xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaExpr.cpp (revision 69c5fa5cd1ec9b09ed88a086607a8a0993818db9)
1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TreeTransform.h"
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/RecursiveASTVisitor.h"
28 #include "clang/AST/TypeLoc.h"
29 #include "clang/Basic/Builtins.h"
30 #include "clang/Basic/FixedPoint.h"
31 #include "clang/Basic/PartialDiagnostic.h"
32 #include "clang/Basic/SourceManager.h"
33 #include "clang/Basic/TargetInfo.h"
34 #include "clang/Lex/LiteralSupport.h"
35 #include "clang/Lex/Preprocessor.h"
36 #include "clang/Sema/AnalysisBasedWarnings.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/DelayedDiagnostic.h"
39 #include "clang/Sema/Designator.h"
40 #include "clang/Sema/Initialization.h"
41 #include "clang/Sema/Lookup.h"
42 #include "clang/Sema/Overload.h"
43 #include "clang/Sema/ParsedTemplate.h"
44 #include "clang/Sema/Scope.h"
45 #include "clang/Sema/ScopeInfo.h"
46 #include "clang/Sema/SemaFixItUtils.h"
47 #include "clang/Sema/SemaInternal.h"
48 #include "clang/Sema/Template.h"
49 #include "llvm/Support/ConvertUTF.h"
50 #include "llvm/Support/SaveAndRestore.h"
51 using namespace clang;
52 using namespace sema;
53 using llvm::RoundingMode;
54 
55 /// Determine whether the use of this declaration is valid, without
56 /// emitting diagnostics.
57 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
58   // See if this is an auto-typed variable whose initializer we are parsing.
59   if (ParsingInitForAutoVars.count(D))
60     return false;
61 
62   // See if this is a deleted function.
63   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
64     if (FD->isDeleted())
65       return false;
66 
67     // If the function has a deduced return type, and we can't deduce it,
68     // then we can't use it either.
69     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
70         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
71       return false;
72 
73     // See if this is an aligned allocation/deallocation function that is
74     // unavailable.
75     if (TreatUnavailableAsInvalid &&
76         isUnavailableAlignedAllocationFunction(*FD))
77       return false;
78   }
79 
80   // See if this function is unavailable.
81   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
82       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
83     return false;
84 
85   return true;
86 }
87 
88 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
89   // Warn if this is used but marked unused.
90   if (const auto *A = D->getAttr<UnusedAttr>()) {
91     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
92     // should diagnose them.
93     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
94         A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
95       const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
96       if (DC && !DC->hasAttr<UnusedAttr>())
97         S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
98     }
99   }
100 }
101 
102 /// Emit a note explaining that this function is deleted.
103 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
104   assert(Decl && Decl->isDeleted());
105 
106   if (Decl->isDefaulted()) {
107     // If the method was explicitly defaulted, point at that declaration.
108     if (!Decl->isImplicit())
109       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
110 
111     // Try to diagnose why this special member function was implicitly
112     // deleted. This might fail, if that reason no longer applies.
113     DiagnoseDeletedDefaultedFunction(Decl);
114     return;
115   }
116 
117   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
118   if (Ctor && Ctor->isInheritingConstructor())
119     return NoteDeletedInheritingConstructor(Ctor);
120 
121   Diag(Decl->getLocation(), diag::note_availability_specified_here)
122     << Decl << 1;
123 }
124 
125 /// Determine whether a FunctionDecl was ever declared with an
126 /// explicit storage class.
127 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
128   for (auto I : D->redecls()) {
129     if (I->getStorageClass() != SC_None)
130       return true;
131   }
132   return false;
133 }
134 
135 /// Check whether we're in an extern inline function and referring to a
136 /// variable or function with internal linkage (C11 6.7.4p3).
137 ///
138 /// This is only a warning because we used to silently accept this code, but
139 /// in many cases it will not behave correctly. This is not enabled in C++ mode
140 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
141 /// and so while there may still be user mistakes, most of the time we can't
142 /// prove that there are errors.
143 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
144                                                       const NamedDecl *D,
145                                                       SourceLocation Loc) {
146   // This is disabled under C++; there are too many ways for this to fire in
147   // contexts where the warning is a false positive, or where it is technically
148   // correct but benign.
149   if (S.getLangOpts().CPlusPlus)
150     return;
151 
152   // Check if this is an inlined function or method.
153   FunctionDecl *Current = S.getCurFunctionDecl();
154   if (!Current)
155     return;
156   if (!Current->isInlined())
157     return;
158   if (!Current->isExternallyVisible())
159     return;
160 
161   // Check if the decl has internal linkage.
162   if (D->getFormalLinkage() != InternalLinkage)
163     return;
164 
165   // Downgrade from ExtWarn to Extension if
166   //  (1) the supposedly external inline function is in the main file,
167   //      and probably won't be included anywhere else.
168   //  (2) the thing we're referencing is a pure function.
169   //  (3) the thing we're referencing is another inline function.
170   // This last can give us false negatives, but it's better than warning on
171   // wrappers for simple C library functions.
172   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
173   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
174   if (!DowngradeWarning && UsedFn)
175     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
176 
177   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
178                                : diag::ext_internal_in_extern_inline)
179     << /*IsVar=*/!UsedFn << D;
180 
181   S.MaybeSuggestAddingStaticToDecl(Current);
182 
183   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
184       << D;
185 }
186 
187 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
188   const FunctionDecl *First = Cur->getFirstDecl();
189 
190   // Suggest "static" on the function, if possible.
191   if (!hasAnyExplicitStorageClass(First)) {
192     SourceLocation DeclBegin = First->getSourceRange().getBegin();
193     Diag(DeclBegin, diag::note_convert_inline_to_static)
194       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
195   }
196 }
197 
198 /// Determine whether the use of this declaration is valid, and
199 /// emit any corresponding diagnostics.
200 ///
201 /// This routine diagnoses various problems with referencing
202 /// declarations that can occur when using a declaration. For example,
203 /// it might warn if a deprecated or unavailable declaration is being
204 /// used, or produce an error (and return true) if a C++0x deleted
205 /// function is being used.
206 ///
207 /// \returns true if there was an error (this declaration cannot be
208 /// referenced), false otherwise.
209 ///
210 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
211                              const ObjCInterfaceDecl *UnknownObjCClass,
212                              bool ObjCPropertyAccess,
213                              bool AvoidPartialAvailabilityChecks,
214                              ObjCInterfaceDecl *ClassReceiver) {
215   SourceLocation Loc = Locs.front();
216   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
217     // If there were any diagnostics suppressed by template argument deduction,
218     // emit them now.
219     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
220     if (Pos != SuppressedDiagnostics.end()) {
221       for (const PartialDiagnosticAt &Suppressed : Pos->second)
222         Diag(Suppressed.first, Suppressed.second);
223 
224       // Clear out the list of suppressed diagnostics, so that we don't emit
225       // them again for this specialization. However, we don't obsolete this
226       // entry from the table, because we want to avoid ever emitting these
227       // diagnostics again.
228       Pos->second.clear();
229     }
230 
231     // C++ [basic.start.main]p3:
232     //   The function 'main' shall not be used within a program.
233     if (cast<FunctionDecl>(D)->isMain())
234       Diag(Loc, diag::ext_main_used);
235 
236     diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
237   }
238 
239   // See if this is an auto-typed variable whose initializer we are parsing.
240   if (ParsingInitForAutoVars.count(D)) {
241     if (isa<BindingDecl>(D)) {
242       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
243         << D->getDeclName();
244     } else {
245       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
246         << D->getDeclName() << cast<VarDecl>(D)->getType();
247     }
248     return true;
249   }
250 
251   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
252     // See if this is a deleted function.
253     if (FD->isDeleted()) {
254       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
255       if (Ctor && Ctor->isInheritingConstructor())
256         Diag(Loc, diag::err_deleted_inherited_ctor_use)
257             << Ctor->getParent()
258             << Ctor->getInheritedConstructor().getConstructor()->getParent();
259       else
260         Diag(Loc, diag::err_deleted_function_use);
261       NoteDeletedFunction(FD);
262       return true;
263     }
264 
265     // [expr.prim.id]p4
266     //   A program that refers explicitly or implicitly to a function with a
267     //   trailing requires-clause whose constraint-expression is not satisfied,
268     //   other than to declare it, is ill-formed. [...]
269     //
270     // See if this is a function with constraints that need to be satisfied.
271     // Check this before deducing the return type, as it might instantiate the
272     // definition.
273     if (FD->getTrailingRequiresClause()) {
274       ConstraintSatisfaction Satisfaction;
275       if (CheckFunctionConstraints(FD, Satisfaction, Loc))
276         // A diagnostic will have already been generated (non-constant
277         // constraint expression, for example)
278         return true;
279       if (!Satisfaction.IsSatisfied) {
280         Diag(Loc,
281              diag::err_reference_to_function_with_unsatisfied_constraints)
282             << D;
283         DiagnoseUnsatisfiedConstraint(Satisfaction);
284         return true;
285       }
286     }
287 
288     // If the function has a deduced return type, and we can't deduce it,
289     // then we can't use it either.
290     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
291         DeduceReturnType(FD, Loc))
292       return true;
293 
294     if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
295       return true;
296 
297     if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD))
298       return true;
299   }
300 
301   if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
302     // Lambdas are only default-constructible or assignable in C++2a onwards.
303     if (MD->getParent()->isLambda() &&
304         ((isa<CXXConstructorDecl>(MD) &&
305           cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
306          MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
307       Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
308         << !isa<CXXConstructorDecl>(MD);
309     }
310   }
311 
312   auto getReferencedObjCProp = [](const NamedDecl *D) ->
313                                       const ObjCPropertyDecl * {
314     if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
315       return MD->findPropertyDecl();
316     return nullptr;
317   };
318   if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
319     if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
320       return true;
321   } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
322       return true;
323   }
324 
325   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
326   // Only the variables omp_in and omp_out are allowed in the combiner.
327   // Only the variables omp_priv and omp_orig are allowed in the
328   // initializer-clause.
329   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
330   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
331       isa<VarDecl>(D)) {
332     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
333         << getCurFunction()->HasOMPDeclareReductionCombiner;
334     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
335     return true;
336   }
337 
338   // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
339   //  List-items in map clauses on this construct may only refer to the declared
340   //  variable var and entities that could be referenced by a procedure defined
341   //  at the same location
342   auto *DMD = dyn_cast<OMPDeclareMapperDecl>(CurContext);
343   if (LangOpts.OpenMP && DMD && !CurContext->containsDecl(D) &&
344       isa<VarDecl>(D)) {
345     Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
346         << DMD->getVarName().getAsString();
347     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
348     return true;
349   }
350 
351   DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
352                              AvoidPartialAvailabilityChecks, ClassReceiver);
353 
354   DiagnoseUnusedOfDecl(*this, D, Loc);
355 
356   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
357 
358   if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) {
359     if (const auto *VD = dyn_cast<ValueDecl>(D))
360       checkDeviceDecl(VD, Loc);
361 
362     if (!Context.getTargetInfo().isTLSSupported())
363       if (const auto *VD = dyn_cast<VarDecl>(D))
364         if (VD->getTLSKind() != VarDecl::TLS_None)
365           targetDiag(*Locs.begin(), diag::err_thread_unsupported);
366   }
367 
368   if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
369       !isUnevaluatedContext()) {
370     // C++ [expr.prim.req.nested] p3
371     //   A local parameter shall only appear as an unevaluated operand
372     //   (Clause 8) within the constraint-expression.
373     Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
374         << D;
375     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
376     return true;
377   }
378 
379   return false;
380 }
381 
382 /// DiagnoseSentinelCalls - This routine checks whether a call or
383 /// message-send is to a declaration with the sentinel attribute, and
384 /// if so, it checks that the requirements of the sentinel are
385 /// satisfied.
386 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
387                                  ArrayRef<Expr *> Args) {
388   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
389   if (!attr)
390     return;
391 
392   // The number of formal parameters of the declaration.
393   unsigned numFormalParams;
394 
395   // The kind of declaration.  This is also an index into a %select in
396   // the diagnostic.
397   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
398 
399   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
400     numFormalParams = MD->param_size();
401     calleeType = CT_Method;
402   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
403     numFormalParams = FD->param_size();
404     calleeType = CT_Function;
405   } else if (isa<VarDecl>(D)) {
406     QualType type = cast<ValueDecl>(D)->getType();
407     const FunctionType *fn = nullptr;
408     if (const PointerType *ptr = type->getAs<PointerType>()) {
409       fn = ptr->getPointeeType()->getAs<FunctionType>();
410       if (!fn) return;
411       calleeType = CT_Function;
412     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
413       fn = ptr->getPointeeType()->castAs<FunctionType>();
414       calleeType = CT_Block;
415     } else {
416       return;
417     }
418 
419     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
420       numFormalParams = proto->getNumParams();
421     } else {
422       numFormalParams = 0;
423     }
424   } else {
425     return;
426   }
427 
428   // "nullPos" is the number of formal parameters at the end which
429   // effectively count as part of the variadic arguments.  This is
430   // useful if you would prefer to not have *any* formal parameters,
431   // but the language forces you to have at least one.
432   unsigned nullPos = attr->getNullPos();
433   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
434   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
435 
436   // The number of arguments which should follow the sentinel.
437   unsigned numArgsAfterSentinel = attr->getSentinel();
438 
439   // If there aren't enough arguments for all the formal parameters,
440   // the sentinel, and the args after the sentinel, complain.
441   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
442     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
443     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
444     return;
445   }
446 
447   // Otherwise, find the sentinel expression.
448   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
449   if (!sentinelExpr) return;
450   if (sentinelExpr->isValueDependent()) return;
451   if (Context.isSentinelNullExpr(sentinelExpr)) return;
452 
453   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
454   // or 'NULL' if those are actually defined in the context.  Only use
455   // 'nil' for ObjC methods, where it's much more likely that the
456   // variadic arguments form a list of object pointers.
457   SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
458   std::string NullValue;
459   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
460     NullValue = "nil";
461   else if (getLangOpts().CPlusPlus11)
462     NullValue = "nullptr";
463   else if (PP.isMacroDefined("NULL"))
464     NullValue = "NULL";
465   else
466     NullValue = "(void*) 0";
467 
468   if (MissingNilLoc.isInvalid())
469     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
470   else
471     Diag(MissingNilLoc, diag::warn_missing_sentinel)
472       << int(calleeType)
473       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
474   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
475 }
476 
477 SourceRange Sema::getExprRange(Expr *E) const {
478   return E ? E->getSourceRange() : SourceRange();
479 }
480 
481 //===----------------------------------------------------------------------===//
482 //  Standard Promotions and Conversions
483 //===----------------------------------------------------------------------===//
484 
485 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
486 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
487   // Handle any placeholder expressions which made it here.
488   if (E->getType()->isPlaceholderType()) {
489     ExprResult result = CheckPlaceholderExpr(E);
490     if (result.isInvalid()) return ExprError();
491     E = result.get();
492   }
493 
494   QualType Ty = E->getType();
495   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
496 
497   if (Ty->isFunctionType()) {
498     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
499       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
500         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
501           return ExprError();
502 
503     E = ImpCastExprToType(E, Context.getPointerType(Ty),
504                           CK_FunctionToPointerDecay).get();
505   } else if (Ty->isArrayType()) {
506     // In C90 mode, arrays only promote to pointers if the array expression is
507     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
508     // type 'array of type' is converted to an expression that has type 'pointer
509     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
510     // that has type 'array of type' ...".  The relevant change is "an lvalue"
511     // (C90) to "an expression" (C99).
512     //
513     // C++ 4.2p1:
514     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
515     // T" can be converted to an rvalue of type "pointer to T".
516     //
517     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
518       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
519                             CK_ArrayToPointerDecay).get();
520   }
521   return E;
522 }
523 
524 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
525   // Check to see if we are dereferencing a null pointer.  If so,
526   // and if not volatile-qualified, this is undefined behavior that the
527   // optimizer will delete, so warn about it.  People sometimes try to use this
528   // to get a deterministic trap and are surprised by clang's behavior.  This
529   // only handles the pattern "*null", which is a very syntactic check.
530   const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
531   if (UO && UO->getOpcode() == UO_Deref &&
532       UO->getSubExpr()->getType()->isPointerType()) {
533     const LangAS AS =
534         UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
535     if ((!isTargetAddressSpace(AS) ||
536          (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
537         UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
538             S.Context, Expr::NPC_ValueDependentIsNotNull) &&
539         !UO->getType().isVolatileQualified()) {
540       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
541                             S.PDiag(diag::warn_indirection_through_null)
542                                 << UO->getSubExpr()->getSourceRange());
543       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
544                             S.PDiag(diag::note_indirection_through_null));
545     }
546   }
547 }
548 
549 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
550                                     SourceLocation AssignLoc,
551                                     const Expr* RHS) {
552   const ObjCIvarDecl *IV = OIRE->getDecl();
553   if (!IV)
554     return;
555 
556   DeclarationName MemberName = IV->getDeclName();
557   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
558   if (!Member || !Member->isStr("isa"))
559     return;
560 
561   const Expr *Base = OIRE->getBase();
562   QualType BaseType = Base->getType();
563   if (OIRE->isArrow())
564     BaseType = BaseType->getPointeeType();
565   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
566     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
567       ObjCInterfaceDecl *ClassDeclared = nullptr;
568       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
569       if (!ClassDeclared->getSuperClass()
570           && (*ClassDeclared->ivar_begin()) == IV) {
571         if (RHS) {
572           NamedDecl *ObjectSetClass =
573             S.LookupSingleName(S.TUScope,
574                                &S.Context.Idents.get("object_setClass"),
575                                SourceLocation(), S.LookupOrdinaryName);
576           if (ObjectSetClass) {
577             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
578             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
579                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
580                                               "object_setClass(")
581                 << FixItHint::CreateReplacement(
582                        SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
583                 << FixItHint::CreateInsertion(RHSLocEnd, ")");
584           }
585           else
586             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
587         } else {
588           NamedDecl *ObjectGetClass =
589             S.LookupSingleName(S.TUScope,
590                                &S.Context.Idents.get("object_getClass"),
591                                SourceLocation(), S.LookupOrdinaryName);
592           if (ObjectGetClass)
593             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
594                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
595                                               "object_getClass(")
596                 << FixItHint::CreateReplacement(
597                        SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
598           else
599             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
600         }
601         S.Diag(IV->getLocation(), diag::note_ivar_decl);
602       }
603     }
604 }
605 
606 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
607   // Handle any placeholder expressions which made it here.
608   if (E->getType()->isPlaceholderType()) {
609     ExprResult result = CheckPlaceholderExpr(E);
610     if (result.isInvalid()) return ExprError();
611     E = result.get();
612   }
613 
614   // C++ [conv.lval]p1:
615   //   A glvalue of a non-function, non-array type T can be
616   //   converted to a prvalue.
617   if (!E->isGLValue()) return E;
618 
619   QualType T = E->getType();
620   assert(!T.isNull() && "r-value conversion on typeless expression?");
621 
622   // lvalue-to-rvalue conversion cannot be applied to function or array types.
623   if (T->isFunctionType() || T->isArrayType())
624     return E;
625 
626   // We don't want to throw lvalue-to-rvalue casts on top of
627   // expressions of certain types in C++.
628   if (getLangOpts().CPlusPlus &&
629       (E->getType() == Context.OverloadTy ||
630        T->isDependentType() ||
631        T->isRecordType()))
632     return E;
633 
634   // The C standard is actually really unclear on this point, and
635   // DR106 tells us what the result should be but not why.  It's
636   // generally best to say that void types just doesn't undergo
637   // lvalue-to-rvalue at all.  Note that expressions of unqualified
638   // 'void' type are never l-values, but qualified void can be.
639   if (T->isVoidType())
640     return E;
641 
642   // OpenCL usually rejects direct accesses to values of 'half' type.
643   if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
644       T->isHalfType()) {
645     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
646       << 0 << T;
647     return ExprError();
648   }
649 
650   CheckForNullPointerDereference(*this, E);
651   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
652     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
653                                      &Context.Idents.get("object_getClass"),
654                                      SourceLocation(), LookupOrdinaryName);
655     if (ObjectGetClass)
656       Diag(E->getExprLoc(), diag::warn_objc_isa_use)
657           << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
658           << FixItHint::CreateReplacement(
659                  SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
660     else
661       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
662   }
663   else if (const ObjCIvarRefExpr *OIRE =
664             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
665     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
666 
667   // C++ [conv.lval]p1:
668   //   [...] If T is a non-class type, the type of the prvalue is the
669   //   cv-unqualified version of T. Otherwise, the type of the
670   //   rvalue is T.
671   //
672   // C99 6.3.2.1p2:
673   //   If the lvalue has qualified type, the value has the unqualified
674   //   version of the type of the lvalue; otherwise, the value has the
675   //   type of the lvalue.
676   if (T.hasQualifiers())
677     T = T.getUnqualifiedType();
678 
679   // Under the MS ABI, lock down the inheritance model now.
680   if (T->isMemberPointerType() &&
681       Context.getTargetInfo().getCXXABI().isMicrosoft())
682     (void)isCompleteType(E->getExprLoc(), T);
683 
684   ExprResult Res = CheckLValueToRValueConversionOperand(E);
685   if (Res.isInvalid())
686     return Res;
687   E = Res.get();
688 
689   // Loading a __weak object implicitly retains the value, so we need a cleanup to
690   // balance that.
691   if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
692     Cleanup.setExprNeedsCleanups(true);
693 
694   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
695     Cleanup.setExprNeedsCleanups(true);
696 
697   // C++ [conv.lval]p3:
698   //   If T is cv std::nullptr_t, the result is a null pointer constant.
699   CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
700   Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_RValue);
701 
702   // C11 6.3.2.1p2:
703   //   ... if the lvalue has atomic type, the value has the non-atomic version
704   //   of the type of the lvalue ...
705   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
706     T = Atomic->getValueType().getUnqualifiedType();
707     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
708                                    nullptr, VK_RValue);
709   }
710 
711   return Res;
712 }
713 
714 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
715   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
716   if (Res.isInvalid())
717     return ExprError();
718   Res = DefaultLvalueConversion(Res.get());
719   if (Res.isInvalid())
720     return ExprError();
721   return Res;
722 }
723 
724 /// CallExprUnaryConversions - a special case of an unary conversion
725 /// performed on a function designator of a call expression.
726 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
727   QualType Ty = E->getType();
728   ExprResult Res = E;
729   // Only do implicit cast for a function type, but not for a pointer
730   // to function type.
731   if (Ty->isFunctionType()) {
732     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
733                             CK_FunctionToPointerDecay);
734     if (Res.isInvalid())
735       return ExprError();
736   }
737   Res = DefaultLvalueConversion(Res.get());
738   if (Res.isInvalid())
739     return ExprError();
740   return Res.get();
741 }
742 
743 /// UsualUnaryConversions - Performs various conversions that are common to most
744 /// operators (C99 6.3). The conversions of array and function types are
745 /// sometimes suppressed. For example, the array->pointer conversion doesn't
746 /// apply if the array is an argument to the sizeof or address (&) operators.
747 /// In these instances, this routine should *not* be called.
748 ExprResult Sema::UsualUnaryConversions(Expr *E) {
749   // First, convert to an r-value.
750   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
751   if (Res.isInvalid())
752     return ExprError();
753   E = Res.get();
754 
755   QualType Ty = E->getType();
756   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
757 
758   // Half FP have to be promoted to float unless it is natively supported
759   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
760     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
761 
762   // Try to perform integral promotions if the object has a theoretically
763   // promotable type.
764   if (Ty->isIntegralOrUnscopedEnumerationType()) {
765     // C99 6.3.1.1p2:
766     //
767     //   The following may be used in an expression wherever an int or
768     //   unsigned int may be used:
769     //     - an object or expression with an integer type whose integer
770     //       conversion rank is less than or equal to the rank of int
771     //       and unsigned int.
772     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
773     //
774     //   If an int can represent all values of the original type, the
775     //   value is converted to an int; otherwise, it is converted to an
776     //   unsigned int. These are called the integer promotions. All
777     //   other types are unchanged by the integer promotions.
778 
779     QualType PTy = Context.isPromotableBitField(E);
780     if (!PTy.isNull()) {
781       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
782       return E;
783     }
784     if (Ty->isPromotableIntegerType()) {
785       QualType PT = Context.getPromotedIntegerType(Ty);
786       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
787       return E;
788     }
789   }
790   return E;
791 }
792 
793 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
794 /// do not have a prototype. Arguments that have type float or __fp16
795 /// are promoted to double. All other argument types are converted by
796 /// UsualUnaryConversions().
797 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
798   QualType Ty = E->getType();
799   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
800 
801   ExprResult Res = UsualUnaryConversions(E);
802   if (Res.isInvalid())
803     return ExprError();
804   E = Res.get();
805 
806   // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
807   // promote to double.
808   // Note that default argument promotion applies only to float (and
809   // half/fp16); it does not apply to _Float16.
810   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
811   if (BTy && (BTy->getKind() == BuiltinType::Half ||
812               BTy->getKind() == BuiltinType::Float)) {
813     if (getLangOpts().OpenCL &&
814         !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
815         if (BTy->getKind() == BuiltinType::Half) {
816             E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
817         }
818     } else {
819       E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
820     }
821   }
822 
823   // C++ performs lvalue-to-rvalue conversion as a default argument
824   // promotion, even on class types, but note:
825   //   C++11 [conv.lval]p2:
826   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
827   //     operand or a subexpression thereof the value contained in the
828   //     referenced object is not accessed. Otherwise, if the glvalue
829   //     has a class type, the conversion copy-initializes a temporary
830   //     of type T from the glvalue and the result of the conversion
831   //     is a prvalue for the temporary.
832   // FIXME: add some way to gate this entire thing for correctness in
833   // potentially potentially evaluated contexts.
834   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
835     ExprResult Temp = PerformCopyInitialization(
836                        InitializedEntity::InitializeTemporary(E->getType()),
837                                                 E->getExprLoc(), E);
838     if (Temp.isInvalid())
839       return ExprError();
840     E = Temp.get();
841   }
842 
843   return E;
844 }
845 
846 /// Determine the degree of POD-ness for an expression.
847 /// Incomplete types are considered POD, since this check can be performed
848 /// when we're in an unevaluated context.
849 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
850   if (Ty->isIncompleteType()) {
851     // C++11 [expr.call]p7:
852     //   After these conversions, if the argument does not have arithmetic,
853     //   enumeration, pointer, pointer to member, or class type, the program
854     //   is ill-formed.
855     //
856     // Since we've already performed array-to-pointer and function-to-pointer
857     // decay, the only such type in C++ is cv void. This also handles
858     // initializer lists as variadic arguments.
859     if (Ty->isVoidType())
860       return VAK_Invalid;
861 
862     if (Ty->isObjCObjectType())
863       return VAK_Invalid;
864     return VAK_Valid;
865   }
866 
867   if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
868     return VAK_Invalid;
869 
870   if (Ty.isCXX98PODType(Context))
871     return VAK_Valid;
872 
873   // C++11 [expr.call]p7:
874   //   Passing a potentially-evaluated argument of class type (Clause 9)
875   //   having a non-trivial copy constructor, a non-trivial move constructor,
876   //   or a non-trivial destructor, with no corresponding parameter,
877   //   is conditionally-supported with implementation-defined semantics.
878   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
879     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
880       if (!Record->hasNonTrivialCopyConstructor() &&
881           !Record->hasNonTrivialMoveConstructor() &&
882           !Record->hasNonTrivialDestructor())
883         return VAK_ValidInCXX11;
884 
885   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
886     return VAK_Valid;
887 
888   if (Ty->isObjCObjectType())
889     return VAK_Invalid;
890 
891   if (getLangOpts().MSVCCompat)
892     return VAK_MSVCUndefined;
893 
894   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
895   // permitted to reject them. We should consider doing so.
896   return VAK_Undefined;
897 }
898 
899 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
900   // Don't allow one to pass an Objective-C interface to a vararg.
901   const QualType &Ty = E->getType();
902   VarArgKind VAK = isValidVarArgType(Ty);
903 
904   // Complain about passing non-POD types through varargs.
905   switch (VAK) {
906   case VAK_ValidInCXX11:
907     DiagRuntimeBehavior(
908         E->getBeginLoc(), nullptr,
909         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
910     LLVM_FALLTHROUGH;
911   case VAK_Valid:
912     if (Ty->isRecordType()) {
913       // This is unlikely to be what the user intended. If the class has a
914       // 'c_str' member function, the user probably meant to call that.
915       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
916                           PDiag(diag::warn_pass_class_arg_to_vararg)
917                               << Ty << CT << hasCStrMethod(E) << ".c_str()");
918     }
919     break;
920 
921   case VAK_Undefined:
922   case VAK_MSVCUndefined:
923     DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
924                         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
925                             << getLangOpts().CPlusPlus11 << Ty << CT);
926     break;
927 
928   case VAK_Invalid:
929     if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
930       Diag(E->getBeginLoc(),
931            diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
932           << Ty << CT;
933     else if (Ty->isObjCObjectType())
934       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
935                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
936                               << Ty << CT);
937     else
938       Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
939           << isa<InitListExpr>(E) << Ty << CT;
940     break;
941   }
942 }
943 
944 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
945 /// will create a trap if the resulting type is not a POD type.
946 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
947                                                   FunctionDecl *FDecl) {
948   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
949     // Strip the unbridged-cast placeholder expression off, if applicable.
950     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
951         (CT == VariadicMethod ||
952          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
953       E = stripARCUnbridgedCast(E);
954 
955     // Otherwise, do normal placeholder checking.
956     } else {
957       ExprResult ExprRes = CheckPlaceholderExpr(E);
958       if (ExprRes.isInvalid())
959         return ExprError();
960       E = ExprRes.get();
961     }
962   }
963 
964   ExprResult ExprRes = DefaultArgumentPromotion(E);
965   if (ExprRes.isInvalid())
966     return ExprError();
967 
968   // Copy blocks to the heap.
969   if (ExprRes.get()->getType()->isBlockPointerType())
970     maybeExtendBlockObject(ExprRes);
971 
972   E = ExprRes.get();
973 
974   // Diagnostics regarding non-POD argument types are
975   // emitted along with format string checking in Sema::CheckFunctionCall().
976   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
977     // Turn this into a trap.
978     CXXScopeSpec SS;
979     SourceLocation TemplateKWLoc;
980     UnqualifiedId Name;
981     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
982                        E->getBeginLoc());
983     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
984                                           /*HasTrailingLParen=*/true,
985                                           /*IsAddressOfOperand=*/false);
986     if (TrapFn.isInvalid())
987       return ExprError();
988 
989     ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
990                                     None, E->getEndLoc());
991     if (Call.isInvalid())
992       return ExprError();
993 
994     ExprResult Comma =
995         ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
996     if (Comma.isInvalid())
997       return ExprError();
998     return Comma.get();
999   }
1000 
1001   if (!getLangOpts().CPlusPlus &&
1002       RequireCompleteType(E->getExprLoc(), E->getType(),
1003                           diag::err_call_incomplete_argument))
1004     return ExprError();
1005 
1006   return E;
1007 }
1008 
1009 /// Converts an integer to complex float type.  Helper function of
1010 /// UsualArithmeticConversions()
1011 ///
1012 /// \return false if the integer expression is an integer type and is
1013 /// successfully converted to the complex type.
1014 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1015                                                   ExprResult &ComplexExpr,
1016                                                   QualType IntTy,
1017                                                   QualType ComplexTy,
1018                                                   bool SkipCast) {
1019   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1020   if (SkipCast) return false;
1021   if (IntTy->isIntegerType()) {
1022     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
1023     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1024     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1025                                   CK_FloatingRealToComplex);
1026   } else {
1027     assert(IntTy->isComplexIntegerType());
1028     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1029                                   CK_IntegralComplexToFloatingComplex);
1030   }
1031   return false;
1032 }
1033 
1034 /// Handle arithmetic conversion with complex types.  Helper function of
1035 /// UsualArithmeticConversions()
1036 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
1037                                              ExprResult &RHS, QualType LHSType,
1038                                              QualType RHSType,
1039                                              bool IsCompAssign) {
1040   // if we have an integer operand, the result is the complex type.
1041   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1042                                              /*skipCast*/false))
1043     return LHSType;
1044   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1045                                              /*skipCast*/IsCompAssign))
1046     return RHSType;
1047 
1048   // This handles complex/complex, complex/float, or float/complex.
1049   // When both operands are complex, the shorter operand is converted to the
1050   // type of the longer, and that is the type of the result. This corresponds
1051   // to what is done when combining two real floating-point operands.
1052   // The fun begins when size promotion occur across type domains.
1053   // From H&S 6.3.4: When one operand is complex and the other is a real
1054   // floating-point type, the less precise type is converted, within it's
1055   // real or complex domain, to the precision of the other type. For example,
1056   // when combining a "long double" with a "double _Complex", the
1057   // "double _Complex" is promoted to "long double _Complex".
1058 
1059   // Compute the rank of the two types, regardless of whether they are complex.
1060   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1061 
1062   auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
1063   auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1064   QualType LHSElementType =
1065       LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1066   QualType RHSElementType =
1067       RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1068 
1069   QualType ResultType = S.Context.getComplexType(LHSElementType);
1070   if (Order < 0) {
1071     // Promote the precision of the LHS if not an assignment.
1072     ResultType = S.Context.getComplexType(RHSElementType);
1073     if (!IsCompAssign) {
1074       if (LHSComplexType)
1075         LHS =
1076             S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1077       else
1078         LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1079     }
1080   } else if (Order > 0) {
1081     // Promote the precision of the RHS.
1082     if (RHSComplexType)
1083       RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1084     else
1085       RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1086   }
1087   return ResultType;
1088 }
1089 
1090 /// Handle arithmetic conversion from integer to float.  Helper function
1091 /// of UsualArithmeticConversions()
1092 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1093                                            ExprResult &IntExpr,
1094                                            QualType FloatTy, QualType IntTy,
1095                                            bool ConvertFloat, bool ConvertInt) {
1096   if (IntTy->isIntegerType()) {
1097     if (ConvertInt)
1098       // Convert intExpr to the lhs floating point type.
1099       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1100                                     CK_IntegralToFloating);
1101     return FloatTy;
1102   }
1103 
1104   // Convert both sides to the appropriate complex float.
1105   assert(IntTy->isComplexIntegerType());
1106   QualType result = S.Context.getComplexType(FloatTy);
1107 
1108   // _Complex int -> _Complex float
1109   if (ConvertInt)
1110     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1111                                   CK_IntegralComplexToFloatingComplex);
1112 
1113   // float -> _Complex float
1114   if (ConvertFloat)
1115     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1116                                     CK_FloatingRealToComplex);
1117 
1118   return result;
1119 }
1120 
1121 /// Handle arithmethic conversion with floating point types.  Helper
1122 /// function of UsualArithmeticConversions()
1123 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1124                                       ExprResult &RHS, QualType LHSType,
1125                                       QualType RHSType, bool IsCompAssign) {
1126   bool LHSFloat = LHSType->isRealFloatingType();
1127   bool RHSFloat = RHSType->isRealFloatingType();
1128 
1129   // If we have two real floating types, convert the smaller operand
1130   // to the bigger result.
1131   if (LHSFloat && RHSFloat) {
1132     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1133     if (order > 0) {
1134       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1135       return LHSType;
1136     }
1137 
1138     assert(order < 0 && "illegal float comparison");
1139     if (!IsCompAssign)
1140       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1141     return RHSType;
1142   }
1143 
1144   if (LHSFloat) {
1145     // Half FP has to be promoted to float unless it is natively supported
1146     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1147       LHSType = S.Context.FloatTy;
1148 
1149     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1150                                       /*ConvertFloat=*/!IsCompAssign,
1151                                       /*ConvertInt=*/ true);
1152   }
1153   assert(RHSFloat);
1154   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1155                                     /*convertInt=*/ true,
1156                                     /*convertFloat=*/!IsCompAssign);
1157 }
1158 
1159 /// Diagnose attempts to convert between __float128 and long double if
1160 /// there is no support for such conversion. Helper function of
1161 /// UsualArithmeticConversions().
1162 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1163                                       QualType RHSType) {
1164   /*  No issue converting if at least one of the types is not a floating point
1165       type or the two types have the same rank.
1166   */
1167   if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
1168       S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
1169     return false;
1170 
1171   assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&
1172          "The remaining types must be floating point types.");
1173 
1174   auto *LHSComplex = LHSType->getAs<ComplexType>();
1175   auto *RHSComplex = RHSType->getAs<ComplexType>();
1176 
1177   QualType LHSElemType = LHSComplex ?
1178     LHSComplex->getElementType() : LHSType;
1179   QualType RHSElemType = RHSComplex ?
1180     RHSComplex->getElementType() : RHSType;
1181 
1182   // No issue if the two types have the same representation
1183   if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
1184       &S.Context.getFloatTypeSemantics(RHSElemType))
1185     return false;
1186 
1187   bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
1188                                 RHSElemType == S.Context.LongDoubleTy);
1189   Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
1190                             RHSElemType == S.Context.Float128Ty);
1191 
1192   // We've handled the situation where __float128 and long double have the same
1193   // representation. We allow all conversions for all possible long double types
1194   // except PPC's double double.
1195   return Float128AndLongDouble &&
1196     (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1197      &llvm::APFloat::PPCDoubleDouble());
1198 }
1199 
1200 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1201 
1202 namespace {
1203 /// These helper callbacks are placed in an anonymous namespace to
1204 /// permit their use as function template parameters.
1205 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1206   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1207 }
1208 
1209 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1210   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1211                              CK_IntegralComplexCast);
1212 }
1213 }
1214 
1215 /// Handle integer arithmetic conversions.  Helper function of
1216 /// UsualArithmeticConversions()
1217 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1218 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1219                                         ExprResult &RHS, QualType LHSType,
1220                                         QualType RHSType, bool IsCompAssign) {
1221   // The rules for this case are in C99 6.3.1.8
1222   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1223   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1224   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1225   if (LHSSigned == RHSSigned) {
1226     // Same signedness; use the higher-ranked type
1227     if (order >= 0) {
1228       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1229       return LHSType;
1230     } else if (!IsCompAssign)
1231       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1232     return RHSType;
1233   } else if (order != (LHSSigned ? 1 : -1)) {
1234     // The unsigned type has greater than or equal rank to the
1235     // signed type, so use the unsigned type
1236     if (RHSSigned) {
1237       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1238       return LHSType;
1239     } else if (!IsCompAssign)
1240       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1241     return RHSType;
1242   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1243     // The two types are different widths; if we are here, that
1244     // means the signed type is larger than the unsigned type, so
1245     // use the signed type.
1246     if (LHSSigned) {
1247       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1248       return LHSType;
1249     } else if (!IsCompAssign)
1250       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1251     return RHSType;
1252   } else {
1253     // The signed type is higher-ranked than the unsigned type,
1254     // but isn't actually any bigger (like unsigned int and long
1255     // on most 32-bit systems).  Use the unsigned type corresponding
1256     // to the signed type.
1257     QualType result =
1258       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1259     RHS = (*doRHSCast)(S, RHS.get(), result);
1260     if (!IsCompAssign)
1261       LHS = (*doLHSCast)(S, LHS.get(), result);
1262     return result;
1263   }
1264 }
1265 
1266 /// Handle conversions with GCC complex int extension.  Helper function
1267 /// of UsualArithmeticConversions()
1268 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1269                                            ExprResult &RHS, QualType LHSType,
1270                                            QualType RHSType,
1271                                            bool IsCompAssign) {
1272   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1273   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1274 
1275   if (LHSComplexInt && RHSComplexInt) {
1276     QualType LHSEltType = LHSComplexInt->getElementType();
1277     QualType RHSEltType = RHSComplexInt->getElementType();
1278     QualType ScalarType =
1279       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1280         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1281 
1282     return S.Context.getComplexType(ScalarType);
1283   }
1284 
1285   if (LHSComplexInt) {
1286     QualType LHSEltType = LHSComplexInt->getElementType();
1287     QualType ScalarType =
1288       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1289         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1290     QualType ComplexType = S.Context.getComplexType(ScalarType);
1291     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1292                               CK_IntegralRealToComplex);
1293 
1294     return ComplexType;
1295   }
1296 
1297   assert(RHSComplexInt);
1298 
1299   QualType RHSEltType = RHSComplexInt->getElementType();
1300   QualType ScalarType =
1301     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1302       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1303   QualType ComplexType = S.Context.getComplexType(ScalarType);
1304 
1305   if (!IsCompAssign)
1306     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1307                               CK_IntegralRealToComplex);
1308   return ComplexType;
1309 }
1310 
1311 /// Return the rank of a given fixed point or integer type. The value itself
1312 /// doesn't matter, but the values must be increasing with proper increasing
1313 /// rank as described in N1169 4.1.1.
1314 static unsigned GetFixedPointRank(QualType Ty) {
1315   const auto *BTy = Ty->getAs<BuiltinType>();
1316   assert(BTy && "Expected a builtin type.");
1317 
1318   switch (BTy->getKind()) {
1319   case BuiltinType::ShortFract:
1320   case BuiltinType::UShortFract:
1321   case BuiltinType::SatShortFract:
1322   case BuiltinType::SatUShortFract:
1323     return 1;
1324   case BuiltinType::Fract:
1325   case BuiltinType::UFract:
1326   case BuiltinType::SatFract:
1327   case BuiltinType::SatUFract:
1328     return 2;
1329   case BuiltinType::LongFract:
1330   case BuiltinType::ULongFract:
1331   case BuiltinType::SatLongFract:
1332   case BuiltinType::SatULongFract:
1333     return 3;
1334   case BuiltinType::ShortAccum:
1335   case BuiltinType::UShortAccum:
1336   case BuiltinType::SatShortAccum:
1337   case BuiltinType::SatUShortAccum:
1338     return 4;
1339   case BuiltinType::Accum:
1340   case BuiltinType::UAccum:
1341   case BuiltinType::SatAccum:
1342   case BuiltinType::SatUAccum:
1343     return 5;
1344   case BuiltinType::LongAccum:
1345   case BuiltinType::ULongAccum:
1346   case BuiltinType::SatLongAccum:
1347   case BuiltinType::SatULongAccum:
1348     return 6;
1349   default:
1350     if (BTy->isInteger())
1351       return 0;
1352     llvm_unreachable("Unexpected fixed point or integer type");
1353   }
1354 }
1355 
1356 /// handleFixedPointConversion - Fixed point operations between fixed
1357 /// point types and integers or other fixed point types do not fall under
1358 /// usual arithmetic conversion since these conversions could result in loss
1359 /// of precsision (N1169 4.1.4). These operations should be calculated with
1360 /// the full precision of their result type (N1169 4.1.6.2.1).
1361 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1362                                            QualType RHSTy) {
1363   assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1364          "Expected at least one of the operands to be a fixed point type");
1365   assert((LHSTy->isFixedPointOrIntegerType() ||
1366           RHSTy->isFixedPointOrIntegerType()) &&
1367          "Special fixed point arithmetic operation conversions are only "
1368          "applied to ints or other fixed point types");
1369 
1370   // If one operand has signed fixed-point type and the other operand has
1371   // unsigned fixed-point type, then the unsigned fixed-point operand is
1372   // converted to its corresponding signed fixed-point type and the resulting
1373   // type is the type of the converted operand.
1374   if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1375     LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1376   else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1377     RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1378 
1379   // The result type is the type with the highest rank, whereby a fixed-point
1380   // conversion rank is always greater than an integer conversion rank; if the
1381   // type of either of the operands is a saturating fixedpoint type, the result
1382   // type shall be the saturating fixed-point type corresponding to the type
1383   // with the highest rank; the resulting value is converted (taking into
1384   // account rounding and overflow) to the precision of the resulting type.
1385   // Same ranks between signed and unsigned types are resolved earlier, so both
1386   // types are either signed or both unsigned at this point.
1387   unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1388   unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1389 
1390   QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1391 
1392   if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1393     ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1394 
1395   return ResultTy;
1396 }
1397 
1398 /// Check that the usual arithmetic conversions can be performed on this pair of
1399 /// expressions that might be of enumeration type.
1400 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1401                                            SourceLocation Loc,
1402                                            Sema::ArithConvKind ACK) {
1403   // C++2a [expr.arith.conv]p1:
1404   //   If one operand is of enumeration type and the other operand is of a
1405   //   different enumeration type or a floating-point type, this behavior is
1406   //   deprecated ([depr.arith.conv.enum]).
1407   //
1408   // Warn on this in all language modes. Produce a deprecation warning in C++20.
1409   // Eventually we will presumably reject these cases (in C++23 onwards?).
1410   QualType L = LHS->getType(), R = RHS->getType();
1411   bool LEnum = L->isUnscopedEnumerationType(),
1412        REnum = R->isUnscopedEnumerationType();
1413   bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1414   if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1415       (REnum && L->isFloatingType())) {
1416     S.Diag(Loc, S.getLangOpts().CPlusPlus20
1417                     ? diag::warn_arith_conv_enum_float_cxx20
1418                     : diag::warn_arith_conv_enum_float)
1419         << LHS->getSourceRange() << RHS->getSourceRange()
1420         << (int)ACK << LEnum << L << R;
1421   } else if (!IsCompAssign && LEnum && REnum &&
1422              !S.Context.hasSameUnqualifiedType(L, R)) {
1423     unsigned DiagID;
1424     if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1425         !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1426       // If either enumeration type is unnamed, it's less likely that the
1427       // user cares about this, but this situation is still deprecated in
1428       // C++2a. Use a different warning group.
1429       DiagID = S.getLangOpts().CPlusPlus20
1430                     ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1431                     : diag::warn_arith_conv_mixed_anon_enum_types;
1432     } else if (ACK == Sema::ACK_Conditional) {
1433       // Conditional expressions are separated out because they have
1434       // historically had a different warning flag.
1435       DiagID = S.getLangOpts().CPlusPlus20
1436                    ? diag::warn_conditional_mixed_enum_types_cxx20
1437                    : diag::warn_conditional_mixed_enum_types;
1438     } else if (ACK == Sema::ACK_Comparison) {
1439       // Comparison expressions are separated out because they have
1440       // historically had a different warning flag.
1441       DiagID = S.getLangOpts().CPlusPlus20
1442                    ? diag::warn_comparison_mixed_enum_types_cxx20
1443                    : diag::warn_comparison_mixed_enum_types;
1444     } else {
1445       DiagID = S.getLangOpts().CPlusPlus20
1446                    ? diag::warn_arith_conv_mixed_enum_types_cxx20
1447                    : diag::warn_arith_conv_mixed_enum_types;
1448     }
1449     S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1450                         << (int)ACK << L << R;
1451   }
1452 }
1453 
1454 /// UsualArithmeticConversions - Performs various conversions that are common to
1455 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1456 /// routine returns the first non-arithmetic type found. The client is
1457 /// responsible for emitting appropriate error diagnostics.
1458 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1459                                           SourceLocation Loc,
1460                                           ArithConvKind ACK) {
1461   checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1462 
1463   if (ACK != ACK_CompAssign) {
1464     LHS = UsualUnaryConversions(LHS.get());
1465     if (LHS.isInvalid())
1466       return QualType();
1467   }
1468 
1469   RHS = UsualUnaryConversions(RHS.get());
1470   if (RHS.isInvalid())
1471     return QualType();
1472 
1473   // For conversion purposes, we ignore any qualifiers.
1474   // For example, "const float" and "float" are equivalent.
1475   QualType LHSType =
1476     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1477   QualType RHSType =
1478     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1479 
1480   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1481   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1482     LHSType = AtomicLHS->getValueType();
1483 
1484   // If both types are identical, no conversion is needed.
1485   if (LHSType == RHSType)
1486     return LHSType;
1487 
1488   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1489   // The caller can deal with this (e.g. pointer + int).
1490   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1491     return QualType();
1492 
1493   // Apply unary and bitfield promotions to the LHS's type.
1494   QualType LHSUnpromotedType = LHSType;
1495   if (LHSType->isPromotableIntegerType())
1496     LHSType = Context.getPromotedIntegerType(LHSType);
1497   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1498   if (!LHSBitfieldPromoteTy.isNull())
1499     LHSType = LHSBitfieldPromoteTy;
1500   if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1501     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1502 
1503   // If both types are identical, no conversion is needed.
1504   if (LHSType == RHSType)
1505     return LHSType;
1506 
1507   // ExtInt types aren't subject to conversions between them or normal integers,
1508   // so this fails.
1509   if(LHSType->isExtIntType() || RHSType->isExtIntType())
1510     return QualType();
1511 
1512   // At this point, we have two different arithmetic types.
1513 
1514   // Diagnose attempts to convert between __float128 and long double where
1515   // such conversions currently can't be handled.
1516   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1517     return QualType();
1518 
1519   // Handle complex types first (C99 6.3.1.8p1).
1520   if (LHSType->isComplexType() || RHSType->isComplexType())
1521     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1522                                         ACK == ACK_CompAssign);
1523 
1524   // Now handle "real" floating types (i.e. float, double, long double).
1525   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1526     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1527                                  ACK == ACK_CompAssign);
1528 
1529   // Handle GCC complex int extension.
1530   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1531     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1532                                       ACK == ACK_CompAssign);
1533 
1534   if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1535     return handleFixedPointConversion(*this, LHSType, RHSType);
1536 
1537   // Finally, we have two differing integer types.
1538   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1539            (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1540 }
1541 
1542 //===----------------------------------------------------------------------===//
1543 //  Semantic Analysis for various Expression Types
1544 //===----------------------------------------------------------------------===//
1545 
1546 
1547 ExprResult
1548 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1549                                 SourceLocation DefaultLoc,
1550                                 SourceLocation RParenLoc,
1551                                 Expr *ControllingExpr,
1552                                 ArrayRef<ParsedType> ArgTypes,
1553                                 ArrayRef<Expr *> ArgExprs) {
1554   unsigned NumAssocs = ArgTypes.size();
1555   assert(NumAssocs == ArgExprs.size());
1556 
1557   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1558   for (unsigned i = 0; i < NumAssocs; ++i) {
1559     if (ArgTypes[i])
1560       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1561     else
1562       Types[i] = nullptr;
1563   }
1564 
1565   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1566                                              ControllingExpr,
1567                                              llvm::makeArrayRef(Types, NumAssocs),
1568                                              ArgExprs);
1569   delete [] Types;
1570   return ER;
1571 }
1572 
1573 ExprResult
1574 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1575                                  SourceLocation DefaultLoc,
1576                                  SourceLocation RParenLoc,
1577                                  Expr *ControllingExpr,
1578                                  ArrayRef<TypeSourceInfo *> Types,
1579                                  ArrayRef<Expr *> Exprs) {
1580   unsigned NumAssocs = Types.size();
1581   assert(NumAssocs == Exprs.size());
1582 
1583   // Decay and strip qualifiers for the controlling expression type, and handle
1584   // placeholder type replacement. See committee discussion from WG14 DR423.
1585   {
1586     EnterExpressionEvaluationContext Unevaluated(
1587         *this, Sema::ExpressionEvaluationContext::Unevaluated);
1588     ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1589     if (R.isInvalid())
1590       return ExprError();
1591     ControllingExpr = R.get();
1592   }
1593 
1594   // The controlling expression is an unevaluated operand, so side effects are
1595   // likely unintended.
1596   if (!inTemplateInstantiation() &&
1597       ControllingExpr->HasSideEffects(Context, false))
1598     Diag(ControllingExpr->getExprLoc(),
1599          diag::warn_side_effects_unevaluated_context);
1600 
1601   bool TypeErrorFound = false,
1602        IsResultDependent = ControllingExpr->isTypeDependent(),
1603        ContainsUnexpandedParameterPack
1604          = ControllingExpr->containsUnexpandedParameterPack();
1605 
1606   for (unsigned i = 0; i < NumAssocs; ++i) {
1607     if (Exprs[i]->containsUnexpandedParameterPack())
1608       ContainsUnexpandedParameterPack = true;
1609 
1610     if (Types[i]) {
1611       if (Types[i]->getType()->containsUnexpandedParameterPack())
1612         ContainsUnexpandedParameterPack = true;
1613 
1614       if (Types[i]->getType()->isDependentType()) {
1615         IsResultDependent = true;
1616       } else {
1617         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1618         // complete object type other than a variably modified type."
1619         unsigned D = 0;
1620         if (Types[i]->getType()->isIncompleteType())
1621           D = diag::err_assoc_type_incomplete;
1622         else if (!Types[i]->getType()->isObjectType())
1623           D = diag::err_assoc_type_nonobject;
1624         else if (Types[i]->getType()->isVariablyModifiedType())
1625           D = diag::err_assoc_type_variably_modified;
1626 
1627         if (D != 0) {
1628           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1629             << Types[i]->getTypeLoc().getSourceRange()
1630             << Types[i]->getType();
1631           TypeErrorFound = true;
1632         }
1633 
1634         // C11 6.5.1.1p2 "No two generic associations in the same generic
1635         // selection shall specify compatible types."
1636         for (unsigned j = i+1; j < NumAssocs; ++j)
1637           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1638               Context.typesAreCompatible(Types[i]->getType(),
1639                                          Types[j]->getType())) {
1640             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1641                  diag::err_assoc_compatible_types)
1642               << Types[j]->getTypeLoc().getSourceRange()
1643               << Types[j]->getType()
1644               << Types[i]->getType();
1645             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1646                  diag::note_compat_assoc)
1647               << Types[i]->getTypeLoc().getSourceRange()
1648               << Types[i]->getType();
1649             TypeErrorFound = true;
1650           }
1651       }
1652     }
1653   }
1654   if (TypeErrorFound)
1655     return ExprError();
1656 
1657   // If we determined that the generic selection is result-dependent, don't
1658   // try to compute the result expression.
1659   if (IsResultDependent)
1660     return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1661                                         Exprs, DefaultLoc, RParenLoc,
1662                                         ContainsUnexpandedParameterPack);
1663 
1664   SmallVector<unsigned, 1> CompatIndices;
1665   unsigned DefaultIndex = -1U;
1666   for (unsigned i = 0; i < NumAssocs; ++i) {
1667     if (!Types[i])
1668       DefaultIndex = i;
1669     else if (Context.typesAreCompatible(ControllingExpr->getType(),
1670                                         Types[i]->getType()))
1671       CompatIndices.push_back(i);
1672   }
1673 
1674   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1675   // type compatible with at most one of the types named in its generic
1676   // association list."
1677   if (CompatIndices.size() > 1) {
1678     // We strip parens here because the controlling expression is typically
1679     // parenthesized in macro definitions.
1680     ControllingExpr = ControllingExpr->IgnoreParens();
1681     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1682         << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1683         << (unsigned)CompatIndices.size();
1684     for (unsigned I : CompatIndices) {
1685       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1686            diag::note_compat_assoc)
1687         << Types[I]->getTypeLoc().getSourceRange()
1688         << Types[I]->getType();
1689     }
1690     return ExprError();
1691   }
1692 
1693   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1694   // its controlling expression shall have type compatible with exactly one of
1695   // the types named in its generic association list."
1696   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1697     // We strip parens here because the controlling expression is typically
1698     // parenthesized in macro definitions.
1699     ControllingExpr = ControllingExpr->IgnoreParens();
1700     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1701         << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1702     return ExprError();
1703   }
1704 
1705   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1706   // type name that is compatible with the type of the controlling expression,
1707   // then the result expression of the generic selection is the expression
1708   // in that generic association. Otherwise, the result expression of the
1709   // generic selection is the expression in the default generic association."
1710   unsigned ResultIndex =
1711     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1712 
1713   return GenericSelectionExpr::Create(
1714       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1715       ContainsUnexpandedParameterPack, ResultIndex);
1716 }
1717 
1718 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1719 /// location of the token and the offset of the ud-suffix within it.
1720 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1721                                      unsigned Offset) {
1722   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1723                                         S.getLangOpts());
1724 }
1725 
1726 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1727 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1728 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1729                                                  IdentifierInfo *UDSuffix,
1730                                                  SourceLocation UDSuffixLoc,
1731                                                  ArrayRef<Expr*> Args,
1732                                                  SourceLocation LitEndLoc) {
1733   assert(Args.size() <= 2 && "too many arguments for literal operator");
1734 
1735   QualType ArgTy[2];
1736   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1737     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1738     if (ArgTy[ArgIdx]->isArrayType())
1739       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1740   }
1741 
1742   DeclarationName OpName =
1743     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1744   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1745   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1746 
1747   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1748   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1749                               /*AllowRaw*/ false, /*AllowTemplate*/ false,
1750                               /*AllowStringTemplate*/ false,
1751                               /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1752     return ExprError();
1753 
1754   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1755 }
1756 
1757 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1758 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1759 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1760 /// multiple tokens.  However, the common case is that StringToks points to one
1761 /// string.
1762 ///
1763 ExprResult
1764 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1765   assert(!StringToks.empty() && "Must have at least one string!");
1766 
1767   StringLiteralParser Literal(StringToks, PP);
1768   if (Literal.hadError)
1769     return ExprError();
1770 
1771   SmallVector<SourceLocation, 4> StringTokLocs;
1772   for (const Token &Tok : StringToks)
1773     StringTokLocs.push_back(Tok.getLocation());
1774 
1775   QualType CharTy = Context.CharTy;
1776   StringLiteral::StringKind Kind = StringLiteral::Ascii;
1777   if (Literal.isWide()) {
1778     CharTy = Context.getWideCharType();
1779     Kind = StringLiteral::Wide;
1780   } else if (Literal.isUTF8()) {
1781     if (getLangOpts().Char8)
1782       CharTy = Context.Char8Ty;
1783     Kind = StringLiteral::UTF8;
1784   } else if (Literal.isUTF16()) {
1785     CharTy = Context.Char16Ty;
1786     Kind = StringLiteral::UTF16;
1787   } else if (Literal.isUTF32()) {
1788     CharTy = Context.Char32Ty;
1789     Kind = StringLiteral::UTF32;
1790   } else if (Literal.isPascal()) {
1791     CharTy = Context.UnsignedCharTy;
1792   }
1793 
1794   // Warn on initializing an array of char from a u8 string literal; this
1795   // becomes ill-formed in C++2a.
1796   if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
1797       !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1798     Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
1799 
1800     // Create removals for all 'u8' prefixes in the string literal(s). This
1801     // ensures C++2a compatibility (but may change the program behavior when
1802     // built by non-Clang compilers for which the execution character set is
1803     // not always UTF-8).
1804     auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
1805     SourceLocation RemovalDiagLoc;
1806     for (const Token &Tok : StringToks) {
1807       if (Tok.getKind() == tok::utf8_string_literal) {
1808         if (RemovalDiagLoc.isInvalid())
1809           RemovalDiagLoc = Tok.getLocation();
1810         RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1811             Tok.getLocation(),
1812             Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1813                                            getSourceManager(), getLangOpts())));
1814       }
1815     }
1816     Diag(RemovalDiagLoc, RemovalDiag);
1817   }
1818 
1819   QualType StrTy =
1820       Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1821 
1822   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1823   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1824                                              Kind, Literal.Pascal, StrTy,
1825                                              &StringTokLocs[0],
1826                                              StringTokLocs.size());
1827   if (Literal.getUDSuffix().empty())
1828     return Lit;
1829 
1830   // We're building a user-defined literal.
1831   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1832   SourceLocation UDSuffixLoc =
1833     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1834                    Literal.getUDSuffixOffset());
1835 
1836   // Make sure we're allowed user-defined literals here.
1837   if (!UDLScope)
1838     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1839 
1840   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1841   //   operator "" X (str, len)
1842   QualType SizeType = Context.getSizeType();
1843 
1844   DeclarationName OpName =
1845     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1846   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1847   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1848 
1849   QualType ArgTy[] = {
1850     Context.getArrayDecayedType(StrTy), SizeType
1851   };
1852 
1853   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1854   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1855                                 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1856                                 /*AllowStringTemplate*/ true,
1857                                 /*DiagnoseMissing*/ true)) {
1858 
1859   case LOLR_Cooked: {
1860     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1861     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1862                                                     StringTokLocs[0]);
1863     Expr *Args[] = { Lit, LenArg };
1864 
1865     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1866   }
1867 
1868   case LOLR_StringTemplate: {
1869     TemplateArgumentListInfo ExplicitArgs;
1870 
1871     unsigned CharBits = Context.getIntWidth(CharTy);
1872     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1873     llvm::APSInt Value(CharBits, CharIsUnsigned);
1874 
1875     TemplateArgument TypeArg(CharTy);
1876     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1877     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1878 
1879     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1880       Value = Lit->getCodeUnit(I);
1881       TemplateArgument Arg(Context, Value, CharTy);
1882       TemplateArgumentLocInfo ArgInfo;
1883       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1884     }
1885     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1886                                     &ExplicitArgs);
1887   }
1888   case LOLR_Raw:
1889   case LOLR_Template:
1890   case LOLR_ErrorNoDiagnostic:
1891     llvm_unreachable("unexpected literal operator lookup result");
1892   case LOLR_Error:
1893     return ExprError();
1894   }
1895   llvm_unreachable("unexpected literal operator lookup result");
1896 }
1897 
1898 DeclRefExpr *
1899 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1900                        SourceLocation Loc,
1901                        const CXXScopeSpec *SS) {
1902   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1903   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1904 }
1905 
1906 DeclRefExpr *
1907 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1908                        const DeclarationNameInfo &NameInfo,
1909                        const CXXScopeSpec *SS, NamedDecl *FoundD,
1910                        SourceLocation TemplateKWLoc,
1911                        const TemplateArgumentListInfo *TemplateArgs) {
1912   NestedNameSpecifierLoc NNS =
1913       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
1914   return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
1915                           TemplateArgs);
1916 }
1917 
1918 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
1919   // A declaration named in an unevaluated operand never constitutes an odr-use.
1920   if (isUnevaluatedContext())
1921     return NOUR_Unevaluated;
1922 
1923   // C++2a [basic.def.odr]p4:
1924   //   A variable x whose name appears as a potentially-evaluated expression e
1925   //   is odr-used by e unless [...] x is a reference that is usable in
1926   //   constant expressions.
1927   if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
1928     if (VD->getType()->isReferenceType() &&
1929         !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
1930         VD->isUsableInConstantExpressions(Context))
1931       return NOUR_Constant;
1932   }
1933 
1934   // All remaining non-variable cases constitute an odr-use. For variables, we
1935   // need to wait and see how the expression is used.
1936   return NOUR_None;
1937 }
1938 
1939 /// BuildDeclRefExpr - Build an expression that references a
1940 /// declaration that does not require a closure capture.
1941 DeclRefExpr *
1942 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1943                        const DeclarationNameInfo &NameInfo,
1944                        NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
1945                        SourceLocation TemplateKWLoc,
1946                        const TemplateArgumentListInfo *TemplateArgs) {
1947   bool RefersToCapturedVariable =
1948       isa<VarDecl>(D) &&
1949       NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
1950 
1951   DeclRefExpr *E = DeclRefExpr::Create(
1952       Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
1953       VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
1954   MarkDeclRefReferenced(E);
1955 
1956   // C++ [except.spec]p17:
1957   //   An exception-specification is considered to be needed when:
1958   //   - in an expression, the function is the unique lookup result or
1959   //     the selected member of a set of overloaded functions.
1960   //
1961   // We delay doing this until after we've built the function reference and
1962   // marked it as used so that:
1963   //  a) if the function is defaulted, we get errors from defining it before /
1964   //     instead of errors from computing its exception specification, and
1965   //  b) if the function is a defaulted comparison, we can use the body we
1966   //     build when defining it as input to the exception specification
1967   //     computation rather than computing a new body.
1968   if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
1969     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
1970       if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
1971         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
1972     }
1973   }
1974 
1975   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
1976       Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
1977       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
1978     getCurFunction()->recordUseOfWeak(E);
1979 
1980   FieldDecl *FD = dyn_cast<FieldDecl>(D);
1981   if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
1982     FD = IFD->getAnonField();
1983   if (FD) {
1984     UnusedPrivateFields.remove(FD);
1985     // Just in case we're building an illegal pointer-to-member.
1986     if (FD->isBitField())
1987       E->setObjectKind(OK_BitField);
1988   }
1989 
1990   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
1991   // designates a bit-field.
1992   if (auto *BD = dyn_cast<BindingDecl>(D))
1993     if (auto *BE = BD->getBinding())
1994       E->setObjectKind(BE->getObjectKind());
1995 
1996   return E;
1997 }
1998 
1999 /// Decomposes the given name into a DeclarationNameInfo, its location, and
2000 /// possibly a list of template arguments.
2001 ///
2002 /// If this produces template arguments, it is permitted to call
2003 /// DecomposeTemplateName.
2004 ///
2005 /// This actually loses a lot of source location information for
2006 /// non-standard name kinds; we should consider preserving that in
2007 /// some way.
2008 void
2009 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2010                              TemplateArgumentListInfo &Buffer,
2011                              DeclarationNameInfo &NameInfo,
2012                              const TemplateArgumentListInfo *&TemplateArgs) {
2013   if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2014     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2015     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2016 
2017     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2018                                        Id.TemplateId->NumArgs);
2019     translateTemplateArguments(TemplateArgsPtr, Buffer);
2020 
2021     TemplateName TName = Id.TemplateId->Template.get();
2022     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2023     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2024     TemplateArgs = &Buffer;
2025   } else {
2026     NameInfo = GetNameFromUnqualifiedId(Id);
2027     TemplateArgs = nullptr;
2028   }
2029 }
2030 
2031 static void emitEmptyLookupTypoDiagnostic(
2032     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2033     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2034     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2035   DeclContext *Ctx =
2036       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2037   if (!TC) {
2038     // Emit a special diagnostic for failed member lookups.
2039     // FIXME: computing the declaration context might fail here (?)
2040     if (Ctx)
2041       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2042                                                  << SS.getRange();
2043     else
2044       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2045     return;
2046   }
2047 
2048   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2049   bool DroppedSpecifier =
2050       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2051   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2052                         ? diag::note_implicit_param_decl
2053                         : diag::note_previous_decl;
2054   if (!Ctx)
2055     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2056                          SemaRef.PDiag(NoteID));
2057   else
2058     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2059                                  << Typo << Ctx << DroppedSpecifier
2060                                  << SS.getRange(),
2061                          SemaRef.PDiag(NoteID));
2062 }
2063 
2064 /// Diagnose an empty lookup.
2065 ///
2066 /// \return false if new lookup candidates were found
2067 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2068                                CorrectionCandidateCallback &CCC,
2069                                TemplateArgumentListInfo *ExplicitTemplateArgs,
2070                                ArrayRef<Expr *> Args, TypoExpr **Out) {
2071   DeclarationName Name = R.getLookupName();
2072 
2073   unsigned diagnostic = diag::err_undeclared_var_use;
2074   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2075   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2076       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2077       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2078     diagnostic = diag::err_undeclared_use;
2079     diagnostic_suggest = diag::err_undeclared_use_suggest;
2080   }
2081 
2082   // If the original lookup was an unqualified lookup, fake an
2083   // unqualified lookup.  This is useful when (for example) the
2084   // original lookup would not have found something because it was a
2085   // dependent name.
2086   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2087   while (DC) {
2088     if (isa<CXXRecordDecl>(DC)) {
2089       LookupQualifiedName(R, DC);
2090 
2091       if (!R.empty()) {
2092         // Don't give errors about ambiguities in this lookup.
2093         R.suppressDiagnostics();
2094 
2095         // During a default argument instantiation the CurContext points
2096         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2097         // function parameter list, hence add an explicit check.
2098         bool isDefaultArgument =
2099             !CodeSynthesisContexts.empty() &&
2100             CodeSynthesisContexts.back().Kind ==
2101                 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2102         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2103         bool isInstance = CurMethod &&
2104                           CurMethod->isInstance() &&
2105                           DC == CurMethod->getParent() && !isDefaultArgument;
2106 
2107         // Give a code modification hint to insert 'this->'.
2108         // TODO: fixit for inserting 'Base<T>::' in the other cases.
2109         // Actually quite difficult!
2110         if (getLangOpts().MSVCCompat)
2111           diagnostic = diag::ext_found_via_dependent_bases_lookup;
2112         if (isInstance) {
2113           Diag(R.getNameLoc(), diagnostic) << Name
2114             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2115           CheckCXXThisCapture(R.getNameLoc());
2116         } else {
2117           Diag(R.getNameLoc(), diagnostic) << Name;
2118         }
2119 
2120         // Do we really want to note all of these?
2121         for (NamedDecl *D : R)
2122           Diag(D->getLocation(), diag::note_dependent_var_use);
2123 
2124         // Return true if we are inside a default argument instantiation
2125         // and the found name refers to an instance member function, otherwise
2126         // the function calling DiagnoseEmptyLookup will try to create an
2127         // implicit member call and this is wrong for default argument.
2128         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2129           Diag(R.getNameLoc(), diag::err_member_call_without_object);
2130           return true;
2131         }
2132 
2133         // Tell the callee to try to recover.
2134         return false;
2135       }
2136 
2137       R.clear();
2138     }
2139 
2140     DC = DC->getLookupParent();
2141   }
2142 
2143   // We didn't find anything, so try to correct for a typo.
2144   TypoCorrection Corrected;
2145   if (S && Out) {
2146     SourceLocation TypoLoc = R.getNameLoc();
2147     assert(!ExplicitTemplateArgs &&
2148            "Diagnosing an empty lookup with explicit template args!");
2149     *Out = CorrectTypoDelayed(
2150         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2151         [=](const TypoCorrection &TC) {
2152           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2153                                         diagnostic, diagnostic_suggest);
2154         },
2155         nullptr, CTK_ErrorRecovery);
2156     if (*Out)
2157       return true;
2158   } else if (S &&
2159              (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2160                                       S, &SS, CCC, CTK_ErrorRecovery))) {
2161     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2162     bool DroppedSpecifier =
2163         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2164     R.setLookupName(Corrected.getCorrection());
2165 
2166     bool AcceptableWithRecovery = false;
2167     bool AcceptableWithoutRecovery = false;
2168     NamedDecl *ND = Corrected.getFoundDecl();
2169     if (ND) {
2170       if (Corrected.isOverloaded()) {
2171         OverloadCandidateSet OCS(R.getNameLoc(),
2172                                  OverloadCandidateSet::CSK_Normal);
2173         OverloadCandidateSet::iterator Best;
2174         for (NamedDecl *CD : Corrected) {
2175           if (FunctionTemplateDecl *FTD =
2176                    dyn_cast<FunctionTemplateDecl>(CD))
2177             AddTemplateOverloadCandidate(
2178                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2179                 Args, OCS);
2180           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2181             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2182               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2183                                    Args, OCS);
2184         }
2185         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2186         case OR_Success:
2187           ND = Best->FoundDecl;
2188           Corrected.setCorrectionDecl(ND);
2189           break;
2190         default:
2191           // FIXME: Arbitrarily pick the first declaration for the note.
2192           Corrected.setCorrectionDecl(ND);
2193           break;
2194         }
2195       }
2196       R.addDecl(ND);
2197       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2198         CXXRecordDecl *Record = nullptr;
2199         if (Corrected.getCorrectionSpecifier()) {
2200           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2201           Record = Ty->getAsCXXRecordDecl();
2202         }
2203         if (!Record)
2204           Record = cast<CXXRecordDecl>(
2205               ND->getDeclContext()->getRedeclContext());
2206         R.setNamingClass(Record);
2207       }
2208 
2209       auto *UnderlyingND = ND->getUnderlyingDecl();
2210       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2211                                isa<FunctionTemplateDecl>(UnderlyingND);
2212       // FIXME: If we ended up with a typo for a type name or
2213       // Objective-C class name, we're in trouble because the parser
2214       // is in the wrong place to recover. Suggest the typo
2215       // correction, but don't make it a fix-it since we're not going
2216       // to recover well anyway.
2217       AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2218                                   getAsTypeTemplateDecl(UnderlyingND) ||
2219                                   isa<ObjCInterfaceDecl>(UnderlyingND);
2220     } else {
2221       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2222       // because we aren't able to recover.
2223       AcceptableWithoutRecovery = true;
2224     }
2225 
2226     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2227       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2228                             ? diag::note_implicit_param_decl
2229                             : diag::note_previous_decl;
2230       if (SS.isEmpty())
2231         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2232                      PDiag(NoteID), AcceptableWithRecovery);
2233       else
2234         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2235                                   << Name << computeDeclContext(SS, false)
2236                                   << DroppedSpecifier << SS.getRange(),
2237                      PDiag(NoteID), AcceptableWithRecovery);
2238 
2239       // Tell the callee whether to try to recover.
2240       return !AcceptableWithRecovery;
2241     }
2242   }
2243   R.clear();
2244 
2245   // Emit a special diagnostic for failed member lookups.
2246   // FIXME: computing the declaration context might fail here (?)
2247   if (!SS.isEmpty()) {
2248     Diag(R.getNameLoc(), diag::err_no_member)
2249       << Name << computeDeclContext(SS, false)
2250       << SS.getRange();
2251     return true;
2252   }
2253 
2254   // Give up, we can't recover.
2255   Diag(R.getNameLoc(), diagnostic) << Name;
2256   return true;
2257 }
2258 
2259 /// In Microsoft mode, if we are inside a template class whose parent class has
2260 /// dependent base classes, and we can't resolve an unqualified identifier, then
2261 /// assume the identifier is a member of a dependent base class.  We can only
2262 /// recover successfully in static methods, instance methods, and other contexts
2263 /// where 'this' is available.  This doesn't precisely match MSVC's
2264 /// instantiation model, but it's close enough.
2265 static Expr *
2266 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2267                                DeclarationNameInfo &NameInfo,
2268                                SourceLocation TemplateKWLoc,
2269                                const TemplateArgumentListInfo *TemplateArgs) {
2270   // Only try to recover from lookup into dependent bases in static methods or
2271   // contexts where 'this' is available.
2272   QualType ThisType = S.getCurrentThisType();
2273   const CXXRecordDecl *RD = nullptr;
2274   if (!ThisType.isNull())
2275     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2276   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2277     RD = MD->getParent();
2278   if (!RD || !RD->hasAnyDependentBases())
2279     return nullptr;
2280 
2281   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2282   // is available, suggest inserting 'this->' as a fixit.
2283   SourceLocation Loc = NameInfo.getLoc();
2284   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2285   DB << NameInfo.getName() << RD;
2286 
2287   if (!ThisType.isNull()) {
2288     DB << FixItHint::CreateInsertion(Loc, "this->");
2289     return CXXDependentScopeMemberExpr::Create(
2290         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2291         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2292         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2293   }
2294 
2295   // Synthesize a fake NNS that points to the derived class.  This will
2296   // perform name lookup during template instantiation.
2297   CXXScopeSpec SS;
2298   auto *NNS =
2299       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2300   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2301   return DependentScopeDeclRefExpr::Create(
2302       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2303       TemplateArgs);
2304 }
2305 
2306 ExprResult
2307 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2308                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2309                         bool HasTrailingLParen, bool IsAddressOfOperand,
2310                         CorrectionCandidateCallback *CCC,
2311                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2312   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2313          "cannot be direct & operand and have a trailing lparen");
2314   if (SS.isInvalid())
2315     return ExprError();
2316 
2317   TemplateArgumentListInfo TemplateArgsBuffer;
2318 
2319   // Decompose the UnqualifiedId into the following data.
2320   DeclarationNameInfo NameInfo;
2321   const TemplateArgumentListInfo *TemplateArgs;
2322   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2323 
2324   DeclarationName Name = NameInfo.getName();
2325   IdentifierInfo *II = Name.getAsIdentifierInfo();
2326   SourceLocation NameLoc = NameInfo.getLoc();
2327 
2328   if (II && II->isEditorPlaceholder()) {
2329     // FIXME: When typed placeholders are supported we can create a typed
2330     // placeholder expression node.
2331     return ExprError();
2332   }
2333 
2334   // C++ [temp.dep.expr]p3:
2335   //   An id-expression is type-dependent if it contains:
2336   //     -- an identifier that was declared with a dependent type,
2337   //        (note: handled after lookup)
2338   //     -- a template-id that is dependent,
2339   //        (note: handled in BuildTemplateIdExpr)
2340   //     -- a conversion-function-id that specifies a dependent type,
2341   //     -- a nested-name-specifier that contains a class-name that
2342   //        names a dependent type.
2343   // Determine whether this is a member of an unknown specialization;
2344   // we need to handle these differently.
2345   bool DependentID = false;
2346   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2347       Name.getCXXNameType()->isDependentType()) {
2348     DependentID = true;
2349   } else if (SS.isSet()) {
2350     if (DeclContext *DC = computeDeclContext(SS, false)) {
2351       if (RequireCompleteDeclContext(SS, DC))
2352         return ExprError();
2353     } else {
2354       DependentID = true;
2355     }
2356   }
2357 
2358   if (DependentID)
2359     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2360                                       IsAddressOfOperand, TemplateArgs);
2361 
2362   // Perform the required lookup.
2363   LookupResult R(*this, NameInfo,
2364                  (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2365                      ? LookupObjCImplicitSelfParam
2366                      : LookupOrdinaryName);
2367   if (TemplateKWLoc.isValid() || TemplateArgs) {
2368     // Lookup the template name again to correctly establish the context in
2369     // which it was found. This is really unfortunate as we already did the
2370     // lookup to determine that it was a template name in the first place. If
2371     // this becomes a performance hit, we can work harder to preserve those
2372     // results until we get here but it's likely not worth it.
2373     bool MemberOfUnknownSpecialization;
2374     AssumedTemplateKind AssumedTemplate;
2375     if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2376                            MemberOfUnknownSpecialization, TemplateKWLoc,
2377                            &AssumedTemplate))
2378       return ExprError();
2379 
2380     if (MemberOfUnknownSpecialization ||
2381         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2382       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2383                                         IsAddressOfOperand, TemplateArgs);
2384   } else {
2385     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2386     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2387 
2388     // If the result might be in a dependent base class, this is a dependent
2389     // id-expression.
2390     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2391       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2392                                         IsAddressOfOperand, TemplateArgs);
2393 
2394     // If this reference is in an Objective-C method, then we need to do
2395     // some special Objective-C lookup, too.
2396     if (IvarLookupFollowUp) {
2397       ExprResult E(LookupInObjCMethod(R, S, II, true));
2398       if (E.isInvalid())
2399         return ExprError();
2400 
2401       if (Expr *Ex = E.getAs<Expr>())
2402         return Ex;
2403     }
2404   }
2405 
2406   if (R.isAmbiguous())
2407     return ExprError();
2408 
2409   // This could be an implicitly declared function reference (legal in C90,
2410   // extension in C99, forbidden in C++).
2411   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2412     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2413     if (D) R.addDecl(D);
2414   }
2415 
2416   // Determine whether this name might be a candidate for
2417   // argument-dependent lookup.
2418   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2419 
2420   if (R.empty() && !ADL) {
2421     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2422       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2423                                                    TemplateKWLoc, TemplateArgs))
2424         return E;
2425     }
2426 
2427     // Don't diagnose an empty lookup for inline assembly.
2428     if (IsInlineAsmIdentifier)
2429       return ExprError();
2430 
2431     // If this name wasn't predeclared and if this is not a function
2432     // call, diagnose the problem.
2433     TypoExpr *TE = nullptr;
2434     DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2435                                                        : nullptr);
2436     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2437     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2438            "Typo correction callback misconfigured");
2439     if (CCC) {
2440       // Make sure the callback knows what the typo being diagnosed is.
2441       CCC->setTypoName(II);
2442       if (SS.isValid())
2443         CCC->setTypoNNS(SS.getScopeRep());
2444     }
2445     // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2446     // a template name, but we happen to have always already looked up the name
2447     // before we get here if it must be a template name.
2448     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2449                             None, &TE)) {
2450       if (TE && KeywordReplacement) {
2451         auto &State = getTypoExprState(TE);
2452         auto BestTC = State.Consumer->getNextCorrection();
2453         if (BestTC.isKeyword()) {
2454           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2455           if (State.DiagHandler)
2456             State.DiagHandler(BestTC);
2457           KeywordReplacement->startToken();
2458           KeywordReplacement->setKind(II->getTokenID());
2459           KeywordReplacement->setIdentifierInfo(II);
2460           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2461           // Clean up the state associated with the TypoExpr, since it has
2462           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2463           clearDelayedTypo(TE);
2464           // Signal that a correction to a keyword was performed by returning a
2465           // valid-but-null ExprResult.
2466           return (Expr*)nullptr;
2467         }
2468         State.Consumer->resetCorrectionStream();
2469       }
2470       return TE ? TE : ExprError();
2471     }
2472 
2473     assert(!R.empty() &&
2474            "DiagnoseEmptyLookup returned false but added no results");
2475 
2476     // If we found an Objective-C instance variable, let
2477     // LookupInObjCMethod build the appropriate expression to
2478     // reference the ivar.
2479     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2480       R.clear();
2481       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2482       // In a hopelessly buggy code, Objective-C instance variable
2483       // lookup fails and no expression will be built to reference it.
2484       if (!E.isInvalid() && !E.get())
2485         return ExprError();
2486       return E;
2487     }
2488   }
2489 
2490   // This is guaranteed from this point on.
2491   assert(!R.empty() || ADL);
2492 
2493   // Check whether this might be a C++ implicit instance member access.
2494   // C++ [class.mfct.non-static]p3:
2495   //   When an id-expression that is not part of a class member access
2496   //   syntax and not used to form a pointer to member is used in the
2497   //   body of a non-static member function of class X, if name lookup
2498   //   resolves the name in the id-expression to a non-static non-type
2499   //   member of some class C, the id-expression is transformed into a
2500   //   class member access expression using (*this) as the
2501   //   postfix-expression to the left of the . operator.
2502   //
2503   // But we don't actually need to do this for '&' operands if R
2504   // resolved to a function or overloaded function set, because the
2505   // expression is ill-formed if it actually works out to be a
2506   // non-static member function:
2507   //
2508   // C++ [expr.ref]p4:
2509   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2510   //   [t]he expression can be used only as the left-hand operand of a
2511   //   member function call.
2512   //
2513   // There are other safeguards against such uses, but it's important
2514   // to get this right here so that we don't end up making a
2515   // spuriously dependent expression if we're inside a dependent
2516   // instance method.
2517   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2518     bool MightBeImplicitMember;
2519     if (!IsAddressOfOperand)
2520       MightBeImplicitMember = true;
2521     else if (!SS.isEmpty())
2522       MightBeImplicitMember = false;
2523     else if (R.isOverloadedResult())
2524       MightBeImplicitMember = false;
2525     else if (R.isUnresolvableResult())
2526       MightBeImplicitMember = true;
2527     else
2528       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2529                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2530                               isa<MSPropertyDecl>(R.getFoundDecl());
2531 
2532     if (MightBeImplicitMember)
2533       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2534                                              R, TemplateArgs, S);
2535   }
2536 
2537   if (TemplateArgs || TemplateKWLoc.isValid()) {
2538 
2539     // In C++1y, if this is a variable template id, then check it
2540     // in BuildTemplateIdExpr().
2541     // The single lookup result must be a variable template declaration.
2542     if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2543         Id.TemplateId->Kind == TNK_Var_template) {
2544       assert(R.getAsSingle<VarTemplateDecl>() &&
2545              "There should only be one declaration found.");
2546     }
2547 
2548     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2549   }
2550 
2551   return BuildDeclarationNameExpr(SS, R, ADL);
2552 }
2553 
2554 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2555 /// declaration name, generally during template instantiation.
2556 /// There's a large number of things which don't need to be done along
2557 /// this path.
2558 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2559     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2560     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2561   DeclContext *DC = computeDeclContext(SS, false);
2562   if (!DC)
2563     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2564                                      NameInfo, /*TemplateArgs=*/nullptr);
2565 
2566   if (RequireCompleteDeclContext(SS, DC))
2567     return ExprError();
2568 
2569   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2570   LookupQualifiedName(R, DC);
2571 
2572   if (R.isAmbiguous())
2573     return ExprError();
2574 
2575   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2576     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2577                                      NameInfo, /*TemplateArgs=*/nullptr);
2578 
2579   if (R.empty()) {
2580     Diag(NameInfo.getLoc(), diag::err_no_member)
2581       << NameInfo.getName() << DC << SS.getRange();
2582     return ExprError();
2583   }
2584 
2585   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2586     // Diagnose a missing typename if this resolved unambiguously to a type in
2587     // a dependent context.  If we can recover with a type, downgrade this to
2588     // a warning in Microsoft compatibility mode.
2589     unsigned DiagID = diag::err_typename_missing;
2590     if (RecoveryTSI && getLangOpts().MSVCCompat)
2591       DiagID = diag::ext_typename_missing;
2592     SourceLocation Loc = SS.getBeginLoc();
2593     auto D = Diag(Loc, DiagID);
2594     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2595       << SourceRange(Loc, NameInfo.getEndLoc());
2596 
2597     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2598     // context.
2599     if (!RecoveryTSI)
2600       return ExprError();
2601 
2602     // Only issue the fixit if we're prepared to recover.
2603     D << FixItHint::CreateInsertion(Loc, "typename ");
2604 
2605     // Recover by pretending this was an elaborated type.
2606     QualType Ty = Context.getTypeDeclType(TD);
2607     TypeLocBuilder TLB;
2608     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2609 
2610     QualType ET = getElaboratedType(ETK_None, SS, Ty);
2611     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2612     QTL.setElaboratedKeywordLoc(SourceLocation());
2613     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2614 
2615     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2616 
2617     return ExprEmpty();
2618   }
2619 
2620   // Defend against this resolving to an implicit member access. We usually
2621   // won't get here if this might be a legitimate a class member (we end up in
2622   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2623   // a pointer-to-member or in an unevaluated context in C++11.
2624   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2625     return BuildPossibleImplicitMemberExpr(SS,
2626                                            /*TemplateKWLoc=*/SourceLocation(),
2627                                            R, /*TemplateArgs=*/nullptr, S);
2628 
2629   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2630 }
2631 
2632 /// The parser has read a name in, and Sema has detected that we're currently
2633 /// inside an ObjC method. Perform some additional checks and determine if we
2634 /// should form a reference to an ivar.
2635 ///
2636 /// Ideally, most of this would be done by lookup, but there's
2637 /// actually quite a lot of extra work involved.
2638 DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2639                                         IdentifierInfo *II) {
2640   SourceLocation Loc = Lookup.getNameLoc();
2641   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2642 
2643   // Check for error condition which is already reported.
2644   if (!CurMethod)
2645     return DeclResult(true);
2646 
2647   // There are two cases to handle here.  1) scoped lookup could have failed,
2648   // in which case we should look for an ivar.  2) scoped lookup could have
2649   // found a decl, but that decl is outside the current instance method (i.e.
2650   // a global variable).  In these two cases, we do a lookup for an ivar with
2651   // this name, if the lookup sucedes, we replace it our current decl.
2652 
2653   // If we're in a class method, we don't normally want to look for
2654   // ivars.  But if we don't find anything else, and there's an
2655   // ivar, that's an error.
2656   bool IsClassMethod = CurMethod->isClassMethod();
2657 
2658   bool LookForIvars;
2659   if (Lookup.empty())
2660     LookForIvars = true;
2661   else if (IsClassMethod)
2662     LookForIvars = false;
2663   else
2664     LookForIvars = (Lookup.isSingleResult() &&
2665                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2666   ObjCInterfaceDecl *IFace = nullptr;
2667   if (LookForIvars) {
2668     IFace = CurMethod->getClassInterface();
2669     ObjCInterfaceDecl *ClassDeclared;
2670     ObjCIvarDecl *IV = nullptr;
2671     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2672       // Diagnose using an ivar in a class method.
2673       if (IsClassMethod) {
2674         Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2675         return DeclResult(true);
2676       }
2677 
2678       // Diagnose the use of an ivar outside of the declaring class.
2679       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2680           !declaresSameEntity(ClassDeclared, IFace) &&
2681           !getLangOpts().DebuggerSupport)
2682         Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2683 
2684       // Success.
2685       return IV;
2686     }
2687   } else if (CurMethod->isInstanceMethod()) {
2688     // We should warn if a local variable hides an ivar.
2689     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2690       ObjCInterfaceDecl *ClassDeclared;
2691       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2692         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2693             declaresSameEntity(IFace, ClassDeclared))
2694           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2695       }
2696     }
2697   } else if (Lookup.isSingleResult() &&
2698              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2699     // If accessing a stand-alone ivar in a class method, this is an error.
2700     if (const ObjCIvarDecl *IV =
2701             dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2702       Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2703       return DeclResult(true);
2704     }
2705   }
2706 
2707   // Didn't encounter an error, didn't find an ivar.
2708   return DeclResult(false);
2709 }
2710 
2711 ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
2712                                   ObjCIvarDecl *IV) {
2713   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2714   assert(CurMethod && CurMethod->isInstanceMethod() &&
2715          "should not reference ivar from this context");
2716 
2717   ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2718   assert(IFace && "should not reference ivar from this context");
2719 
2720   // If we're referencing an invalid decl, just return this as a silent
2721   // error node.  The error diagnostic was already emitted on the decl.
2722   if (IV->isInvalidDecl())
2723     return ExprError();
2724 
2725   // Check if referencing a field with __attribute__((deprecated)).
2726   if (DiagnoseUseOfDecl(IV, Loc))
2727     return ExprError();
2728 
2729   // FIXME: This should use a new expr for a direct reference, don't
2730   // turn this into Self->ivar, just return a BareIVarExpr or something.
2731   IdentifierInfo &II = Context.Idents.get("self");
2732   UnqualifiedId SelfName;
2733   SelfName.setIdentifier(&II, SourceLocation());
2734   SelfName.setKind(UnqualifiedIdKind::IK_ImplicitSelfParam);
2735   CXXScopeSpec SelfScopeSpec;
2736   SourceLocation TemplateKWLoc;
2737   ExprResult SelfExpr =
2738       ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2739                         /*HasTrailingLParen=*/false,
2740                         /*IsAddressOfOperand=*/false);
2741   if (SelfExpr.isInvalid())
2742     return ExprError();
2743 
2744   SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2745   if (SelfExpr.isInvalid())
2746     return ExprError();
2747 
2748   MarkAnyDeclReferenced(Loc, IV, true);
2749 
2750   ObjCMethodFamily MF = CurMethod->getMethodFamily();
2751   if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2752       !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2753     Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2754 
2755   ObjCIvarRefExpr *Result = new (Context)
2756       ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2757                       IV->getLocation(), SelfExpr.get(), true, true);
2758 
2759   if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2760     if (!isUnevaluatedContext() &&
2761         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2762       getCurFunction()->recordUseOfWeak(Result);
2763   }
2764   if (getLangOpts().ObjCAutoRefCount)
2765     if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2766       ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2767 
2768   return Result;
2769 }
2770 
2771 /// The parser has read a name in, and Sema has detected that we're currently
2772 /// inside an ObjC method. Perform some additional checks and determine if we
2773 /// should form a reference to an ivar. If so, build an expression referencing
2774 /// that ivar.
2775 ExprResult
2776 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2777                          IdentifierInfo *II, bool AllowBuiltinCreation) {
2778   // FIXME: Integrate this lookup step into LookupParsedName.
2779   DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
2780   if (Ivar.isInvalid())
2781     return ExprError();
2782   if (Ivar.isUsable())
2783     return BuildIvarRefExpr(S, Lookup.getNameLoc(),
2784                             cast<ObjCIvarDecl>(Ivar.get()));
2785 
2786   if (Lookup.empty() && II && AllowBuiltinCreation)
2787     LookupBuiltin(Lookup);
2788 
2789   // Sentinel value saying that we didn't do anything special.
2790   return ExprResult(false);
2791 }
2792 
2793 /// Cast a base object to a member's actual type.
2794 ///
2795 /// Logically this happens in three phases:
2796 ///
2797 /// * First we cast from the base type to the naming class.
2798 ///   The naming class is the class into which we were looking
2799 ///   when we found the member;  it's the qualifier type if a
2800 ///   qualifier was provided, and otherwise it's the base type.
2801 ///
2802 /// * Next we cast from the naming class to the declaring class.
2803 ///   If the member we found was brought into a class's scope by
2804 ///   a using declaration, this is that class;  otherwise it's
2805 ///   the class declaring the member.
2806 ///
2807 /// * Finally we cast from the declaring class to the "true"
2808 ///   declaring class of the member.  This conversion does not
2809 ///   obey access control.
2810 ExprResult
2811 Sema::PerformObjectMemberConversion(Expr *From,
2812                                     NestedNameSpecifier *Qualifier,
2813                                     NamedDecl *FoundDecl,
2814                                     NamedDecl *Member) {
2815   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2816   if (!RD)
2817     return From;
2818 
2819   QualType DestRecordType;
2820   QualType DestType;
2821   QualType FromRecordType;
2822   QualType FromType = From->getType();
2823   bool PointerConversions = false;
2824   if (isa<FieldDecl>(Member)) {
2825     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2826     auto FromPtrType = FromType->getAs<PointerType>();
2827     DestRecordType = Context.getAddrSpaceQualType(
2828         DestRecordType, FromPtrType
2829                             ? FromType->getPointeeType().getAddressSpace()
2830                             : FromType.getAddressSpace());
2831 
2832     if (FromPtrType) {
2833       DestType = Context.getPointerType(DestRecordType);
2834       FromRecordType = FromPtrType->getPointeeType();
2835       PointerConversions = true;
2836     } else {
2837       DestType = DestRecordType;
2838       FromRecordType = FromType;
2839     }
2840   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2841     if (Method->isStatic())
2842       return From;
2843 
2844     DestType = Method->getThisType();
2845     DestRecordType = DestType->getPointeeType();
2846 
2847     if (FromType->getAs<PointerType>()) {
2848       FromRecordType = FromType->getPointeeType();
2849       PointerConversions = true;
2850     } else {
2851       FromRecordType = FromType;
2852       DestType = DestRecordType;
2853     }
2854 
2855     LangAS FromAS = FromRecordType.getAddressSpace();
2856     LangAS DestAS = DestRecordType.getAddressSpace();
2857     if (FromAS != DestAS) {
2858       QualType FromRecordTypeWithoutAS =
2859           Context.removeAddrSpaceQualType(FromRecordType);
2860       QualType FromTypeWithDestAS =
2861           Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
2862       if (PointerConversions)
2863         FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
2864       From = ImpCastExprToType(From, FromTypeWithDestAS,
2865                                CK_AddressSpaceConversion, From->getValueKind())
2866                  .get();
2867     }
2868   } else {
2869     // No conversion necessary.
2870     return From;
2871   }
2872 
2873   if (DestType->isDependentType() || FromType->isDependentType())
2874     return From;
2875 
2876   // If the unqualified types are the same, no conversion is necessary.
2877   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2878     return From;
2879 
2880   SourceRange FromRange = From->getSourceRange();
2881   SourceLocation FromLoc = FromRange.getBegin();
2882 
2883   ExprValueKind VK = From->getValueKind();
2884 
2885   // C++ [class.member.lookup]p8:
2886   //   [...] Ambiguities can often be resolved by qualifying a name with its
2887   //   class name.
2888   //
2889   // If the member was a qualified name and the qualified referred to a
2890   // specific base subobject type, we'll cast to that intermediate type
2891   // first and then to the object in which the member is declared. That allows
2892   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2893   //
2894   //   class Base { public: int x; };
2895   //   class Derived1 : public Base { };
2896   //   class Derived2 : public Base { };
2897   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2898   //
2899   //   void VeryDerived::f() {
2900   //     x = 17; // error: ambiguous base subobjects
2901   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2902   //   }
2903   if (Qualifier && Qualifier->getAsType()) {
2904     QualType QType = QualType(Qualifier->getAsType(), 0);
2905     assert(QType->isRecordType() && "lookup done with non-record type");
2906 
2907     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2908 
2909     // In C++98, the qualifier type doesn't actually have to be a base
2910     // type of the object type, in which case we just ignore it.
2911     // Otherwise build the appropriate casts.
2912     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
2913       CXXCastPath BasePath;
2914       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2915                                        FromLoc, FromRange, &BasePath))
2916         return ExprError();
2917 
2918       if (PointerConversions)
2919         QType = Context.getPointerType(QType);
2920       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2921                                VK, &BasePath).get();
2922 
2923       FromType = QType;
2924       FromRecordType = QRecordType;
2925 
2926       // If the qualifier type was the same as the destination type,
2927       // we're done.
2928       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2929         return From;
2930     }
2931   }
2932 
2933   bool IgnoreAccess = false;
2934 
2935   // If we actually found the member through a using declaration, cast
2936   // down to the using declaration's type.
2937   //
2938   // Pointer equality is fine here because only one declaration of a
2939   // class ever has member declarations.
2940   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2941     assert(isa<UsingShadowDecl>(FoundDecl));
2942     QualType URecordType = Context.getTypeDeclType(
2943                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2944 
2945     // We only need to do this if the naming-class to declaring-class
2946     // conversion is non-trivial.
2947     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2948       assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
2949       CXXCastPath BasePath;
2950       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2951                                        FromLoc, FromRange, &BasePath))
2952         return ExprError();
2953 
2954       QualType UType = URecordType;
2955       if (PointerConversions)
2956         UType = Context.getPointerType(UType);
2957       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2958                                VK, &BasePath).get();
2959       FromType = UType;
2960       FromRecordType = URecordType;
2961     }
2962 
2963     // We don't do access control for the conversion from the
2964     // declaring class to the true declaring class.
2965     IgnoreAccess = true;
2966   }
2967 
2968   CXXCastPath BasePath;
2969   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2970                                    FromLoc, FromRange, &BasePath,
2971                                    IgnoreAccess))
2972     return ExprError();
2973 
2974   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2975                            VK, &BasePath);
2976 }
2977 
2978 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2979                                       const LookupResult &R,
2980                                       bool HasTrailingLParen) {
2981   // Only when used directly as the postfix-expression of a call.
2982   if (!HasTrailingLParen)
2983     return false;
2984 
2985   // Never if a scope specifier was provided.
2986   if (SS.isSet())
2987     return false;
2988 
2989   // Only in C++ or ObjC++.
2990   if (!getLangOpts().CPlusPlus)
2991     return false;
2992 
2993   // Turn off ADL when we find certain kinds of declarations during
2994   // normal lookup:
2995   for (NamedDecl *D : R) {
2996     // C++0x [basic.lookup.argdep]p3:
2997     //     -- a declaration of a class member
2998     // Since using decls preserve this property, we check this on the
2999     // original decl.
3000     if (D->isCXXClassMember())
3001       return false;
3002 
3003     // C++0x [basic.lookup.argdep]p3:
3004     //     -- a block-scope function declaration that is not a
3005     //        using-declaration
3006     // NOTE: we also trigger this for function templates (in fact, we
3007     // don't check the decl type at all, since all other decl types
3008     // turn off ADL anyway).
3009     if (isa<UsingShadowDecl>(D))
3010       D = cast<UsingShadowDecl>(D)->getTargetDecl();
3011     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3012       return false;
3013 
3014     // C++0x [basic.lookup.argdep]p3:
3015     //     -- a declaration that is neither a function or a function
3016     //        template
3017     // And also for builtin functions.
3018     if (isa<FunctionDecl>(D)) {
3019       FunctionDecl *FDecl = cast<FunctionDecl>(D);
3020 
3021       // But also builtin functions.
3022       if (FDecl->getBuiltinID() && FDecl->isImplicit())
3023         return false;
3024     } else if (!isa<FunctionTemplateDecl>(D))
3025       return false;
3026   }
3027 
3028   return true;
3029 }
3030 
3031 
3032 /// Diagnoses obvious problems with the use of the given declaration
3033 /// as an expression.  This is only actually called for lookups that
3034 /// were not overloaded, and it doesn't promise that the declaration
3035 /// will in fact be used.
3036 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
3037   if (D->isInvalidDecl())
3038     return true;
3039 
3040   if (isa<TypedefNameDecl>(D)) {
3041     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3042     return true;
3043   }
3044 
3045   if (isa<ObjCInterfaceDecl>(D)) {
3046     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3047     return true;
3048   }
3049 
3050   if (isa<NamespaceDecl>(D)) {
3051     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3052     return true;
3053   }
3054 
3055   return false;
3056 }
3057 
3058 // Certain multiversion types should be treated as overloaded even when there is
3059 // only one result.
3060 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3061   assert(R.isSingleResult() && "Expected only a single result");
3062   const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3063   return FD &&
3064          (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3065 }
3066 
3067 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3068                                           LookupResult &R, bool NeedsADL,
3069                                           bool AcceptInvalidDecl) {
3070   // If this is a single, fully-resolved result and we don't need ADL,
3071   // just build an ordinary singleton decl ref.
3072   if (!NeedsADL && R.isSingleResult() &&
3073       !R.getAsSingle<FunctionTemplateDecl>() &&
3074       !ShouldLookupResultBeMultiVersionOverload(R))
3075     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3076                                     R.getRepresentativeDecl(), nullptr,
3077                                     AcceptInvalidDecl);
3078 
3079   // We only need to check the declaration if there's exactly one
3080   // result, because in the overloaded case the results can only be
3081   // functions and function templates.
3082   if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3083       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
3084     return ExprError();
3085 
3086   // Otherwise, just build an unresolved lookup expression.  Suppress
3087   // any lookup-related diagnostics; we'll hash these out later, when
3088   // we've picked a target.
3089   R.suppressDiagnostics();
3090 
3091   UnresolvedLookupExpr *ULE
3092     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3093                                    SS.getWithLocInContext(Context),
3094                                    R.getLookupNameInfo(),
3095                                    NeedsADL, R.isOverloadedResult(),
3096                                    R.begin(), R.end());
3097 
3098   return ULE;
3099 }
3100 
3101 static void
3102 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
3103                                    ValueDecl *var, DeclContext *DC);
3104 
3105 /// Complete semantic analysis for a reference to the given declaration.
3106 ExprResult Sema::BuildDeclarationNameExpr(
3107     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3108     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3109     bool AcceptInvalidDecl) {
3110   assert(D && "Cannot refer to a NULL declaration");
3111   assert(!isa<FunctionTemplateDecl>(D) &&
3112          "Cannot refer unambiguously to a function template");
3113 
3114   SourceLocation Loc = NameInfo.getLoc();
3115   if (CheckDeclInExpr(*this, Loc, D))
3116     return ExprError();
3117 
3118   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3119     // Specifically diagnose references to class templates that are missing
3120     // a template argument list.
3121     diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3122     return ExprError();
3123   }
3124 
3125   // Make sure that we're referring to a value.
3126   ValueDecl *VD = dyn_cast<ValueDecl>(D);
3127   if (!VD) {
3128     Diag(Loc, diag::err_ref_non_value)
3129       << D << SS.getRange();
3130     Diag(D->getLocation(), diag::note_declared_at);
3131     return ExprError();
3132   }
3133 
3134   // Check whether this declaration can be used. Note that we suppress
3135   // this check when we're going to perform argument-dependent lookup
3136   // on this function name, because this might not be the function
3137   // that overload resolution actually selects.
3138   if (DiagnoseUseOfDecl(VD, Loc))
3139     return ExprError();
3140 
3141   // Only create DeclRefExpr's for valid Decl's.
3142   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3143     return ExprError();
3144 
3145   // Handle members of anonymous structs and unions.  If we got here,
3146   // and the reference is to a class member indirect field, then this
3147   // must be the subject of a pointer-to-member expression.
3148   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
3149     if (!indirectField->isCXXClassMember())
3150       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3151                                                       indirectField);
3152 
3153   {
3154     QualType type = VD->getType();
3155     if (type.isNull())
3156       return ExprError();
3157     ExprValueKind valueKind = VK_RValue;
3158 
3159     // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3160     // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3161     // is expanded by some outer '...' in the context of the use.
3162     type = type.getNonPackExpansionType();
3163 
3164     switch (D->getKind()) {
3165     // Ignore all the non-ValueDecl kinds.
3166 #define ABSTRACT_DECL(kind)
3167 #define VALUE(type, base)
3168 #define DECL(type, base) \
3169     case Decl::type:
3170 #include "clang/AST/DeclNodes.inc"
3171       llvm_unreachable("invalid value decl kind");
3172 
3173     // These shouldn't make it here.
3174     case Decl::ObjCAtDefsField:
3175       llvm_unreachable("forming non-member reference to ivar?");
3176 
3177     // Enum constants are always r-values and never references.
3178     // Unresolved using declarations are dependent.
3179     case Decl::EnumConstant:
3180     case Decl::UnresolvedUsingValue:
3181     case Decl::OMPDeclareReduction:
3182     case Decl::OMPDeclareMapper:
3183       valueKind = VK_RValue;
3184       break;
3185 
3186     // Fields and indirect fields that got here must be for
3187     // pointer-to-member expressions; we just call them l-values for
3188     // internal consistency, because this subexpression doesn't really
3189     // exist in the high-level semantics.
3190     case Decl::Field:
3191     case Decl::IndirectField:
3192     case Decl::ObjCIvar:
3193       assert(getLangOpts().CPlusPlus &&
3194              "building reference to field in C?");
3195 
3196       // These can't have reference type in well-formed programs, but
3197       // for internal consistency we do this anyway.
3198       type = type.getNonReferenceType();
3199       valueKind = VK_LValue;
3200       break;
3201 
3202     // Non-type template parameters are either l-values or r-values
3203     // depending on the type.
3204     case Decl::NonTypeTemplateParm: {
3205       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3206         type = reftype->getPointeeType();
3207         valueKind = VK_LValue; // even if the parameter is an r-value reference
3208         break;
3209       }
3210 
3211       // For non-references, we need to strip qualifiers just in case
3212       // the template parameter was declared as 'const int' or whatever.
3213       valueKind = VK_RValue;
3214       type = type.getUnqualifiedType();
3215       break;
3216     }
3217 
3218     case Decl::Var:
3219     case Decl::VarTemplateSpecialization:
3220     case Decl::VarTemplatePartialSpecialization:
3221     case Decl::Decomposition:
3222     case Decl::OMPCapturedExpr:
3223       // In C, "extern void blah;" is valid and is an r-value.
3224       if (!getLangOpts().CPlusPlus &&
3225           !type.hasQualifiers() &&
3226           type->isVoidType()) {
3227         valueKind = VK_RValue;
3228         break;
3229       }
3230       LLVM_FALLTHROUGH;
3231 
3232     case Decl::ImplicitParam:
3233     case Decl::ParmVar: {
3234       // These are always l-values.
3235       valueKind = VK_LValue;
3236       type = type.getNonReferenceType();
3237 
3238       // FIXME: Does the addition of const really only apply in
3239       // potentially-evaluated contexts? Since the variable isn't actually
3240       // captured in an unevaluated context, it seems that the answer is no.
3241       if (!isUnevaluatedContext()) {
3242         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3243         if (!CapturedType.isNull())
3244           type = CapturedType;
3245       }
3246 
3247       break;
3248     }
3249 
3250     case Decl::Binding: {
3251       // These are always lvalues.
3252       valueKind = VK_LValue;
3253       type = type.getNonReferenceType();
3254       // FIXME: Support lambda-capture of BindingDecls, once CWG actually
3255       // decides how that's supposed to work.
3256       auto *BD = cast<BindingDecl>(VD);
3257       if (BD->getDeclContext() != CurContext) {
3258         auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
3259         if (DD && DD->hasLocalStorage())
3260           diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
3261       }
3262       break;
3263     }
3264 
3265     case Decl::Function: {
3266       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3267         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
3268           type = Context.BuiltinFnTy;
3269           valueKind = VK_RValue;
3270           break;
3271         }
3272       }
3273 
3274       const FunctionType *fty = type->castAs<FunctionType>();
3275 
3276       // If we're referring to a function with an __unknown_anytype
3277       // result type, make the entire expression __unknown_anytype.
3278       if (fty->getReturnType() == Context.UnknownAnyTy) {
3279         type = Context.UnknownAnyTy;
3280         valueKind = VK_RValue;
3281         break;
3282       }
3283 
3284       // Functions are l-values in C++.
3285       if (getLangOpts().CPlusPlus) {
3286         valueKind = VK_LValue;
3287         break;
3288       }
3289 
3290       // C99 DR 316 says that, if a function type comes from a
3291       // function definition (without a prototype), that type is only
3292       // used for checking compatibility. Therefore, when referencing
3293       // the function, we pretend that we don't have the full function
3294       // type.
3295       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
3296           isa<FunctionProtoType>(fty))
3297         type = Context.getFunctionNoProtoType(fty->getReturnType(),
3298                                               fty->getExtInfo());
3299 
3300       // Functions are r-values in C.
3301       valueKind = VK_RValue;
3302       break;
3303     }
3304 
3305     case Decl::CXXDeductionGuide:
3306       llvm_unreachable("building reference to deduction guide");
3307 
3308     case Decl::MSProperty:
3309     case Decl::MSGuid:
3310       // FIXME: Should MSGuidDecl be subject to capture in OpenMP,
3311       // or duplicated between host and device?
3312       valueKind = VK_LValue;
3313       break;
3314 
3315     case Decl::CXXMethod:
3316       // If we're referring to a method with an __unknown_anytype
3317       // result type, make the entire expression __unknown_anytype.
3318       // This should only be possible with a type written directly.
3319       if (const FunctionProtoType *proto
3320             = dyn_cast<FunctionProtoType>(VD->getType()))
3321         if (proto->getReturnType() == Context.UnknownAnyTy) {
3322           type = Context.UnknownAnyTy;
3323           valueKind = VK_RValue;
3324           break;
3325         }
3326 
3327       // C++ methods are l-values if static, r-values if non-static.
3328       if (cast<CXXMethodDecl>(VD)->isStatic()) {
3329         valueKind = VK_LValue;
3330         break;
3331       }
3332       LLVM_FALLTHROUGH;
3333 
3334     case Decl::CXXConversion:
3335     case Decl::CXXDestructor:
3336     case Decl::CXXConstructor:
3337       valueKind = VK_RValue;
3338       break;
3339     }
3340 
3341     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3342                             /*FIXME: TemplateKWLoc*/ SourceLocation(),
3343                             TemplateArgs);
3344   }
3345 }
3346 
3347 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3348                                     SmallString<32> &Target) {
3349   Target.resize(CharByteWidth * (Source.size() + 1));
3350   char *ResultPtr = &Target[0];
3351   const llvm::UTF8 *ErrorPtr;
3352   bool success =
3353       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3354   (void)success;
3355   assert(success);
3356   Target.resize(ResultPtr - &Target[0]);
3357 }
3358 
3359 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3360                                      PredefinedExpr::IdentKind IK) {
3361   // Pick the current block, lambda, captured statement or function.
3362   Decl *currentDecl = nullptr;
3363   if (const BlockScopeInfo *BSI = getCurBlock())
3364     currentDecl = BSI->TheDecl;
3365   else if (const LambdaScopeInfo *LSI = getCurLambda())
3366     currentDecl = LSI->CallOperator;
3367   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3368     currentDecl = CSI->TheCapturedDecl;
3369   else
3370     currentDecl = getCurFunctionOrMethodDecl();
3371 
3372   if (!currentDecl) {
3373     Diag(Loc, diag::ext_predef_outside_function);
3374     currentDecl = Context.getTranslationUnitDecl();
3375   }
3376 
3377   QualType ResTy;
3378   StringLiteral *SL = nullptr;
3379   if (cast<DeclContext>(currentDecl)->isDependentContext())
3380     ResTy = Context.DependentTy;
3381   else {
3382     // Pre-defined identifiers are of type char[x], where x is the length of
3383     // the string.
3384     auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3385     unsigned Length = Str.length();
3386 
3387     llvm::APInt LengthI(32, Length + 1);
3388     if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3389       ResTy =
3390           Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3391       SmallString<32> RawChars;
3392       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3393                               Str, RawChars);
3394       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3395                                            ArrayType::Normal,
3396                                            /*IndexTypeQuals*/ 0);
3397       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3398                                  /*Pascal*/ false, ResTy, Loc);
3399     } else {
3400       ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3401       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3402                                            ArrayType::Normal,
3403                                            /*IndexTypeQuals*/ 0);
3404       SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3405                                  /*Pascal*/ false, ResTy, Loc);
3406     }
3407   }
3408 
3409   return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3410 }
3411 
3412 static std::pair<QualType, StringLiteral *>
3413 GetUniqueStableNameInfo(ASTContext &Context, QualType OpType,
3414                         SourceLocation OpLoc, PredefinedExpr::IdentKind K) {
3415   std::pair<QualType, StringLiteral*> Result{{}, nullptr};
3416 
3417   if (OpType->isDependentType()) {
3418       Result.first = Context.DependentTy;
3419       return Result;
3420   }
3421 
3422   std::string Str = PredefinedExpr::ComputeName(Context, K, OpType);
3423   llvm::APInt Length(32, Str.length() + 1);
3424   Result.first =
3425       Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3426   Result.first = Context.getConstantArrayType(
3427       Result.first, Length, nullptr, ArrayType::Normal, /*IndexTypeQuals*/ 0);
3428   Result.second = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3429                                         /*Pascal*/ false, Result.first, OpLoc);
3430   return Result;
3431 }
3432 
3433 ExprResult Sema::BuildUniqueStableName(SourceLocation OpLoc,
3434                                        TypeSourceInfo *Operand) {
3435   QualType ResultTy;
3436   StringLiteral *SL;
3437   std::tie(ResultTy, SL) = GetUniqueStableNameInfo(
3438       Context, Operand->getType(), OpLoc, PredefinedExpr::UniqueStableNameType);
3439 
3440   return PredefinedExpr::Create(Context, OpLoc, ResultTy,
3441                                 PredefinedExpr::UniqueStableNameType, SL,
3442                                 Operand);
3443 }
3444 
3445 ExprResult Sema::BuildUniqueStableName(SourceLocation OpLoc,
3446                                        Expr *E) {
3447   QualType ResultTy;
3448   StringLiteral *SL;
3449   std::tie(ResultTy, SL) = GetUniqueStableNameInfo(
3450       Context, E->getType(), OpLoc, PredefinedExpr::UniqueStableNameExpr);
3451 
3452   return PredefinedExpr::Create(Context, OpLoc, ResultTy,
3453                                 PredefinedExpr::UniqueStableNameExpr, SL, E);
3454 }
3455 
3456 ExprResult Sema::ActOnUniqueStableNameExpr(SourceLocation OpLoc,
3457                                            SourceLocation L, SourceLocation R,
3458                                            ParsedType Ty) {
3459   TypeSourceInfo *TInfo = nullptr;
3460   QualType T = GetTypeFromParser(Ty, &TInfo);
3461 
3462   if (T.isNull())
3463     return ExprError();
3464   if (!TInfo)
3465     TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
3466 
3467   return BuildUniqueStableName(OpLoc, TInfo);
3468 }
3469 
3470 ExprResult Sema::ActOnUniqueStableNameExpr(SourceLocation OpLoc,
3471                                            SourceLocation L, SourceLocation R,
3472                                            Expr *E) {
3473   return BuildUniqueStableName(OpLoc, E);
3474 }
3475 
3476 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3477   PredefinedExpr::IdentKind IK;
3478 
3479   switch (Kind) {
3480   default: llvm_unreachable("Unknown simple primary expr!");
3481   case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3482   case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3483   case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3484   case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3485   case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3486   case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3487   case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3488   }
3489 
3490   return BuildPredefinedExpr(Loc, IK);
3491 }
3492 
3493 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3494   SmallString<16> CharBuffer;
3495   bool Invalid = false;
3496   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3497   if (Invalid)
3498     return ExprError();
3499 
3500   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3501                             PP, Tok.getKind());
3502   if (Literal.hadError())
3503     return ExprError();
3504 
3505   QualType Ty;
3506   if (Literal.isWide())
3507     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3508   else if (Literal.isUTF8() && getLangOpts().Char8)
3509     Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3510   else if (Literal.isUTF16())
3511     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3512   else if (Literal.isUTF32())
3513     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3514   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3515     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3516   else
3517     Ty = Context.CharTy;  // 'x' -> char in C++
3518 
3519   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3520   if (Literal.isWide())
3521     Kind = CharacterLiteral::Wide;
3522   else if (Literal.isUTF16())
3523     Kind = CharacterLiteral::UTF16;
3524   else if (Literal.isUTF32())
3525     Kind = CharacterLiteral::UTF32;
3526   else if (Literal.isUTF8())
3527     Kind = CharacterLiteral::UTF8;
3528 
3529   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3530                                              Tok.getLocation());
3531 
3532   if (Literal.getUDSuffix().empty())
3533     return Lit;
3534 
3535   // We're building a user-defined literal.
3536   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3537   SourceLocation UDSuffixLoc =
3538     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3539 
3540   // Make sure we're allowed user-defined literals here.
3541   if (!UDLScope)
3542     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3543 
3544   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3545   //   operator "" X (ch)
3546   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3547                                         Lit, Tok.getLocation());
3548 }
3549 
3550 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3551   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3552   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3553                                 Context.IntTy, Loc);
3554 }
3555 
3556 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3557                                   QualType Ty, SourceLocation Loc) {
3558   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3559 
3560   using llvm::APFloat;
3561   APFloat Val(Format);
3562 
3563   APFloat::opStatus result = Literal.GetFloatValue(Val);
3564 
3565   // Overflow is always an error, but underflow is only an error if
3566   // we underflowed to zero (APFloat reports denormals as underflow).
3567   if ((result & APFloat::opOverflow) ||
3568       ((result & APFloat::opUnderflow) && Val.isZero())) {
3569     unsigned diagnostic;
3570     SmallString<20> buffer;
3571     if (result & APFloat::opOverflow) {
3572       diagnostic = diag::warn_float_overflow;
3573       APFloat::getLargest(Format).toString(buffer);
3574     } else {
3575       diagnostic = diag::warn_float_underflow;
3576       APFloat::getSmallest(Format).toString(buffer);
3577     }
3578 
3579     S.Diag(Loc, diagnostic)
3580       << Ty
3581       << StringRef(buffer.data(), buffer.size());
3582   }
3583 
3584   bool isExact = (result == APFloat::opOK);
3585   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3586 }
3587 
3588 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3589   assert(E && "Invalid expression");
3590 
3591   if (E->isValueDependent())
3592     return false;
3593 
3594   QualType QT = E->getType();
3595   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3596     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3597     return true;
3598   }
3599 
3600   llvm::APSInt ValueAPS;
3601   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3602 
3603   if (R.isInvalid())
3604     return true;
3605 
3606   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3607   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3608     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3609         << ValueAPS.toString(10) << ValueIsPositive;
3610     return true;
3611   }
3612 
3613   return false;
3614 }
3615 
3616 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3617   // Fast path for a single digit (which is quite common).  A single digit
3618   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3619   if (Tok.getLength() == 1) {
3620     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3621     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3622   }
3623 
3624   SmallString<128> SpellingBuffer;
3625   // NumericLiteralParser wants to overread by one character.  Add padding to
3626   // the buffer in case the token is copied to the buffer.  If getSpelling()
3627   // returns a StringRef to the memory buffer, it should have a null char at
3628   // the EOF, so it is also safe.
3629   SpellingBuffer.resize(Tok.getLength() + 1);
3630 
3631   // Get the spelling of the token, which eliminates trigraphs, etc.
3632   bool Invalid = false;
3633   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3634   if (Invalid)
3635     return ExprError();
3636 
3637   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3638                                PP.getSourceManager(), PP.getLangOpts(),
3639                                PP.getTargetInfo(), PP.getDiagnostics());
3640   if (Literal.hadError)
3641     return ExprError();
3642 
3643   if (Literal.hasUDSuffix()) {
3644     // We're building a user-defined literal.
3645     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3646     SourceLocation UDSuffixLoc =
3647       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3648 
3649     // Make sure we're allowed user-defined literals here.
3650     if (!UDLScope)
3651       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3652 
3653     QualType CookedTy;
3654     if (Literal.isFloatingLiteral()) {
3655       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3656       // long double, the literal is treated as a call of the form
3657       //   operator "" X (f L)
3658       CookedTy = Context.LongDoubleTy;
3659     } else {
3660       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3661       // unsigned long long, the literal is treated as a call of the form
3662       //   operator "" X (n ULL)
3663       CookedTy = Context.UnsignedLongLongTy;
3664     }
3665 
3666     DeclarationName OpName =
3667       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3668     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3669     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3670 
3671     SourceLocation TokLoc = Tok.getLocation();
3672 
3673     // Perform literal operator lookup to determine if we're building a raw
3674     // literal or a cooked one.
3675     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3676     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3677                                   /*AllowRaw*/ true, /*AllowTemplate*/ true,
3678                                   /*AllowStringTemplate*/ false,
3679                                   /*DiagnoseMissing*/ !Literal.isImaginary)) {
3680     case LOLR_ErrorNoDiagnostic:
3681       // Lookup failure for imaginary constants isn't fatal, there's still the
3682       // GNU extension producing _Complex types.
3683       break;
3684     case LOLR_Error:
3685       return ExprError();
3686     case LOLR_Cooked: {
3687       Expr *Lit;
3688       if (Literal.isFloatingLiteral()) {
3689         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3690       } else {
3691         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3692         if (Literal.GetIntegerValue(ResultVal))
3693           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3694               << /* Unsigned */ 1;
3695         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3696                                      Tok.getLocation());
3697       }
3698       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3699     }
3700 
3701     case LOLR_Raw: {
3702       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3703       // literal is treated as a call of the form
3704       //   operator "" X ("n")
3705       unsigned Length = Literal.getUDSuffixOffset();
3706       QualType StrTy = Context.getConstantArrayType(
3707           Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3708           llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3709       Expr *Lit = StringLiteral::Create(
3710           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3711           /*Pascal*/false, StrTy, &TokLoc, 1);
3712       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3713     }
3714 
3715     case LOLR_Template: {
3716       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3717       // template), L is treated as a call fo the form
3718       //   operator "" X <'c1', 'c2', ... 'ck'>()
3719       // where n is the source character sequence c1 c2 ... ck.
3720       TemplateArgumentListInfo ExplicitArgs;
3721       unsigned CharBits = Context.getIntWidth(Context.CharTy);
3722       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3723       llvm::APSInt Value(CharBits, CharIsUnsigned);
3724       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3725         Value = TokSpelling[I];
3726         TemplateArgument Arg(Context, Value, Context.CharTy);
3727         TemplateArgumentLocInfo ArgInfo;
3728         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3729       }
3730       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3731                                       &ExplicitArgs);
3732     }
3733     case LOLR_StringTemplate:
3734       llvm_unreachable("unexpected literal operator lookup result");
3735     }
3736   }
3737 
3738   Expr *Res;
3739 
3740   if (Literal.isFixedPointLiteral()) {
3741     QualType Ty;
3742 
3743     if (Literal.isAccum) {
3744       if (Literal.isHalf) {
3745         Ty = Context.ShortAccumTy;
3746       } else if (Literal.isLong) {
3747         Ty = Context.LongAccumTy;
3748       } else {
3749         Ty = Context.AccumTy;
3750       }
3751     } else if (Literal.isFract) {
3752       if (Literal.isHalf) {
3753         Ty = Context.ShortFractTy;
3754       } else if (Literal.isLong) {
3755         Ty = Context.LongFractTy;
3756       } else {
3757         Ty = Context.FractTy;
3758       }
3759     }
3760 
3761     if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3762 
3763     bool isSigned = !Literal.isUnsigned;
3764     unsigned scale = Context.getFixedPointScale(Ty);
3765     unsigned bit_width = Context.getTypeInfo(Ty).Width;
3766 
3767     llvm::APInt Val(bit_width, 0, isSigned);
3768     bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3769     bool ValIsZero = Val.isNullValue() && !Overflowed;
3770 
3771     auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3772     if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3773       // Clause 6.4.4 - The value of a constant shall be in the range of
3774       // representable values for its type, with exception for constants of a
3775       // fract type with a value of exactly 1; such a constant shall denote
3776       // the maximal value for the type.
3777       --Val;
3778     else if (Val.ugt(MaxVal) || Overflowed)
3779       Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3780 
3781     Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3782                                               Tok.getLocation(), scale);
3783   } else if (Literal.isFloatingLiteral()) {
3784     QualType Ty;
3785     if (Literal.isHalf){
3786       if (getOpenCLOptions().isEnabled("cl_khr_fp16"))
3787         Ty = Context.HalfTy;
3788       else {
3789         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3790         return ExprError();
3791       }
3792     } else if (Literal.isFloat)
3793       Ty = Context.FloatTy;
3794     else if (Literal.isLong)
3795       Ty = Context.LongDoubleTy;
3796     else if (Literal.isFloat16)
3797       Ty = Context.Float16Ty;
3798     else if (Literal.isFloat128)
3799       Ty = Context.Float128Ty;
3800     else
3801       Ty = Context.DoubleTy;
3802 
3803     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3804 
3805     if (Ty == Context.DoubleTy) {
3806       if (getLangOpts().SinglePrecisionConstants) {
3807         const BuiltinType *BTy = Ty->getAs<BuiltinType>();
3808         if (BTy->getKind() != BuiltinType::Float) {
3809           Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3810         }
3811       } else if (getLangOpts().OpenCL &&
3812                  !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
3813         // Impose single-precision float type when cl_khr_fp64 is not enabled.
3814         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3815         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3816       }
3817     }
3818   } else if (!Literal.isIntegerLiteral()) {
3819     return ExprError();
3820   } else {
3821     QualType Ty;
3822 
3823     // 'long long' is a C99 or C++11 feature.
3824     if (!getLangOpts().C99 && Literal.isLongLong) {
3825       if (getLangOpts().CPlusPlus)
3826         Diag(Tok.getLocation(),
3827              getLangOpts().CPlusPlus11 ?
3828              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3829       else
3830         Diag(Tok.getLocation(), diag::ext_c99_longlong);
3831     }
3832 
3833     // Get the value in the widest-possible width.
3834     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3835     llvm::APInt ResultVal(MaxWidth, 0);
3836 
3837     if (Literal.GetIntegerValue(ResultVal)) {
3838       // If this value didn't fit into uintmax_t, error and force to ull.
3839       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3840           << /* Unsigned */ 1;
3841       Ty = Context.UnsignedLongLongTy;
3842       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3843              "long long is not intmax_t?");
3844     } else {
3845       // If this value fits into a ULL, try to figure out what else it fits into
3846       // according to the rules of C99 6.4.4.1p5.
3847 
3848       // Octal, Hexadecimal, and integers with a U suffix are allowed to
3849       // be an unsigned int.
3850       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3851 
3852       // Check from smallest to largest, picking the smallest type we can.
3853       unsigned Width = 0;
3854 
3855       // Microsoft specific integer suffixes are explicitly sized.
3856       if (Literal.MicrosoftInteger) {
3857         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3858           Width = 8;
3859           Ty = Context.CharTy;
3860         } else {
3861           Width = Literal.MicrosoftInteger;
3862           Ty = Context.getIntTypeForBitwidth(Width,
3863                                              /*Signed=*/!Literal.isUnsigned);
3864         }
3865       }
3866 
3867       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
3868         // Are int/unsigned possibilities?
3869         unsigned IntSize = Context.getTargetInfo().getIntWidth();
3870 
3871         // Does it fit in a unsigned int?
3872         if (ResultVal.isIntN(IntSize)) {
3873           // Does it fit in a signed int?
3874           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3875             Ty = Context.IntTy;
3876           else if (AllowUnsigned)
3877             Ty = Context.UnsignedIntTy;
3878           Width = IntSize;
3879         }
3880       }
3881 
3882       // Are long/unsigned long possibilities?
3883       if (Ty.isNull() && !Literal.isLongLong) {
3884         unsigned LongSize = Context.getTargetInfo().getLongWidth();
3885 
3886         // Does it fit in a unsigned long?
3887         if (ResultVal.isIntN(LongSize)) {
3888           // Does it fit in a signed long?
3889           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3890             Ty = Context.LongTy;
3891           else if (AllowUnsigned)
3892             Ty = Context.UnsignedLongTy;
3893           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
3894           // is compatible.
3895           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
3896             const unsigned LongLongSize =
3897                 Context.getTargetInfo().getLongLongWidth();
3898             Diag(Tok.getLocation(),
3899                  getLangOpts().CPlusPlus
3900                      ? Literal.isLong
3901                            ? diag::warn_old_implicitly_unsigned_long_cxx
3902                            : /*C++98 UB*/ diag::
3903                                  ext_old_implicitly_unsigned_long_cxx
3904                      : diag::warn_old_implicitly_unsigned_long)
3905                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
3906                                             : /*will be ill-formed*/ 1);
3907             Ty = Context.UnsignedLongTy;
3908           }
3909           Width = LongSize;
3910         }
3911       }
3912 
3913       // Check long long if needed.
3914       if (Ty.isNull()) {
3915         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3916 
3917         // Does it fit in a unsigned long long?
3918         if (ResultVal.isIntN(LongLongSize)) {
3919           // Does it fit in a signed long long?
3920           // To be compatible with MSVC, hex integer literals ending with the
3921           // LL or i64 suffix are always signed in Microsoft mode.
3922           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3923               (getLangOpts().MSVCCompat && Literal.isLongLong)))
3924             Ty = Context.LongLongTy;
3925           else if (AllowUnsigned)
3926             Ty = Context.UnsignedLongLongTy;
3927           Width = LongLongSize;
3928         }
3929       }
3930 
3931       // If we still couldn't decide a type, we probably have something that
3932       // does not fit in a signed long long, but has no U suffix.
3933       if (Ty.isNull()) {
3934         Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
3935         Ty = Context.UnsignedLongLongTy;
3936         Width = Context.getTargetInfo().getLongLongWidth();
3937       }
3938 
3939       if (ResultVal.getBitWidth() != Width)
3940         ResultVal = ResultVal.trunc(Width);
3941     }
3942     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3943   }
3944 
3945   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3946   if (Literal.isImaginary) {
3947     Res = new (Context) ImaginaryLiteral(Res,
3948                                         Context.getComplexType(Res->getType()));
3949 
3950     Diag(Tok.getLocation(), diag::ext_imaginary_constant);
3951   }
3952   return Res;
3953 }
3954 
3955 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3956   assert(E && "ActOnParenExpr() missing expr");
3957   return new (Context) ParenExpr(L, R, E);
3958 }
3959 
3960 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3961                                          SourceLocation Loc,
3962                                          SourceRange ArgRange) {
3963   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3964   // scalar or vector data type argument..."
3965   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3966   // type (C99 6.2.5p18) or void.
3967   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3968     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3969       << T << ArgRange;
3970     return true;
3971   }
3972 
3973   assert((T->isVoidType() || !T->isIncompleteType()) &&
3974          "Scalar types should always be complete");
3975   return false;
3976 }
3977 
3978 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3979                                            SourceLocation Loc,
3980                                            SourceRange ArgRange,
3981                                            UnaryExprOrTypeTrait TraitKind) {
3982   // Invalid types must be hard errors for SFINAE in C++.
3983   if (S.LangOpts.CPlusPlus)
3984     return true;
3985 
3986   // C99 6.5.3.4p1:
3987   if (T->isFunctionType() &&
3988       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
3989        TraitKind == UETT_PreferredAlignOf)) {
3990     // sizeof(function)/alignof(function) is allowed as an extension.
3991     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
3992         << getTraitSpelling(TraitKind) << ArgRange;
3993     return false;
3994   }
3995 
3996   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
3997   // this is an error (OpenCL v1.1 s6.3.k)
3998   if (T->isVoidType()) {
3999     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4000                                         : diag::ext_sizeof_alignof_void_type;
4001     S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4002     return false;
4003   }
4004 
4005   return true;
4006 }
4007 
4008 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4009                                              SourceLocation Loc,
4010                                              SourceRange ArgRange,
4011                                              UnaryExprOrTypeTrait TraitKind) {
4012   // Reject sizeof(interface) and sizeof(interface<proto>) if the
4013   // runtime doesn't allow it.
4014   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4015     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4016       << T << (TraitKind == UETT_SizeOf)
4017       << ArgRange;
4018     return true;
4019   }
4020 
4021   return false;
4022 }
4023 
4024 /// Check whether E is a pointer from a decayed array type (the decayed
4025 /// pointer type is equal to T) and emit a warning if it is.
4026 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4027                                      Expr *E) {
4028   // Don't warn if the operation changed the type.
4029   if (T != E->getType())
4030     return;
4031 
4032   // Now look for array decays.
4033   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
4034   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4035     return;
4036 
4037   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4038                                              << ICE->getType()
4039                                              << ICE->getSubExpr()->getType();
4040 }
4041 
4042 /// Check the constraints on expression operands to unary type expression
4043 /// and type traits.
4044 ///
4045 /// Completes any types necessary and validates the constraints on the operand
4046 /// expression. The logic mostly mirrors the type-based overload, but may modify
4047 /// the expression as it completes the type for that expression through template
4048 /// instantiation, etc.
4049 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4050                                             UnaryExprOrTypeTrait ExprKind) {
4051   QualType ExprTy = E->getType();
4052   assert(!ExprTy->isReferenceType());
4053 
4054   bool IsUnevaluatedOperand =
4055       (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
4056        ExprKind == UETT_PreferredAlignOf);
4057   if (IsUnevaluatedOperand) {
4058     ExprResult Result = CheckUnevaluatedOperand(E);
4059     if (Result.isInvalid())
4060       return true;
4061     E = Result.get();
4062   }
4063 
4064   if (ExprKind == UETT_VecStep)
4065     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4066                                         E->getSourceRange());
4067 
4068   // Explicitly list some types as extensions.
4069   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4070                                       E->getSourceRange(), ExprKind))
4071     return false;
4072 
4073   // 'alignof' applied to an expression only requires the base element type of
4074   // the expression to be complete. 'sizeof' requires the expression's type to
4075   // be complete (and will attempt to complete it if it's an array of unknown
4076   // bound).
4077   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4078     if (RequireCompleteSizedType(
4079             E->getExprLoc(), Context.getBaseElementType(E->getType()),
4080             diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4081             getTraitSpelling(ExprKind), E->getSourceRange()))
4082       return true;
4083   } else {
4084     if (RequireCompleteSizedExprType(
4085             E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4086             getTraitSpelling(ExprKind), E->getSourceRange()))
4087       return true;
4088   }
4089 
4090   // Completing the expression's type may have changed it.
4091   ExprTy = E->getType();
4092   assert(!ExprTy->isReferenceType());
4093 
4094   if (ExprTy->isFunctionType()) {
4095     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4096         << getTraitSpelling(ExprKind) << E->getSourceRange();
4097     return true;
4098   }
4099 
4100   // The operand for sizeof and alignof is in an unevaluated expression context,
4101   // so side effects could result in unintended consequences.
4102   if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4103       E->HasSideEffects(Context, false))
4104     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4105 
4106   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4107                                        E->getSourceRange(), ExprKind))
4108     return true;
4109 
4110   if (ExprKind == UETT_SizeOf) {
4111     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4112       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4113         QualType OType = PVD->getOriginalType();
4114         QualType Type = PVD->getType();
4115         if (Type->isPointerType() && OType->isArrayType()) {
4116           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4117             << Type << OType;
4118           Diag(PVD->getLocation(), diag::note_declared_at);
4119         }
4120       }
4121     }
4122 
4123     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4124     // decays into a pointer and returns an unintended result. This is most
4125     // likely a typo for "sizeof(array) op x".
4126     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4127       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4128                                BO->getLHS());
4129       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4130                                BO->getRHS());
4131     }
4132   }
4133 
4134   return false;
4135 }
4136 
4137 /// Check the constraints on operands to unary expression and type
4138 /// traits.
4139 ///
4140 /// This will complete any types necessary, and validate the various constraints
4141 /// on those operands.
4142 ///
4143 /// The UsualUnaryConversions() function is *not* called by this routine.
4144 /// C99 6.3.2.1p[2-4] all state:
4145 ///   Except when it is the operand of the sizeof operator ...
4146 ///
4147 /// C++ [expr.sizeof]p4
4148 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4149 ///   standard conversions are not applied to the operand of sizeof.
4150 ///
4151 /// This policy is followed for all of the unary trait expressions.
4152 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4153                                             SourceLocation OpLoc,
4154                                             SourceRange ExprRange,
4155                                             UnaryExprOrTypeTrait ExprKind) {
4156   if (ExprType->isDependentType())
4157     return false;
4158 
4159   // C++ [expr.sizeof]p2:
4160   //     When applied to a reference or a reference type, the result
4161   //     is the size of the referenced type.
4162   // C++11 [expr.alignof]p3:
4163   //     When alignof is applied to a reference type, the result
4164   //     shall be the alignment of the referenced type.
4165   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4166     ExprType = Ref->getPointeeType();
4167 
4168   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4169   //   When alignof or _Alignof is applied to an array type, the result
4170   //   is the alignment of the element type.
4171   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4172       ExprKind == UETT_OpenMPRequiredSimdAlign)
4173     ExprType = Context.getBaseElementType(ExprType);
4174 
4175   if (ExprKind == UETT_VecStep)
4176     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4177 
4178   // Explicitly list some types as extensions.
4179   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4180                                       ExprKind))
4181     return false;
4182 
4183   if (RequireCompleteSizedType(
4184           OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4185           getTraitSpelling(ExprKind), ExprRange))
4186     return true;
4187 
4188   if (ExprType->isFunctionType()) {
4189     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
4190         << getTraitSpelling(ExprKind) << ExprRange;
4191     return true;
4192   }
4193 
4194   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4195                                        ExprKind))
4196     return true;
4197 
4198   return false;
4199 }
4200 
4201 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4202   // Cannot know anything else if the expression is dependent.
4203   if (E->isTypeDependent())
4204     return false;
4205 
4206   if (E->getObjectKind() == OK_BitField) {
4207     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4208        << 1 << E->getSourceRange();
4209     return true;
4210   }
4211 
4212   ValueDecl *D = nullptr;
4213   Expr *Inner = E->IgnoreParens();
4214   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4215     D = DRE->getDecl();
4216   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4217     D = ME->getMemberDecl();
4218   }
4219 
4220   // If it's a field, require the containing struct to have a
4221   // complete definition so that we can compute the layout.
4222   //
4223   // This can happen in C++11 onwards, either by naming the member
4224   // in a way that is not transformed into a member access expression
4225   // (in an unevaluated operand, for instance), or by naming the member
4226   // in a trailing-return-type.
4227   //
4228   // For the record, since __alignof__ on expressions is a GCC
4229   // extension, GCC seems to permit this but always gives the
4230   // nonsensical answer 0.
4231   //
4232   // We don't really need the layout here --- we could instead just
4233   // directly check for all the appropriate alignment-lowing
4234   // attributes --- but that would require duplicating a lot of
4235   // logic that just isn't worth duplicating for such a marginal
4236   // use-case.
4237   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4238     // Fast path this check, since we at least know the record has a
4239     // definition if we can find a member of it.
4240     if (!FD->getParent()->isCompleteDefinition()) {
4241       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4242         << E->getSourceRange();
4243       return true;
4244     }
4245 
4246     // Otherwise, if it's a field, and the field doesn't have
4247     // reference type, then it must have a complete type (or be a
4248     // flexible array member, which we explicitly want to
4249     // white-list anyway), which makes the following checks trivial.
4250     if (!FD->getType()->isReferenceType())
4251       return false;
4252   }
4253 
4254   return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4255 }
4256 
4257 bool Sema::CheckVecStepExpr(Expr *E) {
4258   E = E->IgnoreParens();
4259 
4260   // Cannot know anything else if the expression is dependent.
4261   if (E->isTypeDependent())
4262     return false;
4263 
4264   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4265 }
4266 
4267 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4268                                         CapturingScopeInfo *CSI) {
4269   assert(T->isVariablyModifiedType());
4270   assert(CSI != nullptr);
4271 
4272   // We're going to walk down into the type and look for VLA expressions.
4273   do {
4274     const Type *Ty = T.getTypePtr();
4275     switch (Ty->getTypeClass()) {
4276 #define TYPE(Class, Base)
4277 #define ABSTRACT_TYPE(Class, Base)
4278 #define NON_CANONICAL_TYPE(Class, Base)
4279 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4280 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4281 #include "clang/AST/TypeNodes.inc"
4282       T = QualType();
4283       break;
4284     // These types are never variably-modified.
4285     case Type::Builtin:
4286     case Type::Complex:
4287     case Type::Vector:
4288     case Type::ExtVector:
4289     case Type::ConstantMatrix:
4290     case Type::Record:
4291     case Type::Enum:
4292     case Type::Elaborated:
4293     case Type::TemplateSpecialization:
4294     case Type::ObjCObject:
4295     case Type::ObjCInterface:
4296     case Type::ObjCObjectPointer:
4297     case Type::ObjCTypeParam:
4298     case Type::Pipe:
4299     case Type::ExtInt:
4300       llvm_unreachable("type class is never variably-modified!");
4301     case Type::Adjusted:
4302       T = cast<AdjustedType>(Ty)->getOriginalType();
4303       break;
4304     case Type::Decayed:
4305       T = cast<DecayedType>(Ty)->getPointeeType();
4306       break;
4307     case Type::Pointer:
4308       T = cast<PointerType>(Ty)->getPointeeType();
4309       break;
4310     case Type::BlockPointer:
4311       T = cast<BlockPointerType>(Ty)->getPointeeType();
4312       break;
4313     case Type::LValueReference:
4314     case Type::RValueReference:
4315       T = cast<ReferenceType>(Ty)->getPointeeType();
4316       break;
4317     case Type::MemberPointer:
4318       T = cast<MemberPointerType>(Ty)->getPointeeType();
4319       break;
4320     case Type::ConstantArray:
4321     case Type::IncompleteArray:
4322       // Losing element qualification here is fine.
4323       T = cast<ArrayType>(Ty)->getElementType();
4324       break;
4325     case Type::VariableArray: {
4326       // Losing element qualification here is fine.
4327       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4328 
4329       // Unknown size indication requires no size computation.
4330       // Otherwise, evaluate and record it.
4331       auto Size = VAT->getSizeExpr();
4332       if (Size && !CSI->isVLATypeCaptured(VAT) &&
4333           (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4334         CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4335 
4336       T = VAT->getElementType();
4337       break;
4338     }
4339     case Type::FunctionProto:
4340     case Type::FunctionNoProto:
4341       T = cast<FunctionType>(Ty)->getReturnType();
4342       break;
4343     case Type::Paren:
4344     case Type::TypeOf:
4345     case Type::UnaryTransform:
4346     case Type::Attributed:
4347     case Type::SubstTemplateTypeParm:
4348     case Type::MacroQualified:
4349       // Keep walking after single level desugaring.
4350       T = T.getSingleStepDesugaredType(Context);
4351       break;
4352     case Type::Typedef:
4353       T = cast<TypedefType>(Ty)->desugar();
4354       break;
4355     case Type::Decltype:
4356       T = cast<DecltypeType>(Ty)->desugar();
4357       break;
4358     case Type::Auto:
4359     case Type::DeducedTemplateSpecialization:
4360       T = cast<DeducedType>(Ty)->getDeducedType();
4361       break;
4362     case Type::TypeOfExpr:
4363       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4364       break;
4365     case Type::Atomic:
4366       T = cast<AtomicType>(Ty)->getValueType();
4367       break;
4368     }
4369   } while (!T.isNull() && T->isVariablyModifiedType());
4370 }
4371 
4372 /// Build a sizeof or alignof expression given a type operand.
4373 ExprResult
4374 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4375                                      SourceLocation OpLoc,
4376                                      UnaryExprOrTypeTrait ExprKind,
4377                                      SourceRange R) {
4378   if (!TInfo)
4379     return ExprError();
4380 
4381   QualType T = TInfo->getType();
4382 
4383   if (!T->isDependentType() &&
4384       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4385     return ExprError();
4386 
4387   if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4388     if (auto *TT = T->getAs<TypedefType>()) {
4389       for (auto I = FunctionScopes.rbegin(),
4390                 E = std::prev(FunctionScopes.rend());
4391            I != E; ++I) {
4392         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4393         if (CSI == nullptr)
4394           break;
4395         DeclContext *DC = nullptr;
4396         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4397           DC = LSI->CallOperator;
4398         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4399           DC = CRSI->TheCapturedDecl;
4400         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4401           DC = BSI->TheDecl;
4402         if (DC) {
4403           if (DC->containsDecl(TT->getDecl()))
4404             break;
4405           captureVariablyModifiedType(Context, T, CSI);
4406         }
4407       }
4408     }
4409   }
4410 
4411   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4412   return new (Context) UnaryExprOrTypeTraitExpr(
4413       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4414 }
4415 
4416 /// Build a sizeof or alignof expression given an expression
4417 /// operand.
4418 ExprResult
4419 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4420                                      UnaryExprOrTypeTrait ExprKind) {
4421   ExprResult PE = CheckPlaceholderExpr(E);
4422   if (PE.isInvalid())
4423     return ExprError();
4424 
4425   E = PE.get();
4426 
4427   // Verify that the operand is valid.
4428   bool isInvalid = false;
4429   if (E->isTypeDependent()) {
4430     // Delay type-checking for type-dependent expressions.
4431   } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4432     isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4433   } else if (ExprKind == UETT_VecStep) {
4434     isInvalid = CheckVecStepExpr(E);
4435   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4436       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4437       isInvalid = true;
4438   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4439     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4440     isInvalid = true;
4441   } else {
4442     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4443   }
4444 
4445   if (isInvalid)
4446     return ExprError();
4447 
4448   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4449     PE = TransformToPotentiallyEvaluated(E);
4450     if (PE.isInvalid()) return ExprError();
4451     E = PE.get();
4452   }
4453 
4454   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4455   return new (Context) UnaryExprOrTypeTraitExpr(
4456       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4457 }
4458 
4459 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4460 /// expr and the same for @c alignof and @c __alignof
4461 /// Note that the ArgRange is invalid if isType is false.
4462 ExprResult
4463 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4464                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4465                                     void *TyOrEx, SourceRange ArgRange) {
4466   // If error parsing type, ignore.
4467   if (!TyOrEx) return ExprError();
4468 
4469   if (IsType) {
4470     TypeSourceInfo *TInfo;
4471     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4472     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4473   }
4474 
4475   Expr *ArgEx = (Expr *)TyOrEx;
4476   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4477   return Result;
4478 }
4479 
4480 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4481                                      bool IsReal) {
4482   if (V.get()->isTypeDependent())
4483     return S.Context.DependentTy;
4484 
4485   // _Real and _Imag are only l-values for normal l-values.
4486   if (V.get()->getObjectKind() != OK_Ordinary) {
4487     V = S.DefaultLvalueConversion(V.get());
4488     if (V.isInvalid())
4489       return QualType();
4490   }
4491 
4492   // These operators return the element type of a complex type.
4493   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4494     return CT->getElementType();
4495 
4496   // Otherwise they pass through real integer and floating point types here.
4497   if (V.get()->getType()->isArithmeticType())
4498     return V.get()->getType();
4499 
4500   // Test for placeholders.
4501   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4502   if (PR.isInvalid()) return QualType();
4503   if (PR.get() != V.get()) {
4504     V = PR;
4505     return CheckRealImagOperand(S, V, Loc, IsReal);
4506   }
4507 
4508   // Reject anything else.
4509   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4510     << (IsReal ? "__real" : "__imag");
4511   return QualType();
4512 }
4513 
4514 
4515 
4516 ExprResult
4517 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4518                           tok::TokenKind Kind, Expr *Input) {
4519   UnaryOperatorKind Opc;
4520   switch (Kind) {
4521   default: llvm_unreachable("Unknown unary op!");
4522   case tok::plusplus:   Opc = UO_PostInc; break;
4523   case tok::minusminus: Opc = UO_PostDec; break;
4524   }
4525 
4526   // Since this might is a postfix expression, get rid of ParenListExprs.
4527   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4528   if (Result.isInvalid()) return ExprError();
4529   Input = Result.get();
4530 
4531   return BuildUnaryOp(S, OpLoc, Opc, Input);
4532 }
4533 
4534 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4535 ///
4536 /// \return true on error
4537 static bool checkArithmeticOnObjCPointer(Sema &S,
4538                                          SourceLocation opLoc,
4539                                          Expr *op) {
4540   assert(op->getType()->isObjCObjectPointerType());
4541   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4542       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4543     return false;
4544 
4545   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4546     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4547     << op->getSourceRange();
4548   return true;
4549 }
4550 
4551 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4552   auto *BaseNoParens = Base->IgnoreParens();
4553   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4554     return MSProp->getPropertyDecl()->getType()->isArrayType();
4555   return isa<MSPropertySubscriptExpr>(BaseNoParens);
4556 }
4557 
4558 ExprResult
4559 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
4560                               Expr *idx, SourceLocation rbLoc) {
4561   if (base && !base->getType().isNull() &&
4562       base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
4563     return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
4564                                     SourceLocation(), /*Length*/ nullptr,
4565                                     /*Stride=*/nullptr, rbLoc);
4566 
4567   // Since this might be a postfix expression, get rid of ParenListExprs.
4568   if (isa<ParenListExpr>(base)) {
4569     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4570     if (result.isInvalid()) return ExprError();
4571     base = result.get();
4572   }
4573 
4574   // Check if base and idx form a MatrixSubscriptExpr.
4575   //
4576   // Helper to check for comma expressions, which are not allowed as indices for
4577   // matrix subscript expressions.
4578   auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4579     if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4580       Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4581           << SourceRange(base->getBeginLoc(), rbLoc);
4582       return true;
4583     }
4584     return false;
4585   };
4586   // The matrix subscript operator ([][])is considered a single operator.
4587   // Separating the index expressions by parenthesis is not allowed.
4588   if (base->getType()->isSpecificPlaceholderType(
4589           BuiltinType::IncompleteMatrixIdx) &&
4590       !isa<MatrixSubscriptExpr>(base)) {
4591     Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4592         << SourceRange(base->getBeginLoc(), rbLoc);
4593     return ExprError();
4594   }
4595   // If the base is either a MatrixSubscriptExpr or a matrix type, try to create
4596   // a new MatrixSubscriptExpr.
4597   auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4598   if (matSubscriptE) {
4599     if (CheckAndReportCommaError(idx))
4600       return ExprError();
4601 
4602     assert(matSubscriptE->isIncomplete() &&
4603            "base has to be an incomplete matrix subscript");
4604     return CreateBuiltinMatrixSubscriptExpr(
4605         matSubscriptE->getBase(), matSubscriptE->getRowIdx(), idx, rbLoc);
4606   }
4607   Expr *matrixBase = base;
4608   bool IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4609   if (!IsMSPropertySubscript) {
4610     ExprResult result = CheckPlaceholderExpr(base);
4611     if (!result.isInvalid())
4612       matrixBase = result.get();
4613   }
4614   if (matrixBase->getType()->isMatrixType()) {
4615     if (CheckAndReportCommaError(idx))
4616       return ExprError();
4617 
4618     return CreateBuiltinMatrixSubscriptExpr(matrixBase, idx, nullptr, rbLoc);
4619   }
4620 
4621   // A comma-expression as the index is deprecated in C++2a onwards.
4622   if (getLangOpts().CPlusPlus20 &&
4623       ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4624        (isa<CXXOperatorCallExpr>(idx) &&
4625         cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) {
4626     Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4627       << SourceRange(base->getBeginLoc(), rbLoc);
4628   }
4629 
4630   // Handle any non-overload placeholder types in the base and index
4631   // expressions.  We can't handle overloads here because the other
4632   // operand might be an overloadable type, in which case the overload
4633   // resolution for the operator overload should get the first crack
4634   // at the overload.
4635   if (base->getType()->isNonOverloadPlaceholderType()) {
4636     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4637     if (!IsMSPropertySubscript) {
4638       ExprResult result = CheckPlaceholderExpr(base);
4639       if (result.isInvalid())
4640         return ExprError();
4641       base = result.get();
4642     }
4643   }
4644   if (idx->getType()->isNonOverloadPlaceholderType()) {
4645     ExprResult result = CheckPlaceholderExpr(idx);
4646     if (result.isInvalid()) return ExprError();
4647     idx = result.get();
4648   }
4649 
4650   // Build an unanalyzed expression if either operand is type-dependent.
4651   if (getLangOpts().CPlusPlus &&
4652       (base->isTypeDependent() || idx->isTypeDependent())) {
4653     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
4654                                             VK_LValue, OK_Ordinary, rbLoc);
4655   }
4656 
4657   // MSDN, property (C++)
4658   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4659   // This attribute can also be used in the declaration of an empty array in a
4660   // class or structure definition. For example:
4661   // __declspec(property(get=GetX, put=PutX)) int x[];
4662   // The above statement indicates that x[] can be used with one or more array
4663   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4664   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4665   if (IsMSPropertySubscript) {
4666     // Build MS property subscript expression if base is MS property reference
4667     // or MS property subscript.
4668     return new (Context) MSPropertySubscriptExpr(
4669         base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
4670   }
4671 
4672   // Use C++ overloaded-operator rules if either operand has record
4673   // type.  The spec says to do this if either type is *overloadable*,
4674   // but enum types can't declare subscript operators or conversion
4675   // operators, so there's nothing interesting for overload resolution
4676   // to do if there aren't any record types involved.
4677   //
4678   // ObjC pointers have their own subscripting logic that is not tied
4679   // to overload resolution and so should not take this path.
4680   if (getLangOpts().CPlusPlus &&
4681       (base->getType()->isRecordType() ||
4682        (!base->getType()->isObjCObjectPointerType() &&
4683         idx->getType()->isRecordType()))) {
4684     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
4685   }
4686 
4687   ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
4688 
4689   if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4690     CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4691 
4692   return Res;
4693 }
4694 
4695 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
4696   InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
4697   InitializationKind Kind =
4698       InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
4699   InitializationSequence InitSeq(*this, Entity, Kind, E);
4700   return InitSeq.Perform(*this, Entity, Kind, E);
4701 }
4702 
4703 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
4704                                                   Expr *ColumnIdx,
4705                                                   SourceLocation RBLoc) {
4706   ExprResult BaseR = CheckPlaceholderExpr(Base);
4707   if (BaseR.isInvalid())
4708     return BaseR;
4709   Base = BaseR.get();
4710 
4711   ExprResult RowR = CheckPlaceholderExpr(RowIdx);
4712   if (RowR.isInvalid())
4713     return RowR;
4714   RowIdx = RowR.get();
4715 
4716   if (!ColumnIdx)
4717     return new (Context) MatrixSubscriptExpr(
4718         Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
4719 
4720   // Build an unanalyzed expression if any of the operands is type-dependent.
4721   if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
4722       ColumnIdx->isTypeDependent())
4723     return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4724                                              Context.DependentTy, RBLoc);
4725 
4726   ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
4727   if (ColumnR.isInvalid())
4728     return ColumnR;
4729   ColumnIdx = ColumnR.get();
4730 
4731   // Check that IndexExpr is an integer expression. If it is a constant
4732   // expression, check that it is less than Dim (= the number of elements in the
4733   // corresponding dimension).
4734   auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
4735                           bool IsColumnIdx) -> Expr * {
4736     if (!IndexExpr->getType()->isIntegerType() &&
4737         !IndexExpr->isTypeDependent()) {
4738       Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
4739           << IsColumnIdx;
4740       return nullptr;
4741     }
4742 
4743     llvm::APSInt Idx;
4744     if (IndexExpr->isIntegerConstantExpr(Idx, Context) &&
4745         (Idx < 0 || Idx >= Dim)) {
4746       Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
4747           << IsColumnIdx << Dim;
4748       return nullptr;
4749     }
4750 
4751     ExprResult ConvExpr =
4752         tryConvertExprToType(IndexExpr, Context.getSizeType());
4753     assert(!ConvExpr.isInvalid() &&
4754            "should be able to convert any integer type to size type");
4755     return ConvExpr.get();
4756   };
4757 
4758   auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
4759   RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
4760   ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
4761   if (!RowIdx || !ColumnIdx)
4762     return ExprError();
4763 
4764   return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4765                                            MTy->getElementType(), RBLoc);
4766 }
4767 
4768 void Sema::CheckAddressOfNoDeref(const Expr *E) {
4769   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4770   const Expr *StrippedExpr = E->IgnoreParenImpCasts();
4771 
4772   // For expressions like `&(*s).b`, the base is recorded and what should be
4773   // checked.
4774   const MemberExpr *Member = nullptr;
4775   while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
4776     StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
4777 
4778   LastRecord.PossibleDerefs.erase(StrippedExpr);
4779 }
4780 
4781 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
4782   QualType ResultTy = E->getType();
4783   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4784 
4785   // Bail if the element is an array since it is not memory access.
4786   if (isa<ArrayType>(ResultTy))
4787     return;
4788 
4789   if (ResultTy->hasAttr(attr::NoDeref)) {
4790     LastRecord.PossibleDerefs.insert(E);
4791     return;
4792   }
4793 
4794   // Check if the base type is a pointer to a member access of a struct
4795   // marked with noderef.
4796   const Expr *Base = E->getBase();
4797   QualType BaseTy = Base->getType();
4798   if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
4799     // Not a pointer access
4800     return;
4801 
4802   const MemberExpr *Member = nullptr;
4803   while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
4804          Member->isArrow())
4805     Base = Member->getBase();
4806 
4807   if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
4808     if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
4809       LastRecord.PossibleDerefs.insert(E);
4810   }
4811 }
4812 
4813 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
4814                                           Expr *LowerBound,
4815                                           SourceLocation ColonLocFirst,
4816                                           SourceLocation ColonLocSecond,
4817                                           Expr *Length, Expr *Stride,
4818                                           SourceLocation RBLoc) {
4819   if (Base->getType()->isPlaceholderType() &&
4820       !Base->getType()->isSpecificPlaceholderType(
4821           BuiltinType::OMPArraySection)) {
4822     ExprResult Result = CheckPlaceholderExpr(Base);
4823     if (Result.isInvalid())
4824       return ExprError();
4825     Base = Result.get();
4826   }
4827   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
4828     ExprResult Result = CheckPlaceholderExpr(LowerBound);
4829     if (Result.isInvalid())
4830       return ExprError();
4831     Result = DefaultLvalueConversion(Result.get());
4832     if (Result.isInvalid())
4833       return ExprError();
4834     LowerBound = Result.get();
4835   }
4836   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
4837     ExprResult Result = CheckPlaceholderExpr(Length);
4838     if (Result.isInvalid())
4839       return ExprError();
4840     Result = DefaultLvalueConversion(Result.get());
4841     if (Result.isInvalid())
4842       return ExprError();
4843     Length = Result.get();
4844   }
4845   if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
4846     ExprResult Result = CheckPlaceholderExpr(Stride);
4847     if (Result.isInvalid())
4848       return ExprError();
4849     Result = DefaultLvalueConversion(Result.get());
4850     if (Result.isInvalid())
4851       return ExprError();
4852     Stride = Result.get();
4853   }
4854 
4855   // Build an unanalyzed expression if either operand is type-dependent.
4856   if (Base->isTypeDependent() ||
4857       (LowerBound &&
4858        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
4859       (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
4860       (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
4861     return new (Context) OMPArraySectionExpr(
4862         Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
4863         OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
4864   }
4865 
4866   // Perform default conversions.
4867   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
4868   QualType ResultTy;
4869   if (OriginalTy->isAnyPointerType()) {
4870     ResultTy = OriginalTy->getPointeeType();
4871   } else if (OriginalTy->isArrayType()) {
4872     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
4873   } else {
4874     return ExprError(
4875         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
4876         << Base->getSourceRange());
4877   }
4878   // C99 6.5.2.1p1
4879   if (LowerBound) {
4880     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
4881                                                       LowerBound);
4882     if (Res.isInvalid())
4883       return ExprError(Diag(LowerBound->getExprLoc(),
4884                             diag::err_omp_typecheck_section_not_integer)
4885                        << 0 << LowerBound->getSourceRange());
4886     LowerBound = Res.get();
4887 
4888     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4889         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4890       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
4891           << 0 << LowerBound->getSourceRange();
4892   }
4893   if (Length) {
4894     auto Res =
4895         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
4896     if (Res.isInvalid())
4897       return ExprError(Diag(Length->getExprLoc(),
4898                             diag::err_omp_typecheck_section_not_integer)
4899                        << 1 << Length->getSourceRange());
4900     Length = Res.get();
4901 
4902     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4903         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4904       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
4905           << 1 << Length->getSourceRange();
4906   }
4907   if (Stride) {
4908     ExprResult Res =
4909         PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
4910     if (Res.isInvalid())
4911       return ExprError(Diag(Stride->getExprLoc(),
4912                             diag::err_omp_typecheck_section_not_integer)
4913                        << 1 << Stride->getSourceRange());
4914     Stride = Res.get();
4915 
4916     if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4917         Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4918       Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
4919           << 1 << Stride->getSourceRange();
4920   }
4921 
4922   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4923   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4924   // type. Note that functions are not objects, and that (in C99 parlance)
4925   // incomplete types are not object types.
4926   if (ResultTy->isFunctionType()) {
4927     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
4928         << ResultTy << Base->getSourceRange();
4929     return ExprError();
4930   }
4931 
4932   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
4933                           diag::err_omp_section_incomplete_type, Base))
4934     return ExprError();
4935 
4936   if (LowerBound && !OriginalTy->isAnyPointerType()) {
4937     Expr::EvalResult Result;
4938     if (LowerBound->EvaluateAsInt(Result, Context)) {
4939       // OpenMP 5.0, [2.1.5 Array Sections]
4940       // The array section must be a subset of the original array.
4941       llvm::APSInt LowerBoundValue = Result.Val.getInt();
4942       if (LowerBoundValue.isNegative()) {
4943         Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
4944             << LowerBound->getSourceRange();
4945         return ExprError();
4946       }
4947     }
4948   }
4949 
4950   if (Length) {
4951     Expr::EvalResult Result;
4952     if (Length->EvaluateAsInt(Result, Context)) {
4953       // OpenMP 5.0, [2.1.5 Array Sections]
4954       // The length must evaluate to non-negative integers.
4955       llvm::APSInt LengthValue = Result.Val.getInt();
4956       if (LengthValue.isNegative()) {
4957         Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
4958             << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
4959             << Length->getSourceRange();
4960         return ExprError();
4961       }
4962     }
4963   } else if (ColonLocFirst.isValid() &&
4964              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
4965                                       !OriginalTy->isVariableArrayType()))) {
4966     // OpenMP 5.0, [2.1.5 Array Sections]
4967     // When the size of the array dimension is not known, the length must be
4968     // specified explicitly.
4969     Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
4970         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
4971     return ExprError();
4972   }
4973 
4974   if (Stride) {
4975     Expr::EvalResult Result;
4976     if (Stride->EvaluateAsInt(Result, Context)) {
4977       // OpenMP 5.0, [2.1.5 Array Sections]
4978       // The stride must evaluate to a positive integer.
4979       llvm::APSInt StrideValue = Result.Val.getInt();
4980       if (!StrideValue.isStrictlyPositive()) {
4981         Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
4982             << StrideValue.toString(/*Radix=*/10, /*Signed=*/true)
4983             << Stride->getSourceRange();
4984         return ExprError();
4985       }
4986     }
4987   }
4988 
4989   if (!Base->getType()->isSpecificPlaceholderType(
4990           BuiltinType::OMPArraySection)) {
4991     ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
4992     if (Result.isInvalid())
4993       return ExprError();
4994     Base = Result.get();
4995   }
4996   return new (Context) OMPArraySectionExpr(
4997       Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
4998       OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
4999 }
5000 
5001 ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5002                                           SourceLocation RParenLoc,
5003                                           ArrayRef<Expr *> Dims,
5004                                           ArrayRef<SourceRange> Brackets) {
5005   if (Base->getType()->isPlaceholderType()) {
5006     ExprResult Result = CheckPlaceholderExpr(Base);
5007     if (Result.isInvalid())
5008       return ExprError();
5009     Result = DefaultLvalueConversion(Result.get());
5010     if (Result.isInvalid())
5011       return ExprError();
5012     Base = Result.get();
5013   }
5014   QualType BaseTy = Base->getType();
5015   // Delay analysis of the types/expressions if instantiation/specialization is
5016   // required.
5017   if (!BaseTy->isPointerType() && Base->isTypeDependent())
5018     return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5019                                        LParenLoc, RParenLoc, Dims, Brackets);
5020   if (!BaseTy->isPointerType() ||
5021       (!Base->isTypeDependent() &&
5022        BaseTy->getPointeeType()->isIncompleteType()))
5023     return ExprError(Diag(Base->getExprLoc(),
5024                           diag::err_omp_non_pointer_type_array_shaping_base)
5025                      << Base->getSourceRange());
5026 
5027   SmallVector<Expr *, 4> NewDims;
5028   bool ErrorFound = false;
5029   for (Expr *Dim : Dims) {
5030     if (Dim->getType()->isPlaceholderType()) {
5031       ExprResult Result = CheckPlaceholderExpr(Dim);
5032       if (Result.isInvalid()) {
5033         ErrorFound = true;
5034         continue;
5035       }
5036       Result = DefaultLvalueConversion(Result.get());
5037       if (Result.isInvalid()) {
5038         ErrorFound = true;
5039         continue;
5040       }
5041       Dim = Result.get();
5042     }
5043     if (!Dim->isTypeDependent()) {
5044       ExprResult Result =
5045           PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5046       if (Result.isInvalid()) {
5047         ErrorFound = true;
5048         Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5049             << Dim->getSourceRange();
5050         continue;
5051       }
5052       Dim = Result.get();
5053       Expr::EvalResult EvResult;
5054       if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5055         // OpenMP 5.0, [2.1.4 Array Shaping]
5056         // Each si is an integral type expression that must evaluate to a
5057         // positive integer.
5058         llvm::APSInt Value = EvResult.Val.getInt();
5059         if (!Value.isStrictlyPositive()) {
5060           Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5061               << Value.toString(/*Radix=*/10, /*Signed=*/true)
5062               << Dim->getSourceRange();
5063           ErrorFound = true;
5064           continue;
5065         }
5066       }
5067     }
5068     NewDims.push_back(Dim);
5069   }
5070   if (ErrorFound)
5071     return ExprError();
5072   return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5073                                      LParenLoc, RParenLoc, NewDims, Brackets);
5074 }
5075 
5076 ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5077                                       SourceLocation LLoc, SourceLocation RLoc,
5078                                       ArrayRef<OMPIteratorData> Data) {
5079   SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5080   bool IsCorrect = true;
5081   for (const OMPIteratorData &D : Data) {
5082     TypeSourceInfo *TInfo = nullptr;
5083     SourceLocation StartLoc;
5084     QualType DeclTy;
5085     if (!D.Type.getAsOpaquePtr()) {
5086       // OpenMP 5.0, 2.1.6 Iterators
5087       // In an iterator-specifier, if the iterator-type is not specified then
5088       // the type of that iterator is of int type.
5089       DeclTy = Context.IntTy;
5090       StartLoc = D.DeclIdentLoc;
5091     } else {
5092       DeclTy = GetTypeFromParser(D.Type, &TInfo);
5093       StartLoc = TInfo->getTypeLoc().getBeginLoc();
5094     }
5095 
5096     bool IsDeclTyDependent = DeclTy->isDependentType() ||
5097                              DeclTy->containsUnexpandedParameterPack() ||
5098                              DeclTy->isInstantiationDependentType();
5099     if (!IsDeclTyDependent) {
5100       if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5101         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5102         // The iterator-type must be an integral or pointer type.
5103         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5104             << DeclTy;
5105         IsCorrect = false;
5106         continue;
5107       }
5108       if (DeclTy.isConstant(Context)) {
5109         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5110         // The iterator-type must not be const qualified.
5111         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5112             << DeclTy;
5113         IsCorrect = false;
5114         continue;
5115       }
5116     }
5117 
5118     // Iterator declaration.
5119     assert(D.DeclIdent && "Identifier expected.");
5120     // Always try to create iterator declarator to avoid extra error messages
5121     // about unknown declarations use.
5122     auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5123                                D.DeclIdent, DeclTy, TInfo, SC_None);
5124     VD->setImplicit();
5125     if (S) {
5126       // Check for conflicting previous declaration.
5127       DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5128       LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5129                             ForVisibleRedeclaration);
5130       Previous.suppressDiagnostics();
5131       LookupName(Previous, S);
5132 
5133       FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5134                            /*AllowInlineNamespace=*/false);
5135       if (!Previous.empty()) {
5136         NamedDecl *Old = Previous.getRepresentativeDecl();
5137         Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5138         Diag(Old->getLocation(), diag::note_previous_definition);
5139       } else {
5140         PushOnScopeChains(VD, S);
5141       }
5142     } else {
5143       CurContext->addDecl(VD);
5144     }
5145     Expr *Begin = D.Range.Begin;
5146     if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5147       ExprResult BeginRes =
5148           PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5149       Begin = BeginRes.get();
5150     }
5151     Expr *End = D.Range.End;
5152     if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5153       ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5154       End = EndRes.get();
5155     }
5156     Expr *Step = D.Range.Step;
5157     if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5158       if (!Step->getType()->isIntegralType(Context)) {
5159         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5160             << Step << Step->getSourceRange();
5161         IsCorrect = false;
5162         continue;
5163       }
5164       llvm::APSInt Result;
5165       bool IsConstant = Step->isIntegerConstantExpr(Result, Context);
5166       // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5167       // If the step expression of a range-specification equals zero, the
5168       // behavior is unspecified.
5169       if (IsConstant && Result.isNullValue()) {
5170         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5171             << Step << Step->getSourceRange();
5172         IsCorrect = false;
5173         continue;
5174       }
5175     }
5176     if (!Begin || !End || !IsCorrect) {
5177       IsCorrect = false;
5178       continue;
5179     }
5180     OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5181     IDElem.IteratorDecl = VD;
5182     IDElem.AssignmentLoc = D.AssignLoc;
5183     IDElem.Range.Begin = Begin;
5184     IDElem.Range.End = End;
5185     IDElem.Range.Step = Step;
5186     IDElem.ColonLoc = D.ColonLoc;
5187     IDElem.SecondColonLoc = D.SecColonLoc;
5188   }
5189   if (!IsCorrect) {
5190     // Invalidate all created iterator declarations if error is found.
5191     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5192       if (Decl *ID = D.IteratorDecl)
5193         ID->setInvalidDecl();
5194     }
5195     return ExprError();
5196   }
5197   SmallVector<OMPIteratorHelperData, 4> Helpers;
5198   if (!CurContext->isDependentContext()) {
5199     // Build number of ityeration for each iteration range.
5200     // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5201     // ((Begini-Stepi-1-Endi) / -Stepi);
5202     for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5203       // (Endi - Begini)
5204       ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5205                                           D.Range.Begin);
5206       if(!Res.isUsable()) {
5207         IsCorrect = false;
5208         continue;
5209       }
5210       ExprResult St, St1;
5211       if (D.Range.Step) {
5212         St = D.Range.Step;
5213         // (Endi - Begini) + Stepi
5214         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5215         if (!Res.isUsable()) {
5216           IsCorrect = false;
5217           continue;
5218         }
5219         // (Endi - Begini) + Stepi - 1
5220         Res =
5221             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5222                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5223         if (!Res.isUsable()) {
5224           IsCorrect = false;
5225           continue;
5226         }
5227         // ((Endi - Begini) + Stepi - 1) / Stepi
5228         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5229         if (!Res.isUsable()) {
5230           IsCorrect = false;
5231           continue;
5232         }
5233         St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5234         // (Begini - Endi)
5235         ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5236                                              D.Range.Begin, D.Range.End);
5237         if (!Res1.isUsable()) {
5238           IsCorrect = false;
5239           continue;
5240         }
5241         // (Begini - Endi) - Stepi
5242         Res1 =
5243             CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5244         if (!Res1.isUsable()) {
5245           IsCorrect = false;
5246           continue;
5247         }
5248         // (Begini - Endi) - Stepi - 1
5249         Res1 =
5250             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5251                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5252         if (!Res1.isUsable()) {
5253           IsCorrect = false;
5254           continue;
5255         }
5256         // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5257         Res1 =
5258             CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5259         if (!Res1.isUsable()) {
5260           IsCorrect = false;
5261           continue;
5262         }
5263         // Stepi > 0.
5264         ExprResult CmpRes =
5265             CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5266                                ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5267         if (!CmpRes.isUsable()) {
5268           IsCorrect = false;
5269           continue;
5270         }
5271         Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5272                                  Res.get(), Res1.get());
5273         if (!Res.isUsable()) {
5274           IsCorrect = false;
5275           continue;
5276         }
5277       }
5278       Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5279       if (!Res.isUsable()) {
5280         IsCorrect = false;
5281         continue;
5282       }
5283 
5284       // Build counter update.
5285       // Build counter.
5286       auto *CounterVD =
5287           VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5288                           D.IteratorDecl->getBeginLoc(), nullptr,
5289                           Res.get()->getType(), nullptr, SC_None);
5290       CounterVD->setImplicit();
5291       ExprResult RefRes =
5292           BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5293                            D.IteratorDecl->getBeginLoc());
5294       // Build counter update.
5295       // I = Begini + counter * Stepi;
5296       ExprResult UpdateRes;
5297       if (D.Range.Step) {
5298         UpdateRes = CreateBuiltinBinOp(
5299             D.AssignmentLoc, BO_Mul,
5300             DefaultLvalueConversion(RefRes.get()).get(), St.get());
5301       } else {
5302         UpdateRes = DefaultLvalueConversion(RefRes.get());
5303       }
5304       if (!UpdateRes.isUsable()) {
5305         IsCorrect = false;
5306         continue;
5307       }
5308       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5309                                      UpdateRes.get());
5310       if (!UpdateRes.isUsable()) {
5311         IsCorrect = false;
5312         continue;
5313       }
5314       ExprResult VDRes =
5315           BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5316                            cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5317                            D.IteratorDecl->getBeginLoc());
5318       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5319                                      UpdateRes.get());
5320       if (!UpdateRes.isUsable()) {
5321         IsCorrect = false;
5322         continue;
5323       }
5324       UpdateRes =
5325           ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5326       if (!UpdateRes.isUsable()) {
5327         IsCorrect = false;
5328         continue;
5329       }
5330       ExprResult CounterUpdateRes =
5331           CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5332       if (!CounterUpdateRes.isUsable()) {
5333         IsCorrect = false;
5334         continue;
5335       }
5336       CounterUpdateRes =
5337           ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5338       if (!CounterUpdateRes.isUsable()) {
5339         IsCorrect = false;
5340         continue;
5341       }
5342       OMPIteratorHelperData &HD = Helpers.emplace_back();
5343       HD.CounterVD = CounterVD;
5344       HD.Upper = Res.get();
5345       HD.Update = UpdateRes.get();
5346       HD.CounterUpdate = CounterUpdateRes.get();
5347     }
5348   } else {
5349     Helpers.assign(ID.size(), {});
5350   }
5351   if (!IsCorrect) {
5352     // Invalidate all created iterator declarations if error is found.
5353     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5354       if (Decl *ID = D.IteratorDecl)
5355         ID->setInvalidDecl();
5356     }
5357     return ExprError();
5358   }
5359   return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5360                                  LLoc, RLoc, ID, Helpers);
5361 }
5362 
5363 ExprResult
5364 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5365                                       Expr *Idx, SourceLocation RLoc) {
5366   Expr *LHSExp = Base;
5367   Expr *RHSExp = Idx;
5368 
5369   ExprValueKind VK = VK_LValue;
5370   ExprObjectKind OK = OK_Ordinary;
5371 
5372   // Per C++ core issue 1213, the result is an xvalue if either operand is
5373   // a non-lvalue array, and an lvalue otherwise.
5374   if (getLangOpts().CPlusPlus11) {
5375     for (auto *Op : {LHSExp, RHSExp}) {
5376       Op = Op->IgnoreImplicit();
5377       if (Op->getType()->isArrayType() && !Op->isLValue())
5378         VK = VK_XValue;
5379     }
5380   }
5381 
5382   // Perform default conversions.
5383   if (!LHSExp->getType()->getAs<VectorType>()) {
5384     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5385     if (Result.isInvalid())
5386       return ExprError();
5387     LHSExp = Result.get();
5388   }
5389   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5390   if (Result.isInvalid())
5391     return ExprError();
5392   RHSExp = Result.get();
5393 
5394   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5395 
5396   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5397   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5398   // in the subscript position. As a result, we need to derive the array base
5399   // and index from the expression types.
5400   Expr *BaseExpr, *IndexExpr;
5401   QualType ResultType;
5402   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5403     BaseExpr = LHSExp;
5404     IndexExpr = RHSExp;
5405     ResultType = Context.DependentTy;
5406   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5407     BaseExpr = LHSExp;
5408     IndexExpr = RHSExp;
5409     ResultType = PTy->getPointeeType();
5410   } else if (const ObjCObjectPointerType *PTy =
5411                LHSTy->getAs<ObjCObjectPointerType>()) {
5412     BaseExpr = LHSExp;
5413     IndexExpr = RHSExp;
5414 
5415     // Use custom logic if this should be the pseudo-object subscript
5416     // expression.
5417     if (!LangOpts.isSubscriptPointerArithmetic())
5418       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5419                                           nullptr);
5420 
5421     ResultType = PTy->getPointeeType();
5422   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5423      // Handle the uncommon case of "123[Ptr]".
5424     BaseExpr = RHSExp;
5425     IndexExpr = LHSExp;
5426     ResultType = PTy->getPointeeType();
5427   } else if (const ObjCObjectPointerType *PTy =
5428                RHSTy->getAs<ObjCObjectPointerType>()) {
5429      // Handle the uncommon case of "123[Ptr]".
5430     BaseExpr = RHSExp;
5431     IndexExpr = LHSExp;
5432     ResultType = PTy->getPointeeType();
5433     if (!LangOpts.isSubscriptPointerArithmetic()) {
5434       Diag(LLoc, diag::err_subscript_nonfragile_interface)
5435         << ResultType << BaseExpr->getSourceRange();
5436       return ExprError();
5437     }
5438   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5439     BaseExpr = LHSExp;    // vectors: V[123]
5440     IndexExpr = RHSExp;
5441     // We apply C++ DR1213 to vector subscripting too.
5442     if (getLangOpts().CPlusPlus11 && LHSExp->getValueKind() == VK_RValue) {
5443       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5444       if (Materialized.isInvalid())
5445         return ExprError();
5446       LHSExp = Materialized.get();
5447     }
5448     VK = LHSExp->getValueKind();
5449     if (VK != VK_RValue)
5450       OK = OK_VectorComponent;
5451 
5452     ResultType = VTy->getElementType();
5453     QualType BaseType = BaseExpr->getType();
5454     Qualifiers BaseQuals = BaseType.getQualifiers();
5455     Qualifiers MemberQuals = ResultType.getQualifiers();
5456     Qualifiers Combined = BaseQuals + MemberQuals;
5457     if (Combined != MemberQuals)
5458       ResultType = Context.getQualifiedType(ResultType, Combined);
5459   } else if (LHSTy->isArrayType()) {
5460     // If we see an array that wasn't promoted by
5461     // DefaultFunctionArrayLvalueConversion, it must be an array that
5462     // wasn't promoted because of the C90 rule that doesn't
5463     // allow promoting non-lvalue arrays.  Warn, then
5464     // force the promotion here.
5465     Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5466         << LHSExp->getSourceRange();
5467     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5468                                CK_ArrayToPointerDecay).get();
5469     LHSTy = LHSExp->getType();
5470 
5471     BaseExpr = LHSExp;
5472     IndexExpr = RHSExp;
5473     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
5474   } else if (RHSTy->isArrayType()) {
5475     // Same as previous, except for 123[f().a] case
5476     Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5477         << RHSExp->getSourceRange();
5478     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5479                                CK_ArrayToPointerDecay).get();
5480     RHSTy = RHSExp->getType();
5481 
5482     BaseExpr = RHSExp;
5483     IndexExpr = LHSExp;
5484     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
5485   } else {
5486     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5487        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5488   }
5489   // C99 6.5.2.1p1
5490   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5491     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5492                      << IndexExpr->getSourceRange());
5493 
5494   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5495        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5496          && !IndexExpr->isTypeDependent())
5497     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5498 
5499   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5500   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5501   // type. Note that Functions are not objects, and that (in C99 parlance)
5502   // incomplete types are not object types.
5503   if (ResultType->isFunctionType()) {
5504     Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5505         << ResultType << BaseExpr->getSourceRange();
5506     return ExprError();
5507   }
5508 
5509   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5510     // GNU extension: subscripting on pointer to void
5511     Diag(LLoc, diag::ext_gnu_subscript_void_type)
5512       << BaseExpr->getSourceRange();
5513 
5514     // C forbids expressions of unqualified void type from being l-values.
5515     // See IsCForbiddenLValueType.
5516     if (!ResultType.hasQualifiers()) VK = VK_RValue;
5517   } else if (!ResultType->isDependentType() &&
5518              RequireCompleteSizedType(
5519                  LLoc, ResultType,
5520                  diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5521     return ExprError();
5522 
5523   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
5524          !ResultType.isCForbiddenLValueType());
5525 
5526   if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5527       FunctionScopes.size() > 1) {
5528     if (auto *TT =
5529             LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5530       for (auto I = FunctionScopes.rbegin(),
5531                 E = std::prev(FunctionScopes.rend());
5532            I != E; ++I) {
5533         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5534         if (CSI == nullptr)
5535           break;
5536         DeclContext *DC = nullptr;
5537         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5538           DC = LSI->CallOperator;
5539         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5540           DC = CRSI->TheCapturedDecl;
5541         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5542           DC = BSI->TheDecl;
5543         if (DC) {
5544           if (DC->containsDecl(TT->getDecl()))
5545             break;
5546           captureVariablyModifiedType(
5547               Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5548         }
5549       }
5550     }
5551   }
5552 
5553   return new (Context)
5554       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5555 }
5556 
5557 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5558                                   ParmVarDecl *Param) {
5559   if (Param->hasUnparsedDefaultArg()) {
5560     // If we've already cleared out the location for the default argument,
5561     // that means we're parsing it right now.
5562     if (!UnparsedDefaultArgLocs.count(Param)) {
5563       Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5564       Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5565       Param->setInvalidDecl();
5566       return true;
5567     }
5568 
5569     Diag(CallLoc,
5570          diag::err_use_of_default_argument_to_function_declared_later) <<
5571       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
5572     Diag(UnparsedDefaultArgLocs[Param],
5573          diag::note_default_argument_declared_here);
5574     return true;
5575   }
5576 
5577   if (Param->hasUninstantiatedDefaultArg() &&
5578       InstantiateDefaultArgument(CallLoc, FD, Param))
5579     return true;
5580 
5581   assert(Param->hasInit() && "default argument but no initializer?");
5582 
5583   // If the default expression creates temporaries, we need to
5584   // push them to the current stack of expression temporaries so they'll
5585   // be properly destroyed.
5586   // FIXME: We should really be rebuilding the default argument with new
5587   // bound temporaries; see the comment in PR5810.
5588   // We don't need to do that with block decls, though, because
5589   // blocks in default argument expression can never capture anything.
5590   if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
5591     // Set the "needs cleanups" bit regardless of whether there are
5592     // any explicit objects.
5593     Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
5594 
5595     // Append all the objects to the cleanup list.  Right now, this
5596     // should always be a no-op, because blocks in default argument
5597     // expressions should never be able to capture anything.
5598     assert(!Init->getNumObjects() &&
5599            "default argument expression has capturing blocks?");
5600   }
5601 
5602   // We already type-checked the argument, so we know it works.
5603   // Just mark all of the declarations in this potentially-evaluated expression
5604   // as being "referenced".
5605   EnterExpressionEvaluationContext EvalContext(
5606       *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
5607   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
5608                                    /*SkipLocalVariables=*/true);
5609   return false;
5610 }
5611 
5612 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5613                                         FunctionDecl *FD, ParmVarDecl *Param) {
5614   assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
5615   if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
5616     return ExprError();
5617   return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
5618 }
5619 
5620 Sema::VariadicCallType
5621 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5622                           Expr *Fn) {
5623   if (Proto && Proto->isVariadic()) {
5624     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
5625       return VariadicConstructor;
5626     else if (Fn && Fn->getType()->isBlockPointerType())
5627       return VariadicBlock;
5628     else if (FDecl) {
5629       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5630         if (Method->isInstance())
5631           return VariadicMethod;
5632     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5633       return VariadicMethod;
5634     return VariadicFunction;
5635   }
5636   return VariadicDoesNotApply;
5637 }
5638 
5639 namespace {
5640 class FunctionCallCCC final : public FunctionCallFilterCCC {
5641 public:
5642   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5643                   unsigned NumArgs, MemberExpr *ME)
5644       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5645         FunctionName(FuncName) {}
5646 
5647   bool ValidateCandidate(const TypoCorrection &candidate) override {
5648     if (!candidate.getCorrectionSpecifier() ||
5649         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5650       return false;
5651     }
5652 
5653     return FunctionCallFilterCCC::ValidateCandidate(candidate);
5654   }
5655 
5656   std::unique_ptr<CorrectionCandidateCallback> clone() override {
5657     return std::make_unique<FunctionCallCCC>(*this);
5658   }
5659 
5660 private:
5661   const IdentifierInfo *const FunctionName;
5662 };
5663 }
5664 
5665 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5666                                                FunctionDecl *FDecl,
5667                                                ArrayRef<Expr *> Args) {
5668   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5669   DeclarationName FuncName = FDecl->getDeclName();
5670   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5671 
5672   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5673   if (TypoCorrection Corrected = S.CorrectTypo(
5674           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5675           S.getScopeForContext(S.CurContext), nullptr, CCC,
5676           Sema::CTK_ErrorRecovery)) {
5677     if (NamedDecl *ND = Corrected.getFoundDecl()) {
5678       if (Corrected.isOverloaded()) {
5679         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5680         OverloadCandidateSet::iterator Best;
5681         for (NamedDecl *CD : Corrected) {
5682           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5683             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5684                                    OCS);
5685         }
5686         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5687         case OR_Success:
5688           ND = Best->FoundDecl;
5689           Corrected.setCorrectionDecl(ND);
5690           break;
5691         default:
5692           break;
5693         }
5694       }
5695       ND = ND->getUnderlyingDecl();
5696       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5697         return Corrected;
5698     }
5699   }
5700   return TypoCorrection();
5701 }
5702 
5703 /// ConvertArgumentsForCall - Converts the arguments specified in
5704 /// Args/NumArgs to the parameter types of the function FDecl with
5705 /// function prototype Proto. Call is the call expression itself, and
5706 /// Fn is the function expression. For a C++ member function, this
5707 /// routine does not attempt to convert the object argument. Returns
5708 /// true if the call is ill-formed.
5709 bool
5710 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5711                               FunctionDecl *FDecl,
5712                               const FunctionProtoType *Proto,
5713                               ArrayRef<Expr *> Args,
5714                               SourceLocation RParenLoc,
5715                               bool IsExecConfig) {
5716   // Bail out early if calling a builtin with custom typechecking.
5717   if (FDecl)
5718     if (unsigned ID = FDecl->getBuiltinID())
5719       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5720         return false;
5721 
5722   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5723   // assignment, to the types of the corresponding parameter, ...
5724   unsigned NumParams = Proto->getNumParams();
5725   bool Invalid = false;
5726   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5727   unsigned FnKind = Fn->getType()->isBlockPointerType()
5728                        ? 1 /* block */
5729                        : (IsExecConfig ? 3 /* kernel function (exec config) */
5730                                        : 0 /* function */);
5731 
5732   // If too few arguments are available (and we don't have default
5733   // arguments for the remaining parameters), don't make the call.
5734   if (Args.size() < NumParams) {
5735     if (Args.size() < MinArgs) {
5736       TypoCorrection TC;
5737       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5738         unsigned diag_id =
5739             MinArgs == NumParams && !Proto->isVariadic()
5740                 ? diag::err_typecheck_call_too_few_args_suggest
5741                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5742         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
5743                                         << static_cast<unsigned>(Args.size())
5744                                         << TC.getCorrectionRange());
5745       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
5746         Diag(RParenLoc,
5747              MinArgs == NumParams && !Proto->isVariadic()
5748                  ? diag::err_typecheck_call_too_few_args_one
5749                  : diag::err_typecheck_call_too_few_args_at_least_one)
5750             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
5751       else
5752         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
5753                             ? diag::err_typecheck_call_too_few_args
5754                             : diag::err_typecheck_call_too_few_args_at_least)
5755             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
5756             << Fn->getSourceRange();
5757 
5758       // Emit the location of the prototype.
5759       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5760         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
5761 
5762       return true;
5763     }
5764     // We reserve space for the default arguments when we create
5765     // the call expression, before calling ConvertArgumentsForCall.
5766     assert((Call->getNumArgs() == NumParams) &&
5767            "We should have reserved space for the default arguments before!");
5768   }
5769 
5770   // If too many are passed and not variadic, error on the extras and drop
5771   // them.
5772   if (Args.size() > NumParams) {
5773     if (!Proto->isVariadic()) {
5774       TypoCorrection TC;
5775       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5776         unsigned diag_id =
5777             MinArgs == NumParams && !Proto->isVariadic()
5778                 ? diag::err_typecheck_call_too_many_args_suggest
5779                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5780         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
5781                                         << static_cast<unsigned>(Args.size())
5782                                         << TC.getCorrectionRange());
5783       } else if (NumParams == 1 && FDecl &&
5784                  FDecl->getParamDecl(0)->getDeclName())
5785         Diag(Args[NumParams]->getBeginLoc(),
5786              MinArgs == NumParams
5787                  ? diag::err_typecheck_call_too_many_args_one
5788                  : diag::err_typecheck_call_too_many_args_at_most_one)
5789             << FnKind << FDecl->getParamDecl(0)
5790             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
5791             << SourceRange(Args[NumParams]->getBeginLoc(),
5792                            Args.back()->getEndLoc());
5793       else
5794         Diag(Args[NumParams]->getBeginLoc(),
5795              MinArgs == NumParams
5796                  ? diag::err_typecheck_call_too_many_args
5797                  : diag::err_typecheck_call_too_many_args_at_most)
5798             << FnKind << NumParams << static_cast<unsigned>(Args.size())
5799             << Fn->getSourceRange()
5800             << SourceRange(Args[NumParams]->getBeginLoc(),
5801                            Args.back()->getEndLoc());
5802 
5803       // Emit the location of the prototype.
5804       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5805         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
5806 
5807       // This deletes the extra arguments.
5808       Call->shrinkNumArgs(NumParams);
5809       return true;
5810     }
5811   }
5812   SmallVector<Expr *, 8> AllArgs;
5813   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5814 
5815   Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
5816                                    AllArgs, CallType);
5817   if (Invalid)
5818     return true;
5819   unsigned TotalNumArgs = AllArgs.size();
5820   for (unsigned i = 0; i < TotalNumArgs; ++i)
5821     Call->setArg(i, AllArgs[i]);
5822 
5823   return false;
5824 }
5825 
5826 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5827                                   const FunctionProtoType *Proto,
5828                                   unsigned FirstParam, ArrayRef<Expr *> Args,
5829                                   SmallVectorImpl<Expr *> &AllArgs,
5830                                   VariadicCallType CallType, bool AllowExplicit,
5831                                   bool IsListInitialization) {
5832   unsigned NumParams = Proto->getNumParams();
5833   bool Invalid = false;
5834   size_t ArgIx = 0;
5835   // Continue to check argument types (even if we have too few/many args).
5836   for (unsigned i = FirstParam; i < NumParams; i++) {
5837     QualType ProtoArgType = Proto->getParamType(i);
5838 
5839     Expr *Arg;
5840     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5841     if (ArgIx < Args.size()) {
5842       Arg = Args[ArgIx++];
5843 
5844       if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
5845                               diag::err_call_incomplete_argument, Arg))
5846         return true;
5847 
5848       // Strip the unbridged-cast placeholder expression off, if applicable.
5849       bool CFAudited = false;
5850       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5851           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5852           (!Param || !Param->hasAttr<CFConsumedAttr>()))
5853         Arg = stripARCUnbridgedCast(Arg);
5854       else if (getLangOpts().ObjCAutoRefCount &&
5855                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5856                (!Param || !Param->hasAttr<CFConsumedAttr>()))
5857         CFAudited = true;
5858 
5859       if (Proto->getExtParameterInfo(i).isNoEscape())
5860         if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
5861           BE->getBlockDecl()->setDoesNotEscape();
5862 
5863       InitializedEntity Entity =
5864           Param ? InitializedEntity::InitializeParameter(Context, Param,
5865                                                          ProtoArgType)
5866                 : InitializedEntity::InitializeParameter(
5867                       Context, ProtoArgType, Proto->isParamConsumed(i));
5868 
5869       // Remember that parameter belongs to a CF audited API.
5870       if (CFAudited)
5871         Entity.setParameterCFAudited();
5872 
5873       ExprResult ArgE = PerformCopyInitialization(
5874           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
5875       if (ArgE.isInvalid())
5876         return true;
5877 
5878       Arg = ArgE.getAs<Expr>();
5879     } else {
5880       assert(Param && "can't use default arguments without a known callee");
5881 
5882       ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
5883       if (ArgExpr.isInvalid())
5884         return true;
5885 
5886       Arg = ArgExpr.getAs<Expr>();
5887     }
5888 
5889     // Check for array bounds violations for each argument to the call. This
5890     // check only triggers warnings when the argument isn't a more complex Expr
5891     // with its own checking, such as a BinaryOperator.
5892     CheckArrayAccess(Arg);
5893 
5894     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
5895     CheckStaticArrayArgument(CallLoc, Param, Arg);
5896 
5897     AllArgs.push_back(Arg);
5898   }
5899 
5900   // If this is a variadic call, handle args passed through "...".
5901   if (CallType != VariadicDoesNotApply) {
5902     // Assume that extern "C" functions with variadic arguments that
5903     // return __unknown_anytype aren't *really* variadic.
5904     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
5905         FDecl->isExternC()) {
5906       for (Expr *A : Args.slice(ArgIx)) {
5907         QualType paramType; // ignored
5908         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
5909         Invalid |= arg.isInvalid();
5910         AllArgs.push_back(arg.get());
5911       }
5912 
5913     // Otherwise do argument promotion, (C99 6.5.2.2p7).
5914     } else {
5915       for (Expr *A : Args.slice(ArgIx)) {
5916         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
5917         Invalid |= Arg.isInvalid();
5918         AllArgs.push_back(Arg.get());
5919       }
5920     }
5921 
5922     // Check for array bounds violations.
5923     for (Expr *A : Args.slice(ArgIx))
5924       CheckArrayAccess(A);
5925   }
5926   return Invalid;
5927 }
5928 
5929 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
5930   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
5931   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
5932     TL = DTL.getOriginalLoc();
5933   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
5934     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
5935       << ATL.getLocalSourceRange();
5936 }
5937 
5938 /// CheckStaticArrayArgument - If the given argument corresponds to a static
5939 /// array parameter, check that it is non-null, and that if it is formed by
5940 /// array-to-pointer decay, the underlying array is sufficiently large.
5941 ///
5942 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
5943 /// array type derivation, then for each call to the function, the value of the
5944 /// corresponding actual argument shall provide access to the first element of
5945 /// an array with at least as many elements as specified by the size expression.
5946 void
5947 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
5948                                ParmVarDecl *Param,
5949                                const Expr *ArgExpr) {
5950   // Static array parameters are not supported in C++.
5951   if (!Param || getLangOpts().CPlusPlus)
5952     return;
5953 
5954   QualType OrigTy = Param->getOriginalType();
5955 
5956   const ArrayType *AT = Context.getAsArrayType(OrigTy);
5957   if (!AT || AT->getSizeModifier() != ArrayType::Static)
5958     return;
5959 
5960   if (ArgExpr->isNullPointerConstant(Context,
5961                                      Expr::NPC_NeverValueDependent)) {
5962     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
5963     DiagnoseCalleeStaticArrayParam(*this, Param);
5964     return;
5965   }
5966 
5967   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
5968   if (!CAT)
5969     return;
5970 
5971   const ConstantArrayType *ArgCAT =
5972     Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
5973   if (!ArgCAT)
5974     return;
5975 
5976   if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
5977                                              ArgCAT->getElementType())) {
5978     if (ArgCAT->getSize().ult(CAT->getSize())) {
5979       Diag(CallLoc, diag::warn_static_array_too_small)
5980           << ArgExpr->getSourceRange()
5981           << (unsigned)ArgCAT->getSize().getZExtValue()
5982           << (unsigned)CAT->getSize().getZExtValue() << 0;
5983       DiagnoseCalleeStaticArrayParam(*this, Param);
5984     }
5985     return;
5986   }
5987 
5988   Optional<CharUnits> ArgSize =
5989       getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
5990   Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
5991   if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
5992     Diag(CallLoc, diag::warn_static_array_too_small)
5993         << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
5994         << (unsigned)ParmSize->getQuantity() << 1;
5995     DiagnoseCalleeStaticArrayParam(*this, Param);
5996   }
5997 }
5998 
5999 /// Given a function expression of unknown-any type, try to rebuild it
6000 /// to have a function type.
6001 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6002 
6003 /// Is the given type a placeholder that we need to lower out
6004 /// immediately during argument processing?
6005 static bool isPlaceholderToRemoveAsArg(QualType type) {
6006   // Placeholders are never sugared.
6007   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6008   if (!placeholder) return false;
6009 
6010   switch (placeholder->getKind()) {
6011   // Ignore all the non-placeholder types.
6012 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6013   case BuiltinType::Id:
6014 #include "clang/Basic/OpenCLImageTypes.def"
6015 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6016   case BuiltinType::Id:
6017 #include "clang/Basic/OpenCLExtensionTypes.def"
6018   // In practice we'll never use this, since all SVE types are sugared
6019   // via TypedefTypes rather than exposed directly as BuiltinTypes.
6020 #define SVE_TYPE(Name, Id, SingletonId) \
6021   case BuiltinType::Id:
6022 #include "clang/Basic/AArch64SVEACLETypes.def"
6023 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6024 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6025 #include "clang/AST/BuiltinTypes.def"
6026     return false;
6027 
6028   // We cannot lower out overload sets; they might validly be resolved
6029   // by the call machinery.
6030   case BuiltinType::Overload:
6031     return false;
6032 
6033   // Unbridged casts in ARC can be handled in some call positions and
6034   // should be left in place.
6035   case BuiltinType::ARCUnbridgedCast:
6036     return false;
6037 
6038   // Pseudo-objects should be converted as soon as possible.
6039   case BuiltinType::PseudoObject:
6040     return true;
6041 
6042   // The debugger mode could theoretically but currently does not try
6043   // to resolve unknown-typed arguments based on known parameter types.
6044   case BuiltinType::UnknownAny:
6045     return true;
6046 
6047   // These are always invalid as call arguments and should be reported.
6048   case BuiltinType::BoundMember:
6049   case BuiltinType::BuiltinFn:
6050   case BuiltinType::IncompleteMatrixIdx:
6051   case BuiltinType::OMPArraySection:
6052   case BuiltinType::OMPArrayShaping:
6053   case BuiltinType::OMPIterator:
6054     return true;
6055 
6056   }
6057   llvm_unreachable("bad builtin type kind");
6058 }
6059 
6060 /// Check an argument list for placeholders that we won't try to
6061 /// handle later.
6062 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
6063   // Apply this processing to all the arguments at once instead of
6064   // dying at the first failure.
6065   bool hasInvalid = false;
6066   for (size_t i = 0, e = args.size(); i != e; i++) {
6067     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6068       ExprResult result = S.CheckPlaceholderExpr(args[i]);
6069       if (result.isInvalid()) hasInvalid = true;
6070       else args[i] = result.get();
6071     } else if (hasInvalid) {
6072       (void)S.CorrectDelayedTyposInExpr(args[i]);
6073     }
6074   }
6075   return hasInvalid;
6076 }
6077 
6078 /// If a builtin function has a pointer argument with no explicit address
6079 /// space, then it should be able to accept a pointer to any address
6080 /// space as input.  In order to do this, we need to replace the
6081 /// standard builtin declaration with one that uses the same address space
6082 /// as the call.
6083 ///
6084 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6085 ///                  it does not contain any pointer arguments without
6086 ///                  an address space qualifer.  Otherwise the rewritten
6087 ///                  FunctionDecl is returned.
6088 /// TODO: Handle pointer return types.
6089 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6090                                                 FunctionDecl *FDecl,
6091                                                 MultiExprArg ArgExprs) {
6092 
6093   QualType DeclType = FDecl->getType();
6094   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6095 
6096   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6097       ArgExprs.size() < FT->getNumParams())
6098     return nullptr;
6099 
6100   bool NeedsNewDecl = false;
6101   unsigned i = 0;
6102   SmallVector<QualType, 8> OverloadParams;
6103 
6104   for (QualType ParamType : FT->param_types()) {
6105 
6106     // Convert array arguments to pointer to simplify type lookup.
6107     ExprResult ArgRes =
6108         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6109     if (ArgRes.isInvalid())
6110       return nullptr;
6111     Expr *Arg = ArgRes.get();
6112     QualType ArgType = Arg->getType();
6113     if (!ParamType->isPointerType() ||
6114         ParamType.hasAddressSpace() ||
6115         !ArgType->isPointerType() ||
6116         !ArgType->getPointeeType().hasAddressSpace()) {
6117       OverloadParams.push_back(ParamType);
6118       continue;
6119     }
6120 
6121     QualType PointeeType = ParamType->getPointeeType();
6122     if (PointeeType.hasAddressSpace())
6123       continue;
6124 
6125     NeedsNewDecl = true;
6126     LangAS AS = ArgType->getPointeeType().getAddressSpace();
6127 
6128     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6129     OverloadParams.push_back(Context.getPointerType(PointeeType));
6130   }
6131 
6132   if (!NeedsNewDecl)
6133     return nullptr;
6134 
6135   FunctionProtoType::ExtProtoInfo EPI;
6136   EPI.Variadic = FT->isVariadic();
6137   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6138                                                 OverloadParams, EPI);
6139   DeclContext *Parent = FDecl->getParent();
6140   FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
6141                                                     FDecl->getLocation(),
6142                                                     FDecl->getLocation(),
6143                                                     FDecl->getIdentifier(),
6144                                                     OverloadTy,
6145                                                     /*TInfo=*/nullptr,
6146                                                     SC_Extern, false,
6147                                                     /*hasPrototype=*/true);
6148   SmallVector<ParmVarDecl*, 16> Params;
6149   FT = cast<FunctionProtoType>(OverloadTy);
6150   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6151     QualType ParamType = FT->getParamType(i);
6152     ParmVarDecl *Parm =
6153         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6154                                 SourceLocation(), nullptr, ParamType,
6155                                 /*TInfo=*/nullptr, SC_None, nullptr);
6156     Parm->setScopeInfo(0, i);
6157     Params.push_back(Parm);
6158   }
6159   OverloadDecl->setParams(Params);
6160   Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6161   return OverloadDecl;
6162 }
6163 
6164 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6165                                     FunctionDecl *Callee,
6166                                     MultiExprArg ArgExprs) {
6167   // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6168   // similar attributes) really don't like it when functions are called with an
6169   // invalid number of args.
6170   if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6171                          /*PartialOverloading=*/false) &&
6172       !Callee->isVariadic())
6173     return;
6174   if (Callee->getMinRequiredArguments() > ArgExprs.size())
6175     return;
6176 
6177   if (const EnableIfAttr *Attr =
6178           S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6179     S.Diag(Fn->getBeginLoc(),
6180            isa<CXXMethodDecl>(Callee)
6181                ? diag::err_ovl_no_viable_member_function_in_call
6182                : diag::err_ovl_no_viable_function_in_call)
6183         << Callee << Callee->getSourceRange();
6184     S.Diag(Callee->getLocation(),
6185            diag::note_ovl_candidate_disabled_by_function_cond_attr)
6186         << Attr->getCond()->getSourceRange() << Attr->getMessage();
6187     return;
6188   }
6189 }
6190 
6191 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6192     const UnresolvedMemberExpr *const UME, Sema &S) {
6193 
6194   const auto GetFunctionLevelDCIfCXXClass =
6195       [](Sema &S) -> const CXXRecordDecl * {
6196     const DeclContext *const DC = S.getFunctionLevelDeclContext();
6197     if (!DC || !DC->getParent())
6198       return nullptr;
6199 
6200     // If the call to some member function was made from within a member
6201     // function body 'M' return return 'M's parent.
6202     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6203       return MD->getParent()->getCanonicalDecl();
6204     // else the call was made from within a default member initializer of a
6205     // class, so return the class.
6206     if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6207       return RD->getCanonicalDecl();
6208     return nullptr;
6209   };
6210   // If our DeclContext is neither a member function nor a class (in the
6211   // case of a lambda in a default member initializer), we can't have an
6212   // enclosing 'this'.
6213 
6214   const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6215   if (!CurParentClass)
6216     return false;
6217 
6218   // The naming class for implicit member functions call is the class in which
6219   // name lookup starts.
6220   const CXXRecordDecl *const NamingClass =
6221       UME->getNamingClass()->getCanonicalDecl();
6222   assert(NamingClass && "Must have naming class even for implicit access");
6223 
6224   // If the unresolved member functions were found in a 'naming class' that is
6225   // related (either the same or derived from) to the class that contains the
6226   // member function that itself contained the implicit member access.
6227 
6228   return CurParentClass == NamingClass ||
6229          CurParentClass->isDerivedFrom(NamingClass);
6230 }
6231 
6232 static void
6233 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6234     Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6235 
6236   if (!UME)
6237     return;
6238 
6239   LambdaScopeInfo *const CurLSI = S.getCurLambda();
6240   // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6241   // already been captured, or if this is an implicit member function call (if
6242   // it isn't, an attempt to capture 'this' should already have been made).
6243   if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6244       !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6245     return;
6246 
6247   // Check if the naming class in which the unresolved members were found is
6248   // related (same as or is a base of) to the enclosing class.
6249 
6250   if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6251     return;
6252 
6253 
6254   DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6255   // If the enclosing function is not dependent, then this lambda is
6256   // capture ready, so if we can capture this, do so.
6257   if (!EnclosingFunctionCtx->isDependentContext()) {
6258     // If the current lambda and all enclosing lambdas can capture 'this' -
6259     // then go ahead and capture 'this' (since our unresolved overload set
6260     // contains at least one non-static member function).
6261     if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6262       S.CheckCXXThisCapture(CallLoc);
6263   } else if (S.CurContext->isDependentContext()) {
6264     // ... since this is an implicit member reference, that might potentially
6265     // involve a 'this' capture, mark 'this' for potential capture in
6266     // enclosing lambdas.
6267     if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6268       CurLSI->addPotentialThisCapture(CallLoc);
6269   }
6270 }
6271 
6272 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6273                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6274                                Expr *ExecConfig) {
6275   ExprResult Call =
6276       BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig);
6277   if (Call.isInvalid())
6278     return Call;
6279 
6280   // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6281   // language modes.
6282   if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
6283     if (ULE->hasExplicitTemplateArgs() &&
6284         ULE->decls_begin() == ULE->decls_end()) {
6285       Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6286                                  ? diag::warn_cxx17_compat_adl_only_template_id
6287                                  : diag::ext_adl_only_template_id)
6288           << ULE->getName();
6289     }
6290   }
6291 
6292   if (LangOpts.OpenMP)
6293     Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6294                            ExecConfig);
6295 
6296   return Call;
6297 }
6298 
6299 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
6300 /// This provides the location of the left/right parens and a list of comma
6301 /// locations.
6302 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6303                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6304                                Expr *ExecConfig, bool IsExecConfig) {
6305   // Since this might be a postfix expression, get rid of ParenListExprs.
6306   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6307   if (Result.isInvalid()) return ExprError();
6308   Fn = Result.get();
6309 
6310   if (checkArgsForPlaceholders(*this, ArgExprs))
6311     return ExprError();
6312 
6313   if (getLangOpts().CPlusPlus) {
6314     // If this is a pseudo-destructor expression, build the call immediately.
6315     if (isa<CXXPseudoDestructorExpr>(Fn)) {
6316       if (!ArgExprs.empty()) {
6317         // Pseudo-destructor calls should not have any arguments.
6318         Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6319             << FixItHint::CreateRemoval(
6320                    SourceRange(ArgExprs.front()->getBeginLoc(),
6321                                ArgExprs.back()->getEndLoc()));
6322       }
6323 
6324       return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6325                               VK_RValue, RParenLoc);
6326     }
6327     if (Fn->getType() == Context.PseudoObjectTy) {
6328       ExprResult result = CheckPlaceholderExpr(Fn);
6329       if (result.isInvalid()) return ExprError();
6330       Fn = result.get();
6331     }
6332 
6333     // Determine whether this is a dependent call inside a C++ template,
6334     // in which case we won't do any semantic analysis now.
6335     if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6336       if (ExecConfig) {
6337         return CUDAKernelCallExpr::Create(
6338             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
6339             Context.DependentTy, VK_RValue, RParenLoc);
6340       } else {
6341 
6342         tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6343             *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6344             Fn->getBeginLoc());
6345 
6346         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6347                                 VK_RValue, RParenLoc);
6348       }
6349     }
6350 
6351     // Determine whether this is a call to an object (C++ [over.call.object]).
6352     if (Fn->getType()->isRecordType())
6353       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6354                                           RParenLoc);
6355 
6356     if (Fn->getType() == Context.UnknownAnyTy) {
6357       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6358       if (result.isInvalid()) return ExprError();
6359       Fn = result.get();
6360     }
6361 
6362     if (Fn->getType() == Context.BoundMemberTy) {
6363       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6364                                        RParenLoc);
6365     }
6366   }
6367 
6368   // Check for overloaded calls.  This can happen even in C due to extensions.
6369   if (Fn->getType() == Context.OverloadTy) {
6370     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6371 
6372     // We aren't supposed to apply this logic if there's an '&' involved.
6373     if (!find.HasFormOfMemberPointer) {
6374       if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6375         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6376                                 VK_RValue, RParenLoc);
6377       OverloadExpr *ovl = find.Expression;
6378       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6379         return BuildOverloadedCallExpr(
6380             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6381             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6382       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6383                                        RParenLoc);
6384     }
6385   }
6386 
6387   // If we're directly calling a function, get the appropriate declaration.
6388   if (Fn->getType() == Context.UnknownAnyTy) {
6389     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6390     if (result.isInvalid()) return ExprError();
6391     Fn = result.get();
6392   }
6393 
6394   Expr *NakedFn = Fn->IgnoreParens();
6395 
6396   bool CallingNDeclIndirectly = false;
6397   NamedDecl *NDecl = nullptr;
6398   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6399     if (UnOp->getOpcode() == UO_AddrOf) {
6400       CallingNDeclIndirectly = true;
6401       NakedFn = UnOp->getSubExpr()->IgnoreParens();
6402     }
6403   }
6404 
6405   if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6406     NDecl = DRE->getDecl();
6407 
6408     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6409     if (FDecl && FDecl->getBuiltinID()) {
6410       // Rewrite the function decl for this builtin by replacing parameters
6411       // with no explicit address space with the address space of the arguments
6412       // in ArgExprs.
6413       if ((FDecl =
6414                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6415         NDecl = FDecl;
6416         Fn = DeclRefExpr::Create(
6417             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
6418             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
6419             nullptr, DRE->isNonOdrUse());
6420       }
6421     }
6422   } else if (isa<MemberExpr>(NakedFn))
6423     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
6424 
6425   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
6426     if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6427                                       FD, /*Complain=*/true, Fn->getBeginLoc()))
6428       return ExprError();
6429 
6430     if (getLangOpts().OpenCL && checkOpenCLDisabledDecl(*FD, *Fn))
6431       return ExprError();
6432 
6433     checkDirectCallValidity(*this, Fn, FD, ArgExprs);
6434   }
6435 
6436   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
6437                                ExecConfig, IsExecConfig);
6438 }
6439 
6440 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
6441 ///
6442 /// __builtin_astype( value, dst type )
6443 ///
6444 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6445                                  SourceLocation BuiltinLoc,
6446                                  SourceLocation RParenLoc) {
6447   ExprValueKind VK = VK_RValue;
6448   ExprObjectKind OK = OK_Ordinary;
6449   QualType DstTy = GetTypeFromParser(ParsedDestTy);
6450   QualType SrcTy = E->getType();
6451   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
6452     return ExprError(Diag(BuiltinLoc,
6453                           diag::err_invalid_astype_of_different_size)
6454                      << DstTy
6455                      << SrcTy
6456                      << E->getSourceRange());
6457   return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6458 }
6459 
6460 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
6461 /// provided arguments.
6462 ///
6463 /// __builtin_convertvector( value, dst type )
6464 ///
6465 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6466                                         SourceLocation BuiltinLoc,
6467                                         SourceLocation RParenLoc) {
6468   TypeSourceInfo *TInfo;
6469   GetTypeFromParser(ParsedDestTy, &TInfo);
6470   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6471 }
6472 
6473 /// BuildResolvedCallExpr - Build a call to a resolved expression,
6474 /// i.e. an expression not of \p OverloadTy.  The expression should
6475 /// unary-convert to an expression of function-pointer or
6476 /// block-pointer type.
6477 ///
6478 /// \param NDecl the declaration being called, if available
6479 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6480                                        SourceLocation LParenLoc,
6481                                        ArrayRef<Expr *> Args,
6482                                        SourceLocation RParenLoc, Expr *Config,
6483                                        bool IsExecConfig, ADLCallKind UsesADL) {
6484   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
6485   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
6486 
6487   // Functions with 'interrupt' attribute cannot be called directly.
6488   if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
6489     Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
6490     return ExprError();
6491   }
6492 
6493   // Interrupt handlers don't save off the VFP regs automatically on ARM,
6494   // so there's some risk when calling out to non-interrupt handler functions
6495   // that the callee might not preserve them. This is easy to diagnose here,
6496   // but can be very challenging to debug.
6497   if (auto *Caller = getCurFunctionDecl())
6498     if (Caller->hasAttr<ARMInterruptAttr>()) {
6499       bool VFP = Context.getTargetInfo().hasFeature("vfp");
6500       if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>()))
6501         Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
6502     }
6503 
6504   // Promote the function operand.
6505   // We special-case function promotion here because we only allow promoting
6506   // builtin functions to function pointers in the callee of a call.
6507   ExprResult Result;
6508   QualType ResultTy;
6509   if (BuiltinID &&
6510       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
6511     // Extract the return type from the (builtin) function pointer type.
6512     // FIXME Several builtins still have setType in
6513     // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6514     // Builtins.def to ensure they are correct before removing setType calls.
6515     QualType FnPtrTy = Context.getPointerType(FDecl->getType());
6516     Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
6517     ResultTy = FDecl->getCallResultType();
6518   } else {
6519     Result = CallExprUnaryConversions(Fn);
6520     ResultTy = Context.BoolTy;
6521   }
6522   if (Result.isInvalid())
6523     return ExprError();
6524   Fn = Result.get();
6525 
6526   // Check for a valid function type, but only if it is not a builtin which
6527   // requires custom type checking. These will be handled by
6528   // CheckBuiltinFunctionCall below just after creation of the call expression.
6529   const FunctionType *FuncT = nullptr;
6530   if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6531   retry:
6532     if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
6533       // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6534       // have type pointer to function".
6535       FuncT = PT->getPointeeType()->getAs<FunctionType>();
6536       if (!FuncT)
6537         return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6538                          << Fn->getType() << Fn->getSourceRange());
6539     } else if (const BlockPointerType *BPT =
6540                    Fn->getType()->getAs<BlockPointerType>()) {
6541       FuncT = BPT->getPointeeType()->castAs<FunctionType>();
6542     } else {
6543       // Handle calls to expressions of unknown-any type.
6544       if (Fn->getType() == Context.UnknownAnyTy) {
6545         ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
6546         if (rewrite.isInvalid())
6547           return ExprError();
6548         Fn = rewrite.get();
6549         goto retry;
6550       }
6551 
6552       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6553                        << Fn->getType() << Fn->getSourceRange());
6554     }
6555   }
6556 
6557   // Get the number of parameters in the function prototype, if any.
6558   // We will allocate space for max(Args.size(), NumParams) arguments
6559   // in the call expression.
6560   const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
6561   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
6562 
6563   CallExpr *TheCall;
6564   if (Config) {
6565     assert(UsesADL == ADLCallKind::NotADL &&
6566            "CUDAKernelCallExpr should not use ADL");
6567     TheCall =
6568         CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config), Args,
6569                                    ResultTy, VK_RValue, RParenLoc, NumParams);
6570   } else {
6571     TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue,
6572                                RParenLoc, NumParams, UsesADL);
6573   }
6574 
6575   if (!getLangOpts().CPlusPlus) {
6576     // Forget about the nulled arguments since typo correction
6577     // do not handle them well.
6578     TheCall->shrinkNumArgs(Args.size());
6579     // C cannot always handle TypoExpr nodes in builtin calls and direct
6580     // function calls as their argument checking don't necessarily handle
6581     // dependent types properly, so make sure any TypoExprs have been
6582     // dealt with.
6583     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
6584     if (!Result.isUsable()) return ExprError();
6585     CallExpr *TheOldCall = TheCall;
6586     TheCall = dyn_cast<CallExpr>(Result.get());
6587     bool CorrectedTypos = TheCall != TheOldCall;
6588     if (!TheCall) return Result;
6589     Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
6590 
6591     // A new call expression node was created if some typos were corrected.
6592     // However it may not have been constructed with enough storage. In this
6593     // case, rebuild the node with enough storage. The waste of space is
6594     // immaterial since this only happens when some typos were corrected.
6595     if (CorrectedTypos && Args.size() < NumParams) {
6596       if (Config)
6597         TheCall = CUDAKernelCallExpr::Create(
6598             Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_RValue,
6599             RParenLoc, NumParams);
6600       else
6601         TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue,
6602                                    RParenLoc, NumParams, UsesADL);
6603     }
6604     // We can now handle the nulled arguments for the default arguments.
6605     TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
6606   }
6607 
6608   // Bail out early if calling a builtin with custom type checking.
6609   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
6610     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6611 
6612   if (getLangOpts().CUDA) {
6613     if (Config) {
6614       // CUDA: Kernel calls must be to global functions
6615       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
6616         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
6617             << FDecl << Fn->getSourceRange());
6618 
6619       // CUDA: Kernel function must have 'void' return type
6620       if (!FuncT->getReturnType()->isVoidType() &&
6621           !FuncT->getReturnType()->getAs<AutoType>() &&
6622           !FuncT->getReturnType()->isInstantiationDependentType())
6623         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
6624             << Fn->getType() << Fn->getSourceRange());
6625     } else {
6626       // CUDA: Calls to global functions must be configured
6627       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
6628         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
6629             << FDecl << Fn->getSourceRange());
6630     }
6631   }
6632 
6633   // Check for a valid return type
6634   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
6635                           FDecl))
6636     return ExprError();
6637 
6638   // We know the result type of the call, set it.
6639   TheCall->setType(FuncT->getCallResultType(Context));
6640   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
6641 
6642   if (Proto) {
6643     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
6644                                 IsExecConfig))
6645       return ExprError();
6646   } else {
6647     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
6648 
6649     if (FDecl) {
6650       // Check if we have too few/too many template arguments, based
6651       // on our knowledge of the function definition.
6652       const FunctionDecl *Def = nullptr;
6653       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
6654         Proto = Def->getType()->getAs<FunctionProtoType>();
6655        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
6656           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
6657           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
6658       }
6659 
6660       // If the function we're calling isn't a function prototype, but we have
6661       // a function prototype from a prior declaratiom, use that prototype.
6662       if (!FDecl->hasPrototype())
6663         Proto = FDecl->getType()->getAs<FunctionProtoType>();
6664     }
6665 
6666     // Promote the arguments (C99 6.5.2.2p6).
6667     for (unsigned i = 0, e = Args.size(); i != e; i++) {
6668       Expr *Arg = Args[i];
6669 
6670       if (Proto && i < Proto->getNumParams()) {
6671         InitializedEntity Entity = InitializedEntity::InitializeParameter(
6672             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
6673         ExprResult ArgE =
6674             PerformCopyInitialization(Entity, SourceLocation(), Arg);
6675         if (ArgE.isInvalid())
6676           return true;
6677 
6678         Arg = ArgE.getAs<Expr>();
6679 
6680       } else {
6681         ExprResult ArgE = DefaultArgumentPromotion(Arg);
6682 
6683         if (ArgE.isInvalid())
6684           return true;
6685 
6686         Arg = ArgE.getAs<Expr>();
6687       }
6688 
6689       if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
6690                               diag::err_call_incomplete_argument, Arg))
6691         return ExprError();
6692 
6693       TheCall->setArg(i, Arg);
6694     }
6695   }
6696 
6697   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6698     if (!Method->isStatic())
6699       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
6700         << Fn->getSourceRange());
6701 
6702   // Check for sentinels
6703   if (NDecl)
6704     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
6705 
6706   // Warn for unions passing across security boundary (CMSE).
6707   if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
6708     for (unsigned i = 0, e = Args.size(); i != e; i++) {
6709       if (const auto *RT =
6710               dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
6711         if (RT->getDecl()->isOrContainsUnion())
6712           Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
6713               << 0 << i;
6714       }
6715     }
6716   }
6717 
6718   // Do special checking on direct calls to functions.
6719   if (FDecl) {
6720     if (CheckFunctionCall(FDecl, TheCall, Proto))
6721       return ExprError();
6722 
6723     checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
6724 
6725     if (BuiltinID)
6726       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6727   } else if (NDecl) {
6728     if (CheckPointerCall(NDecl, TheCall, Proto))
6729       return ExprError();
6730   } else {
6731     if (CheckOtherCall(TheCall, Proto))
6732       return ExprError();
6733   }
6734 
6735   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
6736 }
6737 
6738 ExprResult
6739 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
6740                            SourceLocation RParenLoc, Expr *InitExpr) {
6741   assert(Ty && "ActOnCompoundLiteral(): missing type");
6742   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
6743 
6744   TypeSourceInfo *TInfo;
6745   QualType literalType = GetTypeFromParser(Ty, &TInfo);
6746   if (!TInfo)
6747     TInfo = Context.getTrivialTypeSourceInfo(literalType);
6748 
6749   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
6750 }
6751 
6752 ExprResult
6753 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
6754                                SourceLocation RParenLoc, Expr *LiteralExpr) {
6755   QualType literalType = TInfo->getType();
6756 
6757   if (literalType->isArrayType()) {
6758     if (RequireCompleteSizedType(
6759             LParenLoc, Context.getBaseElementType(literalType),
6760             diag::err_array_incomplete_or_sizeless_type,
6761             SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6762       return ExprError();
6763     if (literalType->isVariableArrayType())
6764       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
6765         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
6766   } else if (!literalType->isDependentType() &&
6767              RequireCompleteType(LParenLoc, literalType,
6768                diag::err_typecheck_decl_incomplete_type,
6769                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6770     return ExprError();
6771 
6772   InitializedEntity Entity
6773     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
6774   InitializationKind Kind
6775     = InitializationKind::CreateCStyleCast(LParenLoc,
6776                                            SourceRange(LParenLoc, RParenLoc),
6777                                            /*InitList=*/true);
6778   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
6779   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
6780                                       &literalType);
6781   if (Result.isInvalid())
6782     return ExprError();
6783   LiteralExpr = Result.get();
6784 
6785   bool isFileScope = !CurContext->isFunctionOrMethod();
6786 
6787   // In C, compound literals are l-values for some reason.
6788   // For GCC compatibility, in C++, file-scope array compound literals with
6789   // constant initializers are also l-values, and compound literals are
6790   // otherwise prvalues.
6791   //
6792   // (GCC also treats C++ list-initialized file-scope array prvalues with
6793   // constant initializers as l-values, but that's non-conforming, so we don't
6794   // follow it there.)
6795   //
6796   // FIXME: It would be better to handle the lvalue cases as materializing and
6797   // lifetime-extending a temporary object, but our materialized temporaries
6798   // representation only supports lifetime extension from a variable, not "out
6799   // of thin air".
6800   // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
6801   // is bound to the result of applying array-to-pointer decay to the compound
6802   // literal.
6803   // FIXME: GCC supports compound literals of reference type, which should
6804   // obviously have a value kind derived from the kind of reference involved.
6805   ExprValueKind VK =
6806       (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
6807           ? VK_RValue
6808           : VK_LValue;
6809 
6810   if (isFileScope)
6811     if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
6812       for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
6813         Expr *Init = ILE->getInit(i);
6814         ILE->setInit(i, ConstantExpr::Create(Context, Init));
6815       }
6816 
6817   auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
6818                                               VK, LiteralExpr, isFileScope);
6819   if (isFileScope) {
6820     if (!LiteralExpr->isTypeDependent() &&
6821         !LiteralExpr->isValueDependent() &&
6822         !literalType->isDependentType()) // C99 6.5.2.5p3
6823       if (CheckForConstantInitializer(LiteralExpr, literalType))
6824         return ExprError();
6825   } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
6826              literalType.getAddressSpace() != LangAS::Default) {
6827     // Embedded-C extensions to C99 6.5.2.5:
6828     //   "If the compound literal occurs inside the body of a function, the
6829     //   type name shall not be qualified by an address-space qualifier."
6830     Diag(LParenLoc, diag::err_compound_literal_with_address_space)
6831       << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
6832     return ExprError();
6833   }
6834 
6835   if (!isFileScope && !getLangOpts().CPlusPlus) {
6836     // Compound literals that have automatic storage duration are destroyed at
6837     // the end of the scope in C; in C++, they're just temporaries.
6838 
6839     // Emit diagnostics if it is or contains a C union type that is non-trivial
6840     // to destruct.
6841     if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
6842       checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
6843                             NTCUC_CompoundLiteral, NTCUK_Destruct);
6844 
6845     // Diagnose jumps that enter or exit the lifetime of the compound literal.
6846     if (literalType.isDestructedType()) {
6847       Cleanup.setExprNeedsCleanups(true);
6848       ExprCleanupObjects.push_back(E);
6849       getCurFunction()->setHasBranchProtectedScope();
6850     }
6851   }
6852 
6853   if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
6854       E->getType().hasNonTrivialToPrimitiveCopyCUnion())
6855     checkNonTrivialCUnionInInitializer(E->getInitializer(),
6856                                        E->getInitializer()->getExprLoc());
6857 
6858   return MaybeBindToTemporary(E);
6859 }
6860 
6861 ExprResult
6862 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
6863                     SourceLocation RBraceLoc) {
6864   // Only produce each kind of designated initialization diagnostic once.
6865   SourceLocation FirstDesignator;
6866   bool DiagnosedArrayDesignator = false;
6867   bool DiagnosedNestedDesignator = false;
6868   bool DiagnosedMixedDesignator = false;
6869 
6870   // Check that any designated initializers are syntactically valid in the
6871   // current language mode.
6872   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
6873     if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
6874       if (FirstDesignator.isInvalid())
6875         FirstDesignator = DIE->getBeginLoc();
6876 
6877       if (!getLangOpts().CPlusPlus)
6878         break;
6879 
6880       if (!DiagnosedNestedDesignator && DIE->size() > 1) {
6881         DiagnosedNestedDesignator = true;
6882         Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
6883           << DIE->getDesignatorsSourceRange();
6884       }
6885 
6886       for (auto &Desig : DIE->designators()) {
6887         if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
6888           DiagnosedArrayDesignator = true;
6889           Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
6890             << Desig.getSourceRange();
6891         }
6892       }
6893 
6894       if (!DiagnosedMixedDesignator &&
6895           !isa<DesignatedInitExpr>(InitArgList[0])) {
6896         DiagnosedMixedDesignator = true;
6897         Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
6898           << DIE->getSourceRange();
6899         Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
6900           << InitArgList[0]->getSourceRange();
6901       }
6902     } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
6903                isa<DesignatedInitExpr>(InitArgList[0])) {
6904       DiagnosedMixedDesignator = true;
6905       auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
6906       Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
6907         << DIE->getSourceRange();
6908       Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
6909         << InitArgList[I]->getSourceRange();
6910     }
6911   }
6912 
6913   if (FirstDesignator.isValid()) {
6914     // Only diagnose designated initiaization as a C++20 extension if we didn't
6915     // already diagnose use of (non-C++20) C99 designator syntax.
6916     if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
6917         !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
6918       Diag(FirstDesignator, getLangOpts().CPlusPlus20
6919                                 ? diag::warn_cxx17_compat_designated_init
6920                                 : diag::ext_cxx_designated_init);
6921     } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
6922       Diag(FirstDesignator, diag::ext_designated_init);
6923     }
6924   }
6925 
6926   return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
6927 }
6928 
6929 ExprResult
6930 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
6931                     SourceLocation RBraceLoc) {
6932   // Semantic analysis for initializers is done by ActOnDeclarator() and
6933   // CheckInitializer() - it requires knowledge of the object being initialized.
6934 
6935   // Immediately handle non-overload placeholders.  Overloads can be
6936   // resolved contextually, but everything else here can't.
6937   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
6938     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
6939       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
6940 
6941       // Ignore failures; dropping the entire initializer list because
6942       // of one failure would be terrible for indexing/etc.
6943       if (result.isInvalid()) continue;
6944 
6945       InitArgList[I] = result.get();
6946     }
6947   }
6948 
6949   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
6950                                                RBraceLoc);
6951   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
6952   return E;
6953 }
6954 
6955 /// Do an explicit extend of the given block pointer if we're in ARC.
6956 void Sema::maybeExtendBlockObject(ExprResult &E) {
6957   assert(E.get()->getType()->isBlockPointerType());
6958   assert(E.get()->isRValue());
6959 
6960   // Only do this in an r-value context.
6961   if (!getLangOpts().ObjCAutoRefCount) return;
6962 
6963   E = ImplicitCastExpr::Create(Context, E.get()->getType(),
6964                                CK_ARCExtendBlockObject, E.get(),
6965                                /*base path*/ nullptr, VK_RValue);
6966   Cleanup.setExprNeedsCleanups(true);
6967 }
6968 
6969 /// Prepare a conversion of the given expression to an ObjC object
6970 /// pointer type.
6971 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
6972   QualType type = E.get()->getType();
6973   if (type->isObjCObjectPointerType()) {
6974     return CK_BitCast;
6975   } else if (type->isBlockPointerType()) {
6976     maybeExtendBlockObject(E);
6977     return CK_BlockPointerToObjCPointerCast;
6978   } else {
6979     assert(type->isPointerType());
6980     return CK_CPointerToObjCPointerCast;
6981   }
6982 }
6983 
6984 /// Prepares for a scalar cast, performing all the necessary stages
6985 /// except the final cast and returning the kind required.
6986 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
6987   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
6988   // Also, callers should have filtered out the invalid cases with
6989   // pointers.  Everything else should be possible.
6990 
6991   QualType SrcTy = Src.get()->getType();
6992   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
6993     return CK_NoOp;
6994 
6995   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
6996   case Type::STK_MemberPointer:
6997     llvm_unreachable("member pointer type in C");
6998 
6999   case Type::STK_CPointer:
7000   case Type::STK_BlockPointer:
7001   case Type::STK_ObjCObjectPointer:
7002     switch (DestTy->getScalarTypeKind()) {
7003     case Type::STK_CPointer: {
7004       LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7005       LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7006       if (SrcAS != DestAS)
7007         return CK_AddressSpaceConversion;
7008       if (Context.hasCvrSimilarType(SrcTy, DestTy))
7009         return CK_NoOp;
7010       return CK_BitCast;
7011     }
7012     case Type::STK_BlockPointer:
7013       return (SrcKind == Type::STK_BlockPointer
7014                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7015     case Type::STK_ObjCObjectPointer:
7016       if (SrcKind == Type::STK_ObjCObjectPointer)
7017         return CK_BitCast;
7018       if (SrcKind == Type::STK_CPointer)
7019         return CK_CPointerToObjCPointerCast;
7020       maybeExtendBlockObject(Src);
7021       return CK_BlockPointerToObjCPointerCast;
7022     case Type::STK_Bool:
7023       return CK_PointerToBoolean;
7024     case Type::STK_Integral:
7025       return CK_PointerToIntegral;
7026     case Type::STK_Floating:
7027     case Type::STK_FloatingComplex:
7028     case Type::STK_IntegralComplex:
7029     case Type::STK_MemberPointer:
7030     case Type::STK_FixedPoint:
7031       llvm_unreachable("illegal cast from pointer");
7032     }
7033     llvm_unreachable("Should have returned before this");
7034 
7035   case Type::STK_FixedPoint:
7036     switch (DestTy->getScalarTypeKind()) {
7037     case Type::STK_FixedPoint:
7038       return CK_FixedPointCast;
7039     case Type::STK_Bool:
7040       return CK_FixedPointToBoolean;
7041     case Type::STK_Integral:
7042       return CK_FixedPointToIntegral;
7043     case Type::STK_Floating:
7044     case Type::STK_IntegralComplex:
7045     case Type::STK_FloatingComplex:
7046       Diag(Src.get()->getExprLoc(),
7047            diag::err_unimplemented_conversion_with_fixed_point_type)
7048           << DestTy;
7049       return CK_IntegralCast;
7050     case Type::STK_CPointer:
7051     case Type::STK_ObjCObjectPointer:
7052     case Type::STK_BlockPointer:
7053     case Type::STK_MemberPointer:
7054       llvm_unreachable("illegal cast to pointer type");
7055     }
7056     llvm_unreachable("Should have returned before this");
7057 
7058   case Type::STK_Bool: // casting from bool is like casting from an integer
7059   case Type::STK_Integral:
7060     switch (DestTy->getScalarTypeKind()) {
7061     case Type::STK_CPointer:
7062     case Type::STK_ObjCObjectPointer:
7063     case Type::STK_BlockPointer:
7064       if (Src.get()->isNullPointerConstant(Context,
7065                                            Expr::NPC_ValueDependentIsNull))
7066         return CK_NullToPointer;
7067       return CK_IntegralToPointer;
7068     case Type::STK_Bool:
7069       return CK_IntegralToBoolean;
7070     case Type::STK_Integral:
7071       return CK_IntegralCast;
7072     case Type::STK_Floating:
7073       return CK_IntegralToFloating;
7074     case Type::STK_IntegralComplex:
7075       Src = ImpCastExprToType(Src.get(),
7076                       DestTy->castAs<ComplexType>()->getElementType(),
7077                       CK_IntegralCast);
7078       return CK_IntegralRealToComplex;
7079     case Type::STK_FloatingComplex:
7080       Src = ImpCastExprToType(Src.get(),
7081                       DestTy->castAs<ComplexType>()->getElementType(),
7082                       CK_IntegralToFloating);
7083       return CK_FloatingRealToComplex;
7084     case Type::STK_MemberPointer:
7085       llvm_unreachable("member pointer type in C");
7086     case Type::STK_FixedPoint:
7087       return CK_IntegralToFixedPoint;
7088     }
7089     llvm_unreachable("Should have returned before this");
7090 
7091   case Type::STK_Floating:
7092     switch (DestTy->getScalarTypeKind()) {
7093     case Type::STK_Floating:
7094       return CK_FloatingCast;
7095     case Type::STK_Bool:
7096       return CK_FloatingToBoolean;
7097     case Type::STK_Integral:
7098       return CK_FloatingToIntegral;
7099     case Type::STK_FloatingComplex:
7100       Src = ImpCastExprToType(Src.get(),
7101                               DestTy->castAs<ComplexType>()->getElementType(),
7102                               CK_FloatingCast);
7103       return CK_FloatingRealToComplex;
7104     case Type::STK_IntegralComplex:
7105       Src = ImpCastExprToType(Src.get(),
7106                               DestTy->castAs<ComplexType>()->getElementType(),
7107                               CK_FloatingToIntegral);
7108       return CK_IntegralRealToComplex;
7109     case Type::STK_CPointer:
7110     case Type::STK_ObjCObjectPointer:
7111     case Type::STK_BlockPointer:
7112       llvm_unreachable("valid float->pointer cast?");
7113     case Type::STK_MemberPointer:
7114       llvm_unreachable("member pointer type in C");
7115     case Type::STK_FixedPoint:
7116       Diag(Src.get()->getExprLoc(),
7117            diag::err_unimplemented_conversion_with_fixed_point_type)
7118           << SrcTy;
7119       return CK_IntegralCast;
7120     }
7121     llvm_unreachable("Should have returned before this");
7122 
7123   case Type::STK_FloatingComplex:
7124     switch (DestTy->getScalarTypeKind()) {
7125     case Type::STK_FloatingComplex:
7126       return CK_FloatingComplexCast;
7127     case Type::STK_IntegralComplex:
7128       return CK_FloatingComplexToIntegralComplex;
7129     case Type::STK_Floating: {
7130       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7131       if (Context.hasSameType(ET, DestTy))
7132         return CK_FloatingComplexToReal;
7133       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7134       return CK_FloatingCast;
7135     }
7136     case Type::STK_Bool:
7137       return CK_FloatingComplexToBoolean;
7138     case Type::STK_Integral:
7139       Src = ImpCastExprToType(Src.get(),
7140                               SrcTy->castAs<ComplexType>()->getElementType(),
7141                               CK_FloatingComplexToReal);
7142       return CK_FloatingToIntegral;
7143     case Type::STK_CPointer:
7144     case Type::STK_ObjCObjectPointer:
7145     case Type::STK_BlockPointer:
7146       llvm_unreachable("valid complex float->pointer cast?");
7147     case Type::STK_MemberPointer:
7148       llvm_unreachable("member pointer type in C");
7149     case Type::STK_FixedPoint:
7150       Diag(Src.get()->getExprLoc(),
7151            diag::err_unimplemented_conversion_with_fixed_point_type)
7152           << SrcTy;
7153       return CK_IntegralCast;
7154     }
7155     llvm_unreachable("Should have returned before this");
7156 
7157   case Type::STK_IntegralComplex:
7158     switch (DestTy->getScalarTypeKind()) {
7159     case Type::STK_FloatingComplex:
7160       return CK_IntegralComplexToFloatingComplex;
7161     case Type::STK_IntegralComplex:
7162       return CK_IntegralComplexCast;
7163     case Type::STK_Integral: {
7164       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7165       if (Context.hasSameType(ET, DestTy))
7166         return CK_IntegralComplexToReal;
7167       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7168       return CK_IntegralCast;
7169     }
7170     case Type::STK_Bool:
7171       return CK_IntegralComplexToBoolean;
7172     case Type::STK_Floating:
7173       Src = ImpCastExprToType(Src.get(),
7174                               SrcTy->castAs<ComplexType>()->getElementType(),
7175                               CK_IntegralComplexToReal);
7176       return CK_IntegralToFloating;
7177     case Type::STK_CPointer:
7178     case Type::STK_ObjCObjectPointer:
7179     case Type::STK_BlockPointer:
7180       llvm_unreachable("valid complex int->pointer cast?");
7181     case Type::STK_MemberPointer:
7182       llvm_unreachable("member pointer type in C");
7183     case Type::STK_FixedPoint:
7184       Diag(Src.get()->getExprLoc(),
7185            diag::err_unimplemented_conversion_with_fixed_point_type)
7186           << SrcTy;
7187       return CK_IntegralCast;
7188     }
7189     llvm_unreachable("Should have returned before this");
7190   }
7191 
7192   llvm_unreachable("Unhandled scalar cast");
7193 }
7194 
7195 static bool breakDownVectorType(QualType type, uint64_t &len,
7196                                 QualType &eltType) {
7197   // Vectors are simple.
7198   if (const VectorType *vecType = type->getAs<VectorType>()) {
7199     len = vecType->getNumElements();
7200     eltType = vecType->getElementType();
7201     assert(eltType->isScalarType());
7202     return true;
7203   }
7204 
7205   // We allow lax conversion to and from non-vector types, but only if
7206   // they're real types (i.e. non-complex, non-pointer scalar types).
7207   if (!type->isRealType()) return false;
7208 
7209   len = 1;
7210   eltType = type;
7211   return true;
7212 }
7213 
7214 /// Are the two types lax-compatible vector types?  That is, given
7215 /// that one of them is a vector, do they have equal storage sizes,
7216 /// where the storage size is the number of elements times the element
7217 /// size?
7218 ///
7219 /// This will also return false if either of the types is neither a
7220 /// vector nor a real type.
7221 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7222   assert(destTy->isVectorType() || srcTy->isVectorType());
7223 
7224   // Disallow lax conversions between scalars and ExtVectors (these
7225   // conversions are allowed for other vector types because common headers
7226   // depend on them).  Most scalar OP ExtVector cases are handled by the
7227   // splat path anyway, which does what we want (convert, not bitcast).
7228   // What this rules out for ExtVectors is crazy things like char4*float.
7229   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7230   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7231 
7232   uint64_t srcLen, destLen;
7233   QualType srcEltTy, destEltTy;
7234   if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
7235   if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;
7236 
7237   // ASTContext::getTypeSize will return the size rounded up to a
7238   // power of 2, so instead of using that, we need to use the raw
7239   // element size multiplied by the element count.
7240   uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
7241   uint64_t destEltSize = Context.getTypeSize(destEltTy);
7242 
7243   return (srcLen * srcEltSize == destLen * destEltSize);
7244 }
7245 
7246 /// Is this a legal conversion between two types, one of which is
7247 /// known to be a vector type?
7248 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7249   assert(destTy->isVectorType() || srcTy->isVectorType());
7250 
7251   switch (Context.getLangOpts().getLaxVectorConversions()) {
7252   case LangOptions::LaxVectorConversionKind::None:
7253     return false;
7254 
7255   case LangOptions::LaxVectorConversionKind::Integer:
7256     if (!srcTy->isIntegralOrEnumerationType()) {
7257       auto *Vec = srcTy->getAs<VectorType>();
7258       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7259         return false;
7260     }
7261     if (!destTy->isIntegralOrEnumerationType()) {
7262       auto *Vec = destTy->getAs<VectorType>();
7263       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7264         return false;
7265     }
7266     // OK, integer (vector) -> integer (vector) bitcast.
7267     break;
7268 
7269     case LangOptions::LaxVectorConversionKind::All:
7270     break;
7271   }
7272 
7273   return areLaxCompatibleVectorTypes(srcTy, destTy);
7274 }
7275 
7276 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7277                            CastKind &Kind) {
7278   assert(VectorTy->isVectorType() && "Not a vector type!");
7279 
7280   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
7281     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
7282       return Diag(R.getBegin(),
7283                   Ty->isVectorType() ?
7284                   diag::err_invalid_conversion_between_vectors :
7285                   diag::err_invalid_conversion_between_vector_and_integer)
7286         << VectorTy << Ty << R;
7287   } else
7288     return Diag(R.getBegin(),
7289                 diag::err_invalid_conversion_between_vector_and_scalar)
7290       << VectorTy << Ty << R;
7291 
7292   Kind = CK_BitCast;
7293   return false;
7294 }
7295 
7296 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7297   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7298 
7299   if (DestElemTy == SplattedExpr->getType())
7300     return SplattedExpr;
7301 
7302   assert(DestElemTy->isFloatingType() ||
7303          DestElemTy->isIntegralOrEnumerationType());
7304 
7305   CastKind CK;
7306   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7307     // OpenCL requires that we convert `true` boolean expressions to -1, but
7308     // only when splatting vectors.
7309     if (DestElemTy->isFloatingType()) {
7310       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7311       // in two steps: boolean to signed integral, then to floating.
7312       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
7313                                                  CK_BooleanToSignedIntegral);
7314       SplattedExpr = CastExprRes.get();
7315       CK = CK_IntegralToFloating;
7316     } else {
7317       CK = CK_BooleanToSignedIntegral;
7318     }
7319   } else {
7320     ExprResult CastExprRes = SplattedExpr;
7321     CK = PrepareScalarCast(CastExprRes, DestElemTy);
7322     if (CastExprRes.isInvalid())
7323       return ExprError();
7324     SplattedExpr = CastExprRes.get();
7325   }
7326   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
7327 }
7328 
7329 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7330                                     Expr *CastExpr, CastKind &Kind) {
7331   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
7332 
7333   QualType SrcTy = CastExpr->getType();
7334 
7335   // If SrcTy is a VectorType, the total size must match to explicitly cast to
7336   // an ExtVectorType.
7337   // In OpenCL, casts between vectors of different types are not allowed.
7338   // (See OpenCL 6.2).
7339   if (SrcTy->isVectorType()) {
7340     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
7341         (getLangOpts().OpenCL &&
7342          !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
7343       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
7344         << DestTy << SrcTy << R;
7345       return ExprError();
7346     }
7347     Kind = CK_BitCast;
7348     return CastExpr;
7349   }
7350 
7351   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
7352   // conversion will take place first from scalar to elt type, and then
7353   // splat from elt type to vector.
7354   if (SrcTy->isPointerType())
7355     return Diag(R.getBegin(),
7356                 diag::err_invalid_conversion_between_vector_and_scalar)
7357       << DestTy << SrcTy << R;
7358 
7359   Kind = CK_VectorSplat;
7360   return prepareVectorSplat(DestTy, CastExpr);
7361 }
7362 
7363 ExprResult
7364 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7365                     Declarator &D, ParsedType &Ty,
7366                     SourceLocation RParenLoc, Expr *CastExpr) {
7367   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
7368          "ActOnCastExpr(): missing type or expr");
7369 
7370   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
7371   if (D.isInvalidType())
7372     return ExprError();
7373 
7374   if (getLangOpts().CPlusPlus) {
7375     // Check that there are no default arguments (C++ only).
7376     CheckExtraCXXDefaultArguments(D);
7377   } else {
7378     // Make sure any TypoExprs have been dealt with.
7379     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
7380     if (!Res.isUsable())
7381       return ExprError();
7382     CastExpr = Res.get();
7383   }
7384 
7385   checkUnusedDeclAttributes(D);
7386 
7387   QualType castType = castTInfo->getType();
7388   Ty = CreateParsedType(castType, castTInfo);
7389 
7390   bool isVectorLiteral = false;
7391 
7392   // Check for an altivec or OpenCL literal,
7393   // i.e. all the elements are integer constants.
7394   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
7395   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
7396   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7397        && castType->isVectorType() && (PE || PLE)) {
7398     if (PLE && PLE->getNumExprs() == 0) {
7399       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
7400       return ExprError();
7401     }
7402     if (PE || PLE->getNumExprs() == 1) {
7403       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
7404       if (!E->isTypeDependent() && !E->getType()->isVectorType())
7405         isVectorLiteral = true;
7406     }
7407     else
7408       isVectorLiteral = true;
7409   }
7410 
7411   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7412   // then handle it as such.
7413   if (isVectorLiteral)
7414     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
7415 
7416   // If the Expr being casted is a ParenListExpr, handle it specially.
7417   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7418   // sequence of BinOp comma operators.
7419   if (isa<ParenListExpr>(CastExpr)) {
7420     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
7421     if (Result.isInvalid()) return ExprError();
7422     CastExpr = Result.get();
7423   }
7424 
7425   if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
7426       !getSourceManager().isInSystemMacro(LParenLoc))
7427     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
7428 
7429   CheckTollFreeBridgeCast(castType, CastExpr);
7430 
7431   CheckObjCBridgeRelatedCast(castType, CastExpr);
7432 
7433   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
7434 
7435   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
7436 }
7437 
7438 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
7439                                     SourceLocation RParenLoc, Expr *E,
7440                                     TypeSourceInfo *TInfo) {
7441   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
7442          "Expected paren or paren list expression");
7443 
7444   Expr **exprs;
7445   unsigned numExprs;
7446   Expr *subExpr;
7447   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
7448   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
7449     LiteralLParenLoc = PE->getLParenLoc();
7450     LiteralRParenLoc = PE->getRParenLoc();
7451     exprs = PE->getExprs();
7452     numExprs = PE->getNumExprs();
7453   } else { // isa<ParenExpr> by assertion at function entrance
7454     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
7455     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
7456     subExpr = cast<ParenExpr>(E)->getSubExpr();
7457     exprs = &subExpr;
7458     numExprs = 1;
7459   }
7460 
7461   QualType Ty = TInfo->getType();
7462   assert(Ty->isVectorType() && "Expected vector type");
7463 
7464   SmallVector<Expr *, 8> initExprs;
7465   const VectorType *VTy = Ty->castAs<VectorType>();
7466   unsigned numElems = VTy->getNumElements();
7467 
7468   // '(...)' form of vector initialization in AltiVec: the number of
7469   // initializers must be one or must match the size of the vector.
7470   // If a single value is specified in the initializer then it will be
7471   // replicated to all the components of the vector
7472   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
7473     // The number of initializers must be one or must match the size of the
7474     // vector. If a single value is specified in the initializer then it will
7475     // be replicated to all the components of the vector
7476     if (numExprs == 1) {
7477       QualType ElemTy = VTy->getElementType();
7478       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7479       if (Literal.isInvalid())
7480         return ExprError();
7481       Literal = ImpCastExprToType(Literal.get(), ElemTy,
7482                                   PrepareScalarCast(Literal, ElemTy));
7483       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7484     }
7485     else if (numExprs < numElems) {
7486       Diag(E->getExprLoc(),
7487            diag::err_incorrect_number_of_vector_initializers);
7488       return ExprError();
7489     }
7490     else
7491       initExprs.append(exprs, exprs + numExprs);
7492   }
7493   else {
7494     // For OpenCL, when the number of initializers is a single value,
7495     // it will be replicated to all components of the vector.
7496     if (getLangOpts().OpenCL &&
7497         VTy->getVectorKind() == VectorType::GenericVector &&
7498         numExprs == 1) {
7499         QualType ElemTy = VTy->getElementType();
7500         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7501         if (Literal.isInvalid())
7502           return ExprError();
7503         Literal = ImpCastExprToType(Literal.get(), ElemTy,
7504                                     PrepareScalarCast(Literal, ElemTy));
7505         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7506     }
7507 
7508     initExprs.append(exprs, exprs + numExprs);
7509   }
7510   // FIXME: This means that pretty-printing the final AST will produce curly
7511   // braces instead of the original commas.
7512   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
7513                                                    initExprs, LiteralRParenLoc);
7514   initE->setType(Ty);
7515   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
7516 }
7517 
7518 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
7519 /// the ParenListExpr into a sequence of comma binary operators.
7520 ExprResult
7521 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
7522   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
7523   if (!E)
7524     return OrigExpr;
7525 
7526   ExprResult Result(E->getExpr(0));
7527 
7528   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
7529     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
7530                         E->getExpr(i));
7531 
7532   if (Result.isInvalid()) return ExprError();
7533 
7534   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
7535 }
7536 
7537 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
7538                                     SourceLocation R,
7539                                     MultiExprArg Val) {
7540   return ParenListExpr::Create(Context, L, Val, R);
7541 }
7542 
7543 /// Emit a specialized diagnostic when one expression is a null pointer
7544 /// constant and the other is not a pointer.  Returns true if a diagnostic is
7545 /// emitted.
7546 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
7547                                       SourceLocation QuestionLoc) {
7548   Expr *NullExpr = LHSExpr;
7549   Expr *NonPointerExpr = RHSExpr;
7550   Expr::NullPointerConstantKind NullKind =
7551       NullExpr->isNullPointerConstant(Context,
7552                                       Expr::NPC_ValueDependentIsNotNull);
7553 
7554   if (NullKind == Expr::NPCK_NotNull) {
7555     NullExpr = RHSExpr;
7556     NonPointerExpr = LHSExpr;
7557     NullKind =
7558         NullExpr->isNullPointerConstant(Context,
7559                                         Expr::NPC_ValueDependentIsNotNull);
7560   }
7561 
7562   if (NullKind == Expr::NPCK_NotNull)
7563     return false;
7564 
7565   if (NullKind == Expr::NPCK_ZeroExpression)
7566     return false;
7567 
7568   if (NullKind == Expr::NPCK_ZeroLiteral) {
7569     // In this case, check to make sure that we got here from a "NULL"
7570     // string in the source code.
7571     NullExpr = NullExpr->IgnoreParenImpCasts();
7572     SourceLocation loc = NullExpr->getExprLoc();
7573     if (!findMacroSpelling(loc, "NULL"))
7574       return false;
7575   }
7576 
7577   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
7578   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
7579       << NonPointerExpr->getType() << DiagType
7580       << NonPointerExpr->getSourceRange();
7581   return true;
7582 }
7583 
7584 /// Return false if the condition expression is valid, true otherwise.
7585 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
7586   QualType CondTy = Cond->getType();
7587 
7588   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
7589   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
7590     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
7591       << CondTy << Cond->getSourceRange();
7592     return true;
7593   }
7594 
7595   // C99 6.5.15p2
7596   if (CondTy->isScalarType()) return false;
7597 
7598   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
7599     << CondTy << Cond->getSourceRange();
7600   return true;
7601 }
7602 
7603 /// Handle when one or both operands are void type.
7604 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
7605                                          ExprResult &RHS) {
7606     Expr *LHSExpr = LHS.get();
7607     Expr *RHSExpr = RHS.get();
7608 
7609     if (!LHSExpr->getType()->isVoidType())
7610       S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7611           << RHSExpr->getSourceRange();
7612     if (!RHSExpr->getType()->isVoidType())
7613       S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7614           << LHSExpr->getSourceRange();
7615     LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
7616     RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
7617     return S.Context.VoidTy;
7618 }
7619 
7620 /// Return false if the NullExpr can be promoted to PointerTy,
7621 /// true otherwise.
7622 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
7623                                         QualType PointerTy) {
7624   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
7625       !NullExpr.get()->isNullPointerConstant(S.Context,
7626                                             Expr::NPC_ValueDependentIsNull))
7627     return true;
7628 
7629   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
7630   return false;
7631 }
7632 
7633 /// Checks compatibility between two pointers and return the resulting
7634 /// type.
7635 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
7636                                                      ExprResult &RHS,
7637                                                      SourceLocation Loc) {
7638   QualType LHSTy = LHS.get()->getType();
7639   QualType RHSTy = RHS.get()->getType();
7640 
7641   if (S.Context.hasSameType(LHSTy, RHSTy)) {
7642     // Two identical pointers types are always compatible.
7643     return LHSTy;
7644   }
7645 
7646   QualType lhptee, rhptee;
7647 
7648   // Get the pointee types.
7649   bool IsBlockPointer = false;
7650   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
7651     lhptee = LHSBTy->getPointeeType();
7652     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
7653     IsBlockPointer = true;
7654   } else {
7655     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7656     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7657   }
7658 
7659   // C99 6.5.15p6: If both operands are pointers to compatible types or to
7660   // differently qualified versions of compatible types, the result type is
7661   // a pointer to an appropriately qualified version of the composite
7662   // type.
7663 
7664   // Only CVR-qualifiers exist in the standard, and the differently-qualified
7665   // clause doesn't make sense for our extensions. E.g. address space 2 should
7666   // be incompatible with address space 3: they may live on different devices or
7667   // anything.
7668   Qualifiers lhQual = lhptee.getQualifiers();
7669   Qualifiers rhQual = rhptee.getQualifiers();
7670 
7671   LangAS ResultAddrSpace = LangAS::Default;
7672   LangAS LAddrSpace = lhQual.getAddressSpace();
7673   LangAS RAddrSpace = rhQual.getAddressSpace();
7674 
7675   // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
7676   // spaces is disallowed.
7677   if (lhQual.isAddressSpaceSupersetOf(rhQual))
7678     ResultAddrSpace = LAddrSpace;
7679   else if (rhQual.isAddressSpaceSupersetOf(lhQual))
7680     ResultAddrSpace = RAddrSpace;
7681   else {
7682     S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
7683         << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
7684         << RHS.get()->getSourceRange();
7685     return QualType();
7686   }
7687 
7688   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
7689   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
7690   lhQual.removeCVRQualifiers();
7691   rhQual.removeCVRQualifiers();
7692 
7693   // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
7694   // (C99 6.7.3) for address spaces. We assume that the check should behave in
7695   // the same manner as it's defined for CVR qualifiers, so for OpenCL two
7696   // qual types are compatible iff
7697   //  * corresponded types are compatible
7698   //  * CVR qualifiers are equal
7699   //  * address spaces are equal
7700   // Thus for conditional operator we merge CVR and address space unqualified
7701   // pointees and if there is a composite type we return a pointer to it with
7702   // merged qualifiers.
7703   LHSCastKind =
7704       LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7705   RHSCastKind =
7706       RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7707   lhQual.removeAddressSpace();
7708   rhQual.removeAddressSpace();
7709 
7710   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
7711   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
7712 
7713   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
7714 
7715   if (CompositeTy.isNull()) {
7716     // In this situation, we assume void* type. No especially good
7717     // reason, but this is what gcc does, and we do have to pick
7718     // to get a consistent AST.
7719     QualType incompatTy;
7720     incompatTy = S.Context.getPointerType(
7721         S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
7722     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
7723     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
7724 
7725     // FIXME: For OpenCL the warning emission and cast to void* leaves a room
7726     // for casts between types with incompatible address space qualifiers.
7727     // For the following code the compiler produces casts between global and
7728     // local address spaces of the corresponded innermost pointees:
7729     // local int *global *a;
7730     // global int *global *b;
7731     // a = (0 ? a : b); // see C99 6.5.16.1.p1.
7732     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
7733         << LHSTy << RHSTy << LHS.get()->getSourceRange()
7734         << RHS.get()->getSourceRange();
7735 
7736     return incompatTy;
7737   }
7738 
7739   // The pointer types are compatible.
7740   // In case of OpenCL ResultTy should have the address space qualifier
7741   // which is a superset of address spaces of both the 2nd and the 3rd
7742   // operands of the conditional operator.
7743   QualType ResultTy = [&, ResultAddrSpace]() {
7744     if (S.getLangOpts().OpenCL) {
7745       Qualifiers CompositeQuals = CompositeTy.getQualifiers();
7746       CompositeQuals.setAddressSpace(ResultAddrSpace);
7747       return S.Context
7748           .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
7749           .withCVRQualifiers(MergedCVRQual);
7750     }
7751     return CompositeTy.withCVRQualifiers(MergedCVRQual);
7752   }();
7753   if (IsBlockPointer)
7754     ResultTy = S.Context.getBlockPointerType(ResultTy);
7755   else
7756     ResultTy = S.Context.getPointerType(ResultTy);
7757 
7758   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
7759   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
7760   return ResultTy;
7761 }
7762 
7763 /// Return the resulting type when the operands are both block pointers.
7764 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
7765                                                           ExprResult &LHS,
7766                                                           ExprResult &RHS,
7767                                                           SourceLocation Loc) {
7768   QualType LHSTy = LHS.get()->getType();
7769   QualType RHSTy = RHS.get()->getType();
7770 
7771   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
7772     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
7773       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
7774       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
7775       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
7776       return destType;
7777     }
7778     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
7779       << LHSTy << RHSTy << LHS.get()->getSourceRange()
7780       << RHS.get()->getSourceRange();
7781     return QualType();
7782   }
7783 
7784   // We have 2 block pointer types.
7785   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
7786 }
7787 
7788 /// Return the resulting type when the operands are both pointers.
7789 static QualType
7790 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
7791                                             ExprResult &RHS,
7792                                             SourceLocation Loc) {
7793   // get the pointer types
7794   QualType LHSTy = LHS.get()->getType();
7795   QualType RHSTy = RHS.get()->getType();
7796 
7797   // get the "pointed to" types
7798   QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7799   QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7800 
7801   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
7802   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
7803     // Figure out necessary qualifiers (C99 6.5.15p6)
7804     QualType destPointee
7805       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
7806     QualType destType = S.Context.getPointerType(destPointee);
7807     // Add qualifiers if necessary.
7808     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
7809     // Promote to void*.
7810     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
7811     return destType;
7812   }
7813   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
7814     QualType destPointee
7815       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
7816     QualType destType = S.Context.getPointerType(destPointee);
7817     // Add qualifiers if necessary.
7818     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
7819     // Promote to void*.
7820     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
7821     return destType;
7822   }
7823 
7824   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
7825 }
7826 
7827 /// Return false if the first expression is not an integer and the second
7828 /// expression is not a pointer, true otherwise.
7829 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
7830                                         Expr* PointerExpr, SourceLocation Loc,
7831                                         bool IsIntFirstExpr) {
7832   if (!PointerExpr->getType()->isPointerType() ||
7833       !Int.get()->getType()->isIntegerType())
7834     return false;
7835 
7836   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
7837   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
7838 
7839   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
7840     << Expr1->getType() << Expr2->getType()
7841     << Expr1->getSourceRange() << Expr2->getSourceRange();
7842   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
7843                             CK_IntegralToPointer);
7844   return true;
7845 }
7846 
7847 /// Simple conversion between integer and floating point types.
7848 ///
7849 /// Used when handling the OpenCL conditional operator where the
7850 /// condition is a vector while the other operands are scalar.
7851 ///
7852 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
7853 /// types are either integer or floating type. Between the two
7854 /// operands, the type with the higher rank is defined as the "result
7855 /// type". The other operand needs to be promoted to the same type. No
7856 /// other type promotion is allowed. We cannot use
7857 /// UsualArithmeticConversions() for this purpose, since it always
7858 /// promotes promotable types.
7859 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
7860                                             ExprResult &RHS,
7861                                             SourceLocation QuestionLoc) {
7862   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
7863   if (LHS.isInvalid())
7864     return QualType();
7865   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
7866   if (RHS.isInvalid())
7867     return QualType();
7868 
7869   // For conversion purposes, we ignore any qualifiers.
7870   // For example, "const float" and "float" are equivalent.
7871   QualType LHSType =
7872     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
7873   QualType RHSType =
7874     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
7875 
7876   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
7877     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
7878       << LHSType << LHS.get()->getSourceRange();
7879     return QualType();
7880   }
7881 
7882   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
7883     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
7884       << RHSType << RHS.get()->getSourceRange();
7885     return QualType();
7886   }
7887 
7888   // If both types are identical, no conversion is needed.
7889   if (LHSType == RHSType)
7890     return LHSType;
7891 
7892   // Now handle "real" floating types (i.e. float, double, long double).
7893   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
7894     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
7895                                  /*IsCompAssign = */ false);
7896 
7897   // Finally, we have two differing integer types.
7898   return handleIntegerConversion<doIntegralCast, doIntegralCast>
7899   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
7900 }
7901 
7902 /// Convert scalar operands to a vector that matches the
7903 ///        condition in length.
7904 ///
7905 /// Used when handling the OpenCL conditional operator where the
7906 /// condition is a vector while the other operands are scalar.
7907 ///
7908 /// We first compute the "result type" for the scalar operands
7909 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
7910 /// into a vector of that type where the length matches the condition
7911 /// vector type. s6.11.6 requires that the element types of the result
7912 /// and the condition must have the same number of bits.
7913 static QualType
7914 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
7915                               QualType CondTy, SourceLocation QuestionLoc) {
7916   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
7917   if (ResTy.isNull()) return QualType();
7918 
7919   const VectorType *CV = CondTy->getAs<VectorType>();
7920   assert(CV);
7921 
7922   // Determine the vector result type
7923   unsigned NumElements = CV->getNumElements();
7924   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
7925 
7926   // Ensure that all types have the same number of bits
7927   if (S.Context.getTypeSize(CV->getElementType())
7928       != S.Context.getTypeSize(ResTy)) {
7929     // Since VectorTy is created internally, it does not pretty print
7930     // with an OpenCL name. Instead, we just print a description.
7931     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
7932     SmallString<64> Str;
7933     llvm::raw_svector_ostream OS(Str);
7934     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
7935     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
7936       << CondTy << OS.str();
7937     return QualType();
7938   }
7939 
7940   // Convert operands to the vector result type
7941   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
7942   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
7943 
7944   return VectorTy;
7945 }
7946 
7947 /// Return false if this is a valid OpenCL condition vector
7948 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
7949                                        SourceLocation QuestionLoc) {
7950   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
7951   // integral type.
7952   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
7953   assert(CondTy);
7954   QualType EleTy = CondTy->getElementType();
7955   if (EleTy->isIntegerType()) return false;
7956 
7957   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
7958     << Cond->getType() << Cond->getSourceRange();
7959   return true;
7960 }
7961 
7962 /// Return false if the vector condition type and the vector
7963 ///        result type are compatible.
7964 ///
7965 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
7966 /// number of elements, and their element types have the same number
7967 /// of bits.
7968 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
7969                               SourceLocation QuestionLoc) {
7970   const VectorType *CV = CondTy->getAs<VectorType>();
7971   const VectorType *RV = VecResTy->getAs<VectorType>();
7972   assert(CV && RV);
7973 
7974   if (CV->getNumElements() != RV->getNumElements()) {
7975     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
7976       << CondTy << VecResTy;
7977     return true;
7978   }
7979 
7980   QualType CVE = CV->getElementType();
7981   QualType RVE = RV->getElementType();
7982 
7983   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
7984     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
7985       << CondTy << VecResTy;
7986     return true;
7987   }
7988 
7989   return false;
7990 }
7991 
7992 /// Return the resulting type for the conditional operator in
7993 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
7994 ///        s6.3.i) when the condition is a vector type.
7995 static QualType
7996 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
7997                              ExprResult &LHS, ExprResult &RHS,
7998                              SourceLocation QuestionLoc) {
7999   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8000   if (Cond.isInvalid())
8001     return QualType();
8002   QualType CondTy = Cond.get()->getType();
8003 
8004   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8005     return QualType();
8006 
8007   // If either operand is a vector then find the vector type of the
8008   // result as specified in OpenCL v1.1 s6.3.i.
8009   if (LHS.get()->getType()->isVectorType() ||
8010       RHS.get()->getType()->isVectorType()) {
8011     QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8012                                               /*isCompAssign*/false,
8013                                               /*AllowBothBool*/true,
8014                                               /*AllowBoolConversions*/false);
8015     if (VecResTy.isNull()) return QualType();
8016     // The result type must match the condition type as specified in
8017     // OpenCL v1.1 s6.11.6.
8018     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8019       return QualType();
8020     return VecResTy;
8021   }
8022 
8023   // Both operands are scalar.
8024   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8025 }
8026 
8027 /// Return true if the Expr is block type
8028 static bool checkBlockType(Sema &S, const Expr *E) {
8029   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8030     QualType Ty = CE->getCallee()->getType();
8031     if (Ty->isBlockPointerType()) {
8032       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8033       return true;
8034     }
8035   }
8036   return false;
8037 }
8038 
8039 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8040 /// In that case, LHS = cond.
8041 /// C99 6.5.15
8042 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8043                                         ExprResult &RHS, ExprValueKind &VK,
8044                                         ExprObjectKind &OK,
8045                                         SourceLocation QuestionLoc) {
8046 
8047   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8048   if (!LHSResult.isUsable()) return QualType();
8049   LHS = LHSResult;
8050 
8051   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8052   if (!RHSResult.isUsable()) return QualType();
8053   RHS = RHSResult;
8054 
8055   // C++ is sufficiently different to merit its own checker.
8056   if (getLangOpts().CPlusPlus)
8057     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8058 
8059   VK = VK_RValue;
8060   OK = OK_Ordinary;
8061 
8062   // The OpenCL operator with a vector condition is sufficiently
8063   // different to merit its own checker.
8064   if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8065       Cond.get()->getType()->isExtVectorType())
8066     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8067 
8068   // First, check the condition.
8069   Cond = UsualUnaryConversions(Cond.get());
8070   if (Cond.isInvalid())
8071     return QualType();
8072   if (checkCondition(*this, Cond.get(), QuestionLoc))
8073     return QualType();
8074 
8075   // Now check the two expressions.
8076   if (LHS.get()->getType()->isVectorType() ||
8077       RHS.get()->getType()->isVectorType())
8078     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
8079                                /*AllowBothBool*/true,
8080                                /*AllowBoolConversions*/false);
8081 
8082   QualType ResTy =
8083       UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8084   if (LHS.isInvalid() || RHS.isInvalid())
8085     return QualType();
8086 
8087   QualType LHSTy = LHS.get()->getType();
8088   QualType RHSTy = RHS.get()->getType();
8089 
8090   // Diagnose attempts to convert between __float128 and long double where
8091   // such conversions currently can't be handled.
8092   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8093     Diag(QuestionLoc,
8094          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8095       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8096     return QualType();
8097   }
8098 
8099   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8100   // selection operator (?:).
8101   if (getLangOpts().OpenCL &&
8102       (checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
8103     return QualType();
8104   }
8105 
8106   // If both operands have arithmetic type, do the usual arithmetic conversions
8107   // to find a common type: C99 6.5.15p3,5.
8108   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8109     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8110     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8111 
8112     return ResTy;
8113   }
8114 
8115   // And if they're both bfloat (which isn't arithmetic), that's fine too.
8116   if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
8117     return LHSTy;
8118   }
8119 
8120   // If both operands are the same structure or union type, the result is that
8121   // type.
8122   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
8123     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8124       if (LHSRT->getDecl() == RHSRT->getDecl())
8125         // "If both the operands have structure or union type, the result has
8126         // that type."  This implies that CV qualifiers are dropped.
8127         return LHSTy.getUnqualifiedType();
8128     // FIXME: Type of conditional expression must be complete in C mode.
8129   }
8130 
8131   // C99 6.5.15p5: "If both operands have void type, the result has void type."
8132   // The following || allows only one side to be void (a GCC-ism).
8133   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8134     return checkConditionalVoidType(*this, LHS, RHS);
8135   }
8136 
8137   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8138   // the type of the other operand."
8139   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8140   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8141 
8142   // All objective-c pointer type analysis is done here.
8143   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
8144                                                         QuestionLoc);
8145   if (LHS.isInvalid() || RHS.isInvalid())
8146     return QualType();
8147   if (!compositeType.isNull())
8148     return compositeType;
8149 
8150 
8151   // Handle block pointer types.
8152   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8153     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8154                                                      QuestionLoc);
8155 
8156   // Check constraints for C object pointers types (C99 6.5.15p3,6).
8157   if (LHSTy->isPointerType() && RHSTy->isPointerType())
8158     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8159                                                        QuestionLoc);
8160 
8161   // GCC compatibility: soften pointer/integer mismatch.  Note that
8162   // null pointers have been filtered out by this point.
8163   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
8164       /*IsIntFirstExpr=*/true))
8165     return RHSTy;
8166   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
8167       /*IsIntFirstExpr=*/false))
8168     return LHSTy;
8169 
8170   // Allow ?: operations in which both operands have the same
8171   // built-in sizeless type.
8172   if (LHSTy->isSizelessBuiltinType() && LHSTy == RHSTy)
8173     return LHSTy;
8174 
8175   // Emit a better diagnostic if one of the expressions is a null pointer
8176   // constant and the other is not a pointer type. In this case, the user most
8177   // likely forgot to take the address of the other expression.
8178   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
8179     return QualType();
8180 
8181   // Otherwise, the operands are not compatible.
8182   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8183     << LHSTy << RHSTy << LHS.get()->getSourceRange()
8184     << RHS.get()->getSourceRange();
8185   return QualType();
8186 }
8187 
8188 /// FindCompositeObjCPointerType - Helper method to find composite type of
8189 /// two objective-c pointer types of the two input expressions.
8190 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
8191                                             SourceLocation QuestionLoc) {
8192   QualType LHSTy = LHS.get()->getType();
8193   QualType RHSTy = RHS.get()->getType();
8194 
8195   // Handle things like Class and struct objc_class*.  Here we case the result
8196   // to the pseudo-builtin, because that will be implicitly cast back to the
8197   // redefinition type if an attempt is made to access its fields.
8198   if (LHSTy->isObjCClassType() &&
8199       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
8200     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8201     return LHSTy;
8202   }
8203   if (RHSTy->isObjCClassType() &&
8204       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
8205     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8206     return RHSTy;
8207   }
8208   // And the same for struct objc_object* / id
8209   if (LHSTy->isObjCIdType() &&
8210       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
8211     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8212     return LHSTy;
8213   }
8214   if (RHSTy->isObjCIdType() &&
8215       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
8216     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8217     return RHSTy;
8218   }
8219   // And the same for struct objc_selector* / SEL
8220   if (Context.isObjCSelType(LHSTy) &&
8221       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
8222     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
8223     return LHSTy;
8224   }
8225   if (Context.isObjCSelType(RHSTy) &&
8226       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
8227     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
8228     return RHSTy;
8229   }
8230   // Check constraints for Objective-C object pointers types.
8231   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
8232 
8233     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
8234       // Two identical object pointer types are always compatible.
8235       return LHSTy;
8236     }
8237     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
8238     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
8239     QualType compositeType = LHSTy;
8240 
8241     // If both operands are interfaces and either operand can be
8242     // assigned to the other, use that type as the composite
8243     // type. This allows
8244     //   xxx ? (A*) a : (B*) b
8245     // where B is a subclass of A.
8246     //
8247     // Additionally, as for assignment, if either type is 'id'
8248     // allow silent coercion. Finally, if the types are
8249     // incompatible then make sure to use 'id' as the composite
8250     // type so the result is acceptable for sending messages to.
8251 
8252     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
8253     // It could return the composite type.
8254     if (!(compositeType =
8255           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
8256       // Nothing more to do.
8257     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
8258       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
8259     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
8260       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
8261     } else if ((LHSOPT->isObjCQualifiedIdType() ||
8262                 RHSOPT->isObjCQualifiedIdType()) &&
8263                Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
8264                                                          true)) {
8265       // Need to handle "id<xx>" explicitly.
8266       // GCC allows qualified id and any Objective-C type to devolve to
8267       // id. Currently localizing to here until clear this should be
8268       // part of ObjCQualifiedIdTypesAreCompatible.
8269       compositeType = Context.getObjCIdType();
8270     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
8271       compositeType = Context.getObjCIdType();
8272     } else {
8273       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
8274       << LHSTy << RHSTy
8275       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8276       QualType incompatTy = Context.getObjCIdType();
8277       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
8278       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
8279       return incompatTy;
8280     }
8281     // The object pointer types are compatible.
8282     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
8283     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
8284     return compositeType;
8285   }
8286   // Check Objective-C object pointer types and 'void *'
8287   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
8288     if (getLangOpts().ObjCAutoRefCount) {
8289       // ARC forbids the implicit conversion of object pointers to 'void *',
8290       // so these types are not compatible.
8291       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8292           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8293       LHS = RHS = true;
8294       return QualType();
8295     }
8296     QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8297     QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8298     QualType destPointee
8299     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8300     QualType destType = Context.getPointerType(destPointee);
8301     // Add qualifiers if necessary.
8302     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8303     // Promote to void*.
8304     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8305     return destType;
8306   }
8307   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
8308     if (getLangOpts().ObjCAutoRefCount) {
8309       // ARC forbids the implicit conversion of object pointers to 'void *',
8310       // so these types are not compatible.
8311       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8312           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8313       LHS = RHS = true;
8314       return QualType();
8315     }
8316     QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8317     QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8318     QualType destPointee
8319     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8320     QualType destType = Context.getPointerType(destPointee);
8321     // Add qualifiers if necessary.
8322     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8323     // Promote to void*.
8324     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8325     return destType;
8326   }
8327   return QualType();
8328 }
8329 
8330 /// SuggestParentheses - Emit a note with a fixit hint that wraps
8331 /// ParenRange in parentheses.
8332 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8333                                const PartialDiagnostic &Note,
8334                                SourceRange ParenRange) {
8335   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
8336   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8337       EndLoc.isValid()) {
8338     Self.Diag(Loc, Note)
8339       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
8340       << FixItHint::CreateInsertion(EndLoc, ")");
8341   } else {
8342     // We can't display the parentheses, so just show the bare note.
8343     Self.Diag(Loc, Note) << ParenRange;
8344   }
8345 }
8346 
8347 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8348   return BinaryOperator::isAdditiveOp(Opc) ||
8349          BinaryOperator::isMultiplicativeOp(Opc) ||
8350          BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8351   // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8352   // not any of the logical operators.  Bitwise-xor is commonly used as a
8353   // logical-xor because there is no logical-xor operator.  The logical
8354   // operators, including uses of xor, have a high false positive rate for
8355   // precedence warnings.
8356 }
8357 
8358 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8359 /// expression, either using a built-in or overloaded operator,
8360 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8361 /// expression.
8362 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
8363                                    Expr **RHSExprs) {
8364   // Don't strip parenthesis: we should not warn if E is in parenthesis.
8365   E = E->IgnoreImpCasts();
8366   E = E->IgnoreConversionOperator();
8367   E = E->IgnoreImpCasts();
8368   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
8369     E = MTE->getSubExpr();
8370     E = E->IgnoreImpCasts();
8371   }
8372 
8373   // Built-in binary operator.
8374   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
8375     if (IsArithmeticOp(OP->getOpcode())) {
8376       *Opcode = OP->getOpcode();
8377       *RHSExprs = OP->getRHS();
8378       return true;
8379     }
8380   }
8381 
8382   // Overloaded operator.
8383   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
8384     if (Call->getNumArgs() != 2)
8385       return false;
8386 
8387     // Make sure this is really a binary operator that is safe to pass into
8388     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8389     OverloadedOperatorKind OO = Call->getOperator();
8390     if (OO < OO_Plus || OO > OO_Arrow ||
8391         OO == OO_PlusPlus || OO == OO_MinusMinus)
8392       return false;
8393 
8394     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8395     if (IsArithmeticOp(OpKind)) {
8396       *Opcode = OpKind;
8397       *RHSExprs = Call->getArg(1);
8398       return true;
8399     }
8400   }
8401 
8402   return false;
8403 }
8404 
8405 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8406 /// or is a logical expression such as (x==y) which has int type, but is
8407 /// commonly interpreted as boolean.
8408 static bool ExprLooksBoolean(Expr *E) {
8409   E = E->IgnoreParenImpCasts();
8410 
8411   if (E->getType()->isBooleanType())
8412     return true;
8413   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
8414     return OP->isComparisonOp() || OP->isLogicalOp();
8415   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
8416     return OP->getOpcode() == UO_LNot;
8417   if (E->getType()->isPointerType())
8418     return true;
8419   // FIXME: What about overloaded operator calls returning "unspecified boolean
8420   // type"s (commonly pointer-to-members)?
8421 
8422   return false;
8423 }
8424 
8425 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
8426 /// and binary operator are mixed in a way that suggests the programmer assumed
8427 /// the conditional operator has higher precedence, for example:
8428 /// "int x = a + someBinaryCondition ? 1 : 2".
8429 static void DiagnoseConditionalPrecedence(Sema &Self,
8430                                           SourceLocation OpLoc,
8431                                           Expr *Condition,
8432                                           Expr *LHSExpr,
8433                                           Expr *RHSExpr) {
8434   BinaryOperatorKind CondOpcode;
8435   Expr *CondRHS;
8436 
8437   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
8438     return;
8439   if (!ExprLooksBoolean(CondRHS))
8440     return;
8441 
8442   // The condition is an arithmetic binary expression, with a right-
8443   // hand side that looks boolean, so warn.
8444 
8445   unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
8446                         ? diag::warn_precedence_bitwise_conditional
8447                         : diag::warn_precedence_conditional;
8448 
8449   Self.Diag(OpLoc, DiagID)
8450       << Condition->getSourceRange()
8451       << BinaryOperator::getOpcodeStr(CondOpcode);
8452 
8453   SuggestParentheses(
8454       Self, OpLoc,
8455       Self.PDiag(diag::note_precedence_silence)
8456           << BinaryOperator::getOpcodeStr(CondOpcode),
8457       SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
8458 
8459   SuggestParentheses(Self, OpLoc,
8460                      Self.PDiag(diag::note_precedence_conditional_first),
8461                      SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
8462 }
8463 
8464 /// Compute the nullability of a conditional expression.
8465 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
8466                                               QualType LHSTy, QualType RHSTy,
8467                                               ASTContext &Ctx) {
8468   if (!ResTy->isAnyPointerType())
8469     return ResTy;
8470 
8471   auto GetNullability = [&Ctx](QualType Ty) {
8472     Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
8473     if (Kind)
8474       return *Kind;
8475     return NullabilityKind::Unspecified;
8476   };
8477 
8478   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
8479   NullabilityKind MergedKind;
8480 
8481   // Compute nullability of a binary conditional expression.
8482   if (IsBin) {
8483     if (LHSKind == NullabilityKind::NonNull)
8484       MergedKind = NullabilityKind::NonNull;
8485     else
8486       MergedKind = RHSKind;
8487   // Compute nullability of a normal conditional expression.
8488   } else {
8489     if (LHSKind == NullabilityKind::Nullable ||
8490         RHSKind == NullabilityKind::Nullable)
8491       MergedKind = NullabilityKind::Nullable;
8492     else if (LHSKind == NullabilityKind::NonNull)
8493       MergedKind = RHSKind;
8494     else if (RHSKind == NullabilityKind::NonNull)
8495       MergedKind = LHSKind;
8496     else
8497       MergedKind = NullabilityKind::Unspecified;
8498   }
8499 
8500   // Return if ResTy already has the correct nullability.
8501   if (GetNullability(ResTy) == MergedKind)
8502     return ResTy;
8503 
8504   // Strip all nullability from ResTy.
8505   while (ResTy->getNullability(Ctx))
8506     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
8507 
8508   // Create a new AttributedType with the new nullability kind.
8509   auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
8510   return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
8511 }
8512 
8513 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
8514 /// in the case of a the GNU conditional expr extension.
8515 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
8516                                     SourceLocation ColonLoc,
8517                                     Expr *CondExpr, Expr *LHSExpr,
8518                                     Expr *RHSExpr) {
8519   if (!getLangOpts().CPlusPlus) {
8520     // C cannot handle TypoExpr nodes in the condition because it
8521     // doesn't handle dependent types properly, so make sure any TypoExprs have
8522     // been dealt with before checking the operands.
8523     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
8524     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
8525     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
8526 
8527     if (!CondResult.isUsable())
8528       return ExprError();
8529 
8530     if (LHSExpr) {
8531       if (!LHSResult.isUsable())
8532         return ExprError();
8533     }
8534 
8535     if (!RHSResult.isUsable())
8536       return ExprError();
8537 
8538     CondExpr = CondResult.get();
8539     LHSExpr = LHSResult.get();
8540     RHSExpr = RHSResult.get();
8541   }
8542 
8543   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
8544   // was the condition.
8545   OpaqueValueExpr *opaqueValue = nullptr;
8546   Expr *commonExpr = nullptr;
8547   if (!LHSExpr) {
8548     commonExpr = CondExpr;
8549     // Lower out placeholder types first.  This is important so that we don't
8550     // try to capture a placeholder. This happens in few cases in C++; such
8551     // as Objective-C++'s dictionary subscripting syntax.
8552     if (commonExpr->hasPlaceholderType()) {
8553       ExprResult result = CheckPlaceholderExpr(commonExpr);
8554       if (!result.isUsable()) return ExprError();
8555       commonExpr = result.get();
8556     }
8557     // We usually want to apply unary conversions *before* saving, except
8558     // in the special case of a C++ l-value conditional.
8559     if (!(getLangOpts().CPlusPlus
8560           && !commonExpr->isTypeDependent()
8561           && commonExpr->getValueKind() == RHSExpr->getValueKind()
8562           && commonExpr->isGLValue()
8563           && commonExpr->isOrdinaryOrBitFieldObject()
8564           && RHSExpr->isOrdinaryOrBitFieldObject()
8565           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
8566       ExprResult commonRes = UsualUnaryConversions(commonExpr);
8567       if (commonRes.isInvalid())
8568         return ExprError();
8569       commonExpr = commonRes.get();
8570     }
8571 
8572     // If the common expression is a class or array prvalue, materialize it
8573     // so that we can safely refer to it multiple times.
8574     if (commonExpr->isRValue() && (commonExpr->getType()->isRecordType() ||
8575                                    commonExpr->getType()->isArrayType())) {
8576       ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
8577       if (MatExpr.isInvalid())
8578         return ExprError();
8579       commonExpr = MatExpr.get();
8580     }
8581 
8582     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
8583                                                 commonExpr->getType(),
8584                                                 commonExpr->getValueKind(),
8585                                                 commonExpr->getObjectKind(),
8586                                                 commonExpr);
8587     LHSExpr = CondExpr = opaqueValue;
8588   }
8589 
8590   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
8591   ExprValueKind VK = VK_RValue;
8592   ExprObjectKind OK = OK_Ordinary;
8593   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
8594   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
8595                                              VK, OK, QuestionLoc);
8596   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
8597       RHS.isInvalid())
8598     return ExprError();
8599 
8600   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
8601                                 RHS.get());
8602 
8603   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
8604 
8605   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
8606                                          Context);
8607 
8608   if (!commonExpr)
8609     return new (Context)
8610         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
8611                             RHS.get(), result, VK, OK);
8612 
8613   return new (Context) BinaryConditionalOperator(
8614       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
8615       ColonLoc, result, VK, OK);
8616 }
8617 
8618 // Check if we have a conversion between incompatible cmse function pointer
8619 // types, that is, a conversion between a function pointer with the
8620 // cmse_nonsecure_call attribute and one without.
8621 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
8622                                           QualType ToType) {
8623   if (const auto *ToFn =
8624           dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
8625     if (const auto *FromFn =
8626             dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
8627       FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
8628       FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
8629 
8630       return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
8631     }
8632   }
8633   return false;
8634 }
8635 
8636 // checkPointerTypesForAssignment - This is a very tricky routine (despite
8637 // being closely modeled after the C99 spec:-). The odd characteristic of this
8638 // routine is it effectively iqnores the qualifiers on the top level pointee.
8639 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
8640 // FIXME: add a couple examples in this comment.
8641 static Sema::AssignConvertType
8642 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
8643   assert(LHSType.isCanonical() && "LHS not canonicalized!");
8644   assert(RHSType.isCanonical() && "RHS not canonicalized!");
8645 
8646   // get the "pointed to" type (ignoring qualifiers at the top level)
8647   const Type *lhptee, *rhptee;
8648   Qualifiers lhq, rhq;
8649   std::tie(lhptee, lhq) =
8650       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
8651   std::tie(rhptee, rhq) =
8652       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
8653 
8654   Sema::AssignConvertType ConvTy = Sema::Compatible;
8655 
8656   // C99 6.5.16.1p1: This following citation is common to constraints
8657   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
8658   // qualifiers of the type *pointed to* by the right;
8659 
8660   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
8661   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
8662       lhq.compatiblyIncludesObjCLifetime(rhq)) {
8663     // Ignore lifetime for further calculation.
8664     lhq.removeObjCLifetime();
8665     rhq.removeObjCLifetime();
8666   }
8667 
8668   if (!lhq.compatiblyIncludes(rhq)) {
8669     // Treat address-space mismatches as fatal.
8670     if (!lhq.isAddressSpaceSupersetOf(rhq))
8671       return Sema::IncompatiblePointerDiscardsQualifiers;
8672 
8673     // It's okay to add or remove GC or lifetime qualifiers when converting to
8674     // and from void*.
8675     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
8676                         .compatiblyIncludes(
8677                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
8678              && (lhptee->isVoidType() || rhptee->isVoidType()))
8679       ; // keep old
8680 
8681     // Treat lifetime mismatches as fatal.
8682     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
8683       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
8684 
8685     // For GCC/MS compatibility, other qualifier mismatches are treated
8686     // as still compatible in C.
8687     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8688   }
8689 
8690   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
8691   // incomplete type and the other is a pointer to a qualified or unqualified
8692   // version of void...
8693   if (lhptee->isVoidType()) {
8694     if (rhptee->isIncompleteOrObjectType())
8695       return ConvTy;
8696 
8697     // As an extension, we allow cast to/from void* to function pointer.
8698     assert(rhptee->isFunctionType());
8699     return Sema::FunctionVoidPointer;
8700   }
8701 
8702   if (rhptee->isVoidType()) {
8703     if (lhptee->isIncompleteOrObjectType())
8704       return ConvTy;
8705 
8706     // As an extension, we allow cast to/from void* to function pointer.
8707     assert(lhptee->isFunctionType());
8708     return Sema::FunctionVoidPointer;
8709   }
8710 
8711   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
8712   // unqualified versions of compatible types, ...
8713   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
8714   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
8715     // Check if the pointee types are compatible ignoring the sign.
8716     // We explicitly check for char so that we catch "char" vs
8717     // "unsigned char" on systems where "char" is unsigned.
8718     if (lhptee->isCharType())
8719       ltrans = S.Context.UnsignedCharTy;
8720     else if (lhptee->hasSignedIntegerRepresentation())
8721       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
8722 
8723     if (rhptee->isCharType())
8724       rtrans = S.Context.UnsignedCharTy;
8725     else if (rhptee->hasSignedIntegerRepresentation())
8726       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
8727 
8728     if (ltrans == rtrans) {
8729       // Types are compatible ignoring the sign. Qualifier incompatibility
8730       // takes priority over sign incompatibility because the sign
8731       // warning can be disabled.
8732       if (ConvTy != Sema::Compatible)
8733         return ConvTy;
8734 
8735       return Sema::IncompatiblePointerSign;
8736     }
8737 
8738     // If we are a multi-level pointer, it's possible that our issue is simply
8739     // one of qualification - e.g. char ** -> const char ** is not allowed. If
8740     // the eventual target type is the same and the pointers have the same
8741     // level of indirection, this must be the issue.
8742     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
8743       do {
8744         std::tie(lhptee, lhq) =
8745           cast<PointerType>(lhptee)->getPointeeType().split().asPair();
8746         std::tie(rhptee, rhq) =
8747           cast<PointerType>(rhptee)->getPointeeType().split().asPair();
8748 
8749         // Inconsistent address spaces at this point is invalid, even if the
8750         // address spaces would be compatible.
8751         // FIXME: This doesn't catch address space mismatches for pointers of
8752         // different nesting levels, like:
8753         //   __local int *** a;
8754         //   int ** b = a;
8755         // It's not clear how to actually determine when such pointers are
8756         // invalidly incompatible.
8757         if (lhq.getAddressSpace() != rhq.getAddressSpace())
8758           return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
8759 
8760       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
8761 
8762       if (lhptee == rhptee)
8763         return Sema::IncompatibleNestedPointerQualifiers;
8764     }
8765 
8766     // General pointer incompatibility takes priority over qualifiers.
8767     if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
8768       return Sema::IncompatibleFunctionPointer;
8769     return Sema::IncompatiblePointer;
8770   }
8771   if (!S.getLangOpts().CPlusPlus &&
8772       S.IsFunctionConversion(ltrans, rtrans, ltrans))
8773     return Sema::IncompatibleFunctionPointer;
8774   if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
8775     return Sema::IncompatibleFunctionPointer;
8776   return ConvTy;
8777 }
8778 
8779 /// checkBlockPointerTypesForAssignment - This routine determines whether two
8780 /// block pointer types are compatible or whether a block and normal pointer
8781 /// are compatible. It is more restrict than comparing two function pointer
8782 // types.
8783 static Sema::AssignConvertType
8784 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
8785                                     QualType RHSType) {
8786   assert(LHSType.isCanonical() && "LHS not canonicalized!");
8787   assert(RHSType.isCanonical() && "RHS not canonicalized!");
8788 
8789   QualType lhptee, rhptee;
8790 
8791   // get the "pointed to" type (ignoring qualifiers at the top level)
8792   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
8793   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
8794 
8795   // In C++, the types have to match exactly.
8796   if (S.getLangOpts().CPlusPlus)
8797     return Sema::IncompatibleBlockPointer;
8798 
8799   Sema::AssignConvertType ConvTy = Sema::Compatible;
8800 
8801   // For blocks we enforce that qualifiers are identical.
8802   Qualifiers LQuals = lhptee.getLocalQualifiers();
8803   Qualifiers RQuals = rhptee.getLocalQualifiers();
8804   if (S.getLangOpts().OpenCL) {
8805     LQuals.removeAddressSpace();
8806     RQuals.removeAddressSpace();
8807   }
8808   if (LQuals != RQuals)
8809     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8810 
8811   // FIXME: OpenCL doesn't define the exact compile time semantics for a block
8812   // assignment.
8813   // The current behavior is similar to C++ lambdas. A block might be
8814   // assigned to a variable iff its return type and parameters are compatible
8815   // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
8816   // an assignment. Presumably it should behave in way that a function pointer
8817   // assignment does in C, so for each parameter and return type:
8818   //  * CVR and address space of LHS should be a superset of CVR and address
8819   //  space of RHS.
8820   //  * unqualified types should be compatible.
8821   if (S.getLangOpts().OpenCL) {
8822     if (!S.Context.typesAreBlockPointerCompatible(
8823             S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
8824             S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
8825       return Sema::IncompatibleBlockPointer;
8826   } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
8827     return Sema::IncompatibleBlockPointer;
8828 
8829   return ConvTy;
8830 }
8831 
8832 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
8833 /// for assignment compatibility.
8834 static Sema::AssignConvertType
8835 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
8836                                    QualType RHSType) {
8837   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
8838   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
8839 
8840   if (LHSType->isObjCBuiltinType()) {
8841     // Class is not compatible with ObjC object pointers.
8842     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
8843         !RHSType->isObjCQualifiedClassType())
8844       return Sema::IncompatiblePointer;
8845     return Sema::Compatible;
8846   }
8847   if (RHSType->isObjCBuiltinType()) {
8848     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
8849         !LHSType->isObjCQualifiedClassType())
8850       return Sema::IncompatiblePointer;
8851     return Sema::Compatible;
8852   }
8853   QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
8854   QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
8855 
8856   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
8857       // make an exception for id<P>
8858       !LHSType->isObjCQualifiedIdType())
8859     return Sema::CompatiblePointerDiscardsQualifiers;
8860 
8861   if (S.Context.typesAreCompatible(LHSType, RHSType))
8862     return Sema::Compatible;
8863   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
8864     return Sema::IncompatibleObjCQualifiedId;
8865   return Sema::IncompatiblePointer;
8866 }
8867 
8868 Sema::AssignConvertType
8869 Sema::CheckAssignmentConstraints(SourceLocation Loc,
8870                                  QualType LHSType, QualType RHSType) {
8871   // Fake up an opaque expression.  We don't actually care about what
8872   // cast operations are required, so if CheckAssignmentConstraints
8873   // adds casts to this they'll be wasted, but fortunately that doesn't
8874   // usually happen on valid code.
8875   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
8876   ExprResult RHSPtr = &RHSExpr;
8877   CastKind K;
8878 
8879   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
8880 }
8881 
8882 /// This helper function returns true if QT is a vector type that has element
8883 /// type ElementType.
8884 static bool isVector(QualType QT, QualType ElementType) {
8885   if (const VectorType *VT = QT->getAs<VectorType>())
8886     return VT->getElementType().getCanonicalType() == ElementType;
8887   return false;
8888 }
8889 
8890 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
8891 /// has code to accommodate several GCC extensions when type checking
8892 /// pointers. Here are some objectionable examples that GCC considers warnings:
8893 ///
8894 ///  int a, *pint;
8895 ///  short *pshort;
8896 ///  struct foo *pfoo;
8897 ///
8898 ///  pint = pshort; // warning: assignment from incompatible pointer type
8899 ///  a = pint; // warning: assignment makes integer from pointer without a cast
8900 ///  pint = a; // warning: assignment makes pointer from integer without a cast
8901 ///  pint = pfoo; // warning: assignment from incompatible pointer type
8902 ///
8903 /// As a result, the code for dealing with pointers is more complex than the
8904 /// C99 spec dictates.
8905 ///
8906 /// Sets 'Kind' for any result kind except Incompatible.
8907 Sema::AssignConvertType
8908 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
8909                                  CastKind &Kind, bool ConvertRHS) {
8910   QualType RHSType = RHS.get()->getType();
8911   QualType OrigLHSType = LHSType;
8912 
8913   // Get canonical types.  We're not formatting these types, just comparing
8914   // them.
8915   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
8916   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
8917 
8918   // Common case: no conversion required.
8919   if (LHSType == RHSType) {
8920     Kind = CK_NoOp;
8921     return Compatible;
8922   }
8923 
8924   // If we have an atomic type, try a non-atomic assignment, then just add an
8925   // atomic qualification step.
8926   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
8927     Sema::AssignConvertType result =
8928       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
8929     if (result != Compatible)
8930       return result;
8931     if (Kind != CK_NoOp && ConvertRHS)
8932       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
8933     Kind = CK_NonAtomicToAtomic;
8934     return Compatible;
8935   }
8936 
8937   // If the left-hand side is a reference type, then we are in a
8938   // (rare!) case where we've allowed the use of references in C,
8939   // e.g., as a parameter type in a built-in function. In this case,
8940   // just make sure that the type referenced is compatible with the
8941   // right-hand side type. The caller is responsible for adjusting
8942   // LHSType so that the resulting expression does not have reference
8943   // type.
8944   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
8945     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
8946       Kind = CK_LValueBitCast;
8947       return Compatible;
8948     }
8949     return Incompatible;
8950   }
8951 
8952   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
8953   // to the same ExtVector type.
8954   if (LHSType->isExtVectorType()) {
8955     if (RHSType->isExtVectorType())
8956       return Incompatible;
8957     if (RHSType->isArithmeticType()) {
8958       // CK_VectorSplat does T -> vector T, so first cast to the element type.
8959       if (ConvertRHS)
8960         RHS = prepareVectorSplat(LHSType, RHS.get());
8961       Kind = CK_VectorSplat;
8962       return Compatible;
8963     }
8964   }
8965 
8966   // Conversions to or from vector type.
8967   if (LHSType->isVectorType() || RHSType->isVectorType()) {
8968     if (LHSType->isVectorType() && RHSType->isVectorType()) {
8969       // Allow assignments of an AltiVec vector type to an equivalent GCC
8970       // vector type and vice versa
8971       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
8972         Kind = CK_BitCast;
8973         return Compatible;
8974       }
8975 
8976       // If we are allowing lax vector conversions, and LHS and RHS are both
8977       // vectors, the total size only needs to be the same. This is a bitcast;
8978       // no bits are changed but the result type is different.
8979       if (isLaxVectorConversion(RHSType, LHSType)) {
8980         Kind = CK_BitCast;
8981         return IncompatibleVectors;
8982       }
8983     }
8984 
8985     // When the RHS comes from another lax conversion (e.g. binops between
8986     // scalars and vectors) the result is canonicalized as a vector. When the
8987     // LHS is also a vector, the lax is allowed by the condition above. Handle
8988     // the case where LHS is a scalar.
8989     if (LHSType->isScalarType()) {
8990       const VectorType *VecType = RHSType->getAs<VectorType>();
8991       if (VecType && VecType->getNumElements() == 1 &&
8992           isLaxVectorConversion(RHSType, LHSType)) {
8993         ExprResult *VecExpr = &RHS;
8994         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
8995         Kind = CK_BitCast;
8996         return Compatible;
8997       }
8998     }
8999 
9000     return Incompatible;
9001   }
9002 
9003   // Diagnose attempts to convert between __float128 and long double where
9004   // such conversions currently can't be handled.
9005   if (unsupportedTypeConversion(*this, LHSType, RHSType))
9006     return Incompatible;
9007 
9008   // Disallow assigning a _Complex to a real type in C++ mode since it simply
9009   // discards the imaginary part.
9010   if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9011       !LHSType->getAs<ComplexType>())
9012     return Incompatible;
9013 
9014   // Arithmetic conversions.
9015   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9016       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9017     if (ConvertRHS)
9018       Kind = PrepareScalarCast(RHS, LHSType);
9019     return Compatible;
9020   }
9021 
9022   // Conversions to normal pointers.
9023   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
9024     // U* -> T*
9025     if (isa<PointerType>(RHSType)) {
9026       LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9027       LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9028       if (AddrSpaceL != AddrSpaceR)
9029         Kind = CK_AddressSpaceConversion;
9030       else if (Context.hasCvrSimilarType(RHSType, LHSType))
9031         Kind = CK_NoOp;
9032       else
9033         Kind = CK_BitCast;
9034       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
9035     }
9036 
9037     // int -> T*
9038     if (RHSType->isIntegerType()) {
9039       Kind = CK_IntegralToPointer; // FIXME: null?
9040       return IntToPointer;
9041     }
9042 
9043     // C pointers are not compatible with ObjC object pointers,
9044     // with two exceptions:
9045     if (isa<ObjCObjectPointerType>(RHSType)) {
9046       //  - conversions to void*
9047       if (LHSPointer->getPointeeType()->isVoidType()) {
9048         Kind = CK_BitCast;
9049         return Compatible;
9050       }
9051 
9052       //  - conversions from 'Class' to the redefinition type
9053       if (RHSType->isObjCClassType() &&
9054           Context.hasSameType(LHSType,
9055                               Context.getObjCClassRedefinitionType())) {
9056         Kind = CK_BitCast;
9057         return Compatible;
9058       }
9059 
9060       Kind = CK_BitCast;
9061       return IncompatiblePointer;
9062     }
9063 
9064     // U^ -> void*
9065     if (RHSType->getAs<BlockPointerType>()) {
9066       if (LHSPointer->getPointeeType()->isVoidType()) {
9067         LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9068         LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9069                                 ->getPointeeType()
9070                                 .getAddressSpace();
9071         Kind =
9072             AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9073         return Compatible;
9074       }
9075     }
9076 
9077     return Incompatible;
9078   }
9079 
9080   // Conversions to block pointers.
9081   if (isa<BlockPointerType>(LHSType)) {
9082     // U^ -> T^
9083     if (RHSType->isBlockPointerType()) {
9084       LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9085                               ->getPointeeType()
9086                               .getAddressSpace();
9087       LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9088                               ->getPointeeType()
9089                               .getAddressSpace();
9090       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9091       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9092     }
9093 
9094     // int or null -> T^
9095     if (RHSType->isIntegerType()) {
9096       Kind = CK_IntegralToPointer; // FIXME: null
9097       return IntToBlockPointer;
9098     }
9099 
9100     // id -> T^
9101     if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9102       Kind = CK_AnyPointerToBlockPointerCast;
9103       return Compatible;
9104     }
9105 
9106     // void* -> T^
9107     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9108       if (RHSPT->getPointeeType()->isVoidType()) {
9109         Kind = CK_AnyPointerToBlockPointerCast;
9110         return Compatible;
9111       }
9112 
9113     return Incompatible;
9114   }
9115 
9116   // Conversions to Objective-C pointers.
9117   if (isa<ObjCObjectPointerType>(LHSType)) {
9118     // A* -> B*
9119     if (RHSType->isObjCObjectPointerType()) {
9120       Kind = CK_BitCast;
9121       Sema::AssignConvertType result =
9122         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
9123       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9124           result == Compatible &&
9125           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
9126         result = IncompatibleObjCWeakRef;
9127       return result;
9128     }
9129 
9130     // int or null -> A*
9131     if (RHSType->isIntegerType()) {
9132       Kind = CK_IntegralToPointer; // FIXME: null
9133       return IntToPointer;
9134     }
9135 
9136     // In general, C pointers are not compatible with ObjC object pointers,
9137     // with two exceptions:
9138     if (isa<PointerType>(RHSType)) {
9139       Kind = CK_CPointerToObjCPointerCast;
9140 
9141       //  - conversions from 'void*'
9142       if (RHSType->isVoidPointerType()) {
9143         return Compatible;
9144       }
9145 
9146       //  - conversions to 'Class' from its redefinition type
9147       if (LHSType->isObjCClassType() &&
9148           Context.hasSameType(RHSType,
9149                               Context.getObjCClassRedefinitionType())) {
9150         return Compatible;
9151       }
9152 
9153       return IncompatiblePointer;
9154     }
9155 
9156     // Only under strict condition T^ is compatible with an Objective-C pointer.
9157     if (RHSType->isBlockPointerType() &&
9158         LHSType->isBlockCompatibleObjCPointerType(Context)) {
9159       if (ConvertRHS)
9160         maybeExtendBlockObject(RHS);
9161       Kind = CK_BlockPointerToObjCPointerCast;
9162       return Compatible;
9163     }
9164 
9165     return Incompatible;
9166   }
9167 
9168   // Conversions from pointers that are not covered by the above.
9169   if (isa<PointerType>(RHSType)) {
9170     // T* -> _Bool
9171     if (LHSType == Context.BoolTy) {
9172       Kind = CK_PointerToBoolean;
9173       return Compatible;
9174     }
9175 
9176     // T* -> int
9177     if (LHSType->isIntegerType()) {
9178       Kind = CK_PointerToIntegral;
9179       return PointerToInt;
9180     }
9181 
9182     return Incompatible;
9183   }
9184 
9185   // Conversions from Objective-C pointers that are not covered by the above.
9186   if (isa<ObjCObjectPointerType>(RHSType)) {
9187     // T* -> _Bool
9188     if (LHSType == Context.BoolTy) {
9189       Kind = CK_PointerToBoolean;
9190       return Compatible;
9191     }
9192 
9193     // T* -> int
9194     if (LHSType->isIntegerType()) {
9195       Kind = CK_PointerToIntegral;
9196       return PointerToInt;
9197     }
9198 
9199     return Incompatible;
9200   }
9201 
9202   // struct A -> struct B
9203   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
9204     if (Context.typesAreCompatible(LHSType, RHSType)) {
9205       Kind = CK_NoOp;
9206       return Compatible;
9207     }
9208   }
9209 
9210   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9211     Kind = CK_IntToOCLSampler;
9212     return Compatible;
9213   }
9214 
9215   return Incompatible;
9216 }
9217 
9218 /// Constructs a transparent union from an expression that is
9219 /// used to initialize the transparent union.
9220 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9221                                       ExprResult &EResult, QualType UnionType,
9222                                       FieldDecl *Field) {
9223   // Build an initializer list that designates the appropriate member
9224   // of the transparent union.
9225   Expr *E = EResult.get();
9226   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9227                                                    E, SourceLocation());
9228   Initializer->setType(UnionType);
9229   Initializer->setInitializedFieldInUnion(Field);
9230 
9231   // Build a compound literal constructing a value of the transparent
9232   // union type from this initializer list.
9233   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
9234   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9235                                         VK_RValue, Initializer, false);
9236 }
9237 
9238 Sema::AssignConvertType
9239 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9240                                                ExprResult &RHS) {
9241   QualType RHSType = RHS.get()->getType();
9242 
9243   // If the ArgType is a Union type, we want to handle a potential
9244   // transparent_union GCC extension.
9245   const RecordType *UT = ArgType->getAsUnionType();
9246   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9247     return Incompatible;
9248 
9249   // The field to initialize within the transparent union.
9250   RecordDecl *UD = UT->getDecl();
9251   FieldDecl *InitField = nullptr;
9252   // It's compatible if the expression matches any of the fields.
9253   for (auto *it : UD->fields()) {
9254     if (it->getType()->isPointerType()) {
9255       // If the transparent union contains a pointer type, we allow:
9256       // 1) void pointer
9257       // 2) null pointer constant
9258       if (RHSType->isPointerType())
9259         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9260           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
9261           InitField = it;
9262           break;
9263         }
9264 
9265       if (RHS.get()->isNullPointerConstant(Context,
9266                                            Expr::NPC_ValueDependentIsNull)) {
9267         RHS = ImpCastExprToType(RHS.get(), it->getType(),
9268                                 CK_NullToPointer);
9269         InitField = it;
9270         break;
9271       }
9272     }
9273 
9274     CastKind Kind;
9275     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
9276           == Compatible) {
9277       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
9278       InitField = it;
9279       break;
9280     }
9281   }
9282 
9283   if (!InitField)
9284     return Incompatible;
9285 
9286   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
9287   return Compatible;
9288 }
9289 
9290 Sema::AssignConvertType
9291 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
9292                                        bool Diagnose,
9293                                        bool DiagnoseCFAudited,
9294                                        bool ConvertRHS) {
9295   // We need to be able to tell the caller whether we diagnosed a problem, if
9296   // they ask us to issue diagnostics.
9297   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
9298 
9299   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9300   // we can't avoid *all* modifications at the moment, so we need some somewhere
9301   // to put the updated value.
9302   ExprResult LocalRHS = CallerRHS;
9303   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9304 
9305   if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9306     if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9307       if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
9308           !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
9309         Diag(RHS.get()->getExprLoc(),
9310              diag::warn_noderef_to_dereferenceable_pointer)
9311             << RHS.get()->getSourceRange();
9312       }
9313     }
9314   }
9315 
9316   if (getLangOpts().CPlusPlus) {
9317     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9318       // C++ 5.17p3: If the left operand is not of class type, the
9319       // expression is implicitly converted (C++ 4) to the
9320       // cv-unqualified type of the left operand.
9321       QualType RHSType = RHS.get()->getType();
9322       if (Diagnose) {
9323         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9324                                         AA_Assigning);
9325       } else {
9326         ImplicitConversionSequence ICS =
9327             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9328                                   /*SuppressUserConversions=*/false,
9329                                   AllowedExplicit::None,
9330                                   /*InOverloadResolution=*/false,
9331                                   /*CStyle=*/false,
9332                                   /*AllowObjCWritebackConversion=*/false);
9333         if (ICS.isFailure())
9334           return Incompatible;
9335         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9336                                         ICS, AA_Assigning);
9337       }
9338       if (RHS.isInvalid())
9339         return Incompatible;
9340       Sema::AssignConvertType result = Compatible;
9341       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9342           !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
9343         result = IncompatibleObjCWeakRef;
9344       return result;
9345     }
9346 
9347     // FIXME: Currently, we fall through and treat C++ classes like C
9348     // structures.
9349     // FIXME: We also fall through for atomics; not sure what should
9350     // happen there, though.
9351   } else if (RHS.get()->getType() == Context.OverloadTy) {
9352     // As a set of extensions to C, we support overloading on functions. These
9353     // functions need to be resolved here.
9354     DeclAccessPair DAP;
9355     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9356             RHS.get(), LHSType, /*Complain=*/false, DAP))
9357       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
9358     else
9359       return Incompatible;
9360   }
9361 
9362   // C99 6.5.16.1p1: the left operand is a pointer and the right is
9363   // a null pointer constant.
9364   if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
9365        LHSType->isBlockPointerType()) &&
9366       RHS.get()->isNullPointerConstant(Context,
9367                                        Expr::NPC_ValueDependentIsNull)) {
9368     if (Diagnose || ConvertRHS) {
9369       CastKind Kind;
9370       CXXCastPath Path;
9371       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
9372                              /*IgnoreBaseAccess=*/false, Diagnose);
9373       if (ConvertRHS)
9374         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
9375     }
9376     return Compatible;
9377   }
9378 
9379   // OpenCL queue_t type assignment.
9380   if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
9381                                  Context, Expr::NPC_ValueDependentIsNull)) {
9382     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
9383     return Compatible;
9384   }
9385 
9386   // This check seems unnatural, however it is necessary to ensure the proper
9387   // conversion of functions/arrays. If the conversion were done for all
9388   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
9389   // expressions that suppress this implicit conversion (&, sizeof).
9390   //
9391   // Suppress this for references: C++ 8.5.3p5.
9392   if (!LHSType->isReferenceType()) {
9393     // FIXME: We potentially allocate here even if ConvertRHS is false.
9394     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
9395     if (RHS.isInvalid())
9396       return Incompatible;
9397   }
9398   CastKind Kind;
9399   Sema::AssignConvertType result =
9400     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
9401 
9402   // C99 6.5.16.1p2: The value of the right operand is converted to the
9403   // type of the assignment expression.
9404   // CheckAssignmentConstraints allows the left-hand side to be a reference,
9405   // so that we can use references in built-in functions even in C.
9406   // The getNonReferenceType() call makes sure that the resulting expression
9407   // does not have reference type.
9408   if (result != Incompatible && RHS.get()->getType() != LHSType) {
9409     QualType Ty = LHSType.getNonLValueExprType(Context);
9410     Expr *E = RHS.get();
9411 
9412     // Check for various Objective-C errors. If we are not reporting
9413     // diagnostics and just checking for errors, e.g., during overload
9414     // resolution, return Incompatible to indicate the failure.
9415     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9416         CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
9417                             Diagnose, DiagnoseCFAudited) != ACR_okay) {
9418       if (!Diagnose)
9419         return Incompatible;
9420     }
9421     if (getLangOpts().ObjC &&
9422         (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
9423                                            E->getType(), E, Diagnose) ||
9424          CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
9425       if (!Diagnose)
9426         return Incompatible;
9427       // Replace the expression with a corrected version and continue so we
9428       // can find further errors.
9429       RHS = E;
9430       return Compatible;
9431     }
9432 
9433     if (ConvertRHS)
9434       RHS = ImpCastExprToType(E, Ty, Kind);
9435   }
9436 
9437   return result;
9438 }
9439 
9440 namespace {
9441 /// The original operand to an operator, prior to the application of the usual
9442 /// arithmetic conversions and converting the arguments of a builtin operator
9443 /// candidate.
9444 struct OriginalOperand {
9445   explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
9446     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
9447       Op = MTE->getSubExpr();
9448     if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
9449       Op = BTE->getSubExpr();
9450     if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
9451       Orig = ICE->getSubExprAsWritten();
9452       Conversion = ICE->getConversionFunction();
9453     }
9454   }
9455 
9456   QualType getType() const { return Orig->getType(); }
9457 
9458   Expr *Orig;
9459   NamedDecl *Conversion;
9460 };
9461 }
9462 
9463 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
9464                                ExprResult &RHS) {
9465   OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
9466 
9467   Diag(Loc, diag::err_typecheck_invalid_operands)
9468     << OrigLHS.getType() << OrigRHS.getType()
9469     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9470 
9471   // If a user-defined conversion was applied to either of the operands prior
9472   // to applying the built-in operator rules, tell the user about it.
9473   if (OrigLHS.Conversion) {
9474     Diag(OrigLHS.Conversion->getLocation(),
9475          diag::note_typecheck_invalid_operands_converted)
9476       << 0 << LHS.get()->getType();
9477   }
9478   if (OrigRHS.Conversion) {
9479     Diag(OrigRHS.Conversion->getLocation(),
9480          diag::note_typecheck_invalid_operands_converted)
9481       << 1 << RHS.get()->getType();
9482   }
9483 
9484   return QualType();
9485 }
9486 
9487 // Diagnose cases where a scalar was implicitly converted to a vector and
9488 // diagnose the underlying types. Otherwise, diagnose the error
9489 // as invalid vector logical operands for non-C++ cases.
9490 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
9491                                             ExprResult &RHS) {
9492   QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
9493   QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
9494 
9495   bool LHSNatVec = LHSType->isVectorType();
9496   bool RHSNatVec = RHSType->isVectorType();
9497 
9498   if (!(LHSNatVec && RHSNatVec)) {
9499     Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
9500     Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
9501     Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9502         << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
9503         << Vector->getSourceRange();
9504     return QualType();
9505   }
9506 
9507   Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9508       << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
9509       << RHS.get()->getSourceRange();
9510 
9511   return QualType();
9512 }
9513 
9514 /// Try to convert a value of non-vector type to a vector type by converting
9515 /// the type to the element type of the vector and then performing a splat.
9516 /// If the language is OpenCL, we only use conversions that promote scalar
9517 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
9518 /// for float->int.
9519 ///
9520 /// OpenCL V2.0 6.2.6.p2:
9521 /// An error shall occur if any scalar operand type has greater rank
9522 /// than the type of the vector element.
9523 ///
9524 /// \param scalar - if non-null, actually perform the conversions
9525 /// \return true if the operation fails (but without diagnosing the failure)
9526 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
9527                                      QualType scalarTy,
9528                                      QualType vectorEltTy,
9529                                      QualType vectorTy,
9530                                      unsigned &DiagID) {
9531   // The conversion to apply to the scalar before splatting it,
9532   // if necessary.
9533   CastKind scalarCast = CK_NoOp;
9534 
9535   if (vectorEltTy->isIntegralType(S.Context)) {
9536     if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
9537         (scalarTy->isIntegerType() &&
9538          S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
9539       DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9540       return true;
9541     }
9542     if (!scalarTy->isIntegralType(S.Context))
9543       return true;
9544     scalarCast = CK_IntegralCast;
9545   } else if (vectorEltTy->isRealFloatingType()) {
9546     if (scalarTy->isRealFloatingType()) {
9547       if (S.getLangOpts().OpenCL &&
9548           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
9549         DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9550         return true;
9551       }
9552       scalarCast = CK_FloatingCast;
9553     }
9554     else if (scalarTy->isIntegralType(S.Context))
9555       scalarCast = CK_IntegralToFloating;
9556     else
9557       return true;
9558   } else {
9559     return true;
9560   }
9561 
9562   // Adjust scalar if desired.
9563   if (scalar) {
9564     if (scalarCast != CK_NoOp)
9565       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
9566     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
9567   }
9568   return false;
9569 }
9570 
9571 /// Convert vector E to a vector with the same number of elements but different
9572 /// element type.
9573 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
9574   const auto *VecTy = E->getType()->getAs<VectorType>();
9575   assert(VecTy && "Expression E must be a vector");
9576   QualType NewVecTy = S.Context.getVectorType(ElementType,
9577                                               VecTy->getNumElements(),
9578                                               VecTy->getVectorKind());
9579 
9580   // Look through the implicit cast. Return the subexpression if its type is
9581   // NewVecTy.
9582   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
9583     if (ICE->getSubExpr()->getType() == NewVecTy)
9584       return ICE->getSubExpr();
9585 
9586   auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
9587   return S.ImpCastExprToType(E, NewVecTy, Cast);
9588 }
9589 
9590 /// Test if a (constant) integer Int can be casted to another integer type
9591 /// IntTy without losing precision.
9592 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
9593                                       QualType OtherIntTy) {
9594   QualType IntTy = Int->get()->getType().getUnqualifiedType();
9595 
9596   // Reject cases where the value of the Int is unknown as that would
9597   // possibly cause truncation, but accept cases where the scalar can be
9598   // demoted without loss of precision.
9599   Expr::EvalResult EVResult;
9600   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9601   int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
9602   bool IntSigned = IntTy->hasSignedIntegerRepresentation();
9603   bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
9604 
9605   if (CstInt) {
9606     // If the scalar is constant and is of a higher order and has more active
9607     // bits that the vector element type, reject it.
9608     llvm::APSInt Result = EVResult.Val.getInt();
9609     unsigned NumBits = IntSigned
9610                            ? (Result.isNegative() ? Result.getMinSignedBits()
9611                                                   : Result.getActiveBits())
9612                            : Result.getActiveBits();
9613     if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
9614       return true;
9615 
9616     // If the signedness of the scalar type and the vector element type
9617     // differs and the number of bits is greater than that of the vector
9618     // element reject it.
9619     return (IntSigned != OtherIntSigned &&
9620             NumBits > S.Context.getIntWidth(OtherIntTy));
9621   }
9622 
9623   // Reject cases where the value of the scalar is not constant and it's
9624   // order is greater than that of the vector element type.
9625   return (Order < 0);
9626 }
9627 
9628 /// Test if a (constant) integer Int can be casted to floating point type
9629 /// FloatTy without losing precision.
9630 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
9631                                      QualType FloatTy) {
9632   QualType IntTy = Int->get()->getType().getUnqualifiedType();
9633 
9634   // Determine if the integer constant can be expressed as a floating point
9635   // number of the appropriate type.
9636   Expr::EvalResult EVResult;
9637   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9638 
9639   uint64_t Bits = 0;
9640   if (CstInt) {
9641     // Reject constants that would be truncated if they were converted to
9642     // the floating point type. Test by simple to/from conversion.
9643     // FIXME: Ideally the conversion to an APFloat and from an APFloat
9644     //        could be avoided if there was a convertFromAPInt method
9645     //        which could signal back if implicit truncation occurred.
9646     llvm::APSInt Result = EVResult.Val.getInt();
9647     llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
9648     Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
9649                            llvm::APFloat::rmTowardZero);
9650     llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
9651                              !IntTy->hasSignedIntegerRepresentation());
9652     bool Ignored = false;
9653     Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
9654                            &Ignored);
9655     if (Result != ConvertBack)
9656       return true;
9657   } else {
9658     // Reject types that cannot be fully encoded into the mantissa of
9659     // the float.
9660     Bits = S.Context.getTypeSize(IntTy);
9661     unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
9662         S.Context.getFloatTypeSemantics(FloatTy));
9663     if (Bits > FloatPrec)
9664       return true;
9665   }
9666 
9667   return false;
9668 }
9669 
9670 /// Attempt to convert and splat Scalar into a vector whose types matches
9671 /// Vector following GCC conversion rules. The rule is that implicit
9672 /// conversion can occur when Scalar can be casted to match Vector's element
9673 /// type without causing truncation of Scalar.
9674 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
9675                                         ExprResult *Vector) {
9676   QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
9677   QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
9678   const VectorType *VT = VectorTy->getAs<VectorType>();
9679 
9680   assert(!isa<ExtVectorType>(VT) &&
9681          "ExtVectorTypes should not be handled here!");
9682 
9683   QualType VectorEltTy = VT->getElementType();
9684 
9685   // Reject cases where the vector element type or the scalar element type are
9686   // not integral or floating point types.
9687   if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
9688     return true;
9689 
9690   // The conversion to apply to the scalar before splatting it,
9691   // if necessary.
9692   CastKind ScalarCast = CK_NoOp;
9693 
9694   // Accept cases where the vector elements are integers and the scalar is
9695   // an integer.
9696   // FIXME: Notionally if the scalar was a floating point value with a precise
9697   //        integral representation, we could cast it to an appropriate integer
9698   //        type and then perform the rest of the checks here. GCC will perform
9699   //        this conversion in some cases as determined by the input language.
9700   //        We should accept it on a language independent basis.
9701   if (VectorEltTy->isIntegralType(S.Context) &&
9702       ScalarTy->isIntegralType(S.Context) &&
9703       S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
9704 
9705     if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
9706       return true;
9707 
9708     ScalarCast = CK_IntegralCast;
9709   } else if (VectorEltTy->isIntegralType(S.Context) &&
9710              ScalarTy->isRealFloatingType()) {
9711     if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
9712       ScalarCast = CK_FloatingToIntegral;
9713     else
9714       return true;
9715   } else if (VectorEltTy->isRealFloatingType()) {
9716     if (ScalarTy->isRealFloatingType()) {
9717 
9718       // Reject cases where the scalar type is not a constant and has a higher
9719       // Order than the vector element type.
9720       llvm::APFloat Result(0.0);
9721 
9722       // Determine whether this is a constant scalar. In the event that the
9723       // value is dependent (and thus cannot be evaluated by the constant
9724       // evaluator), skip the evaluation. This will then diagnose once the
9725       // expression is instantiated.
9726       bool CstScalar = Scalar->get()->isValueDependent() ||
9727                        Scalar->get()->EvaluateAsFloat(Result, S.Context);
9728       int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
9729       if (!CstScalar && Order < 0)
9730         return true;
9731 
9732       // If the scalar cannot be safely casted to the vector element type,
9733       // reject it.
9734       if (CstScalar) {
9735         bool Truncated = false;
9736         Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
9737                        llvm::APFloat::rmNearestTiesToEven, &Truncated);
9738         if (Truncated)
9739           return true;
9740       }
9741 
9742       ScalarCast = CK_FloatingCast;
9743     } else if (ScalarTy->isIntegralType(S.Context)) {
9744       if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
9745         return true;
9746 
9747       ScalarCast = CK_IntegralToFloating;
9748     } else
9749       return true;
9750   } else if (ScalarTy->isEnumeralType())
9751     return true;
9752 
9753   // Adjust scalar if desired.
9754   if (Scalar) {
9755     if (ScalarCast != CK_NoOp)
9756       *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
9757     *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
9758   }
9759   return false;
9760 }
9761 
9762 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
9763                                    SourceLocation Loc, bool IsCompAssign,
9764                                    bool AllowBothBool,
9765                                    bool AllowBoolConversions) {
9766   if (!IsCompAssign) {
9767     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
9768     if (LHS.isInvalid())
9769       return QualType();
9770   }
9771   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
9772   if (RHS.isInvalid())
9773     return QualType();
9774 
9775   // For conversion purposes, we ignore any qualifiers.
9776   // For example, "const float" and "float" are equivalent.
9777   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
9778   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
9779 
9780   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
9781   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
9782   assert(LHSVecType || RHSVecType);
9783 
9784   // AltiVec-style "vector bool op vector bool" combinations are allowed
9785   // for some operators but not others.
9786   if (!AllowBothBool &&
9787       LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
9788       RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
9789     return InvalidOperands(Loc, LHS, RHS);
9790 
9791   // If the vector types are identical, return.
9792   if (Context.hasSameType(LHSType, RHSType))
9793     return LHSType;
9794 
9795   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
9796   if (LHSVecType && RHSVecType &&
9797       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9798     if (isa<ExtVectorType>(LHSVecType)) {
9799       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9800       return LHSType;
9801     }
9802 
9803     if (!IsCompAssign)
9804       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
9805     return RHSType;
9806   }
9807 
9808   // AllowBoolConversions says that bool and non-bool AltiVec vectors
9809   // can be mixed, with the result being the non-bool type.  The non-bool
9810   // operand must have integer element type.
9811   if (AllowBoolConversions && LHSVecType && RHSVecType &&
9812       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
9813       (Context.getTypeSize(LHSVecType->getElementType()) ==
9814        Context.getTypeSize(RHSVecType->getElementType()))) {
9815     if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
9816         LHSVecType->getElementType()->isIntegerType() &&
9817         RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
9818       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9819       return LHSType;
9820     }
9821     if (!IsCompAssign &&
9822         LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
9823         RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
9824         RHSVecType->getElementType()->isIntegerType()) {
9825       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
9826       return RHSType;
9827     }
9828   }
9829 
9830   // If there's a vector type and a scalar, try to convert the scalar to
9831   // the vector element type and splat.
9832   unsigned DiagID = diag::err_typecheck_vector_not_convertable;
9833   if (!RHSVecType) {
9834     if (isa<ExtVectorType>(LHSVecType)) {
9835       if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
9836                                     LHSVecType->getElementType(), LHSType,
9837                                     DiagID))
9838         return LHSType;
9839     } else {
9840       if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
9841         return LHSType;
9842     }
9843   }
9844   if (!LHSVecType) {
9845     if (isa<ExtVectorType>(RHSVecType)) {
9846       if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
9847                                     LHSType, RHSVecType->getElementType(),
9848                                     RHSType, DiagID))
9849         return RHSType;
9850     } else {
9851       if (LHS.get()->getValueKind() == VK_LValue ||
9852           !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
9853         return RHSType;
9854     }
9855   }
9856 
9857   // FIXME: The code below also handles conversion between vectors and
9858   // non-scalars, we should break this down into fine grained specific checks
9859   // and emit proper diagnostics.
9860   QualType VecType = LHSVecType ? LHSType : RHSType;
9861   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
9862   QualType OtherType = LHSVecType ? RHSType : LHSType;
9863   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
9864   if (isLaxVectorConversion(OtherType, VecType)) {
9865     // If we're allowing lax vector conversions, only the total (data) size
9866     // needs to be the same. For non compound assignment, if one of the types is
9867     // scalar, the result is always the vector type.
9868     if (!IsCompAssign) {
9869       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
9870       return VecType;
9871     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
9872     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
9873     // type. Note that this is already done by non-compound assignments in
9874     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
9875     // <1 x T> -> T. The result is also a vector type.
9876     } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
9877                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
9878       ExprResult *RHSExpr = &RHS;
9879       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
9880       return VecType;
9881     }
9882   }
9883 
9884   // Okay, the expression is invalid.
9885 
9886   // If there's a non-vector, non-real operand, diagnose that.
9887   if ((!RHSVecType && !RHSType->isRealType()) ||
9888       (!LHSVecType && !LHSType->isRealType())) {
9889     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
9890       << LHSType << RHSType
9891       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9892     return QualType();
9893   }
9894 
9895   // OpenCL V1.1 6.2.6.p1:
9896   // If the operands are of more than one vector type, then an error shall
9897   // occur. Implicit conversions between vector types are not permitted, per
9898   // section 6.2.1.
9899   if (getLangOpts().OpenCL &&
9900       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
9901       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
9902     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
9903                                                            << RHSType;
9904     return QualType();
9905   }
9906 
9907 
9908   // If there is a vector type that is not a ExtVector and a scalar, we reach
9909   // this point if scalar could not be converted to the vector's element type
9910   // without truncation.
9911   if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
9912       (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
9913     QualType Scalar = LHSVecType ? RHSType : LHSType;
9914     QualType Vector = LHSVecType ? LHSType : RHSType;
9915     unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
9916     Diag(Loc,
9917          diag::err_typecheck_vector_not_convertable_implict_truncation)
9918         << ScalarOrVector << Scalar << Vector;
9919 
9920     return QualType();
9921   }
9922 
9923   // Otherwise, use the generic diagnostic.
9924   Diag(Loc, DiagID)
9925     << LHSType << RHSType
9926     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9927   return QualType();
9928 }
9929 
9930 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
9931 // expression.  These are mainly cases where the null pointer is used as an
9932 // integer instead of a pointer.
9933 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
9934                                 SourceLocation Loc, bool IsCompare) {
9935   // The canonical way to check for a GNU null is with isNullPointerConstant,
9936   // but we use a bit of a hack here for speed; this is a relatively
9937   // hot path, and isNullPointerConstant is slow.
9938   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
9939   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
9940 
9941   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
9942 
9943   // Avoid analyzing cases where the result will either be invalid (and
9944   // diagnosed as such) or entirely valid and not something to warn about.
9945   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
9946       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
9947     return;
9948 
9949   // Comparison operations would not make sense with a null pointer no matter
9950   // what the other expression is.
9951   if (!IsCompare) {
9952     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
9953         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
9954         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
9955     return;
9956   }
9957 
9958   // The rest of the operations only make sense with a null pointer
9959   // if the other expression is a pointer.
9960   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
9961       NonNullType->canDecayToPointerType())
9962     return;
9963 
9964   S.Diag(Loc, diag::warn_null_in_comparison_operation)
9965       << LHSNull /* LHS is NULL */ << NonNullType
9966       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9967 }
9968 
9969 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
9970                                           SourceLocation Loc) {
9971   const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
9972   const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
9973   if (!LUE || !RUE)
9974     return;
9975   if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
9976       RUE->getKind() != UETT_SizeOf)
9977     return;
9978 
9979   const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
9980   QualType LHSTy = LHSArg->getType();
9981   QualType RHSTy;
9982 
9983   if (RUE->isArgumentType())
9984     RHSTy = RUE->getArgumentType();
9985   else
9986     RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
9987 
9988   if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
9989     if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
9990       return;
9991 
9992     S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
9993     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
9994       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
9995         S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
9996             << LHSArgDecl;
9997     }
9998   } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
9999     QualType ArrayElemTy = ArrayTy->getElementType();
10000     if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
10001         ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10002         ArrayElemTy->isCharType() ||
10003         S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
10004       return;
10005     S.Diag(Loc, diag::warn_division_sizeof_array)
10006         << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10007     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10008       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10009         S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
10010             << LHSArgDecl;
10011     }
10012 
10013     S.Diag(Loc, diag::note_precedence_silence) << RHS;
10014   }
10015 }
10016 
10017 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10018                                                ExprResult &RHS,
10019                                                SourceLocation Loc, bool IsDiv) {
10020   // Check for division/remainder by zero.
10021   Expr::EvalResult RHSValue;
10022   if (!RHS.get()->isValueDependent() &&
10023       RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
10024       RHSValue.Val.getInt() == 0)
10025     S.DiagRuntimeBehavior(Loc, RHS.get(),
10026                           S.PDiag(diag::warn_remainder_division_by_zero)
10027                             << IsDiv << RHS.get()->getSourceRange());
10028 }
10029 
10030 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10031                                            SourceLocation Loc,
10032                                            bool IsCompAssign, bool IsDiv) {
10033   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10034 
10035   if (LHS.get()->getType()->isVectorType() ||
10036       RHS.get()->getType()->isVectorType())
10037     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10038                                /*AllowBothBool*/getLangOpts().AltiVec,
10039                                /*AllowBoolConversions*/false);
10040   if (!IsDiv && (LHS.get()->getType()->isConstantMatrixType() ||
10041                  RHS.get()->getType()->isConstantMatrixType()))
10042     return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10043 
10044   QualType compType = UsualArithmeticConversions(
10045       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10046   if (LHS.isInvalid() || RHS.isInvalid())
10047     return QualType();
10048 
10049 
10050   if (compType.isNull() || !compType->isArithmeticType())
10051     return InvalidOperands(Loc, LHS, RHS);
10052   if (IsDiv) {
10053     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
10054     DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
10055   }
10056   return compType;
10057 }
10058 
10059 QualType Sema::CheckRemainderOperands(
10060   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10061   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10062 
10063   if (LHS.get()->getType()->isVectorType() ||
10064       RHS.get()->getType()->isVectorType()) {
10065     if (LHS.get()->getType()->hasIntegerRepresentation() &&
10066         RHS.get()->getType()->hasIntegerRepresentation())
10067       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10068                                  /*AllowBothBool*/getLangOpts().AltiVec,
10069                                  /*AllowBoolConversions*/false);
10070     return InvalidOperands(Loc, LHS, RHS);
10071   }
10072 
10073   QualType compType = UsualArithmeticConversions(
10074       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10075   if (LHS.isInvalid() || RHS.isInvalid())
10076     return QualType();
10077 
10078   if (compType.isNull() || !compType->isIntegerType())
10079     return InvalidOperands(Loc, LHS, RHS);
10080   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
10081   return compType;
10082 }
10083 
10084 /// Diagnose invalid arithmetic on two void pointers.
10085 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10086                                                 Expr *LHSExpr, Expr *RHSExpr) {
10087   S.Diag(Loc, S.getLangOpts().CPlusPlus
10088                 ? diag::err_typecheck_pointer_arith_void_type
10089                 : diag::ext_gnu_void_ptr)
10090     << 1 /* two pointers */ << LHSExpr->getSourceRange()
10091                             << RHSExpr->getSourceRange();
10092 }
10093 
10094 /// Diagnose invalid arithmetic on a void pointer.
10095 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10096                                             Expr *Pointer) {
10097   S.Diag(Loc, S.getLangOpts().CPlusPlus
10098                 ? diag::err_typecheck_pointer_arith_void_type
10099                 : diag::ext_gnu_void_ptr)
10100     << 0 /* one pointer */ << Pointer->getSourceRange();
10101 }
10102 
10103 /// Diagnose invalid arithmetic on a null pointer.
10104 ///
10105 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10106 /// idiom, which we recognize as a GNU extension.
10107 ///
10108 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10109                                             Expr *Pointer, bool IsGNUIdiom) {
10110   if (IsGNUIdiom)
10111     S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
10112       << Pointer->getSourceRange();
10113   else
10114     S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
10115       << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10116 }
10117 
10118 /// Diagnose invalid arithmetic on two function pointers.
10119 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10120                                                     Expr *LHS, Expr *RHS) {
10121   assert(LHS->getType()->isAnyPointerType());
10122   assert(RHS->getType()->isAnyPointerType());
10123   S.Diag(Loc, S.getLangOpts().CPlusPlus
10124                 ? diag::err_typecheck_pointer_arith_function_type
10125                 : diag::ext_gnu_ptr_func_arith)
10126     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10127     // We only show the second type if it differs from the first.
10128     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
10129                                                    RHS->getType())
10130     << RHS->getType()->getPointeeType()
10131     << LHS->getSourceRange() << RHS->getSourceRange();
10132 }
10133 
10134 /// Diagnose invalid arithmetic on a function pointer.
10135 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10136                                                 Expr *Pointer) {
10137   assert(Pointer->getType()->isAnyPointerType());
10138   S.Diag(Loc, S.getLangOpts().CPlusPlus
10139                 ? diag::err_typecheck_pointer_arith_function_type
10140                 : diag::ext_gnu_ptr_func_arith)
10141     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10142     << 0 /* one pointer, so only one type */
10143     << Pointer->getSourceRange();
10144 }
10145 
10146 /// Emit error if Operand is incomplete pointer type
10147 ///
10148 /// \returns True if pointer has incomplete type
10149 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10150                                                  Expr *Operand) {
10151   QualType ResType = Operand->getType();
10152   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10153     ResType = ResAtomicType->getValueType();
10154 
10155   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
10156   QualType PointeeTy = ResType->getPointeeType();
10157   return S.RequireCompleteSizedType(
10158       Loc, PointeeTy,
10159       diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10160       Operand->getSourceRange());
10161 }
10162 
10163 /// Check the validity of an arithmetic pointer operand.
10164 ///
10165 /// If the operand has pointer type, this code will check for pointer types
10166 /// which are invalid in arithmetic operations. These will be diagnosed
10167 /// appropriately, including whether or not the use is supported as an
10168 /// extension.
10169 ///
10170 /// \returns True when the operand is valid to use (even if as an extension).
10171 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10172                                             Expr *Operand) {
10173   QualType ResType = Operand->getType();
10174   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10175     ResType = ResAtomicType->getValueType();
10176 
10177   if (!ResType->isAnyPointerType()) return true;
10178 
10179   QualType PointeeTy = ResType->getPointeeType();
10180   if (PointeeTy->isVoidType()) {
10181     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
10182     return !S.getLangOpts().CPlusPlus;
10183   }
10184   if (PointeeTy->isFunctionType()) {
10185     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
10186     return !S.getLangOpts().CPlusPlus;
10187   }
10188 
10189   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10190 
10191   return true;
10192 }
10193 
10194 /// Check the validity of a binary arithmetic operation w.r.t. pointer
10195 /// operands.
10196 ///
10197 /// This routine will diagnose any invalid arithmetic on pointer operands much
10198 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
10199 /// for emitting a single diagnostic even for operations where both LHS and RHS
10200 /// are (potentially problematic) pointers.
10201 ///
10202 /// \returns True when the operand is valid to use (even if as an extension).
10203 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
10204                                                 Expr *LHSExpr, Expr *RHSExpr) {
10205   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
10206   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
10207   if (!isLHSPointer && !isRHSPointer) return true;
10208 
10209   QualType LHSPointeeTy, RHSPointeeTy;
10210   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
10211   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
10212 
10213   // if both are pointers check if operation is valid wrt address spaces
10214   if (isLHSPointer && isRHSPointer) {
10215     if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
10216       S.Diag(Loc,
10217              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10218           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
10219           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10220       return false;
10221     }
10222   }
10223 
10224   // Check for arithmetic on pointers to incomplete types.
10225   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
10226   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
10227   if (isLHSVoidPtr || isRHSVoidPtr) {
10228     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
10229     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
10230     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
10231 
10232     return !S.getLangOpts().CPlusPlus;
10233   }
10234 
10235   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
10236   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
10237   if (isLHSFuncPtr || isRHSFuncPtr) {
10238     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
10239     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
10240                                                                 RHSExpr);
10241     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
10242 
10243     return !S.getLangOpts().CPlusPlus;
10244   }
10245 
10246   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
10247     return false;
10248   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
10249     return false;
10250 
10251   return true;
10252 }
10253 
10254 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
10255 /// literal.
10256 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
10257                                   Expr *LHSExpr, Expr *RHSExpr) {
10258   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
10259   Expr* IndexExpr = RHSExpr;
10260   if (!StrExpr) {
10261     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
10262     IndexExpr = LHSExpr;
10263   }
10264 
10265   bool IsStringPlusInt = StrExpr &&
10266       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
10267   if (!IsStringPlusInt || IndexExpr->isValueDependent())
10268     return;
10269 
10270   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10271   Self.Diag(OpLoc, diag::warn_string_plus_int)
10272       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
10273 
10274   // Only print a fixit for "str" + int, not for int + "str".
10275   if (IndexExpr == RHSExpr) {
10276     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10277     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10278         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10279         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10280         << FixItHint::CreateInsertion(EndLoc, "]");
10281   } else
10282     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10283 }
10284 
10285 /// Emit a warning when adding a char literal to a string.
10286 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
10287                                    Expr *LHSExpr, Expr *RHSExpr) {
10288   const Expr *StringRefExpr = LHSExpr;
10289   const CharacterLiteral *CharExpr =
10290       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
10291 
10292   if (!CharExpr) {
10293     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
10294     StringRefExpr = RHSExpr;
10295   }
10296 
10297   if (!CharExpr || !StringRefExpr)
10298     return;
10299 
10300   const QualType StringType = StringRefExpr->getType();
10301 
10302   // Return if not a PointerType.
10303   if (!StringType->isAnyPointerType())
10304     return;
10305 
10306   // Return if not a CharacterType.
10307   if (!StringType->getPointeeType()->isAnyCharacterType())
10308     return;
10309 
10310   ASTContext &Ctx = Self.getASTContext();
10311   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10312 
10313   const QualType CharType = CharExpr->getType();
10314   if (!CharType->isAnyCharacterType() &&
10315       CharType->isIntegerType() &&
10316       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
10317     Self.Diag(OpLoc, diag::warn_string_plus_char)
10318         << DiagRange << Ctx.CharTy;
10319   } else {
10320     Self.Diag(OpLoc, diag::warn_string_plus_char)
10321         << DiagRange << CharExpr->getType();
10322   }
10323 
10324   // Only print a fixit for str + char, not for char + str.
10325   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
10326     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10327     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10328         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10329         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10330         << FixItHint::CreateInsertion(EndLoc, "]");
10331   } else {
10332     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10333   }
10334 }
10335 
10336 /// Emit error when two pointers are incompatible.
10337 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
10338                                            Expr *LHSExpr, Expr *RHSExpr) {
10339   assert(LHSExpr->getType()->isAnyPointerType());
10340   assert(RHSExpr->getType()->isAnyPointerType());
10341   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
10342     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
10343     << RHSExpr->getSourceRange();
10344 }
10345 
10346 // C99 6.5.6
10347 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
10348                                      SourceLocation Loc, BinaryOperatorKind Opc,
10349                                      QualType* CompLHSTy) {
10350   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10351 
10352   if (LHS.get()->getType()->isVectorType() ||
10353       RHS.get()->getType()->isVectorType()) {
10354     QualType compType = CheckVectorOperands(
10355         LHS, RHS, Loc, CompLHSTy,
10356         /*AllowBothBool*/getLangOpts().AltiVec,
10357         /*AllowBoolConversions*/getLangOpts().ZVector);
10358     if (CompLHSTy) *CompLHSTy = compType;
10359     return compType;
10360   }
10361 
10362   if (LHS.get()->getType()->isConstantMatrixType() ||
10363       RHS.get()->getType()->isConstantMatrixType()) {
10364     return CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10365   }
10366 
10367   QualType compType = UsualArithmeticConversions(
10368       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10369   if (LHS.isInvalid() || RHS.isInvalid())
10370     return QualType();
10371 
10372   // Diagnose "string literal" '+' int and string '+' "char literal".
10373   if (Opc == BO_Add) {
10374     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
10375     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
10376   }
10377 
10378   // handle the common case first (both operands are arithmetic).
10379   if (!compType.isNull() && compType->isArithmeticType()) {
10380     if (CompLHSTy) *CompLHSTy = compType;
10381     return compType;
10382   }
10383 
10384   // Type-checking.  Ultimately the pointer's going to be in PExp;
10385   // note that we bias towards the LHS being the pointer.
10386   Expr *PExp = LHS.get(), *IExp = RHS.get();
10387 
10388   bool isObjCPointer;
10389   if (PExp->getType()->isPointerType()) {
10390     isObjCPointer = false;
10391   } else if (PExp->getType()->isObjCObjectPointerType()) {
10392     isObjCPointer = true;
10393   } else {
10394     std::swap(PExp, IExp);
10395     if (PExp->getType()->isPointerType()) {
10396       isObjCPointer = false;
10397     } else if (PExp->getType()->isObjCObjectPointerType()) {
10398       isObjCPointer = true;
10399     } else {
10400       return InvalidOperands(Loc, LHS, RHS);
10401     }
10402   }
10403   assert(PExp->getType()->isAnyPointerType());
10404 
10405   if (!IExp->getType()->isIntegerType())
10406     return InvalidOperands(Loc, LHS, RHS);
10407 
10408   // Adding to a null pointer results in undefined behavior.
10409   if (PExp->IgnoreParenCasts()->isNullPointerConstant(
10410           Context, Expr::NPC_ValueDependentIsNotNull)) {
10411     // In C++ adding zero to a null pointer is defined.
10412     Expr::EvalResult KnownVal;
10413     if (!getLangOpts().CPlusPlus ||
10414         (!IExp->isValueDependent() &&
10415          (!IExp->EvaluateAsInt(KnownVal, Context) ||
10416           KnownVal.Val.getInt() != 0))) {
10417       // Check the conditions to see if this is the 'p = nullptr + n' idiom.
10418       bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
10419           Context, BO_Add, PExp, IExp);
10420       diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
10421     }
10422   }
10423 
10424   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
10425     return QualType();
10426 
10427   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
10428     return QualType();
10429 
10430   // Check array bounds for pointer arithemtic
10431   CheckArrayAccess(PExp, IExp);
10432 
10433   if (CompLHSTy) {
10434     QualType LHSTy = Context.isPromotableBitField(LHS.get());
10435     if (LHSTy.isNull()) {
10436       LHSTy = LHS.get()->getType();
10437       if (LHSTy->isPromotableIntegerType())
10438         LHSTy = Context.getPromotedIntegerType(LHSTy);
10439     }
10440     *CompLHSTy = LHSTy;
10441   }
10442 
10443   return PExp->getType();
10444 }
10445 
10446 // C99 6.5.6
10447 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
10448                                         SourceLocation Loc,
10449                                         QualType* CompLHSTy) {
10450   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10451 
10452   if (LHS.get()->getType()->isVectorType() ||
10453       RHS.get()->getType()->isVectorType()) {
10454     QualType compType = CheckVectorOperands(
10455         LHS, RHS, Loc, CompLHSTy,
10456         /*AllowBothBool*/getLangOpts().AltiVec,
10457         /*AllowBoolConversions*/getLangOpts().ZVector);
10458     if (CompLHSTy) *CompLHSTy = compType;
10459     return compType;
10460   }
10461 
10462   if (LHS.get()->getType()->isConstantMatrixType() ||
10463       RHS.get()->getType()->isConstantMatrixType()) {
10464     return CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10465   }
10466 
10467   QualType compType = UsualArithmeticConversions(
10468       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10469   if (LHS.isInvalid() || RHS.isInvalid())
10470     return QualType();
10471 
10472   // Enforce type constraints: C99 6.5.6p3.
10473 
10474   // Handle the common case first (both operands are arithmetic).
10475   if (!compType.isNull() && compType->isArithmeticType()) {
10476     if (CompLHSTy) *CompLHSTy = compType;
10477     return compType;
10478   }
10479 
10480   // Either ptr - int   or   ptr - ptr.
10481   if (LHS.get()->getType()->isAnyPointerType()) {
10482     QualType lpointee = LHS.get()->getType()->getPointeeType();
10483 
10484     // Diagnose bad cases where we step over interface counts.
10485     if (LHS.get()->getType()->isObjCObjectPointerType() &&
10486         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
10487       return QualType();
10488 
10489     // The result type of a pointer-int computation is the pointer type.
10490     if (RHS.get()->getType()->isIntegerType()) {
10491       // Subtracting from a null pointer should produce a warning.
10492       // The last argument to the diagnose call says this doesn't match the
10493       // GNU int-to-pointer idiom.
10494       if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
10495                                            Expr::NPC_ValueDependentIsNotNull)) {
10496         // In C++ adding zero to a null pointer is defined.
10497         Expr::EvalResult KnownVal;
10498         if (!getLangOpts().CPlusPlus ||
10499             (!RHS.get()->isValueDependent() &&
10500              (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
10501               KnownVal.Val.getInt() != 0))) {
10502           diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
10503         }
10504       }
10505 
10506       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
10507         return QualType();
10508 
10509       // Check array bounds for pointer arithemtic
10510       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
10511                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
10512 
10513       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
10514       return LHS.get()->getType();
10515     }
10516 
10517     // Handle pointer-pointer subtractions.
10518     if (const PointerType *RHSPTy
10519           = RHS.get()->getType()->getAs<PointerType>()) {
10520       QualType rpointee = RHSPTy->getPointeeType();
10521 
10522       if (getLangOpts().CPlusPlus) {
10523         // Pointee types must be the same: C++ [expr.add]
10524         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
10525           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
10526         }
10527       } else {
10528         // Pointee types must be compatible C99 6.5.6p3
10529         if (!Context.typesAreCompatible(
10530                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
10531                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
10532           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
10533           return QualType();
10534         }
10535       }
10536 
10537       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
10538                                                LHS.get(), RHS.get()))
10539         return QualType();
10540 
10541       // FIXME: Add warnings for nullptr - ptr.
10542 
10543       // The pointee type may have zero size.  As an extension, a structure or
10544       // union may have zero size or an array may have zero length.  In this
10545       // case subtraction does not make sense.
10546       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
10547         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
10548         if (ElementSize.isZero()) {
10549           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
10550             << rpointee.getUnqualifiedType()
10551             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10552         }
10553       }
10554 
10555       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
10556       return Context.getPointerDiffType();
10557     }
10558   }
10559 
10560   return InvalidOperands(Loc, LHS, RHS);
10561 }
10562 
10563 static bool isScopedEnumerationType(QualType T) {
10564   if (const EnumType *ET = T->getAs<EnumType>())
10565     return ET->getDecl()->isScoped();
10566   return false;
10567 }
10568 
10569 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
10570                                    SourceLocation Loc, BinaryOperatorKind Opc,
10571                                    QualType LHSType) {
10572   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
10573   // so skip remaining warnings as we don't want to modify values within Sema.
10574   if (S.getLangOpts().OpenCL)
10575     return;
10576 
10577   // Check right/shifter operand
10578   Expr::EvalResult RHSResult;
10579   if (RHS.get()->isValueDependent() ||
10580       !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
10581     return;
10582   llvm::APSInt Right = RHSResult.Val.getInt();
10583 
10584   if (Right.isNegative()) {
10585     S.DiagRuntimeBehavior(Loc, RHS.get(),
10586                           S.PDiag(diag::warn_shift_negative)
10587                             << RHS.get()->getSourceRange());
10588     return;
10589   }
10590 
10591   QualType LHSExprType = LHS.get()->getType();
10592   uint64_t LeftSize = LHSExprType->isExtIntType()
10593                           ? S.Context.getIntWidth(LHSExprType)
10594                           : S.Context.getTypeSize(LHSExprType);
10595   llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
10596   if (Right.uge(LeftBits)) {
10597     S.DiagRuntimeBehavior(Loc, RHS.get(),
10598                           S.PDiag(diag::warn_shift_gt_typewidth)
10599                             << RHS.get()->getSourceRange());
10600     return;
10601   }
10602 
10603   if (Opc != BO_Shl)
10604     return;
10605 
10606   // When left shifting an ICE which is signed, we can check for overflow which
10607   // according to C++ standards prior to C++2a has undefined behavior
10608   // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
10609   // more than the maximum value representable in the result type, so never
10610   // warn for those. (FIXME: Unsigned left-shift overflow in a constant
10611   // expression is still probably a bug.)
10612   Expr::EvalResult LHSResult;
10613   if (LHS.get()->isValueDependent() ||
10614       LHSType->hasUnsignedIntegerRepresentation() ||
10615       !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
10616     return;
10617   llvm::APSInt Left = LHSResult.Val.getInt();
10618 
10619   // If LHS does not have a signed type and non-negative value
10620   // then, the behavior is undefined before C++2a. Warn about it.
10621   if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() &&
10622       !S.getLangOpts().CPlusPlus20) {
10623     S.DiagRuntimeBehavior(Loc, LHS.get(),
10624                           S.PDiag(diag::warn_shift_lhs_negative)
10625                             << LHS.get()->getSourceRange());
10626     return;
10627   }
10628 
10629   llvm::APInt ResultBits =
10630       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
10631   if (LeftBits.uge(ResultBits))
10632     return;
10633   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
10634   Result = Result.shl(Right);
10635 
10636   // Print the bit representation of the signed integer as an unsigned
10637   // hexadecimal number.
10638   SmallString<40> HexResult;
10639   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
10640 
10641   // If we are only missing a sign bit, this is less likely to result in actual
10642   // bugs -- if the result is cast back to an unsigned type, it will have the
10643   // expected value. Thus we place this behind a different warning that can be
10644   // turned off separately if needed.
10645   if (LeftBits == ResultBits - 1) {
10646     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
10647         << HexResult << LHSType
10648         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10649     return;
10650   }
10651 
10652   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
10653     << HexResult.str() << Result.getMinSignedBits() << LHSType
10654     << Left.getBitWidth() << LHS.get()->getSourceRange()
10655     << RHS.get()->getSourceRange();
10656 }
10657 
10658 /// Return the resulting type when a vector is shifted
10659 ///        by a scalar or vector shift amount.
10660 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
10661                                  SourceLocation Loc, bool IsCompAssign) {
10662   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
10663   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
10664       !LHS.get()->getType()->isVectorType()) {
10665     S.Diag(Loc, diag::err_shift_rhs_only_vector)
10666       << RHS.get()->getType() << LHS.get()->getType()
10667       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10668     return QualType();
10669   }
10670 
10671   if (!IsCompAssign) {
10672     LHS = S.UsualUnaryConversions(LHS.get());
10673     if (LHS.isInvalid()) return QualType();
10674   }
10675 
10676   RHS = S.UsualUnaryConversions(RHS.get());
10677   if (RHS.isInvalid()) return QualType();
10678 
10679   QualType LHSType = LHS.get()->getType();
10680   // Note that LHS might be a scalar because the routine calls not only in
10681   // OpenCL case.
10682   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
10683   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
10684 
10685   // Note that RHS might not be a vector.
10686   QualType RHSType = RHS.get()->getType();
10687   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
10688   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
10689 
10690   // The operands need to be integers.
10691   if (!LHSEleType->isIntegerType()) {
10692     S.Diag(Loc, diag::err_typecheck_expect_int)
10693       << LHS.get()->getType() << LHS.get()->getSourceRange();
10694     return QualType();
10695   }
10696 
10697   if (!RHSEleType->isIntegerType()) {
10698     S.Diag(Loc, diag::err_typecheck_expect_int)
10699       << RHS.get()->getType() << RHS.get()->getSourceRange();
10700     return QualType();
10701   }
10702 
10703   if (!LHSVecTy) {
10704     assert(RHSVecTy);
10705     if (IsCompAssign)
10706       return RHSType;
10707     if (LHSEleType != RHSEleType) {
10708       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
10709       LHSEleType = RHSEleType;
10710     }
10711     QualType VecTy =
10712         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
10713     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
10714     LHSType = VecTy;
10715   } else if (RHSVecTy) {
10716     // OpenCL v1.1 s6.3.j says that for vector types, the operators
10717     // are applied component-wise. So if RHS is a vector, then ensure
10718     // that the number of elements is the same as LHS...
10719     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
10720       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10721         << LHS.get()->getType() << RHS.get()->getType()
10722         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10723       return QualType();
10724     }
10725     if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
10726       const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
10727       const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
10728       if (LHSBT != RHSBT &&
10729           S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
10730         S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
10731             << LHS.get()->getType() << RHS.get()->getType()
10732             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10733       }
10734     }
10735   } else {
10736     // ...else expand RHS to match the number of elements in LHS.
10737     QualType VecTy =
10738       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
10739     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
10740   }
10741 
10742   return LHSType;
10743 }
10744 
10745 // C99 6.5.7
10746 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
10747                                   SourceLocation Loc, BinaryOperatorKind Opc,
10748                                   bool IsCompAssign) {
10749   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10750 
10751   // Vector shifts promote their scalar inputs to vector type.
10752   if (LHS.get()->getType()->isVectorType() ||
10753       RHS.get()->getType()->isVectorType()) {
10754     if (LangOpts.ZVector) {
10755       // The shift operators for the z vector extensions work basically
10756       // like general shifts, except that neither the LHS nor the RHS is
10757       // allowed to be a "vector bool".
10758       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
10759         if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
10760           return InvalidOperands(Loc, LHS, RHS);
10761       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
10762         if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
10763           return InvalidOperands(Loc, LHS, RHS);
10764     }
10765     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
10766   }
10767 
10768   // Shifts don't perform usual arithmetic conversions, they just do integer
10769   // promotions on each operand. C99 6.5.7p3
10770 
10771   // For the LHS, do usual unary conversions, but then reset them away
10772   // if this is a compound assignment.
10773   ExprResult OldLHS = LHS;
10774   LHS = UsualUnaryConversions(LHS.get());
10775   if (LHS.isInvalid())
10776     return QualType();
10777   QualType LHSType = LHS.get()->getType();
10778   if (IsCompAssign) LHS = OldLHS;
10779 
10780   // The RHS is simpler.
10781   RHS = UsualUnaryConversions(RHS.get());
10782   if (RHS.isInvalid())
10783     return QualType();
10784   QualType RHSType = RHS.get()->getType();
10785 
10786   // C99 6.5.7p2: Each of the operands shall have integer type.
10787   if (!LHSType->hasIntegerRepresentation() ||
10788       !RHSType->hasIntegerRepresentation())
10789     return InvalidOperands(Loc, LHS, RHS);
10790 
10791   // C++0x: Don't allow scoped enums. FIXME: Use something better than
10792   // hasIntegerRepresentation() above instead of this.
10793   if (isScopedEnumerationType(LHSType) ||
10794       isScopedEnumerationType(RHSType)) {
10795     return InvalidOperands(Loc, LHS, RHS);
10796   }
10797   // Sanity-check shift operands
10798   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
10799 
10800   // "The type of the result is that of the promoted left operand."
10801   return LHSType;
10802 }
10803 
10804 /// Diagnose bad pointer comparisons.
10805 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
10806                                               ExprResult &LHS, ExprResult &RHS,
10807                                               bool IsError) {
10808   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
10809                       : diag::ext_typecheck_comparison_of_distinct_pointers)
10810     << LHS.get()->getType() << RHS.get()->getType()
10811     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10812 }
10813 
10814 /// Returns false if the pointers are converted to a composite type,
10815 /// true otherwise.
10816 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
10817                                            ExprResult &LHS, ExprResult &RHS) {
10818   // C++ [expr.rel]p2:
10819   //   [...] Pointer conversions (4.10) and qualification
10820   //   conversions (4.4) are performed on pointer operands (or on
10821   //   a pointer operand and a null pointer constant) to bring
10822   //   them to their composite pointer type. [...]
10823   //
10824   // C++ [expr.eq]p1 uses the same notion for (in)equality
10825   // comparisons of pointers.
10826 
10827   QualType LHSType = LHS.get()->getType();
10828   QualType RHSType = RHS.get()->getType();
10829   assert(LHSType->isPointerType() || RHSType->isPointerType() ||
10830          LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
10831 
10832   QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
10833   if (T.isNull()) {
10834     if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
10835         (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
10836       diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
10837     else
10838       S.InvalidOperands(Loc, LHS, RHS);
10839     return true;
10840   }
10841 
10842   return false;
10843 }
10844 
10845 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
10846                                                     ExprResult &LHS,
10847                                                     ExprResult &RHS,
10848                                                     bool IsError) {
10849   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
10850                       : diag::ext_typecheck_comparison_of_fptr_to_void)
10851     << LHS.get()->getType() << RHS.get()->getType()
10852     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10853 }
10854 
10855 static bool isObjCObjectLiteral(ExprResult &E) {
10856   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
10857   case Stmt::ObjCArrayLiteralClass:
10858   case Stmt::ObjCDictionaryLiteralClass:
10859   case Stmt::ObjCStringLiteralClass:
10860   case Stmt::ObjCBoxedExprClass:
10861     return true;
10862   default:
10863     // Note that ObjCBoolLiteral is NOT an object literal!
10864     return false;
10865   }
10866 }
10867 
10868 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
10869   const ObjCObjectPointerType *Type =
10870     LHS->getType()->getAs<ObjCObjectPointerType>();
10871 
10872   // If this is not actually an Objective-C object, bail out.
10873   if (!Type)
10874     return false;
10875 
10876   // Get the LHS object's interface type.
10877   QualType InterfaceType = Type->getPointeeType();
10878 
10879   // If the RHS isn't an Objective-C object, bail out.
10880   if (!RHS->getType()->isObjCObjectPointerType())
10881     return false;
10882 
10883   // Try to find the -isEqual: method.
10884   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
10885   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
10886                                                       InterfaceType,
10887                                                       /*IsInstance=*/true);
10888   if (!Method) {
10889     if (Type->isObjCIdType()) {
10890       // For 'id', just check the global pool.
10891       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
10892                                                   /*receiverId=*/true);
10893     } else {
10894       // Check protocols.
10895       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
10896                                              /*IsInstance=*/true);
10897     }
10898   }
10899 
10900   if (!Method)
10901     return false;
10902 
10903   QualType T = Method->parameters()[0]->getType();
10904   if (!T->isObjCObjectPointerType())
10905     return false;
10906 
10907   QualType R = Method->getReturnType();
10908   if (!R->isScalarType())
10909     return false;
10910 
10911   return true;
10912 }
10913 
10914 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
10915   FromE = FromE->IgnoreParenImpCasts();
10916   switch (FromE->getStmtClass()) {
10917     default:
10918       break;
10919     case Stmt::ObjCStringLiteralClass:
10920       // "string literal"
10921       return LK_String;
10922     case Stmt::ObjCArrayLiteralClass:
10923       // "array literal"
10924       return LK_Array;
10925     case Stmt::ObjCDictionaryLiteralClass:
10926       // "dictionary literal"
10927       return LK_Dictionary;
10928     case Stmt::BlockExprClass:
10929       return LK_Block;
10930     case Stmt::ObjCBoxedExprClass: {
10931       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
10932       switch (Inner->getStmtClass()) {
10933         case Stmt::IntegerLiteralClass:
10934         case Stmt::FloatingLiteralClass:
10935         case Stmt::CharacterLiteralClass:
10936         case Stmt::ObjCBoolLiteralExprClass:
10937         case Stmt::CXXBoolLiteralExprClass:
10938           // "numeric literal"
10939           return LK_Numeric;
10940         case Stmt::ImplicitCastExprClass: {
10941           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
10942           // Boolean literals can be represented by implicit casts.
10943           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
10944             return LK_Numeric;
10945           break;
10946         }
10947         default:
10948           break;
10949       }
10950       return LK_Boxed;
10951     }
10952   }
10953   return LK_None;
10954 }
10955 
10956 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
10957                                           ExprResult &LHS, ExprResult &RHS,
10958                                           BinaryOperator::Opcode Opc){
10959   Expr *Literal;
10960   Expr *Other;
10961   if (isObjCObjectLiteral(LHS)) {
10962     Literal = LHS.get();
10963     Other = RHS.get();
10964   } else {
10965     Literal = RHS.get();
10966     Other = LHS.get();
10967   }
10968 
10969   // Don't warn on comparisons against nil.
10970   Other = Other->IgnoreParenCasts();
10971   if (Other->isNullPointerConstant(S.getASTContext(),
10972                                    Expr::NPC_ValueDependentIsNotNull))
10973     return;
10974 
10975   // This should be kept in sync with warn_objc_literal_comparison.
10976   // LK_String should always be after the other literals, since it has its own
10977   // warning flag.
10978   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
10979   assert(LiteralKind != Sema::LK_Block);
10980   if (LiteralKind == Sema::LK_None) {
10981     llvm_unreachable("Unknown Objective-C object literal kind");
10982   }
10983 
10984   if (LiteralKind == Sema::LK_String)
10985     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
10986       << Literal->getSourceRange();
10987   else
10988     S.Diag(Loc, diag::warn_objc_literal_comparison)
10989       << LiteralKind << Literal->getSourceRange();
10990 
10991   if (BinaryOperator::isEqualityOp(Opc) &&
10992       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
10993     SourceLocation Start = LHS.get()->getBeginLoc();
10994     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
10995     CharSourceRange OpRange =
10996       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
10997 
10998     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
10999       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
11000       << FixItHint::CreateReplacement(OpRange, " isEqual:")
11001       << FixItHint::CreateInsertion(End, "]");
11002   }
11003 }
11004 
11005 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
11006 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11007                                            ExprResult &RHS, SourceLocation Loc,
11008                                            BinaryOperatorKind Opc) {
11009   // Check that left hand side is !something.
11010   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
11011   if (!UO || UO->getOpcode() != UO_LNot) return;
11012 
11013   // Only check if the right hand side is non-bool arithmetic type.
11014   if (RHS.get()->isKnownToHaveBooleanValue()) return;
11015 
11016   // Make sure that the something in !something is not bool.
11017   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11018   if (SubExpr->isKnownToHaveBooleanValue()) return;
11019 
11020   // Emit warning.
11021   bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11022   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
11023       << Loc << IsBitwiseOp;
11024 
11025   // First note suggest !(x < y)
11026   SourceLocation FirstOpen = SubExpr->getBeginLoc();
11027   SourceLocation FirstClose = RHS.get()->getEndLoc();
11028   FirstClose = S.getLocForEndOfToken(FirstClose);
11029   if (FirstClose.isInvalid())
11030     FirstOpen = SourceLocation();
11031   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
11032       << IsBitwiseOp
11033       << FixItHint::CreateInsertion(FirstOpen, "(")
11034       << FixItHint::CreateInsertion(FirstClose, ")");
11035 
11036   // Second note suggests (!x) < y
11037   SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11038   SourceLocation SecondClose = LHS.get()->getEndLoc();
11039   SecondClose = S.getLocForEndOfToken(SecondClose);
11040   if (SecondClose.isInvalid())
11041     SecondOpen = SourceLocation();
11042   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
11043       << FixItHint::CreateInsertion(SecondOpen, "(")
11044       << FixItHint::CreateInsertion(SecondClose, ")");
11045 }
11046 
11047 // Returns true if E refers to a non-weak array.
11048 static bool checkForArray(const Expr *E) {
11049   const ValueDecl *D = nullptr;
11050   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
11051     D = DR->getDecl();
11052   } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
11053     if (Mem->isImplicitAccess())
11054       D = Mem->getMemberDecl();
11055   }
11056   if (!D)
11057     return false;
11058   return D->getType()->isArrayType() && !D->isWeak();
11059 }
11060 
11061 /// Diagnose some forms of syntactically-obvious tautological comparison.
11062 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
11063                                            Expr *LHS, Expr *RHS,
11064                                            BinaryOperatorKind Opc) {
11065   Expr *LHSStripped = LHS->IgnoreParenImpCasts();
11066   Expr *RHSStripped = RHS->IgnoreParenImpCasts();
11067 
11068   QualType LHSType = LHS->getType();
11069   QualType RHSType = RHS->getType();
11070   if (LHSType->hasFloatingRepresentation() ||
11071       (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
11072       S.inTemplateInstantiation())
11073     return;
11074 
11075   // Comparisons between two array types are ill-formed for operator<=>, so
11076   // we shouldn't emit any additional warnings about it.
11077   if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
11078     return;
11079 
11080   // For non-floating point types, check for self-comparisons of the form
11081   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
11082   // often indicate logic errors in the program.
11083   //
11084   // NOTE: Don't warn about comparison expressions resulting from macro
11085   // expansion. Also don't warn about comparisons which are only self
11086   // comparisons within a template instantiation. The warnings should catch
11087   // obvious cases in the definition of the template anyways. The idea is to
11088   // warn when the typed comparison operator will always evaluate to the same
11089   // result.
11090 
11091   // Used for indexing into %select in warn_comparison_always
11092   enum {
11093     AlwaysConstant,
11094     AlwaysTrue,
11095     AlwaysFalse,
11096     AlwaysEqual, // std::strong_ordering::equal from operator<=>
11097   };
11098 
11099   // C++2a [depr.array.comp]:
11100   //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
11101   //   operands of array type are deprecated.
11102   if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
11103       RHSStripped->getType()->isArrayType()) {
11104     S.Diag(Loc, diag::warn_depr_array_comparison)
11105         << LHS->getSourceRange() << RHS->getSourceRange()
11106         << LHSStripped->getType() << RHSStripped->getType();
11107     // Carry on to produce the tautological comparison warning, if this
11108     // expression is potentially-evaluated, we can resolve the array to a
11109     // non-weak declaration, and so on.
11110   }
11111 
11112   if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
11113     if (Expr::isSameComparisonOperand(LHS, RHS)) {
11114       unsigned Result;
11115       switch (Opc) {
11116       case BO_EQ:
11117       case BO_LE:
11118       case BO_GE:
11119         Result = AlwaysTrue;
11120         break;
11121       case BO_NE:
11122       case BO_LT:
11123       case BO_GT:
11124         Result = AlwaysFalse;
11125         break;
11126       case BO_Cmp:
11127         Result = AlwaysEqual;
11128         break;
11129       default:
11130         Result = AlwaysConstant;
11131         break;
11132       }
11133       S.DiagRuntimeBehavior(Loc, nullptr,
11134                             S.PDiag(diag::warn_comparison_always)
11135                                 << 0 /*self-comparison*/
11136                                 << Result);
11137     } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
11138       // What is it always going to evaluate to?
11139       unsigned Result;
11140       switch (Opc) {
11141       case BO_EQ: // e.g. array1 == array2
11142         Result = AlwaysFalse;
11143         break;
11144       case BO_NE: // e.g. array1 != array2
11145         Result = AlwaysTrue;
11146         break;
11147       default: // e.g. array1 <= array2
11148         // The best we can say is 'a constant'
11149         Result = AlwaysConstant;
11150         break;
11151       }
11152       S.DiagRuntimeBehavior(Loc, nullptr,
11153                             S.PDiag(diag::warn_comparison_always)
11154                                 << 1 /*array comparison*/
11155                                 << Result);
11156     }
11157   }
11158 
11159   if (isa<CastExpr>(LHSStripped))
11160     LHSStripped = LHSStripped->IgnoreParenCasts();
11161   if (isa<CastExpr>(RHSStripped))
11162     RHSStripped = RHSStripped->IgnoreParenCasts();
11163 
11164   // Warn about comparisons against a string constant (unless the other
11165   // operand is null); the user probably wants string comparison function.
11166   Expr *LiteralString = nullptr;
11167   Expr *LiteralStringStripped = nullptr;
11168   if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
11169       !RHSStripped->isNullPointerConstant(S.Context,
11170                                           Expr::NPC_ValueDependentIsNull)) {
11171     LiteralString = LHS;
11172     LiteralStringStripped = LHSStripped;
11173   } else if ((isa<StringLiteral>(RHSStripped) ||
11174               isa<ObjCEncodeExpr>(RHSStripped)) &&
11175              !LHSStripped->isNullPointerConstant(S.Context,
11176                                           Expr::NPC_ValueDependentIsNull)) {
11177     LiteralString = RHS;
11178     LiteralStringStripped = RHSStripped;
11179   }
11180 
11181   if (LiteralString) {
11182     S.DiagRuntimeBehavior(Loc, nullptr,
11183                           S.PDiag(diag::warn_stringcompare)
11184                               << isa<ObjCEncodeExpr>(LiteralStringStripped)
11185                               << LiteralString->getSourceRange());
11186   }
11187 }
11188 
11189 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
11190   switch (CK) {
11191   default: {
11192 #ifndef NDEBUG
11193     llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
11194                  << "\n";
11195 #endif
11196     llvm_unreachable("unhandled cast kind");
11197   }
11198   case CK_UserDefinedConversion:
11199     return ICK_Identity;
11200   case CK_LValueToRValue:
11201     return ICK_Lvalue_To_Rvalue;
11202   case CK_ArrayToPointerDecay:
11203     return ICK_Array_To_Pointer;
11204   case CK_FunctionToPointerDecay:
11205     return ICK_Function_To_Pointer;
11206   case CK_IntegralCast:
11207     return ICK_Integral_Conversion;
11208   case CK_FloatingCast:
11209     return ICK_Floating_Conversion;
11210   case CK_IntegralToFloating:
11211   case CK_FloatingToIntegral:
11212     return ICK_Floating_Integral;
11213   case CK_IntegralComplexCast:
11214   case CK_FloatingComplexCast:
11215   case CK_FloatingComplexToIntegralComplex:
11216   case CK_IntegralComplexToFloatingComplex:
11217     return ICK_Complex_Conversion;
11218   case CK_FloatingComplexToReal:
11219   case CK_FloatingRealToComplex:
11220   case CK_IntegralComplexToReal:
11221   case CK_IntegralRealToComplex:
11222     return ICK_Complex_Real;
11223   }
11224 }
11225 
11226 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
11227                                              QualType FromType,
11228                                              SourceLocation Loc) {
11229   // Check for a narrowing implicit conversion.
11230   StandardConversionSequence SCS;
11231   SCS.setAsIdentityConversion();
11232   SCS.setToType(0, FromType);
11233   SCS.setToType(1, ToType);
11234   if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
11235     SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
11236 
11237   APValue PreNarrowingValue;
11238   QualType PreNarrowingType;
11239   switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
11240                                PreNarrowingType,
11241                                /*IgnoreFloatToIntegralConversion*/ true)) {
11242   case NK_Dependent_Narrowing:
11243     // Implicit conversion to a narrower type, but the expression is
11244     // value-dependent so we can't tell whether it's actually narrowing.
11245   case NK_Not_Narrowing:
11246     return false;
11247 
11248   case NK_Constant_Narrowing:
11249     // Implicit conversion to a narrower type, and the value is not a constant
11250     // expression.
11251     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11252         << /*Constant*/ 1
11253         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
11254     return true;
11255 
11256   case NK_Variable_Narrowing:
11257     // Implicit conversion to a narrower type, and the value is not a constant
11258     // expression.
11259   case NK_Type_Narrowing:
11260     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11261         << /*Constant*/ 0 << FromType << ToType;
11262     // TODO: It's not a constant expression, but what if the user intended it
11263     // to be? Can we produce notes to help them figure out why it isn't?
11264     return true;
11265   }
11266   llvm_unreachable("unhandled case in switch");
11267 }
11268 
11269 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
11270                                                          ExprResult &LHS,
11271                                                          ExprResult &RHS,
11272                                                          SourceLocation Loc) {
11273   QualType LHSType = LHS.get()->getType();
11274   QualType RHSType = RHS.get()->getType();
11275   // Dig out the original argument type and expression before implicit casts
11276   // were applied. These are the types/expressions we need to check the
11277   // [expr.spaceship] requirements against.
11278   ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
11279   ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
11280   QualType LHSStrippedType = LHSStripped.get()->getType();
11281   QualType RHSStrippedType = RHSStripped.get()->getType();
11282 
11283   // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
11284   // other is not, the program is ill-formed.
11285   if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
11286     S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11287     return QualType();
11288   }
11289 
11290   // FIXME: Consider combining this with checkEnumArithmeticConversions.
11291   int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
11292                     RHSStrippedType->isEnumeralType();
11293   if (NumEnumArgs == 1) {
11294     bool LHSIsEnum = LHSStrippedType->isEnumeralType();
11295     QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
11296     if (OtherTy->hasFloatingRepresentation()) {
11297       S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11298       return QualType();
11299     }
11300   }
11301   if (NumEnumArgs == 2) {
11302     // C++2a [expr.spaceship]p5: If both operands have the same enumeration
11303     // type E, the operator yields the result of converting the operands
11304     // to the underlying type of E and applying <=> to the converted operands.
11305     if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
11306       S.InvalidOperands(Loc, LHS, RHS);
11307       return QualType();
11308     }
11309     QualType IntType =
11310         LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
11311     assert(IntType->isArithmeticType());
11312 
11313     // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
11314     // promote the boolean type, and all other promotable integer types, to
11315     // avoid this.
11316     if (IntType->isPromotableIntegerType())
11317       IntType = S.Context.getPromotedIntegerType(IntType);
11318 
11319     LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
11320     RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
11321     LHSType = RHSType = IntType;
11322   }
11323 
11324   // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
11325   // usual arithmetic conversions are applied to the operands.
11326   QualType Type =
11327       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11328   if (LHS.isInvalid() || RHS.isInvalid())
11329     return QualType();
11330   if (Type.isNull())
11331     return S.InvalidOperands(Loc, LHS, RHS);
11332 
11333   Optional<ComparisonCategoryType> CCT =
11334       getComparisonCategoryForBuiltinCmp(Type);
11335   if (!CCT)
11336     return S.InvalidOperands(Loc, LHS, RHS);
11337 
11338   bool HasNarrowing = checkThreeWayNarrowingConversion(
11339       S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
11340   HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
11341                                                    RHS.get()->getBeginLoc());
11342   if (HasNarrowing)
11343     return QualType();
11344 
11345   assert(!Type.isNull() && "composite type for <=> has not been set");
11346 
11347   return S.CheckComparisonCategoryType(
11348       *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
11349 }
11350 
11351 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
11352                                                  ExprResult &RHS,
11353                                                  SourceLocation Loc,
11354                                                  BinaryOperatorKind Opc) {
11355   if (Opc == BO_Cmp)
11356     return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
11357 
11358   // C99 6.5.8p3 / C99 6.5.9p4
11359   QualType Type =
11360       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11361   if (LHS.isInvalid() || RHS.isInvalid())
11362     return QualType();
11363   if (Type.isNull())
11364     return S.InvalidOperands(Loc, LHS, RHS);
11365   assert(Type->isArithmeticType() || Type->isEnumeralType());
11366 
11367   if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
11368     return S.InvalidOperands(Loc, LHS, RHS);
11369 
11370   // Check for comparisons of floating point operands using != and ==.
11371   if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc))
11372     S.CheckFloatComparison(Loc, LHS.get(), RHS.get());
11373 
11374   // The result of comparisons is 'bool' in C++, 'int' in C.
11375   return S.Context.getLogicalOperationType();
11376 }
11377 
11378 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
11379   if (!NullE.get()->getType()->isAnyPointerType())
11380     return;
11381   int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
11382   if (!E.get()->getType()->isAnyPointerType() &&
11383       E.get()->isNullPointerConstant(Context,
11384                                      Expr::NPC_ValueDependentIsNotNull) ==
11385         Expr::NPCK_ZeroExpression) {
11386     if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
11387       if (CL->getValue() == 0)
11388         Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
11389             << NullValue
11390             << FixItHint::CreateReplacement(E.get()->getExprLoc(),
11391                                             NullValue ? "NULL" : "(void *)0");
11392     } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
11393         TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
11394         QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
11395         if (T == Context.CharTy)
11396           Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
11397               << NullValue
11398               << FixItHint::CreateReplacement(E.get()->getExprLoc(),
11399                                               NullValue ? "NULL" : "(void *)0");
11400       }
11401   }
11402 }
11403 
11404 // C99 6.5.8, C++ [expr.rel]
11405 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
11406                                     SourceLocation Loc,
11407                                     BinaryOperatorKind Opc) {
11408   bool IsRelational = BinaryOperator::isRelationalOp(Opc);
11409   bool IsThreeWay = Opc == BO_Cmp;
11410   bool IsOrdered = IsRelational || IsThreeWay;
11411   auto IsAnyPointerType = [](ExprResult E) {
11412     QualType Ty = E.get()->getType();
11413     return Ty->isPointerType() || Ty->isMemberPointerType();
11414   };
11415 
11416   // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
11417   // type, array-to-pointer, ..., conversions are performed on both operands to
11418   // bring them to their composite type.
11419   // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
11420   // any type-related checks.
11421   if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
11422     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11423     if (LHS.isInvalid())
11424       return QualType();
11425     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11426     if (RHS.isInvalid())
11427       return QualType();
11428   } else {
11429     LHS = DefaultLvalueConversion(LHS.get());
11430     if (LHS.isInvalid())
11431       return QualType();
11432     RHS = DefaultLvalueConversion(RHS.get());
11433     if (RHS.isInvalid())
11434       return QualType();
11435   }
11436 
11437   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
11438   if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
11439     CheckPtrComparisonWithNullChar(LHS, RHS);
11440     CheckPtrComparisonWithNullChar(RHS, LHS);
11441   }
11442 
11443   // Handle vector comparisons separately.
11444   if (LHS.get()->getType()->isVectorType() ||
11445       RHS.get()->getType()->isVectorType())
11446     return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
11447 
11448   diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
11449   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
11450 
11451   QualType LHSType = LHS.get()->getType();
11452   QualType RHSType = RHS.get()->getType();
11453   if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
11454       (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
11455     return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
11456 
11457   const Expr::NullPointerConstantKind LHSNullKind =
11458       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
11459   const Expr::NullPointerConstantKind RHSNullKind =
11460       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
11461   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
11462   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
11463 
11464   auto computeResultTy = [&]() {
11465     if (Opc != BO_Cmp)
11466       return Context.getLogicalOperationType();
11467     assert(getLangOpts().CPlusPlus);
11468     assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
11469 
11470     QualType CompositeTy = LHS.get()->getType();
11471     assert(!CompositeTy->isReferenceType());
11472 
11473     Optional<ComparisonCategoryType> CCT =
11474         getComparisonCategoryForBuiltinCmp(CompositeTy);
11475     if (!CCT)
11476       return InvalidOperands(Loc, LHS, RHS);
11477 
11478     if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
11479       // P0946R0: Comparisons between a null pointer constant and an object
11480       // pointer result in std::strong_equality, which is ill-formed under
11481       // P1959R0.
11482       Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
11483           << (LHSIsNull ? LHS.get()->getSourceRange()
11484                         : RHS.get()->getSourceRange());
11485       return QualType();
11486     }
11487 
11488     return CheckComparisonCategoryType(
11489         *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
11490   };
11491 
11492   if (!IsOrdered && LHSIsNull != RHSIsNull) {
11493     bool IsEquality = Opc == BO_EQ;
11494     if (RHSIsNull)
11495       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
11496                                    RHS.get()->getSourceRange());
11497     else
11498       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
11499                                    LHS.get()->getSourceRange());
11500   }
11501 
11502   if ((LHSType->isIntegerType() && !LHSIsNull) ||
11503       (RHSType->isIntegerType() && !RHSIsNull)) {
11504     // Skip normal pointer conversion checks in this case; we have better
11505     // diagnostics for this below.
11506   } else if (getLangOpts().CPlusPlus) {
11507     // Equality comparison of a function pointer to a void pointer is invalid,
11508     // but we allow it as an extension.
11509     // FIXME: If we really want to allow this, should it be part of composite
11510     // pointer type computation so it works in conditionals too?
11511     if (!IsOrdered &&
11512         ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
11513          (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
11514       // This is a gcc extension compatibility comparison.
11515       // In a SFINAE context, we treat this as a hard error to maintain
11516       // conformance with the C++ standard.
11517       diagnoseFunctionPointerToVoidComparison(
11518           *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
11519 
11520       if (isSFINAEContext())
11521         return QualType();
11522 
11523       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11524       return computeResultTy();
11525     }
11526 
11527     // C++ [expr.eq]p2:
11528     //   If at least one operand is a pointer [...] bring them to their
11529     //   composite pointer type.
11530     // C++ [expr.spaceship]p6
11531     //  If at least one of the operands is of pointer type, [...] bring them
11532     //  to their composite pointer type.
11533     // C++ [expr.rel]p2:
11534     //   If both operands are pointers, [...] bring them to their composite
11535     //   pointer type.
11536     // For <=>, the only valid non-pointer types are arrays and functions, and
11537     // we already decayed those, so this is really the same as the relational
11538     // comparison rule.
11539     if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
11540             (IsOrdered ? 2 : 1) &&
11541         (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
11542                                          RHSType->isObjCObjectPointerType()))) {
11543       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
11544         return QualType();
11545       return computeResultTy();
11546     }
11547   } else if (LHSType->isPointerType() &&
11548              RHSType->isPointerType()) { // C99 6.5.8p2
11549     // All of the following pointer-related warnings are GCC extensions, except
11550     // when handling null pointer constants.
11551     QualType LCanPointeeTy =
11552       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
11553     QualType RCanPointeeTy =
11554       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
11555 
11556     // C99 6.5.9p2 and C99 6.5.8p2
11557     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
11558                                    RCanPointeeTy.getUnqualifiedType())) {
11559       if (IsRelational) {
11560         // Pointers both need to point to complete or incomplete types
11561         if ((LCanPointeeTy->isIncompleteType() !=
11562              RCanPointeeTy->isIncompleteType()) &&
11563             !getLangOpts().C11) {
11564           Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
11565               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
11566               << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
11567               << RCanPointeeTy->isIncompleteType();
11568         }
11569         if (LCanPointeeTy->isFunctionType()) {
11570           // Valid unless a relational comparison of function pointers
11571           Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
11572               << LHSType << RHSType << LHS.get()->getSourceRange()
11573               << RHS.get()->getSourceRange();
11574         }
11575       }
11576     } else if (!IsRelational &&
11577                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
11578       // Valid unless comparison between non-null pointer and function pointer
11579       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
11580           && !LHSIsNull && !RHSIsNull)
11581         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
11582                                                 /*isError*/false);
11583     } else {
11584       // Invalid
11585       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
11586     }
11587     if (LCanPointeeTy != RCanPointeeTy) {
11588       // Treat NULL constant as a special case in OpenCL.
11589       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
11590         if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
11591           Diag(Loc,
11592                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11593               << LHSType << RHSType << 0 /* comparison */
11594               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11595         }
11596       }
11597       LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
11598       LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
11599       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
11600                                                : CK_BitCast;
11601       if (LHSIsNull && !RHSIsNull)
11602         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
11603       else
11604         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
11605     }
11606     return computeResultTy();
11607   }
11608 
11609   if (getLangOpts().CPlusPlus) {
11610     // C++ [expr.eq]p4:
11611     //   Two operands of type std::nullptr_t or one operand of type
11612     //   std::nullptr_t and the other a null pointer constant compare equal.
11613     if (!IsOrdered && LHSIsNull && RHSIsNull) {
11614       if (LHSType->isNullPtrType()) {
11615         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11616         return computeResultTy();
11617       }
11618       if (RHSType->isNullPtrType()) {
11619         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11620         return computeResultTy();
11621       }
11622     }
11623 
11624     // Comparison of Objective-C pointers and block pointers against nullptr_t.
11625     // These aren't covered by the composite pointer type rules.
11626     if (!IsOrdered && RHSType->isNullPtrType() &&
11627         (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
11628       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11629       return computeResultTy();
11630     }
11631     if (!IsOrdered && LHSType->isNullPtrType() &&
11632         (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
11633       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11634       return computeResultTy();
11635     }
11636 
11637     if (IsRelational &&
11638         ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
11639          (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
11640       // HACK: Relational comparison of nullptr_t against a pointer type is
11641       // invalid per DR583, but we allow it within std::less<> and friends,
11642       // since otherwise common uses of it break.
11643       // FIXME: Consider removing this hack once LWG fixes std::less<> and
11644       // friends to have std::nullptr_t overload candidates.
11645       DeclContext *DC = CurContext;
11646       if (isa<FunctionDecl>(DC))
11647         DC = DC->getParent();
11648       if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
11649         if (CTSD->isInStdNamespace() &&
11650             llvm::StringSwitch<bool>(CTSD->getName())
11651                 .Cases("less", "less_equal", "greater", "greater_equal", true)
11652                 .Default(false)) {
11653           if (RHSType->isNullPtrType())
11654             RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11655           else
11656             LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11657           return computeResultTy();
11658         }
11659       }
11660     }
11661 
11662     // C++ [expr.eq]p2:
11663     //   If at least one operand is a pointer to member, [...] bring them to
11664     //   their composite pointer type.
11665     if (!IsOrdered &&
11666         (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
11667       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
11668         return QualType();
11669       else
11670         return computeResultTy();
11671     }
11672   }
11673 
11674   // Handle block pointer types.
11675   if (!IsOrdered && LHSType->isBlockPointerType() &&
11676       RHSType->isBlockPointerType()) {
11677     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
11678     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
11679 
11680     if (!LHSIsNull && !RHSIsNull &&
11681         !Context.typesAreCompatible(lpointee, rpointee)) {
11682       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
11683         << LHSType << RHSType << LHS.get()->getSourceRange()
11684         << RHS.get()->getSourceRange();
11685     }
11686     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11687     return computeResultTy();
11688   }
11689 
11690   // Allow block pointers to be compared with null pointer constants.
11691   if (!IsOrdered
11692       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
11693           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
11694     if (!LHSIsNull && !RHSIsNull) {
11695       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
11696              ->getPointeeType()->isVoidType())
11697             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
11698                 ->getPointeeType()->isVoidType())))
11699         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
11700           << LHSType << RHSType << LHS.get()->getSourceRange()
11701           << RHS.get()->getSourceRange();
11702     }
11703     if (LHSIsNull && !RHSIsNull)
11704       LHS = ImpCastExprToType(LHS.get(), RHSType,
11705                               RHSType->isPointerType() ? CK_BitCast
11706                                 : CK_AnyPointerToBlockPointerCast);
11707     else
11708       RHS = ImpCastExprToType(RHS.get(), LHSType,
11709                               LHSType->isPointerType() ? CK_BitCast
11710                                 : CK_AnyPointerToBlockPointerCast);
11711     return computeResultTy();
11712   }
11713 
11714   if (LHSType->isObjCObjectPointerType() ||
11715       RHSType->isObjCObjectPointerType()) {
11716     const PointerType *LPT = LHSType->getAs<PointerType>();
11717     const PointerType *RPT = RHSType->getAs<PointerType>();
11718     if (LPT || RPT) {
11719       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
11720       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
11721 
11722       if (!LPtrToVoid && !RPtrToVoid &&
11723           !Context.typesAreCompatible(LHSType, RHSType)) {
11724         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
11725                                           /*isError*/false);
11726       }
11727       // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
11728       // the RHS, but we have test coverage for this behavior.
11729       // FIXME: Consider using convertPointersToCompositeType in C++.
11730       if (LHSIsNull && !RHSIsNull) {
11731         Expr *E = LHS.get();
11732         if (getLangOpts().ObjCAutoRefCount)
11733           CheckObjCConversion(SourceRange(), RHSType, E,
11734                               CCK_ImplicitConversion);
11735         LHS = ImpCastExprToType(E, RHSType,
11736                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
11737       }
11738       else {
11739         Expr *E = RHS.get();
11740         if (getLangOpts().ObjCAutoRefCount)
11741           CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
11742                               /*Diagnose=*/true,
11743                               /*DiagnoseCFAudited=*/false, Opc);
11744         RHS = ImpCastExprToType(E, LHSType,
11745                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
11746       }
11747       return computeResultTy();
11748     }
11749     if (LHSType->isObjCObjectPointerType() &&
11750         RHSType->isObjCObjectPointerType()) {
11751       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
11752         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
11753                                           /*isError*/false);
11754       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
11755         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
11756 
11757       if (LHSIsNull && !RHSIsNull)
11758         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
11759       else
11760         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11761       return computeResultTy();
11762     }
11763 
11764     if (!IsOrdered && LHSType->isBlockPointerType() &&
11765         RHSType->isBlockCompatibleObjCPointerType(Context)) {
11766       LHS = ImpCastExprToType(LHS.get(), RHSType,
11767                               CK_BlockPointerToObjCPointerCast);
11768       return computeResultTy();
11769     } else if (!IsOrdered &&
11770                LHSType->isBlockCompatibleObjCPointerType(Context) &&
11771                RHSType->isBlockPointerType()) {
11772       RHS = ImpCastExprToType(RHS.get(), LHSType,
11773                               CK_BlockPointerToObjCPointerCast);
11774       return computeResultTy();
11775     }
11776   }
11777   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
11778       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
11779     unsigned DiagID = 0;
11780     bool isError = false;
11781     if (LangOpts.DebuggerSupport) {
11782       // Under a debugger, allow the comparison of pointers to integers,
11783       // since users tend to want to compare addresses.
11784     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
11785                (RHSIsNull && RHSType->isIntegerType())) {
11786       if (IsOrdered) {
11787         isError = getLangOpts().CPlusPlus;
11788         DiagID =
11789           isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
11790                   : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
11791       }
11792     } else if (getLangOpts().CPlusPlus) {
11793       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
11794       isError = true;
11795     } else if (IsOrdered)
11796       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
11797     else
11798       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
11799 
11800     if (DiagID) {
11801       Diag(Loc, DiagID)
11802         << LHSType << RHSType << LHS.get()->getSourceRange()
11803         << RHS.get()->getSourceRange();
11804       if (isError)
11805         return QualType();
11806     }
11807 
11808     if (LHSType->isIntegerType())
11809       LHS = ImpCastExprToType(LHS.get(), RHSType,
11810                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
11811     else
11812       RHS = ImpCastExprToType(RHS.get(), LHSType,
11813                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
11814     return computeResultTy();
11815   }
11816 
11817   // Handle block pointers.
11818   if (!IsOrdered && RHSIsNull
11819       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
11820     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11821     return computeResultTy();
11822   }
11823   if (!IsOrdered && LHSIsNull
11824       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
11825     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11826     return computeResultTy();
11827   }
11828 
11829   if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
11830     if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
11831       return computeResultTy();
11832     }
11833 
11834     if (LHSType->isQueueT() && RHSType->isQueueT()) {
11835       return computeResultTy();
11836     }
11837 
11838     if (LHSIsNull && RHSType->isQueueT()) {
11839       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11840       return computeResultTy();
11841     }
11842 
11843     if (LHSType->isQueueT() && RHSIsNull) {
11844       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11845       return computeResultTy();
11846     }
11847   }
11848 
11849   return InvalidOperands(Loc, LHS, RHS);
11850 }
11851 
11852 // Return a signed ext_vector_type that is of identical size and number of
11853 // elements. For floating point vectors, return an integer type of identical
11854 // size and number of elements. In the non ext_vector_type case, search from
11855 // the largest type to the smallest type to avoid cases where long long == long,
11856 // where long gets picked over long long.
11857 QualType Sema::GetSignedVectorType(QualType V) {
11858   const VectorType *VTy = V->castAs<VectorType>();
11859   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
11860 
11861   if (isa<ExtVectorType>(VTy)) {
11862     if (TypeSize == Context.getTypeSize(Context.CharTy))
11863       return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
11864     else if (TypeSize == Context.getTypeSize(Context.ShortTy))
11865       return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
11866     else if (TypeSize == Context.getTypeSize(Context.IntTy))
11867       return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
11868     else if (TypeSize == Context.getTypeSize(Context.LongTy))
11869       return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
11870     assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
11871            "Unhandled vector element size in vector compare");
11872     return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
11873   }
11874 
11875   if (TypeSize == Context.getTypeSize(Context.LongLongTy))
11876     return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
11877                                  VectorType::GenericVector);
11878   else if (TypeSize == Context.getTypeSize(Context.LongTy))
11879     return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
11880                                  VectorType::GenericVector);
11881   else if (TypeSize == Context.getTypeSize(Context.IntTy))
11882     return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
11883                                  VectorType::GenericVector);
11884   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
11885     return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
11886                                  VectorType::GenericVector);
11887   assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
11888          "Unhandled vector element size in vector compare");
11889   return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
11890                                VectorType::GenericVector);
11891 }
11892 
11893 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
11894 /// operates on extended vector types.  Instead of producing an IntTy result,
11895 /// like a scalar comparison, a vector comparison produces a vector of integer
11896 /// types.
11897 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
11898                                           SourceLocation Loc,
11899                                           BinaryOperatorKind Opc) {
11900   if (Opc == BO_Cmp) {
11901     Diag(Loc, diag::err_three_way_vector_comparison);
11902     return QualType();
11903   }
11904 
11905   // Check to make sure we're operating on vectors of the same type and width,
11906   // Allowing one side to be a scalar of element type.
11907   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
11908                               /*AllowBothBool*/true,
11909                               /*AllowBoolConversions*/getLangOpts().ZVector);
11910   if (vType.isNull())
11911     return vType;
11912 
11913   QualType LHSType = LHS.get()->getType();
11914 
11915   // If AltiVec, the comparison results in a numeric type, i.e.
11916   // bool for C++, int for C
11917   if (getLangOpts().AltiVec &&
11918       vType->castAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
11919     return Context.getLogicalOperationType();
11920 
11921   // For non-floating point types, check for self-comparisons of the form
11922   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
11923   // often indicate logic errors in the program.
11924   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
11925 
11926   // Check for comparisons of floating point operands using != and ==.
11927   if (BinaryOperator::isEqualityOp(Opc) &&
11928       LHSType->hasFloatingRepresentation()) {
11929     assert(RHS.get()->getType()->hasFloatingRepresentation());
11930     CheckFloatComparison(Loc, LHS.get(), RHS.get());
11931   }
11932 
11933   // Return a signed type for the vector.
11934   return GetSignedVectorType(vType);
11935 }
11936 
11937 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
11938                                     const ExprResult &XorRHS,
11939                                     const SourceLocation Loc) {
11940   // Do not diagnose macros.
11941   if (Loc.isMacroID())
11942     return;
11943 
11944   bool Negative = false;
11945   bool ExplicitPlus = false;
11946   const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
11947   const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
11948 
11949   if (!LHSInt)
11950     return;
11951   if (!RHSInt) {
11952     // Check negative literals.
11953     if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
11954       UnaryOperatorKind Opc = UO->getOpcode();
11955       if (Opc != UO_Minus && Opc != UO_Plus)
11956         return;
11957       RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
11958       if (!RHSInt)
11959         return;
11960       Negative = (Opc == UO_Minus);
11961       ExplicitPlus = !Negative;
11962     } else {
11963       return;
11964     }
11965   }
11966 
11967   const llvm::APInt &LeftSideValue = LHSInt->getValue();
11968   llvm::APInt RightSideValue = RHSInt->getValue();
11969   if (LeftSideValue != 2 && LeftSideValue != 10)
11970     return;
11971 
11972   if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
11973     return;
11974 
11975   CharSourceRange ExprRange = CharSourceRange::getCharRange(
11976       LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
11977   llvm::StringRef ExprStr =
11978       Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
11979 
11980   CharSourceRange XorRange =
11981       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11982   llvm::StringRef XorStr =
11983       Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
11984   // Do not diagnose if xor keyword/macro is used.
11985   if (XorStr == "xor")
11986     return;
11987 
11988   std::string LHSStr = std::string(Lexer::getSourceText(
11989       CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
11990       S.getSourceManager(), S.getLangOpts()));
11991   std::string RHSStr = std::string(Lexer::getSourceText(
11992       CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
11993       S.getSourceManager(), S.getLangOpts()));
11994 
11995   if (Negative) {
11996     RightSideValue = -RightSideValue;
11997     RHSStr = "-" + RHSStr;
11998   } else if (ExplicitPlus) {
11999     RHSStr = "+" + RHSStr;
12000   }
12001 
12002   StringRef LHSStrRef = LHSStr;
12003   StringRef RHSStrRef = RHSStr;
12004   // Do not diagnose literals with digit separators, binary, hexadecimal, octal
12005   // literals.
12006   if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
12007       RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
12008       LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
12009       RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
12010       (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
12011       (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
12012       LHSStrRef.find('\'') != StringRef::npos ||
12013       RHSStrRef.find('\'') != StringRef::npos)
12014     return;
12015 
12016   bool SuggestXor = S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
12017   const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
12018   int64_t RightSideIntValue = RightSideValue.getSExtValue();
12019   if (LeftSideValue == 2 && RightSideIntValue >= 0) {
12020     std::string SuggestedExpr = "1 << " + RHSStr;
12021     bool Overflow = false;
12022     llvm::APInt One = (LeftSideValue - 1);
12023     llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
12024     if (Overflow) {
12025       if (RightSideIntValue < 64)
12026         S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12027             << ExprStr << XorValue.toString(10, true) << ("1LL << " + RHSStr)
12028             << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
12029       else if (RightSideIntValue == 64)
12030         S.Diag(Loc, diag::warn_xor_used_as_pow) << ExprStr << XorValue.toString(10, true);
12031       else
12032         return;
12033     } else {
12034       S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
12035           << ExprStr << XorValue.toString(10, true) << SuggestedExpr
12036           << PowValue.toString(10, true)
12037           << FixItHint::CreateReplacement(
12038                  ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
12039     }
12040 
12041     S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0x2 ^ " + RHSStr) << SuggestXor;
12042   } else if (LeftSideValue == 10) {
12043     std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
12044     S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12045         << ExprStr << XorValue.toString(10, true) << SuggestedValue
12046         << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
12047     S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0xA ^ " + RHSStr) << SuggestXor;
12048   }
12049 }
12050 
12051 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12052                                           SourceLocation Loc) {
12053   // Ensure that either both operands are of the same vector type, or
12054   // one operand is of a vector type and the other is of its element type.
12055   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
12056                                        /*AllowBothBool*/true,
12057                                        /*AllowBoolConversions*/false);
12058   if (vType.isNull())
12059     return InvalidOperands(Loc, LHS, RHS);
12060   if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
12061       !getLangOpts().OpenCLCPlusPlus && vType->hasFloatingRepresentation())
12062     return InvalidOperands(Loc, LHS, RHS);
12063   // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
12064   //        usage of the logical operators && and || with vectors in C. This
12065   //        check could be notionally dropped.
12066   if (!getLangOpts().CPlusPlus &&
12067       !(isa<ExtVectorType>(vType->getAs<VectorType>())))
12068     return InvalidLogicalVectorOperands(Loc, LHS, RHS);
12069 
12070   return GetSignedVectorType(LHS.get()->getType());
12071 }
12072 
12073 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
12074                                               SourceLocation Loc,
12075                                               bool IsCompAssign) {
12076   if (!IsCompAssign) {
12077     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12078     if (LHS.isInvalid())
12079       return QualType();
12080   }
12081   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12082   if (RHS.isInvalid())
12083     return QualType();
12084 
12085   // For conversion purposes, we ignore any qualifiers.
12086   // For example, "const float" and "float" are equivalent.
12087   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
12088   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
12089 
12090   const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
12091   const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
12092   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
12093 
12094   if (Context.hasSameType(LHSType, RHSType))
12095     return LHSType;
12096 
12097   // Type conversion may change LHS/RHS. Keep copies to the original results, in
12098   // case we have to return InvalidOperands.
12099   ExprResult OriginalLHS = LHS;
12100   ExprResult OriginalRHS = RHS;
12101   if (LHSMatType && !RHSMatType) {
12102     RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
12103     if (!RHS.isInvalid())
12104       return LHSType;
12105 
12106     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12107   }
12108 
12109   if (!LHSMatType && RHSMatType) {
12110     LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
12111     if (!LHS.isInvalid())
12112       return RHSType;
12113     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12114   }
12115 
12116   return InvalidOperands(Loc, LHS, RHS);
12117 }
12118 
12119 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
12120                                            SourceLocation Loc,
12121                                            bool IsCompAssign) {
12122   if (!IsCompAssign) {
12123     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12124     if (LHS.isInvalid())
12125       return QualType();
12126   }
12127   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12128   if (RHS.isInvalid())
12129     return QualType();
12130 
12131   auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
12132   auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
12133   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
12134 
12135   if (LHSMatType && RHSMatType) {
12136     if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
12137       return InvalidOperands(Loc, LHS, RHS);
12138 
12139     if (!Context.hasSameType(LHSMatType->getElementType(),
12140                              RHSMatType->getElementType()))
12141       return InvalidOperands(Loc, LHS, RHS);
12142 
12143     return Context.getConstantMatrixType(LHSMatType->getElementType(),
12144                                          LHSMatType->getNumRows(),
12145                                          RHSMatType->getNumColumns());
12146   }
12147   return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
12148 }
12149 
12150 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
12151                                            SourceLocation Loc,
12152                                            BinaryOperatorKind Opc) {
12153   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
12154 
12155   bool IsCompAssign =
12156       Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
12157 
12158   if (LHS.get()->getType()->isVectorType() ||
12159       RHS.get()->getType()->isVectorType()) {
12160     if (LHS.get()->getType()->hasIntegerRepresentation() &&
12161         RHS.get()->getType()->hasIntegerRepresentation())
12162       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
12163                         /*AllowBothBool*/true,
12164                         /*AllowBoolConversions*/getLangOpts().ZVector);
12165     return InvalidOperands(Loc, LHS, RHS);
12166   }
12167 
12168   if (Opc == BO_And)
12169     diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12170 
12171   if (LHS.get()->getType()->hasFloatingRepresentation() ||
12172       RHS.get()->getType()->hasFloatingRepresentation())
12173     return InvalidOperands(Loc, LHS, RHS);
12174 
12175   ExprResult LHSResult = LHS, RHSResult = RHS;
12176   QualType compType = UsualArithmeticConversions(
12177       LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
12178   if (LHSResult.isInvalid() || RHSResult.isInvalid())
12179     return QualType();
12180   LHS = LHSResult.get();
12181   RHS = RHSResult.get();
12182 
12183   if (Opc == BO_Xor)
12184     diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
12185 
12186   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
12187     return compType;
12188   return InvalidOperands(Loc, LHS, RHS);
12189 }
12190 
12191 // C99 6.5.[13,14]
12192 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12193                                            SourceLocation Loc,
12194                                            BinaryOperatorKind Opc) {
12195   // Check vector operands differently.
12196   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
12197     return CheckVectorLogicalOperands(LHS, RHS, Loc);
12198 
12199   bool EnumConstantInBoolContext = false;
12200   for (const ExprResult &HS : {LHS, RHS}) {
12201     if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
12202       const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
12203       if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
12204         EnumConstantInBoolContext = true;
12205     }
12206   }
12207 
12208   if (EnumConstantInBoolContext)
12209     Diag(Loc, diag::warn_enum_constant_in_bool_context);
12210 
12211   // Diagnose cases where the user write a logical and/or but probably meant a
12212   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
12213   // is a constant.
12214   if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
12215       !LHS.get()->getType()->isBooleanType() &&
12216       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
12217       // Don't warn in macros or template instantiations.
12218       !Loc.isMacroID() && !inTemplateInstantiation()) {
12219     // If the RHS can be constant folded, and if it constant folds to something
12220     // that isn't 0 or 1 (which indicate a potential logical operation that
12221     // happened to fold to true/false) then warn.
12222     // Parens on the RHS are ignored.
12223     Expr::EvalResult EVResult;
12224     if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
12225       llvm::APSInt Result = EVResult.Val.getInt();
12226       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
12227            !RHS.get()->getExprLoc().isMacroID()) ||
12228           (Result != 0 && Result != 1)) {
12229         Diag(Loc, diag::warn_logical_instead_of_bitwise)
12230           << RHS.get()->getSourceRange()
12231           << (Opc == BO_LAnd ? "&&" : "||");
12232         // Suggest replacing the logical operator with the bitwise version
12233         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
12234             << (Opc == BO_LAnd ? "&" : "|")
12235             << FixItHint::CreateReplacement(SourceRange(
12236                                                  Loc, getLocForEndOfToken(Loc)),
12237                                             Opc == BO_LAnd ? "&" : "|");
12238         if (Opc == BO_LAnd)
12239           // Suggest replacing "Foo() && kNonZero" with "Foo()"
12240           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
12241               << FixItHint::CreateRemoval(
12242                      SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
12243                                  RHS.get()->getEndLoc()));
12244       }
12245     }
12246   }
12247 
12248   if (!Context.getLangOpts().CPlusPlus) {
12249     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
12250     // not operate on the built-in scalar and vector float types.
12251     if (Context.getLangOpts().OpenCL &&
12252         Context.getLangOpts().OpenCLVersion < 120) {
12253       if (LHS.get()->getType()->isFloatingType() ||
12254           RHS.get()->getType()->isFloatingType())
12255         return InvalidOperands(Loc, LHS, RHS);
12256     }
12257 
12258     LHS = UsualUnaryConversions(LHS.get());
12259     if (LHS.isInvalid())
12260       return QualType();
12261 
12262     RHS = UsualUnaryConversions(RHS.get());
12263     if (RHS.isInvalid())
12264       return QualType();
12265 
12266     if (!LHS.get()->getType()->isScalarType() ||
12267         !RHS.get()->getType()->isScalarType())
12268       return InvalidOperands(Loc, LHS, RHS);
12269 
12270     return Context.IntTy;
12271   }
12272 
12273   // The following is safe because we only use this method for
12274   // non-overloadable operands.
12275 
12276   // C++ [expr.log.and]p1
12277   // C++ [expr.log.or]p1
12278   // The operands are both contextually converted to type bool.
12279   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
12280   if (LHSRes.isInvalid())
12281     return InvalidOperands(Loc, LHS, RHS);
12282   LHS = LHSRes;
12283 
12284   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
12285   if (RHSRes.isInvalid())
12286     return InvalidOperands(Loc, LHS, RHS);
12287   RHS = RHSRes;
12288 
12289   // C++ [expr.log.and]p2
12290   // C++ [expr.log.or]p2
12291   // The result is a bool.
12292   return Context.BoolTy;
12293 }
12294 
12295 static bool IsReadonlyMessage(Expr *E, Sema &S) {
12296   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
12297   if (!ME) return false;
12298   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
12299   ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
12300       ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
12301   if (!Base) return false;
12302   return Base->getMethodDecl() != nullptr;
12303 }
12304 
12305 /// Is the given expression (which must be 'const') a reference to a
12306 /// variable which was originally non-const, but which has become
12307 /// 'const' due to being captured within a block?
12308 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
12309 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
12310   assert(E->isLValue() && E->getType().isConstQualified());
12311   E = E->IgnoreParens();
12312 
12313   // Must be a reference to a declaration from an enclosing scope.
12314   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
12315   if (!DRE) return NCCK_None;
12316   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
12317 
12318   // The declaration must be a variable which is not declared 'const'.
12319   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
12320   if (!var) return NCCK_None;
12321   if (var->getType().isConstQualified()) return NCCK_None;
12322   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
12323 
12324   // Decide whether the first capture was for a block or a lambda.
12325   DeclContext *DC = S.CurContext, *Prev = nullptr;
12326   // Decide whether the first capture was for a block or a lambda.
12327   while (DC) {
12328     // For init-capture, it is possible that the variable belongs to the
12329     // template pattern of the current context.
12330     if (auto *FD = dyn_cast<FunctionDecl>(DC))
12331       if (var->isInitCapture() &&
12332           FD->getTemplateInstantiationPattern() == var->getDeclContext())
12333         break;
12334     if (DC == var->getDeclContext())
12335       break;
12336     Prev = DC;
12337     DC = DC->getParent();
12338   }
12339   // Unless we have an init-capture, we've gone one step too far.
12340   if (!var->isInitCapture())
12341     DC = Prev;
12342   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
12343 }
12344 
12345 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
12346   Ty = Ty.getNonReferenceType();
12347   if (IsDereference && Ty->isPointerType())
12348     Ty = Ty->getPointeeType();
12349   return !Ty.isConstQualified();
12350 }
12351 
12352 // Update err_typecheck_assign_const and note_typecheck_assign_const
12353 // when this enum is changed.
12354 enum {
12355   ConstFunction,
12356   ConstVariable,
12357   ConstMember,
12358   ConstMethod,
12359   NestedConstMember,
12360   ConstUnknown,  // Keep as last element
12361 };
12362 
12363 /// Emit the "read-only variable not assignable" error and print notes to give
12364 /// more information about why the variable is not assignable, such as pointing
12365 /// to the declaration of a const variable, showing that a method is const, or
12366 /// that the function is returning a const reference.
12367 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
12368                                     SourceLocation Loc) {
12369   SourceRange ExprRange = E->getSourceRange();
12370 
12371   // Only emit one error on the first const found.  All other consts will emit
12372   // a note to the error.
12373   bool DiagnosticEmitted = false;
12374 
12375   // Track if the current expression is the result of a dereference, and if the
12376   // next checked expression is the result of a dereference.
12377   bool IsDereference = false;
12378   bool NextIsDereference = false;
12379 
12380   // Loop to process MemberExpr chains.
12381   while (true) {
12382     IsDereference = NextIsDereference;
12383 
12384     E = E->IgnoreImplicit()->IgnoreParenImpCasts();
12385     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
12386       NextIsDereference = ME->isArrow();
12387       const ValueDecl *VD = ME->getMemberDecl();
12388       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
12389         // Mutable fields can be modified even if the class is const.
12390         if (Field->isMutable()) {
12391           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
12392           break;
12393         }
12394 
12395         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
12396           if (!DiagnosticEmitted) {
12397             S.Diag(Loc, diag::err_typecheck_assign_const)
12398                 << ExprRange << ConstMember << false /*static*/ << Field
12399                 << Field->getType();
12400             DiagnosticEmitted = true;
12401           }
12402           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12403               << ConstMember << false /*static*/ << Field << Field->getType()
12404               << Field->getSourceRange();
12405         }
12406         E = ME->getBase();
12407         continue;
12408       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
12409         if (VDecl->getType().isConstQualified()) {
12410           if (!DiagnosticEmitted) {
12411             S.Diag(Loc, diag::err_typecheck_assign_const)
12412                 << ExprRange << ConstMember << true /*static*/ << VDecl
12413                 << VDecl->getType();
12414             DiagnosticEmitted = true;
12415           }
12416           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12417               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
12418               << VDecl->getSourceRange();
12419         }
12420         // Static fields do not inherit constness from parents.
12421         break;
12422       }
12423       break; // End MemberExpr
12424     } else if (const ArraySubscriptExpr *ASE =
12425                    dyn_cast<ArraySubscriptExpr>(E)) {
12426       E = ASE->getBase()->IgnoreParenImpCasts();
12427       continue;
12428     } else if (const ExtVectorElementExpr *EVE =
12429                    dyn_cast<ExtVectorElementExpr>(E)) {
12430       E = EVE->getBase()->IgnoreParenImpCasts();
12431       continue;
12432     }
12433     break;
12434   }
12435 
12436   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
12437     // Function calls
12438     const FunctionDecl *FD = CE->getDirectCallee();
12439     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
12440       if (!DiagnosticEmitted) {
12441         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
12442                                                       << ConstFunction << FD;
12443         DiagnosticEmitted = true;
12444       }
12445       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
12446              diag::note_typecheck_assign_const)
12447           << ConstFunction << FD << FD->getReturnType()
12448           << FD->getReturnTypeSourceRange();
12449     }
12450   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
12451     // Point to variable declaration.
12452     if (const ValueDecl *VD = DRE->getDecl()) {
12453       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
12454         if (!DiagnosticEmitted) {
12455           S.Diag(Loc, diag::err_typecheck_assign_const)
12456               << ExprRange << ConstVariable << VD << VD->getType();
12457           DiagnosticEmitted = true;
12458         }
12459         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12460             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
12461       }
12462     }
12463   } else if (isa<CXXThisExpr>(E)) {
12464     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
12465       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
12466         if (MD->isConst()) {
12467           if (!DiagnosticEmitted) {
12468             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
12469                                                           << ConstMethod << MD;
12470             DiagnosticEmitted = true;
12471           }
12472           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
12473               << ConstMethod << MD << MD->getSourceRange();
12474         }
12475       }
12476     }
12477   }
12478 
12479   if (DiagnosticEmitted)
12480     return;
12481 
12482   // Can't determine a more specific message, so display the generic error.
12483   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
12484 }
12485 
12486 enum OriginalExprKind {
12487   OEK_Variable,
12488   OEK_Member,
12489   OEK_LValue
12490 };
12491 
12492 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
12493                                          const RecordType *Ty,
12494                                          SourceLocation Loc, SourceRange Range,
12495                                          OriginalExprKind OEK,
12496                                          bool &DiagnosticEmitted) {
12497   std::vector<const RecordType *> RecordTypeList;
12498   RecordTypeList.push_back(Ty);
12499   unsigned NextToCheckIndex = 0;
12500   // We walk the record hierarchy breadth-first to ensure that we print
12501   // diagnostics in field nesting order.
12502   while (RecordTypeList.size() > NextToCheckIndex) {
12503     bool IsNested = NextToCheckIndex > 0;
12504     for (const FieldDecl *Field :
12505          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
12506       // First, check every field for constness.
12507       QualType FieldTy = Field->getType();
12508       if (FieldTy.isConstQualified()) {
12509         if (!DiagnosticEmitted) {
12510           S.Diag(Loc, diag::err_typecheck_assign_const)
12511               << Range << NestedConstMember << OEK << VD
12512               << IsNested << Field;
12513           DiagnosticEmitted = true;
12514         }
12515         S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
12516             << NestedConstMember << IsNested << Field
12517             << FieldTy << Field->getSourceRange();
12518       }
12519 
12520       // Then we append it to the list to check next in order.
12521       FieldTy = FieldTy.getCanonicalType();
12522       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
12523         if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
12524           RecordTypeList.push_back(FieldRecTy);
12525       }
12526     }
12527     ++NextToCheckIndex;
12528   }
12529 }
12530 
12531 /// Emit an error for the case where a record we are trying to assign to has a
12532 /// const-qualified field somewhere in its hierarchy.
12533 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
12534                                          SourceLocation Loc) {
12535   QualType Ty = E->getType();
12536   assert(Ty->isRecordType() && "lvalue was not record?");
12537   SourceRange Range = E->getSourceRange();
12538   const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
12539   bool DiagEmitted = false;
12540 
12541   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
12542     DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
12543             Range, OEK_Member, DiagEmitted);
12544   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12545     DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
12546             Range, OEK_Variable, DiagEmitted);
12547   else
12548     DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
12549             Range, OEK_LValue, DiagEmitted);
12550   if (!DiagEmitted)
12551     DiagnoseConstAssignment(S, E, Loc);
12552 }
12553 
12554 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
12555 /// emit an error and return true.  If so, return false.
12556 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
12557   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
12558 
12559   S.CheckShadowingDeclModification(E, Loc);
12560 
12561   SourceLocation OrigLoc = Loc;
12562   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
12563                                                               &Loc);
12564   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
12565     IsLV = Expr::MLV_InvalidMessageExpression;
12566   if (IsLV == Expr::MLV_Valid)
12567     return false;
12568 
12569   unsigned DiagID = 0;
12570   bool NeedType = false;
12571   switch (IsLV) { // C99 6.5.16p2
12572   case Expr::MLV_ConstQualified:
12573     // Use a specialized diagnostic when we're assigning to an object
12574     // from an enclosing function or block.
12575     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
12576       if (NCCK == NCCK_Block)
12577         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
12578       else
12579         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
12580       break;
12581     }
12582 
12583     // In ARC, use some specialized diagnostics for occasions where we
12584     // infer 'const'.  These are always pseudo-strong variables.
12585     if (S.getLangOpts().ObjCAutoRefCount) {
12586       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
12587       if (declRef && isa<VarDecl>(declRef->getDecl())) {
12588         VarDecl *var = cast<VarDecl>(declRef->getDecl());
12589 
12590         // Use the normal diagnostic if it's pseudo-__strong but the
12591         // user actually wrote 'const'.
12592         if (var->isARCPseudoStrong() &&
12593             (!var->getTypeSourceInfo() ||
12594              !var->getTypeSourceInfo()->getType().isConstQualified())) {
12595           // There are three pseudo-strong cases:
12596           //  - self
12597           ObjCMethodDecl *method = S.getCurMethodDecl();
12598           if (method && var == method->getSelfDecl()) {
12599             DiagID = method->isClassMethod()
12600               ? diag::err_typecheck_arc_assign_self_class_method
12601               : diag::err_typecheck_arc_assign_self;
12602 
12603           //  - Objective-C externally_retained attribute.
12604           } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
12605                      isa<ParmVarDecl>(var)) {
12606             DiagID = diag::err_typecheck_arc_assign_externally_retained;
12607 
12608           //  - fast enumeration variables
12609           } else {
12610             DiagID = diag::err_typecheck_arr_assign_enumeration;
12611           }
12612 
12613           SourceRange Assign;
12614           if (Loc != OrigLoc)
12615             Assign = SourceRange(OrigLoc, OrigLoc);
12616           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
12617           // We need to preserve the AST regardless, so migration tool
12618           // can do its job.
12619           return false;
12620         }
12621       }
12622     }
12623 
12624     // If none of the special cases above are triggered, then this is a
12625     // simple const assignment.
12626     if (DiagID == 0) {
12627       DiagnoseConstAssignment(S, E, Loc);
12628       return true;
12629     }
12630 
12631     break;
12632   case Expr::MLV_ConstAddrSpace:
12633     DiagnoseConstAssignment(S, E, Loc);
12634     return true;
12635   case Expr::MLV_ConstQualifiedField:
12636     DiagnoseRecursiveConstFields(S, E, Loc);
12637     return true;
12638   case Expr::MLV_ArrayType:
12639   case Expr::MLV_ArrayTemporary:
12640     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
12641     NeedType = true;
12642     break;
12643   case Expr::MLV_NotObjectType:
12644     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
12645     NeedType = true;
12646     break;
12647   case Expr::MLV_LValueCast:
12648     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
12649     break;
12650   case Expr::MLV_Valid:
12651     llvm_unreachable("did not take early return for MLV_Valid");
12652   case Expr::MLV_InvalidExpression:
12653   case Expr::MLV_MemberFunction:
12654   case Expr::MLV_ClassTemporary:
12655     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
12656     break;
12657   case Expr::MLV_IncompleteType:
12658   case Expr::MLV_IncompleteVoidType:
12659     return S.RequireCompleteType(Loc, E->getType(),
12660              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
12661   case Expr::MLV_DuplicateVectorComponents:
12662     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
12663     break;
12664   case Expr::MLV_NoSetterProperty:
12665     llvm_unreachable("readonly properties should be processed differently");
12666   case Expr::MLV_InvalidMessageExpression:
12667     DiagID = diag::err_readonly_message_assignment;
12668     break;
12669   case Expr::MLV_SubObjCPropertySetting:
12670     DiagID = diag::err_no_subobject_property_setting;
12671     break;
12672   }
12673 
12674   SourceRange Assign;
12675   if (Loc != OrigLoc)
12676     Assign = SourceRange(OrigLoc, OrigLoc);
12677   if (NeedType)
12678     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
12679   else
12680     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
12681   return true;
12682 }
12683 
12684 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
12685                                          SourceLocation Loc,
12686                                          Sema &Sema) {
12687   if (Sema.inTemplateInstantiation())
12688     return;
12689   if (Sema.isUnevaluatedContext())
12690     return;
12691   if (Loc.isInvalid() || Loc.isMacroID())
12692     return;
12693   if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
12694     return;
12695 
12696   // C / C++ fields
12697   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
12698   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
12699   if (ML && MR) {
12700     if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
12701       return;
12702     const ValueDecl *LHSDecl =
12703         cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
12704     const ValueDecl *RHSDecl =
12705         cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
12706     if (LHSDecl != RHSDecl)
12707       return;
12708     if (LHSDecl->getType().isVolatileQualified())
12709       return;
12710     if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
12711       if (RefTy->getPointeeType().isVolatileQualified())
12712         return;
12713 
12714     Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
12715   }
12716 
12717   // Objective-C instance variables
12718   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
12719   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
12720   if (OL && OR && OL->getDecl() == OR->getDecl()) {
12721     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
12722     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
12723     if (RL && RR && RL->getDecl() == RR->getDecl())
12724       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
12725   }
12726 }
12727 
12728 // C99 6.5.16.1
12729 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
12730                                        SourceLocation Loc,
12731                                        QualType CompoundType) {
12732   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
12733 
12734   // Verify that LHS is a modifiable lvalue, and emit error if not.
12735   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
12736     return QualType();
12737 
12738   QualType LHSType = LHSExpr->getType();
12739   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
12740                                              CompoundType;
12741   // OpenCL v1.2 s6.1.1.1 p2:
12742   // The half data type can only be used to declare a pointer to a buffer that
12743   // contains half values
12744   if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
12745     LHSType->isHalfType()) {
12746     Diag(Loc, diag::err_opencl_half_load_store) << 1
12747         << LHSType.getUnqualifiedType();
12748     return QualType();
12749   }
12750 
12751   AssignConvertType ConvTy;
12752   if (CompoundType.isNull()) {
12753     Expr *RHSCheck = RHS.get();
12754 
12755     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
12756 
12757     QualType LHSTy(LHSType);
12758     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
12759     if (RHS.isInvalid())
12760       return QualType();
12761     // Special case of NSObject attributes on c-style pointer types.
12762     if (ConvTy == IncompatiblePointer &&
12763         ((Context.isObjCNSObjectType(LHSType) &&
12764           RHSType->isObjCObjectPointerType()) ||
12765          (Context.isObjCNSObjectType(RHSType) &&
12766           LHSType->isObjCObjectPointerType())))
12767       ConvTy = Compatible;
12768 
12769     if (ConvTy == Compatible &&
12770         LHSType->isObjCObjectType())
12771         Diag(Loc, diag::err_objc_object_assignment)
12772           << LHSType;
12773 
12774     // If the RHS is a unary plus or minus, check to see if they = and + are
12775     // right next to each other.  If so, the user may have typo'd "x =+ 4"
12776     // instead of "x += 4".
12777     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
12778       RHSCheck = ICE->getSubExpr();
12779     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
12780       if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
12781           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
12782           // Only if the two operators are exactly adjacent.
12783           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
12784           // And there is a space or other character before the subexpr of the
12785           // unary +/-.  We don't want to warn on "x=-1".
12786           Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
12787           UO->getSubExpr()->getBeginLoc().isFileID()) {
12788         Diag(Loc, diag::warn_not_compound_assign)
12789           << (UO->getOpcode() == UO_Plus ? "+" : "-")
12790           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
12791       }
12792     }
12793 
12794     if (ConvTy == Compatible) {
12795       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
12796         // Warn about retain cycles where a block captures the LHS, but
12797         // not if the LHS is a simple variable into which the block is
12798         // being stored...unless that variable can be captured by reference!
12799         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
12800         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
12801         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
12802           checkRetainCycles(LHSExpr, RHS.get());
12803       }
12804 
12805       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
12806           LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
12807         // It is safe to assign a weak reference into a strong variable.
12808         // Although this code can still have problems:
12809         //   id x = self.weakProp;
12810         //   id y = self.weakProp;
12811         // we do not warn to warn spuriously when 'x' and 'y' are on separate
12812         // paths through the function. This should be revisited if
12813         // -Wrepeated-use-of-weak is made flow-sensitive.
12814         // For ObjCWeak only, we do not warn if the assign is to a non-weak
12815         // variable, which will be valid for the current autorelease scope.
12816         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
12817                              RHS.get()->getBeginLoc()))
12818           getCurFunction()->markSafeWeakUse(RHS.get());
12819 
12820       } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
12821         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
12822       }
12823     }
12824   } else {
12825     // Compound assignment "x += y"
12826     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
12827   }
12828 
12829   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
12830                                RHS.get(), AA_Assigning))
12831     return QualType();
12832 
12833   CheckForNullPointerDereference(*this, LHSExpr);
12834 
12835   if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
12836     if (CompoundType.isNull()) {
12837       // C++2a [expr.ass]p5:
12838       //   A simple-assignment whose left operand is of a volatile-qualified
12839       //   type is deprecated unless the assignment is either a discarded-value
12840       //   expression or an unevaluated operand
12841       ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
12842     } else {
12843       // C++2a [expr.ass]p6:
12844       //   [Compound-assignment] expressions are deprecated if E1 has
12845       //   volatile-qualified type
12846       Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType;
12847     }
12848   }
12849 
12850   // C99 6.5.16p3: The type of an assignment expression is the type of the
12851   // left operand unless the left operand has qualified type, in which case
12852   // it is the unqualified version of the type of the left operand.
12853   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
12854   // is converted to the type of the assignment expression (above).
12855   // C++ 5.17p1: the type of the assignment expression is that of its left
12856   // operand.
12857   return (getLangOpts().CPlusPlus
12858           ? LHSType : LHSType.getUnqualifiedType());
12859 }
12860 
12861 // Only ignore explicit casts to void.
12862 static bool IgnoreCommaOperand(const Expr *E) {
12863   E = E->IgnoreParens();
12864 
12865   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
12866     if (CE->getCastKind() == CK_ToVoid) {
12867       return true;
12868     }
12869 
12870     // static_cast<void> on a dependent type will not show up as CK_ToVoid.
12871     if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
12872         CE->getSubExpr()->getType()->isDependentType()) {
12873       return true;
12874     }
12875   }
12876 
12877   return false;
12878 }
12879 
12880 // Look for instances where it is likely the comma operator is confused with
12881 // another operator.  There is an explicit list of acceptable expressions for
12882 // the left hand side of the comma operator, otherwise emit a warning.
12883 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
12884   // No warnings in macros
12885   if (Loc.isMacroID())
12886     return;
12887 
12888   // Don't warn in template instantiations.
12889   if (inTemplateInstantiation())
12890     return;
12891 
12892   // Scope isn't fine-grained enough to explicitly list the specific cases, so
12893   // instead, skip more than needed, then call back into here with the
12894   // CommaVisitor in SemaStmt.cpp.
12895   // The listed locations are the initialization and increment portions
12896   // of a for loop.  The additional checks are on the condition of
12897   // if statements, do/while loops, and for loops.
12898   // Differences in scope flags for C89 mode requires the extra logic.
12899   const unsigned ForIncrementFlags =
12900       getLangOpts().C99 || getLangOpts().CPlusPlus
12901           ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
12902           : Scope::ContinueScope | Scope::BreakScope;
12903   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
12904   const unsigned ScopeFlags = getCurScope()->getFlags();
12905   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
12906       (ScopeFlags & ForInitFlags) == ForInitFlags)
12907     return;
12908 
12909   // If there are multiple comma operators used together, get the RHS of the
12910   // of the comma operator as the LHS.
12911   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
12912     if (BO->getOpcode() != BO_Comma)
12913       break;
12914     LHS = BO->getRHS();
12915   }
12916 
12917   // Only allow some expressions on LHS to not warn.
12918   if (IgnoreCommaOperand(LHS))
12919     return;
12920 
12921   Diag(Loc, diag::warn_comma_operator);
12922   Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
12923       << LHS->getSourceRange()
12924       << FixItHint::CreateInsertion(LHS->getBeginLoc(),
12925                                     LangOpts.CPlusPlus ? "static_cast<void>("
12926                                                        : "(void)(")
12927       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
12928                                     ")");
12929 }
12930 
12931 // C99 6.5.17
12932 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
12933                                    SourceLocation Loc) {
12934   LHS = S.CheckPlaceholderExpr(LHS.get());
12935   RHS = S.CheckPlaceholderExpr(RHS.get());
12936   if (LHS.isInvalid() || RHS.isInvalid())
12937     return QualType();
12938 
12939   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
12940   // operands, but not unary promotions.
12941   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
12942 
12943   // So we treat the LHS as a ignored value, and in C++ we allow the
12944   // containing site to determine what should be done with the RHS.
12945   LHS = S.IgnoredValueConversions(LHS.get());
12946   if (LHS.isInvalid())
12947     return QualType();
12948 
12949   S.DiagnoseUnusedExprResult(LHS.get());
12950 
12951   if (!S.getLangOpts().CPlusPlus) {
12952     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
12953     if (RHS.isInvalid())
12954       return QualType();
12955     if (!RHS.get()->getType()->isVoidType())
12956       S.RequireCompleteType(Loc, RHS.get()->getType(),
12957                             diag::err_incomplete_type);
12958   }
12959 
12960   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
12961     S.DiagnoseCommaOperator(LHS.get(), Loc);
12962 
12963   return RHS.get()->getType();
12964 }
12965 
12966 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
12967 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
12968 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
12969                                                ExprValueKind &VK,
12970                                                ExprObjectKind &OK,
12971                                                SourceLocation OpLoc,
12972                                                bool IsInc, bool IsPrefix) {
12973   if (Op->isTypeDependent())
12974     return S.Context.DependentTy;
12975 
12976   QualType ResType = Op->getType();
12977   // Atomic types can be used for increment / decrement where the non-atomic
12978   // versions can, so ignore the _Atomic() specifier for the purpose of
12979   // checking.
12980   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
12981     ResType = ResAtomicType->getValueType();
12982 
12983   assert(!ResType.isNull() && "no type for increment/decrement expression");
12984 
12985   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
12986     // Decrement of bool is not allowed.
12987     if (!IsInc) {
12988       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
12989       return QualType();
12990     }
12991     // Increment of bool sets it to true, but is deprecated.
12992     S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
12993                                               : diag::warn_increment_bool)
12994       << Op->getSourceRange();
12995   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
12996     // Error on enum increments and decrements in C++ mode
12997     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
12998     return QualType();
12999   } else if (ResType->isRealType()) {
13000     // OK!
13001   } else if (ResType->isPointerType()) {
13002     // C99 6.5.2.4p2, 6.5.6p2
13003     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
13004       return QualType();
13005   } else if (ResType->isObjCObjectPointerType()) {
13006     // On modern runtimes, ObjC pointer arithmetic is forbidden.
13007     // Otherwise, we just need a complete type.
13008     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
13009         checkArithmeticOnObjCPointer(S, OpLoc, Op))
13010       return QualType();
13011   } else if (ResType->isAnyComplexType()) {
13012     // C99 does not support ++/-- on complex types, we allow as an extension.
13013     S.Diag(OpLoc, diag::ext_integer_increment_complex)
13014       << ResType << Op->getSourceRange();
13015   } else if (ResType->isPlaceholderType()) {
13016     ExprResult PR = S.CheckPlaceholderExpr(Op);
13017     if (PR.isInvalid()) return QualType();
13018     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
13019                                           IsInc, IsPrefix);
13020   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
13021     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
13022   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
13023              (ResType->castAs<VectorType>()->getVectorKind() !=
13024               VectorType::AltiVecBool)) {
13025     // The z vector extensions allow ++ and -- for non-bool vectors.
13026   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
13027             ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
13028     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
13029   } else {
13030     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
13031       << ResType << int(IsInc) << Op->getSourceRange();
13032     return QualType();
13033   }
13034   // At this point, we know we have a real, complex or pointer type.
13035   // Now make sure the operand is a modifiable lvalue.
13036   if (CheckForModifiableLvalue(Op, OpLoc, S))
13037     return QualType();
13038   if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
13039     // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
13040     //   An operand with volatile-qualified type is deprecated
13041     S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
13042         << IsInc << ResType;
13043   }
13044   // In C++, a prefix increment is the same type as the operand. Otherwise
13045   // (in C or with postfix), the increment is the unqualified type of the
13046   // operand.
13047   if (IsPrefix && S.getLangOpts().CPlusPlus) {
13048     VK = VK_LValue;
13049     OK = Op->getObjectKind();
13050     return ResType;
13051   } else {
13052     VK = VK_RValue;
13053     return ResType.getUnqualifiedType();
13054   }
13055 }
13056 
13057 
13058 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
13059 /// This routine allows us to typecheck complex/recursive expressions
13060 /// where the declaration is needed for type checking. We only need to
13061 /// handle cases when the expression references a function designator
13062 /// or is an lvalue. Here are some examples:
13063 ///  - &(x) => x
13064 ///  - &*****f => f for f a function designator.
13065 ///  - &s.xx => s
13066 ///  - &s.zz[1].yy -> s, if zz is an array
13067 ///  - *(x + 1) -> x, if x is an array
13068 ///  - &"123"[2] -> 0
13069 ///  - & __real__ x -> x
13070 ///
13071 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
13072 /// members.
13073 static ValueDecl *getPrimaryDecl(Expr *E) {
13074   switch (E->getStmtClass()) {
13075   case Stmt::DeclRefExprClass:
13076     return cast<DeclRefExpr>(E)->getDecl();
13077   case Stmt::MemberExprClass:
13078     // If this is an arrow operator, the address is an offset from
13079     // the base's value, so the object the base refers to is
13080     // irrelevant.
13081     if (cast<MemberExpr>(E)->isArrow())
13082       return nullptr;
13083     // Otherwise, the expression refers to a part of the base
13084     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
13085   case Stmt::ArraySubscriptExprClass: {
13086     // FIXME: This code shouldn't be necessary!  We should catch the implicit
13087     // promotion of register arrays earlier.
13088     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
13089     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
13090       if (ICE->getSubExpr()->getType()->isArrayType())
13091         return getPrimaryDecl(ICE->getSubExpr());
13092     }
13093     return nullptr;
13094   }
13095   case Stmt::UnaryOperatorClass: {
13096     UnaryOperator *UO = cast<UnaryOperator>(E);
13097 
13098     switch(UO->getOpcode()) {
13099     case UO_Real:
13100     case UO_Imag:
13101     case UO_Extension:
13102       return getPrimaryDecl(UO->getSubExpr());
13103     default:
13104       return nullptr;
13105     }
13106   }
13107   case Stmt::ParenExprClass:
13108     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
13109   case Stmt::ImplicitCastExprClass:
13110     // If the result of an implicit cast is an l-value, we care about
13111     // the sub-expression; otherwise, the result here doesn't matter.
13112     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
13113   case Stmt::CXXUuidofExprClass:
13114     return cast<CXXUuidofExpr>(E)->getGuidDecl();
13115   default:
13116     return nullptr;
13117   }
13118 }
13119 
13120 namespace {
13121 enum {
13122   AO_Bit_Field = 0,
13123   AO_Vector_Element = 1,
13124   AO_Property_Expansion = 2,
13125   AO_Register_Variable = 3,
13126   AO_Matrix_Element = 4,
13127   AO_No_Error = 5
13128 };
13129 }
13130 /// Diagnose invalid operand for address of operations.
13131 ///
13132 /// \param Type The type of operand which cannot have its address taken.
13133 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
13134                                          Expr *E, unsigned Type) {
13135   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
13136 }
13137 
13138 /// CheckAddressOfOperand - The operand of & must be either a function
13139 /// designator or an lvalue designating an object. If it is an lvalue, the
13140 /// object cannot be declared with storage class register or be a bit field.
13141 /// Note: The usual conversions are *not* applied to the operand of the &
13142 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
13143 /// In C++, the operand might be an overloaded function name, in which case
13144 /// we allow the '&' but retain the overloaded-function type.
13145 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
13146   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
13147     if (PTy->getKind() == BuiltinType::Overload) {
13148       Expr *E = OrigOp.get()->IgnoreParens();
13149       if (!isa<OverloadExpr>(E)) {
13150         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
13151         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
13152           << OrigOp.get()->getSourceRange();
13153         return QualType();
13154       }
13155 
13156       OverloadExpr *Ovl = cast<OverloadExpr>(E);
13157       if (isa<UnresolvedMemberExpr>(Ovl))
13158         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
13159           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13160             << OrigOp.get()->getSourceRange();
13161           return QualType();
13162         }
13163 
13164       return Context.OverloadTy;
13165     }
13166 
13167     if (PTy->getKind() == BuiltinType::UnknownAny)
13168       return Context.UnknownAnyTy;
13169 
13170     if (PTy->getKind() == BuiltinType::BoundMember) {
13171       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13172         << OrigOp.get()->getSourceRange();
13173       return QualType();
13174     }
13175 
13176     OrigOp = CheckPlaceholderExpr(OrigOp.get());
13177     if (OrigOp.isInvalid()) return QualType();
13178   }
13179 
13180   if (OrigOp.get()->isTypeDependent())
13181     return Context.DependentTy;
13182 
13183   assert(!OrigOp.get()->getType()->isPlaceholderType());
13184 
13185   // Make sure to ignore parentheses in subsequent checks
13186   Expr *op = OrigOp.get()->IgnoreParens();
13187 
13188   // In OpenCL captures for blocks called as lambda functions
13189   // are located in the private address space. Blocks used in
13190   // enqueue_kernel can be located in a different address space
13191   // depending on a vendor implementation. Thus preventing
13192   // taking an address of the capture to avoid invalid AS casts.
13193   if (LangOpts.OpenCL) {
13194     auto* VarRef = dyn_cast<DeclRefExpr>(op);
13195     if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
13196       Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
13197       return QualType();
13198     }
13199   }
13200 
13201   if (getLangOpts().C99) {
13202     // Implement C99-only parts of addressof rules.
13203     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
13204       if (uOp->getOpcode() == UO_Deref)
13205         // Per C99 6.5.3.2, the address of a deref always returns a valid result
13206         // (assuming the deref expression is valid).
13207         return uOp->getSubExpr()->getType();
13208     }
13209     // Technically, there should be a check for array subscript
13210     // expressions here, but the result of one is always an lvalue anyway.
13211   }
13212   ValueDecl *dcl = getPrimaryDecl(op);
13213 
13214   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
13215     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
13216                                            op->getBeginLoc()))
13217       return QualType();
13218 
13219   Expr::LValueClassification lval = op->ClassifyLValue(Context);
13220   unsigned AddressOfError = AO_No_Error;
13221 
13222   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
13223     bool sfinae = (bool)isSFINAEContext();
13224     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
13225                                   : diag::ext_typecheck_addrof_temporary)
13226       << op->getType() << op->getSourceRange();
13227     if (sfinae)
13228       return QualType();
13229     // Materialize the temporary as an lvalue so that we can take its address.
13230     OrigOp = op =
13231         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
13232   } else if (isa<ObjCSelectorExpr>(op)) {
13233     return Context.getPointerType(op->getType());
13234   } else if (lval == Expr::LV_MemberFunction) {
13235     // If it's an instance method, make a member pointer.
13236     // The expression must have exactly the form &A::foo.
13237 
13238     // If the underlying expression isn't a decl ref, give up.
13239     if (!isa<DeclRefExpr>(op)) {
13240       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13241         << OrigOp.get()->getSourceRange();
13242       return QualType();
13243     }
13244     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
13245     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
13246 
13247     // The id-expression was parenthesized.
13248     if (OrigOp.get() != DRE) {
13249       Diag(OpLoc, diag::err_parens_pointer_member_function)
13250         << OrigOp.get()->getSourceRange();
13251 
13252     // The method was named without a qualifier.
13253     } else if (!DRE->getQualifier()) {
13254       if (MD->getParent()->getName().empty())
13255         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13256           << op->getSourceRange();
13257       else {
13258         SmallString<32> Str;
13259         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
13260         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13261           << op->getSourceRange()
13262           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
13263       }
13264     }
13265 
13266     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
13267     if (isa<CXXDestructorDecl>(MD))
13268       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
13269 
13270     QualType MPTy = Context.getMemberPointerType(
13271         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
13272     // Under the MS ABI, lock down the inheritance model now.
13273     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13274       (void)isCompleteType(OpLoc, MPTy);
13275     return MPTy;
13276   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
13277     // C99 6.5.3.2p1
13278     // The operand must be either an l-value or a function designator
13279     if (!op->getType()->isFunctionType()) {
13280       // Use a special diagnostic for loads from property references.
13281       if (isa<PseudoObjectExpr>(op)) {
13282         AddressOfError = AO_Property_Expansion;
13283       } else {
13284         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
13285           << op->getType() << op->getSourceRange();
13286         return QualType();
13287       }
13288     }
13289   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
13290     // The operand cannot be a bit-field
13291     AddressOfError = AO_Bit_Field;
13292   } else if (op->getObjectKind() == OK_VectorComponent) {
13293     // The operand cannot be an element of a vector
13294     AddressOfError = AO_Vector_Element;
13295   } else if (op->getObjectKind() == OK_MatrixComponent) {
13296     // The operand cannot be an element of a matrix.
13297     AddressOfError = AO_Matrix_Element;
13298   } else if (dcl) { // C99 6.5.3.2p1
13299     // We have an lvalue with a decl. Make sure the decl is not declared
13300     // with the register storage-class specifier.
13301     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
13302       // in C++ it is not error to take address of a register
13303       // variable (c++03 7.1.1P3)
13304       if (vd->getStorageClass() == SC_Register &&
13305           !getLangOpts().CPlusPlus) {
13306         AddressOfError = AO_Register_Variable;
13307       }
13308     } else if (isa<MSPropertyDecl>(dcl)) {
13309       AddressOfError = AO_Property_Expansion;
13310     } else if (isa<FunctionTemplateDecl>(dcl)) {
13311       return Context.OverloadTy;
13312     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
13313       // Okay: we can take the address of a field.
13314       // Could be a pointer to member, though, if there is an explicit
13315       // scope qualifier for the class.
13316       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
13317         DeclContext *Ctx = dcl->getDeclContext();
13318         if (Ctx && Ctx->isRecord()) {
13319           if (dcl->getType()->isReferenceType()) {
13320             Diag(OpLoc,
13321                  diag::err_cannot_form_pointer_to_member_of_reference_type)
13322               << dcl->getDeclName() << dcl->getType();
13323             return QualType();
13324           }
13325 
13326           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
13327             Ctx = Ctx->getParent();
13328 
13329           QualType MPTy = Context.getMemberPointerType(
13330               op->getType(),
13331               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
13332           // Under the MS ABI, lock down the inheritance model now.
13333           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13334             (void)isCompleteType(OpLoc, MPTy);
13335           return MPTy;
13336         }
13337       }
13338     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
13339                !isa<BindingDecl>(dcl) && !isa<MSGuidDecl>(dcl))
13340       llvm_unreachable("Unknown/unexpected decl type");
13341   }
13342 
13343   if (AddressOfError != AO_No_Error) {
13344     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
13345     return QualType();
13346   }
13347 
13348   if (lval == Expr::LV_IncompleteVoidType) {
13349     // Taking the address of a void variable is technically illegal, but we
13350     // allow it in cases which are otherwise valid.
13351     // Example: "extern void x; void* y = &x;".
13352     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
13353   }
13354 
13355   // If the operand has type "type", the result has type "pointer to type".
13356   if (op->getType()->isObjCObjectType())
13357     return Context.getObjCObjectPointerType(op->getType());
13358 
13359   CheckAddressOfPackedMember(op);
13360 
13361   return Context.getPointerType(op->getType());
13362 }
13363 
13364 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
13365   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
13366   if (!DRE)
13367     return;
13368   const Decl *D = DRE->getDecl();
13369   if (!D)
13370     return;
13371   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
13372   if (!Param)
13373     return;
13374   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
13375     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
13376       return;
13377   if (FunctionScopeInfo *FD = S.getCurFunction())
13378     if (!FD->ModifiedNonNullParams.count(Param))
13379       FD->ModifiedNonNullParams.insert(Param);
13380 }
13381 
13382 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
13383 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
13384                                         SourceLocation OpLoc) {
13385   if (Op->isTypeDependent())
13386     return S.Context.DependentTy;
13387 
13388   ExprResult ConvResult = S.UsualUnaryConversions(Op);
13389   if (ConvResult.isInvalid())
13390     return QualType();
13391   Op = ConvResult.get();
13392   QualType OpTy = Op->getType();
13393   QualType Result;
13394 
13395   if (isa<CXXReinterpretCastExpr>(Op)) {
13396     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
13397     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
13398                                      Op->getSourceRange());
13399   }
13400 
13401   if (const PointerType *PT = OpTy->getAs<PointerType>())
13402   {
13403     Result = PT->getPointeeType();
13404   }
13405   else if (const ObjCObjectPointerType *OPT =
13406              OpTy->getAs<ObjCObjectPointerType>())
13407     Result = OPT->getPointeeType();
13408   else {
13409     ExprResult PR = S.CheckPlaceholderExpr(Op);
13410     if (PR.isInvalid()) return QualType();
13411     if (PR.get() != Op)
13412       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
13413   }
13414 
13415   if (Result.isNull()) {
13416     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
13417       << OpTy << Op->getSourceRange();
13418     return QualType();
13419   }
13420 
13421   // Note that per both C89 and C99, indirection is always legal, even if Result
13422   // is an incomplete type or void.  It would be possible to warn about
13423   // dereferencing a void pointer, but it's completely well-defined, and such a
13424   // warning is unlikely to catch any mistakes. In C++, indirection is not valid
13425   // for pointers to 'void' but is fine for any other pointer type:
13426   //
13427   // C++ [expr.unary.op]p1:
13428   //   [...] the expression to which [the unary * operator] is applied shall
13429   //   be a pointer to an object type, or a pointer to a function type
13430   if (S.getLangOpts().CPlusPlus && Result->isVoidType())
13431     S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
13432       << OpTy << Op->getSourceRange();
13433 
13434   // Dereferences are usually l-values...
13435   VK = VK_LValue;
13436 
13437   // ...except that certain expressions are never l-values in C.
13438   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
13439     VK = VK_RValue;
13440 
13441   return Result;
13442 }
13443 
13444 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
13445   BinaryOperatorKind Opc;
13446   switch (Kind) {
13447   default: llvm_unreachable("Unknown binop!");
13448   case tok::periodstar:           Opc = BO_PtrMemD; break;
13449   case tok::arrowstar:            Opc = BO_PtrMemI; break;
13450   case tok::star:                 Opc = BO_Mul; break;
13451   case tok::slash:                Opc = BO_Div; break;
13452   case tok::percent:              Opc = BO_Rem; break;
13453   case tok::plus:                 Opc = BO_Add; break;
13454   case tok::minus:                Opc = BO_Sub; break;
13455   case tok::lessless:             Opc = BO_Shl; break;
13456   case tok::greatergreater:       Opc = BO_Shr; break;
13457   case tok::lessequal:            Opc = BO_LE; break;
13458   case tok::less:                 Opc = BO_LT; break;
13459   case tok::greaterequal:         Opc = BO_GE; break;
13460   case tok::greater:              Opc = BO_GT; break;
13461   case tok::exclaimequal:         Opc = BO_NE; break;
13462   case tok::equalequal:           Opc = BO_EQ; break;
13463   case tok::spaceship:            Opc = BO_Cmp; break;
13464   case tok::amp:                  Opc = BO_And; break;
13465   case tok::caret:                Opc = BO_Xor; break;
13466   case tok::pipe:                 Opc = BO_Or; break;
13467   case tok::ampamp:               Opc = BO_LAnd; break;
13468   case tok::pipepipe:             Opc = BO_LOr; break;
13469   case tok::equal:                Opc = BO_Assign; break;
13470   case tok::starequal:            Opc = BO_MulAssign; break;
13471   case tok::slashequal:           Opc = BO_DivAssign; break;
13472   case tok::percentequal:         Opc = BO_RemAssign; break;
13473   case tok::plusequal:            Opc = BO_AddAssign; break;
13474   case tok::minusequal:           Opc = BO_SubAssign; break;
13475   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
13476   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
13477   case tok::ampequal:             Opc = BO_AndAssign; break;
13478   case tok::caretequal:           Opc = BO_XorAssign; break;
13479   case tok::pipeequal:            Opc = BO_OrAssign; break;
13480   case tok::comma:                Opc = BO_Comma; break;
13481   }
13482   return Opc;
13483 }
13484 
13485 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
13486   tok::TokenKind Kind) {
13487   UnaryOperatorKind Opc;
13488   switch (Kind) {
13489   default: llvm_unreachable("Unknown unary op!");
13490   case tok::plusplus:     Opc = UO_PreInc; break;
13491   case tok::minusminus:   Opc = UO_PreDec; break;
13492   case tok::amp:          Opc = UO_AddrOf; break;
13493   case tok::star:         Opc = UO_Deref; break;
13494   case tok::plus:         Opc = UO_Plus; break;
13495   case tok::minus:        Opc = UO_Minus; break;
13496   case tok::tilde:        Opc = UO_Not; break;
13497   case tok::exclaim:      Opc = UO_LNot; break;
13498   case tok::kw___real:    Opc = UO_Real; break;
13499   case tok::kw___imag:    Opc = UO_Imag; break;
13500   case tok::kw___extension__: Opc = UO_Extension; break;
13501   }
13502   return Opc;
13503 }
13504 
13505 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
13506 /// This warning suppressed in the event of macro expansions.
13507 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
13508                                    SourceLocation OpLoc, bool IsBuiltin) {
13509   if (S.inTemplateInstantiation())
13510     return;
13511   if (S.isUnevaluatedContext())
13512     return;
13513   if (OpLoc.isInvalid() || OpLoc.isMacroID())
13514     return;
13515   LHSExpr = LHSExpr->IgnoreParenImpCasts();
13516   RHSExpr = RHSExpr->IgnoreParenImpCasts();
13517   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
13518   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
13519   if (!LHSDeclRef || !RHSDeclRef ||
13520       LHSDeclRef->getLocation().isMacroID() ||
13521       RHSDeclRef->getLocation().isMacroID())
13522     return;
13523   const ValueDecl *LHSDecl =
13524     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
13525   const ValueDecl *RHSDecl =
13526     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
13527   if (LHSDecl != RHSDecl)
13528     return;
13529   if (LHSDecl->getType().isVolatileQualified())
13530     return;
13531   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13532     if (RefTy->getPointeeType().isVolatileQualified())
13533       return;
13534 
13535   S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
13536                           : diag::warn_self_assignment_overloaded)
13537       << LHSDeclRef->getType() << LHSExpr->getSourceRange()
13538       << RHSExpr->getSourceRange();
13539 }
13540 
13541 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
13542 /// is usually indicative of introspection within the Objective-C pointer.
13543 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
13544                                           SourceLocation OpLoc) {
13545   if (!S.getLangOpts().ObjC)
13546     return;
13547 
13548   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
13549   const Expr *LHS = L.get();
13550   const Expr *RHS = R.get();
13551 
13552   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
13553     ObjCPointerExpr = LHS;
13554     OtherExpr = RHS;
13555   }
13556   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
13557     ObjCPointerExpr = RHS;
13558     OtherExpr = LHS;
13559   }
13560 
13561   // This warning is deliberately made very specific to reduce false
13562   // positives with logic that uses '&' for hashing.  This logic mainly
13563   // looks for code trying to introspect into tagged pointers, which
13564   // code should generally never do.
13565   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
13566     unsigned Diag = diag::warn_objc_pointer_masking;
13567     // Determine if we are introspecting the result of performSelectorXXX.
13568     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
13569     // Special case messages to -performSelector and friends, which
13570     // can return non-pointer values boxed in a pointer value.
13571     // Some clients may wish to silence warnings in this subcase.
13572     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
13573       Selector S = ME->getSelector();
13574       StringRef SelArg0 = S.getNameForSlot(0);
13575       if (SelArg0.startswith("performSelector"))
13576         Diag = diag::warn_objc_pointer_masking_performSelector;
13577     }
13578 
13579     S.Diag(OpLoc, Diag)
13580       << ObjCPointerExpr->getSourceRange();
13581   }
13582 }
13583 
13584 static NamedDecl *getDeclFromExpr(Expr *E) {
13585   if (!E)
13586     return nullptr;
13587   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
13588     return DRE->getDecl();
13589   if (auto *ME = dyn_cast<MemberExpr>(E))
13590     return ME->getMemberDecl();
13591   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
13592     return IRE->getDecl();
13593   return nullptr;
13594 }
13595 
13596 // This helper function promotes a binary operator's operands (which are of a
13597 // half vector type) to a vector of floats and then truncates the result to
13598 // a vector of either half or short.
13599 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
13600                                       BinaryOperatorKind Opc, QualType ResultTy,
13601                                       ExprValueKind VK, ExprObjectKind OK,
13602                                       bool IsCompAssign, SourceLocation OpLoc,
13603                                       FPOptionsOverride FPFeatures) {
13604   auto &Context = S.getASTContext();
13605   assert((isVector(ResultTy, Context.HalfTy) ||
13606           isVector(ResultTy, Context.ShortTy)) &&
13607          "Result must be a vector of half or short");
13608   assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
13609          isVector(RHS.get()->getType(), Context.HalfTy) &&
13610          "both operands expected to be a half vector");
13611 
13612   RHS = convertVector(RHS.get(), Context.FloatTy, S);
13613   QualType BinOpResTy = RHS.get()->getType();
13614 
13615   // If Opc is a comparison, ResultType is a vector of shorts. In that case,
13616   // change BinOpResTy to a vector of ints.
13617   if (isVector(ResultTy, Context.ShortTy))
13618     BinOpResTy = S.GetSignedVectorType(BinOpResTy);
13619 
13620   if (IsCompAssign)
13621     return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
13622                                           ResultTy, VK, OK, OpLoc, FPFeatures,
13623                                           BinOpResTy, BinOpResTy);
13624 
13625   LHS = convertVector(LHS.get(), Context.FloatTy, S);
13626   auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
13627                                     BinOpResTy, VK, OK, OpLoc, FPFeatures);
13628   return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
13629 }
13630 
13631 static std::pair<ExprResult, ExprResult>
13632 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
13633                            Expr *RHSExpr) {
13634   ExprResult LHS = LHSExpr, RHS = RHSExpr;
13635   if (!S.getLangOpts().CPlusPlus) {
13636     // C cannot handle TypoExpr nodes on either side of a binop because it
13637     // doesn't handle dependent types properly, so make sure any TypoExprs have
13638     // been dealt with before checking the operands.
13639     LHS = S.CorrectDelayedTyposInExpr(LHS);
13640     RHS = S.CorrectDelayedTyposInExpr(
13641         RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
13642         [Opc, LHS](Expr *E) {
13643           if (Opc != BO_Assign)
13644             return ExprResult(E);
13645           // Avoid correcting the RHS to the same Expr as the LHS.
13646           Decl *D = getDeclFromExpr(E);
13647           return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
13648         });
13649   }
13650   return std::make_pair(LHS, RHS);
13651 }
13652 
13653 /// Returns true if conversion between vectors of halfs and vectors of floats
13654 /// is needed.
13655 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
13656                                      Expr *E0, Expr *E1 = nullptr) {
13657   if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
13658       Ctx.getTargetInfo().useFP16ConversionIntrinsics())
13659     return false;
13660 
13661   auto HasVectorOfHalfType = [&Ctx](Expr *E) {
13662     QualType Ty = E->IgnoreImplicit()->getType();
13663 
13664     // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
13665     // to vectors of floats. Although the element type of the vectors is __fp16,
13666     // the vectors shouldn't be treated as storage-only types. See the
13667     // discussion here: https://reviews.llvm.org/rG825235c140e7
13668     if (const VectorType *VT = Ty->getAs<VectorType>()) {
13669       if (VT->getVectorKind() == VectorType::NeonVector)
13670         return false;
13671       return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
13672     }
13673     return false;
13674   };
13675 
13676   return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
13677 }
13678 
13679 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
13680 /// operator @p Opc at location @c TokLoc. This routine only supports
13681 /// built-in operations; ActOnBinOp handles overloaded operators.
13682 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
13683                                     BinaryOperatorKind Opc,
13684                                     Expr *LHSExpr, Expr *RHSExpr) {
13685   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
13686     // The syntax only allows initializer lists on the RHS of assignment,
13687     // so we don't need to worry about accepting invalid code for
13688     // non-assignment operators.
13689     // C++11 5.17p9:
13690     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
13691     //   of x = {} is x = T().
13692     InitializationKind Kind = InitializationKind::CreateDirectList(
13693         RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
13694     InitializedEntity Entity =
13695         InitializedEntity::InitializeTemporary(LHSExpr->getType());
13696     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
13697     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
13698     if (Init.isInvalid())
13699       return Init;
13700     RHSExpr = Init.get();
13701   }
13702 
13703   ExprResult LHS = LHSExpr, RHS = RHSExpr;
13704   QualType ResultTy;     // Result type of the binary operator.
13705   // The following two variables are used for compound assignment operators
13706   QualType CompLHSTy;    // Type of LHS after promotions for computation
13707   QualType CompResultTy; // Type of computation result
13708   ExprValueKind VK = VK_RValue;
13709   ExprObjectKind OK = OK_Ordinary;
13710   bool ConvertHalfVec = false;
13711 
13712   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
13713   if (!LHS.isUsable() || !RHS.isUsable())
13714     return ExprError();
13715 
13716   if (getLangOpts().OpenCL) {
13717     QualType LHSTy = LHSExpr->getType();
13718     QualType RHSTy = RHSExpr->getType();
13719     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
13720     // the ATOMIC_VAR_INIT macro.
13721     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
13722       SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
13723       if (BO_Assign == Opc)
13724         Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
13725       else
13726         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
13727       return ExprError();
13728     }
13729 
13730     // OpenCL special types - image, sampler, pipe, and blocks are to be used
13731     // only with a builtin functions and therefore should be disallowed here.
13732     if (LHSTy->isImageType() || RHSTy->isImageType() ||
13733         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
13734         LHSTy->isPipeType() || RHSTy->isPipeType() ||
13735         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
13736       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
13737       return ExprError();
13738     }
13739   }
13740 
13741   switch (Opc) {
13742   case BO_Assign:
13743     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
13744     if (getLangOpts().CPlusPlus &&
13745         LHS.get()->getObjectKind() != OK_ObjCProperty) {
13746       VK = LHS.get()->getValueKind();
13747       OK = LHS.get()->getObjectKind();
13748     }
13749     if (!ResultTy.isNull()) {
13750       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
13751       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
13752 
13753       // Avoid copying a block to the heap if the block is assigned to a local
13754       // auto variable that is declared in the same scope as the block. This
13755       // optimization is unsafe if the local variable is declared in an outer
13756       // scope. For example:
13757       //
13758       // BlockTy b;
13759       // {
13760       //   b = ^{...};
13761       // }
13762       // // It is unsafe to invoke the block here if it wasn't copied to the
13763       // // heap.
13764       // b();
13765 
13766       if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
13767         if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
13768           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
13769             if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
13770               BE->getBlockDecl()->setCanAvoidCopyToHeap();
13771 
13772       if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
13773         checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
13774                               NTCUC_Assignment, NTCUK_Copy);
13775     }
13776     RecordModifiableNonNullParam(*this, LHS.get());
13777     break;
13778   case BO_PtrMemD:
13779   case BO_PtrMemI:
13780     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
13781                                             Opc == BO_PtrMemI);
13782     break;
13783   case BO_Mul:
13784   case BO_Div:
13785     ConvertHalfVec = true;
13786     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
13787                                            Opc == BO_Div);
13788     break;
13789   case BO_Rem:
13790     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
13791     break;
13792   case BO_Add:
13793     ConvertHalfVec = true;
13794     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
13795     break;
13796   case BO_Sub:
13797     ConvertHalfVec = true;
13798     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
13799     break;
13800   case BO_Shl:
13801   case BO_Shr:
13802     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
13803     break;
13804   case BO_LE:
13805   case BO_LT:
13806   case BO_GE:
13807   case BO_GT:
13808     ConvertHalfVec = true;
13809     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
13810     break;
13811   case BO_EQ:
13812   case BO_NE:
13813     ConvertHalfVec = true;
13814     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
13815     break;
13816   case BO_Cmp:
13817     ConvertHalfVec = true;
13818     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
13819     assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
13820     break;
13821   case BO_And:
13822     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
13823     LLVM_FALLTHROUGH;
13824   case BO_Xor:
13825   case BO_Or:
13826     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
13827     break;
13828   case BO_LAnd:
13829   case BO_LOr:
13830     ConvertHalfVec = true;
13831     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
13832     break;
13833   case BO_MulAssign:
13834   case BO_DivAssign:
13835     ConvertHalfVec = true;
13836     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
13837                                                Opc == BO_DivAssign);
13838     CompLHSTy = CompResultTy;
13839     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13840       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13841     break;
13842   case BO_RemAssign:
13843     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
13844     CompLHSTy = CompResultTy;
13845     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13846       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13847     break;
13848   case BO_AddAssign:
13849     ConvertHalfVec = true;
13850     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
13851     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13852       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13853     break;
13854   case BO_SubAssign:
13855     ConvertHalfVec = true;
13856     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
13857     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13858       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13859     break;
13860   case BO_ShlAssign:
13861   case BO_ShrAssign:
13862     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
13863     CompLHSTy = CompResultTy;
13864     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13865       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13866     break;
13867   case BO_AndAssign:
13868   case BO_OrAssign: // fallthrough
13869     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
13870     LLVM_FALLTHROUGH;
13871   case BO_XorAssign:
13872     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
13873     CompLHSTy = CompResultTy;
13874     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
13875       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
13876     break;
13877   case BO_Comma:
13878     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
13879     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
13880       VK = RHS.get()->getValueKind();
13881       OK = RHS.get()->getObjectKind();
13882     }
13883     break;
13884   }
13885   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
13886     return ExprError();
13887 
13888   // Some of the binary operations require promoting operands of half vector to
13889   // float vectors and truncating the result back to half vector. For now, we do
13890   // this only when HalfArgsAndReturn is set (that is, when the target is arm or
13891   // arm64).
13892   assert(isVector(RHS.get()->getType(), Context.HalfTy) ==
13893          isVector(LHS.get()->getType(), Context.HalfTy) &&
13894          "both sides are half vectors or neither sides are");
13895   ConvertHalfVec =
13896       needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
13897 
13898   // Check for array bounds violations for both sides of the BinaryOperator
13899   CheckArrayAccess(LHS.get());
13900   CheckArrayAccess(RHS.get());
13901 
13902   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
13903     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
13904                                                  &Context.Idents.get("object_setClass"),
13905                                                  SourceLocation(), LookupOrdinaryName);
13906     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
13907       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
13908       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
13909           << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
13910                                         "object_setClass(")
13911           << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
13912                                           ",")
13913           << FixItHint::CreateInsertion(RHSLocEnd, ")");
13914     }
13915     else
13916       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
13917   }
13918   else if (const ObjCIvarRefExpr *OIRE =
13919            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
13920     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
13921 
13922   // Opc is not a compound assignment if CompResultTy is null.
13923   if (CompResultTy.isNull()) {
13924     if (ConvertHalfVec)
13925       return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
13926                                  OpLoc, CurFPFeatureOverrides());
13927     return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
13928                                   VK, OK, OpLoc, CurFPFeatureOverrides());
13929   }
13930 
13931   // Handle compound assignments.
13932   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
13933       OK_ObjCProperty) {
13934     VK = VK_LValue;
13935     OK = LHS.get()->getObjectKind();
13936   }
13937 
13938   // The LHS is not converted to the result type for fixed-point compound
13939   // assignment as the common type is computed on demand. Reset the CompLHSTy
13940   // to the LHS type we would have gotten after unary conversions.
13941   if (CompResultTy->isFixedPointType())
13942     CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
13943 
13944   if (ConvertHalfVec)
13945     return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
13946                                OpLoc, CurFPFeatureOverrides());
13947 
13948   return CompoundAssignOperator::Create(
13949       Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
13950       CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
13951 }
13952 
13953 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
13954 /// operators are mixed in a way that suggests that the programmer forgot that
13955 /// comparison operators have higher precedence. The most typical example of
13956 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
13957 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
13958                                       SourceLocation OpLoc, Expr *LHSExpr,
13959                                       Expr *RHSExpr) {
13960   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
13961   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
13962 
13963   // Check that one of the sides is a comparison operator and the other isn't.
13964   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
13965   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
13966   if (isLeftComp == isRightComp)
13967     return;
13968 
13969   // Bitwise operations are sometimes used as eager logical ops.
13970   // Don't diagnose this.
13971   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
13972   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
13973   if (isLeftBitwise || isRightBitwise)
13974     return;
13975 
13976   SourceRange DiagRange = isLeftComp
13977                               ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
13978                               : SourceRange(OpLoc, RHSExpr->getEndLoc());
13979   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
13980   SourceRange ParensRange =
13981       isLeftComp
13982           ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
13983           : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
13984 
13985   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
13986     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
13987   SuggestParentheses(Self, OpLoc,
13988     Self.PDiag(diag::note_precedence_silence) << OpStr,
13989     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
13990   SuggestParentheses(Self, OpLoc,
13991     Self.PDiag(diag::note_precedence_bitwise_first)
13992       << BinaryOperator::getOpcodeStr(Opc),
13993     ParensRange);
13994 }
13995 
13996 /// It accepts a '&&' expr that is inside a '||' one.
13997 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
13998 /// in parentheses.
13999 static void
14000 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
14001                                        BinaryOperator *Bop) {
14002   assert(Bop->getOpcode() == BO_LAnd);
14003   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
14004       << Bop->getSourceRange() << OpLoc;
14005   SuggestParentheses(Self, Bop->getOperatorLoc(),
14006     Self.PDiag(diag::note_precedence_silence)
14007       << Bop->getOpcodeStr(),
14008     Bop->getSourceRange());
14009 }
14010 
14011 /// Returns true if the given expression can be evaluated as a constant
14012 /// 'true'.
14013 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
14014   bool Res;
14015   return !E->isValueDependent() &&
14016          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
14017 }
14018 
14019 /// Returns true if the given expression can be evaluated as a constant
14020 /// 'false'.
14021 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
14022   bool Res;
14023   return !E->isValueDependent() &&
14024          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
14025 }
14026 
14027 /// Look for '&&' in the left hand of a '||' expr.
14028 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
14029                                              Expr *LHSExpr, Expr *RHSExpr) {
14030   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
14031     if (Bop->getOpcode() == BO_LAnd) {
14032       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
14033       if (EvaluatesAsFalse(S, RHSExpr))
14034         return;
14035       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
14036       if (!EvaluatesAsTrue(S, Bop->getLHS()))
14037         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14038     } else if (Bop->getOpcode() == BO_LOr) {
14039       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
14040         // If it's "a || b && 1 || c" we didn't warn earlier for
14041         // "a || b && 1", but warn now.
14042         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
14043           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
14044       }
14045     }
14046   }
14047 }
14048 
14049 /// Look for '&&' in the right hand of a '||' expr.
14050 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
14051                                              Expr *LHSExpr, Expr *RHSExpr) {
14052   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
14053     if (Bop->getOpcode() == BO_LAnd) {
14054       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
14055       if (EvaluatesAsFalse(S, LHSExpr))
14056         return;
14057       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
14058       if (!EvaluatesAsTrue(S, Bop->getRHS()))
14059         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14060     }
14061   }
14062 }
14063 
14064 /// Look for bitwise op in the left or right hand of a bitwise op with
14065 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
14066 /// the '&' expression in parentheses.
14067 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
14068                                          SourceLocation OpLoc, Expr *SubExpr) {
14069   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14070     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
14071       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
14072         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
14073         << Bop->getSourceRange() << OpLoc;
14074       SuggestParentheses(S, Bop->getOperatorLoc(),
14075         S.PDiag(diag::note_precedence_silence)
14076           << Bop->getOpcodeStr(),
14077         Bop->getSourceRange());
14078     }
14079   }
14080 }
14081 
14082 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
14083                                     Expr *SubExpr, StringRef Shift) {
14084   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14085     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
14086       StringRef Op = Bop->getOpcodeStr();
14087       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
14088           << Bop->getSourceRange() << OpLoc << Shift << Op;
14089       SuggestParentheses(S, Bop->getOperatorLoc(),
14090           S.PDiag(diag::note_precedence_silence) << Op,
14091           Bop->getSourceRange());
14092     }
14093   }
14094 }
14095 
14096 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
14097                                  Expr *LHSExpr, Expr *RHSExpr) {
14098   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
14099   if (!OCE)
14100     return;
14101 
14102   FunctionDecl *FD = OCE->getDirectCallee();
14103   if (!FD || !FD->isOverloadedOperator())
14104     return;
14105 
14106   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
14107   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
14108     return;
14109 
14110   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
14111       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
14112       << (Kind == OO_LessLess);
14113   SuggestParentheses(S, OCE->getOperatorLoc(),
14114                      S.PDiag(diag::note_precedence_silence)
14115                          << (Kind == OO_LessLess ? "<<" : ">>"),
14116                      OCE->getSourceRange());
14117   SuggestParentheses(
14118       S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
14119       SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
14120 }
14121 
14122 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
14123 /// precedence.
14124 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
14125                                     SourceLocation OpLoc, Expr *LHSExpr,
14126                                     Expr *RHSExpr){
14127   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
14128   if (BinaryOperator::isBitwiseOp(Opc))
14129     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
14130 
14131   // Diagnose "arg1 & arg2 | arg3"
14132   if ((Opc == BO_Or || Opc == BO_Xor) &&
14133       !OpLoc.isMacroID()/* Don't warn in macros. */) {
14134     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
14135     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
14136   }
14137 
14138   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
14139   // We don't warn for 'assert(a || b && "bad")' since this is safe.
14140   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
14141     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
14142     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
14143   }
14144 
14145   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
14146       || Opc == BO_Shr) {
14147     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
14148     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
14149     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
14150   }
14151 
14152   // Warn on overloaded shift operators and comparisons, such as:
14153   // cout << 5 == 4;
14154   if (BinaryOperator::isComparisonOp(Opc))
14155     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
14156 }
14157 
14158 // Binary Operators.  'Tok' is the token for the operator.
14159 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
14160                             tok::TokenKind Kind,
14161                             Expr *LHSExpr, Expr *RHSExpr) {
14162   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
14163   assert(LHSExpr && "ActOnBinOp(): missing left expression");
14164   assert(RHSExpr && "ActOnBinOp(): missing right expression");
14165 
14166   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
14167   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
14168 
14169   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
14170 }
14171 
14172 /// Build an overloaded binary operator expression in the given scope.
14173 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
14174                                        BinaryOperatorKind Opc,
14175                                        Expr *LHS, Expr *RHS) {
14176   switch (Opc) {
14177   case BO_Assign:
14178   case BO_DivAssign:
14179   case BO_RemAssign:
14180   case BO_SubAssign:
14181   case BO_AndAssign:
14182   case BO_OrAssign:
14183   case BO_XorAssign:
14184     DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
14185     CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
14186     break;
14187   default:
14188     break;
14189   }
14190 
14191   // Find all of the overloaded operators visible from this
14192   // point. We perform both an operator-name lookup from the local
14193   // scope and an argument-dependent lookup based on the types of
14194   // the arguments.
14195   UnresolvedSet<16> Functions;
14196   OverloadedOperatorKind OverOp
14197     = BinaryOperator::getOverloadedOperator(Opc);
14198   if (Sc && OverOp != OO_None && OverOp != OO_Equal)
14199     S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
14200                                    RHS->getType(), Functions);
14201 
14202   // In C++20 onwards, we may have a second operator to look up.
14203   if (S.getLangOpts().CPlusPlus20) {
14204     if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
14205       S.LookupOverloadedOperatorName(ExtraOp, Sc, LHS->getType(),
14206                                      RHS->getType(), Functions);
14207   }
14208 
14209   // Build the (potentially-overloaded, potentially-dependent)
14210   // binary operation.
14211   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
14212 }
14213 
14214 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
14215                             BinaryOperatorKind Opc,
14216                             Expr *LHSExpr, Expr *RHSExpr) {
14217   ExprResult LHS, RHS;
14218   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14219   if (!LHS.isUsable() || !RHS.isUsable())
14220     return ExprError();
14221   LHSExpr = LHS.get();
14222   RHSExpr = RHS.get();
14223 
14224   // We want to end up calling one of checkPseudoObjectAssignment
14225   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
14226   // both expressions are overloadable or either is type-dependent),
14227   // or CreateBuiltinBinOp (in any other case).  We also want to get
14228   // any placeholder types out of the way.
14229 
14230   // Handle pseudo-objects in the LHS.
14231   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
14232     // Assignments with a pseudo-object l-value need special analysis.
14233     if (pty->getKind() == BuiltinType::PseudoObject &&
14234         BinaryOperator::isAssignmentOp(Opc))
14235       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
14236 
14237     // Don't resolve overloads if the other type is overloadable.
14238     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
14239       // We can't actually test that if we still have a placeholder,
14240       // though.  Fortunately, none of the exceptions we see in that
14241       // code below are valid when the LHS is an overload set.  Note
14242       // that an overload set can be dependently-typed, but it never
14243       // instantiates to having an overloadable type.
14244       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
14245       if (resolvedRHS.isInvalid()) return ExprError();
14246       RHSExpr = resolvedRHS.get();
14247 
14248       if (RHSExpr->isTypeDependent() ||
14249           RHSExpr->getType()->isOverloadableType())
14250         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14251     }
14252 
14253     // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
14254     // template, diagnose the missing 'template' keyword instead of diagnosing
14255     // an invalid use of a bound member function.
14256     //
14257     // Note that "A::x < b" might be valid if 'b' has an overloadable type due
14258     // to C++1z [over.over]/1.4, but we already checked for that case above.
14259     if (Opc == BO_LT && inTemplateInstantiation() &&
14260         (pty->getKind() == BuiltinType::BoundMember ||
14261          pty->getKind() == BuiltinType::Overload)) {
14262       auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
14263       if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
14264           std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) {
14265             return isa<FunctionTemplateDecl>(ND);
14266           })) {
14267         Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
14268                                 : OE->getNameLoc(),
14269              diag::err_template_kw_missing)
14270           << OE->getName().getAsString() << "";
14271         return ExprError();
14272       }
14273     }
14274 
14275     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
14276     if (LHS.isInvalid()) return ExprError();
14277     LHSExpr = LHS.get();
14278   }
14279 
14280   // Handle pseudo-objects in the RHS.
14281   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
14282     // An overload in the RHS can potentially be resolved by the type
14283     // being assigned to.
14284     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
14285       if (getLangOpts().CPlusPlus &&
14286           (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
14287            LHSExpr->getType()->isOverloadableType()))
14288         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14289 
14290       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
14291     }
14292 
14293     // Don't resolve overloads if the other type is overloadable.
14294     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
14295         LHSExpr->getType()->isOverloadableType())
14296       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14297 
14298     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
14299     if (!resolvedRHS.isUsable()) return ExprError();
14300     RHSExpr = resolvedRHS.get();
14301   }
14302 
14303   if (getLangOpts().CPlusPlus) {
14304     // If either expression is type-dependent, always build an
14305     // overloaded op.
14306     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
14307       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14308 
14309     // Otherwise, build an overloaded op if either expression has an
14310     // overloadable type.
14311     if (LHSExpr->getType()->isOverloadableType() ||
14312         RHSExpr->getType()->isOverloadableType())
14313       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14314   }
14315 
14316   // Build a built-in binary operation.
14317   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
14318 }
14319 
14320 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
14321   if (T.isNull() || T->isDependentType())
14322     return false;
14323 
14324   if (!T->isPromotableIntegerType())
14325     return true;
14326 
14327   return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
14328 }
14329 
14330 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
14331                                       UnaryOperatorKind Opc,
14332                                       Expr *InputExpr) {
14333   ExprResult Input = InputExpr;
14334   ExprValueKind VK = VK_RValue;
14335   ExprObjectKind OK = OK_Ordinary;
14336   QualType resultType;
14337   bool CanOverflow = false;
14338 
14339   bool ConvertHalfVec = false;
14340   if (getLangOpts().OpenCL) {
14341     QualType Ty = InputExpr->getType();
14342     // The only legal unary operation for atomics is '&'.
14343     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
14344     // OpenCL special types - image, sampler, pipe, and blocks are to be used
14345     // only with a builtin functions and therefore should be disallowed here.
14346         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
14347         || Ty->isBlockPointerType())) {
14348       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14349                        << InputExpr->getType()
14350                        << Input.get()->getSourceRange());
14351     }
14352   }
14353 
14354   switch (Opc) {
14355   case UO_PreInc:
14356   case UO_PreDec:
14357   case UO_PostInc:
14358   case UO_PostDec:
14359     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
14360                                                 OpLoc,
14361                                                 Opc == UO_PreInc ||
14362                                                 Opc == UO_PostInc,
14363                                                 Opc == UO_PreInc ||
14364                                                 Opc == UO_PreDec);
14365     CanOverflow = isOverflowingIntegerType(Context, resultType);
14366     break;
14367   case UO_AddrOf:
14368     resultType = CheckAddressOfOperand(Input, OpLoc);
14369     CheckAddressOfNoDeref(InputExpr);
14370     RecordModifiableNonNullParam(*this, InputExpr);
14371     break;
14372   case UO_Deref: {
14373     Input = DefaultFunctionArrayLvalueConversion(Input.get());
14374     if (Input.isInvalid()) return ExprError();
14375     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
14376     break;
14377   }
14378   case UO_Plus:
14379   case UO_Minus:
14380     CanOverflow = Opc == UO_Minus &&
14381                   isOverflowingIntegerType(Context, Input.get()->getType());
14382     Input = UsualUnaryConversions(Input.get());
14383     if (Input.isInvalid()) return ExprError();
14384     // Unary plus and minus require promoting an operand of half vector to a
14385     // float vector and truncating the result back to a half vector. For now, we
14386     // do this only when HalfArgsAndReturns is set (that is, when the target is
14387     // arm or arm64).
14388     ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
14389 
14390     // If the operand is a half vector, promote it to a float vector.
14391     if (ConvertHalfVec)
14392       Input = convertVector(Input.get(), Context.FloatTy, *this);
14393     resultType = Input.get()->getType();
14394     if (resultType->isDependentType())
14395       break;
14396     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
14397       break;
14398     else if (resultType->isVectorType() &&
14399              // The z vector extensions don't allow + or - with bool vectors.
14400              (!Context.getLangOpts().ZVector ||
14401               resultType->castAs<VectorType>()->getVectorKind() !=
14402               VectorType::AltiVecBool))
14403       break;
14404     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
14405              Opc == UO_Plus &&
14406              resultType->isPointerType())
14407       break;
14408 
14409     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14410       << resultType << Input.get()->getSourceRange());
14411 
14412   case UO_Not: // bitwise complement
14413     Input = UsualUnaryConversions(Input.get());
14414     if (Input.isInvalid())
14415       return ExprError();
14416     resultType = Input.get()->getType();
14417     if (resultType->isDependentType())
14418       break;
14419     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
14420     if (resultType->isComplexType() || resultType->isComplexIntegerType())
14421       // C99 does not support '~' for complex conjugation.
14422       Diag(OpLoc, diag::ext_integer_complement_complex)
14423           << resultType << Input.get()->getSourceRange();
14424     else if (resultType->hasIntegerRepresentation())
14425       break;
14426     else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
14427       // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
14428       // on vector float types.
14429       QualType T = resultType->castAs<ExtVectorType>()->getElementType();
14430       if (!T->isIntegerType())
14431         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14432                           << resultType << Input.get()->getSourceRange());
14433     } else {
14434       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14435                        << resultType << Input.get()->getSourceRange());
14436     }
14437     break;
14438 
14439   case UO_LNot: // logical negation
14440     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
14441     Input = DefaultFunctionArrayLvalueConversion(Input.get());
14442     if (Input.isInvalid()) return ExprError();
14443     resultType = Input.get()->getType();
14444 
14445     // Though we still have to promote half FP to float...
14446     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
14447       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
14448       resultType = Context.FloatTy;
14449     }
14450 
14451     if (resultType->isDependentType())
14452       break;
14453     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
14454       // C99 6.5.3.3p1: ok, fallthrough;
14455       if (Context.getLangOpts().CPlusPlus) {
14456         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
14457         // operand contextually converted to bool.
14458         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
14459                                   ScalarTypeToBooleanCastKind(resultType));
14460       } else if (Context.getLangOpts().OpenCL &&
14461                  Context.getLangOpts().OpenCLVersion < 120) {
14462         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
14463         // operate on scalar float types.
14464         if (!resultType->isIntegerType() && !resultType->isPointerType())
14465           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14466                            << resultType << Input.get()->getSourceRange());
14467       }
14468     } else if (resultType->isExtVectorType()) {
14469       if (Context.getLangOpts().OpenCL &&
14470           Context.getLangOpts().OpenCLVersion < 120 &&
14471           !Context.getLangOpts().OpenCLCPlusPlus) {
14472         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
14473         // operate on vector float types.
14474         QualType T = resultType->castAs<ExtVectorType>()->getElementType();
14475         if (!T->isIntegerType())
14476           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14477                            << resultType << Input.get()->getSourceRange());
14478       }
14479       // Vector logical not returns the signed variant of the operand type.
14480       resultType = GetSignedVectorType(resultType);
14481       break;
14482     } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
14483       const VectorType *VTy = resultType->castAs<VectorType>();
14484       if (VTy->getVectorKind() != VectorType::GenericVector)
14485         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14486                          << resultType << Input.get()->getSourceRange());
14487 
14488       // Vector logical not returns the signed variant of the operand type.
14489       resultType = GetSignedVectorType(resultType);
14490       break;
14491     } else {
14492       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14493         << resultType << Input.get()->getSourceRange());
14494     }
14495 
14496     // LNot always has type int. C99 6.5.3.3p5.
14497     // In C++, it's bool. C++ 5.3.1p8
14498     resultType = Context.getLogicalOperationType();
14499     break;
14500   case UO_Real:
14501   case UO_Imag:
14502     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
14503     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
14504     // complex l-values to ordinary l-values and all other values to r-values.
14505     if (Input.isInvalid()) return ExprError();
14506     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
14507       if (Input.get()->getValueKind() != VK_RValue &&
14508           Input.get()->getObjectKind() == OK_Ordinary)
14509         VK = Input.get()->getValueKind();
14510     } else if (!getLangOpts().CPlusPlus) {
14511       // In C, a volatile scalar is read by __imag. In C++, it is not.
14512       Input = DefaultLvalueConversion(Input.get());
14513     }
14514     break;
14515   case UO_Extension:
14516     resultType = Input.get()->getType();
14517     VK = Input.get()->getValueKind();
14518     OK = Input.get()->getObjectKind();
14519     break;
14520   case UO_Coawait:
14521     // It's unnecessary to represent the pass-through operator co_await in the
14522     // AST; just return the input expression instead.
14523     assert(!Input.get()->getType()->isDependentType() &&
14524                    "the co_await expression must be non-dependant before "
14525                    "building operator co_await");
14526     return Input;
14527   }
14528   if (resultType.isNull() || Input.isInvalid())
14529     return ExprError();
14530 
14531   // Check for array bounds violations in the operand of the UnaryOperator,
14532   // except for the '*' and '&' operators that have to be handled specially
14533   // by CheckArrayAccess (as there are special cases like &array[arraysize]
14534   // that are explicitly defined as valid by the standard).
14535   if (Opc != UO_AddrOf && Opc != UO_Deref)
14536     CheckArrayAccess(Input.get());
14537 
14538   auto *UO =
14539       UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
14540                             OpLoc, CanOverflow, CurFPFeatureOverrides());
14541 
14542   if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
14543       !isa<ArrayType>(UO->getType().getDesugaredType(Context)))
14544     ExprEvalContexts.back().PossibleDerefs.insert(UO);
14545 
14546   // Convert the result back to a half vector.
14547   if (ConvertHalfVec)
14548     return convertVector(UO, Context.HalfTy, *this);
14549   return UO;
14550 }
14551 
14552 /// Determine whether the given expression is a qualified member
14553 /// access expression, of a form that could be turned into a pointer to member
14554 /// with the address-of operator.
14555 bool Sema::isQualifiedMemberAccess(Expr *E) {
14556   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
14557     if (!DRE->getQualifier())
14558       return false;
14559 
14560     ValueDecl *VD = DRE->getDecl();
14561     if (!VD->isCXXClassMember())
14562       return false;
14563 
14564     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
14565       return true;
14566     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
14567       return Method->isInstance();
14568 
14569     return false;
14570   }
14571 
14572   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
14573     if (!ULE->getQualifier())
14574       return false;
14575 
14576     for (NamedDecl *D : ULE->decls()) {
14577       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
14578         if (Method->isInstance())
14579           return true;
14580       } else {
14581         // Overload set does not contain methods.
14582         break;
14583       }
14584     }
14585 
14586     return false;
14587   }
14588 
14589   return false;
14590 }
14591 
14592 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
14593                               UnaryOperatorKind Opc, Expr *Input) {
14594   // First things first: handle placeholders so that the
14595   // overloaded-operator check considers the right type.
14596   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
14597     // Increment and decrement of pseudo-object references.
14598     if (pty->getKind() == BuiltinType::PseudoObject &&
14599         UnaryOperator::isIncrementDecrementOp(Opc))
14600       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
14601 
14602     // extension is always a builtin operator.
14603     if (Opc == UO_Extension)
14604       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
14605 
14606     // & gets special logic for several kinds of placeholder.
14607     // The builtin code knows what to do.
14608     if (Opc == UO_AddrOf &&
14609         (pty->getKind() == BuiltinType::Overload ||
14610          pty->getKind() == BuiltinType::UnknownAny ||
14611          pty->getKind() == BuiltinType::BoundMember))
14612       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
14613 
14614     // Anything else needs to be handled now.
14615     ExprResult Result = CheckPlaceholderExpr(Input);
14616     if (Result.isInvalid()) return ExprError();
14617     Input = Result.get();
14618   }
14619 
14620   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
14621       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
14622       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
14623     // Find all of the overloaded operators visible from this
14624     // point. We perform both an operator-name lookup from the local
14625     // scope and an argument-dependent lookup based on the types of
14626     // the arguments.
14627     UnresolvedSet<16> Functions;
14628     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
14629     if (S && OverOp != OO_None)
14630       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
14631                                    Functions);
14632 
14633     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
14634   }
14635 
14636   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
14637 }
14638 
14639 // Unary Operators.  'Tok' is the token for the operator.
14640 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
14641                               tok::TokenKind Op, Expr *Input) {
14642   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
14643 }
14644 
14645 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
14646 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
14647                                 LabelDecl *TheDecl) {
14648   TheDecl->markUsed(Context);
14649   // Create the AST node.  The address of a label always has type 'void*'.
14650   return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
14651                                      Context.getPointerType(Context.VoidTy));
14652 }
14653 
14654 void Sema::ActOnStartStmtExpr() {
14655   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
14656 }
14657 
14658 void Sema::ActOnStmtExprError() {
14659   // Note that function is also called by TreeTransform when leaving a
14660   // StmtExpr scope without rebuilding anything.
14661 
14662   DiscardCleanupsInEvaluationContext();
14663   PopExpressionEvaluationContext();
14664 }
14665 
14666 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
14667                                SourceLocation RPLoc) {
14668   return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
14669 }
14670 
14671 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
14672                                SourceLocation RPLoc, unsigned TemplateDepth) {
14673   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
14674   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
14675 
14676   if (hasAnyUnrecoverableErrorsInThisFunction())
14677     DiscardCleanupsInEvaluationContext();
14678   assert(!Cleanup.exprNeedsCleanups() &&
14679          "cleanups within StmtExpr not correctly bound!");
14680   PopExpressionEvaluationContext();
14681 
14682   // FIXME: there are a variety of strange constraints to enforce here, for
14683   // example, it is not possible to goto into a stmt expression apparently.
14684   // More semantic analysis is needed.
14685 
14686   // If there are sub-stmts in the compound stmt, take the type of the last one
14687   // as the type of the stmtexpr.
14688   QualType Ty = Context.VoidTy;
14689   bool StmtExprMayBindToTemp = false;
14690   if (!Compound->body_empty()) {
14691     // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
14692     if (const auto *LastStmt =
14693             dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
14694       if (const Expr *Value = LastStmt->getExprStmt()) {
14695         StmtExprMayBindToTemp = true;
14696         Ty = Value->getType();
14697       }
14698     }
14699   }
14700 
14701   // FIXME: Check that expression type is complete/non-abstract; statement
14702   // expressions are not lvalues.
14703   Expr *ResStmtExpr =
14704       new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
14705   if (StmtExprMayBindToTemp)
14706     return MaybeBindToTemporary(ResStmtExpr);
14707   return ResStmtExpr;
14708 }
14709 
14710 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
14711   if (ER.isInvalid())
14712     return ExprError();
14713 
14714   // Do function/array conversion on the last expression, but not
14715   // lvalue-to-rvalue.  However, initialize an unqualified type.
14716   ER = DefaultFunctionArrayConversion(ER.get());
14717   if (ER.isInvalid())
14718     return ExprError();
14719   Expr *E = ER.get();
14720 
14721   if (E->isTypeDependent())
14722     return E;
14723 
14724   // In ARC, if the final expression ends in a consume, splice
14725   // the consume out and bind it later.  In the alternate case
14726   // (when dealing with a retainable type), the result
14727   // initialization will create a produce.  In both cases the
14728   // result will be +1, and we'll need to balance that out with
14729   // a bind.
14730   auto *Cast = dyn_cast<ImplicitCastExpr>(E);
14731   if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
14732     return Cast->getSubExpr();
14733 
14734   // FIXME: Provide a better location for the initialization.
14735   return PerformCopyInitialization(
14736       InitializedEntity::InitializeStmtExprResult(
14737           E->getBeginLoc(), E->getType().getUnqualifiedType()),
14738       SourceLocation(), E);
14739 }
14740 
14741 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
14742                                       TypeSourceInfo *TInfo,
14743                                       ArrayRef<OffsetOfComponent> Components,
14744                                       SourceLocation RParenLoc) {
14745   QualType ArgTy = TInfo->getType();
14746   bool Dependent = ArgTy->isDependentType();
14747   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
14748 
14749   // We must have at least one component that refers to the type, and the first
14750   // one is known to be a field designator.  Verify that the ArgTy represents
14751   // a struct/union/class.
14752   if (!Dependent && !ArgTy->isRecordType())
14753     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
14754                        << ArgTy << TypeRange);
14755 
14756   // Type must be complete per C99 7.17p3 because a declaring a variable
14757   // with an incomplete type would be ill-formed.
14758   if (!Dependent
14759       && RequireCompleteType(BuiltinLoc, ArgTy,
14760                              diag::err_offsetof_incomplete_type, TypeRange))
14761     return ExprError();
14762 
14763   bool DidWarnAboutNonPOD = false;
14764   QualType CurrentType = ArgTy;
14765   SmallVector<OffsetOfNode, 4> Comps;
14766   SmallVector<Expr*, 4> Exprs;
14767   for (const OffsetOfComponent &OC : Components) {
14768     if (OC.isBrackets) {
14769       // Offset of an array sub-field.  TODO: Should we allow vector elements?
14770       if (!CurrentType->isDependentType()) {
14771         const ArrayType *AT = Context.getAsArrayType(CurrentType);
14772         if(!AT)
14773           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
14774                            << CurrentType);
14775         CurrentType = AT->getElementType();
14776       } else
14777         CurrentType = Context.DependentTy;
14778 
14779       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
14780       if (IdxRval.isInvalid())
14781         return ExprError();
14782       Expr *Idx = IdxRval.get();
14783 
14784       // The expression must be an integral expression.
14785       // FIXME: An integral constant expression?
14786       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
14787           !Idx->getType()->isIntegerType())
14788         return ExprError(
14789             Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
14790             << Idx->getSourceRange());
14791 
14792       // Record this array index.
14793       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
14794       Exprs.push_back(Idx);
14795       continue;
14796     }
14797 
14798     // Offset of a field.
14799     if (CurrentType->isDependentType()) {
14800       // We have the offset of a field, but we can't look into the dependent
14801       // type. Just record the identifier of the field.
14802       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
14803       CurrentType = Context.DependentTy;
14804       continue;
14805     }
14806 
14807     // We need to have a complete type to look into.
14808     if (RequireCompleteType(OC.LocStart, CurrentType,
14809                             diag::err_offsetof_incomplete_type))
14810       return ExprError();
14811 
14812     // Look for the designated field.
14813     const RecordType *RC = CurrentType->getAs<RecordType>();
14814     if (!RC)
14815       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
14816                        << CurrentType);
14817     RecordDecl *RD = RC->getDecl();
14818 
14819     // C++ [lib.support.types]p5:
14820     //   The macro offsetof accepts a restricted set of type arguments in this
14821     //   International Standard. type shall be a POD structure or a POD union
14822     //   (clause 9).
14823     // C++11 [support.types]p4:
14824     //   If type is not a standard-layout class (Clause 9), the results are
14825     //   undefined.
14826     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
14827       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
14828       unsigned DiagID =
14829         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
14830                             : diag::ext_offsetof_non_pod_type;
14831 
14832       if (!IsSafe && !DidWarnAboutNonPOD &&
14833           DiagRuntimeBehavior(BuiltinLoc, nullptr,
14834                               PDiag(DiagID)
14835                               << SourceRange(Components[0].LocStart, OC.LocEnd)
14836                               << CurrentType))
14837         DidWarnAboutNonPOD = true;
14838     }
14839 
14840     // Look for the field.
14841     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
14842     LookupQualifiedName(R, RD);
14843     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
14844     IndirectFieldDecl *IndirectMemberDecl = nullptr;
14845     if (!MemberDecl) {
14846       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
14847         MemberDecl = IndirectMemberDecl->getAnonField();
14848     }
14849 
14850     if (!MemberDecl)
14851       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
14852                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
14853                                                               OC.LocEnd));
14854 
14855     // C99 7.17p3:
14856     //   (If the specified member is a bit-field, the behavior is undefined.)
14857     //
14858     // We diagnose this as an error.
14859     if (MemberDecl->isBitField()) {
14860       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
14861         << MemberDecl->getDeclName()
14862         << SourceRange(BuiltinLoc, RParenLoc);
14863       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
14864       return ExprError();
14865     }
14866 
14867     RecordDecl *Parent = MemberDecl->getParent();
14868     if (IndirectMemberDecl)
14869       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
14870 
14871     // If the member was found in a base class, introduce OffsetOfNodes for
14872     // the base class indirections.
14873     CXXBasePaths Paths;
14874     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
14875                       Paths)) {
14876       if (Paths.getDetectedVirtual()) {
14877         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
14878           << MemberDecl->getDeclName()
14879           << SourceRange(BuiltinLoc, RParenLoc);
14880         return ExprError();
14881       }
14882 
14883       CXXBasePath &Path = Paths.front();
14884       for (const CXXBasePathElement &B : Path)
14885         Comps.push_back(OffsetOfNode(B.Base));
14886     }
14887 
14888     if (IndirectMemberDecl) {
14889       for (auto *FI : IndirectMemberDecl->chain()) {
14890         assert(isa<FieldDecl>(FI));
14891         Comps.push_back(OffsetOfNode(OC.LocStart,
14892                                      cast<FieldDecl>(FI), OC.LocEnd));
14893       }
14894     } else
14895       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
14896 
14897     CurrentType = MemberDecl->getType().getNonReferenceType();
14898   }
14899 
14900   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
14901                               Comps, Exprs, RParenLoc);
14902 }
14903 
14904 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
14905                                       SourceLocation BuiltinLoc,
14906                                       SourceLocation TypeLoc,
14907                                       ParsedType ParsedArgTy,
14908                                       ArrayRef<OffsetOfComponent> Components,
14909                                       SourceLocation RParenLoc) {
14910 
14911   TypeSourceInfo *ArgTInfo;
14912   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
14913   if (ArgTy.isNull())
14914     return ExprError();
14915 
14916   if (!ArgTInfo)
14917     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
14918 
14919   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
14920 }
14921 
14922 
14923 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
14924                                  Expr *CondExpr,
14925                                  Expr *LHSExpr, Expr *RHSExpr,
14926                                  SourceLocation RPLoc) {
14927   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
14928 
14929   ExprValueKind VK = VK_RValue;
14930   ExprObjectKind OK = OK_Ordinary;
14931   QualType resType;
14932   bool CondIsTrue = false;
14933   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
14934     resType = Context.DependentTy;
14935   } else {
14936     // The conditional expression is required to be a constant expression.
14937     llvm::APSInt condEval(32);
14938     ExprResult CondICE
14939       = VerifyIntegerConstantExpression(CondExpr, &condEval,
14940           diag::err_typecheck_choose_expr_requires_constant, false);
14941     if (CondICE.isInvalid())
14942       return ExprError();
14943     CondExpr = CondICE.get();
14944     CondIsTrue = condEval.getZExtValue();
14945 
14946     // If the condition is > zero, then the AST type is the same as the LHSExpr.
14947     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
14948 
14949     resType = ActiveExpr->getType();
14950     VK = ActiveExpr->getValueKind();
14951     OK = ActiveExpr->getObjectKind();
14952   }
14953 
14954   return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
14955                                   resType, VK, OK, RPLoc, CondIsTrue);
14956 }
14957 
14958 //===----------------------------------------------------------------------===//
14959 // Clang Extensions.
14960 //===----------------------------------------------------------------------===//
14961 
14962 /// ActOnBlockStart - This callback is invoked when a block literal is started.
14963 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
14964   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
14965 
14966   if (LangOpts.CPlusPlus) {
14967     MangleNumberingContext *MCtx;
14968     Decl *ManglingContextDecl;
14969     std::tie(MCtx, ManglingContextDecl) =
14970         getCurrentMangleNumberContext(Block->getDeclContext());
14971     if (MCtx) {
14972       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
14973       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
14974     }
14975   }
14976 
14977   PushBlockScope(CurScope, Block);
14978   CurContext->addDecl(Block);
14979   if (CurScope)
14980     PushDeclContext(CurScope, Block);
14981   else
14982     CurContext = Block;
14983 
14984   getCurBlock()->HasImplicitReturnType = true;
14985 
14986   // Enter a new evaluation context to insulate the block from any
14987   // cleanups from the enclosing full-expression.
14988   PushExpressionEvaluationContext(
14989       ExpressionEvaluationContext::PotentiallyEvaluated);
14990 }
14991 
14992 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
14993                                Scope *CurScope) {
14994   assert(ParamInfo.getIdentifier() == nullptr &&
14995          "block-id should have no identifier!");
14996   assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteralContext);
14997   BlockScopeInfo *CurBlock = getCurBlock();
14998 
14999   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
15000   QualType T = Sig->getType();
15001 
15002   // FIXME: We should allow unexpanded parameter packs here, but that would,
15003   // in turn, make the block expression contain unexpanded parameter packs.
15004   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
15005     // Drop the parameters.
15006     FunctionProtoType::ExtProtoInfo EPI;
15007     EPI.HasTrailingReturn = false;
15008     EPI.TypeQuals.addConst();
15009     T = Context.getFunctionType(Context.DependentTy, None, EPI);
15010     Sig = Context.getTrivialTypeSourceInfo(T);
15011   }
15012 
15013   // GetTypeForDeclarator always produces a function type for a block
15014   // literal signature.  Furthermore, it is always a FunctionProtoType
15015   // unless the function was written with a typedef.
15016   assert(T->isFunctionType() &&
15017          "GetTypeForDeclarator made a non-function block signature");
15018 
15019   // Look for an explicit signature in that function type.
15020   FunctionProtoTypeLoc ExplicitSignature;
15021 
15022   if ((ExplicitSignature = Sig->getTypeLoc()
15023                                .getAsAdjusted<FunctionProtoTypeLoc>())) {
15024 
15025     // Check whether that explicit signature was synthesized by
15026     // GetTypeForDeclarator.  If so, don't save that as part of the
15027     // written signature.
15028     if (ExplicitSignature.getLocalRangeBegin() ==
15029         ExplicitSignature.getLocalRangeEnd()) {
15030       // This would be much cheaper if we stored TypeLocs instead of
15031       // TypeSourceInfos.
15032       TypeLoc Result = ExplicitSignature.getReturnLoc();
15033       unsigned Size = Result.getFullDataSize();
15034       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
15035       Sig->getTypeLoc().initializeFullCopy(Result, Size);
15036 
15037       ExplicitSignature = FunctionProtoTypeLoc();
15038     }
15039   }
15040 
15041   CurBlock->TheDecl->setSignatureAsWritten(Sig);
15042   CurBlock->FunctionType = T;
15043 
15044   const FunctionType *Fn = T->getAs<FunctionType>();
15045   QualType RetTy = Fn->getReturnType();
15046   bool isVariadic =
15047     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
15048 
15049   CurBlock->TheDecl->setIsVariadic(isVariadic);
15050 
15051   // Context.DependentTy is used as a placeholder for a missing block
15052   // return type.  TODO:  what should we do with declarators like:
15053   //   ^ * { ... }
15054   // If the answer is "apply template argument deduction"....
15055   if (RetTy != Context.DependentTy) {
15056     CurBlock->ReturnType = RetTy;
15057     CurBlock->TheDecl->setBlockMissingReturnType(false);
15058     CurBlock->HasImplicitReturnType = false;
15059   }
15060 
15061   // Push block parameters from the declarator if we had them.
15062   SmallVector<ParmVarDecl*, 8> Params;
15063   if (ExplicitSignature) {
15064     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
15065       ParmVarDecl *Param = ExplicitSignature.getParam(I);
15066       if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
15067           !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
15068         // Diagnose this as an extension in C17 and earlier.
15069         if (!getLangOpts().C2x)
15070           Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
15071       }
15072       Params.push_back(Param);
15073     }
15074 
15075   // Fake up parameter variables if we have a typedef, like
15076   //   ^ fntype { ... }
15077   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
15078     for (const auto &I : Fn->param_types()) {
15079       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
15080           CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
15081       Params.push_back(Param);
15082     }
15083   }
15084 
15085   // Set the parameters on the block decl.
15086   if (!Params.empty()) {
15087     CurBlock->TheDecl->setParams(Params);
15088     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
15089                              /*CheckParameterNames=*/false);
15090   }
15091 
15092   // Finally we can process decl attributes.
15093   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
15094 
15095   // Put the parameter variables in scope.
15096   for (auto AI : CurBlock->TheDecl->parameters()) {
15097     AI->setOwningFunction(CurBlock->TheDecl);
15098 
15099     // If this has an identifier, add it to the scope stack.
15100     if (AI->getIdentifier()) {
15101       CheckShadow(CurBlock->TheScope, AI);
15102 
15103       PushOnScopeChains(AI, CurBlock->TheScope);
15104     }
15105   }
15106 }
15107 
15108 /// ActOnBlockError - If there is an error parsing a block, this callback
15109 /// is invoked to pop the information about the block from the action impl.
15110 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
15111   // Leave the expression-evaluation context.
15112   DiscardCleanupsInEvaluationContext();
15113   PopExpressionEvaluationContext();
15114 
15115   // Pop off CurBlock, handle nested blocks.
15116   PopDeclContext();
15117   PopFunctionScopeInfo();
15118 }
15119 
15120 /// ActOnBlockStmtExpr - This is called when the body of a block statement
15121 /// literal was successfully completed.  ^(int x){...}
15122 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
15123                                     Stmt *Body, Scope *CurScope) {
15124   // If blocks are disabled, emit an error.
15125   if (!LangOpts.Blocks)
15126     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
15127 
15128   // Leave the expression-evaluation context.
15129   if (hasAnyUnrecoverableErrorsInThisFunction())
15130     DiscardCleanupsInEvaluationContext();
15131   assert(!Cleanup.exprNeedsCleanups() &&
15132          "cleanups within block not correctly bound!");
15133   PopExpressionEvaluationContext();
15134 
15135   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
15136   BlockDecl *BD = BSI->TheDecl;
15137 
15138   if (BSI->HasImplicitReturnType)
15139     deduceClosureReturnType(*BSI);
15140 
15141   QualType RetTy = Context.VoidTy;
15142   if (!BSI->ReturnType.isNull())
15143     RetTy = BSI->ReturnType;
15144 
15145   bool NoReturn = BD->hasAttr<NoReturnAttr>();
15146   QualType BlockTy;
15147 
15148   // If the user wrote a function type in some form, try to use that.
15149   if (!BSI->FunctionType.isNull()) {
15150     const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
15151 
15152     FunctionType::ExtInfo Ext = FTy->getExtInfo();
15153     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
15154 
15155     // Turn protoless block types into nullary block types.
15156     if (isa<FunctionNoProtoType>(FTy)) {
15157       FunctionProtoType::ExtProtoInfo EPI;
15158       EPI.ExtInfo = Ext;
15159       BlockTy = Context.getFunctionType(RetTy, None, EPI);
15160 
15161     // Otherwise, if we don't need to change anything about the function type,
15162     // preserve its sugar structure.
15163     } else if (FTy->getReturnType() == RetTy &&
15164                (!NoReturn || FTy->getNoReturnAttr())) {
15165       BlockTy = BSI->FunctionType;
15166 
15167     // Otherwise, make the minimal modifications to the function type.
15168     } else {
15169       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
15170       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
15171       EPI.TypeQuals = Qualifiers();
15172       EPI.ExtInfo = Ext;
15173       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
15174     }
15175 
15176   // If we don't have a function type, just build one from nothing.
15177   } else {
15178     FunctionProtoType::ExtProtoInfo EPI;
15179     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
15180     BlockTy = Context.getFunctionType(RetTy, None, EPI);
15181   }
15182 
15183   DiagnoseUnusedParameters(BD->parameters());
15184   BlockTy = Context.getBlockPointerType(BlockTy);
15185 
15186   // If needed, diagnose invalid gotos and switches in the block.
15187   if (getCurFunction()->NeedsScopeChecking() &&
15188       !PP.isCodeCompletionEnabled())
15189     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
15190 
15191   BD->setBody(cast<CompoundStmt>(Body));
15192 
15193   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
15194     DiagnoseUnguardedAvailabilityViolations(BD);
15195 
15196   // Try to apply the named return value optimization. We have to check again
15197   // if we can do this, though, because blocks keep return statements around
15198   // to deduce an implicit return type.
15199   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
15200       !BD->isDependentContext())
15201     computeNRVO(Body, BSI);
15202 
15203   if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
15204       RetTy.hasNonTrivialToPrimitiveCopyCUnion())
15205     checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
15206                           NTCUK_Destruct|NTCUK_Copy);
15207 
15208   PopDeclContext();
15209 
15210   // Pop the block scope now but keep it alive to the end of this function.
15211   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
15212   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
15213 
15214   // Set the captured variables on the block.
15215   SmallVector<BlockDecl::Capture, 4> Captures;
15216   for (Capture &Cap : BSI->Captures) {
15217     if (Cap.isInvalid() || Cap.isThisCapture())
15218       continue;
15219 
15220     VarDecl *Var = Cap.getVariable();
15221     Expr *CopyExpr = nullptr;
15222     if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
15223       if (const RecordType *Record =
15224               Cap.getCaptureType()->getAs<RecordType>()) {
15225         // The capture logic needs the destructor, so make sure we mark it.
15226         // Usually this is unnecessary because most local variables have
15227         // their destructors marked at declaration time, but parameters are
15228         // an exception because it's technically only the call site that
15229         // actually requires the destructor.
15230         if (isa<ParmVarDecl>(Var))
15231           FinalizeVarWithDestructor(Var, Record);
15232 
15233         // Enter a separate potentially-evaluated context while building block
15234         // initializers to isolate their cleanups from those of the block
15235         // itself.
15236         // FIXME: Is this appropriate even when the block itself occurs in an
15237         // unevaluated operand?
15238         EnterExpressionEvaluationContext EvalContext(
15239             *this, ExpressionEvaluationContext::PotentiallyEvaluated);
15240 
15241         SourceLocation Loc = Cap.getLocation();
15242 
15243         ExprResult Result = BuildDeclarationNameExpr(
15244             CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
15245 
15246         // According to the blocks spec, the capture of a variable from
15247         // the stack requires a const copy constructor.  This is not true
15248         // of the copy/move done to move a __block variable to the heap.
15249         if (!Result.isInvalid() &&
15250             !Result.get()->getType().isConstQualified()) {
15251           Result = ImpCastExprToType(Result.get(),
15252                                      Result.get()->getType().withConst(),
15253                                      CK_NoOp, VK_LValue);
15254         }
15255 
15256         if (!Result.isInvalid()) {
15257           Result = PerformCopyInitialization(
15258               InitializedEntity::InitializeBlock(Var->getLocation(),
15259                                                  Cap.getCaptureType(), false),
15260               Loc, Result.get());
15261         }
15262 
15263         // Build a full-expression copy expression if initialization
15264         // succeeded and used a non-trivial constructor.  Recover from
15265         // errors by pretending that the copy isn't necessary.
15266         if (!Result.isInvalid() &&
15267             !cast<CXXConstructExpr>(Result.get())->getConstructor()
15268                 ->isTrivial()) {
15269           Result = MaybeCreateExprWithCleanups(Result);
15270           CopyExpr = Result.get();
15271         }
15272       }
15273     }
15274 
15275     BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
15276                               CopyExpr);
15277     Captures.push_back(NewCap);
15278   }
15279   BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
15280 
15281   BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
15282 
15283   // If the block isn't obviously global, i.e. it captures anything at
15284   // all, then we need to do a few things in the surrounding context:
15285   if (Result->getBlockDecl()->hasCaptures()) {
15286     // First, this expression has a new cleanup object.
15287     ExprCleanupObjects.push_back(Result->getBlockDecl());
15288     Cleanup.setExprNeedsCleanups(true);
15289 
15290     // It also gets a branch-protected scope if any of the captured
15291     // variables needs destruction.
15292     for (const auto &CI : Result->getBlockDecl()->captures()) {
15293       const VarDecl *var = CI.getVariable();
15294       if (var->getType().isDestructedType() != QualType::DK_none) {
15295         setFunctionHasBranchProtectedScope();
15296         break;
15297       }
15298     }
15299   }
15300 
15301   if (getCurFunction())
15302     getCurFunction()->addBlock(BD);
15303 
15304   return Result;
15305 }
15306 
15307 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
15308                             SourceLocation RPLoc) {
15309   TypeSourceInfo *TInfo;
15310   GetTypeFromParser(Ty, &TInfo);
15311   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
15312 }
15313 
15314 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
15315                                 Expr *E, TypeSourceInfo *TInfo,
15316                                 SourceLocation RPLoc) {
15317   Expr *OrigExpr = E;
15318   bool IsMS = false;
15319 
15320   // CUDA device code does not support varargs.
15321   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
15322     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
15323       CUDAFunctionTarget T = IdentifyCUDATarget(F);
15324       if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
15325         return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
15326     }
15327   }
15328 
15329   // NVPTX does not support va_arg expression.
15330   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
15331       Context.getTargetInfo().getTriple().isNVPTX())
15332     targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
15333 
15334   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
15335   // as Microsoft ABI on an actual Microsoft platform, where
15336   // __builtin_ms_va_list and __builtin_va_list are the same.)
15337   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
15338       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
15339     QualType MSVaListType = Context.getBuiltinMSVaListType();
15340     if (Context.hasSameType(MSVaListType, E->getType())) {
15341       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
15342         return ExprError();
15343       IsMS = true;
15344     }
15345   }
15346 
15347   // Get the va_list type
15348   QualType VaListType = Context.getBuiltinVaListType();
15349   if (!IsMS) {
15350     if (VaListType->isArrayType()) {
15351       // Deal with implicit array decay; for example, on x86-64,
15352       // va_list is an array, but it's supposed to decay to
15353       // a pointer for va_arg.
15354       VaListType = Context.getArrayDecayedType(VaListType);
15355       // Make sure the input expression also decays appropriately.
15356       ExprResult Result = UsualUnaryConversions(E);
15357       if (Result.isInvalid())
15358         return ExprError();
15359       E = Result.get();
15360     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
15361       // If va_list is a record type and we are compiling in C++ mode,
15362       // check the argument using reference binding.
15363       InitializedEntity Entity = InitializedEntity::InitializeParameter(
15364           Context, Context.getLValueReferenceType(VaListType), false);
15365       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
15366       if (Init.isInvalid())
15367         return ExprError();
15368       E = Init.getAs<Expr>();
15369     } else {
15370       // Otherwise, the va_list argument must be an l-value because
15371       // it is modified by va_arg.
15372       if (!E->isTypeDependent() &&
15373           CheckForModifiableLvalue(E, BuiltinLoc, *this))
15374         return ExprError();
15375     }
15376   }
15377 
15378   if (!IsMS && !E->isTypeDependent() &&
15379       !Context.hasSameType(VaListType, E->getType()))
15380     return ExprError(
15381         Diag(E->getBeginLoc(),
15382              diag::err_first_argument_to_va_arg_not_of_type_va_list)
15383         << OrigExpr->getType() << E->getSourceRange());
15384 
15385   if (!TInfo->getType()->isDependentType()) {
15386     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
15387                             diag::err_second_parameter_to_va_arg_incomplete,
15388                             TInfo->getTypeLoc()))
15389       return ExprError();
15390 
15391     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
15392                                TInfo->getType(),
15393                                diag::err_second_parameter_to_va_arg_abstract,
15394                                TInfo->getTypeLoc()))
15395       return ExprError();
15396 
15397     if (!TInfo->getType().isPODType(Context)) {
15398       Diag(TInfo->getTypeLoc().getBeginLoc(),
15399            TInfo->getType()->isObjCLifetimeType()
15400              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
15401              : diag::warn_second_parameter_to_va_arg_not_pod)
15402         << TInfo->getType()
15403         << TInfo->getTypeLoc().getSourceRange();
15404     }
15405 
15406     // Check for va_arg where arguments of the given type will be promoted
15407     // (i.e. this va_arg is guaranteed to have undefined behavior).
15408     QualType PromoteType;
15409     if (TInfo->getType()->isPromotableIntegerType()) {
15410       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
15411       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
15412         PromoteType = QualType();
15413     }
15414     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
15415       PromoteType = Context.DoubleTy;
15416     if (!PromoteType.isNull())
15417       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
15418                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
15419                           << TInfo->getType()
15420                           << PromoteType
15421                           << TInfo->getTypeLoc().getSourceRange());
15422   }
15423 
15424   QualType T = TInfo->getType().getNonLValueExprType(Context);
15425   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
15426 }
15427 
15428 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
15429   // The type of __null will be int or long, depending on the size of
15430   // pointers on the target.
15431   QualType Ty;
15432   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
15433   if (pw == Context.getTargetInfo().getIntWidth())
15434     Ty = Context.IntTy;
15435   else if (pw == Context.getTargetInfo().getLongWidth())
15436     Ty = Context.LongTy;
15437   else if (pw == Context.getTargetInfo().getLongLongWidth())
15438     Ty = Context.LongLongTy;
15439   else {
15440     llvm_unreachable("I don't know size of pointer!");
15441   }
15442 
15443   return new (Context) GNUNullExpr(Ty, TokenLoc);
15444 }
15445 
15446 ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
15447                                     SourceLocation BuiltinLoc,
15448                                     SourceLocation RPLoc) {
15449   return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext);
15450 }
15451 
15452 ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
15453                                     SourceLocation BuiltinLoc,
15454                                     SourceLocation RPLoc,
15455                                     DeclContext *ParentContext) {
15456   return new (Context)
15457       SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext);
15458 }
15459 
15460 bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
15461                                         bool Diagnose) {
15462   if (!getLangOpts().ObjC)
15463     return false;
15464 
15465   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
15466   if (!PT)
15467     return false;
15468   const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
15469 
15470   // Ignore any parens, implicit casts (should only be
15471   // array-to-pointer decays), and not-so-opaque values.  The last is
15472   // important for making this trigger for property assignments.
15473   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
15474   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
15475     if (OV->getSourceExpr())
15476       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
15477 
15478   if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
15479     if (!PT->isObjCIdType() &&
15480         !(ID && ID->getIdentifier()->isStr("NSString")))
15481       return false;
15482     if (!SL->isAscii())
15483       return false;
15484 
15485     if (Diagnose) {
15486       Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
15487           << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
15488       Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
15489     }
15490     return true;
15491   }
15492 
15493   if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
15494       isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
15495       isa<CXXBoolLiteralExpr>(SrcExpr)) &&
15496       !SrcExpr->isNullPointerConstant(
15497           getASTContext(), Expr::NPC_NeverValueDependent)) {
15498     if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
15499       return false;
15500     if (Diagnose) {
15501       Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
15502           << /*number*/1
15503           << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
15504       Expr *NumLit =
15505           BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
15506       if (NumLit)
15507         Exp = NumLit;
15508     }
15509     return true;
15510   }
15511 
15512   return false;
15513 }
15514 
15515 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
15516                                               const Expr *SrcExpr) {
15517   if (!DstType->isFunctionPointerType() ||
15518       !SrcExpr->getType()->isFunctionType())
15519     return false;
15520 
15521   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
15522   if (!DRE)
15523     return false;
15524 
15525   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
15526   if (!FD)
15527     return false;
15528 
15529   return !S.checkAddressOfFunctionIsAvailable(FD,
15530                                               /*Complain=*/true,
15531                                               SrcExpr->getBeginLoc());
15532 }
15533 
15534 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
15535                                     SourceLocation Loc,
15536                                     QualType DstType, QualType SrcType,
15537                                     Expr *SrcExpr, AssignmentAction Action,
15538                                     bool *Complained) {
15539   if (Complained)
15540     *Complained = false;
15541 
15542   // Decode the result (notice that AST's are still created for extensions).
15543   bool CheckInferredResultType = false;
15544   bool isInvalid = false;
15545   unsigned DiagKind = 0;
15546   FixItHint Hint;
15547   ConversionFixItGenerator ConvHints;
15548   bool MayHaveConvFixit = false;
15549   bool MayHaveFunctionDiff = false;
15550   const ObjCInterfaceDecl *IFace = nullptr;
15551   const ObjCProtocolDecl *PDecl = nullptr;
15552 
15553   switch (ConvTy) {
15554   case Compatible:
15555       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
15556       return false;
15557 
15558   case PointerToInt:
15559     if (getLangOpts().CPlusPlus) {
15560       DiagKind = diag::err_typecheck_convert_pointer_int;
15561       isInvalid = true;
15562     } else {
15563       DiagKind = diag::ext_typecheck_convert_pointer_int;
15564     }
15565     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15566     MayHaveConvFixit = true;
15567     break;
15568   case IntToPointer:
15569     if (getLangOpts().CPlusPlus) {
15570       DiagKind = diag::err_typecheck_convert_int_pointer;
15571       isInvalid = true;
15572     } else {
15573       DiagKind = diag::ext_typecheck_convert_int_pointer;
15574     }
15575     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15576     MayHaveConvFixit = true;
15577     break;
15578   case IncompatibleFunctionPointer:
15579     if (getLangOpts().CPlusPlus) {
15580       DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
15581       isInvalid = true;
15582     } else {
15583       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
15584     }
15585     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15586     MayHaveConvFixit = true;
15587     break;
15588   case IncompatiblePointer:
15589     if (Action == AA_Passing_CFAudited) {
15590       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
15591     } else if (getLangOpts().CPlusPlus) {
15592       DiagKind = diag::err_typecheck_convert_incompatible_pointer;
15593       isInvalid = true;
15594     } else {
15595       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
15596     }
15597     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
15598       SrcType->isObjCObjectPointerType();
15599     if (Hint.isNull() && !CheckInferredResultType) {
15600       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15601     }
15602     else if (CheckInferredResultType) {
15603       SrcType = SrcType.getUnqualifiedType();
15604       DstType = DstType.getUnqualifiedType();
15605     }
15606     MayHaveConvFixit = true;
15607     break;
15608   case IncompatiblePointerSign:
15609     if (getLangOpts().CPlusPlus) {
15610       DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
15611       isInvalid = true;
15612     } else {
15613       DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
15614     }
15615     break;
15616   case FunctionVoidPointer:
15617     if (getLangOpts().CPlusPlus) {
15618       DiagKind = diag::err_typecheck_convert_pointer_void_func;
15619       isInvalid = true;
15620     } else {
15621       DiagKind = diag::ext_typecheck_convert_pointer_void_func;
15622     }
15623     break;
15624   case IncompatiblePointerDiscardsQualifiers: {
15625     // Perform array-to-pointer decay if necessary.
15626     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
15627 
15628     isInvalid = true;
15629 
15630     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
15631     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
15632     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
15633       DiagKind = diag::err_typecheck_incompatible_address_space;
15634       break;
15635 
15636     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
15637       DiagKind = diag::err_typecheck_incompatible_ownership;
15638       break;
15639     }
15640 
15641     llvm_unreachable("unknown error case for discarding qualifiers!");
15642     // fallthrough
15643   }
15644   case CompatiblePointerDiscardsQualifiers:
15645     // If the qualifiers lost were because we were applying the
15646     // (deprecated) C++ conversion from a string literal to a char*
15647     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
15648     // Ideally, this check would be performed in
15649     // checkPointerTypesForAssignment. However, that would require a
15650     // bit of refactoring (so that the second argument is an
15651     // expression, rather than a type), which should be done as part
15652     // of a larger effort to fix checkPointerTypesForAssignment for
15653     // C++ semantics.
15654     if (getLangOpts().CPlusPlus &&
15655         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
15656       return false;
15657     if (getLangOpts().CPlusPlus) {
15658       DiagKind =  diag::err_typecheck_convert_discards_qualifiers;
15659       isInvalid = true;
15660     } else {
15661       DiagKind =  diag::ext_typecheck_convert_discards_qualifiers;
15662     }
15663 
15664     break;
15665   case IncompatibleNestedPointerQualifiers:
15666     if (getLangOpts().CPlusPlus) {
15667       isInvalid = true;
15668       DiagKind = diag::err_nested_pointer_qualifier_mismatch;
15669     } else {
15670       DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
15671     }
15672     break;
15673   case IncompatibleNestedPointerAddressSpaceMismatch:
15674     DiagKind = diag::err_typecheck_incompatible_nested_address_space;
15675     isInvalid = true;
15676     break;
15677   case IntToBlockPointer:
15678     DiagKind = diag::err_int_to_block_pointer;
15679     isInvalid = true;
15680     break;
15681   case IncompatibleBlockPointer:
15682     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
15683     isInvalid = true;
15684     break;
15685   case IncompatibleObjCQualifiedId: {
15686     if (SrcType->isObjCQualifiedIdType()) {
15687       const ObjCObjectPointerType *srcOPT =
15688                 SrcType->castAs<ObjCObjectPointerType>();
15689       for (auto *srcProto : srcOPT->quals()) {
15690         PDecl = srcProto;
15691         break;
15692       }
15693       if (const ObjCInterfaceType *IFaceT =
15694             DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
15695         IFace = IFaceT->getDecl();
15696     }
15697     else if (DstType->isObjCQualifiedIdType()) {
15698       const ObjCObjectPointerType *dstOPT =
15699         DstType->castAs<ObjCObjectPointerType>();
15700       for (auto *dstProto : dstOPT->quals()) {
15701         PDecl = dstProto;
15702         break;
15703       }
15704       if (const ObjCInterfaceType *IFaceT =
15705             SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
15706         IFace = IFaceT->getDecl();
15707     }
15708     if (getLangOpts().CPlusPlus) {
15709       DiagKind = diag::err_incompatible_qualified_id;
15710       isInvalid = true;
15711     } else {
15712       DiagKind = diag::warn_incompatible_qualified_id;
15713     }
15714     break;
15715   }
15716   case IncompatibleVectors:
15717     if (getLangOpts().CPlusPlus) {
15718       DiagKind = diag::err_incompatible_vectors;
15719       isInvalid = true;
15720     } else {
15721       DiagKind = diag::warn_incompatible_vectors;
15722     }
15723     break;
15724   case IncompatibleObjCWeakRef:
15725     DiagKind = diag::err_arc_weak_unavailable_assign;
15726     isInvalid = true;
15727     break;
15728   case Incompatible:
15729     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
15730       if (Complained)
15731         *Complained = true;
15732       return true;
15733     }
15734 
15735     DiagKind = diag::err_typecheck_convert_incompatible;
15736     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15737     MayHaveConvFixit = true;
15738     isInvalid = true;
15739     MayHaveFunctionDiff = true;
15740     break;
15741   }
15742 
15743   QualType FirstType, SecondType;
15744   switch (Action) {
15745   case AA_Assigning:
15746   case AA_Initializing:
15747     // The destination type comes first.
15748     FirstType = DstType;
15749     SecondType = SrcType;
15750     break;
15751 
15752   case AA_Returning:
15753   case AA_Passing:
15754   case AA_Passing_CFAudited:
15755   case AA_Converting:
15756   case AA_Sending:
15757   case AA_Casting:
15758     // The source type comes first.
15759     FirstType = SrcType;
15760     SecondType = DstType;
15761     break;
15762   }
15763 
15764   PartialDiagnostic FDiag = PDiag(DiagKind);
15765   if (Action == AA_Passing_CFAudited)
15766     FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
15767   else
15768     FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
15769 
15770   // If we can fix the conversion, suggest the FixIts.
15771   assert(ConvHints.isNull() || Hint.isNull());
15772   if (!ConvHints.isNull()) {
15773     for (FixItHint &H : ConvHints.Hints)
15774       FDiag << H;
15775   } else {
15776     FDiag << Hint;
15777   }
15778   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
15779 
15780   if (MayHaveFunctionDiff)
15781     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
15782 
15783   Diag(Loc, FDiag);
15784   if ((DiagKind == diag::warn_incompatible_qualified_id ||
15785        DiagKind == diag::err_incompatible_qualified_id) &&
15786       PDecl && IFace && !IFace->hasDefinition())
15787     Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
15788         << IFace << PDecl;
15789 
15790   if (SecondType == Context.OverloadTy)
15791     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
15792                               FirstType, /*TakingAddress=*/true);
15793 
15794   if (CheckInferredResultType)
15795     EmitRelatedResultTypeNote(SrcExpr);
15796 
15797   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
15798     EmitRelatedResultTypeNoteForReturn(DstType);
15799 
15800   if (Complained)
15801     *Complained = true;
15802   return isInvalid;
15803 }
15804 
15805 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
15806                                                  llvm::APSInt *Result) {
15807   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
15808   public:
15809     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
15810       S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
15811     }
15812   } Diagnoser;
15813 
15814   return VerifyIntegerConstantExpression(E, Result, Diagnoser);
15815 }
15816 
15817 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
15818                                                  llvm::APSInt *Result,
15819                                                  unsigned DiagID,
15820                                                  bool AllowFold) {
15821   class IDDiagnoser : public VerifyICEDiagnoser {
15822     unsigned DiagID;
15823 
15824   public:
15825     IDDiagnoser(unsigned DiagID)
15826       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
15827 
15828     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
15829       S.Diag(Loc, DiagID) << SR;
15830     }
15831   } Diagnoser(DiagID);
15832 
15833   return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
15834 }
15835 
15836 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
15837                                             SourceRange SR) {
15838   S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
15839 }
15840 
15841 ExprResult
15842 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
15843                                       VerifyICEDiagnoser &Diagnoser,
15844                                       bool AllowFold) {
15845   SourceLocation DiagLoc = E->getBeginLoc();
15846 
15847   if (getLangOpts().CPlusPlus11) {
15848     // C++11 [expr.const]p5:
15849     //   If an expression of literal class type is used in a context where an
15850     //   integral constant expression is required, then that class type shall
15851     //   have a single non-explicit conversion function to an integral or
15852     //   unscoped enumeration type
15853     ExprResult Converted;
15854     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
15855     public:
15856       CXX11ConvertDiagnoser(bool Silent)
15857           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
15858                                 Silent, true) {}
15859 
15860       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
15861                                            QualType T) override {
15862         return S.Diag(Loc, diag::err_ice_not_integral) << T;
15863       }
15864 
15865       SemaDiagnosticBuilder diagnoseIncomplete(
15866           Sema &S, SourceLocation Loc, QualType T) override {
15867         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
15868       }
15869 
15870       SemaDiagnosticBuilder diagnoseExplicitConv(
15871           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
15872         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
15873       }
15874 
15875       SemaDiagnosticBuilder noteExplicitConv(
15876           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
15877         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
15878                  << ConvTy->isEnumeralType() << ConvTy;
15879       }
15880 
15881       SemaDiagnosticBuilder diagnoseAmbiguous(
15882           Sema &S, SourceLocation Loc, QualType T) override {
15883         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
15884       }
15885 
15886       SemaDiagnosticBuilder noteAmbiguous(
15887           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
15888         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
15889                  << ConvTy->isEnumeralType() << ConvTy;
15890       }
15891 
15892       SemaDiagnosticBuilder diagnoseConversion(
15893           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
15894         llvm_unreachable("conversion functions are permitted");
15895       }
15896     } ConvertDiagnoser(Diagnoser.Suppress);
15897 
15898     Converted = PerformContextualImplicitConversion(DiagLoc, E,
15899                                                     ConvertDiagnoser);
15900     if (Converted.isInvalid())
15901       return Converted;
15902     E = Converted.get();
15903     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
15904       return ExprError();
15905   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
15906     // An ICE must be of integral or unscoped enumeration type.
15907     if (!Diagnoser.Suppress)
15908       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
15909     return ExprError();
15910   }
15911 
15912   ExprResult RValueExpr = DefaultLvalueConversion(E);
15913   if (RValueExpr.isInvalid())
15914     return ExprError();
15915 
15916   E = RValueExpr.get();
15917 
15918   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
15919   // in the non-ICE case.
15920   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
15921     if (Result)
15922       *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
15923     if (!isa<ConstantExpr>(E))
15924       E = ConstantExpr::Create(Context, E);
15925     return E;
15926   }
15927 
15928   Expr::EvalResult EvalResult;
15929   SmallVector<PartialDiagnosticAt, 8> Notes;
15930   EvalResult.Diag = &Notes;
15931 
15932   // Try to evaluate the expression, and produce diagnostics explaining why it's
15933   // not a constant expression as a side-effect.
15934   bool Folded =
15935       E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
15936       EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
15937 
15938   if (!isa<ConstantExpr>(E))
15939     E = ConstantExpr::Create(Context, E, EvalResult.Val);
15940 
15941   // In C++11, we can rely on diagnostics being produced for any expression
15942   // which is not a constant expression. If no diagnostics were produced, then
15943   // this is a constant expression.
15944   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
15945     if (Result)
15946       *Result = EvalResult.Val.getInt();
15947     return E;
15948   }
15949 
15950   // If our only note is the usual "invalid subexpression" note, just point
15951   // the caret at its location rather than producing an essentially
15952   // redundant note.
15953   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
15954         diag::note_invalid_subexpr_in_const_expr) {
15955     DiagLoc = Notes[0].first;
15956     Notes.clear();
15957   }
15958 
15959   if (!Folded || !AllowFold) {
15960     if (!Diagnoser.Suppress) {
15961       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
15962       for (const PartialDiagnosticAt &Note : Notes)
15963         Diag(Note.first, Note.second);
15964     }
15965 
15966     return ExprError();
15967   }
15968 
15969   Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
15970   for (const PartialDiagnosticAt &Note : Notes)
15971     Diag(Note.first, Note.second);
15972 
15973   if (Result)
15974     *Result = EvalResult.Val.getInt();
15975   return E;
15976 }
15977 
15978 namespace {
15979   // Handle the case where we conclude a expression which we speculatively
15980   // considered to be unevaluated is actually evaluated.
15981   class TransformToPE : public TreeTransform<TransformToPE> {
15982     typedef TreeTransform<TransformToPE> BaseTransform;
15983 
15984   public:
15985     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
15986 
15987     // Make sure we redo semantic analysis
15988     bool AlwaysRebuild() { return true; }
15989     bool ReplacingOriginal() { return true; }
15990 
15991     // We need to special-case DeclRefExprs referring to FieldDecls which
15992     // are not part of a member pointer formation; normal TreeTransforming
15993     // doesn't catch this case because of the way we represent them in the AST.
15994     // FIXME: This is a bit ugly; is it really the best way to handle this
15995     // case?
15996     //
15997     // Error on DeclRefExprs referring to FieldDecls.
15998     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
15999       if (isa<FieldDecl>(E->getDecl()) &&
16000           !SemaRef.isUnevaluatedContext())
16001         return SemaRef.Diag(E->getLocation(),
16002                             diag::err_invalid_non_static_member_use)
16003             << E->getDecl() << E->getSourceRange();
16004 
16005       return BaseTransform::TransformDeclRefExpr(E);
16006     }
16007 
16008     // Exception: filter out member pointer formation
16009     ExprResult TransformUnaryOperator(UnaryOperator *E) {
16010       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
16011         return E;
16012 
16013       return BaseTransform::TransformUnaryOperator(E);
16014     }
16015 
16016     // The body of a lambda-expression is in a separate expression evaluation
16017     // context so never needs to be transformed.
16018     // FIXME: Ideally we wouldn't transform the closure type either, and would
16019     // just recreate the capture expressions and lambda expression.
16020     StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
16021       return SkipLambdaBody(E, Body);
16022     }
16023   };
16024 }
16025 
16026 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
16027   assert(isUnevaluatedContext() &&
16028          "Should only transform unevaluated expressions");
16029   ExprEvalContexts.back().Context =
16030       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
16031   if (isUnevaluatedContext())
16032     return E;
16033   return TransformToPE(*this).TransformExpr(E);
16034 }
16035 
16036 void
16037 Sema::PushExpressionEvaluationContext(
16038     ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
16039     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
16040   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
16041                                 LambdaContextDecl, ExprContext);
16042   Cleanup.reset();
16043   if (!MaybeODRUseExprs.empty())
16044     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
16045 }
16046 
16047 void
16048 Sema::PushExpressionEvaluationContext(
16049     ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
16050     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
16051   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
16052   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
16053 }
16054 
16055 namespace {
16056 
16057 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
16058   PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
16059   if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
16060     if (E->getOpcode() == UO_Deref)
16061       return CheckPossibleDeref(S, E->getSubExpr());
16062   } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
16063     return CheckPossibleDeref(S, E->getBase());
16064   } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
16065     return CheckPossibleDeref(S, E->getBase());
16066   } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
16067     QualType Inner;
16068     QualType Ty = E->getType();
16069     if (const auto *Ptr = Ty->getAs<PointerType>())
16070       Inner = Ptr->getPointeeType();
16071     else if (const auto *Arr = S.Context.getAsArrayType(Ty))
16072       Inner = Arr->getElementType();
16073     else
16074       return nullptr;
16075 
16076     if (Inner->hasAttr(attr::NoDeref))
16077       return E;
16078   }
16079   return nullptr;
16080 }
16081 
16082 } // namespace
16083 
16084 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
16085   for (const Expr *E : Rec.PossibleDerefs) {
16086     const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
16087     if (DeclRef) {
16088       const ValueDecl *Decl = DeclRef->getDecl();
16089       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
16090           << Decl->getName() << E->getSourceRange();
16091       Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
16092     } else {
16093       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
16094           << E->getSourceRange();
16095     }
16096   }
16097   Rec.PossibleDerefs.clear();
16098 }
16099 
16100 /// Check whether E, which is either a discarded-value expression or an
16101 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
16102 /// and if so, remove it from the list of volatile-qualified assignments that
16103 /// we are going to warn are deprecated.
16104 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
16105   if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
16106     return;
16107 
16108   // Note: ignoring parens here is not justified by the standard rules, but
16109   // ignoring parentheses seems like a more reasonable approach, and this only
16110   // drives a deprecation warning so doesn't affect conformance.
16111   if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
16112     if (BO->getOpcode() == BO_Assign) {
16113       auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
16114       LHSs.erase(std::remove(LHSs.begin(), LHSs.end(), BO->getLHS()),
16115                  LHSs.end());
16116     }
16117   }
16118 }
16119 
16120 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
16121   if (!E.isUsable() || !Decl || !Decl->isConsteval() || isConstantEvaluated() ||
16122       RebuildingImmediateInvocation)
16123     return E;
16124 
16125   /// Opportunistically remove the callee from ReferencesToConsteval if we can.
16126   /// It's OK if this fails; we'll also remove this in
16127   /// HandleImmediateInvocations, but catching it here allows us to avoid
16128   /// walking the AST looking for it in simple cases.
16129   if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
16130     if (auto *DeclRef =
16131             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
16132       ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
16133 
16134   E = MaybeCreateExprWithCleanups(E);
16135 
16136   ConstantExpr *Res = ConstantExpr::Create(
16137       getASTContext(), E.get(),
16138       ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
16139                                    getASTContext()),
16140       /*IsImmediateInvocation*/ true);
16141   ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
16142   return Res;
16143 }
16144 
16145 static void EvaluateAndDiagnoseImmediateInvocation(
16146     Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
16147   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
16148   Expr::EvalResult Eval;
16149   Eval.Diag = &Notes;
16150   ConstantExpr *CE = Candidate.getPointer();
16151   bool Result = CE->EvaluateAsConstantExpr(Eval, Expr::EvaluateForCodeGen,
16152                                            SemaRef.getASTContext(), true);
16153   if (!Result || !Notes.empty()) {
16154     Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
16155     if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
16156       InnerExpr = FunctionalCast->getSubExpr();
16157     FunctionDecl *FD = nullptr;
16158     if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
16159       FD = cast<FunctionDecl>(Call->getCalleeDecl());
16160     else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
16161       FD = Call->getConstructor();
16162     else
16163       llvm_unreachable("unhandled decl kind");
16164     assert(FD->isConsteval());
16165     SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD;
16166     for (auto &Note : Notes)
16167       SemaRef.Diag(Note.first, Note.second);
16168     return;
16169   }
16170   CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
16171 }
16172 
16173 static void RemoveNestedImmediateInvocation(
16174     Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
16175     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
16176   struct ComplexRemove : TreeTransform<ComplexRemove> {
16177     using Base = TreeTransform<ComplexRemove>;
16178     llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
16179     SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
16180     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
16181         CurrentII;
16182     ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
16183                   SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
16184                   SmallVector<Sema::ImmediateInvocationCandidate,
16185                               4>::reverse_iterator Current)
16186         : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
16187     void RemoveImmediateInvocation(ConstantExpr* E) {
16188       auto It = std::find_if(CurrentII, IISet.rend(),
16189                              [E](Sema::ImmediateInvocationCandidate Elem) {
16190                                return Elem.getPointer() == E;
16191                              });
16192       assert(It != IISet.rend() &&
16193              "ConstantExpr marked IsImmediateInvocation should "
16194              "be present");
16195       It->setInt(1); // Mark as deleted
16196     }
16197     ExprResult TransformConstantExpr(ConstantExpr *E) {
16198       if (!E->isImmediateInvocation())
16199         return Base::TransformConstantExpr(E);
16200       RemoveImmediateInvocation(E);
16201       return Base::TransformExpr(E->getSubExpr());
16202     }
16203     /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
16204     /// we need to remove its DeclRefExpr from the DRSet.
16205     ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
16206       DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
16207       return Base::TransformCXXOperatorCallExpr(E);
16208     }
16209     /// Base::TransformInitializer skip ConstantExpr so we need to visit them
16210     /// here.
16211     ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
16212       if (!Init)
16213         return Init;
16214       /// ConstantExpr are the first layer of implicit node to be removed so if
16215       /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
16216       if (auto *CE = dyn_cast<ConstantExpr>(Init))
16217         if (CE->isImmediateInvocation())
16218           RemoveImmediateInvocation(CE);
16219       return Base::TransformInitializer(Init, NotCopyInit);
16220     }
16221     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
16222       DRSet.erase(E);
16223       return E;
16224     }
16225     bool AlwaysRebuild() { return false; }
16226     bool ReplacingOriginal() { return true; }
16227     bool AllowSkippingCXXConstructExpr() {
16228       bool Res = AllowSkippingFirstCXXConstructExpr;
16229       AllowSkippingFirstCXXConstructExpr = true;
16230       return Res;
16231     }
16232     bool AllowSkippingFirstCXXConstructExpr = true;
16233   } Transformer(SemaRef, Rec.ReferenceToConsteval,
16234                 Rec.ImmediateInvocationCandidates, It);
16235 
16236   /// CXXConstructExpr with a single argument are getting skipped by
16237   /// TreeTransform in some situtation because they could be implicit. This
16238   /// can only occur for the top-level CXXConstructExpr because it is used
16239   /// nowhere in the expression being transformed therefore will not be rebuilt.
16240   /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
16241   /// skipping the first CXXConstructExpr.
16242   if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
16243     Transformer.AllowSkippingFirstCXXConstructExpr = false;
16244 
16245   ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
16246   assert(Res.isUsable());
16247   Res = SemaRef.MaybeCreateExprWithCleanups(Res);
16248   It->getPointer()->setSubExpr(Res.get());
16249 }
16250 
16251 static void
16252 HandleImmediateInvocations(Sema &SemaRef,
16253                            Sema::ExpressionEvaluationContextRecord &Rec) {
16254   if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
16255        Rec.ReferenceToConsteval.size() == 0) ||
16256       SemaRef.RebuildingImmediateInvocation)
16257     return;
16258 
16259   /// When we have more then 1 ImmediateInvocationCandidates we need to check
16260   /// for nested ImmediateInvocationCandidates. when we have only 1 we only
16261   /// need to remove ReferenceToConsteval in the immediate invocation.
16262   if (Rec.ImmediateInvocationCandidates.size() > 1) {
16263 
16264     /// Prevent sema calls during the tree transform from adding pointers that
16265     /// are already in the sets.
16266     llvm::SaveAndRestore<bool> DisableIITracking(
16267         SemaRef.RebuildingImmediateInvocation, true);
16268 
16269     /// Prevent diagnostic during tree transfrom as they are duplicates
16270     Sema::TentativeAnalysisScope DisableDiag(SemaRef);
16271 
16272     for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
16273          It != Rec.ImmediateInvocationCandidates.rend(); It++)
16274       if (!It->getInt())
16275         RemoveNestedImmediateInvocation(SemaRef, Rec, It);
16276   } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
16277              Rec.ReferenceToConsteval.size()) {
16278     struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
16279       llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
16280       SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
16281       bool VisitDeclRefExpr(DeclRefExpr *E) {
16282         DRSet.erase(E);
16283         return DRSet.size();
16284       }
16285     } Visitor(Rec.ReferenceToConsteval);
16286     Visitor.TraverseStmt(
16287         Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
16288   }
16289   for (auto CE : Rec.ImmediateInvocationCandidates)
16290     if (!CE.getInt())
16291       EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
16292   for (auto DR : Rec.ReferenceToConsteval) {
16293     auto *FD = cast<FunctionDecl>(DR->getDecl());
16294     SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
16295         << FD;
16296     SemaRef.Diag(FD->getLocation(), diag::note_declared_at);
16297   }
16298 }
16299 
16300 void Sema::PopExpressionEvaluationContext() {
16301   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
16302   unsigned NumTypos = Rec.NumTypos;
16303 
16304   if (!Rec.Lambdas.empty()) {
16305     using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
16306     if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || Rec.isUnevaluated() ||
16307         (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17)) {
16308       unsigned D;
16309       if (Rec.isUnevaluated()) {
16310         // C++11 [expr.prim.lambda]p2:
16311         //   A lambda-expression shall not appear in an unevaluated operand
16312         //   (Clause 5).
16313         D = diag::err_lambda_unevaluated_operand;
16314       } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
16315         // C++1y [expr.const]p2:
16316         //   A conditional-expression e is a core constant expression unless the
16317         //   evaluation of e, following the rules of the abstract machine, would
16318         //   evaluate [...] a lambda-expression.
16319         D = diag::err_lambda_in_constant_expression;
16320       } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
16321         // C++17 [expr.prim.lamda]p2:
16322         // A lambda-expression shall not appear [...] in a template-argument.
16323         D = diag::err_lambda_in_invalid_context;
16324       } else
16325         llvm_unreachable("Couldn't infer lambda error message.");
16326 
16327       for (const auto *L : Rec.Lambdas)
16328         Diag(L->getBeginLoc(), D);
16329     }
16330   }
16331 
16332   WarnOnPendingNoDerefs(Rec);
16333   HandleImmediateInvocations(*this, Rec);
16334 
16335   // Warn on any volatile-qualified simple-assignments that are not discarded-
16336   // value expressions nor unevaluated operands (those cases get removed from
16337   // this list by CheckUnusedVolatileAssignment).
16338   for (auto *BO : Rec.VolatileAssignmentLHSs)
16339     Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
16340         << BO->getType();
16341 
16342   // When are coming out of an unevaluated context, clear out any
16343   // temporaries that we may have created as part of the evaluation of
16344   // the expression in that context: they aren't relevant because they
16345   // will never be constructed.
16346   if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
16347     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
16348                              ExprCleanupObjects.end());
16349     Cleanup = Rec.ParentCleanup;
16350     CleanupVarDeclMarking();
16351     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
16352   // Otherwise, merge the contexts together.
16353   } else {
16354     Cleanup.mergeFrom(Rec.ParentCleanup);
16355     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
16356                             Rec.SavedMaybeODRUseExprs.end());
16357   }
16358 
16359   // Pop the current expression evaluation context off the stack.
16360   ExprEvalContexts.pop_back();
16361 
16362   // The global expression evaluation context record is never popped.
16363   ExprEvalContexts.back().NumTypos += NumTypos;
16364 }
16365 
16366 void Sema::DiscardCleanupsInEvaluationContext() {
16367   ExprCleanupObjects.erase(
16368          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
16369          ExprCleanupObjects.end());
16370   Cleanup.reset();
16371   MaybeODRUseExprs.clear();
16372 }
16373 
16374 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
16375   ExprResult Result = CheckPlaceholderExpr(E);
16376   if (Result.isInvalid())
16377     return ExprError();
16378   E = Result.get();
16379   if (!E->getType()->isVariablyModifiedType())
16380     return E;
16381   return TransformToPotentiallyEvaluated(E);
16382 }
16383 
16384 /// Are we in a context that is potentially constant evaluated per C++20
16385 /// [expr.const]p12?
16386 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
16387   /// C++2a [expr.const]p12:
16388   //   An expression or conversion is potentially constant evaluated if it is
16389   switch (SemaRef.ExprEvalContexts.back().Context) {
16390     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
16391       // -- a manifestly constant-evaluated expression,
16392     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
16393     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
16394     case Sema::ExpressionEvaluationContext::DiscardedStatement:
16395       // -- a potentially-evaluated expression,
16396     case Sema::ExpressionEvaluationContext::UnevaluatedList:
16397       // -- an immediate subexpression of a braced-init-list,
16398 
16399       // -- [FIXME] an expression of the form & cast-expression that occurs
16400       //    within a templated entity
16401       // -- a subexpression of one of the above that is not a subexpression of
16402       // a nested unevaluated operand.
16403       return true;
16404 
16405     case Sema::ExpressionEvaluationContext::Unevaluated:
16406     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
16407       // Expressions in this context are never evaluated.
16408       return false;
16409   }
16410   llvm_unreachable("Invalid context");
16411 }
16412 
16413 /// Return true if this function has a calling convention that requires mangling
16414 /// in the size of the parameter pack.
16415 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
16416   // These manglings don't do anything on non-Windows or non-x86 platforms, so
16417   // we don't need parameter type sizes.
16418   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
16419   if (!TT.isOSWindows() || !TT.isX86())
16420     return false;
16421 
16422   // If this is C++ and this isn't an extern "C" function, parameters do not
16423   // need to be complete. In this case, C++ mangling will apply, which doesn't
16424   // use the size of the parameters.
16425   if (S.getLangOpts().CPlusPlus && !FD->isExternC())
16426     return false;
16427 
16428   // Stdcall, fastcall, and vectorcall need this special treatment.
16429   CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
16430   switch (CC) {
16431   case CC_X86StdCall:
16432   case CC_X86FastCall:
16433   case CC_X86VectorCall:
16434     return true;
16435   default:
16436     break;
16437   }
16438   return false;
16439 }
16440 
16441 /// Require that all of the parameter types of function be complete. Normally,
16442 /// parameter types are only required to be complete when a function is called
16443 /// or defined, but to mangle functions with certain calling conventions, the
16444 /// mangler needs to know the size of the parameter list. In this situation,
16445 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
16446 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
16447 /// result in a linker error. Clang doesn't implement this behavior, and instead
16448 /// attempts to error at compile time.
16449 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
16450                                                   SourceLocation Loc) {
16451   class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
16452     FunctionDecl *FD;
16453     ParmVarDecl *Param;
16454 
16455   public:
16456     ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
16457         : FD(FD), Param(Param) {}
16458 
16459     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
16460       CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
16461       StringRef CCName;
16462       switch (CC) {
16463       case CC_X86StdCall:
16464         CCName = "stdcall";
16465         break;
16466       case CC_X86FastCall:
16467         CCName = "fastcall";
16468         break;
16469       case CC_X86VectorCall:
16470         CCName = "vectorcall";
16471         break;
16472       default:
16473         llvm_unreachable("CC does not need mangling");
16474       }
16475 
16476       S.Diag(Loc, diag::err_cconv_incomplete_param_type)
16477           << Param->getDeclName() << FD->getDeclName() << CCName;
16478     }
16479   };
16480 
16481   for (ParmVarDecl *Param : FD->parameters()) {
16482     ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
16483     S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
16484   }
16485 }
16486 
16487 namespace {
16488 enum class OdrUseContext {
16489   /// Declarations in this context are not odr-used.
16490   None,
16491   /// Declarations in this context are formally odr-used, but this is a
16492   /// dependent context.
16493   Dependent,
16494   /// Declarations in this context are odr-used but not actually used (yet).
16495   FormallyOdrUsed,
16496   /// Declarations in this context are used.
16497   Used
16498 };
16499 }
16500 
16501 /// Are we within a context in which references to resolved functions or to
16502 /// variables result in odr-use?
16503 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
16504   OdrUseContext Result;
16505 
16506   switch (SemaRef.ExprEvalContexts.back().Context) {
16507     case Sema::ExpressionEvaluationContext::Unevaluated:
16508     case Sema::ExpressionEvaluationContext::UnevaluatedList:
16509     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
16510       return OdrUseContext::None;
16511 
16512     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
16513     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
16514       Result = OdrUseContext::Used;
16515       break;
16516 
16517     case Sema::ExpressionEvaluationContext::DiscardedStatement:
16518       Result = OdrUseContext::FormallyOdrUsed;
16519       break;
16520 
16521     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
16522       // A default argument formally results in odr-use, but doesn't actually
16523       // result in a use in any real sense until it itself is used.
16524       Result = OdrUseContext::FormallyOdrUsed;
16525       break;
16526   }
16527 
16528   if (SemaRef.CurContext->isDependentContext())
16529     return OdrUseContext::Dependent;
16530 
16531   return Result;
16532 }
16533 
16534 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
16535   return Func->isConstexpr() &&
16536          (Func->isImplicitlyInstantiable() || !Func->isUserProvided());
16537 }
16538 
16539 /// Mark a function referenced, and check whether it is odr-used
16540 /// (C++ [basic.def.odr]p2, C99 6.9p3)
16541 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
16542                                   bool MightBeOdrUse) {
16543   assert(Func && "No function?");
16544 
16545   Func->setReferenced();
16546 
16547   // Recursive functions aren't really used until they're used from some other
16548   // context.
16549   bool IsRecursiveCall = CurContext == Func;
16550 
16551   // C++11 [basic.def.odr]p3:
16552   //   A function whose name appears as a potentially-evaluated expression is
16553   //   odr-used if it is the unique lookup result or the selected member of a
16554   //   set of overloaded functions [...].
16555   //
16556   // We (incorrectly) mark overload resolution as an unevaluated context, so we
16557   // can just check that here.
16558   OdrUseContext OdrUse =
16559       MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
16560   if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
16561     OdrUse = OdrUseContext::FormallyOdrUsed;
16562 
16563   // Trivial default constructors and destructors are never actually used.
16564   // FIXME: What about other special members?
16565   if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
16566       OdrUse == OdrUseContext::Used) {
16567     if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
16568       if (Constructor->isDefaultConstructor())
16569         OdrUse = OdrUseContext::FormallyOdrUsed;
16570     if (isa<CXXDestructorDecl>(Func))
16571       OdrUse = OdrUseContext::FormallyOdrUsed;
16572   }
16573 
16574   // C++20 [expr.const]p12:
16575   //   A function [...] is needed for constant evaluation if it is [...] a
16576   //   constexpr function that is named by an expression that is potentially
16577   //   constant evaluated
16578   bool NeededForConstantEvaluation =
16579       isPotentiallyConstantEvaluatedContext(*this) &&
16580       isImplicitlyDefinableConstexprFunction(Func);
16581 
16582   // Determine whether we require a function definition to exist, per
16583   // C++11 [temp.inst]p3:
16584   //   Unless a function template specialization has been explicitly
16585   //   instantiated or explicitly specialized, the function template
16586   //   specialization is implicitly instantiated when the specialization is
16587   //   referenced in a context that requires a function definition to exist.
16588   // C++20 [temp.inst]p7:
16589   //   The existence of a definition of a [...] function is considered to
16590   //   affect the semantics of the program if the [...] function is needed for
16591   //   constant evaluation by an expression
16592   // C++20 [basic.def.odr]p10:
16593   //   Every program shall contain exactly one definition of every non-inline
16594   //   function or variable that is odr-used in that program outside of a
16595   //   discarded statement
16596   // C++20 [special]p1:
16597   //   The implementation will implicitly define [defaulted special members]
16598   //   if they are odr-used or needed for constant evaluation.
16599   //
16600   // Note that we skip the implicit instantiation of templates that are only
16601   // used in unused default arguments or by recursive calls to themselves.
16602   // This is formally non-conforming, but seems reasonable in practice.
16603   bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
16604                                              NeededForConstantEvaluation);
16605 
16606   // C++14 [temp.expl.spec]p6:
16607   //   If a template [...] is explicitly specialized then that specialization
16608   //   shall be declared before the first use of that specialization that would
16609   //   cause an implicit instantiation to take place, in every translation unit
16610   //   in which such a use occurs
16611   if (NeedDefinition &&
16612       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
16613        Func->getMemberSpecializationInfo()))
16614     checkSpecializationVisibility(Loc, Func);
16615 
16616   if (getLangOpts().CUDA)
16617     CheckCUDACall(Loc, Func);
16618 
16619   if (getLangOpts().SYCLIsDevice)
16620     checkSYCLDeviceFunction(Loc, Func);
16621 
16622   // If we need a definition, try to create one.
16623   if (NeedDefinition && !Func->getBody()) {
16624     runWithSufficientStackSpace(Loc, [&] {
16625       if (CXXConstructorDecl *Constructor =
16626               dyn_cast<CXXConstructorDecl>(Func)) {
16627         Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
16628         if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
16629           if (Constructor->isDefaultConstructor()) {
16630             if (Constructor->isTrivial() &&
16631                 !Constructor->hasAttr<DLLExportAttr>())
16632               return;
16633             DefineImplicitDefaultConstructor(Loc, Constructor);
16634           } else if (Constructor->isCopyConstructor()) {
16635             DefineImplicitCopyConstructor(Loc, Constructor);
16636           } else if (Constructor->isMoveConstructor()) {
16637             DefineImplicitMoveConstructor(Loc, Constructor);
16638           }
16639         } else if (Constructor->getInheritedConstructor()) {
16640           DefineInheritingConstructor(Loc, Constructor);
16641         }
16642       } else if (CXXDestructorDecl *Destructor =
16643                      dyn_cast<CXXDestructorDecl>(Func)) {
16644         Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
16645         if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
16646           if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
16647             return;
16648           DefineImplicitDestructor(Loc, Destructor);
16649         }
16650         if (Destructor->isVirtual() && getLangOpts().AppleKext)
16651           MarkVTableUsed(Loc, Destructor->getParent());
16652       } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
16653         if (MethodDecl->isOverloadedOperator() &&
16654             MethodDecl->getOverloadedOperator() == OO_Equal) {
16655           MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
16656           if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
16657             if (MethodDecl->isCopyAssignmentOperator())
16658               DefineImplicitCopyAssignment(Loc, MethodDecl);
16659             else if (MethodDecl->isMoveAssignmentOperator())
16660               DefineImplicitMoveAssignment(Loc, MethodDecl);
16661           }
16662         } else if (isa<CXXConversionDecl>(MethodDecl) &&
16663                    MethodDecl->getParent()->isLambda()) {
16664           CXXConversionDecl *Conversion =
16665               cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
16666           if (Conversion->isLambdaToBlockPointerConversion())
16667             DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
16668           else
16669             DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
16670         } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
16671           MarkVTableUsed(Loc, MethodDecl->getParent());
16672       }
16673 
16674       if (Func->isDefaulted() && !Func->isDeleted()) {
16675         DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
16676         if (DCK != DefaultedComparisonKind::None)
16677           DefineDefaultedComparison(Loc, Func, DCK);
16678       }
16679 
16680       // Implicit instantiation of function templates and member functions of
16681       // class templates.
16682       if (Func->isImplicitlyInstantiable()) {
16683         TemplateSpecializationKind TSK =
16684             Func->getTemplateSpecializationKindForInstantiation();
16685         SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
16686         bool FirstInstantiation = PointOfInstantiation.isInvalid();
16687         if (FirstInstantiation) {
16688           PointOfInstantiation = Loc;
16689           Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
16690         } else if (TSK != TSK_ImplicitInstantiation) {
16691           // Use the point of use as the point of instantiation, instead of the
16692           // point of explicit instantiation (which we track as the actual point
16693           // of instantiation). This gives better backtraces in diagnostics.
16694           PointOfInstantiation = Loc;
16695         }
16696 
16697         if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
16698             Func->isConstexpr()) {
16699           if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
16700               cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
16701               CodeSynthesisContexts.size())
16702             PendingLocalImplicitInstantiations.push_back(
16703                 std::make_pair(Func, PointOfInstantiation));
16704           else if (Func->isConstexpr())
16705             // Do not defer instantiations of constexpr functions, to avoid the
16706             // expression evaluator needing to call back into Sema if it sees a
16707             // call to such a function.
16708             InstantiateFunctionDefinition(PointOfInstantiation, Func);
16709           else {
16710             Func->setInstantiationIsPending(true);
16711             PendingInstantiations.push_back(
16712                 std::make_pair(Func, PointOfInstantiation));
16713             // Notify the consumer that a function was implicitly instantiated.
16714             Consumer.HandleCXXImplicitFunctionInstantiation(Func);
16715           }
16716         }
16717       } else {
16718         // Walk redefinitions, as some of them may be instantiable.
16719         for (auto i : Func->redecls()) {
16720           if (!i->isUsed(false) && i->isImplicitlyInstantiable())
16721             MarkFunctionReferenced(Loc, i, MightBeOdrUse);
16722         }
16723       }
16724     });
16725   }
16726 
16727   // C++14 [except.spec]p17:
16728   //   An exception-specification is considered to be needed when:
16729   //   - the function is odr-used or, if it appears in an unevaluated operand,
16730   //     would be odr-used if the expression were potentially-evaluated;
16731   //
16732   // Note, we do this even if MightBeOdrUse is false. That indicates that the
16733   // function is a pure virtual function we're calling, and in that case the
16734   // function was selected by overload resolution and we need to resolve its
16735   // exception specification for a different reason.
16736   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
16737   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
16738     ResolveExceptionSpec(Loc, FPT);
16739 
16740   // If this is the first "real" use, act on that.
16741   if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
16742     // Keep track of used but undefined functions.
16743     if (!Func->isDefined()) {
16744       if (mightHaveNonExternalLinkage(Func))
16745         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
16746       else if (Func->getMostRecentDecl()->isInlined() &&
16747                !LangOpts.GNUInline &&
16748                !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
16749         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
16750       else if (isExternalWithNoLinkageType(Func))
16751         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
16752     }
16753 
16754     // Some x86 Windows calling conventions mangle the size of the parameter
16755     // pack into the name. Computing the size of the parameters requires the
16756     // parameter types to be complete. Check that now.
16757     if (funcHasParameterSizeMangling(*this, Func))
16758       CheckCompleteParameterTypesForMangler(*this, Func, Loc);
16759 
16760     // In the MS C++ ABI, the compiler emits destructor variants where they are
16761     // used. If the destructor is used here but defined elsewhere, mark the
16762     // virtual base destructors referenced. If those virtual base destructors
16763     // are inline, this will ensure they are defined when emitting the complete
16764     // destructor variant. This checking may be redundant if the destructor is
16765     // provided later in this TU.
16766     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
16767       if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
16768         CXXRecordDecl *Parent = Dtor->getParent();
16769         if (Parent->getNumVBases() > 0 && !Dtor->getBody())
16770           CheckCompleteDestructorVariant(Loc, Dtor);
16771       }
16772     }
16773 
16774     Func->markUsed(Context);
16775   }
16776 }
16777 
16778 /// Directly mark a variable odr-used. Given a choice, prefer to use
16779 /// MarkVariableReferenced since it does additional checks and then
16780 /// calls MarkVarDeclODRUsed.
16781 /// If the variable must be captured:
16782 ///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
16783 ///  - else capture it in the DeclContext that maps to the
16784 ///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
16785 static void
16786 MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
16787                    const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
16788   // Keep track of used but undefined variables.
16789   // FIXME: We shouldn't suppress this warning for static data members.
16790   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
16791       (!Var->isExternallyVisible() || Var->isInline() ||
16792        SemaRef.isExternalWithNoLinkageType(Var)) &&
16793       !(Var->isStaticDataMember() && Var->hasInit())) {
16794     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
16795     if (old.isInvalid())
16796       old = Loc;
16797   }
16798   QualType CaptureType, DeclRefType;
16799   if (SemaRef.LangOpts.OpenMP)
16800     SemaRef.tryCaptureOpenMPLambdas(Var);
16801   SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
16802     /*EllipsisLoc*/ SourceLocation(),
16803     /*BuildAndDiagnose*/ true,
16804     CaptureType, DeclRefType,
16805     FunctionScopeIndexToStopAt);
16806 
16807   Var->markUsed(SemaRef.Context);
16808 }
16809 
16810 void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
16811                                              SourceLocation Loc,
16812                                              unsigned CapturingScopeIndex) {
16813   MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
16814 }
16815 
16816 static void
16817 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
16818                                    ValueDecl *var, DeclContext *DC) {
16819   DeclContext *VarDC = var->getDeclContext();
16820 
16821   //  If the parameter still belongs to the translation unit, then
16822   //  we're actually just using one parameter in the declaration of
16823   //  the next.
16824   if (isa<ParmVarDecl>(var) &&
16825       isa<TranslationUnitDecl>(VarDC))
16826     return;
16827 
16828   // For C code, don't diagnose about capture if we're not actually in code
16829   // right now; it's impossible to write a non-constant expression outside of
16830   // function context, so we'll get other (more useful) diagnostics later.
16831   //
16832   // For C++, things get a bit more nasty... it would be nice to suppress this
16833   // diagnostic for certain cases like using a local variable in an array bound
16834   // for a member of a local class, but the correct predicate is not obvious.
16835   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
16836     return;
16837 
16838   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
16839   unsigned ContextKind = 3; // unknown
16840   if (isa<CXXMethodDecl>(VarDC) &&
16841       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
16842     ContextKind = 2;
16843   } else if (isa<FunctionDecl>(VarDC)) {
16844     ContextKind = 0;
16845   } else if (isa<BlockDecl>(VarDC)) {
16846     ContextKind = 1;
16847   }
16848 
16849   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
16850     << var << ValueKind << ContextKind << VarDC;
16851   S.Diag(var->getLocation(), diag::note_entity_declared_at)
16852       << var;
16853 
16854   // FIXME: Add additional diagnostic info about class etc. which prevents
16855   // capture.
16856 }
16857 
16858 
16859 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
16860                                       bool &SubCapturesAreNested,
16861                                       QualType &CaptureType,
16862                                       QualType &DeclRefType) {
16863    // Check whether we've already captured it.
16864   if (CSI->CaptureMap.count(Var)) {
16865     // If we found a capture, any subcaptures are nested.
16866     SubCapturesAreNested = true;
16867 
16868     // Retrieve the capture type for this variable.
16869     CaptureType = CSI->getCapture(Var).getCaptureType();
16870 
16871     // Compute the type of an expression that refers to this variable.
16872     DeclRefType = CaptureType.getNonReferenceType();
16873 
16874     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
16875     // are mutable in the sense that user can change their value - they are
16876     // private instances of the captured declarations.
16877     const Capture &Cap = CSI->getCapture(Var);
16878     if (Cap.isCopyCapture() &&
16879         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
16880         !(isa<CapturedRegionScopeInfo>(CSI) &&
16881           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
16882       DeclRefType.addConst();
16883     return true;
16884   }
16885   return false;
16886 }
16887 
16888 // Only block literals, captured statements, and lambda expressions can
16889 // capture; other scopes don't work.
16890 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
16891                                  SourceLocation Loc,
16892                                  const bool Diagnose, Sema &S) {
16893   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
16894     return getLambdaAwareParentOfDeclContext(DC);
16895   else if (Var->hasLocalStorage()) {
16896     if (Diagnose)
16897        diagnoseUncapturableValueReference(S, Loc, Var, DC);
16898   }
16899   return nullptr;
16900 }
16901 
16902 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
16903 // certain types of variables (unnamed, variably modified types etc.)
16904 // so check for eligibility.
16905 static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
16906                                  SourceLocation Loc,
16907                                  const bool Diagnose, Sema &S) {
16908 
16909   bool IsBlock = isa<BlockScopeInfo>(CSI);
16910   bool IsLambda = isa<LambdaScopeInfo>(CSI);
16911 
16912   // Lambdas are not allowed to capture unnamed variables
16913   // (e.g. anonymous unions).
16914   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
16915   // assuming that's the intent.
16916   if (IsLambda && !Var->getDeclName()) {
16917     if (Diagnose) {
16918       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
16919       S.Diag(Var->getLocation(), diag::note_declared_at);
16920     }
16921     return false;
16922   }
16923 
16924   // Prohibit variably-modified types in blocks; they're difficult to deal with.
16925   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
16926     if (Diagnose) {
16927       S.Diag(Loc, diag::err_ref_vm_type);
16928       S.Diag(Var->getLocation(), diag::note_previous_decl)
16929         << Var->getDeclName();
16930     }
16931     return false;
16932   }
16933   // Prohibit structs with flexible array members too.
16934   // We cannot capture what is in the tail end of the struct.
16935   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
16936     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
16937       if (Diagnose) {
16938         if (IsBlock)
16939           S.Diag(Loc, diag::err_ref_flexarray_type);
16940         else
16941           S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
16942             << Var->getDeclName();
16943         S.Diag(Var->getLocation(), diag::note_previous_decl)
16944           << Var->getDeclName();
16945       }
16946       return false;
16947     }
16948   }
16949   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
16950   // Lambdas and captured statements are not allowed to capture __block
16951   // variables; they don't support the expected semantics.
16952   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
16953     if (Diagnose) {
16954       S.Diag(Loc, diag::err_capture_block_variable)
16955         << Var->getDeclName() << !IsLambda;
16956       S.Diag(Var->getLocation(), diag::note_previous_decl)
16957         << Var->getDeclName();
16958     }
16959     return false;
16960   }
16961   // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
16962   if (S.getLangOpts().OpenCL && IsBlock &&
16963       Var->getType()->isBlockPointerType()) {
16964     if (Diagnose)
16965       S.Diag(Loc, diag::err_opencl_block_ref_block);
16966     return false;
16967   }
16968 
16969   return true;
16970 }
16971 
16972 // Returns true if the capture by block was successful.
16973 static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
16974                                  SourceLocation Loc,
16975                                  const bool BuildAndDiagnose,
16976                                  QualType &CaptureType,
16977                                  QualType &DeclRefType,
16978                                  const bool Nested,
16979                                  Sema &S, bool Invalid) {
16980   bool ByRef = false;
16981 
16982   // Blocks are not allowed to capture arrays, excepting OpenCL.
16983   // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
16984   // (decayed to pointers).
16985   if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
16986     if (BuildAndDiagnose) {
16987       S.Diag(Loc, diag::err_ref_array_type);
16988       S.Diag(Var->getLocation(), diag::note_previous_decl)
16989       << Var->getDeclName();
16990       Invalid = true;
16991     } else {
16992       return false;
16993     }
16994   }
16995 
16996   // Forbid the block-capture of autoreleasing variables.
16997   if (!Invalid &&
16998       CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
16999     if (BuildAndDiagnose) {
17000       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
17001         << /*block*/ 0;
17002       S.Diag(Var->getLocation(), diag::note_previous_decl)
17003         << Var->getDeclName();
17004       Invalid = true;
17005     } else {
17006       return false;
17007     }
17008   }
17009 
17010   // Warn about implicitly autoreleasing indirect parameters captured by blocks.
17011   if (const auto *PT = CaptureType->getAs<PointerType>()) {
17012     QualType PointeeTy = PT->getPointeeType();
17013 
17014     if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
17015         PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
17016         !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
17017       if (BuildAndDiagnose) {
17018         SourceLocation VarLoc = Var->getLocation();
17019         S.Diag(Loc, diag::warn_block_capture_autoreleasing);
17020         S.Diag(VarLoc, diag::note_declare_parameter_strong);
17021       }
17022     }
17023   }
17024 
17025   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
17026   if (HasBlocksAttr || CaptureType->isReferenceType() ||
17027       (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
17028     // Block capture by reference does not change the capture or
17029     // declaration reference types.
17030     ByRef = true;
17031   } else {
17032     // Block capture by copy introduces 'const'.
17033     CaptureType = CaptureType.getNonReferenceType().withConst();
17034     DeclRefType = CaptureType;
17035   }
17036 
17037   // Actually capture the variable.
17038   if (BuildAndDiagnose)
17039     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
17040                     CaptureType, Invalid);
17041 
17042   return !Invalid;
17043 }
17044 
17045 
17046 /// Capture the given variable in the captured region.
17047 static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
17048                                     VarDecl *Var,
17049                                     SourceLocation Loc,
17050                                     const bool BuildAndDiagnose,
17051                                     QualType &CaptureType,
17052                                     QualType &DeclRefType,
17053                                     const bool RefersToCapturedVariable,
17054                                     Sema &S, bool Invalid) {
17055   // By default, capture variables by reference.
17056   bool ByRef = true;
17057   // Using an LValue reference type is consistent with Lambdas (see below).
17058   if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
17059     if (S.isOpenMPCapturedDecl(Var)) {
17060       bool HasConst = DeclRefType.isConstQualified();
17061       DeclRefType = DeclRefType.getUnqualifiedType();
17062       // Don't lose diagnostics about assignments to const.
17063       if (HasConst)
17064         DeclRefType.addConst();
17065     }
17066     // Do not capture firstprivates in tasks.
17067     if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
17068         OMPC_unknown)
17069       return true;
17070     ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
17071                                     RSI->OpenMPCaptureLevel);
17072   }
17073 
17074   if (ByRef)
17075     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
17076   else
17077     CaptureType = DeclRefType;
17078 
17079   // Actually capture the variable.
17080   if (BuildAndDiagnose)
17081     RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
17082                     Loc, SourceLocation(), CaptureType, Invalid);
17083 
17084   return !Invalid;
17085 }
17086 
17087 /// Capture the given variable in the lambda.
17088 static bool captureInLambda(LambdaScopeInfo *LSI,
17089                             VarDecl *Var,
17090                             SourceLocation Loc,
17091                             const bool BuildAndDiagnose,
17092                             QualType &CaptureType,
17093                             QualType &DeclRefType,
17094                             const bool RefersToCapturedVariable,
17095                             const Sema::TryCaptureKind Kind,
17096                             SourceLocation EllipsisLoc,
17097                             const bool IsTopScope,
17098                             Sema &S, bool Invalid) {
17099   // Determine whether we are capturing by reference or by value.
17100   bool ByRef = false;
17101   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
17102     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
17103   } else {
17104     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
17105   }
17106 
17107   // Compute the type of the field that will capture this variable.
17108   if (ByRef) {
17109     // C++11 [expr.prim.lambda]p15:
17110     //   An entity is captured by reference if it is implicitly or
17111     //   explicitly captured but not captured by copy. It is
17112     //   unspecified whether additional unnamed non-static data
17113     //   members are declared in the closure type for entities
17114     //   captured by reference.
17115     //
17116     // FIXME: It is not clear whether we want to build an lvalue reference
17117     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
17118     // to do the former, while EDG does the latter. Core issue 1249 will
17119     // clarify, but for now we follow GCC because it's a more permissive and
17120     // easily defensible position.
17121     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
17122   } else {
17123     // C++11 [expr.prim.lambda]p14:
17124     //   For each entity captured by copy, an unnamed non-static
17125     //   data member is declared in the closure type. The
17126     //   declaration order of these members is unspecified. The type
17127     //   of such a data member is the type of the corresponding
17128     //   captured entity if the entity is not a reference to an
17129     //   object, or the referenced type otherwise. [Note: If the
17130     //   captured entity is a reference to a function, the
17131     //   corresponding data member is also a reference to a
17132     //   function. - end note ]
17133     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
17134       if (!RefType->getPointeeType()->isFunctionType())
17135         CaptureType = RefType->getPointeeType();
17136     }
17137 
17138     // Forbid the lambda copy-capture of autoreleasing variables.
17139     if (!Invalid &&
17140         CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
17141       if (BuildAndDiagnose) {
17142         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
17143         S.Diag(Var->getLocation(), diag::note_previous_decl)
17144           << Var->getDeclName();
17145         Invalid = true;
17146       } else {
17147         return false;
17148       }
17149     }
17150 
17151     // Make sure that by-copy captures are of a complete and non-abstract type.
17152     if (!Invalid && BuildAndDiagnose) {
17153       if (!CaptureType->isDependentType() &&
17154           S.RequireCompleteSizedType(
17155               Loc, CaptureType,
17156               diag::err_capture_of_incomplete_or_sizeless_type,
17157               Var->getDeclName()))
17158         Invalid = true;
17159       else if (S.RequireNonAbstractType(Loc, CaptureType,
17160                                         diag::err_capture_of_abstract_type))
17161         Invalid = true;
17162     }
17163   }
17164 
17165   // Compute the type of a reference to this captured variable.
17166   if (ByRef)
17167     DeclRefType = CaptureType.getNonReferenceType();
17168   else {
17169     // C++ [expr.prim.lambda]p5:
17170     //   The closure type for a lambda-expression has a public inline
17171     //   function call operator [...]. This function call operator is
17172     //   declared const (9.3.1) if and only if the lambda-expression's
17173     //   parameter-declaration-clause is not followed by mutable.
17174     DeclRefType = CaptureType.getNonReferenceType();
17175     if (!LSI->Mutable && !CaptureType->isReferenceType())
17176       DeclRefType.addConst();
17177   }
17178 
17179   // Add the capture.
17180   if (BuildAndDiagnose)
17181     LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
17182                     Loc, EllipsisLoc, CaptureType, Invalid);
17183 
17184   return !Invalid;
17185 }
17186 
17187 bool Sema::tryCaptureVariable(
17188     VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
17189     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
17190     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
17191   // An init-capture is notionally from the context surrounding its
17192   // declaration, but its parent DC is the lambda class.
17193   DeclContext *VarDC = Var->getDeclContext();
17194   if (Var->isInitCapture())
17195     VarDC = VarDC->getParent();
17196 
17197   DeclContext *DC = CurContext;
17198   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
17199       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
17200   // We need to sync up the Declaration Context with the
17201   // FunctionScopeIndexToStopAt
17202   if (FunctionScopeIndexToStopAt) {
17203     unsigned FSIndex = FunctionScopes.size() - 1;
17204     while (FSIndex != MaxFunctionScopesIndex) {
17205       DC = getLambdaAwareParentOfDeclContext(DC);
17206       --FSIndex;
17207     }
17208   }
17209 
17210 
17211   // If the variable is declared in the current context, there is no need to
17212   // capture it.
17213   if (VarDC == DC) return true;
17214 
17215   // Capture global variables if it is required to use private copy of this
17216   // variable.
17217   bool IsGlobal = !Var->hasLocalStorage();
17218   if (IsGlobal &&
17219       !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
17220                                                 MaxFunctionScopesIndex)))
17221     return true;
17222   Var = Var->getCanonicalDecl();
17223 
17224   // Walk up the stack to determine whether we can capture the variable,
17225   // performing the "simple" checks that don't depend on type. We stop when
17226   // we've either hit the declared scope of the variable or find an existing
17227   // capture of that variable.  We start from the innermost capturing-entity
17228   // (the DC) and ensure that all intervening capturing-entities
17229   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
17230   // declcontext can either capture the variable or have already captured
17231   // the variable.
17232   CaptureType = Var->getType();
17233   DeclRefType = CaptureType.getNonReferenceType();
17234   bool Nested = false;
17235   bool Explicit = (Kind != TryCapture_Implicit);
17236   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
17237   do {
17238     // Only block literals, captured statements, and lambda expressions can
17239     // capture; other scopes don't work.
17240     DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
17241                                                               ExprLoc,
17242                                                               BuildAndDiagnose,
17243                                                               *this);
17244     // We need to check for the parent *first* because, if we *have*
17245     // private-captured a global variable, we need to recursively capture it in
17246     // intermediate blocks, lambdas, etc.
17247     if (!ParentDC) {
17248       if (IsGlobal) {
17249         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
17250         break;
17251       }
17252       return true;
17253     }
17254 
17255     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
17256     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
17257 
17258 
17259     // Check whether we've already captured it.
17260     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
17261                                              DeclRefType)) {
17262       CSI->getCapture(Var).markUsed(BuildAndDiagnose);
17263       break;
17264     }
17265     // If we are instantiating a generic lambda call operator body,
17266     // we do not want to capture new variables.  What was captured
17267     // during either a lambdas transformation or initial parsing
17268     // should be used.
17269     if (isGenericLambdaCallOperatorSpecialization(DC)) {
17270       if (BuildAndDiagnose) {
17271         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
17272         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
17273           Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
17274           Diag(Var->getLocation(), diag::note_previous_decl)
17275              << Var->getDeclName();
17276           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
17277         } else
17278           diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
17279       }
17280       return true;
17281     }
17282 
17283     // Try to capture variable-length arrays types.
17284     if (Var->getType()->isVariablyModifiedType()) {
17285       // We're going to walk down into the type and look for VLA
17286       // expressions.
17287       QualType QTy = Var->getType();
17288       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
17289         QTy = PVD->getOriginalType();
17290       captureVariablyModifiedType(Context, QTy, CSI);
17291     }
17292 
17293     if (getLangOpts().OpenMP) {
17294       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
17295         // OpenMP private variables should not be captured in outer scope, so
17296         // just break here. Similarly, global variables that are captured in a
17297         // target region should not be captured outside the scope of the region.
17298         if (RSI->CapRegionKind == CR_OpenMP) {
17299           OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
17300               Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
17301           // If the variable is private (i.e. not captured) and has variably
17302           // modified type, we still need to capture the type for correct
17303           // codegen in all regions, associated with the construct. Currently,
17304           // it is captured in the innermost captured region only.
17305           if (IsOpenMPPrivateDecl != OMPC_unknown &&
17306               Var->getType()->isVariablyModifiedType()) {
17307             QualType QTy = Var->getType();
17308             if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
17309               QTy = PVD->getOriginalType();
17310             for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
17311                  I < E; ++I) {
17312               auto *OuterRSI = cast<CapturedRegionScopeInfo>(
17313                   FunctionScopes[FunctionScopesIndex - I]);
17314               assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
17315                      "Wrong number of captured regions associated with the "
17316                      "OpenMP construct.");
17317               captureVariablyModifiedType(Context, QTy, OuterRSI);
17318             }
17319           }
17320           bool IsTargetCap =
17321               IsOpenMPPrivateDecl != OMPC_private &&
17322               isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
17323                                          RSI->OpenMPCaptureLevel);
17324           // Do not capture global if it is not privatized in outer regions.
17325           bool IsGlobalCap =
17326               IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
17327                                                      RSI->OpenMPCaptureLevel);
17328 
17329           // When we detect target captures we are looking from inside the
17330           // target region, therefore we need to propagate the capture from the
17331           // enclosing region. Therefore, the capture is not initially nested.
17332           if (IsTargetCap)
17333             adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
17334 
17335           if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
17336               (IsGlobal && !IsGlobalCap)) {
17337             Nested = !IsTargetCap;
17338             DeclRefType = DeclRefType.getUnqualifiedType();
17339             CaptureType = Context.getLValueReferenceType(DeclRefType);
17340             break;
17341           }
17342         }
17343       }
17344     }
17345     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
17346       // No capture-default, and this is not an explicit capture
17347       // so cannot capture this variable.
17348       if (BuildAndDiagnose) {
17349         Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
17350         Diag(Var->getLocation(), diag::note_previous_decl)
17351           << Var->getDeclName();
17352         if (cast<LambdaScopeInfo>(CSI)->Lambda)
17353           Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getBeginLoc(),
17354                diag::note_lambda_decl);
17355         // FIXME: If we error out because an outer lambda can not implicitly
17356         // capture a variable that an inner lambda explicitly captures, we
17357         // should have the inner lambda do the explicit capture - because
17358         // it makes for cleaner diagnostics later.  This would purely be done
17359         // so that the diagnostic does not misleadingly claim that a variable
17360         // can not be captured by a lambda implicitly even though it is captured
17361         // explicitly.  Suggestion:
17362         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
17363         //    at the function head
17364         //  - cache the StartingDeclContext - this must be a lambda
17365         //  - captureInLambda in the innermost lambda the variable.
17366       }
17367       return true;
17368     }
17369 
17370     FunctionScopesIndex--;
17371     DC = ParentDC;
17372     Explicit = false;
17373   } while (!VarDC->Equals(DC));
17374 
17375   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
17376   // computing the type of the capture at each step, checking type-specific
17377   // requirements, and adding captures if requested.
17378   // If the variable had already been captured previously, we start capturing
17379   // at the lambda nested within that one.
17380   bool Invalid = false;
17381   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
17382        ++I) {
17383     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
17384 
17385     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
17386     // certain types of variables (unnamed, variably modified types etc.)
17387     // so check for eligibility.
17388     if (!Invalid)
17389       Invalid =
17390           !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
17391 
17392     // After encountering an error, if we're actually supposed to capture, keep
17393     // capturing in nested contexts to suppress any follow-on diagnostics.
17394     if (Invalid && !BuildAndDiagnose)
17395       return true;
17396 
17397     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
17398       Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
17399                                DeclRefType, Nested, *this, Invalid);
17400       Nested = true;
17401     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
17402       Invalid = !captureInCapturedRegion(RSI, Var, ExprLoc, BuildAndDiagnose,
17403                                          CaptureType, DeclRefType, Nested,
17404                                          *this, Invalid);
17405       Nested = true;
17406     } else {
17407       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
17408       Invalid =
17409           !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
17410                            DeclRefType, Nested, Kind, EllipsisLoc,
17411                            /*IsTopScope*/ I == N - 1, *this, Invalid);
17412       Nested = true;
17413     }
17414 
17415     if (Invalid && !BuildAndDiagnose)
17416       return true;
17417   }
17418   return Invalid;
17419 }
17420 
17421 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
17422                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
17423   QualType CaptureType;
17424   QualType DeclRefType;
17425   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
17426                             /*BuildAndDiagnose=*/true, CaptureType,
17427                             DeclRefType, nullptr);
17428 }
17429 
17430 bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
17431   QualType CaptureType;
17432   QualType DeclRefType;
17433   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
17434                              /*BuildAndDiagnose=*/false, CaptureType,
17435                              DeclRefType, nullptr);
17436 }
17437 
17438 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
17439   QualType CaptureType;
17440   QualType DeclRefType;
17441 
17442   // Determine whether we can capture this variable.
17443   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
17444                          /*BuildAndDiagnose=*/false, CaptureType,
17445                          DeclRefType, nullptr))
17446     return QualType();
17447 
17448   return DeclRefType;
17449 }
17450 
17451 namespace {
17452 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
17453 // The produced TemplateArgumentListInfo* points to data stored within this
17454 // object, so should only be used in contexts where the pointer will not be
17455 // used after the CopiedTemplateArgs object is destroyed.
17456 class CopiedTemplateArgs {
17457   bool HasArgs;
17458   TemplateArgumentListInfo TemplateArgStorage;
17459 public:
17460   template<typename RefExpr>
17461   CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
17462     if (HasArgs)
17463       E->copyTemplateArgumentsInto(TemplateArgStorage);
17464   }
17465   operator TemplateArgumentListInfo*()
17466 #ifdef __has_cpp_attribute
17467 #if __has_cpp_attribute(clang::lifetimebound)
17468   [[clang::lifetimebound]]
17469 #endif
17470 #endif
17471   {
17472     return HasArgs ? &TemplateArgStorage : nullptr;
17473   }
17474 };
17475 }
17476 
17477 /// Walk the set of potential results of an expression and mark them all as
17478 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
17479 ///
17480 /// \return A new expression if we found any potential results, ExprEmpty() if
17481 ///         not, and ExprError() if we diagnosed an error.
17482 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
17483                                                       NonOdrUseReason NOUR) {
17484   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
17485   // an object that satisfies the requirements for appearing in a
17486   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
17487   // is immediately applied."  This function handles the lvalue-to-rvalue
17488   // conversion part.
17489   //
17490   // If we encounter a node that claims to be an odr-use but shouldn't be, we
17491   // transform it into the relevant kind of non-odr-use node and rebuild the
17492   // tree of nodes leading to it.
17493   //
17494   // This is a mini-TreeTransform that only transforms a restricted subset of
17495   // nodes (and only certain operands of them).
17496 
17497   // Rebuild a subexpression.
17498   auto Rebuild = [&](Expr *Sub) {
17499     return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
17500   };
17501 
17502   // Check whether a potential result satisfies the requirements of NOUR.
17503   auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
17504     // Any entity other than a VarDecl is always odr-used whenever it's named
17505     // in a potentially-evaluated expression.
17506     auto *VD = dyn_cast<VarDecl>(D);
17507     if (!VD)
17508       return true;
17509 
17510     // C++2a [basic.def.odr]p4:
17511     //   A variable x whose name appears as a potentially-evalauted expression
17512     //   e is odr-used by e unless
17513     //   -- x is a reference that is usable in constant expressions, or
17514     //   -- x is a variable of non-reference type that is usable in constant
17515     //      expressions and has no mutable subobjects, and e is an element of
17516     //      the set of potential results of an expression of
17517     //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
17518     //      conversion is applied, or
17519     //   -- x is a variable of non-reference type, and e is an element of the
17520     //      set of potential results of a discarded-value expression to which
17521     //      the lvalue-to-rvalue conversion is not applied
17522     //
17523     // We check the first bullet and the "potentially-evaluated" condition in
17524     // BuildDeclRefExpr. We check the type requirements in the second bullet
17525     // in CheckLValueToRValueConversionOperand below.
17526     switch (NOUR) {
17527     case NOUR_None:
17528     case NOUR_Unevaluated:
17529       llvm_unreachable("unexpected non-odr-use-reason");
17530 
17531     case NOUR_Constant:
17532       // Constant references were handled when they were built.
17533       if (VD->getType()->isReferenceType())
17534         return true;
17535       if (auto *RD = VD->getType()->getAsCXXRecordDecl())
17536         if (RD->hasMutableFields())
17537           return true;
17538       if (!VD->isUsableInConstantExpressions(S.Context))
17539         return true;
17540       break;
17541 
17542     case NOUR_Discarded:
17543       if (VD->getType()->isReferenceType())
17544         return true;
17545       break;
17546     }
17547     return false;
17548   };
17549 
17550   // Mark that this expression does not constitute an odr-use.
17551   auto MarkNotOdrUsed = [&] {
17552     S.MaybeODRUseExprs.remove(E);
17553     if (LambdaScopeInfo *LSI = S.getCurLambda())
17554       LSI->markVariableExprAsNonODRUsed(E);
17555   };
17556 
17557   // C++2a [basic.def.odr]p2:
17558   //   The set of potential results of an expression e is defined as follows:
17559   switch (E->getStmtClass()) {
17560   //   -- If e is an id-expression, ...
17561   case Expr::DeclRefExprClass: {
17562     auto *DRE = cast<DeclRefExpr>(E);
17563     if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
17564       break;
17565 
17566     // Rebuild as a non-odr-use DeclRefExpr.
17567     MarkNotOdrUsed();
17568     return DeclRefExpr::Create(
17569         S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
17570         DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
17571         DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
17572         DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
17573   }
17574 
17575   case Expr::FunctionParmPackExprClass: {
17576     auto *FPPE = cast<FunctionParmPackExpr>(E);
17577     // If any of the declarations in the pack is odr-used, then the expression
17578     // as a whole constitutes an odr-use.
17579     for (VarDecl *D : *FPPE)
17580       if (IsPotentialResultOdrUsed(D))
17581         return ExprEmpty();
17582 
17583     // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
17584     // nothing cares about whether we marked this as an odr-use, but it might
17585     // be useful for non-compiler tools.
17586     MarkNotOdrUsed();
17587     break;
17588   }
17589 
17590   //   -- If e is a subscripting operation with an array operand...
17591   case Expr::ArraySubscriptExprClass: {
17592     auto *ASE = cast<ArraySubscriptExpr>(E);
17593     Expr *OldBase = ASE->getBase()->IgnoreImplicit();
17594     if (!OldBase->getType()->isArrayType())
17595       break;
17596     ExprResult Base = Rebuild(OldBase);
17597     if (!Base.isUsable())
17598       return Base;
17599     Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
17600     Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
17601     SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
17602     return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
17603                                      ASE->getRBracketLoc());
17604   }
17605 
17606   case Expr::MemberExprClass: {
17607     auto *ME = cast<MemberExpr>(E);
17608     // -- If e is a class member access expression [...] naming a non-static
17609     //    data member...
17610     if (isa<FieldDecl>(ME->getMemberDecl())) {
17611       ExprResult Base = Rebuild(ME->getBase());
17612       if (!Base.isUsable())
17613         return Base;
17614       return MemberExpr::Create(
17615           S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
17616           ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
17617           ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
17618           CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
17619           ME->getObjectKind(), ME->isNonOdrUse());
17620     }
17621 
17622     if (ME->getMemberDecl()->isCXXInstanceMember())
17623       break;
17624 
17625     // -- If e is a class member access expression naming a static data member,
17626     //    ...
17627     if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
17628       break;
17629 
17630     // Rebuild as a non-odr-use MemberExpr.
17631     MarkNotOdrUsed();
17632     return MemberExpr::Create(
17633         S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
17634         ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
17635         ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
17636         ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
17637     return ExprEmpty();
17638   }
17639 
17640   case Expr::BinaryOperatorClass: {
17641     auto *BO = cast<BinaryOperator>(E);
17642     Expr *LHS = BO->getLHS();
17643     Expr *RHS = BO->getRHS();
17644     // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
17645     if (BO->getOpcode() == BO_PtrMemD) {
17646       ExprResult Sub = Rebuild(LHS);
17647       if (!Sub.isUsable())
17648         return Sub;
17649       LHS = Sub.get();
17650     //   -- If e is a comma expression, ...
17651     } else if (BO->getOpcode() == BO_Comma) {
17652       ExprResult Sub = Rebuild(RHS);
17653       if (!Sub.isUsable())
17654         return Sub;
17655       RHS = Sub.get();
17656     } else {
17657       break;
17658     }
17659     return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
17660                         LHS, RHS);
17661   }
17662 
17663   //   -- If e has the form (e1)...
17664   case Expr::ParenExprClass: {
17665     auto *PE = cast<ParenExpr>(E);
17666     ExprResult Sub = Rebuild(PE->getSubExpr());
17667     if (!Sub.isUsable())
17668       return Sub;
17669     return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
17670   }
17671 
17672   //   -- If e is a glvalue conditional expression, ...
17673   // We don't apply this to a binary conditional operator. FIXME: Should we?
17674   case Expr::ConditionalOperatorClass: {
17675     auto *CO = cast<ConditionalOperator>(E);
17676     ExprResult LHS = Rebuild(CO->getLHS());
17677     if (LHS.isInvalid())
17678       return ExprError();
17679     ExprResult RHS = Rebuild(CO->getRHS());
17680     if (RHS.isInvalid())
17681       return ExprError();
17682     if (!LHS.isUsable() && !RHS.isUsable())
17683       return ExprEmpty();
17684     if (!LHS.isUsable())
17685       LHS = CO->getLHS();
17686     if (!RHS.isUsable())
17687       RHS = CO->getRHS();
17688     return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
17689                                 CO->getCond(), LHS.get(), RHS.get());
17690   }
17691 
17692   // [Clang extension]
17693   //   -- If e has the form __extension__ e1...
17694   case Expr::UnaryOperatorClass: {
17695     auto *UO = cast<UnaryOperator>(E);
17696     if (UO->getOpcode() != UO_Extension)
17697       break;
17698     ExprResult Sub = Rebuild(UO->getSubExpr());
17699     if (!Sub.isUsable())
17700       return Sub;
17701     return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
17702                           Sub.get());
17703   }
17704 
17705   // [Clang extension]
17706   //   -- If e has the form _Generic(...), the set of potential results is the
17707   //      union of the sets of potential results of the associated expressions.
17708   case Expr::GenericSelectionExprClass: {
17709     auto *GSE = cast<GenericSelectionExpr>(E);
17710 
17711     SmallVector<Expr *, 4> AssocExprs;
17712     bool AnyChanged = false;
17713     for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
17714       ExprResult AssocExpr = Rebuild(OrigAssocExpr);
17715       if (AssocExpr.isInvalid())
17716         return ExprError();
17717       if (AssocExpr.isUsable()) {
17718         AssocExprs.push_back(AssocExpr.get());
17719         AnyChanged = true;
17720       } else {
17721         AssocExprs.push_back(OrigAssocExpr);
17722       }
17723     }
17724 
17725     return AnyChanged ? S.CreateGenericSelectionExpr(
17726                             GSE->getGenericLoc(), GSE->getDefaultLoc(),
17727                             GSE->getRParenLoc(), GSE->getControllingExpr(),
17728                             GSE->getAssocTypeSourceInfos(), AssocExprs)
17729                       : ExprEmpty();
17730   }
17731 
17732   // [Clang extension]
17733   //   -- If e has the form __builtin_choose_expr(...), the set of potential
17734   //      results is the union of the sets of potential results of the
17735   //      second and third subexpressions.
17736   case Expr::ChooseExprClass: {
17737     auto *CE = cast<ChooseExpr>(E);
17738 
17739     ExprResult LHS = Rebuild(CE->getLHS());
17740     if (LHS.isInvalid())
17741       return ExprError();
17742 
17743     ExprResult RHS = Rebuild(CE->getLHS());
17744     if (RHS.isInvalid())
17745       return ExprError();
17746 
17747     if (!LHS.get() && !RHS.get())
17748       return ExprEmpty();
17749     if (!LHS.isUsable())
17750       LHS = CE->getLHS();
17751     if (!RHS.isUsable())
17752       RHS = CE->getRHS();
17753 
17754     return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
17755                              RHS.get(), CE->getRParenLoc());
17756   }
17757 
17758   // Step through non-syntactic nodes.
17759   case Expr::ConstantExprClass: {
17760     auto *CE = cast<ConstantExpr>(E);
17761     ExprResult Sub = Rebuild(CE->getSubExpr());
17762     if (!Sub.isUsable())
17763       return Sub;
17764     return ConstantExpr::Create(S.Context, Sub.get());
17765   }
17766 
17767   // We could mostly rely on the recursive rebuilding to rebuild implicit
17768   // casts, but not at the top level, so rebuild them here.
17769   case Expr::ImplicitCastExprClass: {
17770     auto *ICE = cast<ImplicitCastExpr>(E);
17771     // Only step through the narrow set of cast kinds we expect to encounter.
17772     // Anything else suggests we've left the region in which potential results
17773     // can be found.
17774     switch (ICE->getCastKind()) {
17775     case CK_NoOp:
17776     case CK_DerivedToBase:
17777     case CK_UncheckedDerivedToBase: {
17778       ExprResult Sub = Rebuild(ICE->getSubExpr());
17779       if (!Sub.isUsable())
17780         return Sub;
17781       CXXCastPath Path(ICE->path());
17782       return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
17783                                  ICE->getValueKind(), &Path);
17784     }
17785 
17786     default:
17787       break;
17788     }
17789     break;
17790   }
17791 
17792   default:
17793     break;
17794   }
17795 
17796   // Can't traverse through this node. Nothing to do.
17797   return ExprEmpty();
17798 }
17799 
17800 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
17801   // Check whether the operand is or contains an object of non-trivial C union
17802   // type.
17803   if (E->getType().isVolatileQualified() &&
17804       (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
17805        E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
17806     checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
17807                           Sema::NTCUC_LValueToRValueVolatile,
17808                           NTCUK_Destruct|NTCUK_Copy);
17809 
17810   // C++2a [basic.def.odr]p4:
17811   //   [...] an expression of non-volatile-qualified non-class type to which
17812   //   the lvalue-to-rvalue conversion is applied [...]
17813   if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
17814     return E;
17815 
17816   ExprResult Result =
17817       rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
17818   if (Result.isInvalid())
17819     return ExprError();
17820   return Result.get() ? Result : E;
17821 }
17822 
17823 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
17824   Res = CorrectDelayedTyposInExpr(Res);
17825 
17826   if (!Res.isUsable())
17827     return Res;
17828 
17829   // If a constant-expression is a reference to a variable where we delay
17830   // deciding whether it is an odr-use, just assume we will apply the
17831   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
17832   // (a non-type template argument), we have special handling anyway.
17833   return CheckLValueToRValueConversionOperand(Res.get());
17834 }
17835 
17836 void Sema::CleanupVarDeclMarking() {
17837   // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
17838   // call.
17839   MaybeODRUseExprSet LocalMaybeODRUseExprs;
17840   std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
17841 
17842   for (Expr *E : LocalMaybeODRUseExprs) {
17843     if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
17844       MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
17845                          DRE->getLocation(), *this);
17846     } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
17847       MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
17848                          *this);
17849     } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
17850       for (VarDecl *VD : *FP)
17851         MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
17852     } else {
17853       llvm_unreachable("Unexpected expression");
17854     }
17855   }
17856 
17857   assert(MaybeODRUseExprs.empty() &&
17858          "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
17859 }
17860 
17861 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
17862                                     VarDecl *Var, Expr *E) {
17863   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
17864           isa<FunctionParmPackExpr>(E)) &&
17865          "Invalid Expr argument to DoMarkVarDeclReferenced");
17866   Var->setReferenced();
17867 
17868   if (Var->isInvalidDecl())
17869     return;
17870 
17871   auto *MSI = Var->getMemberSpecializationInfo();
17872   TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
17873                                        : Var->getTemplateSpecializationKind();
17874 
17875   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
17876   bool UsableInConstantExpr =
17877       Var->mightBeUsableInConstantExpressions(SemaRef.Context);
17878 
17879   // C++20 [expr.const]p12:
17880   //   A variable [...] is needed for constant evaluation if it is [...] a
17881   //   variable whose name appears as a potentially constant evaluated
17882   //   expression that is either a contexpr variable or is of non-volatile
17883   //   const-qualified integral type or of reference type
17884   bool NeededForConstantEvaluation =
17885       isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
17886 
17887   bool NeedDefinition =
17888       OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
17889 
17890   VarTemplateSpecializationDecl *VarSpec =
17891       dyn_cast<VarTemplateSpecializationDecl>(Var);
17892   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
17893          "Can't instantiate a partial template specialization.");
17894 
17895   // If this might be a member specialization of a static data member, check
17896   // the specialization is visible. We already did the checks for variable
17897   // template specializations when we created them.
17898   if (NeedDefinition && TSK != TSK_Undeclared &&
17899       !isa<VarTemplateSpecializationDecl>(Var))
17900     SemaRef.checkSpecializationVisibility(Loc, Var);
17901 
17902   // Perform implicit instantiation of static data members, static data member
17903   // templates of class templates, and variable template specializations. Delay
17904   // instantiations of variable templates, except for those that could be used
17905   // in a constant expression.
17906   if (NeedDefinition && isTemplateInstantiation(TSK)) {
17907     // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
17908     // instantiation declaration if a variable is usable in a constant
17909     // expression (among other cases).
17910     bool TryInstantiating =
17911         TSK == TSK_ImplicitInstantiation ||
17912         (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
17913 
17914     if (TryInstantiating) {
17915       SourceLocation PointOfInstantiation =
17916           MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
17917       bool FirstInstantiation = PointOfInstantiation.isInvalid();
17918       if (FirstInstantiation) {
17919         PointOfInstantiation = Loc;
17920         if (MSI)
17921           MSI->setPointOfInstantiation(PointOfInstantiation);
17922         else
17923           Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
17924       }
17925 
17926       bool InstantiationDependent = false;
17927       bool IsNonDependent =
17928           VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
17929                         VarSpec->getTemplateArgsInfo(), InstantiationDependent)
17930                   : true;
17931 
17932       // Do not instantiate specializations that are still type-dependent.
17933       if (IsNonDependent) {
17934         if (UsableInConstantExpr) {
17935           // Do not defer instantiations of variables that could be used in a
17936           // constant expression.
17937           SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
17938             SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
17939           });
17940         } else if (FirstInstantiation ||
17941                    isa<VarTemplateSpecializationDecl>(Var)) {
17942           // FIXME: For a specialization of a variable template, we don't
17943           // distinguish between "declaration and type implicitly instantiated"
17944           // and "implicit instantiation of definition requested", so we have
17945           // no direct way to avoid enqueueing the pending instantiation
17946           // multiple times.
17947           SemaRef.PendingInstantiations
17948               .push_back(std::make_pair(Var, PointOfInstantiation));
17949         }
17950       }
17951     }
17952   }
17953 
17954   // C++2a [basic.def.odr]p4:
17955   //   A variable x whose name appears as a potentially-evaluated expression e
17956   //   is odr-used by e unless
17957   //   -- x is a reference that is usable in constant expressions
17958   //   -- x is a variable of non-reference type that is usable in constant
17959   //      expressions and has no mutable subobjects [FIXME], and e is an
17960   //      element of the set of potential results of an expression of
17961   //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
17962   //      conversion is applied
17963   //   -- x is a variable of non-reference type, and e is an element of the set
17964   //      of potential results of a discarded-value expression to which the
17965   //      lvalue-to-rvalue conversion is not applied [FIXME]
17966   //
17967   // We check the first part of the second bullet here, and
17968   // Sema::CheckLValueToRValueConversionOperand deals with the second part.
17969   // FIXME: To get the third bullet right, we need to delay this even for
17970   // variables that are not usable in constant expressions.
17971 
17972   // If we already know this isn't an odr-use, there's nothing more to do.
17973   if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
17974     if (DRE->isNonOdrUse())
17975       return;
17976   if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
17977     if (ME->isNonOdrUse())
17978       return;
17979 
17980   switch (OdrUse) {
17981   case OdrUseContext::None:
17982     assert((!E || isa<FunctionParmPackExpr>(E)) &&
17983            "missing non-odr-use marking for unevaluated decl ref");
17984     break;
17985 
17986   case OdrUseContext::FormallyOdrUsed:
17987     // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
17988     // behavior.
17989     break;
17990 
17991   case OdrUseContext::Used:
17992     // If we might later find that this expression isn't actually an odr-use,
17993     // delay the marking.
17994     if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
17995       SemaRef.MaybeODRUseExprs.insert(E);
17996     else
17997       MarkVarDeclODRUsed(Var, Loc, SemaRef);
17998     break;
17999 
18000   case OdrUseContext::Dependent:
18001     // If this is a dependent context, we don't need to mark variables as
18002     // odr-used, but we may still need to track them for lambda capture.
18003     // FIXME: Do we also need to do this inside dependent typeid expressions
18004     // (which are modeled as unevaluated at this point)?
18005     const bool RefersToEnclosingScope =
18006         (SemaRef.CurContext != Var->getDeclContext() &&
18007          Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
18008     if (RefersToEnclosingScope) {
18009       LambdaScopeInfo *const LSI =
18010           SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
18011       if (LSI && (!LSI->CallOperator ||
18012                   !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
18013         // If a variable could potentially be odr-used, defer marking it so
18014         // until we finish analyzing the full expression for any
18015         // lvalue-to-rvalue
18016         // or discarded value conversions that would obviate odr-use.
18017         // Add it to the list of potential captures that will be analyzed
18018         // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
18019         // unless the variable is a reference that was initialized by a constant
18020         // expression (this will never need to be captured or odr-used).
18021         //
18022         // FIXME: We can simplify this a lot after implementing P0588R1.
18023         assert(E && "Capture variable should be used in an expression.");
18024         if (!Var->getType()->isReferenceType() ||
18025             !Var->isUsableInConstantExpressions(SemaRef.Context))
18026           LSI->addPotentialCapture(E->IgnoreParens());
18027       }
18028     }
18029     break;
18030   }
18031 }
18032 
18033 /// Mark a variable referenced, and check whether it is odr-used
18034 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
18035 /// used directly for normal expressions referring to VarDecl.
18036 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
18037   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
18038 }
18039 
18040 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
18041                                Decl *D, Expr *E, bool MightBeOdrUse) {
18042   if (SemaRef.isInOpenMPDeclareTargetContext())
18043     SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
18044 
18045   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
18046     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
18047     return;
18048   }
18049 
18050   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
18051 
18052   // If this is a call to a method via a cast, also mark the method in the
18053   // derived class used in case codegen can devirtualize the call.
18054   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
18055   if (!ME)
18056     return;
18057   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
18058   if (!MD)
18059     return;
18060   // Only attempt to devirtualize if this is truly a virtual call.
18061   bool IsVirtualCall = MD->isVirtual() &&
18062                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
18063   if (!IsVirtualCall)
18064     return;
18065 
18066   // If it's possible to devirtualize the call, mark the called function
18067   // referenced.
18068   CXXMethodDecl *DM = MD->getDevirtualizedMethod(
18069       ME->getBase(), SemaRef.getLangOpts().AppleKext);
18070   if (DM)
18071     SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
18072 }
18073 
18074 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
18075 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
18076   // TODO: update this with DR# once a defect report is filed.
18077   // C++11 defect. The address of a pure member should not be an ODR use, even
18078   // if it's a qualified reference.
18079   bool OdrUse = true;
18080   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
18081     if (Method->isVirtual() &&
18082         !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
18083       OdrUse = false;
18084 
18085   if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl()))
18086     if (!isConstantEvaluated() && FD->isConsteval() &&
18087         !RebuildingImmediateInvocation)
18088       ExprEvalContexts.back().ReferenceToConsteval.insert(E);
18089   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
18090 }
18091 
18092 /// Perform reference-marking and odr-use handling for a MemberExpr.
18093 void Sema::MarkMemberReferenced(MemberExpr *E) {
18094   // C++11 [basic.def.odr]p2:
18095   //   A non-overloaded function whose name appears as a potentially-evaluated
18096   //   expression or a member of a set of candidate functions, if selected by
18097   //   overload resolution when referred to from a potentially-evaluated
18098   //   expression, is odr-used, unless it is a pure virtual function and its
18099   //   name is not explicitly qualified.
18100   bool MightBeOdrUse = true;
18101   if (E->performsVirtualDispatch(getLangOpts())) {
18102     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
18103       if (Method->isPure())
18104         MightBeOdrUse = false;
18105   }
18106   SourceLocation Loc =
18107       E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
18108   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse);
18109 }
18110 
18111 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
18112 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
18113   for (VarDecl *VD : *E)
18114     MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true);
18115 }
18116 
18117 /// Perform marking for a reference to an arbitrary declaration.  It
18118 /// marks the declaration referenced, and performs odr-use checking for
18119 /// functions and variables. This method should not be used when building a
18120 /// normal expression which refers to a variable.
18121 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
18122                                  bool MightBeOdrUse) {
18123   if (MightBeOdrUse) {
18124     if (auto *VD = dyn_cast<VarDecl>(D)) {
18125       MarkVariableReferenced(Loc, VD);
18126       return;
18127     }
18128   }
18129   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
18130     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
18131     return;
18132   }
18133   D->setReferenced();
18134 }
18135 
18136 namespace {
18137   // Mark all of the declarations used by a type as referenced.
18138   // FIXME: Not fully implemented yet! We need to have a better understanding
18139   // of when we're entering a context we should not recurse into.
18140   // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
18141   // TreeTransforms rebuilding the type in a new context. Rather than
18142   // duplicating the TreeTransform logic, we should consider reusing it here.
18143   // Currently that causes problems when rebuilding LambdaExprs.
18144   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
18145     Sema &S;
18146     SourceLocation Loc;
18147 
18148   public:
18149     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
18150 
18151     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
18152 
18153     bool TraverseTemplateArgument(const TemplateArgument &Arg);
18154   };
18155 }
18156 
18157 bool MarkReferencedDecls::TraverseTemplateArgument(
18158     const TemplateArgument &Arg) {
18159   {
18160     // A non-type template argument is a constant-evaluated context.
18161     EnterExpressionEvaluationContext Evaluated(
18162         S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
18163     if (Arg.getKind() == TemplateArgument::Declaration) {
18164       if (Decl *D = Arg.getAsDecl())
18165         S.MarkAnyDeclReferenced(Loc, D, true);
18166     } else if (Arg.getKind() == TemplateArgument::Expression) {
18167       S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
18168     }
18169   }
18170 
18171   return Inherited::TraverseTemplateArgument(Arg);
18172 }
18173 
18174 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
18175   MarkReferencedDecls Marker(*this, Loc);
18176   Marker.TraverseType(T);
18177 }
18178 
18179 namespace {
18180 /// Helper class that marks all of the declarations referenced by
18181 /// potentially-evaluated subexpressions as "referenced".
18182 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
18183 public:
18184   typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
18185   bool SkipLocalVariables;
18186 
18187   EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
18188       : Inherited(S), SkipLocalVariables(SkipLocalVariables) {}
18189 
18190   void visitUsedDecl(SourceLocation Loc, Decl *D) {
18191     S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
18192   }
18193 
18194   void VisitDeclRefExpr(DeclRefExpr *E) {
18195     // If we were asked not to visit local variables, don't.
18196     if (SkipLocalVariables) {
18197       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
18198         if (VD->hasLocalStorage())
18199           return;
18200     }
18201     S.MarkDeclRefReferenced(E);
18202   }
18203 
18204   void VisitMemberExpr(MemberExpr *E) {
18205     S.MarkMemberReferenced(E);
18206     Visit(E->getBase());
18207   }
18208 };
18209 } // namespace
18210 
18211 /// Mark any declarations that appear within this expression or any
18212 /// potentially-evaluated subexpressions as "referenced".
18213 ///
18214 /// \param SkipLocalVariables If true, don't mark local variables as
18215 /// 'referenced'.
18216 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
18217                                             bool SkipLocalVariables) {
18218   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
18219 }
18220 
18221 /// Emit a diagnostic that describes an effect on the run-time behavior
18222 /// of the program being compiled.
18223 ///
18224 /// This routine emits the given diagnostic when the code currently being
18225 /// type-checked is "potentially evaluated", meaning that there is a
18226 /// possibility that the code will actually be executable. Code in sizeof()
18227 /// expressions, code used only during overload resolution, etc., are not
18228 /// potentially evaluated. This routine will suppress such diagnostics or,
18229 /// in the absolutely nutty case of potentially potentially evaluated
18230 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
18231 /// later.
18232 ///
18233 /// This routine should be used for all diagnostics that describe the run-time
18234 /// behavior of a program, such as passing a non-POD value through an ellipsis.
18235 /// Failure to do so will likely result in spurious diagnostics or failures
18236 /// during overload resolution or within sizeof/alignof/typeof/typeid.
18237 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
18238                                const PartialDiagnostic &PD) {
18239   switch (ExprEvalContexts.back().Context) {
18240   case ExpressionEvaluationContext::Unevaluated:
18241   case ExpressionEvaluationContext::UnevaluatedList:
18242   case ExpressionEvaluationContext::UnevaluatedAbstract:
18243   case ExpressionEvaluationContext::DiscardedStatement:
18244     // The argument will never be evaluated, so don't complain.
18245     break;
18246 
18247   case ExpressionEvaluationContext::ConstantEvaluated:
18248     // Relevant diagnostics should be produced by constant evaluation.
18249     break;
18250 
18251   case ExpressionEvaluationContext::PotentiallyEvaluated:
18252   case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18253     if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
18254       FunctionScopes.back()->PossiblyUnreachableDiags.
18255         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
18256       return true;
18257     }
18258 
18259     // The initializer of a constexpr variable or of the first declaration of a
18260     // static data member is not syntactically a constant evaluated constant,
18261     // but nonetheless is always required to be a constant expression, so we
18262     // can skip diagnosing.
18263     // FIXME: Using the mangling context here is a hack.
18264     if (auto *VD = dyn_cast_or_null<VarDecl>(
18265             ExprEvalContexts.back().ManglingContextDecl)) {
18266       if (VD->isConstexpr() ||
18267           (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
18268         break;
18269       // FIXME: For any other kind of variable, we should build a CFG for its
18270       // initializer and check whether the context in question is reachable.
18271     }
18272 
18273     Diag(Loc, PD);
18274     return true;
18275   }
18276 
18277   return false;
18278 }
18279 
18280 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
18281                                const PartialDiagnostic &PD) {
18282   return DiagRuntimeBehavior(
18283       Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
18284 }
18285 
18286 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
18287                                CallExpr *CE, FunctionDecl *FD) {
18288   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
18289     return false;
18290 
18291   // If we're inside a decltype's expression, don't check for a valid return
18292   // type or construct temporaries until we know whether this is the last call.
18293   if (ExprEvalContexts.back().ExprContext ==
18294       ExpressionEvaluationContextRecord::EK_Decltype) {
18295     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
18296     return false;
18297   }
18298 
18299   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
18300     FunctionDecl *FD;
18301     CallExpr *CE;
18302 
18303   public:
18304     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
18305       : FD(FD), CE(CE) { }
18306 
18307     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
18308       if (!FD) {
18309         S.Diag(Loc, diag::err_call_incomplete_return)
18310           << T << CE->getSourceRange();
18311         return;
18312       }
18313 
18314       S.Diag(Loc, diag::err_call_function_incomplete_return)
18315         << CE->getSourceRange() << FD->getDeclName() << T;
18316       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
18317           << FD->getDeclName();
18318     }
18319   } Diagnoser(FD, CE);
18320 
18321   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
18322     return true;
18323 
18324   return false;
18325 }
18326 
18327 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
18328 // will prevent this condition from triggering, which is what we want.
18329 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
18330   SourceLocation Loc;
18331 
18332   unsigned diagnostic = diag::warn_condition_is_assignment;
18333   bool IsOrAssign = false;
18334 
18335   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
18336     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
18337       return;
18338 
18339     IsOrAssign = Op->getOpcode() == BO_OrAssign;
18340 
18341     // Greylist some idioms by putting them into a warning subcategory.
18342     if (ObjCMessageExpr *ME
18343           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
18344       Selector Sel = ME->getSelector();
18345 
18346       // self = [<foo> init...]
18347       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
18348         diagnostic = diag::warn_condition_is_idiomatic_assignment;
18349 
18350       // <foo> = [<bar> nextObject]
18351       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
18352         diagnostic = diag::warn_condition_is_idiomatic_assignment;
18353     }
18354 
18355     Loc = Op->getOperatorLoc();
18356   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
18357     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
18358       return;
18359 
18360     IsOrAssign = Op->getOperator() == OO_PipeEqual;
18361     Loc = Op->getOperatorLoc();
18362   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
18363     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
18364   else {
18365     // Not an assignment.
18366     return;
18367   }
18368 
18369   Diag(Loc, diagnostic) << E->getSourceRange();
18370 
18371   SourceLocation Open = E->getBeginLoc();
18372   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
18373   Diag(Loc, diag::note_condition_assign_silence)
18374         << FixItHint::CreateInsertion(Open, "(")
18375         << FixItHint::CreateInsertion(Close, ")");
18376 
18377   if (IsOrAssign)
18378     Diag(Loc, diag::note_condition_or_assign_to_comparison)
18379       << FixItHint::CreateReplacement(Loc, "!=");
18380   else
18381     Diag(Loc, diag::note_condition_assign_to_comparison)
18382       << FixItHint::CreateReplacement(Loc, "==");
18383 }
18384 
18385 /// Redundant parentheses over an equality comparison can indicate
18386 /// that the user intended an assignment used as condition.
18387 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
18388   // Don't warn if the parens came from a macro.
18389   SourceLocation parenLoc = ParenE->getBeginLoc();
18390   if (parenLoc.isInvalid() || parenLoc.isMacroID())
18391     return;
18392   // Don't warn for dependent expressions.
18393   if (ParenE->isTypeDependent())
18394     return;
18395 
18396   Expr *E = ParenE->IgnoreParens();
18397 
18398   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
18399     if (opE->getOpcode() == BO_EQ &&
18400         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
18401                                                            == Expr::MLV_Valid) {
18402       SourceLocation Loc = opE->getOperatorLoc();
18403 
18404       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
18405       SourceRange ParenERange = ParenE->getSourceRange();
18406       Diag(Loc, diag::note_equality_comparison_silence)
18407         << FixItHint::CreateRemoval(ParenERange.getBegin())
18408         << FixItHint::CreateRemoval(ParenERange.getEnd());
18409       Diag(Loc, diag::note_equality_comparison_to_assign)
18410         << FixItHint::CreateReplacement(Loc, "=");
18411     }
18412 }
18413 
18414 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
18415                                        bool IsConstexpr) {
18416   DiagnoseAssignmentAsCondition(E);
18417   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
18418     DiagnoseEqualityWithExtraParens(parenE);
18419 
18420   ExprResult result = CheckPlaceholderExpr(E);
18421   if (result.isInvalid()) return ExprError();
18422   E = result.get();
18423 
18424   if (!E->isTypeDependent()) {
18425     if (getLangOpts().CPlusPlus)
18426       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
18427 
18428     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
18429     if (ERes.isInvalid())
18430       return ExprError();
18431     E = ERes.get();
18432 
18433     QualType T = E->getType();
18434     if (!T->isScalarType()) { // C99 6.8.4.1p1
18435       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
18436         << T << E->getSourceRange();
18437       return ExprError();
18438     }
18439     CheckBoolLikeConversion(E, Loc);
18440   }
18441 
18442   return E;
18443 }
18444 
18445 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
18446                                            Expr *SubExpr, ConditionKind CK) {
18447   // Empty conditions are valid in for-statements.
18448   if (!SubExpr)
18449     return ConditionResult();
18450 
18451   ExprResult Cond;
18452   switch (CK) {
18453   case ConditionKind::Boolean:
18454     Cond = CheckBooleanCondition(Loc, SubExpr);
18455     break;
18456 
18457   case ConditionKind::ConstexprIf:
18458     Cond = CheckBooleanCondition(Loc, SubExpr, true);
18459     break;
18460 
18461   case ConditionKind::Switch:
18462     Cond = CheckSwitchCondition(Loc, SubExpr);
18463     break;
18464   }
18465   if (Cond.isInvalid())
18466     return ConditionError();
18467 
18468   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
18469   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
18470   if (!FullExpr.get())
18471     return ConditionError();
18472 
18473   return ConditionResult(*this, nullptr, FullExpr,
18474                          CK == ConditionKind::ConstexprIf);
18475 }
18476 
18477 namespace {
18478   /// A visitor for rebuilding a call to an __unknown_any expression
18479   /// to have an appropriate type.
18480   struct RebuildUnknownAnyFunction
18481     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
18482 
18483     Sema &S;
18484 
18485     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
18486 
18487     ExprResult VisitStmt(Stmt *S) {
18488       llvm_unreachable("unexpected statement!");
18489     }
18490 
18491     ExprResult VisitExpr(Expr *E) {
18492       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
18493         << E->getSourceRange();
18494       return ExprError();
18495     }
18496 
18497     /// Rebuild an expression which simply semantically wraps another
18498     /// expression which it shares the type and value kind of.
18499     template <class T> ExprResult rebuildSugarExpr(T *E) {
18500       ExprResult SubResult = Visit(E->getSubExpr());
18501       if (SubResult.isInvalid()) return ExprError();
18502 
18503       Expr *SubExpr = SubResult.get();
18504       E->setSubExpr(SubExpr);
18505       E->setType(SubExpr->getType());
18506       E->setValueKind(SubExpr->getValueKind());
18507       assert(E->getObjectKind() == OK_Ordinary);
18508       return E;
18509     }
18510 
18511     ExprResult VisitParenExpr(ParenExpr *E) {
18512       return rebuildSugarExpr(E);
18513     }
18514 
18515     ExprResult VisitUnaryExtension(UnaryOperator *E) {
18516       return rebuildSugarExpr(E);
18517     }
18518 
18519     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
18520       ExprResult SubResult = Visit(E->getSubExpr());
18521       if (SubResult.isInvalid()) return ExprError();
18522 
18523       Expr *SubExpr = SubResult.get();
18524       E->setSubExpr(SubExpr);
18525       E->setType(S.Context.getPointerType(SubExpr->getType()));
18526       assert(E->getValueKind() == VK_RValue);
18527       assert(E->getObjectKind() == OK_Ordinary);
18528       return E;
18529     }
18530 
18531     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
18532       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
18533 
18534       E->setType(VD->getType());
18535 
18536       assert(E->getValueKind() == VK_RValue);
18537       if (S.getLangOpts().CPlusPlus &&
18538           !(isa<CXXMethodDecl>(VD) &&
18539             cast<CXXMethodDecl>(VD)->isInstance()))
18540         E->setValueKind(VK_LValue);
18541 
18542       return E;
18543     }
18544 
18545     ExprResult VisitMemberExpr(MemberExpr *E) {
18546       return resolveDecl(E, E->getMemberDecl());
18547     }
18548 
18549     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
18550       return resolveDecl(E, E->getDecl());
18551     }
18552   };
18553 }
18554 
18555 /// Given a function expression of unknown-any type, try to rebuild it
18556 /// to have a function type.
18557 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
18558   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
18559   if (Result.isInvalid()) return ExprError();
18560   return S.DefaultFunctionArrayConversion(Result.get());
18561 }
18562 
18563 namespace {
18564   /// A visitor for rebuilding an expression of type __unknown_anytype
18565   /// into one which resolves the type directly on the referring
18566   /// expression.  Strict preservation of the original source
18567   /// structure is not a goal.
18568   struct RebuildUnknownAnyExpr
18569     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
18570 
18571     Sema &S;
18572 
18573     /// The current destination type.
18574     QualType DestType;
18575 
18576     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
18577       : S(S), DestType(CastType) {}
18578 
18579     ExprResult VisitStmt(Stmt *S) {
18580       llvm_unreachable("unexpected statement!");
18581     }
18582 
18583     ExprResult VisitExpr(Expr *E) {
18584       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
18585         << E->getSourceRange();
18586       return ExprError();
18587     }
18588 
18589     ExprResult VisitCallExpr(CallExpr *E);
18590     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
18591 
18592     /// Rebuild an expression which simply semantically wraps another
18593     /// expression which it shares the type and value kind of.
18594     template <class T> ExprResult rebuildSugarExpr(T *E) {
18595       ExprResult SubResult = Visit(E->getSubExpr());
18596       if (SubResult.isInvalid()) return ExprError();
18597       Expr *SubExpr = SubResult.get();
18598       E->setSubExpr(SubExpr);
18599       E->setType(SubExpr->getType());
18600       E->setValueKind(SubExpr->getValueKind());
18601       assert(E->getObjectKind() == OK_Ordinary);
18602       return E;
18603     }
18604 
18605     ExprResult VisitParenExpr(ParenExpr *E) {
18606       return rebuildSugarExpr(E);
18607     }
18608 
18609     ExprResult VisitUnaryExtension(UnaryOperator *E) {
18610       return rebuildSugarExpr(E);
18611     }
18612 
18613     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
18614       const PointerType *Ptr = DestType->getAs<PointerType>();
18615       if (!Ptr) {
18616         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
18617           << E->getSourceRange();
18618         return ExprError();
18619       }
18620 
18621       if (isa<CallExpr>(E->getSubExpr())) {
18622         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
18623           << E->getSourceRange();
18624         return ExprError();
18625       }
18626 
18627       assert(E->getValueKind() == VK_RValue);
18628       assert(E->getObjectKind() == OK_Ordinary);
18629       E->setType(DestType);
18630 
18631       // Build the sub-expression as if it were an object of the pointee type.
18632       DestType = Ptr->getPointeeType();
18633       ExprResult SubResult = Visit(E->getSubExpr());
18634       if (SubResult.isInvalid()) return ExprError();
18635       E->setSubExpr(SubResult.get());
18636       return E;
18637     }
18638 
18639     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
18640 
18641     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
18642 
18643     ExprResult VisitMemberExpr(MemberExpr *E) {
18644       return resolveDecl(E, E->getMemberDecl());
18645     }
18646 
18647     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
18648       return resolveDecl(E, E->getDecl());
18649     }
18650   };
18651 }
18652 
18653 /// Rebuilds a call expression which yielded __unknown_anytype.
18654 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
18655   Expr *CalleeExpr = E->getCallee();
18656 
18657   enum FnKind {
18658     FK_MemberFunction,
18659     FK_FunctionPointer,
18660     FK_BlockPointer
18661   };
18662 
18663   FnKind Kind;
18664   QualType CalleeType = CalleeExpr->getType();
18665   if (CalleeType == S.Context.BoundMemberTy) {
18666     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
18667     Kind = FK_MemberFunction;
18668     CalleeType = Expr::findBoundMemberType(CalleeExpr);
18669   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
18670     CalleeType = Ptr->getPointeeType();
18671     Kind = FK_FunctionPointer;
18672   } else {
18673     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
18674     Kind = FK_BlockPointer;
18675   }
18676   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
18677 
18678   // Verify that this is a legal result type of a function.
18679   if (DestType->isArrayType() || DestType->isFunctionType()) {
18680     unsigned diagID = diag::err_func_returning_array_function;
18681     if (Kind == FK_BlockPointer)
18682       diagID = diag::err_block_returning_array_function;
18683 
18684     S.Diag(E->getExprLoc(), diagID)
18685       << DestType->isFunctionType() << DestType;
18686     return ExprError();
18687   }
18688 
18689   // Otherwise, go ahead and set DestType as the call's result.
18690   E->setType(DestType.getNonLValueExprType(S.Context));
18691   E->setValueKind(Expr::getValueKindForType(DestType));
18692   assert(E->getObjectKind() == OK_Ordinary);
18693 
18694   // Rebuild the function type, replacing the result type with DestType.
18695   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
18696   if (Proto) {
18697     // __unknown_anytype(...) is a special case used by the debugger when
18698     // it has no idea what a function's signature is.
18699     //
18700     // We want to build this call essentially under the K&R
18701     // unprototyped rules, but making a FunctionNoProtoType in C++
18702     // would foul up all sorts of assumptions.  However, we cannot
18703     // simply pass all arguments as variadic arguments, nor can we
18704     // portably just call the function under a non-variadic type; see
18705     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
18706     // However, it turns out that in practice it is generally safe to
18707     // call a function declared as "A foo(B,C,D);" under the prototype
18708     // "A foo(B,C,D,...);".  The only known exception is with the
18709     // Windows ABI, where any variadic function is implicitly cdecl
18710     // regardless of its normal CC.  Therefore we change the parameter
18711     // types to match the types of the arguments.
18712     //
18713     // This is a hack, but it is far superior to moving the
18714     // corresponding target-specific code from IR-gen to Sema/AST.
18715 
18716     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
18717     SmallVector<QualType, 8> ArgTypes;
18718     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
18719       ArgTypes.reserve(E->getNumArgs());
18720       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
18721         Expr *Arg = E->getArg(i);
18722         QualType ArgType = Arg->getType();
18723         if (E->isLValue()) {
18724           ArgType = S.Context.getLValueReferenceType(ArgType);
18725         } else if (E->isXValue()) {
18726           ArgType = S.Context.getRValueReferenceType(ArgType);
18727         }
18728         ArgTypes.push_back(ArgType);
18729       }
18730       ParamTypes = ArgTypes;
18731     }
18732     DestType = S.Context.getFunctionType(DestType, ParamTypes,
18733                                          Proto->getExtProtoInfo());
18734   } else {
18735     DestType = S.Context.getFunctionNoProtoType(DestType,
18736                                                 FnType->getExtInfo());
18737   }
18738 
18739   // Rebuild the appropriate pointer-to-function type.
18740   switch (Kind) {
18741   case FK_MemberFunction:
18742     // Nothing to do.
18743     break;
18744 
18745   case FK_FunctionPointer:
18746     DestType = S.Context.getPointerType(DestType);
18747     break;
18748 
18749   case FK_BlockPointer:
18750     DestType = S.Context.getBlockPointerType(DestType);
18751     break;
18752   }
18753 
18754   // Finally, we can recurse.
18755   ExprResult CalleeResult = Visit(CalleeExpr);
18756   if (!CalleeResult.isUsable()) return ExprError();
18757   E->setCallee(CalleeResult.get());
18758 
18759   // Bind a temporary if necessary.
18760   return S.MaybeBindToTemporary(E);
18761 }
18762 
18763 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
18764   // Verify that this is a legal result type of a call.
18765   if (DestType->isArrayType() || DestType->isFunctionType()) {
18766     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
18767       << DestType->isFunctionType() << DestType;
18768     return ExprError();
18769   }
18770 
18771   // Rewrite the method result type if available.
18772   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
18773     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
18774     Method->setReturnType(DestType);
18775   }
18776 
18777   // Change the type of the message.
18778   E->setType(DestType.getNonReferenceType());
18779   E->setValueKind(Expr::getValueKindForType(DestType));
18780 
18781   return S.MaybeBindToTemporary(E);
18782 }
18783 
18784 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
18785   // The only case we should ever see here is a function-to-pointer decay.
18786   if (E->getCastKind() == CK_FunctionToPointerDecay) {
18787     assert(E->getValueKind() == VK_RValue);
18788     assert(E->getObjectKind() == OK_Ordinary);
18789 
18790     E->setType(DestType);
18791 
18792     // Rebuild the sub-expression as the pointee (function) type.
18793     DestType = DestType->castAs<PointerType>()->getPointeeType();
18794 
18795     ExprResult Result = Visit(E->getSubExpr());
18796     if (!Result.isUsable()) return ExprError();
18797 
18798     E->setSubExpr(Result.get());
18799     return E;
18800   } else if (E->getCastKind() == CK_LValueToRValue) {
18801     assert(E->getValueKind() == VK_RValue);
18802     assert(E->getObjectKind() == OK_Ordinary);
18803 
18804     assert(isa<BlockPointerType>(E->getType()));
18805 
18806     E->setType(DestType);
18807 
18808     // The sub-expression has to be a lvalue reference, so rebuild it as such.
18809     DestType = S.Context.getLValueReferenceType(DestType);
18810 
18811     ExprResult Result = Visit(E->getSubExpr());
18812     if (!Result.isUsable()) return ExprError();
18813 
18814     E->setSubExpr(Result.get());
18815     return E;
18816   } else {
18817     llvm_unreachable("Unhandled cast type!");
18818   }
18819 }
18820 
18821 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
18822   ExprValueKind ValueKind = VK_LValue;
18823   QualType Type = DestType;
18824 
18825   // We know how to make this work for certain kinds of decls:
18826 
18827   //  - functions
18828   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
18829     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
18830       DestType = Ptr->getPointeeType();
18831       ExprResult Result = resolveDecl(E, VD);
18832       if (Result.isInvalid()) return ExprError();
18833       return S.ImpCastExprToType(Result.get(), Type,
18834                                  CK_FunctionToPointerDecay, VK_RValue);
18835     }
18836 
18837     if (!Type->isFunctionType()) {
18838       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
18839         << VD << E->getSourceRange();
18840       return ExprError();
18841     }
18842     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
18843       // We must match the FunctionDecl's type to the hack introduced in
18844       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
18845       // type. See the lengthy commentary in that routine.
18846       QualType FDT = FD->getType();
18847       const FunctionType *FnType = FDT->castAs<FunctionType>();
18848       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
18849       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
18850       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
18851         SourceLocation Loc = FD->getLocation();
18852         FunctionDecl *NewFD = FunctionDecl::Create(
18853             S.Context, FD->getDeclContext(), Loc, Loc,
18854             FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
18855             SC_None, false /*isInlineSpecified*/, FD->hasPrototype(),
18856             /*ConstexprKind*/ CSK_unspecified);
18857 
18858         if (FD->getQualifier())
18859           NewFD->setQualifierInfo(FD->getQualifierLoc());
18860 
18861         SmallVector<ParmVarDecl*, 16> Params;
18862         for (const auto &AI : FT->param_types()) {
18863           ParmVarDecl *Param =
18864             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
18865           Param->setScopeInfo(0, Params.size());
18866           Params.push_back(Param);
18867         }
18868         NewFD->setParams(Params);
18869         DRE->setDecl(NewFD);
18870         VD = DRE->getDecl();
18871       }
18872     }
18873 
18874     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
18875       if (MD->isInstance()) {
18876         ValueKind = VK_RValue;
18877         Type = S.Context.BoundMemberTy;
18878       }
18879 
18880     // Function references aren't l-values in C.
18881     if (!S.getLangOpts().CPlusPlus)
18882       ValueKind = VK_RValue;
18883 
18884   //  - variables
18885   } else if (isa<VarDecl>(VD)) {
18886     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
18887       Type = RefTy->getPointeeType();
18888     } else if (Type->isFunctionType()) {
18889       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
18890         << VD << E->getSourceRange();
18891       return ExprError();
18892     }
18893 
18894   //  - nothing else
18895   } else {
18896     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
18897       << VD << E->getSourceRange();
18898     return ExprError();
18899   }
18900 
18901   // Modifying the declaration like this is friendly to IR-gen but
18902   // also really dangerous.
18903   VD->setType(DestType);
18904   E->setType(Type);
18905   E->setValueKind(ValueKind);
18906   return E;
18907 }
18908 
18909 /// Check a cast of an unknown-any type.  We intentionally only
18910 /// trigger this for C-style casts.
18911 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
18912                                      Expr *CastExpr, CastKind &CastKind,
18913                                      ExprValueKind &VK, CXXCastPath &Path) {
18914   // The type we're casting to must be either void or complete.
18915   if (!CastType->isVoidType() &&
18916       RequireCompleteType(TypeRange.getBegin(), CastType,
18917                           diag::err_typecheck_cast_to_incomplete))
18918     return ExprError();
18919 
18920   // Rewrite the casted expression from scratch.
18921   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
18922   if (!result.isUsable()) return ExprError();
18923 
18924   CastExpr = result.get();
18925   VK = CastExpr->getValueKind();
18926   CastKind = CK_NoOp;
18927 
18928   return CastExpr;
18929 }
18930 
18931 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
18932   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
18933 }
18934 
18935 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
18936                                     Expr *arg, QualType &paramType) {
18937   // If the syntactic form of the argument is not an explicit cast of
18938   // any sort, just do default argument promotion.
18939   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
18940   if (!castArg) {
18941     ExprResult result = DefaultArgumentPromotion(arg);
18942     if (result.isInvalid()) return ExprError();
18943     paramType = result.get()->getType();
18944     return result;
18945   }
18946 
18947   // Otherwise, use the type that was written in the explicit cast.
18948   assert(!arg->hasPlaceholderType());
18949   paramType = castArg->getTypeAsWritten();
18950 
18951   // Copy-initialize a parameter of that type.
18952   InitializedEntity entity =
18953     InitializedEntity::InitializeParameter(Context, paramType,
18954                                            /*consumed*/ false);
18955   return PerformCopyInitialization(entity, callLoc, arg);
18956 }
18957 
18958 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
18959   Expr *orig = E;
18960   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
18961   while (true) {
18962     E = E->IgnoreParenImpCasts();
18963     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
18964       E = call->getCallee();
18965       diagID = diag::err_uncasted_call_of_unknown_any;
18966     } else {
18967       break;
18968     }
18969   }
18970 
18971   SourceLocation loc;
18972   NamedDecl *d;
18973   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
18974     loc = ref->getLocation();
18975     d = ref->getDecl();
18976   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
18977     loc = mem->getMemberLoc();
18978     d = mem->getMemberDecl();
18979   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
18980     diagID = diag::err_uncasted_call_of_unknown_any;
18981     loc = msg->getSelectorStartLoc();
18982     d = msg->getMethodDecl();
18983     if (!d) {
18984       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
18985         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
18986         << orig->getSourceRange();
18987       return ExprError();
18988     }
18989   } else {
18990     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
18991       << E->getSourceRange();
18992     return ExprError();
18993   }
18994 
18995   S.Diag(loc, diagID) << d << orig->getSourceRange();
18996 
18997   // Never recoverable.
18998   return ExprError();
18999 }
19000 
19001 /// Check for operands with placeholder types and complain if found.
19002 /// Returns ExprError() if there was an error and no recovery was possible.
19003 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
19004   if (!getLangOpts().CPlusPlus) {
19005     // C cannot handle TypoExpr nodes on either side of a binop because it
19006     // doesn't handle dependent types properly, so make sure any TypoExprs have
19007     // been dealt with before checking the operands.
19008     ExprResult Result = CorrectDelayedTyposInExpr(E);
19009     if (!Result.isUsable()) return ExprError();
19010     E = Result.get();
19011   }
19012 
19013   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
19014   if (!placeholderType) return E;
19015 
19016   switch (placeholderType->getKind()) {
19017 
19018   // Overloaded expressions.
19019   case BuiltinType::Overload: {
19020     // Try to resolve a single function template specialization.
19021     // This is obligatory.
19022     ExprResult Result = E;
19023     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
19024       return Result;
19025 
19026     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
19027     // leaves Result unchanged on failure.
19028     Result = E;
19029     if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
19030       return Result;
19031 
19032     // If that failed, try to recover with a call.
19033     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
19034                          /*complain*/ true);
19035     return Result;
19036   }
19037 
19038   // Bound member functions.
19039   case BuiltinType::BoundMember: {
19040     ExprResult result = E;
19041     const Expr *BME = E->IgnoreParens();
19042     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
19043     // Try to give a nicer diagnostic if it is a bound member that we recognize.
19044     if (isa<CXXPseudoDestructorExpr>(BME)) {
19045       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
19046     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
19047       if (ME->getMemberNameInfo().getName().getNameKind() ==
19048           DeclarationName::CXXDestructorName)
19049         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
19050     }
19051     tryToRecoverWithCall(result, PD,
19052                          /*complain*/ true);
19053     return result;
19054   }
19055 
19056   // ARC unbridged casts.
19057   case BuiltinType::ARCUnbridgedCast: {
19058     Expr *realCast = stripARCUnbridgedCast(E);
19059     diagnoseARCUnbridgedCast(realCast);
19060     return realCast;
19061   }
19062 
19063   // Expressions of unknown type.
19064   case BuiltinType::UnknownAny:
19065     return diagnoseUnknownAnyExpr(*this, E);
19066 
19067   // Pseudo-objects.
19068   case BuiltinType::PseudoObject:
19069     return checkPseudoObjectRValue(E);
19070 
19071   case BuiltinType::BuiltinFn: {
19072     // Accept __noop without parens by implicitly converting it to a call expr.
19073     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
19074     if (DRE) {
19075       auto *FD = cast<FunctionDecl>(DRE->getDecl());
19076       if (FD->getBuiltinID() == Builtin::BI__noop) {
19077         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
19078                               CK_BuiltinFnToFnPtr)
19079                 .get();
19080         return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
19081                                 VK_RValue, SourceLocation());
19082       }
19083     }
19084 
19085     Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
19086     return ExprError();
19087   }
19088 
19089   case BuiltinType::IncompleteMatrixIdx:
19090     Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
19091              ->getRowIdx()
19092              ->getBeginLoc(),
19093          diag::err_matrix_incomplete_index);
19094     return ExprError();
19095 
19096   // Expressions of unknown type.
19097   case BuiltinType::OMPArraySection:
19098     Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
19099     return ExprError();
19100 
19101   // Expressions of unknown type.
19102   case BuiltinType::OMPArrayShaping:
19103     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
19104 
19105   case BuiltinType::OMPIterator:
19106     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
19107 
19108   // Everything else should be impossible.
19109 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
19110   case BuiltinType::Id:
19111 #include "clang/Basic/OpenCLImageTypes.def"
19112 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
19113   case BuiltinType::Id:
19114 #include "clang/Basic/OpenCLExtensionTypes.def"
19115 #define SVE_TYPE(Name, Id, SingletonId) \
19116   case BuiltinType::Id:
19117 #include "clang/Basic/AArch64SVEACLETypes.def"
19118 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
19119 #define PLACEHOLDER_TYPE(Id, SingletonId)
19120 #include "clang/AST/BuiltinTypes.def"
19121     break;
19122   }
19123 
19124   llvm_unreachable("invalid placeholder type!");
19125 }
19126 
19127 bool Sema::CheckCaseExpression(Expr *E) {
19128   if (E->isTypeDependent())
19129     return true;
19130   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
19131     return E->getType()->isIntegralOrEnumerationType();
19132   return false;
19133 }
19134 
19135 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
19136 ExprResult
19137 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
19138   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
19139          "Unknown Objective-C Boolean value!");
19140   QualType BoolT = Context.ObjCBuiltinBoolTy;
19141   if (!Context.getBOOLDecl()) {
19142     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
19143                         Sema::LookupOrdinaryName);
19144     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
19145       NamedDecl *ND = Result.getFoundDecl();
19146       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
19147         Context.setBOOLDecl(TD);
19148     }
19149   }
19150   if (Context.getBOOLDecl())
19151     BoolT = Context.getBOOLType();
19152   return new (Context)
19153       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
19154 }
19155 
19156 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
19157     llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
19158     SourceLocation RParen) {
19159 
19160   StringRef Platform = getASTContext().getTargetInfo().getPlatformName();
19161 
19162   auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
19163     return Spec.getPlatform() == Platform;
19164   });
19165 
19166   VersionTuple Version;
19167   if (Spec != AvailSpecs.end())
19168     Version = Spec->getVersion();
19169 
19170   // The use of `@available` in the enclosing function should be analyzed to
19171   // warn when it's used inappropriately (i.e. not if(@available)).
19172   if (getCurFunctionOrMethodDecl())
19173     getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
19174   else if (getCurBlock() || getCurLambda())
19175     getCurFunction()->HasPotentialAvailabilityViolations = true;
19176 
19177   return new (Context)
19178       ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
19179 }
19180 
19181 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
19182                                     ArrayRef<Expr *> SubExprs, QualType T) {
19183   if (!Context.getLangOpts().RecoveryAST)
19184     return ExprError();
19185 
19186   if (isSFINAEContext())
19187     return ExprError();
19188 
19189   if (T.isNull() || !Context.getLangOpts().RecoveryASTType)
19190     // We don't know the concrete type, fallback to dependent type.
19191     T = Context.DependentTy;
19192   return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
19193 }
19194