2523   // we need to handle these differently.
2524   bool DependentID = false;
2525   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2526       Name.getCXXNameType()->isDependentType()) {
2527     DependentID = true;
2528   } else if (SS.isSet()) {
2529     if (DeclContext *DC = computeDeclContext(SS, false)) {
2530       if (RequireCompleteDeclContext(SS, DC))
2531         return ExprError();
2532     } else {
2533       DependentID = true;
2534     }
2535   }
2536 
2537   if (DependentID)
2538     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2539                                       IsAddressOfOperand, TemplateArgs);
2540 
2541   // Perform the required lookup.
2542   LookupResult R(*this, NameInfo,
2543                  (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2544                      ? LookupObjCImplicitSelfParam
2545                      : LookupOrdinaryName);
2546   if (TemplateKWLoc.isValid() || TemplateArgs) {
2547     // Lookup the template name again to correctly establish the context in
2548     // which it was found. This is really unfortunate as we already did the
2549     // lookup to determine that it was a template name in the first place. If
2550     // this becomes a performance hit, we can work harder to preserve those
2551     // results until we get here but it's likely not worth it.
2552     bool MemberOfUnknownSpecialization;
2553     AssumedTemplateKind AssumedTemplate;
2554     if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2555                            MemberOfUnknownSpecialization, TemplateKWLoc,
2556                            &AssumedTemplate))
2557       return ExprError();
2558 
2559     if (MemberOfUnknownSpecialization ||
2560         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2561       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2562                                         IsAddressOfOperand, TemplateArgs);
2563   } else {
2564     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2565     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2566 
2567     // If the result might be in a dependent base class, this is a dependent
2568     // id-expression.
2569     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2570       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2571                                         IsAddressOfOperand, TemplateArgs);
2572 
2573     // If this reference is in an Objective-C method, then we need to do
2574     // some special Objective-C lookup, too.
2575     if (IvarLookupFollowUp) {
2576       ExprResult E(LookupInObjCMethod(R, S, II, true));
2577       if (E.isInvalid())
2578         return ExprError();
2579 
2580       if (Expr *Ex = E.getAs<Expr>())
2581         return Ex;
2582     }
2583   }
2584 
2585   if (R.isAmbiguous())
2586     return ExprError();
2587 
2588   // This could be an implicitly declared function reference if the language
2589   // mode allows it as a feature.
2590   if (R.empty() && HasTrailingLParen && II &&
2591       getLangOpts().implicitFunctionsAllowed()) {
2592     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2593     if (D) R.addDecl(D);
2594   }
2595 
2596   // Determine whether this name might be a candidate for
2597   // argument-dependent lookup.
2598   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2599 
2600   if (R.empty() && !ADL) {
2601     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2602       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2603                                                    TemplateKWLoc, TemplateArgs))
2604         return E;
2605     }
2606 
2607     // Don't diagnose an empty lookup for inline assembly.
2608     if (IsInlineAsmIdentifier)
2609       return ExprError();
2610 
2611     // If this name wasn't predeclared and if this is not a function
2612     // call, diagnose the problem.
2613     TypoExpr *TE = nullptr;
2614     DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2615                                                        : nullptr);
2616     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2617     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2618            "Typo correction callback misconfigured");
2619     if (CCC) {
2620       // Make sure the callback knows what the typo being diagnosed is.
2621       CCC->setTypoName(II);
2622       if (SS.isValid())
2623         CCC->setTypoNNS(SS.getScopeRep());
2624     }
2625     // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2626     // a template name, but we happen to have always already looked up the name
2627     // before we get here if it must be a template name.
2628     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2629                             None, &TE)) {
2630       if (TE && KeywordReplacement) {
2631         auto &State = getTypoExprState(TE);
2632         auto BestTC = State.Consumer->getNextCorrection();
2633         if (BestTC.isKeyword()) {
2634           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2635           if (State.DiagHandler)
2636             State.DiagHandler(BestTC);
2637           KeywordReplacement->startToken();
2638           KeywordReplacement->setKind(II->getTokenID());
2639           KeywordReplacement->setIdentifierInfo(II);
2640           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2641           // Clean up the state associated with the TypoExpr, since it has
2642           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2643           clearDelayedTypo(TE);
2644           // Signal that a correction to a keyword was performed by returning a
2645           // valid-but-null ExprResult.
2646           return (Expr*)nullptr;
2647         }
2648         State.Consumer->resetCorrectionStream();
2649       }
2650       return TE ? TE : ExprError();
2651     }
2652 
2653     assert(!R.empty() &&
2654            "DiagnoseEmptyLookup returned false but added no results");
2655 
2656     // If we found an Objective-C instance variable, let
2657     // LookupInObjCMethod build the appropriate expression to
2658     // reference the ivar.
2659     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2660       R.clear();
2661       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2662       // In a hopelessly buggy code, Objective-C instance variable
2663       // lookup fails and no expression will be built to reference it.
2664       if (!E.isInvalid() && !E.get())
2665         return ExprError();
2666       return E;
2667     }
2668   }
2669 
2670   // This is guaranteed from this point on.
2671   assert(!R.empty() || ADL);
2672 
2673   // Check whether this might be a C++ implicit instance member access.
2674   // C++ [class.mfct.non-static]p3:
2675   //   When an id-expression that is not part of a class member access
2676   //   syntax and not used to form a pointer to member is used in the
2677   //   body of a non-static member function of class X, if name lookup
2678   //   resolves the name in the id-expression to a non-static non-type
2679   //   member of some class C, the id-expression is transformed into a
2680   //   class member access expression using (*this) as the
2681   //   postfix-expression to the left of the . operator.
2682   //
2683   // But we don't actually need to do this for '&' operands if R
2684   // resolved to a function or overloaded function set, because the
2685   // expression is ill-formed if it actually works out to be a
2686   // non-static member function:
2687   //
2688   // C++ [expr.ref]p4:
2689   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2690   //   [t]he expression can be used only as the left-hand operand of a
2691   //   member function call.
2692   //
2693   // There are other safeguards against such uses, but it's important
2694   // to get this right here so that we don't end up making a
2695   // spuriously dependent expression if we're inside a dependent
2696   // instance method.
2697   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2698     bool MightBeImplicitMember;
2699     if (!IsAddressOfOperand)
2700       MightBeImplicitMember = true;
2701     else if (!SS.isEmpty())
2702       MightBeImplicitMember = false;
2703     else if (R.isOverloadedResult())
2704       MightBeImplicitMember = false;
2705     else if (R.isUnresolvableResult())
2706       MightBeImplicitMember = true;
2707     else
2708       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2709                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2710                               isa<MSPropertyDecl>(R.getFoundDecl());
2711 
2712     if (MightBeImplicitMember)
2713       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2714                                              R, TemplateArgs, S);
2715   }
2716 
2717   if (TemplateArgs || TemplateKWLoc.isValid()) {
2718 
2719     // In C++1y, if this is a variable template id, then check it
2720     // in BuildTemplateIdExpr().
2721     // The single lookup result must be a variable template declaration.
2722     if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2723         Id.TemplateId->Kind == TNK_Var_template) {
2724       assert(R.getAsSingle<VarTemplateDecl>() &&
2725              "There should only be one declaration found.");
2726     }
2727 
2728     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2729   }
2730 
2731   return BuildDeclarationNameExpr(SS, R, ADL);
2732 }
2733 
2734 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2735 /// declaration name, generally during template instantiation.
2736 /// There's a large number of things which don't need to be done along
2737 /// this path.
2738 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2739     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2740     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2741   DeclContext *DC = computeDeclContext(SS, false);
2742   if (!DC)
2743     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2744                                      NameInfo, /*TemplateArgs=*/nullptr);
2745 
2746   if (RequireCompleteDeclContext(SS, DC))
2747     return ExprError();
2748 
2749   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2750   LookupQualifiedName(R, DC);
2751 
2752   if (R.isAmbiguous())
2753     return ExprError();
2754 
2755   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2756     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2757                                      NameInfo, /*TemplateArgs=*/nullptr);
2758 
2759   if (R.empty()) {
2760     // Don't diagnose problems with invalid record decl, the secondary no_member
2761     // diagnostic during template instantiation is likely bogus, e.g. if a class
2762     // is invalid because it's derived from an invalid base class, then missing
2763     // members were likely supposed to be inherited.
2764     if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2765       if (CD->isInvalidDecl())
2766         return ExprError();
2767     Diag(NameInfo.getLoc(), diag::err_no_member)
2768       << NameInfo.getName() << DC << SS.getRange();
2769     return ExprError();
2770   }
2771 
2772   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2773     // Diagnose a missing typename if this resolved unambiguously to a type in
2774     // a dependent context.  If we can recover with a type, downgrade this to
2775     // a warning in Microsoft compatibility mode.
2776     unsigned DiagID = diag::err_typename_missing;
2777     if (RecoveryTSI && getLangOpts().MSVCCompat)
2778       DiagID = diag::ext_typename_missing;
2779     SourceLocation Loc = SS.getBeginLoc();
2780     auto D = Diag(Loc, DiagID);
2781     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2782       << SourceRange(Loc, NameInfo.getEndLoc());
2783 
2784     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2785     // context.
2786     if (!RecoveryTSI)
2787       return ExprError();
2788 
2789     // Only issue the fixit if we're prepared to recover.
2790     D << FixItHint::CreateInsertion(Loc, "typename ");
2791 
2792     // Recover by pretending this was an elaborated type.
2793     QualType Ty = Context.getTypeDeclType(TD);
2794     TypeLocBuilder TLB;
2795     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2796 
2797     QualType ET = getElaboratedType(ETK_None, SS, Ty);
2798     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2799     QTL.setElaboratedKeywordLoc(SourceLocation());
2800     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2801 
2802     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2803 
2804     return ExprEmpty();
2805   }
2806 
2807   // Defend against this resolving to an implicit member access. We usually
2808   // won't get here if this might be a legitimate a class member (we end up in
2809   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2810   // a pointer-to-member or in an unevaluated context in C++11.
2811   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2812     return BuildPossibleImplicitMemberExpr(SS,
2813                                            /*TemplateKWLoc=*/SourceLocation(),
2814                                            R, /*TemplateArgs=*/nullptr, S);
2815 
2816   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2817 }
2818 
2819 /// The parser has read a name in, and Sema has detected that we're currently
2820 /// inside an ObjC method. Perform some additional checks and determine if we
2821 /// should form a reference to an ivar.
2822 ///
2823 /// Ideally, most of this would be done by lookup, but there's
2824 /// actually quite a lot of extra work involved.
2825 DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2826                                         IdentifierInfo *II) {
2827   SourceLocation Loc = Lookup.getNameLoc();
2828   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2829 
2830   // Check for error condition which is already reported.
2831   if (!CurMethod)
2832     return DeclResult(true);
2833 
2834   // There are two cases to handle here.  1) scoped lookup could have failed,
2835   // in which case we should look for an ivar.  2) scoped lookup could have
2836   // found a decl, but that decl is outside the current instance method (i.e.
2837   // a global variable).  In these two cases, we do a lookup for an ivar with
2838   // this name, if the lookup sucedes, we replace it our current decl.
2839 
2840   // If we're in a class method, we don't normally want to look for
2841   // ivars.  But if we don't find anything else, and there's an
2842   // ivar, that's an error.
2843   bool IsClassMethod = CurMethod->isClassMethod();
2844 
2845   bool LookForIvars;
2846   if (Lookup.empty())
2847     LookForIvars = true;
2848   else if (IsClassMethod)
2849     LookForIvars = false;
2850   else
2851     LookForIvars = (Lookup.isSingleResult() &&
2852                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2853   ObjCInterfaceDecl *IFace = nullptr;
2854   if (LookForIvars) {
2855     IFace = CurMethod->getClassInterface();
2856     ObjCInterfaceDecl *ClassDeclared;
2857     ObjCIvarDecl *IV = nullptr;
2858     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2859       // Diagnose using an ivar in a class method.
2860       if (IsClassMethod) {
2861         Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2862         return DeclResult(true);
2863       }
2864 
2865       // Diagnose the use of an ivar outside of the declaring class.
2866       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2867           !declaresSameEntity(ClassDeclared, IFace) &&
2868           !getLangOpts().DebuggerSupport)
2869         Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2870 
2871       // Success.
2872       return IV;
2873     }
2874   } else if (CurMethod->isInstanceMethod()) {
2875     // We should warn if a local variable hides an ivar.
2876     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2877       ObjCInterfaceDecl *ClassDeclared;
2878       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2879         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2880             declaresSameEntity(IFace, ClassDeclared))
2881           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2882       }
2883     }
2884   } else if (Lookup.isSingleResult() &&
2885              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2886     // If accessing a stand-alone ivar in a class method, this is an error.
2887     if (const ObjCIvarDecl *IV =
2888             dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2889       Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2890       return DeclResult(true);
2891     }
2892   }
2893 
2894   // Didn't encounter an error, didn't find an ivar.
2895   return DeclResult(false);
2896 }
2897 
2898 ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
2899                                   ObjCIvarDecl *IV) {
2900   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2901   assert(CurMethod && CurMethod->isInstanceMethod() &&
2902          "should not reference ivar from this context");
2903 
2904   ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2905   assert(IFace && "should not reference ivar from this context");
2906 
2907   // If we're referencing an invalid decl, just return this as a silent
2908   // error node.  The error diagnostic was already emitted on the decl.
2909   if (IV->isInvalidDecl())
2910     return ExprError();
2911 
2912   // Check if referencing a field with __attribute__((deprecated)).
2913   if (DiagnoseUseOfDecl(IV, Loc))
2914     return ExprError();
2915 
2916   // FIXME: This should use a new expr for a direct reference, don't
2917   // turn this into Self->ivar, just return a BareIVarExpr or something.
2918   IdentifierInfo &II = Context.Idents.get("self");
2919   UnqualifiedId SelfName;
2920   SelfName.setImplicitSelfParam(&II);
2921   CXXScopeSpec SelfScopeSpec;
2922   SourceLocation TemplateKWLoc;
2923   ExprResult SelfExpr =
2924       ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2925                         /*HasTrailingLParen=*/false,
2926                         /*IsAddressOfOperand=*/false);
2927   if (SelfExpr.isInvalid())
2928     return ExprError();
2929 
2930   SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2931   if (SelfExpr.isInvalid())
2932     return ExprError();
2933 
2934   MarkAnyDeclReferenced(Loc, IV, true);
2935 
2936   ObjCMethodFamily MF = CurMethod->getMethodFamily();
2937   if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2938       !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2939     Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2940 
2941   ObjCIvarRefExpr *Result = new (Context)
2942       ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2943                       IV->getLocation(), SelfExpr.get(), true, true);
2944 
2945   if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2946     if (!isUnevaluatedContext() &&
2947         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2948       getCurFunction()->recordUseOfWeak(Result);
2949   }
2950   if (getLangOpts().ObjCAutoRefCount)
2951     if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2952       ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2953 
2954   return Result;
2955 }
2956 
2957 /// The parser has read a name in, and Sema has detected that we're currently
2958 /// inside an ObjC method. Perform some additional checks and determine if we
2959 /// should form a reference to an ivar. If so, build an expression referencing
2960 /// that ivar.
2961 ExprResult
2962 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2963                          IdentifierInfo *II, bool AllowBuiltinCreation) {
2964   // FIXME: Integrate this lookup step into LookupParsedName.
2965   DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
2966   if (Ivar.isInvalid())
2967     return ExprError();
2968   if (Ivar.isUsable())
2969     return BuildIvarRefExpr(S, Lookup.getNameLoc(),
2970                             cast<ObjCIvarDecl>(Ivar.get()));
2971 
2972   if (Lookup.empty() && II && AllowBuiltinCreation)
2973     LookupBuiltin(Lookup);
2974 
2975   // Sentinel value saying that we didn't do anything special.
2976   return ExprResult(false);
2977 }
2978 
2979 /// Cast a base object to a member's actual type.
2980 ///
2981 /// There are two relevant checks:
2982 ///
2983 /// C++ [class.access.base]p7:
2984 ///
2985 ///   If a class member access operator [...] is used to access a non-static
2986 ///   data member or non-static member function, the reference is ill-formed if
2987 ///   the left operand [...] cannot be implicitly converted to a pointer to the
2988 ///   naming class of the right operand.
2989 ///
2990 /// C++ [expr.ref]p7:
2991 ///
2992 ///   If E2 is a non-static data member or a non-static member function, the
2993 ///   program is ill-formed if the class of which E2 is directly a member is an
2994 ///   ambiguous base (11.8) of the naming class (11.9.3) of E2.
2995 ///
2996 /// Note that the latter check does not consider access; the access of the
2997 /// "real" base class is checked as appropriate when checking the access of the
2998 /// member name.
2999 ExprResult
3000 Sema::PerformObjectMemberConversion(Expr *From,
3001                                     NestedNameSpecifier *Qualifier,
3002                                     NamedDecl *FoundDecl,
3003                                     NamedDecl *Member) {
3004   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
3005   if (!RD)
3006     return From;
3007 
3008   QualType DestRecordType;
3009   QualType DestType;
3010   QualType FromRecordType;
3011   QualType FromType = From->getType();
3012   bool PointerConversions = false;
3013   if (isa<FieldDecl>(Member)) {
3014     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
3015     auto FromPtrType = FromType->getAs<PointerType>();
3016     DestRecordType = Context.getAddrSpaceQualType(
3017         DestRecordType, FromPtrType
3018                             ? FromType->getPointeeType().getAddressSpace()
3019                             : FromType.getAddressSpace());
3020 
3021     if (FromPtrType) {
3022       DestType = Context.getPointerType(DestRecordType);
3023       FromRecordType = FromPtrType->getPointeeType();
3024       PointerConversions = true;
3025     } else {
3026       DestType = DestRecordType;
3027       FromRecordType = FromType;
3028     }
3029   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
3030     if (Method->isStatic())
3031       return From;
3032 
3033     DestType = Method->getThisType();
3034     DestRecordType = DestType->getPointeeType();
3035 
3036     if (FromType->getAs<PointerType>()) {
3037       FromRecordType = FromType->getPointeeType();
3038       PointerConversions = true;
3039     } else {
3040       FromRecordType = FromType;
3041       DestType = DestRecordType;
3042     }
3043 
3044     LangAS FromAS = FromRecordType.getAddressSpace();
3045     LangAS DestAS = DestRecordType.getAddressSpace();
3046     if (FromAS != DestAS) {
3047       QualType FromRecordTypeWithoutAS =
3048           Context.removeAddrSpaceQualType(FromRecordType);
3049       QualType FromTypeWithDestAS =
3050           Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
3051       if (PointerConversions)
3052         FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
3053       From = ImpCastExprToType(From, FromTypeWithDestAS,
3054                                CK_AddressSpaceConversion, From->getValueKind())
3055                  .get();
3056     }
3057   } else {
3058     // No conversion necessary.
3059     return From;
3060   }
3061 
3062   if (DestType->isDependentType() || FromType->isDependentType())
3063     return From;
3064 
3065   // If the unqualified types are the same, no conversion is necessary.
3066   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3067     return From;
3068 
3069   SourceRange FromRange = From->getSourceRange();
3070   SourceLocation FromLoc = FromRange.getBegin();
3071 
3072   ExprValueKind VK = From->getValueKind();
3073 
3074   // C++ [class.member.lookup]p8:
3075   //   [...] Ambiguities can often be resolved by qualifying a name with its
3076   //   class name.
3077   //
3078   // If the member was a qualified name and the qualified referred to a
3079   // specific base subobject type, we'll cast to that intermediate type
3080   // first and then to the object in which the member is declared. That allows
3081   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3082   //
3083   //   class Base { public: int x; };
3084   //   class Derived1 : public Base { };
3085   //   class Derived2 : public Base { };
3086   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
3087   //
3088   //   void VeryDerived::f() {
3089   //     x = 17; // error: ambiguous base subobjects
3090   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
3091   //   }
3092   if (Qualifier && Qualifier->getAsType()) {
3093     QualType QType = QualType(Qualifier->getAsType(), 0);
3094     assert(QType->isRecordType() && "lookup done with non-record type");
3095 
3096     QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3097 
3098     // In C++98, the qualifier type doesn't actually have to be a base
3099     // type of the object type, in which case we just ignore it.
3100     // Otherwise build the appropriate casts.
3101     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3102       CXXCastPath BasePath;
3103       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3104                                        FromLoc, FromRange, &BasePath))
3105         return ExprError();
3106 
3107       if (PointerConversions)
3108         QType = Context.getPointerType(QType);
3109       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3110                                VK, &BasePath).get();
3111 
3112       FromType = QType;
3113       FromRecordType = QRecordType;
3114 
3115       // If the qualifier type was the same as the destination type,
3116       // we're done.
3117       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3118         return From;
3119     }
3120   }
3121 
3122   CXXCastPath BasePath;
3123   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3124                                    FromLoc, FromRange, &BasePath,
3125                                    /*IgnoreAccess=*/true))
3126     return ExprError();
3127 
3128   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3129                            VK, &BasePath);
3130 }
3131 
3132 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3133                                       const LookupResult &R,
3134                                       bool HasTrailingLParen) {
3135   // Only when used directly as the postfix-expression of a call.
3136   if (!HasTrailingLParen)
3137     return false;
3138 
3139   // Never if a scope specifier was provided.
3140   if (SS.isSet())
3141     return false;
3142 
3143   // Only in C++ or ObjC++.
3144   if (!getLangOpts().CPlusPlus)
3145     return false;
3146 
3147   // Turn off ADL when we find certain kinds of declarations during
3148   // normal lookup:
3149   for (NamedDecl *D : R) {
3150     // C++0x [basic.lookup.argdep]p3:
3151     //     -- a declaration of a class member
3152     // Since using decls preserve this property, we check this on the
3153     // original decl.
3154     if (D->isCXXClassMember())
3155       return false;
3156 
3157     // C++0x [basic.lookup.argdep]p3:
3158     //     -- a block-scope function declaration that is not a
3159     //        using-declaration
3160     // NOTE: we also trigger this for function templates (in fact, we
3161     // don't check the decl type at all, since all other decl types
3162     // turn off ADL anyway).
3163     if (isa<UsingShadowDecl>(D))
3164       D = cast<UsingShadowDecl>(D)->getTargetDecl();
3165     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3166       return false;
3167 
3168     // C++0x [basic.lookup.argdep]p3:
3169     //     -- a declaration that is neither a function or a function
3170     //        template
3171     // And also for builtin functions.
3172     if (isa<FunctionDecl>(D)) {
3173       FunctionDecl *FDecl = cast<FunctionDecl>(D);
3174 
3175       // But also builtin functions.
3176       if (FDecl->getBuiltinID() && FDecl->isImplicit())
3177         return false;
3178     } else if (!isa<FunctionTemplateDecl>(D))
3179       return false;
3180   }
3181 
3182   return true;
3183 }
3184 
3185 
3186 /// Diagnoses obvious problems with the use of the given declaration
3187 /// as an expression.  This is only actually called for lookups that
3188 /// were not overloaded, and it doesn't promise that the declaration
3189 /// will in fact be used.
3190 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
3191   if (D->isInvalidDecl())
3192     return true;
3193 
3194   if (isa<TypedefNameDecl>(D)) {
3195     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3196     return true;
3197   }
3198 
3199   if (isa<ObjCInterfaceDecl>(D)) {
3200     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3201     return true;
3202   }
3203 
3204   if (isa<NamespaceDecl>(D)) {
3205     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3206     return true;
3207   }
3208 
3209   return false;
3210 }
3211 
3212 // Certain multiversion types should be treated as overloaded even when there is
3213 // only one result.
3214 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3215   assert(R.isSingleResult() && "Expected only a single result");
3216   const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3217   return FD &&
3218          (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3219 }
3220 
3221 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3222                                           LookupResult &R, bool NeedsADL,
3223                                           bool AcceptInvalidDecl) {
3224   // If this is a single, fully-resolved result and we don't need ADL,
3225   // just build an ordinary singleton decl ref.
3226   if (!NeedsADL && R.isSingleResult() &&
3227       !R.getAsSingle<FunctionTemplateDecl>() &&
3228       !ShouldLookupResultBeMultiVersionOverload(R))
3229     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3230                                     R.getRepresentativeDecl(), nullptr,
3231                                     AcceptInvalidDecl);
3232 
3233   // We only need to check the declaration if there's exactly one
3234   // result, because in the overloaded case the results can only be
3235   // functions and function templates.
3236   if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3237       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
3238     return ExprError();
3239 
3240   // Otherwise, just build an unresolved lookup expression.  Suppress
3241   // any lookup-related diagnostics; we'll hash these out later, when
3242   // we've picked a target.
3243   R.suppressDiagnostics();
3244 
3245   UnresolvedLookupExpr *ULE
3246     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3247                                    SS.getWithLocInContext(Context),
3248                                    R.getLookupNameInfo(),
3249                                    NeedsADL, R.isOverloadedResult(),
3250                                    R.begin(), R.end());
3251 
3252   return ULE;
3253 }
3254 
3255 static void diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
3256                                                ValueDecl *var);
3257 
3258 /// Complete semantic analysis for a reference to the given declaration.
3259 ExprResult Sema::BuildDeclarationNameExpr(
3260     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3261     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3262     bool AcceptInvalidDecl) {
3263   assert(D && "Cannot refer to a NULL declaration");
3264   assert(!isa<FunctionTemplateDecl>(D) &&
3265          "Cannot refer unambiguously to a function template");
3266 
3267   SourceLocation Loc = NameInfo.getLoc();
3268   if (CheckDeclInExpr(*this, Loc, D)) {
3269     // Recovery from invalid cases (e.g. D is an invalid Decl).
3270     // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3271     // diagnostics, as invalid decls use int as a fallback type.
3272     return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
3273   }
3274 
3275   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3276     // Specifically diagnose references to class templates that are missing
3277     // a template argument list.
3278     diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3279     return ExprError();
3280   }
3281 
3282   // Make sure that we're referring to a value.
3283   if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3284     Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3285     Diag(D->getLocation(), diag::note_declared_at);
3286     return ExprError();
3287   }
3288 
3289   // Check whether this declaration can be used. Note that we suppress
3290   // this check when we're going to perform argument-dependent lookup
3291   // on this function name, because this might not be the function
3292   // that overload resolution actually selects.
3293   if (DiagnoseUseOfDecl(D, Loc))
3294     return ExprError();
3295 
3296   auto *VD = cast<ValueDecl>(D);
3297 
3298   // Only create DeclRefExpr's for valid Decl's.
3299   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3300     return ExprError();
3301 
3302   // Handle members of anonymous structs and unions.  If we got here,
3303   // and the reference is to a class member indirect field, then this
3304   // must be the subject of a pointer-to-member expression.
3305   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
3306     if (!indirectField->isCXXClassMember())
3307       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3308                                                       indirectField);
3309 
3310   QualType type = VD->getType();
3311   if (type.isNull())
3312     return ExprError();
3313   ExprValueKind valueKind = VK_PRValue;
3314 
3315   // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3316   // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3317   // is expanded by some outer '...' in the context of the use.
3318   type = type.getNonPackExpansionType();
3319 
3320   switch (D->getKind()) {
3321     // Ignore all the non-ValueDecl kinds.
3322 #define ABSTRACT_DECL(kind)
3323 #define VALUE(type, base)
3324 #define DECL(type, base) case Decl::type:
3325 #include "clang/AST/DeclNodes.inc"
3326     llvm_unreachable("invalid value decl kind");
3327 
3328   // These shouldn't make it here.
3329   case Decl::ObjCAtDefsField:
3330     llvm_unreachable("forming non-member reference to ivar?");
3331 
3332   // Enum constants are always r-values and never references.
3333   // Unresolved using declarations are dependent.
3334   case Decl::EnumConstant:
3335   case Decl::UnresolvedUsingValue:
3336   case Decl::OMPDeclareReduction:
3337   case Decl::OMPDeclareMapper:
3338     valueKind = VK_PRValue;
3339     break;
3340 
3341   // Fields and indirect fields that got here must be for
3342   // pointer-to-member expressions; we just call them l-values for
3343   // internal consistency, because this subexpression doesn't really
3344   // exist in the high-level semantics.
3345   case Decl::Field:
3346   case Decl::IndirectField:
3347   case Decl::ObjCIvar:
3348     assert(getLangOpts().CPlusPlus && "building reference to field in C?");
3349 
3350     // These can't have reference type in well-formed programs, but
3351     // for internal consistency we do this anyway.
3352     type = type.getNonReferenceType();
3353     valueKind = VK_LValue;
3354     break;
3355 
3356   // Non-type template parameters are either l-values or r-values
3357   // depending on the type.
3358   case Decl::NonTypeTemplateParm: {
3359     if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3360       type = reftype->getPointeeType();
3361       valueKind = VK_LValue; // even if the parameter is an r-value reference
3362       break;
3363     }
3364 
3365     // [expr.prim.id.unqual]p2:
3366     //   If the entity is a template parameter object for a template
3367     //   parameter of type T, the type of the expression is const T.
3368     //   [...] The expression is an lvalue if the entity is a [...] template
3369     //   parameter object.
3370     if (type->isRecordType()) {
3371       type = type.getUnqualifiedType().withConst();
3372       valueKind = VK_LValue;
3373       break;
3374     }
3375 
3376     // For non-references, we need to strip qualifiers just in case
3377     // the template parameter was declared as 'const int' or whatever.
3378     valueKind = VK_PRValue;
3379     type = type.getUnqualifiedType();
3380     break;
3381   }
3382 
3383   case Decl::Var:
3384   case Decl::VarTemplateSpecialization:
3385   case Decl::VarTemplatePartialSpecialization:
3386   case Decl::Decomposition:
3387   case Decl::OMPCapturedExpr:
3388     // In C, "extern void blah;" is valid and is an r-value.
3389     if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3390         type->isVoidType()) {
3391       valueKind = VK_PRValue;
3392       break;
3393     }
3394     LLVM_FALLTHROUGH;
3395 
3396   case Decl::ImplicitParam:
3397   case Decl::ParmVar: {
3398     // These are always l-values.
3399     valueKind = VK_LValue;
3400     type = type.getNonReferenceType();
3401 
3402     // FIXME: Does the addition of const really only apply in
3403     // potentially-evaluated contexts? Since the variable isn't actually
3404     // captured in an unevaluated context, it seems that the answer is no.
3405     if (!isUnevaluatedContext()) {
3406       QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3407       if (!CapturedType.isNull())
3408         type = CapturedType;
3409     }
3410 
3411     break;
3412   }
3413 
3414   case Decl::Binding: {
3415     // These are always lvalues.
3416     valueKind = VK_LValue;
3417     type = type.getNonReferenceType();
3418     // FIXME: Support lambda-capture of BindingDecls, once CWG actually
3419     // decides how that's supposed to work.
3420     auto *BD = cast<BindingDecl>(VD);
3421     if (BD->getDeclContext() != CurContext) {
3422       auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
3423       if (DD && DD->hasLocalStorage())
3424         diagnoseUncapturableValueReference(*this, Loc, BD);
3425     }
3426     break;
3427   }
3428 
3429   case Decl::Function: {
3430     if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3431       if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
3432         type = Context.BuiltinFnTy;
3433         valueKind = VK_PRValue;
3434         break;
3435       }
3436     }
3437 
3438     const FunctionType *fty = type->castAs<FunctionType>();
3439 
3440     // If we're referring to a function with an __unknown_anytype
3441     // result type, make the entire expression __unknown_anytype.
3442     if (fty->getReturnType() == Context.UnknownAnyTy) {
3443       type = Context.UnknownAnyTy;
3444       valueKind = VK_PRValue;
3445       break;
3446     }
3447 
3448     // Functions are l-values in C++.
3449     if (getLangOpts().CPlusPlus) {
3450       valueKind = VK_LValue;
3451       break;
3452     }
3453 
3454     // C99 DR 316 says that, if a function type comes from a
3455     // function definition (without a prototype), that type is only
3456     // used for checking compatibility. Therefore, when referencing
3457     // the function, we pretend that we don't have the full function
3458     // type.
3459     if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3460       type = Context.getFunctionNoProtoType(fty->getReturnType(),
3461                                             fty->getExtInfo());
3462 
3463     // Functions are r-values in C.
3464     valueKind = VK_PRValue;
3465     break;
3466   }
3467 
3468   case Decl::CXXDeductionGuide:
3469     llvm_unreachable("building reference to deduction guide");
3470 
3471   case Decl::MSProperty:
3472   case Decl::MSGuid:
3473   case Decl::TemplateParamObject:
3474     // FIXME: Should MSGuidDecl and template parameter objects be subject to
3475     // capture in OpenMP, or duplicated between host and device?
3476     valueKind = VK_LValue;
3477     break;
3478 
3479   case Decl::UnnamedGlobalConstant:
3480     valueKind = VK_LValue;
3481     break;
3482 
3483   case Decl::CXXMethod:
3484     // If we're referring to a method with an __unknown_anytype
3485     // result type, make the entire expression __unknown_anytype.
3486     // This should only be possible with a type written directly.
3487     if (const FunctionProtoType *proto =
3488             dyn_cast<FunctionProtoType>(VD->getType()))
3489       if (proto->getReturnType() == Context.UnknownAnyTy) {
3490         type = Context.UnknownAnyTy;
3491         valueKind = VK_PRValue;
3492         break;
3493       }
3494 
3495     // C++ methods are l-values if static, r-values if non-static.
3496     if (cast<CXXMethodDecl>(VD)->isStatic()) {
3497       valueKind = VK_LValue;
3498       break;
3499     }
3500     LLVM_FALLTHROUGH;
3501 
3502   case Decl::CXXConversion:
3503   case Decl::CXXDestructor:
3504   case Decl::CXXConstructor:
3505     valueKind = VK_PRValue;
3506     break;
3507   }
3508 
3509   return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3510                           /*FIXME: TemplateKWLoc*/ SourceLocation(),
3511                           TemplateArgs);
3512 }
3513 
3514 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3515                                     SmallString<32> &Target) {
3516   Target.resize(CharByteWidth * (Source.size() + 1));
3517   char *ResultPtr = &Target[0];
3518   const llvm::UTF8 *ErrorPtr;
3519   bool success =
3520       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3521   (void)success;
3522   assert(success);
3523   Target.resize(ResultPtr - &Target[0]);
3524 }
3525 
3526 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3527                                      PredefinedExpr::IdentKind IK) {
3528   // Pick the current block, lambda, captured statement or function.
3529   Decl *currentDecl = nullptr;
3530   if (const BlockScopeInfo *BSI = getCurBlock())
3531     currentDecl = BSI->TheDecl;
3532   else if (const LambdaScopeInfo *LSI = getCurLambda())
3533     currentDecl = LSI->CallOperator;
3534   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3535     currentDecl = CSI->TheCapturedDecl;
3536   else
3537     currentDecl = getCurFunctionOrMethodDecl();
3538 
3539   if (!currentDecl) {
3540     Diag(Loc, diag::ext_predef_outside_function);
3541     currentDecl = Context.getTranslationUnitDecl();
3542   }
3543 
3544   QualType ResTy;
3545   StringLiteral *SL = nullptr;
3546   if (cast<DeclContext>(currentDecl)->isDependentContext())
3547     ResTy = Context.DependentTy;
3548   else {
3549     // Pre-defined identifiers are of type char[x], where x is the length of
3550     // the string.
3551     auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3552     unsigned Length = Str.length();
3553 
3554     llvm::APInt LengthI(32, Length + 1);
3555     if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3556       ResTy =
3557           Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3558       SmallString<32> RawChars;
3559       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3560                               Str, RawChars);
3561       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3562                                            ArrayType::Normal,
3563                                            /*IndexTypeQuals*/ 0);
3564       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3565                                  /*Pascal*/ false, ResTy, Loc);
3566     } else {
3567       ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3568       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3569                                            ArrayType::Normal,
3570                                            /*IndexTypeQuals*/ 0);
3571       SL = StringLiteral::Create(Context, Str, StringLiteral::Ordinary,
3572                                  /*Pascal*/ false, ResTy, Loc);
3573     }
3574   }
3575 
3576   return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3577 }
3578 
3579 ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3580                                                SourceLocation LParen,
3581                                                SourceLocation RParen,
3582                                                TypeSourceInfo *TSI) {
3583   return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI);
3584 }
3585 
3586 ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3587                                                SourceLocation LParen,
3588                                                SourceLocation RParen,
3589                                                ParsedType ParsedTy) {
3590   TypeSourceInfo *TSI = nullptr;
3591   QualType Ty = GetTypeFromParser(ParsedTy, &TSI);
3592 
3593   if (Ty.isNull())
3594     return ExprError();
3595   if (!TSI)
3596     TSI = Context.getTrivialTypeSourceInfo(Ty, LParen);
3597 
3598   return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
3599 }
3600 
3601 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3602   PredefinedExpr::IdentKind IK;
3603 
3604   switch (Kind) {
3605   default: llvm_unreachable("Unknown simple primary expr!");
3606   case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3607   case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3608   case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3609   case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3610   case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3611   case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3612   case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3613   }
3614 
3615   return BuildPredefinedExpr(Loc, IK);
3616 }
3617 
3618 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3619   SmallString<16> CharBuffer;
3620   bool Invalid = false;
3621   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3622   if (Invalid)
3623     return ExprError();
3624 
3625   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3626                             PP, Tok.getKind());
3627   if (Literal.hadError())
3628     return ExprError();
3629 
3630   QualType Ty;
3631   if (Literal.isWide())
3632     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3633   else if (Literal.isUTF8() && getLangOpts().C2x)
3634     Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C2x
3635   else if (Literal.isUTF8() && getLangOpts().Char8)
3636     Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3637   else if (Literal.isUTF16())
3638     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3639   else if (Literal.isUTF32())
3640     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3641   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3642     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3643   else
3644     Ty = Context.CharTy; // 'x' -> char in C++;
3645                          // u8'x' -> char in C11-C17 and in C++ without char8_t.
3646 
3647   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3648   if (Literal.isWide())
3649     Kind = CharacterLiteral::Wide;
3650   else if (Literal.isUTF16())
3651     Kind = CharacterLiteral::UTF16;
3652   else if (Literal.isUTF32())
3653     Kind = CharacterLiteral::UTF32;
3654   else if (Literal.isUTF8())
3655     Kind = CharacterLiteral::UTF8;
3656 
3657   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3658                                              Tok.getLocation());
3659 
3660   if (Literal.getUDSuffix().empty())
3661     return Lit;
3662 
3663   // We're building a user-defined literal.
3664   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3665   SourceLocation UDSuffixLoc =
3666     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3667 
3668   // Make sure we're allowed user-defined literals here.
3669   if (!UDLScope)
3670     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3671 
3672   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3673   //   operator "" X (ch)
3674   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3675                                         Lit, Tok.getLocation());
3676 }
3677 
3678 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3679   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3680   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3681                                 Context.IntTy, Loc);
3682 }
3683 
3684 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3685                                   QualType Ty, SourceLocation Loc) {
3686   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3687 
3688   using llvm::APFloat;
3689   APFloat Val(Format);
3690 
3691   APFloat::opStatus result = Literal.GetFloatValue(Val);
3692 
3693   // Overflow is always an error, but underflow is only an error if
3694   // we underflowed to zero (APFloat reports denormals as underflow).
3695   if ((result & APFloat::opOverflow) ||
3696       ((result & APFloat::opUnderflow) && Val.isZero())) {
3697     unsigned diagnostic;
3698     SmallString<20> buffer;
3699     if (result & APFloat::opOverflow) {
3700       diagnostic = diag::warn_float_overflow;
3701       APFloat::getLargest(Format).toString(buffer);
3702     } else {
3703       diagnostic = diag::warn_float_underflow;
3704       APFloat::getSmallest(Format).toString(buffer);
3705     }
3706 
3707     S.Diag(Loc, diagnostic)
3708       << Ty
3709       << StringRef(buffer.data(), buffer.size());
3710   }
3711 
3712   bool isExact = (result == APFloat::opOK);
3713   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3714 }
3715 
3716 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3717   assert(E && "Invalid expression");
3718 
3719   if (E->isValueDependent())
3720     return false;
3721 
3722   QualType QT = E->getType();
3723   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3724     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3725     return true;
3726   }
3727 
3728   llvm::APSInt ValueAPS;
3729   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3730 
3731   if (R.isInvalid())
3732     return true;
3733 
3734   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3735   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3736     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3737         << toString(ValueAPS, 10) << ValueIsPositive;
3738     return true;
3739   }
3740 
3741   return false;
3742 }
3743 
3744 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3745   // Fast path for a single digit (which is quite common).  A single digit
3746   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3747   if (Tok.getLength() == 1) {
3748     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3749     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3750   }
3751 
3752   SmallString<128> SpellingBuffer;
3753   // NumericLiteralParser wants to overread by one character.  Add padding to
3754   // the buffer in case the token is copied to the buffer.  If getSpelling()
3755   // returns a StringRef to the memory buffer, it should have a null char at
3756   // the EOF, so it is also safe.
3757   SpellingBuffer.resize(Tok.getLength() + 1);
3758 
3759   // Get the spelling of the token, which eliminates trigraphs, etc.
3760   bool Invalid = false;
3761   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3762   if (Invalid)
3763     return ExprError();
3764 
3765   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3766                                PP.getSourceManager(), PP.getLangOpts(),
3767                                PP.getTargetInfo(), PP.getDiagnostics());
3768   if (Literal.hadError)
3769     return ExprError();
3770 
3771   if (Literal.hasUDSuffix()) {
3772     // We're building a user-defined literal.
3773     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3774     SourceLocation UDSuffixLoc =
3775       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3776 
3777     // Make sure we're allowed user-defined literals here.
3778     if (!UDLScope)
3779       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3780 
3781     QualType CookedTy;
3782     if (Literal.isFloatingLiteral()) {
3783       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3784       // long double, the literal is treated as a call of the form
3785       //   operator "" X (f L)
3786       CookedTy = Context.LongDoubleTy;
3787     } else {
3788       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3789       // unsigned long long, the literal is treated as a call of the form
3790       //   operator "" X (n ULL)
3791       CookedTy = Context.UnsignedLongLongTy;
3792     }
3793 
3794     DeclarationName OpName =
3795       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3796     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3797     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3798 
3799     SourceLocation TokLoc = Tok.getLocation();
3800 
3801     // Perform literal operator lookup to determine if we're building a raw
3802     // literal or a cooked one.
3803     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3804     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3805                                   /*AllowRaw*/ true, /*AllowTemplate*/ true,
3806                                   /*AllowStringTemplatePack*/ false,
3807                                   /*DiagnoseMissing*/ !Literal.isImaginary)) {
3808     case LOLR_ErrorNoDiagnostic:
3809       // Lookup failure for imaginary constants isn't fatal, there's still the
3810       // GNU extension producing _Complex types.
3811       break;
3812     case LOLR_Error:
3813       return ExprError();
3814     case LOLR_Cooked: {
3815       Expr *Lit;
3816       if (Literal.isFloatingLiteral()) {
3817         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3818       } else {
3819         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3820         if (Literal.GetIntegerValue(ResultVal))
3821           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3822               << /* Unsigned */ 1;
3823         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3824                                      Tok.getLocation());
3825       }
3826       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3827     }
3828 
3829     case LOLR_Raw: {
3830       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3831       // literal is treated as a call of the form
3832       //   operator "" X ("n")
3833       unsigned Length = Literal.getUDSuffixOffset();
3834       QualType StrTy = Context.getConstantArrayType(
3835           Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3836           llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3837       Expr *Lit =
3838           StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length),
3839                                 StringLiteral::Ordinary,
3840                                 /*Pascal*/ false, StrTy, &TokLoc, 1);
3841       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3842     }
3843 
3844     case LOLR_Template: {
3845       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3846       // template), L is treated as a call fo the form
3847       //   operator "" X <'c1', 'c2', ... 'ck'>()
3848       // where n is the source character sequence c1 c2 ... ck.
3849       TemplateArgumentListInfo ExplicitArgs;
3850       unsigned CharBits = Context.getIntWidth(Context.CharTy);
3851       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3852       llvm::APSInt Value(CharBits, CharIsUnsigned);
3853       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3854         Value = TokSpelling[I];
3855         TemplateArgument Arg(Context, Value, Context.CharTy);
3856         TemplateArgumentLocInfo ArgInfo;
3857         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3858       }
3859       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3860                                       &ExplicitArgs);
3861     }
3862     case LOLR_StringTemplatePack:
3863       llvm_unreachable("unexpected literal operator lookup result");
3864     }
3865   }
3866 
3867   Expr *Res;
3868 
3869   if (Literal.isFixedPointLiteral()) {
3870     QualType Ty;
3871 
3872     if (Literal.isAccum) {
3873       if (Literal.isHalf) {
3874         Ty = Context.ShortAccumTy;
3875       } else if (Literal.isLong) {
3876         Ty = Context.LongAccumTy;
3877       } else {
3878         Ty = Context.AccumTy;
3879       }
3880     } else if (Literal.isFract) {
3881       if (Literal.isHalf) {
3882         Ty = Context.ShortFractTy;
3883       } else if (Literal.isLong) {
3884         Ty = Context.LongFractTy;
3885       } else {
3886         Ty = Context.FractTy;
3887       }
3888     }
3889 
3890     if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3891 
3892     bool isSigned = !Literal.isUnsigned;
3893     unsigned scale = Context.getFixedPointScale(Ty);
3894     unsigned bit_width = Context.getTypeInfo(Ty).Width;
3895 
3896     llvm::APInt Val(bit_width, 0, isSigned);
3897     bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3898     bool ValIsZero = Val.isZero() && !Overflowed;
3899 
3900     auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3901     if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3902       // Clause 6.4.4 - The value of a constant shall be in the range of
3903       // representable values for its type, with exception for constants of a
3904       // fract type with a value of exactly 1; such a constant shall denote
3905       // the maximal value for the type.
3906       --Val;
3907     else if (Val.ugt(MaxVal) || Overflowed)
3908       Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3909 
3910     Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3911                                               Tok.getLocation(), scale);
3912   } else if (Literal.isFloatingLiteral()) {
3913     QualType Ty;
3914     if (Literal.isHalf){
3915       if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
3916         Ty = Context.HalfTy;
3917       else {
3918         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3919         return ExprError();
3920       }
3921     } else if (Literal.isFloat)
3922       Ty = Context.FloatTy;
3923     else if (Literal.isLong)
3924       Ty = Context.LongDoubleTy;
3925     else if (Literal.isFloat16)
3926       Ty = Context.Float16Ty;
3927     else if (Literal.isFloat128)
3928       Ty = Context.Float128Ty;
3929     else
3930       Ty = Context.DoubleTy;
3931 
3932     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3933 
3934     if (Ty == Context.DoubleTy) {
3935       if (getLangOpts().SinglePrecisionConstants) {
3936         if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3937           Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3938         }
3939       } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3940                                              "cl_khr_fp64", getLangOpts())) {
3941         // Impose single-precision float type when cl_khr_fp64 is not enabled.
3942         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
3943             << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
3944         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3945       }
3946     }
3947   } else if (!Literal.isIntegerLiteral()) {
3948     return ExprError();
3949   } else {
3950     QualType Ty;
3951 
3952     // 'long long' is a C99 or C++11 feature.
3953     if (!getLangOpts().C99 && Literal.isLongLong) {
3954       if (getLangOpts().CPlusPlus)
3955         Diag(Tok.getLocation(),
3956              getLangOpts().CPlusPlus11 ?
3957              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3958       else
3959         Diag(Tok.getLocation(), diag::ext_c99_longlong);
3960     }
3961 
3962     // 'z/uz' literals are a C++2b feature.
3963     if (Literal.isSizeT)
3964       Diag(Tok.getLocation(), getLangOpts().CPlusPlus
3965                                   ? getLangOpts().CPlusPlus2b
3966                                         ? diag::warn_cxx20_compat_size_t_suffix
3967                                         : diag::ext_cxx2b_size_t_suffix
3968                                   : diag::err_cxx2b_size_t_suffix);
3969 
3970     // 'wb/uwb' literals are a C2x feature. We support _BitInt as a type in C++,
3971     // but we do not currently support the suffix in C++ mode because it's not
3972     // entirely clear whether WG21 will prefer this suffix to return a library
3973     // type such as std::bit_int instead of returning a _BitInt.
3974     if (Literal.isBitInt && !getLangOpts().CPlusPlus)
3975       PP.Diag(Tok.getLocation(), getLangOpts().C2x
3976                                      ? diag::warn_c2x_compat_bitint_suffix
3977                                      : diag::ext_c2x_bitint_suffix);
3978 
3979     // Get the value in the widest-possible width. What is "widest" depends on
3980     // whether the literal is a bit-precise integer or not. For a bit-precise
3981     // integer type, try to scan the source to determine how many bits are
3982     // needed to represent the value. This may seem a bit expensive, but trying
3983     // to get the integer value from an overly-wide APInt is *extremely*
3984     // expensive, so the naive approach of assuming
3985     // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
3986     unsigned BitsNeeded =
3987         Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
3988                                Literal.getLiteralDigits(), Literal.getRadix())
3989                          : Context.getTargetInfo().getIntMaxTWidth();
3990     llvm::APInt ResultVal(BitsNeeded, 0);
3991 
3992     if (Literal.GetIntegerValue(ResultVal)) {
3993       // If this value didn't fit into uintmax_t, error and force to ull.
3994       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3995           << /* Unsigned */ 1;
3996       Ty = Context.UnsignedLongLongTy;
3997       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3998              "long long is not intmax_t?");
3999     } else {
4000       // If this value fits into a ULL, try to figure out what else it fits into
4001       // according to the rules of C99 6.4.4.1p5.
4002 
4003       // Octal, Hexadecimal, and integers with a U suffix are allowed to
4004       // be an unsigned int.
4005       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
4006 
4007       // Check from smallest to largest, picking the smallest type we can.
4008       unsigned Width = 0;
4009 
4010       // Microsoft specific integer suffixes are explicitly sized.
4011       if (Literal.MicrosoftInteger) {
4012         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
4013           Width = 8;
4014           Ty = Context.CharTy;
4015         } else {
4016           Width = Literal.MicrosoftInteger;
4017           Ty = Context.getIntTypeForBitwidth(Width,
4018                                              /*Signed=*/!Literal.isUnsigned);
4019         }
4020       }
4021 
4022       // Bit-precise integer literals are automagically-sized based on the
4023       // width required by the literal.
4024       if (Literal.isBitInt) {
4025         // The signed version has one more bit for the sign value. There are no
4026         // zero-width bit-precise integers, even if the literal value is 0.
4027         Width = std::max(ResultVal.getActiveBits(), 1u) +
4028                 (Literal.isUnsigned ? 0u : 1u);
4029 
4030         // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
4031         // and reset the type to the largest supported width.
4032         unsigned int MaxBitIntWidth =
4033             Context.getTargetInfo().getMaxBitIntWidth();
4034         if (Width > MaxBitIntWidth) {
4035           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4036               << Literal.isUnsigned;
4037           Width = MaxBitIntWidth;
4038         }
4039 
4040         // Reset the result value to the smaller APInt and select the correct
4041         // type to be used. Note, we zext even for signed values because the
4042         // literal itself is always an unsigned value (a preceeding - is a
4043         // unary operator, not part of the literal).
4044         ResultVal = ResultVal.zextOrTrunc(Width);
4045         Ty = Context.getBitIntType(Literal.isUnsigned, Width);
4046       }
4047 
4048       // Check C++2b size_t literals.
4049       if (Literal.isSizeT) {
4050         assert(!Literal.MicrosoftInteger &&
4051                "size_t literals can't be Microsoft literals");
4052         unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
4053             Context.getTargetInfo().getSizeType());
4054 
4055         // Does it fit in size_t?
4056         if (ResultVal.isIntN(SizeTSize)) {
4057           // Does it fit in ssize_t?
4058           if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
4059             Ty = Context.getSignedSizeType();
4060           else if (AllowUnsigned)
4061             Ty = Context.getSizeType();
4062           Width = SizeTSize;
4063         }
4064       }
4065 
4066       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
4067           !Literal.isSizeT) {
4068         // Are int/unsigned possibilities?
4069         unsigned IntSize = Context.getTargetInfo().getIntWidth();
4070 
4071         // Does it fit in a unsigned int?
4072         if (ResultVal.isIntN(IntSize)) {
4073           // Does it fit in a signed int?
4074           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
4075             Ty = Context.IntTy;
4076           else if (AllowUnsigned)
4077             Ty = Context.UnsignedIntTy;
4078           Width = IntSize;
4079         }
4080       }
4081 
4082       // Are long/unsigned long possibilities?
4083       if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4084         unsigned LongSize = Context.getTargetInfo().getLongWidth();
4085 
4086         // Does it fit in a unsigned long?
4087         if (ResultVal.isIntN(LongSize)) {
4088           // Does it fit in a signed long?
4089           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4090             Ty = Context.LongTy;
4091           else if (AllowUnsigned)
4092             Ty = Context.UnsignedLongTy;
4093           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4094           // is compatible.
4095           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4096             const unsigned LongLongSize =
4097                 Context.getTargetInfo().getLongLongWidth();
4098             Diag(Tok.getLocation(),
4099                  getLangOpts().CPlusPlus
4100                      ? Literal.isLong
4101                            ? diag::warn_old_implicitly_unsigned_long_cxx
4102                            : /*C++98 UB*/ diag::
4103                                  ext_old_implicitly_unsigned_long_cxx
4104                      : diag::warn_old_implicitly_unsigned_long)
4105                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4106                                             : /*will be ill-formed*/ 1);
4107             Ty = Context.UnsignedLongTy;
4108           }
4109           Width = LongSize;
4110         }
4111       }
4112 
4113       // Check long long if needed.
4114       if (Ty.isNull() && !Literal.isSizeT) {
4115         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4116 
4117         // Does it fit in a unsigned long long?
4118         if (ResultVal.isIntN(LongLongSize)) {
4119           // Does it fit in a signed long long?
4120           // To be compatible with MSVC, hex integer literals ending with the
4121           // LL or i64 suffix are always signed in Microsoft mode.
4122           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4123               (getLangOpts().MSVCCompat && Literal.isLongLong)))
4124             Ty = Context.LongLongTy;
4125           else if (AllowUnsigned)
4126             Ty = Context.UnsignedLongLongTy;
4127           Width = LongLongSize;
4128         }
4129       }
4130 
4131       // If we still couldn't decide a type, we either have 'size_t' literal
4132       // that is out of range, or a decimal literal that does not fit in a
4133       // signed long long and has no U suffix.
4134       if (Ty.isNull()) {
4135         if (Literal.isSizeT)
4136           Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4137               << Literal.isUnsigned;
4138         else
4139           Diag(Tok.getLocation(),
4140                diag::ext_integer_literal_too_large_for_signed);
4141         Ty = Context.UnsignedLongLongTy;
4142         Width = Context.getTargetInfo().getLongLongWidth();
4143       }
4144 
4145       if (ResultVal.getBitWidth() != Width)
4146         ResultVal = ResultVal.trunc(Width);
4147     }
4148     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4149   }
4150 
4151   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4152   if (Literal.isImaginary) {
4153     Res = new (Context) ImaginaryLiteral(Res,
4154                                         Context.getComplexType(Res->getType()));
4155 
4156     Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4157   }
4158   return Res;
4159 }
4160 
4161 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4162   assert(E && "ActOnParenExpr() missing expr");
4163   QualType ExprTy = E->getType();
4164   if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4165       !E->isLValue() && ExprTy->hasFloatingRepresentation())
4166     return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4167   return new (Context) ParenExpr(L, R, E);
4168 }
4169 
4170 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4171                                          SourceLocation Loc,
4172                                          SourceRange ArgRange) {
4173   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4174   // scalar or vector data type argument..."
4175   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4176   // type (C99 6.2.5p18) or void.
4177   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4178     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4179       << T << ArgRange;
4180     return true;
4181   }
4182 
4183   assert((T->isVoidType() || !T->isIncompleteType()) &&
4184          "Scalar types should always be complete");
4185   return false;
4186 }
4187 
4188 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4189                                            SourceLocation Loc,
4190                                            SourceRange ArgRange,
4191                                            UnaryExprOrTypeTrait TraitKind) {
4192   // Invalid types must be hard errors for SFINAE in C++.
4193   if (S.LangOpts.CPlusPlus)
4194     return true;
4195 
4196   // C99 6.5.3.4p1:
4197   if (T->isFunctionType() &&
4198       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4199        TraitKind == UETT_PreferredAlignOf)) {
4200     // sizeof(function)/alignof(function) is allowed as an extension.
4201     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4202         << getTraitSpelling(TraitKind) << ArgRange;
4203     return false;
4204   }
4205 
4206   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4207   // this is an error (OpenCL v1.1 s6.3.k)
4208   if (T->isVoidType()) {
4209     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4210                                         : diag::ext_sizeof_alignof_void_type;
4211     S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4212     return false;
4213   }
4214 
4215   return true;
4216 }
4217 
4218 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4219                                              SourceLocation Loc,
4220                                              SourceRange ArgRange,
4221                                              UnaryExprOrTypeTrait TraitKind) {
4222   // Reject sizeof(interface) and sizeof(interface<proto>) if the
4223   // runtime doesn't allow it.
4224   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4225     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4226       << T << (TraitKind == UETT_SizeOf)
4227       << ArgRange;
4228     return true;
4229   }
4230 
4231   return false;
4232 }
4233 
4234 /// Check whether E is a pointer from a decayed array type (the decayed
4235 /// pointer type is equal to T) and emit a warning if it is.
4236 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4237                                      Expr *E) {
4238   // Don't warn if the operation changed the type.
4239   if (T != E->getType())
4240     return;
4241 
4242   // Now look for array decays.
4243   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
4244   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4245     return;
4246 
4247   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4248                                              << ICE->getType()
4249                                              << ICE->getSubExpr()->getType();
4250 }
4251 
4252 /// Check the constraints on expression operands to unary type expression
4253 /// and type traits.
4254 ///
4255 /// Completes any types necessary and validates the constraints on the operand
4256 /// expression. The logic mostly mirrors the type-based overload, but may modify
4257 /// the expression as it completes the type for that expression through template
4258 /// instantiation, etc.
4259 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4260                                             UnaryExprOrTypeTrait ExprKind) {
4261   QualType ExprTy = E->getType();
4262   assert(!ExprTy->isReferenceType());
4263 
4264   bool IsUnevaluatedOperand =
4265       (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
4266        ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep);
4267   if (IsUnevaluatedOperand) {
4268     ExprResult Result = CheckUnevaluatedOperand(E);
4269     if (Result.isInvalid())
4270       return true;
4271     E = Result.get();
4272   }
4273 
4274   // The operand for sizeof and alignof is in an unevaluated expression context,
4275   // so side effects could result in unintended consequences.
4276   // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4277   // used to build SFINAE gadgets.
4278   // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4279   if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4280       !E->isInstantiationDependent() &&
4281       !E->getType()->isVariableArrayType() &&
4282       E->HasSideEffects(Context, false))
4283     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4284 
4285   if (ExprKind == UETT_VecStep)
4286     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4287                                         E->getSourceRange());
4288 
4289   // Explicitly list some types as extensions.
4290   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4291                                       E->getSourceRange(), ExprKind))
4292     return false;
4293 
4294   // 'alignof' applied to an expression only requires the base element type of
4295   // the expression to be complete. 'sizeof' requires the expression's type to
4296   // be complete (and will attempt to complete it if it's an array of unknown
4297   // bound).
4298   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4299     if (RequireCompleteSizedType(
4300             E->getExprLoc(), Context.getBaseElementType(E->getType()),
4301             diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4302             getTraitSpelling(ExprKind), E->getSourceRange()))
4303       return true;
4304   } else {
4305     if (RequireCompleteSizedExprType(
4306             E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4307             getTraitSpelling(ExprKind), E->getSourceRange()))
4308       return true;
4309   }
4310 
4311   // Completing the expression's type may have changed it.
4312   ExprTy = E->getType();
4313   assert(!ExprTy->isReferenceType());
4314 
4315   if (ExprTy->isFunctionType()) {
4316     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4317         << getTraitSpelling(ExprKind) << E->getSourceRange();
4318     return true;
4319   }
4320 
4321   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4322                                        E->getSourceRange(), ExprKind))
4323     return true;
4324 
4325   if (ExprKind == UETT_SizeOf) {
4326     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4327       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4328         QualType OType = PVD->getOriginalType();
4329         QualType Type = PVD->getType();
4330         if (Type->isPointerType() && OType->isArrayType()) {
4331           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4332             << Type << OType;
4333           Diag(PVD->getLocation(), diag::note_declared_at);
4334         }
4335       }
4336     }
4337 
4338     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4339     // decays into a pointer and returns an unintended result. This is most
4340     // likely a typo for "sizeof(array) op x".
4341     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4342       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4343                                BO->getLHS());
4344       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4345                                BO->getRHS());
4346     }
4347   }
4348 
4349   return false;
4350 }
4351 
4352 /// Check the constraints on operands to unary expression and type
4353 /// traits.
4354 ///
4355 /// This will complete any types necessary, and validate the various constraints
4356 /// on those operands.
4357 ///
4358 /// The UsualUnaryConversions() function is *not* called by this routine.
4359 /// C99 6.3.2.1p[2-4] all state:
4360 ///   Except when it is the operand of the sizeof operator ...
4361 ///
4362 /// C++ [expr.sizeof]p4
4363 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4364 ///   standard conversions are not applied to the operand of sizeof.
4365 ///
4366 /// This policy is followed for all of the unary trait expressions.
4367 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4368                                             SourceLocation OpLoc,
4369                                             SourceRange ExprRange,
4370                                             UnaryExprOrTypeTrait ExprKind) {
4371   if (ExprType->isDependentType())
4372     return false;
4373 
4374   // C++ [expr.sizeof]p2:
4375   //     When applied to a reference or a reference type, the result
4376   //     is the size of the referenced type.
4377   // C++11 [expr.alignof]p3:
4378   //     When alignof is applied to a reference type, the result
4379   //     shall be the alignment of the referenced type.
4380   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4381     ExprType = Ref->getPointeeType();
4382 
4383   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4384   //   When alignof or _Alignof is applied to an array type, the result
4385   //   is the alignment of the element type.
4386   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4387       ExprKind == UETT_OpenMPRequiredSimdAlign)
4388     ExprType = Context.getBaseElementType(ExprType);
4389 
4390   if (ExprKind == UETT_VecStep)
4391     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4392 
4393   // Explicitly list some types as extensions.
4394   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4395                                       ExprKind))
4396     return false;
4397 
4398   if (RequireCompleteSizedType(
4399           OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4400           getTraitSpelling(ExprKind), ExprRange))
4401     return true;
4402 
4403   if (ExprType->isFunctionType()) {
4404     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
4405         << getTraitSpelling(ExprKind) << ExprRange;
4406     return true;
4407   }
4408 
4409   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4410                                        ExprKind))
4411     return true;
4412 
4413   return false;
4414 }
4415 
4416 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4417   // Cannot know anything else if the expression is dependent.
4418   if (E->isTypeDependent())
4419     return false;
4420 
4421   if (E->getObjectKind() == OK_BitField) {
4422     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4423        << 1 << E->getSourceRange();
4424     return true;
4425   }
4426 
4427   ValueDecl *D = nullptr;
4428   Expr *Inner = E->IgnoreParens();
4429   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4430     D = DRE->getDecl();
4431   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4432     D = ME->getMemberDecl();
4433   }
4434 
4435   // If it's a field, require the containing struct to have a
4436   // complete definition so that we can compute the layout.
4437   //
4438   // This can happen in C++11 onwards, either by naming the member
4439   // in a way that is not transformed into a member access expression
4440   // (in an unevaluated operand, for instance), or by naming the member
4441   // in a trailing-return-type.
4442   //
4443   // For the record, since __alignof__ on expressions is a GCC
4444   // extension, GCC seems to permit this but always gives the
4445   // nonsensical answer 0.
4446   //
4447   // We don't really need the layout here --- we could instead just
4448   // directly check for all the appropriate alignment-lowing
4449   // attributes --- but that would require duplicating a lot of
4450   // logic that just isn't worth duplicating for such a marginal
4451   // use-case.
4452   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4453     // Fast path this check, since we at least know the record has a
4454     // definition if we can find a member of it.
4455     if (!FD->getParent()->isCompleteDefinition()) {
4456       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4457         << E->getSourceRange();
4458       return true;
4459     }
4460 
4461     // Otherwise, if it's a field, and the field doesn't have
4462     // reference type, then it must have a complete type (or be a
4463     // flexible array member, which we explicitly want to
4464     // white-list anyway), which makes the following checks trivial.
4465     if (!FD->getType()->isReferenceType())
4466       return false;
4467   }
4468 
4469   return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4470 }
4471 
4472 bool Sema::CheckVecStepExpr(Expr *E) {
4473   E = E->IgnoreParens();
4474 
4475   // Cannot know anything else if the expression is dependent.
4476   if (E->isTypeDependent())
4477     return false;
4478 
4479   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4480 }
4481 
4482 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4483                                         CapturingScopeInfo *CSI) {
4484   assert(T->isVariablyModifiedType());
4485   assert(CSI != nullptr);
4486 
4487   // We're going to walk down into the type and look for VLA expressions.
4488   do {
4489     const Type *Ty = T.getTypePtr();
4490     switch (Ty->getTypeClass()) {
4491 #define TYPE(Class, Base)
4492 #define ABSTRACT_TYPE(Class, Base)
4493 #define NON_CANONICAL_TYPE(Class, Base)
4494 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4495 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4496 #include "clang/AST/TypeNodes.inc"
4497       T = QualType();
4498       break;
4499     // These types are never variably-modified.
4500     case Type::Builtin:
4501     case Type::Complex:
4502     case Type::Vector:
4503     case Type::ExtVector:
4504     case Type::ConstantMatrix:
4505     case Type::Record:
4506     case Type::Enum:
4507     case Type::Elaborated:
4508     case Type::TemplateSpecialization:
4509     case Type::ObjCObject:
4510     case Type::ObjCInterface:
4511     case Type::ObjCObjectPointer:
4512     case Type::ObjCTypeParam:
4513     case Type::Pipe:
4514     case Type::BitInt:
4515       llvm_unreachable("type class is never variably-modified!");
4516     case Type::Adjusted:
4517       T = cast<AdjustedType>(Ty)->getOriginalType();
4518       break;
4519     case Type::Decayed:
4520       T = cast<DecayedType>(Ty)->getPointeeType();
4521       break;
4522     case Type::Pointer:
4523       T = cast<PointerType>(Ty)->getPointeeType();
4524       break;
4525     case Type::BlockPointer:
4526       T = cast<BlockPointerType>(Ty)->getPointeeType();
4527       break;
4528     case Type::LValueReference:
4529     case Type::RValueReference:
4530       T = cast<ReferenceType>(Ty)->getPointeeType();
4531       break;
4532     case Type::MemberPointer:
4533       T = cast<MemberPointerType>(Ty)->getPointeeType();
4534       break;
4535     case Type::ConstantArray:
4536     case Type::IncompleteArray:
4537       // Losing element qualification here is fine.
4538       T = cast<ArrayType>(Ty)->getElementType();
4539       break;
4540     case Type::VariableArray: {
4541       // Losing element qualification here is fine.
4542       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4543 
4544       // Unknown size indication requires no size computation.
4545       // Otherwise, evaluate and record it.
4546       auto Size = VAT->getSizeExpr();
4547       if (Size && !CSI->isVLATypeCaptured(VAT) &&
4548           (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4549         CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4550 
4551       T = VAT->getElementType();
4552       break;
4553     }
4554     case Type::FunctionProto:
4555     case Type::FunctionNoProto:
4556       T = cast<FunctionType>(Ty)->getReturnType();
4557       break;
4558     case Type::Paren:
4559     case Type::TypeOf:
4560     case Type::UnaryTransform:
4561     case Type::Attributed:
4562     case Type::BTFTagAttributed:
4563     case Type::SubstTemplateTypeParm:
4564     case Type::MacroQualified:
4565       // Keep walking after single level desugaring.
4566       T = T.getSingleStepDesugaredType(Context);
4567       break;
4568     case Type::Typedef:
4569       T = cast<TypedefType>(Ty)->desugar();
4570       break;
4571     case Type::Decltype:
4572       T = cast<DecltypeType>(Ty)->desugar();
4573       break;
4574     case Type::Using:
4575       T = cast<UsingType>(Ty)->desugar();
4576       break;
4577     case Type::Auto:
4578     case Type::DeducedTemplateSpecialization:
4579       T = cast<DeducedType>(Ty)->getDeducedType();
4580       break;
4581     case Type::TypeOfExpr:
4582       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4583       break;
4584     case Type::Atomic:
4585       T = cast<AtomicType>(Ty)->getValueType();
4586       break;
4587     }
4588   } while (!T.isNull() && T->isVariablyModifiedType());
4589 }
4590 
4591 /// Build a sizeof or alignof expression given a type operand.
4592 ExprResult
4593 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4594                                      SourceLocation OpLoc,
4595                                      UnaryExprOrTypeTrait ExprKind,
4596                                      SourceRange R) {
4597   if (!TInfo)
4598     return ExprError();
4599 
4600   QualType T = TInfo->getType();
4601 
4602   if (!T->isDependentType() &&
4603       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4604     return ExprError();
4605 
4606   if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4607     if (auto *TT = T->getAs<TypedefType>()) {
4608       for (auto I = FunctionScopes.rbegin(),
4609                 E = std::prev(FunctionScopes.rend());
4610            I != E; ++I) {
4611         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4612         if (CSI == nullptr)
4613           break;
4614         DeclContext *DC = nullptr;
4615         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4616           DC = LSI->CallOperator;
4617         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4618           DC = CRSI->TheCapturedDecl;
4619         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4620           DC = BSI->TheDecl;
4621         if (DC) {
4622           if (DC->containsDecl(TT->getDecl()))
4623             break;
4624           captureVariablyModifiedType(Context, T, CSI);
4625         }
4626       }
4627     }
4628   }
4629 
4630   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4631   if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4632       TInfo->getType()->isVariablyModifiedType())
4633     TInfo = TransformToPotentiallyEvaluated(TInfo);
4634 
4635   return new (Context) UnaryExprOrTypeTraitExpr(
4636       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4637 }
4638 
4639 /// Build a sizeof or alignof expression given an expression
4640 /// operand.
4641 ExprResult
4642 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4643                                      UnaryExprOrTypeTrait ExprKind) {
4644   ExprResult PE = CheckPlaceholderExpr(E);
4645   if (PE.isInvalid())
4646     return ExprError();
4647 
4648   E = PE.get();
4649 
4650   // Verify that the operand is valid.
4651   bool isInvalid = false;
4652   if (E->isTypeDependent()) {
4653     // Delay type-checking for type-dependent expressions.
4654   } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4655     isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4656   } else if (ExprKind == UETT_VecStep) {
4657     isInvalid = CheckVecStepExpr(E);
4658   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4659       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4660       isInvalid = true;
4661   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4662     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4663     isInvalid = true;
4664   } else {
4665     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4666   }
4667 
4668   if (isInvalid)
4669     return ExprError();
4670 
4671   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4672     PE = TransformToPotentiallyEvaluated(E);
4673     if (PE.isInvalid()) return ExprError();
4674     E = PE.get();
4675   }
4676 
4677   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4678   return new (Context) UnaryExprOrTypeTraitExpr(
4679       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4680 }
4681 
4682 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4683 /// expr and the same for @c alignof and @c __alignof
4684 /// Note that the ArgRange is invalid if isType is false.
4685 ExprResult
4686 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4687                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4688                                     void *TyOrEx, SourceRange ArgRange) {
4689   // If error parsing type, ignore.
4690   if (!TyOrEx) return ExprError();
4691 
4692   if (IsType) {
4693     TypeSourceInfo *TInfo;
4694     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4695     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4696   }
4697 
4698   Expr *ArgEx = (Expr *)TyOrEx;
4699   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4700   return Result;
4701 }
4702 
4703 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4704                                      bool IsReal) {
4705   if (V.get()->isTypeDependent())
4706     return S.Context.DependentTy;
4707 
4708   // _Real and _Imag are only l-values for normal l-values.
4709   if (V.get()->getObjectKind() != OK_Ordinary) {
4710     V = S.DefaultLvalueConversion(V.get());
4711     if (V.isInvalid())
4712       return QualType();
4713   }
4714 
4715   // These operators return the element type of a complex type.
4716   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4717     return CT->getElementType();
4718 
4719   // Otherwise they pass through real integer and floating point types here.
4720   if (V.get()->getType()->isArithmeticType())
4721     return V.get()->getType();
4722 
4723   // Test for placeholders.
4724   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4725   if (PR.isInvalid()) return QualType();
4726   if (PR.get() != V.get()) {
4727     V = PR;
4728     return CheckRealImagOperand(S, V, Loc, IsReal);
4729   }
4730 
4731   // Reject anything else.
4732   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4733     << (IsReal ? "__real" : "__imag");
4734   return QualType();
4735 }
4736 
4737 
4738 
4739 ExprResult
4740 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4741                           tok::TokenKind Kind, Expr *Input) {
4742   UnaryOperatorKind Opc;
4743   switch (Kind) {
4744   default: llvm_unreachable("Unknown unary op!");
4745   case tok::plusplus:   Opc = UO_PostInc; break;
4746   case tok::minusminus: Opc = UO_PostDec; break;
4747   }
4748 
4749   // Since this might is a postfix expression, get rid of ParenListExprs.
4750   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4751   if (Result.isInvalid()) return ExprError();
4752   Input = Result.get();
4753 
4754   return BuildUnaryOp(S, OpLoc, Opc, Input);
4755 }
4756 
4757 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4758 ///
4759 /// \return true on error
4760 static bool checkArithmeticOnObjCPointer(Sema &S,
4761                                          SourceLocation opLoc,
4762                                          Expr *op) {
4763   assert(op->getType()->isObjCObjectPointerType());
4764   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4765       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4766     return false;
4767 
4768   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4769     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4770     << op->getSourceRange();
4771   return true;
4772 }
4773 
4774 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4775   auto *BaseNoParens = Base->IgnoreParens();
4776   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4777     return MSProp->getPropertyDecl()->getType()->isArrayType();
4778   return isa<MSPropertySubscriptExpr>(BaseNoParens);
4779 }
4780 
4781 // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
4782 // Typically this is DependentTy, but can sometimes be more precise.
4783 //
4784 // There are cases when we could determine a non-dependent type:
4785 //  - LHS and RHS may have non-dependent types despite being type-dependent
4786 //    (e.g. unbounded array static members of the current instantiation)
4787 //  - one may be a dependent-sized array with known element type
4788 //  - one may be a dependent-typed valid index (enum in current instantiation)
4789 //
4790 // We *always* return a dependent type, in such cases it is DependentTy.
4791 // This avoids creating type-dependent expressions with non-dependent types.
4792 // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
4793 static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
4794                                                const ASTContext &Ctx) {
4795   assert(LHS->isTypeDependent() || RHS->isTypeDependent());
4796   QualType LTy = LHS->getType(), RTy = RHS->getType();
4797   QualType Result = Ctx.DependentTy;
4798   if (RTy->isIntegralOrUnscopedEnumerationType()) {
4799     if (const PointerType *PT = LTy->getAs<PointerType>())
4800       Result = PT->getPointeeType();
4801     else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
4802       Result = AT->getElementType();
4803   } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
4804     if (const PointerType *PT = RTy->getAs<PointerType>())
4805       Result = PT->getPointeeType();
4806     else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
4807       Result = AT->getElementType();
4808   }
4809   // Ensure we return a dependent type.
4810   return Result->isDependentType() ? Result : Ctx.DependentTy;
4811 }
4812 
4813 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args);
4814 
4815 ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
4816                                          SourceLocation lbLoc,
4817                                          MultiExprArg ArgExprs,
4818                                          SourceLocation rbLoc) {
4819 
4820   if (base && !base->getType().isNull() &&
4821       base->hasPlaceholderType(BuiltinType::OMPArraySection))
4822     return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(),
4823                                     SourceLocation(), /*Length*/ nullptr,
4824                                     /*Stride=*/nullptr, rbLoc);
4825 
4826   // Since this might be a postfix expression, get rid of ParenListExprs.
4827   if (isa<ParenListExpr>(base)) {
4828     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4829     if (result.isInvalid())
4830       return ExprError();
4831     base = result.get();
4832   }
4833 
4834   // Check if base and idx form a MatrixSubscriptExpr.
4835   //
4836   // Helper to check for comma expressions, which are not allowed as indices for
4837   // matrix subscript expressions.
4838   auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4839     if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4840       Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4841           << SourceRange(base->getBeginLoc(), rbLoc);
4842       return true;
4843     }
4844     return false;
4845   };
4846   // The matrix subscript operator ([][])is considered a single operator.
4847   // Separating the index expressions by parenthesis is not allowed.
4848   if (base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
4849       !isa<MatrixSubscriptExpr>(base)) {
4850     Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4851         << SourceRange(base->getBeginLoc(), rbLoc);
4852     return ExprError();
4853   }
4854   // If the base is a MatrixSubscriptExpr, try to create a new
4855   // MatrixSubscriptExpr.
4856   auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4857   if (matSubscriptE) {
4858     assert(ArgExprs.size() == 1);
4859     if (CheckAndReportCommaError(ArgExprs.front()))
4860       return ExprError();
4861 
4862     assert(matSubscriptE->isIncomplete() &&
4863            "base has to be an incomplete matrix subscript");
4864     return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
4865                                             matSubscriptE->getRowIdx(),
4866                                             ArgExprs.front(), rbLoc);
4867   }
4868 
4869   // Handle any non-overload placeholder types in the base and index
4870   // expressions.  We can't handle overloads here because the other
4871   // operand might be an overloadable type, in which case the overload
4872   // resolution for the operator overload should get the first crack
4873   // at the overload.
4874   bool IsMSPropertySubscript = false;
4875   if (base->getType()->isNonOverloadPlaceholderType()) {
4876     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4877     if (!IsMSPropertySubscript) {
4878       ExprResult result = CheckPlaceholderExpr(base);
4879       if (result.isInvalid())
4880         return ExprError();
4881       base = result.get();
4882     }
4883   }
4884 
4885   // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4886   if (base->getType()->isMatrixType()) {
4887     assert(ArgExprs.size() == 1);
4888     if (CheckAndReportCommaError(ArgExprs.front()))
4889       return ExprError();
4890 
4891     return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
4892                                             rbLoc);
4893   }
4894 
4895   if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
4896     Expr *idx = ArgExprs[0];
4897     if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4898         (isa<CXXOperatorCallExpr>(idx) &&
4899          cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
4900       Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4901           << SourceRange(base->getBeginLoc(), rbLoc);
4902     }
4903   }
4904 
4905   if (ArgExprs.size() == 1 &&
4906       ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
4907     ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
4908     if (result.isInvalid())
4909       return ExprError();
4910     ArgExprs[0] = result.get();
4911   } else {
4912     if (checkArgsForPlaceholders(*this, ArgExprs))
4913       return ExprError();
4914   }
4915 
4916   // Build an unanalyzed expression if either operand is type-dependent.
4917   if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
4918       (base->isTypeDependent() ||
4919        Expr::hasAnyTypeDependentArguments(ArgExprs))) {
4920     return new (Context) ArraySubscriptExpr(
4921         base, ArgExprs.front(),
4922         getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
4923         VK_LValue, OK_Ordinary, rbLoc);
4924   }
4925 
4926   // MSDN, property (C++)
4927   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4928   // This attribute can also be used in the declaration of an empty array in a
4929   // class or structure definition. For example:
4930   // __declspec(property(get=GetX, put=PutX)) int x[];
4931   // The above statement indicates that x[] can be used with one or more array
4932   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4933   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4934   if (IsMSPropertySubscript) {
4935     assert(ArgExprs.size() == 1);
4936     // Build MS property subscript expression if base is MS property reference
4937     // or MS property subscript.
4938     return new (Context)
4939         MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
4940                                 VK_LValue, OK_Ordinary, rbLoc);
4941   }
4942 
4943   // Use C++ overloaded-operator rules if either operand has record
4944   // type.  The spec says to do this if either type is *overloadable*,
4945   // but enum types can't declare subscript operators or conversion
4946   // operators, so there's nothing interesting for overload resolution
4947   // to do if there aren't any record types involved.
4948   //
4949   // ObjC pointers have their own subscripting logic that is not tied
4950   // to overload resolution and so should not take this path.
4951   if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
4952       ((base->getType()->isRecordType() ||
4953         (ArgExprs.size() != 1 || ArgExprs[0]->getType()->isRecordType())))) {
4954     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
4955   }
4956 
4957   ExprResult Res =
4958       CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
4959 
4960   if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4961     CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4962 
4963   return Res;
4964 }
4965 
4966 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
4967   InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
4968   InitializationKind Kind =
4969       InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
4970   InitializationSequence InitSeq(*this, Entity, Kind, E);
4971   return InitSeq.Perform(*this, Entity, Kind, E);
4972 }
4973 
4974 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
4975                                                   Expr *ColumnIdx,
4976                                                   SourceLocation RBLoc) {
4977   ExprResult BaseR = CheckPlaceholderExpr(Base);
4978   if (BaseR.isInvalid())
4979     return BaseR;
4980   Base = BaseR.get();
4981 
4982   ExprResult RowR = CheckPlaceholderExpr(RowIdx);
4983   if (RowR.isInvalid())
4984     return RowR;
4985   RowIdx = RowR.get();
4986 
4987   if (!ColumnIdx)
4988     return new (Context) MatrixSubscriptExpr(
4989         Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
4990 
4991   // Build an unanalyzed expression if any of the operands is type-dependent.
4992   if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
4993       ColumnIdx->isTypeDependent())
4994     return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4995                                              Context.DependentTy, RBLoc);
4996 
4997   ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
4998   if (ColumnR.isInvalid())
4999     return ColumnR;
5000   ColumnIdx = ColumnR.get();
5001 
5002   // Check that IndexExpr is an integer expression. If it is a constant
5003   // expression, check that it is less than Dim (= the number of elements in the
5004   // corresponding dimension).
5005   auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5006                           bool IsColumnIdx) -> Expr * {
5007     if (!IndexExpr->getType()->isIntegerType() &&
5008         !IndexExpr->isTypeDependent()) {
5009       Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5010           << IsColumnIdx;
5011       return nullptr;
5012     }
5013 
5014     if (Optional<llvm::APSInt> Idx =
5015             IndexExpr->getIntegerConstantExpr(Context)) {
5016       if ((*Idx < 0 || *Idx >= Dim)) {
5017         Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5018             << IsColumnIdx << Dim;
5019         return nullptr;
5020       }
5021     }
5022 
5023     ExprResult ConvExpr =
5024         tryConvertExprToType(IndexExpr, Context.getSizeType());
5025     assert(!ConvExpr.isInvalid() &&
5026            "should be able to convert any integer type to size type");
5027     return ConvExpr.get();
5028   };
5029 
5030   auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5031   RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5032   ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5033   if (!RowIdx || !ColumnIdx)
5034     return ExprError();
5035 
5036   return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5037                                            MTy->getElementType(), RBLoc);
5038 }
5039 
5040 void Sema::CheckAddressOfNoDeref(const Expr *E) {
5041   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5042   const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5043 
5044   // For expressions like `&(*s).b`, the base is recorded and what should be
5045   // checked.
5046   const MemberExpr *Member = nullptr;
5047   while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
5048     StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5049 
5050   LastRecord.PossibleDerefs.erase(StrippedExpr);
5051 }
5052 
5053 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5054   if (isUnevaluatedContext())
5055     return;
5056 
5057   QualType ResultTy = E->getType();
5058   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5059 
5060   // Bail if the element is an array since it is not memory access.
5061   if (isa<ArrayType>(ResultTy))
5062     return;
5063 
5064   if (ResultTy->hasAttr(attr::NoDeref)) {
5065     LastRecord.PossibleDerefs.insert(E);
5066     return;
5067   }
5068 
5069   // Check if the base type is a pointer to a member access of a struct
5070   // marked with noderef.
5071   const Expr *Base = E->getBase();
5072   QualType BaseTy = Base->getType();
5073   if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
5074     // Not a pointer access
5075     return;
5076 
5077   const MemberExpr *Member = nullptr;
5078   while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
5079          Member->isArrow())
5080     Base = Member->getBase();
5081 
5082   if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
5083     if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5084       LastRecord.PossibleDerefs.insert(E);
5085   }
5086 }
5087 
5088 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5089                                           Expr *LowerBound,
5090                                           SourceLocation ColonLocFirst,
5091                                           SourceLocation ColonLocSecond,
5092                                           Expr *Length, Expr *Stride,
5093                                           SourceLocation RBLoc) {
5094   if (Base->hasPlaceholderType() &&
5095       !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5096     ExprResult Result = CheckPlaceholderExpr(Base);
5097     if (Result.isInvalid())
5098       return ExprError();
5099     Base = Result.get();
5100   }
5101   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
5102     ExprResult Result = CheckPlaceholderExpr(LowerBound);
5103     if (Result.isInvalid())
5104       return ExprError();
5105     Result = DefaultLvalueConversion(Result.get());
5106     if (Result.isInvalid())
5107       return ExprError();
5108     LowerBound = Result.get();
5109   }
5110   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
5111     ExprResult Result = CheckPlaceholderExpr(Length);
5112     if (Result.isInvalid())
5113       return ExprError();
5114     Result = DefaultLvalueConversion(Result.get());
5115     if (Result.isInvalid())
5116       return ExprError();
5117     Length = Result.get();
5118   }
5119   if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
5120     ExprResult Result = CheckPlaceholderExpr(Stride);
5121     if (Result.isInvalid())
5122       return ExprError();
5123     Result = DefaultLvalueConversion(Result.get());
5124     if (Result.isInvalid())
5125       return ExprError();
5126     Stride = Result.get();
5127   }
5128 
5129   // Build an unanalyzed expression if either operand is type-dependent.
5130   if (Base->isTypeDependent() ||
5131       (LowerBound &&
5132        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
5133       (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
5134       (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
5135     return new (Context) OMPArraySectionExpr(
5136         Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
5137         OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5138   }
5139 
5140   // Perform default conversions.
5141   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
5142   QualType ResultTy;
5143   if (OriginalTy->isAnyPointerType()) {
5144     ResultTy = OriginalTy->getPointeeType();
5145   } else if (OriginalTy->isArrayType()) {
5146     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
5147   } else {
5148     return ExprError(
5149         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
5150         << Base->getSourceRange());
5151   }
5152   // C99 6.5.2.1p1
5153   if (LowerBound) {
5154     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
5155                                                       LowerBound);
5156     if (Res.isInvalid())
5157       return ExprError(Diag(LowerBound->getExprLoc(),
5158                             diag::err_omp_typecheck_section_not_integer)
5159                        << 0 << LowerBound->getSourceRange());
5160     LowerBound = Res.get();
5161 
5162     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5163         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5164       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
5165           << 0 << LowerBound->getSourceRange();
5166   }
5167   if (Length) {
5168     auto Res =
5169         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
5170     if (Res.isInvalid())
5171       return ExprError(Diag(Length->getExprLoc(),
5172                             diag::err_omp_typecheck_section_not_integer)
5173                        << 1 << Length->getSourceRange());
5174     Length = Res.get();
5175 
5176     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5177         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5178       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
5179           << 1 << Length->getSourceRange();
5180   }
5181   if (Stride) {
5182     ExprResult Res =
5183         PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
5184     if (Res.isInvalid())
5185       return ExprError(Diag(Stride->getExprLoc(),
5186                             diag::err_omp_typecheck_section_not_integer)
5187                        << 1 << Stride->getSourceRange());
5188     Stride = Res.get();
5189 
5190     if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5191         Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5192       Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
5193           << 1 << Stride->getSourceRange();
5194   }
5195 
5196   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5197   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5198   // type. Note that functions are not objects, and that (in C99 parlance)
5199   // incomplete types are not object types.
5200   if (ResultTy->isFunctionType()) {
5201     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
5202         << ResultTy << Base->getSourceRange();
5203     return ExprError();
5204   }
5205 
5206   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
5207                           diag::err_omp_section_incomplete_type, Base))
5208     return ExprError();
5209 
5210   if (LowerBound && !OriginalTy->isAnyPointerType()) {
5211     Expr::EvalResult Result;
5212     if (LowerBound->EvaluateAsInt(Result, Context)) {
5213       // OpenMP 5.0, [2.1.5 Array Sections]
5214       // The array section must be a subset of the original array.
5215       llvm::APSInt LowerBoundValue = Result.Val.getInt();
5216       if (LowerBoundValue.isNegative()) {
5217         Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
5218             << LowerBound->getSourceRange();
5219         return ExprError();
5220       }
5221     }
5222   }
5223 
5224   if (Length) {
5225     Expr::EvalResult Result;
5226     if (Length->EvaluateAsInt(Result, Context)) {
5227       // OpenMP 5.0, [2.1.5 Array Sections]
5228       // The length must evaluate to non-negative integers.
5229       llvm::APSInt LengthValue = Result.Val.getInt();
5230       if (LengthValue.isNegative()) {
5231         Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
5232             << toString(LengthValue, /*Radix=*/10, /*Signed=*/true)
5233             << Length->getSourceRange();
5234         return ExprError();
5235       }
5236     }
5237   } else if (ColonLocFirst.isValid() &&
5238              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5239                                       !OriginalTy->isVariableArrayType()))) {
5240     // OpenMP 5.0, [2.1.5 Array Sections]
5241     // When the size of the array dimension is not known, the length must be
5242     // specified explicitly.
5243     Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5244         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5245     return ExprError();
5246   }
5247 
5248   if (Stride) {
5249     Expr::EvalResult Result;
5250     if (Stride->EvaluateAsInt(Result, Context)) {
5251       // OpenMP 5.0, [2.1.5 Array Sections]
5252       // The stride must evaluate to a positive integer.
5253       llvm::APSInt StrideValue = Result.Val.getInt();
5254       if (!StrideValue.isStrictlyPositive()) {
5255         Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5256             << toString(StrideValue, /*Radix=*/10, /*Signed=*/true)
5257             << Stride->getSourceRange();
5258         return ExprError();
5259       }
5260     }
5261   }
5262 
5263   if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5264     ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5265     if (Result.isInvalid())
5266       return ExprError();
5267     Base = Result.get();
5268   }
5269   return new (Context) OMPArraySectionExpr(
5270       Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5271       OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5272 }
5273 
5274 ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5275                                           SourceLocation RParenLoc,
5276                                           ArrayRef<Expr *> Dims,
5277                                           ArrayRef<SourceRange> Brackets) {
5278   if (Base->hasPlaceholderType()) {
5279     ExprResult Result = CheckPlaceholderExpr(Base);
5280     if (Result.isInvalid())
5281       return ExprError();
5282     Result = DefaultLvalueConversion(Result.get());
5283     if (Result.isInvalid())
5284       return ExprError();
5285     Base = Result.get();
5286   }
5287   QualType BaseTy = Base->getType();
5288   // Delay analysis of the types/expressions if instantiation/specialization is
5289   // required.
5290   if (!BaseTy->isPointerType() && Base->isTypeDependent())
5291     return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5292                                        LParenLoc, RParenLoc, Dims, Brackets);
5293   if (!BaseTy->isPointerType() ||
5294       (!Base->isTypeDependent() &&
5295        BaseTy->getPointeeType()->isIncompleteType()))
5296     return ExprError(Diag(Base->getExprLoc(),
5297                           diag::err_omp_non_pointer_type_array_shaping_base)
5298                      << Base->getSourceRange());
5299 
5300   SmallVector<Expr *, 4> NewDims;
5301   bool ErrorFound = false;
5302   for (Expr *Dim : Dims) {
5303     if (Dim->hasPlaceholderType()) {
5304       ExprResult Result = CheckPlaceholderExpr(Dim);
5305       if (Result.isInvalid()) {
5306         ErrorFound = true;
5307         continue;
5308       }
5309       Result = DefaultLvalueConversion(Result.get());
5310       if (Result.isInvalid()) {
5311         ErrorFound = true;
5312         continue;
5313       }
5314       Dim = Result.get();
5315     }
5316     if (!Dim->isTypeDependent()) {
5317       ExprResult Result =
5318           PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5319       if (Result.isInvalid()) {
5320         ErrorFound = true;
5321         Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5322             << Dim->getSourceRange();
5323         continue;
5324       }
5325       Dim = Result.get();
5326       Expr::EvalResult EvResult;
5327       if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5328         // OpenMP 5.0, [2.1.4 Array Shaping]
5329         // Each si is an integral type expression that must evaluate to a
5330         // positive integer.
5331         llvm::APSInt Value = EvResult.Val.getInt();
5332         if (!Value.isStrictlyPositive()) {
5333           Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5334               << toString(Value, /*Radix=*/10, /*Signed=*/true)
5335               << Dim->getSourceRange();
5336           ErrorFound = true;
5337           continue;
5338         }
5339       }
5340     }
5341     NewDims.push_back(Dim);
5342   }
5343   if (ErrorFound)
5344     return ExprError();
5345   return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5346                                      LParenLoc, RParenLoc, NewDims, Brackets);
5347 }
5348 
5349 ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5350                                       SourceLocation LLoc, SourceLocation RLoc,
5351                                       ArrayRef<OMPIteratorData> Data) {
5352   SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5353   bool IsCorrect = true;
5354   for (const OMPIteratorData &D : Data) {
5355     TypeSourceInfo *TInfo = nullptr;
5356     SourceLocation StartLoc;
5357     QualType DeclTy;
5358     if (!D.Type.getAsOpaquePtr()) {
5359       // OpenMP 5.0, 2.1.6 Iterators
5360       // In an iterator-specifier, if the iterator-type is not specified then
5361       // the type of that iterator is of int type.
5362       DeclTy = Context.IntTy;
5363       StartLoc = D.DeclIdentLoc;
5364     } else {
5365       DeclTy = GetTypeFromParser(D.Type, &TInfo);
5366       StartLoc = TInfo->getTypeLoc().getBeginLoc();
5367     }
5368 
5369     bool IsDeclTyDependent = DeclTy->isDependentType() ||
5370                              DeclTy->containsUnexpandedParameterPack() ||
5371                              DeclTy->isInstantiationDependentType();
5372     if (!IsDeclTyDependent) {
5373       if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5374         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5375         // The iterator-type must be an integral or pointer type.
5376         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5377             << DeclTy;
5378         IsCorrect = false;
5379         continue;
5380       }
5381       if (DeclTy.isConstant(Context)) {
5382         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5383         // The iterator-type must not be const qualified.
5384         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5385             << DeclTy;
5386         IsCorrect = false;
5387         continue;
5388       }
5389     }
5390 
5391     // Iterator declaration.
5392     assert(D.DeclIdent && "Identifier expected.");
5393     // Always try to create iterator declarator to avoid extra error messages
5394     // about unknown declarations use.
5395     auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5396                                D.DeclIdent, DeclTy, TInfo, SC_None);
5397     VD->setImplicit();
5398     if (S) {
5399       // Check for conflicting previous declaration.
5400       DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5401       LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5402                             ForVisibleRedeclaration);
5403       Previous.suppressDiagnostics();
5404       LookupName(Previous, S);
5405 
5406       FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5407                            /*AllowInlineNamespace=*/false);
5408       if (!Previous.empty()) {
5409         NamedDecl *Old = Previous.getRepresentativeDecl();
5410         Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5411         Diag(Old->getLocation(), diag::note_previous_definition);
5412       } else {
5413         PushOnScopeChains(VD, S);
5414       }
5415     } else {
5416       CurContext->addDecl(VD);
5417     }
5418     Expr *Begin = D.Range.Begin;
5419     if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5420       ExprResult BeginRes =
5421           PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5422       Begin = BeginRes.get();
5423     }
5424     Expr *End = D.Range.End;
5425     if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5426       ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5427       End = EndRes.get();
5428     }
5429     Expr *Step = D.Range.Step;
5430     if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5431       if (!Step->getType()->isIntegralType(Context)) {
5432         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5433             << Step << Step->getSourceRange();
5434         IsCorrect = false;
5435         continue;
5436       }
5437       Optional<llvm::APSInt> Result = Step->getIntegerConstantExpr(Context);
5438       // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5439       // If the step expression of a range-specification equals zero, the
5440       // behavior is unspecified.
5441       if (Result && Result->isZero()) {
5442         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5443             << Step << Step->getSourceRange();
5444         IsCorrect = false;
5445         continue;
5446       }
5447     }
5448     if (!Begin || !End || !IsCorrect) {
5449       IsCorrect = false;
5450       continue;
5451     }
5452     OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5453     IDElem.IteratorDecl = VD;
5454     IDElem.AssignmentLoc = D.AssignLoc;
5455     IDElem.Range.Begin = Begin;
5456     IDElem.Range.End = End;
5457     IDElem.Range.Step = Step;
5458     IDElem.ColonLoc = D.ColonLoc;
5459     IDElem.SecondColonLoc = D.SecColonLoc;
5460   }
5461   if (!IsCorrect) {
5462     // Invalidate all created iterator declarations if error is found.
5463     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5464       if (Decl *ID = D.IteratorDecl)
5465         ID->setInvalidDecl();
5466     }
5467     return ExprError();
5468   }
5469   SmallVector<OMPIteratorHelperData, 4> Helpers;
5470   if (!CurContext->isDependentContext()) {
5471     // Build number of ityeration for each iteration range.
5472     // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5473     // ((Begini-Stepi-1-Endi) / -Stepi);
5474     for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5475       // (Endi - Begini)
5476       ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5477                                           D.Range.Begin);
5478       if(!Res.isUsable()) {
5479         IsCorrect = false;
5480         continue;
5481       }
5482       ExprResult St, St1;
5483       if (D.Range.Step) {
5484         St = D.Range.Step;
5485         // (Endi - Begini) + Stepi
5486         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5487         if (!Res.isUsable()) {
5488           IsCorrect = false;
5489           continue;
5490         }
5491         // (Endi - Begini) + Stepi - 1
5492         Res =
5493             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5494                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5495         if (!Res.isUsable()) {
5496           IsCorrect = false;
5497           continue;
5498         }
5499         // ((Endi - Begini) + Stepi - 1) / Stepi
5500         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5501         if (!Res.isUsable()) {
5502           IsCorrect = false;
5503           continue;
5504         }
5505         St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5506         // (Begini - Endi)
5507         ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5508                                              D.Range.Begin, D.Range.End);
5509         if (!Res1.isUsable()) {
5510           IsCorrect = false;
5511           continue;
5512         }
5513         // (Begini - Endi) - Stepi
5514         Res1 =
5515             CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5516         if (!Res1.isUsable()) {
5517           IsCorrect = false;
5518           continue;
5519         }
5520         // (Begini - Endi) - Stepi - 1
5521         Res1 =
5522             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5523                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5524         if (!Res1.isUsable()) {
5525           IsCorrect = false;
5526           continue;
5527         }
5528         // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5529         Res1 =
5530             CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5531         if (!Res1.isUsable()) {
5532           IsCorrect = false;
5533           continue;
5534         }
5535         // Stepi > 0.
5536         ExprResult CmpRes =
5537             CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5538                                ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5539         if (!CmpRes.isUsable()) {
5540           IsCorrect = false;
5541           continue;
5542         }
5543         Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5544                                  Res.get(), Res1.get());
5545         if (!Res.isUsable()) {
5546           IsCorrect = false;
5547           continue;
5548         }
5549       }
5550       Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5551       if (!Res.isUsable()) {
5552         IsCorrect = false;
5553         continue;
5554       }
5555 
5556       // Build counter update.
5557       // Build counter.
5558       auto *CounterVD =
5559           VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5560                           D.IteratorDecl->getBeginLoc(), nullptr,
5561                           Res.get()->getType(), nullptr, SC_None);
5562       CounterVD->setImplicit();
5563       ExprResult RefRes =
5564           BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5565                            D.IteratorDecl->getBeginLoc());
5566       // Build counter update.
5567       // I = Begini + counter * Stepi;
5568       ExprResult UpdateRes;
5569       if (D.Range.Step) {
5570         UpdateRes = CreateBuiltinBinOp(
5571             D.AssignmentLoc, BO_Mul,
5572             DefaultLvalueConversion(RefRes.get()).get(), St.get());
5573       } else {
5574         UpdateRes = DefaultLvalueConversion(RefRes.get());
5575       }
5576       if (!UpdateRes.isUsable()) {
5577         IsCorrect = false;
5578         continue;
5579       }
5580       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5581                                      UpdateRes.get());
5582       if (!UpdateRes.isUsable()) {
5583         IsCorrect = false;
5584         continue;
5585       }
5586       ExprResult VDRes =
5587           BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5588                            cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5589                            D.IteratorDecl->getBeginLoc());
5590       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5591                                      UpdateRes.get());
5592       if (!UpdateRes.isUsable()) {
5593         IsCorrect = false;
5594         continue;
5595       }
5596       UpdateRes =
5597           ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5598       if (!UpdateRes.isUsable()) {
5599         IsCorrect = false;
5600         continue;
5601       }
5602       ExprResult CounterUpdateRes =
5603           CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5604       if (!CounterUpdateRes.isUsable()) {
5605         IsCorrect = false;
5606         continue;
5607       }
5608       CounterUpdateRes =
5609           ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5610       if (!CounterUpdateRes.isUsable()) {
5611         IsCorrect = false;
5612         continue;
5613       }
5614       OMPIteratorHelperData &HD = Helpers.emplace_back();
5615       HD.CounterVD = CounterVD;
5616       HD.Upper = Res.get();
5617       HD.Update = UpdateRes.get();
5618       HD.CounterUpdate = CounterUpdateRes.get();
5619     }
5620   } else {
5621     Helpers.assign(ID.size(), {});
5622   }
5623   if (!IsCorrect) {
5624     // Invalidate all created iterator declarations if error is found.
5625     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5626       if (Decl *ID = D.IteratorDecl)
5627         ID->setInvalidDecl();
5628     }
5629     return ExprError();
5630   }
5631   return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5632                                  LLoc, RLoc, ID, Helpers);
5633 }
5634 
5635 ExprResult
5636 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5637                                       Expr *Idx, SourceLocation RLoc) {
5638   Expr *LHSExp = Base;
5639   Expr *RHSExp = Idx;
5640 
5641   ExprValueKind VK = VK_LValue;
5642   ExprObjectKind OK = OK_Ordinary;
5643 
5644   // Per C++ core issue 1213, the result is an xvalue if either operand is
5645   // a non-lvalue array, and an lvalue otherwise.
5646   if (getLangOpts().CPlusPlus11) {
5647     for (auto *Op : {LHSExp, RHSExp}) {
5648       Op = Op->IgnoreImplicit();
5649       if (Op->getType()->isArrayType() && !Op->isLValue())
5650         VK = VK_XValue;
5651     }
5652   }
5653 
5654   // Perform default conversions.
5655   if (!LHSExp->getType()->getAs<VectorType>()) {
5656     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5657     if (Result.isInvalid())
5658       return ExprError();
5659     LHSExp = Result.get();
5660   }
5661   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5662   if (Result.isInvalid())
5663     return ExprError();
5664   RHSExp = Result.get();
5665 
5666   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5667 
5668   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5669   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5670   // in the subscript position. As a result, we need to derive the array base
5671   // and index from the expression types.
5672   Expr *BaseExpr, *IndexExpr;
5673   QualType ResultType;
5674   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5675     BaseExpr = LHSExp;
5676     IndexExpr = RHSExp;
5677     ResultType =
5678         getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5679   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5680     BaseExpr = LHSExp;
5681     IndexExpr = RHSExp;
5682     ResultType = PTy->getPointeeType();
5683   } else if (const ObjCObjectPointerType *PTy =
5684                LHSTy->getAs<ObjCObjectPointerType>()) {
5685     BaseExpr = LHSExp;
5686     IndexExpr = RHSExp;
5687 
5688     // Use custom logic if this should be the pseudo-object subscript
5689     // expression.
5690     if (!LangOpts.isSubscriptPointerArithmetic())
5691       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5692                                           nullptr);
5693 
5694     ResultType = PTy->getPointeeType();
5695   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5696      // Handle the uncommon case of "123[Ptr]".
5697     BaseExpr = RHSExp;
5698     IndexExpr = LHSExp;
5699     ResultType = PTy->getPointeeType();
5700   } else if (const ObjCObjectPointerType *PTy =
5701                RHSTy->getAs<ObjCObjectPointerType>()) {
5702      // Handle the uncommon case of "123[Ptr]".
5703     BaseExpr = RHSExp;
5704     IndexExpr = LHSExp;
5705     ResultType = PTy->getPointeeType();
5706     if (!LangOpts.isSubscriptPointerArithmetic()) {
5707       Diag(LLoc, diag::err_subscript_nonfragile_interface)
5708         << ResultType << BaseExpr->getSourceRange();
5709       return ExprError();
5710     }
5711   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5712     BaseExpr = LHSExp;    // vectors: V[123]
5713     IndexExpr = RHSExp;
5714     // We apply C++ DR1213 to vector subscripting too.
5715     if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5716       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5717       if (Materialized.isInvalid())
5718         return ExprError();
5719       LHSExp = Materialized.get();
5720     }
5721     VK = LHSExp->getValueKind();
5722     if (VK != VK_PRValue)
5723       OK = OK_VectorComponent;
5724 
5725     ResultType = VTy->getElementType();
5726     QualType BaseType = BaseExpr->getType();
5727     Qualifiers BaseQuals = BaseType.getQualifiers();
5728     Qualifiers MemberQuals = ResultType.getQualifiers();
5729     Qualifiers Combined = BaseQuals + MemberQuals;
5730     if (Combined != MemberQuals)
5731       ResultType = Context.getQualifiedType(ResultType, Combined);
5732   } else if (LHSTy->isBuiltinType() &&
5733              LHSTy->getAs<BuiltinType>()->isVLSTBuiltinType()) {
5734     const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5735     if (BTy->isSVEBool())
5736       return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5737                        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5738 
5739     BaseExpr = LHSExp;
5740     IndexExpr = RHSExp;
5741     if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5742       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5743       if (Materialized.isInvalid())
5744         return ExprError();
5745       LHSExp = Materialized.get();
5746     }
5747     VK = LHSExp->getValueKind();
5748     if (VK != VK_PRValue)
5749       OK = OK_VectorComponent;
5750 
5751     ResultType = BTy->getSveEltType(Context);
5752 
5753     QualType BaseType = BaseExpr->getType();
5754     Qualifiers BaseQuals = BaseType.getQualifiers();
5755     Qualifiers MemberQuals = ResultType.getQualifiers();
5756     Qualifiers Combined = BaseQuals + MemberQuals;
5757     if (Combined != MemberQuals)
5758       ResultType = Context.getQualifiedType(ResultType, Combined);
5759   } else if (LHSTy->isArrayType()) {
5760     // If we see an array that wasn't promoted by
5761     // DefaultFunctionArrayLvalueConversion, it must be an array that
5762     // wasn't promoted because of the C90 rule that doesn't
5763     // allow promoting non-lvalue arrays.  Warn, then
5764     // force the promotion here.
5765     Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5766         << LHSExp->getSourceRange();
5767     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5768                                CK_ArrayToPointerDecay).get();
5769     LHSTy = LHSExp->getType();
5770 
5771     BaseExpr = LHSExp;
5772     IndexExpr = RHSExp;
5773     ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5774   } else if (RHSTy->isArrayType()) {
5775     // Same as previous, except for 123[f().a] case
5776     Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5777         << RHSExp->getSourceRange();
5778     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5779                                CK_ArrayToPointerDecay).get();
5780     RHSTy = RHSExp->getType();
5781 
5782     BaseExpr = RHSExp;
5783     IndexExpr = LHSExp;
5784     ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5785   } else {
5786     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5787        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5788   }
5789   // C99 6.5.2.1p1
5790   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5791     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5792                      << IndexExpr->getSourceRange());
5793 
5794   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5795        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5796          && !IndexExpr->isTypeDependent())
5797     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5798 
5799   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5800   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5801   // type. Note that Functions are not objects, and that (in C99 parlance)
5802   // incomplete types are not object types.
5803   if (ResultType->isFunctionType()) {
5804     Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5805         << ResultType << BaseExpr->getSourceRange();
5806     return ExprError();
5807   }
5808 
5809   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5810     // GNU extension: subscripting on pointer to void
5811     Diag(LLoc, diag::ext_gnu_subscript_void_type)
5812       << BaseExpr->getSourceRange();
5813 
5814     // C forbids expressions of unqualified void type from being l-values.
5815     // See IsCForbiddenLValueType.
5816     if (!ResultType.hasQualifiers())
5817       VK = VK_PRValue;
5818   } else if (!ResultType->isDependentType() &&
5819              RequireCompleteSizedType(
5820                  LLoc, ResultType,
5821                  diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5822     return ExprError();
5823 
5824   assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
5825          !ResultType.isCForbiddenLValueType());
5826 
5827   if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5828       FunctionScopes.size() > 1) {
5829     if (auto *TT =
5830             LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5831       for (auto I = FunctionScopes.rbegin(),
5832                 E = std::prev(FunctionScopes.rend());
5833            I != E; ++I) {
5834         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5835         if (CSI == nullptr)
5836           break;
5837         DeclContext *DC = nullptr;
5838         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5839           DC = LSI->CallOperator;
5840         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5841           DC = CRSI->TheCapturedDecl;
5842         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5843           DC = BSI->TheDecl;
5844         if (DC) {
5845           if (DC->containsDecl(TT->getDecl()))
5846             break;
5847           captureVariablyModifiedType(
5848               Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5849         }
5850       }
5851     }
5852   }
5853 
5854   return new (Context)
5855       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5856 }
5857 
5858 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5859                                   ParmVarDecl *Param) {
5860   if (Param->hasUnparsedDefaultArg()) {
5861     // If we've already cleared out the location for the default argument,
5862     // that means we're parsing it right now.
5863     if (!UnparsedDefaultArgLocs.count(Param)) {
5864       Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5865       Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5866       Param->setInvalidDecl();
5867       return true;
5868     }
5869 
5870     Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5871         << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5872     Diag(UnparsedDefaultArgLocs[Param],
5873          diag::note_default_argument_declared_here);
5874     return true;
5875   }
5876 
5877   if (Param->hasUninstantiatedDefaultArg() &&
5878       InstantiateDefaultArgument(CallLoc, FD, Param))
5879     return true;
5880 
5881   assert(Param->hasInit() && "default argument but no initializer?");
5882 
5883   // If the default expression creates temporaries, we need to
5884   // push them to the current stack of expression temporaries so they'll
5885   // be properly destroyed.
5886   // FIXME: We should really be rebuilding the default argument with new
5887   // bound temporaries; see the comment in PR5810.
5888   // We don't need to do that with block decls, though, because
5889   // blocks in default argument expression can never capture anything.
5890   if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
5891     // Set the "needs cleanups" bit regardless of whether there are
5892     // any explicit objects.
5893     Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
5894 
5895     // Append all the objects to the cleanup list.  Right now, this
5896     // should always be a no-op, because blocks in default argument
5897     // expressions should never be able to capture anything.
5898     assert(!Init->getNumObjects() &&
5899            "default argument expression has capturing blocks?");
5900   }
5901 
5902   // We already type-checked the argument, so we know it works.
5903   // Just mark all of the declarations in this potentially-evaluated expression
5904   // as being "referenced".
5905   EnterExpressionEvaluationContext EvalContext(
5906       *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
5907   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
5908                                    /*SkipLocalVariables=*/true);
5909   return false;
5910 }
5911 
5912 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5913                                         FunctionDecl *FD, ParmVarDecl *Param) {
5914   assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
5915   if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
5916     return ExprError();
5917   return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
5918 }
5919 
5920 Sema::VariadicCallType
5921 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5922                           Expr *Fn) {
5923   if (Proto && Proto->isVariadic()) {
5924     if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
5925       return VariadicConstructor;
5926     else if (Fn && Fn->getType()->isBlockPointerType())
5927       return VariadicBlock;
5928     else if (FDecl) {
5929       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5930         if (Method->isInstance())
5931           return VariadicMethod;
5932     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5933       return VariadicMethod;
5934     return VariadicFunction;
5935   }
5936   return VariadicDoesNotApply;
5937 }
5938 
5939 namespace {
5940 class FunctionCallCCC final : public FunctionCallFilterCCC {
5941 public:
5942   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5943                   unsigned NumArgs, MemberExpr *ME)
5944       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5945         FunctionName(FuncName) {}
5946 
5947   bool ValidateCandidate(const TypoCorrection &candidate) override {
5948     if (!candidate.getCorrectionSpecifier() ||
5949         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5950       return false;
5951     }
5952 
5953     return FunctionCallFilterCCC::ValidateCandidate(candidate);
5954   }
5955 
5956   std::unique_ptr<CorrectionCandidateCallback> clone() override {
5957     return std::make_unique<FunctionCallCCC>(*this);
5958   }
5959 
5960 private:
5961   const IdentifierInfo *const FunctionName;
5962 };
5963 }
5964 
5965 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5966                                                FunctionDecl *FDecl,
5967                                                ArrayRef<Expr *> Args) {
5968   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5969   DeclarationName FuncName = FDecl->getDeclName();
5970   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5971 
5972   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5973   if (TypoCorrection Corrected = S.CorrectTypo(
5974           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5975           S.getScopeForContext(S.CurContext), nullptr, CCC,
5976           Sema::CTK_ErrorRecovery)) {
5977     if (NamedDecl *ND = Corrected.getFoundDecl()) {
5978       if (Corrected.isOverloaded()) {
5979         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5980         OverloadCandidateSet::iterator Best;
5981         for (NamedDecl *CD : Corrected) {
5982           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5983             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5984                                    OCS);
5985         }
5986         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5987         case OR_Success:
5988           ND = Best->FoundDecl;
5989           Corrected.setCorrectionDecl(ND);
5990           break;
5991         default:
5992           break;
5993         }
5994       }
5995       ND = ND->getUnderlyingDecl();
5996       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5997         return Corrected;
5998     }
5999   }
6000   return TypoCorrection();
6001 }
6002 
6003 /// ConvertArgumentsForCall - Converts the arguments specified in
6004 /// Args/NumArgs to the parameter types of the function FDecl with
6005 /// function prototype Proto. Call is the call expression itself, and
6006 /// Fn is the function expression. For a C++ member function, this
6007 /// routine does not attempt to convert the object argument. Returns
6008 /// true if the call is ill-formed.
6009 bool
6010 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
6011                               FunctionDecl *FDecl,
6012                               const FunctionProtoType *Proto,
6013                               ArrayRef<Expr *> Args,
6014                               SourceLocation RParenLoc,
6015                               bool IsExecConfig) {
6016   // Bail out early if calling a builtin with custom typechecking.
6017   if (FDecl)
6018     if (unsigned ID = FDecl->getBuiltinID())
6019       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
6020         return false;
6021 
6022   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
6023   // assignment, to the types of the corresponding parameter, ...
6024   unsigned NumParams = Proto->getNumParams();
6025   bool Invalid = false;
6026   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
6027   unsigned FnKind = Fn->getType()->isBlockPointerType()
6028                        ? 1 /* block */
6029                        : (IsExecConfig ? 3 /* kernel function (exec config) */
6030                                        : 0 /* function */);
6031 
6032   // If too few arguments are available (and we don't have default
6033   // arguments for the remaining parameters), don't make the call.
6034   if (Args.size() < NumParams) {
6035     if (Args.size() < MinArgs) {
6036       TypoCorrection TC;
6037       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6038         unsigned diag_id =
6039             MinArgs == NumParams && !Proto->isVariadic()
6040                 ? diag::err_typecheck_call_too_few_args_suggest
6041                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
6042         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
6043                                         << static_cast<unsigned>(Args.size())
6044                                         << TC.getCorrectionRange());
6045       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
6046         Diag(RParenLoc,
6047              MinArgs == NumParams && !Proto->isVariadic()
6048                  ? diag::err_typecheck_call_too_few_args_one
6049                  : diag::err_typecheck_call_too_few_args_at_least_one)
6050             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
6051       else
6052         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
6053                             ? diag::err_typecheck_call_too_few_args
6054                             : diag::err_typecheck_call_too_few_args_at_least)
6055             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
6056             << Fn->getSourceRange();
6057 
6058       // Emit the location of the prototype.
6059       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6060         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6061 
6062       return true;
6063     }
6064     // We reserve space for the default arguments when we create
6065     // the call expression, before calling ConvertArgumentsForCall.
6066     assert((Call->getNumArgs() == NumParams) &&
6067            "We should have reserved space for the default arguments before!");
6068   }
6069 
6070   // If too many are passed and not variadic, error on the extras and drop
6071   // them.
6072   if (Args.size() > NumParams) {
6073     if (!Proto->isVariadic()) {
6074       TypoCorrection TC;
6075       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6076         unsigned diag_id =
6077             MinArgs == NumParams && !Proto->isVariadic()
6078                 ? diag::err_typecheck_call_too_many_args_suggest
6079                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
6080         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
6081                                         << static_cast<unsigned>(Args.size())
6082                                         << TC.getCorrectionRange());
6083       } else if (NumParams == 1 && FDecl &&
6084                  FDecl->getParamDecl(0)->getDeclName())
6085         Diag(Args[NumParams]->getBeginLoc(),
6086              MinArgs == NumParams
6087                  ? diag::err_typecheck_call_too_many_args_one
6088                  : diag::err_typecheck_call_too_many_args_at_most_one)
6089             << FnKind << FDecl->getParamDecl(0)
6090             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
6091             << SourceRange(Args[NumParams]->getBeginLoc(),
6092                            Args.back()->getEndLoc());
6093       else
6094         Diag(Args[NumParams]->getBeginLoc(),
6095              MinArgs == NumParams
6096                  ? diag::err_typecheck_call_too_many_args
6097                  : diag::err_typecheck_call_too_many_args_at_most)
6098             << FnKind << NumParams << static_cast<unsigned>(Args.size())
6099             << Fn->getSourceRange()
6100             << SourceRange(Args[NumParams]->getBeginLoc(),
6101                            Args.back()->getEndLoc());
6102 
6103       // Emit the location of the prototype.
6104       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6105         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6106 
6107       // This deletes the extra arguments.
6108       Call->shrinkNumArgs(NumParams);
6109       return true;
6110     }
6111   }
6112   SmallVector<Expr *, 8> AllArgs;
6113   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
6114 
6115   Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
6116                                    AllArgs, CallType);
6117   if (Invalid)
6118     return true;
6119   unsigned TotalNumArgs = AllArgs.size();
6120   for (unsigned i = 0; i < TotalNumArgs; ++i)
6121     Call->setArg(i, AllArgs[i]);
6122 
6123   Call->computeDependence();
6124   return false;
6125 }
6126 
6127 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
6128                                   const FunctionProtoType *Proto,
6129                                   unsigned FirstParam, ArrayRef<Expr *> Args,
6130                                   SmallVectorImpl<Expr *> &AllArgs,
6131                                   VariadicCallType CallType, bool AllowExplicit,
6132                                   bool IsListInitialization) {
6133   unsigned NumParams = Proto->getNumParams();
6134   bool Invalid = false;
6135   size_t ArgIx = 0;
6136   // Continue to check argument types (even if we have too few/many args).
6137   for (unsigned i = FirstParam; i < NumParams; i++) {
6138     QualType ProtoArgType = Proto->getParamType(i);
6139 
6140     Expr *Arg;
6141     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
6142     if (ArgIx < Args.size()) {
6143       Arg = Args[ArgIx++];
6144 
6145       if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
6146                               diag::err_call_incomplete_argument, Arg))
6147         return true;
6148 
6149       // Strip the unbridged-cast placeholder expression off, if applicable.
6150       bool CFAudited = false;
6151       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
6152           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6153           (!Param || !Param->hasAttr<CFConsumedAttr>()))
6154         Arg = stripARCUnbridgedCast(Arg);
6155       else if (getLangOpts().ObjCAutoRefCount &&
6156                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6157                (!Param || !Param->hasAttr<CFConsumedAttr>()))
6158         CFAudited = true;
6159 
6160       if (Proto->getExtParameterInfo(i).isNoEscape() &&
6161           ProtoArgType->isBlockPointerType())
6162         if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
6163           BE->getBlockDecl()->setDoesNotEscape();
6164 
6165       InitializedEntity Entity =
6166           Param ? InitializedEntity::InitializeParameter(Context, Param,
6167                                                          ProtoArgType)
6168                 : InitializedEntity::InitializeParameter(
6169                       Context, ProtoArgType, Proto->isParamConsumed(i));
6170 
6171       // Remember that parameter belongs to a CF audited API.
6172       if (CFAudited)
6173         Entity.setParameterCFAudited();
6174 
6175       ExprResult ArgE = PerformCopyInitialization(
6176           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
6177       if (ArgE.isInvalid())
6178         return true;
6179 
6180       Arg = ArgE.getAs<Expr>();
6181     } else {
6182       assert(Param && "can't use default arguments without a known callee");
6183 
6184       ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
6185       if (ArgExpr.isInvalid())
6186         return true;
6187 
6188       Arg = ArgExpr.getAs<Expr>();
6189     }
6190 
6191     // Check for array bounds violations for each argument to the call. This
6192     // check only triggers warnings when the argument isn't a more complex Expr
6193     // with its own checking, such as a BinaryOperator.
6194     CheckArrayAccess(Arg);
6195 
6196     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6197     CheckStaticArrayArgument(CallLoc, Param, Arg);
6198 
6199     AllArgs.push_back(Arg);
6200   }
6201 
6202   // If this is a variadic call, handle args passed through "...".
6203   if (CallType != VariadicDoesNotApply) {
6204     // Assume that extern "C" functions with variadic arguments that
6205     // return __unknown_anytype aren't *really* variadic.
6206     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6207         FDecl->isExternC()) {
6208       for (Expr *A : Args.slice(ArgIx)) {
6209         QualType paramType; // ignored
6210         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
6211         Invalid |= arg.isInvalid();
6212         AllArgs.push_back(arg.get());
6213       }
6214 
6215     // Otherwise do argument promotion, (C99 6.5.2.2p7).
6216     } else {
6217       for (Expr *A : Args.slice(ArgIx)) {
6218         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6219         Invalid |= Arg.isInvalid();
6220         AllArgs.push_back(Arg.get());
6221       }
6222     }
6223 
6224     // Check for array bounds violations.
6225     for (Expr *A : Args.slice(ArgIx))
6226       CheckArrayAccess(A);
6227   }
6228   return Invalid;
6229 }
6230 
6231 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6232   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6233   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6234     TL = DTL.getOriginalLoc();
6235   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6236     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6237       << ATL.getLocalSourceRange();
6238 }
6239 
6240 /// CheckStaticArrayArgument - If the given argument corresponds to a static
6241 /// array parameter, check that it is non-null, and that if it is formed by
6242 /// array-to-pointer decay, the underlying array is sufficiently large.
6243 ///
6244 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6245 /// array type derivation, then for each call to the function, the value of the
6246 /// corresponding actual argument shall provide access to the first element of
6247 /// an array with at least as many elements as specified by the size expression.
6248 void
6249 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6250                                ParmVarDecl *Param,
6251                                const Expr *ArgExpr) {
6252   // Static array parameters are not supported in C++.
6253   if (!Param || getLangOpts().CPlusPlus)
6254     return;
6255 
6256   QualType OrigTy = Param->getOriginalType();
6257 
6258   const ArrayType *AT = Context.getAsArrayType(OrigTy);
6259   if (!AT || AT->getSizeModifier() != ArrayType::Static)
6260     return;
6261 
6262   if (ArgExpr->isNullPointerConstant(Context,
6263                                      Expr::NPC_NeverValueDependent)) {
6264     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6265     DiagnoseCalleeStaticArrayParam(*this, Param);
6266     return;
6267   }
6268 
6269   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6270   if (!CAT)
6271     return;
6272 
6273   const ConstantArrayType *ArgCAT =
6274     Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6275   if (!ArgCAT)
6276     return;
6277 
6278   if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6279                                              ArgCAT->getElementType())) {
6280     if (ArgCAT->getSize().ult(CAT->getSize())) {
6281       Diag(CallLoc, diag::warn_static_array_too_small)
6282           << ArgExpr->getSourceRange()
6283           << (unsigned)ArgCAT->getSize().getZExtValue()
6284           << (unsigned)CAT->getSize().getZExtValue() << 0;
6285       DiagnoseCalleeStaticArrayParam(*this, Param);
6286     }
6287     return;
6288   }
6289 
6290   Optional<CharUnits> ArgSize =
6291       getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6292   Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
6293   if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6294     Diag(CallLoc, diag::warn_static_array_too_small)
6295         << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6296         << (unsigned)ParmSize->getQuantity() << 1;
6297     DiagnoseCalleeStaticArrayParam(*this, Param);
6298   }
6299 }
6300 
6301 /// Given a function expression of unknown-any type, try to rebuild it
6302 /// to have a function type.
6303 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6304 
6305 /// Is the given type a placeholder that we need to lower out
6306 /// immediately during argument processing?
6307 static bool isPlaceholderToRemoveAsArg(QualType type) {
6308   // Placeholders are never sugared.
6309   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6310   if (!placeholder) return false;
6311 
6312   switch (placeholder->getKind()) {
6313   // Ignore all the non-placeholder types.
6314 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6315   case BuiltinType::Id:
6316 #include "clang/Basic/OpenCLImageTypes.def"
6317 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6318   case BuiltinType::Id:
6319 #include "clang/Basic/OpenCLExtensionTypes.def"
6320   // In practice we'll never use this, since all SVE types are sugared
6321   // via TypedefTypes rather than exposed directly as BuiltinTypes.
6322 #define SVE_TYPE(Name, Id, SingletonId) \
6323   case BuiltinType::Id:
6324 #include "clang/Basic/AArch64SVEACLETypes.def"
6325 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6326   case BuiltinType::Id:
6327 #include "clang/Basic/PPCTypes.def"
6328 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6329 #include "clang/Basic/RISCVVTypes.def"
6330 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6331 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6332 #include "clang/AST/BuiltinTypes.def"
6333     return false;
6334 
6335   // We cannot lower out overload sets; they might validly be resolved
6336   // by the call machinery.
6337   case BuiltinType::Overload:
6338     return false;
6339 
6340   // Unbridged casts in ARC can be handled in some call positions and
6341   // should be left in place.
6342   case BuiltinType::ARCUnbridgedCast:
6343     return false;
6344 
6345   // Pseudo-objects should be converted as soon as possible.
6346   case BuiltinType::PseudoObject:
6347     return true;
6348 
6349   // The debugger mode could theoretically but currently does not try
6350   // to resolve unknown-typed arguments based on known parameter types.
6351   case BuiltinType::UnknownAny:
6352     return true;
6353 
6354   // These are always invalid as call arguments and should be reported.
6355   case BuiltinType::BoundMember:
6356   case BuiltinType::BuiltinFn:
6357   case BuiltinType::IncompleteMatrixIdx:
6358   case BuiltinType::OMPArraySection:
6359   case BuiltinType::OMPArrayShaping:
6360   case BuiltinType::OMPIterator:
6361     return true;
6362 
6363   }
6364   llvm_unreachable("bad builtin type kind");
6365 }
6366 
6367 /// Check an argument list for placeholders that we won't try to
6368 /// handle later.
6369 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
6370   // Apply this processing to all the arguments at once instead of
6371   // dying at the first failure.
6372   bool hasInvalid = false;
6373   for (size_t i = 0, e = args.size(); i != e; i++) {
6374     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6375       ExprResult result = S.CheckPlaceholderExpr(args[i]);
6376       if (result.isInvalid()) hasInvalid = true;
6377       else args[i] = result.get();
6378     }
6379   }
6380   return hasInvalid;
6381 }
6382 
6383 /// If a builtin function has a pointer argument with no explicit address
6384 /// space, then it should be able to accept a pointer to any address
6385 /// space as input.  In order to do this, we need to replace the
6386 /// standard builtin declaration with one that uses the same address space
6387 /// as the call.
6388 ///
6389 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6390 ///                  it does not contain any pointer arguments without
6391 ///                  an address space qualifer.  Otherwise the rewritten
6392 ///                  FunctionDecl is returned.
6393 /// TODO: Handle pointer return types.
6394 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6395                                                 FunctionDecl *FDecl,
6396                                                 MultiExprArg ArgExprs) {
6397 
6398   QualType DeclType = FDecl->getType();
6399   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6400 
6401   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6402       ArgExprs.size() < FT->getNumParams())
6403     return nullptr;
6404 
6405   bool NeedsNewDecl = false;
6406   unsigned i = 0;
6407   SmallVector<QualType, 8> OverloadParams;
6408 
6409   for (QualType ParamType : FT->param_types()) {
6410 
6411     // Convert array arguments to pointer to simplify type lookup.
6412     ExprResult ArgRes =
6413         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6414     if (ArgRes.isInvalid())
6415       return nullptr;
6416     Expr *Arg = ArgRes.get();
6417     QualType ArgType = Arg->getType();
6418     if (!ParamType->isPointerType() ||
6419         ParamType.hasAddressSpace() ||
6420         !ArgType->isPointerType() ||
6421         !ArgType->getPointeeType().hasAddressSpace()) {
6422       OverloadParams.push_back(ParamType);
6423       continue;
6424     }
6425 
6426     QualType PointeeType = ParamType->getPointeeType();
6427     if (PointeeType.hasAddressSpace())
6428       continue;
6429 
6430     NeedsNewDecl = true;
6431     LangAS AS = ArgType->getPointeeType().getAddressSpace();
6432 
6433     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6434     OverloadParams.push_back(Context.getPointerType(PointeeType));
6435   }
6436 
6437   if (!NeedsNewDecl)
6438     return nullptr;
6439 
6440   FunctionProtoType::ExtProtoInfo EPI;
6441   EPI.Variadic = FT->isVariadic();
6442   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6443                                                 OverloadParams, EPI);
6444   DeclContext *Parent = FDecl->getParent();
6445   FunctionDecl *OverloadDecl = FunctionDecl::Create(
6446       Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6447       FDecl->getIdentifier(), OverloadTy,
6448       /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6449       false,
6450       /*hasPrototype=*/true);
6451   SmallVector<ParmVarDecl*, 16> Params;
6452   FT = cast<FunctionProtoType>(OverloadTy);
6453   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6454     QualType ParamType = FT->getParamType(i);
6455     ParmVarDecl *Parm =
6456         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6457                                 SourceLocation(), nullptr, ParamType,
6458                                 /*TInfo=*/nullptr, SC_None, nullptr);
6459     Parm->setScopeInfo(0, i);
6460     Params.push_back(Parm);
6461   }
6462   OverloadDecl->setParams(Params);
6463   Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6464   return OverloadDecl;
6465 }
6466 
6467 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6468                                     FunctionDecl *Callee,
6469                                     MultiExprArg ArgExprs) {
6470   // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6471   // similar attributes) really don't like it when functions are called with an
6472   // invalid number of args.
6473   if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6474                          /*PartialOverloading=*/false) &&
6475       !Callee->isVariadic())
6476     return;
6477   if (Callee->getMinRequiredArguments() > ArgExprs.size())
6478     return;
6479 
6480   if (const EnableIfAttr *Attr =
6481           S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6482     S.Diag(Fn->getBeginLoc(),
6483            isa<CXXMethodDecl>(Callee)
6484                ? diag::err_ovl_no_viable_member_function_in_call
6485                : diag::err_ovl_no_viable_function_in_call)
6486         << Callee << Callee->getSourceRange();
6487     S.Diag(Callee->getLocation(),
6488            diag::note_ovl_candidate_disabled_by_function_cond_attr)
6489         << Attr->getCond()->getSourceRange() << Attr->getMessage();
6490     return;
6491   }
6492 }
6493 
6494 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6495     const UnresolvedMemberExpr *const UME, Sema &S) {
6496 
6497   const auto GetFunctionLevelDCIfCXXClass =
6498       [](Sema &S) -> const CXXRecordDecl * {
6499     const DeclContext *const DC = S.getFunctionLevelDeclContext();
6500     if (!DC || !DC->getParent())
6501       return nullptr;
6502 
6503     // If the call to some member function was made from within a member
6504     // function body 'M' return return 'M's parent.
6505     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6506       return MD->getParent()->getCanonicalDecl();
6507     // else the call was made from within a default member initializer of a
6508     // class, so return the class.
6509     if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6510       return RD->getCanonicalDecl();
6511     return nullptr;
6512   };
6513   // If our DeclContext is neither a member function nor a class (in the
6514   // case of a lambda in a default member initializer), we can't have an
6515   // enclosing 'this'.
6516 
6517   const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6518   if (!CurParentClass)
6519     return false;
6520 
6521   // The naming class for implicit member functions call is the class in which
6522   // name lookup starts.
6523   const CXXRecordDecl *const NamingClass =
6524       UME->getNamingClass()->getCanonicalDecl();
6525   assert(NamingClass && "Must have naming class even for implicit access");
6526 
6527   // If the unresolved member functions were found in a 'naming class' that is
6528   // related (either the same or derived from) to the class that contains the
6529   // member function that itself contained the implicit member access.
6530 
6531   return CurParentClass == NamingClass ||
6532          CurParentClass->isDerivedFrom(NamingClass);
6533 }
6534 
6535 static void
6536 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6537     Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6538 
6539   if (!UME)
6540     return;
6541 
6542   LambdaScopeInfo *const CurLSI = S.getCurLambda();
6543   // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6544   // already been captured, or if this is an implicit member function call (if
6545   // it isn't, an attempt to capture 'this' should already have been made).
6546   if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6547       !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6548     return;
6549 
6550   // Check if the naming class in which the unresolved members were found is
6551   // related (same as or is a base of) to the enclosing class.
6552 
6553   if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6554     return;
6555 
6556 
6557   DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6558   // If the enclosing function is not dependent, then this lambda is
6559   // capture ready, so if we can capture this, do so.
6560   if (!EnclosingFunctionCtx->isDependentContext()) {
6561     // If the current lambda and all enclosing lambdas can capture 'this' -
6562     // then go ahead and capture 'this' (since our unresolved overload set
6563     // contains at least one non-static member function).
6564     if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6565       S.CheckCXXThisCapture(CallLoc);
6566   } else if (S.CurContext->isDependentContext()) {
6567     // ... since this is an implicit member reference, that might potentially
6568     // involve a 'this' capture, mark 'this' for potential capture in
6569     // enclosing lambdas.
6570     if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6571       CurLSI->addPotentialThisCapture(CallLoc);
6572   }
6573 }
6574 
6575 // Once a call is fully resolved, warn for unqualified calls to specific
6576 // C++ standard functions, like move and forward.
6577 static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S, CallExpr *Call) {
6578   // We are only checking unary move and forward so exit early here.
6579   if (Call->getNumArgs() != 1)
6580     return;
6581 
6582   Expr *E = Call->getCallee()->IgnoreParenImpCasts();
6583   if (!E || isa<UnresolvedLookupExpr>(E))
6584     return;
6585   DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E);
6586   if (!DRE || !DRE->getLocation().isValid())
6587     return;
6588 
6589   if (DRE->getQualifier())
6590     return;
6591 
6592   const FunctionDecl *FD = Call->getDirectCallee();
6593   if (!FD)
6594     return;
6595 
6596   // Only warn for some functions deemed more frequent or problematic.
6597   unsigned BuiltinID = FD->getBuiltinID();
6598   if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
6599     return;
6600 
6601   S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
6602       << FD->getQualifiedNameAsString()
6603       << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
6604 }
6605 
6606 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6607                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6608                                Expr *ExecConfig) {
6609   ExprResult Call =
6610       BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6611                     /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6612   if (Call.isInvalid())
6613     return Call;
6614 
6615   // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6616   // language modes.
6617   if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
6618     if (ULE->hasExplicitTemplateArgs() &&
6619         ULE->decls_begin() == ULE->decls_end()) {
6620       Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6621                                  ? diag::warn_cxx17_compat_adl_only_template_id
6622                                  : diag::ext_adl_only_template_id)
6623           << ULE->getName();
6624     }
6625   }
6626 
6627   if (LangOpts.OpenMP)
6628     Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6629                            ExecConfig);
6630   if (LangOpts.CPlusPlus) {
6631     CallExpr *CE = dyn_cast<CallExpr>(Call.get());
6632     if (CE)
6633       DiagnosedUnqualifiedCallsToStdFunctions(*this, CE);
6634   }
6635   return Call;
6636 }
6637 
6638 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
6639 /// This provides the location of the left/right parens and a list of comma
6640 /// locations.
6641 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6642                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6643                                Expr *ExecConfig, bool IsExecConfig,
6644                                bool AllowRecovery) {
6645   // Since this might be a postfix expression, get rid of ParenListExprs.
6646   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6647   if (Result.isInvalid()) return ExprError();
6648   Fn = Result.get();
6649 
6650   if (checkArgsForPlaceholders(*this, ArgExprs))
6651     return ExprError();
6652 
6653   if (getLangOpts().CPlusPlus) {
6654     // If this is a pseudo-destructor expression, build the call immediately.
6655     if (isa<CXXPseudoDestructorExpr>(Fn)) {
6656       if (!ArgExprs.empty()) {
6657         // Pseudo-destructor calls should not have any arguments.
6658         Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6659             << FixItHint::CreateRemoval(
6660                    SourceRange(ArgExprs.front()->getBeginLoc(),
6661                                ArgExprs.back()->getEndLoc()));
6662       }
6663 
6664       return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6665                               VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6666     }
6667     if (Fn->getType() == Context.PseudoObjectTy) {
6668       ExprResult result = CheckPlaceholderExpr(Fn);
6669       if (result.isInvalid()) return ExprError();
6670       Fn = result.get();
6671     }
6672 
6673     // Determine whether this is a dependent call inside a C++ template,
6674     // in which case we won't do any semantic analysis now.
6675     if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6676       if (ExecConfig) {
6677         return CUDAKernelCallExpr::Create(Context, Fn,
6678                                           cast<CallExpr>(ExecConfig), ArgExprs,
6679                                           Context.DependentTy, VK_PRValue,
6680                                           RParenLoc, CurFPFeatureOverrides());
6681       } else {
6682 
6683         tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6684             *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6685             Fn->getBeginLoc());
6686 
6687         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6688                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6689       }
6690     }
6691 
6692     // Determine whether this is a call to an object (C++ [over.call.object]).
6693     if (Fn->getType()->isRecordType())
6694       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6695                                           RParenLoc);
6696 
6697     if (Fn->getType() == Context.UnknownAnyTy) {
6698       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6699       if (result.isInvalid()) return ExprError();
6700       Fn = result.get();
6701     }
6702 
6703     if (Fn->getType() == Context.BoundMemberTy) {
6704       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6705                                        RParenLoc, ExecConfig, IsExecConfig,
6706                                        AllowRecovery);
6707     }
6708   }
6709 
6710   // Check for overloaded calls.  This can happen even in C due to extensions.
6711   if (Fn->getType() == Context.OverloadTy) {
6712     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6713 
6714     // We aren't supposed to apply this logic if there's an '&' involved.
6715     if (!find.HasFormOfMemberPointer) {
6716       if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6717         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6718                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6719       OverloadExpr *ovl = find.Expression;
6720       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6721         return BuildOverloadedCallExpr(
6722             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6723             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6724       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6725                                        RParenLoc, ExecConfig, IsExecConfig,
6726                                        AllowRecovery);
6727     }
6728   }
6729 
6730   // If we're directly calling a function, get the appropriate declaration.
6731   if (Fn->getType() == Context.UnknownAnyTy) {
6732     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6733     if (result.isInvalid()) return ExprError();
6734     Fn = result.get();
6735   }
6736 
6737   Expr *NakedFn = Fn->IgnoreParens();
6738 
6739   bool CallingNDeclIndirectly = false;
6740   NamedDecl *NDecl = nullptr;
6741   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6742     if (UnOp->getOpcode() == UO_AddrOf) {
6743       CallingNDeclIndirectly = true;
6744       NakedFn = UnOp->getSubExpr()->IgnoreParens();
6745     }
6746   }
6747 
6748   if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6749     NDecl = DRE->getDecl();
6750 
6751     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6752     if (FDecl && FDecl->getBuiltinID()) {
6753       // Rewrite the function decl for this builtin by replacing parameters
6754       // with no explicit address space with the address space of the arguments
6755       // in ArgExprs.
6756       if ((FDecl =
6757                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6758         NDecl = FDecl;
6759         Fn = DeclRefExpr::Create(
6760             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
6761             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
6762             nullptr, DRE->isNonOdrUse());
6763       }
6764     }
6765   } else if (isa<MemberExpr>(NakedFn))
6766     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
6767 
6768   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
6769     if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6770                                       FD, /*Complain=*/true, Fn->getBeginLoc()))
6771       return ExprError();
6772 
6773     checkDirectCallValidity(*this, Fn, FD, ArgExprs);
6774 
6775     // If this expression is a call to a builtin function in HIP device
6776     // compilation, allow a pointer-type argument to default address space to be
6777     // passed as a pointer-type parameter to a non-default address space.
6778     // If Arg is declared in the default address space and Param is declared
6779     // in a non-default address space, perform an implicit address space cast to
6780     // the parameter type.
6781     if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
6782         FD->getBuiltinID()) {
6783       for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) {
6784         ParmVarDecl *Param = FD->getParamDecl(Idx);
6785         if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
6786             !ArgExprs[Idx]->getType()->isPointerType())
6787           continue;
6788 
6789         auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
6790         auto ArgTy = ArgExprs[Idx]->getType();
6791         auto ArgPtTy = ArgTy->getPointeeType();
6792         auto ArgAS = ArgPtTy.getAddressSpace();
6793 
6794         // Add address space cast if target address spaces are different
6795         bool NeedImplicitASC =
6796           ParamAS != LangAS::Default &&       // Pointer params in generic AS don't need special handling.
6797           ( ArgAS == LangAS::Default  ||      // We do allow implicit conversion from generic AS
6798                                               // or from specific AS which has target AS matching that of Param.
6799           getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
6800         if (!NeedImplicitASC)
6801           continue;
6802 
6803         // First, ensure that the Arg is an RValue.
6804         if (ArgExprs[Idx]->isGLValue()) {
6805           ArgExprs[Idx] = ImplicitCastExpr::Create(
6806               Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
6807               nullptr, VK_PRValue, FPOptionsOverride());
6808         }
6809 
6810         // Construct a new arg type with address space of Param
6811         Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
6812         ArgPtQuals.setAddressSpace(ParamAS);
6813         auto NewArgPtTy =
6814             Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
6815         auto NewArgTy =
6816             Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
6817                                      ArgTy.getQualifiers());
6818 
6819         // Finally perform an implicit address space cast
6820         ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
6821                                           CK_AddressSpaceConversion)
6822                             .get();
6823       }
6824     }
6825   }
6826 
6827   if (Context.isDependenceAllowed() &&
6828       (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
6829     assert(!getLangOpts().CPlusPlus);
6830     assert((Fn->containsErrors() ||
6831             llvm::any_of(ArgExprs,
6832                          [](clang::Expr *E) { return E->containsErrors(); })) &&
6833            "should only occur in error-recovery path.");
6834     QualType ReturnType =
6835         llvm::isa_and_nonnull<FunctionDecl>(NDecl)
6836             ? cast<FunctionDecl>(NDecl)->getCallResultType()
6837             : Context.DependentTy;
6838     return CallExpr::Create(Context, Fn, ArgExprs, ReturnType,
6839                             Expr::getValueKindForType(ReturnType), RParenLoc,
6840                             CurFPFeatureOverrides());
6841   }
6842   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
6843                                ExecConfig, IsExecConfig);
6844 }
6845 
6846 /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
6847 //  with the specified CallArgs
6848 Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
6849                                  MultiExprArg CallArgs) {
6850   StringRef Name = Context.BuiltinInfo.getName(Id);
6851   LookupResult R(*this, &Context.Idents.get(Name), Loc,
6852                  Sema::LookupOrdinaryName);
6853   LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
6854 
6855   auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
6856   assert(BuiltInDecl && "failed to find builtin declaration");
6857 
6858   ExprResult DeclRef =
6859       BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
6860   assert(DeclRef.isUsable() && "Builtin reference cannot fail");
6861 
6862   ExprResult Call =
6863       BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
6864 
6865   assert(!Call.isInvalid() && "Call to builtin cannot fail!");
6866   return Call.get();
6867 }
6868 
6869 /// Parse a __builtin_astype expression.
6870 ///
6871 /// __builtin_astype( value, dst type )
6872 ///
6873 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6874                                  SourceLocation BuiltinLoc,
6875                                  SourceLocation RParenLoc) {
6876   QualType DstTy = GetTypeFromParser(ParsedDestTy);
6877   return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
6878 }
6879 
6880 /// Create a new AsTypeExpr node (bitcast) from the arguments.
6881 ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
6882                                  SourceLocation BuiltinLoc,
6883                                  SourceLocation RParenLoc) {
6884   ExprValueKind VK = VK_PRValue;
6885   ExprObjectKind OK = OK_Ordinary;
6886   QualType SrcTy = E->getType();
6887   if (!SrcTy->isDependentType() &&
6888       Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
6889     return ExprError(
6890         Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
6891         << DestTy << SrcTy << E->getSourceRange());
6892   return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
6893 }
6894 
6895 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
6896 /// provided arguments.
6897 ///
6898 /// __builtin_convertvector( value, dst type )
6899 ///
6900 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6901                                         SourceLocation BuiltinLoc,
6902                                         SourceLocation RParenLoc) {
6903   TypeSourceInfo *TInfo;
6904   GetTypeFromParser(ParsedDestTy, &TInfo);
6905   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6906 }
6907 
6908 /// BuildResolvedCallExpr - Build a call to a resolved expression,
6909 /// i.e. an expression not of \p OverloadTy.  The expression should
6910 /// unary-convert to an expression of function-pointer or
6911 /// block-pointer type.
6912 ///
6913 /// \param NDecl the declaration being called, if available
6914 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6915                                        SourceLocation LParenLoc,
6916                                        ArrayRef<Expr *> Args,
6917                                        SourceLocation RParenLoc, Expr *Config,
6918                                        bool IsExecConfig, ADLCallKind UsesADL) {
6919   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
6920   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
6921 
6922   // Functions with 'interrupt' attribute cannot be called directly.
6923   if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
6924     Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
6925     return ExprError();
6926   }
6927 
6928   // Interrupt handlers don't save off the VFP regs automatically on ARM,
6929   // so there's some risk when calling out to non-interrupt handler functions
6930   // that the callee might not preserve them. This is easy to diagnose here,
6931   // but can be very challenging to debug.
6932   // Likewise, X86 interrupt handlers may only call routines with attribute
6933   // no_caller_saved_registers since there is no efficient way to
6934   // save and restore the non-GPR state.
6935   if (auto *Caller = getCurFunctionDecl()) {
6936     if (Caller->hasAttr<ARMInterruptAttr>()) {
6937       bool VFP = Context.getTargetInfo().hasFeature("vfp");
6938       if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
6939         Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
6940         if (FDecl)
6941           Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6942       }
6943     }
6944     if (Caller->hasAttr<AnyX86InterruptAttr>() &&
6945         ((!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()))) {
6946       Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave);
6947       if (FDecl)
6948         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6949     }
6950   }
6951 
6952   // Promote the function operand.
6953   // We special-case function promotion here because we only allow promoting
6954   // builtin functions to function pointers in the callee of a call.
6955   ExprResult Result;
6956   QualType ResultTy;
6957   if (BuiltinID &&
6958       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
6959     // Extract the return type from the (builtin) function pointer type.
6960     // FIXME Several builtins still have setType in
6961     // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6962     // Builtins.def to ensure they are correct before removing setType calls.
6963     QualType FnPtrTy = Context.getPointerType(FDecl->getType());
6964     Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
6965     ResultTy = FDecl->getCallResultType();
6966   } else {
6967     Result = CallExprUnaryConversions(Fn);
6968     ResultTy = Context.BoolTy;
6969   }
6970   if (Result.isInvalid())
6971     return ExprError();
6972   Fn = Result.get();
6973 
6974   // Check for a valid function type, but only if it is not a builtin which
6975   // requires custom type checking. These will be handled by
6976   // CheckBuiltinFunctionCall below just after creation of the call expression.
6977   const FunctionType *FuncT = nullptr;
6978   if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6979   retry:
6980     if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
6981       // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6982       // have type pointer to function".
6983       FuncT = PT->getPointeeType()->getAs<FunctionType>();
6984       if (!FuncT)
6985         return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6986                          << Fn->getType() << Fn->getSourceRange());
6987     } else if (const BlockPointerType *BPT =
6988                    Fn->getType()->getAs<BlockPointerType>()) {
6989       FuncT = BPT->getPointeeType()->castAs<FunctionType>();
6990     } else {
6991       // Handle calls to expressions of unknown-any type.
6992       if (Fn->getType() == Context.UnknownAnyTy) {
6993         ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
6994         if (rewrite.isInvalid())
6995           return ExprError();
6996         Fn = rewrite.get();
6997         goto retry;
6998       }
6999 
7000       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7001                        << Fn->getType() << Fn->getSourceRange());
7002     }
7003   }
7004 
7005   // Get the number of parameters in the function prototype, if any.
7006   // We will allocate space for max(Args.size(), NumParams) arguments
7007   // in the call expression.
7008   const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
7009   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
7010 
7011   CallExpr *TheCall;
7012   if (Config) {
7013     assert(UsesADL == ADLCallKind::NotADL &&
7014            "CUDAKernelCallExpr should not use ADL");
7015     TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
7016                                          Args, ResultTy, VK_PRValue, RParenLoc,
7017                                          CurFPFeatureOverrides(), NumParams);
7018   } else {
7019     TheCall =
7020         CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7021                          CurFPFeatureOverrides(), NumParams, UsesADL);
7022   }
7023 
7024   if (!Context.isDependenceAllowed()) {
7025     // Forget about the nulled arguments since typo correction
7026     // do not handle them well.
7027     TheCall->shrinkNumArgs(Args.size());
7028     // C cannot always handle TypoExpr nodes in builtin calls and direct
7029     // function calls as their argument checking don't necessarily handle
7030     // dependent types properly, so make sure any TypoExprs have been
7031     // dealt with.
7032     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
7033     if (!Result.isUsable()) return ExprError();
7034     CallExpr *TheOldCall = TheCall;
7035     TheCall = dyn_cast<CallExpr>(Result.get());
7036     bool CorrectedTypos = TheCall != TheOldCall;
7037     if (!TheCall) return Result;
7038     Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
7039 
7040     // A new call expression node was created if some typos were corrected.
7041     // However it may not have been constructed with enough storage. In this
7042     // case, rebuild the node with enough storage. The waste of space is
7043     // immaterial since this only happens when some typos were corrected.
7044     if (CorrectedTypos && Args.size() < NumParams) {
7045       if (Config)
7046         TheCall = CUDAKernelCallExpr::Create(
7047             Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
7048             RParenLoc, CurFPFeatureOverrides(), NumParams);
7049       else
7050         TheCall =
7051             CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7052                              CurFPFeatureOverrides(), NumParams, UsesADL);
7053     }
7054     // We can now handle the nulled arguments for the default arguments.
7055     TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
7056   }
7057 
7058   // Bail out early if calling a builtin with custom type checking.
7059   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
7060     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7061 
7062   if (getLangOpts().CUDA) {
7063     if (Config) {
7064       // CUDA: Kernel calls must be to global functions
7065       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
7066         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
7067             << FDecl << Fn->getSourceRange());
7068 
7069       // CUDA: Kernel function must have 'void' return type
7070       if (!FuncT->getReturnType()->isVoidType() &&
7071           !FuncT->getReturnType()->getAs<AutoType>() &&
7072           !FuncT->getReturnType()->isInstantiationDependentType())
7073         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
7074             << Fn->getType() << Fn->getSourceRange());
7075     } else {
7076       // CUDA: Calls to global functions must be configured
7077       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
7078         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
7079             << FDecl << Fn->getSourceRange());
7080     }
7081   }
7082 
7083   // Check for a valid return type
7084   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
7085                           FDecl))
7086     return ExprError();
7087 
7088   // We know the result type of the call, set it.
7089   TheCall->setType(FuncT->getCallResultType(Context));
7090   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
7091 
7092   if (Proto) {
7093     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
7094                                 IsExecConfig))
7095       return ExprError();
7096   } else {
7097     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
7098 
7099     if (FDecl) {
7100       // Check if we have too few/too many template arguments, based
7101       // on our knowledge of the function definition.
7102       const FunctionDecl *Def = nullptr;
7103       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
7104         Proto = Def->getType()->getAs<FunctionProtoType>();
7105        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
7106           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
7107           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
7108       }
7109 
7110       // If the function we're calling isn't a function prototype, but we have
7111       // a function prototype from a prior declaratiom, use that prototype.
7112       if (!FDecl->hasPrototype())
7113         Proto = FDecl->getType()->getAs<FunctionProtoType>();
7114     }
7115 
7116     // If we still haven't found a prototype to use but there are arguments to
7117     // the call, diagnose this as calling a function without a prototype.
7118     // However, if we found a function declaration, check to see if
7119     // -Wdeprecated-non-prototype was disabled where the function was declared.
7120     // If so, we will silence the diagnostic here on the assumption that this
7121     // interface is intentional and the user knows what they're doing. We will
7122     // also silence the diagnostic if there is a function declaration but it
7123     // was implicitly defined (the user already gets diagnostics about the
7124     // creation of the implicit function declaration, so the additional warning
7125     // is not helpful).
7126     if (!Proto && !Args.empty() &&
7127         (!FDecl || (!FDecl->isImplicit() &&
7128                     !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
7129                                      FDecl->getLocation()))))
7130       Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
7131           << (FDecl != nullptr) << FDecl;
7132 
7133     // Promote the arguments (C99 6.5.2.2p6).
7134     for (unsigned i = 0, e = Args.size(); i != e; i++) {
7135       Expr *Arg = Args[i];
7136 
7137       if (Proto && i < Proto->getNumParams()) {
7138         InitializedEntity Entity = InitializedEntity::InitializeParameter(
7139             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
7140         ExprResult ArgE =
7141             PerformCopyInitialization(Entity, SourceLocation(), Arg);
7142         if (ArgE.isInvalid())
7143           return true;
7144 
7145         Arg = ArgE.getAs<Expr>();
7146 
7147       } else {
7148         ExprResult ArgE = DefaultArgumentPromotion(Arg);
7149 
7150         if (ArgE.isInvalid())
7151           return true;
7152 
7153         Arg = ArgE.getAs<Expr>();
7154       }
7155 
7156       if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
7157                               diag::err_call_incomplete_argument, Arg))
7158         return ExprError();
7159 
7160       TheCall->setArg(i, Arg);
7161     }
7162     TheCall->computeDependence();
7163   }
7164 
7165   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
7166     if (!Method->isStatic())
7167       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
7168         << Fn->getSourceRange());
7169 
7170   // Check for sentinels
7171   if (NDecl)
7172     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
7173 
7174   // Warn for unions passing across security boundary (CMSE).
7175   if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
7176     for (unsigned i = 0, e = Args.size(); i != e; i++) {
7177       if (const auto *RT =
7178               dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
7179         if (RT->getDecl()->isOrContainsUnion())
7180           Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
7181               << 0 << i;
7182       }
7183     }
7184   }
7185 
7186   // Do special checking on direct calls to functions.
7187   if (FDecl) {
7188     if (CheckFunctionCall(FDecl, TheCall, Proto))
7189       return ExprError();
7190 
7191     checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
7192 
7193     if (BuiltinID)
7194       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7195   } else if (NDecl) {
7196     if (CheckPointerCall(NDecl, TheCall, Proto))
7197       return ExprError();
7198   } else {
7199     if (CheckOtherCall(TheCall, Proto))
7200       return ExprError();
7201   }
7202 
7203   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
7204 }
7205 
7206 ExprResult
7207 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7208                            SourceLocation RParenLoc, Expr *InitExpr) {
7209   assert(Ty && "ActOnCompoundLiteral(): missing type");
7210   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
7211 
7212   TypeSourceInfo *TInfo;
7213   QualType literalType = GetTypeFromParser(Ty, &TInfo);
7214   if (!TInfo)
7215     TInfo = Context.getTrivialTypeSourceInfo(literalType);
7216 
7217   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
7218 }
7219 
7220 ExprResult
7221 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7222                                SourceLocation RParenLoc, Expr *LiteralExpr) {
7223   QualType literalType = TInfo->getType();
7224 
7225   if (literalType->isArrayType()) {
7226     if (RequireCompleteSizedType(
7227             LParenLoc, Context.getBaseElementType(literalType),
7228             diag::err_array_incomplete_or_sizeless_type,
7229             SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7230       return ExprError();
7231     if (literalType->isVariableArrayType()) {
7232       if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7233                                            diag::err_variable_object_no_init)) {
7234         return ExprError();
7235       }
7236     }
7237   } else if (!literalType->isDependentType() &&
7238              RequireCompleteType(LParenLoc, literalType,
7239                diag::err_typecheck_decl_incomplete_type,
7240                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7241     return ExprError();
7242 
7243   InitializedEntity Entity
7244     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7245   InitializationKind Kind
7246     = InitializationKind::CreateCStyleCast(LParenLoc,
7247                                            SourceRange(LParenLoc, RParenLoc),
7248                                            /*InitList=*/true);
7249   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7250   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7251                                       &literalType);
7252   if (Result.isInvalid())
7253     return ExprError();
7254   LiteralExpr = Result.get();
7255 
7256   bool isFileScope = !CurContext->isFunctionOrMethod();
7257 
7258   // In C, compound literals are l-values for some reason.
7259   // For GCC compatibility, in C++, file-scope array compound literals with
7260   // constant initializers are also l-values, and compound literals are
7261   // otherwise prvalues.
7262   //
7263   // (GCC also treats C++ list-initialized file-scope array prvalues with
7264   // constant initializers as l-values, but that's non-conforming, so we don't
7265   // follow it there.)
7266   //
7267   // FIXME: It would be better to handle the lvalue cases as materializing and
7268   // lifetime-extending a temporary object, but our materialized temporaries
7269   // representation only supports lifetime extension from a variable, not "out
7270   // of thin air".
7271   // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7272   // is bound to the result of applying array-to-pointer decay to the compound
7273   // literal.
7274   // FIXME: GCC supports compound literals of reference type, which should
7275   // obviously have a value kind derived from the kind of reference involved.
7276   ExprValueKind VK =
7277       (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7278           ? VK_PRValue
7279           : VK_LValue;
7280 
7281   if (isFileScope)
7282     if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7283       for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7284         Expr *Init = ILE->getInit(i);
7285         ILE->setInit(i, ConstantExpr::Create(Context, Init));
7286       }
7287 
7288   auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7289                                               VK, LiteralExpr, isFileScope);
7290   if (isFileScope) {
7291     if (!LiteralExpr->isTypeDependent() &&
7292         !LiteralExpr->isValueDependent() &&
7293         !literalType->isDependentType()) // C99 6.5.2.5p3
7294       if (CheckForConstantInitializer(LiteralExpr, literalType))
7295         return ExprError();
7296   } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7297              literalType.getAddressSpace() != LangAS::Default) {
7298     // Embedded-C extensions to C99 6.5.2.5:
7299     //   "If the compound literal occurs inside the body of a function, the
7300     //   type name shall not be qualified by an address-space qualifier."
7301     Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7302       << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7303     return ExprError();
7304   }
7305 
7306   if (!isFileScope && !getLangOpts().CPlusPlus) {
7307     // Compound literals that have automatic storage duration are destroyed at
7308     // the end of the scope in C; in C++, they're just temporaries.
7309 
7310     // Emit diagnostics if it is or contains a C union type that is non-trivial
7311     // to destruct.
7312     if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7313       checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7314                             NTCUC_CompoundLiteral, NTCUK_Destruct);
7315 
7316     // Diagnose jumps that enter or exit the lifetime of the compound literal.
7317     if (literalType.isDestructedType()) {
7318       Cleanup.setExprNeedsCleanups(true);
7319       ExprCleanupObjects.push_back(E);
7320       getCurFunction()->setHasBranchProtectedScope();
7321     }
7322   }
7323 
7324   if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7325       E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7326     checkNonTrivialCUnionInInitializer(E->getInitializer(),
7327                                        E->getInitializer()->getExprLoc());
7328 
7329   return MaybeBindToTemporary(E);
7330 }
7331 
7332 ExprResult
7333 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7334                     SourceLocation RBraceLoc) {
7335   // Only produce each kind of designated initialization diagnostic once.
7336   SourceLocation FirstDesignator;
7337   bool DiagnosedArrayDesignator = false;
7338   bool DiagnosedNestedDesignator = false;
7339   bool DiagnosedMixedDesignator = false;
7340 
7341   // Check that any designated initializers are syntactically valid in the
7342   // current language mode.
7343   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7344     if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7345       if (FirstDesignator.isInvalid())
7346         FirstDesignator = DIE->getBeginLoc();
7347 
7348       if (!getLangOpts().CPlusPlus)
7349         break;
7350 
7351       if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7352         DiagnosedNestedDesignator = true;
7353         Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7354           << DIE->getDesignatorsSourceRange();
7355       }
7356 
7357       for (auto &Desig : DIE->designators()) {
7358         if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7359           DiagnosedArrayDesignator = true;
7360           Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7361             << Desig.getSourceRange();
7362         }
7363       }
7364 
7365       if (!DiagnosedMixedDesignator &&
7366           !isa<DesignatedInitExpr>(InitArgList[0])) {
7367         DiagnosedMixedDesignator = true;
7368         Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7369           << DIE->getSourceRange();
7370         Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7371           << InitArgList[0]->getSourceRange();
7372       }
7373     } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7374                isa<DesignatedInitExpr>(InitArgList[0])) {
7375       DiagnosedMixedDesignator = true;
7376       auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7377       Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7378         << DIE->getSourceRange();
7379       Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7380         << InitArgList[I]->getSourceRange();
7381     }
7382   }
7383 
7384   if (FirstDesignator.isValid()) {
7385     // Only diagnose designated initiaization as a C++20 extension if we didn't
7386     // already diagnose use of (non-C++20) C99 designator syntax.
7387     if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7388         !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7389       Diag(FirstDesignator, getLangOpts().CPlusPlus20
7390                                 ? diag::warn_cxx17_compat_designated_init
7391                                 : diag::ext_cxx_designated_init);
7392     } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7393       Diag(FirstDesignator, diag::ext_designated_init);
7394     }
7395   }
7396 
7397   return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7398 }
7399 
7400 ExprResult
7401 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7402                     SourceLocation RBraceLoc) {
7403   // Semantic analysis for initializers is done by ActOnDeclarator() and
7404   // CheckInitializer() - it requires knowledge of the object being initialized.
7405 
7406   // Immediately handle non-overload placeholders.  Overloads can be
7407   // resolved contextually, but everything else here can't.
7408   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7409     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7410       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7411 
7412       // Ignore failures; dropping the entire initializer list because
7413       // of one failure would be terrible for indexing/etc.
7414       if (result.isInvalid()) continue;
7415 
7416       InitArgList[I] = result.get();
7417     }
7418   }
7419 
7420   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7421                                                RBraceLoc);
7422   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7423   return E;
7424 }
7425 
7426 /// Do an explicit extend of the given block pointer if we're in ARC.
7427 void Sema::maybeExtendBlockObject(ExprResult &E) {
7428   assert(E.get()->getType()->isBlockPointerType());
7429   assert(E.get()->isPRValue());
7430 
7431   // Only do this in an r-value context.
7432   if (!getLangOpts().ObjCAutoRefCount) return;
7433 
7434   E = ImplicitCastExpr::Create(
7435       Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7436       /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
7437   Cleanup.setExprNeedsCleanups(true);
7438 }
7439 
7440 /// Prepare a conversion of the given expression to an ObjC object
7441 /// pointer type.
7442 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
7443   QualType type = E.get()->getType();
7444   if (type->isObjCObjectPointerType()) {
7445     return CK_BitCast;
7446   } else if (type->isBlockPointerType()) {
7447     maybeExtendBlockObject(E);
7448     return CK_BlockPointerToObjCPointerCast;
7449   } else {
7450     assert(type->isPointerType());
7451     return CK_CPointerToObjCPointerCast;
7452   }
7453 }
7454 
7455 /// Prepares for a scalar cast, performing all the necessary stages
7456 /// except the final cast and returning the kind required.
7457 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7458   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7459   // Also, callers should have filtered out the invalid cases with
7460   // pointers.  Everything else should be possible.
7461 
7462   QualType SrcTy = Src.get()->getType();
7463   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7464     return CK_NoOp;
7465 
7466   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7467   case Type::STK_MemberPointer:
7468     llvm_unreachable("member pointer type in C");
7469 
7470   case Type::STK_CPointer:
7471   case Type::STK_BlockPointer:
7472   case Type::STK_ObjCObjectPointer:
7473     switch (DestTy->getScalarTypeKind()) {
7474     case Type::STK_CPointer: {
7475       LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7476       LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7477       if (SrcAS != DestAS)
7478         return CK_AddressSpaceConversion;
7479       if (Context.hasCvrSimilarType(SrcTy, DestTy))
7480         return CK_NoOp;
7481       return CK_BitCast;
7482     }
7483     case Type::STK_BlockPointer:
7484       return (SrcKind == Type::STK_BlockPointer
7485                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7486     case Type::STK_ObjCObjectPointer:
7487       if (SrcKind == Type::STK_ObjCObjectPointer)
7488         return CK_BitCast;
7489       if (SrcKind == Type::STK_CPointer)
7490         return CK_CPointerToObjCPointerCast;
7491       maybeExtendBlockObject(Src);
7492       return CK_BlockPointerToObjCPointerCast;
7493     case Type::STK_Bool:
7494       return CK_PointerToBoolean;
7495     case Type::STK_Integral:
7496       return CK_PointerToIntegral;
7497     case Type::STK_Floating:
7498     case Type::STK_FloatingComplex:
7499     case Type::STK_IntegralComplex:
7500     case Type::STK_MemberPointer:
7501     case Type::STK_FixedPoint:
7502       llvm_unreachable("illegal cast from pointer");
7503     }
7504     llvm_unreachable("Should have returned before this");
7505 
7506   case Type::STK_FixedPoint:
7507     switch (DestTy->getScalarTypeKind()) {
7508     case Type::STK_FixedPoint:
7509       return CK_FixedPointCast;
7510     case Type::STK_Bool:
7511       return CK_FixedPointToBoolean;
7512     case Type::STK_Integral:
7513       return CK_FixedPointToIntegral;
7514     case Type::STK_Floating:
7515       return CK_FixedPointToFloating;
7516     case Type::STK_IntegralComplex:
7517     case Type::STK_FloatingComplex:
7518       Diag(Src.get()->getExprLoc(),
7519            diag::err_unimplemented_conversion_with_fixed_point_type)
7520           << DestTy;
7521       return CK_IntegralCast;
7522     case Type::STK_CPointer:
7523     case Type::STK_ObjCObjectPointer:
7524     case Type::STK_BlockPointer:
7525     case Type::STK_MemberPointer:
7526       llvm_unreachable("illegal cast to pointer type");
7527     }
7528     llvm_unreachable("Should have returned before this");
7529 
7530   case Type::STK_Bool: // casting from bool is like casting from an integer
7531   case Type::STK_Integral:
7532     switch (DestTy->getScalarTypeKind()) {
7533     case Type::STK_CPointer:
7534     case Type::STK_ObjCObjectPointer:
7535     case Type::STK_BlockPointer:
7536       if (Src.get()->isNullPointerConstant(Context,
7537                                            Expr::NPC_ValueDependentIsNull))
7538         return CK_NullToPointer;
7539       return CK_IntegralToPointer;
7540     case Type::STK_Bool:
7541       return CK_IntegralToBoolean;
7542     case Type::STK_Integral:
7543       return CK_IntegralCast;
7544     case Type::STK_Floating:
7545       return CK_IntegralToFloating;
7546     case Type::STK_IntegralComplex:
7547       Src = ImpCastExprToType(Src.get(),
7548                       DestTy->castAs<ComplexType>()->getElementType(),
7549                       CK_IntegralCast);
7550       return CK_IntegralRealToComplex;
7551     case Type::STK_FloatingComplex:
7552       Src = ImpCastExprToType(Src.get(),
7553                       DestTy->castAs<ComplexType>()->getElementType(),
7554                       CK_IntegralToFloating);
7555       return CK_FloatingRealToComplex;
7556     case Type::STK_MemberPointer:
7557       llvm_unreachable("member pointer type in C");
7558     case Type::STK_FixedPoint:
7559       return CK_IntegralToFixedPoint;
7560     }
7561     llvm_unreachable("Should have returned before this");
7562 
7563   case Type::STK_Floating:
7564     switch (DestTy->getScalarTypeKind()) {
7565     case Type::STK_Floating:
7566       return CK_FloatingCast;
7567     case Type::STK_Bool:
7568       return CK_FloatingToBoolean;
7569     case Type::STK_Integral:
7570       return CK_FloatingToIntegral;
7571     case Type::STK_FloatingComplex:
7572       Src = ImpCastExprToType(Src.get(),
7573                               DestTy->castAs<ComplexType>()->getElementType(),
7574                               CK_FloatingCast);
7575       return CK_FloatingRealToComplex;
7576     case Type::STK_IntegralComplex:
7577       Src = ImpCastExprToType(Src.get(),
7578                               DestTy->castAs<ComplexType>()->getElementType(),
7579                               CK_FloatingToIntegral);
7580       return CK_IntegralRealToComplex;
7581     case Type::STK_CPointer:
7582     case Type::STK_ObjCObjectPointer:
7583     case Type::STK_BlockPointer:
7584       llvm_unreachable("valid float->pointer cast?");
7585     case Type::STK_MemberPointer:
7586       llvm_unreachable("member pointer type in C");
7587     case Type::STK_FixedPoint:
7588       return CK_FloatingToFixedPoint;
7589     }
7590     llvm_unreachable("Should have returned before this");
7591 
7592   case Type::STK_FloatingComplex:
7593     switch (DestTy->getScalarTypeKind()) {
7594     case Type::STK_FloatingComplex:
7595       return CK_FloatingComplexCast;
7596     case Type::STK_IntegralComplex:
7597       return CK_FloatingComplexToIntegralComplex;
7598     case Type::STK_Floating: {
7599       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7600       if (Context.hasSameType(ET, DestTy))
7601         return CK_FloatingComplexToReal;
7602       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7603       return CK_FloatingCast;
7604     }
7605     case Type::STK_Bool:
7606       return CK_FloatingComplexToBoolean;
7607     case Type::STK_Integral:
7608       Src = ImpCastExprToType(Src.get(),
7609                               SrcTy->castAs<ComplexType>()->getElementType(),
7610                               CK_FloatingComplexToReal);
7611       return CK_FloatingToIntegral;
7612     case Type::STK_CPointer:
7613     case Type::STK_ObjCObjectPointer:
7614     case Type::STK_BlockPointer:
7615       llvm_unreachable("valid complex float->pointer cast?");
7616     case Type::STK_MemberPointer:
7617       llvm_unreachable("member pointer type in C");
7618     case Type::STK_FixedPoint:
7619       Diag(Src.get()->getExprLoc(),
7620            diag::err_unimplemented_conversion_with_fixed_point_type)
7621           << SrcTy;
7622       return CK_IntegralCast;
7623     }
7624     llvm_unreachable("Should have returned before this");
7625 
7626   case Type::STK_IntegralComplex:
7627     switch (DestTy->getScalarTypeKind()) {
7628     case Type::STK_FloatingComplex:
7629       return CK_IntegralComplexToFloatingComplex;
7630     case Type::STK_IntegralComplex:
7631       return CK_IntegralComplexCast;
7632     case Type::STK_Integral: {
7633       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7634       if (Context.hasSameType(ET, DestTy))
7635         return CK_IntegralComplexToReal;
7636       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7637       return CK_IntegralCast;
7638     }
7639     case Type::STK_Bool:
7640       return CK_IntegralComplexToBoolean;
7641     case Type::STK_Floating:
7642       Src = ImpCastExprToType(Src.get(),
7643                               SrcTy->castAs<ComplexType>()->getElementType(),
7644                               CK_IntegralComplexToReal);
7645       return CK_IntegralToFloating;
7646     case Type::STK_CPointer:
7647     case Type::STK_ObjCObjectPointer:
7648     case Type::STK_BlockPointer:
7649       llvm_unreachable("valid complex int->pointer cast?");
7650     case Type::STK_MemberPointer:
7651       llvm_unreachable("member pointer type in C");
7652     case Type::STK_FixedPoint:
7653       Diag(Src.get()->getExprLoc(),
7654            diag::err_unimplemented_conversion_with_fixed_point_type)
7655           << SrcTy;
7656       return CK_IntegralCast;
7657     }
7658     llvm_unreachable("Should have returned before this");
7659   }
7660 
7661   llvm_unreachable("Unhandled scalar cast");
7662 }
7663 
7664 static bool breakDownVectorType(QualType type, uint64_t &len,
7665                                 QualType &eltType) {
7666   // Vectors are simple.
7667   if (const VectorType *vecType = type->getAs<VectorType>()) {
7668     len = vecType->getNumElements();
7669     eltType = vecType->getElementType();
7670     assert(eltType->isScalarType());
7671     return true;
7672   }
7673 
7674   // We allow lax conversion to and from non-vector types, but only if
7675   // they're real types (i.e. non-complex, non-pointer scalar types).
7676   if (!type->isRealType()) return false;
7677 
7678   len = 1;
7679   eltType = type;
7680   return true;
7681 }
7682 
7683 /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
7684 /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
7685 /// allowed?
7686 ///
7687 /// This will also return false if the two given types do not make sense from
7688 /// the perspective of SVE bitcasts.
7689 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7690   assert(srcTy->isVectorType() || destTy->isVectorType());
7691 
7692   auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7693     if (!FirstType->isSizelessBuiltinType())
7694       return false;
7695 
7696     const auto *VecTy = SecondType->getAs<VectorType>();
7697     return VecTy &&
7698            VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector;
7699   };
7700 
7701   return ValidScalableConversion(srcTy, destTy) ||
7702          ValidScalableConversion(destTy, srcTy);
7703 }
7704 
7705 /// Are the two types matrix types and do they have the same dimensions i.e.
7706 /// do they have the same number of rows and the same number of columns?
7707 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7708   if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7709     return false;
7710 
7711   const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7712   const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7713 
7714   return matSrcType->getNumRows() == matDestType->getNumRows() &&
7715          matSrcType->getNumColumns() == matDestType->getNumColumns();
7716 }
7717 
7718 bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7719   assert(DestTy->isVectorType() || SrcTy->isVectorType());
7720 
7721   uint64_t SrcLen, DestLen;
7722   QualType SrcEltTy, DestEltTy;
7723   if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7724     return false;
7725   if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7726     return false;
7727 
7728   // ASTContext::getTypeSize will return the size rounded up to a
7729   // power of 2, so instead of using that, we need to use the raw
7730   // element size multiplied by the element count.
7731   uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
7732   uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
7733 
7734   return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7735 }
7736 
7737 // This returns true if at least one of the types is an altivec vector.
7738 bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
7739   assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
7740          "expected at least one type to be a vector here");
7741 
7742   bool IsSrcTyAltivec =
7743       SrcTy->isVectorType() && (SrcTy->castAs<VectorType>()->getVectorKind() ==
7744                                 VectorType::AltiVecVector);
7745   bool IsDestTyAltivec = DestTy->isVectorType() &&
7746                          (DestTy->castAs<VectorType>()->getVectorKind() ==
7747                           VectorType::AltiVecVector);
7748 
7749   return (IsSrcTyAltivec || IsDestTyAltivec);
7750 }
7751 
7752 // This returns true if both vectors have the same element type.
7753 bool Sema::areSameVectorElemTypes(QualType SrcTy, QualType DestTy) {
7754   assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
7755          "expected at least one type to be a vector here");
7756 
7757   uint64_t SrcLen, DestLen;
7758   QualType SrcEltTy, DestEltTy;
7759   if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7760     return false;
7761   if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7762     return false;
7763 
7764   return (SrcEltTy == DestEltTy);
7765 }
7766 
7767 /// Are the two types lax-compatible vector types?  That is, given
7768 /// that one of them is a vector, do they have equal storage sizes,
7769 /// where the storage size is the number of elements times the element
7770 /// size?
7771 ///
7772 /// This will also return false if either of the types is neither a
7773 /// vector nor a real type.
7774 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7775   assert(destTy->isVectorType() || srcTy->isVectorType());
7776 
7777   // Disallow lax conversions between scalars and ExtVectors (these
7778   // conversions are allowed for other vector types because common headers
7779   // depend on them).  Most scalar OP ExtVector cases are handled by the
7780   // splat path anyway, which does what we want (convert, not bitcast).
7781   // What this rules out for ExtVectors is crazy things like char4*float.
7782   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7783   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7784 
7785   return areVectorTypesSameSize(srcTy, destTy);
7786 }
7787 
7788 /// Is this a legal conversion between two types, one of which is
7789 /// known to be a vector type?
7790 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7791   assert(destTy->isVectorType() || srcTy->isVectorType());
7792 
7793   switch (Context.getLangOpts().getLaxVectorConversions()) {
7794   case LangOptions::LaxVectorConversionKind::None:
7795     return false;
7796 
7797   case LangOptions::LaxVectorConversionKind::Integer:
7798     if (!srcTy->isIntegralOrEnumerationType()) {
7799       auto *Vec = srcTy->getAs<VectorType>();
7800       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7801         return false;
7802     }
7803     if (!destTy->isIntegralOrEnumerationType()) {
7804       auto *Vec = destTy->getAs<VectorType>();
7805       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7806         return false;
7807     }
7808     // OK, integer (vector) -> integer (vector) bitcast.
7809     break;
7810 
7811     case LangOptions::LaxVectorConversionKind::All:
7812     break;
7813   }
7814 
7815   return areLaxCompatibleVectorTypes(srcTy, destTy);
7816 }
7817 
7818 bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
7819                            CastKind &Kind) {
7820   if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
7821     if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
7822       return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
7823              << DestTy << SrcTy << R;
7824     }
7825   } else if (SrcTy->isMatrixType()) {
7826     return Diag(R.getBegin(),
7827                 diag::err_invalid_conversion_between_matrix_and_type)
7828            << SrcTy << DestTy << R;
7829   } else if (DestTy->isMatrixType()) {
7830     return Diag(R.getBegin(),
7831                 diag::err_invalid_conversion_between_matrix_and_type)
7832            << DestTy << SrcTy << R;
7833   }
7834 
7835   Kind = CK_MatrixCast;
7836   return false;
7837 }
7838 
7839 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7840                            CastKind &Kind) {
7841   assert(VectorTy->isVectorType() && "Not a vector type!");
7842 
7843   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
7844     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
7845       return Diag(R.getBegin(),
7846                   Ty->isVectorType() ?
7847                   diag::err_invalid_conversion_between_vectors :
7848                   diag::err_invalid_conversion_between_vector_and_integer)
7849         << VectorTy << Ty << R;
7850   } else
7851     return Diag(R.getBegin(),
7852                 diag::err_invalid_conversion_between_vector_and_scalar)
7853       << VectorTy << Ty << R;
7854 
7855   Kind = CK_BitCast;
7856   return false;
7857 }
7858 
7859 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7860   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7861 
7862   if (DestElemTy == SplattedExpr->getType())
7863     return SplattedExpr;
7864 
7865   assert(DestElemTy->isFloatingType() ||
7866          DestElemTy->isIntegralOrEnumerationType());
7867 
7868   CastKind CK;
7869   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7870     // OpenCL requires that we convert `true` boolean expressions to -1, but
7871     // only when splatting vectors.
7872     if (DestElemTy->isFloatingType()) {
7873       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7874       // in two steps: boolean to signed integral, then to floating.
7875       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
7876                                                  CK_BooleanToSignedIntegral);
7877       SplattedExpr = CastExprRes.get();
7878       CK = CK_IntegralToFloating;
7879     } else {
7880       CK = CK_BooleanToSignedIntegral;
7881     }
7882   } else {
7883     ExprResult CastExprRes = SplattedExpr;
7884     CK = PrepareScalarCast(CastExprRes, DestElemTy);
7885     if (CastExprRes.isInvalid())
7886       return ExprError();
7887     SplattedExpr = CastExprRes.get();
7888   }
7889   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
7890 }
7891 
7892 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7893                                     Expr *CastExpr, CastKind &Kind) {
7894   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
7895 
7896   QualType SrcTy = CastExpr->getType();
7897 
7898   // If SrcTy is a VectorType, the total size must match to explicitly cast to
7899   // an ExtVectorType.
7900   // In OpenCL, casts between vectors of different types are not allowed.
7901   // (See OpenCL 6.2).
7902   if (SrcTy->isVectorType()) {
7903     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
7904         (getLangOpts().OpenCL &&
7905          !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
7906       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
7907         << DestTy << SrcTy << R;
7908       return ExprError();
7909     }
7910     Kind = CK_BitCast;
7911     return CastExpr;
7912   }
7913 
7914   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
7915   // conversion will take place first from scalar to elt type, and then
7916   // splat from elt type to vector.
7917   if (SrcTy->isPointerType())
7918     return Diag(R.getBegin(),
7919                 diag::err_invalid_conversion_between_vector_and_scalar)
7920       << DestTy << SrcTy << R;
7921 
7922   Kind = CK_VectorSplat;
7923   return prepareVectorSplat(DestTy, CastExpr);
7924 }
7925 
7926 ExprResult
7927 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7928                     Declarator &D, ParsedType &Ty,
7929                     SourceLocation RParenLoc, Expr *CastExpr) {
7930   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
7931          "ActOnCastExpr(): missing type or expr");
7932 
7933   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
7934   if (D.isInvalidType())
7935     return ExprError();
7936 
7937   if (getLangOpts().CPlusPlus) {
7938     // Check that there are no default arguments (C++ only).
7939     CheckExtraCXXDefaultArguments(D);
7940   } else {
7941     // Make sure any TypoExprs have been dealt with.
7942     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
7943     if (!Res.isUsable())
7944       return ExprError();
7945     CastExpr = Res.get();
7946   }
7947 
7948   checkUnusedDeclAttributes(D);
7949 
7950   QualType castType = castTInfo->getType();
7951   Ty = CreateParsedType(castType, castTInfo);
7952 
7953   bool isVectorLiteral = false;
7954 
7955   // Check for an altivec or OpenCL literal,
7956   // i.e. all the elements are integer constants.
7957   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
7958   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
7959   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7960        && castType->isVectorType() && (PE || PLE)) {
7961     if (PLE && PLE->getNumExprs() == 0) {
7962       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
7963       return ExprError();
7964     }
7965     if (PE || PLE->getNumExprs() == 1) {
7966       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
7967       if (!E->isTypeDependent() && !E->getType()->isVectorType())
7968         isVectorLiteral = true;
7969     }
7970     else
7971       isVectorLiteral = true;
7972   }
7973 
7974   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7975   // then handle it as such.
7976   if (isVectorLiteral)
7977     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
7978 
7979   // If the Expr being casted is a ParenListExpr, handle it specially.
7980   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7981   // sequence of BinOp comma operators.
7982   if (isa<ParenListExpr>(CastExpr)) {
7983     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
7984     if (Result.isInvalid()) return ExprError();
7985     CastExpr = Result.get();
7986   }
7987 
7988   if (getLangOpts().CPlusPlus && !castType->isVoidType())
7989     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
7990 
7991   CheckTollFreeBridgeCast(castType, CastExpr);
7992 
7993   CheckObjCBridgeRelatedCast(castType, CastExpr);
7994 
7995   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
7996 
7997   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
7998 }
7999 
8000 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
8001                                     SourceLocation RParenLoc, Expr *E,
8002                                     TypeSourceInfo *TInfo) {
8003   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
8004          "Expected paren or paren list expression");
8005 
8006   Expr **exprs;
8007   unsigned numExprs;
8008   Expr *subExpr;
8009   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
8010   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
8011     LiteralLParenLoc = PE->getLParenLoc();
8012     LiteralRParenLoc = PE->getRParenLoc();
8013     exprs = PE->getExprs();
8014     numExprs = PE->getNumExprs();
8015   } else { // isa<ParenExpr> by assertion at function entrance
8016     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
8017     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
8018     subExpr = cast<ParenExpr>(E)->getSubExpr();
8019     exprs = &subExpr;
8020     numExprs = 1;
8021   }
8022 
8023   QualType Ty = TInfo->getType();
8024   assert(Ty->isVectorType() && "Expected vector type");
8025 
8026   SmallVector<Expr *, 8> initExprs;
8027   const VectorType *VTy = Ty->castAs<VectorType>();
8028   unsigned numElems = VTy->getNumElements();
8029 
8030   // '(...)' form of vector initialization in AltiVec: the number of
8031   // initializers must be one or must match the size of the vector.
8032   // If a single value is specified in the initializer then it will be
8033   // replicated to all the components of the vector
8034   if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
8035                                  VTy->getElementType()))
8036     return ExprError();
8037   if (ShouldSplatAltivecScalarInCast(VTy)) {
8038     // The number of initializers must be one or must match the size of the
8039     // vector. If a single value is specified in the initializer then it will
8040     // be replicated to all the components of the vector
8041     if (numExprs == 1) {
8042       QualType ElemTy = VTy->getElementType();
8043       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8044       if (Literal.isInvalid())
8045         return ExprError();
8046       Literal = ImpCastExprToType(Literal.get(), ElemTy,
8047                                   PrepareScalarCast(Literal, ElemTy));
8048       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8049     }
8050     else if (numExprs < numElems) {
8051       Diag(E->getExprLoc(),
8052            diag::err_incorrect_number_of_vector_initializers);
8053       return ExprError();
8054     }
8055     else
8056       initExprs.append(exprs, exprs + numExprs);
8057   }
8058   else {
8059     // For OpenCL, when the number of initializers is a single value,
8060     // it will be replicated to all components of the vector.
8061     if (getLangOpts().OpenCL &&
8062         VTy->getVectorKind() == VectorType::GenericVector &&
8063         numExprs == 1) {
8064         QualType ElemTy = VTy->getElementType();
8065         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8066         if (Literal.isInvalid())
8067           return ExprError();
8068         Literal = ImpCastExprToType(Literal.get(), ElemTy,
8069                                     PrepareScalarCast(Literal, ElemTy));
8070         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8071     }
8072 
8073     initExprs.append(exprs, exprs + numExprs);
8074   }
8075   // FIXME: This means that pretty-printing the final AST will produce curly
8076   // braces instead of the original commas.
8077   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
8078                                                    initExprs, LiteralRParenLoc);
8079   initE->setType(Ty);
8080   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
8081 }
8082 
8083 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
8084 /// the ParenListExpr into a sequence of comma binary operators.
8085 ExprResult
8086 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
8087   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
8088   if (!E)
8089     return OrigExpr;
8090 
8091   ExprResult Result(E->getExpr(0));
8092 
8093   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
8094     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
8095                         E->getExpr(i));
8096 
8097   if (Result.isInvalid()) return ExprError();
8098 
8099   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
8100 }
8101 
8102 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
8103                                     SourceLocation R,
8104                                     MultiExprArg Val) {
8105   return ParenListExpr::Create(Context, L, Val, R);
8106 }
8107 
8108 /// Emit a specialized diagnostic when one expression is a null pointer
8109 /// constant and the other is not a pointer.  Returns true if a diagnostic is
8110 /// emitted.
8111 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
8112                                       SourceLocation QuestionLoc) {
8113   Expr *NullExpr = LHSExpr;
8114   Expr *NonPointerExpr = RHSExpr;
8115   Expr::NullPointerConstantKind NullKind =
8116       NullExpr->isNullPointerConstant(Context,
8117                                       Expr::NPC_ValueDependentIsNotNull);
8118 
8119   if (NullKind == Expr::NPCK_NotNull) {
8120     NullExpr = RHSExpr;
8121     NonPointerExpr = LHSExpr;
8122     NullKind =
8123         NullExpr->isNullPointerConstant(Context,
8124                                         Expr::NPC_ValueDependentIsNotNull);
8125   }
8126 
8127   if (NullKind == Expr::NPCK_NotNull)
8128     return false;
8129 
8130   if (NullKind == Expr::NPCK_ZeroExpression)
8131     return false;
8132 
8133   if (NullKind == Expr::NPCK_ZeroLiteral) {
8134     // In this case, check to make sure that we got here from a "NULL"
8135     // string in the source code.
8136     NullExpr = NullExpr->IgnoreParenImpCasts();
8137     SourceLocation loc = NullExpr->getExprLoc();
8138     if (!findMacroSpelling(loc, "NULL"))
8139       return false;
8140   }
8141 
8142   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
8143   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
8144       << NonPointerExpr->getType() << DiagType
8145       << NonPointerExpr->getSourceRange();
8146   return true;
8147 }
8148 
8149 /// Return false if the condition expression is valid, true otherwise.
8150 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
8151   QualType CondTy = Cond->getType();
8152 
8153   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
8154   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
8155     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8156       << CondTy << Cond->getSourceRange();
8157     return true;
8158   }
8159 
8160   // C99 6.5.15p2
8161   if (CondTy->isScalarType()) return false;
8162 
8163   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
8164     << CondTy << Cond->getSourceRange();
8165   return true;
8166 }
8167 
8168 /// Handle when one or both operands are void type.
8169 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
8170                                          ExprResult &RHS) {
8171     Expr *LHSExpr = LHS.get();
8172     Expr *RHSExpr = RHS.get();
8173 
8174     if (!LHSExpr->getType()->isVoidType())
8175       S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8176           << RHSExpr->getSourceRange();
8177     if (!RHSExpr->getType()->isVoidType())
8178       S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8179           << LHSExpr->getSourceRange();
8180     LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
8181     RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
8182     return S.Context.VoidTy;
8183 }
8184 
8185 /// Return false if the NullExpr can be promoted to PointerTy,
8186 /// true otherwise.
8187 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
8188                                         QualType PointerTy) {
8189   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
8190       !NullExpr.get()->isNullPointerConstant(S.Context,
8191                                             Expr::NPC_ValueDependentIsNull))
8192     return true;
8193 
8194   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
8195   return false;
8196 }
8197 
8198 /// Checks compatibility between two pointers and return the resulting
8199 /// type.
8200 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
8201                                                      ExprResult &RHS,
8202                                                      SourceLocation Loc) {
8203   QualType LHSTy = LHS.get()->getType();
8204   QualType RHSTy = RHS.get()->getType();
8205 
8206   if (S.Context.hasSameType(LHSTy, RHSTy)) {
8207     // Two identical pointers types are always compatible.
8208     return LHSTy;
8209   }
8210 
8211   QualType lhptee, rhptee;
8212 
8213   // Get the pointee types.
8214   bool IsBlockPointer = false;
8215   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
8216     lhptee = LHSBTy->getPointeeType();
8217     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
8218     IsBlockPointer = true;
8219   } else {
8220     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8221     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8222   }
8223 
8224   // C99 6.5.15p6: If both operands are pointers to compatible types or to
8225   // differently qualified versions of compatible types, the result type is
8226   // a pointer to an appropriately qualified version of the composite
8227   // type.
8228 
8229   // Only CVR-qualifiers exist in the standard, and the differently-qualified
8230   // clause doesn't make sense for our extensions. E.g. address space 2 should
8231   // be incompatible with address space 3: they may live on different devices or
8232   // anything.
8233   Qualifiers lhQual = lhptee.getQualifiers();
8234   Qualifiers rhQual = rhptee.getQualifiers();
8235 
8236   LangAS ResultAddrSpace = LangAS::Default;
8237   LangAS LAddrSpace = lhQual.getAddressSpace();
8238   LangAS RAddrSpace = rhQual.getAddressSpace();
8239 
8240   // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8241   // spaces is disallowed.
8242   if (lhQual.isAddressSpaceSupersetOf(rhQual))
8243     ResultAddrSpace = LAddrSpace;
8244   else if (rhQual.isAddressSpaceSupersetOf(lhQual))
8245     ResultAddrSpace = RAddrSpace;
8246   else {
8247     S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8248         << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8249         << RHS.get()->getSourceRange();
8250     return QualType();
8251   }
8252 
8253   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8254   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8255   lhQual.removeCVRQualifiers();
8256   rhQual.removeCVRQualifiers();
8257 
8258   // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8259   // (C99 6.7.3) for address spaces. We assume that the check should behave in
8260   // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8261   // qual types are compatible iff
8262   //  * corresponded types are compatible
8263   //  * CVR qualifiers are equal
8264   //  * address spaces are equal
8265   // Thus for conditional operator we merge CVR and address space unqualified
8266   // pointees and if there is a composite type we return a pointer to it with
8267   // merged qualifiers.
8268   LHSCastKind =
8269       LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8270   RHSCastKind =
8271       RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8272   lhQual.removeAddressSpace();
8273   rhQual.removeAddressSpace();
8274 
8275   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
8276   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
8277 
8278   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
8279 
8280   if (CompositeTy.isNull()) {
8281     // In this situation, we assume void* type. No especially good
8282     // reason, but this is what gcc does, and we do have to pick
8283     // to get a consistent AST.
8284     QualType incompatTy;
8285     incompatTy = S.Context.getPointerType(
8286         S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8287     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8288     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8289 
8290     // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8291     // for casts between types with incompatible address space qualifiers.
8292     // For the following code the compiler produces casts between global and
8293     // local address spaces of the corresponded innermost pointees:
8294     // local int *global *a;
8295     // global int *global *b;
8296     // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8297     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8298         << LHSTy << RHSTy << LHS.get()->getSourceRange()
8299         << RHS.get()->getSourceRange();
8300 
8301     return incompatTy;
8302   }
8303 
8304   // The pointer types are compatible.
8305   // In case of OpenCL ResultTy should have the address space qualifier
8306   // which is a superset of address spaces of both the 2nd and the 3rd
8307   // operands of the conditional operator.
8308   QualType ResultTy = [&, ResultAddrSpace]() {
8309     if (S.getLangOpts().OpenCL) {
8310       Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8311       CompositeQuals.setAddressSpace(ResultAddrSpace);
8312       return S.Context
8313           .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8314           .withCVRQualifiers(MergedCVRQual);
8315     }
8316     return CompositeTy.withCVRQualifiers(MergedCVRQual);
8317   }();
8318   if (IsBlockPointer)
8319     ResultTy = S.Context.getBlockPointerType(ResultTy);
8320   else
8321     ResultTy = S.Context.getPointerType(ResultTy);
8322 
8323   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8324   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8325   return ResultTy;
8326 }
8327 
8328 /// Return the resulting type when the operands are both block pointers.
8329 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8330                                                           ExprResult &LHS,
8331                                                           ExprResult &RHS,
8332                                                           SourceLocation Loc) {
8333   QualType LHSTy = LHS.get()->getType();
8334   QualType RHSTy = RHS.get()->getType();
8335 
8336   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8337     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8338       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8339       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8340       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8341       return destType;
8342     }
8343     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8344       << LHSTy << RHSTy << LHS.get()->getSourceRange()
8345       << RHS.get()->getSourceRange();
8346     return QualType();
8347   }
8348 
8349   // We have 2 block pointer types.
8350   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8351 }
8352 
8353 /// Return the resulting type when the operands are both pointers.
8354 static QualType
8355 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8356                                             ExprResult &RHS,
8357                                             SourceLocation Loc) {
8358   // get the pointer types
8359   QualType LHSTy = LHS.get()->getType();
8360   QualType RHSTy = RHS.get()->getType();
8361 
8362   // get the "pointed to" types
8363   QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8364   QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8365 
8366   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8367   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8368     // Figure out necessary qualifiers (C99 6.5.15p6)
8369     QualType destPointee
8370       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8371     QualType destType = S.Context.getPointerType(destPointee);
8372     // Add qualifiers if necessary.
8373     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8374     // Promote to void*.
8375     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8376     return destType;
8377   }
8378   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8379     QualType destPointee
8380       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8381     QualType destType = S.Context.getPointerType(destPointee);
8382     // Add qualifiers if necessary.
8383     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8384     // Promote to void*.
8385     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8386     return destType;
8387   }
8388 
8389   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8390 }
8391 
8392 /// Return false if the first expression is not an integer and the second
8393 /// expression is not a pointer, true otherwise.
8394 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8395                                         Expr* PointerExpr, SourceLocation Loc,
8396                                         bool IsIntFirstExpr) {
8397   if (!PointerExpr->getType()->isPointerType() ||
8398       !Int.get()->getType()->isIntegerType())
8399     return false;
8400 
8401   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8402   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8403 
8404   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8405     << Expr1->getType() << Expr2->getType()
8406     << Expr1->getSourceRange() << Expr2->getSourceRange();
8407   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8408                             CK_IntegralToPointer);
8409   return true;
8410 }
8411 
8412 /// Simple conversion between integer and floating point types.
8413 ///
8414 /// Used when handling the OpenCL conditional operator where the
8415 /// condition is a vector while the other operands are scalar.
8416 ///
8417 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8418 /// types are either integer or floating type. Between the two
8419 /// operands, the type with the higher rank is defined as the "result
8420 /// type". The other operand needs to be promoted to the same type. No
8421 /// other type promotion is allowed. We cannot use
8422 /// UsualArithmeticConversions() for this purpose, since it always
8423 /// promotes promotable types.
8424 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8425                                             ExprResult &RHS,
8426                                             SourceLocation QuestionLoc) {
8427   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8428   if (LHS.isInvalid())
8429     return QualType();
8430   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8431   if (RHS.isInvalid())
8432     return QualType();
8433 
8434   // For conversion purposes, we ignore any qualifiers.
8435   // For example, "const float" and "float" are equivalent.
8436   QualType LHSType =
8437     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
8438   QualType RHSType =
8439     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
8440 
8441   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8442     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8443       << LHSType << LHS.get()->getSourceRange();
8444     return QualType();
8445   }
8446 
8447   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8448     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8449       << RHSType << RHS.get()->getSourceRange();
8450     return QualType();
8451   }
8452 
8453   // If both types are identical, no conversion is needed.
8454   if (LHSType == RHSType)
8455     return LHSType;
8456 
8457   // Now handle "real" floating types (i.e. float, double, long double).
8458   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8459     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8460                                  /*IsCompAssign = */ false);
8461 
8462   // Finally, we have two differing integer types.
8463   return handleIntegerConversion<doIntegralCast, doIntegralCast>
8464   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8465 }
8466 
8467 /// Convert scalar operands to a vector that matches the
8468 ///        condition in length.
8469 ///
8470 /// Used when handling the OpenCL conditional operator where the
8471 /// condition is a vector while the other operands are scalar.
8472 ///
8473 /// We first compute the "result type" for the scalar operands
8474 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8475 /// into a vector of that type where the length matches the condition
8476 /// vector type. s6.11.6 requires that the element types of the result
8477 /// and the condition must have the same number of bits.
8478 static QualType
8479 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8480                               QualType CondTy, SourceLocation QuestionLoc) {
8481   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8482   if (ResTy.isNull()) return QualType();
8483 
8484   const VectorType *CV = CondTy->getAs<VectorType>();
8485   assert(CV);
8486 
8487   // Determine the vector result type
8488   unsigned NumElements = CV->getNumElements();
8489   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
8490 
8491   // Ensure that all types have the same number of bits
8492   if (S.Context.getTypeSize(CV->getElementType())
8493       != S.Context.getTypeSize(ResTy)) {
8494     // Since VectorTy is created internally, it does not pretty print
8495     // with an OpenCL name. Instead, we just print a description.
8496     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8497     SmallString<64> Str;
8498     llvm::raw_svector_ostream OS(Str);
8499     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8500     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8501       << CondTy << OS.str();
8502     return QualType();
8503   }
8504 
8505   // Convert operands to the vector result type
8506   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8507   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8508 
8509   return VectorTy;
8510 }
8511 
8512 /// Return false if this is a valid OpenCL condition vector
8513 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8514                                        SourceLocation QuestionLoc) {
8515   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8516   // integral type.
8517   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8518   assert(CondTy);
8519   QualType EleTy = CondTy->getElementType();
8520   if (EleTy->isIntegerType()) return false;
8521 
8522   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8523     << Cond->getType() << Cond->getSourceRange();
8524   return true;
8525 }
8526 
8527 /// Return false if the vector condition type and the vector
8528 ///        result type are compatible.
8529 ///
8530 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8531 /// number of elements, and their element types have the same number
8532 /// of bits.
8533 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8534                               SourceLocation QuestionLoc) {
8535   const VectorType *CV = CondTy->getAs<VectorType>();
8536   const VectorType *RV = VecResTy->getAs<VectorType>();
8537   assert(CV && RV);
8538 
8539   if (CV->getNumElements() != RV->getNumElements()) {
8540     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8541       << CondTy << VecResTy;
8542     return true;
8543   }
8544 
8545   QualType CVE = CV->getElementType();
8546   QualType RVE = RV->getElementType();
8547 
8548   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8549     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8550       << CondTy << VecResTy;
8551     return true;
8552   }
8553 
8554   return false;
8555 }
8556 
8557 /// Return the resulting type for the conditional operator in
8558 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
8559 ///        s6.3.i) when the condition is a vector type.
8560 static QualType
8561 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8562                              ExprResult &LHS, ExprResult &RHS,
8563                              SourceLocation QuestionLoc) {
8564   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8565   if (Cond.isInvalid())
8566     return QualType();
8567   QualType CondTy = Cond.get()->getType();
8568 
8569   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8570     return QualType();
8571 
8572   // If either operand is a vector then find the vector type of the
8573   // result as specified in OpenCL v1.1 s6.3.i.
8574   if (LHS.get()->getType()->isVectorType() ||
8575       RHS.get()->getType()->isVectorType()) {
8576     bool IsBoolVecLang =
8577         !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
8578     QualType VecResTy =
8579         S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8580                               /*isCompAssign*/ false,
8581                               /*AllowBothBool*/ true,
8582                               /*AllowBoolConversions*/ false,
8583                               /*AllowBooleanOperation*/ IsBoolVecLang,
8584                               /*ReportInvalid*/ true);
8585     if (VecResTy.isNull())
8586       return QualType();
8587     // The result type must match the condition type as specified in
8588     // OpenCL v1.1 s6.11.6.
8589     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8590       return QualType();
8591     return VecResTy;
8592   }
8593 
8594   // Both operands are scalar.
8595   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8596 }
8597 
8598 /// Return true if the Expr is block type
8599 static bool checkBlockType(Sema &S, const Expr *E) {
8600   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8601     QualType Ty = CE->getCallee()->getType();
8602     if (Ty->isBlockPointerType()) {
8603       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8604       return true;
8605     }
8606   }
8607   return false;
8608 }
8609 
8610 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8611 /// In that case, LHS = cond.
8612 /// C99 6.5.15
8613 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8614                                         ExprResult &RHS, ExprValueKind &VK,
8615                                         ExprObjectKind &OK,
8616                                         SourceLocation QuestionLoc) {
8617 
8618   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8619   if (!LHSResult.isUsable()) return QualType();
8620   LHS = LHSResult;
8621 
8622   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8623   if (!RHSResult.isUsable()) return QualType();
8624   RHS = RHSResult;
8625 
8626   // C++ is sufficiently different to merit its own checker.
8627   if (getLangOpts().CPlusPlus)
8628     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8629 
8630   VK = VK_PRValue;
8631   OK = OK_Ordinary;
8632 
8633   if (Context.isDependenceAllowed() &&
8634       (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8635        RHS.get()->isTypeDependent())) {
8636     assert(!getLangOpts().CPlusPlus);
8637     assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
8638             RHS.get()->containsErrors()) &&
8639            "should only occur in error-recovery path.");
8640     return Context.DependentTy;
8641   }
8642 
8643   // The OpenCL operator with a vector condition is sufficiently
8644   // different to merit its own checker.
8645   if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8646       Cond.get()->getType()->isExtVectorType())
8647     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8648 
8649   // First, check the condition.
8650   Cond = UsualUnaryConversions(Cond.get());
8651   if (Cond.isInvalid())
8652     return QualType();
8653   if (checkCondition(*this, Cond.get(), QuestionLoc))
8654     return QualType();
8655 
8656   // Now check the two expressions.
8657   if (LHS.get()->getType()->isVectorType() ||
8658       RHS.get()->getType()->isVectorType())
8659     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
8660                                /*AllowBothBool*/ true,
8661                                /*AllowBoolConversions*/ false,
8662                                /*AllowBooleanOperation*/ false,
8663                                /*ReportInvalid*/ true);
8664 
8665   QualType ResTy =
8666       UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8667   if (LHS.isInvalid() || RHS.isInvalid())
8668     return QualType();
8669 
8670   QualType LHSTy = LHS.get()->getType();
8671   QualType RHSTy = RHS.get()->getType();
8672 
8673   // Diagnose attempts to convert between __ibm128, __float128 and long double
8674   // where such conversions currently can't be handled.
8675   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8676     Diag(QuestionLoc,
8677          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8678       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8679     return QualType();
8680   }
8681 
8682   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8683   // selection operator (?:).
8684   if (getLangOpts().OpenCL &&
8685       ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
8686     return QualType();
8687   }
8688 
8689   // If both operands have arithmetic type, do the usual arithmetic conversions
8690   // to find a common type: C99 6.5.15p3,5.
8691   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8692     // Disallow invalid arithmetic conversions, such as those between bit-
8693     // precise integers types of different sizes, or between a bit-precise
8694     // integer and another type.
8695     if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
8696       Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8697           << LHSTy << RHSTy << LHS.get()->getSourceRange()
8698           << RHS.get()->getSourceRange();
8699       return QualType();
8700     }
8701 
8702     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8703     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8704 
8705     return ResTy;
8706   }
8707 
8708   // And if they're both bfloat (which isn't arithmetic), that's fine too.
8709   if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
8710     return LHSTy;
8711   }
8712 
8713   // If both operands are the same structure or union type, the result is that
8714   // type.
8715   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
8716     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8717       if (LHSRT->getDecl() == RHSRT->getDecl())
8718         // "If both the operands have structure or union type, the result has
8719         // that type."  This implies that CV qualifiers are dropped.
8720         return LHSTy.getUnqualifiedType();
8721     // FIXME: Type of conditional expression must be complete in C mode.
8722   }
8723 
8724   // C99 6.5.15p5: "If both operands have void type, the result has void type."
8725   // The following || allows only one side to be void (a GCC-ism).
8726   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8727     return checkConditionalVoidType(*this, LHS, RHS);
8728   }
8729 
8730   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8731   // the type of the other operand."
8732   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8733   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8734 
8735   // All objective-c pointer type analysis is done here.
8736   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
8737                                                         QuestionLoc);
8738   if (LHS.isInvalid() || RHS.isInvalid())
8739     return QualType();
8740   if (!compositeType.isNull())
8741     return compositeType;
8742 
8743 
8744   // Handle block pointer types.
8745   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8746     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8747                                                      QuestionLoc);
8748 
8749   // Check constraints for C object pointers types (C99 6.5.15p3,6).
8750   if (LHSTy->isPointerType() && RHSTy->isPointerType())
8751     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8752                                                        QuestionLoc);
8753 
8754   // GCC compatibility: soften pointer/integer mismatch.  Note that
8755   // null pointers have been filtered out by this point.
8756   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
8757       /*IsIntFirstExpr=*/true))
8758     return RHSTy;
8759   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
8760       /*IsIntFirstExpr=*/false))
8761     return LHSTy;
8762 
8763   // Allow ?: operations in which both operands have the same
8764   // built-in sizeless type.
8765   if (LHSTy->isSizelessBuiltinType() && Context.hasSameType(LHSTy, RHSTy))
8766     return LHSTy;
8767 
8768   // Emit a better diagnostic if one of the expressions is a null pointer
8769   // constant and the other is not a pointer type. In this case, the user most
8770   // likely forgot to take the address of the other expression.
8771   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
8772     return QualType();
8773 
8774   // Otherwise, the operands are not compatible.
8775   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8776     << LHSTy << RHSTy << LHS.get()->getSourceRange()
8777     << RHS.get()->getSourceRange();
8778   return QualType();
8779 }
8780 
8781 /// FindCompositeObjCPointerType - Helper method to find composite type of
8782 /// two objective-c pointer types of the two input expressions.
8783 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
8784                                             SourceLocation QuestionLoc) {
8785   QualType LHSTy = LHS.get()->getType();
8786   QualType RHSTy = RHS.get()->getType();
8787 
8788   // Handle things like Class and struct objc_class*.  Here we case the result
8789   // to the pseudo-builtin, because that will be implicitly cast back to the
8790   // redefinition type if an attempt is made to access its fields.
8791   if (LHSTy->isObjCClassType() &&
8792       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
8793     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8794     return LHSTy;
8795   }
8796   if (RHSTy->isObjCClassType() &&
8797       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
8798     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8799     return RHSTy;
8800   }
8801   // And the same for struct objc_object* / id
8802   if (LHSTy->isObjCIdType() &&
8803       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
8804     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8805     return LHSTy;
8806   }
8807   if (RHSTy->isObjCIdType() &&
8808       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
8809     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8810     return RHSTy;
8811   }
8812   // And the same for struct objc_selector* / SEL
8813   if (Context.isObjCSelType(LHSTy) &&
8814       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
8815     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
8816     return LHSTy;
8817   }
8818   if (Context.isObjCSelType(RHSTy) &&
8819       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
8820     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
8821     return RHSTy;
8822   }
8823   // Check constraints for Objective-C object pointers types.
8824   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
8825 
8826     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
8827       // Two identical object pointer types are always compatible.
8828       return LHSTy;
8829     }
8830     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
8831     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
8832     QualType compositeType = LHSTy;
8833 
8834     // If both operands are interfaces and either operand can be
8835     // assigned to the other, use that type as the composite
8836     // type. This allows
8837     //   xxx ? (A*) a : (B*) b
8838     // where B is a subclass of A.
8839     //
8840     // Additionally, as for assignment, if either type is 'id'
8841     // allow silent coercion. Finally, if the types are
8842     // incompatible then make sure to use 'id' as the composite
8843     // type so the result is acceptable for sending messages to.
8844 
8845     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
8846     // It could return the composite type.
8847     if (!(compositeType =
8848           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
8849       // Nothing more to do.
8850     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
8851       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
8852     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
8853       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
8854     } else if ((LHSOPT->isObjCQualifiedIdType() ||
8855                 RHSOPT->isObjCQualifiedIdType()) &&
8856                Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
8857                                                          true)) {
8858       // Need to handle "id<xx>" explicitly.
8859       // GCC allows qualified id and any Objective-C type to devolve to
8860       // id. Currently localizing to here until clear this should be
8861       // part of ObjCQualifiedIdTypesAreCompatible.
8862       compositeType = Context.getObjCIdType();
8863     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
8864       compositeType = Context.getObjCIdType();
8865     } else {
8866       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
8867       << LHSTy << RHSTy
8868       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8869       QualType incompatTy = Context.getObjCIdType();
8870       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
8871       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
8872       return incompatTy;
8873     }
8874     // The object pointer types are compatible.
8875     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
8876     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
8877     return compositeType;
8878   }
8879   // Check Objective-C object pointer types and 'void *'
8880   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
8881     if (getLangOpts().ObjCAutoRefCount) {
8882       // ARC forbids the implicit conversion of object pointers to 'void *',
8883       // so these types are not compatible.
8884       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8885           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8886       LHS = RHS = true;
8887       return QualType();
8888     }
8889     QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8890     QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8891     QualType destPointee
8892     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8893     QualType destType = Context.getPointerType(destPointee);
8894     // Add qualifiers if necessary.
8895     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8896     // Promote to void*.
8897     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8898     return destType;
8899   }
8900   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
8901     if (getLangOpts().ObjCAutoRefCount) {
8902       // ARC forbids the implicit conversion of object pointers to 'void *',
8903       // so these types are not compatible.
8904       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8905           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8906       LHS = RHS = true;
8907       return QualType();
8908     }
8909     QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8910     QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8911     QualType destPointee
8912     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8913     QualType destType = Context.getPointerType(destPointee);
8914     // Add qualifiers if necessary.
8915     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8916     // Promote to void*.
8917     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8918     return destType;
8919   }
8920   return QualType();
8921 }
8922 
8923 /// SuggestParentheses - Emit a note with a fixit hint that wraps
8924 /// ParenRange in parentheses.
8925 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8926                                const PartialDiagnostic &Note,
8927                                SourceRange ParenRange) {
8928   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
8929   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8930       EndLoc.isValid()) {
8931     Self.Diag(Loc, Note)
8932       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
8933       << FixItHint::CreateInsertion(EndLoc, ")");
8934   } else {
8935     // We can't display the parentheses, so just show the bare note.
8936     Self.Diag(Loc, Note) << ParenRange;
8937   }
8938 }
8939 
8940 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8941   return BinaryOperator::isAdditiveOp(Opc) ||
8942          BinaryOperator::isMultiplicativeOp(Opc) ||
8943          BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8944   // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8945   // not any of the logical operators.  Bitwise-xor is commonly used as a
8946   // logical-xor because there is no logical-xor operator.  The logical
8947   // operators, including uses of xor, have a high false positive rate for
8948   // precedence warnings.
8949 }
8950 
8951 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8952 /// expression, either using a built-in or overloaded operator,
8953 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8954 /// expression.
8955 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
8956                                    Expr **RHSExprs) {
8957   // Don't strip parenthesis: we should not warn if E is in parenthesis.
8958   E = E->IgnoreImpCasts();
8959   E = E->IgnoreConversionOperatorSingleStep();
8960   E = E->IgnoreImpCasts();
8961   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
8962     E = MTE->getSubExpr();
8963     E = E->IgnoreImpCasts();
8964   }
8965 
8966   // Built-in binary operator.
8967   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
8968     if (IsArithmeticOp(OP->getOpcode())) {
8969       *Opcode = OP->getOpcode();
8970       *RHSExprs = OP->getRHS();
8971       return true;
8972     }
8973   }
8974 
8975   // Overloaded operator.
8976   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
8977     if (Call->getNumArgs() != 2)
8978       return false;
8979 
8980     // Make sure this is really a binary operator that is safe to pass into
8981     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8982     OverloadedOperatorKind OO = Call->getOperator();
8983     if (OO < OO_Plus || OO > OO_Arrow ||
8984         OO == OO_PlusPlus || OO == OO_MinusMinus)
8985       return false;
8986 
8987     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8988     if (IsArithmeticOp(OpKind)) {
8989       *Opcode = OpKind;
8990       *RHSExprs = Call->getArg(1);
8991       return true;
8992     }
8993   }
8994 
8995   return false;
8996 }
8997 
8998 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8999 /// or is a logical expression such as (x==y) which has int type, but is
9000 /// commonly interpreted as boolean.
9001 static bool ExprLooksBoolean(Expr *E) {
9002   E = E->IgnoreParenImpCasts();
9003 
9004   if (E->getType()->isBooleanType())
9005     return true;
9006   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
9007     return OP->isComparisonOp() || OP->isLogicalOp();
9008   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
9009     return OP->getOpcode() == UO_LNot;
9010   if (E->getType()->isPointerType())
9011     return true;
9012   // FIXME: What about overloaded operator calls returning "unspecified boolean
9013   // type"s (commonly pointer-to-members)?
9014 
9015   return false;
9016 }
9017 
9018 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
9019 /// and binary operator are mixed in a way that suggests the programmer assumed
9020 /// the conditional operator has higher precedence, for example:
9021 /// "int x = a + someBinaryCondition ? 1 : 2".
9022 static void DiagnoseConditionalPrecedence(Sema &Self,
9023                                           SourceLocation OpLoc,
9024                                           Expr *Condition,
9025                                           Expr *LHSExpr,
9026                                           Expr *RHSExpr) {
9027   BinaryOperatorKind CondOpcode;
9028   Expr *CondRHS;
9029 
9030   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
9031     return;
9032   if (!ExprLooksBoolean(CondRHS))
9033     return;
9034 
9035   // The condition is an arithmetic binary expression, with a right-
9036   // hand side that looks boolean, so warn.
9037 
9038   unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
9039                         ? diag::warn_precedence_bitwise_conditional
9040                         : diag::warn_precedence_conditional;
9041 
9042   Self.Diag(OpLoc, DiagID)
9043       << Condition->getSourceRange()
9044       << BinaryOperator::getOpcodeStr(CondOpcode);
9045 
9046   SuggestParentheses(
9047       Self, OpLoc,
9048       Self.PDiag(diag::note_precedence_silence)
9049           << BinaryOperator::getOpcodeStr(CondOpcode),
9050       SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
9051 
9052   SuggestParentheses(Self, OpLoc,
9053                      Self.PDiag(diag::note_precedence_conditional_first),
9054                      SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
9055 }
9056 
9057 /// Compute the nullability of a conditional expression.
9058 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
9059                                               QualType LHSTy, QualType RHSTy,
9060                                               ASTContext &Ctx) {
9061   if (!ResTy->isAnyPointerType())
9062     return ResTy;
9063 
9064   auto GetNullability = [&Ctx](QualType Ty) {
9065     Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
9066     if (Kind) {
9067       // For our purposes, treat _Nullable_result as _Nullable.
9068       if (*Kind == NullabilityKind::NullableResult)
9069         return NullabilityKind::Nullable;
9070       return *Kind;
9071     }
9072     return NullabilityKind::Unspecified;
9073   };
9074 
9075   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
9076   NullabilityKind MergedKind;
9077 
9078   // Compute nullability of a binary conditional expression.
9079   if (IsBin) {
9080     if (LHSKind == NullabilityKind::NonNull)
9081       MergedKind = NullabilityKind::NonNull;
9082     else
9083       MergedKind = RHSKind;
9084   // Compute nullability of a normal conditional expression.
9085   } else {
9086     if (LHSKind == NullabilityKind::Nullable ||
9087         RHSKind == NullabilityKind::Nullable)
9088       MergedKind = NullabilityKind::Nullable;
9089     else if (LHSKind == NullabilityKind::NonNull)
9090       MergedKind = RHSKind;
9091     else if (RHSKind == NullabilityKind::NonNull)
9092       MergedKind = LHSKind;
9093     else
9094       MergedKind = NullabilityKind::Unspecified;
9095   }
9096 
9097   // Return if ResTy already has the correct nullability.
9098   if (GetNullability(ResTy) == MergedKind)
9099     return ResTy;
9100 
9101   // Strip all nullability from ResTy.
9102   while (ResTy->getNullability(Ctx))
9103     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
9104 
9105   // Create a new AttributedType with the new nullability kind.
9106   auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
9107   return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
9108 }
9109 
9110 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
9111 /// in the case of a the GNU conditional expr extension.
9112 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
9113                                     SourceLocation ColonLoc,
9114                                     Expr *CondExpr, Expr *LHSExpr,
9115                                     Expr *RHSExpr) {
9116   if (!Context.isDependenceAllowed()) {
9117     // C cannot handle TypoExpr nodes in the condition because it
9118     // doesn't handle dependent types properly, so make sure any TypoExprs have
9119     // been dealt with before checking the operands.
9120     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
9121     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
9122     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
9123 
9124     if (!CondResult.isUsable())
9125       return ExprError();
9126 
9127     if (LHSExpr) {
9128       if (!LHSResult.isUsable())
9129         return ExprError();
9130     }
9131 
9132     if (!RHSResult.isUsable())
9133       return ExprError();
9134 
9135     CondExpr = CondResult.get();
9136     LHSExpr = LHSResult.get();
9137     RHSExpr = RHSResult.get();
9138   }
9139 
9140   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
9141   // was the condition.
9142   OpaqueValueExpr *opaqueValue = nullptr;
9143   Expr *commonExpr = nullptr;
9144   if (!LHSExpr) {
9145     commonExpr = CondExpr;
9146     // Lower out placeholder types first.  This is important so that we don't
9147     // try to capture a placeholder. This happens in few cases in C++; such
9148     // as Objective-C++'s dictionary subscripting syntax.
9149     if (commonExpr->hasPlaceholderType()) {
9150       ExprResult result = CheckPlaceholderExpr(commonExpr);
9151       if (!result.isUsable()) return ExprError();
9152       commonExpr = result.get();
9153     }
9154     // We usually want to apply unary conversions *before* saving, except
9155     // in the special case of a C++ l-value conditional.
9156     if (!(getLangOpts().CPlusPlus
9157           && !commonExpr->isTypeDependent()
9158           && commonExpr->getValueKind() == RHSExpr->getValueKind()
9159           && commonExpr->isGLValue()
9160           && commonExpr->isOrdinaryOrBitFieldObject()
9161           && RHSExpr->isOrdinaryOrBitFieldObject()
9162           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
9163       ExprResult commonRes = UsualUnaryConversions(commonExpr);
9164       if (commonRes.isInvalid())
9165         return ExprError();
9166       commonExpr = commonRes.get();
9167     }
9168 
9169     // If the common expression is a class or array prvalue, materialize it
9170     // so that we can safely refer to it multiple times.
9171     if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
9172                                     commonExpr->getType()->isArrayType())) {
9173       ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
9174       if (MatExpr.isInvalid())
9175         return ExprError();
9176       commonExpr = MatExpr.get();
9177     }
9178 
9179     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
9180                                                 commonExpr->getType(),
9181                                                 commonExpr->getValueKind(),
9182                                                 commonExpr->getObjectKind(),
9183                                                 commonExpr);
9184     LHSExpr = CondExpr = opaqueValue;
9185   }
9186 
9187   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
9188   ExprValueKind VK = VK_PRValue;
9189   ExprObjectKind OK = OK_Ordinary;
9190   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
9191   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
9192                                              VK, OK, QuestionLoc);
9193   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
9194       RHS.isInvalid())
9195     return ExprError();
9196 
9197   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
9198                                 RHS.get());
9199 
9200   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
9201 
9202   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
9203                                          Context);
9204 
9205   if (!commonExpr)
9206     return new (Context)
9207         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
9208                             RHS.get(), result, VK, OK);
9209 
9210   return new (Context) BinaryConditionalOperator(
9211       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
9212       ColonLoc, result, VK, OK);
9213 }
9214 
9215 // Check if we have a conversion between incompatible cmse function pointer
9216 // types, that is, a conversion between a function pointer with the
9217 // cmse_nonsecure_call attribute and one without.
9218 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
9219                                           QualType ToType) {
9220   if (const auto *ToFn =
9221           dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
9222     if (const auto *FromFn =
9223             dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
9224       FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
9225       FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
9226 
9227       return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
9228     }
9229   }
9230   return false;
9231 }
9232 
9233 // checkPointerTypesForAssignment - This is a very tricky routine (despite
9234 // being closely modeled after the C99 spec:-). The odd characteristic of this
9235 // routine is it effectively iqnores the qualifiers on the top level pointee.
9236 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
9237 // FIXME: add a couple examples in this comment.
9238 static Sema::AssignConvertType
9239 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
9240   assert(LHSType.isCanonical() && "LHS not canonicalized!");
9241   assert(RHSType.isCanonical() && "RHS not canonicalized!");
9242 
9243   // get the "pointed to" type (ignoring qualifiers at the top level)
9244   const Type *lhptee, *rhptee;
9245   Qualifiers lhq, rhq;
9246   std::tie(lhptee, lhq) =
9247       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
9248   std::tie(rhptee, rhq) =
9249       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
9250 
9251   Sema::AssignConvertType ConvTy = Sema::Compatible;
9252 
9253   // C99 6.5.16.1p1: This following citation is common to constraints
9254   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9255   // qualifiers of the type *pointed to* by the right;
9256 
9257   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9258   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
9259       lhq.compatiblyIncludesObjCLifetime(rhq)) {
9260     // Ignore lifetime for further calculation.
9261     lhq.removeObjCLifetime();
9262     rhq.removeObjCLifetime();
9263   }
9264 
9265   if (!lhq.compatiblyIncludes(rhq)) {
9266     // Treat address-space mismatches as fatal.
9267     if (!lhq.isAddressSpaceSupersetOf(rhq))
9268       return Sema::IncompatiblePointerDiscardsQualifiers;
9269 
9270     // It's okay to add or remove GC or lifetime qualifiers when converting to
9271     // and from void*.
9272     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
9273                         .compatiblyIncludes(
9274                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
9275              && (lhptee->isVoidType() || rhptee->isVoidType()))
9276       ; // keep old
9277 
9278     // Treat lifetime mismatches as fatal.
9279     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
9280       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
9281 
9282     // For GCC/MS compatibility, other qualifier mismatches are treated
9283     // as still compatible in C.
9284     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9285   }
9286 
9287   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9288   // incomplete type and the other is a pointer to a qualified or unqualified
9289   // version of void...
9290   if (lhptee->isVoidType()) {
9291     if (rhptee->isIncompleteOrObjectType())
9292       return ConvTy;
9293 
9294     // As an extension, we allow cast to/from void* to function pointer.
9295     assert(rhptee->isFunctionType());
9296     return Sema::FunctionVoidPointer;
9297   }
9298 
9299   if (rhptee->isVoidType()) {
9300     if (lhptee->isIncompleteOrObjectType())
9301       return ConvTy;
9302 
9303     // As an extension, we allow cast to/from void* to function pointer.
9304     assert(lhptee->isFunctionType());
9305     return Sema::FunctionVoidPointer;
9306   }
9307 
9308   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9309   // unqualified versions of compatible types, ...
9310   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9311   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9312     // Check if the pointee types are compatible ignoring the sign.
9313     // We explicitly check for char so that we catch "char" vs
9314     // "unsigned char" on systems where "char" is unsigned.
9315     if (lhptee->isCharType())
9316       ltrans = S.Context.UnsignedCharTy;
9317     else if (lhptee->hasSignedIntegerRepresentation())
9318       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9319 
9320     if (rhptee->isCharType())
9321       rtrans = S.Context.UnsignedCharTy;
9322     else if (rhptee->hasSignedIntegerRepresentation())
9323       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9324 
9325     if (ltrans == rtrans) {
9326       // Types are compatible ignoring the sign. Qualifier incompatibility
9327       // takes priority over sign incompatibility because the sign
9328       // warning can be disabled.
9329       if (ConvTy != Sema::Compatible)
9330         return ConvTy;
9331 
9332       return Sema::IncompatiblePointerSign;
9333     }
9334 
9335     // If we are a multi-level pointer, it's possible that our issue is simply
9336     // one of qualification - e.g. char ** -> const char ** is not allowed. If
9337     // the eventual target type is the same and the pointers have the same
9338     // level of indirection, this must be the issue.
9339     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9340       do {
9341         std::tie(lhptee, lhq) =
9342           cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9343         std::tie(rhptee, rhq) =
9344           cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9345 
9346         // Inconsistent address spaces at this point is invalid, even if the
9347         // address spaces would be compatible.
9348         // FIXME: This doesn't catch address space mismatches for pointers of
9349         // different nesting levels, like:
9350         //   __local int *** a;
9351         //   int ** b = a;
9352         // It's not clear how to actually determine when such pointers are
9353         // invalidly incompatible.
9354         if (lhq.getAddressSpace() != rhq.getAddressSpace())
9355           return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9356 
9357       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9358 
9359       if (lhptee == rhptee)
9360         return Sema::IncompatibleNestedPointerQualifiers;
9361     }
9362 
9363     // General pointer incompatibility takes priority over qualifiers.
9364     if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9365       return Sema::IncompatibleFunctionPointer;
9366     return Sema::IncompatiblePointer;
9367   }
9368   if (!S.getLangOpts().CPlusPlus &&
9369       S.IsFunctionConversion(ltrans, rtrans, ltrans))
9370     return Sema::IncompatibleFunctionPointer;
9371   if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
9372     return Sema::IncompatibleFunctionPointer;
9373   return ConvTy;
9374 }
9375 
9376 /// checkBlockPointerTypesForAssignment - This routine determines whether two
9377 /// block pointer types are compatible or whether a block and normal pointer
9378 /// are compatible. It is more restrict than comparing two function pointer
9379 // types.
9380 static Sema::AssignConvertType
9381 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
9382                                     QualType RHSType) {
9383   assert(LHSType.isCanonical() && "LHS not canonicalized!");
9384   assert(RHSType.isCanonical() && "RHS not canonicalized!");
9385 
9386   QualType lhptee, rhptee;
9387 
9388   // get the "pointed to" type (ignoring qualifiers at the top level)
9389   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
9390   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
9391 
9392   // In C++, the types have to match exactly.
9393   if (S.getLangOpts().CPlusPlus)
9394     return Sema::IncompatibleBlockPointer;
9395 
9396   Sema::AssignConvertType ConvTy = Sema::Compatible;
9397 
9398   // For blocks we enforce that qualifiers are identical.
9399   Qualifiers LQuals = lhptee.getLocalQualifiers();
9400   Qualifiers RQuals = rhptee.getLocalQualifiers();
9401   if (S.getLangOpts().OpenCL) {
9402     LQuals.removeAddressSpace();
9403     RQuals.removeAddressSpace();
9404   }
9405   if (LQuals != RQuals)
9406     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9407 
9408   // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9409   // assignment.
9410   // The current behavior is similar to C++ lambdas. A block might be
9411   // assigned to a variable iff its return type and parameters are compatible
9412   // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9413   // an assignment. Presumably it should behave in way that a function pointer
9414   // assignment does in C, so for each parameter and return type:
9415   //  * CVR and address space of LHS should be a superset of CVR and address
9416   //  space of RHS.
9417   //  * unqualified types should be compatible.
9418   if (S.getLangOpts().OpenCL) {
9419     if (!S.Context.typesAreBlockPointerCompatible(
9420             S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
9421             S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
9422       return Sema::IncompatibleBlockPointer;
9423   } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9424     return Sema::IncompatibleBlockPointer;
9425 
9426   return ConvTy;
9427 }
9428 
9429 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9430 /// for assignment compatibility.
9431 static Sema::AssignConvertType
9432 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
9433                                    QualType RHSType) {
9434   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
9435   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
9436 
9437   if (LHSType->isObjCBuiltinType()) {
9438     // Class is not compatible with ObjC object pointers.
9439     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9440         !RHSType->isObjCQualifiedClassType())
9441       return Sema::IncompatiblePointer;
9442     return Sema::Compatible;
9443   }
9444   if (RHSType->isObjCBuiltinType()) {
9445     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9446         !LHSType->isObjCQualifiedClassType())
9447       return Sema::IncompatiblePointer;
9448     return Sema::Compatible;
9449   }
9450   QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9451   QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9452 
9453   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
9454       // make an exception for id<P>
9455       !LHSType->isObjCQualifiedIdType())
9456     return Sema::CompatiblePointerDiscardsQualifiers;
9457 
9458   if (S.Context.typesAreCompatible(LHSType, RHSType))
9459     return Sema::Compatible;
9460   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9461     return Sema::IncompatibleObjCQualifiedId;
9462   return Sema::IncompatiblePointer;
9463 }
9464 
9465 Sema::AssignConvertType
9466 Sema::CheckAssignmentConstraints(SourceLocation Loc,
9467                                  QualType LHSType, QualType RHSType) {
9468   // Fake up an opaque expression.  We don't actually care about what
9469   // cast operations are required, so if CheckAssignmentConstraints
9470   // adds casts to this they'll be wasted, but fortunately that doesn't
9471   // usually happen on valid code.
9472   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9473   ExprResult RHSPtr = &RHSExpr;
9474   CastKind K;
9475 
9476   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
9477 }
9478 
9479 /// This helper function returns true if QT is a vector type that has element
9480 /// type ElementType.
9481 static bool isVector(QualType QT, QualType ElementType) {
9482   if (const VectorType *VT = QT->getAs<VectorType>())
9483     return VT->getElementType().getCanonicalType() == ElementType;
9484   return false;
9485 }
9486 
9487 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9488 /// has code to accommodate several GCC extensions when type checking
9489 /// pointers. Here are some objectionable examples that GCC considers warnings:
9490 ///
9491 ///  int a, *pint;
9492 ///  short *pshort;
9493 ///  struct foo *pfoo;
9494 ///
9495 ///  pint = pshort; // warning: assignment from incompatible pointer type
9496 ///  a = pint; // warning: assignment makes integer from pointer without a cast
9497 ///  pint = a; // warning: assignment makes pointer from integer without a cast
9498 ///  pint = pfoo; // warning: assignment from incompatible pointer type
9499 ///
9500 /// As a result, the code for dealing with pointers is more complex than the
9501 /// C99 spec dictates.
9502 ///
9503 /// Sets 'Kind' for any result kind except Incompatible.
9504 Sema::AssignConvertType
9505 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9506                                  CastKind &Kind, bool ConvertRHS) {
9507   QualType RHSType = RHS.get()->getType();
9508   QualType OrigLHSType = LHSType;
9509 
9510   // Get canonical types.  We're not formatting these types, just comparing
9511   // them.
9512   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9513   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9514 
9515   // Common case: no conversion required.
9516   if (LHSType == RHSType) {
9517     Kind = CK_NoOp;
9518     return Compatible;
9519   }
9520 
9521   // If the LHS has an __auto_type, there are no additional type constraints
9522   // to be worried about.
9523   if (const auto *AT = dyn_cast<AutoType>(LHSType)) {
9524     if (AT->isGNUAutoType()) {
9525       Kind = CK_NoOp;
9526       return Compatible;
9527     }
9528   }
9529 
9530   // If we have an atomic type, try a non-atomic assignment, then just add an
9531   // atomic qualification step.
9532   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
9533     Sema::AssignConvertType result =
9534       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
9535     if (result != Compatible)
9536       return result;
9537     if (Kind != CK_NoOp && ConvertRHS)
9538       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
9539     Kind = CK_NonAtomicToAtomic;
9540     return Compatible;
9541   }
9542 
9543   // If the left-hand side is a reference type, then we are in a
9544   // (rare!) case where we've allowed the use of references in C,
9545   // e.g., as a parameter type in a built-in function. In this case,
9546   // just make sure that the type referenced is compatible with the
9547   // right-hand side type. The caller is responsible for adjusting
9548   // LHSType so that the resulting expression does not have reference
9549   // type.
9550   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9551     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
9552       Kind = CK_LValueBitCast;
9553       return Compatible;
9554     }
9555     return Incompatible;
9556   }
9557 
9558   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9559   // to the same ExtVector type.
9560   if (LHSType->isExtVectorType()) {
9561     if (RHSType->isExtVectorType())
9562       return Incompatible;
9563     if (RHSType->isArithmeticType()) {
9564       // CK_VectorSplat does T -> vector T, so first cast to the element type.
9565       if (ConvertRHS)
9566         RHS = prepareVectorSplat(LHSType, RHS.get());
9567       Kind = CK_VectorSplat;
9568       return Compatible;
9569     }
9570   }
9571 
9572   // Conversions to or from vector type.
9573   if (LHSType->isVectorType() || RHSType->isVectorType()) {
9574     if (LHSType->isVectorType() && RHSType->isVectorType()) {
9575       // Allow assignments of an AltiVec vector type to an equivalent GCC
9576       // vector type and vice versa
9577       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9578         Kind = CK_BitCast;
9579         return Compatible;
9580       }
9581 
9582       // If we are allowing lax vector conversions, and LHS and RHS are both
9583       // vectors, the total size only needs to be the same. This is a bitcast;
9584       // no bits are changed but the result type is different.
9585       if (isLaxVectorConversion(RHSType, LHSType)) {
9586         // The default for lax vector conversions with Altivec vectors will
9587         // change, so if we are converting between vector types where
9588         // at least one is an Altivec vector, emit a warning.
9589         if (anyAltivecTypes(RHSType, LHSType) &&
9590             !areSameVectorElemTypes(RHSType, LHSType))
9591           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9592               << RHSType << LHSType;
9593         Kind = CK_BitCast;
9594         return IncompatibleVectors;
9595       }
9596     }
9597 
9598     // When the RHS comes from another lax conversion (e.g. binops between
9599     // scalars and vectors) the result is canonicalized as a vector. When the
9600     // LHS is also a vector, the lax is allowed by the condition above. Handle
9601     // the case where LHS is a scalar.
9602     if (LHSType->isScalarType()) {
9603       const VectorType *VecType = RHSType->getAs<VectorType>();
9604       if (VecType && VecType->getNumElements() == 1 &&
9605           isLaxVectorConversion(RHSType, LHSType)) {
9606         if (VecType->getVectorKind() == VectorType::AltiVecVector)
9607           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9608               << RHSType << LHSType;
9609         ExprResult *VecExpr = &RHS;
9610         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
9611         Kind = CK_BitCast;
9612         return Compatible;
9613       }
9614     }
9615 
9616     // Allow assignments between fixed-length and sizeless SVE vectors.
9617     if ((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) ||
9618         (LHSType->isVectorType() && RHSType->isSizelessBuiltinType()))
9619       if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
9620           Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
9621         Kind = CK_BitCast;
9622         return Compatible;
9623       }
9624 
9625     return Incompatible;
9626   }
9627 
9628   // Diagnose attempts to convert between __ibm128, __float128 and long double
9629   // where such conversions currently can't be handled.
9630   if (unsupportedTypeConversion(*this, LHSType, RHSType))
9631     return Incompatible;
9632 
9633   // Disallow assigning a _Complex to a real type in C++ mode since it simply
9634   // discards the imaginary part.
9635   if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9636       !LHSType->getAs<ComplexType>())
9637     return Incompatible;
9638 
9639   // Arithmetic conversions.
9640   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9641       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9642     if (ConvertRHS)
9643       Kind = PrepareScalarCast(RHS, LHSType);
9644     return Compatible;
9645   }
9646 
9647   // Conversions to normal pointers.
9648   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
9649     // U* -> T*
9650     if (isa<PointerType>(RHSType)) {
9651       LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9652       LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9653       if (AddrSpaceL != AddrSpaceR)
9654         Kind = CK_AddressSpaceConversion;
9655       else if (Context.hasCvrSimilarType(RHSType, LHSType))
9656         Kind = CK_NoOp;
9657       else
9658         Kind = CK_BitCast;
9659       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
9660     }
9661 
9662     // int -> T*
9663     if (RHSType->isIntegerType()) {
9664       Kind = CK_IntegralToPointer; // FIXME: null?
9665       return IntToPointer;
9666     }
9667 
9668     // C pointers are not compatible with ObjC object pointers,
9669     // with two exceptions:
9670     if (isa<ObjCObjectPointerType>(RHSType)) {
9671       //  - conversions to void*
9672       if (LHSPointer->getPointeeType()->isVoidType()) {
9673         Kind = CK_BitCast;
9674         return Compatible;
9675       }
9676 
9677       //  - conversions from 'Class' to the redefinition type
9678       if (RHSType->isObjCClassType() &&
9679           Context.hasSameType(LHSType,
9680                               Context.getObjCClassRedefinitionType())) {
9681         Kind = CK_BitCast;
9682         return Compatible;
9683       }
9684 
9685       Kind = CK_BitCast;
9686       return IncompatiblePointer;
9687     }
9688 
9689     // U^ -> void*
9690     if (RHSType->getAs<BlockPointerType>()) {
9691       if (LHSPointer->getPointeeType()->isVoidType()) {
9692         LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9693         LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9694                                 ->getPointeeType()
9695                                 .getAddressSpace();
9696         Kind =
9697             AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9698         return Compatible;
9699       }
9700     }
9701 
9702     return Incompatible;
9703   }
9704 
9705   // Conversions to block pointers.
9706   if (isa<BlockPointerType>(LHSType)) {
9707     // U^ -> T^
9708     if (RHSType->isBlockPointerType()) {
9709       LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9710                               ->getPointeeType()
9711                               .getAddressSpace();
9712       LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9713                               ->getPointeeType()
9714                               .getAddressSpace();
9715       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9716       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9717     }
9718 
9719     // int or null -> T^
9720     if (RHSType->isIntegerType()) {
9721       Kind = CK_IntegralToPointer; // FIXME: null
9722       return IntToBlockPointer;
9723     }
9724 
9725     // id -> T^
9726     if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9727       Kind = CK_AnyPointerToBlockPointerCast;
9728       return Compatible;
9729     }
9730 
9731     // void* -> T^
9732     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9733       if (RHSPT->getPointeeType()->isVoidType()) {
9734         Kind = CK_AnyPointerToBlockPointerCast;
9735         return Compatible;
9736       }
9737 
9738     return Incompatible;
9739   }
9740 
9741   // Conversions to Objective-C pointers.
9742   if (isa<ObjCObjectPointerType>(LHSType)) {
9743     // A* -> B*
9744     if (RHSType->isObjCObjectPointerType()) {
9745       Kind = CK_BitCast;
9746       Sema::AssignConvertType result =
9747         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
9748       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9749           result == Compatible &&
9750           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
9751         result = IncompatibleObjCWeakRef;
9752       return result;
9753     }
9754 
9755     // int or null -> A*
9756     if (RHSType->isIntegerType()) {
9757       Kind = CK_IntegralToPointer; // FIXME: null
9758       return IntToPointer;
9759     }
9760 
9761     // In general, C pointers are not compatible with ObjC object pointers,
9762     // with two exceptions:
9763     if (isa<PointerType>(RHSType)) {
9764       Kind = CK_CPointerToObjCPointerCast;
9765 
9766       //  - conversions from 'void*'
9767       if (RHSType->isVoidPointerType()) {
9768         return Compatible;
9769       }
9770 
9771       //  - conversions to 'Class' from its redefinition type
9772       if (LHSType->isObjCClassType() &&
9773           Context.hasSameType(RHSType,
9774                               Context.getObjCClassRedefinitionType())) {
9775         return Compatible;
9776       }
9777 
9778       return IncompatiblePointer;
9779     }
9780 
9781     // Only under strict condition T^ is compatible with an Objective-C pointer.
9782     if (RHSType->isBlockPointerType() &&
9783         LHSType->isBlockCompatibleObjCPointerType(Context)) {
9784       if (ConvertRHS)
9785         maybeExtendBlockObject(RHS);
9786       Kind = CK_BlockPointerToObjCPointerCast;
9787       return Compatible;
9788     }
9789 
9790     return Incompatible;
9791   }
9792 
9793   // Conversions from pointers that are not covered by the above.
9794   if (isa<PointerType>(RHSType)) {
9795     // T* -> _Bool
9796     if (LHSType == Context.BoolTy) {
9797       Kind = CK_PointerToBoolean;
9798       return Compatible;
9799     }
9800 
9801     // T* -> int
9802     if (LHSType->isIntegerType()) {
9803       Kind = CK_PointerToIntegral;
9804       return PointerToInt;
9805     }
9806 
9807     return Incompatible;
9808   }
9809 
9810   // Conversions from Objective-C pointers that are not covered by the above.
9811   if (isa<ObjCObjectPointerType>(RHSType)) {
9812     // T* -> _Bool
9813     if (LHSType == Context.BoolTy) {
9814       Kind = CK_PointerToBoolean;
9815       return Compatible;
9816     }
9817 
9818     // T* -> int
9819     if (LHSType->isIntegerType()) {
9820       Kind = CK_PointerToIntegral;
9821       return PointerToInt;
9822     }
9823 
9824     return Incompatible;
9825   }
9826 
9827   // struct A -> struct B
9828   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
9829     if (Context.typesAreCompatible(LHSType, RHSType)) {
9830       Kind = CK_NoOp;
9831       return Compatible;
9832     }
9833   }
9834 
9835   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9836     Kind = CK_IntToOCLSampler;
9837     return Compatible;
9838   }
9839 
9840   return Incompatible;
9841 }
9842 
9843 /// Constructs a transparent union from an expression that is
9844 /// used to initialize the transparent union.
9845 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9846                                       ExprResult &EResult, QualType UnionType,
9847                                       FieldDecl *Field) {
9848   // Build an initializer list that designates the appropriate member
9849   // of the transparent union.
9850   Expr *E = EResult.get();
9851   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9852                                                    E, SourceLocation());
9853   Initializer->setType(UnionType);
9854   Initializer->setInitializedFieldInUnion(Field);
9855 
9856   // Build a compound literal constructing a value of the transparent
9857   // union type from this initializer list.
9858   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
9859   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9860                                         VK_PRValue, Initializer, false);
9861 }
9862 
9863 Sema::AssignConvertType
9864 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9865                                                ExprResult &RHS) {
9866   QualType RHSType = RHS.get()->getType();
9867 
9868   // If the ArgType is a Union type, we want to handle a potential
9869   // transparent_union GCC extension.
9870   const RecordType *UT = ArgType->getAsUnionType();
9871   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9872     return Incompatible;
9873 
9874   // The field to initialize within the transparent union.
9875   RecordDecl *UD = UT->getDecl();
9876   FieldDecl *InitField = nullptr;
9877   // It's compatible if the expression matches any of the fields.
9878   for (auto *it : UD->fields()) {
9879     if (it->getType()->isPointerType()) {
9880       // If the transparent union contains a pointer type, we allow:
9881       // 1) void pointer
9882       // 2) null pointer constant
9883       if (RHSType->isPointerType())
9884         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9885           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
9886           InitField = it;
9887           break;
9888         }
9889 
9890       if (RHS.get()->isNullPointerConstant(Context,
9891                                            Expr::NPC_ValueDependentIsNull)) {
9892         RHS = ImpCastExprToType(RHS.get(), it->getType(),
9893                                 CK_NullToPointer);
9894         InitField = it;
9895         break;
9896       }
9897     }
9898 
9899     CastKind Kind;
9900     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
9901           == Compatible) {
9902       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
9903       InitField = it;
9904       break;
9905     }
9906   }
9907 
9908   if (!InitField)
9909     return Incompatible;
9910 
9911   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
9912   return Compatible;
9913 }
9914 
9915 Sema::AssignConvertType
9916 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
9917                                        bool Diagnose,
9918                                        bool DiagnoseCFAudited,
9919                                        bool ConvertRHS) {
9920   // We need to be able to tell the caller whether we diagnosed a problem, if
9921   // they ask us to issue diagnostics.
9922   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
9923 
9924   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9925   // we can't avoid *all* modifications at the moment, so we need some somewhere
9926   // to put the updated value.
9927   ExprResult LocalRHS = CallerRHS;
9928   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9929 
9930   if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9931     if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9932       if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
9933           !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
9934         Diag(RHS.get()->getExprLoc(),
9935              diag::warn_noderef_to_dereferenceable_pointer)
9936             << RHS.get()->getSourceRange();
9937       }
9938     }
9939   }
9940 
9941   if (getLangOpts().CPlusPlus) {
9942     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9943       // C++ 5.17p3: If the left operand is not of class type, the
9944       // expression is implicitly converted (C++ 4) to the
9945       // cv-unqualified type of the left operand.
9946       QualType RHSType = RHS.get()->getType();
9947       if (Diagnose) {
9948         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9949                                         AA_Assigning);
9950       } else {
9951         ImplicitConversionSequence ICS =
9952             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9953                                   /*SuppressUserConversions=*/false,
9954                                   AllowedExplicit::None,
9955                                   /*InOverloadResolution=*/false,
9956                                   /*CStyle=*/false,
9957                                   /*AllowObjCWritebackConversion=*/false);
9958         if (ICS.isFailure())
9959           return Incompatible;
9960         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9961                                         ICS, AA_Assigning);
9962       }
9963       if (RHS.isInvalid())
9964         return Incompatible;
9965       Sema::AssignConvertType result = Compatible;
9966       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9967           !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
9968         result = IncompatibleObjCWeakRef;
9969       return result;
9970     }
9971 
9972     // FIXME: Currently, we fall through and treat C++ classes like C
9973     // structures.
9974     // FIXME: We also fall through for atomics; not sure what should
9975     // happen there, though.
9976   } else if (RHS.get()->getType() == Context.OverloadTy) {
9977     // As a set of extensions to C, we support overloading on functions. These
9978     // functions need to be resolved here.
9979     DeclAccessPair DAP;
9980     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9981             RHS.get(), LHSType, /*Complain=*/false, DAP))
9982       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
9983     else
9984       return Incompatible;
9985   }
9986 
9987   // C99 6.5.16.1p1: the left operand is a pointer and the right is
9988   // a null pointer constant.
9989   if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
9990        LHSType->isBlockPointerType()) &&
9991       RHS.get()->isNullPointerConstant(Context,
9992                                        Expr::NPC_ValueDependentIsNull)) {
9993     if (Diagnose || ConvertRHS) {
9994       CastKind Kind;
9995       CXXCastPath Path;
9996       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
9997                              /*IgnoreBaseAccess=*/false, Diagnose);
9998       if (ConvertRHS)
9999         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
10000     }
10001     return Compatible;
10002   }
10003 
10004   // OpenCL queue_t type assignment.
10005   if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
10006                                  Context, Expr::NPC_ValueDependentIsNull)) {
10007     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10008     return Compatible;
10009   }
10010 
10011   // This check seems unnatural, however it is necessary to ensure the proper
10012   // conversion of functions/arrays. If the conversion were done for all
10013   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
10014   // expressions that suppress this implicit conversion (&, sizeof).
10015   //
10016   // Suppress this for references: C++ 8.5.3p5.
10017   if (!LHSType->isReferenceType()) {
10018     // FIXME: We potentially allocate here even if ConvertRHS is false.
10019     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
10020     if (RHS.isInvalid())
10021       return Incompatible;
10022   }
10023   CastKind Kind;
10024   Sema::AssignConvertType result =
10025     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
10026 
10027   // C99 6.5.16.1p2: The value of the right operand is converted to the
10028   // type of the assignment expression.
10029   // CheckAssignmentConstraints allows the left-hand side to be a reference,
10030   // so that we can use references in built-in functions even in C.
10031   // The getNonReferenceType() call makes sure that the resulting expression
10032   // does not have reference type.
10033   if (result != Incompatible && RHS.get()->getType() != LHSType) {
10034     QualType Ty = LHSType.getNonLValueExprType(Context);
10035     Expr *E = RHS.get();
10036 
10037     // Check for various Objective-C errors. If we are not reporting
10038     // diagnostics and just checking for errors, e.g., during overload
10039     // resolution, return Incompatible to indicate the failure.
10040     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10041         CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
10042                             Diagnose, DiagnoseCFAudited) != ACR_okay) {
10043       if (!Diagnose)
10044         return Incompatible;
10045     }
10046     if (getLangOpts().ObjC &&
10047         (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
10048                                            E->getType(), E, Diagnose) ||
10049          CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
10050       if (!Diagnose)
10051         return Incompatible;
10052       // Replace the expression with a corrected version and continue so we
10053       // can find further errors.
10054       RHS = E;
10055       return Compatible;
10056     }
10057 
10058     if (ConvertRHS)
10059       RHS = ImpCastExprToType(E, Ty, Kind);
10060   }
10061 
10062   return result;
10063 }
10064 
10065 namespace {
10066 /// The original operand to an operator, prior to the application of the usual
10067 /// arithmetic conversions and converting the arguments of a builtin operator
10068 /// candidate.
10069 struct OriginalOperand {
10070   explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
10071     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
10072       Op = MTE->getSubExpr();
10073     if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
10074       Op = BTE->getSubExpr();
10075     if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
10076       Orig = ICE->getSubExprAsWritten();
10077       Conversion = ICE->getConversionFunction();
10078     }
10079   }
10080 
10081   QualType getType() const { return Orig->getType(); }
10082 
10083   Expr *Orig;
10084   NamedDecl *Conversion;
10085 };
10086 }
10087 
10088 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
10089                                ExprResult &RHS) {
10090   OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
10091 
10092   Diag(Loc, diag::err_typecheck_invalid_operands)
10093     << OrigLHS.getType() << OrigRHS.getType()
10094     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10095 
10096   // If a user-defined conversion was applied to either of the operands prior
10097   // to applying the built-in operator rules, tell the user about it.
10098   if (OrigLHS.Conversion) {
10099     Diag(OrigLHS.Conversion->getLocation(),
10100          diag::note_typecheck_invalid_operands_converted)
10101       << 0 << LHS.get()->getType();
10102   }
10103   if (OrigRHS.Conversion) {
10104     Diag(OrigRHS.Conversion->getLocation(),
10105          diag::note_typecheck_invalid_operands_converted)
10106       << 1 << RHS.get()->getType();
10107   }
10108 
10109   return QualType();
10110 }
10111 
10112 // Diagnose cases where a scalar was implicitly converted to a vector and
10113 // diagnose the underlying types. Otherwise, diagnose the error
10114 // as invalid vector logical operands for non-C++ cases.
10115 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
10116                                             ExprResult &RHS) {
10117   QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
10118   QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
10119 
10120   bool LHSNatVec = LHSType->isVectorType();
10121   bool RHSNatVec = RHSType->isVectorType();
10122 
10123   if (!(LHSNatVec && RHSNatVec)) {
10124     Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
10125     Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
10126     Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10127         << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
10128         << Vector->getSourceRange();
10129     return QualType();
10130   }
10131 
10132   Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10133       << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
10134       << RHS.get()->getSourceRange();
10135 
10136   return QualType();
10137 }
10138 
10139 /// Try to convert a value of non-vector type to a vector type by converting
10140 /// the type to the element type of the vector and then performing a splat.
10141 /// If the language is OpenCL, we only use conversions that promote scalar
10142 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
10143 /// for float->int.
10144 ///
10145 /// OpenCL V2.0 6.2.6.p2:
10146 /// An error shall occur if any scalar operand type has greater rank
10147 /// than the type of the vector element.
10148 ///
10149 /// \param scalar - if non-null, actually perform the conversions
10150 /// \return true if the operation fails (but without diagnosing the failure)
10151 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
10152                                      QualType scalarTy,
10153                                      QualType vectorEltTy,
10154                                      QualType vectorTy,
10155                                      unsigned &DiagID) {
10156   // The conversion to apply to the scalar before splatting it,
10157   // if necessary.
10158   CastKind scalarCast = CK_NoOp;
10159 
10160   if (vectorEltTy->isIntegralType(S.Context)) {
10161     if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
10162         (scalarTy->isIntegerType() &&
10163          S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
10164       DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10165       return true;
10166     }
10167     if (!scalarTy->isIntegralType(S.Context))
10168       return true;
10169     scalarCast = CK_IntegralCast;
10170   } else if (vectorEltTy->isRealFloatingType()) {
10171     if (scalarTy->isRealFloatingType()) {
10172       if (S.getLangOpts().OpenCL &&
10173           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
10174         DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10175         return true;
10176       }
10177       scalarCast = CK_FloatingCast;
10178     }
10179     else if (scalarTy->isIntegralType(S.Context))
10180       scalarCast = CK_IntegralToFloating;
10181     else
10182       return true;
10183   } else {
10184     return true;
10185   }
10186 
10187   // Adjust scalar if desired.
10188   if (scalar) {
10189     if (scalarCast != CK_NoOp)
10190       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
10191     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
10192   }
10193   return false;
10194 }
10195 
10196 /// Convert vector E to a vector with the same number of elements but different
10197 /// element type.
10198 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
10199   const auto *VecTy = E->getType()->getAs<VectorType>();
10200   assert(VecTy && "Expression E must be a vector");
10201   QualType NewVecTy =
10202       VecTy->isExtVectorType()
10203           ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements())
10204           : S.Context.getVectorType(ElementType, VecTy->getNumElements(),
10205                                     VecTy->getVectorKind());
10206 
10207   // Look through the implicit cast. Return the subexpression if its type is
10208   // NewVecTy.
10209   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
10210     if (ICE->getSubExpr()->getType() == NewVecTy)
10211       return ICE->getSubExpr();
10212 
10213   auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
10214   return S.ImpCastExprToType(E, NewVecTy, Cast);
10215 }
10216 
10217 /// Test if a (constant) integer Int can be casted to another integer type
10218 /// IntTy without losing precision.
10219 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
10220                                       QualType OtherIntTy) {
10221   QualType IntTy = Int->get()->getType().getUnqualifiedType();
10222 
10223   // Reject cases where the value of the Int is unknown as that would
10224   // possibly cause truncation, but accept cases where the scalar can be
10225   // demoted without loss of precision.
10226   Expr::EvalResult EVResult;
10227   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10228   int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
10229   bool IntSigned = IntTy->hasSignedIntegerRepresentation();
10230   bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
10231 
10232   if (CstInt) {
10233     // If the scalar is constant and is of a higher order and has more active
10234     // bits that the vector element type, reject it.
10235     llvm::APSInt Result = EVResult.Val.getInt();
10236     unsigned NumBits = IntSigned
10237                            ? (Result.isNegative() ? Result.getMinSignedBits()
10238                                                   : Result.getActiveBits())
10239                            : Result.getActiveBits();
10240     if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
10241       return true;
10242 
10243     // If the signedness of the scalar type and the vector element type
10244     // differs and the number of bits is greater than that of the vector
10245     // element reject it.
10246     return (IntSigned != OtherIntSigned &&
10247             NumBits > S.Context.getIntWidth(OtherIntTy));
10248   }
10249 
10250   // Reject cases where the value of the scalar is not constant and it's
10251   // order is greater than that of the vector element type.
10252   return (Order < 0);
10253 }
10254 
10255 /// Test if a (constant) integer Int can be casted to floating point type
10256 /// FloatTy without losing precision.
10257 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
10258                                      QualType FloatTy) {
10259   QualType IntTy = Int->get()->getType().getUnqualifiedType();
10260 
10261   // Determine if the integer constant can be expressed as a floating point
10262   // number of the appropriate type.
10263   Expr::EvalResult EVResult;
10264   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10265 
10266   uint64_t Bits = 0;
10267   if (CstInt) {
10268     // Reject constants that would be truncated if they were converted to
10269     // the floating point type. Test by simple to/from conversion.
10270     // FIXME: Ideally the conversion to an APFloat and from an APFloat
10271     //        could be avoided if there was a convertFromAPInt method
10272     //        which could signal back if implicit truncation occurred.
10273     llvm::APSInt Result = EVResult.Val.getInt();
10274     llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
10275     Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
10276                            llvm::APFloat::rmTowardZero);
10277     llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
10278                              !IntTy->hasSignedIntegerRepresentation());
10279     bool Ignored = false;
10280     Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
10281                            &Ignored);
10282     if (Result != ConvertBack)
10283       return true;
10284   } else {
10285     // Reject types that cannot be fully encoded into the mantissa of
10286     // the float.
10287     Bits = S.Context.getTypeSize(IntTy);
10288     unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10289         S.Context.getFloatTypeSemantics(FloatTy));
10290     if (Bits > FloatPrec)
10291       return true;
10292   }
10293 
10294   return false;
10295 }
10296 
10297 /// Attempt to convert and splat Scalar into a vector whose types matches
10298 /// Vector following GCC conversion rules. The rule is that implicit
10299 /// conversion can occur when Scalar can be casted to match Vector's element
10300 /// type without causing truncation of Scalar.
10301 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10302                                         ExprResult *Vector) {
10303   QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10304   QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10305   QualType VectorEltTy;
10306 
10307   if (const auto *VT = VectorTy->getAs<VectorType>()) {
10308     assert(!isa<ExtVectorType>(VT) &&
10309            "ExtVectorTypes should not be handled here!");
10310     VectorEltTy = VT->getElementType();
10311   } else if (VectorTy->isVLSTBuiltinType()) {
10312     VectorEltTy =
10313         VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
10314   } else {
10315     llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
10316   }
10317 
10318   // Reject cases where the vector element type or the scalar element type are
10319   // not integral or floating point types.
10320   if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10321     return true;
10322 
10323   // The conversion to apply to the scalar before splatting it,
10324   // if necessary.
10325   CastKind ScalarCast = CK_NoOp;
10326 
10327   // Accept cases where the vector elements are integers and the scalar is
10328   // an integer.
10329   // FIXME: Notionally if the scalar was a floating point value with a precise
10330   //        integral representation, we could cast it to an appropriate integer
10331   //        type and then perform the rest of the checks here. GCC will perform
10332   //        this conversion in some cases as determined by the input language.
10333   //        We should accept it on a language independent basis.
10334   if (VectorEltTy->isIntegralType(S.Context) &&
10335       ScalarTy->isIntegralType(S.Context) &&
10336       S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
10337 
10338     if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
10339       return true;
10340 
10341     ScalarCast = CK_IntegralCast;
10342   } else if (VectorEltTy->isIntegralType(S.Context) &&
10343              ScalarTy->isRealFloatingType()) {
10344     if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
10345       ScalarCast = CK_FloatingToIntegral;
10346     else
10347       return true;
10348   } else if (VectorEltTy->isRealFloatingType()) {
10349     if (ScalarTy->isRealFloatingType()) {
10350 
10351       // Reject cases where the scalar type is not a constant and has a higher
10352       // Order than the vector element type.
10353       llvm::APFloat Result(0.0);
10354 
10355       // Determine whether this is a constant scalar. In the event that the
10356       // value is dependent (and thus cannot be evaluated by the constant
10357       // evaluator), skip the evaluation. This will then diagnose once the
10358       // expression is instantiated.
10359       bool CstScalar = Scalar->get()->isValueDependent() ||
10360                        Scalar->get()->EvaluateAsFloat(Result, S.Context);
10361       int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
10362       if (!CstScalar && Order < 0)
10363         return true;
10364 
10365       // If the scalar cannot be safely casted to the vector element type,
10366       // reject it.
10367       if (CstScalar) {
10368         bool Truncated = false;
10369         Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
10370                        llvm::APFloat::rmNearestTiesToEven, &Truncated);
10371         if (Truncated)
10372           return true;
10373       }
10374 
10375       ScalarCast = CK_FloatingCast;
10376     } else if (ScalarTy->isIntegralType(S.Context)) {
10377       if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
10378         return true;
10379 
10380       ScalarCast = CK_IntegralToFloating;
10381     } else
10382       return true;
10383   } else if (ScalarTy->isEnumeralType())
10384     return true;
10385 
10386   // Adjust scalar if desired.
10387   if (Scalar) {
10388     if (ScalarCast != CK_NoOp)
10389       *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
10390     *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
10391   }
10392   return false;
10393 }
10394 
10395 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10396                                    SourceLocation Loc, bool IsCompAssign,
10397                                    bool AllowBothBool,
10398                                    bool AllowBoolConversions,
10399                                    bool AllowBoolOperation,
10400                                    bool ReportInvalid) {
10401   if (!IsCompAssign) {
10402     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10403     if (LHS.isInvalid())
10404       return QualType();
10405   }
10406   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10407   if (RHS.isInvalid())
10408     return QualType();
10409 
10410   // For conversion purposes, we ignore any qualifiers.
10411   // For example, "const float" and "float" are equivalent.
10412   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10413   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10414 
10415   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
10416   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
10417   assert(LHSVecType || RHSVecType);
10418 
10419   if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) ||
10420       (RHSVecType && RHSVecType->getElementType()->isBFloat16Type()))
10421     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10422 
10423   // AltiVec-style "vector bool op vector bool" combinations are allowed
10424   // for some operators but not others.
10425   if (!AllowBothBool &&
10426       LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10427       RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
10428     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10429 
10430   // This operation may not be performed on boolean vectors.
10431   if (!AllowBoolOperation &&
10432       (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
10433     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10434 
10435   // If the vector types are identical, return.
10436   if (Context.hasSameType(LHSType, RHSType))
10437     return LHSType;
10438 
10439   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10440   if (LHSVecType && RHSVecType &&
10441       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10442     if (isa<ExtVectorType>(LHSVecType)) {
10443       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10444       return LHSType;
10445     }
10446 
10447     if (!IsCompAssign)
10448       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10449     return RHSType;
10450   }
10451 
10452   // AllowBoolConversions says that bool and non-bool AltiVec vectors
10453   // can be mixed, with the result being the non-bool type.  The non-bool
10454   // operand must have integer element type.
10455   if (AllowBoolConversions && LHSVecType && RHSVecType &&
10456       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10457       (Context.getTypeSize(LHSVecType->getElementType()) ==
10458        Context.getTypeSize(RHSVecType->getElementType()))) {
10459     if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10460         LHSVecType->getElementType()->isIntegerType() &&
10461         RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
10462       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10463       return LHSType;
10464     }
10465     if (!IsCompAssign &&
10466         LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10467         RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10468         RHSVecType->getElementType()->isIntegerType()) {
10469       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10470       return RHSType;
10471     }
10472   }
10473 
10474   // Expressions containing fixed-length and sizeless SVE vectors are invalid
10475   // since the ambiguity can affect the ABI.
10476   auto IsSveConversion = [](QualType FirstType, QualType SecondType) {
10477     const VectorType *VecType = SecondType->getAs<VectorType>();
10478     return FirstType->isSizelessBuiltinType() && VecType &&
10479            (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector ||
10480             VecType->getVectorKind() ==
10481                 VectorType::SveFixedLengthPredicateVector);
10482   };
10483 
10484   if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) {
10485     Diag(Loc, diag::err_typecheck_sve_ambiguous) << LHSType << RHSType;
10486     return QualType();
10487   }
10488 
10489   // Expressions containing GNU and SVE (fixed or sizeless) vectors are invalid
10490   // since the ambiguity can affect the ABI.
10491   auto IsSveGnuConversion = [](QualType FirstType, QualType SecondType) {
10492     const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10493     const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10494 
10495     if (FirstVecType && SecondVecType)
10496       return FirstVecType->getVectorKind() == VectorType::GenericVector &&
10497              (SecondVecType->getVectorKind() ==
10498                   VectorType::SveFixedLengthDataVector ||
10499               SecondVecType->getVectorKind() ==
10500                   VectorType::SveFixedLengthPredicateVector);
10501 
10502     return FirstType->isSizelessBuiltinType() && SecondVecType &&
10503            SecondVecType->getVectorKind() == VectorType::GenericVector;
10504   };
10505 
10506   if (IsSveGnuConversion(LHSType, RHSType) ||
10507       IsSveGnuConversion(RHSType, LHSType)) {
10508     Diag(Loc, diag::err_typecheck_sve_gnu_ambiguous) << LHSType << RHSType;
10509     return QualType();
10510   }
10511 
10512   // If there's a vector type and a scalar, try to convert the scalar to
10513   // the vector element type and splat.
10514   unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10515   if (!RHSVecType) {
10516     if (isa<ExtVectorType>(LHSVecType)) {
10517       if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
10518                                     LHSVecType->getElementType(), LHSType,
10519                                     DiagID))
10520         return LHSType;
10521     } else {
10522       if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10523         return LHSType;
10524     }
10525   }
10526   if (!LHSVecType) {
10527     if (isa<ExtVectorType>(RHSVecType)) {
10528       if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
10529                                     LHSType, RHSVecType->getElementType(),
10530                                     RHSType, DiagID))
10531         return RHSType;
10532     } else {
10533       if (LHS.get()->isLValue() ||
10534           !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10535         return RHSType;
10536     }
10537   }
10538 
10539   // FIXME: The code below also handles conversion between vectors and
10540   // non-scalars, we should break this down into fine grained specific checks
10541   // and emit proper diagnostics.
10542   QualType VecType = LHSVecType ? LHSType : RHSType;
10543   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10544   QualType OtherType = LHSVecType ? RHSType : LHSType;
10545   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10546   if (isLaxVectorConversion(OtherType, VecType)) {
10547     if (anyAltivecTypes(RHSType, LHSType) &&
10548         !areSameVectorElemTypes(RHSType, LHSType))
10549       Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
10550     // If we're allowing lax vector conversions, only the total (data) size
10551     // needs to be the same. For non compound assignment, if one of the types is
10552     // scalar, the result is always the vector type.
10553     if (!IsCompAssign) {
10554       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
10555       return VecType;
10556     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10557     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10558     // type. Note that this is already done by non-compound assignments in
10559     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10560     // <1 x T> -> T. The result is also a vector type.
10561     } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10562                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10563       ExprResult *RHSExpr = &RHS;
10564       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
10565       return VecType;
10566     }
10567   }
10568 
10569   // Okay, the expression is invalid.
10570 
10571   // If there's a non-vector, non-real operand, diagnose that.
10572   if ((!RHSVecType && !RHSType->isRealType()) ||
10573       (!LHSVecType && !LHSType->isRealType())) {
10574     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10575       << LHSType << RHSType
10576       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10577     return QualType();
10578   }
10579 
10580   // OpenCL V1.1 6.2.6.p1:
10581   // If the operands are of more than one vector type, then an error shall
10582   // occur. Implicit conversions between vector types are not permitted, per
10583   // section 6.2.1.
10584   if (getLangOpts().OpenCL &&
10585       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
10586       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
10587     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10588                                                            << RHSType;
10589     return QualType();
10590   }
10591 
10592 
10593   // If there is a vector type that is not a ExtVector and a scalar, we reach
10594   // this point if scalar could not be converted to the vector's element type
10595   // without truncation.
10596   if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
10597       (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
10598     QualType Scalar = LHSVecType ? RHSType : LHSType;
10599     QualType Vector = LHSVecType ? LHSType : RHSType;
10600     unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10601     Diag(Loc,
10602          diag::err_typecheck_vector_not_convertable_implict_truncation)
10603         << ScalarOrVector << Scalar << Vector;
10604 
10605     return QualType();
10606   }
10607 
10608   // Otherwise, use the generic diagnostic.
10609   Diag(Loc, DiagID)
10610     << LHSType << RHSType
10611     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10612   return QualType();
10613 }
10614 
10615 QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
10616                                            SourceLocation Loc,
10617                                            bool IsCompAssign,
10618                                            ArithConvKind OperationKind) {
10619   if (!IsCompAssign) {
10620     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10621     if (LHS.isInvalid())
10622       return QualType();
10623   }
10624   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10625   if (RHS.isInvalid())
10626     return QualType();
10627 
10628   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10629   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10630 
10631   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
10632   const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
10633 
10634   unsigned DiagID = diag::err_typecheck_invalid_operands;
10635   if ((OperationKind == ACK_Arithmetic) &&
10636       ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
10637        (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
10638     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10639                       << RHS.get()->getSourceRange();
10640     return QualType();
10641   }
10642 
10643   if (Context.hasSameType(LHSType, RHSType))
10644     return LHSType;
10645 
10646   if (LHSType->isVLSTBuiltinType() && !RHSType->isVLSTBuiltinType()) {
10647     if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10648       return LHSType;
10649   }
10650   if (RHSType->isVLSTBuiltinType() && !LHSType->isVLSTBuiltinType()) {
10651     if (LHS.get()->isLValue() ||
10652         !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10653       return RHSType;
10654   }
10655 
10656   if ((!LHSType->isVLSTBuiltinType() && !LHSType->isRealType()) ||
10657       (!RHSType->isVLSTBuiltinType() && !RHSType->isRealType())) {
10658     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10659         << LHSType << RHSType << LHS.get()->getSourceRange()
10660         << RHS.get()->getSourceRange();
10661     return QualType();
10662   }
10663 
10664   if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() &&
10665       Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
10666           Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) {
10667     Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10668         << LHSType << RHSType << LHS.get()->getSourceRange()
10669         << RHS.get()->getSourceRange();
10670     return QualType();
10671   }
10672 
10673   if (LHSType->isVLSTBuiltinType() || RHSType->isVLSTBuiltinType()) {
10674     QualType Scalar = LHSType->isVLSTBuiltinType() ? RHSType : LHSType;
10675     QualType Vector = LHSType->isVLSTBuiltinType() ? LHSType : RHSType;
10676     bool ScalarOrVector =
10677         LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType();
10678 
10679     Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
10680         << ScalarOrVector << Scalar << Vector;
10681 
10682     return QualType();
10683   }
10684 
10685   Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10686                     << RHS.get()->getSourceRange();
10687   return QualType();
10688 }
10689 
10690 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
10691 // expression.  These are mainly cases where the null pointer is used as an
10692 // integer instead of a pointer.
10693 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10694                                 SourceLocation Loc, bool IsCompare) {
10695   // The canonical way to check for a GNU null is with isNullPointerConstant,
10696   // but we use a bit of a hack here for speed; this is a relatively
10697   // hot path, and isNullPointerConstant is slow.
10698   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
10699   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
10700 
10701   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10702 
10703   // Avoid analyzing cases where the result will either be invalid (and
10704   // diagnosed as such) or entirely valid and not something to warn about.
10705   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10706       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10707     return;
10708 
10709   // Comparison operations would not make sense with a null pointer no matter
10710   // what the other expression is.
10711   if (!IsCompare) {
10712     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10713         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10714         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10715     return;
10716   }
10717 
10718   // The rest of the operations only make sense with a null pointer
10719   // if the other expression is a pointer.
10720   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10721       NonNullType->canDecayToPointerType())
10722     return;
10723 
10724   S.Diag(Loc, diag::warn_null_in_comparison_operation)
10725       << LHSNull /* LHS is NULL */ << NonNullType
10726       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10727 }
10728 
10729 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10730                                           SourceLocation Loc) {
10731   const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
10732   const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
10733   if (!LUE || !RUE)
10734     return;
10735   if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10736       RUE->getKind() != UETT_SizeOf)
10737     return;
10738 
10739   const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10740   QualType LHSTy = LHSArg->getType();
10741   QualType RHSTy;
10742 
10743   if (RUE->isArgumentType())
10744     RHSTy = RUE->getArgumentType().getNonReferenceType();
10745   else
10746     RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10747 
10748   if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10749     if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
10750       return;
10751 
10752     S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10753     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10754       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10755         S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
10756             << LHSArgDecl;
10757     }
10758   } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
10759     QualType ArrayElemTy = ArrayTy->getElementType();
10760     if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
10761         ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10762         RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10763         S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
10764       return;
10765     S.Diag(Loc, diag::warn_division_sizeof_array)
10766         << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10767     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10768       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10769         S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
10770             << LHSArgDecl;
10771     }
10772 
10773     S.Diag(Loc, diag::note_precedence_silence) << RHS;
10774   }
10775 }
10776 
10777 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10778                                                ExprResult &RHS,
10779                                                SourceLocation Loc, bool IsDiv) {
10780   // Check for division/remainder by zero.
10781   Expr::EvalResult RHSValue;
10782   if (!RHS.get()->isValueDependent() &&
10783       RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
10784       RHSValue.Val.getInt() == 0)
10785     S.DiagRuntimeBehavior(Loc, RHS.get(),
10786                           S.PDiag(diag::warn_remainder_division_by_zero)
10787                             << IsDiv << RHS.get()->getSourceRange());
10788 }
10789 
10790 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10791                                            SourceLocation Loc,
10792                                            bool IsCompAssign, bool IsDiv) {
10793   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10794 
10795   QualType LHSTy = LHS.get()->getType();
10796   QualType RHSTy = RHS.get()->getType();
10797   if (LHSTy->isVectorType() || RHSTy->isVectorType())
10798     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10799                                /*AllowBothBool*/ getLangOpts().AltiVec,
10800                                /*AllowBoolConversions*/ false,
10801                                /*AllowBooleanOperation*/ false,
10802                                /*ReportInvalid*/ true);
10803   if (LHSTy->isVLSTBuiltinType() || RHSTy->isVLSTBuiltinType())
10804     return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10805                                        ACK_Arithmetic);
10806   if (!IsDiv &&
10807       (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
10808     return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10809   // For division, only matrix-by-scalar is supported. Other combinations with
10810   // matrix types are invalid.
10811   if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
10812     return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
10813 
10814   QualType compType = UsualArithmeticConversions(
10815       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10816   if (LHS.isInvalid() || RHS.isInvalid())
10817     return QualType();
10818 
10819 
10820   if (compType.isNull() || !compType->isArithmeticType())
10821     return InvalidOperands(Loc, LHS, RHS);
10822   if (IsDiv) {
10823     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
10824     DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
10825   }
10826   return compType;
10827 }
10828 
10829 QualType Sema::CheckRemainderOperands(
10830   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10831   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10832 
10833   if (LHS.get()->getType()->isVectorType() ||
10834       RHS.get()->getType()->isVectorType()) {
10835     if (LHS.get()->getType()->hasIntegerRepresentation() &&
10836         RHS.get()->getType()->hasIntegerRepresentation())
10837       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10838                                  /*AllowBothBool*/ getLangOpts().AltiVec,
10839                                  /*AllowBoolConversions*/ false,
10840                                  /*AllowBooleanOperation*/ false,
10841                                  /*ReportInvalid*/ true);
10842     return InvalidOperands(Loc, LHS, RHS);
10843   }
10844 
10845   if (LHS.get()->getType()->isVLSTBuiltinType() ||
10846       RHS.get()->getType()->isVLSTBuiltinType()) {
10847     if (LHS.get()->getType()->hasIntegerRepresentation() &&
10848         RHS.get()->getType()->hasIntegerRepresentation())
10849       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10850                                          ACK_Arithmetic);
10851 
10852     return InvalidOperands(Loc, LHS, RHS);
10853   }
10854 
10855   QualType compType = UsualArithmeticConversions(
10856       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10857   if (LHS.isInvalid() || RHS.isInvalid())
10858     return QualType();
10859 
10860   if (compType.isNull() || !compType->isIntegerType())
10861     return InvalidOperands(Loc, LHS, RHS);
10862   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
10863   return compType;
10864 }
10865 
10866 /// Diagnose invalid arithmetic on two void pointers.
10867 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10868                                                 Expr *LHSExpr, Expr *RHSExpr) {
10869   S.Diag(Loc, S.getLangOpts().CPlusPlus
10870                 ? diag::err_typecheck_pointer_arith_void_type
10871                 : diag::ext_gnu_void_ptr)
10872     << 1 /* two pointers */ << LHSExpr->getSourceRange()
10873                             << RHSExpr->getSourceRange();
10874 }
10875 
10876 /// Diagnose invalid arithmetic on a void pointer.
10877 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10878                                             Expr *Pointer) {
10879   S.Diag(Loc, S.getLangOpts().CPlusPlus
10880                 ? diag::err_typecheck_pointer_arith_void_type
10881                 : diag::ext_gnu_void_ptr)
10882     << 0 /* one pointer */ << Pointer->getSourceRange();
10883 }
10884 
10885 /// Diagnose invalid arithmetic on a null pointer.
10886 ///
10887 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10888 /// idiom, which we recognize as a GNU extension.
10889 ///
10890 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10891                                             Expr *Pointer, bool IsGNUIdiom) {
10892   if (IsGNUIdiom)
10893     S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
10894       << Pointer->getSourceRange();
10895   else
10896     S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
10897       << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10898 }
10899 
10900 /// Diagnose invalid subraction on a null pointer.
10901 ///
10902 static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
10903                                              Expr *Pointer, bool BothNull) {
10904   // Null - null is valid in C++ [expr.add]p7
10905   if (BothNull && S.getLangOpts().CPlusPlus)
10906     return;
10907 
10908   // Is this s a macro from a system header?
10909   if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
10910     return;
10911 
10912   S.DiagRuntimeBehavior(Loc, Pointer,
10913                         S.PDiag(diag::warn_pointer_sub_null_ptr)
10914                             << S.getLangOpts().CPlusPlus
10915                             << Pointer->getSourceRange());
10916 }
10917 
10918 /// Diagnose invalid arithmetic on two function pointers.
10919 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10920                                                     Expr *LHS, Expr *RHS) {
10921   assert(LHS->getType()->isAnyPointerType());
10922   assert(RHS->getType()->isAnyPointerType());
10923   S.Diag(Loc, S.getLangOpts().CPlusPlus
10924                 ? diag::err_typecheck_pointer_arith_function_type
10925                 : diag::ext_gnu_ptr_func_arith)
10926     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10927     // We only show the second type if it differs from the first.
10928     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
10929                                                    RHS->getType())
10930     << RHS->getType()->getPointeeType()
10931     << LHS->getSourceRange() << RHS->getSourceRange();
10932 }
10933 
10934 /// Diagnose invalid arithmetic on a function pointer.
10935 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10936                                                 Expr *Pointer) {
10937   assert(Pointer->getType()->isAnyPointerType());
10938   S.Diag(Loc, S.getLangOpts().CPlusPlus
10939                 ? diag::err_typecheck_pointer_arith_function_type
10940                 : diag::ext_gnu_ptr_func_arith)
10941     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10942     << 0 /* one pointer, so only one type */
10943     << Pointer->getSourceRange();
10944 }
10945 
10946 /// Emit error if Operand is incomplete pointer type
10947 ///
10948 /// \returns True if pointer has incomplete type
10949 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10950                                                  Expr *Operand) {
10951   QualType ResType = Operand->getType();
10952   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10953     ResType = ResAtomicType->getValueType();
10954 
10955   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
10956   QualType PointeeTy = ResType->getPointeeType();
10957   return S.RequireCompleteSizedType(
10958       Loc, PointeeTy,
10959       diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10960       Operand->getSourceRange());
10961 }
10962 
10963 /// Check the validity of an arithmetic pointer operand.
10964 ///
10965 /// If the operand has pointer type, this code will check for pointer types
10966 /// which are invalid in arithmetic operations. These will be diagnosed
10967 /// appropriately, including whether or not the use is supported as an
10968 /// extension.
10969 ///
10970 /// \returns True when the operand is valid to use (even if as an extension).
10971 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10972                                             Expr *Operand) {
10973   QualType ResType = Operand->getType();
10974   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10975     ResType = ResAtomicType->getValueType();
10976 
10977   if (!ResType->isAnyPointerType()) return true;
10978 
10979   QualType PointeeTy = ResType->getPointeeType();
10980   if (PointeeTy->isVoidType()) {
10981     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
10982     return !S.getLangOpts().CPlusPlus;
10983   }
10984   if (PointeeTy->isFunctionType()) {
10985     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
10986     return !S.getLangOpts().CPlusPlus;
10987   }
10988 
10989   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10990 
10991   return true;
10992 }
10993 
10994 /// Check the validity of a binary arithmetic operation w.r.t. pointer
10995 /// operands.
10996 ///
10997 /// This routine will diagnose any invalid arithmetic on pointer operands much
10998 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
10999 /// for emitting a single diagnostic even for operations where both LHS and RHS
11000 /// are (potentially problematic) pointers.
11001 ///
11002 /// \returns True when the operand is valid to use (even if as an extension).
11003 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
11004                                                 Expr *LHSExpr, Expr *RHSExpr) {
11005   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
11006   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
11007   if (!isLHSPointer && !isRHSPointer) return true;
11008 
11009   QualType LHSPointeeTy, RHSPointeeTy;
11010   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
11011   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
11012 
11013   // if both are pointers check if operation is valid wrt address spaces
11014   if (isLHSPointer && isRHSPointer) {
11015     if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
11016       S.Diag(Loc,
11017              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11018           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
11019           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
11020       return false;
11021     }
11022   }
11023 
11024   // Check for arithmetic on pointers to incomplete types.
11025   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
11026   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
11027   if (isLHSVoidPtr || isRHSVoidPtr) {
11028     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
11029     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
11030     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
11031 
11032     return !S.getLangOpts().CPlusPlus;
11033   }
11034 
11035   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
11036   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
11037   if (isLHSFuncPtr || isRHSFuncPtr) {
11038     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
11039     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
11040                                                                 RHSExpr);
11041     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
11042 
11043     return !S.getLangOpts().CPlusPlus;
11044   }
11045 
11046   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
11047     return false;
11048   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
11049     return false;
11050 
11051   return true;
11052 }
11053 
11054 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
11055 /// literal.
11056 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
11057                                   Expr *LHSExpr, Expr *RHSExpr) {
11058   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
11059   Expr* IndexExpr = RHSExpr;
11060   if (!StrExpr) {
11061     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
11062     IndexExpr = LHSExpr;
11063   }
11064 
11065   bool IsStringPlusInt = StrExpr &&
11066       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
11067   if (!IsStringPlusInt || IndexExpr->isValueDependent())
11068     return;
11069 
11070   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11071   Self.Diag(OpLoc, diag::warn_string_plus_int)
11072       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
11073 
11074   // Only print a fixit for "str" + int, not for int + "str".
11075   if (IndexExpr == RHSExpr) {
11076     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11077     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11078         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11079         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11080         << FixItHint::CreateInsertion(EndLoc, "]");
11081   } else
11082     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11083 }
11084 
11085 /// Emit a warning when adding a char literal to a string.
11086 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
11087                                    Expr *LHSExpr, Expr *RHSExpr) {
11088   const Expr *StringRefExpr = LHSExpr;
11089   const CharacterLiteral *CharExpr =
11090       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
11091 
11092   if (!CharExpr) {
11093     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
11094     StringRefExpr = RHSExpr;
11095   }
11096 
11097   if (!CharExpr || !StringRefExpr)
11098     return;
11099 
11100   const QualType StringType = StringRefExpr->getType();
11101 
11102   // Return if not a PointerType.
11103   if (!StringType->isAnyPointerType())
11104     return;
11105 
11106   // Return if not a CharacterType.
11107   if (!StringType->getPointeeType()->isAnyCharacterType())
11108     return;
11109 
11110   ASTContext &Ctx = Self.getASTContext();
11111   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11112 
11113   const QualType CharType = CharExpr->getType();
11114   if (!CharType->isAnyCharacterType() &&
11115       CharType->isIntegerType() &&
11116       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
11117     Self.Diag(OpLoc, diag::warn_string_plus_char)
11118         << DiagRange << Ctx.CharTy;
11119   } else {
11120     Self.Diag(OpLoc, diag::warn_string_plus_char)
11121         << DiagRange << CharExpr->getType();
11122   }
11123 
11124   // Only print a fixit for str + char, not for char + str.
11125   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
11126     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11127     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11128         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11129         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11130         << FixItHint::CreateInsertion(EndLoc, "]");
11131   } else {
11132     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11133   }
11134 }
11135 
11136 /// Emit error when two pointers are incompatible.
11137 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
11138                                            Expr *LHSExpr, Expr *RHSExpr) {
11139   assert(LHSExpr->getType()->isAnyPointerType());
11140   assert(RHSExpr->getType()->isAnyPointerType());
11141   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
11142     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
11143     << RHSExpr->getSourceRange();
11144 }
11145 
11146 // C99 6.5.6
11147 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
11148                                      SourceLocation Loc, BinaryOperatorKind Opc,
11149                                      QualType* CompLHSTy) {
11150   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11151 
11152   if (LHS.get()->getType()->isVectorType() ||
11153       RHS.get()->getType()->isVectorType()) {
11154     QualType compType =
11155         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11156                             /*AllowBothBool*/ getLangOpts().AltiVec,
11157                             /*AllowBoolConversions*/ getLangOpts().ZVector,
11158                             /*AllowBooleanOperation*/ false,
11159                             /*ReportInvalid*/ true);
11160     if (CompLHSTy) *CompLHSTy = compType;
11161     return compType;
11162   }
11163 
11164   if (LHS.get()->getType()->isVLSTBuiltinType() ||
11165       RHS.get()->getType()->isVLSTBuiltinType()) {
11166     QualType compType =
11167         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11168     if (CompLHSTy)
11169       *CompLHSTy = compType;
11170     return compType;
11171   }
11172 
11173   if (LHS.get()->getType()->isConstantMatrixType() ||
11174       RHS.get()->getType()->isConstantMatrixType()) {
11175     QualType compType =
11176         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11177     if (CompLHSTy)
11178       *CompLHSTy = compType;
11179     return compType;
11180   }
11181 
11182   QualType compType = UsualArithmeticConversions(
11183       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11184   if (LHS.isInvalid() || RHS.isInvalid())
11185     return QualType();
11186 
11187   // Diagnose "string literal" '+' int and string '+' "char literal".
11188   if (Opc == BO_Add) {
11189     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
11190     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
11191   }
11192 
11193   // handle the common case first (both operands are arithmetic).
11194   if (!compType.isNull() && compType->isArithmeticType()) {
11195     if (CompLHSTy) *CompLHSTy = compType;
11196     return compType;
11197   }
11198 
11199   // Type-checking.  Ultimately the pointer's going to be in PExp;
11200   // note that we bias towards the LHS being the pointer.
11201   Expr *PExp = LHS.get(), *IExp = RHS.get();
11202 
11203   bool isObjCPointer;
11204   if (PExp->getType()->isPointerType()) {
11205     isObjCPointer = false;
11206   } else if (PExp->getType()->isObjCObjectPointerType()) {
11207     isObjCPointer = true;
11208   } else {
11209     std::swap(PExp, IExp);
11210     if (PExp->getType()->isPointerType()) {
11211       isObjCPointer = false;
11212     } else if (PExp->getType()->isObjCObjectPointerType()) {
11213       isObjCPointer = true;
11214     } else {
11215       return InvalidOperands(Loc, LHS, RHS);
11216     }
11217   }
11218   assert(PExp->getType()->isAnyPointerType());
11219 
11220   if (!IExp->getType()->isIntegerType())
11221     return InvalidOperands(Loc, LHS, RHS);
11222 
11223   // Adding to a null pointer results in undefined behavior.
11224   if (PExp->IgnoreParenCasts()->isNullPointerConstant(
11225           Context, Expr::NPC_ValueDependentIsNotNull)) {
11226     // In C++ adding zero to a null pointer is defined.
11227     Expr::EvalResult KnownVal;
11228     if (!getLangOpts().CPlusPlus ||
11229         (!IExp->isValueDependent() &&
11230          (!IExp->EvaluateAsInt(KnownVal, Context) ||
11231           KnownVal.Val.getInt() != 0))) {
11232       // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11233       bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
11234           Context, BO_Add, PExp, IExp);
11235       diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
11236     }
11237   }
11238 
11239   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
11240     return QualType();
11241 
11242   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
11243     return QualType();
11244 
11245   // Check array bounds for pointer arithemtic
11246   CheckArrayAccess(PExp, IExp);
11247 
11248   if (CompLHSTy) {
11249     QualType LHSTy = Context.isPromotableBitField(LHS.get());
11250     if (LHSTy.isNull()) {
11251       LHSTy = LHS.get()->getType();
11252       if (LHSTy->isPromotableIntegerType())
11253         LHSTy = Context.getPromotedIntegerType(LHSTy);
11254     }
11255     *CompLHSTy = LHSTy;
11256   }
11257 
11258   return PExp->getType();
11259 }
11260 
11261 // C99 6.5.6
11262 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
11263                                         SourceLocation Loc,
11264                                         QualType* CompLHSTy) {
11265   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11266 
11267   if (LHS.get()->getType()->isVectorType() ||
11268       RHS.get()->getType()->isVectorType()) {
11269     QualType compType =
11270         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11271                             /*AllowBothBool*/ getLangOpts().AltiVec,
11272                             /*AllowBoolConversions*/ getLangOpts().ZVector,
11273                             /*AllowBooleanOperation*/ false,
11274                             /*ReportInvalid*/ true);
11275     if (CompLHSTy) *CompLHSTy = compType;
11276     return compType;
11277   }
11278 
11279   if (LHS.get()->getType()->isVLSTBuiltinType() ||
11280       RHS.get()->getType()->isVLSTBuiltinType()) {
11281     QualType compType =
11282         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11283     if (CompLHSTy)
11284       *CompLHSTy = compType;
11285     return compType;
11286   }
11287 
11288   if (LHS.get()->getType()->isConstantMatrixType() ||
11289       RHS.get()->getType()->isConstantMatrixType()) {
11290     QualType compType =
11291         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11292     if (CompLHSTy)
11293       *CompLHSTy = compType;
11294     return compType;
11295   }
11296 
11297   QualType compType = UsualArithmeticConversions(
11298       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11299   if (LHS.isInvalid() || RHS.isInvalid())
11300     return QualType();
11301 
11302   // Enforce type constraints: C99 6.5.6p3.
11303 
11304   // Handle the common case first (both operands are arithmetic).
11305   if (!compType.isNull() && compType->isArithmeticType()) {
11306     if (CompLHSTy) *CompLHSTy = compType;
11307     return compType;
11308   }
11309 
11310   // Either ptr - int   or   ptr - ptr.
11311   if (LHS.get()->getType()->isAnyPointerType()) {
11312     QualType lpointee = LHS.get()->getType()->getPointeeType();
11313 
11314     // Diagnose bad cases where we step over interface counts.
11315     if (LHS.get()->getType()->isObjCObjectPointerType() &&
11316         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
11317       return QualType();
11318 
11319     // The result type of a pointer-int computation is the pointer type.
11320     if (RHS.get()->getType()->isIntegerType()) {
11321       // Subtracting from a null pointer should produce a warning.
11322       // The last argument to the diagnose call says this doesn't match the
11323       // GNU int-to-pointer idiom.
11324       if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
11325                                            Expr::NPC_ValueDependentIsNotNull)) {
11326         // In C++ adding zero to a null pointer is defined.
11327         Expr::EvalResult KnownVal;
11328         if (!getLangOpts().CPlusPlus ||
11329             (!RHS.get()->isValueDependent() &&
11330              (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
11331               KnownVal.Val.getInt() != 0))) {
11332           diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
11333         }
11334       }
11335 
11336       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
11337         return QualType();
11338 
11339       // Check array bounds for pointer arithemtic
11340       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
11341                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
11342 
11343       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11344       return LHS.get()->getType();
11345     }
11346 
11347     // Handle pointer-pointer subtractions.
11348     if (const PointerType *RHSPTy
11349           = RHS.get()->getType()->getAs<PointerType>()) {
11350       QualType rpointee = RHSPTy->getPointeeType();
11351 
11352       if (getLangOpts().CPlusPlus) {
11353         // Pointee types must be the same: C++ [expr.add]
11354         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
11355           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11356         }
11357       } else {
11358         // Pointee types must be compatible C99 6.5.6p3
11359         if (!Context.typesAreCompatible(
11360                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
11361                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
11362           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11363           return QualType();
11364         }
11365       }
11366 
11367       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
11368                                                LHS.get(), RHS.get()))
11369         return QualType();
11370 
11371       bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11372           Context, Expr::NPC_ValueDependentIsNotNull);
11373       bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11374           Context, Expr::NPC_ValueDependentIsNotNull);
11375 
11376       // Subtracting nullptr or from nullptr is suspect
11377       if (LHSIsNullPtr)
11378         diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
11379       if (RHSIsNullPtr)
11380         diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
11381 
11382       // The pointee type may have zero size.  As an extension, a structure or
11383       // union may have zero size or an array may have zero length.  In this
11384       // case subtraction does not make sense.
11385       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
11386         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
11387         if (ElementSize.isZero()) {
11388           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
11389             << rpointee.getUnqualifiedType()
11390             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11391         }
11392       }
11393 
11394       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11395       return Context.getPointerDiffType();
11396     }
11397   }
11398 
11399   return InvalidOperands(Loc, LHS, RHS);
11400 }
11401 
11402 static bool isScopedEnumerationType(QualType T) {
11403   if (const EnumType *ET = T->getAs<EnumType>())
11404     return ET->getDecl()->isScoped();
11405   return false;
11406 }
11407 
11408 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
11409                                    SourceLocation Loc, BinaryOperatorKind Opc,
11410                                    QualType LHSType) {
11411   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
11412   // so skip remaining warnings as we don't want to modify values within Sema.
11413   if (S.getLangOpts().OpenCL)
11414     return;
11415 
11416   // Check right/shifter operand
11417   Expr::EvalResult RHSResult;
11418   if (RHS.get()->isValueDependent() ||
11419       !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
11420     return;
11421   llvm::APSInt Right = RHSResult.Val.getInt();
11422 
11423   if (Right.isNegative()) {
11424     S.DiagRuntimeBehavior(Loc, RHS.get(),
11425                           S.PDiag(diag::warn_shift_negative)
11426                             << RHS.get()->getSourceRange());
11427     return;
11428   }
11429 
11430   QualType LHSExprType = LHS.get()->getType();
11431   uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
11432   if (LHSExprType->isBitIntType())
11433     LeftSize = S.Context.getIntWidth(LHSExprType);
11434   else if (LHSExprType->isFixedPointType()) {
11435     auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
11436     LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
11437   }
11438   llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
11439   if (Right.uge(LeftBits)) {
11440     S.DiagRuntimeBehavior(Loc, RHS.get(),
11441                           S.PDiag(diag::warn_shift_gt_typewidth)
11442                             << RHS.get()->getSourceRange());
11443     return;
11444   }
11445 
11446   // FIXME: We probably need to handle fixed point types specially here.
11447   if (Opc != BO_Shl || LHSExprType->isFixedPointType())
11448     return;
11449 
11450   // When left shifting an ICE which is signed, we can check for overflow which
11451   // according to C++ standards prior to C++2a has undefined behavior
11452   // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
11453   // more than the maximum value representable in the result type, so never
11454   // warn for those. (FIXME: Unsigned left-shift overflow in a constant
11455   // expression is still probably a bug.)
11456   Expr::EvalResult LHSResult;
11457   if (LHS.get()->isValueDependent() ||
11458       LHSType->hasUnsignedIntegerRepresentation() ||
11459       !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
11460     return;
11461   llvm::APSInt Left = LHSResult.Val.getInt();
11462 
11463   // Don't warn if signed overflow is defined, then all the rest of the
11464   // diagnostics will not be triggered because the behavior is defined.
11465   // Also don't warn in C++20 mode (and newer), as signed left shifts
11466   // always wrap and never overflow.
11467   if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
11468     return;
11469 
11470   // If LHS does not have a non-negative value then, the
11471   // behavior is undefined before C++2a. Warn about it.
11472   if (Left.isNegative()) {
11473     S.DiagRuntimeBehavior(Loc, LHS.get(),
11474                           S.PDiag(diag::warn_shift_lhs_negative)
11475                             << LHS.get()->getSourceRange());
11476     return;
11477   }
11478 
11479   llvm::APInt ResultBits =
11480       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
11481   if (LeftBits.uge(ResultBits))
11482     return;
11483   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
11484   Result = Result.shl(Right);
11485 
11486   // Print the bit representation of the signed integer as an unsigned
11487   // hexadecimal number.
11488   SmallString<40> HexResult;
11489   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
11490 
11491   // If we are only missing a sign bit, this is less likely to result in actual
11492   // bugs -- if the result is cast back to an unsigned type, it will have the
11493   // expected value. Thus we place this behind a different warning that can be
11494   // turned off separately if needed.
11495   if (LeftBits == ResultBits - 1) {
11496     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
11497         << HexResult << LHSType
11498         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11499     return;
11500   }
11501 
11502   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
11503     << HexResult.str() << Result.getMinSignedBits() << LHSType
11504     << Left.getBitWidth() << LHS.get()->getSourceRange()
11505     << RHS.get()->getSourceRange();
11506 }
11507 
11508 /// Return the resulting type when a vector is shifted
11509 ///        by a scalar or vector shift amount.
11510 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
11511                                  SourceLocation Loc, bool IsCompAssign) {
11512   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
11513   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
11514       !LHS.get()->getType()->isVectorType()) {
11515     S.Diag(Loc, diag::err_shift_rhs_only_vector)
11516       << RHS.get()->getType() << LHS.get()->getType()
11517       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11518     return QualType();
11519   }
11520 
11521   if (!IsCompAssign) {
11522     LHS = S.UsualUnaryConversions(LHS.get());
11523     if (LHS.isInvalid()) return QualType();
11524   }
11525 
11526   RHS = S.UsualUnaryConversions(RHS.get());
11527   if (RHS.isInvalid()) return QualType();
11528 
11529   QualType LHSType = LHS.get()->getType();
11530   // Note that LHS might be a scalar because the routine calls not only in
11531   // OpenCL case.
11532   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
11533   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
11534 
11535   // Note that RHS might not be a vector.
11536   QualType RHSType = RHS.get()->getType();
11537   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
11538   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
11539 
11540   // Do not allow shifts for boolean vectors.
11541   if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
11542       (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
11543     S.Diag(Loc, diag::err_typecheck_invalid_operands)
11544         << LHS.get()->getType() << RHS.get()->getType()
11545         << LHS.get()->getSourceRange();
11546     return QualType();
11547   }
11548 
11549   // The operands need to be integers.
11550   if (!LHSEleType->isIntegerType()) {
11551     S.Diag(Loc, diag::err_typecheck_expect_int)
11552       << LHS.get()->getType() << LHS.get()->getSourceRange();
11553     return QualType();
11554   }
11555 
11556   if (!RHSEleType->isIntegerType()) {
11557     S.Diag(Loc, diag::err_typecheck_expect_int)
11558       << RHS.get()->getType() << RHS.get()->getSourceRange();
11559     return QualType();
11560   }
11561 
11562   if (!LHSVecTy) {
11563     assert(RHSVecTy);
11564     if (IsCompAssign)
11565       return RHSType;
11566     if (LHSEleType != RHSEleType) {
11567       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
11568       LHSEleType = RHSEleType;
11569     }
11570     QualType VecTy =
11571         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
11572     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
11573     LHSType = VecTy;
11574   } else if (RHSVecTy) {
11575     // OpenCL v1.1 s6.3.j says that for vector types, the operators
11576     // are applied component-wise. So if RHS is a vector, then ensure
11577     // that the number of elements is the same as LHS...
11578     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
11579       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11580         << LHS.get()->getType() << RHS.get()->getType()
11581         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11582       return QualType();
11583     }
11584     if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
11585       const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
11586       const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
11587       if (LHSBT != RHSBT &&
11588           S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
11589         S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
11590             << LHS.get()->getType() << RHS.get()->getType()
11591             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11592       }
11593     }
11594   } else {
11595     // ...else expand RHS to match the number of elements in LHS.
11596     QualType VecTy =
11597       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
11598     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11599   }
11600 
11601   return LHSType;
11602 }
11603 
11604 static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
11605                                          ExprResult &RHS, SourceLocation Loc,
11606                                          bool IsCompAssign) {
11607   if (!IsCompAssign) {
11608     LHS = S.UsualUnaryConversions(LHS.get());
11609     if (LHS.isInvalid())
11610       return QualType();
11611   }
11612 
11613   RHS = S.UsualUnaryConversions(RHS.get());
11614   if (RHS.isInvalid())
11615     return QualType();
11616 
11617   QualType LHSType = LHS.get()->getType();
11618   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
11619   QualType LHSEleType = LHSType->isVLSTBuiltinType()
11620                             ? LHSBuiltinTy->getSveEltType(S.getASTContext())
11621                             : LHSType;
11622 
11623   // Note that RHS might not be a vector
11624   QualType RHSType = RHS.get()->getType();
11625   const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
11626   QualType RHSEleType = RHSType->isVLSTBuiltinType()
11627                             ? RHSBuiltinTy->getSveEltType(S.getASTContext())
11628                             : RHSType;
11629 
11630   if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11631       (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
11632     S.Diag(Loc, diag::err_typecheck_invalid_operands)
11633         << LHSType << RHSType << LHS.get()->getSourceRange();
11634     return QualType();
11635   }
11636 
11637   if (!LHSEleType->isIntegerType()) {
11638     S.Diag(Loc, diag::err_typecheck_expect_int)
11639         << LHS.get()->getType() << LHS.get()->getSourceRange();
11640     return QualType();
11641   }
11642 
11643   if (!RHSEleType->isIntegerType()) {
11644     S.Diag(Loc, diag::err_typecheck_expect_int)
11645         << RHS.get()->getType() << RHS.get()->getSourceRange();
11646     return QualType();
11647   }
11648 
11649   if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() &&
11650       (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
11651        S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) {
11652     S.Diag(Loc, diag::err_typecheck_invalid_operands)
11653         << LHSType << RHSType << LHS.get()->getSourceRange()
11654         << RHS.get()->getSourceRange();
11655     return QualType();
11656   }
11657 
11658   if (!LHSType->isVLSTBuiltinType()) {
11659     assert(RHSType->isVLSTBuiltinType());
11660     if (IsCompAssign)
11661       return RHSType;
11662     if (LHSEleType != RHSEleType) {
11663       LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast);
11664       LHSEleType = RHSEleType;
11665     }
11666     const llvm::ElementCount VecSize =
11667         S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC;
11668     QualType VecTy =
11669         S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue());
11670     LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat);
11671     LHSType = VecTy;
11672   } else if (RHSBuiltinTy && RHSBuiltinTy->isVLSTBuiltinType()) {
11673     if (S.Context.getTypeSize(RHSBuiltinTy) !=
11674         S.Context.getTypeSize(LHSBuiltinTy)) {
11675       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11676           << LHSType << RHSType << LHS.get()->getSourceRange()
11677           << RHS.get()->getSourceRange();
11678       return QualType();
11679     }
11680   } else {
11681     const llvm::ElementCount VecSize =
11682         S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC;
11683     if (LHSEleType != RHSEleType) {
11684       RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast);
11685       RHSEleType = LHSEleType;
11686     }
11687     QualType VecTy =
11688         S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue());
11689     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11690   }
11691 
11692   return LHSType;
11693 }
11694 
11695 // C99 6.5.7
11696 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11697                                   SourceLocation Loc, BinaryOperatorKind Opc,
11698                                   bool IsCompAssign) {
11699   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11700 
11701   // Vector shifts promote their scalar inputs to vector type.
11702   if (LHS.get()->getType()->isVectorType() ||
11703       RHS.get()->getType()->isVectorType()) {
11704     if (LangOpts.ZVector) {
11705       // The shift operators for the z vector extensions work basically
11706       // like general shifts, except that neither the LHS nor the RHS is
11707       // allowed to be a "vector bool".
11708       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11709         if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
11710           return InvalidOperands(Loc, LHS, RHS);
11711       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11712         if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
11713           return InvalidOperands(Loc, LHS, RHS);
11714     }
11715     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11716   }
11717 
11718   if (LHS.get()->getType()->isVLSTBuiltinType() ||
11719       RHS.get()->getType()->isVLSTBuiltinType())
11720     return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11721 
11722   // Shifts don't perform usual arithmetic conversions, they just do integer
11723   // promotions on each operand. C99 6.5.7p3
11724 
11725   // For the LHS, do usual unary conversions, but then reset them away
11726   // if this is a compound assignment.
11727   ExprResult OldLHS = LHS;
11728   LHS = UsualUnaryConversions(LHS.get());
11729   if (LHS.isInvalid())
11730     return QualType();
11731   QualType LHSType = LHS.get()->getType();
11732   if (IsCompAssign) LHS = OldLHS;
11733 
11734   // The RHS is simpler.
11735   RHS = UsualUnaryConversions(RHS.get());
11736   if (RHS.isInvalid())
11737     return QualType();
11738   QualType RHSType = RHS.get()->getType();
11739 
11740   // C99 6.5.7p2: Each of the operands shall have integer type.
11741   // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
11742   if ((!LHSType->isFixedPointOrIntegerType() &&
11743        !LHSType->hasIntegerRepresentation()) ||
11744       !RHSType->hasIntegerRepresentation())
11745     return InvalidOperands(Loc, LHS, RHS);
11746 
11747   // C++0x: Don't allow scoped enums. FIXME: Use something better than
11748   // hasIntegerRepresentation() above instead of this.
11749   if (isScopedEnumerationType(LHSType) ||
11750       isScopedEnumerationType(RHSType)) {
11751     return InvalidOperands(Loc, LHS, RHS);
11752   }
11753   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
11754 
11755   // "The type of the result is that of the promoted left operand."
11756   return LHSType;
11757 }
11758 
11759 /// Diagnose bad pointer comparisons.
11760 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
11761                                               ExprResult &LHS, ExprResult &RHS,
11762                                               bool IsError) {
11763   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
11764                       : diag::ext_typecheck_comparison_of_distinct_pointers)
11765     << LHS.get()->getType() << RHS.get()->getType()
11766     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11767 }
11768 
11769 /// Returns false if the pointers are converted to a composite type,
11770 /// true otherwise.
11771 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
11772                                            ExprResult &LHS, ExprResult &RHS) {
11773   // C++ [expr.rel]p2:
11774   //   [...] Pointer conversions (4.10) and qualification
11775   //   conversions (4.4) are performed on pointer operands (or on
11776   //   a pointer operand and a null pointer constant) to bring
11777   //   them to their composite pointer type. [...]
11778   //
11779   // C++ [expr.eq]p1 uses the same notion for (in)equality
11780   // comparisons of pointers.
11781 
11782   QualType LHSType = LHS.get()->getType();
11783   QualType RHSType = RHS.get()->getType();
11784   assert(LHSType->isPointerType() || RHSType->isPointerType() ||
11785          LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
11786 
11787   QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
11788   if (T.isNull()) {
11789     if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
11790         (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
11791       diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
11792     else
11793       S.InvalidOperands(Loc, LHS, RHS);
11794     return true;
11795   }
11796 
11797   return false;
11798 }
11799 
11800 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11801                                                     ExprResult &LHS,
11802                                                     ExprResult &RHS,
11803                                                     bool IsError) {
11804   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11805                       : diag::ext_typecheck_comparison_of_fptr_to_void)
11806     << LHS.get()->getType() << RHS.get()->getType()
11807     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11808 }
11809 
11810 static bool isObjCObjectLiteral(ExprResult &E) {
11811   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11812   case Stmt::ObjCArrayLiteralClass:
11813   case Stmt::ObjCDictionaryLiteralClass:
11814   case Stmt::ObjCStringLiteralClass:
11815   case Stmt::ObjCBoxedExprClass:
11816     return true;
11817   default:
11818     // Note that ObjCBoolLiteral is NOT an object literal!
11819     return false;
11820   }
11821 }
11822 
11823 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11824   const ObjCObjectPointerType *Type =
11825     LHS->getType()->getAs<ObjCObjectPointerType>();
11826 
11827   // If this is not actually an Objective-C object, bail out.
11828   if (!Type)
11829     return false;
11830 
11831   // Get the LHS object's interface type.
11832   QualType InterfaceType = Type->getPointeeType();
11833 
11834   // If the RHS isn't an Objective-C object, bail out.
11835   if (!RHS->getType()->isObjCObjectPointerType())
11836     return false;
11837 
11838   // Try to find the -isEqual: method.
11839   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
11840   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
11841                                                       InterfaceType,
11842                                                       /*IsInstance=*/true);
11843   if (!Method) {
11844     if (Type->isObjCIdType()) {
11845       // For 'id', just check the global pool.
11846       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
11847                                                   /*receiverId=*/true);
11848     } else {
11849       // Check protocols.
11850       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
11851                                              /*IsInstance=*/true);
11852     }
11853   }
11854 
11855   if (!Method)
11856     return false;
11857 
11858   QualType T = Method->parameters()[0]->getType();
11859   if (!T->isObjCObjectPointerType())
11860     return false;
11861 
11862   QualType R = Method->getReturnType();
11863   if (!R->isScalarType())
11864     return false;
11865 
11866   return true;
11867 }
11868 
11869 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
11870   FromE = FromE->IgnoreParenImpCasts();
11871   switch (FromE->getStmtClass()) {
11872     default:
11873       break;
11874     case Stmt::ObjCStringLiteralClass:
11875       // "string literal"
11876       return LK_String;
11877     case Stmt::ObjCArrayLiteralClass:
11878       // "array literal"
11879       return LK_Array;
11880     case Stmt::ObjCDictionaryLiteralClass:
11881       // "dictionary literal"
11882       return LK_Dictionary;
11883     case Stmt::BlockExprClass:
11884       return LK_Block;
11885     case Stmt::ObjCBoxedExprClass: {
11886       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
11887       switch (Inner->getStmtClass()) {
11888         case Stmt::IntegerLiteralClass:
11889         case Stmt::FloatingLiteralClass:
11890         case Stmt::CharacterLiteralClass:
11891         case Stmt::ObjCBoolLiteralExprClass:
11892         case Stmt::CXXBoolLiteralExprClass:
11893           // "numeric literal"
11894           return LK_Numeric;
11895         case Stmt::ImplicitCastExprClass: {
11896           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
11897           // Boolean literals can be represented by implicit casts.
11898           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
11899             return LK_Numeric;
11900           break;
11901         }
11902         default:
11903           break;
11904       }
11905       return LK_Boxed;
11906     }
11907   }
11908   return LK_None;
11909 }
11910 
11911 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
11912                                           ExprResult &LHS, ExprResult &RHS,
11913                                           BinaryOperator::Opcode Opc){
11914   Expr *Literal;
11915   Expr *Other;
11916   if (isObjCObjectLiteral(LHS)) {
11917     Literal = LHS.get();
11918     Other = RHS.get();
11919   } else {
11920     Literal = RHS.get();
11921     Other = LHS.get();
11922   }
11923 
11924   // Don't warn on comparisons against nil.
11925   Other = Other->IgnoreParenCasts();
11926   if (Other->isNullPointerConstant(S.getASTContext(),
11927                                    Expr::NPC_ValueDependentIsNotNull))
11928     return;
11929 
11930   // This should be kept in sync with warn_objc_literal_comparison.
11931   // LK_String should always be after the other literals, since it has its own
11932   // warning flag.
11933   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
11934   assert(LiteralKind != Sema::LK_Block);
11935   if (LiteralKind == Sema::LK_None) {
11936     llvm_unreachable("Unknown Objective-C object literal kind");
11937   }
11938 
11939   if (LiteralKind == Sema::LK_String)
11940     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
11941       << Literal->getSourceRange();
11942   else
11943     S.Diag(Loc, diag::warn_objc_literal_comparison)
11944       << LiteralKind << Literal->getSourceRange();
11945 
11946   if (BinaryOperator::isEqualityOp(Opc) &&
11947       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
11948     SourceLocation Start = LHS.get()->getBeginLoc();
11949     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
11950     CharSourceRange OpRange =
11951       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11952 
11953     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
11954       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
11955       << FixItHint::CreateReplacement(OpRange, " isEqual:")
11956       << FixItHint::CreateInsertion(End, "]");
11957   }
11958 }
11959 
11960 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
11961 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11962                                            ExprResult &RHS, SourceLocation Loc,
11963                                            BinaryOperatorKind Opc) {
11964   // Check that left hand side is !something.
11965   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
11966   if (!UO || UO->getOpcode() != UO_LNot) return;
11967 
11968   // Only check if the right hand side is non-bool arithmetic type.
11969   if (RHS.get()->isKnownToHaveBooleanValue()) return;
11970 
11971   // Make sure that the something in !something is not bool.
11972   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11973   if (SubExpr->isKnownToHaveBooleanValue()) return;
11974 
11975   // Emit warning.
11976   bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11977   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
11978       << Loc << IsBitwiseOp;
11979 
11980   // First note suggest !(x < y)
11981   SourceLocation FirstOpen = SubExpr->getBeginLoc();
11982   SourceLocation FirstClose = RHS.get()->getEndLoc();
11983   FirstClose = S.getLocForEndOfToken(FirstClose);
11984   if (FirstClose.isInvalid())
11985     FirstOpen = SourceLocation();
11986   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
11987       << IsBitwiseOp
11988       << FixItHint::CreateInsertion(FirstOpen, "(")
11989       << FixItHint::CreateInsertion(FirstClose, ")");
11990 
11991   // Second note suggests (!x) < y
11992   SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11993   SourceLocation SecondClose = LHS.get()->getEndLoc();
11994   SecondClose = S.getLocForEndOfToken(SecondClose);
11995   if (SecondClose.isInvalid())
11996     SecondOpen = SourceLocation();
11997   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
11998       << FixItHint::CreateInsertion(SecondOpen, "(")
11999       << FixItHint::CreateInsertion(SecondClose, ")");
12000 }
12001 
12002 // Returns true if E refers to a non-weak array.
12003 static bool checkForArray(const Expr *E) {
12004   const ValueDecl *D = nullptr;
12005   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
12006     D = DR->getDecl();
12007   } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
12008     if (Mem->isImplicitAccess())
12009       D = Mem->getMemberDecl();
12010   }
12011   if (!D)
12012     return false;
12013   return D->getType()->isArrayType() && !D->isWeak();
12014 }
12015 
12016 /// Diagnose some forms of syntactically-obvious tautological comparison.
12017 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
12018                                            Expr *LHS, Expr *RHS,
12019                                            BinaryOperatorKind Opc) {
12020   Expr *LHSStripped = LHS->IgnoreParenImpCasts();
12021   Expr *RHSStripped = RHS->IgnoreParenImpCasts();
12022 
12023   QualType LHSType = LHS->getType();
12024   QualType RHSType = RHS->getType();
12025   if (LHSType->hasFloatingRepresentation() ||
12026       (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
12027       S.inTemplateInstantiation())
12028     return;
12029 
12030   // Comparisons between two array types are ill-formed for operator<=>, so
12031   // we shouldn't emit any additional warnings about it.
12032   if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
12033     return;
12034 
12035   // For non-floating point types, check for self-comparisons of the form
12036   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12037   // often indicate logic errors in the program.
12038   //
12039   // NOTE: Don't warn about comparison expressions resulting from macro
12040   // expansion. Also don't warn about comparisons which are only self
12041   // comparisons within a template instantiation. The warnings should catch
12042   // obvious cases in the definition of the template anyways. The idea is to
12043   // warn when the typed comparison operator will always evaluate to the same
12044   // result.
12045 
12046   // Used for indexing into %select in warn_comparison_always
12047   enum {
12048     AlwaysConstant,
12049     AlwaysTrue,
12050     AlwaysFalse,
12051     AlwaysEqual, // std::strong_ordering::equal from operator<=>
12052   };
12053 
12054   // C++2a [depr.array.comp]:
12055   //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12056   //   operands of array type are deprecated.
12057   if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
12058       RHSStripped->getType()->isArrayType()) {
12059     S.Diag(Loc, diag::warn_depr_array_comparison)
12060         << LHS->getSourceRange() << RHS->getSourceRange()
12061         << LHSStripped->getType() << RHSStripped->getType();
12062     // Carry on to produce the tautological comparison warning, if this
12063     // expression is potentially-evaluated, we can resolve the array to a
12064     // non-weak declaration, and so on.
12065   }
12066 
12067   if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
12068     if (Expr::isSameComparisonOperand(LHS, RHS)) {
12069       unsigned Result;
12070       switch (Opc) {
12071       case BO_EQ:
12072       case BO_LE:
12073       case BO_GE:
12074         Result = AlwaysTrue;
12075         break;
12076       case BO_NE:
12077       case BO_LT:
12078       case BO_GT:
12079         Result = AlwaysFalse;
12080         break;
12081       case BO_Cmp:
12082         Result = AlwaysEqual;
12083         break;
12084       default:
12085         Result = AlwaysConstant;
12086         break;
12087       }
12088       S.DiagRuntimeBehavior(Loc, nullptr,
12089                             S.PDiag(diag::warn_comparison_always)
12090                                 << 0 /*self-comparison*/
12091                                 << Result);
12092     } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
12093       // What is it always going to evaluate to?
12094       unsigned Result;
12095       switch (Opc) {
12096       case BO_EQ: // e.g. array1 == array2
12097         Result = AlwaysFalse;
12098         break;
12099       case BO_NE: // e.g. array1 != array2
12100         Result = AlwaysTrue;
12101         break;
12102       default: // e.g. array1 <= array2
12103         // The best we can say is 'a constant'
12104         Result = AlwaysConstant;
12105         break;
12106       }
12107       S.DiagRuntimeBehavior(Loc, nullptr,
12108                             S.PDiag(diag::warn_comparison_always)
12109                                 << 1 /*array comparison*/
12110                                 << Result);
12111     }
12112   }
12113 
12114   if (isa<CastExpr>(LHSStripped))
12115     LHSStripped = LHSStripped->IgnoreParenCasts();
12116   if (isa<CastExpr>(RHSStripped))
12117     RHSStripped = RHSStripped->IgnoreParenCasts();
12118 
12119   // Warn about comparisons against a string constant (unless the other
12120   // operand is null); the user probably wants string comparison function.
12121   Expr *LiteralString = nullptr;
12122   Expr *LiteralStringStripped = nullptr;
12123   if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
12124       !RHSStripped->isNullPointerConstant(S.Context,
12125                                           Expr::NPC_ValueDependentIsNull)) {
12126     LiteralString = LHS;
12127     LiteralStringStripped = LHSStripped;
12128   } else if ((isa<StringLiteral>(RHSStripped) ||
12129               isa<ObjCEncodeExpr>(RHSStripped)) &&
12130              !LHSStripped->isNullPointerConstant(S.Context,
12131                                           Expr::NPC_ValueDependentIsNull)) {
12132     LiteralString = RHS;
12133     LiteralStringStripped = RHSStripped;
12134   }
12135 
12136   if (LiteralString) {
12137     S.DiagRuntimeBehavior(Loc, nullptr,
12138                           S.PDiag(diag::warn_stringcompare)
12139                               << isa<ObjCEncodeExpr>(LiteralStringStripped)
12140                               << LiteralString->getSourceRange());
12141   }
12142 }
12143 
12144 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
12145   switch (CK) {
12146   default: {
12147 #ifndef NDEBUG
12148     llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
12149                  << "\n";
12150 #endif
12151     llvm_unreachable("unhandled cast kind");
12152   }
12153   case CK_UserDefinedConversion:
12154     return ICK_Identity;
12155   case CK_LValueToRValue:
12156     return ICK_Lvalue_To_Rvalue;
12157   case CK_ArrayToPointerDecay:
12158     return ICK_Array_To_Pointer;
12159   case CK_FunctionToPointerDecay:
12160     return ICK_Function_To_Pointer;
12161   case CK_IntegralCast:
12162     return ICK_Integral_Conversion;
12163   case CK_FloatingCast:
12164     return ICK_Floating_Conversion;
12165   case CK_IntegralToFloating:
12166   case CK_FloatingToIntegral:
12167     return ICK_Floating_Integral;
12168   case CK_IntegralComplexCast:
12169   case CK_FloatingComplexCast:
12170   case CK_FloatingComplexToIntegralComplex:
12171   case CK_IntegralComplexToFloatingComplex:
12172     return ICK_Complex_Conversion;
12173   case CK_FloatingComplexToReal:
12174   case CK_FloatingRealToComplex:
12175   case CK_IntegralComplexToReal:
12176   case CK_IntegralRealToComplex:
12177     return ICK_Complex_Real;
12178   }
12179 }
12180 
12181 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
12182                                              QualType FromType,
12183                                              SourceLocation Loc) {
12184   // Check for a narrowing implicit conversion.
12185   StandardConversionSequence SCS;
12186   SCS.setAsIdentityConversion();
12187   SCS.setToType(0, FromType);
12188   SCS.setToType(1, ToType);
12189   if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
12190     SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
12191 
12192   APValue PreNarrowingValue;
12193   QualType PreNarrowingType;
12194   switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
12195                                PreNarrowingType,
12196                                /*IgnoreFloatToIntegralConversion*/ true)) {
12197   case NK_Dependent_Narrowing:
12198     // Implicit conversion to a narrower type, but the expression is
12199     // value-dependent so we can't tell whether it's actually narrowing.
12200   case NK_Not_Narrowing:
12201     return false;
12202 
12203   case NK_Constant_Narrowing:
12204     // Implicit conversion to a narrower type, and the value is not a constant
12205     // expression.
12206     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12207         << /*Constant*/ 1
12208         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
12209     return true;
12210 
12211   case NK_Variable_Narrowing:
12212     // Implicit conversion to a narrower type, and the value is not a constant
12213     // expression.
12214   case NK_Type_Narrowing:
12215     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12216         << /*Constant*/ 0 << FromType << ToType;
12217     // TODO: It's not a constant expression, but what if the user intended it
12218     // to be? Can we produce notes to help them figure out why it isn't?
12219     return true;
12220   }
12221   llvm_unreachable("unhandled case in switch");
12222 }
12223 
12224 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
12225                                                          ExprResult &LHS,
12226                                                          ExprResult &RHS,
12227                                                          SourceLocation Loc) {
12228   QualType LHSType = LHS.get()->getType();
12229   QualType RHSType = RHS.get()->getType();
12230   // Dig out the original argument type and expression before implicit casts
12231   // were applied. These are the types/expressions we need to check the
12232   // [expr.spaceship] requirements against.
12233   ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
12234   ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
12235   QualType LHSStrippedType = LHSStripped.get()->getType();
12236   QualType RHSStrippedType = RHSStripped.get()->getType();
12237 
12238   // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12239   // other is not, the program is ill-formed.
12240   if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
12241     S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12242     return QualType();
12243   }
12244 
12245   // FIXME: Consider combining this with checkEnumArithmeticConversions.
12246   int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
12247                     RHSStrippedType->isEnumeralType();
12248   if (NumEnumArgs == 1) {
12249     bool LHSIsEnum = LHSStrippedType->isEnumeralType();
12250     QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
12251     if (OtherTy->hasFloatingRepresentation()) {
12252       S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12253       return QualType();
12254     }
12255   }
12256   if (NumEnumArgs == 2) {
12257     // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12258     // type E, the operator yields the result of converting the operands
12259     // to the underlying type of E and applying <=> to the converted operands.
12260     if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
12261       S.InvalidOperands(Loc, LHS, RHS);
12262       return QualType();
12263     }
12264     QualType IntType =
12265         LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
12266     assert(IntType->isArithmeticType());
12267 
12268     // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12269     // promote the boolean type, and all other promotable integer types, to
12270     // avoid this.
12271     if (IntType->isPromotableIntegerType())
12272       IntType = S.Context.getPromotedIntegerType(IntType);
12273 
12274     LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
12275     RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
12276     LHSType = RHSType = IntType;
12277   }
12278 
12279   // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
12280   // usual arithmetic conversions are applied to the operands.
12281   QualType Type =
12282       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12283   if (LHS.isInvalid() || RHS.isInvalid())
12284     return QualType();
12285   if (Type.isNull())
12286     return S.InvalidOperands(Loc, LHS, RHS);
12287 
12288   Optional<ComparisonCategoryType> CCT =
12289       getComparisonCategoryForBuiltinCmp(Type);
12290   if (!CCT)
12291     return S.InvalidOperands(Loc, LHS, RHS);
12292 
12293   bool HasNarrowing = checkThreeWayNarrowingConversion(
12294       S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
12295   HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
12296                                                    RHS.get()->getBeginLoc());
12297   if (HasNarrowing)
12298     return QualType();
12299 
12300   assert(!Type.isNull() && "composite type for <=> has not been set");
12301 
12302   return S.CheckComparisonCategoryType(
12303       *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
12304 }
12305 
12306 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
12307                                                  ExprResult &RHS,
12308                                                  SourceLocation Loc,
12309                                                  BinaryOperatorKind Opc) {
12310   if (Opc == BO_Cmp)
12311     return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
12312 
12313   // C99 6.5.8p3 / C99 6.5.9p4
12314   QualType Type =
12315       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12316   if (LHS.isInvalid() || RHS.isInvalid())
12317     return QualType();
12318   if (Type.isNull())
12319     return S.InvalidOperands(Loc, LHS, RHS);
12320   assert(Type->isArithmeticType() || Type->isEnumeralType());
12321 
12322   if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
12323     return S.InvalidOperands(Loc, LHS, RHS);
12324 
12325   // Check for comparisons of floating point operands using != and ==.
12326   if (Type->hasFloatingRepresentation())
12327     S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12328 
12329   // The result of comparisons is 'bool' in C++, 'int' in C.
12330   return S.Context.getLogicalOperationType();
12331 }
12332 
12333 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
12334   if (!NullE.get()->getType()->isAnyPointerType())
12335     return;
12336   int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
12337   if (!E.get()->getType()->isAnyPointerType() &&
12338       E.get()->isNullPointerConstant(Context,
12339                                      Expr::NPC_ValueDependentIsNotNull) ==
12340         Expr::NPCK_ZeroExpression) {
12341     if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
12342       if (CL->getValue() == 0)
12343         Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12344             << NullValue
12345             << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12346                                             NullValue ? "NULL" : "(void *)0");
12347     } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
12348         TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
12349         QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
12350         if (T == Context.CharTy)
12351           Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12352               << NullValue
12353               << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12354                                               NullValue ? "NULL" : "(void *)0");
12355       }
12356   }
12357 }
12358 
12359 // C99 6.5.8, C++ [expr.rel]
12360 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
12361                                     SourceLocation Loc,
12362                                     BinaryOperatorKind Opc) {
12363   bool IsRelational = BinaryOperator::isRelationalOp(Opc);
12364   bool IsThreeWay = Opc == BO_Cmp;
12365   bool IsOrdered = IsRelational || IsThreeWay;
12366   auto IsAnyPointerType = [](ExprResult E) {
12367     QualType Ty = E.get()->getType();
12368     return Ty->isPointerType() || Ty->isMemberPointerType();
12369   };
12370 
12371   // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
12372   // type, array-to-pointer, ..., conversions are performed on both operands to
12373   // bring them to their composite type.
12374   // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
12375   // any type-related checks.
12376   if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
12377     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12378     if (LHS.isInvalid())
12379       return QualType();
12380     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12381     if (RHS.isInvalid())
12382       return QualType();
12383   } else {
12384     LHS = DefaultLvalueConversion(LHS.get());
12385     if (LHS.isInvalid())
12386       return QualType();
12387     RHS = DefaultLvalueConversion(RHS.get());
12388     if (RHS.isInvalid())
12389       return QualType();
12390   }
12391 
12392   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
12393   if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
12394     CheckPtrComparisonWithNullChar(LHS, RHS);
12395     CheckPtrComparisonWithNullChar(RHS, LHS);
12396   }
12397 
12398   // Handle vector comparisons separately.
12399   if (LHS.get()->getType()->isVectorType() ||
12400       RHS.get()->getType()->isVectorType())
12401     return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
12402 
12403   if (LHS.get()->getType()->isVLSTBuiltinType() ||
12404       RHS.get()->getType()->isVLSTBuiltinType())
12405     return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
12406 
12407   diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12408   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12409 
12410   QualType LHSType = LHS.get()->getType();
12411   QualType RHSType = RHS.get()->getType();
12412   if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
12413       (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
12414     return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
12415 
12416   const Expr::NullPointerConstantKind LHSNullKind =
12417       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12418   const Expr::NullPointerConstantKind RHSNullKind =
12419       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12420   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
12421   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
12422 
12423   auto computeResultTy = [&]() {
12424     if (Opc != BO_Cmp)
12425       return Context.getLogicalOperationType();
12426     assert(getLangOpts().CPlusPlus);
12427     assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
12428 
12429     QualType CompositeTy = LHS.get()->getType();
12430     assert(!CompositeTy->isReferenceType());
12431 
12432     Optional<ComparisonCategoryType> CCT =
12433         getComparisonCategoryForBuiltinCmp(CompositeTy);
12434     if (!CCT)
12435       return InvalidOperands(Loc, LHS, RHS);
12436 
12437     if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
12438       // P0946R0: Comparisons between a null pointer constant and an object
12439       // pointer result in std::strong_equality, which is ill-formed under
12440       // P1959R0.
12441       Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
12442           << (LHSIsNull ? LHS.get()->getSourceRange()
12443                         : RHS.get()->getSourceRange());
12444       return QualType();
12445     }
12446 
12447     return CheckComparisonCategoryType(
12448         *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
12449   };
12450 
12451   if (!IsOrdered && LHSIsNull != RHSIsNull) {
12452     bool IsEquality = Opc == BO_EQ;
12453     if (RHSIsNull)
12454       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
12455                                    RHS.get()->getSourceRange());
12456     else
12457       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
12458                                    LHS.get()->getSourceRange());
12459   }
12460 
12461   if (IsOrdered && LHSType->isFunctionPointerType() &&
12462       RHSType->isFunctionPointerType()) {
12463     // Valid unless a relational comparison of function pointers
12464     bool IsError = Opc == BO_Cmp;
12465     auto DiagID =
12466         IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
12467         : getLangOpts().CPlusPlus
12468             ? diag::warn_typecheck_ordered_comparison_of_function_pointers
12469             : diag::ext_typecheck_ordered_comparison_of_function_pointers;
12470     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
12471                       << RHS.get()->getSourceRange();
12472     if (IsError)
12473       return QualType();
12474   }
12475 
12476   if ((LHSType->isIntegerType() && !LHSIsNull) ||
12477       (RHSType->isIntegerType() && !RHSIsNull)) {
12478     // Skip normal pointer conversion checks in this case; we have better
12479     // diagnostics for this below.
12480   } else if (getLangOpts().CPlusPlus) {
12481     // Equality comparison of a function pointer to a void pointer is invalid,
12482     // but we allow it as an extension.
12483     // FIXME: If we really want to allow this, should it be part of composite
12484     // pointer type computation so it works in conditionals too?
12485     if (!IsOrdered &&
12486         ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
12487          (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
12488       // This is a gcc extension compatibility comparison.
12489       // In a SFINAE context, we treat this as a hard error to maintain
12490       // conformance with the C++ standard.
12491       diagnoseFunctionPointerToVoidComparison(
12492           *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
12493 
12494       if (isSFINAEContext())
12495         return QualType();
12496 
12497       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12498       return computeResultTy();
12499     }
12500 
12501     // C++ [expr.eq]p2:
12502     //   If at least one operand is a pointer [...] bring them to their
12503     //   composite pointer type.
12504     // C++ [expr.spaceship]p6
12505     //  If at least one of the operands is of pointer type, [...] bring them
12506     //  to their composite pointer type.
12507     // C++ [expr.rel]p2:
12508     //   If both operands are pointers, [...] bring them to their composite
12509     //   pointer type.
12510     // For <=>, the only valid non-pointer types are arrays and functions, and
12511     // we already decayed those, so this is really the same as the relational
12512     // comparison rule.
12513     if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
12514             (IsOrdered ? 2 : 1) &&
12515         (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
12516                                          RHSType->isObjCObjectPointerType()))) {
12517       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12518         return QualType();
12519       return computeResultTy();
12520     }
12521   } else if (LHSType->isPointerType() &&
12522              RHSType->isPointerType()) { // C99 6.5.8p2
12523     // All of the following pointer-related warnings are GCC extensions, except
12524     // when handling null pointer constants.
12525     QualType LCanPointeeTy =
12526       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12527     QualType RCanPointeeTy =
12528       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12529 
12530     // C99 6.5.9p2 and C99 6.5.8p2
12531     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
12532                                    RCanPointeeTy.getUnqualifiedType())) {
12533       if (IsRelational) {
12534         // Pointers both need to point to complete or incomplete types
12535         if ((LCanPointeeTy->isIncompleteType() !=
12536              RCanPointeeTy->isIncompleteType()) &&
12537             !getLangOpts().C11) {
12538           Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
12539               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
12540               << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
12541               << RCanPointeeTy->isIncompleteType();
12542         }
12543       }
12544     } else if (!IsRelational &&
12545                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
12546       // Valid unless comparison between non-null pointer and function pointer
12547       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
12548           && !LHSIsNull && !RHSIsNull)
12549         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
12550                                                 /*isError*/false);
12551     } else {
12552       // Invalid
12553       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
12554     }
12555     if (LCanPointeeTy != RCanPointeeTy) {
12556       // Treat NULL constant as a special case in OpenCL.
12557       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
12558         if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
12559           Diag(Loc,
12560                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
12561               << LHSType << RHSType << 0 /* comparison */
12562               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12563         }
12564       }
12565       LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
12566       LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
12567       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
12568                                                : CK_BitCast;
12569       if (LHSIsNull && !RHSIsNull)
12570         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
12571       else
12572         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
12573     }
12574     return computeResultTy();
12575   }
12576 
12577   if (getLangOpts().CPlusPlus) {
12578     // C++ [expr.eq]p4:
12579     //   Two operands of type std::nullptr_t or one operand of type
12580     //   std::nullptr_t and the other a null pointer constant compare equal.
12581     if (!IsOrdered && LHSIsNull && RHSIsNull) {
12582       if (LHSType->isNullPtrType()) {
12583         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12584         return computeResultTy();
12585       }
12586       if (RHSType->isNullPtrType()) {
12587         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12588         return computeResultTy();
12589       }
12590     }
12591 
12592     // Comparison of Objective-C pointers and block pointers against nullptr_t.
12593     // These aren't covered by the composite pointer type rules.
12594     if (!IsOrdered && RHSType->isNullPtrType() &&
12595         (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
12596       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12597       return computeResultTy();
12598     }
12599     if (!IsOrdered && LHSType->isNullPtrType() &&
12600         (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
12601       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12602       return computeResultTy();
12603     }
12604 
12605     if (IsRelational &&
12606         ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
12607          (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
12608       // HACK: Relational comparison of nullptr_t against a pointer type is
12609       // invalid per DR583, but we allow it within std::less<> and friends,
12610       // since otherwise common uses of it break.
12611       // FIXME: Consider removing this hack once LWG fixes std::less<> and
12612       // friends to have std::nullptr_t overload candidates.
12613       DeclContext *DC = CurContext;
12614       if (isa<FunctionDecl>(DC))
12615         DC = DC->getParent();
12616       if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
12617         if (CTSD->isInStdNamespace() &&
12618             llvm::StringSwitch<bool>(CTSD->getName())
12619                 .Cases("less", "less_equal", "greater", "greater_equal", true)
12620                 .Default(false)) {
12621           if (RHSType->isNullPtrType())
12622             RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12623           else
12624             LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12625           return computeResultTy();
12626         }
12627       }
12628     }
12629 
12630     // C++ [expr.eq]p2:
12631     //   If at least one operand is a pointer to member, [...] bring them to
12632     //   their composite pointer type.
12633     if (!IsOrdered &&
12634         (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
12635       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12636         return QualType();
12637       else
12638         return computeResultTy();
12639     }
12640   }
12641 
12642   // Handle block pointer types.
12643   if (!IsOrdered && LHSType->isBlockPointerType() &&
12644       RHSType->isBlockPointerType()) {
12645     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
12646     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
12647 
12648     if (!LHSIsNull && !RHSIsNull &&
12649         !Context.typesAreCompatible(lpointee, rpointee)) {
12650       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12651         << LHSType << RHSType << LHS.get()->getSourceRange()
12652         << RHS.get()->getSourceRange();
12653     }
12654     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12655     return computeResultTy();
12656   }
12657 
12658   // Allow block pointers to be compared with null pointer constants.
12659   if (!IsOrdered
12660       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
12661           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
12662     if (!LHSIsNull && !RHSIsNull) {
12663       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
12664              ->getPointeeType()->isVoidType())
12665             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
12666                 ->getPointeeType()->isVoidType())))
12667         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12668           << LHSType << RHSType << LHS.get()->getSourceRange()
12669           << RHS.get()->getSourceRange();
12670     }
12671     if (LHSIsNull && !RHSIsNull)
12672       LHS = ImpCastExprToType(LHS.get(), RHSType,
12673                               RHSType->isPointerType() ? CK_BitCast
12674                                 : CK_AnyPointerToBlockPointerCast);
12675     else
12676       RHS = ImpCastExprToType(RHS.get(), LHSType,
12677                               LHSType->isPointerType() ? CK_BitCast
12678                                 : CK_AnyPointerToBlockPointerCast);
12679     return computeResultTy();
12680   }
12681 
12682   if (LHSType->isObjCObjectPointerType() ||
12683       RHSType->isObjCObjectPointerType()) {
12684     const PointerType *LPT = LHSType->getAs<PointerType>();
12685     const PointerType *RPT = RHSType->getAs<PointerType>();
12686     if (LPT || RPT) {
12687       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
12688       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
12689 
12690       if (!LPtrToVoid && !RPtrToVoid &&
12691           !Context.typesAreCompatible(LHSType, RHSType)) {
12692         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12693                                           /*isError*/false);
12694       }
12695       // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
12696       // the RHS, but we have test coverage for this behavior.
12697       // FIXME: Consider using convertPointersToCompositeType in C++.
12698       if (LHSIsNull && !RHSIsNull) {
12699         Expr *E = LHS.get();
12700         if (getLangOpts().ObjCAutoRefCount)
12701           CheckObjCConversion(SourceRange(), RHSType, E,
12702                               CCK_ImplicitConversion);
12703         LHS = ImpCastExprToType(E, RHSType,
12704                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12705       }
12706       else {
12707         Expr *E = RHS.get();
12708         if (getLangOpts().ObjCAutoRefCount)
12709           CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
12710                               /*Diagnose=*/true,
12711                               /*DiagnoseCFAudited=*/false, Opc);
12712         RHS = ImpCastExprToType(E, LHSType,
12713                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12714       }
12715       return computeResultTy();
12716     }
12717     if (LHSType->isObjCObjectPointerType() &&
12718         RHSType->isObjCObjectPointerType()) {
12719       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
12720         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12721                                           /*isError*/false);
12722       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
12723         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
12724 
12725       if (LHSIsNull && !RHSIsNull)
12726         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
12727       else
12728         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12729       return computeResultTy();
12730     }
12731 
12732     if (!IsOrdered && LHSType->isBlockPointerType() &&
12733         RHSType->isBlockCompatibleObjCPointerType(Context)) {
12734       LHS = ImpCastExprToType(LHS.get(), RHSType,
12735                               CK_BlockPointerToObjCPointerCast);
12736       return computeResultTy();
12737     } else if (!IsOrdered &&
12738                LHSType->isBlockCompatibleObjCPointerType(Context) &&
12739                RHSType->isBlockPointerType()) {
12740       RHS = ImpCastExprToType(RHS.get(), LHSType,
12741                               CK_BlockPointerToObjCPointerCast);
12742       return computeResultTy();
12743     }
12744   }
12745   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
12746       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
12747     unsigned DiagID = 0;
12748     bool isError = false;
12749     if (LangOpts.DebuggerSupport) {
12750       // Under a debugger, allow the comparison of pointers to integers,
12751       // since users tend to want to compare addresses.
12752     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
12753                (RHSIsNull && RHSType->isIntegerType())) {
12754       if (IsOrdered) {
12755         isError = getLangOpts().CPlusPlus;
12756         DiagID =
12757           isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
12758                   : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
12759       }
12760     } else if (getLangOpts().CPlusPlus) {
12761       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
12762       isError = true;
12763     } else if (IsOrdered)
12764       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
12765     else
12766       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
12767 
12768     if (DiagID) {
12769       Diag(Loc, DiagID)
12770         << LHSType << RHSType << LHS.get()->getSourceRange()
12771         << RHS.get()->getSourceRange();
12772       if (isError)
12773         return QualType();
12774     }
12775 
12776     if (LHSType->isIntegerType())
12777       LHS = ImpCastExprToType(LHS.get(), RHSType,
12778                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12779     else
12780       RHS = ImpCastExprToType(RHS.get(), LHSType,
12781                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12782     return computeResultTy();
12783   }
12784 
12785   // Handle block pointers.
12786   if (!IsOrdered && RHSIsNull
12787       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
12788     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12789     return computeResultTy();
12790   }
12791   if (!IsOrdered && LHSIsNull
12792       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
12793     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12794     return computeResultTy();
12795   }
12796 
12797   if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
12798     if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
12799       return computeResultTy();
12800     }
12801 
12802     if (LHSType->isQueueT() && RHSType->isQueueT()) {
12803       return computeResultTy();
12804     }
12805 
12806     if (LHSIsNull && RHSType->isQueueT()) {
12807       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12808       return computeResultTy();
12809     }
12810 
12811     if (LHSType->isQueueT() && RHSIsNull) {
12812       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12813       return computeResultTy();
12814     }
12815   }
12816 
12817   return InvalidOperands(Loc, LHS, RHS);
12818 }
12819 
12820 // Return a signed ext_vector_type that is of identical size and number of
12821 // elements. For floating point vectors, return an integer type of identical
12822 // size and number of elements. In the non ext_vector_type case, search from
12823 // the largest type to the smallest type to avoid cases where long long == long,
12824 // where long gets picked over long long.
12825 QualType Sema::GetSignedVectorType(QualType V) {
12826   const VectorType *VTy = V->castAs<VectorType>();
12827   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
12828 
12829   if (isa<ExtVectorType>(VTy)) {
12830     if (VTy->isExtVectorBoolType())
12831       return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements());
12832     if (TypeSize == Context.getTypeSize(Context.CharTy))
12833       return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
12834     if (TypeSize == Context.getTypeSize(Context.ShortTy))
12835       return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
12836     if (TypeSize == Context.getTypeSize(Context.IntTy))
12837       return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
12838     if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12839       return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
12840     if (TypeSize == Context.getTypeSize(Context.LongTy))
12841       return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
12842     assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
12843            "Unhandled vector element size in vector compare");
12844     return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
12845   }
12846 
12847   if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12848     return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
12849                                  VectorType::GenericVector);
12850   if (TypeSize == Context.getTypeSize(Context.LongLongTy))
12851     return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
12852                                  VectorType::GenericVector);
12853   if (TypeSize == Context.getTypeSize(Context.LongTy))
12854     return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
12855                                  VectorType::GenericVector);
12856   if (TypeSize == Context.getTypeSize(Context.IntTy))
12857     return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
12858                                  VectorType::GenericVector);
12859   if (TypeSize == Context.getTypeSize(Context.ShortTy))
12860     return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
12861                                  VectorType::GenericVector);
12862   assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
12863          "Unhandled vector element size in vector compare");
12864   return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
12865                                VectorType::GenericVector);
12866 }
12867 
12868 QualType Sema::GetSignedSizelessVectorType(QualType V) {
12869   const BuiltinType *VTy = V->castAs<BuiltinType>();
12870   assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
12871 
12872   const QualType ETy = V->getSveEltType(Context);
12873   const auto TypeSize = Context.getTypeSize(ETy);
12874 
12875   const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true);
12876   const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC;
12877   return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue());
12878 }
12879 
12880 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
12881 /// operates on extended vector types.  Instead of producing an IntTy result,
12882 /// like a scalar comparison, a vector comparison produces a vector of integer
12883 /// types.
12884 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
12885                                           SourceLocation Loc,
12886                                           BinaryOperatorKind Opc) {
12887   if (Opc == BO_Cmp) {
12888     Diag(Loc, diag::err_three_way_vector_comparison);
12889     return QualType();
12890   }
12891 
12892   // Check to make sure we're operating on vectors of the same type and width,
12893   // Allowing one side to be a scalar of element type.
12894   QualType vType =
12895       CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false,
12896                           /*AllowBothBool*/ true,
12897                           /*AllowBoolConversions*/ getLangOpts().ZVector,
12898                           /*AllowBooleanOperation*/ true,
12899                           /*ReportInvalid*/ true);
12900   if (vType.isNull())
12901     return vType;
12902 
12903   QualType LHSType = LHS.get()->getType();
12904 
12905   // Determine the return type of a vector compare. By default clang will return
12906   // a scalar for all vector compares except vector bool and vector pixel.
12907   // With the gcc compiler we will always return a vector type and with the xl
12908   // compiler we will always return a scalar type. This switch allows choosing
12909   // which behavior is prefered.
12910   if (getLangOpts().AltiVec) {
12911     switch (getLangOpts().getAltivecSrcCompat()) {
12912     case LangOptions::AltivecSrcCompatKind::Mixed:
12913       // If AltiVec, the comparison results in a numeric type, i.e.
12914       // bool for C++, int for C
12915       if (vType->castAs<VectorType>()->getVectorKind() ==
12916           VectorType::AltiVecVector)
12917         return Context.getLogicalOperationType();
12918       else
12919         Diag(Loc, diag::warn_deprecated_altivec_src_compat);
12920       break;
12921     case LangOptions::AltivecSrcCompatKind::GCC:
12922       // For GCC we always return the vector type.
12923       break;
12924     case LangOptions::AltivecSrcCompatKind::XL:
12925       return Context.getLogicalOperationType();
12926       break;
12927     }
12928   }
12929 
12930   // For non-floating point types, check for self-comparisons of the form
12931   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12932   // often indicate logic errors in the program.
12933   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12934 
12935   // Check for comparisons of floating point operands using != and ==.
12936   if (LHSType->hasFloatingRepresentation()) {
12937     assert(RHS.get()->getType()->hasFloatingRepresentation());
12938     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12939   }
12940 
12941   // Return a signed type for the vector.
12942   return GetSignedVectorType(vType);
12943 }
12944 
12945 QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
12946                                                   ExprResult &RHS,
12947                                                   SourceLocation Loc,
12948                                                   BinaryOperatorKind Opc) {
12949   if (Opc == BO_Cmp) {
12950     Diag(Loc, diag::err_three_way_vector_comparison);
12951     return QualType();
12952   }
12953 
12954   // Check to make sure we're operating on vectors of the same type and width,
12955   // Allowing one side to be a scalar of element type.
12956   QualType vType = CheckSizelessVectorOperands(
12957       LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison);
12958 
12959   if (vType.isNull())
12960     return vType;
12961 
12962   QualType LHSType = LHS.get()->getType();
12963 
12964   // For non-floating point types, check for self-comparisons of the form
12965   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12966   // often indicate logic errors in the program.
12967   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12968 
12969   // Check for comparisons of floating point operands using != and ==.
12970   if (LHSType->hasFloatingRepresentation()) {
12971     assert(RHS.get()->getType()->hasFloatingRepresentation());
12972     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12973   }
12974 
12975   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
12976   const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
12977 
12978   if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
12979       RHSBuiltinTy->isSVEBool())
12980     return LHSType;
12981 
12982   // Return a signed type for the vector.
12983   return GetSignedSizelessVectorType(vType);
12984 }
12985 
12986 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
12987                                     const ExprResult &XorRHS,
12988                                     const SourceLocation Loc) {
12989   // Do not diagnose macros.
12990   if (Loc.isMacroID())
12991     return;
12992 
12993   // Do not diagnose if both LHS and RHS are macros.
12994   if (XorLHS.get()->getExprLoc().isMacroID() &&
12995       XorRHS.get()->getExprLoc().isMacroID())
12996     return;
12997 
12998   bool Negative = false;
12999   bool ExplicitPlus = false;
13000   const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
13001   const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
13002 
13003   if (!LHSInt)
13004     return;
13005   if (!RHSInt) {
13006     // Check negative literals.
13007     if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
13008       UnaryOperatorKind Opc = UO->getOpcode();
13009       if (Opc != UO_Minus && Opc != UO_Plus)
13010         return;
13011       RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
13012       if (!RHSInt)
13013         return;
13014       Negative = (Opc == UO_Minus);
13015       ExplicitPlus = !Negative;
13016     } else {
13017       return;
13018     }
13019   }
13020 
13021   const llvm::APInt &LeftSideValue = LHSInt->getValue();
13022   llvm::APInt RightSideValue = RHSInt->getValue();
13023   if (LeftSideValue != 2 && LeftSideValue != 10)
13024     return;
13025 
13026   if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
13027     return;
13028 
13029   CharSourceRange ExprRange = CharSourceRange::getCharRange(
13030       LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
13031   llvm::StringRef ExprStr =
13032       Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
13033 
13034   CharSourceRange XorRange =
13035       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
13036   llvm::StringRef XorStr =
13037       Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
13038   // Do not diagnose if xor keyword/macro is used.
13039   if (XorStr == "xor")
13040     return;
13041 
13042   std::string LHSStr = std::string(Lexer::getSourceText(
13043       CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
13044       S.getSourceManager(), S.getLangOpts()));
13045   std::string RHSStr = std::string(Lexer::getSourceText(
13046       CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
13047       S.getSourceManager(), S.getLangOpts()));
13048 
13049   if (Negative) {
13050     RightSideValue = -RightSideValue;
13051     RHSStr = "-" + RHSStr;
13052   } else if (ExplicitPlus) {
13053     RHSStr = "+" + RHSStr;
13054   }
13055 
13056   StringRef LHSStrRef = LHSStr;
13057   StringRef RHSStrRef = RHSStr;
13058   // Do not diagnose literals with digit separators, binary, hexadecimal, octal
13059   // literals.
13060   if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
13061       RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
13062       LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
13063       RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
13064       (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
13065       (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
13066       LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
13067     return;
13068 
13069   bool SuggestXor =
13070       S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
13071   const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
13072   int64_t RightSideIntValue = RightSideValue.getSExtValue();
13073   if (LeftSideValue == 2 && RightSideIntValue >= 0) {
13074     std::string SuggestedExpr = "1 << " + RHSStr;
13075     bool Overflow = false;
13076     llvm::APInt One = (LeftSideValue - 1);
13077     llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
13078     if (Overflow) {
13079       if (RightSideIntValue < 64)
13080         S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13081             << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
13082             << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
13083       else if (RightSideIntValue == 64)
13084         S.Diag(Loc, diag::warn_xor_used_as_pow)
13085             << ExprStr << toString(XorValue, 10, true);
13086       else
13087         return;
13088     } else {
13089       S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
13090           << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
13091           << toString(PowValue, 10, true)
13092           << FixItHint::CreateReplacement(
13093                  ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
13094     }
13095 
13096     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13097         << ("0x2 ^ " + RHSStr) << SuggestXor;
13098   } else if (LeftSideValue == 10) {
13099     std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
13100     S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13101         << ExprStr << toString(XorValue, 10, true) << SuggestedValue
13102         << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
13103     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13104         << ("0xA ^ " + RHSStr) << SuggestXor;
13105   }
13106 }
13107 
13108 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13109                                           SourceLocation Loc) {
13110   // Ensure that either both operands are of the same vector type, or
13111   // one operand is of a vector type and the other is of its element type.
13112   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
13113                                        /*AllowBothBool*/ true,
13114                                        /*AllowBoolConversions*/ false,
13115                                        /*AllowBooleanOperation*/ false,
13116                                        /*ReportInvalid*/ false);
13117   if (vType.isNull())
13118     return InvalidOperands(Loc, LHS, RHS);
13119   if (getLangOpts().OpenCL &&
13120       getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13121       vType->hasFloatingRepresentation())
13122     return InvalidOperands(Loc, LHS, RHS);
13123   // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13124   //        usage of the logical operators && and || with vectors in C. This
13125   //        check could be notionally dropped.
13126   if (!getLangOpts().CPlusPlus &&
13127       !(isa<ExtVectorType>(vType->getAs<VectorType>())))
13128     return InvalidLogicalVectorOperands(Loc, LHS, RHS);
13129 
13130   return GetSignedVectorType(LHS.get()->getType());
13131 }
13132 
13133 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
13134                                               SourceLocation Loc,
13135                                               bool IsCompAssign) {
13136   if (!IsCompAssign) {
13137     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13138     if (LHS.isInvalid())
13139       return QualType();
13140   }
13141   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13142   if (RHS.isInvalid())
13143     return QualType();
13144 
13145   // For conversion purposes, we ignore any qualifiers.
13146   // For example, "const float" and "float" are equivalent.
13147   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
13148   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
13149 
13150   const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
13151   const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
13152   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13153 
13154   if (Context.hasSameType(LHSType, RHSType))
13155     return LHSType;
13156 
13157   // Type conversion may change LHS/RHS. Keep copies to the original results, in
13158   // case we have to return InvalidOperands.
13159   ExprResult OriginalLHS = LHS;
13160   ExprResult OriginalRHS = RHS;
13161   if (LHSMatType && !RHSMatType) {
13162     RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
13163     if (!RHS.isInvalid())
13164       return LHSType;
13165 
13166     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13167   }
13168 
13169   if (!LHSMatType && RHSMatType) {
13170     LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
13171     if (!LHS.isInvalid())
13172       return RHSType;
13173     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13174   }
13175 
13176   return InvalidOperands(Loc, LHS, RHS);
13177 }
13178 
13179 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
13180                                            SourceLocation Loc,
13181                                            bool IsCompAssign) {
13182   if (!IsCompAssign) {
13183     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13184     if (LHS.isInvalid())
13185       return QualType();
13186   }
13187   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13188   if (RHS.isInvalid())
13189     return QualType();
13190 
13191   auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
13192   auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
13193   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13194 
13195   if (LHSMatType && RHSMatType) {
13196     if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
13197       return InvalidOperands(Loc, LHS, RHS);
13198 
13199     if (!Context.hasSameType(LHSMatType->getElementType(),
13200                              RHSMatType->getElementType()))
13201       return InvalidOperands(Loc, LHS, RHS);
13202 
13203     return Context.getConstantMatrixType(LHSMatType->getElementType(),
13204                                          LHSMatType->getNumRows(),
13205                                          RHSMatType->getNumColumns());
13206   }
13207   return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
13208 }
13209 
13210 static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
13211   switch (Opc) {
13212   default:
13213     return false;
13214   case BO_And:
13215   case BO_AndAssign:
13216   case BO_Or:
13217   case BO_OrAssign:
13218   case BO_Xor:
13219   case BO_XorAssign:
13220     return true;
13221   }
13222 }
13223 
13224 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
13225                                            SourceLocation Loc,
13226                                            BinaryOperatorKind Opc) {
13227   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
13228 
13229   bool IsCompAssign =
13230       Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
13231 
13232   bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
13233 
13234   if (LHS.get()->getType()->isVectorType() ||
13235       RHS.get()->getType()->isVectorType()) {
13236     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13237         RHS.get()->getType()->hasIntegerRepresentation())
13238       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
13239                                  /*AllowBothBool*/ true,
13240                                  /*AllowBoolConversions*/ getLangOpts().ZVector,
13241                                  /*AllowBooleanOperation*/ LegalBoolVecOperator,
13242                                  /*ReportInvalid*/ true);
13243     return InvalidOperands(Loc, LHS, RHS);
13244   }
13245 
13246   if (LHS.get()->getType()->isVLSTBuiltinType() ||
13247       RHS.get()->getType()->isVLSTBuiltinType()) {
13248     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13249         RHS.get()->getType()->hasIntegerRepresentation())
13250       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13251                                          ACK_BitwiseOp);
13252     return InvalidOperands(Loc, LHS, RHS);
13253   }
13254 
13255   if (LHS.get()->getType()->isVLSTBuiltinType() ||
13256       RHS.get()->getType()->isVLSTBuiltinType()) {
13257     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13258         RHS.get()->getType()->hasIntegerRepresentation())
13259       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13260                                          ACK_BitwiseOp);
13261     return InvalidOperands(Loc, LHS, RHS);
13262   }
13263 
13264   if (Opc == BO_And)
13265     diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13266 
13267   if (LHS.get()->getType()->hasFloatingRepresentation() ||
13268       RHS.get()->getType()->hasFloatingRepresentation())
13269     return InvalidOperands(Loc, LHS, RHS);
13270 
13271   ExprResult LHSResult = LHS, RHSResult = RHS;
13272   QualType compType = UsualArithmeticConversions(
13273       LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
13274   if (LHSResult.isInvalid() || RHSResult.isInvalid())
13275     return QualType();
13276   LHS = LHSResult.get();
13277   RHS = RHSResult.get();
13278 
13279   if (Opc == BO_Xor)
13280     diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
13281 
13282   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
13283     return compType;
13284   return InvalidOperands(Loc, LHS, RHS);
13285 }
13286 
13287 // C99 6.5.[13,14]
13288 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13289                                            SourceLocation Loc,
13290                                            BinaryOperatorKind Opc) {
13291   // Check vector operands differently.
13292   if (LHS.get()->getType()->isVectorType() ||
13293       RHS.get()->getType()->isVectorType())
13294     return CheckVectorLogicalOperands(LHS, RHS, Loc);
13295 
13296   bool EnumConstantInBoolContext = false;
13297   for (const ExprResult &HS : {LHS, RHS}) {
13298     if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
13299       const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
13300       if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
13301         EnumConstantInBoolContext = true;
13302     }
13303   }
13304 
13305   if (EnumConstantInBoolContext)
13306     Diag(Loc, diag::warn_enum_constant_in_bool_context);
13307 
13308   // Diagnose cases where the user write a logical and/or but probably meant a
13309   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
13310   // is a constant.
13311   if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
13312       !LHS.get()->getType()->isBooleanType() &&
13313       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
13314       // Don't warn in macros or template instantiations.
13315       !Loc.isMacroID() && !inTemplateInstantiation()) {
13316     // If the RHS can be constant folded, and if it constant folds to something
13317     // that isn't 0 or 1 (which indicate a potential logical operation that
13318     // happened to fold to true/false) then warn.
13319     // Parens on the RHS are ignored.
13320     Expr::EvalResult EVResult;
13321     if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
13322       llvm::APSInt Result = EVResult.Val.getInt();
13323       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
13324            !RHS.get()->getExprLoc().isMacroID()) ||
13325           (Result != 0 && Result != 1)) {
13326         Diag(Loc, diag::warn_logical_instead_of_bitwise)
13327             << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
13328         // Suggest replacing the logical operator with the bitwise version
13329         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
13330             << (Opc == BO_LAnd ? "&" : "|")
13331             << FixItHint::CreateReplacement(
13332                    SourceRange(Loc, getLocForEndOfToken(Loc)),
13333                    Opc == BO_LAnd ? "&" : "|");
13334         if (Opc == BO_LAnd)
13335           // Suggest replacing "Foo() && kNonZero" with "Foo()"
13336           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
13337               << FixItHint::CreateRemoval(
13338                      SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
13339                                  RHS.get()->getEndLoc()));
13340       }
13341     }
13342   }
13343 
13344   if (!Context.getLangOpts().CPlusPlus) {
13345     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
13346     // not operate on the built-in scalar and vector float types.
13347     if (Context.getLangOpts().OpenCL &&
13348         Context.getLangOpts().OpenCLVersion < 120) {
13349       if (LHS.get()->getType()->isFloatingType() ||
13350           RHS.get()->getType()->isFloatingType())
13351         return InvalidOperands(Loc, LHS, RHS);
13352     }
13353 
13354     LHS = UsualUnaryConversions(LHS.get());
13355     if (LHS.isInvalid())
13356       return QualType();
13357 
13358     RHS = UsualUnaryConversions(RHS.get());
13359     if (RHS.isInvalid())
13360       return QualType();
13361 
13362     if (!LHS.get()->getType()->isScalarType() ||
13363         !RHS.get()->getType()->isScalarType())
13364       return InvalidOperands(Loc, LHS, RHS);
13365 
13366     return Context.IntTy;
13367   }
13368 
13369   // The following is safe because we only use this method for
13370   // non-overloadable operands.
13371 
13372   // C++ [expr.log.and]p1
13373   // C++ [expr.log.or]p1
13374   // The operands are both contextually converted to type bool.
13375   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
13376   if (LHSRes.isInvalid())
13377     return InvalidOperands(Loc, LHS, RHS);
13378   LHS = LHSRes;
13379 
13380   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
13381   if (RHSRes.isInvalid())
13382     return InvalidOperands(Loc, LHS, RHS);
13383   RHS = RHSRes;
13384 
13385   // C++ [expr.log.and]p2
13386   // C++ [expr.log.or]p2
13387   // The result is a bool.
13388   return Context.BoolTy;
13389 }
13390 
13391 static bool IsReadonlyMessage(Expr *E, Sema &S) {
13392   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
13393   if (!ME) return false;
13394   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
13395   ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
13396       ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
13397   if (!Base) return false;
13398   return Base->getMethodDecl() != nullptr;
13399 }
13400 
13401 /// Is the given expression (which must be 'const') a reference to a
13402 /// variable which was originally non-const, but which has become
13403 /// 'const' due to being captured within a block?
13404 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
13405 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
13406   assert(E->isLValue() && E->getType().isConstQualified());
13407   E = E->IgnoreParens();
13408 
13409   // Must be a reference to a declaration from an enclosing scope.
13410   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
13411   if (!DRE) return NCCK_None;
13412   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
13413 
13414   // The declaration must be a variable which is not declared 'const'.
13415   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
13416   if (!var) return NCCK_None;
13417   if (var->getType().isConstQualified()) return NCCK_None;
13418   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
13419 
13420   // Decide whether the first capture was for a block or a lambda.
13421   DeclContext *DC = S.CurContext, *Prev = nullptr;
13422   // Decide whether the first capture was for a block or a lambda.
13423   while (DC) {
13424     // For init-capture, it is possible that the variable belongs to the
13425     // template pattern of the current context.
13426     if (auto *FD = dyn_cast<FunctionDecl>(DC))
13427       if (var->isInitCapture() &&
13428           FD->getTemplateInstantiationPattern() == var->getDeclContext())
13429         break;
13430     if (DC == var->getDeclContext())
13431       break;
13432     Prev = DC;
13433     DC = DC->getParent();
13434   }
13435   // Unless we have an init-capture, we've gone one step too far.
13436   if (!var->isInitCapture())
13437     DC = Prev;
13438   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
13439 }
13440 
13441 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
13442   Ty = Ty.getNonReferenceType();
13443   if (IsDereference && Ty->isPointerType())
13444     Ty = Ty->getPointeeType();
13445   return !Ty.isConstQualified();
13446 }
13447 
13448 // Update err_typecheck_assign_const and note_typecheck_assign_const
13449 // when this enum is changed.
13450 enum {
13451   ConstFunction,
13452   ConstVariable,
13453   ConstMember,
13454   ConstMethod,
13455   NestedConstMember,
13456   ConstUnknown,  // Keep as last element
13457 };
13458 
13459 /// Emit the "read-only variable not assignable" error and print notes to give
13460 /// more information about why the variable is not assignable, such as pointing
13461 /// to the declaration of a const variable, showing that a method is const, or
13462 /// that the function is returning a const reference.
13463 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
13464                                     SourceLocation Loc) {
13465   SourceRange ExprRange = E->getSourceRange();
13466 
13467   // Only emit one error on the first const found.  All other consts will emit
13468   // a note to the error.
13469   bool DiagnosticEmitted = false;
13470 
13471   // Track if the current expression is the result of a dereference, and if the
13472   // next checked expression is the result of a dereference.
13473   bool IsDereference = false;
13474   bool NextIsDereference = false;
13475 
13476   // Loop to process MemberExpr chains.
13477   while (true) {
13478     IsDereference = NextIsDereference;
13479 
13480     E = E->IgnoreImplicit()->IgnoreParenImpCasts();
13481     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13482       NextIsDereference = ME->isArrow();
13483       const ValueDecl *VD = ME->getMemberDecl();
13484       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
13485         // Mutable fields can be modified even if the class is const.
13486         if (Field->isMutable()) {
13487           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
13488           break;
13489         }
13490 
13491         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
13492           if (!DiagnosticEmitted) {
13493             S.Diag(Loc, diag::err_typecheck_assign_const)
13494                 << ExprRange << ConstMember << false /*static*/ << Field
13495                 << Field->getType();
13496             DiagnosticEmitted = true;
13497           }
13498           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13499               << ConstMember << false /*static*/ << Field << Field->getType()
13500               << Field->getSourceRange();
13501         }
13502         E = ME->getBase();
13503         continue;
13504       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
13505         if (VDecl->getType().isConstQualified()) {
13506           if (!DiagnosticEmitted) {
13507             S.Diag(Loc, diag::err_typecheck_assign_const)
13508                 << ExprRange << ConstMember << true /*static*/ << VDecl
13509                 << VDecl->getType();
13510             DiagnosticEmitted = true;
13511           }
13512           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13513               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
13514               << VDecl->getSourceRange();
13515         }
13516         // Static fields do not inherit constness from parents.
13517         break;
13518       }
13519       break; // End MemberExpr
13520     } else if (const ArraySubscriptExpr *ASE =
13521                    dyn_cast<ArraySubscriptExpr>(E)) {
13522       E = ASE->getBase()->IgnoreParenImpCasts();
13523       continue;
13524     } else if (const ExtVectorElementExpr *EVE =
13525                    dyn_cast<ExtVectorElementExpr>(E)) {
13526       E = EVE->getBase()->IgnoreParenImpCasts();
13527       continue;
13528     }
13529     break;
13530   }
13531 
13532   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
13533     // Function calls
13534     const FunctionDecl *FD = CE->getDirectCallee();
13535     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
13536       if (!DiagnosticEmitted) {
13537         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13538                                                       << ConstFunction << FD;
13539         DiagnosticEmitted = true;
13540       }
13541       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
13542              diag::note_typecheck_assign_const)
13543           << ConstFunction << FD << FD->getReturnType()
13544           << FD->getReturnTypeSourceRange();
13545     }
13546   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13547     // Point to variable declaration.
13548     if (const ValueDecl *VD = DRE->getDecl()) {
13549       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
13550         if (!DiagnosticEmitted) {
13551           S.Diag(Loc, diag::err_typecheck_assign_const)
13552               << ExprRange << ConstVariable << VD << VD->getType();
13553           DiagnosticEmitted = true;
13554         }
13555         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13556             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
13557       }
13558     }
13559   } else if (isa<CXXThisExpr>(E)) {
13560     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
13561       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
13562         if (MD->isConst()) {
13563           if (!DiagnosticEmitted) {
13564             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13565                                                           << ConstMethod << MD;
13566             DiagnosticEmitted = true;
13567           }
13568           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
13569               << ConstMethod << MD << MD->getSourceRange();
13570         }
13571       }
13572     }
13573   }
13574 
13575   if (DiagnosticEmitted)
13576     return;
13577 
13578   // Can't determine a more specific message, so display the generic error.
13579   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
13580 }
13581 
13582 enum OriginalExprKind {
13583   OEK_Variable,
13584   OEK_Member,
13585   OEK_LValue
13586 };
13587 
13588 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
13589                                          const RecordType *Ty,
13590                                          SourceLocation Loc, SourceRange Range,
13591                                          OriginalExprKind OEK,
13592                                          bool &DiagnosticEmitted) {
13593   std::vector<const RecordType *> RecordTypeList;
13594   RecordTypeList.push_back(Ty);
13595   unsigned NextToCheckIndex = 0;
13596   // We walk the record hierarchy breadth-first to ensure that we print
13597   // diagnostics in field nesting order.
13598   while (RecordTypeList.size() > NextToCheckIndex) {
13599     bool IsNested = NextToCheckIndex > 0;
13600     for (const FieldDecl *Field :
13601          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
13602       // First, check every field for constness.
13603       QualType FieldTy = Field->getType();
13604       if (FieldTy.isConstQualified()) {
13605         if (!DiagnosticEmitted) {
13606           S.Diag(Loc, diag::err_typecheck_assign_const)
13607               << Range << NestedConstMember << OEK << VD
13608               << IsNested << Field;
13609           DiagnosticEmitted = true;
13610         }
13611         S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
13612             << NestedConstMember << IsNested << Field
13613             << FieldTy << Field->getSourceRange();
13614       }
13615 
13616       // Then we append it to the list to check next in order.
13617       FieldTy = FieldTy.getCanonicalType();
13618       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
13619         if (!llvm::is_contained(RecordTypeList, FieldRecTy))
13620           RecordTypeList.push_back(FieldRecTy);
13621       }
13622     }
13623     ++NextToCheckIndex;
13624   }
13625 }
13626 
13627 /// Emit an error for the case where a record we are trying to assign to has a
13628 /// const-qualified field somewhere in its hierarchy.
13629 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
13630                                          SourceLocation Loc) {
13631   QualType Ty = E->getType();
13632   assert(Ty->isRecordType() && "lvalue was not record?");
13633   SourceRange Range = E->getSourceRange();
13634   const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
13635   bool DiagEmitted = false;
13636 
13637   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
13638     DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
13639             Range, OEK_Member, DiagEmitted);
13640   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13641     DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
13642             Range, OEK_Variable, DiagEmitted);
13643   else
13644     DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
13645             Range, OEK_LValue, DiagEmitted);
13646   if (!DiagEmitted)
13647     DiagnoseConstAssignment(S, E, Loc);
13648 }
13649 
13650 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
13651 /// emit an error and return true.  If so, return false.
13652 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
13653   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
13654 
13655   S.CheckShadowingDeclModification(E, Loc);
13656 
13657   SourceLocation OrigLoc = Loc;
13658   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
13659                                                               &Loc);
13660   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
13661     IsLV = Expr::MLV_InvalidMessageExpression;
13662   if (IsLV == Expr::MLV_Valid)
13663     return false;
13664 
13665   unsigned DiagID = 0;
13666   bool NeedType = false;
13667   switch (IsLV) { // C99 6.5.16p2
13668   case Expr::MLV_ConstQualified:
13669     // Use a specialized diagnostic when we're assigning to an object
13670     // from an enclosing function or block.
13671     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
13672       if (NCCK == NCCK_Block)
13673         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
13674       else
13675         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
13676       break;
13677     }
13678 
13679     // In ARC, use some specialized diagnostics for occasions where we
13680     // infer 'const'.  These are always pseudo-strong variables.
13681     if (S.getLangOpts().ObjCAutoRefCount) {
13682       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
13683       if (declRef && isa<VarDecl>(declRef->getDecl())) {
13684         VarDecl *var = cast<VarDecl>(declRef->getDecl());
13685 
13686         // Use the normal diagnostic if it's pseudo-__strong but the
13687         // user actually wrote 'const'.
13688         if (var->isARCPseudoStrong() &&
13689             (!var->getTypeSourceInfo() ||
13690              !var->getTypeSourceInfo()->getType().isConstQualified())) {
13691           // There are three pseudo-strong cases:
13692           //  - self
13693           ObjCMethodDecl *method = S.getCurMethodDecl();
13694           if (method && var == method->getSelfDecl()) {
13695             DiagID = method->isClassMethod()
13696               ? diag::err_typecheck_arc_assign_self_class_method
13697               : diag::err_typecheck_arc_assign_self;
13698 
13699           //  - Objective-C externally_retained attribute.
13700           } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
13701                      isa<ParmVarDecl>(var)) {
13702             DiagID = diag::err_typecheck_arc_assign_externally_retained;
13703 
13704           //  - fast enumeration variables
13705           } else {
13706             DiagID = diag::err_typecheck_arr_assign_enumeration;
13707           }
13708 
13709           SourceRange Assign;
13710           if (Loc != OrigLoc)
13711             Assign = SourceRange(OrigLoc, OrigLoc);
13712           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13713           // We need to preserve the AST regardless, so migration tool
13714           // can do its job.
13715           return false;
13716         }
13717       }
13718     }
13719 
13720     // If none of the special cases above are triggered, then this is a
13721     // simple const assignment.
13722     if (DiagID == 0) {
13723       DiagnoseConstAssignment(S, E, Loc);
13724       return true;
13725     }
13726 
13727     break;
13728   case Expr::MLV_ConstAddrSpace:
13729     DiagnoseConstAssignment(S, E, Loc);
13730     return true;
13731   case Expr::MLV_ConstQualifiedField:
13732     DiagnoseRecursiveConstFields(S, E, Loc);
13733     return true;
13734   case Expr::MLV_ArrayType:
13735   case Expr::MLV_ArrayTemporary:
13736     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
13737     NeedType = true;
13738     break;
13739   case Expr::MLV_NotObjectType:
13740     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
13741     NeedType = true;
13742     break;
13743   case Expr::MLV_LValueCast:
13744     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
13745     break;
13746   case Expr::MLV_Valid:
13747     llvm_unreachable("did not take early return for MLV_Valid");
13748   case Expr::MLV_InvalidExpression:
13749   case Expr::MLV_MemberFunction:
13750   case Expr::MLV_ClassTemporary:
13751     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
13752     break;
13753   case Expr::MLV_IncompleteType:
13754   case Expr::MLV_IncompleteVoidType:
13755     return S.RequireCompleteType(Loc, E->getType(),
13756              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
13757   case Expr::MLV_DuplicateVectorComponents:
13758     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
13759     break;
13760   case Expr::MLV_NoSetterProperty:
13761     llvm_unreachable("readonly properties should be processed differently");
13762   case Expr::MLV_InvalidMessageExpression:
13763     DiagID = diag::err_readonly_message_assignment;
13764     break;
13765   case Expr::MLV_SubObjCPropertySetting:
13766     DiagID = diag::err_no_subobject_property_setting;
13767     break;
13768   }
13769 
13770   SourceRange Assign;
13771   if (Loc != OrigLoc)
13772     Assign = SourceRange(OrigLoc, OrigLoc);
13773   if (NeedType)
13774     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
13775   else
13776     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13777   return true;
13778 }
13779 
13780 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
13781                                          SourceLocation Loc,
13782                                          Sema &Sema) {
13783   if (Sema.inTemplateInstantiation())
13784     return;
13785   if (Sema.isUnevaluatedContext())
13786     return;
13787   if (Loc.isInvalid() || Loc.isMacroID())
13788     return;
13789   if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
13790     return;
13791 
13792   // C / C++ fields
13793   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
13794   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
13795   if (ML && MR) {
13796     if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
13797       return;
13798     const ValueDecl *LHSDecl =
13799         cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
13800     const ValueDecl *RHSDecl =
13801         cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
13802     if (LHSDecl != RHSDecl)
13803       return;
13804     if (LHSDecl->getType().isVolatileQualified())
13805       return;
13806     if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13807       if (RefTy->getPointeeType().isVolatileQualified())
13808         return;
13809 
13810     Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
13811   }
13812 
13813   // Objective-C instance variables
13814   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
13815   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
13816   if (OL && OR && OL->getDecl() == OR->getDecl()) {
13817     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
13818     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
13819     if (RL && RR && RL->getDecl() == RR->getDecl())
13820       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
13821   }
13822 }
13823 
13824 // C99 6.5.16.1
13825 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
13826                                        SourceLocation Loc,
13827                                        QualType CompoundType,
13828                                        BinaryOperatorKind Opc) {
13829   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
13830 
13831   // Verify that LHS is a modifiable lvalue, and emit error if not.
13832   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
13833     return QualType();
13834 
13835   QualType LHSType = LHSExpr->getType();
13836   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
13837                                              CompoundType;
13838   // OpenCL v1.2 s6.1.1.1 p2:
13839   // The half data type can only be used to declare a pointer to a buffer that
13840   // contains half values
13841   if (getLangOpts().OpenCL &&
13842       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
13843       LHSType->isHalfType()) {
13844     Diag(Loc, diag::err_opencl_half_load_store) << 1
13845         << LHSType.getUnqualifiedType();
13846     return QualType();
13847   }
13848 
13849   AssignConvertType ConvTy;
13850   if (CompoundType.isNull()) {
13851     Expr *RHSCheck = RHS.get();
13852 
13853     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
13854 
13855     QualType LHSTy(LHSType);
13856     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
13857     if (RHS.isInvalid())
13858       return QualType();
13859     // Special case of NSObject attributes on c-style pointer types.
13860     if (ConvTy == IncompatiblePointer &&
13861         ((Context.isObjCNSObjectType(LHSType) &&
13862           RHSType->isObjCObjectPointerType()) ||
13863          (Context.isObjCNSObjectType(RHSType) &&
13864           LHSType->isObjCObjectPointerType())))
13865       ConvTy = Compatible;
13866 
13867     if (ConvTy == Compatible &&
13868         LHSType->isObjCObjectType())
13869         Diag(Loc, diag::err_objc_object_assignment)
13870           << LHSType;
13871 
13872     // If the RHS is a unary plus or minus, check to see if they = and + are
13873     // right next to each other.  If so, the user may have typo'd "x =+ 4"
13874     // instead of "x += 4".
13875     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
13876       RHSCheck = ICE->getSubExpr();
13877     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
13878       if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
13879           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
13880           // Only if the two operators are exactly adjacent.
13881           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
13882           // And there is a space or other character before the subexpr of the
13883           // unary +/-.  We don't want to warn on "x=-1".
13884           Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
13885           UO->getSubExpr()->getBeginLoc().isFileID()) {
13886         Diag(Loc, diag::warn_not_compound_assign)
13887           << (UO->getOpcode() == UO_Plus ? "+" : "-")
13888           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
13889       }
13890     }
13891 
13892     if (ConvTy == Compatible) {
13893       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
13894         // Warn about retain cycles where a block captures the LHS, but
13895         // not if the LHS is a simple variable into which the block is
13896         // being stored...unless that variable can be captured by reference!
13897         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
13898         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
13899         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
13900           checkRetainCycles(LHSExpr, RHS.get());
13901       }
13902 
13903       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
13904           LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
13905         // It is safe to assign a weak reference into a strong variable.
13906         // Although this code can still have problems:
13907         //   id x = self.weakProp;
13908         //   id y = self.weakProp;
13909         // we do not warn to warn spuriously when 'x' and 'y' are on separate
13910         // paths through the function. This should be revisited if
13911         // -Wrepeated-use-of-weak is made flow-sensitive.
13912         // For ObjCWeak only, we do not warn if the assign is to a non-weak
13913         // variable, which will be valid for the current autorelease scope.
13914         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13915                              RHS.get()->getBeginLoc()))
13916           getCurFunction()->markSafeWeakUse(RHS.get());
13917 
13918       } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
13919         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
13920       }
13921     }
13922   } else {
13923     // Compound assignment "x += y"
13924     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
13925   }
13926 
13927   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
13928                                RHS.get(), AA_Assigning))
13929     return QualType();
13930 
13931   CheckForNullPointerDereference(*this, LHSExpr);
13932 
13933   if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
13934     if (CompoundType.isNull()) {
13935       // C++2a [expr.ass]p5:
13936       //   A simple-assignment whose left operand is of a volatile-qualified
13937       //   type is deprecated unless the assignment is either a discarded-value
13938       //   expression or an unevaluated operand
13939       ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
13940     } else {
13941       // C++20 [expr.ass]p6:
13942       //   [Compound-assignment] expressions are deprecated if E1 has
13943       //   volatile-qualified type and op is not one of the bitwise
13944       //   operators |, &, ˆ.
13945       switch (Opc) {
13946       case BO_OrAssign:
13947       case BO_AndAssign:
13948       case BO_XorAssign:
13949         break;
13950       default:
13951         Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType;
13952       }
13953     }
13954   }
13955 
13956   // C11 6.5.16p3: The type of an assignment expression is the type of the
13957   // left operand would have after lvalue conversion.
13958   // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
13959   // qualified type, the value has the unqualified version of the type of the
13960   // lvalue; additionally, if the lvalue has atomic type, the value has the
13961   // non-atomic version of the type of the lvalue.
13962   // C++ 5.17p1: the type of the assignment expression is that of its left
13963   // operand.
13964   return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
13965 }
13966 
13967 // Only ignore explicit casts to void.
13968 static bool IgnoreCommaOperand(const Expr *E) {
13969   E = E->IgnoreParens();
13970 
13971   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
13972     if (CE->getCastKind() == CK_ToVoid) {
13973       return true;
13974     }
13975 
13976     // static_cast<void> on a dependent type will not show up as CK_ToVoid.
13977     if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
13978         CE->getSubExpr()->getType()->isDependentType()) {
13979       return true;
13980     }
13981   }
13982 
13983   return false;
13984 }
13985 
13986 // Look for instances where it is likely the comma operator is confused with
13987 // another operator.  There is an explicit list of acceptable expressions for
13988 // the left hand side of the comma operator, otherwise emit a warning.
13989 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
13990   // No warnings in macros
13991   if (Loc.isMacroID())
13992     return;
13993 
13994   // Don't warn in template instantiations.
13995   if (inTemplateInstantiation())
13996     return;
13997 
13998   // Scope isn't fine-grained enough to explicitly list the specific cases, so
13999   // instead, skip more than needed, then call back into here with the
14000   // CommaVisitor in SemaStmt.cpp.
14001   // The listed locations are the initialization and increment portions
14002   // of a for loop.  The additional checks are on the condition of
14003   // if statements, do/while loops, and for loops.
14004   // Differences in scope flags for C89 mode requires the extra logic.
14005   const unsigned ForIncrementFlags =
14006       getLangOpts().C99 || getLangOpts().CPlusPlus
14007           ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
14008           : Scope::ContinueScope | Scope::BreakScope;
14009   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
14010   const unsigned ScopeFlags = getCurScope()->getFlags();
14011   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
14012       (ScopeFlags & ForInitFlags) == ForInitFlags)
14013     return;
14014 
14015   // If there are multiple comma operators used together, get the RHS of the
14016   // of the comma operator as the LHS.
14017   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
14018     if (BO->getOpcode() != BO_Comma)
14019       break;
14020     LHS = BO->getRHS();
14021   }
14022 
14023   // Only allow some expressions on LHS to not warn.
14024   if (IgnoreCommaOperand(LHS))
14025     return;
14026 
14027   Diag(Loc, diag::warn_comma_operator);
14028   Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
14029       << LHS->getSourceRange()
14030       << FixItHint::CreateInsertion(LHS->getBeginLoc(),
14031                                     LangOpts.CPlusPlus ? "static_cast<void>("
14032                                                        : "(void)(")
14033       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
14034                                     ")");
14035 }
14036 
14037 // C99 6.5.17
14038 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
14039                                    SourceLocation Loc) {
14040   LHS = S.CheckPlaceholderExpr(LHS.get());
14041   RHS = S.CheckPlaceholderExpr(RHS.get());
14042   if (LHS.isInvalid() || RHS.isInvalid())
14043     return QualType();
14044 
14045   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
14046   // operands, but not unary promotions.
14047   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
14048 
14049   // So we treat the LHS as a ignored value, and in C++ we allow the
14050   // containing site to determine what should be done with the RHS.
14051   LHS = S.IgnoredValueConversions(LHS.get());
14052   if (LHS.isInvalid())
14053     return QualType();
14054 
14055   S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
14056 
14057   if (!S.getLangOpts().CPlusPlus) {
14058     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
14059     if (RHS.isInvalid())
14060       return QualType();
14061     if (!RHS.get()->getType()->isVoidType())
14062       S.RequireCompleteType(Loc, RHS.get()->getType(),
14063                             diag::err_incomplete_type);
14064   }
14065 
14066   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
14067     S.DiagnoseCommaOperator(LHS.get(), Loc);
14068 
14069   return RHS.get()->getType();
14070 }
14071 
14072 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
14073 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
14074 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
14075                                                ExprValueKind &VK,
14076                                                ExprObjectKind &OK,
14077                                                SourceLocation OpLoc,
14078                                                bool IsInc, bool IsPrefix) {
14079   if (Op->isTypeDependent())
14080     return S.Context.DependentTy;
14081 
14082   QualType ResType = Op->getType();
14083   // Atomic types can be used for increment / decrement where the non-atomic
14084   // versions can, so ignore the _Atomic() specifier for the purpose of
14085   // checking.
14086   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
14087     ResType = ResAtomicType->getValueType();
14088 
14089   assert(!ResType.isNull() && "no type for increment/decrement expression");
14090 
14091   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
14092     // Decrement of bool is not allowed.
14093     if (!IsInc) {
14094       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
14095       return QualType();
14096     }
14097     // Increment of bool sets it to true, but is deprecated.
14098     S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
14099                                               : diag::warn_increment_bool)
14100       << Op->getSourceRange();
14101   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
14102     // Error on enum increments and decrements in C++ mode
14103     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
14104     return QualType();
14105   } else if (ResType->isRealType()) {
14106     // OK!
14107   } else if (ResType->isPointerType()) {
14108     // C99 6.5.2.4p2, 6.5.6p2
14109     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
14110       return QualType();
14111   } else if (ResType->isObjCObjectPointerType()) {
14112     // On modern runtimes, ObjC pointer arithmetic is forbidden.
14113     // Otherwise, we just need a complete type.
14114     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
14115         checkArithmeticOnObjCPointer(S, OpLoc, Op))
14116       return QualType();
14117   } else if (ResType->isAnyComplexType()) {
14118     // C99 does not support ++/-- on complex types, we allow as an extension.
14119     S.Diag(OpLoc, diag::ext_integer_increment_complex)
14120       << ResType << Op->getSourceRange();
14121   } else if (ResType->isPlaceholderType()) {
14122     ExprResult PR = S.CheckPlaceholderExpr(Op);
14123     if (PR.isInvalid()) return QualType();
14124     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
14125                                           IsInc, IsPrefix);
14126   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
14127     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14128   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
14129              (ResType->castAs<VectorType>()->getVectorKind() !=
14130               VectorType::AltiVecBool)) {
14131     // The z vector extensions allow ++ and -- for non-bool vectors.
14132   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
14133             ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
14134     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14135   } else {
14136     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
14137       << ResType << int(IsInc) << Op->getSourceRange();
14138     return QualType();
14139   }
14140   // At this point, we know we have a real, complex or pointer type.
14141   // Now make sure the operand is a modifiable lvalue.
14142   if (CheckForModifiableLvalue(Op, OpLoc, S))
14143     return QualType();
14144   if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
14145     // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14146     //   An operand with volatile-qualified type is deprecated
14147     S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
14148         << IsInc << ResType;
14149   }
14150   // In C++, a prefix increment is the same type as the operand. Otherwise
14151   // (in C or with postfix), the increment is the unqualified type of the
14152   // operand.
14153   if (IsPrefix && S.getLangOpts().CPlusPlus) {
14154     VK = VK_LValue;
14155     OK = Op->getObjectKind();
14156     return ResType;
14157   } else {
14158     VK = VK_PRValue;
14159     return ResType.getUnqualifiedType();
14160   }
14161 }
14162 
14163 
14164 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14165 /// This routine allows us to typecheck complex/recursive expressions
14166 /// where the declaration is needed for type checking. We only need to
14167 /// handle cases when the expression references a function designator
14168 /// or is an lvalue. Here are some examples:
14169 ///  - &(x) => x
14170 ///  - &*****f => f for f a function designator.
14171 ///  - &s.xx => s
14172 ///  - &s.zz[1].yy -> s, if zz is an array
14173 ///  - *(x + 1) -> x, if x is an array
14174 ///  - &"123"[2] -> 0
14175 ///  - & __real__ x -> x
14176 ///
14177 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14178 /// members.
14179 static ValueDecl *getPrimaryDecl(Expr *E) {
14180   switch (E->getStmtClass()) {
14181   case Stmt::DeclRefExprClass:
14182     return cast<DeclRefExpr>(E)->getDecl();
14183   case Stmt::MemberExprClass:
14184     // If this is an arrow operator, the address is an offset from
14185     // the base's value, so the object the base refers to is
14186     // irrelevant.
14187     if (cast<MemberExpr>(E)->isArrow())
14188       return nullptr;
14189     // Otherwise, the expression refers to a part of the base
14190     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
14191   case Stmt::ArraySubscriptExprClass: {
14192     // FIXME: This code shouldn't be necessary!  We should catch the implicit
14193     // promotion of register arrays earlier.
14194     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
14195     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
14196       if (ICE->getSubExpr()->getType()->isArrayType())
14197         return getPrimaryDecl(ICE->getSubExpr());
14198     }
14199     return nullptr;
14200   }
14201   case Stmt::UnaryOperatorClass: {
14202     UnaryOperator *UO = cast<UnaryOperator>(E);
14203 
14204     switch(UO->getOpcode()) {
14205     case UO_Real:
14206     case UO_Imag:
14207     case UO_Extension:
14208       return getPrimaryDecl(UO->getSubExpr());
14209     default:
14210       return nullptr;
14211     }
14212   }
14213   case Stmt::ParenExprClass:
14214     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
14215   case Stmt::ImplicitCastExprClass:
14216     // If the result of an implicit cast is an l-value, we care about
14217     // the sub-expression; otherwise, the result here doesn't matter.
14218     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
14219   case Stmt::CXXUuidofExprClass:
14220     return cast<CXXUuidofExpr>(E)->getGuidDecl();
14221   default:
14222     return nullptr;
14223   }
14224 }
14225 
14226 namespace {
14227 enum {
14228   AO_Bit_Field = 0,
14229   AO_Vector_Element = 1,
14230   AO_Property_Expansion = 2,
14231   AO_Register_Variable = 3,
14232   AO_Matrix_Element = 4,
14233   AO_No_Error = 5
14234 };
14235 }
14236 /// Diagnose invalid operand for address of operations.
14237 ///
14238 /// \param Type The type of operand which cannot have its address taken.
14239 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
14240                                          Expr *E, unsigned Type) {
14241   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
14242 }
14243 
14244 /// CheckAddressOfOperand - The operand of & must be either a function
14245 /// designator or an lvalue designating an object. If it is an lvalue, the
14246 /// object cannot be declared with storage class register or be a bit field.
14247 /// Note: The usual conversions are *not* applied to the operand of the &
14248 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
14249 /// In C++, the operand might be an overloaded function name, in which case
14250 /// we allow the '&' but retain the overloaded-function type.
14251 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
14252   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
14253     if (PTy->getKind() == BuiltinType::Overload) {
14254       Expr *E = OrigOp.get()->IgnoreParens();
14255       if (!isa<OverloadExpr>(E)) {
14256         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
14257         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
14258           << OrigOp.get()->getSourceRange();
14259         return QualType();
14260       }
14261 
14262       OverloadExpr *Ovl = cast<OverloadExpr>(E);
14263       if (isa<UnresolvedMemberExpr>(Ovl))
14264         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
14265           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14266             << OrigOp.get()->getSourceRange();
14267           return QualType();
14268         }
14269 
14270       return Context.OverloadTy;
14271     }
14272 
14273     if (PTy->getKind() == BuiltinType::UnknownAny)
14274       return Context.UnknownAnyTy;
14275 
14276     if (PTy->getKind() == BuiltinType::BoundMember) {
14277       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14278         << OrigOp.get()->getSourceRange();
14279       return QualType();
14280     }
14281 
14282     OrigOp = CheckPlaceholderExpr(OrigOp.get());
14283     if (OrigOp.isInvalid()) return QualType();
14284   }
14285 
14286   if (OrigOp.get()->isTypeDependent())
14287     return Context.DependentTy;
14288 
14289   assert(!OrigOp.get()->hasPlaceholderType());
14290 
14291   // Make sure to ignore parentheses in subsequent checks
14292   Expr *op = OrigOp.get()->IgnoreParens();
14293 
14294   // In OpenCL captures for blocks called as lambda functions
14295   // are located in the private address space. Blocks used in
14296   // enqueue_kernel can be located in a different address space
14297   // depending on a vendor implementation. Thus preventing
14298   // taking an address of the capture to avoid invalid AS casts.
14299   if (LangOpts.OpenCL) {
14300     auto* VarRef = dyn_cast<DeclRefExpr>(op);
14301     if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
14302       Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
14303       return QualType();
14304     }
14305   }
14306 
14307   if (getLangOpts().C99) {
14308     // Implement C99-only parts of addressof rules.
14309     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
14310       if (uOp->getOpcode() == UO_Deref)
14311         // Per C99 6.5.3.2, the address of a deref always returns a valid result
14312         // (assuming the deref expression is valid).
14313         return uOp->getSubExpr()->getType();
14314     }
14315     // Technically, there should be a check for array subscript
14316     // expressions here, but the result of one is always an lvalue anyway.
14317   }
14318   ValueDecl *dcl = getPrimaryDecl(op);
14319 
14320   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
14321     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
14322                                            op->getBeginLoc()))
14323       return QualType();
14324 
14325   Expr::LValueClassification lval = op->ClassifyLValue(Context);
14326   unsigned AddressOfError = AO_No_Error;
14327 
14328   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
14329     bool sfinae = (bool)isSFINAEContext();
14330     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
14331                                   : diag::ext_typecheck_addrof_temporary)
14332       << op->getType() << op->getSourceRange();
14333     if (sfinae)
14334       return QualType();
14335     // Materialize the temporary as an lvalue so that we can take its address.
14336     OrigOp = op =
14337         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
14338   } else if (isa<ObjCSelectorExpr>(op)) {
14339     return Context.getPointerType(op->getType());
14340   } else if (lval == Expr::LV_MemberFunction) {
14341     // If it's an instance method, make a member pointer.
14342     // The expression must have exactly the form &A::foo.
14343 
14344     // If the underlying expression isn't a decl ref, give up.
14345     if (!isa<DeclRefExpr>(op)) {
14346       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14347         << OrigOp.get()->getSourceRange();
14348       return QualType();
14349     }
14350     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
14351     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
14352 
14353     // The id-expression was parenthesized.
14354     if (OrigOp.get() != DRE) {
14355       Diag(OpLoc, diag::err_parens_pointer_member_function)
14356         << OrigOp.get()->getSourceRange();
14357 
14358     // The method was named without a qualifier.
14359     } else if (!DRE->getQualifier()) {
14360       if (MD->getParent()->getName().empty())
14361         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14362           << op->getSourceRange();
14363       else {
14364         SmallString<32> Str;
14365         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
14366         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14367           << op->getSourceRange()
14368           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
14369       }
14370     }
14371 
14372     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
14373     if (isa<CXXDestructorDecl>(MD))
14374       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
14375 
14376     QualType MPTy = Context.getMemberPointerType(
14377         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
14378     // Under the MS ABI, lock down the inheritance model now.
14379     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14380       (void)isCompleteType(OpLoc, MPTy);
14381     return MPTy;
14382   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
14383     // C99 6.5.3.2p1
14384     // The operand must be either an l-value or a function designator
14385     if (!op->getType()->isFunctionType()) {
14386       // Use a special diagnostic for loads from property references.
14387       if (isa<PseudoObjectExpr>(op)) {
14388         AddressOfError = AO_Property_Expansion;
14389       } else {
14390         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
14391           << op->getType() << op->getSourceRange();
14392         return QualType();
14393       }
14394     }
14395   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
14396     // The operand cannot be a bit-field
14397     AddressOfError = AO_Bit_Field;
14398   } else if (op->getObjectKind() == OK_VectorComponent) {
14399     // The operand cannot be an element of a vector
14400     AddressOfError = AO_Vector_Element;
14401   } else if (op->getObjectKind() == OK_MatrixComponent) {
14402     // The operand cannot be an element of a matrix.
14403     AddressOfError = AO_Matrix_Element;
14404   } else if (dcl) { // C99 6.5.3.2p1
14405     // We have an lvalue with a decl. Make sure the decl is not declared
14406     // with the register storage-class specifier.
14407     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
14408       // in C++ it is not error to take address of a register
14409       // variable (c++03 7.1.1P3)
14410       if (vd->getStorageClass() == SC_Register &&
14411           !getLangOpts().CPlusPlus) {
14412         AddressOfError = AO_Register_Variable;
14413       }
14414     } else if (isa<MSPropertyDecl>(dcl)) {
14415       AddressOfError = AO_Property_Expansion;
14416     } else if (isa<FunctionTemplateDecl>(dcl)) {
14417       return Context.OverloadTy;
14418     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
14419       // Okay: we can take the address of a field.
14420       // Could be a pointer to member, though, if there is an explicit
14421       // scope qualifier for the class.
14422       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
14423         DeclContext *Ctx = dcl->getDeclContext();
14424         if (Ctx && Ctx->isRecord()) {
14425           if (dcl->getType()->isReferenceType()) {
14426             Diag(OpLoc,
14427                  diag::err_cannot_form_pointer_to_member_of_reference_type)
14428               << dcl->getDeclName() << dcl->getType();
14429             return QualType();
14430           }
14431 
14432           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
14433             Ctx = Ctx->getParent();
14434 
14435           QualType MPTy = Context.getMemberPointerType(
14436               op->getType(),
14437               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
14438           // Under the MS ABI, lock down the inheritance model now.
14439           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14440             (void)isCompleteType(OpLoc, MPTy);
14441           return MPTy;
14442         }
14443       }
14444     } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
14445                     MSGuidDecl, UnnamedGlobalConstantDecl>(dcl))
14446       llvm_unreachable("Unknown/unexpected decl type");
14447   }
14448 
14449   if (AddressOfError != AO_No_Error) {
14450     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
14451     return QualType();
14452   }
14453 
14454   if (lval == Expr::LV_IncompleteVoidType) {
14455     // Taking the address of a void variable is technically illegal, but we
14456     // allow it in cases which are otherwise valid.
14457     // Example: "extern void x; void* y = &x;".
14458     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
14459   }
14460 
14461   // If the operand has type "type", the result has type "pointer to type".
14462   if (op->getType()->isObjCObjectType())
14463     return Context.getObjCObjectPointerType(op->getType());
14464 
14465   CheckAddressOfPackedMember(op);
14466 
14467   return Context.getPointerType(op->getType());
14468 }
14469 
14470 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
14471   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
14472   if (!DRE)
14473     return;
14474   const Decl *D = DRE->getDecl();
14475   if (!D)
14476     return;
14477   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
14478   if (!Param)
14479     return;
14480   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
14481     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
14482       return;
14483   if (FunctionScopeInfo *FD = S.getCurFunction())
14484     FD->ModifiedNonNullParams.insert(Param);
14485 }
14486 
14487 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
14488 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
14489                                         SourceLocation OpLoc) {
14490   if (Op->isTypeDependent())
14491     return S.Context.DependentTy;
14492 
14493   ExprResult ConvResult = S.UsualUnaryConversions(Op);
14494   if (ConvResult.isInvalid())
14495     return QualType();
14496   Op = ConvResult.get();
14497   QualType OpTy = Op->getType();
14498   QualType Result;
14499 
14500   if (isa<CXXReinterpretCastExpr>(Op)) {
14501     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
14502     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
14503                                      Op->getSourceRange());
14504   }
14505 
14506   if (const PointerType *PT = OpTy->getAs<PointerType>())
14507   {
14508     Result = PT->getPointeeType();
14509   }
14510   else if (const ObjCObjectPointerType *OPT =
14511              OpTy->getAs<ObjCObjectPointerType>())
14512     Result = OPT->getPointeeType();
14513   else {
14514     ExprResult PR = S.CheckPlaceholderExpr(Op);
14515     if (PR.isInvalid()) return QualType();
14516     if (PR.get() != Op)
14517       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
14518   }
14519 
14520   if (Result.isNull()) {
14521     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
14522       << OpTy << Op->getSourceRange();
14523     return QualType();
14524   }
14525 
14526   // Note that per both C89 and C99, indirection is always legal, even if Result
14527   // is an incomplete type or void.  It would be possible to warn about
14528   // dereferencing a void pointer, but it's completely well-defined, and such a
14529   // warning is unlikely to catch any mistakes. In C++, indirection is not valid
14530   // for pointers to 'void' but is fine for any other pointer type:
14531   //
14532   // C++ [expr.unary.op]p1:
14533   //   [...] the expression to which [the unary * operator] is applied shall
14534   //   be a pointer to an object type, or a pointer to a function type
14535   if (S.getLangOpts().CPlusPlus && Result->isVoidType())
14536     S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
14537       << OpTy << Op->getSourceRange();
14538 
14539   // Dereferences are usually l-values...
14540   VK = VK_LValue;
14541 
14542   // ...except that certain expressions are never l-values in C.
14543   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
14544     VK = VK_PRValue;
14545 
14546   return Result;
14547 }
14548 
14549 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
14550   BinaryOperatorKind Opc;
14551   switch (Kind) {
14552   default: llvm_unreachable("Unknown binop!");
14553   case tok::periodstar:           Opc = BO_PtrMemD; break;
14554   case tok::arrowstar:            Opc = BO_PtrMemI; break;
14555   case tok::star:                 Opc = BO_Mul; break;
14556   case tok::slash:                Opc = BO_Div; break;
14557   case tok::percent:              Opc = BO_Rem; break;
14558   case tok::plus:                 Opc = BO_Add; break;
14559   case tok::minus:                Opc = BO_Sub; break;
14560   case tok::lessless:             Opc = BO_Shl; break;
14561   case tok::greatergreater:       Opc = BO_Shr; break;
14562   case tok::lessequal:            Opc = BO_LE; break;
14563   case tok::less:                 Opc = BO_LT; break;
14564   case tok::greaterequal:         Opc = BO_GE; break;
14565   case tok::greater:              Opc = BO_GT; break;
14566   case tok::exclaimequal:         Opc = BO_NE; break;
14567   case tok::equalequal:           Opc = BO_EQ; break;
14568   case tok::spaceship:            Opc = BO_Cmp; break;
14569   case tok::amp:                  Opc = BO_And; break;
14570   case tok::caret:                Opc = BO_Xor; break;
14571   case tok::pipe:                 Opc = BO_Or; break;
14572   case tok::ampamp:               Opc = BO_LAnd; break;
14573   case tok::pipepipe:             Opc = BO_LOr; break;
14574   case tok::equal:                Opc = BO_Assign; break;
14575   case tok::starequal:            Opc = BO_MulAssign; break;
14576   case tok::slashequal:           Opc = BO_DivAssign; break;
14577   case tok::percentequal:         Opc = BO_RemAssign; break;
14578   case tok::plusequal:            Opc = BO_AddAssign; break;
14579   case tok::minusequal:           Opc = BO_SubAssign; break;
14580   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
14581   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
14582   case tok::ampequal:             Opc = BO_AndAssign; break;
14583   case tok::caretequal:           Opc = BO_XorAssign; break;
14584   case tok::pipeequal:            Opc = BO_OrAssign; break;
14585   case tok::comma:                Opc = BO_Comma; break;
14586   }
14587   return Opc;
14588 }
14589 
14590 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
14591   tok::TokenKind Kind) {
14592   UnaryOperatorKind Opc;
14593   switch (Kind) {
14594   default: llvm_unreachable("Unknown unary op!");
14595   case tok::plusplus:     Opc = UO_PreInc; break;
14596   case tok::minusminus:   Opc = UO_PreDec; break;
14597   case tok::amp:          Opc = UO_AddrOf; break;
14598   case tok::star:         Opc = UO_Deref; break;
14599   case tok::plus:         Opc = UO_Plus; break;
14600   case tok::minus:        Opc = UO_Minus; break;
14601   case tok::tilde:        Opc = UO_Not; break;
14602   case tok::exclaim:      Opc = UO_LNot; break;
14603   case tok::kw___real:    Opc = UO_Real; break;
14604   case tok::kw___imag:    Opc = UO_Imag; break;
14605   case tok::kw___extension__: Opc = UO_Extension; break;
14606   }
14607   return Opc;
14608 }
14609 
14610 const FieldDecl *
14611 Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
14612   // Explore the case for adding 'this->' to the LHS of a self assignment, very
14613   // common for setters.
14614   // struct A {
14615   // int X;
14616   // -void setX(int X) { X = X; }
14617   // +void setX(int X) { this->X = X; }
14618   // };
14619 
14620   // Only consider parameters for self assignment fixes.
14621   if (!isa<ParmVarDecl>(SelfAssigned))
14622     return nullptr;
14623   const auto *Method =
14624       dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true));
14625   if (!Method)
14626     return nullptr;
14627 
14628   const CXXRecordDecl *Parent = Method->getParent();
14629   // In theory this is fixable if the lambda explicitly captures this, but
14630   // that's added complexity that's rarely going to be used.
14631   if (Parent->isLambda())
14632     return nullptr;
14633 
14634   // FIXME: Use an actual Lookup operation instead of just traversing fields
14635   // in order to get base class fields.
14636   auto Field =
14637       llvm::find_if(Parent->fields(),
14638                     [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
14639                       return F->getDeclName() == Name;
14640                     });
14641   return (Field != Parent->field_end()) ? *Field : nullptr;
14642 }
14643 
14644 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
14645 /// This warning suppressed in the event of macro expansions.
14646 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
14647                                    SourceLocation OpLoc, bool IsBuiltin) {
14648   if (S.inTemplateInstantiation())
14649     return;
14650   if (S.isUnevaluatedContext())
14651     return;
14652   if (OpLoc.isInvalid() || OpLoc.isMacroID())
14653     return;
14654   LHSExpr = LHSExpr->IgnoreParenImpCasts();
14655   RHSExpr = RHSExpr->IgnoreParenImpCasts();
14656   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
14657   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
14658   if (!LHSDeclRef || !RHSDeclRef ||
14659       LHSDeclRef->getLocation().isMacroID() ||
14660       RHSDeclRef->getLocation().isMacroID())
14661     return;
14662   const ValueDecl *LHSDecl =
14663     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
14664   const ValueDecl *RHSDecl =
14665     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
14666   if (LHSDecl != RHSDecl)
14667     return;
14668   if (LHSDecl->getType().isVolatileQualified())
14669     return;
14670   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14671     if (RefTy->getPointeeType().isVolatileQualified())
14672       return;
14673 
14674   auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
14675                                       : diag::warn_self_assignment_overloaded)
14676               << LHSDeclRef->getType() << LHSExpr->getSourceRange()
14677               << RHSExpr->getSourceRange();
14678   if (const FieldDecl *SelfAssignField =
14679           S.getSelfAssignmentClassMemberCandidate(RHSDecl))
14680     Diag << 1 << SelfAssignField
14681          << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
14682   else
14683     Diag << 0;
14684 }
14685 
14686 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
14687 /// is usually indicative of introspection within the Objective-C pointer.
14688 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
14689                                           SourceLocation OpLoc) {
14690   if (!S.getLangOpts().ObjC)
14691     return;
14692 
14693   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
14694   const Expr *LHS = L.get();
14695   const Expr *RHS = R.get();
14696 
14697   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14698     ObjCPointerExpr = LHS;
14699     OtherExpr = RHS;
14700   }
14701   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14702     ObjCPointerExpr = RHS;
14703     OtherExpr = LHS;
14704   }
14705 
14706   // This warning is deliberately made very specific to reduce false
14707   // positives with logic that uses '&' for hashing.  This logic mainly
14708   // looks for code trying to introspect into tagged pointers, which
14709   // code should generally never do.
14710   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
14711     unsigned Diag = diag::warn_objc_pointer_masking;
14712     // Determine if we are introspecting the result of performSelectorXXX.
14713     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
14714     // Special case messages to -performSelector and friends, which
14715     // can return non-pointer values boxed in a pointer value.
14716     // Some clients may wish to silence warnings in this subcase.
14717     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
14718       Selector S = ME->getSelector();
14719       StringRef SelArg0 = S.getNameForSlot(0);
14720       if (SelArg0.startswith("performSelector"))
14721         Diag = diag::warn_objc_pointer_masking_performSelector;
14722     }
14723 
14724     S.Diag(OpLoc, Diag)
14725       << ObjCPointerExpr->getSourceRange();
14726   }
14727 }
14728 
14729 static NamedDecl *getDeclFromExpr(Expr *E) {
14730   if (!E)
14731     return nullptr;
14732   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
14733     return DRE->getDecl();
14734   if (auto *ME = dyn_cast<MemberExpr>(E))
14735     return ME->getMemberDecl();
14736   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
14737     return IRE->getDecl();
14738   return nullptr;
14739 }
14740 
14741 // This helper function promotes a binary operator's operands (which are of a
14742 // half vector type) to a vector of floats and then truncates the result to
14743 // a vector of either half or short.
14744 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
14745                                       BinaryOperatorKind Opc, QualType ResultTy,
14746                                       ExprValueKind VK, ExprObjectKind OK,
14747                                       bool IsCompAssign, SourceLocation OpLoc,
14748                                       FPOptionsOverride FPFeatures) {
14749   auto &Context = S.getASTContext();
14750   assert((isVector(ResultTy, Context.HalfTy) ||
14751           isVector(ResultTy, Context.ShortTy)) &&
14752          "Result must be a vector of half or short");
14753   assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
14754          isVector(RHS.get()->getType(), Context.HalfTy) &&
14755          "both operands expected to be a half vector");
14756 
14757   RHS = convertVector(RHS.get(), Context.FloatTy, S);
14758   QualType BinOpResTy = RHS.get()->getType();
14759 
14760   // If Opc is a comparison, ResultType is a vector of shorts. In that case,
14761   // change BinOpResTy to a vector of ints.
14762   if (isVector(ResultTy, Context.ShortTy))
14763     BinOpResTy = S.GetSignedVectorType(BinOpResTy);
14764 
14765   if (IsCompAssign)
14766     return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14767                                           ResultTy, VK, OK, OpLoc, FPFeatures,
14768                                           BinOpResTy, BinOpResTy);
14769 
14770   LHS = convertVector(LHS.get(), Context.FloatTy, S);
14771   auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14772                                     BinOpResTy, VK, OK, OpLoc, FPFeatures);
14773   return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
14774 }
14775 
14776 static std::pair<ExprResult, ExprResult>
14777 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
14778                            Expr *RHSExpr) {
14779   ExprResult LHS = LHSExpr, RHS = RHSExpr;
14780   if (!S.Context.isDependenceAllowed()) {
14781     // C cannot handle TypoExpr nodes on either side of a binop because it
14782     // doesn't handle dependent types properly, so make sure any TypoExprs have
14783     // been dealt with before checking the operands.
14784     LHS = S.CorrectDelayedTyposInExpr(LHS);
14785     RHS = S.CorrectDelayedTyposInExpr(
14786         RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
14787         [Opc, LHS](Expr *E) {
14788           if (Opc != BO_Assign)
14789             return ExprResult(E);
14790           // Avoid correcting the RHS to the same Expr as the LHS.
14791           Decl *D = getDeclFromExpr(E);
14792           return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
14793         });
14794   }
14795   return std::make_pair(LHS, RHS);
14796 }
14797 
14798 /// Returns true if conversion between vectors of halfs and vectors of floats
14799 /// is needed.
14800 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
14801                                      Expr *E0, Expr *E1 = nullptr) {
14802   if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
14803       Ctx.getTargetInfo().useFP16ConversionIntrinsics())
14804     return false;
14805 
14806   auto HasVectorOfHalfType = [&Ctx](Expr *E) {
14807     QualType Ty = E->IgnoreImplicit()->getType();
14808 
14809     // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
14810     // to vectors of floats. Although the element type of the vectors is __fp16,
14811     // the vectors shouldn't be treated as storage-only types. See the
14812     // discussion here: https://reviews.llvm.org/rG825235c140e7
14813     if (const VectorType *VT = Ty->getAs<VectorType>()) {
14814       if (VT->getVectorKind() == VectorType::NeonVector)
14815         return false;
14816       return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
14817     }
14818     return false;
14819   };
14820 
14821   return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
14822 }
14823 
14824 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
14825 /// operator @p Opc at location @c TokLoc. This routine only supports
14826 /// built-in operations; ActOnBinOp handles overloaded operators.
14827 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
14828                                     BinaryOperatorKind Opc,
14829                                     Expr *LHSExpr, Expr *RHSExpr) {
14830   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
14831     // The syntax only allows initializer lists on the RHS of assignment,
14832     // so we don't need to worry about accepting invalid code for
14833     // non-assignment operators.
14834     // C++11 5.17p9:
14835     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
14836     //   of x = {} is x = T().
14837     InitializationKind Kind = InitializationKind::CreateDirectList(
14838         RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14839     InitializedEntity Entity =
14840         InitializedEntity::InitializeTemporary(LHSExpr->getType());
14841     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
14842     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
14843     if (Init.isInvalid())
14844       return Init;
14845     RHSExpr = Init.get();
14846   }
14847 
14848   ExprResult LHS = LHSExpr, RHS = RHSExpr;
14849   QualType ResultTy;     // Result type of the binary operator.
14850   // The following two variables are used for compound assignment operators
14851   QualType CompLHSTy;    // Type of LHS after promotions for computation
14852   QualType CompResultTy; // Type of computation result
14853   ExprValueKind VK = VK_PRValue;
14854   ExprObjectKind OK = OK_Ordinary;
14855   bool ConvertHalfVec = false;
14856 
14857   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14858   if (!LHS.isUsable() || !RHS.isUsable())
14859     return ExprError();
14860 
14861   if (getLangOpts().OpenCL) {
14862     QualType LHSTy = LHSExpr->getType();
14863     QualType RHSTy = RHSExpr->getType();
14864     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
14865     // the ATOMIC_VAR_INIT macro.
14866     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
14867       SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14868       if (BO_Assign == Opc)
14869         Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
14870       else
14871         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14872       return ExprError();
14873     }
14874 
14875     // OpenCL special types - image, sampler, pipe, and blocks are to be used
14876     // only with a builtin functions and therefore should be disallowed here.
14877     if (LHSTy->isImageType() || RHSTy->isImageType() ||
14878         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
14879         LHSTy->isPipeType() || RHSTy->isPipeType() ||
14880         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
14881       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14882       return ExprError();
14883     }
14884   }
14885 
14886   checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14887   checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14888 
14889   switch (Opc) {
14890   case BO_Assign:
14891     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc);
14892     if (getLangOpts().CPlusPlus &&
14893         LHS.get()->getObjectKind() != OK_ObjCProperty) {
14894       VK = LHS.get()->getValueKind();
14895       OK = LHS.get()->getObjectKind();
14896     }
14897     if (!ResultTy.isNull()) {
14898       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14899       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
14900 
14901       // Avoid copying a block to the heap if the block is assigned to a local
14902       // auto variable that is declared in the same scope as the block. This
14903       // optimization is unsafe if the local variable is declared in an outer
14904       // scope. For example:
14905       //
14906       // BlockTy b;
14907       // {
14908       //   b = ^{...};
14909       // }
14910       // // It is unsafe to invoke the block here if it wasn't copied to the
14911       // // heap.
14912       // b();
14913 
14914       if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
14915         if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
14916           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
14917             if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
14918               BE->getBlockDecl()->setCanAvoidCopyToHeap();
14919 
14920       if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
14921         checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
14922                               NTCUC_Assignment, NTCUK_Copy);
14923     }
14924     RecordModifiableNonNullParam(*this, LHS.get());
14925     break;
14926   case BO_PtrMemD:
14927   case BO_PtrMemI:
14928     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
14929                                             Opc == BO_PtrMemI);
14930     break;
14931   case BO_Mul:
14932   case BO_Div:
14933     ConvertHalfVec = true;
14934     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
14935                                            Opc == BO_Div);
14936     break;
14937   case BO_Rem:
14938     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
14939     break;
14940   case BO_Add:
14941     ConvertHalfVec = true;
14942     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
14943     break;
14944   case BO_Sub:
14945     ConvertHalfVec = true;
14946     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
14947     break;
14948   case BO_Shl:
14949   case BO_Shr:
14950     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
14951     break;
14952   case BO_LE:
14953   case BO_LT:
14954   case BO_GE:
14955   case BO_GT:
14956     ConvertHalfVec = true;
14957     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14958     break;
14959   case BO_EQ:
14960   case BO_NE:
14961     ConvertHalfVec = true;
14962     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14963     break;
14964   case BO_Cmp:
14965     ConvertHalfVec = true;
14966     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14967     assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
14968     break;
14969   case BO_And:
14970     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
14971     LLVM_FALLTHROUGH;
14972   case BO_Xor:
14973   case BO_Or:
14974     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14975     break;
14976   case BO_LAnd:
14977   case BO_LOr:
14978     ConvertHalfVec = true;
14979     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
14980     break;
14981   case BO_MulAssign:
14982   case BO_DivAssign:
14983     ConvertHalfVec = true;
14984     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
14985                                                Opc == BO_DivAssign);
14986     CompLHSTy = CompResultTy;
14987     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14988       ResultTy =
14989           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14990     break;
14991   case BO_RemAssign:
14992     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
14993     CompLHSTy = CompResultTy;
14994     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14995       ResultTy =
14996           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14997     break;
14998   case BO_AddAssign:
14999     ConvertHalfVec = true;
15000     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
15001     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15002       ResultTy =
15003           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15004     break;
15005   case BO_SubAssign:
15006     ConvertHalfVec = true;
15007     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
15008     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15009       ResultTy =
15010           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15011     break;
15012   case BO_ShlAssign:
15013   case BO_ShrAssign:
15014     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
15015     CompLHSTy = CompResultTy;
15016     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15017       ResultTy =
15018           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15019     break;
15020   case BO_AndAssign:
15021   case BO_OrAssign: // fallthrough
15022     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15023     LLVM_FALLTHROUGH;
15024   case BO_XorAssign:
15025     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15026     CompLHSTy = CompResultTy;
15027     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15028       ResultTy =
15029           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15030     break;
15031   case BO_Comma:
15032     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
15033     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
15034       VK = RHS.get()->getValueKind();
15035       OK = RHS.get()->getObjectKind();
15036     }
15037     break;
15038   }
15039   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
15040     return ExprError();
15041 
15042   // Some of the binary operations require promoting operands of half vector to
15043   // float vectors and truncating the result back to half vector. For now, we do
15044   // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15045   // arm64).
15046   assert(
15047       (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
15048                               isVector(LHS.get()->getType(), Context.HalfTy)) &&
15049       "both sides are half vectors or neither sides are");
15050   ConvertHalfVec =
15051       needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
15052 
15053   // Check for array bounds violations for both sides of the BinaryOperator
15054   CheckArrayAccess(LHS.get());
15055   CheckArrayAccess(RHS.get());
15056 
15057   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
15058     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
15059                                                  &Context.Idents.get("object_setClass"),
15060                                                  SourceLocation(), LookupOrdinaryName);
15061     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
15062       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
15063       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
15064           << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
15065                                         "object_setClass(")
15066           << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
15067                                           ",")
15068           << FixItHint::CreateInsertion(RHSLocEnd, ")");
15069     }
15070     else
15071       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
15072   }
15073   else if (const ObjCIvarRefExpr *OIRE =
15074            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
15075     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
15076 
15077   // Opc is not a compound assignment if CompResultTy is null.
15078   if (CompResultTy.isNull()) {
15079     if (ConvertHalfVec)
15080       return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
15081                                  OpLoc, CurFPFeatureOverrides());
15082     return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
15083                                   VK, OK, OpLoc, CurFPFeatureOverrides());
15084   }
15085 
15086   // Handle compound assignments.
15087   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
15088       OK_ObjCProperty) {
15089     VK = VK_LValue;
15090     OK = LHS.get()->getObjectKind();
15091   }
15092 
15093   // The LHS is not converted to the result type for fixed-point compound
15094   // assignment as the common type is computed on demand. Reset the CompLHSTy
15095   // to the LHS type we would have gotten after unary conversions.
15096   if (CompResultTy->isFixedPointType())
15097     CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
15098 
15099   if (ConvertHalfVec)
15100     return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
15101                                OpLoc, CurFPFeatureOverrides());
15102 
15103   return CompoundAssignOperator::Create(
15104       Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
15105       CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
15106 }
15107 
15108 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15109 /// operators are mixed in a way that suggests that the programmer forgot that
15110 /// comparison operators have higher precedence. The most typical example of
15111 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
15112 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
15113                                       SourceLocation OpLoc, Expr *LHSExpr,
15114                                       Expr *RHSExpr) {
15115   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
15116   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
15117 
15118   // Check that one of the sides is a comparison operator and the other isn't.
15119   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
15120   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
15121   if (isLeftComp == isRightComp)
15122     return;
15123 
15124   // Bitwise operations are sometimes used as eager logical ops.
15125   // Don't diagnose this.
15126   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
15127   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
15128   if (isLeftBitwise || isRightBitwise)
15129     return;
15130 
15131   SourceRange DiagRange = isLeftComp
15132                               ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
15133                               : SourceRange(OpLoc, RHSExpr->getEndLoc());
15134   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
15135   SourceRange ParensRange =
15136       isLeftComp
15137           ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
15138           : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
15139 
15140   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
15141     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
15142   SuggestParentheses(Self, OpLoc,
15143     Self.PDiag(diag::note_precedence_silence) << OpStr,
15144     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
15145   SuggestParentheses(Self, OpLoc,
15146     Self.PDiag(diag::note_precedence_bitwise_first)
15147       << BinaryOperator::getOpcodeStr(Opc),
15148     ParensRange);
15149 }
15150 
15151 /// It accepts a '&&' expr that is inside a '||' one.
15152 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15153 /// in parentheses.
15154 static void
15155 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
15156                                        BinaryOperator *Bop) {
15157   assert(Bop->getOpcode() == BO_LAnd);
15158   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
15159       << Bop->getSourceRange() << OpLoc;
15160   SuggestParentheses(Self, Bop->getOperatorLoc(),
15161     Self.PDiag(diag::note_precedence_silence)
15162       << Bop->getOpcodeStr(),
15163     Bop->getSourceRange());
15164 }
15165 
15166 /// Returns true if the given expression can be evaluated as a constant
15167 /// 'true'.
15168 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
15169   bool Res;
15170   return !E->isValueDependent() &&
15171          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
15172 }
15173 
15174 /// Returns true if the given expression can be evaluated as a constant
15175 /// 'false'.
15176 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
15177   bool Res;
15178   return !E->isValueDependent() &&
15179          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
15180 }
15181 
15182 /// Look for '&&' in the left hand of a '||' expr.
15183 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
15184                                              Expr *LHSExpr, Expr *RHSExpr) {
15185   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
15186     if (Bop->getOpcode() == BO_LAnd) {
15187       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
15188       if (EvaluatesAsFalse(S, RHSExpr))
15189         return;
15190       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
15191       if (!EvaluatesAsTrue(S, Bop->getLHS()))
15192         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15193     } else if (Bop->getOpcode() == BO_LOr) {
15194       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
15195         // If it's "a || b && 1 || c" we didn't warn earlier for
15196         // "a || b && 1", but warn now.
15197         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
15198           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
15199       }
15200     }
15201   }
15202 }
15203 
15204 /// Look for '&&' in the right hand of a '||' expr.
15205 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
15206                                              Expr *LHSExpr, Expr *RHSExpr) {
15207   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
15208     if (Bop->getOpcode() == BO_LAnd) {
15209       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
15210       if (EvaluatesAsFalse(S, LHSExpr))
15211         return;
15212       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
15213       if (!EvaluatesAsTrue(S, Bop->getRHS()))
15214         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15215     }
15216   }
15217 }
15218 
15219 /// Look for bitwise op in the left or right hand of a bitwise op with
15220 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
15221 /// the '&' expression in parentheses.
15222 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
15223                                          SourceLocation OpLoc, Expr *SubExpr) {
15224   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15225     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
15226       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
15227         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
15228         << Bop->getSourceRange() << OpLoc;
15229       SuggestParentheses(S, Bop->getOperatorLoc(),
15230         S.PDiag(diag::note_precedence_silence)
15231           << Bop->getOpcodeStr(),
15232         Bop->getSourceRange());
15233     }
15234   }
15235 }
15236 
15237 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
15238                                     Expr *SubExpr, StringRef Shift) {
15239   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15240     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
15241       StringRef Op = Bop->getOpcodeStr();
15242       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
15243           << Bop->getSourceRange() << OpLoc << Shift << Op;
15244       SuggestParentheses(S, Bop->getOperatorLoc(),
15245           S.PDiag(diag::note_precedence_silence) << Op,
15246           Bop->getSourceRange());
15247     }
15248   }
15249 }
15250 
15251 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15252                                  Expr *LHSExpr, Expr *RHSExpr) {
15253   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
15254   if (!OCE)
15255     return;
15256 
15257   FunctionDecl *FD = OCE->getDirectCallee();
15258   if (!FD || !FD->isOverloadedOperator())
15259     return;
15260 
15261   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
15262   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
15263     return;
15264 
15265   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
15266       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
15267       << (Kind == OO_LessLess);
15268   SuggestParentheses(S, OCE->getOperatorLoc(),
15269                      S.PDiag(diag::note_precedence_silence)
15270                          << (Kind == OO_LessLess ? "<<" : ">>"),
15271                      OCE->getSourceRange());
15272   SuggestParentheses(
15273       S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
15274       SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
15275 }
15276 
15277 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
15278 /// precedence.
15279 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
15280                                     SourceLocation OpLoc, Expr *LHSExpr,
15281                                     Expr *RHSExpr){
15282   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
15283   if (BinaryOperator::isBitwiseOp(Opc))
15284     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
15285 
15286   // Diagnose "arg1 & arg2 | arg3"
15287   if ((Opc == BO_Or || Opc == BO_Xor) &&
15288       !OpLoc.isMacroID()/* Don't warn in macros. */) {
15289     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
15290     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
15291   }
15292 
15293   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
15294   // We don't warn for 'assert(a || b && "bad")' since this is safe.
15295   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
15296     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
15297     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
15298   }
15299 
15300   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
15301       || Opc == BO_Shr) {
15302     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
15303     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
15304     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
15305   }
15306 
15307   // Warn on overloaded shift operators and comparisons, such as:
15308   // cout << 5 == 4;
15309   if (BinaryOperator::isComparisonOp(Opc))
15310     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
15311 }
15312 
15313 // Binary Operators.  'Tok' is the token for the operator.
15314 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
15315                             tok::TokenKind Kind,
15316                             Expr *LHSExpr, Expr *RHSExpr) {
15317   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
15318   assert(LHSExpr && "ActOnBinOp(): missing left expression");
15319   assert(RHSExpr && "ActOnBinOp(): missing right expression");
15320 
15321   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
15322   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
15323 
15324   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
15325 }
15326 
15327 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
15328                        UnresolvedSetImpl &Functions) {
15329   OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
15330   if (OverOp != OO_None && OverOp != OO_Equal)
15331     LookupOverloadedOperatorName(OverOp, S, Functions);
15332 
15333   // In C++20 onwards, we may have a second operator to look up.
15334   if (getLangOpts().CPlusPlus20) {
15335     if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
15336       LookupOverloadedOperatorName(ExtraOp, S, Functions);
15337   }
15338 }
15339 
15340 /// Build an overloaded binary operator expression in the given scope.
15341 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
15342                                        BinaryOperatorKind Opc,
15343                                        Expr *LHS, Expr *RHS) {
15344   switch (Opc) {
15345   case BO_Assign:
15346   case BO_DivAssign:
15347   case BO_RemAssign:
15348   case BO_SubAssign:
15349   case BO_AndAssign:
15350   case BO_OrAssign:
15351   case BO_XorAssign:
15352     DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
15353     CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
15354     break;
15355   default:
15356     break;
15357   }
15358 
15359   // Find all of the overloaded operators visible from this point.
15360   UnresolvedSet<16> Functions;
15361   S.LookupBinOp(Sc, OpLoc, Opc, Functions);
15362 
15363   // Build the (potentially-overloaded, potentially-dependent)
15364   // binary operation.
15365   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
15366 }
15367 
15368 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
15369                             BinaryOperatorKind Opc,
15370                             Expr *LHSExpr, Expr *RHSExpr) {
15371   ExprResult LHS, RHS;
15372   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15373   if (!LHS.isUsable() || !RHS.isUsable())
15374     return ExprError();
15375   LHSExpr = LHS.get();
15376   RHSExpr = RHS.get();
15377 
15378   // We want to end up calling one of checkPseudoObjectAssignment
15379   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
15380   // both expressions are overloadable or either is type-dependent),
15381   // or CreateBuiltinBinOp (in any other case).  We also want to get
15382   // any placeholder types out of the way.
15383 
15384   // Handle pseudo-objects in the LHS.
15385   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
15386     // Assignments with a pseudo-object l-value need special analysis.
15387     if (pty->getKind() == BuiltinType::PseudoObject &&
15388         BinaryOperator::isAssignmentOp(Opc))
15389       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
15390 
15391     // Don't resolve overloads if the other type is overloadable.
15392     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
15393       // We can't actually test that if we still have a placeholder,
15394       // though.  Fortunately, none of the exceptions we see in that
15395       // code below are valid when the LHS is an overload set.  Note
15396       // that an overload set can be dependently-typed, but it never
15397       // instantiates to having an overloadable type.
15398       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15399       if (resolvedRHS.isInvalid()) return ExprError();
15400       RHSExpr = resolvedRHS.get();
15401 
15402       if (RHSExpr->isTypeDependent() ||
15403           RHSExpr->getType()->isOverloadableType())
15404         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15405     }
15406 
15407     // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
15408     // template, diagnose the missing 'template' keyword instead of diagnosing
15409     // an invalid use of a bound member function.
15410     //
15411     // Note that "A::x < b" might be valid if 'b' has an overloadable type due
15412     // to C++1z [over.over]/1.4, but we already checked for that case above.
15413     if (Opc == BO_LT && inTemplateInstantiation() &&
15414         (pty->getKind() == BuiltinType::BoundMember ||
15415          pty->getKind() == BuiltinType::Overload)) {
15416       auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
15417       if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
15418           llvm::any_of(OE->decls(), [](NamedDecl *ND) {
15419             return isa<FunctionTemplateDecl>(ND);
15420           })) {
15421         Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
15422                                 : OE->getNameLoc(),
15423              diag::err_template_kw_missing)
15424           << OE->getName().getAsString() << "";
15425         return ExprError();
15426       }
15427     }
15428 
15429     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
15430     if (LHS.isInvalid()) return ExprError();
15431     LHSExpr = LHS.get();
15432   }
15433 
15434   // Handle pseudo-objects in the RHS.
15435   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
15436     // An overload in the RHS can potentially be resolved by the type
15437     // being assigned to.
15438     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
15439       if (getLangOpts().CPlusPlus &&
15440           (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15441            LHSExpr->getType()->isOverloadableType()))
15442         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15443 
15444       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15445     }
15446 
15447     // Don't resolve overloads if the other type is overloadable.
15448     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
15449         LHSExpr->getType()->isOverloadableType())
15450       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15451 
15452     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15453     if (!resolvedRHS.isUsable()) return ExprError();
15454     RHSExpr = resolvedRHS.get();
15455   }
15456 
15457   if (getLangOpts().CPlusPlus) {
15458     // If either expression is type-dependent, always build an
15459     // overloaded op.
15460     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
15461       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15462 
15463     // Otherwise, build an overloaded op if either expression has an
15464     // overloadable type.
15465     if (LHSExpr->getType()->isOverloadableType() ||
15466         RHSExpr->getType()->isOverloadableType())
15467       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15468   }
15469 
15470   if (getLangOpts().RecoveryAST &&
15471       (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
15472     assert(!getLangOpts().CPlusPlus);
15473     assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
15474            "Should only occur in error-recovery path.");
15475     if (BinaryOperator::isCompoundAssignmentOp(Opc))
15476       // C [6.15.16] p3:
15477       // An assignment expression has the value of the left operand after the
15478       // assignment, but is not an lvalue.
15479       return CompoundAssignOperator::Create(
15480           Context, LHSExpr, RHSExpr, Opc,
15481           LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
15482           OpLoc, CurFPFeatureOverrides());
15483     QualType ResultType;
15484     switch (Opc) {
15485     case BO_Assign:
15486       ResultType = LHSExpr->getType().getUnqualifiedType();
15487       break;
15488     case BO_LT:
15489     case BO_GT:
15490     case BO_LE:
15491     case BO_GE:
15492     case BO_EQ:
15493     case BO_NE:
15494     case BO_LAnd:
15495     case BO_LOr:
15496       // These operators have a fixed result type regardless of operands.
15497       ResultType = Context.IntTy;
15498       break;
15499     case BO_Comma:
15500       ResultType = RHSExpr->getType();
15501       break;
15502     default:
15503       ResultType = Context.DependentTy;
15504       break;
15505     }
15506     return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
15507                                   VK_PRValue, OK_Ordinary, OpLoc,
15508                                   CurFPFeatureOverrides());
15509   }
15510 
15511   // Build a built-in binary operation.
15512   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15513 }
15514 
15515 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
15516   if (T.isNull() || T->isDependentType())
15517     return false;
15518 
15519   if (!T->isPromotableIntegerType())
15520     return true;
15521 
15522   return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
15523 }
15524 
15525 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
15526                                       UnaryOperatorKind Opc,
15527                                       Expr *InputExpr) {
15528   ExprResult Input = InputExpr;
15529   ExprValueKind VK = VK_PRValue;
15530   ExprObjectKind OK = OK_Ordinary;
15531   QualType resultType;
15532   bool CanOverflow = false;
15533 
15534   bool ConvertHalfVec = false;
15535   if (getLangOpts().OpenCL) {
15536     QualType Ty = InputExpr->getType();
15537     // The only legal unary operation for atomics is '&'.
15538     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
15539     // OpenCL special types - image, sampler, pipe, and blocks are to be used
15540     // only with a builtin functions and therefore should be disallowed here.
15541         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
15542         || Ty->isBlockPointerType())) {
15543       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15544                        << InputExpr->getType()
15545                        << Input.get()->getSourceRange());
15546     }
15547   }
15548 
15549   if (getLangOpts().HLSL) {
15550     if (Opc == UO_AddrOf)
15551       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
15552     if (Opc == UO_Deref)
15553       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
15554   }
15555 
15556   switch (Opc) {
15557   case UO_PreInc:
15558   case UO_PreDec:
15559   case UO_PostInc:
15560   case UO_PostDec:
15561     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
15562                                                 OpLoc,
15563                                                 Opc == UO_PreInc ||
15564                                                 Opc == UO_PostInc,
15565                                                 Opc == UO_PreInc ||
15566                                                 Opc == UO_PreDec);
15567     CanOverflow = isOverflowingIntegerType(Context, resultType);
15568     break;
15569   case UO_AddrOf:
15570     resultType = CheckAddressOfOperand(Input, OpLoc);
15571     CheckAddressOfNoDeref(InputExpr);
15572     RecordModifiableNonNullParam(*this, InputExpr);
15573     break;
15574   case UO_Deref: {
15575     Input = DefaultFunctionArrayLvalueConversion(Input.get());
15576     if (Input.isInvalid()) return ExprError();
15577     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
15578     break;
15579   }
15580   case UO_Plus:
15581   case UO_Minus:
15582     CanOverflow = Opc == UO_Minus &&
15583                   isOverflowingIntegerType(Context, Input.get()->getType());
15584     Input = UsualUnaryConversions(Input.get());
15585     if (Input.isInvalid()) return ExprError();
15586     // Unary plus and minus require promoting an operand of half vector to a
15587     // float vector and truncating the result back to a half vector. For now, we
15588     // do this only when HalfArgsAndReturns is set (that is, when the target is
15589     // arm or arm64).
15590     ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
15591 
15592     // If the operand is a half vector, promote it to a float vector.
15593     if (ConvertHalfVec)
15594       Input = convertVector(Input.get(), Context.FloatTy, *this);
15595     resultType = Input.get()->getType();
15596     if (resultType->isDependentType())
15597       break;
15598     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
15599       break;
15600     else if (resultType->isVectorType() &&
15601              // The z vector extensions don't allow + or - with bool vectors.
15602              (!Context.getLangOpts().ZVector ||
15603               resultType->castAs<VectorType>()->getVectorKind() !=
15604               VectorType::AltiVecBool))
15605       break;
15606     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
15607              Opc == UO_Plus &&
15608              resultType->isPointerType())
15609       break;
15610 
15611     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15612       << resultType << Input.get()->getSourceRange());
15613 
15614   case UO_Not: // bitwise complement
15615     Input = UsualUnaryConversions(Input.get());
15616     if (Input.isInvalid())
15617       return ExprError();
15618     resultType = Input.get()->getType();
15619     if (resultType->isDependentType())
15620       break;
15621     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
15622     if (resultType->isComplexType() || resultType->isComplexIntegerType())
15623       // C99 does not support '~' for complex conjugation.
15624       Diag(OpLoc, diag::ext_integer_complement_complex)
15625           << resultType << Input.get()->getSourceRange();
15626     else if (resultType->hasIntegerRepresentation())
15627       break;
15628     else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
15629       // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
15630       // on vector float types.
15631       QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15632       if (!T->isIntegerType())
15633         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15634                           << resultType << Input.get()->getSourceRange());
15635     } else {
15636       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15637                        << resultType << Input.get()->getSourceRange());
15638     }
15639     break;
15640 
15641   case UO_LNot: // logical negation
15642     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
15643     Input = DefaultFunctionArrayLvalueConversion(Input.get());
15644     if (Input.isInvalid()) return ExprError();
15645     resultType = Input.get()->getType();
15646 
15647     // Though we still have to promote half FP to float...
15648     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
15649       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
15650       resultType = Context.FloatTy;
15651     }
15652 
15653     if (resultType->isDependentType())
15654       break;
15655     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
15656       // C99 6.5.3.3p1: ok, fallthrough;
15657       if (Context.getLangOpts().CPlusPlus) {
15658         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
15659         // operand contextually converted to bool.
15660         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
15661                                   ScalarTypeToBooleanCastKind(resultType));
15662       } else if (Context.getLangOpts().OpenCL &&
15663                  Context.getLangOpts().OpenCLVersion < 120) {
15664         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15665         // operate on scalar float types.
15666         if (!resultType->isIntegerType() && !resultType->isPointerType())
15667           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15668                            << resultType << Input.get()->getSourceRange());
15669       }
15670     } else if (resultType->isExtVectorType()) {
15671       if (Context.getLangOpts().OpenCL &&
15672           Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
15673         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15674         // operate on vector float types.
15675         QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15676         if (!T->isIntegerType())
15677           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15678                            << resultType << Input.get()->getSourceRange());
15679       }
15680       // Vector logical not returns the signed variant of the operand type.
15681       resultType = GetSignedVectorType(resultType);
15682       break;
15683     } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
15684       const VectorType *VTy = resultType->castAs<VectorType>();
15685       if (VTy->getVectorKind() != VectorType::GenericVector)
15686         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15687                          << resultType << Input.get()->getSourceRange());
15688 
15689       // Vector logical not returns the signed variant of the operand type.
15690       resultType = GetSignedVectorType(resultType);
15691       break;
15692     } else {
15693       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15694         << resultType << Input.get()->getSourceRange());
15695     }
15696 
15697     // LNot always has type int. C99 6.5.3.3p5.
15698     // In C++, it's bool. C++ 5.3.1p8
15699     resultType = Context.getLogicalOperationType();
15700     break;
15701   case UO_Real:
15702   case UO_Imag:
15703     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
15704     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
15705     // complex l-values to ordinary l-values and all other values to r-values.
15706     if (Input.isInvalid()) return ExprError();
15707     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
15708       if (Input.get()->isGLValue() &&
15709           Input.get()->getObjectKind() == OK_Ordinary)
15710         VK = Input.get()->getValueKind();
15711     } else if (!getLangOpts().CPlusPlus) {
15712       // In C, a volatile scalar is read by __imag. In C++, it is not.
15713       Input = DefaultLvalueConversion(Input.get());
15714     }
15715     break;
15716   case UO_Extension:
15717     resultType = Input.get()->getType();
15718     VK = Input.get()->getValueKind();
15719     OK = Input.get()->getObjectKind();
15720     break;
15721   case UO_Coawait:
15722     // It's unnecessary to represent the pass-through operator co_await in the
15723     // AST; just return the input expression instead.
15724     assert(!Input.get()->getType()->isDependentType() &&
15725                    "the co_await expression must be non-dependant before "
15726                    "building operator co_await");
15727     return Input;
15728   }
15729   if (resultType.isNull() || Input.isInvalid())
15730     return ExprError();
15731 
15732   // Check for array bounds violations in the operand of the UnaryOperator,
15733   // except for the '*' and '&' operators that have to be handled specially
15734   // by CheckArrayAccess (as there are special cases like &array[arraysize]
15735   // that are explicitly defined as valid by the standard).
15736   if (Opc != UO_AddrOf && Opc != UO_Deref)
15737     CheckArrayAccess(Input.get());
15738 
15739   auto *UO =
15740       UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
15741                             OpLoc, CanOverflow, CurFPFeatureOverrides());
15742 
15743   if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
15744       !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
15745       !isUnevaluatedContext())
15746     ExprEvalContexts.back().PossibleDerefs.insert(UO);
15747 
15748   // Convert the result back to a half vector.
15749   if (ConvertHalfVec)
15750     return convertVector(UO, Context.HalfTy, *this);
15751   return UO;
15752 }
15753 
15754 /// Determine whether the given expression is a qualified member
15755 /// access expression, of a form that could be turned into a pointer to member
15756 /// with the address-of operator.
15757 bool Sema::isQualifiedMemberAccess(Expr *E) {
15758   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
15759     if (!DRE->getQualifier())
15760       return false;
15761 
15762     ValueDecl *VD = DRE->getDecl();
15763     if (!VD->isCXXClassMember())
15764       return false;
15765 
15766     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
15767       return true;
15768     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
15769       return Method->isInstance();
15770 
15771     return false;
15772   }
15773 
15774   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15775     if (!ULE->getQualifier())
15776       return false;
15777 
15778     for (NamedDecl *D : ULE->decls()) {
15779       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
15780         if (Method->isInstance())
15781           return true;
15782       } else {
15783         // Overload set does not contain methods.
15784         break;
15785       }
15786     }
15787 
15788     return false;
15789   }
15790 
15791   return false;
15792 }
15793 
15794 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
15795                               UnaryOperatorKind Opc, Expr *Input) {
15796   // First things first: handle placeholders so that the
15797   // overloaded-operator check considers the right type.
15798   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
15799     // Increment and decrement of pseudo-object references.
15800     if (pty->getKind() == BuiltinType::PseudoObject &&
15801         UnaryOperator::isIncrementDecrementOp(Opc))
15802       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
15803 
15804     // extension is always a builtin operator.
15805     if (Opc == UO_Extension)
15806       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15807 
15808     // & gets special logic for several kinds of placeholder.
15809     // The builtin code knows what to do.
15810     if (Opc == UO_AddrOf &&
15811         (pty->getKind() == BuiltinType::Overload ||
15812          pty->getKind() == BuiltinType::UnknownAny ||
15813          pty->getKind() == BuiltinType::BoundMember))
15814       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15815 
15816     // Anything else needs to be handled now.
15817     ExprResult Result = CheckPlaceholderExpr(Input);
15818     if (Result.isInvalid()) return ExprError();
15819     Input = Result.get();
15820   }
15821 
15822   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
15823       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
15824       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
15825     // Find all of the overloaded operators visible from this point.
15826     UnresolvedSet<16> Functions;
15827     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
15828     if (S && OverOp != OO_None)
15829       LookupOverloadedOperatorName(OverOp, S, Functions);
15830 
15831     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
15832   }
15833 
15834   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15835 }
15836 
15837 // Unary Operators.  'Tok' is the token for the operator.
15838 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
15839                               tok::TokenKind Op, Expr *Input) {
15840   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
15841 }
15842 
15843 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
15844 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
15845                                 LabelDecl *TheDecl) {
15846   TheDecl->markUsed(Context);
15847   // Create the AST node.  The address of a label always has type 'void*'.
15848   return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
15849                                      Context.getPointerType(Context.VoidTy));
15850 }
15851 
15852 void Sema::ActOnStartStmtExpr() {
15853   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
15854 }
15855 
15856 void Sema::ActOnStmtExprError() {
15857   // Note that function is also called by TreeTransform when leaving a
15858   // StmtExpr scope without rebuilding anything.
15859 
15860   DiscardCleanupsInEvaluationContext();
15861   PopExpressionEvaluationContext();
15862 }
15863 
15864 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
15865                                SourceLocation RPLoc) {
15866   return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
15867 }
15868 
15869 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
15870                                SourceLocation RPLoc, unsigned TemplateDepth) {
15871   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
15872   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
15873 
15874   if (hasAnyUnrecoverableErrorsInThisFunction())
15875     DiscardCleanupsInEvaluationContext();
15876   assert(!Cleanup.exprNeedsCleanups() &&
15877          "cleanups within StmtExpr not correctly bound!");
15878   PopExpressionEvaluationContext();
15879 
15880   // FIXME: there are a variety of strange constraints to enforce here, for
15881   // example, it is not possible to goto into a stmt expression apparently.
15882   // More semantic analysis is needed.
15883 
15884   // If there are sub-stmts in the compound stmt, take the type of the last one
15885   // as the type of the stmtexpr.
15886   QualType Ty = Context.VoidTy;
15887   bool StmtExprMayBindToTemp = false;
15888   if (!Compound->body_empty()) {
15889     // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
15890     if (const auto *LastStmt =
15891             dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
15892       if (const Expr *Value = LastStmt->getExprStmt()) {
15893         StmtExprMayBindToTemp = true;
15894         Ty = Value->getType();
15895       }
15896     }
15897   }
15898 
15899   // FIXME: Check that expression type is complete/non-abstract; statement
15900   // expressions are not lvalues.
15901   Expr *ResStmtExpr =
15902       new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
15903   if (StmtExprMayBindToTemp)
15904     return MaybeBindToTemporary(ResStmtExpr);
15905   return ResStmtExpr;
15906 }
15907 
15908 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
15909   if (ER.isInvalid())
15910     return ExprError();
15911 
15912   // Do function/array conversion on the last expression, but not
15913   // lvalue-to-rvalue.  However, initialize an unqualified type.
15914   ER = DefaultFunctionArrayConversion(ER.get());
15915   if (ER.isInvalid())
15916     return ExprError();
15917   Expr *E = ER.get();
15918 
15919   if (E->isTypeDependent())
15920     return E;
15921 
15922   // In ARC, if the final expression ends in a consume, splice
15923   // the consume out and bind it later.  In the alternate case
15924   // (when dealing with a retainable type), the result
15925   // initialization will create a produce.  In both cases the
15926   // result will be +1, and we'll need to balance that out with
15927   // a bind.
15928   auto *Cast = dyn_cast<ImplicitCastExpr>(E);
15929   if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
15930     return Cast->getSubExpr();
15931 
15932   // FIXME: Provide a better location for the initialization.
15933   return PerformCopyInitialization(
15934       InitializedEntity::InitializeStmtExprResult(
15935           E->getBeginLoc(), E->getType().getUnqualifiedType()),
15936       SourceLocation(), E);
15937 }
15938 
15939 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
15940                                       TypeSourceInfo *TInfo,
15941                                       ArrayRef<OffsetOfComponent> Components,
15942                                       SourceLocation RParenLoc) {
15943   QualType ArgTy = TInfo->getType();
15944   bool Dependent = ArgTy->isDependentType();
15945   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
15946 
15947   // We must have at least one component that refers to the type, and the first
15948   // one is known to be a field designator.  Verify that the ArgTy represents
15949   // a struct/union/class.
15950   if (!Dependent && !ArgTy->isRecordType())
15951     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
15952                        << ArgTy << TypeRange);
15953 
15954   // Type must be complete per C99 7.17p3 because a declaring a variable
15955   // with an incomplete type would be ill-formed.
15956   if (!Dependent
15957       && RequireCompleteType(BuiltinLoc, ArgTy,
15958                              diag::err_offsetof_incomplete_type, TypeRange))
15959     return ExprError();
15960 
15961   bool DidWarnAboutNonPOD = false;
15962   QualType CurrentType = ArgTy;
15963   SmallVector<OffsetOfNode, 4> Comps;
15964   SmallVector<Expr*, 4> Exprs;
15965   for (const OffsetOfComponent &OC : Components) {
15966     if (OC.isBrackets) {
15967       // Offset of an array sub-field.  TODO: Should we allow vector elements?
15968       if (!CurrentType->isDependentType()) {
15969         const ArrayType *AT = Context.getAsArrayType(CurrentType);
15970         if(!AT)
15971           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
15972                            << CurrentType);
15973         CurrentType = AT->getElementType();
15974       } else
15975         CurrentType = Context.DependentTy;
15976 
15977       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
15978       if (IdxRval.isInvalid())
15979         return ExprError();
15980       Expr *Idx = IdxRval.get();
15981 
15982       // The expression must be an integral expression.
15983       // FIXME: An integral constant expression?
15984       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
15985           !Idx->getType()->isIntegerType())
15986         return ExprError(
15987             Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
15988             << Idx->getSourceRange());
15989 
15990       // Record this array index.
15991       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
15992       Exprs.push_back(Idx);
15993       continue;
15994     }
15995 
15996     // Offset of a field.
15997     if (CurrentType->isDependentType()) {
15998       // We have the offset of a field, but we can't look into the dependent
15999       // type. Just record the identifier of the field.
16000       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
16001       CurrentType = Context.DependentTy;
16002       continue;
16003     }
16004 
16005     // We need to have a complete type to look into.
16006     if (RequireCompleteType(OC.LocStart, CurrentType,
16007                             diag::err_offsetof_incomplete_type))
16008       return ExprError();
16009 
16010     // Look for the designated field.
16011     const RecordType *RC = CurrentType->getAs<RecordType>();
16012     if (!RC)
16013       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
16014                        << CurrentType);
16015     RecordDecl *RD = RC->getDecl();
16016 
16017     // C++ [lib.support.types]p5:
16018     //   The macro offsetof accepts a restricted set of type arguments in this
16019     //   International Standard. type shall be a POD structure or a POD union
16020     //   (clause 9).
16021     // C++11 [support.types]p4:
16022     //   If type is not a standard-layout class (Clause 9), the results are
16023     //   undefined.
16024     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
16025       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
16026       unsigned DiagID =
16027         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
16028                             : diag::ext_offsetof_non_pod_type;
16029 
16030       if (!IsSafe && !DidWarnAboutNonPOD &&
16031           DiagRuntimeBehavior(BuiltinLoc, nullptr,
16032                               PDiag(DiagID)
16033                               << SourceRange(Components[0].LocStart, OC.LocEnd)
16034                               << CurrentType))
16035         DidWarnAboutNonPOD = true;
16036     }
16037 
16038     // Look for the field.
16039     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
16040     LookupQualifiedName(R, RD);
16041     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
16042     IndirectFieldDecl *IndirectMemberDecl = nullptr;
16043     if (!MemberDecl) {
16044       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
16045         MemberDecl = IndirectMemberDecl->getAnonField();
16046     }
16047 
16048     if (!MemberDecl)
16049       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
16050                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
16051                                                               OC.LocEnd));
16052 
16053     // C99 7.17p3:
16054     //   (If the specified member is a bit-field, the behavior is undefined.)
16055     //
16056     // We diagnose this as an error.
16057     if (MemberDecl->isBitField()) {
16058       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
16059         << MemberDecl->getDeclName()
16060         << SourceRange(BuiltinLoc, RParenLoc);
16061       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
16062       return ExprError();
16063     }
16064 
16065     RecordDecl *Parent = MemberDecl->getParent();
16066     if (IndirectMemberDecl)
16067       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
16068 
16069     // If the member was found in a base class, introduce OffsetOfNodes for
16070     // the base class indirections.
16071     CXXBasePaths Paths;
16072     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
16073                       Paths)) {
16074       if (Paths.getDetectedVirtual()) {
16075         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
16076           << MemberDecl->getDeclName()
16077           << SourceRange(BuiltinLoc, RParenLoc);
16078         return ExprError();
16079       }
16080 
16081       CXXBasePath &Path = Paths.front();
16082       for (const CXXBasePathElement &B : Path)
16083         Comps.push_back(OffsetOfNode(B.Base));
16084     }
16085 
16086     if (IndirectMemberDecl) {
16087       for (auto *FI : IndirectMemberDecl->chain()) {
16088         assert(isa<FieldDecl>(FI));
16089         Comps.push_back(OffsetOfNode(OC.LocStart,
16090                                      cast<FieldDecl>(FI), OC.LocEnd));
16091       }
16092     } else
16093       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
16094 
16095     CurrentType = MemberDecl->getType().getNonReferenceType();
16096   }
16097 
16098   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
16099                               Comps, Exprs, RParenLoc);
16100 }
16101 
16102 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
16103                                       SourceLocation BuiltinLoc,
16104                                       SourceLocation TypeLoc,
16105                                       ParsedType ParsedArgTy,
16106                                       ArrayRef<OffsetOfComponent> Components,
16107                                       SourceLocation RParenLoc) {
16108 
16109   TypeSourceInfo *ArgTInfo;
16110   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
16111   if (ArgTy.isNull())
16112     return ExprError();
16113 
16114   if (!ArgTInfo)
16115     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
16116 
16117   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
16118 }
16119 
16120 
16121 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
16122                                  Expr *CondExpr,
16123                                  Expr *LHSExpr, Expr *RHSExpr,
16124                                  SourceLocation RPLoc) {
16125   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
16126 
16127   ExprValueKind VK = VK_PRValue;
16128   ExprObjectKind OK = OK_Ordinary;
16129   QualType resType;
16130   bool CondIsTrue = false;
16131   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
16132     resType = Context.DependentTy;
16133   } else {
16134     // The conditional expression is required to be a constant expression.
16135     llvm::APSInt condEval(32);
16136     ExprResult CondICE = VerifyIntegerConstantExpression(
16137         CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
16138     if (CondICE.isInvalid())
16139       return ExprError();
16140     CondExpr = CondICE.get();
16141     CondIsTrue = condEval.getZExtValue();
16142 
16143     // If the condition is > zero, then the AST type is the same as the LHSExpr.
16144     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
16145 
16146     resType = ActiveExpr->getType();
16147     VK = ActiveExpr->getValueKind();
16148     OK = ActiveExpr->getObjectKind();
16149   }
16150 
16151   return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
16152                                   resType, VK, OK, RPLoc, CondIsTrue);
16153 }
16154 
16155 //===----------------------------------------------------------------------===//
16156 // Clang Extensions.
16157 //===----------------------------------------------------------------------===//
16158 
16159 /// ActOnBlockStart - This callback is invoked when a block literal is started.
16160 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
16161   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
16162 
16163   if (LangOpts.CPlusPlus) {
16164     MangleNumberingContext *MCtx;
16165     Decl *ManglingContextDecl;
16166     std::tie(MCtx, ManglingContextDecl) =
16167         getCurrentMangleNumberContext(Block->getDeclContext());
16168     if (MCtx) {
16169       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
16170       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
16171     }
16172   }
16173 
16174   PushBlockScope(CurScope, Block);
16175   CurContext->addDecl(Block);
16176   if (CurScope)
16177     PushDeclContext(CurScope, Block);
16178   else
16179     CurContext = Block;
16180 
16181   getCurBlock()->HasImplicitReturnType = true;
16182 
16183   // Enter a new evaluation context to insulate the block from any
16184   // cleanups from the enclosing full-expression.
16185   PushExpressionEvaluationContext(
16186       ExpressionEvaluationContext::PotentiallyEvaluated);
16187 }
16188 
16189 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
16190                                Scope *CurScope) {
16191   assert(ParamInfo.getIdentifier() == nullptr &&
16192          "block-id should have no identifier!");
16193   assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
16194   BlockScopeInfo *CurBlock = getCurBlock();
16195 
16196   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
16197   QualType T = Sig->getType();
16198 
16199   // FIXME: We should allow unexpanded parameter packs here, but that would,
16200   // in turn, make the block expression contain unexpanded parameter packs.
16201   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
16202     // Drop the parameters.
16203     FunctionProtoType::ExtProtoInfo EPI;
16204     EPI.HasTrailingReturn = false;
16205     EPI.TypeQuals.addConst();
16206     T = Context.getFunctionType(Context.DependentTy, None, EPI);
16207     Sig = Context.getTrivialTypeSourceInfo(T);
16208   }
16209 
16210   // GetTypeForDeclarator always produces a function type for a block
16211   // literal signature.  Furthermore, it is always a FunctionProtoType
16212   // unless the function was written with a typedef.
16213   assert(T->isFunctionType() &&
16214          "GetTypeForDeclarator made a non-function block signature");
16215 
16216   // Look for an explicit signature in that function type.
16217   FunctionProtoTypeLoc ExplicitSignature;
16218 
16219   if ((ExplicitSignature = Sig->getTypeLoc()
16220                                .getAsAdjusted<FunctionProtoTypeLoc>())) {
16221 
16222     // Check whether that explicit signature was synthesized by
16223     // GetTypeForDeclarator.  If so, don't save that as part of the
16224     // written signature.
16225     if (ExplicitSignature.getLocalRangeBegin() ==
16226         ExplicitSignature.getLocalRangeEnd()) {
16227       // This would be much cheaper if we stored TypeLocs instead of
16228       // TypeSourceInfos.
16229       TypeLoc Result = ExplicitSignature.getReturnLoc();
16230       unsigned Size = Result.getFullDataSize();
16231       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
16232       Sig->getTypeLoc().initializeFullCopy(Result, Size);
16233 
16234       ExplicitSignature = FunctionProtoTypeLoc();
16235     }
16236   }
16237 
16238   CurBlock->TheDecl->setSignatureAsWritten(Sig);
16239   CurBlock->FunctionType = T;
16240 
16241   const auto *Fn = T->castAs<FunctionType>();
16242   QualType RetTy = Fn->getReturnType();
16243   bool isVariadic =
16244       (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
16245 
16246   CurBlock->TheDecl->setIsVariadic(isVariadic);
16247 
16248   // Context.DependentTy is used as a placeholder for a missing block
16249   // return type.  TODO:  what should we do with declarators like:
16250   //   ^ * { ... }
16251   // If the answer is "apply template argument deduction"....
16252   if (RetTy != Context.DependentTy) {
16253     CurBlock->ReturnType = RetTy;
16254     CurBlock->TheDecl->setBlockMissingReturnType(false);
16255     CurBlock->HasImplicitReturnType = false;
16256   }
16257 
16258   // Push block parameters from the declarator if we had them.
16259   SmallVector<ParmVarDecl*, 8> Params;
16260   if (ExplicitSignature) {
16261     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
16262       ParmVarDecl *Param = ExplicitSignature.getParam(I);
16263       if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
16264           !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
16265         // Diagnose this as an extension in C17 and earlier.
16266         if (!getLangOpts().C2x)
16267           Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
16268       }
16269       Params.push_back(Param);
16270     }
16271 
16272   // Fake up parameter variables if we have a typedef, like
16273   //   ^ fntype { ... }
16274   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
16275     for (const auto &I : Fn->param_types()) {
16276       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
16277           CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
16278       Params.push_back(Param);
16279     }
16280   }
16281 
16282   // Set the parameters on the block decl.
16283   if (!Params.empty()) {
16284     CurBlock->TheDecl->setParams(Params);
16285     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
16286                              /*CheckParameterNames=*/false);
16287   }
16288 
16289   // Finally we can process decl attributes.
16290   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
16291 
16292   // Put the parameter variables in scope.
16293   for (auto AI : CurBlock->TheDecl->parameters()) {
16294     AI->setOwningFunction(CurBlock->TheDecl);
16295 
16296     // If this has an identifier, add it to the scope stack.
16297     if (AI->getIdentifier()) {
16298       CheckShadow(CurBlock->TheScope, AI);
16299 
16300       PushOnScopeChains(AI, CurBlock->TheScope);
16301     }
16302   }
16303 }
16304 
16305 /// ActOnBlockError - If there is an error parsing a block, this callback
16306 /// is invoked to pop the information about the block from the action impl.
16307 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
16308   // Leave the expression-evaluation context.
16309   DiscardCleanupsInEvaluationContext();
16310   PopExpressionEvaluationContext();
16311 
16312   // Pop off CurBlock, handle nested blocks.
16313   PopDeclContext();
16314   PopFunctionScopeInfo();
16315 }
16316 
16317 /// ActOnBlockStmtExpr - This is called when the body of a block statement
16318 /// literal was successfully completed.  ^(int x){...}
16319 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
16320                                     Stmt *Body, Scope *CurScope) {
16321   // If blocks are disabled, emit an error.
16322   if (!LangOpts.Blocks)
16323     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
16324 
16325   // Leave the expression-evaluation context.
16326   if (hasAnyUnrecoverableErrorsInThisFunction())
16327     DiscardCleanupsInEvaluationContext();
16328   assert(!Cleanup.exprNeedsCleanups() &&
16329          "cleanups within block not correctly bound!");
16330   PopExpressionEvaluationContext();
16331 
16332   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
16333   BlockDecl *BD = BSI->TheDecl;
16334 
16335   if (BSI->HasImplicitReturnType)
16336     deduceClosureReturnType(*BSI);
16337 
16338   QualType RetTy = Context.VoidTy;
16339   if (!BSI->ReturnType.isNull())
16340     RetTy = BSI->ReturnType;
16341 
16342   bool NoReturn = BD->hasAttr<NoReturnAttr>();
16343   QualType BlockTy;
16344 
16345   // If the user wrote a function type in some form, try to use that.
16346   if (!BSI->FunctionType.isNull()) {
16347     const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
16348 
16349     FunctionType::ExtInfo Ext = FTy->getExtInfo();
16350     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
16351 
16352     // Turn protoless block types into nullary block types.
16353     if (isa<FunctionNoProtoType>(FTy)) {
16354       FunctionProtoType::ExtProtoInfo EPI;
16355       EPI.ExtInfo = Ext;
16356       BlockTy = Context.getFunctionType(RetTy, None, EPI);
16357 
16358     // Otherwise, if we don't need to change anything about the function type,
16359     // preserve its sugar structure.
16360     } else if (FTy->getReturnType() == RetTy &&
16361                (!NoReturn || FTy->getNoReturnAttr())) {
16362       BlockTy = BSI->FunctionType;
16363 
16364     // Otherwise, make the minimal modifications to the function type.
16365     } else {
16366       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
16367       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
16368       EPI.TypeQuals = Qualifiers();
16369       EPI.ExtInfo = Ext;
16370       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
16371     }
16372 
16373   // If we don't have a function type, just build one from nothing.
16374   } else {
16375     FunctionProtoType::ExtProtoInfo EPI;
16376     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
16377     BlockTy = Context.getFunctionType(RetTy, None, EPI);
16378   }
16379 
16380   DiagnoseUnusedParameters(BD->parameters());
16381   BlockTy = Context.getBlockPointerType(BlockTy);
16382 
16383   // If needed, diagnose invalid gotos and switches in the block.
16384   if (getCurFunction()->NeedsScopeChecking() &&
16385       !PP.isCodeCompletionEnabled())
16386     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
16387 
16388   BD->setBody(cast<CompoundStmt>(Body));
16389 
16390   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
16391     DiagnoseUnguardedAvailabilityViolations(BD);
16392 
16393   // Try to apply the named return value optimization. We have to check again
16394   // if we can do this, though, because blocks keep return statements around
16395   // to deduce an implicit return type.
16396   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
16397       !BD->isDependentContext())
16398     computeNRVO(Body, BSI);
16399 
16400   if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
16401       RetTy.hasNonTrivialToPrimitiveCopyCUnion())
16402     checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
16403                           NTCUK_Destruct|NTCUK_Copy);
16404 
16405   PopDeclContext();
16406 
16407   // Set the captured variables on the block.
16408   SmallVector<BlockDecl::Capture, 4> Captures;
16409   for (Capture &Cap : BSI->Captures) {
16410     if (Cap.isInvalid() || Cap.isThisCapture())
16411       continue;
16412 
16413     VarDecl *Var = Cap.getVariable();
16414     Expr *CopyExpr = nullptr;
16415     if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
16416       if (const RecordType *Record =
16417               Cap.getCaptureType()->getAs<RecordType>()) {
16418         // The capture logic needs the destructor, so make sure we mark it.
16419         // Usually this is unnecessary because most local variables have
16420         // their destructors marked at declaration time, but parameters are
16421         // an exception because it's technically only the call site that
16422         // actually requires the destructor.
16423         if (isa<ParmVarDecl>(Var))
16424           FinalizeVarWithDestructor(Var, Record);
16425 
16426         // Enter a separate potentially-evaluated context while building block
16427         // initializers to isolate their cleanups from those of the block
16428         // itself.
16429         // FIXME: Is this appropriate even when the block itself occurs in an
16430         // unevaluated operand?
16431         EnterExpressionEvaluationContext EvalContext(
16432             *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16433 
16434         SourceLocation Loc = Cap.getLocation();
16435 
16436         ExprResult Result = BuildDeclarationNameExpr(
16437             CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
16438 
16439         // According to the blocks spec, the capture of a variable from
16440         // the stack requires a const copy constructor.  This is not true
16441         // of the copy/move done to move a __block variable to the heap.
16442         if (!Result.isInvalid() &&
16443             !Result.get()->getType().isConstQualified()) {
16444           Result = ImpCastExprToType(Result.get(),
16445                                      Result.get()->getType().withConst(),
16446                                      CK_NoOp, VK_LValue);
16447         }
16448 
16449         if (!Result.isInvalid()) {
16450           Result = PerformCopyInitialization(
16451               InitializedEntity::InitializeBlock(Var->getLocation(),
16452                                                  Cap.getCaptureType()),
16453               Loc, Result.get());
16454         }
16455 
16456         // Build a full-expression copy expression if initialization
16457         // succeeded and used a non-trivial constructor.  Recover from
16458         // errors by pretending that the copy isn't necessary.
16459         if (!Result.isInvalid() &&
16460             !cast<CXXConstructExpr>(Result.get())->getConstructor()
16461                 ->isTrivial()) {
16462           Result = MaybeCreateExprWithCleanups(Result);
16463           CopyExpr = Result.get();
16464         }
16465       }
16466     }
16467 
16468     BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
16469                               CopyExpr);
16470     Captures.push_back(NewCap);
16471   }
16472   BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
16473 
16474   // Pop the block scope now but keep it alive to the end of this function.
16475   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
16476   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
16477 
16478   BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
16479 
16480   // If the block isn't obviously global, i.e. it captures anything at
16481   // all, then we need to do a few things in the surrounding context:
16482   if (Result->getBlockDecl()->hasCaptures()) {
16483     // First, this expression has a new cleanup object.
16484     ExprCleanupObjects.push_back(Result->getBlockDecl());
16485     Cleanup.setExprNeedsCleanups(true);
16486 
16487     // It also gets a branch-protected scope if any of the captured
16488     // variables needs destruction.
16489     for (const auto &CI : Result->getBlockDecl()->captures()) {
16490       const VarDecl *var = CI.getVariable();
16491       if (var->getType().isDestructedType() != QualType::DK_none) {
16492         setFunctionHasBranchProtectedScope();
16493         break;
16494       }
16495     }
16496   }
16497 
16498   if (getCurFunction())
16499     getCurFunction()->addBlock(BD);
16500 
16501   return Result;
16502 }
16503 
16504 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
16505                             SourceLocation RPLoc) {
16506   TypeSourceInfo *TInfo;
16507   GetTypeFromParser(Ty, &TInfo);
16508   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
16509 }
16510 
16511 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
16512                                 Expr *E, TypeSourceInfo *TInfo,
16513                                 SourceLocation RPLoc) {
16514   Expr *OrigExpr = E;
16515   bool IsMS = false;
16516 
16517   // CUDA device code does not support varargs.
16518   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
16519     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
16520       CUDAFunctionTarget T = IdentifyCUDATarget(F);
16521       if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
16522         return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
16523     }
16524   }
16525 
16526   // NVPTX does not support va_arg expression.
16527   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
16528       Context.getTargetInfo().getTriple().isNVPTX())
16529     targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
16530 
16531   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
16532   // as Microsoft ABI on an actual Microsoft platform, where
16533   // __builtin_ms_va_list and __builtin_va_list are the same.)
16534   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
16535       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
16536     QualType MSVaListType = Context.getBuiltinMSVaListType();
16537     if (Context.hasSameType(MSVaListType, E->getType())) {
16538       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
16539         return ExprError();
16540       IsMS = true;
16541     }
16542   }
16543 
16544   // Get the va_list type
16545   QualType VaListType = Context.getBuiltinVaListType();
16546   if (!IsMS) {
16547     if (VaListType->isArrayType()) {
16548       // Deal with implicit array decay; for example, on x86-64,
16549       // va_list is an array, but it's supposed to decay to
16550       // a pointer for va_arg.
16551       VaListType = Context.getArrayDecayedType(VaListType);
16552       // Make sure the input expression also decays appropriately.
16553       ExprResult Result = UsualUnaryConversions(E);
16554       if (Result.isInvalid())
16555         return ExprError();
16556       E = Result.get();
16557     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
16558       // If va_list is a record type and we are compiling in C++ mode,
16559       // check the argument using reference binding.
16560       InitializedEntity Entity = InitializedEntity::InitializeParameter(
16561           Context, Context.getLValueReferenceType(VaListType), false);
16562       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
16563       if (Init.isInvalid())
16564         return ExprError();
16565       E = Init.getAs<Expr>();
16566     } else {
16567       // Otherwise, the va_list argument must be an l-value because
16568       // it is modified by va_arg.
16569       if (!E->isTypeDependent() &&
16570           CheckForModifiableLvalue(E, BuiltinLoc, *this))
16571         return ExprError();
16572     }
16573   }
16574 
16575   if (!IsMS && !E->isTypeDependent() &&
16576       !Context.hasSameType(VaListType, E->getType()))
16577     return ExprError(
16578         Diag(E->getBeginLoc(),
16579              diag::err_first_argument_to_va_arg_not_of_type_va_list)
16580         << OrigExpr->getType() << E->getSourceRange());
16581 
16582   if (!TInfo->getType()->isDependentType()) {
16583     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
16584                             diag::err_second_parameter_to_va_arg_incomplete,
16585                             TInfo->getTypeLoc()))
16586       return ExprError();
16587 
16588     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
16589                                TInfo->getType(),
16590                                diag::err_second_parameter_to_va_arg_abstract,
16591                                TInfo->getTypeLoc()))
16592       return ExprError();
16593 
16594     if (!TInfo->getType().isPODType(Context)) {
16595       Diag(TInfo->getTypeLoc().getBeginLoc(),
16596            TInfo->getType()->isObjCLifetimeType()
16597              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
16598              : diag::warn_second_parameter_to_va_arg_not_pod)
16599         << TInfo->getType()
16600         << TInfo->getTypeLoc().getSourceRange();
16601     }
16602 
16603     // Check for va_arg where arguments of the given type will be promoted
16604     // (i.e. this va_arg is guaranteed to have undefined behavior).
16605     QualType PromoteType;
16606     if (TInfo->getType()->isPromotableIntegerType()) {
16607       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
16608       // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
16609       // and C2x 7.16.1.1p2 says, in part:
16610       //   If type is not compatible with the type of the actual next argument
16611       //   (as promoted according to the default argument promotions), the
16612       //   behavior is undefined, except for the following cases:
16613       //     - both types are pointers to qualified or unqualified versions of
16614       //       compatible types;
16615       //     - one type is a signed integer type, the other type is the
16616       //       corresponding unsigned integer type, and the value is
16617       //       representable in both types;
16618       //     - one type is pointer to qualified or unqualified void and the
16619       //       other is a pointer to a qualified or unqualified character type.
16620       // Given that type compatibility is the primary requirement (ignoring
16621       // qualifications), you would think we could call typesAreCompatible()
16622       // directly to test this. However, in C++, that checks for *same type*,
16623       // which causes false positives when passing an enumeration type to
16624       // va_arg. Instead, get the underlying type of the enumeration and pass
16625       // that.
16626       QualType UnderlyingType = TInfo->getType();
16627       if (const auto *ET = UnderlyingType->getAs<EnumType>())
16628         UnderlyingType = ET->getDecl()->getIntegerType();
16629       if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16630                                      /*CompareUnqualified*/ true))
16631         PromoteType = QualType();
16632 
16633       // If the types are still not compatible, we need to test whether the
16634       // promoted type and the underlying type are the same except for
16635       // signedness. Ask the AST for the correctly corresponding type and see
16636       // if that's compatible.
16637       if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
16638           PromoteType->isUnsignedIntegerType() !=
16639               UnderlyingType->isUnsignedIntegerType()) {
16640         UnderlyingType =
16641             UnderlyingType->isUnsignedIntegerType()
16642                 ? Context.getCorrespondingSignedType(UnderlyingType)
16643                 : Context.getCorrespondingUnsignedType(UnderlyingType);
16644         if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16645                                        /*CompareUnqualified*/ true))
16646           PromoteType = QualType();
16647       }
16648     }
16649     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
16650       PromoteType = Context.DoubleTy;
16651     if (!PromoteType.isNull())
16652       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
16653                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
16654                           << TInfo->getType()
16655                           << PromoteType
16656                           << TInfo->getTypeLoc().getSourceRange());
16657   }
16658 
16659   QualType T = TInfo->getType().getNonLValueExprType(Context);
16660   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
16661 }
16662 
16663 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
16664   // The type of __null will be int or long, depending on the size of
16665   // pointers on the target.
16666   QualType Ty;
16667   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
16668   if (pw == Context.getTargetInfo().getIntWidth())
16669     Ty = Context.IntTy;
16670   else if (pw == Context.getTargetInfo().getLongWidth())
16671     Ty = Context.LongTy;
16672   else if (pw == Context.getTargetInfo().getLongLongWidth())
16673     Ty = Context.LongLongTy;
16674   else {
16675     llvm_unreachable("I don't know size of pointer!");
16676   }
16677 
16678   return new (Context) GNUNullExpr(Ty, TokenLoc);
16679 }
16680 
16681 static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
16682   CXXRecordDecl *ImplDecl = nullptr;
16683 
16684   // Fetch the std::source_location::__impl decl.
16685   if (NamespaceDecl *Std = S.getStdNamespace()) {
16686     LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"),
16687                           Loc, Sema::LookupOrdinaryName);
16688     if (S.LookupQualifiedName(ResultSL, Std)) {
16689       if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
16690         LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"),
16691                                 Loc, Sema::LookupOrdinaryName);
16692         if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
16693             S.LookupQualifiedName(ResultImpl, SLDecl)) {
16694           ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
16695         }
16696       }
16697     }
16698   }
16699 
16700   if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
16701     S.Diag(Loc, diag::err_std_source_location_impl_not_found);
16702     return nullptr;
16703   }
16704 
16705   // Verify that __impl is a trivial struct type, with no base classes, and with
16706   // only the four expected fields.
16707   if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
16708       ImplDecl->getNumBases() != 0) {
16709     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16710     return nullptr;
16711   }
16712 
16713   unsigned Count = 0;
16714   for (FieldDecl *F : ImplDecl->fields()) {
16715     StringRef Name = F->getName();
16716 
16717     if (Name == "_M_file_name") {
16718       if (F->getType() !=
16719           S.Context.getPointerType(S.Context.CharTy.withConst()))
16720         break;
16721       Count++;
16722     } else if (Name == "_M_function_name") {
16723       if (F->getType() !=
16724           S.Context.getPointerType(S.Context.CharTy.withConst()))
16725         break;
16726       Count++;
16727     } else if (Name == "_M_line") {
16728       if (!F->getType()->isIntegerType())
16729         break;
16730       Count++;
16731     } else if (Name == "_M_column") {
16732       if (!F->getType()->isIntegerType())
16733         break;
16734       Count++;
16735     } else {
16736       Count = 100; // invalid
16737       break;
16738     }
16739   }
16740   if (Count != 4) {
16741     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16742     return nullptr;
16743   }
16744 
16745   return ImplDecl;
16746 }
16747 
16748 ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
16749                                     SourceLocation BuiltinLoc,
16750                                     SourceLocation RPLoc) {
16751   QualType ResultTy;
16752   switch (Kind) {
16753   case SourceLocExpr::File:
16754   case SourceLocExpr::Function: {
16755     QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0);
16756     ResultTy =
16757         Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
16758     break;
16759   }
16760   case SourceLocExpr::Line:
16761   case SourceLocExpr::Column:
16762     ResultTy = Context.UnsignedIntTy;
16763     break;
16764   case SourceLocExpr::SourceLocStruct:
16765     if (!StdSourceLocationImplDecl) {
16766       StdSourceLocationImplDecl =
16767           LookupStdSourceLocationImpl(*this, BuiltinLoc);
16768       if (!StdSourceLocationImplDecl)
16769         return ExprError();
16770     }
16771     ResultTy = Context.getPointerType(
16772         Context.getRecordType(StdSourceLocationImplDecl).withConst());
16773     break;
16774   }
16775 
16776   return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext);
16777 }
16778 
16779 ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
16780                                     QualType ResultTy,
16781                                     SourceLocation BuiltinLoc,
16782                                     SourceLocation RPLoc,
16783                                     DeclContext *ParentContext) {
16784   return new (Context)
16785       SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
16786 }
16787 
16788 bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
16789                                         bool Diagnose) {
16790   if (!getLangOpts().ObjC)
16791     return false;
16792 
16793   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
16794   if (!PT)
16795     return false;
16796   const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
16797 
16798   // Ignore any parens, implicit casts (should only be
16799   // array-to-pointer decays), and not-so-opaque values.  The last is
16800   // important for making this trigger for property assignments.
16801   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
16802   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
16803     if (OV->getSourceExpr())
16804       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
16805 
16806   if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
16807     if (!PT->isObjCIdType() &&
16808         !(ID && ID->getIdentifier()->isStr("NSString")))
16809       return false;
16810     if (!SL->isOrdinary())
16811       return false;
16812 
16813     if (Diagnose) {
16814       Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
16815           << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
16816       Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
16817     }
16818     return true;
16819   }
16820 
16821   if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
16822       isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
16823       isa<CXXBoolLiteralExpr>(SrcExpr)) &&
16824       !SrcExpr->isNullPointerConstant(
16825           getASTContext(), Expr::NPC_NeverValueDependent)) {
16826     if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
16827       return false;
16828     if (Diagnose) {
16829       Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
16830           << /*number*/1
16831           << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
16832       Expr *NumLit =
16833           BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
16834       if (NumLit)
16835         Exp = NumLit;
16836     }
16837     return true;
16838   }
16839 
16840   return false;
16841 }
16842 
16843 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
16844                                               const Expr *SrcExpr) {
16845   if (!DstType->isFunctionPointerType() ||
16846       !SrcExpr->getType()->isFunctionType())
16847     return false;
16848 
16849   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
16850   if (!DRE)
16851     return false;
16852 
16853   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
16854   if (!FD)
16855     return false;
16856 
16857   return !S.checkAddressOfFunctionIsAvailable(FD,
16858                                               /*Complain=*/true,
16859                                               SrcExpr->getBeginLoc());
16860 }
16861 
16862 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
16863                                     SourceLocation Loc,
16864                                     QualType DstType, QualType SrcType,
16865                                     Expr *SrcExpr, AssignmentAction Action,
16866                                     bool *Complained) {
16867   if (Complained)
16868     *Complained = false;
16869 
16870   // Decode the result (notice that AST's are still created for extensions).
16871   bool CheckInferredResultType = false;
16872   bool isInvalid = false;
16873   unsigned DiagKind = 0;
16874   ConversionFixItGenerator ConvHints;
16875   bool MayHaveConvFixit = false;
16876   bool MayHaveFunctionDiff = false;
16877   const ObjCInterfaceDecl *IFace = nullptr;
16878   const ObjCProtocolDecl *PDecl = nullptr;
16879 
16880   switch (ConvTy) {
16881   case Compatible:
16882       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
16883       return false;
16884 
16885   case PointerToInt:
16886     if (getLangOpts().CPlusPlus) {
16887       DiagKind = diag::err_typecheck_convert_pointer_int;
16888       isInvalid = true;
16889     } else {
16890       DiagKind = diag::ext_typecheck_convert_pointer_int;
16891     }
16892     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16893     MayHaveConvFixit = true;
16894     break;
16895   case IntToPointer:
16896     if (getLangOpts().CPlusPlus) {
16897       DiagKind = diag::err_typecheck_convert_int_pointer;
16898       isInvalid = true;
16899     } else {
16900       DiagKind = diag::ext_typecheck_convert_int_pointer;
16901     }
16902     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16903     MayHaveConvFixit = true;
16904     break;
16905   case IncompatibleFunctionPointer:
16906     if (getLangOpts().CPlusPlus) {
16907       DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
16908       isInvalid = true;
16909     } else {
16910       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
16911     }
16912     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16913     MayHaveConvFixit = true;
16914     break;
16915   case IncompatiblePointer:
16916     if (Action == AA_Passing_CFAudited) {
16917       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
16918     } else if (getLangOpts().CPlusPlus) {
16919       DiagKind = diag::err_typecheck_convert_incompatible_pointer;
16920       isInvalid = true;
16921     } else {
16922       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
16923     }
16924     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
16925       SrcType->isObjCObjectPointerType();
16926     if (!CheckInferredResultType) {
16927       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16928     } else if (CheckInferredResultType) {
16929       SrcType = SrcType.getUnqualifiedType();
16930       DstType = DstType.getUnqualifiedType();
16931     }
16932     MayHaveConvFixit = true;
16933     break;
16934   case IncompatiblePointerSign:
16935     if (getLangOpts().CPlusPlus) {
16936       DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
16937       isInvalid = true;
16938     } else {
16939       DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
16940     }
16941     break;
16942   case FunctionVoidPointer:
16943     if (getLangOpts().CPlusPlus) {
16944       DiagKind = diag::err_typecheck_convert_pointer_void_func;
16945       isInvalid = true;
16946     } else {
16947       DiagKind = diag::ext_typecheck_convert_pointer_void_func;
16948     }
16949     break;
16950   case IncompatiblePointerDiscardsQualifiers: {
16951     // Perform array-to-pointer decay if necessary.
16952     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
16953 
16954     isInvalid = true;
16955 
16956     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
16957     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
16958     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
16959       DiagKind = diag::err_typecheck_incompatible_address_space;
16960       break;
16961 
16962     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
16963       DiagKind = diag::err_typecheck_incompatible_ownership;
16964       break;
16965     }
16966 
16967     llvm_unreachable("unknown error case for discarding qualifiers!");
16968     // fallthrough
16969   }
16970   case CompatiblePointerDiscardsQualifiers:
16971     // If the qualifiers lost were because we were applying the
16972     // (deprecated) C++ conversion from a string literal to a char*
16973     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
16974     // Ideally, this check would be performed in
16975     // checkPointerTypesForAssignment. However, that would require a
16976     // bit of refactoring (so that the second argument is an
16977     // expression, rather than a type), which should be done as part
16978     // of a larger effort to fix checkPointerTypesForAssignment for
16979     // C++ semantics.
16980     if (getLangOpts().CPlusPlus &&
16981         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
16982       return false;
16983     if (getLangOpts().CPlusPlus) {
16984       DiagKind =  diag::err_typecheck_convert_discards_qualifiers;
16985       isInvalid = true;
16986     } else {
16987       DiagKind =  diag::ext_typecheck_convert_discards_qualifiers;
16988     }
16989 
16990     break;
16991   case IncompatibleNestedPointerQualifiers:
16992     if (getLangOpts().CPlusPlus) {
16993       isInvalid = true;
16994       DiagKind = diag::err_nested_pointer_qualifier_mismatch;
16995     } else {
16996       DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
16997     }
16998     break;
16999   case IncompatibleNestedPointerAddressSpaceMismatch:
17000     DiagKind = diag::err_typecheck_incompatible_nested_address_space;
17001     isInvalid = true;
17002     break;
17003   case IntToBlockPointer:
17004     DiagKind = diag::err_int_to_block_pointer;
17005     isInvalid = true;
17006     break;
17007   case IncompatibleBlockPointer:
17008     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
17009     isInvalid = true;
17010     break;
17011   case IncompatibleObjCQualifiedId: {
17012     if (SrcType->isObjCQualifiedIdType()) {
17013       const ObjCObjectPointerType *srcOPT =
17014                 SrcType->castAs<ObjCObjectPointerType>();
17015       for (auto *srcProto : srcOPT->quals()) {
17016         PDecl = srcProto;
17017         break;
17018       }
17019       if (const ObjCInterfaceType *IFaceT =
17020             DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17021         IFace = IFaceT->getDecl();
17022     }
17023     else if (DstType->isObjCQualifiedIdType()) {
17024       const ObjCObjectPointerType *dstOPT =
17025         DstType->castAs<ObjCObjectPointerType>();
17026       for (auto *dstProto : dstOPT->quals()) {
17027         PDecl = dstProto;
17028         break;
17029       }
17030       if (const ObjCInterfaceType *IFaceT =
17031             SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17032         IFace = IFaceT->getDecl();
17033     }
17034     if (getLangOpts().CPlusPlus) {
17035       DiagKind = diag::err_incompatible_qualified_id;
17036       isInvalid = true;
17037     } else {
17038       DiagKind = diag::warn_incompatible_qualified_id;
17039     }
17040     break;
17041   }
17042   case IncompatibleVectors:
17043     if (getLangOpts().CPlusPlus) {
17044       DiagKind = diag::err_incompatible_vectors;
17045       isInvalid = true;
17046     } else {
17047       DiagKind = diag::warn_incompatible_vectors;
17048     }
17049     break;
17050   case IncompatibleObjCWeakRef:
17051     DiagKind = diag::err_arc_weak_unavailable_assign;
17052     isInvalid = true;
17053     break;
17054   case Incompatible:
17055     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
17056       if (Complained)
17057         *Complained = true;
17058       return true;
17059     }
17060 
17061     DiagKind = diag::err_typecheck_convert_incompatible;
17062     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17063     MayHaveConvFixit = true;
17064     isInvalid = true;
17065     MayHaveFunctionDiff = true;
17066     break;
17067   }
17068 
17069   QualType FirstType, SecondType;
17070   switch (Action) {
17071   case AA_Assigning:
17072   case AA_Initializing:
17073     // The destination type comes first.
17074     FirstType = DstType;
17075     SecondType = SrcType;
17076     break;
17077 
17078   case AA_Returning:
17079   case AA_Passing:
17080   case AA_Passing_CFAudited:
17081   case AA_Converting:
17082   case AA_Sending:
17083   case AA_Casting:
17084     // The source type comes first.
17085     FirstType = SrcType;
17086     SecondType = DstType;
17087     break;
17088   }
17089 
17090   PartialDiagnostic FDiag = PDiag(DiagKind);
17091   AssignmentAction ActionForDiag = Action;
17092   if (Action == AA_Passing_CFAudited)
17093     ActionForDiag = AA_Passing;
17094 
17095   FDiag << FirstType << SecondType << ActionForDiag
17096         << SrcExpr->getSourceRange();
17097 
17098   if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
17099       DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
17100     auto isPlainChar = [](const clang::Type *Type) {
17101       return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
17102              Type->isSpecificBuiltinType(BuiltinType::Char_U);
17103     };
17104     FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
17105               isPlainChar(SecondType->getPointeeOrArrayElementType()));
17106   }
17107 
17108   // If we can fix the conversion, suggest the FixIts.
17109   if (!ConvHints.isNull()) {
17110     for (FixItHint &H : ConvHints.Hints)
17111       FDiag << H;
17112   }
17113 
17114   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
17115 
17116   if (MayHaveFunctionDiff)
17117     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
17118 
17119   Diag(Loc, FDiag);
17120   if ((DiagKind == diag::warn_incompatible_qualified_id ||
17121        DiagKind == diag::err_incompatible_qualified_id) &&
17122       PDecl && IFace && !IFace->hasDefinition())
17123     Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
17124         << IFace << PDecl;
17125 
17126   if (SecondType == Context.OverloadTy)
17127     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
17128                               FirstType, /*TakingAddress=*/true);
17129 
17130   if (CheckInferredResultType)
17131     EmitRelatedResultTypeNote(SrcExpr);
17132 
17133   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
17134     EmitRelatedResultTypeNoteForReturn(DstType);
17135 
17136   if (Complained)
17137     *Complained = true;
17138   return isInvalid;
17139 }
17140 
17141 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17142                                                  llvm::APSInt *Result,
17143                                                  AllowFoldKind CanFold) {
17144   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
17145   public:
17146     SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
17147                                              QualType T) override {
17148       return S.Diag(Loc, diag::err_ice_not_integral)
17149              << T << S.LangOpts.CPlusPlus;
17150     }
17151     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17152       return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
17153     }
17154   } Diagnoser;
17155 
17156   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17157 }
17158 
17159 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17160                                                  llvm::APSInt *Result,
17161                                                  unsigned DiagID,
17162                                                  AllowFoldKind CanFold) {
17163   class IDDiagnoser : public VerifyICEDiagnoser {
17164     unsigned DiagID;
17165 
17166   public:
17167     IDDiagnoser(unsigned DiagID)
17168       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
17169 
17170     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17171       return S.Diag(Loc, DiagID);
17172     }
17173   } Diagnoser(DiagID);
17174 
17175   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17176 }
17177 
17178 Sema::SemaDiagnosticBuilder
17179 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
17180                                              QualType T) {
17181   return diagnoseNotICE(S, Loc);
17182 }
17183 
17184 Sema::SemaDiagnosticBuilder
17185 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
17186   return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
17187 }
17188 
17189 ExprResult
17190 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
17191                                       VerifyICEDiagnoser &Diagnoser,
17192                                       AllowFoldKind CanFold) {
17193   SourceLocation DiagLoc = E->getBeginLoc();
17194 
17195   if (getLangOpts().CPlusPlus11) {
17196     // C++11 [expr.const]p5:
17197     //   If an expression of literal class type is used in a context where an
17198     //   integral constant expression is required, then that class type shall
17199     //   have a single non-explicit conversion function to an integral or
17200     //   unscoped enumeration type
17201     ExprResult Converted;
17202     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
17203       VerifyICEDiagnoser &BaseDiagnoser;
17204     public:
17205       CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
17206           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
17207                                 BaseDiagnoser.Suppress, true),
17208             BaseDiagnoser(BaseDiagnoser) {}
17209 
17210       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
17211                                            QualType T) override {
17212         return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
17213       }
17214 
17215       SemaDiagnosticBuilder diagnoseIncomplete(
17216           Sema &S, SourceLocation Loc, QualType T) override {
17217         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
17218       }
17219 
17220       SemaDiagnosticBuilder diagnoseExplicitConv(
17221           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17222         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
17223       }
17224 
17225       SemaDiagnosticBuilder noteExplicitConv(
17226           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17227         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17228                  << ConvTy->isEnumeralType() << ConvTy;
17229       }
17230 
17231       SemaDiagnosticBuilder diagnoseAmbiguous(
17232           Sema &S, SourceLocation Loc, QualType T) override {
17233         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
17234       }
17235 
17236       SemaDiagnosticBuilder noteAmbiguous(
17237           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17238         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17239                  << ConvTy->isEnumeralType() << ConvTy;
17240       }
17241 
17242       SemaDiagnosticBuilder diagnoseConversion(
17243           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17244         llvm_unreachable("conversion functions are permitted");
17245       }
17246     } ConvertDiagnoser(Diagnoser);
17247 
17248     Converted = PerformContextualImplicitConversion(DiagLoc, E,
17249                                                     ConvertDiagnoser);
17250     if (Converted.isInvalid())
17251       return Converted;
17252     E = Converted.get();
17253     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
17254       return ExprError();
17255   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
17256     // An ICE must be of integral or unscoped enumeration type.
17257     if (!Diagnoser.Suppress)
17258       Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
17259           << E->getSourceRange();
17260     return ExprError();
17261   }
17262 
17263   ExprResult RValueExpr = DefaultLvalueConversion(E);
17264   if (RValueExpr.isInvalid())
17265     return ExprError();
17266 
17267   E = RValueExpr.get();
17268 
17269   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
17270   // in the non-ICE case.
17271   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
17272     if (Result)
17273       *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
17274     if (!isa<ConstantExpr>(E))
17275       E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
17276                  : ConstantExpr::Create(Context, E);
17277     return E;
17278   }
17279 
17280   Expr::EvalResult EvalResult;
17281   SmallVector<PartialDiagnosticAt, 8> Notes;
17282   EvalResult.Diag = &Notes;
17283 
17284   // Try to evaluate the expression, and produce diagnostics explaining why it's
17285   // not a constant expression as a side-effect.
17286   bool Folded =
17287       E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
17288       EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
17289 
17290   if (!isa<ConstantExpr>(E))
17291     E = ConstantExpr::Create(Context, E, EvalResult.Val);
17292 
17293   // In C++11, we can rely on diagnostics being produced for any expression
17294   // which is not a constant expression. If no diagnostics were produced, then
17295   // this is a constant expression.
17296   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
17297     if (Result)
17298       *Result = EvalResult.Val.getInt();
17299     return E;
17300   }
17301 
17302   // If our only note is the usual "invalid subexpression" note, just point
17303   // the caret at its location rather than producing an essentially
17304   // redundant note.
17305   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17306         diag::note_invalid_subexpr_in_const_expr) {
17307     DiagLoc = Notes[0].first;
17308     Notes.clear();
17309   }
17310 
17311   if (!Folded || !CanFold) {
17312     if (!Diagnoser.Suppress) {
17313       Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
17314       for (const PartialDiagnosticAt &Note : Notes)
17315         Diag(Note.first, Note.second);
17316     }
17317 
17318     return ExprError();
17319   }
17320 
17321   Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
17322   for (const PartialDiagnosticAt &Note : Notes)
17323     Diag(Note.first, Note.second);
17324 
17325   if (Result)
17326     *Result = EvalResult.Val.getInt();
17327   return E;
17328 }
17329 
17330 namespace {
17331   // Handle the case where we conclude a expression which we speculatively
17332   // considered to be unevaluated is actually evaluated.
17333   class TransformToPE : public TreeTransform<TransformToPE> {
17334     typedef TreeTransform<TransformToPE> BaseTransform;
17335 
17336   public:
17337     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
17338 
17339     // Make sure we redo semantic analysis
17340     bool AlwaysRebuild() { return true; }
17341     bool ReplacingOriginal() { return true; }
17342 
17343     // We need to special-case DeclRefExprs referring to FieldDecls which
17344     // are not part of a member pointer formation; normal TreeTransforming
17345     // doesn't catch this case because of the way we represent them in the AST.
17346     // FIXME: This is a bit ugly; is it really the best way to handle this
17347     // case?
17348     //
17349     // Error on DeclRefExprs referring to FieldDecls.
17350     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17351       if (isa<FieldDecl>(E->getDecl()) &&
17352           !SemaRef.isUnevaluatedContext())
17353         return SemaRef.Diag(E->getLocation(),
17354                             diag::err_invalid_non_static_member_use)
17355             << E->getDecl() << E->getSourceRange();
17356 
17357       return BaseTransform::TransformDeclRefExpr(E);
17358     }
17359 
17360     // Exception: filter out member pointer formation
17361     ExprResult TransformUnaryOperator(UnaryOperator *E) {
17362       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
17363         return E;
17364 
17365       return BaseTransform::TransformUnaryOperator(E);
17366     }
17367 
17368     // The body of a lambda-expression is in a separate expression evaluation
17369     // context so never needs to be transformed.
17370     // FIXME: Ideally we wouldn't transform the closure type either, and would
17371     // just recreate the capture expressions and lambda expression.
17372     StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
17373       return SkipLambdaBody(E, Body);
17374     }
17375   };
17376 }
17377 
17378 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
17379   assert(isUnevaluatedContext() &&
17380          "Should only transform unevaluated expressions");
17381   ExprEvalContexts.back().Context =
17382       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
17383   if (isUnevaluatedContext())
17384     return E;
17385   return TransformToPE(*this).TransformExpr(E);
17386 }
17387 
17388 TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
17389   assert(isUnevaluatedContext() &&
17390          "Should only transform unevaluated expressions");
17391   ExprEvalContexts.back().Context =
17392       ExprEvalContexts[ExprEvalContexts.size() - 2].Context;
17393   if (isUnevaluatedContext())
17394     return TInfo;
17395   return TransformToPE(*this).TransformType(TInfo);
17396 }
17397 
17398 void
17399 Sema::PushExpressionEvaluationContext(
17400     ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
17401     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17402   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
17403                                 LambdaContextDecl, ExprContext);
17404 
17405   // Discarded statements and immediate contexts nested in other
17406   // discarded statements or immediate context are themselves
17407   // a discarded statement or an immediate context, respectively.
17408   ExprEvalContexts.back().InDiscardedStatement =
17409       ExprEvalContexts[ExprEvalContexts.size() - 2]
17410           .isDiscardedStatementContext();
17411   ExprEvalContexts.back().InImmediateFunctionContext =
17412       ExprEvalContexts[ExprEvalContexts.size() - 2]
17413           .isImmediateFunctionContext();
17414 
17415   Cleanup.reset();
17416   if (!MaybeODRUseExprs.empty())
17417     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
17418 }
17419 
17420 void
17421 Sema::PushExpressionEvaluationContext(
17422     ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
17423     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17424   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
17425   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
17426 }
17427 
17428 namespace {
17429 
17430 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
17431   PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
17432   if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
17433     if (E->getOpcode() == UO_Deref)
17434       return CheckPossibleDeref(S, E->getSubExpr());
17435   } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
17436     return CheckPossibleDeref(S, E->getBase());
17437   } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
17438     return CheckPossibleDeref(S, E->getBase());
17439   } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
17440     QualType Inner;
17441     QualType Ty = E->getType();
17442     if (const auto *Ptr = Ty->getAs<PointerType>())
17443       Inner = Ptr->getPointeeType();
17444     else if (const auto *Arr = S.Context.getAsArrayType(Ty))
17445       Inner = Arr->getElementType();
17446     else
17447       return nullptr;
17448 
17449     if (Inner->hasAttr(attr::NoDeref))
17450       return E;
17451   }
17452   return nullptr;
17453 }
17454 
17455 } // namespace
17456 
17457 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
17458   for (const Expr *E : Rec.PossibleDerefs) {
17459     const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
17460     if (DeclRef) {
17461       const ValueDecl *Decl = DeclRef->getDecl();
17462       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
17463           << Decl->getName() << E->getSourceRange();
17464       Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
17465     } else {
17466       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
17467           << E->getSourceRange();
17468     }
17469   }
17470   Rec.PossibleDerefs.clear();
17471 }
17472 
17473 /// Check whether E, which is either a discarded-value expression or an
17474 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
17475 /// and if so, remove it from the list of volatile-qualified assignments that
17476 /// we are going to warn are deprecated.
17477 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
17478   if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
17479     return;
17480 
17481   // Note: ignoring parens here is not justified by the standard rules, but
17482   // ignoring parentheses seems like a more reasonable approach, and this only
17483   // drives a deprecation warning so doesn't affect conformance.
17484   if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
17485     if (BO->getOpcode() == BO_Assign) {
17486       auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
17487       llvm::erase_value(LHSs, BO->getLHS());
17488     }
17489   }
17490 }
17491 
17492 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
17493   if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
17494       !Decl->isConsteval() || isConstantEvaluated() ||
17495       RebuildingImmediateInvocation || isImmediateFunctionContext())
17496     return E;
17497 
17498   /// Opportunistically remove the callee from ReferencesToConsteval if we can.
17499   /// It's OK if this fails; we'll also remove this in
17500   /// HandleImmediateInvocations, but catching it here allows us to avoid
17501   /// walking the AST looking for it in simple cases.
17502   if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
17503     if (auto *DeclRef =
17504             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
17505       ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
17506 
17507   E = MaybeCreateExprWithCleanups(E);
17508 
17509   ConstantExpr *Res = ConstantExpr::Create(
17510       getASTContext(), E.get(),
17511       ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
17512                                    getASTContext()),
17513       /*IsImmediateInvocation*/ true);
17514   /// Value-dependent constant expressions should not be immediately
17515   /// evaluated until they are instantiated.
17516   if (!Res->isValueDependent())
17517     ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
17518   return Res;
17519 }
17520 
17521 static void EvaluateAndDiagnoseImmediateInvocation(
17522     Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
17523   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17524   Expr::EvalResult Eval;
17525   Eval.Diag = &Notes;
17526   ConstantExpr *CE = Candidate.getPointer();
17527   bool Result = CE->EvaluateAsConstantExpr(
17528       Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
17529   if (!Result || !Notes.empty()) {
17530     Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
17531     if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
17532       InnerExpr = FunctionalCast->getSubExpr();
17533     FunctionDecl *FD = nullptr;
17534     if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
17535       FD = cast<FunctionDecl>(Call->getCalleeDecl());
17536     else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
17537       FD = Call->getConstructor();
17538     else
17539       llvm_unreachable("unhandled decl kind");
17540     assert(FD->isConsteval());
17541     SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD;
17542     for (auto &Note : Notes)
17543       SemaRef.Diag(Note.first, Note.second);
17544     return;
17545   }
17546   CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
17547 }
17548 
17549 static void RemoveNestedImmediateInvocation(
17550     Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
17551     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
17552   struct ComplexRemove : TreeTransform<ComplexRemove> {
17553     using Base = TreeTransform<ComplexRemove>;
17554     llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17555     SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
17556     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
17557         CurrentII;
17558     ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
17559                   SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
17560                   SmallVector<Sema::ImmediateInvocationCandidate,
17561                               4>::reverse_iterator Current)
17562         : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
17563     void RemoveImmediateInvocation(ConstantExpr* E) {
17564       auto It = std::find_if(CurrentII, IISet.rend(),
17565                              [E](Sema::ImmediateInvocationCandidate Elem) {
17566                                return Elem.getPointer() == E;
17567                              });
17568       assert(It != IISet.rend() &&
17569              "ConstantExpr marked IsImmediateInvocation should "
17570              "be present");
17571       It->setInt(1); // Mark as deleted
17572     }
17573     ExprResult TransformConstantExpr(ConstantExpr *E) {
17574       if (!E->isImmediateInvocation())
17575         return Base::TransformConstantExpr(E);
17576       RemoveImmediateInvocation(E);
17577       return Base::TransformExpr(E->getSubExpr());
17578     }
17579     /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
17580     /// we need to remove its DeclRefExpr from the DRSet.
17581     ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
17582       DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
17583       return Base::TransformCXXOperatorCallExpr(E);
17584     }
17585     /// Base::TransformInitializer skip ConstantExpr so we need to visit them
17586     /// here.
17587     ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
17588       if (!Init)
17589         return Init;
17590       /// ConstantExpr are the first layer of implicit node to be removed so if
17591       /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
17592       if (auto *CE = dyn_cast<ConstantExpr>(Init))
17593         if (CE->isImmediateInvocation())
17594           RemoveImmediateInvocation(CE);
17595       return Base::TransformInitializer(Init, NotCopyInit);
17596     }
17597     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17598       DRSet.erase(E);
17599       return E;
17600     }
17601     bool AlwaysRebuild() { return false; }
17602     bool ReplacingOriginal() { return true; }
17603     bool AllowSkippingCXXConstructExpr() {
17604       bool Res = AllowSkippingFirstCXXConstructExpr;
17605       AllowSkippingFirstCXXConstructExpr = true;
17606       return Res;
17607     }
17608     bool AllowSkippingFirstCXXConstructExpr = true;
17609   } Transformer(SemaRef, Rec.ReferenceToConsteval,
17610                 Rec.ImmediateInvocationCandidates, It);
17611 
17612   /// CXXConstructExpr with a single argument are getting skipped by
17613   /// TreeTransform in some situtation because they could be implicit. This
17614   /// can only occur for the top-level CXXConstructExpr because it is used
17615   /// nowhere in the expression being transformed therefore will not be rebuilt.
17616   /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
17617   /// skipping the first CXXConstructExpr.
17618   if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
17619     Transformer.AllowSkippingFirstCXXConstructExpr = false;
17620 
17621   ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
17622   assert(Res.isUsable());
17623   Res = SemaRef.MaybeCreateExprWithCleanups(Res);
17624   It->getPointer()->setSubExpr(Res.get());
17625 }
17626 
17627 static void
17628 HandleImmediateInvocations(Sema &SemaRef,
17629                            Sema::ExpressionEvaluationContextRecord &Rec) {
17630   if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
17631        Rec.ReferenceToConsteval.size() == 0) ||
17632       SemaRef.RebuildingImmediateInvocation)
17633     return;
17634 
17635   /// When we have more then 1 ImmediateInvocationCandidates we need to check
17636   /// for nested ImmediateInvocationCandidates. when we have only 1 we only
17637   /// need to remove ReferenceToConsteval in the immediate invocation.
17638   if (Rec.ImmediateInvocationCandidates.size() > 1) {
17639 
17640     /// Prevent sema calls during the tree transform from adding pointers that
17641     /// are already in the sets.
17642     llvm::SaveAndRestore<bool> DisableIITracking(
17643         SemaRef.RebuildingImmediateInvocation, true);
17644 
17645     /// Prevent diagnostic during tree transfrom as they are duplicates
17646     Sema::TentativeAnalysisScope DisableDiag(SemaRef);
17647 
17648     for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
17649          It != Rec.ImmediateInvocationCandidates.rend(); It++)
17650       if (!It->getInt())
17651         RemoveNestedImmediateInvocation(SemaRef, Rec, It);
17652   } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
17653              Rec.ReferenceToConsteval.size()) {
17654     struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
17655       llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17656       SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
17657       bool VisitDeclRefExpr(DeclRefExpr *E) {
17658         DRSet.erase(E);
17659         return DRSet.size();
17660       }
17661     } Visitor(Rec.ReferenceToConsteval);
17662     Visitor.TraverseStmt(
17663         Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
17664   }
17665   for (auto CE : Rec.ImmediateInvocationCandidates)
17666     if (!CE.getInt())
17667       EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
17668   for (auto DR : Rec.ReferenceToConsteval) {
17669     auto *FD = cast<FunctionDecl>(DR->getDecl());
17670     SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
17671         << FD;
17672     SemaRef.Diag(FD->getLocation(), diag::note_declared_at);
17673   }
17674 }
17675 
17676 void Sema::PopExpressionEvaluationContext() {
17677   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
17678   unsigned NumTypos = Rec.NumTypos;
17679 
17680   if (!Rec.Lambdas.empty()) {
17681     using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
17682     if (!getLangOpts().CPlusPlus20 &&
17683         (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
17684          Rec.isUnevaluated() ||
17685          (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
17686       unsigned D;
17687       if (Rec.isUnevaluated()) {
17688         // C++11 [expr.prim.lambda]p2:
17689         //   A lambda-expression shall not appear in an unevaluated operand
17690         //   (Clause 5).
17691         D = diag::err_lambda_unevaluated_operand;
17692       } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
17693         // C++1y [expr.const]p2:
17694         //   A conditional-expression e is a core constant expression unless the
17695         //   evaluation of e, following the rules of the abstract machine, would
17696         //   evaluate [...] a lambda-expression.
17697         D = diag::err_lambda_in_constant_expression;
17698       } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
17699         // C++17 [expr.prim.lamda]p2:
17700         // A lambda-expression shall not appear [...] in a template-argument.
17701         D = diag::err_lambda_in_invalid_context;
17702       } else
17703         llvm_unreachable("Couldn't infer lambda error message.");
17704 
17705       for (const auto *L : Rec.Lambdas)
17706         Diag(L->getBeginLoc(), D);
17707     }
17708   }
17709 
17710   WarnOnPendingNoDerefs(Rec);
17711   HandleImmediateInvocations(*this, Rec);
17712 
17713   // Warn on any volatile-qualified simple-assignments that are not discarded-
17714   // value expressions nor unevaluated operands (those cases get removed from
17715   // this list by CheckUnusedVolatileAssignment).
17716   for (auto *BO : Rec.VolatileAssignmentLHSs)
17717     Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
17718         << BO->getType();
17719 
17720   // When are coming out of an unevaluated context, clear out any
17721   // temporaries that we may have created as part of the evaluation of
17722   // the expression in that context: they aren't relevant because they
17723   // will never be constructed.
17724   if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
17725     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
17726                              ExprCleanupObjects.end());
17727     Cleanup = Rec.ParentCleanup;
17728     CleanupVarDeclMarking();
17729     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
17730   // Otherwise, merge the contexts together.
17731   } else {
17732     Cleanup.mergeFrom(Rec.ParentCleanup);
17733     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
17734                             Rec.SavedMaybeODRUseExprs.end());
17735   }
17736 
17737   // Pop the current expression evaluation context off the stack.
17738   ExprEvalContexts.pop_back();
17739 
17740   // The global expression evaluation context record is never popped.
17741   ExprEvalContexts.back().NumTypos += NumTypos;
17742 }
17743 
17744 void Sema::DiscardCleanupsInEvaluationContext() {
17745   ExprCleanupObjects.erase(
17746          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
17747          ExprCleanupObjects.end());
17748   Cleanup.reset();
17749   MaybeODRUseExprs.clear();
17750 }
17751 
17752 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
17753   ExprResult Result = CheckPlaceholderExpr(E);
17754   if (Result.isInvalid())
17755     return ExprError();
17756   E = Result.get();
17757   if (!E->getType()->isVariablyModifiedType())
17758     return E;
17759   return TransformToPotentiallyEvaluated(E);
17760 }
17761 
17762 /// Are we in a context that is potentially constant evaluated per C++20
17763 /// [expr.const]p12?
17764 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
17765   /// C++2a [expr.const]p12:
17766   //   An expression or conversion is potentially constant evaluated if it is
17767   switch (SemaRef.ExprEvalContexts.back().Context) {
17768     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17769     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17770 
17771       // -- a manifestly constant-evaluated expression,
17772     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17773     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17774     case Sema::ExpressionEvaluationContext::DiscardedStatement:
17775       // -- a potentially-evaluated expression,
17776     case Sema::ExpressionEvaluationContext::UnevaluatedList:
17777       // -- an immediate subexpression of a braced-init-list,
17778 
17779       // -- [FIXME] an expression of the form & cast-expression that occurs
17780       //    within a templated entity
17781       // -- a subexpression of one of the above that is not a subexpression of
17782       // a nested unevaluated operand.
17783       return true;
17784 
17785     case Sema::ExpressionEvaluationContext::Unevaluated:
17786     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17787       // Expressions in this context are never evaluated.
17788       return false;
17789   }
17790   llvm_unreachable("Invalid context");
17791 }
17792 
17793 /// Return true if this function has a calling convention that requires mangling
17794 /// in the size of the parameter pack.
17795 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
17796   // These manglings don't do anything on non-Windows or non-x86 platforms, so
17797   // we don't need parameter type sizes.
17798   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
17799   if (!TT.isOSWindows() || !TT.isX86())
17800     return false;
17801 
17802   // If this is C++ and this isn't an extern "C" function, parameters do not
17803   // need to be complete. In this case, C++ mangling will apply, which doesn't
17804   // use the size of the parameters.
17805   if (S.getLangOpts().CPlusPlus && !FD->isExternC())
17806     return false;
17807 
17808   // Stdcall, fastcall, and vectorcall need this special treatment.
17809   CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17810   switch (CC) {
17811   case CC_X86StdCall:
17812   case CC_X86FastCall:
17813   case CC_X86VectorCall:
17814     return true;
17815   default:
17816     break;
17817   }
17818   return false;
17819 }
17820 
17821 /// Require that all of the parameter types of function be complete. Normally,
17822 /// parameter types are only required to be complete when a function is called
17823 /// or defined, but to mangle functions with certain calling conventions, the
17824 /// mangler needs to know the size of the parameter list. In this situation,
17825 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
17826 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
17827 /// result in a linker error. Clang doesn't implement this behavior, and instead
17828 /// attempts to error at compile time.
17829 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
17830                                                   SourceLocation Loc) {
17831   class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
17832     FunctionDecl *FD;
17833     ParmVarDecl *Param;
17834 
17835   public:
17836     ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
17837         : FD(FD), Param(Param) {}
17838 
17839     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
17840       CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17841       StringRef CCName;
17842       switch (CC) {
17843       case CC_X86StdCall:
17844         CCName = "stdcall";
17845         break;
17846       case CC_X86FastCall:
17847         CCName = "fastcall";
17848         break;
17849       case CC_X86VectorCall:
17850         CCName = "vectorcall";
17851         break;
17852       default:
17853         llvm_unreachable("CC does not need mangling");
17854       }
17855 
17856       S.Diag(Loc, diag::err_cconv_incomplete_param_type)
17857           << Param->getDeclName() << FD->getDeclName() << CCName;
17858     }
17859   };
17860 
17861   for (ParmVarDecl *Param : FD->parameters()) {
17862     ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
17863     S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
17864   }
17865 }
17866 
17867 namespace {
17868 enum class OdrUseContext {
17869   /// Declarations in this context are not odr-used.
17870   None,
17871   /// Declarations in this context are formally odr-used, but this is a
17872   /// dependent context.
17873   Dependent,
17874   /// Declarations in this context are odr-used but not actually used (yet).
17875   FormallyOdrUsed,
17876   /// Declarations in this context are used.
17877   Used
17878 };
17879 }
17880 
17881 /// Are we within a context in which references to resolved functions or to
17882 /// variables result in odr-use?
17883 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
17884   OdrUseContext Result;
17885 
17886   switch (SemaRef.ExprEvalContexts.back().Context) {
17887     case Sema::ExpressionEvaluationContext::Unevaluated:
17888     case Sema::ExpressionEvaluationContext::UnevaluatedList:
17889     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17890       return OdrUseContext::None;
17891 
17892     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17893     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17894     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17895       Result = OdrUseContext::Used;
17896       break;
17897 
17898     case Sema::ExpressionEvaluationContext::DiscardedStatement:
17899       Result = OdrUseContext::FormallyOdrUsed;
17900       break;
17901 
17902     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17903       // A default argument formally results in odr-use, but doesn't actually
17904       // result in a use in any real sense until it itself is used.
17905       Result = OdrUseContext::FormallyOdrUsed;
17906       break;
17907   }
17908 
17909   if (SemaRef.CurContext->isDependentContext())
17910     return OdrUseContext::Dependent;
17911 
17912   return Result;
17913 }
17914 
17915 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
17916   if (!Func->isConstexpr())
17917     return false;
17918 
17919   if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
17920     return true;
17921   auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
17922   return CCD && CCD->getInheritedConstructor();
17923 }
17924 
17925 /// Mark a function referenced, and check whether it is odr-used
17926 /// (C++ [basic.def.odr]p2, C99 6.9p3)
17927 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
17928                                   bool MightBeOdrUse) {
17929   assert(Func && "No function?");
17930 
17931   Func->setReferenced();
17932 
17933   // Recursive functions aren't really used until they're used from some other
17934   // context.
17935   bool IsRecursiveCall = CurContext == Func;
17936 
17937   // C++11 [basic.def.odr]p3:
17938   //   A function whose name appears as a potentially-evaluated expression is
17939   //   odr-used if it is the unique lookup result or the selected member of a
17940   //   set of overloaded functions [...].
17941   //
17942   // We (incorrectly) mark overload resolution as an unevaluated context, so we
17943   // can just check that here.
17944   OdrUseContext OdrUse =
17945       MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
17946   if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
17947     OdrUse = OdrUseContext::FormallyOdrUsed;
17948 
17949   // Trivial default constructors and destructors are never actually used.
17950   // FIXME: What about other special members?
17951   if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
17952       OdrUse == OdrUseContext::Used) {
17953     if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
17954       if (Constructor->isDefaultConstructor())
17955         OdrUse = OdrUseContext::FormallyOdrUsed;
17956     if (isa<CXXDestructorDecl>(Func))
17957       OdrUse = OdrUseContext::FormallyOdrUsed;
17958   }
17959 
17960   // C++20 [expr.const]p12:
17961   //   A function [...] is needed for constant evaluation if it is [...] a
17962   //   constexpr function that is named by an expression that is potentially
17963   //   constant evaluated
17964   bool NeededForConstantEvaluation =
17965       isPotentiallyConstantEvaluatedContext(*this) &&
17966       isImplicitlyDefinableConstexprFunction(Func);
17967 
17968   // Determine whether we require a function definition to exist, per
17969   // C++11 [temp.inst]p3:
17970   //   Unless a function template specialization has been explicitly
17971   //   instantiated or explicitly specialized, the function template
17972   //   specialization is implicitly instantiated when the specialization is
17973   //   referenced in a context that requires a function definition to exist.
17974   // C++20 [temp.inst]p7:
17975   //   The existence of a definition of a [...] function is considered to
17976   //   affect the semantics of the program if the [...] function is needed for
17977   //   constant evaluation by an expression
17978   // C++20 [basic.def.odr]p10:
17979   //   Every program shall contain exactly one definition of every non-inline
17980   //   function or variable that is odr-used in that program outside of a
17981   //   discarded statement
17982   // C++20 [special]p1:
17983   //   The implementation will implicitly define [defaulted special members]
17984   //   if they are odr-used or needed for constant evaluation.
17985   //
17986   // Note that we skip the implicit instantiation of templates that are only
17987   // used in unused default arguments or by recursive calls to themselves.
17988   // This is formally non-conforming, but seems reasonable in practice.
17989   bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
17990                                              NeededForConstantEvaluation);
17991 
17992   // C++14 [temp.expl.spec]p6:
17993   //   If a template [...] is explicitly specialized then that specialization
17994   //   shall be declared before the first use of that specialization that would
17995   //   cause an implicit instantiation to take place, in every translation unit
17996   //   in which such a use occurs
17997   if (NeedDefinition &&
17998       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
17999        Func->getMemberSpecializationInfo()))
18000     checkSpecializationReachability(Loc, Func);
18001 
18002   if (getLangOpts().CUDA)
18003     CheckCUDACall(Loc, Func);
18004 
18005   if (getLangOpts().SYCLIsDevice)
18006     checkSYCLDeviceFunction(Loc, Func);
18007 
18008   // If we need a definition, try to create one.
18009   if (NeedDefinition && !Func->getBody()) {
18010     runWithSufficientStackSpace(Loc, [&] {
18011       if (CXXConstructorDecl *Constructor =
18012               dyn_cast<CXXConstructorDecl>(Func)) {
18013         Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
18014         if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
18015           if (Constructor->isDefaultConstructor()) {
18016             if (Constructor->isTrivial() &&
18017                 !Constructor->hasAttr<DLLExportAttr>())
18018               return;
18019             DefineImplicitDefaultConstructor(Loc, Constructor);
18020           } else if (Constructor->isCopyConstructor()) {
18021             DefineImplicitCopyConstructor(Loc, Constructor);
18022           } else if (Constructor->isMoveConstructor()) {
18023             DefineImplicitMoveConstructor(Loc, Constructor);
18024           }
18025         } else if (Constructor->getInheritedConstructor()) {
18026           DefineInheritingConstructor(Loc, Constructor);
18027         }
18028       } else if (CXXDestructorDecl *Destructor =
18029                      dyn_cast<CXXDestructorDecl>(Func)) {
18030         Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
18031         if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
18032           if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
18033             return;
18034           DefineImplicitDestructor(Loc, Destructor);
18035         }
18036         if (Destructor->isVirtual() && getLangOpts().AppleKext)
18037           MarkVTableUsed(Loc, Destructor->getParent());
18038       } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
18039         if (MethodDecl->isOverloadedOperator() &&
18040             MethodDecl->getOverloadedOperator() == OO_Equal) {
18041           MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
18042           if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
18043             if (MethodDecl->isCopyAssignmentOperator())
18044               DefineImplicitCopyAssignment(Loc, MethodDecl);
18045             else if (MethodDecl->isMoveAssignmentOperator())
18046               DefineImplicitMoveAssignment(Loc, MethodDecl);
18047           }
18048         } else if (isa<CXXConversionDecl>(MethodDecl) &&
18049                    MethodDecl->getParent()->isLambda()) {
18050           CXXConversionDecl *Conversion =
18051               cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
18052           if (Conversion->isLambdaToBlockPointerConversion())
18053             DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
18054           else
18055             DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
18056         } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
18057           MarkVTableUsed(Loc, MethodDecl->getParent());
18058       }
18059 
18060       if (Func->isDefaulted() && !Func->isDeleted()) {
18061         DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
18062         if (DCK != DefaultedComparisonKind::None)
18063           DefineDefaultedComparison(Loc, Func, DCK);
18064       }
18065 
18066       // Implicit instantiation of function templates and member functions of
18067       // class templates.
18068       if (Func->isImplicitlyInstantiable()) {
18069         TemplateSpecializationKind TSK =
18070             Func->getTemplateSpecializationKindForInstantiation();
18071         SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
18072         bool FirstInstantiation = PointOfInstantiation.isInvalid();
18073         if (FirstInstantiation) {
18074           PointOfInstantiation = Loc;
18075           if (auto *MSI = Func->getMemberSpecializationInfo())
18076             MSI->setPointOfInstantiation(Loc);
18077             // FIXME: Notify listener.
18078           else
18079             Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18080         } else if (TSK != TSK_ImplicitInstantiation) {
18081           // Use the point of use as the point of instantiation, instead of the
18082           // point of explicit instantiation (which we track as the actual point
18083           // of instantiation). This gives better backtraces in diagnostics.
18084           PointOfInstantiation = Loc;
18085         }
18086 
18087         if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
18088             Func->isConstexpr()) {
18089           if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
18090               cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
18091               CodeSynthesisContexts.size())
18092             PendingLocalImplicitInstantiations.push_back(
18093                 std::make_pair(Func, PointOfInstantiation));
18094           else if (Func->isConstexpr())
18095             // Do not defer instantiations of constexpr functions, to avoid the
18096             // expression evaluator needing to call back into Sema if it sees a
18097             // call to such a function.
18098             InstantiateFunctionDefinition(PointOfInstantiation, Func);
18099           else {
18100             Func->setInstantiationIsPending(true);
18101             PendingInstantiations.push_back(
18102                 std::make_pair(Func, PointOfInstantiation));
18103             // Notify the consumer that a function was implicitly instantiated.
18104             Consumer.HandleCXXImplicitFunctionInstantiation(Func);
18105           }
18106         }
18107       } else {
18108         // Walk redefinitions, as some of them may be instantiable.
18109         for (auto i : Func->redecls()) {
18110           if (!i->isUsed(false) && i->isImplicitlyInstantiable())
18111             MarkFunctionReferenced(Loc, i, MightBeOdrUse);
18112         }
18113       }
18114     });
18115   }
18116 
18117   // C++14 [except.spec]p17:
18118   //   An exception-specification is considered to be needed when:
18119   //   - the function is odr-used or, if it appears in an unevaluated operand,
18120   //     would be odr-used if the expression were potentially-evaluated;
18121   //
18122   // Note, we do this even if MightBeOdrUse is false. That indicates that the
18123   // function is a pure virtual function we're calling, and in that case the
18124   // function was selected by overload resolution and we need to resolve its
18125   // exception specification for a different reason.
18126   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
18127   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
18128     ResolveExceptionSpec(Loc, FPT);
18129 
18130   // If this is the first "real" use, act on that.
18131   if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
18132     // Keep track of used but undefined functions.
18133     if (!Func->isDefined()) {
18134       if (mightHaveNonExternalLinkage(Func))
18135         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18136       else if (Func->getMostRecentDecl()->isInlined() &&
18137                !LangOpts.GNUInline &&
18138                !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
18139         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18140       else if (isExternalWithNoLinkageType(Func))
18141         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18142     }
18143 
18144     // Some x86 Windows calling conventions mangle the size of the parameter
18145     // pack into the name. Computing the size of the parameters requires the
18146     // parameter types to be complete. Check that now.
18147     if (funcHasParameterSizeMangling(*this, Func))
18148       CheckCompleteParameterTypesForMangler(*this, Func, Loc);
18149 
18150     // In the MS C++ ABI, the compiler emits destructor variants where they are
18151     // used. If the destructor is used here but defined elsewhere, mark the
18152     // virtual base destructors referenced. If those virtual base destructors
18153     // are inline, this will ensure they are defined when emitting the complete
18154     // destructor variant. This checking may be redundant if the destructor is
18155     // provided later in this TU.
18156     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
18157       if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
18158         CXXRecordDecl *Parent = Dtor->getParent();
18159         if (Parent->getNumVBases() > 0 && !Dtor->getBody())
18160           CheckCompleteDestructorVariant(Loc, Dtor);
18161       }
18162     }
18163 
18164     Func->markUsed(Context);
18165   }
18166 }
18167 
18168 /// Directly mark a variable odr-used. Given a choice, prefer to use
18169 /// MarkVariableReferenced since it does additional checks and then
18170 /// calls MarkVarDeclODRUsed.
18171 /// If the variable must be captured:
18172 ///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
18173 ///  - else capture it in the DeclContext that maps to the
18174 ///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
18175 static void
18176 MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
18177                    const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
18178   // Keep track of used but undefined variables.
18179   // FIXME: We shouldn't suppress this warning for static data members.
18180   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
18181       (!Var->isExternallyVisible() || Var->isInline() ||
18182        SemaRef.isExternalWithNoLinkageType(Var)) &&
18183       !(Var->isStaticDataMember() && Var->hasInit())) {
18184     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
18185     if (old.isInvalid())
18186       old = Loc;
18187   }
18188   QualType CaptureType, DeclRefType;
18189   if (SemaRef.LangOpts.OpenMP)
18190     SemaRef.tryCaptureOpenMPLambdas(Var);
18191   SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
18192     /*EllipsisLoc*/ SourceLocation(),
18193     /*BuildAndDiagnose*/ true,
18194     CaptureType, DeclRefType,
18195     FunctionScopeIndexToStopAt);
18196 
18197   if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
18198     auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
18199     auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
18200     auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
18201     if (VarTarget == Sema::CVT_Host &&
18202         (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
18203          UserTarget == Sema::CFT_Global)) {
18204       // Diagnose ODR-use of host global variables in device functions.
18205       // Reference of device global variables in host functions is allowed
18206       // through shadow variables therefore it is not diagnosed.
18207       if (SemaRef.LangOpts.CUDAIsDevice) {
18208         SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
18209             << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
18210         SemaRef.targetDiag(Var->getLocation(),
18211                            Var->getType().isConstQualified()
18212                                ? diag::note_cuda_const_var_unpromoted
18213                                : diag::note_cuda_host_var);
18214       }
18215     } else if (VarTarget == Sema::CVT_Device &&
18216                (UserTarget == Sema::CFT_Host ||
18217                 UserTarget == Sema::CFT_HostDevice)) {
18218       // Record a CUDA/HIP device side variable if it is ODR-used
18219       // by host code. This is done conservatively, when the variable is
18220       // referenced in any of the following contexts:
18221       //   - a non-function context
18222       //   - a host function
18223       //   - a host device function
18224       // This makes the ODR-use of the device side variable by host code to
18225       // be visible in the device compilation for the compiler to be able to
18226       // emit template variables instantiated by host code only and to
18227       // externalize the static device side variable ODR-used by host code.
18228       if (!Var->hasExternalStorage())
18229         SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
18230       else if (SemaRef.LangOpts.GPURelocatableDeviceCode)
18231         SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
18232     }
18233   }
18234 
18235   Var->markUsed(SemaRef.Context);
18236 }
18237 
18238 void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
18239                                              SourceLocation Loc,
18240                                              unsigned CapturingScopeIndex) {
18241   MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
18242 }
18243 
18244 static void diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
18245                                                ValueDecl *var) {
18246   DeclContext *VarDC = var->getDeclContext();
18247 
18248   //  If the parameter still belongs to the translation unit, then
18249   //  we're actually just using one parameter in the declaration of
18250   //  the next.
18251   if (isa<ParmVarDecl>(var) &&
18252       isa<TranslationUnitDecl>(VarDC))
18253     return;
18254 
18255   // For C code, don't diagnose about capture if we're not actually in code
18256   // right now; it's impossible to write a non-constant expression outside of
18257   // function context, so we'll get other (more useful) diagnostics later.
18258   //
18259   // For C++, things get a bit more nasty... it would be nice to suppress this
18260   // diagnostic for certain cases like using a local variable in an array bound
18261   // for a member of a local class, but the correct predicate is not obvious.
18262   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
18263     return;
18264 
18265   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
18266   unsigned ContextKind = 3; // unknown
18267   if (isa<CXXMethodDecl>(VarDC) &&
18268       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
18269     ContextKind = 2;
18270   } else if (isa<FunctionDecl>(VarDC)) {
18271     ContextKind = 0;
18272   } else if (isa<BlockDecl>(VarDC)) {
18273     ContextKind = 1;
18274   }
18275 
18276   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
18277     << var << ValueKind << ContextKind << VarDC;
18278   S.Diag(var->getLocation(), diag::note_entity_declared_at)
18279       << var;
18280 
18281   // FIXME: Add additional diagnostic info about class etc. which prevents
18282   // capture.
18283 }
18284 
18285 
18286 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
18287                                       bool &SubCapturesAreNested,
18288                                       QualType &CaptureType,
18289                                       QualType &DeclRefType) {
18290    // Check whether we've already captured it.
18291   if (CSI->CaptureMap.count(Var)) {
18292     // If we found a capture, any subcaptures are nested.
18293     SubCapturesAreNested = true;
18294 
18295     // Retrieve the capture type for this variable.
18296     CaptureType = CSI->getCapture(Var).getCaptureType();
18297 
18298     // Compute the type of an expression that refers to this variable.
18299     DeclRefType = CaptureType.getNonReferenceType();
18300 
18301     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
18302     // are mutable in the sense that user can change their value - they are
18303     // private instances of the captured declarations.
18304     const Capture &Cap = CSI->getCapture(Var);
18305     if (Cap.isCopyCapture() &&
18306         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
18307         !(isa<CapturedRegionScopeInfo>(CSI) &&
18308           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
18309       DeclRefType.addConst();
18310     return true;
18311   }
18312   return false;
18313 }
18314 
18315 // Only block literals, captured statements, and lambda expressions can
18316 // capture; other scopes don't work.
18317 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
18318                                  SourceLocation Loc,
18319                                  const bool Diagnose, Sema &S) {
18320   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
18321     return getLambdaAwareParentOfDeclContext(DC);
18322   else if (Var->hasLocalStorage()) {
18323     if (Diagnose)
18324        diagnoseUncapturableValueReference(S, Loc, Var);
18325   }
18326   return nullptr;
18327 }
18328 
18329 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18330 // certain types of variables (unnamed, variably modified types etc.)
18331 // so check for eligibility.
18332 static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
18333                                  SourceLocation Loc,
18334                                  const bool Diagnose, Sema &S) {
18335 
18336   bool IsBlock = isa<BlockScopeInfo>(CSI);
18337   bool IsLambda = isa<LambdaScopeInfo>(CSI);
18338 
18339   // Lambdas are not allowed to capture unnamed variables
18340   // (e.g. anonymous unions).
18341   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
18342   // assuming that's the intent.
18343   if (IsLambda && !Var->getDeclName()) {
18344     if (Diagnose) {
18345       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
18346       S.Diag(Var->getLocation(), diag::note_declared_at);
18347     }
18348     return false;
18349   }
18350 
18351   // Prohibit variably-modified types in blocks; they're difficult to deal with.
18352   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
18353     if (Diagnose) {
18354       S.Diag(Loc, diag::err_ref_vm_type);
18355       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18356     }
18357     return false;
18358   }
18359   // Prohibit structs with flexible array members too.
18360   // We cannot capture what is in the tail end of the struct.
18361   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
18362     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
18363       if (Diagnose) {
18364         if (IsBlock)
18365           S.Diag(Loc, diag::err_ref_flexarray_type);
18366         else
18367           S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
18368         S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18369       }
18370       return false;
18371     }
18372   }
18373   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18374   // Lambdas and captured statements are not allowed to capture __block
18375   // variables; they don't support the expected semantics.
18376   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
18377     if (Diagnose) {
18378       S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
18379       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18380     }
18381     return false;
18382   }
18383   // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
18384   if (S.getLangOpts().OpenCL && IsBlock &&
18385       Var->getType()->isBlockPointerType()) {
18386     if (Diagnose)
18387       S.Diag(Loc, diag::err_opencl_block_ref_block);
18388     return false;
18389   }
18390 
18391   return true;
18392 }
18393 
18394 // Returns true if the capture by block was successful.
18395 static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
18396                                  SourceLocation Loc,
18397                                  const bool BuildAndDiagnose,
18398                                  QualType &CaptureType,
18399                                  QualType &DeclRefType,
18400                                  const bool Nested,
18401                                  Sema &S, bool Invalid) {
18402   bool ByRef = false;
18403 
18404   // Blocks are not allowed to capture arrays, excepting OpenCL.
18405   // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
18406   // (decayed to pointers).
18407   if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
18408     if (BuildAndDiagnose) {
18409       S.Diag(Loc, diag::err_ref_array_type);
18410       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18411       Invalid = true;
18412     } else {
18413       return false;
18414     }
18415   }
18416 
18417   // Forbid the block-capture of autoreleasing variables.
18418   if (!Invalid &&
18419       CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18420     if (BuildAndDiagnose) {
18421       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
18422         << /*block*/ 0;
18423       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18424       Invalid = true;
18425     } else {
18426       return false;
18427     }
18428   }
18429 
18430   // Warn about implicitly autoreleasing indirect parameters captured by blocks.
18431   if (const auto *PT = CaptureType->getAs<PointerType>()) {
18432     QualType PointeeTy = PT->getPointeeType();
18433 
18434     if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
18435         PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
18436         !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
18437       if (BuildAndDiagnose) {
18438         SourceLocation VarLoc = Var->getLocation();
18439         S.Diag(Loc, diag::warn_block_capture_autoreleasing);
18440         S.Diag(VarLoc, diag::note_declare_parameter_strong);
18441       }
18442     }
18443   }
18444 
18445   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18446   if (HasBlocksAttr || CaptureType->isReferenceType() ||
18447       (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
18448     // Block capture by reference does not change the capture or
18449     // declaration reference types.
18450     ByRef = true;
18451   } else {
18452     // Block capture by copy introduces 'const'.
18453     CaptureType = CaptureType.getNonReferenceType().withConst();
18454     DeclRefType = CaptureType;
18455   }
18456 
18457   // Actually capture the variable.
18458   if (BuildAndDiagnose)
18459     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
18460                     CaptureType, Invalid);
18461 
18462   return !Invalid;
18463 }
18464 
18465 
18466 /// Capture the given variable in the captured region.
18467 static bool captureInCapturedRegion(
18468     CapturedRegionScopeInfo *RSI, VarDecl *Var, SourceLocation Loc,
18469     const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
18470     const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
18471     bool IsTopScope, Sema &S, bool Invalid) {
18472   // By default, capture variables by reference.
18473   bool ByRef = true;
18474   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18475     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18476   } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
18477     // Using an LValue reference type is consistent with Lambdas (see below).
18478     if (S.isOpenMPCapturedDecl(Var)) {
18479       bool HasConst = DeclRefType.isConstQualified();
18480       DeclRefType = DeclRefType.getUnqualifiedType();
18481       // Don't lose diagnostics about assignments to const.
18482       if (HasConst)
18483         DeclRefType.addConst();
18484     }
18485     // Do not capture firstprivates in tasks.
18486     if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
18487         OMPC_unknown)
18488       return true;
18489     ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
18490                                     RSI->OpenMPCaptureLevel);
18491   }
18492 
18493   if (ByRef)
18494     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18495   else
18496     CaptureType = DeclRefType;
18497 
18498   // Actually capture the variable.
18499   if (BuildAndDiagnose)
18500     RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
18501                     Loc, SourceLocation(), CaptureType, Invalid);
18502 
18503   return !Invalid;
18504 }
18505 
18506 /// Capture the given variable in the lambda.
18507 static bool captureInLambda(LambdaScopeInfo *LSI,
18508                             VarDecl *Var,
18509                             SourceLocation Loc,
18510                             const bool BuildAndDiagnose,
18511                             QualType &CaptureType,
18512                             QualType &DeclRefType,
18513                             const bool RefersToCapturedVariable,
18514                             const Sema::TryCaptureKind Kind,
18515                             SourceLocation EllipsisLoc,
18516                             const bool IsTopScope,
18517                             Sema &S, bool Invalid) {
18518   // Determine whether we are capturing by reference or by value.
18519   bool ByRef = false;
18520   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18521     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18522   } else {
18523     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
18524   }
18525 
18526   // Compute the type of the field that will capture this variable.
18527   if (ByRef) {
18528     // C++11 [expr.prim.lambda]p15:
18529     //   An entity is captured by reference if it is implicitly or
18530     //   explicitly captured but not captured by copy. It is
18531     //   unspecified whether additional unnamed non-static data
18532     //   members are declared in the closure type for entities
18533     //   captured by reference.
18534     //
18535     // FIXME: It is not clear whether we want to build an lvalue reference
18536     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
18537     // to do the former, while EDG does the latter. Core issue 1249 will
18538     // clarify, but for now we follow GCC because it's a more permissive and
18539     // easily defensible position.
18540     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18541   } else {
18542     // C++11 [expr.prim.lambda]p14:
18543     //   For each entity captured by copy, an unnamed non-static
18544     //   data member is declared in the closure type. The
18545     //   declaration order of these members is unspecified. The type
18546     //   of such a data member is the type of the corresponding
18547     //   captured entity if the entity is not a reference to an
18548     //   object, or the referenced type otherwise. [Note: If the
18549     //   captured entity is a reference to a function, the
18550     //   corresponding data member is also a reference to a
18551     //   function. - end note ]
18552     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
18553       if (!RefType->getPointeeType()->isFunctionType())
18554         CaptureType = RefType->getPointeeType();
18555     }
18556 
18557     // Forbid the lambda copy-capture of autoreleasing variables.
18558     if (!Invalid &&
18559         CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18560       if (BuildAndDiagnose) {
18561         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
18562         S.Diag(Var->getLocation(), diag::note_previous_decl)
18563           << Var->getDeclName();
18564         Invalid = true;
18565       } else {
18566         return false;
18567       }
18568     }
18569 
18570     // Make sure that by-copy captures are of a complete and non-abstract type.
18571     if (!Invalid && BuildAndDiagnose) {
18572       if (!CaptureType->isDependentType() &&
18573           S.RequireCompleteSizedType(
18574               Loc, CaptureType,
18575               diag::err_capture_of_incomplete_or_sizeless_type,
18576               Var->getDeclName()))
18577         Invalid = true;
18578       else if (S.RequireNonAbstractType(Loc, CaptureType,
18579                                         diag::err_capture_of_abstract_type))
18580         Invalid = true;
18581     }
18582   }
18583 
18584   // Compute the type of a reference to this captured variable.
18585   if (ByRef)
18586     DeclRefType = CaptureType.getNonReferenceType();
18587   else {
18588     // C++ [expr.prim.lambda]p5:
18589     //   The closure type for a lambda-expression has a public inline
18590     //   function call operator [...]. This function call operator is
18591     //   declared const (9.3.1) if and only if the lambda-expression's
18592     //   parameter-declaration-clause is not followed by mutable.
18593     DeclRefType = CaptureType.getNonReferenceType();
18594     if (!LSI->Mutable && !CaptureType->isReferenceType())
18595       DeclRefType.addConst();
18596   }
18597 
18598   // Add the capture.
18599   if (BuildAndDiagnose)
18600     LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
18601                     Loc, EllipsisLoc, CaptureType, Invalid);
18602 
18603   return !Invalid;
18604 }
18605 
18606 static bool canCaptureVariableByCopy(VarDecl *Var, const ASTContext &Context) {
18607   // Offer a Copy fix even if the type is dependent.
18608   if (Var->getType()->isDependentType())
18609     return true;
18610   QualType T = Var->getType().getNonReferenceType();
18611   if (T.isTriviallyCopyableType(Context))
18612     return true;
18613   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
18614 
18615     if (!(RD = RD->getDefinition()))
18616       return false;
18617     if (RD->hasSimpleCopyConstructor())
18618       return true;
18619     if (RD->hasUserDeclaredCopyConstructor())
18620       for (CXXConstructorDecl *Ctor : RD->ctors())
18621         if (Ctor->isCopyConstructor())
18622           return !Ctor->isDeleted();
18623   }
18624   return false;
18625 }
18626 
18627 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
18628 /// default capture. Fixes may be omitted if they aren't allowed by the
18629 /// standard, for example we can't emit a default copy capture fix-it if we
18630 /// already explicitly copy capture capture another variable.
18631 static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
18632                                     VarDecl *Var) {
18633   assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
18634   // Don't offer Capture by copy of default capture by copy fixes if Var is
18635   // known not to be copy constructible.
18636   bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
18637 
18638   SmallString<32> FixBuffer;
18639   StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
18640   if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
18641     SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
18642     if (ShouldOfferCopyFix) {
18643       // Offer fixes to insert an explicit capture for the variable.
18644       // [] -> [VarName]
18645       // [OtherCapture] -> [OtherCapture, VarName]
18646       FixBuffer.assign({Separator, Var->getName()});
18647       Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18648           << Var << /*value*/ 0
18649           << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18650     }
18651     // As above but capture by reference.
18652     FixBuffer.assign({Separator, "&", Var->getName()});
18653     Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18654         << Var << /*reference*/ 1
18655         << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18656   }
18657 
18658   // Only try to offer default capture if there are no captures excluding this
18659   // and init captures.
18660   // [this]: OK.
18661   // [X = Y]: OK.
18662   // [&A, &B]: Don't offer.
18663   // [A, B]: Don't offer.
18664   if (llvm::any_of(LSI->Captures, [](Capture &C) {
18665         return !C.isThisCapture() && !C.isInitCapture();
18666       }))
18667     return;
18668 
18669   // The default capture specifiers, '=' or '&', must appear first in the
18670   // capture body.
18671   SourceLocation DefaultInsertLoc =
18672       LSI->IntroducerRange.getBegin().getLocWithOffset(1);
18673 
18674   if (ShouldOfferCopyFix) {
18675     bool CanDefaultCopyCapture = true;
18676     // [=, *this] OK since c++17
18677     // [=, this] OK since c++20
18678     if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
18679       CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
18680                                   ? LSI->getCXXThisCapture().isCopyCapture()
18681                                   : false;
18682     // We can't use default capture by copy if any captures already specified
18683     // capture by copy.
18684     if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
18685           return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
18686         })) {
18687       FixBuffer.assign({"=", Separator});
18688       Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
18689           << /*value*/ 0
18690           << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
18691     }
18692   }
18693 
18694   // We can't use default capture by reference if any captures already specified
18695   // capture by reference.
18696   if (llvm::none_of(LSI->Captures, [](Capture &C) {
18697         return !C.isInitCapture() && C.isReferenceCapture() &&
18698                !C.isThisCapture();
18699       })) {
18700     FixBuffer.assign({"&", Separator});
18701     Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
18702         << /*reference*/ 1
18703         << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
18704   }
18705 }
18706 
18707 bool Sema::tryCaptureVariable(
18708     VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
18709     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
18710     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
18711   // An init-capture is notionally from the context surrounding its
18712   // declaration, but its parent DC is the lambda class.
18713   DeclContext *VarDC = Var->getDeclContext();
18714   if (Var->isInitCapture())
18715     VarDC = VarDC->getParent();
18716 
18717   DeclContext *DC = CurContext;
18718   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
18719       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
18720   // We need to sync up the Declaration Context with the
18721   // FunctionScopeIndexToStopAt
18722   if (FunctionScopeIndexToStopAt) {
18723     unsigned FSIndex = FunctionScopes.size() - 1;
18724     while (FSIndex != MaxFunctionScopesIndex) {
18725       DC = getLambdaAwareParentOfDeclContext(DC);
18726       --FSIndex;
18727     }
18728   }
18729 
18730 
18731   // If the variable is declared in the current context, there is no need to
18732   // capture it.
18733   if (VarDC == DC) return true;
18734 
18735   // Capture global variables if it is required to use private copy of this
18736   // variable.
18737   bool IsGlobal = !Var->hasLocalStorage();
18738   if (IsGlobal &&
18739       !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
18740                                                 MaxFunctionScopesIndex)))
18741     return true;
18742   Var = Var->getCanonicalDecl();
18743 
18744   // Walk up the stack to determine whether we can capture the variable,
18745   // performing the "simple" checks that don't depend on type. We stop when
18746   // we've either hit the declared scope of the variable or find an existing
18747   // capture of that variable.  We start from the innermost capturing-entity
18748   // (the DC) and ensure that all intervening capturing-entities
18749   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
18750   // declcontext can either capture the variable or have already captured
18751   // the variable.
18752   CaptureType = Var->getType();
18753   DeclRefType = CaptureType.getNonReferenceType();
18754   bool Nested = false;
18755   bool Explicit = (Kind != TryCapture_Implicit);
18756   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
18757   do {
18758     // Only block literals, captured statements, and lambda expressions can
18759     // capture; other scopes don't work.
18760     DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
18761                                                               ExprLoc,
18762                                                               BuildAndDiagnose,
18763                                                               *this);
18764     // We need to check for the parent *first* because, if we *have*
18765     // private-captured a global variable, we need to recursively capture it in
18766     // intermediate blocks, lambdas, etc.
18767     if (!ParentDC) {
18768       if (IsGlobal) {
18769         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
18770         break;
18771       }
18772       return true;
18773     }
18774 
18775     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
18776     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
18777 
18778 
18779     // Check whether we've already captured it.
18780     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
18781                                              DeclRefType)) {
18782       CSI->getCapture(Var).markUsed(BuildAndDiagnose);
18783       break;
18784     }
18785     // If we are instantiating a generic lambda call operator body,
18786     // we do not want to capture new variables.  What was captured
18787     // during either a lambdas transformation or initial parsing
18788     // should be used.
18789     if (isGenericLambdaCallOperatorSpecialization(DC)) {
18790       if (BuildAndDiagnose) {
18791         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
18792         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
18793           Diag(ExprLoc, diag::err_lambda_impcap) << Var;
18794           Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18795           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
18796           buildLambdaCaptureFixit(*this, LSI, Var);
18797         } else
18798           diagnoseUncapturableValueReference(*this, ExprLoc, Var);
18799       }
18800       return true;
18801     }
18802 
18803     // Try to capture variable-length arrays types.
18804     if (Var->getType()->isVariablyModifiedType()) {
18805       // We're going to walk down into the type and look for VLA
18806       // expressions.
18807       QualType QTy = Var->getType();
18808       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
18809         QTy = PVD->getOriginalType();
18810       captureVariablyModifiedType(Context, QTy, CSI);
18811     }
18812 
18813     if (getLangOpts().OpenMP) {
18814       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
18815         // OpenMP private variables should not be captured in outer scope, so
18816         // just break here. Similarly, global variables that are captured in a
18817         // target region should not be captured outside the scope of the region.
18818         if (RSI->CapRegionKind == CR_OpenMP) {
18819           OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
18820               Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
18821           // If the variable is private (i.e. not captured) and has variably
18822           // modified type, we still need to capture the type for correct
18823           // codegen in all regions, associated with the construct. Currently,
18824           // it is captured in the innermost captured region only.
18825           if (IsOpenMPPrivateDecl != OMPC_unknown &&
18826               Var->getType()->isVariablyModifiedType()) {
18827             QualType QTy = Var->getType();
18828             if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
18829               QTy = PVD->getOriginalType();
18830             for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
18831                  I < E; ++I) {
18832               auto *OuterRSI = cast<CapturedRegionScopeInfo>(
18833                   FunctionScopes[FunctionScopesIndex - I]);
18834               assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
18835                      "Wrong number of captured regions associated with the "
18836                      "OpenMP construct.");
18837               captureVariablyModifiedType(Context, QTy, OuterRSI);
18838             }
18839           }
18840           bool IsTargetCap =
18841               IsOpenMPPrivateDecl != OMPC_private &&
18842               isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
18843                                          RSI->OpenMPCaptureLevel);
18844           // Do not capture global if it is not privatized in outer regions.
18845           bool IsGlobalCap =
18846               IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
18847                                                      RSI->OpenMPCaptureLevel);
18848 
18849           // When we detect target captures we are looking from inside the
18850           // target region, therefore we need to propagate the capture from the
18851           // enclosing region. Therefore, the capture is not initially nested.
18852           if (IsTargetCap)
18853             adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
18854 
18855           if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
18856               (IsGlobal && !IsGlobalCap)) {
18857             Nested = !IsTargetCap;
18858             bool HasConst = DeclRefType.isConstQualified();
18859             DeclRefType = DeclRefType.getUnqualifiedType();
18860             // Don't lose diagnostics about assignments to const.
18861             if (HasConst)
18862               DeclRefType.addConst();
18863             CaptureType = Context.getLValueReferenceType(DeclRefType);
18864             break;
18865           }
18866         }
18867       }
18868     }
18869     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
18870       // No capture-default, and this is not an explicit capture
18871       // so cannot capture this variable.
18872       if (BuildAndDiagnose) {
18873         Diag(ExprLoc, diag::err_lambda_impcap) << Var;
18874         Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18875         auto *LSI = cast<LambdaScopeInfo>(CSI);
18876         if (LSI->Lambda) {
18877           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
18878           buildLambdaCaptureFixit(*this, LSI, Var);
18879         }
18880         // FIXME: If we error out because an outer lambda can not implicitly
18881         // capture a variable that an inner lambda explicitly captures, we
18882         // should have the inner lambda do the explicit capture - because
18883         // it makes for cleaner diagnostics later.  This would purely be done
18884         // so that the diagnostic does not misleadingly claim that a variable
18885         // can not be captured by a lambda implicitly even though it is captured
18886         // explicitly.  Suggestion:
18887         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
18888         //    at the function head
18889         //  - cache the StartingDeclContext - this must be a lambda
18890         //  - captureInLambda in the innermost lambda the variable.
18891       }
18892       return true;
18893     }
18894 
18895     FunctionScopesIndex--;
18896     DC = ParentDC;
18897     Explicit = false;
18898   } while (!VarDC->Equals(DC));
18899 
18900   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
18901   // computing the type of the capture at each step, checking type-specific
18902   // requirements, and adding captures if requested.
18903   // If the variable had already been captured previously, we start capturing
18904   // at the lambda nested within that one.
18905   bool Invalid = false;
18906   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
18907        ++I) {
18908     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
18909 
18910     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18911     // certain types of variables (unnamed, variably modified types etc.)
18912     // so check for eligibility.
18913     if (!Invalid)
18914       Invalid =
18915           !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
18916 
18917     // After encountering an error, if we're actually supposed to capture, keep
18918     // capturing in nested contexts to suppress any follow-on diagnostics.
18919     if (Invalid && !BuildAndDiagnose)
18920       return true;
18921 
18922     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
18923       Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18924                                DeclRefType, Nested, *this, Invalid);
18925       Nested = true;
18926     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
18927       Invalid = !captureInCapturedRegion(
18928           RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
18929           Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
18930       Nested = true;
18931     } else {
18932       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
18933       Invalid =
18934           !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18935                            DeclRefType, Nested, Kind, EllipsisLoc,
18936                            /*IsTopScope*/ I == N - 1, *this, Invalid);
18937       Nested = true;
18938     }
18939 
18940     if (Invalid && !BuildAndDiagnose)
18941       return true;
18942   }
18943   return Invalid;
18944 }
18945 
18946 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
18947                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
18948   QualType CaptureType;
18949   QualType DeclRefType;
18950   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
18951                             /*BuildAndDiagnose=*/true, CaptureType,
18952                             DeclRefType, nullptr);
18953 }
18954 
18955 bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
18956   QualType CaptureType;
18957   QualType DeclRefType;
18958   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
18959                              /*BuildAndDiagnose=*/false, CaptureType,
18960                              DeclRefType, nullptr);
18961 }
18962 
18963 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
18964   QualType CaptureType;
18965   QualType DeclRefType;
18966 
18967   // Determine whether we can capture this variable.
18968   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
18969                          /*BuildAndDiagnose=*/false, CaptureType,
18970                          DeclRefType, nullptr))
18971     return QualType();
18972 
18973   return DeclRefType;
18974 }
18975 
18976 namespace {
18977 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
18978 // The produced TemplateArgumentListInfo* points to data stored within this
18979 // object, so should only be used in contexts where the pointer will not be
18980 // used after the CopiedTemplateArgs object is destroyed.
18981 class CopiedTemplateArgs {
18982   bool HasArgs;
18983   TemplateArgumentListInfo TemplateArgStorage;
18984 public:
18985   template<typename RefExpr>
18986   CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
18987     if (HasArgs)
18988       E->copyTemplateArgumentsInto(TemplateArgStorage);
18989   }
18990   operator TemplateArgumentListInfo*()
18991 #ifdef __has_cpp_attribute
18992 #if __has_cpp_attribute(clang::lifetimebound)
18993   [[clang::lifetimebound]]
18994 #endif
18995 #endif
18996   {
18997     return HasArgs ? &TemplateArgStorage : nullptr;
18998   }
18999 };
19000 }
19001 
19002 /// Walk the set of potential results of an expression and mark them all as
19003 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
19004 ///
19005 /// \return A new expression if we found any potential results, ExprEmpty() if
19006 ///         not, and ExprError() if we diagnosed an error.
19007 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
19008                                                       NonOdrUseReason NOUR) {
19009   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
19010   // an object that satisfies the requirements for appearing in a
19011   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
19012   // is immediately applied."  This function handles the lvalue-to-rvalue
19013   // conversion part.
19014   //
19015   // If we encounter a node that claims to be an odr-use but shouldn't be, we
19016   // transform it into the relevant kind of non-odr-use node and rebuild the
19017   // tree of nodes leading to it.
19018   //
19019   // This is a mini-TreeTransform that only transforms a restricted subset of
19020   // nodes (and only certain operands of them).
19021 
19022   // Rebuild a subexpression.
19023   auto Rebuild = [&](Expr *Sub) {
19024     return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
19025   };
19026 
19027   // Check whether a potential result satisfies the requirements of NOUR.
19028   auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
19029     // Any entity other than a VarDecl is always odr-used whenever it's named
19030     // in a potentially-evaluated expression.
19031     auto *VD = dyn_cast<VarDecl>(D);
19032     if (!VD)
19033       return true;
19034 
19035     // C++2a [basic.def.odr]p4:
19036     //   A variable x whose name appears as a potentially-evalauted expression
19037     //   e is odr-used by e unless
19038     //   -- x is a reference that is usable in constant expressions, or
19039     //   -- x is a variable of non-reference type that is usable in constant
19040     //      expressions and has no mutable subobjects, and e is an element of
19041     //      the set of potential results of an expression of
19042     //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
19043     //      conversion is applied, or
19044     //   -- x is a variable of non-reference type, and e is an element of the
19045     //      set of potential results of a discarded-value expression to which
19046     //      the lvalue-to-rvalue conversion is not applied
19047     //
19048     // We check the first bullet and the "potentially-evaluated" condition in
19049     // BuildDeclRefExpr. We check the type requirements in the second bullet
19050     // in CheckLValueToRValueConversionOperand below.
19051     switch (NOUR) {
19052     case NOUR_None:
19053     case NOUR_Unevaluated:
19054       llvm_unreachable("unexpected non-odr-use-reason");
19055 
19056     case NOUR_Constant:
19057       // Constant references were handled when they were built.
19058       if (VD->getType()->isReferenceType())
19059         return true;
19060       if (auto *RD = VD->getType()->getAsCXXRecordDecl())
19061         if (RD->hasMutableFields())
19062           return true;
19063       if (!VD->isUsableInConstantExpressions(S.Context))
19064         return true;
19065       break;
19066 
19067     case NOUR_Discarded:
19068       if (VD->getType()->isReferenceType())
19069         return true;
19070       break;
19071     }
19072     return false;
19073   };
19074 
19075   // Mark that this expression does not constitute an odr-use.
19076   auto MarkNotOdrUsed = [&] {
19077     S.MaybeODRUseExprs.remove(E);
19078     if (LambdaScopeInfo *LSI = S.getCurLambda())
19079       LSI->markVariableExprAsNonODRUsed(E);
19080   };
19081 
19082   // C++2a [basic.def.odr]p2:
19083   //   The set of potential results of an expression e is defined as follows:
19084   switch (E->getStmtClass()) {
19085   //   -- If e is an id-expression, ...
19086   case Expr::DeclRefExprClass: {
19087     auto *DRE = cast<DeclRefExpr>(E);
19088     if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
19089       break;
19090 
19091     // Rebuild as a non-odr-use DeclRefExpr.
19092     MarkNotOdrUsed();
19093     return DeclRefExpr::Create(
19094         S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
19095         DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
19096         DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
19097         DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
19098   }
19099 
19100   case Expr::FunctionParmPackExprClass: {
19101     auto *FPPE = cast<FunctionParmPackExpr>(E);
19102     // If any of the declarations in the pack is odr-used, then the expression
19103     // as a whole constitutes an odr-use.
19104     for (VarDecl *D : *FPPE)
19105       if (IsPotentialResultOdrUsed(D))
19106         return ExprEmpty();
19107 
19108     // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
19109     // nothing cares about whether we marked this as an odr-use, but it might
19110     // be useful for non-compiler tools.
19111     MarkNotOdrUsed();
19112     break;
19113   }
19114 
19115   //   -- If e is a subscripting operation with an array operand...
19116   case Expr::ArraySubscriptExprClass: {
19117     auto *ASE = cast<ArraySubscriptExpr>(E);
19118     Expr *OldBase = ASE->getBase()->IgnoreImplicit();
19119     if (!OldBase->getType()->isArrayType())
19120       break;
19121     ExprResult Base = Rebuild(OldBase);
19122     if (!Base.isUsable())
19123       return Base;
19124     Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
19125     Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
19126     SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
19127     return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
19128                                      ASE->getRBracketLoc());
19129   }
19130 
19131   case Expr::MemberExprClass: {
19132     auto *ME = cast<MemberExpr>(E);
19133     // -- If e is a class member access expression [...] naming a non-static
19134     //    data member...
19135     if (isa<FieldDecl>(ME->getMemberDecl())) {
19136       ExprResult Base = Rebuild(ME->getBase());
19137       if (!Base.isUsable())
19138         return Base;
19139       return MemberExpr::Create(
19140           S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
19141           ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
19142           ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
19143           CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
19144           ME->getObjectKind(), ME->isNonOdrUse());
19145     }
19146 
19147     if (ME->getMemberDecl()->isCXXInstanceMember())
19148       break;
19149 
19150     // -- If e is a class member access expression naming a static data member,
19151     //    ...
19152     if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
19153       break;
19154 
19155     // Rebuild as a non-odr-use MemberExpr.
19156     MarkNotOdrUsed();
19157     return MemberExpr::Create(
19158         S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
19159         ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
19160         ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
19161         ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
19162   }
19163 
19164   case Expr::BinaryOperatorClass: {
19165     auto *BO = cast<BinaryOperator>(E);
19166     Expr *LHS = BO->getLHS();
19167     Expr *RHS = BO->getRHS();
19168     // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
19169     if (BO->getOpcode() == BO_PtrMemD) {
19170       ExprResult Sub = Rebuild(LHS);
19171       if (!Sub.isUsable())
19172         return Sub;
19173       LHS = Sub.get();
19174     //   -- If e is a comma expression, ...
19175     } else if (BO->getOpcode() == BO_Comma) {
19176       ExprResult Sub = Rebuild(RHS);
19177       if (!Sub.isUsable())
19178         return Sub;
19179       RHS = Sub.get();
19180     } else {
19181       break;
19182     }
19183     return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
19184                         LHS, RHS);
19185   }
19186 
19187   //   -- If e has the form (e1)...
19188   case Expr::ParenExprClass: {
19189     auto *PE = cast<ParenExpr>(E);
19190     ExprResult Sub = Rebuild(PE->getSubExpr());
19191     if (!Sub.isUsable())
19192       return Sub;
19193     return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
19194   }
19195 
19196   //   -- If e is a glvalue conditional expression, ...
19197   // We don't apply this to a binary conditional operator. FIXME: Should we?
19198   case Expr::ConditionalOperatorClass: {
19199     auto *CO = cast<ConditionalOperator>(E);
19200     ExprResult LHS = Rebuild(CO->getLHS());
19201     if (LHS.isInvalid())
19202       return ExprError();
19203     ExprResult RHS = Rebuild(CO->getRHS());
19204     if (RHS.isInvalid())
19205       return ExprError();
19206     if (!LHS.isUsable() && !RHS.isUsable())
19207       return ExprEmpty();
19208     if (!LHS.isUsable())
19209       LHS = CO->getLHS();
19210     if (!RHS.isUsable())
19211       RHS = CO->getRHS();
19212     return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
19213                                 CO->getCond(), LHS.get(), RHS.get());
19214   }
19215 
19216   // [Clang extension]
19217   //   -- If e has the form __extension__ e1...
19218   case Expr::UnaryOperatorClass: {
19219     auto *UO = cast<UnaryOperator>(E);
19220     if (UO->getOpcode() != UO_Extension)
19221       break;
19222     ExprResult Sub = Rebuild(UO->getSubExpr());
19223     if (!Sub.isUsable())
19224       return Sub;
19225     return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
19226                           Sub.get());
19227   }
19228 
19229   // [Clang extension]
19230   //   -- If e has the form _Generic(...), the set of potential results is the
19231   //      union of the sets of potential results of the associated expressions.
19232   case Expr::GenericSelectionExprClass: {
19233     auto *GSE = cast<GenericSelectionExpr>(E);
19234 
19235     SmallVector<Expr *, 4> AssocExprs;
19236     bool AnyChanged = false;
19237     for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
19238       ExprResult AssocExpr = Rebuild(OrigAssocExpr);
19239       if (AssocExpr.isInvalid())
19240         return ExprError();
19241       if (AssocExpr.isUsable()) {
19242         AssocExprs.push_back(AssocExpr.get());
19243         AnyChanged = true;
19244       } else {
19245         AssocExprs.push_back(OrigAssocExpr);
19246       }
19247     }
19248 
19249     return AnyChanged ? S.CreateGenericSelectionExpr(
19250                             GSE->getGenericLoc(), GSE->getDefaultLoc(),
19251                             GSE->getRParenLoc(), GSE->getControllingExpr(),
19252                             GSE->getAssocTypeSourceInfos(), AssocExprs)
19253                       : ExprEmpty();
19254   }
19255 
19256   // [Clang extension]
19257   //   -- If e has the form __builtin_choose_expr(...), the set of potential
19258   //      results is the union of the sets of potential results of the
19259   //      second and third subexpressions.
19260   case Expr::ChooseExprClass: {
19261     auto *CE = cast<ChooseExpr>(E);
19262 
19263     ExprResult LHS = Rebuild(CE->getLHS());
19264     if (LHS.isInvalid())
19265       return ExprError();
19266 
19267     ExprResult RHS = Rebuild(CE->getLHS());
19268     if (RHS.isInvalid())
19269       return ExprError();
19270 
19271     if (!LHS.get() && !RHS.get())
19272       return ExprEmpty();
19273     if (!LHS.isUsable())
19274       LHS = CE->getLHS();
19275     if (!RHS.isUsable())
19276       RHS = CE->getRHS();
19277 
19278     return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
19279                              RHS.get(), CE->getRParenLoc());
19280   }
19281 
19282   // Step through non-syntactic nodes.
19283   case Expr::ConstantExprClass: {
19284     auto *CE = cast<ConstantExpr>(E);
19285     ExprResult Sub = Rebuild(CE->getSubExpr());
19286     if (!Sub.isUsable())
19287       return Sub;
19288     return ConstantExpr::Create(S.Context, Sub.get());
19289   }
19290 
19291   // We could mostly rely on the recursive rebuilding to rebuild implicit
19292   // casts, but not at the top level, so rebuild them here.
19293   case Expr::ImplicitCastExprClass: {
19294     auto *ICE = cast<ImplicitCastExpr>(E);
19295     // Only step through the narrow set of cast kinds we expect to encounter.
19296     // Anything else suggests we've left the region in which potential results
19297     // can be found.
19298     switch (ICE->getCastKind()) {
19299     case CK_NoOp:
19300     case CK_DerivedToBase:
19301     case CK_UncheckedDerivedToBase: {
19302       ExprResult Sub = Rebuild(ICE->getSubExpr());
19303       if (!Sub.isUsable())
19304         return Sub;
19305       CXXCastPath Path(ICE->path());
19306       return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
19307                                  ICE->getValueKind(), &Path);
19308     }
19309 
19310     default:
19311       break;
19312     }
19313     break;
19314   }
19315 
19316   default:
19317     break;
19318   }
19319 
19320   // Can't traverse through this node. Nothing to do.
19321   return ExprEmpty();
19322 }
19323 
19324 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
19325   // Check whether the operand is or contains an object of non-trivial C union
19326   // type.
19327   if (E->getType().isVolatileQualified() &&
19328       (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
19329        E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
19330     checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
19331                           Sema::NTCUC_LValueToRValueVolatile,
19332                           NTCUK_Destruct|NTCUK_Copy);
19333 
19334   // C++2a [basic.def.odr]p4:
19335   //   [...] an expression of non-volatile-qualified non-class type to which
19336   //   the lvalue-to-rvalue conversion is applied [...]
19337   if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
19338     return E;
19339 
19340   ExprResult Result =
19341       rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
19342   if (Result.isInvalid())
19343     return ExprError();
19344   return Result.get() ? Result : E;
19345 }
19346 
19347 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
19348   Res = CorrectDelayedTyposInExpr(Res);
19349 
19350   if (!Res.isUsable())
19351     return Res;
19352 
19353   // If a constant-expression is a reference to a variable where we delay
19354   // deciding whether it is an odr-use, just assume we will apply the
19355   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
19356   // (a non-type template argument), we have special handling anyway.
19357   return CheckLValueToRValueConversionOperand(Res.get());
19358 }
19359 
19360 void Sema::CleanupVarDeclMarking() {
19361   // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
19362   // call.
19363   MaybeODRUseExprSet LocalMaybeODRUseExprs;
19364   std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
19365 
19366   for (Expr *E : LocalMaybeODRUseExprs) {
19367     if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
19368       MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
19369                          DRE->getLocation(), *this);
19370     } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
19371       MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
19372                          *this);
19373     } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
19374       for (VarDecl *VD : *FP)
19375         MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
19376     } else {
19377       llvm_unreachable("Unexpected expression");
19378     }
19379   }
19380 
19381   assert(MaybeODRUseExprs.empty() &&
19382          "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
19383 }
19384 
19385 static void DoMarkVarDeclReferenced(
19386     Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
19387     llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19388   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
19389           isa<FunctionParmPackExpr>(E)) &&
19390          "Invalid Expr argument to DoMarkVarDeclReferenced");
19391   Var->setReferenced();
19392 
19393   if (Var->isInvalidDecl())
19394     return;
19395 
19396   auto *MSI = Var->getMemberSpecializationInfo();
19397   TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
19398                                        : Var->getTemplateSpecializationKind();
19399 
19400   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19401   bool UsableInConstantExpr =
19402       Var->mightBeUsableInConstantExpressions(SemaRef.Context);
19403 
19404   if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
19405     RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
19406   }
19407 
19408   // C++20 [expr.const]p12:
19409   //   A variable [...] is needed for constant evaluation if it is [...] a
19410   //   variable whose name appears as a potentially constant evaluated
19411   //   expression that is either a contexpr variable or is of non-volatile
19412   //   const-qualified integral type or of reference type
19413   bool NeededForConstantEvaluation =
19414       isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
19415 
19416   bool NeedDefinition =
19417       OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
19418 
19419   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
19420          "Can't instantiate a partial template specialization.");
19421 
19422   // If this might be a member specialization of a static data member, check
19423   // the specialization is visible. We already did the checks for variable
19424   // template specializations when we created them.
19425   if (NeedDefinition && TSK != TSK_Undeclared &&
19426       !isa<VarTemplateSpecializationDecl>(Var))
19427     SemaRef.checkSpecializationVisibility(Loc, Var);
19428 
19429   // Perform implicit instantiation of static data members, static data member
19430   // templates of class templates, and variable template specializations. Delay
19431   // instantiations of variable templates, except for those that could be used
19432   // in a constant expression.
19433   if (NeedDefinition && isTemplateInstantiation(TSK)) {
19434     // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
19435     // instantiation declaration if a variable is usable in a constant
19436     // expression (among other cases).
19437     bool TryInstantiating =
19438         TSK == TSK_ImplicitInstantiation ||
19439         (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
19440 
19441     if (TryInstantiating) {
19442       SourceLocation PointOfInstantiation =
19443           MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
19444       bool FirstInstantiation = PointOfInstantiation.isInvalid();
19445       if (FirstInstantiation) {
19446         PointOfInstantiation = Loc;
19447         if (MSI)
19448           MSI->setPointOfInstantiation(PointOfInstantiation);
19449           // FIXME: Notify listener.
19450         else
19451           Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19452       }
19453 
19454       if (UsableInConstantExpr) {
19455         // Do not defer instantiations of variables that could be used in a
19456         // constant expression.
19457         SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
19458           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
19459         });
19460 
19461         // Re-set the member to trigger a recomputation of the dependence bits
19462         // for the expression.
19463         if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19464           DRE->setDecl(DRE->getDecl());
19465         else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
19466           ME->setMemberDecl(ME->getMemberDecl());
19467       } else if (FirstInstantiation ||
19468                  isa<VarTemplateSpecializationDecl>(Var)) {
19469         // FIXME: For a specialization of a variable template, we don't
19470         // distinguish between "declaration and type implicitly instantiated"
19471         // and "implicit instantiation of definition requested", so we have
19472         // no direct way to avoid enqueueing the pending instantiation
19473         // multiple times.
19474         SemaRef.PendingInstantiations
19475             .push_back(std::make_pair(Var, PointOfInstantiation));
19476       }
19477     }
19478   }
19479 
19480   // C++2a [basic.def.odr]p4:
19481   //   A variable x whose name appears as a potentially-evaluated expression e
19482   //   is odr-used by e unless
19483   //   -- x is a reference that is usable in constant expressions
19484   //   -- x is a variable of non-reference type that is usable in constant
19485   //      expressions and has no mutable subobjects [FIXME], and e is an
19486   //      element of the set of potential results of an expression of
19487   //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
19488   //      conversion is applied
19489   //   -- x is a variable of non-reference type, and e is an element of the set
19490   //      of potential results of a discarded-value expression to which the
19491   //      lvalue-to-rvalue conversion is not applied [FIXME]
19492   //
19493   // We check the first part of the second bullet here, and
19494   // Sema::CheckLValueToRValueConversionOperand deals with the second part.
19495   // FIXME: To get the third bullet right, we need to delay this even for
19496   // variables that are not usable in constant expressions.
19497 
19498   // If we already know this isn't an odr-use, there's nothing more to do.
19499   if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19500     if (DRE->isNonOdrUse())
19501       return;
19502   if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
19503     if (ME->isNonOdrUse())
19504       return;
19505 
19506   switch (OdrUse) {
19507   case OdrUseContext::None:
19508     assert((!E || isa<FunctionParmPackExpr>(E)) &&
19509            "missing non-odr-use marking for unevaluated decl ref");
19510     break;
19511 
19512   case OdrUseContext::FormallyOdrUsed:
19513     // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
19514     // behavior.
19515     break;
19516 
19517   case OdrUseContext::Used:
19518     // If we might later find that this expression isn't actually an odr-use,
19519     // delay the marking.
19520     if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
19521       SemaRef.MaybeODRUseExprs.insert(E);
19522     else
19523       MarkVarDeclODRUsed(Var, Loc, SemaRef);
19524     break;
19525 
19526   case OdrUseContext::Dependent:
19527     // If this is a dependent context, we don't need to mark variables as
19528     // odr-used, but we may still need to track them for lambda capture.
19529     // FIXME: Do we also need to do this inside dependent typeid expressions
19530     // (which are modeled as unevaluated at this point)?
19531     const bool RefersToEnclosingScope =
19532         (SemaRef.CurContext != Var->getDeclContext() &&
19533          Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
19534     if (RefersToEnclosingScope) {
19535       LambdaScopeInfo *const LSI =
19536           SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
19537       if (LSI && (!LSI->CallOperator ||
19538                   !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
19539         // If a variable could potentially be odr-used, defer marking it so
19540         // until we finish analyzing the full expression for any
19541         // lvalue-to-rvalue
19542         // or discarded value conversions that would obviate odr-use.
19543         // Add it to the list of potential captures that will be analyzed
19544         // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
19545         // unless the variable is a reference that was initialized by a constant
19546         // expression (this will never need to be captured or odr-used).
19547         //
19548         // FIXME: We can simplify this a lot after implementing P0588R1.
19549         assert(E && "Capture variable should be used in an expression.");
19550         if (!Var->getType()->isReferenceType() ||
19551             !Var->isUsableInConstantExpressions(SemaRef.Context))
19552           LSI->addPotentialCapture(E->IgnoreParens());
19553       }
19554     }
19555     break;
19556   }
19557 }
19558 
19559 /// Mark a variable referenced, and check whether it is odr-used
19560 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
19561 /// used directly for normal expressions referring to VarDecl.
19562 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
19563   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
19564 }
19565 
19566 static void
19567 MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
19568                    bool MightBeOdrUse,
19569                    llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19570   if (SemaRef.isInOpenMPDeclareTargetContext())
19571     SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
19572 
19573   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
19574     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
19575     return;
19576   }
19577 
19578   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
19579 
19580   // If this is a call to a method via a cast, also mark the method in the
19581   // derived class used in case codegen can devirtualize the call.
19582   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
19583   if (!ME)
19584     return;
19585   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
19586   if (!MD)
19587     return;
19588   // Only attempt to devirtualize if this is truly a virtual call.
19589   bool IsVirtualCall = MD->isVirtual() &&
19590                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
19591   if (!IsVirtualCall)
19592     return;
19593 
19594   // If it's possible to devirtualize the call, mark the called function
19595   // referenced.
19596   CXXMethodDecl *DM = MD->getDevirtualizedMethod(
19597       ME->getBase(), SemaRef.getLangOpts().AppleKext);
19598   if (DM)
19599     SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
19600 }
19601 
19602 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
19603 ///
19604 /// Note, this may change the dependence of the DeclRefExpr, and so needs to be
19605 /// handled with care if the DeclRefExpr is not newly-created.
19606 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
19607   // TODO: update this with DR# once a defect report is filed.
19608   // C++11 defect. The address of a pure member should not be an ODR use, even
19609   // if it's a qualified reference.
19610   bool OdrUse = true;
19611   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
19612     if (Method->isVirtual() &&
19613         !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
19614       OdrUse = false;
19615 
19616   if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl()))
19617     if (!isUnevaluatedContext() && !isConstantEvaluated() &&
19618         FD->isConsteval() && !RebuildingImmediateInvocation)
19619       ExprEvalContexts.back().ReferenceToConsteval.insert(E);
19620   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
19621                      RefsMinusAssignments);
19622 }
19623 
19624 /// Perform reference-marking and odr-use handling for a MemberExpr.
19625 void Sema::MarkMemberReferenced(MemberExpr *E) {
19626   // C++11 [basic.def.odr]p2:
19627   //   A non-overloaded function whose name appears as a potentially-evaluated
19628   //   expression or a member of a set of candidate functions, if selected by
19629   //   overload resolution when referred to from a potentially-evaluated
19630   //   expression, is odr-used, unless it is a pure virtual function and its
19631   //   name is not explicitly qualified.
19632   bool MightBeOdrUse = true;
19633   if (E->performsVirtualDispatch(getLangOpts())) {
19634     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
19635       if (Method->isPure())
19636         MightBeOdrUse = false;
19637   }
19638   SourceLocation Loc =
19639       E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
19640   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
19641                      RefsMinusAssignments);
19642 }
19643 
19644 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
19645 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
19646   for (VarDecl *VD : *E)
19647     MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
19648                        RefsMinusAssignments);
19649 }
19650 
19651 /// Perform marking for a reference to an arbitrary declaration.  It
19652 /// marks the declaration referenced, and performs odr-use checking for
19653 /// functions and variables. This method should not be used when building a
19654 /// normal expression which refers to a variable.
19655 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
19656                                  bool MightBeOdrUse) {
19657   if (MightBeOdrUse) {
19658     if (auto *VD = dyn_cast<VarDecl>(D)) {
19659       MarkVariableReferenced(Loc, VD);
19660       return;
19661     }
19662   }
19663   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
19664     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
19665     return;
19666   }
19667   D->setReferenced();
19668 }
19669 
19670 namespace {
19671   // Mark all of the declarations used by a type as referenced.
19672   // FIXME: Not fully implemented yet! We need to have a better understanding
19673   // of when we're entering a context we should not recurse into.
19674   // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
19675   // TreeTransforms rebuilding the type in a new context. Rather than
19676   // duplicating the TreeTransform logic, we should consider reusing it here.
19677   // Currently that causes problems when rebuilding LambdaExprs.
19678   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
19679     Sema &S;
19680     SourceLocation Loc;
19681 
19682   public:
19683     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
19684 
19685     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
19686 
19687     bool TraverseTemplateArgument(const TemplateArgument &Arg);
19688   };
19689 }
19690 
19691 bool MarkReferencedDecls::TraverseTemplateArgument(
19692     const TemplateArgument &Arg) {
19693   {
19694     // A non-type template argument is a constant-evaluated context.
19695     EnterExpressionEvaluationContext Evaluated(
19696         S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
19697     if (Arg.getKind() == TemplateArgument::Declaration) {
19698       if (Decl *D = Arg.getAsDecl())
19699         S.MarkAnyDeclReferenced(Loc, D, true);
19700     } else if (Arg.getKind() == TemplateArgument::Expression) {
19701       S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
19702     }
19703   }
19704 
19705   return Inherited::TraverseTemplateArgument(Arg);
19706 }
19707 
19708 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
19709   MarkReferencedDecls Marker(*this, Loc);
19710   Marker.TraverseType(T);
19711 }
19712 
19713 namespace {
19714 /// Helper class that marks all of the declarations referenced by
19715 /// potentially-evaluated subexpressions as "referenced".
19716 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
19717 public:
19718   typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
19719   bool SkipLocalVariables;
19720   ArrayRef<const Expr *> StopAt;
19721 
19722   EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
19723                       ArrayRef<const Expr *> StopAt)
19724       : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
19725 
19726   void visitUsedDecl(SourceLocation Loc, Decl *D) {
19727     S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
19728   }
19729 
19730   void Visit(Expr *E) {
19731     if (llvm::is_contained(StopAt, E))
19732       return;
19733     Inherited::Visit(E);
19734   }
19735 
19736   void VisitConstantExpr(ConstantExpr *E) {
19737     // Don't mark declarations within a ConstantExpression, as this expression
19738     // will be evaluated and folded to a value.
19739   }
19740 
19741   void VisitDeclRefExpr(DeclRefExpr *E) {
19742     // If we were asked not to visit local variables, don't.
19743     if (SkipLocalVariables) {
19744       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
19745         if (VD->hasLocalStorage())
19746           return;
19747     }
19748 
19749     // FIXME: This can trigger the instantiation of the initializer of a
19750     // variable, which can cause the expression to become value-dependent
19751     // or error-dependent. Do we need to propagate the new dependence bits?
19752     S.MarkDeclRefReferenced(E);
19753   }
19754 
19755   void VisitMemberExpr(MemberExpr *E) {
19756     S.MarkMemberReferenced(E);
19757     Visit(E->getBase());
19758   }
19759 };
19760 } // namespace
19761 
19762 /// Mark any declarations that appear within this expression or any
19763 /// potentially-evaluated subexpressions as "referenced".
19764 ///
19765 /// \param SkipLocalVariables If true, don't mark local variables as
19766 /// 'referenced'.
19767 /// \param StopAt Subexpressions that we shouldn't recurse into.
19768 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
19769                                             bool SkipLocalVariables,
19770                                             ArrayRef<const Expr*> StopAt) {
19771   EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
19772 }
19773 
19774 /// Emit a diagnostic when statements are reachable.
19775 /// FIXME: check for reachability even in expressions for which we don't build a
19776 ///        CFG (eg, in the initializer of a global or in a constant expression).
19777 ///        For example,
19778 ///        namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
19779 bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
19780                            const PartialDiagnostic &PD) {
19781   if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
19782     if (!FunctionScopes.empty())
19783       FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
19784           sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
19785     return true;
19786   }
19787 
19788   // The initializer of a constexpr variable or of the first declaration of a
19789   // static data member is not syntactically a constant evaluated constant,
19790   // but nonetheless is always required to be a constant expression, so we
19791   // can skip diagnosing.
19792   // FIXME: Using the mangling context here is a hack.
19793   if (auto *VD = dyn_cast_or_null<VarDecl>(
19794           ExprEvalContexts.back().ManglingContextDecl)) {
19795     if (VD->isConstexpr() ||
19796         (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
19797       return false;
19798     // FIXME: For any other kind of variable, we should build a CFG for its
19799     // initializer and check whether the context in question is reachable.
19800   }
19801 
19802   Diag(Loc, PD);
19803   return true;
19804 }
19805 
19806 /// Emit a diagnostic that describes an effect on the run-time behavior
19807 /// of the program being compiled.
19808 ///
19809 /// This routine emits the given diagnostic when the code currently being
19810 /// type-checked is "potentially evaluated", meaning that there is a
19811 /// possibility that the code will actually be executable. Code in sizeof()
19812 /// expressions, code used only during overload resolution, etc., are not
19813 /// potentially evaluated. This routine will suppress such diagnostics or,
19814 /// in the absolutely nutty case of potentially potentially evaluated
19815 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
19816 /// later.
19817 ///
19818 /// This routine should be used for all diagnostics that describe the run-time
19819 /// behavior of a program, such as passing a non-POD value through an ellipsis.
19820 /// Failure to do so will likely result in spurious diagnostics or failures
19821 /// during overload resolution or within sizeof/alignof/typeof/typeid.
19822 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
19823                                const PartialDiagnostic &PD) {
19824 
19825   if (ExprEvalContexts.back().isDiscardedStatementContext())
19826     return false;
19827 
19828   switch (ExprEvalContexts.back().Context) {
19829   case ExpressionEvaluationContext::Unevaluated:
19830   case ExpressionEvaluationContext::UnevaluatedList:
19831   case ExpressionEvaluationContext::UnevaluatedAbstract:
19832   case ExpressionEvaluationContext::DiscardedStatement:
19833     // The argument will never be evaluated, so don't complain.
19834     break;
19835 
19836   case ExpressionEvaluationContext::ConstantEvaluated:
19837   case ExpressionEvaluationContext::ImmediateFunctionContext:
19838     // Relevant diagnostics should be produced by constant evaluation.
19839     break;
19840 
19841   case ExpressionEvaluationContext::PotentiallyEvaluated:
19842   case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
19843     return DiagIfReachable(Loc, Stmts, PD);
19844   }
19845 
19846   return false;
19847 }
19848 
19849 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
19850                                const PartialDiagnostic &PD) {
19851   return DiagRuntimeBehavior(
19852       Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
19853 }
19854 
19855 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
19856                                CallExpr *CE, FunctionDecl *FD) {
19857   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
19858     return false;
19859 
19860   // If we're inside a decltype's expression, don't check for a valid return
19861   // type or construct temporaries until we know whether this is the last call.
19862   if (ExprEvalContexts.back().ExprContext ==
19863       ExpressionEvaluationContextRecord::EK_Decltype) {
19864     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
19865     return false;
19866   }
19867 
19868   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
19869     FunctionDecl *FD;
19870     CallExpr *CE;
19871 
19872   public:
19873     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
19874       : FD(FD), CE(CE) { }
19875 
19876     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
19877       if (!FD) {
19878         S.Diag(Loc, diag::err_call_incomplete_return)
19879           << T << CE->getSourceRange();
19880         return;
19881       }
19882 
19883       S.Diag(Loc, diag::err_call_function_incomplete_return)
19884           << CE->getSourceRange() << FD << T;
19885       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
19886           << FD->getDeclName();
19887     }
19888   } Diagnoser(FD, CE);
19889 
19890   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
19891     return true;
19892 
19893   return false;
19894 }
19895 
19896 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
19897 // will prevent this condition from triggering, which is what we want.
19898 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
19899   SourceLocation Loc;
19900 
19901   unsigned diagnostic = diag::warn_condition_is_assignment;
19902   bool IsOrAssign = false;
19903 
19904   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
19905     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
19906       return;
19907 
19908     IsOrAssign = Op->getOpcode() == BO_OrAssign;
19909 
19910     // Greylist some idioms by putting them into a warning subcategory.
19911     if (ObjCMessageExpr *ME
19912           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
19913       Selector Sel = ME->getSelector();
19914 
19915       // self = [<foo> init...]
19916       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
19917         diagnostic = diag::warn_condition_is_idiomatic_assignment;
19918 
19919       // <foo> = [<bar> nextObject]
19920       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
19921         diagnostic = diag::warn_condition_is_idiomatic_assignment;
19922     }
19923 
19924     Loc = Op->getOperatorLoc();
19925   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
19926     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
19927       return;
19928 
19929     IsOrAssign = Op->getOperator() == OO_PipeEqual;
19930     Loc = Op->getOperatorLoc();
19931   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
19932     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
19933   else {
19934     // Not an assignment.
19935     return;
19936   }
19937 
19938   Diag(Loc, diagnostic) << E->getSourceRange();
19939 
19940   SourceLocation Open = E->getBeginLoc();
19941   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
19942   Diag(Loc, diag::note_condition_assign_silence)
19943         << FixItHint::CreateInsertion(Open, "(")
19944         << FixItHint::CreateInsertion(Close, ")");
19945 
19946   if (IsOrAssign)
19947     Diag(Loc, diag::note_condition_or_assign_to_comparison)
19948       << FixItHint::CreateReplacement(Loc, "!=");
19949   else
19950     Diag(Loc, diag::note_condition_assign_to_comparison)
19951       << FixItHint::CreateReplacement(Loc, "==");
19952 }
19953 
19954 /// Redundant parentheses over an equality comparison can indicate
19955 /// that the user intended an assignment used as condition.
19956 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
19957   // Don't warn if the parens came from a macro.
19958   SourceLocation parenLoc = ParenE->getBeginLoc();
19959   if (parenLoc.isInvalid() || parenLoc.isMacroID())
19960     return;
19961   // Don't warn for dependent expressions.
19962   if (ParenE->isTypeDependent())
19963     return;
19964 
19965   Expr *E = ParenE->IgnoreParens();
19966 
19967   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
19968     if (opE->getOpcode() == BO_EQ &&
19969         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
19970                                                            == Expr::MLV_Valid) {
19971       SourceLocation Loc = opE->getOperatorLoc();
19972 
19973       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
19974       SourceRange ParenERange = ParenE->getSourceRange();
19975       Diag(Loc, diag::note_equality_comparison_silence)
19976         << FixItHint::CreateRemoval(ParenERange.getBegin())
19977         << FixItHint::CreateRemoval(ParenERange.getEnd());
19978       Diag(Loc, diag::note_equality_comparison_to_assign)
19979         << FixItHint::CreateReplacement(Loc, "=");
19980     }
19981 }
19982 
19983 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
19984                                        bool IsConstexpr) {
19985   DiagnoseAssignmentAsCondition(E);
19986   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
19987     DiagnoseEqualityWithExtraParens(parenE);
19988 
19989   ExprResult result = CheckPlaceholderExpr(E);
19990   if (result.isInvalid()) return ExprError();
19991   E = result.get();
19992 
19993   if (!E->isTypeDependent()) {
19994     if (getLangOpts().CPlusPlus)
19995       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
19996 
19997     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
19998     if (ERes.isInvalid())
19999       return ExprError();
20000     E = ERes.get();
20001 
20002     QualType T = E->getType();
20003     if (!T->isScalarType()) { // C99 6.8.4.1p1
20004       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
20005         << T << E->getSourceRange();
20006       return ExprError();
20007     }
20008     CheckBoolLikeConversion(E, Loc);
20009   }
20010 
20011   return E;
20012 }
20013 
20014 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
20015                                            Expr *SubExpr, ConditionKind CK,
20016                                            bool MissingOK) {
20017   // MissingOK indicates whether having no condition expression is valid
20018   // (for loop) or invalid (e.g. while loop).
20019   if (!SubExpr)
20020     return MissingOK ? ConditionResult() : ConditionError();
20021 
20022   ExprResult Cond;
20023   switch (CK) {
20024   case ConditionKind::Boolean:
20025     Cond = CheckBooleanCondition(Loc, SubExpr);
20026     break;
20027 
20028   case ConditionKind::ConstexprIf:
20029     Cond = CheckBooleanCondition(Loc, SubExpr, true);
20030     break;
20031 
20032   case ConditionKind::Switch:
20033     Cond = CheckSwitchCondition(Loc, SubExpr);
20034     break;
20035   }
20036   if (Cond.isInvalid()) {
20037     Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
20038                               {SubExpr}, PreferredConditionType(CK));
20039     if (!Cond.get())
20040       return ConditionError();
20041   }
20042   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
20043   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
20044   if (!FullExpr.get())
20045     return ConditionError();
20046 
20047   return ConditionResult(*this, nullptr, FullExpr,
20048                          CK == ConditionKind::ConstexprIf);
20049 }
20050 
20051 namespace {
20052   /// A visitor for rebuilding a call to an __unknown_any expression
20053   /// to have an appropriate type.
20054   struct RebuildUnknownAnyFunction
20055     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
20056 
20057     Sema &S;
20058 
20059     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
20060 
20061     ExprResult VisitStmt(Stmt *S) {
20062       llvm_unreachable("unexpected statement!");
20063     }
20064 
20065     ExprResult VisitExpr(Expr *E) {
20066       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
20067         << E->getSourceRange();
20068       return ExprError();
20069     }
20070 
20071     /// Rebuild an expression which simply semantically wraps another
20072     /// expression which it shares the type and value kind of.
20073     template <class T> ExprResult rebuildSugarExpr(T *E) {
20074       ExprResult SubResult = Visit(E->getSubExpr());
20075       if (SubResult.isInvalid()) return ExprError();
20076 
20077       Expr *SubExpr = SubResult.get();
20078       E->setSubExpr(SubExpr);
20079       E->setType(SubExpr->getType());
20080       E->setValueKind(SubExpr->getValueKind());
20081       assert(E->getObjectKind() == OK_Ordinary);
20082       return E;
20083     }
20084 
20085     ExprResult VisitParenExpr(ParenExpr *E) {
20086       return rebuildSugarExpr(E);
20087     }
20088 
20089     ExprResult VisitUnaryExtension(UnaryOperator *E) {
20090       return rebuildSugarExpr(E);
20091     }
20092 
20093     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20094       ExprResult SubResult = Visit(E->getSubExpr());
20095       if (SubResult.isInvalid()) return ExprError();
20096 
20097       Expr *SubExpr = SubResult.get();
20098       E->setSubExpr(SubExpr);
20099       E->setType(S.Context.getPointerType(SubExpr->getType()));
20100       assert(E->isPRValue());
20101       assert(E->getObjectKind() == OK_Ordinary);
20102       return E;
20103     }
20104 
20105     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
20106       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
20107 
20108       E->setType(VD->getType());
20109 
20110       assert(E->isPRValue());
20111       if (S.getLangOpts().CPlusPlus &&
20112           !(isa<CXXMethodDecl>(VD) &&
20113             cast<CXXMethodDecl>(VD)->isInstance()))
20114         E->setValueKind(VK_LValue);
20115 
20116       return E;
20117     }
20118 
20119     ExprResult VisitMemberExpr(MemberExpr *E) {
20120       return resolveDecl(E, E->getMemberDecl());
20121     }
20122 
20123     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20124       return resolveDecl(E, E->getDecl());
20125     }
20126   };
20127 }
20128 
20129 /// Given a function expression of unknown-any type, try to rebuild it
20130 /// to have a function type.
20131 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
20132   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
20133   if (Result.isInvalid()) return ExprError();
20134   return S.DefaultFunctionArrayConversion(Result.get());
20135 }
20136 
20137 namespace {
20138   /// A visitor for rebuilding an expression of type __unknown_anytype
20139   /// into one which resolves the type directly on the referring
20140   /// expression.  Strict preservation of the original source
20141   /// structure is not a goal.
20142   struct RebuildUnknownAnyExpr
20143     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
20144 
20145     Sema &S;
20146 
20147     /// The current destination type.
20148     QualType DestType;
20149 
20150     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
20151       : S(S), DestType(CastType) {}
20152 
20153     ExprResult VisitStmt(Stmt *S) {
20154       llvm_unreachable("unexpected statement!");
20155     }
20156 
20157     ExprResult VisitExpr(Expr *E) {
20158       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20159         << E->getSourceRange();
20160       return ExprError();
20161     }
20162 
20163     ExprResult VisitCallExpr(CallExpr *E);
20164     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
20165 
20166     /// Rebuild an expression which simply semantically wraps another
20167     /// expression which it shares the type and value kind of.
20168     template <class T> ExprResult rebuildSugarExpr(T *E) {
20169       ExprResult SubResult = Visit(E->getSubExpr());
20170       if (SubResult.isInvalid()) return ExprError();
20171       Expr *SubExpr = SubResult.get();
20172       E->setSubExpr(SubExpr);
20173       E->setType(SubExpr->getType());
20174       E->setValueKind(SubExpr->getValueKind());
20175       assert(E->getObjectKind() == OK_Ordinary);
20176       return E;
20177     }
20178 
20179     ExprResult VisitParenExpr(ParenExpr *E) {
20180       return rebuildSugarExpr(E);
20181     }
20182 
20183     ExprResult VisitUnaryExtension(UnaryOperator *E) {
20184       return rebuildSugarExpr(E);
20185     }
20186 
20187     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20188       const PointerType *Ptr = DestType->getAs<PointerType>();
20189       if (!Ptr) {
20190         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
20191           << E->getSourceRange();
20192         return ExprError();
20193       }
20194 
20195       if (isa<CallExpr>(E->getSubExpr())) {
20196         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
20197           << E->getSourceRange();
20198         return ExprError();
20199       }
20200 
20201       assert(E->isPRValue());
20202       assert(E->getObjectKind() == OK_Ordinary);
20203       E->setType(DestType);
20204 
20205       // Build the sub-expression as if it were an object of the pointee type.
20206       DestType = Ptr->getPointeeType();
20207       ExprResult SubResult = Visit(E->getSubExpr());
20208       if (SubResult.isInvalid()) return ExprError();
20209       E->setSubExpr(SubResult.get());
20210       return E;
20211     }
20212 
20213     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
20214 
20215     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
20216 
20217     ExprResult VisitMemberExpr(MemberExpr *E) {
20218       return resolveDecl(E, E->getMemberDecl());
20219     }
20220 
20221     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20222       return resolveDecl(E, E->getDecl());
20223     }
20224   };
20225 }
20226 
20227 /// Rebuilds a call expression which yielded __unknown_anytype.
20228 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
20229   Expr *CalleeExpr = E->getCallee();
20230 
20231   enum FnKind {
20232     FK_MemberFunction,
20233     FK_FunctionPointer,
20234     FK_BlockPointer
20235   };
20236 
20237   FnKind Kind;
20238   QualType CalleeType = CalleeExpr->getType();
20239   if (CalleeType == S.Context.BoundMemberTy) {
20240     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
20241     Kind = FK_MemberFunction;
20242     CalleeType = Expr::findBoundMemberType(CalleeExpr);
20243   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
20244     CalleeType = Ptr->getPointeeType();
20245     Kind = FK_FunctionPointer;
20246   } else {
20247     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
20248     Kind = FK_BlockPointer;
20249   }
20250   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
20251 
20252   // Verify that this is a legal result type of a function.
20253   if (DestType->isArrayType() || DestType->isFunctionType()) {
20254     unsigned diagID = diag::err_func_returning_array_function;
20255     if (Kind == FK_BlockPointer)
20256       diagID = diag::err_block_returning_array_function;
20257 
20258     S.Diag(E->getExprLoc(), diagID)
20259       << DestType->isFunctionType() << DestType;
20260     return ExprError();
20261   }
20262 
20263   // Otherwise, go ahead and set DestType as the call's result.
20264   E->setType(DestType.getNonLValueExprType(S.Context));
20265   E->setValueKind(Expr::getValueKindForType(DestType));
20266   assert(E->getObjectKind() == OK_Ordinary);
20267 
20268   // Rebuild the function type, replacing the result type with DestType.
20269   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
20270   if (Proto) {
20271     // __unknown_anytype(...) is a special case used by the debugger when
20272     // it has no idea what a function's signature is.
20273     //
20274     // We want to build this call essentially under the K&R
20275     // unprototyped rules, but making a FunctionNoProtoType in C++
20276     // would foul up all sorts of assumptions.  However, we cannot
20277     // simply pass all arguments as variadic arguments, nor can we
20278     // portably just call the function under a non-variadic type; see
20279     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
20280     // However, it turns out that in practice it is generally safe to
20281     // call a function declared as "A foo(B,C,D);" under the prototype
20282     // "A foo(B,C,D,...);".  The only known exception is with the
20283     // Windows ABI, where any variadic function is implicitly cdecl
20284     // regardless of its normal CC.  Therefore we change the parameter
20285     // types to match the types of the arguments.
20286     //
20287     // This is a hack, but it is far superior to moving the
20288     // corresponding target-specific code from IR-gen to Sema/AST.
20289 
20290     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
20291     SmallVector<QualType, 8> ArgTypes;
20292     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
20293       ArgTypes.reserve(E->getNumArgs());
20294       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
20295         ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
20296       }
20297       ParamTypes = ArgTypes;
20298     }
20299     DestType = S.Context.getFunctionType(DestType, ParamTypes,
20300                                          Proto->getExtProtoInfo());
20301   } else {
20302     DestType = S.Context.getFunctionNoProtoType(DestType,
20303                                                 FnType->getExtInfo());
20304   }
20305 
20306   // Rebuild the appropriate pointer-to-function type.
20307   switch (Kind) {
20308   case FK_MemberFunction:
20309     // Nothing to do.
20310     break;
20311 
20312   case FK_FunctionPointer:
20313     DestType = S.Context.getPointerType(DestType);
20314     break;
20315 
20316   case FK_BlockPointer:
20317     DestType = S.Context.getBlockPointerType(DestType);
20318     break;
20319   }
20320 
20321   // Finally, we can recurse.
20322   ExprResult CalleeResult = Visit(CalleeExpr);
20323   if (!CalleeResult.isUsable()) return ExprError();
20324   E->setCallee(CalleeResult.get());
20325 
20326   // Bind a temporary if necessary.
20327   return S.MaybeBindToTemporary(E);
20328 }
20329 
20330 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
20331   // Verify that this is a legal result type of a call.
20332   if (DestType->isArrayType() || DestType->isFunctionType()) {
20333     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
20334       << DestType->isFunctionType() << DestType;
20335     return ExprError();
20336   }
20337 
20338   // Rewrite the method result type if available.
20339   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
20340     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
20341     Method->setReturnType(DestType);
20342   }
20343 
20344   // Change the type of the message.
20345   E->setType(DestType.getNonReferenceType());
20346   E->setValueKind(Expr::getValueKindForType(DestType));
20347 
20348   return S.MaybeBindToTemporary(E);
20349 }
20350 
20351 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
20352   // The only case we should ever see here is a function-to-pointer decay.
20353   if (E->getCastKind() == CK_FunctionToPointerDecay) {
20354     assert(E->isPRValue());
20355     assert(E->getObjectKind() == OK_Ordinary);
20356 
20357     E->setType(DestType);
20358 
20359     // Rebuild the sub-expression as the pointee (function) type.
20360     DestType = DestType->castAs<PointerType>()->getPointeeType();
20361 
20362     ExprResult Result = Visit(E->getSubExpr());
20363     if (!Result.isUsable()) return ExprError();
20364 
20365     E->setSubExpr(Result.get());
20366     return E;
20367   } else if (E->getCastKind() == CK_LValueToRValue) {
20368     assert(E->isPRValue());
20369     assert(E->getObjectKind() == OK_Ordinary);
20370 
20371     assert(isa<BlockPointerType>(E->getType()));
20372 
20373     E->setType(DestType);
20374 
20375     // The sub-expression has to be a lvalue reference, so rebuild it as such.
20376     DestType = S.Context.getLValueReferenceType(DestType);
20377 
20378     ExprResult Result = Visit(E->getSubExpr());
20379     if (!Result.isUsable()) return ExprError();
20380 
20381     E->setSubExpr(Result.get());
20382     return E;
20383   } else {
20384     llvm_unreachable("Unhandled cast type!");
20385   }
20386 }
20387 
20388 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
20389   ExprValueKind ValueKind = VK_LValue;
20390   QualType Type = DestType;
20391 
20392   // We know how to make this work for certain kinds of decls:
20393 
20394   //  - functions
20395   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
20396     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
20397       DestType = Ptr->getPointeeType();
20398       ExprResult Result = resolveDecl(E, VD);
20399       if (Result.isInvalid()) return ExprError();
20400       return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
20401                                  VK_PRValue);
20402     }
20403 
20404     if (!Type->isFunctionType()) {
20405       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
20406         << VD << E->getSourceRange();
20407       return ExprError();
20408     }
20409     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
20410       // We must match the FunctionDecl's type to the hack introduced in
20411       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
20412       // type. See the lengthy commentary in that routine.
20413       QualType FDT = FD->getType();
20414       const FunctionType *FnType = FDT->castAs<FunctionType>();
20415       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
20416       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
20417       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
20418         SourceLocation Loc = FD->getLocation();
20419         FunctionDecl *NewFD = FunctionDecl::Create(
20420             S.Context, FD->getDeclContext(), Loc, Loc,
20421             FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
20422             SC_None, S.getCurFPFeatures().isFPConstrained(),
20423             false /*isInlineSpecified*/, FD->hasPrototype(),
20424             /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
20425 
20426         if (FD->getQualifier())
20427           NewFD->setQualifierInfo(FD->getQualifierLoc());
20428 
20429         SmallVector<ParmVarDecl*, 16> Params;
20430         for (const auto &AI : FT->param_types()) {
20431           ParmVarDecl *Param =
20432             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
20433           Param->setScopeInfo(0, Params.size());
20434           Params.push_back(Param);
20435         }
20436         NewFD->setParams(Params);
20437         DRE->setDecl(NewFD);
20438         VD = DRE->getDecl();
20439       }
20440     }
20441 
20442     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
20443       if (MD->isInstance()) {
20444         ValueKind = VK_PRValue;
20445         Type = S.Context.BoundMemberTy;
20446       }
20447 
20448     // Function references aren't l-values in C.
20449     if (!S.getLangOpts().CPlusPlus)
20450       ValueKind = VK_PRValue;
20451 
20452   //  - variables
20453   } else if (isa<VarDecl>(VD)) {
20454     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
20455       Type = RefTy->getPointeeType();
20456     } else if (Type->isFunctionType()) {
20457       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
20458         << VD << E->getSourceRange();
20459       return ExprError();
20460     }
20461 
20462   //  - nothing else
20463   } else {
20464     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
20465       << VD << E->getSourceRange();
20466     return ExprError();
20467   }
20468 
20469   // Modifying the declaration like this is friendly to IR-gen but
20470   // also really dangerous.
20471   VD->setType(DestType);
20472   E->setType(Type);
20473   E->setValueKind(ValueKind);
20474   return E;
20475 }
20476 
20477 /// Check a cast of an unknown-any type.  We intentionally only
20478 /// trigger this for C-style casts.
20479 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
20480                                      Expr *CastExpr, CastKind &CastKind,
20481                                      ExprValueKind &VK, CXXCastPath &Path) {
20482   // The type we're casting to must be either void or complete.
20483   if (!CastType->isVoidType() &&
20484       RequireCompleteType(TypeRange.getBegin(), CastType,
20485                           diag::err_typecheck_cast_to_incomplete))
20486     return ExprError();
20487 
20488   // Rewrite the casted expression from scratch.
20489   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
20490   if (!result.isUsable()) return ExprError();
20491 
20492   CastExpr = result.get();
20493   VK = CastExpr->getValueKind();
20494   CastKind = CK_NoOp;
20495 
20496   return CastExpr;
20497 }
20498 
20499 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
20500   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
20501 }
20502 
20503 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
20504                                     Expr *arg, QualType &paramType) {
20505   // If the syntactic form of the argument is not an explicit cast of
20506   // any sort, just do default argument promotion.
20507   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
20508   if (!castArg) {
20509     ExprResult result = DefaultArgumentPromotion(arg);
20510     if (result.isInvalid()) return ExprError();
20511     paramType = result.get()->getType();
20512     return result;
20513   }
20514 
20515   // Otherwise, use the type that was written in the explicit cast.
20516   assert(!arg->hasPlaceholderType());
20517   paramType = castArg->getTypeAsWritten();
20518 
20519   // Copy-initialize a parameter of that type.
20520   InitializedEntity entity =
20521     InitializedEntity::InitializeParameter(Context, paramType,
20522                                            /*consumed*/ false);
20523   return PerformCopyInitialization(entity, callLoc, arg);
20524 }
20525 
20526 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
20527   Expr *orig = E;
20528   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
20529   while (true) {
20530     E = E->IgnoreParenImpCasts();
20531     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
20532       E = call->getCallee();
20533       diagID = diag::err_uncasted_call_of_unknown_any;
20534     } else {
20535       break;
20536     }
20537   }
20538 
20539   SourceLocation loc;
20540   NamedDecl *d;
20541   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
20542     loc = ref->getLocation();
20543     d = ref->getDecl();
20544   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
20545     loc = mem->getMemberLoc();
20546     d = mem->getMemberDecl();
20547   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
20548     diagID = diag::err_uncasted_call_of_unknown_any;
20549     loc = msg->getSelectorStartLoc();
20550     d = msg->getMethodDecl();
20551     if (!d) {
20552       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
20553         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
20554         << orig->getSourceRange();
20555       return ExprError();
20556     }
20557   } else {
20558     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20559       << E->getSourceRange();
20560     return ExprError();
20561   }
20562 
20563   S.Diag(loc, diagID) << d << orig->getSourceRange();
20564 
20565   // Never recoverable.
20566   return ExprError();
20567 }
20568 
20569 /// Check for operands with placeholder types and complain if found.
20570 /// Returns ExprError() if there was an error and no recovery was possible.
20571 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
20572   if (!Context.isDependenceAllowed()) {
20573     // C cannot handle TypoExpr nodes on either side of a binop because it
20574     // doesn't handle dependent types properly, so make sure any TypoExprs have
20575     // been dealt with before checking the operands.
20576     ExprResult Result = CorrectDelayedTyposInExpr(E);
20577     if (!Result.isUsable()) return ExprError();
20578     E = Result.get();
20579   }
20580 
20581   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
20582   if (!placeholderType) return E;
20583 
20584   switch (placeholderType->getKind()) {
20585 
20586   // Overloaded expressions.
20587   case BuiltinType::Overload: {
20588     // Try to resolve a single function template specialization.
20589     // This is obligatory.
20590     ExprResult Result = E;
20591     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
20592       return Result;
20593 
20594     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
20595     // leaves Result unchanged on failure.
20596     Result = E;
20597     if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
20598       return Result;
20599 
20600     // If that failed, try to recover with a call.
20601     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
20602                          /*complain*/ true);
20603     return Result;
20604   }
20605 
20606   // Bound member functions.
20607   case BuiltinType::BoundMember: {
20608     ExprResult result = E;
20609     const Expr *BME = E->IgnoreParens();
20610     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
20611     // Try to give a nicer diagnostic if it is a bound member that we recognize.
20612     if (isa<CXXPseudoDestructorExpr>(BME)) {
20613       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
20614     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
20615       if (ME->getMemberNameInfo().getName().getNameKind() ==
20616           DeclarationName::CXXDestructorName)
20617         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
20618     }
20619     tryToRecoverWithCall(result, PD,
20620                          /*complain*/ true);
20621     return result;
20622   }
20623 
20624   // ARC unbridged casts.
20625   case BuiltinType::ARCUnbridgedCast: {
20626     Expr *realCast = stripARCUnbridgedCast(E);
20627     diagnoseARCUnbridgedCast(realCast);
20628     return realCast;
20629   }
20630 
20631   // Expressions of unknown type.
20632   case BuiltinType::UnknownAny:
20633     return diagnoseUnknownAnyExpr(*this, E);
20634 
20635   // Pseudo-objects.
20636   case BuiltinType::PseudoObject:
20637     return checkPseudoObjectRValue(E);
20638 
20639   case BuiltinType::BuiltinFn: {
20640     // Accept __noop without parens by implicitly converting it to a call expr.
20641     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
20642     if (DRE) {
20643       auto *FD = cast<FunctionDecl>(DRE->getDecl());
20644       unsigned BuiltinID = FD->getBuiltinID();
20645       if (BuiltinID == Builtin::BI__noop) {
20646         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
20647                               CK_BuiltinFnToFnPtr)
20648                 .get();
20649         return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
20650                                 VK_PRValue, SourceLocation(),
20651                                 FPOptionsOverride());
20652       }
20653 
20654       if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) {
20655         // Any use of these other than a direct call is ill-formed as of C++20,
20656         // because they are not addressable functions. In earlier language
20657         // modes, warn and force an instantiation of the real body.
20658         Diag(E->getBeginLoc(),
20659              getLangOpts().CPlusPlus20
20660                  ? diag::err_use_of_unaddressable_function
20661                  : diag::warn_cxx20_compat_use_of_unaddressable_function);
20662         if (FD->isImplicitlyInstantiable()) {
20663           // Require a definition here because a normal attempt at
20664           // instantiation for a builtin will be ignored, and we won't try
20665           // again later. We assume that the definition of the template
20666           // precedes this use.
20667           InstantiateFunctionDefinition(E->getBeginLoc(), FD,
20668                                         /*Recursive=*/false,
20669                                         /*DefinitionRequired=*/true,
20670                                         /*AtEndOfTU=*/false);
20671         }
20672         // Produce a properly-typed reference to the function.
20673         CXXScopeSpec SS;
20674         SS.Adopt(DRE->getQualifierLoc());
20675         TemplateArgumentListInfo TemplateArgs;
20676         DRE->copyTemplateArgumentsInto(TemplateArgs);
20677         return BuildDeclRefExpr(
20678             FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
20679             DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
20680             DRE->getTemplateKeywordLoc(),
20681             DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
20682       }
20683     }
20684 
20685     Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
20686     return ExprError();
20687   }
20688 
20689   case BuiltinType::IncompleteMatrixIdx:
20690     Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
20691              ->getRowIdx()
20692              ->getBeginLoc(),
20693          diag::err_matrix_incomplete_index);
20694     return ExprError();
20695 
20696   // Expressions of unknown type.
20697   case BuiltinType::OMPArraySection:
20698     Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
20699     return ExprError();
20700 
20701   // Expressions of unknown type.
20702   case BuiltinType::OMPArrayShaping:
20703     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
20704 
20705   case BuiltinType::OMPIterator:
20706     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
20707 
20708   // Everything else should be impossible.
20709 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
20710   case BuiltinType::Id:
20711 #include "clang/Basic/OpenCLImageTypes.def"
20712 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
20713   case BuiltinType::Id:
20714 #include "clang/Basic/OpenCLExtensionTypes.def"
20715 #define SVE_TYPE(Name, Id, SingletonId) \
20716   case BuiltinType::Id:
20717 #include "clang/Basic/AArch64SVEACLETypes.def"
20718 #define PPC_VECTOR_TYPE(Name, Id, Size) \
20719   case BuiltinType::Id:
20720 #include "clang/Basic/PPCTypes.def"
20721 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
20722 #include "clang/Basic/RISCVVTypes.def"
20723 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
20724 #define PLACEHOLDER_TYPE(Id, SingletonId)
20725 #include "clang/AST/BuiltinTypes.def"
20726     break;
20727   }
20728 
20729   llvm_unreachable("invalid placeholder type!");
20730 }
20731 
20732 bool Sema::CheckCaseExpression(Expr *E) {
20733   if (E->isTypeDependent())
20734     return true;
20735   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
20736     return E->getType()->isIntegralOrEnumerationType();
20737   return false;
20738 }
20739 
20740 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
20741 ExprResult
20742 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
20743   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
20744          "Unknown Objective-C Boolean value!");
20745   QualType BoolT = Context.ObjCBuiltinBoolTy;
20746   if (!Context.getBOOLDecl()) {
20747     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
20748                         Sema::LookupOrdinaryName);
20749     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
20750       NamedDecl *ND = Result.getFoundDecl();
20751       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
20752         Context.setBOOLDecl(TD);
20753     }
20754   }
20755   if (Context.getBOOLDecl())
20756     BoolT = Context.getBOOLType();
20757   return new (Context)
20758       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
20759 }
20760 
20761 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
20762     llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
20763     SourceLocation RParen) {
20764   auto FindSpecVersion = [&](StringRef Platform) -> Optional<VersionTuple> {
20765     auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
20766       return Spec.getPlatform() == Platform;
20767     });
20768     // Transcribe the "ios" availability check to "maccatalyst" when compiling
20769     // for "maccatalyst" if "maccatalyst" is not specified.
20770     if (Spec == AvailSpecs.end() && Platform == "maccatalyst") {
20771       Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
20772         return Spec.getPlatform() == "ios";
20773       });
20774     }
20775     if (Spec == AvailSpecs.end())
20776       return None;
20777     return Spec->getVersion();
20778   };
20779 
20780   VersionTuple Version;
20781   if (auto MaybeVersion =
20782           FindSpecVersion(Context.getTargetInfo().getPlatformName()))
20783     Version = *MaybeVersion;
20784 
20785   // The use of `@available` in the enclosing context should be analyzed to
20786   // warn when it's used inappropriately (i.e. not if(@available)).
20787   if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext())
20788     Context->HasPotentialAvailabilityViolations = true;
20789 
20790   return new (Context)
20791       ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
20792 }
20793 
20794 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
20795                                     ArrayRef<Expr *> SubExprs, QualType T) {
20796   if (!Context.getLangOpts().RecoveryAST)
20797     return ExprError();
20798 
20799   if (isSFINAEContext())
20800     return ExprError();
20801 
20802   if (T.isNull() || T->isUndeducedType() ||
20803       !Context.getLangOpts().RecoveryASTType)
20804     // We don't know the concrete type, fallback to dependent type.
20805     T = Context.DependentTy;
20806 
20807   return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
20808 }
20809