xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaExpr.cpp (revision 63f537551380d2dab29fa402ad1269feae17e594)
1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TreeTransform.h"
14 #include "UsedDeclVisitor.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/EvaluatedExprVisitor.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/ExprObjC.h"
26 #include "clang/AST/ExprOpenMP.h"
27 #include "clang/AST/OperationKinds.h"
28 #include "clang/AST/ParentMapContext.h"
29 #include "clang/AST/RecursiveASTVisitor.h"
30 #include "clang/AST/Type.h"
31 #include "clang/AST/TypeLoc.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/DiagnosticSema.h"
34 #include "clang/Basic/PartialDiagnostic.h"
35 #include "clang/Basic/SourceManager.h"
36 #include "clang/Basic/Specifiers.h"
37 #include "clang/Basic/TargetInfo.h"
38 #include "clang/Lex/LiteralSupport.h"
39 #include "clang/Lex/Preprocessor.h"
40 #include "clang/Sema/AnalysisBasedWarnings.h"
41 #include "clang/Sema/DeclSpec.h"
42 #include "clang/Sema/DelayedDiagnostic.h"
43 #include "clang/Sema/Designator.h"
44 #include "clang/Sema/Initialization.h"
45 #include "clang/Sema/Lookup.h"
46 #include "clang/Sema/Overload.h"
47 #include "clang/Sema/ParsedTemplate.h"
48 #include "clang/Sema/Scope.h"
49 #include "clang/Sema/ScopeInfo.h"
50 #include "clang/Sema/SemaFixItUtils.h"
51 #include "clang/Sema/SemaInternal.h"
52 #include "clang/Sema/Template.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/StringExtras.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/ConvertUTF.h"
57 #include "llvm/Support/SaveAndRestore.h"
58 #include "llvm/Support/TypeSize.h"
59 #include <optional>
60 
61 using namespace clang;
62 using namespace sema;
63 
64 /// Determine whether the use of this declaration is valid, without
65 /// emitting diagnostics.
66 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
67   // See if this is an auto-typed variable whose initializer we are parsing.
68   if (ParsingInitForAutoVars.count(D))
69     return false;
70 
71   // See if this is a deleted function.
72   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
73     if (FD->isDeleted())
74       return false;
75 
76     // If the function has a deduced return type, and we can't deduce it,
77     // then we can't use it either.
78     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
79         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
80       return false;
81 
82     // See if this is an aligned allocation/deallocation function that is
83     // unavailable.
84     if (TreatUnavailableAsInvalid &&
85         isUnavailableAlignedAllocationFunction(*FD))
86       return false;
87   }
88 
89   // See if this function is unavailable.
90   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
91       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
92     return false;
93 
94   if (isa<UnresolvedUsingIfExistsDecl>(D))
95     return false;
96 
97   return true;
98 }
99 
100 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
101   // Warn if this is used but marked unused.
102   if (const auto *A = D->getAttr<UnusedAttr>()) {
103     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
104     // should diagnose them.
105     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
106         A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
107       const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
108       if (DC && !DC->hasAttr<UnusedAttr>())
109         S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
110     }
111   }
112 }
113 
114 /// Emit a note explaining that this function is deleted.
115 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
116   assert(Decl && Decl->isDeleted());
117 
118   if (Decl->isDefaulted()) {
119     // If the method was explicitly defaulted, point at that declaration.
120     if (!Decl->isImplicit())
121       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
122 
123     // Try to diagnose why this special member function was implicitly
124     // deleted. This might fail, if that reason no longer applies.
125     DiagnoseDeletedDefaultedFunction(Decl);
126     return;
127   }
128 
129   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
130   if (Ctor && Ctor->isInheritingConstructor())
131     return NoteDeletedInheritingConstructor(Ctor);
132 
133   Diag(Decl->getLocation(), diag::note_availability_specified_here)
134     << Decl << 1;
135 }
136 
137 /// Determine whether a FunctionDecl was ever declared with an
138 /// explicit storage class.
139 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
140   for (auto *I : D->redecls()) {
141     if (I->getStorageClass() != SC_None)
142       return true;
143   }
144   return false;
145 }
146 
147 /// Check whether we're in an extern inline function and referring to a
148 /// variable or function with internal linkage (C11 6.7.4p3).
149 ///
150 /// This is only a warning because we used to silently accept this code, but
151 /// in many cases it will not behave correctly. This is not enabled in C++ mode
152 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
153 /// and so while there may still be user mistakes, most of the time we can't
154 /// prove that there are errors.
155 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
156                                                       const NamedDecl *D,
157                                                       SourceLocation Loc) {
158   // This is disabled under C++; there are too many ways for this to fire in
159   // contexts where the warning is a false positive, or where it is technically
160   // correct but benign.
161   if (S.getLangOpts().CPlusPlus)
162     return;
163 
164   // Check if this is an inlined function or method.
165   FunctionDecl *Current = S.getCurFunctionDecl();
166   if (!Current)
167     return;
168   if (!Current->isInlined())
169     return;
170   if (!Current->isExternallyVisible())
171     return;
172 
173   // Check if the decl has internal linkage.
174   if (D->getFormalLinkage() != InternalLinkage)
175     return;
176 
177   // Downgrade from ExtWarn to Extension if
178   //  (1) the supposedly external inline function is in the main file,
179   //      and probably won't be included anywhere else.
180   //  (2) the thing we're referencing is a pure function.
181   //  (3) the thing we're referencing is another inline function.
182   // This last can give us false negatives, but it's better than warning on
183   // wrappers for simple C library functions.
184   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
185   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
186   if (!DowngradeWarning && UsedFn)
187     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
188 
189   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
190                                : diag::ext_internal_in_extern_inline)
191     << /*IsVar=*/!UsedFn << D;
192 
193   S.MaybeSuggestAddingStaticToDecl(Current);
194 
195   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
196       << D;
197 }
198 
199 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
200   const FunctionDecl *First = Cur->getFirstDecl();
201 
202   // Suggest "static" on the function, if possible.
203   if (!hasAnyExplicitStorageClass(First)) {
204     SourceLocation DeclBegin = First->getSourceRange().getBegin();
205     Diag(DeclBegin, diag::note_convert_inline_to_static)
206       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
207   }
208 }
209 
210 /// Determine whether the use of this declaration is valid, and
211 /// emit any corresponding diagnostics.
212 ///
213 /// This routine diagnoses various problems with referencing
214 /// declarations that can occur when using a declaration. For example,
215 /// it might warn if a deprecated or unavailable declaration is being
216 /// used, or produce an error (and return true) if a C++0x deleted
217 /// function is being used.
218 ///
219 /// \returns true if there was an error (this declaration cannot be
220 /// referenced), false otherwise.
221 ///
222 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
223                              const ObjCInterfaceDecl *UnknownObjCClass,
224                              bool ObjCPropertyAccess,
225                              bool AvoidPartialAvailabilityChecks,
226                              ObjCInterfaceDecl *ClassReceiver,
227                              bool SkipTrailingRequiresClause) {
228   SourceLocation Loc = Locs.front();
229   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
230     // If there were any diagnostics suppressed by template argument deduction,
231     // emit them now.
232     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
233     if (Pos != SuppressedDiagnostics.end()) {
234       for (const PartialDiagnosticAt &Suppressed : Pos->second)
235         Diag(Suppressed.first, Suppressed.second);
236 
237       // Clear out the list of suppressed diagnostics, so that we don't emit
238       // them again for this specialization. However, we don't obsolete this
239       // entry from the table, because we want to avoid ever emitting these
240       // diagnostics again.
241       Pos->second.clear();
242     }
243 
244     // C++ [basic.start.main]p3:
245     //   The function 'main' shall not be used within a program.
246     if (cast<FunctionDecl>(D)->isMain())
247       Diag(Loc, diag::ext_main_used);
248 
249     diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
250   }
251 
252   // See if this is an auto-typed variable whose initializer we are parsing.
253   if (ParsingInitForAutoVars.count(D)) {
254     if (isa<BindingDecl>(D)) {
255       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
256         << D->getDeclName();
257     } else {
258       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
259         << D->getDeclName() << cast<VarDecl>(D)->getType();
260     }
261     return true;
262   }
263 
264   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
265     // See if this is a deleted function.
266     if (FD->isDeleted()) {
267       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
268       if (Ctor && Ctor->isInheritingConstructor())
269         Diag(Loc, diag::err_deleted_inherited_ctor_use)
270             << Ctor->getParent()
271             << Ctor->getInheritedConstructor().getConstructor()->getParent();
272       else
273         Diag(Loc, diag::err_deleted_function_use);
274       NoteDeletedFunction(FD);
275       return true;
276     }
277 
278     // [expr.prim.id]p4
279     //   A program that refers explicitly or implicitly to a function with a
280     //   trailing requires-clause whose constraint-expression is not satisfied,
281     //   other than to declare it, is ill-formed. [...]
282     //
283     // See if this is a function with constraints that need to be satisfied.
284     // Check this before deducing the return type, as it might instantiate the
285     // definition.
286     if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) {
287       ConstraintSatisfaction Satisfaction;
288       if (CheckFunctionConstraints(FD, Satisfaction, Loc,
289                                    /*ForOverloadResolution*/ true))
290         // A diagnostic will have already been generated (non-constant
291         // constraint expression, for example)
292         return true;
293       if (!Satisfaction.IsSatisfied) {
294         Diag(Loc,
295              diag::err_reference_to_function_with_unsatisfied_constraints)
296             << D;
297         DiagnoseUnsatisfiedConstraint(Satisfaction);
298         return true;
299       }
300     }
301 
302     // If the function has a deduced return type, and we can't deduce it,
303     // then we can't use it either.
304     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
305         DeduceReturnType(FD, Loc))
306       return true;
307 
308     if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
309       return true;
310 
311     if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD))
312       return true;
313   }
314 
315   if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
316     // Lambdas are only default-constructible or assignable in C++2a onwards.
317     if (MD->getParent()->isLambda() &&
318         ((isa<CXXConstructorDecl>(MD) &&
319           cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
320          MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
321       Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
322         << !isa<CXXConstructorDecl>(MD);
323     }
324   }
325 
326   auto getReferencedObjCProp = [](const NamedDecl *D) ->
327                                       const ObjCPropertyDecl * {
328     if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
329       return MD->findPropertyDecl();
330     return nullptr;
331   };
332   if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
333     if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
334       return true;
335   } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
336       return true;
337   }
338 
339   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
340   // Only the variables omp_in and omp_out are allowed in the combiner.
341   // Only the variables omp_priv and omp_orig are allowed in the
342   // initializer-clause.
343   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
344   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
345       isa<VarDecl>(D)) {
346     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
347         << getCurFunction()->HasOMPDeclareReductionCombiner;
348     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
349     return true;
350   }
351 
352   // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
353   //  List-items in map clauses on this construct may only refer to the declared
354   //  variable var and entities that could be referenced by a procedure defined
355   //  at the same location.
356   // [OpenMP 5.2] Also allow iterator declared variables.
357   if (LangOpts.OpenMP && isa<VarDecl>(D) &&
358       !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
359     Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
360         << getOpenMPDeclareMapperVarName();
361     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
362     return true;
363   }
364 
365   if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
366     Diag(Loc, diag::err_use_of_empty_using_if_exists);
367     Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
368     return true;
369   }
370 
371   DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
372                              AvoidPartialAvailabilityChecks, ClassReceiver);
373 
374   DiagnoseUnusedOfDecl(*this, D, Loc);
375 
376   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
377 
378   if (auto *VD = dyn_cast<ValueDecl>(D))
379     checkTypeSupport(VD->getType(), Loc, VD);
380 
381   if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) {
382     if (!Context.getTargetInfo().isTLSSupported())
383       if (const auto *VD = dyn_cast<VarDecl>(D))
384         if (VD->getTLSKind() != VarDecl::TLS_None)
385           targetDiag(*Locs.begin(), diag::err_thread_unsupported);
386   }
387 
388   if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
389       !isUnevaluatedContext()) {
390     // C++ [expr.prim.req.nested] p3
391     //   A local parameter shall only appear as an unevaluated operand
392     //   (Clause 8) within the constraint-expression.
393     Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
394         << D;
395     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
396     return true;
397   }
398 
399   return false;
400 }
401 
402 /// DiagnoseSentinelCalls - This routine checks whether a call or
403 /// message-send is to a declaration with the sentinel attribute, and
404 /// if so, it checks that the requirements of the sentinel are
405 /// satisfied.
406 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
407                                  ArrayRef<Expr *> Args) {
408   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
409   if (!attr)
410     return;
411 
412   // The number of formal parameters of the declaration.
413   unsigned numFormalParams;
414 
415   // The kind of declaration.  This is also an index into a %select in
416   // the diagnostic.
417   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
418 
419   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
420     numFormalParams = MD->param_size();
421     calleeType = CT_Method;
422   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
423     numFormalParams = FD->param_size();
424     calleeType = CT_Function;
425   } else if (isa<VarDecl>(D)) {
426     QualType type = cast<ValueDecl>(D)->getType();
427     const FunctionType *fn = nullptr;
428     if (const PointerType *ptr = type->getAs<PointerType>()) {
429       fn = ptr->getPointeeType()->getAs<FunctionType>();
430       if (!fn) return;
431       calleeType = CT_Function;
432     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
433       fn = ptr->getPointeeType()->castAs<FunctionType>();
434       calleeType = CT_Block;
435     } else {
436       return;
437     }
438 
439     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
440       numFormalParams = proto->getNumParams();
441     } else {
442       numFormalParams = 0;
443     }
444   } else {
445     return;
446   }
447 
448   // "nullPos" is the number of formal parameters at the end which
449   // effectively count as part of the variadic arguments.  This is
450   // useful if you would prefer to not have *any* formal parameters,
451   // but the language forces you to have at least one.
452   unsigned nullPos = attr->getNullPos();
453   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
454   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
455 
456   // The number of arguments which should follow the sentinel.
457   unsigned numArgsAfterSentinel = attr->getSentinel();
458 
459   // If there aren't enough arguments for all the formal parameters,
460   // the sentinel, and the args after the sentinel, complain.
461   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
462     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
463     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
464     return;
465   }
466 
467   // Otherwise, find the sentinel expression.
468   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
469   if (!sentinelExpr) return;
470   if (sentinelExpr->isValueDependent()) return;
471   if (Context.isSentinelNullExpr(sentinelExpr)) return;
472 
473   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
474   // or 'NULL' if those are actually defined in the context.  Only use
475   // 'nil' for ObjC methods, where it's much more likely that the
476   // variadic arguments form a list of object pointers.
477   SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
478   std::string NullValue;
479   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
480     NullValue = "nil";
481   else if (getLangOpts().CPlusPlus11)
482     NullValue = "nullptr";
483   else if (PP.isMacroDefined("NULL"))
484     NullValue = "NULL";
485   else
486     NullValue = "(void*) 0";
487 
488   if (MissingNilLoc.isInvalid())
489     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
490   else
491     Diag(MissingNilLoc, diag::warn_missing_sentinel)
492       << int(calleeType)
493       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
494   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
495 }
496 
497 SourceRange Sema::getExprRange(Expr *E) const {
498   return E ? E->getSourceRange() : SourceRange();
499 }
500 
501 //===----------------------------------------------------------------------===//
502 //  Standard Promotions and Conversions
503 //===----------------------------------------------------------------------===//
504 
505 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
506 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
507   // Handle any placeholder expressions which made it here.
508   if (E->hasPlaceholderType()) {
509     ExprResult result = CheckPlaceholderExpr(E);
510     if (result.isInvalid()) return ExprError();
511     E = result.get();
512   }
513 
514   QualType Ty = E->getType();
515   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
516 
517   if (Ty->isFunctionType()) {
518     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
519       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
520         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
521           return ExprError();
522 
523     E = ImpCastExprToType(E, Context.getPointerType(Ty),
524                           CK_FunctionToPointerDecay).get();
525   } else if (Ty->isArrayType()) {
526     // In C90 mode, arrays only promote to pointers if the array expression is
527     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
528     // type 'array of type' is converted to an expression that has type 'pointer
529     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
530     // that has type 'array of type' ...".  The relevant change is "an lvalue"
531     // (C90) to "an expression" (C99).
532     //
533     // C++ 4.2p1:
534     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
535     // T" can be converted to an rvalue of type "pointer to T".
536     //
537     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
538       ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
539                                          CK_ArrayToPointerDecay);
540       if (Res.isInvalid())
541         return ExprError();
542       E = Res.get();
543     }
544   }
545   return E;
546 }
547 
548 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
549   // Check to see if we are dereferencing a null pointer.  If so,
550   // and if not volatile-qualified, this is undefined behavior that the
551   // optimizer will delete, so warn about it.  People sometimes try to use this
552   // to get a deterministic trap and are surprised by clang's behavior.  This
553   // only handles the pattern "*null", which is a very syntactic check.
554   const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
555   if (UO && UO->getOpcode() == UO_Deref &&
556       UO->getSubExpr()->getType()->isPointerType()) {
557     const LangAS AS =
558         UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
559     if ((!isTargetAddressSpace(AS) ||
560          (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
561         UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
562             S.Context, Expr::NPC_ValueDependentIsNotNull) &&
563         !UO->getType().isVolatileQualified()) {
564       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
565                             S.PDiag(diag::warn_indirection_through_null)
566                                 << UO->getSubExpr()->getSourceRange());
567       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
568                             S.PDiag(diag::note_indirection_through_null));
569     }
570   }
571 }
572 
573 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
574                                     SourceLocation AssignLoc,
575                                     const Expr* RHS) {
576   const ObjCIvarDecl *IV = OIRE->getDecl();
577   if (!IV)
578     return;
579 
580   DeclarationName MemberName = IV->getDeclName();
581   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
582   if (!Member || !Member->isStr("isa"))
583     return;
584 
585   const Expr *Base = OIRE->getBase();
586   QualType BaseType = Base->getType();
587   if (OIRE->isArrow())
588     BaseType = BaseType->getPointeeType();
589   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
590     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
591       ObjCInterfaceDecl *ClassDeclared = nullptr;
592       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
593       if (!ClassDeclared->getSuperClass()
594           && (*ClassDeclared->ivar_begin()) == IV) {
595         if (RHS) {
596           NamedDecl *ObjectSetClass =
597             S.LookupSingleName(S.TUScope,
598                                &S.Context.Idents.get("object_setClass"),
599                                SourceLocation(), S.LookupOrdinaryName);
600           if (ObjectSetClass) {
601             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
602             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
603                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
604                                               "object_setClass(")
605                 << FixItHint::CreateReplacement(
606                        SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
607                 << FixItHint::CreateInsertion(RHSLocEnd, ")");
608           }
609           else
610             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
611         } else {
612           NamedDecl *ObjectGetClass =
613             S.LookupSingleName(S.TUScope,
614                                &S.Context.Idents.get("object_getClass"),
615                                SourceLocation(), S.LookupOrdinaryName);
616           if (ObjectGetClass)
617             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
618                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
619                                               "object_getClass(")
620                 << FixItHint::CreateReplacement(
621                        SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
622           else
623             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
624         }
625         S.Diag(IV->getLocation(), diag::note_ivar_decl);
626       }
627     }
628 }
629 
630 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
631   // Handle any placeholder expressions which made it here.
632   if (E->hasPlaceholderType()) {
633     ExprResult result = CheckPlaceholderExpr(E);
634     if (result.isInvalid()) return ExprError();
635     E = result.get();
636   }
637 
638   // C++ [conv.lval]p1:
639   //   A glvalue of a non-function, non-array type T can be
640   //   converted to a prvalue.
641   if (!E->isGLValue()) return E;
642 
643   QualType T = E->getType();
644   assert(!T.isNull() && "r-value conversion on typeless expression?");
645 
646   // lvalue-to-rvalue conversion cannot be applied to function or array types.
647   if (T->isFunctionType() || T->isArrayType())
648     return E;
649 
650   // We don't want to throw lvalue-to-rvalue casts on top of
651   // expressions of certain types in C++.
652   if (getLangOpts().CPlusPlus &&
653       (E->getType() == Context.OverloadTy ||
654        T->isDependentType() ||
655        T->isRecordType()))
656     return E;
657 
658   // The C standard is actually really unclear on this point, and
659   // DR106 tells us what the result should be but not why.  It's
660   // generally best to say that void types just doesn't undergo
661   // lvalue-to-rvalue at all.  Note that expressions of unqualified
662   // 'void' type are never l-values, but qualified void can be.
663   if (T->isVoidType())
664     return E;
665 
666   // OpenCL usually rejects direct accesses to values of 'half' type.
667   if (getLangOpts().OpenCL &&
668       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
669       T->isHalfType()) {
670     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
671       << 0 << T;
672     return ExprError();
673   }
674 
675   CheckForNullPointerDereference(*this, E);
676   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
677     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
678                                      &Context.Idents.get("object_getClass"),
679                                      SourceLocation(), LookupOrdinaryName);
680     if (ObjectGetClass)
681       Diag(E->getExprLoc(), diag::warn_objc_isa_use)
682           << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
683           << FixItHint::CreateReplacement(
684                  SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
685     else
686       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
687   }
688   else if (const ObjCIvarRefExpr *OIRE =
689             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
690     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
691 
692   // C++ [conv.lval]p1:
693   //   [...] If T is a non-class type, the type of the prvalue is the
694   //   cv-unqualified version of T. Otherwise, the type of the
695   //   rvalue is T.
696   //
697   // C99 6.3.2.1p2:
698   //   If the lvalue has qualified type, the value has the unqualified
699   //   version of the type of the lvalue; otherwise, the value has the
700   //   type of the lvalue.
701   if (T.hasQualifiers())
702     T = T.getUnqualifiedType();
703 
704   // Under the MS ABI, lock down the inheritance model now.
705   if (T->isMemberPointerType() &&
706       Context.getTargetInfo().getCXXABI().isMicrosoft())
707     (void)isCompleteType(E->getExprLoc(), T);
708 
709   ExprResult Res = CheckLValueToRValueConversionOperand(E);
710   if (Res.isInvalid())
711     return Res;
712   E = Res.get();
713 
714   // Loading a __weak object implicitly retains the value, so we need a cleanup to
715   // balance that.
716   if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
717     Cleanup.setExprNeedsCleanups(true);
718 
719   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
720     Cleanup.setExprNeedsCleanups(true);
721 
722   // C++ [conv.lval]p3:
723   //   If T is cv std::nullptr_t, the result is a null pointer constant.
724   CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
725   Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
726                                  CurFPFeatureOverrides());
727 
728   // C11 6.3.2.1p2:
729   //   ... if the lvalue has atomic type, the value has the non-atomic version
730   //   of the type of the lvalue ...
731   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
732     T = Atomic->getValueType().getUnqualifiedType();
733     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
734                                    nullptr, VK_PRValue, FPOptionsOverride());
735   }
736 
737   return Res;
738 }
739 
740 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
741   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
742   if (Res.isInvalid())
743     return ExprError();
744   Res = DefaultLvalueConversion(Res.get());
745   if (Res.isInvalid())
746     return ExprError();
747   return Res;
748 }
749 
750 /// CallExprUnaryConversions - a special case of an unary conversion
751 /// performed on a function designator of a call expression.
752 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
753   QualType Ty = E->getType();
754   ExprResult Res = E;
755   // Only do implicit cast for a function type, but not for a pointer
756   // to function type.
757   if (Ty->isFunctionType()) {
758     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
759                             CK_FunctionToPointerDecay);
760     if (Res.isInvalid())
761       return ExprError();
762   }
763   Res = DefaultLvalueConversion(Res.get());
764   if (Res.isInvalid())
765     return ExprError();
766   return Res.get();
767 }
768 
769 /// UsualUnaryConversions - Performs various conversions that are common to most
770 /// operators (C99 6.3). The conversions of array and function types are
771 /// sometimes suppressed. For example, the array->pointer conversion doesn't
772 /// apply if the array is an argument to the sizeof or address (&) operators.
773 /// In these instances, this routine should *not* be called.
774 ExprResult Sema::UsualUnaryConversions(Expr *E) {
775   // First, convert to an r-value.
776   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
777   if (Res.isInvalid())
778     return ExprError();
779   E = Res.get();
780 
781   QualType Ty = E->getType();
782   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
783 
784   LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
785   if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
786       (getLangOpts().getFPEvalMethod() !=
787            LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
788        PP.getLastFPEvalPragmaLocation().isValid())) {
789     switch (EvalMethod) {
790     default:
791       llvm_unreachable("Unrecognized float evaluation method");
792       break;
793     case LangOptions::FEM_UnsetOnCommandLine:
794       llvm_unreachable("Float evaluation method should be set by now");
795       break;
796     case LangOptions::FEM_Double:
797       if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
798         // Widen the expression to double.
799         return Ty->isComplexType()
800                    ? ImpCastExprToType(E,
801                                        Context.getComplexType(Context.DoubleTy),
802                                        CK_FloatingComplexCast)
803                    : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
804       break;
805     case LangOptions::FEM_Extended:
806       if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
807         // Widen the expression to long double.
808         return Ty->isComplexType()
809                    ? ImpCastExprToType(
810                          E, Context.getComplexType(Context.LongDoubleTy),
811                          CK_FloatingComplexCast)
812                    : ImpCastExprToType(E, Context.LongDoubleTy,
813                                        CK_FloatingCast);
814       break;
815     }
816   }
817 
818   // Half FP have to be promoted to float unless it is natively supported
819   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
820     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
821 
822   // Try to perform integral promotions if the object has a theoretically
823   // promotable type.
824   if (Ty->isIntegralOrUnscopedEnumerationType()) {
825     // C99 6.3.1.1p2:
826     //
827     //   The following may be used in an expression wherever an int or
828     //   unsigned int may be used:
829     //     - an object or expression with an integer type whose integer
830     //       conversion rank is less than or equal to the rank of int
831     //       and unsigned int.
832     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
833     //
834     //   If an int can represent all values of the original type, the
835     //   value is converted to an int; otherwise, it is converted to an
836     //   unsigned int. These are called the integer promotions. All
837     //   other types are unchanged by the integer promotions.
838 
839     QualType PTy = Context.isPromotableBitField(E);
840     if (!PTy.isNull()) {
841       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
842       return E;
843     }
844     if (Context.isPromotableIntegerType(Ty)) {
845       QualType PT = Context.getPromotedIntegerType(Ty);
846       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
847       return E;
848     }
849   }
850   return E;
851 }
852 
853 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
854 /// do not have a prototype. Arguments that have type float or __fp16
855 /// are promoted to double. All other argument types are converted by
856 /// UsualUnaryConversions().
857 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
858   QualType Ty = E->getType();
859   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
860 
861   ExprResult Res = UsualUnaryConversions(E);
862   if (Res.isInvalid())
863     return ExprError();
864   E = Res.get();
865 
866   // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
867   // promote to double.
868   // Note that default argument promotion applies only to float (and
869   // half/fp16); it does not apply to _Float16.
870   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
871   if (BTy && (BTy->getKind() == BuiltinType::Half ||
872               BTy->getKind() == BuiltinType::Float)) {
873     if (getLangOpts().OpenCL &&
874         !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
875       if (BTy->getKind() == BuiltinType::Half) {
876         E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
877       }
878     } else {
879       E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
880     }
881   }
882   if (BTy &&
883       getLangOpts().getExtendIntArgs() ==
884           LangOptions::ExtendArgsKind::ExtendTo64 &&
885       Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
886       Context.getTypeSizeInChars(BTy) <
887           Context.getTypeSizeInChars(Context.LongLongTy)) {
888     E = (Ty->isUnsignedIntegerType())
889             ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
890                   .get()
891             : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
892     assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
893            "Unexpected typesize for LongLongTy");
894   }
895 
896   // C++ performs lvalue-to-rvalue conversion as a default argument
897   // promotion, even on class types, but note:
898   //   C++11 [conv.lval]p2:
899   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
900   //     operand or a subexpression thereof the value contained in the
901   //     referenced object is not accessed. Otherwise, if the glvalue
902   //     has a class type, the conversion copy-initializes a temporary
903   //     of type T from the glvalue and the result of the conversion
904   //     is a prvalue for the temporary.
905   // FIXME: add some way to gate this entire thing for correctness in
906   // potentially potentially evaluated contexts.
907   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
908     ExprResult Temp = PerformCopyInitialization(
909                        InitializedEntity::InitializeTemporary(E->getType()),
910                                                 E->getExprLoc(), E);
911     if (Temp.isInvalid())
912       return ExprError();
913     E = Temp.get();
914   }
915 
916   return E;
917 }
918 
919 /// Determine the degree of POD-ness for an expression.
920 /// Incomplete types are considered POD, since this check can be performed
921 /// when we're in an unevaluated context.
922 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
923   if (Ty->isIncompleteType()) {
924     // C++11 [expr.call]p7:
925     //   After these conversions, if the argument does not have arithmetic,
926     //   enumeration, pointer, pointer to member, or class type, the program
927     //   is ill-formed.
928     //
929     // Since we've already performed array-to-pointer and function-to-pointer
930     // decay, the only such type in C++ is cv void. This also handles
931     // initializer lists as variadic arguments.
932     if (Ty->isVoidType())
933       return VAK_Invalid;
934 
935     if (Ty->isObjCObjectType())
936       return VAK_Invalid;
937     return VAK_Valid;
938   }
939 
940   if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
941     return VAK_Invalid;
942 
943   if (Ty.isCXX98PODType(Context))
944     return VAK_Valid;
945 
946   // C++11 [expr.call]p7:
947   //   Passing a potentially-evaluated argument of class type (Clause 9)
948   //   having a non-trivial copy constructor, a non-trivial move constructor,
949   //   or a non-trivial destructor, with no corresponding parameter,
950   //   is conditionally-supported with implementation-defined semantics.
951   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
952     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
953       if (!Record->hasNonTrivialCopyConstructor() &&
954           !Record->hasNonTrivialMoveConstructor() &&
955           !Record->hasNonTrivialDestructor())
956         return VAK_ValidInCXX11;
957 
958   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
959     return VAK_Valid;
960 
961   if (Ty->isObjCObjectType())
962     return VAK_Invalid;
963 
964   if (getLangOpts().MSVCCompat)
965     return VAK_MSVCUndefined;
966 
967   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
968   // permitted to reject them. We should consider doing so.
969   return VAK_Undefined;
970 }
971 
972 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
973   // Don't allow one to pass an Objective-C interface to a vararg.
974   const QualType &Ty = E->getType();
975   VarArgKind VAK = isValidVarArgType(Ty);
976 
977   // Complain about passing non-POD types through varargs.
978   switch (VAK) {
979   case VAK_ValidInCXX11:
980     DiagRuntimeBehavior(
981         E->getBeginLoc(), nullptr,
982         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
983     [[fallthrough]];
984   case VAK_Valid:
985     if (Ty->isRecordType()) {
986       // This is unlikely to be what the user intended. If the class has a
987       // 'c_str' member function, the user probably meant to call that.
988       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
989                           PDiag(diag::warn_pass_class_arg_to_vararg)
990                               << Ty << CT << hasCStrMethod(E) << ".c_str()");
991     }
992     break;
993 
994   case VAK_Undefined:
995   case VAK_MSVCUndefined:
996     DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
997                         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
998                             << getLangOpts().CPlusPlus11 << Ty << CT);
999     break;
1000 
1001   case VAK_Invalid:
1002     if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1003       Diag(E->getBeginLoc(),
1004            diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1005           << Ty << CT;
1006     else if (Ty->isObjCObjectType())
1007       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1008                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1009                               << Ty << CT);
1010     else
1011       Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1012           << isa<InitListExpr>(E) << Ty << CT;
1013     break;
1014   }
1015 }
1016 
1017 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
1018 /// will create a trap if the resulting type is not a POD type.
1019 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1020                                                   FunctionDecl *FDecl) {
1021   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1022     // Strip the unbridged-cast placeholder expression off, if applicable.
1023     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1024         (CT == VariadicMethod ||
1025          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1026       E = stripARCUnbridgedCast(E);
1027 
1028     // Otherwise, do normal placeholder checking.
1029     } else {
1030       ExprResult ExprRes = CheckPlaceholderExpr(E);
1031       if (ExprRes.isInvalid())
1032         return ExprError();
1033       E = ExprRes.get();
1034     }
1035   }
1036 
1037   ExprResult ExprRes = DefaultArgumentPromotion(E);
1038   if (ExprRes.isInvalid())
1039     return ExprError();
1040 
1041   // Copy blocks to the heap.
1042   if (ExprRes.get()->getType()->isBlockPointerType())
1043     maybeExtendBlockObject(ExprRes);
1044 
1045   E = ExprRes.get();
1046 
1047   // Diagnostics regarding non-POD argument types are
1048   // emitted along with format string checking in Sema::CheckFunctionCall().
1049   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1050     // Turn this into a trap.
1051     CXXScopeSpec SS;
1052     SourceLocation TemplateKWLoc;
1053     UnqualifiedId Name;
1054     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1055                        E->getBeginLoc());
1056     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1057                                           /*HasTrailingLParen=*/true,
1058                                           /*IsAddressOfOperand=*/false);
1059     if (TrapFn.isInvalid())
1060       return ExprError();
1061 
1062     ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1063                                     std::nullopt, E->getEndLoc());
1064     if (Call.isInvalid())
1065       return ExprError();
1066 
1067     ExprResult Comma =
1068         ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1069     if (Comma.isInvalid())
1070       return ExprError();
1071     return Comma.get();
1072   }
1073 
1074   if (!getLangOpts().CPlusPlus &&
1075       RequireCompleteType(E->getExprLoc(), E->getType(),
1076                           diag::err_call_incomplete_argument))
1077     return ExprError();
1078 
1079   return E;
1080 }
1081 
1082 /// Converts an integer to complex float type.  Helper function of
1083 /// UsualArithmeticConversions()
1084 ///
1085 /// \return false if the integer expression is an integer type and is
1086 /// successfully converted to the complex type.
1087 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1088                                                   ExprResult &ComplexExpr,
1089                                                   QualType IntTy,
1090                                                   QualType ComplexTy,
1091                                                   bool SkipCast) {
1092   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1093   if (SkipCast) return false;
1094   if (IntTy->isIntegerType()) {
1095     QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1096     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1097     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1098                                   CK_FloatingRealToComplex);
1099   } else {
1100     assert(IntTy->isComplexIntegerType());
1101     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1102                                   CK_IntegralComplexToFloatingComplex);
1103   }
1104   return false;
1105 }
1106 
1107 // This handles complex/complex, complex/float, or float/complex.
1108 // When both operands are complex, the shorter operand is converted to the
1109 // type of the longer, and that is the type of the result. This corresponds
1110 // to what is done when combining two real floating-point operands.
1111 // The fun begins when size promotion occur across type domains.
1112 // From H&S 6.3.4: When one operand is complex and the other is a real
1113 // floating-point type, the less precise type is converted, within it's
1114 // real or complex domain, to the precision of the other type. For example,
1115 // when combining a "long double" with a "double _Complex", the
1116 // "double _Complex" is promoted to "long double _Complex".
1117 static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1118                                              QualType ShorterType,
1119                                              QualType LongerType,
1120                                              bool PromotePrecision) {
1121   bool LongerIsComplex = isa<ComplexType>(LongerType.getCanonicalType());
1122   QualType Result =
1123       LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType);
1124 
1125   if (PromotePrecision) {
1126     if (isa<ComplexType>(ShorterType.getCanonicalType())) {
1127       Shorter =
1128           S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast);
1129     } else {
1130       if (LongerIsComplex)
1131         LongerType = LongerType->castAs<ComplexType>()->getElementType();
1132       Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast);
1133     }
1134   }
1135   return Result;
1136 }
1137 
1138 /// Handle arithmetic conversion with complex types.  Helper function of
1139 /// UsualArithmeticConversions()
1140 static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1141                                         ExprResult &RHS, QualType LHSType,
1142                                         QualType RHSType, bool IsCompAssign) {
1143   // if we have an integer operand, the result is the complex type.
1144   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1145                                              /*SkipCast=*/false))
1146     return LHSType;
1147   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1148                                              /*SkipCast=*/IsCompAssign))
1149     return RHSType;
1150 
1151   // Compute the rank of the two types, regardless of whether they are complex.
1152   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1153   if (Order < 0)
1154     // Promote the precision of the LHS if not an assignment.
1155     return handleComplexFloatConversion(S, LHS, LHSType, RHSType,
1156                                         /*PromotePrecision=*/!IsCompAssign);
1157   // Promote the precision of the RHS unless it is already the same as the LHS.
1158   return handleComplexFloatConversion(S, RHS, RHSType, LHSType,
1159                                       /*PromotePrecision=*/Order > 0);
1160 }
1161 
1162 /// Handle arithmetic conversion from integer to float.  Helper function
1163 /// of UsualArithmeticConversions()
1164 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1165                                            ExprResult &IntExpr,
1166                                            QualType FloatTy, QualType IntTy,
1167                                            bool ConvertFloat, bool ConvertInt) {
1168   if (IntTy->isIntegerType()) {
1169     if (ConvertInt)
1170       // Convert intExpr to the lhs floating point type.
1171       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1172                                     CK_IntegralToFloating);
1173     return FloatTy;
1174   }
1175 
1176   // Convert both sides to the appropriate complex float.
1177   assert(IntTy->isComplexIntegerType());
1178   QualType result = S.Context.getComplexType(FloatTy);
1179 
1180   // _Complex int -> _Complex float
1181   if (ConvertInt)
1182     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1183                                   CK_IntegralComplexToFloatingComplex);
1184 
1185   // float -> _Complex float
1186   if (ConvertFloat)
1187     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1188                                     CK_FloatingRealToComplex);
1189 
1190   return result;
1191 }
1192 
1193 /// Handle arithmethic conversion with floating point types.  Helper
1194 /// function of UsualArithmeticConversions()
1195 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1196                                       ExprResult &RHS, QualType LHSType,
1197                                       QualType RHSType, bool IsCompAssign) {
1198   bool LHSFloat = LHSType->isRealFloatingType();
1199   bool RHSFloat = RHSType->isRealFloatingType();
1200 
1201   // N1169 4.1.4: If one of the operands has a floating type and the other
1202   //              operand has a fixed-point type, the fixed-point operand
1203   //              is converted to the floating type [...]
1204   if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1205     if (LHSFloat)
1206       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1207     else if (!IsCompAssign)
1208       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1209     return LHSFloat ? LHSType : RHSType;
1210   }
1211 
1212   // If we have two real floating types, convert the smaller operand
1213   // to the bigger result.
1214   if (LHSFloat && RHSFloat) {
1215     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1216     if (order > 0) {
1217       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1218       return LHSType;
1219     }
1220 
1221     assert(order < 0 && "illegal float comparison");
1222     if (!IsCompAssign)
1223       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1224     return RHSType;
1225   }
1226 
1227   if (LHSFloat) {
1228     // Half FP has to be promoted to float unless it is natively supported
1229     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1230       LHSType = S.Context.FloatTy;
1231 
1232     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1233                                       /*ConvertFloat=*/!IsCompAssign,
1234                                       /*ConvertInt=*/ true);
1235   }
1236   assert(RHSFloat);
1237   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1238                                     /*ConvertFloat=*/ true,
1239                                     /*ConvertInt=*/!IsCompAssign);
1240 }
1241 
1242 /// Diagnose attempts to convert between __float128, __ibm128 and
1243 /// long double if there is no support for such conversion.
1244 /// Helper function of UsualArithmeticConversions().
1245 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1246                                       QualType RHSType) {
1247   // No issue if either is not a floating point type.
1248   if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1249     return false;
1250 
1251   // No issue if both have the same 128-bit float semantics.
1252   auto *LHSComplex = LHSType->getAs<ComplexType>();
1253   auto *RHSComplex = RHSType->getAs<ComplexType>();
1254 
1255   QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1256   QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1257 
1258   const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1259   const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1260 
1261   if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1262        &RHSSem != &llvm::APFloat::IEEEquad()) &&
1263       (&LHSSem != &llvm::APFloat::IEEEquad() ||
1264        &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1265     return false;
1266 
1267   return true;
1268 }
1269 
1270 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1271 
1272 namespace {
1273 /// These helper callbacks are placed in an anonymous namespace to
1274 /// permit their use as function template parameters.
1275 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1276   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1277 }
1278 
1279 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1280   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1281                              CK_IntegralComplexCast);
1282 }
1283 }
1284 
1285 /// Handle integer arithmetic conversions.  Helper function of
1286 /// UsualArithmeticConversions()
1287 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1288 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1289                                         ExprResult &RHS, QualType LHSType,
1290                                         QualType RHSType, bool IsCompAssign) {
1291   // The rules for this case are in C99 6.3.1.8
1292   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1293   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1294   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1295   if (LHSSigned == RHSSigned) {
1296     // Same signedness; use the higher-ranked type
1297     if (order >= 0) {
1298       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1299       return LHSType;
1300     } else if (!IsCompAssign)
1301       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1302     return RHSType;
1303   } else if (order != (LHSSigned ? 1 : -1)) {
1304     // The unsigned type has greater than or equal rank to the
1305     // signed type, so use the unsigned type
1306     if (RHSSigned) {
1307       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1308       return LHSType;
1309     } else if (!IsCompAssign)
1310       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1311     return RHSType;
1312   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1313     // The two types are different widths; if we are here, that
1314     // means the signed type is larger than the unsigned type, so
1315     // use the signed type.
1316     if (LHSSigned) {
1317       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1318       return LHSType;
1319     } else if (!IsCompAssign)
1320       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1321     return RHSType;
1322   } else {
1323     // The signed type is higher-ranked than the unsigned type,
1324     // but isn't actually any bigger (like unsigned int and long
1325     // on most 32-bit systems).  Use the unsigned type corresponding
1326     // to the signed type.
1327     QualType result =
1328       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1329     RHS = (*doRHSCast)(S, RHS.get(), result);
1330     if (!IsCompAssign)
1331       LHS = (*doLHSCast)(S, LHS.get(), result);
1332     return result;
1333   }
1334 }
1335 
1336 /// Handle conversions with GCC complex int extension.  Helper function
1337 /// of UsualArithmeticConversions()
1338 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1339                                            ExprResult &RHS, QualType LHSType,
1340                                            QualType RHSType,
1341                                            bool IsCompAssign) {
1342   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1343   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1344 
1345   if (LHSComplexInt && RHSComplexInt) {
1346     QualType LHSEltType = LHSComplexInt->getElementType();
1347     QualType RHSEltType = RHSComplexInt->getElementType();
1348     QualType ScalarType =
1349       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1350         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1351 
1352     return S.Context.getComplexType(ScalarType);
1353   }
1354 
1355   if (LHSComplexInt) {
1356     QualType LHSEltType = LHSComplexInt->getElementType();
1357     QualType ScalarType =
1358       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1359         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1360     QualType ComplexType = S.Context.getComplexType(ScalarType);
1361     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1362                               CK_IntegralRealToComplex);
1363 
1364     return ComplexType;
1365   }
1366 
1367   assert(RHSComplexInt);
1368 
1369   QualType RHSEltType = RHSComplexInt->getElementType();
1370   QualType ScalarType =
1371     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1372       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1373   QualType ComplexType = S.Context.getComplexType(ScalarType);
1374 
1375   if (!IsCompAssign)
1376     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1377                               CK_IntegralRealToComplex);
1378   return ComplexType;
1379 }
1380 
1381 /// Return the rank of a given fixed point or integer type. The value itself
1382 /// doesn't matter, but the values must be increasing with proper increasing
1383 /// rank as described in N1169 4.1.1.
1384 static unsigned GetFixedPointRank(QualType Ty) {
1385   const auto *BTy = Ty->getAs<BuiltinType>();
1386   assert(BTy && "Expected a builtin type.");
1387 
1388   switch (BTy->getKind()) {
1389   case BuiltinType::ShortFract:
1390   case BuiltinType::UShortFract:
1391   case BuiltinType::SatShortFract:
1392   case BuiltinType::SatUShortFract:
1393     return 1;
1394   case BuiltinType::Fract:
1395   case BuiltinType::UFract:
1396   case BuiltinType::SatFract:
1397   case BuiltinType::SatUFract:
1398     return 2;
1399   case BuiltinType::LongFract:
1400   case BuiltinType::ULongFract:
1401   case BuiltinType::SatLongFract:
1402   case BuiltinType::SatULongFract:
1403     return 3;
1404   case BuiltinType::ShortAccum:
1405   case BuiltinType::UShortAccum:
1406   case BuiltinType::SatShortAccum:
1407   case BuiltinType::SatUShortAccum:
1408     return 4;
1409   case BuiltinType::Accum:
1410   case BuiltinType::UAccum:
1411   case BuiltinType::SatAccum:
1412   case BuiltinType::SatUAccum:
1413     return 5;
1414   case BuiltinType::LongAccum:
1415   case BuiltinType::ULongAccum:
1416   case BuiltinType::SatLongAccum:
1417   case BuiltinType::SatULongAccum:
1418     return 6;
1419   default:
1420     if (BTy->isInteger())
1421       return 0;
1422     llvm_unreachable("Unexpected fixed point or integer type");
1423   }
1424 }
1425 
1426 /// handleFixedPointConversion - Fixed point operations between fixed
1427 /// point types and integers or other fixed point types do not fall under
1428 /// usual arithmetic conversion since these conversions could result in loss
1429 /// of precsision (N1169 4.1.4). These operations should be calculated with
1430 /// the full precision of their result type (N1169 4.1.6.2.1).
1431 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1432                                            QualType RHSTy) {
1433   assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1434          "Expected at least one of the operands to be a fixed point type");
1435   assert((LHSTy->isFixedPointOrIntegerType() ||
1436           RHSTy->isFixedPointOrIntegerType()) &&
1437          "Special fixed point arithmetic operation conversions are only "
1438          "applied to ints or other fixed point types");
1439 
1440   // If one operand has signed fixed-point type and the other operand has
1441   // unsigned fixed-point type, then the unsigned fixed-point operand is
1442   // converted to its corresponding signed fixed-point type and the resulting
1443   // type is the type of the converted operand.
1444   if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1445     LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1446   else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1447     RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1448 
1449   // The result type is the type with the highest rank, whereby a fixed-point
1450   // conversion rank is always greater than an integer conversion rank; if the
1451   // type of either of the operands is a saturating fixedpoint type, the result
1452   // type shall be the saturating fixed-point type corresponding to the type
1453   // with the highest rank; the resulting value is converted (taking into
1454   // account rounding and overflow) to the precision of the resulting type.
1455   // Same ranks between signed and unsigned types are resolved earlier, so both
1456   // types are either signed or both unsigned at this point.
1457   unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1458   unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1459 
1460   QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1461 
1462   if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1463     ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1464 
1465   return ResultTy;
1466 }
1467 
1468 /// Check that the usual arithmetic conversions can be performed on this pair of
1469 /// expressions that might be of enumeration type.
1470 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1471                                            SourceLocation Loc,
1472                                            Sema::ArithConvKind ACK) {
1473   // C++2a [expr.arith.conv]p1:
1474   //   If one operand is of enumeration type and the other operand is of a
1475   //   different enumeration type or a floating-point type, this behavior is
1476   //   deprecated ([depr.arith.conv.enum]).
1477   //
1478   // Warn on this in all language modes. Produce a deprecation warning in C++20.
1479   // Eventually we will presumably reject these cases (in C++23 onwards?).
1480   QualType L = LHS->getType(), R = RHS->getType();
1481   bool LEnum = L->isUnscopedEnumerationType(),
1482        REnum = R->isUnscopedEnumerationType();
1483   bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1484   if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1485       (REnum && L->isFloatingType())) {
1486     S.Diag(Loc, S.getLangOpts().CPlusPlus20
1487                     ? diag::warn_arith_conv_enum_float_cxx20
1488                     : diag::warn_arith_conv_enum_float)
1489         << LHS->getSourceRange() << RHS->getSourceRange()
1490         << (int)ACK << LEnum << L << R;
1491   } else if (!IsCompAssign && LEnum && REnum &&
1492              !S.Context.hasSameUnqualifiedType(L, R)) {
1493     unsigned DiagID;
1494     if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1495         !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1496       // If either enumeration type is unnamed, it's less likely that the
1497       // user cares about this, but this situation is still deprecated in
1498       // C++2a. Use a different warning group.
1499       DiagID = S.getLangOpts().CPlusPlus20
1500                     ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1501                     : diag::warn_arith_conv_mixed_anon_enum_types;
1502     } else if (ACK == Sema::ACK_Conditional) {
1503       // Conditional expressions are separated out because they have
1504       // historically had a different warning flag.
1505       DiagID = S.getLangOpts().CPlusPlus20
1506                    ? diag::warn_conditional_mixed_enum_types_cxx20
1507                    : diag::warn_conditional_mixed_enum_types;
1508     } else if (ACK == Sema::ACK_Comparison) {
1509       // Comparison expressions are separated out because they have
1510       // historically had a different warning flag.
1511       DiagID = S.getLangOpts().CPlusPlus20
1512                    ? diag::warn_comparison_mixed_enum_types_cxx20
1513                    : diag::warn_comparison_mixed_enum_types;
1514     } else {
1515       DiagID = S.getLangOpts().CPlusPlus20
1516                    ? diag::warn_arith_conv_mixed_enum_types_cxx20
1517                    : diag::warn_arith_conv_mixed_enum_types;
1518     }
1519     S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1520                         << (int)ACK << L << R;
1521   }
1522 }
1523 
1524 /// UsualArithmeticConversions - Performs various conversions that are common to
1525 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1526 /// routine returns the first non-arithmetic type found. The client is
1527 /// responsible for emitting appropriate error diagnostics.
1528 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1529                                           SourceLocation Loc,
1530                                           ArithConvKind ACK) {
1531   checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1532 
1533   if (ACK != ACK_CompAssign) {
1534     LHS = UsualUnaryConversions(LHS.get());
1535     if (LHS.isInvalid())
1536       return QualType();
1537   }
1538 
1539   RHS = UsualUnaryConversions(RHS.get());
1540   if (RHS.isInvalid())
1541     return QualType();
1542 
1543   // For conversion purposes, we ignore any qualifiers.
1544   // For example, "const float" and "float" are equivalent.
1545   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1546   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1547 
1548   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1549   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1550     LHSType = AtomicLHS->getValueType();
1551 
1552   // If both types are identical, no conversion is needed.
1553   if (Context.hasSameType(LHSType, RHSType))
1554     return Context.getCommonSugaredType(LHSType, RHSType);
1555 
1556   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1557   // The caller can deal with this (e.g. pointer + int).
1558   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1559     return QualType();
1560 
1561   // Apply unary and bitfield promotions to the LHS's type.
1562   QualType LHSUnpromotedType = LHSType;
1563   if (Context.isPromotableIntegerType(LHSType))
1564     LHSType = Context.getPromotedIntegerType(LHSType);
1565   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1566   if (!LHSBitfieldPromoteTy.isNull())
1567     LHSType = LHSBitfieldPromoteTy;
1568   if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1569     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1570 
1571   // If both types are identical, no conversion is needed.
1572   if (Context.hasSameType(LHSType, RHSType))
1573     return Context.getCommonSugaredType(LHSType, RHSType);
1574 
1575   // At this point, we have two different arithmetic types.
1576 
1577   // Diagnose attempts to convert between __ibm128, __float128 and long double
1578   // where such conversions currently can't be handled.
1579   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1580     return QualType();
1581 
1582   // Handle complex types first (C99 6.3.1.8p1).
1583   if (LHSType->isComplexType() || RHSType->isComplexType())
1584     return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType,
1585                                    ACK == ACK_CompAssign);
1586 
1587   // Now handle "real" floating types (i.e. float, double, long double).
1588   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1589     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1590                                  ACK == ACK_CompAssign);
1591 
1592   // Handle GCC complex int extension.
1593   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1594     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1595                                       ACK == ACK_CompAssign);
1596 
1597   if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1598     return handleFixedPointConversion(*this, LHSType, RHSType);
1599 
1600   // Finally, we have two differing integer types.
1601   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1602            (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1603 }
1604 
1605 //===----------------------------------------------------------------------===//
1606 //  Semantic Analysis for various Expression Types
1607 //===----------------------------------------------------------------------===//
1608 
1609 
1610 ExprResult
1611 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1612                                 SourceLocation DefaultLoc,
1613                                 SourceLocation RParenLoc,
1614                                 Expr *ControllingExpr,
1615                                 ArrayRef<ParsedType> ArgTypes,
1616                                 ArrayRef<Expr *> ArgExprs) {
1617   unsigned NumAssocs = ArgTypes.size();
1618   assert(NumAssocs == ArgExprs.size());
1619 
1620   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1621   for (unsigned i = 0; i < NumAssocs; ++i) {
1622     if (ArgTypes[i])
1623       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1624     else
1625       Types[i] = nullptr;
1626   }
1627 
1628   ExprResult ER =
1629       CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, ControllingExpr,
1630                                  llvm::ArrayRef(Types, NumAssocs), ArgExprs);
1631   delete [] Types;
1632   return ER;
1633 }
1634 
1635 ExprResult
1636 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1637                                  SourceLocation DefaultLoc,
1638                                  SourceLocation RParenLoc,
1639                                  Expr *ControllingExpr,
1640                                  ArrayRef<TypeSourceInfo *> Types,
1641                                  ArrayRef<Expr *> Exprs) {
1642   unsigned NumAssocs = Types.size();
1643   assert(NumAssocs == Exprs.size());
1644 
1645   // Decay and strip qualifiers for the controlling expression type, and handle
1646   // placeholder type replacement. See committee discussion from WG14 DR423.
1647   {
1648     EnterExpressionEvaluationContext Unevaluated(
1649         *this, Sema::ExpressionEvaluationContext::Unevaluated);
1650     ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1651     if (R.isInvalid())
1652       return ExprError();
1653     ControllingExpr = R.get();
1654   }
1655 
1656   bool TypeErrorFound = false,
1657        IsResultDependent = ControllingExpr->isTypeDependent(),
1658        ContainsUnexpandedParameterPack
1659          = ControllingExpr->containsUnexpandedParameterPack();
1660 
1661   // The controlling expression is an unevaluated operand, so side effects are
1662   // likely unintended.
1663   if (!inTemplateInstantiation() && !IsResultDependent &&
1664       ControllingExpr->HasSideEffects(Context, false))
1665     Diag(ControllingExpr->getExprLoc(),
1666          diag::warn_side_effects_unevaluated_context);
1667 
1668   for (unsigned i = 0; i < NumAssocs; ++i) {
1669     if (Exprs[i]->containsUnexpandedParameterPack())
1670       ContainsUnexpandedParameterPack = true;
1671 
1672     if (Types[i]) {
1673       if (Types[i]->getType()->containsUnexpandedParameterPack())
1674         ContainsUnexpandedParameterPack = true;
1675 
1676       if (Types[i]->getType()->isDependentType()) {
1677         IsResultDependent = true;
1678       } else {
1679         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1680         // complete object type other than a variably modified type."
1681         unsigned D = 0;
1682         if (Types[i]->getType()->isIncompleteType())
1683           D = diag::err_assoc_type_incomplete;
1684         else if (!Types[i]->getType()->isObjectType())
1685           D = diag::err_assoc_type_nonobject;
1686         else if (Types[i]->getType()->isVariablyModifiedType())
1687           D = diag::err_assoc_type_variably_modified;
1688         else {
1689           // Because the controlling expression undergoes lvalue conversion,
1690           // array conversion, and function conversion, an association which is
1691           // of array type, function type, or is qualified can never be
1692           // reached. We will warn about this so users are less surprised by
1693           // the unreachable association. However, we don't have to handle
1694           // function types; that's not an object type, so it's handled above.
1695           //
1696           // The logic is somewhat different for C++ because C++ has different
1697           // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1698           // If T is a non-class type, the type of the prvalue is the cv-
1699           // unqualified version of T. Otherwise, the type of the prvalue is T.
1700           // The result of these rules is that all qualified types in an
1701           // association in C are unreachable, and in C++, only qualified non-
1702           // class types are unreachable.
1703           unsigned Reason = 0;
1704           QualType QT = Types[i]->getType();
1705           if (QT->isArrayType())
1706             Reason = 1;
1707           else if (QT.hasQualifiers() &&
1708                    (!LangOpts.CPlusPlus || !QT->isRecordType()))
1709             Reason = 2;
1710 
1711           if (Reason)
1712             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1713                  diag::warn_unreachable_association)
1714                 << QT << (Reason - 1);
1715         }
1716 
1717         if (D != 0) {
1718           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1719             << Types[i]->getTypeLoc().getSourceRange()
1720             << Types[i]->getType();
1721           TypeErrorFound = true;
1722         }
1723 
1724         // C11 6.5.1.1p2 "No two generic associations in the same generic
1725         // selection shall specify compatible types."
1726         for (unsigned j = i+1; j < NumAssocs; ++j)
1727           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1728               Context.typesAreCompatible(Types[i]->getType(),
1729                                          Types[j]->getType())) {
1730             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1731                  diag::err_assoc_compatible_types)
1732               << Types[j]->getTypeLoc().getSourceRange()
1733               << Types[j]->getType()
1734               << Types[i]->getType();
1735             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1736                  diag::note_compat_assoc)
1737               << Types[i]->getTypeLoc().getSourceRange()
1738               << Types[i]->getType();
1739             TypeErrorFound = true;
1740           }
1741       }
1742     }
1743   }
1744   if (TypeErrorFound)
1745     return ExprError();
1746 
1747   // If we determined that the generic selection is result-dependent, don't
1748   // try to compute the result expression.
1749   if (IsResultDependent)
1750     return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1751                                         Exprs, DefaultLoc, RParenLoc,
1752                                         ContainsUnexpandedParameterPack);
1753 
1754   SmallVector<unsigned, 1> CompatIndices;
1755   unsigned DefaultIndex = -1U;
1756   // Look at the canonical type of the controlling expression in case it was a
1757   // deduced type like __auto_type. However, when issuing diagnostics, use the
1758   // type the user wrote in source rather than the canonical one.
1759   for (unsigned i = 0; i < NumAssocs; ++i) {
1760     if (!Types[i])
1761       DefaultIndex = i;
1762     else if (Context.typesAreCompatible(
1763                  ControllingExpr->getType().getCanonicalType(),
1764                                         Types[i]->getType()))
1765       CompatIndices.push_back(i);
1766   }
1767 
1768   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1769   // type compatible with at most one of the types named in its generic
1770   // association list."
1771   if (CompatIndices.size() > 1) {
1772     // We strip parens here because the controlling expression is typically
1773     // parenthesized in macro definitions.
1774     ControllingExpr = ControllingExpr->IgnoreParens();
1775     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1776         << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1777         << (unsigned)CompatIndices.size();
1778     for (unsigned I : CompatIndices) {
1779       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1780            diag::note_compat_assoc)
1781         << Types[I]->getTypeLoc().getSourceRange()
1782         << Types[I]->getType();
1783     }
1784     return ExprError();
1785   }
1786 
1787   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1788   // its controlling expression shall have type compatible with exactly one of
1789   // the types named in its generic association list."
1790   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1791     // We strip parens here because the controlling expression is typically
1792     // parenthesized in macro definitions.
1793     ControllingExpr = ControllingExpr->IgnoreParens();
1794     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1795         << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1796     return ExprError();
1797   }
1798 
1799   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1800   // type name that is compatible with the type of the controlling expression,
1801   // then the result expression of the generic selection is the expression
1802   // in that generic association. Otherwise, the result expression of the
1803   // generic selection is the expression in the default generic association."
1804   unsigned ResultIndex =
1805     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1806 
1807   return GenericSelectionExpr::Create(
1808       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1809       ContainsUnexpandedParameterPack, ResultIndex);
1810 }
1811 
1812 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1813 /// location of the token and the offset of the ud-suffix within it.
1814 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1815                                      unsigned Offset) {
1816   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1817                                         S.getLangOpts());
1818 }
1819 
1820 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1821 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1822 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1823                                                  IdentifierInfo *UDSuffix,
1824                                                  SourceLocation UDSuffixLoc,
1825                                                  ArrayRef<Expr*> Args,
1826                                                  SourceLocation LitEndLoc) {
1827   assert(Args.size() <= 2 && "too many arguments for literal operator");
1828 
1829   QualType ArgTy[2];
1830   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1831     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1832     if (ArgTy[ArgIdx]->isArrayType())
1833       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1834   }
1835 
1836   DeclarationName OpName =
1837     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1838   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1839   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1840 
1841   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1842   if (S.LookupLiteralOperator(Scope, R, llvm::ArrayRef(ArgTy, Args.size()),
1843                               /*AllowRaw*/ false, /*AllowTemplate*/ false,
1844                               /*AllowStringTemplatePack*/ false,
1845                               /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1846     return ExprError();
1847 
1848   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1849 }
1850 
1851 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1852 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1853 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1854 /// multiple tokens.  However, the common case is that StringToks points to one
1855 /// string.
1856 ///
1857 ExprResult
1858 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1859   assert(!StringToks.empty() && "Must have at least one string!");
1860 
1861   StringLiteralParser Literal(StringToks, PP);
1862   if (Literal.hadError)
1863     return ExprError();
1864 
1865   SmallVector<SourceLocation, 4> StringTokLocs;
1866   for (const Token &Tok : StringToks)
1867     StringTokLocs.push_back(Tok.getLocation());
1868 
1869   QualType CharTy = Context.CharTy;
1870   StringLiteral::StringKind Kind = StringLiteral::Ordinary;
1871   if (Literal.isWide()) {
1872     CharTy = Context.getWideCharType();
1873     Kind = StringLiteral::Wide;
1874   } else if (Literal.isUTF8()) {
1875     if (getLangOpts().Char8)
1876       CharTy = Context.Char8Ty;
1877     Kind = StringLiteral::UTF8;
1878   } else if (Literal.isUTF16()) {
1879     CharTy = Context.Char16Ty;
1880     Kind = StringLiteral::UTF16;
1881   } else if (Literal.isUTF32()) {
1882     CharTy = Context.Char32Ty;
1883     Kind = StringLiteral::UTF32;
1884   } else if (Literal.isPascal()) {
1885     CharTy = Context.UnsignedCharTy;
1886   }
1887 
1888   // Warn on initializing an array of char from a u8 string literal; this
1889   // becomes ill-formed in C++2a.
1890   if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
1891       !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1892     Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
1893 
1894     // Create removals for all 'u8' prefixes in the string literal(s). This
1895     // ensures C++2a compatibility (but may change the program behavior when
1896     // built by non-Clang compilers for which the execution character set is
1897     // not always UTF-8).
1898     auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
1899     SourceLocation RemovalDiagLoc;
1900     for (const Token &Tok : StringToks) {
1901       if (Tok.getKind() == tok::utf8_string_literal) {
1902         if (RemovalDiagLoc.isInvalid())
1903           RemovalDiagLoc = Tok.getLocation();
1904         RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1905             Tok.getLocation(),
1906             Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1907                                            getSourceManager(), getLangOpts())));
1908       }
1909     }
1910     Diag(RemovalDiagLoc, RemovalDiag);
1911   }
1912 
1913   QualType StrTy =
1914       Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1915 
1916   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1917   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1918                                              Kind, Literal.Pascal, StrTy,
1919                                              &StringTokLocs[0],
1920                                              StringTokLocs.size());
1921   if (Literal.getUDSuffix().empty())
1922     return Lit;
1923 
1924   // We're building a user-defined literal.
1925   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1926   SourceLocation UDSuffixLoc =
1927     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1928                    Literal.getUDSuffixOffset());
1929 
1930   // Make sure we're allowed user-defined literals here.
1931   if (!UDLScope)
1932     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1933 
1934   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1935   //   operator "" X (str, len)
1936   QualType SizeType = Context.getSizeType();
1937 
1938   DeclarationName OpName =
1939     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1940   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1941   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1942 
1943   QualType ArgTy[] = {
1944     Context.getArrayDecayedType(StrTy), SizeType
1945   };
1946 
1947   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1948   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1949                                 /*AllowRaw*/ false, /*AllowTemplate*/ true,
1950                                 /*AllowStringTemplatePack*/ true,
1951                                 /*DiagnoseMissing*/ true, Lit)) {
1952 
1953   case LOLR_Cooked: {
1954     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1955     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1956                                                     StringTokLocs[0]);
1957     Expr *Args[] = { Lit, LenArg };
1958 
1959     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1960   }
1961 
1962   case LOLR_Template: {
1963     TemplateArgumentListInfo ExplicitArgs;
1964     TemplateArgument Arg(Lit);
1965     TemplateArgumentLocInfo ArgInfo(Lit);
1966     ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1967     return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
1968                                     StringTokLocs.back(), &ExplicitArgs);
1969   }
1970 
1971   case LOLR_StringTemplatePack: {
1972     TemplateArgumentListInfo ExplicitArgs;
1973 
1974     unsigned CharBits = Context.getIntWidth(CharTy);
1975     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1976     llvm::APSInt Value(CharBits, CharIsUnsigned);
1977 
1978     TemplateArgument TypeArg(CharTy);
1979     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1980     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1981 
1982     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1983       Value = Lit->getCodeUnit(I);
1984       TemplateArgument Arg(Context, Value, CharTy);
1985       TemplateArgumentLocInfo ArgInfo;
1986       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1987     }
1988     return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
1989                                     StringTokLocs.back(), &ExplicitArgs);
1990   }
1991   case LOLR_Raw:
1992   case LOLR_ErrorNoDiagnostic:
1993     llvm_unreachable("unexpected literal operator lookup result");
1994   case LOLR_Error:
1995     return ExprError();
1996   }
1997   llvm_unreachable("unexpected literal operator lookup result");
1998 }
1999 
2000 DeclRefExpr *
2001 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2002                        SourceLocation Loc,
2003                        const CXXScopeSpec *SS) {
2004   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2005   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2006 }
2007 
2008 DeclRefExpr *
2009 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2010                        const DeclarationNameInfo &NameInfo,
2011                        const CXXScopeSpec *SS, NamedDecl *FoundD,
2012                        SourceLocation TemplateKWLoc,
2013                        const TemplateArgumentListInfo *TemplateArgs) {
2014   NestedNameSpecifierLoc NNS =
2015       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2016   return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2017                           TemplateArgs);
2018 }
2019 
2020 // CUDA/HIP: Check whether a captured reference variable is referencing a
2021 // host variable in a device or host device lambda.
2022 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2023                                                             VarDecl *VD) {
2024   if (!S.getLangOpts().CUDA || !VD->hasInit())
2025     return false;
2026   assert(VD->getType()->isReferenceType());
2027 
2028   // Check whether the reference variable is referencing a host variable.
2029   auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2030   if (!DRE)
2031     return false;
2032   auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2033   if (!Referee || !Referee->hasGlobalStorage() ||
2034       Referee->hasAttr<CUDADeviceAttr>())
2035     return false;
2036 
2037   // Check whether the current function is a device or host device lambda.
2038   // Check whether the reference variable is a capture by getDeclContext()
2039   // since refersToEnclosingVariableOrCapture() is not ready at this point.
2040   auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2041   if (MD && MD->getParent()->isLambda() &&
2042       MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2043       VD->getDeclContext() != MD)
2044     return true;
2045 
2046   return false;
2047 }
2048 
2049 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2050   // A declaration named in an unevaluated operand never constitutes an odr-use.
2051   if (isUnevaluatedContext())
2052     return NOUR_Unevaluated;
2053 
2054   // C++2a [basic.def.odr]p4:
2055   //   A variable x whose name appears as a potentially-evaluated expression e
2056   //   is odr-used by e unless [...] x is a reference that is usable in
2057   //   constant expressions.
2058   // CUDA/HIP:
2059   //   If a reference variable referencing a host variable is captured in a
2060   //   device or host device lambda, the value of the referee must be copied
2061   //   to the capture and the reference variable must be treated as odr-use
2062   //   since the value of the referee is not known at compile time and must
2063   //   be loaded from the captured.
2064   if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2065     if (VD->getType()->isReferenceType() &&
2066         !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
2067         !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2068         VD->isUsableInConstantExpressions(Context))
2069       return NOUR_Constant;
2070   }
2071 
2072   // All remaining non-variable cases constitute an odr-use. For variables, we
2073   // need to wait and see how the expression is used.
2074   return NOUR_None;
2075 }
2076 
2077 /// BuildDeclRefExpr - Build an expression that references a
2078 /// declaration that does not require a closure capture.
2079 DeclRefExpr *
2080 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2081                        const DeclarationNameInfo &NameInfo,
2082                        NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2083                        SourceLocation TemplateKWLoc,
2084                        const TemplateArgumentListInfo *TemplateArgs) {
2085   bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(D) &&
2086                                   NeedToCaptureVariable(D, NameInfo.getLoc());
2087 
2088   DeclRefExpr *E = DeclRefExpr::Create(
2089       Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2090       VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2091   MarkDeclRefReferenced(E);
2092 
2093   // C++ [except.spec]p17:
2094   //   An exception-specification is considered to be needed when:
2095   //   - in an expression, the function is the unique lookup result or
2096   //     the selected member of a set of overloaded functions.
2097   //
2098   // We delay doing this until after we've built the function reference and
2099   // marked it as used so that:
2100   //  a) if the function is defaulted, we get errors from defining it before /
2101   //     instead of errors from computing its exception specification, and
2102   //  b) if the function is a defaulted comparison, we can use the body we
2103   //     build when defining it as input to the exception specification
2104   //     computation rather than computing a new body.
2105   if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
2106     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2107       if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2108         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2109     }
2110   }
2111 
2112   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2113       Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2114       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2115     getCurFunction()->recordUseOfWeak(E);
2116 
2117   FieldDecl *FD = dyn_cast<FieldDecl>(D);
2118   if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
2119     FD = IFD->getAnonField();
2120   if (FD) {
2121     UnusedPrivateFields.remove(FD);
2122     // Just in case we're building an illegal pointer-to-member.
2123     if (FD->isBitField())
2124       E->setObjectKind(OK_BitField);
2125   }
2126 
2127   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2128   // designates a bit-field.
2129   if (auto *BD = dyn_cast<BindingDecl>(D))
2130     if (auto *BE = BD->getBinding())
2131       E->setObjectKind(BE->getObjectKind());
2132 
2133   return E;
2134 }
2135 
2136 /// Decomposes the given name into a DeclarationNameInfo, its location, and
2137 /// possibly a list of template arguments.
2138 ///
2139 /// If this produces template arguments, it is permitted to call
2140 /// DecomposeTemplateName.
2141 ///
2142 /// This actually loses a lot of source location information for
2143 /// non-standard name kinds; we should consider preserving that in
2144 /// some way.
2145 void
2146 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2147                              TemplateArgumentListInfo &Buffer,
2148                              DeclarationNameInfo &NameInfo,
2149                              const TemplateArgumentListInfo *&TemplateArgs) {
2150   if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2151     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2152     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2153 
2154     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2155                                        Id.TemplateId->NumArgs);
2156     translateTemplateArguments(TemplateArgsPtr, Buffer);
2157 
2158     TemplateName TName = Id.TemplateId->Template.get();
2159     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2160     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2161     TemplateArgs = &Buffer;
2162   } else {
2163     NameInfo = GetNameFromUnqualifiedId(Id);
2164     TemplateArgs = nullptr;
2165   }
2166 }
2167 
2168 static void emitEmptyLookupTypoDiagnostic(
2169     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2170     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2171     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2172   DeclContext *Ctx =
2173       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2174   if (!TC) {
2175     // Emit a special diagnostic for failed member lookups.
2176     // FIXME: computing the declaration context might fail here (?)
2177     if (Ctx)
2178       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2179                                                  << SS.getRange();
2180     else
2181       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2182     return;
2183   }
2184 
2185   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2186   bool DroppedSpecifier =
2187       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2188   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2189                         ? diag::note_implicit_param_decl
2190                         : diag::note_previous_decl;
2191   if (!Ctx)
2192     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2193                          SemaRef.PDiag(NoteID));
2194   else
2195     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2196                                  << Typo << Ctx << DroppedSpecifier
2197                                  << SS.getRange(),
2198                          SemaRef.PDiag(NoteID));
2199 }
2200 
2201 /// Diagnose a lookup that found results in an enclosing class during error
2202 /// recovery. This usually indicates that the results were found in a dependent
2203 /// base class that could not be searched as part of a template definition.
2204 /// Always issues a diagnostic (though this may be only a warning in MS
2205 /// compatibility mode).
2206 ///
2207 /// Return \c true if the error is unrecoverable, or \c false if the caller
2208 /// should attempt to recover using these lookup results.
2209 bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) {
2210   // During a default argument instantiation the CurContext points
2211   // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2212   // function parameter list, hence add an explicit check.
2213   bool isDefaultArgument =
2214       !CodeSynthesisContexts.empty() &&
2215       CodeSynthesisContexts.back().Kind ==
2216           CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2217   CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2218   bool isInstance = CurMethod && CurMethod->isInstance() &&
2219                     R.getNamingClass() == CurMethod->getParent() &&
2220                     !isDefaultArgument;
2221 
2222   // There are two ways we can find a class-scope declaration during template
2223   // instantiation that we did not find in the template definition: if it is a
2224   // member of a dependent base class, or if it is declared after the point of
2225   // use in the same class. Distinguish these by comparing the class in which
2226   // the member was found to the naming class of the lookup.
2227   unsigned DiagID = diag::err_found_in_dependent_base;
2228   unsigned NoteID = diag::note_member_declared_at;
2229   if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2230     DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2231                                       : diag::err_found_later_in_class;
2232   } else if (getLangOpts().MSVCCompat) {
2233     DiagID = diag::ext_found_in_dependent_base;
2234     NoteID = diag::note_dependent_member_use;
2235   }
2236 
2237   if (isInstance) {
2238     // Give a code modification hint to insert 'this->'.
2239     Diag(R.getNameLoc(), DiagID)
2240         << R.getLookupName()
2241         << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2242     CheckCXXThisCapture(R.getNameLoc());
2243   } else {
2244     // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2245     // they're not shadowed).
2246     Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2247   }
2248 
2249   for (NamedDecl *D : R)
2250     Diag(D->getLocation(), NoteID);
2251 
2252   // Return true if we are inside a default argument instantiation
2253   // and the found name refers to an instance member function, otherwise
2254   // the caller will try to create an implicit member call and this is wrong
2255   // for default arguments.
2256   //
2257   // FIXME: Is this special case necessary? We could allow the caller to
2258   // diagnose this.
2259   if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2260     Diag(R.getNameLoc(), diag::err_member_call_without_object);
2261     return true;
2262   }
2263 
2264   // Tell the callee to try to recover.
2265   return false;
2266 }
2267 
2268 /// Diagnose an empty lookup.
2269 ///
2270 /// \return false if new lookup candidates were found
2271 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2272                                CorrectionCandidateCallback &CCC,
2273                                TemplateArgumentListInfo *ExplicitTemplateArgs,
2274                                ArrayRef<Expr *> Args, TypoExpr **Out) {
2275   DeclarationName Name = R.getLookupName();
2276 
2277   unsigned diagnostic = diag::err_undeclared_var_use;
2278   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2279   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2280       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2281       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2282     diagnostic = diag::err_undeclared_use;
2283     diagnostic_suggest = diag::err_undeclared_use_suggest;
2284   }
2285 
2286   // If the original lookup was an unqualified lookup, fake an
2287   // unqualified lookup.  This is useful when (for example) the
2288   // original lookup would not have found something because it was a
2289   // dependent name.
2290   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2291   while (DC) {
2292     if (isa<CXXRecordDecl>(DC)) {
2293       LookupQualifiedName(R, DC);
2294 
2295       if (!R.empty()) {
2296         // Don't give errors about ambiguities in this lookup.
2297         R.suppressDiagnostics();
2298 
2299         // If there's a best viable function among the results, only mention
2300         // that one in the notes.
2301         OverloadCandidateSet Candidates(R.getNameLoc(),
2302                                         OverloadCandidateSet::CSK_Normal);
2303         AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2304         OverloadCandidateSet::iterator Best;
2305         if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2306             OR_Success) {
2307           R.clear();
2308           R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2309           R.resolveKind();
2310         }
2311 
2312         return DiagnoseDependentMemberLookup(R);
2313       }
2314 
2315       R.clear();
2316     }
2317 
2318     DC = DC->getLookupParent();
2319   }
2320 
2321   // We didn't find anything, so try to correct for a typo.
2322   TypoCorrection Corrected;
2323   if (S && Out) {
2324     SourceLocation TypoLoc = R.getNameLoc();
2325     assert(!ExplicitTemplateArgs &&
2326            "Diagnosing an empty lookup with explicit template args!");
2327     *Out = CorrectTypoDelayed(
2328         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2329         [=](const TypoCorrection &TC) {
2330           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2331                                         diagnostic, diagnostic_suggest);
2332         },
2333         nullptr, CTK_ErrorRecovery);
2334     if (*Out)
2335       return true;
2336   } else if (S &&
2337              (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2338                                       S, &SS, CCC, CTK_ErrorRecovery))) {
2339     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2340     bool DroppedSpecifier =
2341         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2342     R.setLookupName(Corrected.getCorrection());
2343 
2344     bool AcceptableWithRecovery = false;
2345     bool AcceptableWithoutRecovery = false;
2346     NamedDecl *ND = Corrected.getFoundDecl();
2347     if (ND) {
2348       if (Corrected.isOverloaded()) {
2349         OverloadCandidateSet OCS(R.getNameLoc(),
2350                                  OverloadCandidateSet::CSK_Normal);
2351         OverloadCandidateSet::iterator Best;
2352         for (NamedDecl *CD : Corrected) {
2353           if (FunctionTemplateDecl *FTD =
2354                    dyn_cast<FunctionTemplateDecl>(CD))
2355             AddTemplateOverloadCandidate(
2356                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2357                 Args, OCS);
2358           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2359             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2360               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2361                                    Args, OCS);
2362         }
2363         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2364         case OR_Success:
2365           ND = Best->FoundDecl;
2366           Corrected.setCorrectionDecl(ND);
2367           break;
2368         default:
2369           // FIXME: Arbitrarily pick the first declaration for the note.
2370           Corrected.setCorrectionDecl(ND);
2371           break;
2372         }
2373       }
2374       R.addDecl(ND);
2375       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2376         CXXRecordDecl *Record = nullptr;
2377         if (Corrected.getCorrectionSpecifier()) {
2378           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2379           Record = Ty->getAsCXXRecordDecl();
2380         }
2381         if (!Record)
2382           Record = cast<CXXRecordDecl>(
2383               ND->getDeclContext()->getRedeclContext());
2384         R.setNamingClass(Record);
2385       }
2386 
2387       auto *UnderlyingND = ND->getUnderlyingDecl();
2388       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2389                                isa<FunctionTemplateDecl>(UnderlyingND);
2390       // FIXME: If we ended up with a typo for a type name or
2391       // Objective-C class name, we're in trouble because the parser
2392       // is in the wrong place to recover. Suggest the typo
2393       // correction, but don't make it a fix-it since we're not going
2394       // to recover well anyway.
2395       AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2396                                   getAsTypeTemplateDecl(UnderlyingND) ||
2397                                   isa<ObjCInterfaceDecl>(UnderlyingND);
2398     } else {
2399       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2400       // because we aren't able to recover.
2401       AcceptableWithoutRecovery = true;
2402     }
2403 
2404     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2405       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2406                             ? diag::note_implicit_param_decl
2407                             : diag::note_previous_decl;
2408       if (SS.isEmpty())
2409         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2410                      PDiag(NoteID), AcceptableWithRecovery);
2411       else
2412         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2413                                   << Name << computeDeclContext(SS, false)
2414                                   << DroppedSpecifier << SS.getRange(),
2415                      PDiag(NoteID), AcceptableWithRecovery);
2416 
2417       // Tell the callee whether to try to recover.
2418       return !AcceptableWithRecovery;
2419     }
2420   }
2421   R.clear();
2422 
2423   // Emit a special diagnostic for failed member lookups.
2424   // FIXME: computing the declaration context might fail here (?)
2425   if (!SS.isEmpty()) {
2426     Diag(R.getNameLoc(), diag::err_no_member)
2427       << Name << computeDeclContext(SS, false)
2428       << SS.getRange();
2429     return true;
2430   }
2431 
2432   // Give up, we can't recover.
2433   Diag(R.getNameLoc(), diagnostic) << Name;
2434   return true;
2435 }
2436 
2437 /// In Microsoft mode, if we are inside a template class whose parent class has
2438 /// dependent base classes, and we can't resolve an unqualified identifier, then
2439 /// assume the identifier is a member of a dependent base class.  We can only
2440 /// recover successfully in static methods, instance methods, and other contexts
2441 /// where 'this' is available.  This doesn't precisely match MSVC's
2442 /// instantiation model, but it's close enough.
2443 static Expr *
2444 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2445                                DeclarationNameInfo &NameInfo,
2446                                SourceLocation TemplateKWLoc,
2447                                const TemplateArgumentListInfo *TemplateArgs) {
2448   // Only try to recover from lookup into dependent bases in static methods or
2449   // contexts where 'this' is available.
2450   QualType ThisType = S.getCurrentThisType();
2451   const CXXRecordDecl *RD = nullptr;
2452   if (!ThisType.isNull())
2453     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2454   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2455     RD = MD->getParent();
2456   if (!RD || !RD->hasAnyDependentBases())
2457     return nullptr;
2458 
2459   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2460   // is available, suggest inserting 'this->' as a fixit.
2461   SourceLocation Loc = NameInfo.getLoc();
2462   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2463   DB << NameInfo.getName() << RD;
2464 
2465   if (!ThisType.isNull()) {
2466     DB << FixItHint::CreateInsertion(Loc, "this->");
2467     return CXXDependentScopeMemberExpr::Create(
2468         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2469         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2470         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2471   }
2472 
2473   // Synthesize a fake NNS that points to the derived class.  This will
2474   // perform name lookup during template instantiation.
2475   CXXScopeSpec SS;
2476   auto *NNS =
2477       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2478   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2479   return DependentScopeDeclRefExpr::Create(
2480       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2481       TemplateArgs);
2482 }
2483 
2484 ExprResult
2485 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2486                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2487                         bool HasTrailingLParen, bool IsAddressOfOperand,
2488                         CorrectionCandidateCallback *CCC,
2489                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2490   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2491          "cannot be direct & operand and have a trailing lparen");
2492   if (SS.isInvalid())
2493     return ExprError();
2494 
2495   TemplateArgumentListInfo TemplateArgsBuffer;
2496 
2497   // Decompose the UnqualifiedId into the following data.
2498   DeclarationNameInfo NameInfo;
2499   const TemplateArgumentListInfo *TemplateArgs;
2500   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2501 
2502   DeclarationName Name = NameInfo.getName();
2503   IdentifierInfo *II = Name.getAsIdentifierInfo();
2504   SourceLocation NameLoc = NameInfo.getLoc();
2505 
2506   if (II && II->isEditorPlaceholder()) {
2507     // FIXME: When typed placeholders are supported we can create a typed
2508     // placeholder expression node.
2509     return ExprError();
2510   }
2511 
2512   // C++ [temp.dep.expr]p3:
2513   //   An id-expression is type-dependent if it contains:
2514   //     -- an identifier that was declared with a dependent type,
2515   //        (note: handled after lookup)
2516   //     -- a template-id that is dependent,
2517   //        (note: handled in BuildTemplateIdExpr)
2518   //     -- a conversion-function-id that specifies a dependent type,
2519   //     -- a nested-name-specifier that contains a class-name that
2520   //        names a dependent type.
2521   // Determine whether this is a member of an unknown specialization;
2522   // we need to handle these differently.
2523   bool DependentID = false;
2524   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2525       Name.getCXXNameType()->isDependentType()) {
2526     DependentID = true;
2527   } else if (SS.isSet()) {
2528     if (DeclContext *DC = computeDeclContext(SS, false)) {
2529       if (RequireCompleteDeclContext(SS, DC))
2530         return ExprError();
2531     } else {
2532       DependentID = true;
2533     }
2534   }
2535 
2536   if (DependentID)
2537     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2538                                       IsAddressOfOperand, TemplateArgs);
2539 
2540   // Perform the required lookup.
2541   LookupResult R(*this, NameInfo,
2542                  (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2543                      ? LookupObjCImplicitSelfParam
2544                      : LookupOrdinaryName);
2545   if (TemplateKWLoc.isValid() || TemplateArgs) {
2546     // Lookup the template name again to correctly establish the context in
2547     // which it was found. This is really unfortunate as we already did the
2548     // lookup to determine that it was a template name in the first place. If
2549     // this becomes a performance hit, we can work harder to preserve those
2550     // results until we get here but it's likely not worth it.
2551     bool MemberOfUnknownSpecialization;
2552     AssumedTemplateKind AssumedTemplate;
2553     if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2554                            MemberOfUnknownSpecialization, TemplateKWLoc,
2555                            &AssumedTemplate))
2556       return ExprError();
2557 
2558     if (MemberOfUnknownSpecialization ||
2559         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2560       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2561                                         IsAddressOfOperand, TemplateArgs);
2562   } else {
2563     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2564     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2565 
2566     // If the result might be in a dependent base class, this is a dependent
2567     // id-expression.
2568     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2569       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2570                                         IsAddressOfOperand, TemplateArgs);
2571 
2572     // If this reference is in an Objective-C method, then we need to do
2573     // some special Objective-C lookup, too.
2574     if (IvarLookupFollowUp) {
2575       ExprResult E(LookupInObjCMethod(R, S, II, true));
2576       if (E.isInvalid())
2577         return ExprError();
2578 
2579       if (Expr *Ex = E.getAs<Expr>())
2580         return Ex;
2581     }
2582   }
2583 
2584   if (R.isAmbiguous())
2585     return ExprError();
2586 
2587   // This could be an implicitly declared function reference if the language
2588   // mode allows it as a feature.
2589   if (R.empty() && HasTrailingLParen && II &&
2590       getLangOpts().implicitFunctionsAllowed()) {
2591     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2592     if (D) R.addDecl(D);
2593   }
2594 
2595   // Determine whether this name might be a candidate for
2596   // argument-dependent lookup.
2597   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2598 
2599   if (R.empty() && !ADL) {
2600     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2601       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2602                                                    TemplateKWLoc, TemplateArgs))
2603         return E;
2604     }
2605 
2606     // Don't diagnose an empty lookup for inline assembly.
2607     if (IsInlineAsmIdentifier)
2608       return ExprError();
2609 
2610     // If this name wasn't predeclared and if this is not a function
2611     // call, diagnose the problem.
2612     TypoExpr *TE = nullptr;
2613     DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2614                                                        : nullptr);
2615     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2616     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2617            "Typo correction callback misconfigured");
2618     if (CCC) {
2619       // Make sure the callback knows what the typo being diagnosed is.
2620       CCC->setTypoName(II);
2621       if (SS.isValid())
2622         CCC->setTypoNNS(SS.getScopeRep());
2623     }
2624     // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2625     // a template name, but we happen to have always already looked up the name
2626     // before we get here if it must be a template name.
2627     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2628                             std::nullopt, &TE)) {
2629       if (TE && KeywordReplacement) {
2630         auto &State = getTypoExprState(TE);
2631         auto BestTC = State.Consumer->getNextCorrection();
2632         if (BestTC.isKeyword()) {
2633           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2634           if (State.DiagHandler)
2635             State.DiagHandler(BestTC);
2636           KeywordReplacement->startToken();
2637           KeywordReplacement->setKind(II->getTokenID());
2638           KeywordReplacement->setIdentifierInfo(II);
2639           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2640           // Clean up the state associated with the TypoExpr, since it has
2641           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2642           clearDelayedTypo(TE);
2643           // Signal that a correction to a keyword was performed by returning a
2644           // valid-but-null ExprResult.
2645           return (Expr*)nullptr;
2646         }
2647         State.Consumer->resetCorrectionStream();
2648       }
2649       return TE ? TE : ExprError();
2650     }
2651 
2652     assert(!R.empty() &&
2653            "DiagnoseEmptyLookup returned false but added no results");
2654 
2655     // If we found an Objective-C instance variable, let
2656     // LookupInObjCMethod build the appropriate expression to
2657     // reference the ivar.
2658     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2659       R.clear();
2660       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2661       // In a hopelessly buggy code, Objective-C instance variable
2662       // lookup fails and no expression will be built to reference it.
2663       if (!E.isInvalid() && !E.get())
2664         return ExprError();
2665       return E;
2666     }
2667   }
2668 
2669   // This is guaranteed from this point on.
2670   assert(!R.empty() || ADL);
2671 
2672   // Check whether this might be a C++ implicit instance member access.
2673   // C++ [class.mfct.non-static]p3:
2674   //   When an id-expression that is not part of a class member access
2675   //   syntax and not used to form a pointer to member is used in the
2676   //   body of a non-static member function of class X, if name lookup
2677   //   resolves the name in the id-expression to a non-static non-type
2678   //   member of some class C, the id-expression is transformed into a
2679   //   class member access expression using (*this) as the
2680   //   postfix-expression to the left of the . operator.
2681   //
2682   // But we don't actually need to do this for '&' operands if R
2683   // resolved to a function or overloaded function set, because the
2684   // expression is ill-formed if it actually works out to be a
2685   // non-static member function:
2686   //
2687   // C++ [expr.ref]p4:
2688   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2689   //   [t]he expression can be used only as the left-hand operand of a
2690   //   member function call.
2691   //
2692   // There are other safeguards against such uses, but it's important
2693   // to get this right here so that we don't end up making a
2694   // spuriously dependent expression if we're inside a dependent
2695   // instance method.
2696   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2697     bool MightBeImplicitMember;
2698     if (!IsAddressOfOperand)
2699       MightBeImplicitMember = true;
2700     else if (!SS.isEmpty())
2701       MightBeImplicitMember = false;
2702     else if (R.isOverloadedResult())
2703       MightBeImplicitMember = false;
2704     else if (R.isUnresolvableResult())
2705       MightBeImplicitMember = true;
2706     else
2707       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2708                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2709                               isa<MSPropertyDecl>(R.getFoundDecl());
2710 
2711     if (MightBeImplicitMember)
2712       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2713                                              R, TemplateArgs, S);
2714   }
2715 
2716   if (TemplateArgs || TemplateKWLoc.isValid()) {
2717 
2718     // In C++1y, if this is a variable template id, then check it
2719     // in BuildTemplateIdExpr().
2720     // The single lookup result must be a variable template declaration.
2721     if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2722         Id.TemplateId->Kind == TNK_Var_template) {
2723       assert(R.getAsSingle<VarTemplateDecl>() &&
2724              "There should only be one declaration found.");
2725     }
2726 
2727     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2728   }
2729 
2730   return BuildDeclarationNameExpr(SS, R, ADL);
2731 }
2732 
2733 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2734 /// declaration name, generally during template instantiation.
2735 /// There's a large number of things which don't need to be done along
2736 /// this path.
2737 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2738     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2739     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2740   if (NameInfo.getName().isDependentName())
2741     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2742                                      NameInfo, /*TemplateArgs=*/nullptr);
2743 
2744   DeclContext *DC = computeDeclContext(SS, false);
2745   if (!DC)
2746     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2747                                      NameInfo, /*TemplateArgs=*/nullptr);
2748 
2749   if (RequireCompleteDeclContext(SS, DC))
2750     return ExprError();
2751 
2752   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2753   LookupQualifiedName(R, DC);
2754 
2755   if (R.isAmbiguous())
2756     return ExprError();
2757 
2758   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2759     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2760                                      NameInfo, /*TemplateArgs=*/nullptr);
2761 
2762   if (R.empty()) {
2763     // Don't diagnose problems with invalid record decl, the secondary no_member
2764     // diagnostic during template instantiation is likely bogus, e.g. if a class
2765     // is invalid because it's derived from an invalid base class, then missing
2766     // members were likely supposed to be inherited.
2767     if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2768       if (CD->isInvalidDecl())
2769         return ExprError();
2770     Diag(NameInfo.getLoc(), diag::err_no_member)
2771       << NameInfo.getName() << DC << SS.getRange();
2772     return ExprError();
2773   }
2774 
2775   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2776     // Diagnose a missing typename if this resolved unambiguously to a type in
2777     // a dependent context.  If we can recover with a type, downgrade this to
2778     // a warning in Microsoft compatibility mode.
2779     unsigned DiagID = diag::err_typename_missing;
2780     if (RecoveryTSI && getLangOpts().MSVCCompat)
2781       DiagID = diag::ext_typename_missing;
2782     SourceLocation Loc = SS.getBeginLoc();
2783     auto D = Diag(Loc, DiagID);
2784     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2785       << SourceRange(Loc, NameInfo.getEndLoc());
2786 
2787     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2788     // context.
2789     if (!RecoveryTSI)
2790       return ExprError();
2791 
2792     // Only issue the fixit if we're prepared to recover.
2793     D << FixItHint::CreateInsertion(Loc, "typename ");
2794 
2795     // Recover by pretending this was an elaborated type.
2796     QualType Ty = Context.getTypeDeclType(TD);
2797     TypeLocBuilder TLB;
2798     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2799 
2800     QualType ET = getElaboratedType(ETK_None, SS, Ty);
2801     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2802     QTL.setElaboratedKeywordLoc(SourceLocation());
2803     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2804 
2805     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2806 
2807     return ExprEmpty();
2808   }
2809 
2810   // Defend against this resolving to an implicit member access. We usually
2811   // won't get here if this might be a legitimate a class member (we end up in
2812   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2813   // a pointer-to-member or in an unevaluated context in C++11.
2814   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2815     return BuildPossibleImplicitMemberExpr(SS,
2816                                            /*TemplateKWLoc=*/SourceLocation(),
2817                                            R, /*TemplateArgs=*/nullptr, S);
2818 
2819   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2820 }
2821 
2822 /// The parser has read a name in, and Sema has detected that we're currently
2823 /// inside an ObjC method. Perform some additional checks and determine if we
2824 /// should form a reference to an ivar.
2825 ///
2826 /// Ideally, most of this would be done by lookup, but there's
2827 /// actually quite a lot of extra work involved.
2828 DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2829                                         IdentifierInfo *II) {
2830   SourceLocation Loc = Lookup.getNameLoc();
2831   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2832 
2833   // Check for error condition which is already reported.
2834   if (!CurMethod)
2835     return DeclResult(true);
2836 
2837   // There are two cases to handle here.  1) scoped lookup could have failed,
2838   // in which case we should look for an ivar.  2) scoped lookup could have
2839   // found a decl, but that decl is outside the current instance method (i.e.
2840   // a global variable).  In these two cases, we do a lookup for an ivar with
2841   // this name, if the lookup sucedes, we replace it our current decl.
2842 
2843   // If we're in a class method, we don't normally want to look for
2844   // ivars.  But if we don't find anything else, and there's an
2845   // ivar, that's an error.
2846   bool IsClassMethod = CurMethod->isClassMethod();
2847 
2848   bool LookForIvars;
2849   if (Lookup.empty())
2850     LookForIvars = true;
2851   else if (IsClassMethod)
2852     LookForIvars = false;
2853   else
2854     LookForIvars = (Lookup.isSingleResult() &&
2855                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2856   ObjCInterfaceDecl *IFace = nullptr;
2857   if (LookForIvars) {
2858     IFace = CurMethod->getClassInterface();
2859     ObjCInterfaceDecl *ClassDeclared;
2860     ObjCIvarDecl *IV = nullptr;
2861     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2862       // Diagnose using an ivar in a class method.
2863       if (IsClassMethod) {
2864         Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2865         return DeclResult(true);
2866       }
2867 
2868       // Diagnose the use of an ivar outside of the declaring class.
2869       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2870           !declaresSameEntity(ClassDeclared, IFace) &&
2871           !getLangOpts().DebuggerSupport)
2872         Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2873 
2874       // Success.
2875       return IV;
2876     }
2877   } else if (CurMethod->isInstanceMethod()) {
2878     // We should warn if a local variable hides an ivar.
2879     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2880       ObjCInterfaceDecl *ClassDeclared;
2881       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2882         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2883             declaresSameEntity(IFace, ClassDeclared))
2884           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2885       }
2886     }
2887   } else if (Lookup.isSingleResult() &&
2888              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2889     // If accessing a stand-alone ivar in a class method, this is an error.
2890     if (const ObjCIvarDecl *IV =
2891             dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2892       Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2893       return DeclResult(true);
2894     }
2895   }
2896 
2897   // Didn't encounter an error, didn't find an ivar.
2898   return DeclResult(false);
2899 }
2900 
2901 ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
2902                                   ObjCIvarDecl *IV) {
2903   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2904   assert(CurMethod && CurMethod->isInstanceMethod() &&
2905          "should not reference ivar from this context");
2906 
2907   ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2908   assert(IFace && "should not reference ivar from this context");
2909 
2910   // If we're referencing an invalid decl, just return this as a silent
2911   // error node.  The error diagnostic was already emitted on the decl.
2912   if (IV->isInvalidDecl())
2913     return ExprError();
2914 
2915   // Check if referencing a field with __attribute__((deprecated)).
2916   if (DiagnoseUseOfDecl(IV, Loc))
2917     return ExprError();
2918 
2919   // FIXME: This should use a new expr for a direct reference, don't
2920   // turn this into Self->ivar, just return a BareIVarExpr or something.
2921   IdentifierInfo &II = Context.Idents.get("self");
2922   UnqualifiedId SelfName;
2923   SelfName.setImplicitSelfParam(&II);
2924   CXXScopeSpec SelfScopeSpec;
2925   SourceLocation TemplateKWLoc;
2926   ExprResult SelfExpr =
2927       ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2928                         /*HasTrailingLParen=*/false,
2929                         /*IsAddressOfOperand=*/false);
2930   if (SelfExpr.isInvalid())
2931     return ExprError();
2932 
2933   SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2934   if (SelfExpr.isInvalid())
2935     return ExprError();
2936 
2937   MarkAnyDeclReferenced(Loc, IV, true);
2938 
2939   ObjCMethodFamily MF = CurMethod->getMethodFamily();
2940   if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2941       !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2942     Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2943 
2944   ObjCIvarRefExpr *Result = new (Context)
2945       ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2946                       IV->getLocation(), SelfExpr.get(), true, true);
2947 
2948   if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2949     if (!isUnevaluatedContext() &&
2950         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2951       getCurFunction()->recordUseOfWeak(Result);
2952   }
2953   if (getLangOpts().ObjCAutoRefCount && !isUnevaluatedContext())
2954     if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2955       ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2956 
2957   return Result;
2958 }
2959 
2960 /// The parser has read a name in, and Sema has detected that we're currently
2961 /// inside an ObjC method. Perform some additional checks and determine if we
2962 /// should form a reference to an ivar. If so, build an expression referencing
2963 /// that ivar.
2964 ExprResult
2965 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2966                          IdentifierInfo *II, bool AllowBuiltinCreation) {
2967   // FIXME: Integrate this lookup step into LookupParsedName.
2968   DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
2969   if (Ivar.isInvalid())
2970     return ExprError();
2971   if (Ivar.isUsable())
2972     return BuildIvarRefExpr(S, Lookup.getNameLoc(),
2973                             cast<ObjCIvarDecl>(Ivar.get()));
2974 
2975   if (Lookup.empty() && II && AllowBuiltinCreation)
2976     LookupBuiltin(Lookup);
2977 
2978   // Sentinel value saying that we didn't do anything special.
2979   return ExprResult(false);
2980 }
2981 
2982 /// Cast a base object to a member's actual type.
2983 ///
2984 /// There are two relevant checks:
2985 ///
2986 /// C++ [class.access.base]p7:
2987 ///
2988 ///   If a class member access operator [...] is used to access a non-static
2989 ///   data member or non-static member function, the reference is ill-formed if
2990 ///   the left operand [...] cannot be implicitly converted to a pointer to the
2991 ///   naming class of the right operand.
2992 ///
2993 /// C++ [expr.ref]p7:
2994 ///
2995 ///   If E2 is a non-static data member or a non-static member function, the
2996 ///   program is ill-formed if the class of which E2 is directly a member is an
2997 ///   ambiguous base (11.8) of the naming class (11.9.3) of E2.
2998 ///
2999 /// Note that the latter check does not consider access; the access of the
3000 /// "real" base class is checked as appropriate when checking the access of the
3001 /// member name.
3002 ExprResult
3003 Sema::PerformObjectMemberConversion(Expr *From,
3004                                     NestedNameSpecifier *Qualifier,
3005                                     NamedDecl *FoundDecl,
3006                                     NamedDecl *Member) {
3007   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
3008   if (!RD)
3009     return From;
3010 
3011   QualType DestRecordType;
3012   QualType DestType;
3013   QualType FromRecordType;
3014   QualType FromType = From->getType();
3015   bool PointerConversions = false;
3016   if (isa<FieldDecl>(Member)) {
3017     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
3018     auto FromPtrType = FromType->getAs<PointerType>();
3019     DestRecordType = Context.getAddrSpaceQualType(
3020         DestRecordType, FromPtrType
3021                             ? FromType->getPointeeType().getAddressSpace()
3022                             : FromType.getAddressSpace());
3023 
3024     if (FromPtrType) {
3025       DestType = Context.getPointerType(DestRecordType);
3026       FromRecordType = FromPtrType->getPointeeType();
3027       PointerConversions = true;
3028     } else {
3029       DestType = DestRecordType;
3030       FromRecordType = FromType;
3031     }
3032   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
3033     if (Method->isStatic())
3034       return From;
3035 
3036     DestType = Method->getThisType();
3037     DestRecordType = DestType->getPointeeType();
3038 
3039     if (FromType->getAs<PointerType>()) {
3040       FromRecordType = FromType->getPointeeType();
3041       PointerConversions = true;
3042     } else {
3043       FromRecordType = FromType;
3044       DestType = DestRecordType;
3045     }
3046 
3047     LangAS FromAS = FromRecordType.getAddressSpace();
3048     LangAS DestAS = DestRecordType.getAddressSpace();
3049     if (FromAS != DestAS) {
3050       QualType FromRecordTypeWithoutAS =
3051           Context.removeAddrSpaceQualType(FromRecordType);
3052       QualType FromTypeWithDestAS =
3053           Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
3054       if (PointerConversions)
3055         FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
3056       From = ImpCastExprToType(From, FromTypeWithDestAS,
3057                                CK_AddressSpaceConversion, From->getValueKind())
3058                  .get();
3059     }
3060   } else {
3061     // No conversion necessary.
3062     return From;
3063   }
3064 
3065   if (DestType->isDependentType() || FromType->isDependentType())
3066     return From;
3067 
3068   // If the unqualified types are the same, no conversion is necessary.
3069   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3070     return From;
3071 
3072   SourceRange FromRange = From->getSourceRange();
3073   SourceLocation FromLoc = FromRange.getBegin();
3074 
3075   ExprValueKind VK = From->getValueKind();
3076 
3077   // C++ [class.member.lookup]p8:
3078   //   [...] Ambiguities can often be resolved by qualifying a name with its
3079   //   class name.
3080   //
3081   // If the member was a qualified name and the qualified referred to a
3082   // specific base subobject type, we'll cast to that intermediate type
3083   // first and then to the object in which the member is declared. That allows
3084   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3085   //
3086   //   class Base { public: int x; };
3087   //   class Derived1 : public Base { };
3088   //   class Derived2 : public Base { };
3089   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
3090   //
3091   //   void VeryDerived::f() {
3092   //     x = 17; // error: ambiguous base subobjects
3093   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
3094   //   }
3095   if (Qualifier && Qualifier->getAsType()) {
3096     QualType QType = QualType(Qualifier->getAsType(), 0);
3097     assert(QType->isRecordType() && "lookup done with non-record type");
3098 
3099     QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3100 
3101     // In C++98, the qualifier type doesn't actually have to be a base
3102     // type of the object type, in which case we just ignore it.
3103     // Otherwise build the appropriate casts.
3104     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3105       CXXCastPath BasePath;
3106       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3107                                        FromLoc, FromRange, &BasePath))
3108         return ExprError();
3109 
3110       if (PointerConversions)
3111         QType = Context.getPointerType(QType);
3112       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3113                                VK, &BasePath).get();
3114 
3115       FromType = QType;
3116       FromRecordType = QRecordType;
3117 
3118       // If the qualifier type was the same as the destination type,
3119       // we're done.
3120       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3121         return From;
3122     }
3123   }
3124 
3125   CXXCastPath BasePath;
3126   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3127                                    FromLoc, FromRange, &BasePath,
3128                                    /*IgnoreAccess=*/true))
3129     return ExprError();
3130 
3131   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3132                            VK, &BasePath);
3133 }
3134 
3135 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3136                                       const LookupResult &R,
3137                                       bool HasTrailingLParen) {
3138   // Only when used directly as the postfix-expression of a call.
3139   if (!HasTrailingLParen)
3140     return false;
3141 
3142   // Never if a scope specifier was provided.
3143   if (SS.isSet())
3144     return false;
3145 
3146   // Only in C++ or ObjC++.
3147   if (!getLangOpts().CPlusPlus)
3148     return false;
3149 
3150   // Turn off ADL when we find certain kinds of declarations during
3151   // normal lookup:
3152   for (NamedDecl *D : R) {
3153     // C++0x [basic.lookup.argdep]p3:
3154     //     -- a declaration of a class member
3155     // Since using decls preserve this property, we check this on the
3156     // original decl.
3157     if (D->isCXXClassMember())
3158       return false;
3159 
3160     // C++0x [basic.lookup.argdep]p3:
3161     //     -- a block-scope function declaration that is not a
3162     //        using-declaration
3163     // NOTE: we also trigger this for function templates (in fact, we
3164     // don't check the decl type at all, since all other decl types
3165     // turn off ADL anyway).
3166     if (isa<UsingShadowDecl>(D))
3167       D = cast<UsingShadowDecl>(D)->getTargetDecl();
3168     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3169       return false;
3170 
3171     // C++0x [basic.lookup.argdep]p3:
3172     //     -- a declaration that is neither a function or a function
3173     //        template
3174     // And also for builtin functions.
3175     if (isa<FunctionDecl>(D)) {
3176       FunctionDecl *FDecl = cast<FunctionDecl>(D);
3177 
3178       // But also builtin functions.
3179       if (FDecl->getBuiltinID() && FDecl->isImplicit())
3180         return false;
3181     } else if (!isa<FunctionTemplateDecl>(D))
3182       return false;
3183   }
3184 
3185   return true;
3186 }
3187 
3188 
3189 /// Diagnoses obvious problems with the use of the given declaration
3190 /// as an expression.  This is only actually called for lookups that
3191 /// were not overloaded, and it doesn't promise that the declaration
3192 /// will in fact be used.
3193 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3194                             bool AcceptInvalid) {
3195   if (D->isInvalidDecl() && !AcceptInvalid)
3196     return true;
3197 
3198   if (isa<TypedefNameDecl>(D)) {
3199     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3200     return true;
3201   }
3202 
3203   if (isa<ObjCInterfaceDecl>(D)) {
3204     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3205     return true;
3206   }
3207 
3208   if (isa<NamespaceDecl>(D)) {
3209     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3210     return true;
3211   }
3212 
3213   return false;
3214 }
3215 
3216 // Certain multiversion types should be treated as overloaded even when there is
3217 // only one result.
3218 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3219   assert(R.isSingleResult() && "Expected only a single result");
3220   const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3221   return FD &&
3222          (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3223 }
3224 
3225 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3226                                           LookupResult &R, bool NeedsADL,
3227                                           bool AcceptInvalidDecl) {
3228   // If this is a single, fully-resolved result and we don't need ADL,
3229   // just build an ordinary singleton decl ref.
3230   if (!NeedsADL && R.isSingleResult() &&
3231       !R.getAsSingle<FunctionTemplateDecl>() &&
3232       !ShouldLookupResultBeMultiVersionOverload(R))
3233     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3234                                     R.getRepresentativeDecl(), nullptr,
3235                                     AcceptInvalidDecl);
3236 
3237   // We only need to check the declaration if there's exactly one
3238   // result, because in the overloaded case the results can only be
3239   // functions and function templates.
3240   if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3241       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(),
3242                       AcceptInvalidDecl))
3243     return ExprError();
3244 
3245   // Otherwise, just build an unresolved lookup expression.  Suppress
3246   // any lookup-related diagnostics; we'll hash these out later, when
3247   // we've picked a target.
3248   R.suppressDiagnostics();
3249 
3250   UnresolvedLookupExpr *ULE
3251     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3252                                    SS.getWithLocInContext(Context),
3253                                    R.getLookupNameInfo(),
3254                                    NeedsADL, R.isOverloadedResult(),
3255                                    R.begin(), R.end());
3256 
3257   return ULE;
3258 }
3259 
3260 static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3261                                                         SourceLocation loc,
3262                                                         ValueDecl *var);
3263 
3264 /// Complete semantic analysis for a reference to the given declaration.
3265 ExprResult Sema::BuildDeclarationNameExpr(
3266     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3267     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3268     bool AcceptInvalidDecl) {
3269   assert(D && "Cannot refer to a NULL declaration");
3270   assert(!isa<FunctionTemplateDecl>(D) &&
3271          "Cannot refer unambiguously to a function template");
3272 
3273   SourceLocation Loc = NameInfo.getLoc();
3274   if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) {
3275     // Recovery from invalid cases (e.g. D is an invalid Decl).
3276     // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3277     // diagnostics, as invalid decls use int as a fallback type.
3278     return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
3279   }
3280 
3281   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3282     // Specifically diagnose references to class templates that are missing
3283     // a template argument list.
3284     diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3285     return ExprError();
3286   }
3287 
3288   // Make sure that we're referring to a value.
3289   if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3290     Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3291     Diag(D->getLocation(), diag::note_declared_at);
3292     return ExprError();
3293   }
3294 
3295   // Check whether this declaration can be used. Note that we suppress
3296   // this check when we're going to perform argument-dependent lookup
3297   // on this function name, because this might not be the function
3298   // that overload resolution actually selects.
3299   if (DiagnoseUseOfDecl(D, Loc))
3300     return ExprError();
3301 
3302   auto *VD = cast<ValueDecl>(D);
3303 
3304   // Only create DeclRefExpr's for valid Decl's.
3305   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3306     return ExprError();
3307 
3308   // Handle members of anonymous structs and unions.  If we got here,
3309   // and the reference is to a class member indirect field, then this
3310   // must be the subject of a pointer-to-member expression.
3311   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
3312     if (!indirectField->isCXXClassMember())
3313       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3314                                                       indirectField);
3315 
3316   QualType type = VD->getType();
3317   if (type.isNull())
3318     return ExprError();
3319   ExprValueKind valueKind = VK_PRValue;
3320 
3321   // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3322   // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3323   // is expanded by some outer '...' in the context of the use.
3324   type = type.getNonPackExpansionType();
3325 
3326   switch (D->getKind()) {
3327     // Ignore all the non-ValueDecl kinds.
3328 #define ABSTRACT_DECL(kind)
3329 #define VALUE(type, base)
3330 #define DECL(type, base) case Decl::type:
3331 #include "clang/AST/DeclNodes.inc"
3332     llvm_unreachable("invalid value decl kind");
3333 
3334   // These shouldn't make it here.
3335   case Decl::ObjCAtDefsField:
3336     llvm_unreachable("forming non-member reference to ivar?");
3337 
3338   // Enum constants are always r-values and never references.
3339   // Unresolved using declarations are dependent.
3340   case Decl::EnumConstant:
3341   case Decl::UnresolvedUsingValue:
3342   case Decl::OMPDeclareReduction:
3343   case Decl::OMPDeclareMapper:
3344     valueKind = VK_PRValue;
3345     break;
3346 
3347   // Fields and indirect fields that got here must be for
3348   // pointer-to-member expressions; we just call them l-values for
3349   // internal consistency, because this subexpression doesn't really
3350   // exist in the high-level semantics.
3351   case Decl::Field:
3352   case Decl::IndirectField:
3353   case Decl::ObjCIvar:
3354     assert(getLangOpts().CPlusPlus && "building reference to field in C?");
3355 
3356     // These can't have reference type in well-formed programs, but
3357     // for internal consistency we do this anyway.
3358     type = type.getNonReferenceType();
3359     valueKind = VK_LValue;
3360     break;
3361 
3362   // Non-type template parameters are either l-values or r-values
3363   // depending on the type.
3364   case Decl::NonTypeTemplateParm: {
3365     if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3366       type = reftype->getPointeeType();
3367       valueKind = VK_LValue; // even if the parameter is an r-value reference
3368       break;
3369     }
3370 
3371     // [expr.prim.id.unqual]p2:
3372     //   If the entity is a template parameter object for a template
3373     //   parameter of type T, the type of the expression is const T.
3374     //   [...] The expression is an lvalue if the entity is a [...] template
3375     //   parameter object.
3376     if (type->isRecordType()) {
3377       type = type.getUnqualifiedType().withConst();
3378       valueKind = VK_LValue;
3379       break;
3380     }
3381 
3382     // For non-references, we need to strip qualifiers just in case
3383     // the template parameter was declared as 'const int' or whatever.
3384     valueKind = VK_PRValue;
3385     type = type.getUnqualifiedType();
3386     break;
3387   }
3388 
3389   case Decl::Var:
3390   case Decl::VarTemplateSpecialization:
3391   case Decl::VarTemplatePartialSpecialization:
3392   case Decl::Decomposition:
3393   case Decl::OMPCapturedExpr:
3394     // In C, "extern void blah;" is valid and is an r-value.
3395     if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3396         type->isVoidType()) {
3397       valueKind = VK_PRValue;
3398       break;
3399     }
3400     [[fallthrough]];
3401 
3402   case Decl::ImplicitParam:
3403   case Decl::ParmVar: {
3404     // These are always l-values.
3405     valueKind = VK_LValue;
3406     type = type.getNonReferenceType();
3407 
3408     // FIXME: Does the addition of const really only apply in
3409     // potentially-evaluated contexts? Since the variable isn't actually
3410     // captured in an unevaluated context, it seems that the answer is no.
3411     if (!isUnevaluatedContext()) {
3412       QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3413       if (!CapturedType.isNull())
3414         type = CapturedType;
3415     }
3416 
3417     break;
3418   }
3419 
3420   case Decl::Binding:
3421     // These are always lvalues.
3422     valueKind = VK_LValue;
3423     type = type.getNonReferenceType();
3424     break;
3425 
3426   case Decl::Function: {
3427     if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3428       if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
3429         type = Context.BuiltinFnTy;
3430         valueKind = VK_PRValue;
3431         break;
3432       }
3433     }
3434 
3435     const FunctionType *fty = type->castAs<FunctionType>();
3436 
3437     // If we're referring to a function with an __unknown_anytype
3438     // result type, make the entire expression __unknown_anytype.
3439     if (fty->getReturnType() == Context.UnknownAnyTy) {
3440       type = Context.UnknownAnyTy;
3441       valueKind = VK_PRValue;
3442       break;
3443     }
3444 
3445     // Functions are l-values in C++.
3446     if (getLangOpts().CPlusPlus) {
3447       valueKind = VK_LValue;
3448       break;
3449     }
3450 
3451     // C99 DR 316 says that, if a function type comes from a
3452     // function definition (without a prototype), that type is only
3453     // used for checking compatibility. Therefore, when referencing
3454     // the function, we pretend that we don't have the full function
3455     // type.
3456     if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3457       type = Context.getFunctionNoProtoType(fty->getReturnType(),
3458                                             fty->getExtInfo());
3459 
3460     // Functions are r-values in C.
3461     valueKind = VK_PRValue;
3462     break;
3463   }
3464 
3465   case Decl::CXXDeductionGuide:
3466     llvm_unreachable("building reference to deduction guide");
3467 
3468   case Decl::MSProperty:
3469   case Decl::MSGuid:
3470   case Decl::TemplateParamObject:
3471     // FIXME: Should MSGuidDecl and template parameter objects be subject to
3472     // capture in OpenMP, or duplicated between host and device?
3473     valueKind = VK_LValue;
3474     break;
3475 
3476   case Decl::UnnamedGlobalConstant:
3477     valueKind = VK_LValue;
3478     break;
3479 
3480   case Decl::CXXMethod:
3481     // If we're referring to a method with an __unknown_anytype
3482     // result type, make the entire expression __unknown_anytype.
3483     // This should only be possible with a type written directly.
3484     if (const FunctionProtoType *proto =
3485             dyn_cast<FunctionProtoType>(VD->getType()))
3486       if (proto->getReturnType() == Context.UnknownAnyTy) {
3487         type = Context.UnknownAnyTy;
3488         valueKind = VK_PRValue;
3489         break;
3490       }
3491 
3492     // C++ methods are l-values if static, r-values if non-static.
3493     if (cast<CXXMethodDecl>(VD)->isStatic()) {
3494       valueKind = VK_LValue;
3495       break;
3496     }
3497     [[fallthrough]];
3498 
3499   case Decl::CXXConversion:
3500   case Decl::CXXDestructor:
3501   case Decl::CXXConstructor:
3502     valueKind = VK_PRValue;
3503     break;
3504   }
3505 
3506   auto *E =
3507       BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3508                        /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs);
3509   // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3510   // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3511   // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3512   // diagnostics).
3513   if (VD->isInvalidDecl() && E)
3514     return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E});
3515   return E;
3516 }
3517 
3518 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3519                                     SmallString<32> &Target) {
3520   Target.resize(CharByteWidth * (Source.size() + 1));
3521   char *ResultPtr = &Target[0];
3522   const llvm::UTF8 *ErrorPtr;
3523   bool success =
3524       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3525   (void)success;
3526   assert(success);
3527   Target.resize(ResultPtr - &Target[0]);
3528 }
3529 
3530 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3531                                      PredefinedExpr::IdentKind IK) {
3532   // Pick the current block, lambda, captured statement or function.
3533   Decl *currentDecl = nullptr;
3534   if (const BlockScopeInfo *BSI = getCurBlock())
3535     currentDecl = BSI->TheDecl;
3536   else if (const LambdaScopeInfo *LSI = getCurLambda())
3537     currentDecl = LSI->CallOperator;
3538   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3539     currentDecl = CSI->TheCapturedDecl;
3540   else
3541     currentDecl = getCurFunctionOrMethodDecl();
3542 
3543   if (!currentDecl) {
3544     Diag(Loc, diag::ext_predef_outside_function);
3545     currentDecl = Context.getTranslationUnitDecl();
3546   }
3547 
3548   QualType ResTy;
3549   StringLiteral *SL = nullptr;
3550   if (cast<DeclContext>(currentDecl)->isDependentContext())
3551     ResTy = Context.DependentTy;
3552   else {
3553     // Pre-defined identifiers are of type char[x], where x is the length of
3554     // the string.
3555     auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3556     unsigned Length = Str.length();
3557 
3558     llvm::APInt LengthI(32, Length + 1);
3559     if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3560       ResTy =
3561           Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3562       SmallString<32> RawChars;
3563       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3564                               Str, RawChars);
3565       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3566                                            ArrayType::Normal,
3567                                            /*IndexTypeQuals*/ 0);
3568       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3569                                  /*Pascal*/ false, ResTy, Loc);
3570     } else {
3571       ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3572       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3573                                            ArrayType::Normal,
3574                                            /*IndexTypeQuals*/ 0);
3575       SL = StringLiteral::Create(Context, Str, StringLiteral::Ordinary,
3576                                  /*Pascal*/ false, ResTy, Loc);
3577     }
3578   }
3579 
3580   return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3581 }
3582 
3583 ExprResult Sema::BuildSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3584                                                SourceLocation LParen,
3585                                                SourceLocation RParen,
3586                                                TypeSourceInfo *TSI) {
3587   return SYCLUniqueStableNameExpr::Create(Context, OpLoc, LParen, RParen, TSI);
3588 }
3589 
3590 ExprResult Sema::ActOnSYCLUniqueStableNameExpr(SourceLocation OpLoc,
3591                                                SourceLocation LParen,
3592                                                SourceLocation RParen,
3593                                                ParsedType ParsedTy) {
3594   TypeSourceInfo *TSI = nullptr;
3595   QualType Ty = GetTypeFromParser(ParsedTy, &TSI);
3596 
3597   if (Ty.isNull())
3598     return ExprError();
3599   if (!TSI)
3600     TSI = Context.getTrivialTypeSourceInfo(Ty, LParen);
3601 
3602   return BuildSYCLUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
3603 }
3604 
3605 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3606   PredefinedExpr::IdentKind IK;
3607 
3608   switch (Kind) {
3609   default: llvm_unreachable("Unknown simple primary expr!");
3610   case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3611   case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3612   case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3613   case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3614   case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3615   case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3616   case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3617   }
3618 
3619   return BuildPredefinedExpr(Loc, IK);
3620 }
3621 
3622 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3623   SmallString<16> CharBuffer;
3624   bool Invalid = false;
3625   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3626   if (Invalid)
3627     return ExprError();
3628 
3629   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3630                             PP, Tok.getKind());
3631   if (Literal.hadError())
3632     return ExprError();
3633 
3634   QualType Ty;
3635   if (Literal.isWide())
3636     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3637   else if (Literal.isUTF8() && getLangOpts().C2x)
3638     Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C2x
3639   else if (Literal.isUTF8() && getLangOpts().Char8)
3640     Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3641   else if (Literal.isUTF16())
3642     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3643   else if (Literal.isUTF32())
3644     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3645   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3646     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3647   else
3648     Ty = Context.CharTy; // 'x' -> char in C++;
3649                          // u8'x' -> char in C11-C17 and in C++ without char8_t.
3650 
3651   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3652   if (Literal.isWide())
3653     Kind = CharacterLiteral::Wide;
3654   else if (Literal.isUTF16())
3655     Kind = CharacterLiteral::UTF16;
3656   else if (Literal.isUTF32())
3657     Kind = CharacterLiteral::UTF32;
3658   else if (Literal.isUTF8())
3659     Kind = CharacterLiteral::UTF8;
3660 
3661   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3662                                              Tok.getLocation());
3663 
3664   if (Literal.getUDSuffix().empty())
3665     return Lit;
3666 
3667   // We're building a user-defined literal.
3668   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3669   SourceLocation UDSuffixLoc =
3670     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3671 
3672   // Make sure we're allowed user-defined literals here.
3673   if (!UDLScope)
3674     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3675 
3676   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3677   //   operator "" X (ch)
3678   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3679                                         Lit, Tok.getLocation());
3680 }
3681 
3682 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3683   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3684   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3685                                 Context.IntTy, Loc);
3686 }
3687 
3688 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3689                                   QualType Ty, SourceLocation Loc) {
3690   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3691 
3692   using llvm::APFloat;
3693   APFloat Val(Format);
3694 
3695   APFloat::opStatus result = Literal.GetFloatValue(Val);
3696 
3697   // Overflow is always an error, but underflow is only an error if
3698   // we underflowed to zero (APFloat reports denormals as underflow).
3699   if ((result & APFloat::opOverflow) ||
3700       ((result & APFloat::opUnderflow) && Val.isZero())) {
3701     unsigned diagnostic;
3702     SmallString<20> buffer;
3703     if (result & APFloat::opOverflow) {
3704       diagnostic = diag::warn_float_overflow;
3705       APFloat::getLargest(Format).toString(buffer);
3706     } else {
3707       diagnostic = diag::warn_float_underflow;
3708       APFloat::getSmallest(Format).toString(buffer);
3709     }
3710 
3711     S.Diag(Loc, diagnostic)
3712       << Ty
3713       << StringRef(buffer.data(), buffer.size());
3714   }
3715 
3716   bool isExact = (result == APFloat::opOK);
3717   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3718 }
3719 
3720 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3721   assert(E && "Invalid expression");
3722 
3723   if (E->isValueDependent())
3724     return false;
3725 
3726   QualType QT = E->getType();
3727   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3728     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3729     return true;
3730   }
3731 
3732   llvm::APSInt ValueAPS;
3733   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3734 
3735   if (R.isInvalid())
3736     return true;
3737 
3738   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3739   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3740     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3741         << toString(ValueAPS, 10) << ValueIsPositive;
3742     return true;
3743   }
3744 
3745   return false;
3746 }
3747 
3748 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3749   // Fast path for a single digit (which is quite common).  A single digit
3750   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3751   if (Tok.getLength() == 1) {
3752     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3753     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3754   }
3755 
3756   SmallString<128> SpellingBuffer;
3757   // NumericLiteralParser wants to overread by one character.  Add padding to
3758   // the buffer in case the token is copied to the buffer.  If getSpelling()
3759   // returns a StringRef to the memory buffer, it should have a null char at
3760   // the EOF, so it is also safe.
3761   SpellingBuffer.resize(Tok.getLength() + 1);
3762 
3763   // Get the spelling of the token, which eliminates trigraphs, etc.
3764   bool Invalid = false;
3765   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3766   if (Invalid)
3767     return ExprError();
3768 
3769   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3770                                PP.getSourceManager(), PP.getLangOpts(),
3771                                PP.getTargetInfo(), PP.getDiagnostics());
3772   if (Literal.hadError)
3773     return ExprError();
3774 
3775   if (Literal.hasUDSuffix()) {
3776     // We're building a user-defined literal.
3777     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3778     SourceLocation UDSuffixLoc =
3779       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3780 
3781     // Make sure we're allowed user-defined literals here.
3782     if (!UDLScope)
3783       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3784 
3785     QualType CookedTy;
3786     if (Literal.isFloatingLiteral()) {
3787       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3788       // long double, the literal is treated as a call of the form
3789       //   operator "" X (f L)
3790       CookedTy = Context.LongDoubleTy;
3791     } else {
3792       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3793       // unsigned long long, the literal is treated as a call of the form
3794       //   operator "" X (n ULL)
3795       CookedTy = Context.UnsignedLongLongTy;
3796     }
3797 
3798     DeclarationName OpName =
3799       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3800     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3801     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3802 
3803     SourceLocation TokLoc = Tok.getLocation();
3804 
3805     // Perform literal operator lookup to determine if we're building a raw
3806     // literal or a cooked one.
3807     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3808     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3809                                   /*AllowRaw*/ true, /*AllowTemplate*/ true,
3810                                   /*AllowStringTemplatePack*/ false,
3811                                   /*DiagnoseMissing*/ !Literal.isImaginary)) {
3812     case LOLR_ErrorNoDiagnostic:
3813       // Lookup failure for imaginary constants isn't fatal, there's still the
3814       // GNU extension producing _Complex types.
3815       break;
3816     case LOLR_Error:
3817       return ExprError();
3818     case LOLR_Cooked: {
3819       Expr *Lit;
3820       if (Literal.isFloatingLiteral()) {
3821         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3822       } else {
3823         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3824         if (Literal.GetIntegerValue(ResultVal))
3825           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3826               << /* Unsigned */ 1;
3827         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3828                                      Tok.getLocation());
3829       }
3830       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3831     }
3832 
3833     case LOLR_Raw: {
3834       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3835       // literal is treated as a call of the form
3836       //   operator "" X ("n")
3837       unsigned Length = Literal.getUDSuffixOffset();
3838       QualType StrTy = Context.getConstantArrayType(
3839           Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3840           llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3841       Expr *Lit =
3842           StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length),
3843                                 StringLiteral::Ordinary,
3844                                 /*Pascal*/ false, StrTy, &TokLoc, 1);
3845       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3846     }
3847 
3848     case LOLR_Template: {
3849       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3850       // template), L is treated as a call fo the form
3851       //   operator "" X <'c1', 'c2', ... 'ck'>()
3852       // where n is the source character sequence c1 c2 ... ck.
3853       TemplateArgumentListInfo ExplicitArgs;
3854       unsigned CharBits = Context.getIntWidth(Context.CharTy);
3855       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3856       llvm::APSInt Value(CharBits, CharIsUnsigned);
3857       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3858         Value = TokSpelling[I];
3859         TemplateArgument Arg(Context, Value, Context.CharTy);
3860         TemplateArgumentLocInfo ArgInfo;
3861         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3862       }
3863       return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, TokLoc,
3864                                       &ExplicitArgs);
3865     }
3866     case LOLR_StringTemplatePack:
3867       llvm_unreachable("unexpected literal operator lookup result");
3868     }
3869   }
3870 
3871   Expr *Res;
3872 
3873   if (Literal.isFixedPointLiteral()) {
3874     QualType Ty;
3875 
3876     if (Literal.isAccum) {
3877       if (Literal.isHalf) {
3878         Ty = Context.ShortAccumTy;
3879       } else if (Literal.isLong) {
3880         Ty = Context.LongAccumTy;
3881       } else {
3882         Ty = Context.AccumTy;
3883       }
3884     } else if (Literal.isFract) {
3885       if (Literal.isHalf) {
3886         Ty = Context.ShortFractTy;
3887       } else if (Literal.isLong) {
3888         Ty = Context.LongFractTy;
3889       } else {
3890         Ty = Context.FractTy;
3891       }
3892     }
3893 
3894     if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3895 
3896     bool isSigned = !Literal.isUnsigned;
3897     unsigned scale = Context.getFixedPointScale(Ty);
3898     unsigned bit_width = Context.getTypeInfo(Ty).Width;
3899 
3900     llvm::APInt Val(bit_width, 0, isSigned);
3901     bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3902     bool ValIsZero = Val.isZero() && !Overflowed;
3903 
3904     auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3905     if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3906       // Clause 6.4.4 - The value of a constant shall be in the range of
3907       // representable values for its type, with exception for constants of a
3908       // fract type with a value of exactly 1; such a constant shall denote
3909       // the maximal value for the type.
3910       --Val;
3911     else if (Val.ugt(MaxVal) || Overflowed)
3912       Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3913 
3914     Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3915                                               Tok.getLocation(), scale);
3916   } else if (Literal.isFloatingLiteral()) {
3917     QualType Ty;
3918     if (Literal.isHalf){
3919       if (getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
3920         Ty = Context.HalfTy;
3921       else {
3922         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3923         return ExprError();
3924       }
3925     } else if (Literal.isFloat)
3926       Ty = Context.FloatTy;
3927     else if (Literal.isLong)
3928       Ty = Context.LongDoubleTy;
3929     else if (Literal.isFloat16)
3930       Ty = Context.Float16Ty;
3931     else if (Literal.isFloat128)
3932       Ty = Context.Float128Ty;
3933     else
3934       Ty = Context.DoubleTy;
3935 
3936     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3937 
3938     if (Ty == Context.DoubleTy) {
3939       if (getLangOpts().SinglePrecisionConstants) {
3940         if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3941           Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3942         }
3943       } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3944                                              "cl_khr_fp64", getLangOpts())) {
3945         // Impose single-precision float type when cl_khr_fp64 is not enabled.
3946         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
3947             << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
3948         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3949       }
3950     }
3951   } else if (!Literal.isIntegerLiteral()) {
3952     return ExprError();
3953   } else {
3954     QualType Ty;
3955 
3956     // 'z/uz' literals are a C++2b feature.
3957     if (Literal.isSizeT)
3958       Diag(Tok.getLocation(), getLangOpts().CPlusPlus
3959                                   ? getLangOpts().CPlusPlus2b
3960                                         ? diag::warn_cxx20_compat_size_t_suffix
3961                                         : diag::ext_cxx2b_size_t_suffix
3962                                   : diag::err_cxx2b_size_t_suffix);
3963 
3964     // 'wb/uwb' literals are a C2x feature. We support _BitInt as a type in C++,
3965     // but we do not currently support the suffix in C++ mode because it's not
3966     // entirely clear whether WG21 will prefer this suffix to return a library
3967     // type such as std::bit_int instead of returning a _BitInt.
3968     if (Literal.isBitInt && !getLangOpts().CPlusPlus)
3969       PP.Diag(Tok.getLocation(), getLangOpts().C2x
3970                                      ? diag::warn_c2x_compat_bitint_suffix
3971                                      : diag::ext_c2x_bitint_suffix);
3972 
3973     // Get the value in the widest-possible width. What is "widest" depends on
3974     // whether the literal is a bit-precise integer or not. For a bit-precise
3975     // integer type, try to scan the source to determine how many bits are
3976     // needed to represent the value. This may seem a bit expensive, but trying
3977     // to get the integer value from an overly-wide APInt is *extremely*
3978     // expensive, so the naive approach of assuming
3979     // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
3980     unsigned BitsNeeded =
3981         Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
3982                                Literal.getLiteralDigits(), Literal.getRadix())
3983                          : Context.getTargetInfo().getIntMaxTWidth();
3984     llvm::APInt ResultVal(BitsNeeded, 0);
3985 
3986     if (Literal.GetIntegerValue(ResultVal)) {
3987       // If this value didn't fit into uintmax_t, error and force to ull.
3988       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3989           << /* Unsigned */ 1;
3990       Ty = Context.UnsignedLongLongTy;
3991       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3992              "long long is not intmax_t?");
3993     } else {
3994       // If this value fits into a ULL, try to figure out what else it fits into
3995       // according to the rules of C99 6.4.4.1p5.
3996 
3997       // Octal, Hexadecimal, and integers with a U suffix are allowed to
3998       // be an unsigned int.
3999       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
4000 
4001       // Check from smallest to largest, picking the smallest type we can.
4002       unsigned Width = 0;
4003 
4004       // Microsoft specific integer suffixes are explicitly sized.
4005       if (Literal.MicrosoftInteger) {
4006         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
4007           Width = 8;
4008           Ty = Context.CharTy;
4009         } else {
4010           Width = Literal.MicrosoftInteger;
4011           Ty = Context.getIntTypeForBitwidth(Width,
4012                                              /*Signed=*/!Literal.isUnsigned);
4013         }
4014       }
4015 
4016       // Bit-precise integer literals are automagically-sized based on the
4017       // width required by the literal.
4018       if (Literal.isBitInt) {
4019         // The signed version has one more bit for the sign value. There are no
4020         // zero-width bit-precise integers, even if the literal value is 0.
4021         Width = std::max(ResultVal.getActiveBits(), 1u) +
4022                 (Literal.isUnsigned ? 0u : 1u);
4023 
4024         // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
4025         // and reset the type to the largest supported width.
4026         unsigned int MaxBitIntWidth =
4027             Context.getTargetInfo().getMaxBitIntWidth();
4028         if (Width > MaxBitIntWidth) {
4029           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
4030               << Literal.isUnsigned;
4031           Width = MaxBitIntWidth;
4032         }
4033 
4034         // Reset the result value to the smaller APInt and select the correct
4035         // type to be used. Note, we zext even for signed values because the
4036         // literal itself is always an unsigned value (a preceeding - is a
4037         // unary operator, not part of the literal).
4038         ResultVal = ResultVal.zextOrTrunc(Width);
4039         Ty = Context.getBitIntType(Literal.isUnsigned, Width);
4040       }
4041 
4042       // Check C++2b size_t literals.
4043       if (Literal.isSizeT) {
4044         assert(!Literal.MicrosoftInteger &&
4045                "size_t literals can't be Microsoft literals");
4046         unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
4047             Context.getTargetInfo().getSizeType());
4048 
4049         // Does it fit in size_t?
4050         if (ResultVal.isIntN(SizeTSize)) {
4051           // Does it fit in ssize_t?
4052           if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
4053             Ty = Context.getSignedSizeType();
4054           else if (AllowUnsigned)
4055             Ty = Context.getSizeType();
4056           Width = SizeTSize;
4057         }
4058       }
4059 
4060       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
4061           !Literal.isSizeT) {
4062         // Are int/unsigned possibilities?
4063         unsigned IntSize = Context.getTargetInfo().getIntWidth();
4064 
4065         // Does it fit in a unsigned int?
4066         if (ResultVal.isIntN(IntSize)) {
4067           // Does it fit in a signed int?
4068           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
4069             Ty = Context.IntTy;
4070           else if (AllowUnsigned)
4071             Ty = Context.UnsignedIntTy;
4072           Width = IntSize;
4073         }
4074       }
4075 
4076       // Are long/unsigned long possibilities?
4077       if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
4078         unsigned LongSize = Context.getTargetInfo().getLongWidth();
4079 
4080         // Does it fit in a unsigned long?
4081         if (ResultVal.isIntN(LongSize)) {
4082           // Does it fit in a signed long?
4083           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4084             Ty = Context.LongTy;
4085           else if (AllowUnsigned)
4086             Ty = Context.UnsignedLongTy;
4087           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4088           // is compatible.
4089           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4090             const unsigned LongLongSize =
4091                 Context.getTargetInfo().getLongLongWidth();
4092             Diag(Tok.getLocation(),
4093                  getLangOpts().CPlusPlus
4094                      ? Literal.isLong
4095                            ? diag::warn_old_implicitly_unsigned_long_cxx
4096                            : /*C++98 UB*/ diag::
4097                                  ext_old_implicitly_unsigned_long_cxx
4098                      : diag::warn_old_implicitly_unsigned_long)
4099                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4100                                             : /*will be ill-formed*/ 1);
4101             Ty = Context.UnsignedLongTy;
4102           }
4103           Width = LongSize;
4104         }
4105       }
4106 
4107       // Check long long if needed.
4108       if (Ty.isNull() && !Literal.isSizeT) {
4109         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4110 
4111         // Does it fit in a unsigned long long?
4112         if (ResultVal.isIntN(LongLongSize)) {
4113           // Does it fit in a signed long long?
4114           // To be compatible with MSVC, hex integer literals ending with the
4115           // LL or i64 suffix are always signed in Microsoft mode.
4116           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4117               (getLangOpts().MSVCCompat && Literal.isLongLong)))
4118             Ty = Context.LongLongTy;
4119           else if (AllowUnsigned)
4120             Ty = Context.UnsignedLongLongTy;
4121           Width = LongLongSize;
4122 
4123           // 'long long' is a C99 or C++11 feature, whether the literal
4124           // explicitly specified 'long long' or we needed the extra width.
4125           if (getLangOpts().CPlusPlus)
4126             Diag(Tok.getLocation(), getLangOpts().CPlusPlus11
4127                                         ? diag::warn_cxx98_compat_longlong
4128                                         : diag::ext_cxx11_longlong);
4129           else if (!getLangOpts().C99)
4130             Diag(Tok.getLocation(), diag::ext_c99_longlong);
4131         }
4132       }
4133 
4134       // If we still couldn't decide a type, we either have 'size_t' literal
4135       // that is out of range, or a decimal literal that does not fit in a
4136       // signed long long and has no U suffix.
4137       if (Ty.isNull()) {
4138         if (Literal.isSizeT)
4139           Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4140               << Literal.isUnsigned;
4141         else
4142           Diag(Tok.getLocation(),
4143                diag::ext_integer_literal_too_large_for_signed);
4144         Ty = Context.UnsignedLongLongTy;
4145         Width = Context.getTargetInfo().getLongLongWidth();
4146       }
4147 
4148       if (ResultVal.getBitWidth() != Width)
4149         ResultVal = ResultVal.trunc(Width);
4150     }
4151     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4152   }
4153 
4154   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4155   if (Literal.isImaginary) {
4156     Res = new (Context) ImaginaryLiteral(Res,
4157                                         Context.getComplexType(Res->getType()));
4158 
4159     Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4160   }
4161   return Res;
4162 }
4163 
4164 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4165   assert(E && "ActOnParenExpr() missing expr");
4166   QualType ExprTy = E->getType();
4167   if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4168       !E->isLValue() && ExprTy->hasFloatingRepresentation())
4169     return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4170   return new (Context) ParenExpr(L, R, E);
4171 }
4172 
4173 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4174                                          SourceLocation Loc,
4175                                          SourceRange ArgRange) {
4176   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4177   // scalar or vector data type argument..."
4178   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4179   // type (C99 6.2.5p18) or void.
4180   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4181     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4182       << T << ArgRange;
4183     return true;
4184   }
4185 
4186   assert((T->isVoidType() || !T->isIncompleteType()) &&
4187          "Scalar types should always be complete");
4188   return false;
4189 }
4190 
4191 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4192                                            SourceLocation Loc,
4193                                            SourceRange ArgRange,
4194                                            UnaryExprOrTypeTrait TraitKind) {
4195   // Invalid types must be hard errors for SFINAE in C++.
4196   if (S.LangOpts.CPlusPlus)
4197     return true;
4198 
4199   // C99 6.5.3.4p1:
4200   if (T->isFunctionType() &&
4201       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4202        TraitKind == UETT_PreferredAlignOf)) {
4203     // sizeof(function)/alignof(function) is allowed as an extension.
4204     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4205         << getTraitSpelling(TraitKind) << ArgRange;
4206     return false;
4207   }
4208 
4209   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4210   // this is an error (OpenCL v1.1 s6.3.k)
4211   if (T->isVoidType()) {
4212     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4213                                         : diag::ext_sizeof_alignof_void_type;
4214     S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4215     return false;
4216   }
4217 
4218   return true;
4219 }
4220 
4221 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4222                                              SourceLocation Loc,
4223                                              SourceRange ArgRange,
4224                                              UnaryExprOrTypeTrait TraitKind) {
4225   // Reject sizeof(interface) and sizeof(interface<proto>) if the
4226   // runtime doesn't allow it.
4227   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4228     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4229       << T << (TraitKind == UETT_SizeOf)
4230       << ArgRange;
4231     return true;
4232   }
4233 
4234   return false;
4235 }
4236 
4237 /// Check whether E is a pointer from a decayed array type (the decayed
4238 /// pointer type is equal to T) and emit a warning if it is.
4239 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4240                                      Expr *E) {
4241   // Don't warn if the operation changed the type.
4242   if (T != E->getType())
4243     return;
4244 
4245   // Now look for array decays.
4246   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
4247   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4248     return;
4249 
4250   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4251                                              << ICE->getType()
4252                                              << ICE->getSubExpr()->getType();
4253 }
4254 
4255 /// Check the constraints on expression operands to unary type expression
4256 /// and type traits.
4257 ///
4258 /// Completes any types necessary and validates the constraints on the operand
4259 /// expression. The logic mostly mirrors the type-based overload, but may modify
4260 /// the expression as it completes the type for that expression through template
4261 /// instantiation, etc.
4262 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4263                                             UnaryExprOrTypeTrait ExprKind) {
4264   QualType ExprTy = E->getType();
4265   assert(!ExprTy->isReferenceType());
4266 
4267   bool IsUnevaluatedOperand =
4268       (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
4269        ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep);
4270   if (IsUnevaluatedOperand) {
4271     ExprResult Result = CheckUnevaluatedOperand(E);
4272     if (Result.isInvalid())
4273       return true;
4274     E = Result.get();
4275   }
4276 
4277   // The operand for sizeof and alignof is in an unevaluated expression context,
4278   // so side effects could result in unintended consequences.
4279   // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4280   // used to build SFINAE gadgets.
4281   // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4282   if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4283       !E->isInstantiationDependent() &&
4284       !E->getType()->isVariableArrayType() &&
4285       E->HasSideEffects(Context, false))
4286     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4287 
4288   if (ExprKind == UETT_VecStep)
4289     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4290                                         E->getSourceRange());
4291 
4292   // Explicitly list some types as extensions.
4293   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4294                                       E->getSourceRange(), ExprKind))
4295     return false;
4296 
4297   // 'alignof' applied to an expression only requires the base element type of
4298   // the expression to be complete. 'sizeof' requires the expression's type to
4299   // be complete (and will attempt to complete it if it's an array of unknown
4300   // bound).
4301   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4302     if (RequireCompleteSizedType(
4303             E->getExprLoc(), Context.getBaseElementType(E->getType()),
4304             diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4305             getTraitSpelling(ExprKind), E->getSourceRange()))
4306       return true;
4307   } else {
4308     if (RequireCompleteSizedExprType(
4309             E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4310             getTraitSpelling(ExprKind), E->getSourceRange()))
4311       return true;
4312   }
4313 
4314   // Completing the expression's type may have changed it.
4315   ExprTy = E->getType();
4316   assert(!ExprTy->isReferenceType());
4317 
4318   if (ExprTy->isFunctionType()) {
4319     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4320         << getTraitSpelling(ExprKind) << E->getSourceRange();
4321     return true;
4322   }
4323 
4324   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4325                                        E->getSourceRange(), ExprKind))
4326     return true;
4327 
4328   if (ExprKind == UETT_SizeOf) {
4329     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4330       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4331         QualType OType = PVD->getOriginalType();
4332         QualType Type = PVD->getType();
4333         if (Type->isPointerType() && OType->isArrayType()) {
4334           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4335             << Type << OType;
4336           Diag(PVD->getLocation(), diag::note_declared_at);
4337         }
4338       }
4339     }
4340 
4341     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4342     // decays into a pointer and returns an unintended result. This is most
4343     // likely a typo for "sizeof(array) op x".
4344     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4345       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4346                                BO->getLHS());
4347       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4348                                BO->getRHS());
4349     }
4350   }
4351 
4352   return false;
4353 }
4354 
4355 /// Check the constraints on operands to unary expression and type
4356 /// traits.
4357 ///
4358 /// This will complete any types necessary, and validate the various constraints
4359 /// on those operands.
4360 ///
4361 /// The UsualUnaryConversions() function is *not* called by this routine.
4362 /// C99 6.3.2.1p[2-4] all state:
4363 ///   Except when it is the operand of the sizeof operator ...
4364 ///
4365 /// C++ [expr.sizeof]p4
4366 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4367 ///   standard conversions are not applied to the operand of sizeof.
4368 ///
4369 /// This policy is followed for all of the unary trait expressions.
4370 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4371                                             SourceLocation OpLoc,
4372                                             SourceRange ExprRange,
4373                                             UnaryExprOrTypeTrait ExprKind) {
4374   if (ExprType->isDependentType())
4375     return false;
4376 
4377   // C++ [expr.sizeof]p2:
4378   //     When applied to a reference or a reference type, the result
4379   //     is the size of the referenced type.
4380   // C++11 [expr.alignof]p3:
4381   //     When alignof is applied to a reference type, the result
4382   //     shall be the alignment of the referenced type.
4383   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4384     ExprType = Ref->getPointeeType();
4385 
4386   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4387   //   When alignof or _Alignof is applied to an array type, the result
4388   //   is the alignment of the element type.
4389   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4390       ExprKind == UETT_OpenMPRequiredSimdAlign)
4391     ExprType = Context.getBaseElementType(ExprType);
4392 
4393   if (ExprKind == UETT_VecStep)
4394     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4395 
4396   // Explicitly list some types as extensions.
4397   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4398                                       ExprKind))
4399     return false;
4400 
4401   if (RequireCompleteSizedType(
4402           OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4403           getTraitSpelling(ExprKind), ExprRange))
4404     return true;
4405 
4406   if (ExprType->isFunctionType()) {
4407     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
4408         << getTraitSpelling(ExprKind) << ExprRange;
4409     return true;
4410   }
4411 
4412   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4413                                        ExprKind))
4414     return true;
4415 
4416   return false;
4417 }
4418 
4419 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4420   // Cannot know anything else if the expression is dependent.
4421   if (E->isTypeDependent())
4422     return false;
4423 
4424   if (E->getObjectKind() == OK_BitField) {
4425     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4426        << 1 << E->getSourceRange();
4427     return true;
4428   }
4429 
4430   ValueDecl *D = nullptr;
4431   Expr *Inner = E->IgnoreParens();
4432   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4433     D = DRE->getDecl();
4434   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4435     D = ME->getMemberDecl();
4436   }
4437 
4438   // If it's a field, require the containing struct to have a
4439   // complete definition so that we can compute the layout.
4440   //
4441   // This can happen in C++11 onwards, either by naming the member
4442   // in a way that is not transformed into a member access expression
4443   // (in an unevaluated operand, for instance), or by naming the member
4444   // in a trailing-return-type.
4445   //
4446   // For the record, since __alignof__ on expressions is a GCC
4447   // extension, GCC seems to permit this but always gives the
4448   // nonsensical answer 0.
4449   //
4450   // We don't really need the layout here --- we could instead just
4451   // directly check for all the appropriate alignment-lowing
4452   // attributes --- but that would require duplicating a lot of
4453   // logic that just isn't worth duplicating for such a marginal
4454   // use-case.
4455   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4456     // Fast path this check, since we at least know the record has a
4457     // definition if we can find a member of it.
4458     if (!FD->getParent()->isCompleteDefinition()) {
4459       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4460         << E->getSourceRange();
4461       return true;
4462     }
4463 
4464     // Otherwise, if it's a field, and the field doesn't have
4465     // reference type, then it must have a complete type (or be a
4466     // flexible array member, which we explicitly want to
4467     // white-list anyway), which makes the following checks trivial.
4468     if (!FD->getType()->isReferenceType())
4469       return false;
4470   }
4471 
4472   return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4473 }
4474 
4475 bool Sema::CheckVecStepExpr(Expr *E) {
4476   E = E->IgnoreParens();
4477 
4478   // Cannot know anything else if the expression is dependent.
4479   if (E->isTypeDependent())
4480     return false;
4481 
4482   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4483 }
4484 
4485 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4486                                         CapturingScopeInfo *CSI) {
4487   assert(T->isVariablyModifiedType());
4488   assert(CSI != nullptr);
4489 
4490   // We're going to walk down into the type and look for VLA expressions.
4491   do {
4492     const Type *Ty = T.getTypePtr();
4493     switch (Ty->getTypeClass()) {
4494 #define TYPE(Class, Base)
4495 #define ABSTRACT_TYPE(Class, Base)
4496 #define NON_CANONICAL_TYPE(Class, Base)
4497 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4498 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4499 #include "clang/AST/TypeNodes.inc"
4500       T = QualType();
4501       break;
4502     // These types are never variably-modified.
4503     case Type::Builtin:
4504     case Type::Complex:
4505     case Type::Vector:
4506     case Type::ExtVector:
4507     case Type::ConstantMatrix:
4508     case Type::Record:
4509     case Type::Enum:
4510     case Type::TemplateSpecialization:
4511     case Type::ObjCObject:
4512     case Type::ObjCInterface:
4513     case Type::ObjCObjectPointer:
4514     case Type::ObjCTypeParam:
4515     case Type::Pipe:
4516     case Type::BitInt:
4517       llvm_unreachable("type class is never variably-modified!");
4518     case Type::Elaborated:
4519       T = cast<ElaboratedType>(Ty)->getNamedType();
4520       break;
4521     case Type::Adjusted:
4522       T = cast<AdjustedType>(Ty)->getOriginalType();
4523       break;
4524     case Type::Decayed:
4525       T = cast<DecayedType>(Ty)->getPointeeType();
4526       break;
4527     case Type::Pointer:
4528       T = cast<PointerType>(Ty)->getPointeeType();
4529       break;
4530     case Type::BlockPointer:
4531       T = cast<BlockPointerType>(Ty)->getPointeeType();
4532       break;
4533     case Type::LValueReference:
4534     case Type::RValueReference:
4535       T = cast<ReferenceType>(Ty)->getPointeeType();
4536       break;
4537     case Type::MemberPointer:
4538       T = cast<MemberPointerType>(Ty)->getPointeeType();
4539       break;
4540     case Type::ConstantArray:
4541     case Type::IncompleteArray:
4542       // Losing element qualification here is fine.
4543       T = cast<ArrayType>(Ty)->getElementType();
4544       break;
4545     case Type::VariableArray: {
4546       // Losing element qualification here is fine.
4547       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4548 
4549       // Unknown size indication requires no size computation.
4550       // Otherwise, evaluate and record it.
4551       auto Size = VAT->getSizeExpr();
4552       if (Size && !CSI->isVLATypeCaptured(VAT) &&
4553           (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4554         CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4555 
4556       T = VAT->getElementType();
4557       break;
4558     }
4559     case Type::FunctionProto:
4560     case Type::FunctionNoProto:
4561       T = cast<FunctionType>(Ty)->getReturnType();
4562       break;
4563     case Type::Paren:
4564     case Type::TypeOf:
4565     case Type::UnaryTransform:
4566     case Type::Attributed:
4567     case Type::BTFTagAttributed:
4568     case Type::SubstTemplateTypeParm:
4569     case Type::MacroQualified:
4570       // Keep walking after single level desugaring.
4571       T = T.getSingleStepDesugaredType(Context);
4572       break;
4573     case Type::Typedef:
4574       T = cast<TypedefType>(Ty)->desugar();
4575       break;
4576     case Type::Decltype:
4577       T = cast<DecltypeType>(Ty)->desugar();
4578       break;
4579     case Type::Using:
4580       T = cast<UsingType>(Ty)->desugar();
4581       break;
4582     case Type::Auto:
4583     case Type::DeducedTemplateSpecialization:
4584       T = cast<DeducedType>(Ty)->getDeducedType();
4585       break;
4586     case Type::TypeOfExpr:
4587       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4588       break;
4589     case Type::Atomic:
4590       T = cast<AtomicType>(Ty)->getValueType();
4591       break;
4592     }
4593   } while (!T.isNull() && T->isVariablyModifiedType());
4594 }
4595 
4596 /// Build a sizeof or alignof expression given a type operand.
4597 ExprResult
4598 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4599                                      SourceLocation OpLoc,
4600                                      UnaryExprOrTypeTrait ExprKind,
4601                                      SourceRange R) {
4602   if (!TInfo)
4603     return ExprError();
4604 
4605   QualType T = TInfo->getType();
4606 
4607   if (!T->isDependentType() &&
4608       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4609     return ExprError();
4610 
4611   if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4612     if (auto *TT = T->getAs<TypedefType>()) {
4613       for (auto I = FunctionScopes.rbegin(),
4614                 E = std::prev(FunctionScopes.rend());
4615            I != E; ++I) {
4616         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4617         if (CSI == nullptr)
4618           break;
4619         DeclContext *DC = nullptr;
4620         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4621           DC = LSI->CallOperator;
4622         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4623           DC = CRSI->TheCapturedDecl;
4624         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4625           DC = BSI->TheDecl;
4626         if (DC) {
4627           if (DC->containsDecl(TT->getDecl()))
4628             break;
4629           captureVariablyModifiedType(Context, T, CSI);
4630         }
4631       }
4632     }
4633   }
4634 
4635   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4636   if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4637       TInfo->getType()->isVariablyModifiedType())
4638     TInfo = TransformToPotentiallyEvaluated(TInfo);
4639 
4640   return new (Context) UnaryExprOrTypeTraitExpr(
4641       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4642 }
4643 
4644 /// Build a sizeof or alignof expression given an expression
4645 /// operand.
4646 ExprResult
4647 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4648                                      UnaryExprOrTypeTrait ExprKind) {
4649   ExprResult PE = CheckPlaceholderExpr(E);
4650   if (PE.isInvalid())
4651     return ExprError();
4652 
4653   E = PE.get();
4654 
4655   // Verify that the operand is valid.
4656   bool isInvalid = false;
4657   if (E->isTypeDependent()) {
4658     // Delay type-checking for type-dependent expressions.
4659   } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4660     isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4661   } else if (ExprKind == UETT_VecStep) {
4662     isInvalid = CheckVecStepExpr(E);
4663   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4664       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4665       isInvalid = true;
4666   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4667     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4668     isInvalid = true;
4669   } else {
4670     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4671   }
4672 
4673   if (isInvalid)
4674     return ExprError();
4675 
4676   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4677     PE = TransformToPotentiallyEvaluated(E);
4678     if (PE.isInvalid()) return ExprError();
4679     E = PE.get();
4680   }
4681 
4682   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4683   return new (Context) UnaryExprOrTypeTraitExpr(
4684       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4685 }
4686 
4687 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4688 /// expr and the same for @c alignof and @c __alignof
4689 /// Note that the ArgRange is invalid if isType is false.
4690 ExprResult
4691 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4692                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4693                                     void *TyOrEx, SourceRange ArgRange) {
4694   // If error parsing type, ignore.
4695   if (!TyOrEx) return ExprError();
4696 
4697   if (IsType) {
4698     TypeSourceInfo *TInfo;
4699     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4700     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4701   }
4702 
4703   Expr *ArgEx = (Expr *)TyOrEx;
4704   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4705   return Result;
4706 }
4707 
4708 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4709                                      bool IsReal) {
4710   if (V.get()->isTypeDependent())
4711     return S.Context.DependentTy;
4712 
4713   // _Real and _Imag are only l-values for normal l-values.
4714   if (V.get()->getObjectKind() != OK_Ordinary) {
4715     V = S.DefaultLvalueConversion(V.get());
4716     if (V.isInvalid())
4717       return QualType();
4718   }
4719 
4720   // These operators return the element type of a complex type.
4721   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4722     return CT->getElementType();
4723 
4724   // Otherwise they pass through real integer and floating point types here.
4725   if (V.get()->getType()->isArithmeticType())
4726     return V.get()->getType();
4727 
4728   // Test for placeholders.
4729   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4730   if (PR.isInvalid()) return QualType();
4731   if (PR.get() != V.get()) {
4732     V = PR;
4733     return CheckRealImagOperand(S, V, Loc, IsReal);
4734   }
4735 
4736   // Reject anything else.
4737   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4738     << (IsReal ? "__real" : "__imag");
4739   return QualType();
4740 }
4741 
4742 
4743 
4744 ExprResult
4745 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4746                           tok::TokenKind Kind, Expr *Input) {
4747   UnaryOperatorKind Opc;
4748   switch (Kind) {
4749   default: llvm_unreachable("Unknown unary op!");
4750   case tok::plusplus:   Opc = UO_PostInc; break;
4751   case tok::minusminus: Opc = UO_PostDec; break;
4752   }
4753 
4754   // Since this might is a postfix expression, get rid of ParenListExprs.
4755   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4756   if (Result.isInvalid()) return ExprError();
4757   Input = Result.get();
4758 
4759   return BuildUnaryOp(S, OpLoc, Opc, Input);
4760 }
4761 
4762 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4763 ///
4764 /// \return true on error
4765 static bool checkArithmeticOnObjCPointer(Sema &S,
4766                                          SourceLocation opLoc,
4767                                          Expr *op) {
4768   assert(op->getType()->isObjCObjectPointerType());
4769   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4770       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4771     return false;
4772 
4773   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4774     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4775     << op->getSourceRange();
4776   return true;
4777 }
4778 
4779 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4780   auto *BaseNoParens = Base->IgnoreParens();
4781   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4782     return MSProp->getPropertyDecl()->getType()->isArrayType();
4783   return isa<MSPropertySubscriptExpr>(BaseNoParens);
4784 }
4785 
4786 // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
4787 // Typically this is DependentTy, but can sometimes be more precise.
4788 //
4789 // There are cases when we could determine a non-dependent type:
4790 //  - LHS and RHS may have non-dependent types despite being type-dependent
4791 //    (e.g. unbounded array static members of the current instantiation)
4792 //  - one may be a dependent-sized array with known element type
4793 //  - one may be a dependent-typed valid index (enum in current instantiation)
4794 //
4795 // We *always* return a dependent type, in such cases it is DependentTy.
4796 // This avoids creating type-dependent expressions with non-dependent types.
4797 // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
4798 static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
4799                                                const ASTContext &Ctx) {
4800   assert(LHS->isTypeDependent() || RHS->isTypeDependent());
4801   QualType LTy = LHS->getType(), RTy = RHS->getType();
4802   QualType Result = Ctx.DependentTy;
4803   if (RTy->isIntegralOrUnscopedEnumerationType()) {
4804     if (const PointerType *PT = LTy->getAs<PointerType>())
4805       Result = PT->getPointeeType();
4806     else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
4807       Result = AT->getElementType();
4808   } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
4809     if (const PointerType *PT = RTy->getAs<PointerType>())
4810       Result = PT->getPointeeType();
4811     else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
4812       Result = AT->getElementType();
4813   }
4814   // Ensure we return a dependent type.
4815   return Result->isDependentType() ? Result : Ctx.DependentTy;
4816 }
4817 
4818 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args);
4819 
4820 ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
4821                                          SourceLocation lbLoc,
4822                                          MultiExprArg ArgExprs,
4823                                          SourceLocation rbLoc) {
4824 
4825   if (base && !base->getType().isNull() &&
4826       base->hasPlaceholderType(BuiltinType::OMPArraySection))
4827     return ActOnOMPArraySectionExpr(base, lbLoc, ArgExprs.front(), SourceLocation(),
4828                                     SourceLocation(), /*Length*/ nullptr,
4829                                     /*Stride=*/nullptr, rbLoc);
4830 
4831   // Since this might be a postfix expression, get rid of ParenListExprs.
4832   if (isa<ParenListExpr>(base)) {
4833     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4834     if (result.isInvalid())
4835       return ExprError();
4836     base = result.get();
4837   }
4838 
4839   // Check if base and idx form a MatrixSubscriptExpr.
4840   //
4841   // Helper to check for comma expressions, which are not allowed as indices for
4842   // matrix subscript expressions.
4843   auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4844     if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4845       Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4846           << SourceRange(base->getBeginLoc(), rbLoc);
4847       return true;
4848     }
4849     return false;
4850   };
4851   // The matrix subscript operator ([][])is considered a single operator.
4852   // Separating the index expressions by parenthesis is not allowed.
4853   if (base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
4854       !isa<MatrixSubscriptExpr>(base)) {
4855     Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4856         << SourceRange(base->getBeginLoc(), rbLoc);
4857     return ExprError();
4858   }
4859   // If the base is a MatrixSubscriptExpr, try to create a new
4860   // MatrixSubscriptExpr.
4861   auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4862   if (matSubscriptE) {
4863     assert(ArgExprs.size() == 1);
4864     if (CheckAndReportCommaError(ArgExprs.front()))
4865       return ExprError();
4866 
4867     assert(matSubscriptE->isIncomplete() &&
4868            "base has to be an incomplete matrix subscript");
4869     return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
4870                                             matSubscriptE->getRowIdx(),
4871                                             ArgExprs.front(), rbLoc);
4872   }
4873 
4874   // Handle any non-overload placeholder types in the base and index
4875   // expressions.  We can't handle overloads here because the other
4876   // operand might be an overloadable type, in which case the overload
4877   // resolution for the operator overload should get the first crack
4878   // at the overload.
4879   bool IsMSPropertySubscript = false;
4880   if (base->getType()->isNonOverloadPlaceholderType()) {
4881     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4882     if (!IsMSPropertySubscript) {
4883       ExprResult result = CheckPlaceholderExpr(base);
4884       if (result.isInvalid())
4885         return ExprError();
4886       base = result.get();
4887     }
4888   }
4889 
4890   // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4891   if (base->getType()->isMatrixType()) {
4892     assert(ArgExprs.size() == 1);
4893     if (CheckAndReportCommaError(ArgExprs.front()))
4894       return ExprError();
4895 
4896     return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
4897                                             rbLoc);
4898   }
4899 
4900   if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
4901     Expr *idx = ArgExprs[0];
4902     if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4903         (isa<CXXOperatorCallExpr>(idx) &&
4904          cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
4905       Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4906           << SourceRange(base->getBeginLoc(), rbLoc);
4907     }
4908   }
4909 
4910   if (ArgExprs.size() == 1 &&
4911       ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
4912     ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
4913     if (result.isInvalid())
4914       return ExprError();
4915     ArgExprs[0] = result.get();
4916   } else {
4917     if (checkArgsForPlaceholders(*this, ArgExprs))
4918       return ExprError();
4919   }
4920 
4921   // Build an unanalyzed expression if either operand is type-dependent.
4922   if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
4923       (base->isTypeDependent() ||
4924        Expr::hasAnyTypeDependentArguments(ArgExprs))) {
4925     return new (Context) ArraySubscriptExpr(
4926         base, ArgExprs.front(),
4927         getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
4928         VK_LValue, OK_Ordinary, rbLoc);
4929   }
4930 
4931   // MSDN, property (C++)
4932   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4933   // This attribute can also be used in the declaration of an empty array in a
4934   // class or structure definition. For example:
4935   // __declspec(property(get=GetX, put=PutX)) int x[];
4936   // The above statement indicates that x[] can be used with one or more array
4937   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4938   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4939   if (IsMSPropertySubscript) {
4940     assert(ArgExprs.size() == 1);
4941     // Build MS property subscript expression if base is MS property reference
4942     // or MS property subscript.
4943     return new (Context)
4944         MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
4945                                 VK_LValue, OK_Ordinary, rbLoc);
4946   }
4947 
4948   // Use C++ overloaded-operator rules if either operand has record
4949   // type.  The spec says to do this if either type is *overloadable*,
4950   // but enum types can't declare subscript operators or conversion
4951   // operators, so there's nothing interesting for overload resolution
4952   // to do if there aren't any record types involved.
4953   //
4954   // ObjC pointers have their own subscripting logic that is not tied
4955   // to overload resolution and so should not take this path.
4956   if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
4957       ((base->getType()->isRecordType() ||
4958         (ArgExprs.size() != 1 || ArgExprs[0]->getType()->isRecordType())))) {
4959     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
4960   }
4961 
4962   ExprResult Res =
4963       CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
4964 
4965   if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4966     CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4967 
4968   return Res;
4969 }
4970 
4971 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
4972   InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
4973   InitializationKind Kind =
4974       InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
4975   InitializationSequence InitSeq(*this, Entity, Kind, E);
4976   return InitSeq.Perform(*this, Entity, Kind, E);
4977 }
4978 
4979 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
4980                                                   Expr *ColumnIdx,
4981                                                   SourceLocation RBLoc) {
4982   ExprResult BaseR = CheckPlaceholderExpr(Base);
4983   if (BaseR.isInvalid())
4984     return BaseR;
4985   Base = BaseR.get();
4986 
4987   ExprResult RowR = CheckPlaceholderExpr(RowIdx);
4988   if (RowR.isInvalid())
4989     return RowR;
4990   RowIdx = RowR.get();
4991 
4992   if (!ColumnIdx)
4993     return new (Context) MatrixSubscriptExpr(
4994         Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
4995 
4996   // Build an unanalyzed expression if any of the operands is type-dependent.
4997   if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
4998       ColumnIdx->isTypeDependent())
4999     return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5000                                              Context.DependentTy, RBLoc);
5001 
5002   ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
5003   if (ColumnR.isInvalid())
5004     return ColumnR;
5005   ColumnIdx = ColumnR.get();
5006 
5007   // Check that IndexExpr is an integer expression. If it is a constant
5008   // expression, check that it is less than Dim (= the number of elements in the
5009   // corresponding dimension).
5010   auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5011                           bool IsColumnIdx) -> Expr * {
5012     if (!IndexExpr->getType()->isIntegerType() &&
5013         !IndexExpr->isTypeDependent()) {
5014       Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5015           << IsColumnIdx;
5016       return nullptr;
5017     }
5018 
5019     if (std::optional<llvm::APSInt> Idx =
5020             IndexExpr->getIntegerConstantExpr(Context)) {
5021       if ((*Idx < 0 || *Idx >= Dim)) {
5022         Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5023             << IsColumnIdx << Dim;
5024         return nullptr;
5025       }
5026     }
5027 
5028     ExprResult ConvExpr =
5029         tryConvertExprToType(IndexExpr, Context.getSizeType());
5030     assert(!ConvExpr.isInvalid() &&
5031            "should be able to convert any integer type to size type");
5032     return ConvExpr.get();
5033   };
5034 
5035   auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5036   RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5037   ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5038   if (!RowIdx || !ColumnIdx)
5039     return ExprError();
5040 
5041   return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5042                                            MTy->getElementType(), RBLoc);
5043 }
5044 
5045 void Sema::CheckAddressOfNoDeref(const Expr *E) {
5046   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5047   const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5048 
5049   // For expressions like `&(*s).b`, the base is recorded and what should be
5050   // checked.
5051   const MemberExpr *Member = nullptr;
5052   while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
5053     StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5054 
5055   LastRecord.PossibleDerefs.erase(StrippedExpr);
5056 }
5057 
5058 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5059   if (isUnevaluatedContext())
5060     return;
5061 
5062   QualType ResultTy = E->getType();
5063   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5064 
5065   // Bail if the element is an array since it is not memory access.
5066   if (isa<ArrayType>(ResultTy))
5067     return;
5068 
5069   if (ResultTy->hasAttr(attr::NoDeref)) {
5070     LastRecord.PossibleDerefs.insert(E);
5071     return;
5072   }
5073 
5074   // Check if the base type is a pointer to a member access of a struct
5075   // marked with noderef.
5076   const Expr *Base = E->getBase();
5077   QualType BaseTy = Base->getType();
5078   if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
5079     // Not a pointer access
5080     return;
5081 
5082   const MemberExpr *Member = nullptr;
5083   while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
5084          Member->isArrow())
5085     Base = Member->getBase();
5086 
5087   if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
5088     if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5089       LastRecord.PossibleDerefs.insert(E);
5090   }
5091 }
5092 
5093 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
5094                                           Expr *LowerBound,
5095                                           SourceLocation ColonLocFirst,
5096                                           SourceLocation ColonLocSecond,
5097                                           Expr *Length, Expr *Stride,
5098                                           SourceLocation RBLoc) {
5099   if (Base->hasPlaceholderType() &&
5100       !Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5101     ExprResult Result = CheckPlaceholderExpr(Base);
5102     if (Result.isInvalid())
5103       return ExprError();
5104     Base = Result.get();
5105   }
5106   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
5107     ExprResult Result = CheckPlaceholderExpr(LowerBound);
5108     if (Result.isInvalid())
5109       return ExprError();
5110     Result = DefaultLvalueConversion(Result.get());
5111     if (Result.isInvalid())
5112       return ExprError();
5113     LowerBound = Result.get();
5114   }
5115   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
5116     ExprResult Result = CheckPlaceholderExpr(Length);
5117     if (Result.isInvalid())
5118       return ExprError();
5119     Result = DefaultLvalueConversion(Result.get());
5120     if (Result.isInvalid())
5121       return ExprError();
5122     Length = Result.get();
5123   }
5124   if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
5125     ExprResult Result = CheckPlaceholderExpr(Stride);
5126     if (Result.isInvalid())
5127       return ExprError();
5128     Result = DefaultLvalueConversion(Result.get());
5129     if (Result.isInvalid())
5130       return ExprError();
5131     Stride = Result.get();
5132   }
5133 
5134   // Build an unanalyzed expression if either operand is type-dependent.
5135   if (Base->isTypeDependent() ||
5136       (LowerBound &&
5137        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
5138       (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
5139       (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
5140     return new (Context) OMPArraySectionExpr(
5141         Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
5142         OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5143   }
5144 
5145   // Perform default conversions.
5146   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
5147   QualType ResultTy;
5148   if (OriginalTy->isAnyPointerType()) {
5149     ResultTy = OriginalTy->getPointeeType();
5150   } else if (OriginalTy->isArrayType()) {
5151     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
5152   } else {
5153     return ExprError(
5154         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
5155         << Base->getSourceRange());
5156   }
5157   // C99 6.5.2.1p1
5158   if (LowerBound) {
5159     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
5160                                                       LowerBound);
5161     if (Res.isInvalid())
5162       return ExprError(Diag(LowerBound->getExprLoc(),
5163                             diag::err_omp_typecheck_section_not_integer)
5164                        << 0 << LowerBound->getSourceRange());
5165     LowerBound = Res.get();
5166 
5167     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5168         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5169       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
5170           << 0 << LowerBound->getSourceRange();
5171   }
5172   if (Length) {
5173     auto Res =
5174         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
5175     if (Res.isInvalid())
5176       return ExprError(Diag(Length->getExprLoc(),
5177                             diag::err_omp_typecheck_section_not_integer)
5178                        << 1 << Length->getSourceRange());
5179     Length = Res.get();
5180 
5181     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5182         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5183       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
5184           << 1 << Length->getSourceRange();
5185   }
5186   if (Stride) {
5187     ExprResult Res =
5188         PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
5189     if (Res.isInvalid())
5190       return ExprError(Diag(Stride->getExprLoc(),
5191                             diag::err_omp_typecheck_section_not_integer)
5192                        << 1 << Stride->getSourceRange());
5193     Stride = Res.get();
5194 
5195     if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5196         Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5197       Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
5198           << 1 << Stride->getSourceRange();
5199   }
5200 
5201   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5202   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5203   // type. Note that functions are not objects, and that (in C99 parlance)
5204   // incomplete types are not object types.
5205   if (ResultTy->isFunctionType()) {
5206     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
5207         << ResultTy << Base->getSourceRange();
5208     return ExprError();
5209   }
5210 
5211   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
5212                           diag::err_omp_section_incomplete_type, Base))
5213     return ExprError();
5214 
5215   if (LowerBound && !OriginalTy->isAnyPointerType()) {
5216     Expr::EvalResult Result;
5217     if (LowerBound->EvaluateAsInt(Result, Context)) {
5218       // OpenMP 5.0, [2.1.5 Array Sections]
5219       // The array section must be a subset of the original array.
5220       llvm::APSInt LowerBoundValue = Result.Val.getInt();
5221       if (LowerBoundValue.isNegative()) {
5222         Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
5223             << LowerBound->getSourceRange();
5224         return ExprError();
5225       }
5226     }
5227   }
5228 
5229   if (Length) {
5230     Expr::EvalResult Result;
5231     if (Length->EvaluateAsInt(Result, Context)) {
5232       // OpenMP 5.0, [2.1.5 Array Sections]
5233       // The length must evaluate to non-negative integers.
5234       llvm::APSInt LengthValue = Result.Val.getInt();
5235       if (LengthValue.isNegative()) {
5236         Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
5237             << toString(LengthValue, /*Radix=*/10, /*Signed=*/true)
5238             << Length->getSourceRange();
5239         return ExprError();
5240       }
5241     }
5242   } else if (ColonLocFirst.isValid() &&
5243              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5244                                       !OriginalTy->isVariableArrayType()))) {
5245     // OpenMP 5.0, [2.1.5 Array Sections]
5246     // When the size of the array dimension is not known, the length must be
5247     // specified explicitly.
5248     Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5249         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5250     return ExprError();
5251   }
5252 
5253   if (Stride) {
5254     Expr::EvalResult Result;
5255     if (Stride->EvaluateAsInt(Result, Context)) {
5256       // OpenMP 5.0, [2.1.5 Array Sections]
5257       // The stride must evaluate to a positive integer.
5258       llvm::APSInt StrideValue = Result.Val.getInt();
5259       if (!StrideValue.isStrictlyPositive()) {
5260         Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5261             << toString(StrideValue, /*Radix=*/10, /*Signed=*/true)
5262             << Stride->getSourceRange();
5263         return ExprError();
5264       }
5265     }
5266   }
5267 
5268   if (!Base->hasPlaceholderType(BuiltinType::OMPArraySection)) {
5269     ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5270     if (Result.isInvalid())
5271       return ExprError();
5272     Base = Result.get();
5273   }
5274   return new (Context) OMPArraySectionExpr(
5275       Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5276       OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5277 }
5278 
5279 ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5280                                           SourceLocation RParenLoc,
5281                                           ArrayRef<Expr *> Dims,
5282                                           ArrayRef<SourceRange> Brackets) {
5283   if (Base->hasPlaceholderType()) {
5284     ExprResult Result = CheckPlaceholderExpr(Base);
5285     if (Result.isInvalid())
5286       return ExprError();
5287     Result = DefaultLvalueConversion(Result.get());
5288     if (Result.isInvalid())
5289       return ExprError();
5290     Base = Result.get();
5291   }
5292   QualType BaseTy = Base->getType();
5293   // Delay analysis of the types/expressions if instantiation/specialization is
5294   // required.
5295   if (!BaseTy->isPointerType() && Base->isTypeDependent())
5296     return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5297                                        LParenLoc, RParenLoc, Dims, Brackets);
5298   if (!BaseTy->isPointerType() ||
5299       (!Base->isTypeDependent() &&
5300        BaseTy->getPointeeType()->isIncompleteType()))
5301     return ExprError(Diag(Base->getExprLoc(),
5302                           diag::err_omp_non_pointer_type_array_shaping_base)
5303                      << Base->getSourceRange());
5304 
5305   SmallVector<Expr *, 4> NewDims;
5306   bool ErrorFound = false;
5307   for (Expr *Dim : Dims) {
5308     if (Dim->hasPlaceholderType()) {
5309       ExprResult Result = CheckPlaceholderExpr(Dim);
5310       if (Result.isInvalid()) {
5311         ErrorFound = true;
5312         continue;
5313       }
5314       Result = DefaultLvalueConversion(Result.get());
5315       if (Result.isInvalid()) {
5316         ErrorFound = true;
5317         continue;
5318       }
5319       Dim = Result.get();
5320     }
5321     if (!Dim->isTypeDependent()) {
5322       ExprResult Result =
5323           PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5324       if (Result.isInvalid()) {
5325         ErrorFound = true;
5326         Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5327             << Dim->getSourceRange();
5328         continue;
5329       }
5330       Dim = Result.get();
5331       Expr::EvalResult EvResult;
5332       if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5333         // OpenMP 5.0, [2.1.4 Array Shaping]
5334         // Each si is an integral type expression that must evaluate to a
5335         // positive integer.
5336         llvm::APSInt Value = EvResult.Val.getInt();
5337         if (!Value.isStrictlyPositive()) {
5338           Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5339               << toString(Value, /*Radix=*/10, /*Signed=*/true)
5340               << Dim->getSourceRange();
5341           ErrorFound = true;
5342           continue;
5343         }
5344       }
5345     }
5346     NewDims.push_back(Dim);
5347   }
5348   if (ErrorFound)
5349     return ExprError();
5350   return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5351                                      LParenLoc, RParenLoc, NewDims, Brackets);
5352 }
5353 
5354 ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5355                                       SourceLocation LLoc, SourceLocation RLoc,
5356                                       ArrayRef<OMPIteratorData> Data) {
5357   SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5358   bool IsCorrect = true;
5359   for (const OMPIteratorData &D : Data) {
5360     TypeSourceInfo *TInfo = nullptr;
5361     SourceLocation StartLoc;
5362     QualType DeclTy;
5363     if (!D.Type.getAsOpaquePtr()) {
5364       // OpenMP 5.0, 2.1.6 Iterators
5365       // In an iterator-specifier, if the iterator-type is not specified then
5366       // the type of that iterator is of int type.
5367       DeclTy = Context.IntTy;
5368       StartLoc = D.DeclIdentLoc;
5369     } else {
5370       DeclTy = GetTypeFromParser(D.Type, &TInfo);
5371       StartLoc = TInfo->getTypeLoc().getBeginLoc();
5372     }
5373 
5374     bool IsDeclTyDependent = DeclTy->isDependentType() ||
5375                              DeclTy->containsUnexpandedParameterPack() ||
5376                              DeclTy->isInstantiationDependentType();
5377     if (!IsDeclTyDependent) {
5378       if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5379         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5380         // The iterator-type must be an integral or pointer type.
5381         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5382             << DeclTy;
5383         IsCorrect = false;
5384         continue;
5385       }
5386       if (DeclTy.isConstant(Context)) {
5387         // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5388         // The iterator-type must not be const qualified.
5389         Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5390             << DeclTy;
5391         IsCorrect = false;
5392         continue;
5393       }
5394     }
5395 
5396     // Iterator declaration.
5397     assert(D.DeclIdent && "Identifier expected.");
5398     // Always try to create iterator declarator to avoid extra error messages
5399     // about unknown declarations use.
5400     auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5401                                D.DeclIdent, DeclTy, TInfo, SC_None);
5402     VD->setImplicit();
5403     if (S) {
5404       // Check for conflicting previous declaration.
5405       DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5406       LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5407                             ForVisibleRedeclaration);
5408       Previous.suppressDiagnostics();
5409       LookupName(Previous, S);
5410 
5411       FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5412                            /*AllowInlineNamespace=*/false);
5413       if (!Previous.empty()) {
5414         NamedDecl *Old = Previous.getRepresentativeDecl();
5415         Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5416         Diag(Old->getLocation(), diag::note_previous_definition);
5417       } else {
5418         PushOnScopeChains(VD, S);
5419       }
5420     } else {
5421       CurContext->addDecl(VD);
5422     }
5423 
5424     /// Act on the iterator variable declaration.
5425     ActOnOpenMPIteratorVarDecl(VD);
5426 
5427     Expr *Begin = D.Range.Begin;
5428     if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5429       ExprResult BeginRes =
5430           PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5431       Begin = BeginRes.get();
5432     }
5433     Expr *End = D.Range.End;
5434     if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5435       ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5436       End = EndRes.get();
5437     }
5438     Expr *Step = D.Range.Step;
5439     if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5440       if (!Step->getType()->isIntegralType(Context)) {
5441         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5442             << Step << Step->getSourceRange();
5443         IsCorrect = false;
5444         continue;
5445       }
5446       std::optional<llvm::APSInt> Result =
5447           Step->getIntegerConstantExpr(Context);
5448       // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5449       // If the step expression of a range-specification equals zero, the
5450       // behavior is unspecified.
5451       if (Result && Result->isZero()) {
5452         Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5453             << Step << Step->getSourceRange();
5454         IsCorrect = false;
5455         continue;
5456       }
5457     }
5458     if (!Begin || !End || !IsCorrect) {
5459       IsCorrect = false;
5460       continue;
5461     }
5462     OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5463     IDElem.IteratorDecl = VD;
5464     IDElem.AssignmentLoc = D.AssignLoc;
5465     IDElem.Range.Begin = Begin;
5466     IDElem.Range.End = End;
5467     IDElem.Range.Step = Step;
5468     IDElem.ColonLoc = D.ColonLoc;
5469     IDElem.SecondColonLoc = D.SecColonLoc;
5470   }
5471   if (!IsCorrect) {
5472     // Invalidate all created iterator declarations if error is found.
5473     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5474       if (Decl *ID = D.IteratorDecl)
5475         ID->setInvalidDecl();
5476     }
5477     return ExprError();
5478   }
5479   SmallVector<OMPIteratorHelperData, 4> Helpers;
5480   if (!CurContext->isDependentContext()) {
5481     // Build number of ityeration for each iteration range.
5482     // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5483     // ((Begini-Stepi-1-Endi) / -Stepi);
5484     for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5485       // (Endi - Begini)
5486       ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5487                                           D.Range.Begin);
5488       if(!Res.isUsable()) {
5489         IsCorrect = false;
5490         continue;
5491       }
5492       ExprResult St, St1;
5493       if (D.Range.Step) {
5494         St = D.Range.Step;
5495         // (Endi - Begini) + Stepi
5496         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5497         if (!Res.isUsable()) {
5498           IsCorrect = false;
5499           continue;
5500         }
5501         // (Endi - Begini) + Stepi - 1
5502         Res =
5503             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5504                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5505         if (!Res.isUsable()) {
5506           IsCorrect = false;
5507           continue;
5508         }
5509         // ((Endi - Begini) + Stepi - 1) / Stepi
5510         Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5511         if (!Res.isUsable()) {
5512           IsCorrect = false;
5513           continue;
5514         }
5515         St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5516         // (Begini - Endi)
5517         ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5518                                              D.Range.Begin, D.Range.End);
5519         if (!Res1.isUsable()) {
5520           IsCorrect = false;
5521           continue;
5522         }
5523         // (Begini - Endi) - Stepi
5524         Res1 =
5525             CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5526         if (!Res1.isUsable()) {
5527           IsCorrect = false;
5528           continue;
5529         }
5530         // (Begini - Endi) - Stepi - 1
5531         Res1 =
5532             CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5533                                ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5534         if (!Res1.isUsable()) {
5535           IsCorrect = false;
5536           continue;
5537         }
5538         // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5539         Res1 =
5540             CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5541         if (!Res1.isUsable()) {
5542           IsCorrect = false;
5543           continue;
5544         }
5545         // Stepi > 0.
5546         ExprResult CmpRes =
5547             CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5548                                ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5549         if (!CmpRes.isUsable()) {
5550           IsCorrect = false;
5551           continue;
5552         }
5553         Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5554                                  Res.get(), Res1.get());
5555         if (!Res.isUsable()) {
5556           IsCorrect = false;
5557           continue;
5558         }
5559       }
5560       Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5561       if (!Res.isUsable()) {
5562         IsCorrect = false;
5563         continue;
5564       }
5565 
5566       // Build counter update.
5567       // Build counter.
5568       auto *CounterVD =
5569           VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5570                           D.IteratorDecl->getBeginLoc(), nullptr,
5571                           Res.get()->getType(), nullptr, SC_None);
5572       CounterVD->setImplicit();
5573       ExprResult RefRes =
5574           BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5575                            D.IteratorDecl->getBeginLoc());
5576       // Build counter update.
5577       // I = Begini + counter * Stepi;
5578       ExprResult UpdateRes;
5579       if (D.Range.Step) {
5580         UpdateRes = CreateBuiltinBinOp(
5581             D.AssignmentLoc, BO_Mul,
5582             DefaultLvalueConversion(RefRes.get()).get(), St.get());
5583       } else {
5584         UpdateRes = DefaultLvalueConversion(RefRes.get());
5585       }
5586       if (!UpdateRes.isUsable()) {
5587         IsCorrect = false;
5588         continue;
5589       }
5590       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5591                                      UpdateRes.get());
5592       if (!UpdateRes.isUsable()) {
5593         IsCorrect = false;
5594         continue;
5595       }
5596       ExprResult VDRes =
5597           BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5598                            cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5599                            D.IteratorDecl->getBeginLoc());
5600       UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5601                                      UpdateRes.get());
5602       if (!UpdateRes.isUsable()) {
5603         IsCorrect = false;
5604         continue;
5605       }
5606       UpdateRes =
5607           ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5608       if (!UpdateRes.isUsable()) {
5609         IsCorrect = false;
5610         continue;
5611       }
5612       ExprResult CounterUpdateRes =
5613           CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5614       if (!CounterUpdateRes.isUsable()) {
5615         IsCorrect = false;
5616         continue;
5617       }
5618       CounterUpdateRes =
5619           ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5620       if (!CounterUpdateRes.isUsable()) {
5621         IsCorrect = false;
5622         continue;
5623       }
5624       OMPIteratorHelperData &HD = Helpers.emplace_back();
5625       HD.CounterVD = CounterVD;
5626       HD.Upper = Res.get();
5627       HD.Update = UpdateRes.get();
5628       HD.CounterUpdate = CounterUpdateRes.get();
5629     }
5630   } else {
5631     Helpers.assign(ID.size(), {});
5632   }
5633   if (!IsCorrect) {
5634     // Invalidate all created iterator declarations if error is found.
5635     for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5636       if (Decl *ID = D.IteratorDecl)
5637         ID->setInvalidDecl();
5638     }
5639     return ExprError();
5640   }
5641   return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5642                                  LLoc, RLoc, ID, Helpers);
5643 }
5644 
5645 ExprResult
5646 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5647                                       Expr *Idx, SourceLocation RLoc) {
5648   Expr *LHSExp = Base;
5649   Expr *RHSExp = Idx;
5650 
5651   ExprValueKind VK = VK_LValue;
5652   ExprObjectKind OK = OK_Ordinary;
5653 
5654   // Per C++ core issue 1213, the result is an xvalue if either operand is
5655   // a non-lvalue array, and an lvalue otherwise.
5656   if (getLangOpts().CPlusPlus11) {
5657     for (auto *Op : {LHSExp, RHSExp}) {
5658       Op = Op->IgnoreImplicit();
5659       if (Op->getType()->isArrayType() && !Op->isLValue())
5660         VK = VK_XValue;
5661     }
5662   }
5663 
5664   // Perform default conversions.
5665   if (!LHSExp->getType()->getAs<VectorType>()) {
5666     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5667     if (Result.isInvalid())
5668       return ExprError();
5669     LHSExp = Result.get();
5670   }
5671   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5672   if (Result.isInvalid())
5673     return ExprError();
5674   RHSExp = Result.get();
5675 
5676   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5677 
5678   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5679   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5680   // in the subscript position. As a result, we need to derive the array base
5681   // and index from the expression types.
5682   Expr *BaseExpr, *IndexExpr;
5683   QualType ResultType;
5684   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5685     BaseExpr = LHSExp;
5686     IndexExpr = RHSExp;
5687     ResultType =
5688         getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5689   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5690     BaseExpr = LHSExp;
5691     IndexExpr = RHSExp;
5692     ResultType = PTy->getPointeeType();
5693   } else if (const ObjCObjectPointerType *PTy =
5694                LHSTy->getAs<ObjCObjectPointerType>()) {
5695     BaseExpr = LHSExp;
5696     IndexExpr = RHSExp;
5697 
5698     // Use custom logic if this should be the pseudo-object subscript
5699     // expression.
5700     if (!LangOpts.isSubscriptPointerArithmetic())
5701       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5702                                           nullptr);
5703 
5704     ResultType = PTy->getPointeeType();
5705   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5706      // Handle the uncommon case of "123[Ptr]".
5707     BaseExpr = RHSExp;
5708     IndexExpr = LHSExp;
5709     ResultType = PTy->getPointeeType();
5710   } else if (const ObjCObjectPointerType *PTy =
5711                RHSTy->getAs<ObjCObjectPointerType>()) {
5712      // Handle the uncommon case of "123[Ptr]".
5713     BaseExpr = RHSExp;
5714     IndexExpr = LHSExp;
5715     ResultType = PTy->getPointeeType();
5716     if (!LangOpts.isSubscriptPointerArithmetic()) {
5717       Diag(LLoc, diag::err_subscript_nonfragile_interface)
5718         << ResultType << BaseExpr->getSourceRange();
5719       return ExprError();
5720     }
5721   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5722     BaseExpr = LHSExp;    // vectors: V[123]
5723     IndexExpr = RHSExp;
5724     // We apply C++ DR1213 to vector subscripting too.
5725     if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5726       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5727       if (Materialized.isInvalid())
5728         return ExprError();
5729       LHSExp = Materialized.get();
5730     }
5731     VK = LHSExp->getValueKind();
5732     if (VK != VK_PRValue)
5733       OK = OK_VectorComponent;
5734 
5735     ResultType = VTy->getElementType();
5736     QualType BaseType = BaseExpr->getType();
5737     Qualifiers BaseQuals = BaseType.getQualifiers();
5738     Qualifiers MemberQuals = ResultType.getQualifiers();
5739     Qualifiers Combined = BaseQuals + MemberQuals;
5740     if (Combined != MemberQuals)
5741       ResultType = Context.getQualifiedType(ResultType, Combined);
5742   } else if (LHSTy->isBuiltinType() &&
5743              LHSTy->getAs<BuiltinType>()->isVLSTBuiltinType()) {
5744     const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5745     if (BTy->isSVEBool())
5746       return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5747                        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5748 
5749     BaseExpr = LHSExp;
5750     IndexExpr = RHSExp;
5751     if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5752       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5753       if (Materialized.isInvalid())
5754         return ExprError();
5755       LHSExp = Materialized.get();
5756     }
5757     VK = LHSExp->getValueKind();
5758     if (VK != VK_PRValue)
5759       OK = OK_VectorComponent;
5760 
5761     ResultType = BTy->getSveEltType(Context);
5762 
5763     QualType BaseType = BaseExpr->getType();
5764     Qualifiers BaseQuals = BaseType.getQualifiers();
5765     Qualifiers MemberQuals = ResultType.getQualifiers();
5766     Qualifiers Combined = BaseQuals + MemberQuals;
5767     if (Combined != MemberQuals)
5768       ResultType = Context.getQualifiedType(ResultType, Combined);
5769   } else if (LHSTy->isArrayType()) {
5770     // If we see an array that wasn't promoted by
5771     // DefaultFunctionArrayLvalueConversion, it must be an array that
5772     // wasn't promoted because of the C90 rule that doesn't
5773     // allow promoting non-lvalue arrays.  Warn, then
5774     // force the promotion here.
5775     Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5776         << LHSExp->getSourceRange();
5777     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5778                                CK_ArrayToPointerDecay).get();
5779     LHSTy = LHSExp->getType();
5780 
5781     BaseExpr = LHSExp;
5782     IndexExpr = RHSExp;
5783     ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5784   } else if (RHSTy->isArrayType()) {
5785     // Same as previous, except for 123[f().a] case
5786     Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5787         << RHSExp->getSourceRange();
5788     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5789                                CK_ArrayToPointerDecay).get();
5790     RHSTy = RHSExp->getType();
5791 
5792     BaseExpr = RHSExp;
5793     IndexExpr = LHSExp;
5794     ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5795   } else {
5796     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5797        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5798   }
5799   // C99 6.5.2.1p1
5800   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5801     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5802                      << IndexExpr->getSourceRange());
5803 
5804   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5805        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5806          && !IndexExpr->isTypeDependent())
5807     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5808 
5809   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5810   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5811   // type. Note that Functions are not objects, and that (in C99 parlance)
5812   // incomplete types are not object types.
5813   if (ResultType->isFunctionType()) {
5814     Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5815         << ResultType << BaseExpr->getSourceRange();
5816     return ExprError();
5817   }
5818 
5819   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5820     // GNU extension: subscripting on pointer to void
5821     Diag(LLoc, diag::ext_gnu_subscript_void_type)
5822       << BaseExpr->getSourceRange();
5823 
5824     // C forbids expressions of unqualified void type from being l-values.
5825     // See IsCForbiddenLValueType.
5826     if (!ResultType.hasQualifiers())
5827       VK = VK_PRValue;
5828   } else if (!ResultType->isDependentType() &&
5829              RequireCompleteSizedType(
5830                  LLoc, ResultType,
5831                  diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5832     return ExprError();
5833 
5834   assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
5835          !ResultType.isCForbiddenLValueType());
5836 
5837   if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5838       FunctionScopes.size() > 1) {
5839     if (auto *TT =
5840             LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5841       for (auto I = FunctionScopes.rbegin(),
5842                 E = std::prev(FunctionScopes.rend());
5843            I != E; ++I) {
5844         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5845         if (CSI == nullptr)
5846           break;
5847         DeclContext *DC = nullptr;
5848         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5849           DC = LSI->CallOperator;
5850         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5851           DC = CRSI->TheCapturedDecl;
5852         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5853           DC = BSI->TheDecl;
5854         if (DC) {
5855           if (DC->containsDecl(TT->getDecl()))
5856             break;
5857           captureVariablyModifiedType(
5858               Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5859         }
5860       }
5861     }
5862   }
5863 
5864   return new (Context)
5865       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5866 }
5867 
5868 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5869                                   ParmVarDecl *Param, Expr *RewrittenInit,
5870                                   bool SkipImmediateInvocations) {
5871   if (Param->hasUnparsedDefaultArg()) {
5872     assert(!RewrittenInit && "Should not have a rewritten init expression yet");
5873     // If we've already cleared out the location for the default argument,
5874     // that means we're parsing it right now.
5875     if (!UnparsedDefaultArgLocs.count(Param)) {
5876       Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5877       Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5878       Param->setInvalidDecl();
5879       return true;
5880     }
5881 
5882     Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5883         << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5884     Diag(UnparsedDefaultArgLocs[Param],
5885          diag::note_default_argument_declared_here);
5886     return true;
5887   }
5888 
5889   if (Param->hasUninstantiatedDefaultArg()) {
5890     assert(!RewrittenInit && "Should not have a rewitten init expression yet");
5891     if (InstantiateDefaultArgument(CallLoc, FD, Param))
5892       return true;
5893   }
5894 
5895   Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit();
5896   assert(Init && "default argument but no initializer?");
5897 
5898   // If the default expression creates temporaries, we need to
5899   // push them to the current stack of expression temporaries so they'll
5900   // be properly destroyed.
5901   // FIXME: We should really be rebuilding the default argument with new
5902   // bound temporaries; see the comment in PR5810.
5903   // We don't need to do that with block decls, though, because
5904   // blocks in default argument expression can never capture anything.
5905   if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Init)) {
5906     // Set the "needs cleanups" bit regardless of whether there are
5907     // any explicit objects.
5908     Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects());
5909     // Append all the objects to the cleanup list.  Right now, this
5910     // should always be a no-op, because blocks in default argument
5911     // expressions should never be able to capture anything.
5912     assert(!InitWithCleanup->getNumObjects() &&
5913            "default argument expression has capturing blocks?");
5914   }
5915   EnterExpressionEvaluationContext EvalContext(
5916       *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
5917   ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5918       SkipImmediateInvocations;
5919   MarkDeclarationsReferencedInExpr(Init, /*SkipLocalVariables*/ true);
5920   return false;
5921 }
5922 
5923 struct ImmediateCallVisitor : public RecursiveASTVisitor<ImmediateCallVisitor> {
5924   bool HasImmediateCalls = false;
5925 
5926   bool shouldVisitImplicitCode() const { return true; }
5927 
5928   bool VisitCallExpr(CallExpr *E) {
5929     if (const FunctionDecl *FD = E->getDirectCallee())
5930       HasImmediateCalls |= FD->isConsteval();
5931     return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
5932   }
5933 
5934   // SourceLocExpr are not immediate invocations
5935   // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
5936   // need to be rebuilt so that they refer to the correct SourceLocation and
5937   // DeclContext.
5938   bool VisitSourceLocExpr(SourceLocExpr *E) {
5939     HasImmediateCalls = true;
5940     return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
5941   }
5942 
5943   // A nested lambda might have parameters with immediate invocations
5944   // in their default arguments.
5945   // The compound statement is not visited (as it does not constitute a
5946   // subexpression).
5947   // FIXME: We should consider visiting and transforming captures
5948   // with init expressions.
5949   bool VisitLambdaExpr(LambdaExpr *E) {
5950     return VisitCXXMethodDecl(E->getCallOperator());
5951   }
5952 
5953   // Blocks don't support default parameters, and, as for lambdas,
5954   // we don't consider their body a subexpression.
5955   bool VisitBlockDecl(BlockDecl *B) { return false; }
5956 
5957   bool VisitCompoundStmt(CompoundStmt *B) { return false; }
5958 
5959   bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
5960     return TraverseStmt(E->getExpr());
5961   }
5962 
5963   bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
5964     return TraverseStmt(E->getExpr());
5965   }
5966 };
5967 
5968 struct EnsureImmediateInvocationInDefaultArgs
5969     : TreeTransform<EnsureImmediateInvocationInDefaultArgs> {
5970   EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef)
5971       : TreeTransform(SemaRef) {}
5972 
5973   // Lambda can only have immediate invocations in the default
5974   // args of their parameters, which is transformed upon calling the closure.
5975   // The body is not a subexpression, so we have nothing to do.
5976   // FIXME: Immediate calls in capture initializers should be transformed.
5977   ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; }
5978   ExprResult TransformBlockExpr(BlockExpr *E) { return E; }
5979 
5980   // Make sure we don't rebuild the this pointer as it would
5981   // cause it to incorrectly point it to the outermost class
5982   // in the case of nested struct initialization.
5983   ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; }
5984 };
5985 
5986 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5987                                         FunctionDecl *FD, ParmVarDecl *Param,
5988                                         Expr *Init) {
5989   assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
5990 
5991   bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5992 
5993   std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5994       InitializationContext =
5995           OutermostDeclarationWithDelayedImmediateInvocations();
5996   if (!InitializationContext.has_value())
5997     InitializationContext.emplace(CallLoc, Param, CurContext);
5998 
5999   if (!Init && !Param->hasUnparsedDefaultArg()) {
6000     // Mark that we are replacing a default argument first.
6001     // If we are instantiating a template we won't have to
6002     // retransform immediate calls.
6003     EnterExpressionEvaluationContext EvalContext(
6004         *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
6005 
6006     if (Param->hasUninstantiatedDefaultArg()) {
6007       if (InstantiateDefaultArgument(CallLoc, FD, Param))
6008         return ExprError();
6009     }
6010     // CWG2631
6011     // An immediate invocation that is not evaluated where it appears is
6012     // evaluated and checked for whether it is a constant expression at the
6013     // point where the enclosing initializer is used in a function call.
6014     ImmediateCallVisitor V;
6015     if (!NestedDefaultChecking)
6016       V.TraverseDecl(Param);
6017     if (V.HasImmediateCalls) {
6018       ExprEvalContexts.back().DelayedDefaultInitializationContext = {
6019           CallLoc, Param, CurContext};
6020       EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6021       ExprResult Res = Immediate.TransformInitializer(Param->getInit(),
6022                                                       /*NotCopy=*/false);
6023       if (Res.isInvalid())
6024         return ExprError();
6025       Res = ConvertParamDefaultArgument(Param, Res.get(),
6026                                         Res.get()->getBeginLoc());
6027       if (Res.isInvalid())
6028         return ExprError();
6029       Init = Res.get();
6030     }
6031   }
6032 
6033   if (CheckCXXDefaultArgExpr(
6034           CallLoc, FD, Param, Init,
6035           /*SkipImmediateInvocations=*/NestedDefaultChecking))
6036     return ExprError();
6037 
6038   return CXXDefaultArgExpr::Create(Context, InitializationContext->Loc, Param,
6039                                    Init, InitializationContext->Context);
6040 }
6041 
6042 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
6043   assert(Field->hasInClassInitializer());
6044 
6045   // If we might have already tried and failed to instantiate, don't try again.
6046   if (Field->isInvalidDecl())
6047     return ExprError();
6048 
6049   auto *ParentRD = cast<CXXRecordDecl>(Field->getParent());
6050 
6051   std::optional<ExpressionEvaluationContextRecord::InitializationContext>
6052       InitializationContext =
6053           OutermostDeclarationWithDelayedImmediateInvocations();
6054   if (!InitializationContext.has_value())
6055     InitializationContext.emplace(Loc, Field, CurContext);
6056 
6057   Expr *Init = nullptr;
6058 
6059   bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
6060 
6061   EnterExpressionEvaluationContext EvalContext(
6062       *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field);
6063 
6064   if (!Field->getInClassInitializer()) {
6065     // Maybe we haven't instantiated the in-class initializer. Go check the
6066     // pattern FieldDecl to see if it has one.
6067     if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
6068       CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
6069       DeclContext::lookup_result Lookup =
6070           ClassPattern->lookup(Field->getDeclName());
6071 
6072       FieldDecl *Pattern = nullptr;
6073       for (auto *L : Lookup) {
6074         if ((Pattern = dyn_cast<FieldDecl>(L)))
6075           break;
6076       }
6077       assert(Pattern && "We must have set the Pattern!");
6078       if (!Pattern->hasInClassInitializer() ||
6079           InstantiateInClassInitializer(Loc, Field, Pattern,
6080                                         getTemplateInstantiationArgs(Field))) {
6081         Field->setInvalidDecl();
6082         return ExprError();
6083       }
6084     }
6085   }
6086 
6087   // CWG2631
6088   // An immediate invocation that is not evaluated where it appears is
6089   // evaluated and checked for whether it is a constant expression at the
6090   // point where the enclosing initializer is used in a [...] a constructor
6091   // definition, or an aggregate initialization.
6092   ImmediateCallVisitor V;
6093   if (!NestedDefaultChecking)
6094     V.TraverseDecl(Field);
6095   if (V.HasImmediateCalls) {
6096     ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field,
6097                                                                    CurContext};
6098     ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
6099         NestedDefaultChecking;
6100 
6101     EnsureImmediateInvocationInDefaultArgs Immediate(*this);
6102 
6103     ExprResult Res =
6104         Immediate.TransformInitializer(Field->getInClassInitializer(),
6105                                        /*CXXDirectInit=*/false);
6106     if (!Res.isInvalid())
6107       Res = ConvertMemberDefaultInitExpression(Field, Res.get(), Loc);
6108     if (Res.isInvalid()) {
6109       Field->setInvalidDecl();
6110       return ExprError();
6111     }
6112     Init = Res.get();
6113   }
6114 
6115   if (Field->getInClassInitializer()) {
6116     Expr *E = Init ? Init : Field->getInClassInitializer();
6117     if (!NestedDefaultChecking)
6118       MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false);
6119     // C++11 [class.base.init]p7:
6120     //   The initialization of each base and member constitutes a
6121     //   full-expression.
6122     ExprResult Res = ActOnFinishFullExpr(E, /*DiscardedValue=*/false);
6123     if (Res.isInvalid()) {
6124       Field->setInvalidDecl();
6125       return ExprError();
6126     }
6127     Init = Res.get();
6128 
6129     return CXXDefaultInitExpr::Create(Context, InitializationContext->Loc,
6130                                       Field, InitializationContext->Context,
6131                                       Init);
6132   }
6133 
6134   // DR1351:
6135   //   If the brace-or-equal-initializer of a non-static data member
6136   //   invokes a defaulted default constructor of its class or of an
6137   //   enclosing class in a potentially evaluated subexpression, the
6138   //   program is ill-formed.
6139   //
6140   // This resolution is unworkable: the exception specification of the
6141   // default constructor can be needed in an unevaluated context, in
6142   // particular, in the operand of a noexcept-expression, and we can be
6143   // unable to compute an exception specification for an enclosed class.
6144   //
6145   // Any attempt to resolve the exception specification of a defaulted default
6146   // constructor before the initializer is lexically complete will ultimately
6147   // come here at which point we can diagnose it.
6148   RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
6149   Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
6150       << OutermostClass << Field;
6151   Diag(Field->getEndLoc(),
6152        diag::note_default_member_initializer_not_yet_parsed);
6153   // Recover by marking the field invalid, unless we're in a SFINAE context.
6154   if (!isSFINAEContext())
6155     Field->setInvalidDecl();
6156   return ExprError();
6157 }
6158 
6159 Sema::VariadicCallType
6160 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
6161                           Expr *Fn) {
6162   if (Proto && Proto->isVariadic()) {
6163     if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
6164       return VariadicConstructor;
6165     else if (Fn && Fn->getType()->isBlockPointerType())
6166       return VariadicBlock;
6167     else if (FDecl) {
6168       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6169         if (Method->isInstance())
6170           return VariadicMethod;
6171     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
6172       return VariadicMethod;
6173     return VariadicFunction;
6174   }
6175   return VariadicDoesNotApply;
6176 }
6177 
6178 namespace {
6179 class FunctionCallCCC final : public FunctionCallFilterCCC {
6180 public:
6181   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
6182                   unsigned NumArgs, MemberExpr *ME)
6183       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
6184         FunctionName(FuncName) {}
6185 
6186   bool ValidateCandidate(const TypoCorrection &candidate) override {
6187     if (!candidate.getCorrectionSpecifier() ||
6188         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
6189       return false;
6190     }
6191 
6192     return FunctionCallFilterCCC::ValidateCandidate(candidate);
6193   }
6194 
6195   std::unique_ptr<CorrectionCandidateCallback> clone() override {
6196     return std::make_unique<FunctionCallCCC>(*this);
6197   }
6198 
6199 private:
6200   const IdentifierInfo *const FunctionName;
6201 };
6202 }
6203 
6204 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
6205                                                FunctionDecl *FDecl,
6206                                                ArrayRef<Expr *> Args) {
6207   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
6208   DeclarationName FuncName = FDecl->getDeclName();
6209   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
6210 
6211   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
6212   if (TypoCorrection Corrected = S.CorrectTypo(
6213           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
6214           S.getScopeForContext(S.CurContext), nullptr, CCC,
6215           Sema::CTK_ErrorRecovery)) {
6216     if (NamedDecl *ND = Corrected.getFoundDecl()) {
6217       if (Corrected.isOverloaded()) {
6218         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
6219         OverloadCandidateSet::iterator Best;
6220         for (NamedDecl *CD : Corrected) {
6221           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
6222             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
6223                                    OCS);
6224         }
6225         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
6226         case OR_Success:
6227           ND = Best->FoundDecl;
6228           Corrected.setCorrectionDecl(ND);
6229           break;
6230         default:
6231           break;
6232         }
6233       }
6234       ND = ND->getUnderlyingDecl();
6235       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
6236         return Corrected;
6237     }
6238   }
6239   return TypoCorrection();
6240 }
6241 
6242 /// ConvertArgumentsForCall - Converts the arguments specified in
6243 /// Args/NumArgs to the parameter types of the function FDecl with
6244 /// function prototype Proto. Call is the call expression itself, and
6245 /// Fn is the function expression. For a C++ member function, this
6246 /// routine does not attempt to convert the object argument. Returns
6247 /// true if the call is ill-formed.
6248 bool
6249 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
6250                               FunctionDecl *FDecl,
6251                               const FunctionProtoType *Proto,
6252                               ArrayRef<Expr *> Args,
6253                               SourceLocation RParenLoc,
6254                               bool IsExecConfig) {
6255   // Bail out early if calling a builtin with custom typechecking.
6256   if (FDecl)
6257     if (unsigned ID = FDecl->getBuiltinID())
6258       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
6259         return false;
6260 
6261   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
6262   // assignment, to the types of the corresponding parameter, ...
6263   unsigned NumParams = Proto->getNumParams();
6264   bool Invalid = false;
6265   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
6266   unsigned FnKind = Fn->getType()->isBlockPointerType()
6267                        ? 1 /* block */
6268                        : (IsExecConfig ? 3 /* kernel function (exec config) */
6269                                        : 0 /* function */);
6270 
6271   // If too few arguments are available (and we don't have default
6272   // arguments for the remaining parameters), don't make the call.
6273   if (Args.size() < NumParams) {
6274     if (Args.size() < MinArgs) {
6275       TypoCorrection TC;
6276       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6277         unsigned diag_id =
6278             MinArgs == NumParams && !Proto->isVariadic()
6279                 ? diag::err_typecheck_call_too_few_args_suggest
6280                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
6281         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
6282                                         << static_cast<unsigned>(Args.size())
6283                                         << TC.getCorrectionRange());
6284       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
6285         Diag(RParenLoc,
6286              MinArgs == NumParams && !Proto->isVariadic()
6287                  ? diag::err_typecheck_call_too_few_args_one
6288                  : diag::err_typecheck_call_too_few_args_at_least_one)
6289             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
6290       else
6291         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
6292                             ? diag::err_typecheck_call_too_few_args
6293                             : diag::err_typecheck_call_too_few_args_at_least)
6294             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
6295             << Fn->getSourceRange();
6296 
6297       // Emit the location of the prototype.
6298       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6299         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6300 
6301       return true;
6302     }
6303     // We reserve space for the default arguments when we create
6304     // the call expression, before calling ConvertArgumentsForCall.
6305     assert((Call->getNumArgs() == NumParams) &&
6306            "We should have reserved space for the default arguments before!");
6307   }
6308 
6309   // If too many are passed and not variadic, error on the extras and drop
6310   // them.
6311   if (Args.size() > NumParams) {
6312     if (!Proto->isVariadic()) {
6313       TypoCorrection TC;
6314       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
6315         unsigned diag_id =
6316             MinArgs == NumParams && !Proto->isVariadic()
6317                 ? diag::err_typecheck_call_too_many_args_suggest
6318                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
6319         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
6320                                         << static_cast<unsigned>(Args.size())
6321                                         << TC.getCorrectionRange());
6322       } else if (NumParams == 1 && FDecl &&
6323                  FDecl->getParamDecl(0)->getDeclName())
6324         Diag(Args[NumParams]->getBeginLoc(),
6325              MinArgs == NumParams
6326                  ? diag::err_typecheck_call_too_many_args_one
6327                  : diag::err_typecheck_call_too_many_args_at_most_one)
6328             << FnKind << FDecl->getParamDecl(0)
6329             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
6330             << SourceRange(Args[NumParams]->getBeginLoc(),
6331                            Args.back()->getEndLoc());
6332       else
6333         Diag(Args[NumParams]->getBeginLoc(),
6334              MinArgs == NumParams
6335                  ? diag::err_typecheck_call_too_many_args
6336                  : diag::err_typecheck_call_too_many_args_at_most)
6337             << FnKind << NumParams << static_cast<unsigned>(Args.size())
6338             << Fn->getSourceRange()
6339             << SourceRange(Args[NumParams]->getBeginLoc(),
6340                            Args.back()->getEndLoc());
6341 
6342       // Emit the location of the prototype.
6343       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
6344         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6345 
6346       // This deletes the extra arguments.
6347       Call->shrinkNumArgs(NumParams);
6348       return true;
6349     }
6350   }
6351   SmallVector<Expr *, 8> AllArgs;
6352   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
6353 
6354   Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
6355                                    AllArgs, CallType);
6356   if (Invalid)
6357     return true;
6358   unsigned TotalNumArgs = AllArgs.size();
6359   for (unsigned i = 0; i < TotalNumArgs; ++i)
6360     Call->setArg(i, AllArgs[i]);
6361 
6362   Call->computeDependence();
6363   return false;
6364 }
6365 
6366 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
6367                                   const FunctionProtoType *Proto,
6368                                   unsigned FirstParam, ArrayRef<Expr *> Args,
6369                                   SmallVectorImpl<Expr *> &AllArgs,
6370                                   VariadicCallType CallType, bool AllowExplicit,
6371                                   bool IsListInitialization) {
6372   unsigned NumParams = Proto->getNumParams();
6373   bool Invalid = false;
6374   size_t ArgIx = 0;
6375   // Continue to check argument types (even if we have too few/many args).
6376   for (unsigned i = FirstParam; i < NumParams; i++) {
6377     QualType ProtoArgType = Proto->getParamType(i);
6378 
6379     Expr *Arg;
6380     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
6381     if (ArgIx < Args.size()) {
6382       Arg = Args[ArgIx++];
6383 
6384       if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
6385                               diag::err_call_incomplete_argument, Arg))
6386         return true;
6387 
6388       // Strip the unbridged-cast placeholder expression off, if applicable.
6389       bool CFAudited = false;
6390       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
6391           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6392           (!Param || !Param->hasAttr<CFConsumedAttr>()))
6393         Arg = stripARCUnbridgedCast(Arg);
6394       else if (getLangOpts().ObjCAutoRefCount &&
6395                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
6396                (!Param || !Param->hasAttr<CFConsumedAttr>()))
6397         CFAudited = true;
6398 
6399       if (Proto->getExtParameterInfo(i).isNoEscape() &&
6400           ProtoArgType->isBlockPointerType())
6401         if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
6402           BE->getBlockDecl()->setDoesNotEscape();
6403 
6404       InitializedEntity Entity =
6405           Param ? InitializedEntity::InitializeParameter(Context, Param,
6406                                                          ProtoArgType)
6407                 : InitializedEntity::InitializeParameter(
6408                       Context, ProtoArgType, Proto->isParamConsumed(i));
6409 
6410       // Remember that parameter belongs to a CF audited API.
6411       if (CFAudited)
6412         Entity.setParameterCFAudited();
6413 
6414       ExprResult ArgE = PerformCopyInitialization(
6415           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
6416       if (ArgE.isInvalid())
6417         return true;
6418 
6419       Arg = ArgE.getAs<Expr>();
6420     } else {
6421       assert(Param && "can't use default arguments without a known callee");
6422 
6423       ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
6424       if (ArgExpr.isInvalid())
6425         return true;
6426 
6427       Arg = ArgExpr.getAs<Expr>();
6428     }
6429 
6430     // Check for array bounds violations for each argument to the call. This
6431     // check only triggers warnings when the argument isn't a more complex Expr
6432     // with its own checking, such as a BinaryOperator.
6433     CheckArrayAccess(Arg);
6434 
6435     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
6436     CheckStaticArrayArgument(CallLoc, Param, Arg);
6437 
6438     AllArgs.push_back(Arg);
6439   }
6440 
6441   // If this is a variadic call, handle args passed through "...".
6442   if (CallType != VariadicDoesNotApply) {
6443     // Assume that extern "C" functions with variadic arguments that
6444     // return __unknown_anytype aren't *really* variadic.
6445     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
6446         FDecl->isExternC()) {
6447       for (Expr *A : Args.slice(ArgIx)) {
6448         QualType paramType; // ignored
6449         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
6450         Invalid |= arg.isInvalid();
6451         AllArgs.push_back(arg.get());
6452       }
6453 
6454     // Otherwise do argument promotion, (C99 6.5.2.2p7).
6455     } else {
6456       for (Expr *A : Args.slice(ArgIx)) {
6457         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
6458         Invalid |= Arg.isInvalid();
6459         AllArgs.push_back(Arg.get());
6460       }
6461     }
6462 
6463     // Check for array bounds violations.
6464     for (Expr *A : Args.slice(ArgIx))
6465       CheckArrayAccess(A);
6466   }
6467   return Invalid;
6468 }
6469 
6470 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
6471   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6472   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6473     TL = DTL.getOriginalLoc();
6474   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6475     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6476       << ATL.getLocalSourceRange();
6477 }
6478 
6479 /// CheckStaticArrayArgument - If the given argument corresponds to a static
6480 /// array parameter, check that it is non-null, and that if it is formed by
6481 /// array-to-pointer decay, the underlying array is sufficiently large.
6482 ///
6483 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
6484 /// array type derivation, then for each call to the function, the value of the
6485 /// corresponding actual argument shall provide access to the first element of
6486 /// an array with at least as many elements as specified by the size expression.
6487 void
6488 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6489                                ParmVarDecl *Param,
6490                                const Expr *ArgExpr) {
6491   // Static array parameters are not supported in C++.
6492   if (!Param || getLangOpts().CPlusPlus)
6493     return;
6494 
6495   QualType OrigTy = Param->getOriginalType();
6496 
6497   const ArrayType *AT = Context.getAsArrayType(OrigTy);
6498   if (!AT || AT->getSizeModifier() != ArrayType::Static)
6499     return;
6500 
6501   if (ArgExpr->isNullPointerConstant(Context,
6502                                      Expr::NPC_NeverValueDependent)) {
6503     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6504     DiagnoseCalleeStaticArrayParam(*this, Param);
6505     return;
6506   }
6507 
6508   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6509   if (!CAT)
6510     return;
6511 
6512   const ConstantArrayType *ArgCAT =
6513     Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6514   if (!ArgCAT)
6515     return;
6516 
6517   if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6518                                              ArgCAT->getElementType())) {
6519     if (ArgCAT->getSize().ult(CAT->getSize())) {
6520       Diag(CallLoc, diag::warn_static_array_too_small)
6521           << ArgExpr->getSourceRange()
6522           << (unsigned)ArgCAT->getSize().getZExtValue()
6523           << (unsigned)CAT->getSize().getZExtValue() << 0;
6524       DiagnoseCalleeStaticArrayParam(*this, Param);
6525     }
6526     return;
6527   }
6528 
6529   std::optional<CharUnits> ArgSize =
6530       getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6531   std::optional<CharUnits> ParmSize =
6532       getASTContext().getTypeSizeInCharsIfKnown(CAT);
6533   if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6534     Diag(CallLoc, diag::warn_static_array_too_small)
6535         << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6536         << (unsigned)ParmSize->getQuantity() << 1;
6537     DiagnoseCalleeStaticArrayParam(*this, Param);
6538   }
6539 }
6540 
6541 /// Given a function expression of unknown-any type, try to rebuild it
6542 /// to have a function type.
6543 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6544 
6545 /// Is the given type a placeholder that we need to lower out
6546 /// immediately during argument processing?
6547 static bool isPlaceholderToRemoveAsArg(QualType type) {
6548   // Placeholders are never sugared.
6549   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6550   if (!placeholder) return false;
6551 
6552   switch (placeholder->getKind()) {
6553   // Ignore all the non-placeholder types.
6554 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6555   case BuiltinType::Id:
6556 #include "clang/Basic/OpenCLImageTypes.def"
6557 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6558   case BuiltinType::Id:
6559 #include "clang/Basic/OpenCLExtensionTypes.def"
6560   // In practice we'll never use this, since all SVE types are sugared
6561   // via TypedefTypes rather than exposed directly as BuiltinTypes.
6562 #define SVE_TYPE(Name, Id, SingletonId) \
6563   case BuiltinType::Id:
6564 #include "clang/Basic/AArch64SVEACLETypes.def"
6565 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6566   case BuiltinType::Id:
6567 #include "clang/Basic/PPCTypes.def"
6568 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6569 #include "clang/Basic/RISCVVTypes.def"
6570 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6571 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6572 #include "clang/AST/BuiltinTypes.def"
6573     return false;
6574 
6575   // We cannot lower out overload sets; they might validly be resolved
6576   // by the call machinery.
6577   case BuiltinType::Overload:
6578     return false;
6579 
6580   // Unbridged casts in ARC can be handled in some call positions and
6581   // should be left in place.
6582   case BuiltinType::ARCUnbridgedCast:
6583     return false;
6584 
6585   // Pseudo-objects should be converted as soon as possible.
6586   case BuiltinType::PseudoObject:
6587     return true;
6588 
6589   // The debugger mode could theoretically but currently does not try
6590   // to resolve unknown-typed arguments based on known parameter types.
6591   case BuiltinType::UnknownAny:
6592     return true;
6593 
6594   // These are always invalid as call arguments and should be reported.
6595   case BuiltinType::BoundMember:
6596   case BuiltinType::BuiltinFn:
6597   case BuiltinType::IncompleteMatrixIdx:
6598   case BuiltinType::OMPArraySection:
6599   case BuiltinType::OMPArrayShaping:
6600   case BuiltinType::OMPIterator:
6601     return true;
6602 
6603   }
6604   llvm_unreachable("bad builtin type kind");
6605 }
6606 
6607 /// Check an argument list for placeholders that we won't try to
6608 /// handle later.
6609 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
6610   // Apply this processing to all the arguments at once instead of
6611   // dying at the first failure.
6612   bool hasInvalid = false;
6613   for (size_t i = 0, e = args.size(); i != e; i++) {
6614     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6615       ExprResult result = S.CheckPlaceholderExpr(args[i]);
6616       if (result.isInvalid()) hasInvalid = true;
6617       else args[i] = result.get();
6618     }
6619   }
6620   return hasInvalid;
6621 }
6622 
6623 /// If a builtin function has a pointer argument with no explicit address
6624 /// space, then it should be able to accept a pointer to any address
6625 /// space as input.  In order to do this, we need to replace the
6626 /// standard builtin declaration with one that uses the same address space
6627 /// as the call.
6628 ///
6629 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6630 ///                  it does not contain any pointer arguments without
6631 ///                  an address space qualifer.  Otherwise the rewritten
6632 ///                  FunctionDecl is returned.
6633 /// TODO: Handle pointer return types.
6634 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6635                                                 FunctionDecl *FDecl,
6636                                                 MultiExprArg ArgExprs) {
6637 
6638   QualType DeclType = FDecl->getType();
6639   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6640 
6641   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6642       ArgExprs.size() < FT->getNumParams())
6643     return nullptr;
6644 
6645   bool NeedsNewDecl = false;
6646   unsigned i = 0;
6647   SmallVector<QualType, 8> OverloadParams;
6648 
6649   for (QualType ParamType : FT->param_types()) {
6650 
6651     // Convert array arguments to pointer to simplify type lookup.
6652     ExprResult ArgRes =
6653         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6654     if (ArgRes.isInvalid())
6655       return nullptr;
6656     Expr *Arg = ArgRes.get();
6657     QualType ArgType = Arg->getType();
6658     if (!ParamType->isPointerType() ||
6659         ParamType.hasAddressSpace() ||
6660         !ArgType->isPointerType() ||
6661         !ArgType->getPointeeType().hasAddressSpace()) {
6662       OverloadParams.push_back(ParamType);
6663       continue;
6664     }
6665 
6666     QualType PointeeType = ParamType->getPointeeType();
6667     if (PointeeType.hasAddressSpace())
6668       continue;
6669 
6670     NeedsNewDecl = true;
6671     LangAS AS = ArgType->getPointeeType().getAddressSpace();
6672 
6673     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6674     OverloadParams.push_back(Context.getPointerType(PointeeType));
6675   }
6676 
6677   if (!NeedsNewDecl)
6678     return nullptr;
6679 
6680   FunctionProtoType::ExtProtoInfo EPI;
6681   EPI.Variadic = FT->isVariadic();
6682   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6683                                                 OverloadParams, EPI);
6684   DeclContext *Parent = FDecl->getParent();
6685   FunctionDecl *OverloadDecl = FunctionDecl::Create(
6686       Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6687       FDecl->getIdentifier(), OverloadTy,
6688       /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6689       false,
6690       /*hasPrototype=*/true);
6691   SmallVector<ParmVarDecl*, 16> Params;
6692   FT = cast<FunctionProtoType>(OverloadTy);
6693   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6694     QualType ParamType = FT->getParamType(i);
6695     ParmVarDecl *Parm =
6696         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6697                                 SourceLocation(), nullptr, ParamType,
6698                                 /*TInfo=*/nullptr, SC_None, nullptr);
6699     Parm->setScopeInfo(0, i);
6700     Params.push_back(Parm);
6701   }
6702   OverloadDecl->setParams(Params);
6703   Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6704   return OverloadDecl;
6705 }
6706 
6707 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6708                                     FunctionDecl *Callee,
6709                                     MultiExprArg ArgExprs) {
6710   // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6711   // similar attributes) really don't like it when functions are called with an
6712   // invalid number of args.
6713   if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6714                          /*PartialOverloading=*/false) &&
6715       !Callee->isVariadic())
6716     return;
6717   if (Callee->getMinRequiredArguments() > ArgExprs.size())
6718     return;
6719 
6720   if (const EnableIfAttr *Attr =
6721           S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6722     S.Diag(Fn->getBeginLoc(),
6723            isa<CXXMethodDecl>(Callee)
6724                ? diag::err_ovl_no_viable_member_function_in_call
6725                : diag::err_ovl_no_viable_function_in_call)
6726         << Callee << Callee->getSourceRange();
6727     S.Diag(Callee->getLocation(),
6728            diag::note_ovl_candidate_disabled_by_function_cond_attr)
6729         << Attr->getCond()->getSourceRange() << Attr->getMessage();
6730     return;
6731   }
6732 }
6733 
6734 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6735     const UnresolvedMemberExpr *const UME, Sema &S) {
6736 
6737   const auto GetFunctionLevelDCIfCXXClass =
6738       [](Sema &S) -> const CXXRecordDecl * {
6739     const DeclContext *const DC = S.getFunctionLevelDeclContext();
6740     if (!DC || !DC->getParent())
6741       return nullptr;
6742 
6743     // If the call to some member function was made from within a member
6744     // function body 'M' return return 'M's parent.
6745     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6746       return MD->getParent()->getCanonicalDecl();
6747     // else the call was made from within a default member initializer of a
6748     // class, so return the class.
6749     if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6750       return RD->getCanonicalDecl();
6751     return nullptr;
6752   };
6753   // If our DeclContext is neither a member function nor a class (in the
6754   // case of a lambda in a default member initializer), we can't have an
6755   // enclosing 'this'.
6756 
6757   const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6758   if (!CurParentClass)
6759     return false;
6760 
6761   // The naming class for implicit member functions call is the class in which
6762   // name lookup starts.
6763   const CXXRecordDecl *const NamingClass =
6764       UME->getNamingClass()->getCanonicalDecl();
6765   assert(NamingClass && "Must have naming class even for implicit access");
6766 
6767   // If the unresolved member functions were found in a 'naming class' that is
6768   // related (either the same or derived from) to the class that contains the
6769   // member function that itself contained the implicit member access.
6770 
6771   return CurParentClass == NamingClass ||
6772          CurParentClass->isDerivedFrom(NamingClass);
6773 }
6774 
6775 static void
6776 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6777     Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6778 
6779   if (!UME)
6780     return;
6781 
6782   LambdaScopeInfo *const CurLSI = S.getCurLambda();
6783   // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6784   // already been captured, or if this is an implicit member function call (if
6785   // it isn't, an attempt to capture 'this' should already have been made).
6786   if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6787       !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6788     return;
6789 
6790   // Check if the naming class in which the unresolved members were found is
6791   // related (same as or is a base of) to the enclosing class.
6792 
6793   if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6794     return;
6795 
6796 
6797   DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6798   // If the enclosing function is not dependent, then this lambda is
6799   // capture ready, so if we can capture this, do so.
6800   if (!EnclosingFunctionCtx->isDependentContext()) {
6801     // If the current lambda and all enclosing lambdas can capture 'this' -
6802     // then go ahead and capture 'this' (since our unresolved overload set
6803     // contains at least one non-static member function).
6804     if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6805       S.CheckCXXThisCapture(CallLoc);
6806   } else if (S.CurContext->isDependentContext()) {
6807     // ... since this is an implicit member reference, that might potentially
6808     // involve a 'this' capture, mark 'this' for potential capture in
6809     // enclosing lambdas.
6810     if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6811       CurLSI->addPotentialThisCapture(CallLoc);
6812   }
6813 }
6814 
6815 // Once a call is fully resolved, warn for unqualified calls to specific
6816 // C++ standard functions, like move and forward.
6817 static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S, CallExpr *Call) {
6818   // We are only checking unary move and forward so exit early here.
6819   if (Call->getNumArgs() != 1)
6820     return;
6821 
6822   Expr *E = Call->getCallee()->IgnoreParenImpCasts();
6823   if (!E || isa<UnresolvedLookupExpr>(E))
6824     return;
6825   DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E);
6826   if (!DRE || !DRE->getLocation().isValid())
6827     return;
6828 
6829   if (DRE->getQualifier())
6830     return;
6831 
6832   const FunctionDecl *FD = Call->getDirectCallee();
6833   if (!FD)
6834     return;
6835 
6836   // Only warn for some functions deemed more frequent or problematic.
6837   unsigned BuiltinID = FD->getBuiltinID();
6838   if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
6839     return;
6840 
6841   S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
6842       << FD->getQualifiedNameAsString()
6843       << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
6844 }
6845 
6846 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6847                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6848                                Expr *ExecConfig) {
6849   ExprResult Call =
6850       BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6851                     /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6852   if (Call.isInvalid())
6853     return Call;
6854 
6855   // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6856   // language modes.
6857   if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
6858     if (ULE->hasExplicitTemplateArgs() &&
6859         ULE->decls_begin() == ULE->decls_end()) {
6860       Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6861                                  ? diag::warn_cxx17_compat_adl_only_template_id
6862                                  : diag::ext_adl_only_template_id)
6863           << ULE->getName();
6864     }
6865   }
6866 
6867   if (LangOpts.OpenMP)
6868     Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6869                            ExecConfig);
6870   if (LangOpts.CPlusPlus) {
6871     CallExpr *CE = dyn_cast<CallExpr>(Call.get());
6872     if (CE)
6873       DiagnosedUnqualifiedCallsToStdFunctions(*this, CE);
6874   }
6875   return Call;
6876 }
6877 
6878 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
6879 /// This provides the location of the left/right parens and a list of comma
6880 /// locations.
6881 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6882                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6883                                Expr *ExecConfig, bool IsExecConfig,
6884                                bool AllowRecovery) {
6885   // Since this might be a postfix expression, get rid of ParenListExprs.
6886   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6887   if (Result.isInvalid()) return ExprError();
6888   Fn = Result.get();
6889 
6890   if (checkArgsForPlaceholders(*this, ArgExprs))
6891     return ExprError();
6892 
6893   if (getLangOpts().CPlusPlus) {
6894     // If this is a pseudo-destructor expression, build the call immediately.
6895     if (isa<CXXPseudoDestructorExpr>(Fn)) {
6896       if (!ArgExprs.empty()) {
6897         // Pseudo-destructor calls should not have any arguments.
6898         Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6899             << FixItHint::CreateRemoval(
6900                    SourceRange(ArgExprs.front()->getBeginLoc(),
6901                                ArgExprs.back()->getEndLoc()));
6902       }
6903 
6904       return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6905                               VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6906     }
6907     if (Fn->getType() == Context.PseudoObjectTy) {
6908       ExprResult result = CheckPlaceholderExpr(Fn);
6909       if (result.isInvalid()) return ExprError();
6910       Fn = result.get();
6911     }
6912 
6913     // Determine whether this is a dependent call inside a C++ template,
6914     // in which case we won't do any semantic analysis now.
6915     if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6916       if (ExecConfig) {
6917         return CUDAKernelCallExpr::Create(Context, Fn,
6918                                           cast<CallExpr>(ExecConfig), ArgExprs,
6919                                           Context.DependentTy, VK_PRValue,
6920                                           RParenLoc, CurFPFeatureOverrides());
6921       } else {
6922 
6923         tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6924             *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6925             Fn->getBeginLoc());
6926 
6927         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6928                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6929       }
6930     }
6931 
6932     // Determine whether this is a call to an object (C++ [over.call.object]).
6933     if (Fn->getType()->isRecordType())
6934       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6935                                           RParenLoc);
6936 
6937     if (Fn->getType() == Context.UnknownAnyTy) {
6938       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6939       if (result.isInvalid()) return ExprError();
6940       Fn = result.get();
6941     }
6942 
6943     if (Fn->getType() == Context.BoundMemberTy) {
6944       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6945                                        RParenLoc, ExecConfig, IsExecConfig,
6946                                        AllowRecovery);
6947     }
6948   }
6949 
6950   // Check for overloaded calls.  This can happen even in C due to extensions.
6951   if (Fn->getType() == Context.OverloadTy) {
6952     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6953 
6954     // We aren't supposed to apply this logic if there's an '&' involved.
6955     if (!find.HasFormOfMemberPointer) {
6956       if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6957         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6958                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6959       OverloadExpr *ovl = find.Expression;
6960       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6961         return BuildOverloadedCallExpr(
6962             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6963             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6964       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6965                                        RParenLoc, ExecConfig, IsExecConfig,
6966                                        AllowRecovery);
6967     }
6968   }
6969 
6970   // If we're directly calling a function, get the appropriate declaration.
6971   if (Fn->getType() == Context.UnknownAnyTy) {
6972     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6973     if (result.isInvalid()) return ExprError();
6974     Fn = result.get();
6975   }
6976 
6977   Expr *NakedFn = Fn->IgnoreParens();
6978 
6979   bool CallingNDeclIndirectly = false;
6980   NamedDecl *NDecl = nullptr;
6981   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6982     if (UnOp->getOpcode() == UO_AddrOf) {
6983       CallingNDeclIndirectly = true;
6984       NakedFn = UnOp->getSubExpr()->IgnoreParens();
6985     }
6986   }
6987 
6988   if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6989     NDecl = DRE->getDecl();
6990 
6991     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6992     if (FDecl && FDecl->getBuiltinID()) {
6993       // Rewrite the function decl for this builtin by replacing parameters
6994       // with no explicit address space with the address space of the arguments
6995       // in ArgExprs.
6996       if ((FDecl =
6997                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6998         NDecl = FDecl;
6999         Fn = DeclRefExpr::Create(
7000             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
7001             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
7002             nullptr, DRE->isNonOdrUse());
7003       }
7004     }
7005   } else if (auto *ME = dyn_cast<MemberExpr>(NakedFn))
7006     NDecl = ME->getMemberDecl();
7007 
7008   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
7009     if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
7010                                       FD, /*Complain=*/true, Fn->getBeginLoc()))
7011       return ExprError();
7012 
7013     checkDirectCallValidity(*this, Fn, FD, ArgExprs);
7014 
7015     // If this expression is a call to a builtin function in HIP device
7016     // compilation, allow a pointer-type argument to default address space to be
7017     // passed as a pointer-type parameter to a non-default address space.
7018     // If Arg is declared in the default address space and Param is declared
7019     // in a non-default address space, perform an implicit address space cast to
7020     // the parameter type.
7021     if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
7022         FD->getBuiltinID()) {
7023       for (unsigned Idx = 0; Idx < FD->param_size(); ++Idx) {
7024         ParmVarDecl *Param = FD->getParamDecl(Idx);
7025         if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
7026             !ArgExprs[Idx]->getType()->isPointerType())
7027           continue;
7028 
7029         auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
7030         auto ArgTy = ArgExprs[Idx]->getType();
7031         auto ArgPtTy = ArgTy->getPointeeType();
7032         auto ArgAS = ArgPtTy.getAddressSpace();
7033 
7034         // Add address space cast if target address spaces are different
7035         bool NeedImplicitASC =
7036           ParamAS != LangAS::Default &&       // Pointer params in generic AS don't need special handling.
7037           ( ArgAS == LangAS::Default  ||      // We do allow implicit conversion from generic AS
7038                                               // or from specific AS which has target AS matching that of Param.
7039           getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
7040         if (!NeedImplicitASC)
7041           continue;
7042 
7043         // First, ensure that the Arg is an RValue.
7044         if (ArgExprs[Idx]->isGLValue()) {
7045           ArgExprs[Idx] = ImplicitCastExpr::Create(
7046               Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
7047               nullptr, VK_PRValue, FPOptionsOverride());
7048         }
7049 
7050         // Construct a new arg type with address space of Param
7051         Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
7052         ArgPtQuals.setAddressSpace(ParamAS);
7053         auto NewArgPtTy =
7054             Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
7055         auto NewArgTy =
7056             Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
7057                                      ArgTy.getQualifiers());
7058 
7059         // Finally perform an implicit address space cast
7060         ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
7061                                           CK_AddressSpaceConversion)
7062                             .get();
7063       }
7064     }
7065   }
7066 
7067   if (Context.isDependenceAllowed() &&
7068       (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
7069     assert(!getLangOpts().CPlusPlus);
7070     assert((Fn->containsErrors() ||
7071             llvm::any_of(ArgExprs,
7072                          [](clang::Expr *E) { return E->containsErrors(); })) &&
7073            "should only occur in error-recovery path.");
7074     QualType ReturnType =
7075         llvm::isa_and_nonnull<FunctionDecl>(NDecl)
7076             ? cast<FunctionDecl>(NDecl)->getCallResultType()
7077             : Context.DependentTy;
7078     return CallExpr::Create(Context, Fn, ArgExprs, ReturnType,
7079                             Expr::getValueKindForType(ReturnType), RParenLoc,
7080                             CurFPFeatureOverrides());
7081   }
7082   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
7083                                ExecConfig, IsExecConfig);
7084 }
7085 
7086 /// BuildBuiltinCallExpr - Create a call to a builtin function specified by Id
7087 //  with the specified CallArgs
7088 Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
7089                                  MultiExprArg CallArgs) {
7090   StringRef Name = Context.BuiltinInfo.getName(Id);
7091   LookupResult R(*this, &Context.Idents.get(Name), Loc,
7092                  Sema::LookupOrdinaryName);
7093   LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
7094 
7095   auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
7096   assert(BuiltInDecl && "failed to find builtin declaration");
7097 
7098   ExprResult DeclRef =
7099       BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
7100   assert(DeclRef.isUsable() && "Builtin reference cannot fail");
7101 
7102   ExprResult Call =
7103       BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
7104 
7105   assert(!Call.isInvalid() && "Call to builtin cannot fail!");
7106   return Call.get();
7107 }
7108 
7109 /// Parse a __builtin_astype expression.
7110 ///
7111 /// __builtin_astype( value, dst type )
7112 ///
7113 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
7114                                  SourceLocation BuiltinLoc,
7115                                  SourceLocation RParenLoc) {
7116   QualType DstTy = GetTypeFromParser(ParsedDestTy);
7117   return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
7118 }
7119 
7120 /// Create a new AsTypeExpr node (bitcast) from the arguments.
7121 ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
7122                                  SourceLocation BuiltinLoc,
7123                                  SourceLocation RParenLoc) {
7124   ExprValueKind VK = VK_PRValue;
7125   ExprObjectKind OK = OK_Ordinary;
7126   QualType SrcTy = E->getType();
7127   if (!SrcTy->isDependentType() &&
7128       Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
7129     return ExprError(
7130         Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
7131         << DestTy << SrcTy << E->getSourceRange());
7132   return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
7133 }
7134 
7135 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
7136 /// provided arguments.
7137 ///
7138 /// __builtin_convertvector( value, dst type )
7139 ///
7140 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
7141                                         SourceLocation BuiltinLoc,
7142                                         SourceLocation RParenLoc) {
7143   TypeSourceInfo *TInfo;
7144   GetTypeFromParser(ParsedDestTy, &TInfo);
7145   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
7146 }
7147 
7148 /// BuildResolvedCallExpr - Build a call to a resolved expression,
7149 /// i.e. an expression not of \p OverloadTy.  The expression should
7150 /// unary-convert to an expression of function-pointer or
7151 /// block-pointer type.
7152 ///
7153 /// \param NDecl the declaration being called, if available
7154 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
7155                                        SourceLocation LParenLoc,
7156                                        ArrayRef<Expr *> Args,
7157                                        SourceLocation RParenLoc, Expr *Config,
7158                                        bool IsExecConfig, ADLCallKind UsesADL) {
7159   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
7160   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
7161 
7162   // Functions with 'interrupt' attribute cannot be called directly.
7163   if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
7164     Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
7165     return ExprError();
7166   }
7167 
7168   // Interrupt handlers don't save off the VFP regs automatically on ARM,
7169   // so there's some risk when calling out to non-interrupt handler functions
7170   // that the callee might not preserve them. This is easy to diagnose here,
7171   // but can be very challenging to debug.
7172   // Likewise, X86 interrupt handlers may only call routines with attribute
7173   // no_caller_saved_registers since there is no efficient way to
7174   // save and restore the non-GPR state.
7175   if (auto *Caller = getCurFunctionDecl()) {
7176     if (Caller->hasAttr<ARMInterruptAttr>()) {
7177       bool VFP = Context.getTargetInfo().hasFeature("vfp");
7178       if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) {
7179         Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
7180         if (FDecl)
7181           Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7182       }
7183     }
7184     if (Caller->hasAttr<AnyX86InterruptAttr>() &&
7185         ((!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()))) {
7186       Diag(Fn->getExprLoc(), diag::warn_anyx86_interrupt_regsave);
7187       if (FDecl)
7188         Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
7189     }
7190   }
7191 
7192   // Promote the function operand.
7193   // We special-case function promotion here because we only allow promoting
7194   // builtin functions to function pointers in the callee of a call.
7195   ExprResult Result;
7196   QualType ResultTy;
7197   if (BuiltinID &&
7198       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
7199     // Extract the return type from the (builtin) function pointer type.
7200     // FIXME Several builtins still have setType in
7201     // Sema::CheckBuiltinFunctionCall. One should review their definitions in
7202     // Builtins.def to ensure they are correct before removing setType calls.
7203     QualType FnPtrTy = Context.getPointerType(FDecl->getType());
7204     Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
7205     ResultTy = FDecl->getCallResultType();
7206   } else {
7207     Result = CallExprUnaryConversions(Fn);
7208     ResultTy = Context.BoolTy;
7209   }
7210   if (Result.isInvalid())
7211     return ExprError();
7212   Fn = Result.get();
7213 
7214   // Check for a valid function type, but only if it is not a builtin which
7215   // requires custom type checking. These will be handled by
7216   // CheckBuiltinFunctionCall below just after creation of the call expression.
7217   const FunctionType *FuncT = nullptr;
7218   if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
7219   retry:
7220     if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
7221       // C99 6.5.2.2p1 - "The expression that denotes the called function shall
7222       // have type pointer to function".
7223       FuncT = PT->getPointeeType()->getAs<FunctionType>();
7224       if (!FuncT)
7225         return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7226                          << Fn->getType() << Fn->getSourceRange());
7227     } else if (const BlockPointerType *BPT =
7228                    Fn->getType()->getAs<BlockPointerType>()) {
7229       FuncT = BPT->getPointeeType()->castAs<FunctionType>();
7230     } else {
7231       // Handle calls to expressions of unknown-any type.
7232       if (Fn->getType() == Context.UnknownAnyTy) {
7233         ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
7234         if (rewrite.isInvalid())
7235           return ExprError();
7236         Fn = rewrite.get();
7237         goto retry;
7238       }
7239 
7240       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
7241                        << Fn->getType() << Fn->getSourceRange());
7242     }
7243   }
7244 
7245   // Get the number of parameters in the function prototype, if any.
7246   // We will allocate space for max(Args.size(), NumParams) arguments
7247   // in the call expression.
7248   const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
7249   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
7250 
7251   CallExpr *TheCall;
7252   if (Config) {
7253     assert(UsesADL == ADLCallKind::NotADL &&
7254            "CUDAKernelCallExpr should not use ADL");
7255     TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
7256                                          Args, ResultTy, VK_PRValue, RParenLoc,
7257                                          CurFPFeatureOverrides(), NumParams);
7258   } else {
7259     TheCall =
7260         CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7261                          CurFPFeatureOverrides(), NumParams, UsesADL);
7262   }
7263 
7264   if (!Context.isDependenceAllowed()) {
7265     // Forget about the nulled arguments since typo correction
7266     // do not handle them well.
7267     TheCall->shrinkNumArgs(Args.size());
7268     // C cannot always handle TypoExpr nodes in builtin calls and direct
7269     // function calls as their argument checking don't necessarily handle
7270     // dependent types properly, so make sure any TypoExprs have been
7271     // dealt with.
7272     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
7273     if (!Result.isUsable()) return ExprError();
7274     CallExpr *TheOldCall = TheCall;
7275     TheCall = dyn_cast<CallExpr>(Result.get());
7276     bool CorrectedTypos = TheCall != TheOldCall;
7277     if (!TheCall) return Result;
7278     Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
7279 
7280     // A new call expression node was created if some typos were corrected.
7281     // However it may not have been constructed with enough storage. In this
7282     // case, rebuild the node with enough storage. The waste of space is
7283     // immaterial since this only happens when some typos were corrected.
7284     if (CorrectedTypos && Args.size() < NumParams) {
7285       if (Config)
7286         TheCall = CUDAKernelCallExpr::Create(
7287             Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
7288             RParenLoc, CurFPFeatureOverrides(), NumParams);
7289       else
7290         TheCall =
7291             CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
7292                              CurFPFeatureOverrides(), NumParams, UsesADL);
7293     }
7294     // We can now handle the nulled arguments for the default arguments.
7295     TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
7296   }
7297 
7298   // Bail out early if calling a builtin with custom type checking.
7299   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
7300     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7301 
7302   if (getLangOpts().CUDA) {
7303     if (Config) {
7304       // CUDA: Kernel calls must be to global functions
7305       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
7306         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
7307             << FDecl << Fn->getSourceRange());
7308 
7309       // CUDA: Kernel function must have 'void' return type
7310       if (!FuncT->getReturnType()->isVoidType() &&
7311           !FuncT->getReturnType()->getAs<AutoType>() &&
7312           !FuncT->getReturnType()->isInstantiationDependentType())
7313         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
7314             << Fn->getType() << Fn->getSourceRange());
7315     } else {
7316       // CUDA: Calls to global functions must be configured
7317       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
7318         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
7319             << FDecl << Fn->getSourceRange());
7320     }
7321   }
7322 
7323   // Check for a valid return type
7324   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
7325                           FDecl))
7326     return ExprError();
7327 
7328   // We know the result type of the call, set it.
7329   TheCall->setType(FuncT->getCallResultType(Context));
7330   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
7331 
7332   if (Proto) {
7333     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
7334                                 IsExecConfig))
7335       return ExprError();
7336   } else {
7337     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
7338 
7339     if (FDecl) {
7340       // Check if we have too few/too many template arguments, based
7341       // on our knowledge of the function definition.
7342       const FunctionDecl *Def = nullptr;
7343       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
7344         Proto = Def->getType()->getAs<FunctionProtoType>();
7345        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
7346           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
7347           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
7348       }
7349 
7350       // If the function we're calling isn't a function prototype, but we have
7351       // a function prototype from a prior declaratiom, use that prototype.
7352       if (!FDecl->hasPrototype())
7353         Proto = FDecl->getType()->getAs<FunctionProtoType>();
7354     }
7355 
7356     // If we still haven't found a prototype to use but there are arguments to
7357     // the call, diagnose this as calling a function without a prototype.
7358     // However, if we found a function declaration, check to see if
7359     // -Wdeprecated-non-prototype was disabled where the function was declared.
7360     // If so, we will silence the diagnostic here on the assumption that this
7361     // interface is intentional and the user knows what they're doing. We will
7362     // also silence the diagnostic if there is a function declaration but it
7363     // was implicitly defined (the user already gets diagnostics about the
7364     // creation of the implicit function declaration, so the additional warning
7365     // is not helpful).
7366     if (!Proto && !Args.empty() &&
7367         (!FDecl || (!FDecl->isImplicit() &&
7368                     !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
7369                                      FDecl->getLocation()))))
7370       Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
7371           << (FDecl != nullptr) << FDecl;
7372 
7373     // Promote the arguments (C99 6.5.2.2p6).
7374     for (unsigned i = 0, e = Args.size(); i != e; i++) {
7375       Expr *Arg = Args[i];
7376 
7377       if (Proto && i < Proto->getNumParams()) {
7378         InitializedEntity Entity = InitializedEntity::InitializeParameter(
7379             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
7380         ExprResult ArgE =
7381             PerformCopyInitialization(Entity, SourceLocation(), Arg);
7382         if (ArgE.isInvalid())
7383           return true;
7384 
7385         Arg = ArgE.getAs<Expr>();
7386 
7387       } else {
7388         ExprResult ArgE = DefaultArgumentPromotion(Arg);
7389 
7390         if (ArgE.isInvalid())
7391           return true;
7392 
7393         Arg = ArgE.getAs<Expr>();
7394       }
7395 
7396       if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
7397                               diag::err_call_incomplete_argument, Arg))
7398         return ExprError();
7399 
7400       TheCall->setArg(i, Arg);
7401     }
7402     TheCall->computeDependence();
7403   }
7404 
7405   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
7406     if (!Method->isStatic())
7407       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
7408         << Fn->getSourceRange());
7409 
7410   // Check for sentinels
7411   if (NDecl)
7412     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
7413 
7414   // Warn for unions passing across security boundary (CMSE).
7415   if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
7416     for (unsigned i = 0, e = Args.size(); i != e; i++) {
7417       if (const auto *RT =
7418               dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
7419         if (RT->getDecl()->isOrContainsUnion())
7420           Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
7421               << 0 << i;
7422       }
7423     }
7424   }
7425 
7426   // Do special checking on direct calls to functions.
7427   if (FDecl) {
7428     if (CheckFunctionCall(FDecl, TheCall, Proto))
7429       return ExprError();
7430 
7431     checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
7432 
7433     if (BuiltinID)
7434       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
7435   } else if (NDecl) {
7436     if (CheckPointerCall(NDecl, TheCall, Proto))
7437       return ExprError();
7438   } else {
7439     if (CheckOtherCall(TheCall, Proto))
7440       return ExprError();
7441   }
7442 
7443   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
7444 }
7445 
7446 ExprResult
7447 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
7448                            SourceLocation RParenLoc, Expr *InitExpr) {
7449   assert(Ty && "ActOnCompoundLiteral(): missing type");
7450   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
7451 
7452   TypeSourceInfo *TInfo;
7453   QualType literalType = GetTypeFromParser(Ty, &TInfo);
7454   if (!TInfo)
7455     TInfo = Context.getTrivialTypeSourceInfo(literalType);
7456 
7457   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
7458 }
7459 
7460 ExprResult
7461 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
7462                                SourceLocation RParenLoc, Expr *LiteralExpr) {
7463   QualType literalType = TInfo->getType();
7464 
7465   if (literalType->isArrayType()) {
7466     if (RequireCompleteSizedType(
7467             LParenLoc, Context.getBaseElementType(literalType),
7468             diag::err_array_incomplete_or_sizeless_type,
7469             SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7470       return ExprError();
7471     if (literalType->isVariableArrayType()) {
7472       if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7473                                            diag::err_variable_object_no_init)) {
7474         return ExprError();
7475       }
7476     }
7477   } else if (!literalType->isDependentType() &&
7478              RequireCompleteType(LParenLoc, literalType,
7479                diag::err_typecheck_decl_incomplete_type,
7480                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7481     return ExprError();
7482 
7483   InitializedEntity Entity
7484     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7485   InitializationKind Kind
7486     = InitializationKind::CreateCStyleCast(LParenLoc,
7487                                            SourceRange(LParenLoc, RParenLoc),
7488                                            /*InitList=*/true);
7489   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7490   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7491                                       &literalType);
7492   if (Result.isInvalid())
7493     return ExprError();
7494   LiteralExpr = Result.get();
7495 
7496   bool isFileScope = !CurContext->isFunctionOrMethod();
7497 
7498   // In C, compound literals are l-values for some reason.
7499   // For GCC compatibility, in C++, file-scope array compound literals with
7500   // constant initializers are also l-values, and compound literals are
7501   // otherwise prvalues.
7502   //
7503   // (GCC also treats C++ list-initialized file-scope array prvalues with
7504   // constant initializers as l-values, but that's non-conforming, so we don't
7505   // follow it there.)
7506   //
7507   // FIXME: It would be better to handle the lvalue cases as materializing and
7508   // lifetime-extending a temporary object, but our materialized temporaries
7509   // representation only supports lifetime extension from a variable, not "out
7510   // of thin air".
7511   // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7512   // is bound to the result of applying array-to-pointer decay to the compound
7513   // literal.
7514   // FIXME: GCC supports compound literals of reference type, which should
7515   // obviously have a value kind derived from the kind of reference involved.
7516   ExprValueKind VK =
7517       (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7518           ? VK_PRValue
7519           : VK_LValue;
7520 
7521   if (isFileScope)
7522     if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7523       for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7524         Expr *Init = ILE->getInit(i);
7525         ILE->setInit(i, ConstantExpr::Create(Context, Init));
7526       }
7527 
7528   auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7529                                               VK, LiteralExpr, isFileScope);
7530   if (isFileScope) {
7531     if (!LiteralExpr->isTypeDependent() &&
7532         !LiteralExpr->isValueDependent() &&
7533         !literalType->isDependentType()) // C99 6.5.2.5p3
7534       if (CheckForConstantInitializer(LiteralExpr, literalType))
7535         return ExprError();
7536   } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7537              literalType.getAddressSpace() != LangAS::Default) {
7538     // Embedded-C extensions to C99 6.5.2.5:
7539     //   "If the compound literal occurs inside the body of a function, the
7540     //   type name shall not be qualified by an address-space qualifier."
7541     Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7542       << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7543     return ExprError();
7544   }
7545 
7546   if (!isFileScope && !getLangOpts().CPlusPlus) {
7547     // Compound literals that have automatic storage duration are destroyed at
7548     // the end of the scope in C; in C++, they're just temporaries.
7549 
7550     // Emit diagnostics if it is or contains a C union type that is non-trivial
7551     // to destruct.
7552     if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7553       checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7554                             NTCUC_CompoundLiteral, NTCUK_Destruct);
7555 
7556     // Diagnose jumps that enter or exit the lifetime of the compound literal.
7557     if (literalType.isDestructedType()) {
7558       Cleanup.setExprNeedsCleanups(true);
7559       ExprCleanupObjects.push_back(E);
7560       getCurFunction()->setHasBranchProtectedScope();
7561     }
7562   }
7563 
7564   if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7565       E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7566     checkNonTrivialCUnionInInitializer(E->getInitializer(),
7567                                        E->getInitializer()->getExprLoc());
7568 
7569   return MaybeBindToTemporary(E);
7570 }
7571 
7572 ExprResult
7573 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7574                     SourceLocation RBraceLoc) {
7575   // Only produce each kind of designated initialization diagnostic once.
7576   SourceLocation FirstDesignator;
7577   bool DiagnosedArrayDesignator = false;
7578   bool DiagnosedNestedDesignator = false;
7579   bool DiagnosedMixedDesignator = false;
7580 
7581   // Check that any designated initializers are syntactically valid in the
7582   // current language mode.
7583   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7584     if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7585       if (FirstDesignator.isInvalid())
7586         FirstDesignator = DIE->getBeginLoc();
7587 
7588       if (!getLangOpts().CPlusPlus)
7589         break;
7590 
7591       if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7592         DiagnosedNestedDesignator = true;
7593         Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7594           << DIE->getDesignatorsSourceRange();
7595       }
7596 
7597       for (auto &Desig : DIE->designators()) {
7598         if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7599           DiagnosedArrayDesignator = true;
7600           Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7601             << Desig.getSourceRange();
7602         }
7603       }
7604 
7605       if (!DiagnosedMixedDesignator &&
7606           !isa<DesignatedInitExpr>(InitArgList[0])) {
7607         DiagnosedMixedDesignator = true;
7608         Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7609           << DIE->getSourceRange();
7610         Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7611           << InitArgList[0]->getSourceRange();
7612       }
7613     } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7614                isa<DesignatedInitExpr>(InitArgList[0])) {
7615       DiagnosedMixedDesignator = true;
7616       auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7617       Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7618         << DIE->getSourceRange();
7619       Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7620         << InitArgList[I]->getSourceRange();
7621     }
7622   }
7623 
7624   if (FirstDesignator.isValid()) {
7625     // Only diagnose designated initiaization as a C++20 extension if we didn't
7626     // already diagnose use of (non-C++20) C99 designator syntax.
7627     if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7628         !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7629       Diag(FirstDesignator, getLangOpts().CPlusPlus20
7630                                 ? diag::warn_cxx17_compat_designated_init
7631                                 : diag::ext_cxx_designated_init);
7632     } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7633       Diag(FirstDesignator, diag::ext_designated_init);
7634     }
7635   }
7636 
7637   return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7638 }
7639 
7640 ExprResult
7641 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7642                     SourceLocation RBraceLoc) {
7643   // Semantic analysis for initializers is done by ActOnDeclarator() and
7644   // CheckInitializer() - it requires knowledge of the object being initialized.
7645 
7646   // Immediately handle non-overload placeholders.  Overloads can be
7647   // resolved contextually, but everything else here can't.
7648   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7649     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7650       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7651 
7652       // Ignore failures; dropping the entire initializer list because
7653       // of one failure would be terrible for indexing/etc.
7654       if (result.isInvalid()) continue;
7655 
7656       InitArgList[I] = result.get();
7657     }
7658   }
7659 
7660   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7661                                                RBraceLoc);
7662   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7663   return E;
7664 }
7665 
7666 /// Do an explicit extend of the given block pointer if we're in ARC.
7667 void Sema::maybeExtendBlockObject(ExprResult &E) {
7668   assert(E.get()->getType()->isBlockPointerType());
7669   assert(E.get()->isPRValue());
7670 
7671   // Only do this in an r-value context.
7672   if (!getLangOpts().ObjCAutoRefCount) return;
7673 
7674   E = ImplicitCastExpr::Create(
7675       Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7676       /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
7677   Cleanup.setExprNeedsCleanups(true);
7678 }
7679 
7680 /// Prepare a conversion of the given expression to an ObjC object
7681 /// pointer type.
7682 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
7683   QualType type = E.get()->getType();
7684   if (type->isObjCObjectPointerType()) {
7685     return CK_BitCast;
7686   } else if (type->isBlockPointerType()) {
7687     maybeExtendBlockObject(E);
7688     return CK_BlockPointerToObjCPointerCast;
7689   } else {
7690     assert(type->isPointerType());
7691     return CK_CPointerToObjCPointerCast;
7692   }
7693 }
7694 
7695 /// Prepares for a scalar cast, performing all the necessary stages
7696 /// except the final cast and returning the kind required.
7697 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7698   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7699   // Also, callers should have filtered out the invalid cases with
7700   // pointers.  Everything else should be possible.
7701 
7702   QualType SrcTy = Src.get()->getType();
7703   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7704     return CK_NoOp;
7705 
7706   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7707   case Type::STK_MemberPointer:
7708     llvm_unreachable("member pointer type in C");
7709 
7710   case Type::STK_CPointer:
7711   case Type::STK_BlockPointer:
7712   case Type::STK_ObjCObjectPointer:
7713     switch (DestTy->getScalarTypeKind()) {
7714     case Type::STK_CPointer: {
7715       LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7716       LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7717       if (SrcAS != DestAS)
7718         return CK_AddressSpaceConversion;
7719       if (Context.hasCvrSimilarType(SrcTy, DestTy))
7720         return CK_NoOp;
7721       return CK_BitCast;
7722     }
7723     case Type::STK_BlockPointer:
7724       return (SrcKind == Type::STK_BlockPointer
7725                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7726     case Type::STK_ObjCObjectPointer:
7727       if (SrcKind == Type::STK_ObjCObjectPointer)
7728         return CK_BitCast;
7729       if (SrcKind == Type::STK_CPointer)
7730         return CK_CPointerToObjCPointerCast;
7731       maybeExtendBlockObject(Src);
7732       return CK_BlockPointerToObjCPointerCast;
7733     case Type::STK_Bool:
7734       return CK_PointerToBoolean;
7735     case Type::STK_Integral:
7736       return CK_PointerToIntegral;
7737     case Type::STK_Floating:
7738     case Type::STK_FloatingComplex:
7739     case Type::STK_IntegralComplex:
7740     case Type::STK_MemberPointer:
7741     case Type::STK_FixedPoint:
7742       llvm_unreachable("illegal cast from pointer");
7743     }
7744     llvm_unreachable("Should have returned before this");
7745 
7746   case Type::STK_FixedPoint:
7747     switch (DestTy->getScalarTypeKind()) {
7748     case Type::STK_FixedPoint:
7749       return CK_FixedPointCast;
7750     case Type::STK_Bool:
7751       return CK_FixedPointToBoolean;
7752     case Type::STK_Integral:
7753       return CK_FixedPointToIntegral;
7754     case Type::STK_Floating:
7755       return CK_FixedPointToFloating;
7756     case Type::STK_IntegralComplex:
7757     case Type::STK_FloatingComplex:
7758       Diag(Src.get()->getExprLoc(),
7759            diag::err_unimplemented_conversion_with_fixed_point_type)
7760           << DestTy;
7761       return CK_IntegralCast;
7762     case Type::STK_CPointer:
7763     case Type::STK_ObjCObjectPointer:
7764     case Type::STK_BlockPointer:
7765     case Type::STK_MemberPointer:
7766       llvm_unreachable("illegal cast to pointer type");
7767     }
7768     llvm_unreachable("Should have returned before this");
7769 
7770   case Type::STK_Bool: // casting from bool is like casting from an integer
7771   case Type::STK_Integral:
7772     switch (DestTy->getScalarTypeKind()) {
7773     case Type::STK_CPointer:
7774     case Type::STK_ObjCObjectPointer:
7775     case Type::STK_BlockPointer:
7776       if (Src.get()->isNullPointerConstant(Context,
7777                                            Expr::NPC_ValueDependentIsNull))
7778         return CK_NullToPointer;
7779       return CK_IntegralToPointer;
7780     case Type::STK_Bool:
7781       return CK_IntegralToBoolean;
7782     case Type::STK_Integral:
7783       return CK_IntegralCast;
7784     case Type::STK_Floating:
7785       return CK_IntegralToFloating;
7786     case Type::STK_IntegralComplex:
7787       Src = ImpCastExprToType(Src.get(),
7788                       DestTy->castAs<ComplexType>()->getElementType(),
7789                       CK_IntegralCast);
7790       return CK_IntegralRealToComplex;
7791     case Type::STK_FloatingComplex:
7792       Src = ImpCastExprToType(Src.get(),
7793                       DestTy->castAs<ComplexType>()->getElementType(),
7794                       CK_IntegralToFloating);
7795       return CK_FloatingRealToComplex;
7796     case Type::STK_MemberPointer:
7797       llvm_unreachable("member pointer type in C");
7798     case Type::STK_FixedPoint:
7799       return CK_IntegralToFixedPoint;
7800     }
7801     llvm_unreachable("Should have returned before this");
7802 
7803   case Type::STK_Floating:
7804     switch (DestTy->getScalarTypeKind()) {
7805     case Type::STK_Floating:
7806       return CK_FloatingCast;
7807     case Type::STK_Bool:
7808       return CK_FloatingToBoolean;
7809     case Type::STK_Integral:
7810       return CK_FloatingToIntegral;
7811     case Type::STK_FloatingComplex:
7812       Src = ImpCastExprToType(Src.get(),
7813                               DestTy->castAs<ComplexType>()->getElementType(),
7814                               CK_FloatingCast);
7815       return CK_FloatingRealToComplex;
7816     case Type::STK_IntegralComplex:
7817       Src = ImpCastExprToType(Src.get(),
7818                               DestTy->castAs<ComplexType>()->getElementType(),
7819                               CK_FloatingToIntegral);
7820       return CK_IntegralRealToComplex;
7821     case Type::STK_CPointer:
7822     case Type::STK_ObjCObjectPointer:
7823     case Type::STK_BlockPointer:
7824       llvm_unreachable("valid float->pointer cast?");
7825     case Type::STK_MemberPointer:
7826       llvm_unreachable("member pointer type in C");
7827     case Type::STK_FixedPoint:
7828       return CK_FloatingToFixedPoint;
7829     }
7830     llvm_unreachable("Should have returned before this");
7831 
7832   case Type::STK_FloatingComplex:
7833     switch (DestTy->getScalarTypeKind()) {
7834     case Type::STK_FloatingComplex:
7835       return CK_FloatingComplexCast;
7836     case Type::STK_IntegralComplex:
7837       return CK_FloatingComplexToIntegralComplex;
7838     case Type::STK_Floating: {
7839       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7840       if (Context.hasSameType(ET, DestTy))
7841         return CK_FloatingComplexToReal;
7842       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7843       return CK_FloatingCast;
7844     }
7845     case Type::STK_Bool:
7846       return CK_FloatingComplexToBoolean;
7847     case Type::STK_Integral:
7848       Src = ImpCastExprToType(Src.get(),
7849                               SrcTy->castAs<ComplexType>()->getElementType(),
7850                               CK_FloatingComplexToReal);
7851       return CK_FloatingToIntegral;
7852     case Type::STK_CPointer:
7853     case Type::STK_ObjCObjectPointer:
7854     case Type::STK_BlockPointer:
7855       llvm_unreachable("valid complex float->pointer cast?");
7856     case Type::STK_MemberPointer:
7857       llvm_unreachable("member pointer type in C");
7858     case Type::STK_FixedPoint:
7859       Diag(Src.get()->getExprLoc(),
7860            diag::err_unimplemented_conversion_with_fixed_point_type)
7861           << SrcTy;
7862       return CK_IntegralCast;
7863     }
7864     llvm_unreachable("Should have returned before this");
7865 
7866   case Type::STK_IntegralComplex:
7867     switch (DestTy->getScalarTypeKind()) {
7868     case Type::STK_FloatingComplex:
7869       return CK_IntegralComplexToFloatingComplex;
7870     case Type::STK_IntegralComplex:
7871       return CK_IntegralComplexCast;
7872     case Type::STK_Integral: {
7873       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7874       if (Context.hasSameType(ET, DestTy))
7875         return CK_IntegralComplexToReal;
7876       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7877       return CK_IntegralCast;
7878     }
7879     case Type::STK_Bool:
7880       return CK_IntegralComplexToBoolean;
7881     case Type::STK_Floating:
7882       Src = ImpCastExprToType(Src.get(),
7883                               SrcTy->castAs<ComplexType>()->getElementType(),
7884                               CK_IntegralComplexToReal);
7885       return CK_IntegralToFloating;
7886     case Type::STK_CPointer:
7887     case Type::STK_ObjCObjectPointer:
7888     case Type::STK_BlockPointer:
7889       llvm_unreachable("valid complex int->pointer cast?");
7890     case Type::STK_MemberPointer:
7891       llvm_unreachable("member pointer type in C");
7892     case Type::STK_FixedPoint:
7893       Diag(Src.get()->getExprLoc(),
7894            diag::err_unimplemented_conversion_with_fixed_point_type)
7895           << SrcTy;
7896       return CK_IntegralCast;
7897     }
7898     llvm_unreachable("Should have returned before this");
7899   }
7900 
7901   llvm_unreachable("Unhandled scalar cast");
7902 }
7903 
7904 static bool breakDownVectorType(QualType type, uint64_t &len,
7905                                 QualType &eltType) {
7906   // Vectors are simple.
7907   if (const VectorType *vecType = type->getAs<VectorType>()) {
7908     len = vecType->getNumElements();
7909     eltType = vecType->getElementType();
7910     assert(eltType->isScalarType());
7911     return true;
7912   }
7913 
7914   // We allow lax conversion to and from non-vector types, but only if
7915   // they're real types (i.e. non-complex, non-pointer scalar types).
7916   if (!type->isRealType()) return false;
7917 
7918   len = 1;
7919   eltType = type;
7920   return true;
7921 }
7922 
7923 /// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
7924 /// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
7925 /// allowed?
7926 ///
7927 /// This will also return false if the two given types do not make sense from
7928 /// the perspective of SVE bitcasts.
7929 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7930   assert(srcTy->isVectorType() || destTy->isVectorType());
7931 
7932   auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7933     if (!FirstType->isSizelessBuiltinType())
7934       return false;
7935 
7936     const auto *VecTy = SecondType->getAs<VectorType>();
7937     return VecTy &&
7938            VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector;
7939   };
7940 
7941   return ValidScalableConversion(srcTy, destTy) ||
7942          ValidScalableConversion(destTy, srcTy);
7943 }
7944 
7945 /// Are the two types matrix types and do they have the same dimensions i.e.
7946 /// do they have the same number of rows and the same number of columns?
7947 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7948   if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7949     return false;
7950 
7951   const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7952   const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7953 
7954   return matSrcType->getNumRows() == matDestType->getNumRows() &&
7955          matSrcType->getNumColumns() == matDestType->getNumColumns();
7956 }
7957 
7958 bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7959   assert(DestTy->isVectorType() || SrcTy->isVectorType());
7960 
7961   uint64_t SrcLen, DestLen;
7962   QualType SrcEltTy, DestEltTy;
7963   if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7964     return false;
7965   if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7966     return false;
7967 
7968   // ASTContext::getTypeSize will return the size rounded up to a
7969   // power of 2, so instead of using that, we need to use the raw
7970   // element size multiplied by the element count.
7971   uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
7972   uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
7973 
7974   return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7975 }
7976 
7977 // This returns true if at least one of the types is an altivec vector.
7978 bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
7979   assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
7980          "expected at least one type to be a vector here");
7981 
7982   bool IsSrcTyAltivec =
7983       SrcTy->isVectorType() && (SrcTy->castAs<VectorType>()->getVectorKind() ==
7984                                 VectorType::AltiVecVector);
7985   bool IsDestTyAltivec = DestTy->isVectorType() &&
7986                          (DestTy->castAs<VectorType>()->getVectorKind() ==
7987                           VectorType::AltiVecVector);
7988 
7989   return (IsSrcTyAltivec || IsDestTyAltivec);
7990 }
7991 
7992 // This returns true if both vectors have the same element type.
7993 bool Sema::areSameVectorElemTypes(QualType SrcTy, QualType DestTy) {
7994   assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
7995          "expected at least one type to be a vector here");
7996 
7997   uint64_t SrcLen, DestLen;
7998   QualType SrcEltTy, DestEltTy;
7999   if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
8000     return false;
8001   if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
8002     return false;
8003 
8004   return (SrcEltTy == DestEltTy);
8005 }
8006 
8007 /// Are the two types lax-compatible vector types?  That is, given
8008 /// that one of them is a vector, do they have equal storage sizes,
8009 /// where the storage size is the number of elements times the element
8010 /// size?
8011 ///
8012 /// This will also return false if either of the types is neither a
8013 /// vector nor a real type.
8014 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
8015   assert(destTy->isVectorType() || srcTy->isVectorType());
8016 
8017   // Disallow lax conversions between scalars and ExtVectors (these
8018   // conversions are allowed for other vector types because common headers
8019   // depend on them).  Most scalar OP ExtVector cases are handled by the
8020   // splat path anyway, which does what we want (convert, not bitcast).
8021   // What this rules out for ExtVectors is crazy things like char4*float.
8022   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
8023   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
8024 
8025   return areVectorTypesSameSize(srcTy, destTy);
8026 }
8027 
8028 /// Is this a legal conversion between two types, one of which is
8029 /// known to be a vector type?
8030 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
8031   assert(destTy->isVectorType() || srcTy->isVectorType());
8032 
8033   switch (Context.getLangOpts().getLaxVectorConversions()) {
8034   case LangOptions::LaxVectorConversionKind::None:
8035     return false;
8036 
8037   case LangOptions::LaxVectorConversionKind::Integer:
8038     if (!srcTy->isIntegralOrEnumerationType()) {
8039       auto *Vec = srcTy->getAs<VectorType>();
8040       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8041         return false;
8042     }
8043     if (!destTy->isIntegralOrEnumerationType()) {
8044       auto *Vec = destTy->getAs<VectorType>();
8045       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
8046         return false;
8047     }
8048     // OK, integer (vector) -> integer (vector) bitcast.
8049     break;
8050 
8051     case LangOptions::LaxVectorConversionKind::All:
8052     break;
8053   }
8054 
8055   return areLaxCompatibleVectorTypes(srcTy, destTy);
8056 }
8057 
8058 bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
8059                            CastKind &Kind) {
8060   if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
8061     if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
8062       return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
8063              << DestTy << SrcTy << R;
8064     }
8065   } else if (SrcTy->isMatrixType()) {
8066     return Diag(R.getBegin(),
8067                 diag::err_invalid_conversion_between_matrix_and_type)
8068            << SrcTy << DestTy << R;
8069   } else if (DestTy->isMatrixType()) {
8070     return Diag(R.getBegin(),
8071                 diag::err_invalid_conversion_between_matrix_and_type)
8072            << DestTy << SrcTy << R;
8073   }
8074 
8075   Kind = CK_MatrixCast;
8076   return false;
8077 }
8078 
8079 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
8080                            CastKind &Kind) {
8081   assert(VectorTy->isVectorType() && "Not a vector type!");
8082 
8083   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
8084     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
8085       return Diag(R.getBegin(),
8086                   Ty->isVectorType() ?
8087                   diag::err_invalid_conversion_between_vectors :
8088                   diag::err_invalid_conversion_between_vector_and_integer)
8089         << VectorTy << Ty << R;
8090   } else
8091     return Diag(R.getBegin(),
8092                 diag::err_invalid_conversion_between_vector_and_scalar)
8093       << VectorTy << Ty << R;
8094 
8095   Kind = CK_BitCast;
8096   return false;
8097 }
8098 
8099 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
8100   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
8101 
8102   if (DestElemTy == SplattedExpr->getType())
8103     return SplattedExpr;
8104 
8105   assert(DestElemTy->isFloatingType() ||
8106          DestElemTy->isIntegralOrEnumerationType());
8107 
8108   CastKind CK;
8109   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
8110     // OpenCL requires that we convert `true` boolean expressions to -1, but
8111     // only when splatting vectors.
8112     if (DestElemTy->isFloatingType()) {
8113       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
8114       // in two steps: boolean to signed integral, then to floating.
8115       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
8116                                                  CK_BooleanToSignedIntegral);
8117       SplattedExpr = CastExprRes.get();
8118       CK = CK_IntegralToFloating;
8119     } else {
8120       CK = CK_BooleanToSignedIntegral;
8121     }
8122   } else {
8123     ExprResult CastExprRes = SplattedExpr;
8124     CK = PrepareScalarCast(CastExprRes, DestElemTy);
8125     if (CastExprRes.isInvalid())
8126       return ExprError();
8127     SplattedExpr = CastExprRes.get();
8128   }
8129   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
8130 }
8131 
8132 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
8133                                     Expr *CastExpr, CastKind &Kind) {
8134   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
8135 
8136   QualType SrcTy = CastExpr->getType();
8137 
8138   // If SrcTy is a VectorType, the total size must match to explicitly cast to
8139   // an ExtVectorType.
8140   // In OpenCL, casts between vectors of different types are not allowed.
8141   // (See OpenCL 6.2).
8142   if (SrcTy->isVectorType()) {
8143     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
8144         (getLangOpts().OpenCL &&
8145          !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
8146       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
8147         << DestTy << SrcTy << R;
8148       return ExprError();
8149     }
8150     Kind = CK_BitCast;
8151     return CastExpr;
8152   }
8153 
8154   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
8155   // conversion will take place first from scalar to elt type, and then
8156   // splat from elt type to vector.
8157   if (SrcTy->isPointerType())
8158     return Diag(R.getBegin(),
8159                 diag::err_invalid_conversion_between_vector_and_scalar)
8160       << DestTy << SrcTy << R;
8161 
8162   Kind = CK_VectorSplat;
8163   return prepareVectorSplat(DestTy, CastExpr);
8164 }
8165 
8166 ExprResult
8167 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
8168                     Declarator &D, ParsedType &Ty,
8169                     SourceLocation RParenLoc, Expr *CastExpr) {
8170   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
8171          "ActOnCastExpr(): missing type or expr");
8172 
8173   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
8174   if (D.isInvalidType())
8175     return ExprError();
8176 
8177   if (getLangOpts().CPlusPlus) {
8178     // Check that there are no default arguments (C++ only).
8179     CheckExtraCXXDefaultArguments(D);
8180   } else {
8181     // Make sure any TypoExprs have been dealt with.
8182     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
8183     if (!Res.isUsable())
8184       return ExprError();
8185     CastExpr = Res.get();
8186   }
8187 
8188   checkUnusedDeclAttributes(D);
8189 
8190   QualType castType = castTInfo->getType();
8191   Ty = CreateParsedType(castType, castTInfo);
8192 
8193   bool isVectorLiteral = false;
8194 
8195   // Check for an altivec or OpenCL literal,
8196   // i.e. all the elements are integer constants.
8197   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
8198   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
8199   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
8200        && castType->isVectorType() && (PE || PLE)) {
8201     if (PLE && PLE->getNumExprs() == 0) {
8202       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
8203       return ExprError();
8204     }
8205     if (PE || PLE->getNumExprs() == 1) {
8206       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
8207       if (!E->isTypeDependent() && !E->getType()->isVectorType())
8208         isVectorLiteral = true;
8209     }
8210     else
8211       isVectorLiteral = true;
8212   }
8213 
8214   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
8215   // then handle it as such.
8216   if (isVectorLiteral)
8217     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
8218 
8219   // If the Expr being casted is a ParenListExpr, handle it specially.
8220   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
8221   // sequence of BinOp comma operators.
8222   if (isa<ParenListExpr>(CastExpr)) {
8223     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
8224     if (Result.isInvalid()) return ExprError();
8225     CastExpr = Result.get();
8226   }
8227 
8228   if (getLangOpts().CPlusPlus && !castType->isVoidType())
8229     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
8230 
8231   CheckTollFreeBridgeCast(castType, CastExpr);
8232 
8233   CheckObjCBridgeRelatedCast(castType, CastExpr);
8234 
8235   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
8236 
8237   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
8238 }
8239 
8240 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
8241                                     SourceLocation RParenLoc, Expr *E,
8242                                     TypeSourceInfo *TInfo) {
8243   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
8244          "Expected paren or paren list expression");
8245 
8246   Expr **exprs;
8247   unsigned numExprs;
8248   Expr *subExpr;
8249   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
8250   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
8251     LiteralLParenLoc = PE->getLParenLoc();
8252     LiteralRParenLoc = PE->getRParenLoc();
8253     exprs = PE->getExprs();
8254     numExprs = PE->getNumExprs();
8255   } else { // isa<ParenExpr> by assertion at function entrance
8256     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
8257     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
8258     subExpr = cast<ParenExpr>(E)->getSubExpr();
8259     exprs = &subExpr;
8260     numExprs = 1;
8261   }
8262 
8263   QualType Ty = TInfo->getType();
8264   assert(Ty->isVectorType() && "Expected vector type");
8265 
8266   SmallVector<Expr *, 8> initExprs;
8267   const VectorType *VTy = Ty->castAs<VectorType>();
8268   unsigned numElems = VTy->getNumElements();
8269 
8270   // '(...)' form of vector initialization in AltiVec: the number of
8271   // initializers must be one or must match the size of the vector.
8272   // If a single value is specified in the initializer then it will be
8273   // replicated to all the components of the vector
8274   if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
8275                                  VTy->getElementType()))
8276     return ExprError();
8277   if (ShouldSplatAltivecScalarInCast(VTy)) {
8278     // The number of initializers must be one or must match the size of the
8279     // vector. If a single value is specified in the initializer then it will
8280     // be replicated to all the components of the vector
8281     if (numExprs == 1) {
8282       QualType ElemTy = VTy->getElementType();
8283       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8284       if (Literal.isInvalid())
8285         return ExprError();
8286       Literal = ImpCastExprToType(Literal.get(), ElemTy,
8287                                   PrepareScalarCast(Literal, ElemTy));
8288       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8289     }
8290     else if (numExprs < numElems) {
8291       Diag(E->getExprLoc(),
8292            diag::err_incorrect_number_of_vector_initializers);
8293       return ExprError();
8294     }
8295     else
8296       initExprs.append(exprs, exprs + numExprs);
8297   }
8298   else {
8299     // For OpenCL, when the number of initializers is a single value,
8300     // it will be replicated to all components of the vector.
8301     if (getLangOpts().OpenCL &&
8302         VTy->getVectorKind() == VectorType::GenericVector &&
8303         numExprs == 1) {
8304         QualType ElemTy = VTy->getElementType();
8305         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
8306         if (Literal.isInvalid())
8307           return ExprError();
8308         Literal = ImpCastExprToType(Literal.get(), ElemTy,
8309                                     PrepareScalarCast(Literal, ElemTy));
8310         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
8311     }
8312 
8313     initExprs.append(exprs, exprs + numExprs);
8314   }
8315   // FIXME: This means that pretty-printing the final AST will produce curly
8316   // braces instead of the original commas.
8317   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
8318                                                    initExprs, LiteralRParenLoc);
8319   initE->setType(Ty);
8320   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
8321 }
8322 
8323 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
8324 /// the ParenListExpr into a sequence of comma binary operators.
8325 ExprResult
8326 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
8327   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
8328   if (!E)
8329     return OrigExpr;
8330 
8331   ExprResult Result(E->getExpr(0));
8332 
8333   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
8334     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
8335                         E->getExpr(i));
8336 
8337   if (Result.isInvalid()) return ExprError();
8338 
8339   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
8340 }
8341 
8342 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
8343                                     SourceLocation R,
8344                                     MultiExprArg Val) {
8345   return ParenListExpr::Create(Context, L, Val, R);
8346 }
8347 
8348 /// Emit a specialized diagnostic when one expression is a null pointer
8349 /// constant and the other is not a pointer.  Returns true if a diagnostic is
8350 /// emitted.
8351 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
8352                                       SourceLocation QuestionLoc) {
8353   Expr *NullExpr = LHSExpr;
8354   Expr *NonPointerExpr = RHSExpr;
8355   Expr::NullPointerConstantKind NullKind =
8356       NullExpr->isNullPointerConstant(Context,
8357                                       Expr::NPC_ValueDependentIsNotNull);
8358 
8359   if (NullKind == Expr::NPCK_NotNull) {
8360     NullExpr = RHSExpr;
8361     NonPointerExpr = LHSExpr;
8362     NullKind =
8363         NullExpr->isNullPointerConstant(Context,
8364                                         Expr::NPC_ValueDependentIsNotNull);
8365   }
8366 
8367   if (NullKind == Expr::NPCK_NotNull)
8368     return false;
8369 
8370   if (NullKind == Expr::NPCK_ZeroExpression)
8371     return false;
8372 
8373   if (NullKind == Expr::NPCK_ZeroLiteral) {
8374     // In this case, check to make sure that we got here from a "NULL"
8375     // string in the source code.
8376     NullExpr = NullExpr->IgnoreParenImpCasts();
8377     SourceLocation loc = NullExpr->getExprLoc();
8378     if (!findMacroSpelling(loc, "NULL"))
8379       return false;
8380   }
8381 
8382   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
8383   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
8384       << NonPointerExpr->getType() << DiagType
8385       << NonPointerExpr->getSourceRange();
8386   return true;
8387 }
8388 
8389 /// Return false if the condition expression is valid, true otherwise.
8390 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
8391   QualType CondTy = Cond->getType();
8392 
8393   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
8394   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
8395     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8396       << CondTy << Cond->getSourceRange();
8397     return true;
8398   }
8399 
8400   // C99 6.5.15p2
8401   if (CondTy->isScalarType()) return false;
8402 
8403   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
8404     << CondTy << Cond->getSourceRange();
8405   return true;
8406 }
8407 
8408 /// Return false if the NullExpr can be promoted to PointerTy,
8409 /// true otherwise.
8410 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
8411                                         QualType PointerTy) {
8412   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
8413       !NullExpr.get()->isNullPointerConstant(S.Context,
8414                                             Expr::NPC_ValueDependentIsNull))
8415     return true;
8416 
8417   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
8418   return false;
8419 }
8420 
8421 /// Checks compatibility between two pointers and return the resulting
8422 /// type.
8423 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
8424                                                      ExprResult &RHS,
8425                                                      SourceLocation Loc) {
8426   QualType LHSTy = LHS.get()->getType();
8427   QualType RHSTy = RHS.get()->getType();
8428 
8429   if (S.Context.hasSameType(LHSTy, RHSTy)) {
8430     // Two identical pointers types are always compatible.
8431     return S.Context.getCommonSugaredType(LHSTy, RHSTy);
8432   }
8433 
8434   QualType lhptee, rhptee;
8435 
8436   // Get the pointee types.
8437   bool IsBlockPointer = false;
8438   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
8439     lhptee = LHSBTy->getPointeeType();
8440     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
8441     IsBlockPointer = true;
8442   } else {
8443     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8444     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8445   }
8446 
8447   // C99 6.5.15p6: If both operands are pointers to compatible types or to
8448   // differently qualified versions of compatible types, the result type is
8449   // a pointer to an appropriately qualified version of the composite
8450   // type.
8451 
8452   // Only CVR-qualifiers exist in the standard, and the differently-qualified
8453   // clause doesn't make sense for our extensions. E.g. address space 2 should
8454   // be incompatible with address space 3: they may live on different devices or
8455   // anything.
8456   Qualifiers lhQual = lhptee.getQualifiers();
8457   Qualifiers rhQual = rhptee.getQualifiers();
8458 
8459   LangAS ResultAddrSpace = LangAS::Default;
8460   LangAS LAddrSpace = lhQual.getAddressSpace();
8461   LangAS RAddrSpace = rhQual.getAddressSpace();
8462 
8463   // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
8464   // spaces is disallowed.
8465   if (lhQual.isAddressSpaceSupersetOf(rhQual))
8466     ResultAddrSpace = LAddrSpace;
8467   else if (rhQual.isAddressSpaceSupersetOf(lhQual))
8468     ResultAddrSpace = RAddrSpace;
8469   else {
8470     S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
8471         << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
8472         << RHS.get()->getSourceRange();
8473     return QualType();
8474   }
8475 
8476   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
8477   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
8478   lhQual.removeCVRQualifiers();
8479   rhQual.removeCVRQualifiers();
8480 
8481   // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
8482   // (C99 6.7.3) for address spaces. We assume that the check should behave in
8483   // the same manner as it's defined for CVR qualifiers, so for OpenCL two
8484   // qual types are compatible iff
8485   //  * corresponded types are compatible
8486   //  * CVR qualifiers are equal
8487   //  * address spaces are equal
8488   // Thus for conditional operator we merge CVR and address space unqualified
8489   // pointees and if there is a composite type we return a pointer to it with
8490   // merged qualifiers.
8491   LHSCastKind =
8492       LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8493   RHSCastKind =
8494       RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
8495   lhQual.removeAddressSpace();
8496   rhQual.removeAddressSpace();
8497 
8498   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
8499   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
8500 
8501   QualType CompositeTy = S.Context.mergeTypes(
8502       lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false,
8503       /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
8504 
8505   if (CompositeTy.isNull()) {
8506     // In this situation, we assume void* type. No especially good
8507     // reason, but this is what gcc does, and we do have to pick
8508     // to get a consistent AST.
8509     QualType incompatTy;
8510     incompatTy = S.Context.getPointerType(
8511         S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8512     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8513     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8514 
8515     // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8516     // for casts between types with incompatible address space qualifiers.
8517     // For the following code the compiler produces casts between global and
8518     // local address spaces of the corresponded innermost pointees:
8519     // local int *global *a;
8520     // global int *global *b;
8521     // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8522     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8523         << LHSTy << RHSTy << LHS.get()->getSourceRange()
8524         << RHS.get()->getSourceRange();
8525 
8526     return incompatTy;
8527   }
8528 
8529   // The pointer types are compatible.
8530   // In case of OpenCL ResultTy should have the address space qualifier
8531   // which is a superset of address spaces of both the 2nd and the 3rd
8532   // operands of the conditional operator.
8533   QualType ResultTy = [&, ResultAddrSpace]() {
8534     if (S.getLangOpts().OpenCL) {
8535       Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8536       CompositeQuals.setAddressSpace(ResultAddrSpace);
8537       return S.Context
8538           .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8539           .withCVRQualifiers(MergedCVRQual);
8540     }
8541     return CompositeTy.withCVRQualifiers(MergedCVRQual);
8542   }();
8543   if (IsBlockPointer)
8544     ResultTy = S.Context.getBlockPointerType(ResultTy);
8545   else
8546     ResultTy = S.Context.getPointerType(ResultTy);
8547 
8548   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8549   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8550   return ResultTy;
8551 }
8552 
8553 /// Return the resulting type when the operands are both block pointers.
8554 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8555                                                           ExprResult &LHS,
8556                                                           ExprResult &RHS,
8557                                                           SourceLocation Loc) {
8558   QualType LHSTy = LHS.get()->getType();
8559   QualType RHSTy = RHS.get()->getType();
8560 
8561   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8562     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8563       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8564       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8565       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8566       return destType;
8567     }
8568     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8569       << LHSTy << RHSTy << LHS.get()->getSourceRange()
8570       << RHS.get()->getSourceRange();
8571     return QualType();
8572   }
8573 
8574   // We have 2 block pointer types.
8575   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8576 }
8577 
8578 /// Return the resulting type when the operands are both pointers.
8579 static QualType
8580 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8581                                             ExprResult &RHS,
8582                                             SourceLocation Loc) {
8583   // get the pointer types
8584   QualType LHSTy = LHS.get()->getType();
8585   QualType RHSTy = RHS.get()->getType();
8586 
8587   // get the "pointed to" types
8588   QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8589   QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8590 
8591   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8592   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8593     // Figure out necessary qualifiers (C99 6.5.15p6)
8594     QualType destPointee
8595       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8596     QualType destType = S.Context.getPointerType(destPointee);
8597     // Add qualifiers if necessary.
8598     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8599     // Promote to void*.
8600     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8601     return destType;
8602   }
8603   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8604     QualType destPointee
8605       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8606     QualType destType = S.Context.getPointerType(destPointee);
8607     // Add qualifiers if necessary.
8608     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8609     // Promote to void*.
8610     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8611     return destType;
8612   }
8613 
8614   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8615 }
8616 
8617 /// Return false if the first expression is not an integer and the second
8618 /// expression is not a pointer, true otherwise.
8619 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8620                                         Expr* PointerExpr, SourceLocation Loc,
8621                                         bool IsIntFirstExpr) {
8622   if (!PointerExpr->getType()->isPointerType() ||
8623       !Int.get()->getType()->isIntegerType())
8624     return false;
8625 
8626   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8627   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8628 
8629   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8630     << Expr1->getType() << Expr2->getType()
8631     << Expr1->getSourceRange() << Expr2->getSourceRange();
8632   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8633                             CK_IntegralToPointer);
8634   return true;
8635 }
8636 
8637 /// Simple conversion between integer and floating point types.
8638 ///
8639 /// Used when handling the OpenCL conditional operator where the
8640 /// condition is a vector while the other operands are scalar.
8641 ///
8642 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8643 /// types are either integer or floating type. Between the two
8644 /// operands, the type with the higher rank is defined as the "result
8645 /// type". The other operand needs to be promoted to the same type. No
8646 /// other type promotion is allowed. We cannot use
8647 /// UsualArithmeticConversions() for this purpose, since it always
8648 /// promotes promotable types.
8649 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8650                                             ExprResult &RHS,
8651                                             SourceLocation QuestionLoc) {
8652   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8653   if (LHS.isInvalid())
8654     return QualType();
8655   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8656   if (RHS.isInvalid())
8657     return QualType();
8658 
8659   // For conversion purposes, we ignore any qualifiers.
8660   // For example, "const float" and "float" are equivalent.
8661   QualType LHSType =
8662     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
8663   QualType RHSType =
8664     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
8665 
8666   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8667     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8668       << LHSType << LHS.get()->getSourceRange();
8669     return QualType();
8670   }
8671 
8672   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8673     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8674       << RHSType << RHS.get()->getSourceRange();
8675     return QualType();
8676   }
8677 
8678   // If both types are identical, no conversion is needed.
8679   if (LHSType == RHSType)
8680     return LHSType;
8681 
8682   // Now handle "real" floating types (i.e. float, double, long double).
8683   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8684     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8685                                  /*IsCompAssign = */ false);
8686 
8687   // Finally, we have two differing integer types.
8688   return handleIntegerConversion<doIntegralCast, doIntegralCast>
8689   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8690 }
8691 
8692 /// Convert scalar operands to a vector that matches the
8693 ///        condition in length.
8694 ///
8695 /// Used when handling the OpenCL conditional operator where the
8696 /// condition is a vector while the other operands are scalar.
8697 ///
8698 /// We first compute the "result type" for the scalar operands
8699 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8700 /// into a vector of that type where the length matches the condition
8701 /// vector type. s6.11.6 requires that the element types of the result
8702 /// and the condition must have the same number of bits.
8703 static QualType
8704 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8705                               QualType CondTy, SourceLocation QuestionLoc) {
8706   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8707   if (ResTy.isNull()) return QualType();
8708 
8709   const VectorType *CV = CondTy->getAs<VectorType>();
8710   assert(CV);
8711 
8712   // Determine the vector result type
8713   unsigned NumElements = CV->getNumElements();
8714   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
8715 
8716   // Ensure that all types have the same number of bits
8717   if (S.Context.getTypeSize(CV->getElementType())
8718       != S.Context.getTypeSize(ResTy)) {
8719     // Since VectorTy is created internally, it does not pretty print
8720     // with an OpenCL name. Instead, we just print a description.
8721     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8722     SmallString<64> Str;
8723     llvm::raw_svector_ostream OS(Str);
8724     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8725     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8726       << CondTy << OS.str();
8727     return QualType();
8728   }
8729 
8730   // Convert operands to the vector result type
8731   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8732   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8733 
8734   return VectorTy;
8735 }
8736 
8737 /// Return false if this is a valid OpenCL condition vector
8738 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8739                                        SourceLocation QuestionLoc) {
8740   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8741   // integral type.
8742   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8743   assert(CondTy);
8744   QualType EleTy = CondTy->getElementType();
8745   if (EleTy->isIntegerType()) return false;
8746 
8747   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8748     << Cond->getType() << Cond->getSourceRange();
8749   return true;
8750 }
8751 
8752 /// Return false if the vector condition type and the vector
8753 ///        result type are compatible.
8754 ///
8755 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8756 /// number of elements, and their element types have the same number
8757 /// of bits.
8758 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8759                               SourceLocation QuestionLoc) {
8760   const VectorType *CV = CondTy->getAs<VectorType>();
8761   const VectorType *RV = VecResTy->getAs<VectorType>();
8762   assert(CV && RV);
8763 
8764   if (CV->getNumElements() != RV->getNumElements()) {
8765     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8766       << CondTy << VecResTy;
8767     return true;
8768   }
8769 
8770   QualType CVE = CV->getElementType();
8771   QualType RVE = RV->getElementType();
8772 
8773   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8774     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8775       << CondTy << VecResTy;
8776     return true;
8777   }
8778 
8779   return false;
8780 }
8781 
8782 /// Return the resulting type for the conditional operator in
8783 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
8784 ///        s6.3.i) when the condition is a vector type.
8785 static QualType
8786 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8787                              ExprResult &LHS, ExprResult &RHS,
8788                              SourceLocation QuestionLoc) {
8789   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8790   if (Cond.isInvalid())
8791     return QualType();
8792   QualType CondTy = Cond.get()->getType();
8793 
8794   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8795     return QualType();
8796 
8797   // If either operand is a vector then find the vector type of the
8798   // result as specified in OpenCL v1.1 s6.3.i.
8799   if (LHS.get()->getType()->isVectorType() ||
8800       RHS.get()->getType()->isVectorType()) {
8801     bool IsBoolVecLang =
8802         !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
8803     QualType VecResTy =
8804         S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8805                               /*isCompAssign*/ false,
8806                               /*AllowBothBool*/ true,
8807                               /*AllowBoolConversions*/ false,
8808                               /*AllowBooleanOperation*/ IsBoolVecLang,
8809                               /*ReportInvalid*/ true);
8810     if (VecResTy.isNull())
8811       return QualType();
8812     // The result type must match the condition type as specified in
8813     // OpenCL v1.1 s6.11.6.
8814     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8815       return QualType();
8816     return VecResTy;
8817   }
8818 
8819   // Both operands are scalar.
8820   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8821 }
8822 
8823 /// Return true if the Expr is block type
8824 static bool checkBlockType(Sema &S, const Expr *E) {
8825   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8826     QualType Ty = CE->getCallee()->getType();
8827     if (Ty->isBlockPointerType()) {
8828       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8829       return true;
8830     }
8831   }
8832   return false;
8833 }
8834 
8835 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8836 /// In that case, LHS = cond.
8837 /// C99 6.5.15
8838 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8839                                         ExprResult &RHS, ExprValueKind &VK,
8840                                         ExprObjectKind &OK,
8841                                         SourceLocation QuestionLoc) {
8842 
8843   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8844   if (!LHSResult.isUsable()) return QualType();
8845   LHS = LHSResult;
8846 
8847   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8848   if (!RHSResult.isUsable()) return QualType();
8849   RHS = RHSResult;
8850 
8851   // C++ is sufficiently different to merit its own checker.
8852   if (getLangOpts().CPlusPlus)
8853     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8854 
8855   VK = VK_PRValue;
8856   OK = OK_Ordinary;
8857 
8858   if (Context.isDependenceAllowed() &&
8859       (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8860        RHS.get()->isTypeDependent())) {
8861     assert(!getLangOpts().CPlusPlus);
8862     assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
8863             RHS.get()->containsErrors()) &&
8864            "should only occur in error-recovery path.");
8865     return Context.DependentTy;
8866   }
8867 
8868   // The OpenCL operator with a vector condition is sufficiently
8869   // different to merit its own checker.
8870   if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8871       Cond.get()->getType()->isExtVectorType())
8872     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8873 
8874   // First, check the condition.
8875   Cond = UsualUnaryConversions(Cond.get());
8876   if (Cond.isInvalid())
8877     return QualType();
8878   if (checkCondition(*this, Cond.get(), QuestionLoc))
8879     return QualType();
8880 
8881   // Now check the two expressions.
8882   if (LHS.get()->getType()->isVectorType() ||
8883       RHS.get()->getType()->isVectorType())
8884     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
8885                                /*AllowBothBool*/ true,
8886                                /*AllowBoolConversions*/ false,
8887                                /*AllowBooleanOperation*/ false,
8888                                /*ReportInvalid*/ true);
8889 
8890   QualType ResTy =
8891       UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8892   if (LHS.isInvalid() || RHS.isInvalid())
8893     return QualType();
8894 
8895   QualType LHSTy = LHS.get()->getType();
8896   QualType RHSTy = RHS.get()->getType();
8897 
8898   // Diagnose attempts to convert between __ibm128, __float128 and long double
8899   // where such conversions currently can't be handled.
8900   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8901     Diag(QuestionLoc,
8902          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8903       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8904     return QualType();
8905   }
8906 
8907   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8908   // selection operator (?:).
8909   if (getLangOpts().OpenCL &&
8910       ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
8911     return QualType();
8912   }
8913 
8914   // If both operands have arithmetic type, do the usual arithmetic conversions
8915   // to find a common type: C99 6.5.15p3,5.
8916   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8917     // Disallow invalid arithmetic conversions, such as those between bit-
8918     // precise integers types of different sizes, or between a bit-precise
8919     // integer and another type.
8920     if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
8921       Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8922           << LHSTy << RHSTy << LHS.get()->getSourceRange()
8923           << RHS.get()->getSourceRange();
8924       return QualType();
8925     }
8926 
8927     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8928     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8929 
8930     return ResTy;
8931   }
8932 
8933   // And if they're both bfloat (which isn't arithmetic), that's fine too.
8934   if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
8935     return Context.getCommonSugaredType(LHSTy, RHSTy);
8936   }
8937 
8938   // If both operands are the same structure or union type, the result is that
8939   // type.
8940   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
8941     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8942       if (LHSRT->getDecl() == RHSRT->getDecl())
8943         // "If both the operands have structure or union type, the result has
8944         // that type."  This implies that CV qualifiers are dropped.
8945         return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(),
8946                                             RHSTy.getUnqualifiedType());
8947     // FIXME: Type of conditional expression must be complete in C mode.
8948   }
8949 
8950   // C99 6.5.15p5: "If both operands have void type, the result has void type."
8951   // The following || allows only one side to be void (a GCC-ism).
8952   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8953     QualType ResTy;
8954     if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
8955       ResTy = Context.getCommonSugaredType(LHSTy, RHSTy);
8956     } else if (RHSTy->isVoidType()) {
8957       ResTy = RHSTy;
8958       Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8959           << RHS.get()->getSourceRange();
8960     } else {
8961       ResTy = LHSTy;
8962       Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8963           << LHS.get()->getSourceRange();
8964     }
8965     LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid);
8966     RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid);
8967     return ResTy;
8968   }
8969 
8970   // C2x 6.5.15p7:
8971   //   ... if both the second and third operands have nullptr_t type, the
8972   //   result also has that type.
8973   if (LHSTy->isNullPtrType() && Context.hasSameType(LHSTy, RHSTy))
8974     return ResTy;
8975 
8976   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8977   // the type of the other operand."
8978   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8979   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8980 
8981   // All objective-c pointer type analysis is done here.
8982   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
8983                                                         QuestionLoc);
8984   if (LHS.isInvalid() || RHS.isInvalid())
8985     return QualType();
8986   if (!compositeType.isNull())
8987     return compositeType;
8988 
8989 
8990   // Handle block pointer types.
8991   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8992     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8993                                                      QuestionLoc);
8994 
8995   // Check constraints for C object pointers types (C99 6.5.15p3,6).
8996   if (LHSTy->isPointerType() && RHSTy->isPointerType())
8997     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8998                                                        QuestionLoc);
8999 
9000   // GCC compatibility: soften pointer/integer mismatch.  Note that
9001   // null pointers have been filtered out by this point.
9002   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
9003       /*IsIntFirstExpr=*/true))
9004     return RHSTy;
9005   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
9006       /*IsIntFirstExpr=*/false))
9007     return LHSTy;
9008 
9009   // Allow ?: operations in which both operands have the same
9010   // built-in sizeless type.
9011   if (LHSTy->isSizelessBuiltinType() && Context.hasSameType(LHSTy, RHSTy))
9012     return Context.getCommonSugaredType(LHSTy, RHSTy);
9013 
9014   // Emit a better diagnostic if one of the expressions is a null pointer
9015   // constant and the other is not a pointer type. In this case, the user most
9016   // likely forgot to take the address of the other expression.
9017   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
9018     return QualType();
9019 
9020   // Otherwise, the operands are not compatible.
9021   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
9022     << LHSTy << RHSTy << LHS.get()->getSourceRange()
9023     << RHS.get()->getSourceRange();
9024   return QualType();
9025 }
9026 
9027 /// FindCompositeObjCPointerType - Helper method to find composite type of
9028 /// two objective-c pointer types of the two input expressions.
9029 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
9030                                             SourceLocation QuestionLoc) {
9031   QualType LHSTy = LHS.get()->getType();
9032   QualType RHSTy = RHS.get()->getType();
9033 
9034   // Handle things like Class and struct objc_class*.  Here we case the result
9035   // to the pseudo-builtin, because that will be implicitly cast back to the
9036   // redefinition type if an attempt is made to access its fields.
9037   if (LHSTy->isObjCClassType() &&
9038       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
9039     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9040     return LHSTy;
9041   }
9042   if (RHSTy->isObjCClassType() &&
9043       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
9044     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9045     return RHSTy;
9046   }
9047   // And the same for struct objc_object* / id
9048   if (LHSTy->isObjCIdType() &&
9049       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
9050     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
9051     return LHSTy;
9052   }
9053   if (RHSTy->isObjCIdType() &&
9054       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
9055     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
9056     return RHSTy;
9057   }
9058   // And the same for struct objc_selector* / SEL
9059   if (Context.isObjCSelType(LHSTy) &&
9060       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
9061     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
9062     return LHSTy;
9063   }
9064   if (Context.isObjCSelType(RHSTy) &&
9065       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
9066     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
9067     return RHSTy;
9068   }
9069   // Check constraints for Objective-C object pointers types.
9070   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
9071 
9072     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
9073       // Two identical object pointer types are always compatible.
9074       return LHSTy;
9075     }
9076     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
9077     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
9078     QualType compositeType = LHSTy;
9079 
9080     // If both operands are interfaces and either operand can be
9081     // assigned to the other, use that type as the composite
9082     // type. This allows
9083     //   xxx ? (A*) a : (B*) b
9084     // where B is a subclass of A.
9085     //
9086     // Additionally, as for assignment, if either type is 'id'
9087     // allow silent coercion. Finally, if the types are
9088     // incompatible then make sure to use 'id' as the composite
9089     // type so the result is acceptable for sending messages to.
9090 
9091     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
9092     // It could return the composite type.
9093     if (!(compositeType =
9094           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
9095       // Nothing more to do.
9096     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
9097       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
9098     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
9099       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
9100     } else if ((LHSOPT->isObjCQualifiedIdType() ||
9101                 RHSOPT->isObjCQualifiedIdType()) &&
9102                Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
9103                                                          true)) {
9104       // Need to handle "id<xx>" explicitly.
9105       // GCC allows qualified id and any Objective-C type to devolve to
9106       // id. Currently localizing to here until clear this should be
9107       // part of ObjCQualifiedIdTypesAreCompatible.
9108       compositeType = Context.getObjCIdType();
9109     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
9110       compositeType = Context.getObjCIdType();
9111     } else {
9112       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
9113       << LHSTy << RHSTy
9114       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9115       QualType incompatTy = Context.getObjCIdType();
9116       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
9117       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
9118       return incompatTy;
9119     }
9120     // The object pointer types are compatible.
9121     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
9122     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
9123     return compositeType;
9124   }
9125   // Check Objective-C object pointer types and 'void *'
9126   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
9127     if (getLangOpts().ObjCAutoRefCount) {
9128       // ARC forbids the implicit conversion of object pointers to 'void *',
9129       // so these types are not compatible.
9130       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9131           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9132       LHS = RHS = true;
9133       return QualType();
9134     }
9135     QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
9136     QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9137     QualType destPointee
9138     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
9139     QualType destType = Context.getPointerType(destPointee);
9140     // Add qualifiers if necessary.
9141     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
9142     // Promote to void*.
9143     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
9144     return destType;
9145   }
9146   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
9147     if (getLangOpts().ObjCAutoRefCount) {
9148       // ARC forbids the implicit conversion of object pointers to 'void *',
9149       // so these types are not compatible.
9150       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
9151           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9152       LHS = RHS = true;
9153       return QualType();
9154     }
9155     QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
9156     QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
9157     QualType destPointee
9158     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
9159     QualType destType = Context.getPointerType(destPointee);
9160     // Add qualifiers if necessary.
9161     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
9162     // Promote to void*.
9163     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
9164     return destType;
9165   }
9166   return QualType();
9167 }
9168 
9169 /// SuggestParentheses - Emit a note with a fixit hint that wraps
9170 /// ParenRange in parentheses.
9171 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
9172                                const PartialDiagnostic &Note,
9173                                SourceRange ParenRange) {
9174   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
9175   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
9176       EndLoc.isValid()) {
9177     Self.Diag(Loc, Note)
9178       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
9179       << FixItHint::CreateInsertion(EndLoc, ")");
9180   } else {
9181     // We can't display the parentheses, so just show the bare note.
9182     Self.Diag(Loc, Note) << ParenRange;
9183   }
9184 }
9185 
9186 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
9187   return BinaryOperator::isAdditiveOp(Opc) ||
9188          BinaryOperator::isMultiplicativeOp(Opc) ||
9189          BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
9190   // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
9191   // not any of the logical operators.  Bitwise-xor is commonly used as a
9192   // logical-xor because there is no logical-xor operator.  The logical
9193   // operators, including uses of xor, have a high false positive rate for
9194   // precedence warnings.
9195 }
9196 
9197 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
9198 /// expression, either using a built-in or overloaded operator,
9199 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
9200 /// expression.
9201 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
9202                                    Expr **RHSExprs) {
9203   // Don't strip parenthesis: we should not warn if E is in parenthesis.
9204   E = E->IgnoreImpCasts();
9205   E = E->IgnoreConversionOperatorSingleStep();
9206   E = E->IgnoreImpCasts();
9207   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
9208     E = MTE->getSubExpr();
9209     E = E->IgnoreImpCasts();
9210   }
9211 
9212   // Built-in binary operator.
9213   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
9214     if (IsArithmeticOp(OP->getOpcode())) {
9215       *Opcode = OP->getOpcode();
9216       *RHSExprs = OP->getRHS();
9217       return true;
9218     }
9219   }
9220 
9221   // Overloaded operator.
9222   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
9223     if (Call->getNumArgs() != 2)
9224       return false;
9225 
9226     // Make sure this is really a binary operator that is safe to pass into
9227     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
9228     OverloadedOperatorKind OO = Call->getOperator();
9229     if (OO < OO_Plus || OO > OO_Arrow ||
9230         OO == OO_PlusPlus || OO == OO_MinusMinus)
9231       return false;
9232 
9233     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
9234     if (IsArithmeticOp(OpKind)) {
9235       *Opcode = OpKind;
9236       *RHSExprs = Call->getArg(1);
9237       return true;
9238     }
9239   }
9240 
9241   return false;
9242 }
9243 
9244 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
9245 /// or is a logical expression such as (x==y) which has int type, but is
9246 /// commonly interpreted as boolean.
9247 static bool ExprLooksBoolean(Expr *E) {
9248   E = E->IgnoreParenImpCasts();
9249 
9250   if (E->getType()->isBooleanType())
9251     return true;
9252   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
9253     return OP->isComparisonOp() || OP->isLogicalOp();
9254   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
9255     return OP->getOpcode() == UO_LNot;
9256   if (E->getType()->isPointerType())
9257     return true;
9258   // FIXME: What about overloaded operator calls returning "unspecified boolean
9259   // type"s (commonly pointer-to-members)?
9260 
9261   return false;
9262 }
9263 
9264 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
9265 /// and binary operator are mixed in a way that suggests the programmer assumed
9266 /// the conditional operator has higher precedence, for example:
9267 /// "int x = a + someBinaryCondition ? 1 : 2".
9268 static void DiagnoseConditionalPrecedence(Sema &Self,
9269                                           SourceLocation OpLoc,
9270                                           Expr *Condition,
9271                                           Expr *LHSExpr,
9272                                           Expr *RHSExpr) {
9273   BinaryOperatorKind CondOpcode;
9274   Expr *CondRHS;
9275 
9276   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
9277     return;
9278   if (!ExprLooksBoolean(CondRHS))
9279     return;
9280 
9281   // The condition is an arithmetic binary expression, with a right-
9282   // hand side that looks boolean, so warn.
9283 
9284   unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
9285                         ? diag::warn_precedence_bitwise_conditional
9286                         : diag::warn_precedence_conditional;
9287 
9288   Self.Diag(OpLoc, DiagID)
9289       << Condition->getSourceRange()
9290       << BinaryOperator::getOpcodeStr(CondOpcode);
9291 
9292   SuggestParentheses(
9293       Self, OpLoc,
9294       Self.PDiag(diag::note_precedence_silence)
9295           << BinaryOperator::getOpcodeStr(CondOpcode),
9296       SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
9297 
9298   SuggestParentheses(Self, OpLoc,
9299                      Self.PDiag(diag::note_precedence_conditional_first),
9300                      SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
9301 }
9302 
9303 /// Compute the nullability of a conditional expression.
9304 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
9305                                               QualType LHSTy, QualType RHSTy,
9306                                               ASTContext &Ctx) {
9307   if (!ResTy->isAnyPointerType())
9308     return ResTy;
9309 
9310   auto GetNullability = [](QualType Ty) {
9311     std::optional<NullabilityKind> Kind = Ty->getNullability();
9312     if (Kind) {
9313       // For our purposes, treat _Nullable_result as _Nullable.
9314       if (*Kind == NullabilityKind::NullableResult)
9315         return NullabilityKind::Nullable;
9316       return *Kind;
9317     }
9318     return NullabilityKind::Unspecified;
9319   };
9320 
9321   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
9322   NullabilityKind MergedKind;
9323 
9324   // Compute nullability of a binary conditional expression.
9325   if (IsBin) {
9326     if (LHSKind == NullabilityKind::NonNull)
9327       MergedKind = NullabilityKind::NonNull;
9328     else
9329       MergedKind = RHSKind;
9330   // Compute nullability of a normal conditional expression.
9331   } else {
9332     if (LHSKind == NullabilityKind::Nullable ||
9333         RHSKind == NullabilityKind::Nullable)
9334       MergedKind = NullabilityKind::Nullable;
9335     else if (LHSKind == NullabilityKind::NonNull)
9336       MergedKind = RHSKind;
9337     else if (RHSKind == NullabilityKind::NonNull)
9338       MergedKind = LHSKind;
9339     else
9340       MergedKind = NullabilityKind::Unspecified;
9341   }
9342 
9343   // Return if ResTy already has the correct nullability.
9344   if (GetNullability(ResTy) == MergedKind)
9345     return ResTy;
9346 
9347   // Strip all nullability from ResTy.
9348   while (ResTy->getNullability())
9349     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
9350 
9351   // Create a new AttributedType with the new nullability kind.
9352   auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
9353   return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
9354 }
9355 
9356 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
9357 /// in the case of a the GNU conditional expr extension.
9358 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
9359                                     SourceLocation ColonLoc,
9360                                     Expr *CondExpr, Expr *LHSExpr,
9361                                     Expr *RHSExpr) {
9362   if (!Context.isDependenceAllowed()) {
9363     // C cannot handle TypoExpr nodes in the condition because it
9364     // doesn't handle dependent types properly, so make sure any TypoExprs have
9365     // been dealt with before checking the operands.
9366     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
9367     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
9368     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
9369 
9370     if (!CondResult.isUsable())
9371       return ExprError();
9372 
9373     if (LHSExpr) {
9374       if (!LHSResult.isUsable())
9375         return ExprError();
9376     }
9377 
9378     if (!RHSResult.isUsable())
9379       return ExprError();
9380 
9381     CondExpr = CondResult.get();
9382     LHSExpr = LHSResult.get();
9383     RHSExpr = RHSResult.get();
9384   }
9385 
9386   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
9387   // was the condition.
9388   OpaqueValueExpr *opaqueValue = nullptr;
9389   Expr *commonExpr = nullptr;
9390   if (!LHSExpr) {
9391     commonExpr = CondExpr;
9392     // Lower out placeholder types first.  This is important so that we don't
9393     // try to capture a placeholder. This happens in few cases in C++; such
9394     // as Objective-C++'s dictionary subscripting syntax.
9395     if (commonExpr->hasPlaceholderType()) {
9396       ExprResult result = CheckPlaceholderExpr(commonExpr);
9397       if (!result.isUsable()) return ExprError();
9398       commonExpr = result.get();
9399     }
9400     // We usually want to apply unary conversions *before* saving, except
9401     // in the special case of a C++ l-value conditional.
9402     if (!(getLangOpts().CPlusPlus
9403           && !commonExpr->isTypeDependent()
9404           && commonExpr->getValueKind() == RHSExpr->getValueKind()
9405           && commonExpr->isGLValue()
9406           && commonExpr->isOrdinaryOrBitFieldObject()
9407           && RHSExpr->isOrdinaryOrBitFieldObject()
9408           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
9409       ExprResult commonRes = UsualUnaryConversions(commonExpr);
9410       if (commonRes.isInvalid())
9411         return ExprError();
9412       commonExpr = commonRes.get();
9413     }
9414 
9415     // If the common expression is a class or array prvalue, materialize it
9416     // so that we can safely refer to it multiple times.
9417     if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
9418                                     commonExpr->getType()->isArrayType())) {
9419       ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
9420       if (MatExpr.isInvalid())
9421         return ExprError();
9422       commonExpr = MatExpr.get();
9423     }
9424 
9425     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
9426                                                 commonExpr->getType(),
9427                                                 commonExpr->getValueKind(),
9428                                                 commonExpr->getObjectKind(),
9429                                                 commonExpr);
9430     LHSExpr = CondExpr = opaqueValue;
9431   }
9432 
9433   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
9434   ExprValueKind VK = VK_PRValue;
9435   ExprObjectKind OK = OK_Ordinary;
9436   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
9437   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
9438                                              VK, OK, QuestionLoc);
9439   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
9440       RHS.isInvalid())
9441     return ExprError();
9442 
9443   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
9444                                 RHS.get());
9445 
9446   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
9447 
9448   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
9449                                          Context);
9450 
9451   if (!commonExpr)
9452     return new (Context)
9453         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
9454                             RHS.get(), result, VK, OK);
9455 
9456   return new (Context) BinaryConditionalOperator(
9457       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
9458       ColonLoc, result, VK, OK);
9459 }
9460 
9461 // Check if we have a conversion between incompatible cmse function pointer
9462 // types, that is, a conversion between a function pointer with the
9463 // cmse_nonsecure_call attribute and one without.
9464 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
9465                                           QualType ToType) {
9466   if (const auto *ToFn =
9467           dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
9468     if (const auto *FromFn =
9469             dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
9470       FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
9471       FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
9472 
9473       return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
9474     }
9475   }
9476   return false;
9477 }
9478 
9479 // checkPointerTypesForAssignment - This is a very tricky routine (despite
9480 // being closely modeled after the C99 spec:-). The odd characteristic of this
9481 // routine is it effectively iqnores the qualifiers on the top level pointee.
9482 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
9483 // FIXME: add a couple examples in this comment.
9484 static Sema::AssignConvertType
9485 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType,
9486                                SourceLocation Loc) {
9487   assert(LHSType.isCanonical() && "LHS not canonicalized!");
9488   assert(RHSType.isCanonical() && "RHS not canonicalized!");
9489 
9490   // get the "pointed to" type (ignoring qualifiers at the top level)
9491   const Type *lhptee, *rhptee;
9492   Qualifiers lhq, rhq;
9493   std::tie(lhptee, lhq) =
9494       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
9495   std::tie(rhptee, rhq) =
9496       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
9497 
9498   Sema::AssignConvertType ConvTy = Sema::Compatible;
9499 
9500   // C99 6.5.16.1p1: This following citation is common to constraints
9501   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
9502   // qualifiers of the type *pointed to* by the right;
9503 
9504   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
9505   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
9506       lhq.compatiblyIncludesObjCLifetime(rhq)) {
9507     // Ignore lifetime for further calculation.
9508     lhq.removeObjCLifetime();
9509     rhq.removeObjCLifetime();
9510   }
9511 
9512   if (!lhq.compatiblyIncludes(rhq)) {
9513     // Treat address-space mismatches as fatal.
9514     if (!lhq.isAddressSpaceSupersetOf(rhq))
9515       return Sema::IncompatiblePointerDiscardsQualifiers;
9516 
9517     // It's okay to add or remove GC or lifetime qualifiers when converting to
9518     // and from void*.
9519     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
9520                         .compatiblyIncludes(
9521                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
9522              && (lhptee->isVoidType() || rhptee->isVoidType()))
9523       ; // keep old
9524 
9525     // Treat lifetime mismatches as fatal.
9526     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
9527       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
9528 
9529     // For GCC/MS compatibility, other qualifier mismatches are treated
9530     // as still compatible in C.
9531     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9532   }
9533 
9534   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
9535   // incomplete type and the other is a pointer to a qualified or unqualified
9536   // version of void...
9537   if (lhptee->isVoidType()) {
9538     if (rhptee->isIncompleteOrObjectType())
9539       return ConvTy;
9540 
9541     // As an extension, we allow cast to/from void* to function pointer.
9542     assert(rhptee->isFunctionType());
9543     return Sema::FunctionVoidPointer;
9544   }
9545 
9546   if (rhptee->isVoidType()) {
9547     if (lhptee->isIncompleteOrObjectType())
9548       return ConvTy;
9549 
9550     // As an extension, we allow cast to/from void* to function pointer.
9551     assert(lhptee->isFunctionType());
9552     return Sema::FunctionVoidPointer;
9553   }
9554 
9555   if (!S.Diags.isIgnored(
9556           diag::warn_typecheck_convert_incompatible_function_pointer_strict,
9557           Loc) &&
9558       RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() &&
9559       !S.IsFunctionConversion(RHSType, LHSType, RHSType))
9560     return Sema::IncompatibleFunctionPointerStrict;
9561 
9562   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
9563   // unqualified versions of compatible types, ...
9564   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
9565   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
9566     // Check if the pointee types are compatible ignoring the sign.
9567     // We explicitly check for char so that we catch "char" vs
9568     // "unsigned char" on systems where "char" is unsigned.
9569     if (lhptee->isCharType())
9570       ltrans = S.Context.UnsignedCharTy;
9571     else if (lhptee->hasSignedIntegerRepresentation())
9572       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
9573 
9574     if (rhptee->isCharType())
9575       rtrans = S.Context.UnsignedCharTy;
9576     else if (rhptee->hasSignedIntegerRepresentation())
9577       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
9578 
9579     if (ltrans == rtrans) {
9580       // Types are compatible ignoring the sign. Qualifier incompatibility
9581       // takes priority over sign incompatibility because the sign
9582       // warning can be disabled.
9583       if (ConvTy != Sema::Compatible)
9584         return ConvTy;
9585 
9586       return Sema::IncompatiblePointerSign;
9587     }
9588 
9589     // If we are a multi-level pointer, it's possible that our issue is simply
9590     // one of qualification - e.g. char ** -> const char ** is not allowed. If
9591     // the eventual target type is the same and the pointers have the same
9592     // level of indirection, this must be the issue.
9593     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
9594       do {
9595         std::tie(lhptee, lhq) =
9596           cast<PointerType>(lhptee)->getPointeeType().split().asPair();
9597         std::tie(rhptee, rhq) =
9598           cast<PointerType>(rhptee)->getPointeeType().split().asPair();
9599 
9600         // Inconsistent address spaces at this point is invalid, even if the
9601         // address spaces would be compatible.
9602         // FIXME: This doesn't catch address space mismatches for pointers of
9603         // different nesting levels, like:
9604         //   __local int *** a;
9605         //   int ** b = a;
9606         // It's not clear how to actually determine when such pointers are
9607         // invalidly incompatible.
9608         if (lhq.getAddressSpace() != rhq.getAddressSpace())
9609           return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
9610 
9611       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
9612 
9613       if (lhptee == rhptee)
9614         return Sema::IncompatibleNestedPointerQualifiers;
9615     }
9616 
9617     // General pointer incompatibility takes priority over qualifiers.
9618     if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
9619       return Sema::IncompatibleFunctionPointer;
9620     return Sema::IncompatiblePointer;
9621   }
9622   if (!S.getLangOpts().CPlusPlus &&
9623       S.IsFunctionConversion(ltrans, rtrans, ltrans))
9624     return Sema::IncompatibleFunctionPointer;
9625   if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
9626     return Sema::IncompatibleFunctionPointer;
9627   return ConvTy;
9628 }
9629 
9630 /// checkBlockPointerTypesForAssignment - This routine determines whether two
9631 /// block pointer types are compatible or whether a block and normal pointer
9632 /// are compatible. It is more restrict than comparing two function pointer
9633 // types.
9634 static Sema::AssignConvertType
9635 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
9636                                     QualType RHSType) {
9637   assert(LHSType.isCanonical() && "LHS not canonicalized!");
9638   assert(RHSType.isCanonical() && "RHS not canonicalized!");
9639 
9640   QualType lhptee, rhptee;
9641 
9642   // get the "pointed to" type (ignoring qualifiers at the top level)
9643   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
9644   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
9645 
9646   // In C++, the types have to match exactly.
9647   if (S.getLangOpts().CPlusPlus)
9648     return Sema::IncompatibleBlockPointer;
9649 
9650   Sema::AssignConvertType ConvTy = Sema::Compatible;
9651 
9652   // For blocks we enforce that qualifiers are identical.
9653   Qualifiers LQuals = lhptee.getLocalQualifiers();
9654   Qualifiers RQuals = rhptee.getLocalQualifiers();
9655   if (S.getLangOpts().OpenCL) {
9656     LQuals.removeAddressSpace();
9657     RQuals.removeAddressSpace();
9658   }
9659   if (LQuals != RQuals)
9660     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9661 
9662   // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9663   // assignment.
9664   // The current behavior is similar to C++ lambdas. A block might be
9665   // assigned to a variable iff its return type and parameters are compatible
9666   // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9667   // an assignment. Presumably it should behave in way that a function pointer
9668   // assignment does in C, so for each parameter and return type:
9669   //  * CVR and address space of LHS should be a superset of CVR and address
9670   //  space of RHS.
9671   //  * unqualified types should be compatible.
9672   if (S.getLangOpts().OpenCL) {
9673     if (!S.Context.typesAreBlockPointerCompatible(
9674             S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
9675             S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
9676       return Sema::IncompatibleBlockPointer;
9677   } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9678     return Sema::IncompatibleBlockPointer;
9679 
9680   return ConvTy;
9681 }
9682 
9683 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9684 /// for assignment compatibility.
9685 static Sema::AssignConvertType
9686 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
9687                                    QualType RHSType) {
9688   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
9689   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
9690 
9691   if (LHSType->isObjCBuiltinType()) {
9692     // Class is not compatible with ObjC object pointers.
9693     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9694         !RHSType->isObjCQualifiedClassType())
9695       return Sema::IncompatiblePointer;
9696     return Sema::Compatible;
9697   }
9698   if (RHSType->isObjCBuiltinType()) {
9699     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9700         !LHSType->isObjCQualifiedClassType())
9701       return Sema::IncompatiblePointer;
9702     return Sema::Compatible;
9703   }
9704   QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9705   QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9706 
9707   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
9708       // make an exception for id<P>
9709       !LHSType->isObjCQualifiedIdType())
9710     return Sema::CompatiblePointerDiscardsQualifiers;
9711 
9712   if (S.Context.typesAreCompatible(LHSType, RHSType))
9713     return Sema::Compatible;
9714   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9715     return Sema::IncompatibleObjCQualifiedId;
9716   return Sema::IncompatiblePointer;
9717 }
9718 
9719 Sema::AssignConvertType
9720 Sema::CheckAssignmentConstraints(SourceLocation Loc,
9721                                  QualType LHSType, QualType RHSType) {
9722   // Fake up an opaque expression.  We don't actually care about what
9723   // cast operations are required, so if CheckAssignmentConstraints
9724   // adds casts to this they'll be wasted, but fortunately that doesn't
9725   // usually happen on valid code.
9726   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9727   ExprResult RHSPtr = &RHSExpr;
9728   CastKind K;
9729 
9730   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
9731 }
9732 
9733 /// This helper function returns true if QT is a vector type that has element
9734 /// type ElementType.
9735 static bool isVector(QualType QT, QualType ElementType) {
9736   if (const VectorType *VT = QT->getAs<VectorType>())
9737     return VT->getElementType().getCanonicalType() == ElementType;
9738   return false;
9739 }
9740 
9741 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9742 /// has code to accommodate several GCC extensions when type checking
9743 /// pointers. Here are some objectionable examples that GCC considers warnings:
9744 ///
9745 ///  int a, *pint;
9746 ///  short *pshort;
9747 ///  struct foo *pfoo;
9748 ///
9749 ///  pint = pshort; // warning: assignment from incompatible pointer type
9750 ///  a = pint; // warning: assignment makes integer from pointer without a cast
9751 ///  pint = a; // warning: assignment makes pointer from integer without a cast
9752 ///  pint = pfoo; // warning: assignment from incompatible pointer type
9753 ///
9754 /// As a result, the code for dealing with pointers is more complex than the
9755 /// C99 spec dictates.
9756 ///
9757 /// Sets 'Kind' for any result kind except Incompatible.
9758 Sema::AssignConvertType
9759 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9760                                  CastKind &Kind, bool ConvertRHS) {
9761   QualType RHSType = RHS.get()->getType();
9762   QualType OrigLHSType = LHSType;
9763 
9764   // Get canonical types.  We're not formatting these types, just comparing
9765   // them.
9766   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9767   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9768 
9769   // Common case: no conversion required.
9770   if (LHSType == RHSType) {
9771     Kind = CK_NoOp;
9772     return Compatible;
9773   }
9774 
9775   // If the LHS has an __auto_type, there are no additional type constraints
9776   // to be worried about.
9777   if (const auto *AT = dyn_cast<AutoType>(LHSType)) {
9778     if (AT->isGNUAutoType()) {
9779       Kind = CK_NoOp;
9780       return Compatible;
9781     }
9782   }
9783 
9784   // If we have an atomic type, try a non-atomic assignment, then just add an
9785   // atomic qualification step.
9786   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
9787     Sema::AssignConvertType result =
9788       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
9789     if (result != Compatible)
9790       return result;
9791     if (Kind != CK_NoOp && ConvertRHS)
9792       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
9793     Kind = CK_NonAtomicToAtomic;
9794     return Compatible;
9795   }
9796 
9797   // If the left-hand side is a reference type, then we are in a
9798   // (rare!) case where we've allowed the use of references in C,
9799   // e.g., as a parameter type in a built-in function. In this case,
9800   // just make sure that the type referenced is compatible with the
9801   // right-hand side type. The caller is responsible for adjusting
9802   // LHSType so that the resulting expression does not have reference
9803   // type.
9804   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9805     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
9806       Kind = CK_LValueBitCast;
9807       return Compatible;
9808     }
9809     return Incompatible;
9810   }
9811 
9812   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9813   // to the same ExtVector type.
9814   if (LHSType->isExtVectorType()) {
9815     if (RHSType->isExtVectorType())
9816       return Incompatible;
9817     if (RHSType->isArithmeticType()) {
9818       // CK_VectorSplat does T -> vector T, so first cast to the element type.
9819       if (ConvertRHS)
9820         RHS = prepareVectorSplat(LHSType, RHS.get());
9821       Kind = CK_VectorSplat;
9822       return Compatible;
9823     }
9824   }
9825 
9826   // Conversions to or from vector type.
9827   if (LHSType->isVectorType() || RHSType->isVectorType()) {
9828     if (LHSType->isVectorType() && RHSType->isVectorType()) {
9829       // Allow assignments of an AltiVec vector type to an equivalent GCC
9830       // vector type and vice versa
9831       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9832         Kind = CK_BitCast;
9833         return Compatible;
9834       }
9835 
9836       // If we are allowing lax vector conversions, and LHS and RHS are both
9837       // vectors, the total size only needs to be the same. This is a bitcast;
9838       // no bits are changed but the result type is different.
9839       if (isLaxVectorConversion(RHSType, LHSType)) {
9840         // The default for lax vector conversions with Altivec vectors will
9841         // change, so if we are converting between vector types where
9842         // at least one is an Altivec vector, emit a warning.
9843         if (anyAltivecTypes(RHSType, LHSType) &&
9844             !areSameVectorElemTypes(RHSType, LHSType))
9845           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9846               << RHSType << LHSType;
9847         Kind = CK_BitCast;
9848         return IncompatibleVectors;
9849       }
9850     }
9851 
9852     // When the RHS comes from another lax conversion (e.g. binops between
9853     // scalars and vectors) the result is canonicalized as a vector. When the
9854     // LHS is also a vector, the lax is allowed by the condition above. Handle
9855     // the case where LHS is a scalar.
9856     if (LHSType->isScalarType()) {
9857       const VectorType *VecType = RHSType->getAs<VectorType>();
9858       if (VecType && VecType->getNumElements() == 1 &&
9859           isLaxVectorConversion(RHSType, LHSType)) {
9860         if (VecType->getVectorKind() == VectorType::AltiVecVector)
9861           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9862               << RHSType << LHSType;
9863         ExprResult *VecExpr = &RHS;
9864         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
9865         Kind = CK_BitCast;
9866         return Compatible;
9867       }
9868     }
9869 
9870     // Allow assignments between fixed-length and sizeless SVE vectors.
9871     if ((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) ||
9872         (LHSType->isVectorType() && RHSType->isSizelessBuiltinType()))
9873       if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
9874           Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
9875         Kind = CK_BitCast;
9876         return Compatible;
9877       }
9878 
9879     return Incompatible;
9880   }
9881 
9882   // Diagnose attempts to convert between __ibm128, __float128 and long double
9883   // where such conversions currently can't be handled.
9884   if (unsupportedTypeConversion(*this, LHSType, RHSType))
9885     return Incompatible;
9886 
9887   // Disallow assigning a _Complex to a real type in C++ mode since it simply
9888   // discards the imaginary part.
9889   if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9890       !LHSType->getAs<ComplexType>())
9891     return Incompatible;
9892 
9893   // Arithmetic conversions.
9894   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9895       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9896     if (ConvertRHS)
9897       Kind = PrepareScalarCast(RHS, LHSType);
9898     return Compatible;
9899   }
9900 
9901   // Conversions to normal pointers.
9902   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
9903     // U* -> T*
9904     if (isa<PointerType>(RHSType)) {
9905       LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9906       LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9907       if (AddrSpaceL != AddrSpaceR)
9908         Kind = CK_AddressSpaceConversion;
9909       else if (Context.hasCvrSimilarType(RHSType, LHSType))
9910         Kind = CK_NoOp;
9911       else
9912         Kind = CK_BitCast;
9913       return checkPointerTypesForAssignment(*this, LHSType, RHSType,
9914                                             RHS.get()->getBeginLoc());
9915     }
9916 
9917     // int -> T*
9918     if (RHSType->isIntegerType()) {
9919       Kind = CK_IntegralToPointer; // FIXME: null?
9920       return IntToPointer;
9921     }
9922 
9923     // C pointers are not compatible with ObjC object pointers,
9924     // with two exceptions:
9925     if (isa<ObjCObjectPointerType>(RHSType)) {
9926       //  - conversions to void*
9927       if (LHSPointer->getPointeeType()->isVoidType()) {
9928         Kind = CK_BitCast;
9929         return Compatible;
9930       }
9931 
9932       //  - conversions from 'Class' to the redefinition type
9933       if (RHSType->isObjCClassType() &&
9934           Context.hasSameType(LHSType,
9935                               Context.getObjCClassRedefinitionType())) {
9936         Kind = CK_BitCast;
9937         return Compatible;
9938       }
9939 
9940       Kind = CK_BitCast;
9941       return IncompatiblePointer;
9942     }
9943 
9944     // U^ -> void*
9945     if (RHSType->getAs<BlockPointerType>()) {
9946       if (LHSPointer->getPointeeType()->isVoidType()) {
9947         LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9948         LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9949                                 ->getPointeeType()
9950                                 .getAddressSpace();
9951         Kind =
9952             AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9953         return Compatible;
9954       }
9955     }
9956 
9957     return Incompatible;
9958   }
9959 
9960   // Conversions to block pointers.
9961   if (isa<BlockPointerType>(LHSType)) {
9962     // U^ -> T^
9963     if (RHSType->isBlockPointerType()) {
9964       LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9965                               ->getPointeeType()
9966                               .getAddressSpace();
9967       LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9968                               ->getPointeeType()
9969                               .getAddressSpace();
9970       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9971       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9972     }
9973 
9974     // int or null -> T^
9975     if (RHSType->isIntegerType()) {
9976       Kind = CK_IntegralToPointer; // FIXME: null
9977       return IntToBlockPointer;
9978     }
9979 
9980     // id -> T^
9981     if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9982       Kind = CK_AnyPointerToBlockPointerCast;
9983       return Compatible;
9984     }
9985 
9986     // void* -> T^
9987     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9988       if (RHSPT->getPointeeType()->isVoidType()) {
9989         Kind = CK_AnyPointerToBlockPointerCast;
9990         return Compatible;
9991       }
9992 
9993     return Incompatible;
9994   }
9995 
9996   // Conversions to Objective-C pointers.
9997   if (isa<ObjCObjectPointerType>(LHSType)) {
9998     // A* -> B*
9999     if (RHSType->isObjCObjectPointerType()) {
10000       Kind = CK_BitCast;
10001       Sema::AssignConvertType result =
10002         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
10003       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10004           result == Compatible &&
10005           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
10006         result = IncompatibleObjCWeakRef;
10007       return result;
10008     }
10009 
10010     // int or null -> A*
10011     if (RHSType->isIntegerType()) {
10012       Kind = CK_IntegralToPointer; // FIXME: null
10013       return IntToPointer;
10014     }
10015 
10016     // In general, C pointers are not compatible with ObjC object pointers,
10017     // with two exceptions:
10018     if (isa<PointerType>(RHSType)) {
10019       Kind = CK_CPointerToObjCPointerCast;
10020 
10021       //  - conversions from 'void*'
10022       if (RHSType->isVoidPointerType()) {
10023         return Compatible;
10024       }
10025 
10026       //  - conversions to 'Class' from its redefinition type
10027       if (LHSType->isObjCClassType() &&
10028           Context.hasSameType(RHSType,
10029                               Context.getObjCClassRedefinitionType())) {
10030         return Compatible;
10031       }
10032 
10033       return IncompatiblePointer;
10034     }
10035 
10036     // Only under strict condition T^ is compatible with an Objective-C pointer.
10037     if (RHSType->isBlockPointerType() &&
10038         LHSType->isBlockCompatibleObjCPointerType(Context)) {
10039       if (ConvertRHS)
10040         maybeExtendBlockObject(RHS);
10041       Kind = CK_BlockPointerToObjCPointerCast;
10042       return Compatible;
10043     }
10044 
10045     return Incompatible;
10046   }
10047 
10048   // Conversions from pointers that are not covered by the above.
10049   if (isa<PointerType>(RHSType)) {
10050     // T* -> _Bool
10051     if (LHSType == Context.BoolTy) {
10052       Kind = CK_PointerToBoolean;
10053       return Compatible;
10054     }
10055 
10056     // T* -> int
10057     if (LHSType->isIntegerType()) {
10058       Kind = CK_PointerToIntegral;
10059       return PointerToInt;
10060     }
10061 
10062     return Incompatible;
10063   }
10064 
10065   // Conversions from Objective-C pointers that are not covered by the above.
10066   if (isa<ObjCObjectPointerType>(RHSType)) {
10067     // T* -> _Bool
10068     if (LHSType == Context.BoolTy) {
10069       Kind = CK_PointerToBoolean;
10070       return Compatible;
10071     }
10072 
10073     // T* -> int
10074     if (LHSType->isIntegerType()) {
10075       Kind = CK_PointerToIntegral;
10076       return PointerToInt;
10077     }
10078 
10079     return Incompatible;
10080   }
10081 
10082   // struct A -> struct B
10083   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
10084     if (Context.typesAreCompatible(LHSType, RHSType)) {
10085       Kind = CK_NoOp;
10086       return Compatible;
10087     }
10088   }
10089 
10090   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
10091     Kind = CK_IntToOCLSampler;
10092     return Compatible;
10093   }
10094 
10095   return Incompatible;
10096 }
10097 
10098 /// Constructs a transparent union from an expression that is
10099 /// used to initialize the transparent union.
10100 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
10101                                       ExprResult &EResult, QualType UnionType,
10102                                       FieldDecl *Field) {
10103   // Build an initializer list that designates the appropriate member
10104   // of the transparent union.
10105   Expr *E = EResult.get();
10106   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
10107                                                    E, SourceLocation());
10108   Initializer->setType(UnionType);
10109   Initializer->setInitializedFieldInUnion(Field);
10110 
10111   // Build a compound literal constructing a value of the transparent
10112   // union type from this initializer list.
10113   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
10114   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
10115                                         VK_PRValue, Initializer, false);
10116 }
10117 
10118 Sema::AssignConvertType
10119 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
10120                                                ExprResult &RHS) {
10121   QualType RHSType = RHS.get()->getType();
10122 
10123   // If the ArgType is a Union type, we want to handle a potential
10124   // transparent_union GCC extension.
10125   const RecordType *UT = ArgType->getAsUnionType();
10126   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
10127     return Incompatible;
10128 
10129   // The field to initialize within the transparent union.
10130   RecordDecl *UD = UT->getDecl();
10131   FieldDecl *InitField = nullptr;
10132   // It's compatible if the expression matches any of the fields.
10133   for (auto *it : UD->fields()) {
10134     if (it->getType()->isPointerType()) {
10135       // If the transparent union contains a pointer type, we allow:
10136       // 1) void pointer
10137       // 2) null pointer constant
10138       if (RHSType->isPointerType())
10139         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
10140           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
10141           InitField = it;
10142           break;
10143         }
10144 
10145       if (RHS.get()->isNullPointerConstant(Context,
10146                                            Expr::NPC_ValueDependentIsNull)) {
10147         RHS = ImpCastExprToType(RHS.get(), it->getType(),
10148                                 CK_NullToPointer);
10149         InitField = it;
10150         break;
10151       }
10152     }
10153 
10154     CastKind Kind;
10155     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
10156           == Compatible) {
10157       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
10158       InitField = it;
10159       break;
10160     }
10161   }
10162 
10163   if (!InitField)
10164     return Incompatible;
10165 
10166   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
10167   return Compatible;
10168 }
10169 
10170 Sema::AssignConvertType
10171 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
10172                                        bool Diagnose,
10173                                        bool DiagnoseCFAudited,
10174                                        bool ConvertRHS) {
10175   // We need to be able to tell the caller whether we diagnosed a problem, if
10176   // they ask us to issue diagnostics.
10177   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
10178 
10179   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
10180   // we can't avoid *all* modifications at the moment, so we need some somewhere
10181   // to put the updated value.
10182   ExprResult LocalRHS = CallerRHS;
10183   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
10184 
10185   if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
10186     if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
10187       if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
10188           !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
10189         Diag(RHS.get()->getExprLoc(),
10190              diag::warn_noderef_to_dereferenceable_pointer)
10191             << RHS.get()->getSourceRange();
10192       }
10193     }
10194   }
10195 
10196   if (getLangOpts().CPlusPlus) {
10197     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
10198       // C++ 5.17p3: If the left operand is not of class type, the
10199       // expression is implicitly converted (C++ 4) to the
10200       // cv-unqualified type of the left operand.
10201       QualType RHSType = RHS.get()->getType();
10202       if (Diagnose) {
10203         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10204                                         AA_Assigning);
10205       } else {
10206         ImplicitConversionSequence ICS =
10207             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10208                                   /*SuppressUserConversions=*/false,
10209                                   AllowedExplicit::None,
10210                                   /*InOverloadResolution=*/false,
10211                                   /*CStyle=*/false,
10212                                   /*AllowObjCWritebackConversion=*/false);
10213         if (ICS.isFailure())
10214           return Incompatible;
10215         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
10216                                         ICS, AA_Assigning);
10217       }
10218       if (RHS.isInvalid())
10219         return Incompatible;
10220       Sema::AssignConvertType result = Compatible;
10221       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10222           !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
10223         result = IncompatibleObjCWeakRef;
10224       return result;
10225     }
10226 
10227     // FIXME: Currently, we fall through and treat C++ classes like C
10228     // structures.
10229     // FIXME: We also fall through for atomics; not sure what should
10230     // happen there, though.
10231   } else if (RHS.get()->getType() == Context.OverloadTy) {
10232     // As a set of extensions to C, we support overloading on functions. These
10233     // functions need to be resolved here.
10234     DeclAccessPair DAP;
10235     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
10236             RHS.get(), LHSType, /*Complain=*/false, DAP))
10237       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
10238     else
10239       return Incompatible;
10240   }
10241 
10242   // This check seems unnatural, however it is necessary to ensure the proper
10243   // conversion of functions/arrays. If the conversion were done for all
10244   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
10245   // expressions that suppress this implicit conversion (&, sizeof). This needs
10246   // to happen before we check for null pointer conversions because C does not
10247   // undergo the same implicit conversions as C++ does above (by the calls to
10248   // TryImplicitConversion() and PerformImplicitConversion()) which insert the
10249   // lvalue to rvalue cast before checking for null pointer constraints. This
10250   // addresses code like: nullptr_t val; int *ptr; ptr = val;
10251   //
10252   // Suppress this for references: C++ 8.5.3p5.
10253   if (!LHSType->isReferenceType()) {
10254     // FIXME: We potentially allocate here even if ConvertRHS is false.
10255     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
10256     if (RHS.isInvalid())
10257       return Incompatible;
10258   }
10259 
10260   // C99 6.5.16.1p1: the left operand is a pointer and the right is
10261   // a null pointer constant.
10262   if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
10263        LHSType->isBlockPointerType()) &&
10264       RHS.get()->isNullPointerConstant(Context,
10265                                        Expr::NPC_ValueDependentIsNull)) {
10266     if (Diagnose || ConvertRHS) {
10267       CastKind Kind;
10268       CXXCastPath Path;
10269       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
10270                              /*IgnoreBaseAccess=*/false, Diagnose);
10271       if (ConvertRHS)
10272         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
10273     }
10274     return Compatible;
10275   }
10276 
10277   // OpenCL queue_t type assignment.
10278   if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
10279                                  Context, Expr::NPC_ValueDependentIsNull)) {
10280     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10281     return Compatible;
10282   }
10283 
10284   CastKind Kind;
10285   Sema::AssignConvertType result =
10286     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
10287 
10288   // C99 6.5.16.1p2: The value of the right operand is converted to the
10289   // type of the assignment expression.
10290   // CheckAssignmentConstraints allows the left-hand side to be a reference,
10291   // so that we can use references in built-in functions even in C.
10292   // The getNonReferenceType() call makes sure that the resulting expression
10293   // does not have reference type.
10294   if (result != Incompatible && RHS.get()->getType() != LHSType) {
10295     QualType Ty = LHSType.getNonLValueExprType(Context);
10296     Expr *E = RHS.get();
10297 
10298     // Check for various Objective-C errors. If we are not reporting
10299     // diagnostics and just checking for errors, e.g., during overload
10300     // resolution, return Incompatible to indicate the failure.
10301     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
10302         CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
10303                             Diagnose, DiagnoseCFAudited) != ACR_okay) {
10304       if (!Diagnose)
10305         return Incompatible;
10306     }
10307     if (getLangOpts().ObjC &&
10308         (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
10309                                            E->getType(), E, Diagnose) ||
10310          CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
10311       if (!Diagnose)
10312         return Incompatible;
10313       // Replace the expression with a corrected version and continue so we
10314       // can find further errors.
10315       RHS = E;
10316       return Compatible;
10317     }
10318 
10319     if (ConvertRHS)
10320       RHS = ImpCastExprToType(E, Ty, Kind);
10321   }
10322 
10323   return result;
10324 }
10325 
10326 namespace {
10327 /// The original operand to an operator, prior to the application of the usual
10328 /// arithmetic conversions and converting the arguments of a builtin operator
10329 /// candidate.
10330 struct OriginalOperand {
10331   explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
10332     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
10333       Op = MTE->getSubExpr();
10334     if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
10335       Op = BTE->getSubExpr();
10336     if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
10337       Orig = ICE->getSubExprAsWritten();
10338       Conversion = ICE->getConversionFunction();
10339     }
10340   }
10341 
10342   QualType getType() const { return Orig->getType(); }
10343 
10344   Expr *Orig;
10345   NamedDecl *Conversion;
10346 };
10347 }
10348 
10349 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
10350                                ExprResult &RHS) {
10351   OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
10352 
10353   Diag(Loc, diag::err_typecheck_invalid_operands)
10354     << OrigLHS.getType() << OrigRHS.getType()
10355     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10356 
10357   // If a user-defined conversion was applied to either of the operands prior
10358   // to applying the built-in operator rules, tell the user about it.
10359   if (OrigLHS.Conversion) {
10360     Diag(OrigLHS.Conversion->getLocation(),
10361          diag::note_typecheck_invalid_operands_converted)
10362       << 0 << LHS.get()->getType();
10363   }
10364   if (OrigRHS.Conversion) {
10365     Diag(OrigRHS.Conversion->getLocation(),
10366          diag::note_typecheck_invalid_operands_converted)
10367       << 1 << RHS.get()->getType();
10368   }
10369 
10370   return QualType();
10371 }
10372 
10373 // Diagnose cases where a scalar was implicitly converted to a vector and
10374 // diagnose the underlying types. Otherwise, diagnose the error
10375 // as invalid vector logical operands for non-C++ cases.
10376 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
10377                                             ExprResult &RHS) {
10378   QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
10379   QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
10380 
10381   bool LHSNatVec = LHSType->isVectorType();
10382   bool RHSNatVec = RHSType->isVectorType();
10383 
10384   if (!(LHSNatVec && RHSNatVec)) {
10385     Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
10386     Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
10387     Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10388         << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
10389         << Vector->getSourceRange();
10390     return QualType();
10391   }
10392 
10393   Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
10394       << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
10395       << RHS.get()->getSourceRange();
10396 
10397   return QualType();
10398 }
10399 
10400 /// Try to convert a value of non-vector type to a vector type by converting
10401 /// the type to the element type of the vector and then performing a splat.
10402 /// If the language is OpenCL, we only use conversions that promote scalar
10403 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
10404 /// for float->int.
10405 ///
10406 /// OpenCL V2.0 6.2.6.p2:
10407 /// An error shall occur if any scalar operand type has greater rank
10408 /// than the type of the vector element.
10409 ///
10410 /// \param scalar - if non-null, actually perform the conversions
10411 /// \return true if the operation fails (but without diagnosing the failure)
10412 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
10413                                      QualType scalarTy,
10414                                      QualType vectorEltTy,
10415                                      QualType vectorTy,
10416                                      unsigned &DiagID) {
10417   // The conversion to apply to the scalar before splatting it,
10418   // if necessary.
10419   CastKind scalarCast = CK_NoOp;
10420 
10421   if (vectorEltTy->isIntegralType(S.Context)) {
10422     if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
10423         (scalarTy->isIntegerType() &&
10424          S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
10425       DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10426       return true;
10427     }
10428     if (!scalarTy->isIntegralType(S.Context))
10429       return true;
10430     scalarCast = CK_IntegralCast;
10431   } else if (vectorEltTy->isRealFloatingType()) {
10432     if (scalarTy->isRealFloatingType()) {
10433       if (S.getLangOpts().OpenCL &&
10434           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
10435         DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
10436         return true;
10437       }
10438       scalarCast = CK_FloatingCast;
10439     }
10440     else if (scalarTy->isIntegralType(S.Context))
10441       scalarCast = CK_IntegralToFloating;
10442     else
10443       return true;
10444   } else {
10445     return true;
10446   }
10447 
10448   // Adjust scalar if desired.
10449   if (scalar) {
10450     if (scalarCast != CK_NoOp)
10451       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
10452     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
10453   }
10454   return false;
10455 }
10456 
10457 /// Convert vector E to a vector with the same number of elements but different
10458 /// element type.
10459 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
10460   const auto *VecTy = E->getType()->getAs<VectorType>();
10461   assert(VecTy && "Expression E must be a vector");
10462   QualType NewVecTy =
10463       VecTy->isExtVectorType()
10464           ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements())
10465           : S.Context.getVectorType(ElementType, VecTy->getNumElements(),
10466                                     VecTy->getVectorKind());
10467 
10468   // Look through the implicit cast. Return the subexpression if its type is
10469   // NewVecTy.
10470   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
10471     if (ICE->getSubExpr()->getType() == NewVecTy)
10472       return ICE->getSubExpr();
10473 
10474   auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
10475   return S.ImpCastExprToType(E, NewVecTy, Cast);
10476 }
10477 
10478 /// Test if a (constant) integer Int can be casted to another integer type
10479 /// IntTy without losing precision.
10480 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
10481                                       QualType OtherIntTy) {
10482   QualType IntTy = Int->get()->getType().getUnqualifiedType();
10483 
10484   // Reject cases where the value of the Int is unknown as that would
10485   // possibly cause truncation, but accept cases where the scalar can be
10486   // demoted without loss of precision.
10487   Expr::EvalResult EVResult;
10488   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10489   int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
10490   bool IntSigned = IntTy->hasSignedIntegerRepresentation();
10491   bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
10492 
10493   if (CstInt) {
10494     // If the scalar is constant and is of a higher order and has more active
10495     // bits that the vector element type, reject it.
10496     llvm::APSInt Result = EVResult.Val.getInt();
10497     unsigned NumBits = IntSigned
10498                            ? (Result.isNegative() ? Result.getMinSignedBits()
10499                                                   : Result.getActiveBits())
10500                            : Result.getActiveBits();
10501     if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
10502       return true;
10503 
10504     // If the signedness of the scalar type and the vector element type
10505     // differs and the number of bits is greater than that of the vector
10506     // element reject it.
10507     return (IntSigned != OtherIntSigned &&
10508             NumBits > S.Context.getIntWidth(OtherIntTy));
10509   }
10510 
10511   // Reject cases where the value of the scalar is not constant and it's
10512   // order is greater than that of the vector element type.
10513   return (Order < 0);
10514 }
10515 
10516 /// Test if a (constant) integer Int can be casted to floating point type
10517 /// FloatTy without losing precision.
10518 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
10519                                      QualType FloatTy) {
10520   QualType IntTy = Int->get()->getType().getUnqualifiedType();
10521 
10522   // Determine if the integer constant can be expressed as a floating point
10523   // number of the appropriate type.
10524   Expr::EvalResult EVResult;
10525   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
10526 
10527   uint64_t Bits = 0;
10528   if (CstInt) {
10529     // Reject constants that would be truncated if they were converted to
10530     // the floating point type. Test by simple to/from conversion.
10531     // FIXME: Ideally the conversion to an APFloat and from an APFloat
10532     //        could be avoided if there was a convertFromAPInt method
10533     //        which could signal back if implicit truncation occurred.
10534     llvm::APSInt Result = EVResult.Val.getInt();
10535     llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
10536     Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
10537                            llvm::APFloat::rmTowardZero);
10538     llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
10539                              !IntTy->hasSignedIntegerRepresentation());
10540     bool Ignored = false;
10541     Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
10542                            &Ignored);
10543     if (Result != ConvertBack)
10544       return true;
10545   } else {
10546     // Reject types that cannot be fully encoded into the mantissa of
10547     // the float.
10548     Bits = S.Context.getTypeSize(IntTy);
10549     unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
10550         S.Context.getFloatTypeSemantics(FloatTy));
10551     if (Bits > FloatPrec)
10552       return true;
10553   }
10554 
10555   return false;
10556 }
10557 
10558 /// Attempt to convert and splat Scalar into a vector whose types matches
10559 /// Vector following GCC conversion rules. The rule is that implicit
10560 /// conversion can occur when Scalar can be casted to match Vector's element
10561 /// type without causing truncation of Scalar.
10562 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
10563                                         ExprResult *Vector) {
10564   QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
10565   QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
10566   QualType VectorEltTy;
10567 
10568   if (const auto *VT = VectorTy->getAs<VectorType>()) {
10569     assert(!isa<ExtVectorType>(VT) &&
10570            "ExtVectorTypes should not be handled here!");
10571     VectorEltTy = VT->getElementType();
10572   } else if (VectorTy->isVLSTBuiltinType()) {
10573     VectorEltTy =
10574         VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
10575   } else {
10576     llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
10577   }
10578 
10579   // Reject cases where the vector element type or the scalar element type are
10580   // not integral or floating point types.
10581   if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
10582     return true;
10583 
10584   // The conversion to apply to the scalar before splatting it,
10585   // if necessary.
10586   CastKind ScalarCast = CK_NoOp;
10587 
10588   // Accept cases where the vector elements are integers and the scalar is
10589   // an integer.
10590   // FIXME: Notionally if the scalar was a floating point value with a precise
10591   //        integral representation, we could cast it to an appropriate integer
10592   //        type and then perform the rest of the checks here. GCC will perform
10593   //        this conversion in some cases as determined by the input language.
10594   //        We should accept it on a language independent basis.
10595   if (VectorEltTy->isIntegralType(S.Context) &&
10596       ScalarTy->isIntegralType(S.Context) &&
10597       S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
10598 
10599     if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
10600       return true;
10601 
10602     ScalarCast = CK_IntegralCast;
10603   } else if (VectorEltTy->isIntegralType(S.Context) &&
10604              ScalarTy->isRealFloatingType()) {
10605     if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
10606       ScalarCast = CK_FloatingToIntegral;
10607     else
10608       return true;
10609   } else if (VectorEltTy->isRealFloatingType()) {
10610     if (ScalarTy->isRealFloatingType()) {
10611 
10612       // Reject cases where the scalar type is not a constant and has a higher
10613       // Order than the vector element type.
10614       llvm::APFloat Result(0.0);
10615 
10616       // Determine whether this is a constant scalar. In the event that the
10617       // value is dependent (and thus cannot be evaluated by the constant
10618       // evaluator), skip the evaluation. This will then diagnose once the
10619       // expression is instantiated.
10620       bool CstScalar = Scalar->get()->isValueDependent() ||
10621                        Scalar->get()->EvaluateAsFloat(Result, S.Context);
10622       int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
10623       if (!CstScalar && Order < 0)
10624         return true;
10625 
10626       // If the scalar cannot be safely casted to the vector element type,
10627       // reject it.
10628       if (CstScalar) {
10629         bool Truncated = false;
10630         Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
10631                        llvm::APFloat::rmNearestTiesToEven, &Truncated);
10632         if (Truncated)
10633           return true;
10634       }
10635 
10636       ScalarCast = CK_FloatingCast;
10637     } else if (ScalarTy->isIntegralType(S.Context)) {
10638       if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
10639         return true;
10640 
10641       ScalarCast = CK_IntegralToFloating;
10642     } else
10643       return true;
10644   } else if (ScalarTy->isEnumeralType())
10645     return true;
10646 
10647   // Adjust scalar if desired.
10648   if (Scalar) {
10649     if (ScalarCast != CK_NoOp)
10650       *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
10651     *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
10652   }
10653   return false;
10654 }
10655 
10656 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10657                                    SourceLocation Loc, bool IsCompAssign,
10658                                    bool AllowBothBool,
10659                                    bool AllowBoolConversions,
10660                                    bool AllowBoolOperation,
10661                                    bool ReportInvalid) {
10662   if (!IsCompAssign) {
10663     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10664     if (LHS.isInvalid())
10665       return QualType();
10666   }
10667   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10668   if (RHS.isInvalid())
10669     return QualType();
10670 
10671   // For conversion purposes, we ignore any qualifiers.
10672   // For example, "const float" and "float" are equivalent.
10673   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10674   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10675 
10676   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
10677   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
10678   assert(LHSVecType || RHSVecType);
10679 
10680   if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) ||
10681       (RHSVecType && RHSVecType->getElementType()->isBFloat16Type()))
10682     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10683 
10684   // AltiVec-style "vector bool op vector bool" combinations are allowed
10685   // for some operators but not others.
10686   if (!AllowBothBool &&
10687       LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10688       RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
10689     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10690 
10691   // This operation may not be performed on boolean vectors.
10692   if (!AllowBoolOperation &&
10693       (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
10694     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10695 
10696   // If the vector types are identical, return.
10697   if (Context.hasSameType(LHSType, RHSType))
10698     return Context.getCommonSugaredType(LHSType, RHSType);
10699 
10700   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10701   if (LHSVecType && RHSVecType &&
10702       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10703     if (isa<ExtVectorType>(LHSVecType)) {
10704       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10705       return LHSType;
10706     }
10707 
10708     if (!IsCompAssign)
10709       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10710     return RHSType;
10711   }
10712 
10713   // AllowBoolConversions says that bool and non-bool AltiVec vectors
10714   // can be mixed, with the result being the non-bool type.  The non-bool
10715   // operand must have integer element type.
10716   if (AllowBoolConversions && LHSVecType && RHSVecType &&
10717       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10718       (Context.getTypeSize(LHSVecType->getElementType()) ==
10719        Context.getTypeSize(RHSVecType->getElementType()))) {
10720     if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10721         LHSVecType->getElementType()->isIntegerType() &&
10722         RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
10723       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10724       return LHSType;
10725     }
10726     if (!IsCompAssign &&
10727         LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
10728         RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
10729         RHSVecType->getElementType()->isIntegerType()) {
10730       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10731       return RHSType;
10732     }
10733   }
10734 
10735   // Expressions containing fixed-length and sizeless SVE vectors are invalid
10736   // since the ambiguity can affect the ABI.
10737   auto IsSveConversion = [](QualType FirstType, QualType SecondType) {
10738     const VectorType *VecType = SecondType->getAs<VectorType>();
10739     return FirstType->isSizelessBuiltinType() && VecType &&
10740            (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector ||
10741             VecType->getVectorKind() ==
10742                 VectorType::SveFixedLengthPredicateVector);
10743   };
10744 
10745   if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) {
10746     Diag(Loc, diag::err_typecheck_sve_ambiguous) << LHSType << RHSType;
10747     return QualType();
10748   }
10749 
10750   // Expressions containing GNU and SVE (fixed or sizeless) vectors are invalid
10751   // since the ambiguity can affect the ABI.
10752   auto IsSveGnuConversion = [](QualType FirstType, QualType SecondType) {
10753     const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10754     const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10755 
10756     if (FirstVecType && SecondVecType)
10757       return FirstVecType->getVectorKind() == VectorType::GenericVector &&
10758              (SecondVecType->getVectorKind() ==
10759                   VectorType::SveFixedLengthDataVector ||
10760               SecondVecType->getVectorKind() ==
10761                   VectorType::SveFixedLengthPredicateVector);
10762 
10763     return FirstType->isSizelessBuiltinType() && SecondVecType &&
10764            SecondVecType->getVectorKind() == VectorType::GenericVector;
10765   };
10766 
10767   if (IsSveGnuConversion(LHSType, RHSType) ||
10768       IsSveGnuConversion(RHSType, LHSType)) {
10769     Diag(Loc, diag::err_typecheck_sve_gnu_ambiguous) << LHSType << RHSType;
10770     return QualType();
10771   }
10772 
10773   // If there's a vector type and a scalar, try to convert the scalar to
10774   // the vector element type and splat.
10775   unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10776   if (!RHSVecType) {
10777     if (isa<ExtVectorType>(LHSVecType)) {
10778       if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
10779                                     LHSVecType->getElementType(), LHSType,
10780                                     DiagID))
10781         return LHSType;
10782     } else {
10783       if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10784         return LHSType;
10785     }
10786   }
10787   if (!LHSVecType) {
10788     if (isa<ExtVectorType>(RHSVecType)) {
10789       if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
10790                                     LHSType, RHSVecType->getElementType(),
10791                                     RHSType, DiagID))
10792         return RHSType;
10793     } else {
10794       if (LHS.get()->isLValue() ||
10795           !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10796         return RHSType;
10797     }
10798   }
10799 
10800   // FIXME: The code below also handles conversion between vectors and
10801   // non-scalars, we should break this down into fine grained specific checks
10802   // and emit proper diagnostics.
10803   QualType VecType = LHSVecType ? LHSType : RHSType;
10804   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10805   QualType OtherType = LHSVecType ? RHSType : LHSType;
10806   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10807   if (isLaxVectorConversion(OtherType, VecType)) {
10808     if (anyAltivecTypes(RHSType, LHSType) &&
10809         !areSameVectorElemTypes(RHSType, LHSType))
10810       Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
10811     // If we're allowing lax vector conversions, only the total (data) size
10812     // needs to be the same. For non compound assignment, if one of the types is
10813     // scalar, the result is always the vector type.
10814     if (!IsCompAssign) {
10815       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
10816       return VecType;
10817     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10818     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10819     // type. Note that this is already done by non-compound assignments in
10820     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10821     // <1 x T> -> T. The result is also a vector type.
10822     } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10823                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10824       ExprResult *RHSExpr = &RHS;
10825       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
10826       return VecType;
10827     }
10828   }
10829 
10830   // Okay, the expression is invalid.
10831 
10832   // If there's a non-vector, non-real operand, diagnose that.
10833   if ((!RHSVecType && !RHSType->isRealType()) ||
10834       (!LHSVecType && !LHSType->isRealType())) {
10835     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10836       << LHSType << RHSType
10837       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10838     return QualType();
10839   }
10840 
10841   // OpenCL V1.1 6.2.6.p1:
10842   // If the operands are of more than one vector type, then an error shall
10843   // occur. Implicit conversions between vector types are not permitted, per
10844   // section 6.2.1.
10845   if (getLangOpts().OpenCL &&
10846       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
10847       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
10848     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10849                                                            << RHSType;
10850     return QualType();
10851   }
10852 
10853 
10854   // If there is a vector type that is not a ExtVector and a scalar, we reach
10855   // this point if scalar could not be converted to the vector's element type
10856   // without truncation.
10857   if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
10858       (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
10859     QualType Scalar = LHSVecType ? RHSType : LHSType;
10860     QualType Vector = LHSVecType ? LHSType : RHSType;
10861     unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10862     Diag(Loc,
10863          diag::err_typecheck_vector_not_convertable_implict_truncation)
10864         << ScalarOrVector << Scalar << Vector;
10865 
10866     return QualType();
10867   }
10868 
10869   // Otherwise, use the generic diagnostic.
10870   Diag(Loc, DiagID)
10871     << LHSType << RHSType
10872     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10873   return QualType();
10874 }
10875 
10876 QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
10877                                            SourceLocation Loc,
10878                                            bool IsCompAssign,
10879                                            ArithConvKind OperationKind) {
10880   if (!IsCompAssign) {
10881     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10882     if (LHS.isInvalid())
10883       return QualType();
10884   }
10885   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10886   if (RHS.isInvalid())
10887     return QualType();
10888 
10889   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10890   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10891 
10892   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
10893   const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
10894 
10895   unsigned DiagID = diag::err_typecheck_invalid_operands;
10896   if ((OperationKind == ACK_Arithmetic) &&
10897       ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
10898        (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
10899     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10900                       << RHS.get()->getSourceRange();
10901     return QualType();
10902   }
10903 
10904   if (Context.hasSameType(LHSType, RHSType))
10905     return LHSType;
10906 
10907   if (LHSType->isVLSTBuiltinType() && !RHSType->isVLSTBuiltinType()) {
10908     if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10909       return LHSType;
10910   }
10911   if (RHSType->isVLSTBuiltinType() && !LHSType->isVLSTBuiltinType()) {
10912     if (LHS.get()->isLValue() ||
10913         !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10914       return RHSType;
10915   }
10916 
10917   if ((!LHSType->isVLSTBuiltinType() && !LHSType->isRealType()) ||
10918       (!RHSType->isVLSTBuiltinType() && !RHSType->isRealType())) {
10919     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10920         << LHSType << RHSType << LHS.get()->getSourceRange()
10921         << RHS.get()->getSourceRange();
10922     return QualType();
10923   }
10924 
10925   if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() &&
10926       Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
10927           Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) {
10928     Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10929         << LHSType << RHSType << LHS.get()->getSourceRange()
10930         << RHS.get()->getSourceRange();
10931     return QualType();
10932   }
10933 
10934   if (LHSType->isVLSTBuiltinType() || RHSType->isVLSTBuiltinType()) {
10935     QualType Scalar = LHSType->isVLSTBuiltinType() ? RHSType : LHSType;
10936     QualType Vector = LHSType->isVLSTBuiltinType() ? LHSType : RHSType;
10937     bool ScalarOrVector =
10938         LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType();
10939 
10940     Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
10941         << ScalarOrVector << Scalar << Vector;
10942 
10943     return QualType();
10944   }
10945 
10946   Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10947                     << RHS.get()->getSourceRange();
10948   return QualType();
10949 }
10950 
10951 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
10952 // expression.  These are mainly cases where the null pointer is used as an
10953 // integer instead of a pointer.
10954 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10955                                 SourceLocation Loc, bool IsCompare) {
10956   // The canonical way to check for a GNU null is with isNullPointerConstant,
10957   // but we use a bit of a hack here for speed; this is a relatively
10958   // hot path, and isNullPointerConstant is slow.
10959   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
10960   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
10961 
10962   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10963 
10964   // Avoid analyzing cases where the result will either be invalid (and
10965   // diagnosed as such) or entirely valid and not something to warn about.
10966   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10967       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10968     return;
10969 
10970   // Comparison operations would not make sense with a null pointer no matter
10971   // what the other expression is.
10972   if (!IsCompare) {
10973     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10974         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10975         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10976     return;
10977   }
10978 
10979   // The rest of the operations only make sense with a null pointer
10980   // if the other expression is a pointer.
10981   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10982       NonNullType->canDecayToPointerType())
10983     return;
10984 
10985   S.Diag(Loc, diag::warn_null_in_comparison_operation)
10986       << LHSNull /* LHS is NULL */ << NonNullType
10987       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10988 }
10989 
10990 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10991                                           SourceLocation Loc) {
10992   const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
10993   const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
10994   if (!LUE || !RUE)
10995     return;
10996   if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10997       RUE->getKind() != UETT_SizeOf)
10998     return;
10999 
11000   const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
11001   QualType LHSTy = LHSArg->getType();
11002   QualType RHSTy;
11003 
11004   if (RUE->isArgumentType())
11005     RHSTy = RUE->getArgumentType().getNonReferenceType();
11006   else
11007     RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
11008 
11009   if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
11010     if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
11011       return;
11012 
11013     S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
11014     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11015       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11016         S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
11017             << LHSArgDecl;
11018     }
11019   } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
11020     QualType ArrayElemTy = ArrayTy->getElementType();
11021     if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
11022         ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
11023         RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
11024         S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
11025       return;
11026     S.Diag(Loc, diag::warn_division_sizeof_array)
11027         << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
11028     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
11029       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
11030         S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
11031             << LHSArgDecl;
11032     }
11033 
11034     S.Diag(Loc, diag::note_precedence_silence) << RHS;
11035   }
11036 }
11037 
11038 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
11039                                                ExprResult &RHS,
11040                                                SourceLocation Loc, bool IsDiv) {
11041   // Check for division/remainder by zero.
11042   Expr::EvalResult RHSValue;
11043   if (!RHS.get()->isValueDependent() &&
11044       RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
11045       RHSValue.Val.getInt() == 0)
11046     S.DiagRuntimeBehavior(Loc, RHS.get(),
11047                           S.PDiag(diag::warn_remainder_division_by_zero)
11048                             << IsDiv << RHS.get()->getSourceRange());
11049 }
11050 
11051 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
11052                                            SourceLocation Loc,
11053                                            bool IsCompAssign, bool IsDiv) {
11054   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11055 
11056   QualType LHSTy = LHS.get()->getType();
11057   QualType RHSTy = RHS.get()->getType();
11058   if (LHSTy->isVectorType() || RHSTy->isVectorType())
11059     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11060                                /*AllowBothBool*/ getLangOpts().AltiVec,
11061                                /*AllowBoolConversions*/ false,
11062                                /*AllowBooleanOperation*/ false,
11063                                /*ReportInvalid*/ true);
11064   if (LHSTy->isVLSTBuiltinType() || RHSTy->isVLSTBuiltinType())
11065     return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11066                                        ACK_Arithmetic);
11067   if (!IsDiv &&
11068       (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
11069     return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
11070   // For division, only matrix-by-scalar is supported. Other combinations with
11071   // matrix types are invalid.
11072   if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
11073     return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
11074 
11075   QualType compType = UsualArithmeticConversions(
11076       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11077   if (LHS.isInvalid() || RHS.isInvalid())
11078     return QualType();
11079 
11080 
11081   if (compType.isNull() || !compType->isArithmeticType())
11082     return InvalidOperands(Loc, LHS, RHS);
11083   if (IsDiv) {
11084     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
11085     DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
11086   }
11087   return compType;
11088 }
11089 
11090 QualType Sema::CheckRemainderOperands(
11091   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
11092   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11093 
11094   if (LHS.get()->getType()->isVectorType() ||
11095       RHS.get()->getType()->isVectorType()) {
11096     if (LHS.get()->getType()->hasIntegerRepresentation() &&
11097         RHS.get()->getType()->hasIntegerRepresentation())
11098       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11099                                  /*AllowBothBool*/ getLangOpts().AltiVec,
11100                                  /*AllowBoolConversions*/ false,
11101                                  /*AllowBooleanOperation*/ false,
11102                                  /*ReportInvalid*/ true);
11103     return InvalidOperands(Loc, LHS, RHS);
11104   }
11105 
11106   if (LHS.get()->getType()->isVLSTBuiltinType() ||
11107       RHS.get()->getType()->isVLSTBuiltinType()) {
11108     if (LHS.get()->getType()->hasIntegerRepresentation() &&
11109         RHS.get()->getType()->hasIntegerRepresentation())
11110       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
11111                                          ACK_Arithmetic);
11112 
11113     return InvalidOperands(Loc, LHS, RHS);
11114   }
11115 
11116   QualType compType = UsualArithmeticConversions(
11117       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
11118   if (LHS.isInvalid() || RHS.isInvalid())
11119     return QualType();
11120 
11121   if (compType.isNull() || !compType->isIntegerType())
11122     return InvalidOperands(Loc, LHS, RHS);
11123   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
11124   return compType;
11125 }
11126 
11127 /// Diagnose invalid arithmetic on two void pointers.
11128 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
11129                                                 Expr *LHSExpr, Expr *RHSExpr) {
11130   S.Diag(Loc, S.getLangOpts().CPlusPlus
11131                 ? diag::err_typecheck_pointer_arith_void_type
11132                 : diag::ext_gnu_void_ptr)
11133     << 1 /* two pointers */ << LHSExpr->getSourceRange()
11134                             << RHSExpr->getSourceRange();
11135 }
11136 
11137 /// Diagnose invalid arithmetic on a void pointer.
11138 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
11139                                             Expr *Pointer) {
11140   S.Diag(Loc, S.getLangOpts().CPlusPlus
11141                 ? diag::err_typecheck_pointer_arith_void_type
11142                 : diag::ext_gnu_void_ptr)
11143     << 0 /* one pointer */ << Pointer->getSourceRange();
11144 }
11145 
11146 /// Diagnose invalid arithmetic on a null pointer.
11147 ///
11148 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
11149 /// idiom, which we recognize as a GNU extension.
11150 ///
11151 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
11152                                             Expr *Pointer, bool IsGNUIdiom) {
11153   if (IsGNUIdiom)
11154     S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
11155       << Pointer->getSourceRange();
11156   else
11157     S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
11158       << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
11159 }
11160 
11161 /// Diagnose invalid subraction on a null pointer.
11162 ///
11163 static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
11164                                              Expr *Pointer, bool BothNull) {
11165   // Null - null is valid in C++ [expr.add]p7
11166   if (BothNull && S.getLangOpts().CPlusPlus)
11167     return;
11168 
11169   // Is this s a macro from a system header?
11170   if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
11171     return;
11172 
11173   S.DiagRuntimeBehavior(Loc, Pointer,
11174                         S.PDiag(diag::warn_pointer_sub_null_ptr)
11175                             << S.getLangOpts().CPlusPlus
11176                             << Pointer->getSourceRange());
11177 }
11178 
11179 /// Diagnose invalid arithmetic on two function pointers.
11180 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
11181                                                     Expr *LHS, Expr *RHS) {
11182   assert(LHS->getType()->isAnyPointerType());
11183   assert(RHS->getType()->isAnyPointerType());
11184   S.Diag(Loc, S.getLangOpts().CPlusPlus
11185                 ? diag::err_typecheck_pointer_arith_function_type
11186                 : diag::ext_gnu_ptr_func_arith)
11187     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
11188     // We only show the second type if it differs from the first.
11189     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
11190                                                    RHS->getType())
11191     << RHS->getType()->getPointeeType()
11192     << LHS->getSourceRange() << RHS->getSourceRange();
11193 }
11194 
11195 /// Diagnose invalid arithmetic on a function pointer.
11196 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
11197                                                 Expr *Pointer) {
11198   assert(Pointer->getType()->isAnyPointerType());
11199   S.Diag(Loc, S.getLangOpts().CPlusPlus
11200                 ? diag::err_typecheck_pointer_arith_function_type
11201                 : diag::ext_gnu_ptr_func_arith)
11202     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
11203     << 0 /* one pointer, so only one type */
11204     << Pointer->getSourceRange();
11205 }
11206 
11207 /// Emit error if Operand is incomplete pointer type
11208 ///
11209 /// \returns True if pointer has incomplete type
11210 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
11211                                                  Expr *Operand) {
11212   QualType ResType = Operand->getType();
11213   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11214     ResType = ResAtomicType->getValueType();
11215 
11216   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
11217   QualType PointeeTy = ResType->getPointeeType();
11218   return S.RequireCompleteSizedType(
11219       Loc, PointeeTy,
11220       diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
11221       Operand->getSourceRange());
11222 }
11223 
11224 /// Check the validity of an arithmetic pointer operand.
11225 ///
11226 /// If the operand has pointer type, this code will check for pointer types
11227 /// which are invalid in arithmetic operations. These will be diagnosed
11228 /// appropriately, including whether or not the use is supported as an
11229 /// extension.
11230 ///
11231 /// \returns True when the operand is valid to use (even if as an extension).
11232 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
11233                                             Expr *Operand) {
11234   QualType ResType = Operand->getType();
11235   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11236     ResType = ResAtomicType->getValueType();
11237 
11238   if (!ResType->isAnyPointerType()) return true;
11239 
11240   QualType PointeeTy = ResType->getPointeeType();
11241   if (PointeeTy->isVoidType()) {
11242     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
11243     return !S.getLangOpts().CPlusPlus;
11244   }
11245   if (PointeeTy->isFunctionType()) {
11246     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
11247     return !S.getLangOpts().CPlusPlus;
11248   }
11249 
11250   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
11251 
11252   return true;
11253 }
11254 
11255 /// Check the validity of a binary arithmetic operation w.r.t. pointer
11256 /// operands.
11257 ///
11258 /// This routine will diagnose any invalid arithmetic on pointer operands much
11259 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
11260 /// for emitting a single diagnostic even for operations where both LHS and RHS
11261 /// are (potentially problematic) pointers.
11262 ///
11263 /// \returns True when the operand is valid to use (even if as an extension).
11264 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
11265                                                 Expr *LHSExpr, Expr *RHSExpr) {
11266   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
11267   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
11268   if (!isLHSPointer && !isRHSPointer) return true;
11269 
11270   QualType LHSPointeeTy, RHSPointeeTy;
11271   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
11272   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
11273 
11274   // if both are pointers check if operation is valid wrt address spaces
11275   if (isLHSPointer && isRHSPointer) {
11276     if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
11277       S.Diag(Loc,
11278              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11279           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
11280           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
11281       return false;
11282     }
11283   }
11284 
11285   // Check for arithmetic on pointers to incomplete types.
11286   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
11287   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
11288   if (isLHSVoidPtr || isRHSVoidPtr) {
11289     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
11290     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
11291     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
11292 
11293     return !S.getLangOpts().CPlusPlus;
11294   }
11295 
11296   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
11297   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
11298   if (isLHSFuncPtr || isRHSFuncPtr) {
11299     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
11300     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
11301                                                                 RHSExpr);
11302     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
11303 
11304     return !S.getLangOpts().CPlusPlus;
11305   }
11306 
11307   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
11308     return false;
11309   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
11310     return false;
11311 
11312   return true;
11313 }
11314 
11315 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
11316 /// literal.
11317 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
11318                                   Expr *LHSExpr, Expr *RHSExpr) {
11319   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
11320   Expr* IndexExpr = RHSExpr;
11321   if (!StrExpr) {
11322     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
11323     IndexExpr = LHSExpr;
11324   }
11325 
11326   bool IsStringPlusInt = StrExpr &&
11327       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
11328   if (!IsStringPlusInt || IndexExpr->isValueDependent())
11329     return;
11330 
11331   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11332   Self.Diag(OpLoc, diag::warn_string_plus_int)
11333       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
11334 
11335   // Only print a fixit for "str" + int, not for int + "str".
11336   if (IndexExpr == RHSExpr) {
11337     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11338     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11339         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11340         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11341         << FixItHint::CreateInsertion(EndLoc, "]");
11342   } else
11343     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11344 }
11345 
11346 /// Emit a warning when adding a char literal to a string.
11347 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
11348                                    Expr *LHSExpr, Expr *RHSExpr) {
11349   const Expr *StringRefExpr = LHSExpr;
11350   const CharacterLiteral *CharExpr =
11351       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
11352 
11353   if (!CharExpr) {
11354     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
11355     StringRefExpr = RHSExpr;
11356   }
11357 
11358   if (!CharExpr || !StringRefExpr)
11359     return;
11360 
11361   const QualType StringType = StringRefExpr->getType();
11362 
11363   // Return if not a PointerType.
11364   if (!StringType->isAnyPointerType())
11365     return;
11366 
11367   // Return if not a CharacterType.
11368   if (!StringType->getPointeeType()->isAnyCharacterType())
11369     return;
11370 
11371   ASTContext &Ctx = Self.getASTContext();
11372   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
11373 
11374   const QualType CharType = CharExpr->getType();
11375   if (!CharType->isAnyCharacterType() &&
11376       CharType->isIntegerType() &&
11377       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
11378     Self.Diag(OpLoc, diag::warn_string_plus_char)
11379         << DiagRange << Ctx.CharTy;
11380   } else {
11381     Self.Diag(OpLoc, diag::warn_string_plus_char)
11382         << DiagRange << CharExpr->getType();
11383   }
11384 
11385   // Only print a fixit for str + char, not for char + str.
11386   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
11387     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
11388     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
11389         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
11390         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
11391         << FixItHint::CreateInsertion(EndLoc, "]");
11392   } else {
11393     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
11394   }
11395 }
11396 
11397 /// Emit error when two pointers are incompatible.
11398 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
11399                                            Expr *LHSExpr, Expr *RHSExpr) {
11400   assert(LHSExpr->getType()->isAnyPointerType());
11401   assert(RHSExpr->getType()->isAnyPointerType());
11402   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
11403     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
11404     << RHSExpr->getSourceRange();
11405 }
11406 
11407 // C99 6.5.6
11408 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
11409                                      SourceLocation Loc, BinaryOperatorKind Opc,
11410                                      QualType* CompLHSTy) {
11411   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11412 
11413   if (LHS.get()->getType()->isVectorType() ||
11414       RHS.get()->getType()->isVectorType()) {
11415     QualType compType =
11416         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11417                             /*AllowBothBool*/ getLangOpts().AltiVec,
11418                             /*AllowBoolConversions*/ getLangOpts().ZVector,
11419                             /*AllowBooleanOperation*/ false,
11420                             /*ReportInvalid*/ true);
11421     if (CompLHSTy) *CompLHSTy = compType;
11422     return compType;
11423   }
11424 
11425   if (LHS.get()->getType()->isVLSTBuiltinType() ||
11426       RHS.get()->getType()->isVLSTBuiltinType()) {
11427     QualType compType =
11428         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11429     if (CompLHSTy)
11430       *CompLHSTy = compType;
11431     return compType;
11432   }
11433 
11434   if (LHS.get()->getType()->isConstantMatrixType() ||
11435       RHS.get()->getType()->isConstantMatrixType()) {
11436     QualType compType =
11437         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11438     if (CompLHSTy)
11439       *CompLHSTy = compType;
11440     return compType;
11441   }
11442 
11443   QualType compType = UsualArithmeticConversions(
11444       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11445   if (LHS.isInvalid() || RHS.isInvalid())
11446     return QualType();
11447 
11448   // Diagnose "string literal" '+' int and string '+' "char literal".
11449   if (Opc == BO_Add) {
11450     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
11451     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
11452   }
11453 
11454   // handle the common case first (both operands are arithmetic).
11455   if (!compType.isNull() && compType->isArithmeticType()) {
11456     if (CompLHSTy) *CompLHSTy = compType;
11457     return compType;
11458   }
11459 
11460   // Type-checking.  Ultimately the pointer's going to be in PExp;
11461   // note that we bias towards the LHS being the pointer.
11462   Expr *PExp = LHS.get(), *IExp = RHS.get();
11463 
11464   bool isObjCPointer;
11465   if (PExp->getType()->isPointerType()) {
11466     isObjCPointer = false;
11467   } else if (PExp->getType()->isObjCObjectPointerType()) {
11468     isObjCPointer = true;
11469   } else {
11470     std::swap(PExp, IExp);
11471     if (PExp->getType()->isPointerType()) {
11472       isObjCPointer = false;
11473     } else if (PExp->getType()->isObjCObjectPointerType()) {
11474       isObjCPointer = true;
11475     } else {
11476       return InvalidOperands(Loc, LHS, RHS);
11477     }
11478   }
11479   assert(PExp->getType()->isAnyPointerType());
11480 
11481   if (!IExp->getType()->isIntegerType())
11482     return InvalidOperands(Loc, LHS, RHS);
11483 
11484   // Adding to a null pointer results in undefined behavior.
11485   if (PExp->IgnoreParenCasts()->isNullPointerConstant(
11486           Context, Expr::NPC_ValueDependentIsNotNull)) {
11487     // In C++ adding zero to a null pointer is defined.
11488     Expr::EvalResult KnownVal;
11489     if (!getLangOpts().CPlusPlus ||
11490         (!IExp->isValueDependent() &&
11491          (!IExp->EvaluateAsInt(KnownVal, Context) ||
11492           KnownVal.Val.getInt() != 0))) {
11493       // Check the conditions to see if this is the 'p = nullptr + n' idiom.
11494       bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
11495           Context, BO_Add, PExp, IExp);
11496       diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
11497     }
11498   }
11499 
11500   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
11501     return QualType();
11502 
11503   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
11504     return QualType();
11505 
11506   // Check array bounds for pointer arithemtic
11507   CheckArrayAccess(PExp, IExp);
11508 
11509   if (CompLHSTy) {
11510     QualType LHSTy = Context.isPromotableBitField(LHS.get());
11511     if (LHSTy.isNull()) {
11512       LHSTy = LHS.get()->getType();
11513       if (Context.isPromotableIntegerType(LHSTy))
11514         LHSTy = Context.getPromotedIntegerType(LHSTy);
11515     }
11516     *CompLHSTy = LHSTy;
11517   }
11518 
11519   return PExp->getType();
11520 }
11521 
11522 // C99 6.5.6
11523 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
11524                                         SourceLocation Loc,
11525                                         QualType* CompLHSTy) {
11526   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11527 
11528   if (LHS.get()->getType()->isVectorType() ||
11529       RHS.get()->getType()->isVectorType()) {
11530     QualType compType =
11531         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
11532                             /*AllowBothBool*/ getLangOpts().AltiVec,
11533                             /*AllowBoolConversions*/ getLangOpts().ZVector,
11534                             /*AllowBooleanOperation*/ false,
11535                             /*ReportInvalid*/ true);
11536     if (CompLHSTy) *CompLHSTy = compType;
11537     return compType;
11538   }
11539 
11540   if (LHS.get()->getType()->isVLSTBuiltinType() ||
11541       RHS.get()->getType()->isVLSTBuiltinType()) {
11542     QualType compType =
11543         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
11544     if (CompLHSTy)
11545       *CompLHSTy = compType;
11546     return compType;
11547   }
11548 
11549   if (LHS.get()->getType()->isConstantMatrixType() ||
11550       RHS.get()->getType()->isConstantMatrixType()) {
11551     QualType compType =
11552         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
11553     if (CompLHSTy)
11554       *CompLHSTy = compType;
11555     return compType;
11556   }
11557 
11558   QualType compType = UsualArithmeticConversions(
11559       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11560   if (LHS.isInvalid() || RHS.isInvalid())
11561     return QualType();
11562 
11563   // Enforce type constraints: C99 6.5.6p3.
11564 
11565   // Handle the common case first (both operands are arithmetic).
11566   if (!compType.isNull() && compType->isArithmeticType()) {
11567     if (CompLHSTy) *CompLHSTy = compType;
11568     return compType;
11569   }
11570 
11571   // Either ptr - int   or   ptr - ptr.
11572   if (LHS.get()->getType()->isAnyPointerType()) {
11573     QualType lpointee = LHS.get()->getType()->getPointeeType();
11574 
11575     // Diagnose bad cases where we step over interface counts.
11576     if (LHS.get()->getType()->isObjCObjectPointerType() &&
11577         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
11578       return QualType();
11579 
11580     // The result type of a pointer-int computation is the pointer type.
11581     if (RHS.get()->getType()->isIntegerType()) {
11582       // Subtracting from a null pointer should produce a warning.
11583       // The last argument to the diagnose call says this doesn't match the
11584       // GNU int-to-pointer idiom.
11585       if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
11586                                            Expr::NPC_ValueDependentIsNotNull)) {
11587         // In C++ adding zero to a null pointer is defined.
11588         Expr::EvalResult KnownVal;
11589         if (!getLangOpts().CPlusPlus ||
11590             (!RHS.get()->isValueDependent() &&
11591              (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
11592               KnownVal.Val.getInt() != 0))) {
11593           diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
11594         }
11595       }
11596 
11597       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
11598         return QualType();
11599 
11600       // Check array bounds for pointer arithemtic
11601       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
11602                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
11603 
11604       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11605       return LHS.get()->getType();
11606     }
11607 
11608     // Handle pointer-pointer subtractions.
11609     if (const PointerType *RHSPTy
11610           = RHS.get()->getType()->getAs<PointerType>()) {
11611       QualType rpointee = RHSPTy->getPointeeType();
11612 
11613       if (getLangOpts().CPlusPlus) {
11614         // Pointee types must be the same: C++ [expr.add]
11615         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
11616           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11617         }
11618       } else {
11619         // Pointee types must be compatible C99 6.5.6p3
11620         if (!Context.typesAreCompatible(
11621                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
11622                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
11623           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11624           return QualType();
11625         }
11626       }
11627 
11628       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
11629                                                LHS.get(), RHS.get()))
11630         return QualType();
11631 
11632       bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11633           Context, Expr::NPC_ValueDependentIsNotNull);
11634       bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11635           Context, Expr::NPC_ValueDependentIsNotNull);
11636 
11637       // Subtracting nullptr or from nullptr is suspect
11638       if (LHSIsNullPtr)
11639         diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
11640       if (RHSIsNullPtr)
11641         diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
11642 
11643       // The pointee type may have zero size.  As an extension, a structure or
11644       // union may have zero size or an array may have zero length.  In this
11645       // case subtraction does not make sense.
11646       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
11647         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
11648         if (ElementSize.isZero()) {
11649           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
11650             << rpointee.getUnqualifiedType()
11651             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11652         }
11653       }
11654 
11655       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11656       return Context.getPointerDiffType();
11657     }
11658   }
11659 
11660   return InvalidOperands(Loc, LHS, RHS);
11661 }
11662 
11663 static bool isScopedEnumerationType(QualType T) {
11664   if (const EnumType *ET = T->getAs<EnumType>())
11665     return ET->getDecl()->isScoped();
11666   return false;
11667 }
11668 
11669 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
11670                                    SourceLocation Loc, BinaryOperatorKind Opc,
11671                                    QualType LHSType) {
11672   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
11673   // so skip remaining warnings as we don't want to modify values within Sema.
11674   if (S.getLangOpts().OpenCL)
11675     return;
11676 
11677   // Check right/shifter operand
11678   Expr::EvalResult RHSResult;
11679   if (RHS.get()->isValueDependent() ||
11680       !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
11681     return;
11682   llvm::APSInt Right = RHSResult.Val.getInt();
11683 
11684   if (Right.isNegative()) {
11685     S.DiagRuntimeBehavior(Loc, RHS.get(),
11686                           S.PDiag(diag::warn_shift_negative)
11687                             << RHS.get()->getSourceRange());
11688     return;
11689   }
11690 
11691   QualType LHSExprType = LHS.get()->getType();
11692   uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
11693   if (LHSExprType->isBitIntType())
11694     LeftSize = S.Context.getIntWidth(LHSExprType);
11695   else if (LHSExprType->isFixedPointType()) {
11696     auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
11697     LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
11698   }
11699   llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
11700   if (Right.uge(LeftBits)) {
11701     S.DiagRuntimeBehavior(Loc, RHS.get(),
11702                           S.PDiag(diag::warn_shift_gt_typewidth)
11703                             << RHS.get()->getSourceRange());
11704     return;
11705   }
11706 
11707   // FIXME: We probably need to handle fixed point types specially here.
11708   if (Opc != BO_Shl || LHSExprType->isFixedPointType())
11709     return;
11710 
11711   // When left shifting an ICE which is signed, we can check for overflow which
11712   // according to C++ standards prior to C++2a has undefined behavior
11713   // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
11714   // more than the maximum value representable in the result type, so never
11715   // warn for those. (FIXME: Unsigned left-shift overflow in a constant
11716   // expression is still probably a bug.)
11717   Expr::EvalResult LHSResult;
11718   if (LHS.get()->isValueDependent() ||
11719       LHSType->hasUnsignedIntegerRepresentation() ||
11720       !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
11721     return;
11722   llvm::APSInt Left = LHSResult.Val.getInt();
11723 
11724   // Don't warn if signed overflow is defined, then all the rest of the
11725   // diagnostics will not be triggered because the behavior is defined.
11726   // Also don't warn in C++20 mode (and newer), as signed left shifts
11727   // always wrap and never overflow.
11728   if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
11729     return;
11730 
11731   // If LHS does not have a non-negative value then, the
11732   // behavior is undefined before C++2a. Warn about it.
11733   if (Left.isNegative()) {
11734     S.DiagRuntimeBehavior(Loc, LHS.get(),
11735                           S.PDiag(diag::warn_shift_lhs_negative)
11736                             << LHS.get()->getSourceRange());
11737     return;
11738   }
11739 
11740   llvm::APInt ResultBits =
11741       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
11742   if (LeftBits.uge(ResultBits))
11743     return;
11744   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
11745   Result = Result.shl(Right);
11746 
11747   // Print the bit representation of the signed integer as an unsigned
11748   // hexadecimal number.
11749   SmallString<40> HexResult;
11750   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
11751 
11752   // If we are only missing a sign bit, this is less likely to result in actual
11753   // bugs -- if the result is cast back to an unsigned type, it will have the
11754   // expected value. Thus we place this behind a different warning that can be
11755   // turned off separately if needed.
11756   if (LeftBits == ResultBits - 1) {
11757     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
11758         << HexResult << LHSType
11759         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11760     return;
11761   }
11762 
11763   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
11764     << HexResult.str() << Result.getMinSignedBits() << LHSType
11765     << Left.getBitWidth() << LHS.get()->getSourceRange()
11766     << RHS.get()->getSourceRange();
11767 }
11768 
11769 /// Return the resulting type when a vector is shifted
11770 ///        by a scalar or vector shift amount.
11771 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
11772                                  SourceLocation Loc, bool IsCompAssign) {
11773   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
11774   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
11775       !LHS.get()->getType()->isVectorType()) {
11776     S.Diag(Loc, diag::err_shift_rhs_only_vector)
11777       << RHS.get()->getType() << LHS.get()->getType()
11778       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11779     return QualType();
11780   }
11781 
11782   if (!IsCompAssign) {
11783     LHS = S.UsualUnaryConversions(LHS.get());
11784     if (LHS.isInvalid()) return QualType();
11785   }
11786 
11787   RHS = S.UsualUnaryConversions(RHS.get());
11788   if (RHS.isInvalid()) return QualType();
11789 
11790   QualType LHSType = LHS.get()->getType();
11791   // Note that LHS might be a scalar because the routine calls not only in
11792   // OpenCL case.
11793   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
11794   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
11795 
11796   // Note that RHS might not be a vector.
11797   QualType RHSType = RHS.get()->getType();
11798   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
11799   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
11800 
11801   // Do not allow shifts for boolean vectors.
11802   if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
11803       (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
11804     S.Diag(Loc, diag::err_typecheck_invalid_operands)
11805         << LHS.get()->getType() << RHS.get()->getType()
11806         << LHS.get()->getSourceRange();
11807     return QualType();
11808   }
11809 
11810   // The operands need to be integers.
11811   if (!LHSEleType->isIntegerType()) {
11812     S.Diag(Loc, diag::err_typecheck_expect_int)
11813       << LHS.get()->getType() << LHS.get()->getSourceRange();
11814     return QualType();
11815   }
11816 
11817   if (!RHSEleType->isIntegerType()) {
11818     S.Diag(Loc, diag::err_typecheck_expect_int)
11819       << RHS.get()->getType() << RHS.get()->getSourceRange();
11820     return QualType();
11821   }
11822 
11823   if (!LHSVecTy) {
11824     assert(RHSVecTy);
11825     if (IsCompAssign)
11826       return RHSType;
11827     if (LHSEleType != RHSEleType) {
11828       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
11829       LHSEleType = RHSEleType;
11830     }
11831     QualType VecTy =
11832         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
11833     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
11834     LHSType = VecTy;
11835   } else if (RHSVecTy) {
11836     // OpenCL v1.1 s6.3.j says that for vector types, the operators
11837     // are applied component-wise. So if RHS is a vector, then ensure
11838     // that the number of elements is the same as LHS...
11839     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
11840       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11841         << LHS.get()->getType() << RHS.get()->getType()
11842         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11843       return QualType();
11844     }
11845     if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
11846       const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
11847       const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
11848       if (LHSBT != RHSBT &&
11849           S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
11850         S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
11851             << LHS.get()->getType() << RHS.get()->getType()
11852             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11853       }
11854     }
11855   } else {
11856     // ...else expand RHS to match the number of elements in LHS.
11857     QualType VecTy =
11858       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
11859     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11860   }
11861 
11862   return LHSType;
11863 }
11864 
11865 static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
11866                                          ExprResult &RHS, SourceLocation Loc,
11867                                          bool IsCompAssign) {
11868   if (!IsCompAssign) {
11869     LHS = S.UsualUnaryConversions(LHS.get());
11870     if (LHS.isInvalid())
11871       return QualType();
11872   }
11873 
11874   RHS = S.UsualUnaryConversions(RHS.get());
11875   if (RHS.isInvalid())
11876     return QualType();
11877 
11878   QualType LHSType = LHS.get()->getType();
11879   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
11880   QualType LHSEleType = LHSType->isVLSTBuiltinType()
11881                             ? LHSBuiltinTy->getSveEltType(S.getASTContext())
11882                             : LHSType;
11883 
11884   // Note that RHS might not be a vector
11885   QualType RHSType = RHS.get()->getType();
11886   const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
11887   QualType RHSEleType = RHSType->isVLSTBuiltinType()
11888                             ? RHSBuiltinTy->getSveEltType(S.getASTContext())
11889                             : RHSType;
11890 
11891   if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11892       (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
11893     S.Diag(Loc, diag::err_typecheck_invalid_operands)
11894         << LHSType << RHSType << LHS.get()->getSourceRange();
11895     return QualType();
11896   }
11897 
11898   if (!LHSEleType->isIntegerType()) {
11899     S.Diag(Loc, diag::err_typecheck_expect_int)
11900         << LHS.get()->getType() << LHS.get()->getSourceRange();
11901     return QualType();
11902   }
11903 
11904   if (!RHSEleType->isIntegerType()) {
11905     S.Diag(Loc, diag::err_typecheck_expect_int)
11906         << RHS.get()->getType() << RHS.get()->getSourceRange();
11907     return QualType();
11908   }
11909 
11910   if (LHSType->isVLSTBuiltinType() && RHSType->isVLSTBuiltinType() &&
11911       (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
11912        S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) {
11913     S.Diag(Loc, diag::err_typecheck_invalid_operands)
11914         << LHSType << RHSType << LHS.get()->getSourceRange()
11915         << RHS.get()->getSourceRange();
11916     return QualType();
11917   }
11918 
11919   if (!LHSType->isVLSTBuiltinType()) {
11920     assert(RHSType->isVLSTBuiltinType());
11921     if (IsCompAssign)
11922       return RHSType;
11923     if (LHSEleType != RHSEleType) {
11924       LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast);
11925       LHSEleType = RHSEleType;
11926     }
11927     const llvm::ElementCount VecSize =
11928         S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC;
11929     QualType VecTy =
11930         S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue());
11931     LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat);
11932     LHSType = VecTy;
11933   } else if (RHSBuiltinTy && RHSBuiltinTy->isVLSTBuiltinType()) {
11934     if (S.Context.getTypeSize(RHSBuiltinTy) !=
11935         S.Context.getTypeSize(LHSBuiltinTy)) {
11936       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11937           << LHSType << RHSType << LHS.get()->getSourceRange()
11938           << RHS.get()->getSourceRange();
11939       return QualType();
11940     }
11941   } else {
11942     const llvm::ElementCount VecSize =
11943         S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC;
11944     if (LHSEleType != RHSEleType) {
11945       RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast);
11946       RHSEleType = LHSEleType;
11947     }
11948     QualType VecTy =
11949         S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue());
11950     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11951   }
11952 
11953   return LHSType;
11954 }
11955 
11956 // C99 6.5.7
11957 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11958                                   SourceLocation Loc, BinaryOperatorKind Opc,
11959                                   bool IsCompAssign) {
11960   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11961 
11962   // Vector shifts promote their scalar inputs to vector type.
11963   if (LHS.get()->getType()->isVectorType() ||
11964       RHS.get()->getType()->isVectorType()) {
11965     if (LangOpts.ZVector) {
11966       // The shift operators for the z vector extensions work basically
11967       // like general shifts, except that neither the LHS nor the RHS is
11968       // allowed to be a "vector bool".
11969       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11970         if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
11971           return InvalidOperands(Loc, LHS, RHS);
11972       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11973         if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
11974           return InvalidOperands(Loc, LHS, RHS);
11975     }
11976     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11977   }
11978 
11979   if (LHS.get()->getType()->isVLSTBuiltinType() ||
11980       RHS.get()->getType()->isVLSTBuiltinType())
11981     return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11982 
11983   // Shifts don't perform usual arithmetic conversions, they just do integer
11984   // promotions on each operand. C99 6.5.7p3
11985 
11986   // For the LHS, do usual unary conversions, but then reset them away
11987   // if this is a compound assignment.
11988   ExprResult OldLHS = LHS;
11989   LHS = UsualUnaryConversions(LHS.get());
11990   if (LHS.isInvalid())
11991     return QualType();
11992   QualType LHSType = LHS.get()->getType();
11993   if (IsCompAssign) LHS = OldLHS;
11994 
11995   // The RHS is simpler.
11996   RHS = UsualUnaryConversions(RHS.get());
11997   if (RHS.isInvalid())
11998     return QualType();
11999   QualType RHSType = RHS.get()->getType();
12000 
12001   // C99 6.5.7p2: Each of the operands shall have integer type.
12002   // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
12003   if ((!LHSType->isFixedPointOrIntegerType() &&
12004        !LHSType->hasIntegerRepresentation()) ||
12005       !RHSType->hasIntegerRepresentation())
12006     return InvalidOperands(Loc, LHS, RHS);
12007 
12008   // C++0x: Don't allow scoped enums. FIXME: Use something better than
12009   // hasIntegerRepresentation() above instead of this.
12010   if (isScopedEnumerationType(LHSType) ||
12011       isScopedEnumerationType(RHSType)) {
12012     return InvalidOperands(Loc, LHS, RHS);
12013   }
12014   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
12015 
12016   // "The type of the result is that of the promoted left operand."
12017   return LHSType;
12018 }
12019 
12020 /// Diagnose bad pointer comparisons.
12021 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
12022                                               ExprResult &LHS, ExprResult &RHS,
12023                                               bool IsError) {
12024   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
12025                       : diag::ext_typecheck_comparison_of_distinct_pointers)
12026     << LHS.get()->getType() << RHS.get()->getType()
12027     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12028 }
12029 
12030 /// Returns false if the pointers are converted to a composite type,
12031 /// true otherwise.
12032 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
12033                                            ExprResult &LHS, ExprResult &RHS) {
12034   // C++ [expr.rel]p2:
12035   //   [...] Pointer conversions (4.10) and qualification
12036   //   conversions (4.4) are performed on pointer operands (or on
12037   //   a pointer operand and a null pointer constant) to bring
12038   //   them to their composite pointer type. [...]
12039   //
12040   // C++ [expr.eq]p1 uses the same notion for (in)equality
12041   // comparisons of pointers.
12042 
12043   QualType LHSType = LHS.get()->getType();
12044   QualType RHSType = RHS.get()->getType();
12045   assert(LHSType->isPointerType() || RHSType->isPointerType() ||
12046          LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
12047 
12048   QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
12049   if (T.isNull()) {
12050     if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
12051         (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
12052       diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
12053     else
12054       S.InvalidOperands(Loc, LHS, RHS);
12055     return true;
12056   }
12057 
12058   return false;
12059 }
12060 
12061 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
12062                                                     ExprResult &LHS,
12063                                                     ExprResult &RHS,
12064                                                     bool IsError) {
12065   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
12066                       : diag::ext_typecheck_comparison_of_fptr_to_void)
12067     << LHS.get()->getType() << RHS.get()->getType()
12068     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12069 }
12070 
12071 static bool isObjCObjectLiteral(ExprResult &E) {
12072   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
12073   case Stmt::ObjCArrayLiteralClass:
12074   case Stmt::ObjCDictionaryLiteralClass:
12075   case Stmt::ObjCStringLiteralClass:
12076   case Stmt::ObjCBoxedExprClass:
12077     return true;
12078   default:
12079     // Note that ObjCBoolLiteral is NOT an object literal!
12080     return false;
12081   }
12082 }
12083 
12084 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
12085   const ObjCObjectPointerType *Type =
12086     LHS->getType()->getAs<ObjCObjectPointerType>();
12087 
12088   // If this is not actually an Objective-C object, bail out.
12089   if (!Type)
12090     return false;
12091 
12092   // Get the LHS object's interface type.
12093   QualType InterfaceType = Type->getPointeeType();
12094 
12095   // If the RHS isn't an Objective-C object, bail out.
12096   if (!RHS->getType()->isObjCObjectPointerType())
12097     return false;
12098 
12099   // Try to find the -isEqual: method.
12100   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
12101   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
12102                                                       InterfaceType,
12103                                                       /*IsInstance=*/true);
12104   if (!Method) {
12105     if (Type->isObjCIdType()) {
12106       // For 'id', just check the global pool.
12107       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
12108                                                   /*receiverId=*/true);
12109     } else {
12110       // Check protocols.
12111       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
12112                                              /*IsInstance=*/true);
12113     }
12114   }
12115 
12116   if (!Method)
12117     return false;
12118 
12119   QualType T = Method->parameters()[0]->getType();
12120   if (!T->isObjCObjectPointerType())
12121     return false;
12122 
12123   QualType R = Method->getReturnType();
12124   if (!R->isScalarType())
12125     return false;
12126 
12127   return true;
12128 }
12129 
12130 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
12131   FromE = FromE->IgnoreParenImpCasts();
12132   switch (FromE->getStmtClass()) {
12133     default:
12134       break;
12135     case Stmt::ObjCStringLiteralClass:
12136       // "string literal"
12137       return LK_String;
12138     case Stmt::ObjCArrayLiteralClass:
12139       // "array literal"
12140       return LK_Array;
12141     case Stmt::ObjCDictionaryLiteralClass:
12142       // "dictionary literal"
12143       return LK_Dictionary;
12144     case Stmt::BlockExprClass:
12145       return LK_Block;
12146     case Stmt::ObjCBoxedExprClass: {
12147       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
12148       switch (Inner->getStmtClass()) {
12149         case Stmt::IntegerLiteralClass:
12150         case Stmt::FloatingLiteralClass:
12151         case Stmt::CharacterLiteralClass:
12152         case Stmt::ObjCBoolLiteralExprClass:
12153         case Stmt::CXXBoolLiteralExprClass:
12154           // "numeric literal"
12155           return LK_Numeric;
12156         case Stmt::ImplicitCastExprClass: {
12157           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
12158           // Boolean literals can be represented by implicit casts.
12159           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
12160             return LK_Numeric;
12161           break;
12162         }
12163         default:
12164           break;
12165       }
12166       return LK_Boxed;
12167     }
12168   }
12169   return LK_None;
12170 }
12171 
12172 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
12173                                           ExprResult &LHS, ExprResult &RHS,
12174                                           BinaryOperator::Opcode Opc){
12175   Expr *Literal;
12176   Expr *Other;
12177   if (isObjCObjectLiteral(LHS)) {
12178     Literal = LHS.get();
12179     Other = RHS.get();
12180   } else {
12181     Literal = RHS.get();
12182     Other = LHS.get();
12183   }
12184 
12185   // Don't warn on comparisons against nil.
12186   Other = Other->IgnoreParenCasts();
12187   if (Other->isNullPointerConstant(S.getASTContext(),
12188                                    Expr::NPC_ValueDependentIsNotNull))
12189     return;
12190 
12191   // This should be kept in sync with warn_objc_literal_comparison.
12192   // LK_String should always be after the other literals, since it has its own
12193   // warning flag.
12194   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
12195   assert(LiteralKind != Sema::LK_Block);
12196   if (LiteralKind == Sema::LK_None) {
12197     llvm_unreachable("Unknown Objective-C object literal kind");
12198   }
12199 
12200   if (LiteralKind == Sema::LK_String)
12201     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
12202       << Literal->getSourceRange();
12203   else
12204     S.Diag(Loc, diag::warn_objc_literal_comparison)
12205       << LiteralKind << Literal->getSourceRange();
12206 
12207   if (BinaryOperator::isEqualityOp(Opc) &&
12208       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
12209     SourceLocation Start = LHS.get()->getBeginLoc();
12210     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
12211     CharSourceRange OpRange =
12212       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12213 
12214     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
12215       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
12216       << FixItHint::CreateReplacement(OpRange, " isEqual:")
12217       << FixItHint::CreateInsertion(End, "]");
12218   }
12219 }
12220 
12221 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
12222 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
12223                                            ExprResult &RHS, SourceLocation Loc,
12224                                            BinaryOperatorKind Opc) {
12225   // Check that left hand side is !something.
12226   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
12227   if (!UO || UO->getOpcode() != UO_LNot) return;
12228 
12229   // Only check if the right hand side is non-bool arithmetic type.
12230   if (RHS.get()->isKnownToHaveBooleanValue()) return;
12231 
12232   // Make sure that the something in !something is not bool.
12233   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
12234   if (SubExpr->isKnownToHaveBooleanValue()) return;
12235 
12236   // Emit warning.
12237   bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
12238   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
12239       << Loc << IsBitwiseOp;
12240 
12241   // First note suggest !(x < y)
12242   SourceLocation FirstOpen = SubExpr->getBeginLoc();
12243   SourceLocation FirstClose = RHS.get()->getEndLoc();
12244   FirstClose = S.getLocForEndOfToken(FirstClose);
12245   if (FirstClose.isInvalid())
12246     FirstOpen = SourceLocation();
12247   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
12248       << IsBitwiseOp
12249       << FixItHint::CreateInsertion(FirstOpen, "(")
12250       << FixItHint::CreateInsertion(FirstClose, ")");
12251 
12252   // Second note suggests (!x) < y
12253   SourceLocation SecondOpen = LHS.get()->getBeginLoc();
12254   SourceLocation SecondClose = LHS.get()->getEndLoc();
12255   SecondClose = S.getLocForEndOfToken(SecondClose);
12256   if (SecondClose.isInvalid())
12257     SecondOpen = SourceLocation();
12258   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
12259       << FixItHint::CreateInsertion(SecondOpen, "(")
12260       << FixItHint::CreateInsertion(SecondClose, ")");
12261 }
12262 
12263 // Returns true if E refers to a non-weak array.
12264 static bool checkForArray(const Expr *E) {
12265   const ValueDecl *D = nullptr;
12266   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
12267     D = DR->getDecl();
12268   } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
12269     if (Mem->isImplicitAccess())
12270       D = Mem->getMemberDecl();
12271   }
12272   if (!D)
12273     return false;
12274   return D->getType()->isArrayType() && !D->isWeak();
12275 }
12276 
12277 /// Diagnose some forms of syntactically-obvious tautological comparison.
12278 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
12279                                            Expr *LHS, Expr *RHS,
12280                                            BinaryOperatorKind Opc) {
12281   Expr *LHSStripped = LHS->IgnoreParenImpCasts();
12282   Expr *RHSStripped = RHS->IgnoreParenImpCasts();
12283 
12284   QualType LHSType = LHS->getType();
12285   QualType RHSType = RHS->getType();
12286   if (LHSType->hasFloatingRepresentation() ||
12287       (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
12288       S.inTemplateInstantiation())
12289     return;
12290 
12291   // Comparisons between two array types are ill-formed for operator<=>, so
12292   // we shouldn't emit any additional warnings about it.
12293   if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
12294     return;
12295 
12296   // For non-floating point types, check for self-comparisons of the form
12297   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12298   // often indicate logic errors in the program.
12299   //
12300   // NOTE: Don't warn about comparison expressions resulting from macro
12301   // expansion. Also don't warn about comparisons which are only self
12302   // comparisons within a template instantiation. The warnings should catch
12303   // obvious cases in the definition of the template anyways. The idea is to
12304   // warn when the typed comparison operator will always evaluate to the same
12305   // result.
12306 
12307   // Used for indexing into %select in warn_comparison_always
12308   enum {
12309     AlwaysConstant,
12310     AlwaysTrue,
12311     AlwaysFalse,
12312     AlwaysEqual, // std::strong_ordering::equal from operator<=>
12313   };
12314 
12315   // C++2a [depr.array.comp]:
12316   //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
12317   //   operands of array type are deprecated.
12318   if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
12319       RHSStripped->getType()->isArrayType()) {
12320     S.Diag(Loc, diag::warn_depr_array_comparison)
12321         << LHS->getSourceRange() << RHS->getSourceRange()
12322         << LHSStripped->getType() << RHSStripped->getType();
12323     // Carry on to produce the tautological comparison warning, if this
12324     // expression is potentially-evaluated, we can resolve the array to a
12325     // non-weak declaration, and so on.
12326   }
12327 
12328   if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
12329     if (Expr::isSameComparisonOperand(LHS, RHS)) {
12330       unsigned Result;
12331       switch (Opc) {
12332       case BO_EQ:
12333       case BO_LE:
12334       case BO_GE:
12335         Result = AlwaysTrue;
12336         break;
12337       case BO_NE:
12338       case BO_LT:
12339       case BO_GT:
12340         Result = AlwaysFalse;
12341         break;
12342       case BO_Cmp:
12343         Result = AlwaysEqual;
12344         break;
12345       default:
12346         Result = AlwaysConstant;
12347         break;
12348       }
12349       S.DiagRuntimeBehavior(Loc, nullptr,
12350                             S.PDiag(diag::warn_comparison_always)
12351                                 << 0 /*self-comparison*/
12352                                 << Result);
12353     } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
12354       // What is it always going to evaluate to?
12355       unsigned Result;
12356       switch (Opc) {
12357       case BO_EQ: // e.g. array1 == array2
12358         Result = AlwaysFalse;
12359         break;
12360       case BO_NE: // e.g. array1 != array2
12361         Result = AlwaysTrue;
12362         break;
12363       default: // e.g. array1 <= array2
12364         // The best we can say is 'a constant'
12365         Result = AlwaysConstant;
12366         break;
12367       }
12368       S.DiagRuntimeBehavior(Loc, nullptr,
12369                             S.PDiag(diag::warn_comparison_always)
12370                                 << 1 /*array comparison*/
12371                                 << Result);
12372     }
12373   }
12374 
12375   if (isa<CastExpr>(LHSStripped))
12376     LHSStripped = LHSStripped->IgnoreParenCasts();
12377   if (isa<CastExpr>(RHSStripped))
12378     RHSStripped = RHSStripped->IgnoreParenCasts();
12379 
12380   // Warn about comparisons against a string constant (unless the other
12381   // operand is null); the user probably wants string comparison function.
12382   Expr *LiteralString = nullptr;
12383   Expr *LiteralStringStripped = nullptr;
12384   if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
12385       !RHSStripped->isNullPointerConstant(S.Context,
12386                                           Expr::NPC_ValueDependentIsNull)) {
12387     LiteralString = LHS;
12388     LiteralStringStripped = LHSStripped;
12389   } else if ((isa<StringLiteral>(RHSStripped) ||
12390               isa<ObjCEncodeExpr>(RHSStripped)) &&
12391              !LHSStripped->isNullPointerConstant(S.Context,
12392                                           Expr::NPC_ValueDependentIsNull)) {
12393     LiteralString = RHS;
12394     LiteralStringStripped = RHSStripped;
12395   }
12396 
12397   if (LiteralString) {
12398     S.DiagRuntimeBehavior(Loc, nullptr,
12399                           S.PDiag(diag::warn_stringcompare)
12400                               << isa<ObjCEncodeExpr>(LiteralStringStripped)
12401                               << LiteralString->getSourceRange());
12402   }
12403 }
12404 
12405 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
12406   switch (CK) {
12407   default: {
12408 #ifndef NDEBUG
12409     llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
12410                  << "\n";
12411 #endif
12412     llvm_unreachable("unhandled cast kind");
12413   }
12414   case CK_UserDefinedConversion:
12415     return ICK_Identity;
12416   case CK_LValueToRValue:
12417     return ICK_Lvalue_To_Rvalue;
12418   case CK_ArrayToPointerDecay:
12419     return ICK_Array_To_Pointer;
12420   case CK_FunctionToPointerDecay:
12421     return ICK_Function_To_Pointer;
12422   case CK_IntegralCast:
12423     return ICK_Integral_Conversion;
12424   case CK_FloatingCast:
12425     return ICK_Floating_Conversion;
12426   case CK_IntegralToFloating:
12427   case CK_FloatingToIntegral:
12428     return ICK_Floating_Integral;
12429   case CK_IntegralComplexCast:
12430   case CK_FloatingComplexCast:
12431   case CK_FloatingComplexToIntegralComplex:
12432   case CK_IntegralComplexToFloatingComplex:
12433     return ICK_Complex_Conversion;
12434   case CK_FloatingComplexToReal:
12435   case CK_FloatingRealToComplex:
12436   case CK_IntegralComplexToReal:
12437   case CK_IntegralRealToComplex:
12438     return ICK_Complex_Real;
12439   }
12440 }
12441 
12442 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
12443                                              QualType FromType,
12444                                              SourceLocation Loc) {
12445   // Check for a narrowing implicit conversion.
12446   StandardConversionSequence SCS;
12447   SCS.setAsIdentityConversion();
12448   SCS.setToType(0, FromType);
12449   SCS.setToType(1, ToType);
12450   if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
12451     SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
12452 
12453   APValue PreNarrowingValue;
12454   QualType PreNarrowingType;
12455   switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
12456                                PreNarrowingType,
12457                                /*IgnoreFloatToIntegralConversion*/ true)) {
12458   case NK_Dependent_Narrowing:
12459     // Implicit conversion to a narrower type, but the expression is
12460     // value-dependent so we can't tell whether it's actually narrowing.
12461   case NK_Not_Narrowing:
12462     return false;
12463 
12464   case NK_Constant_Narrowing:
12465     // Implicit conversion to a narrower type, and the value is not a constant
12466     // expression.
12467     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12468         << /*Constant*/ 1
12469         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
12470     return true;
12471 
12472   case NK_Variable_Narrowing:
12473     // Implicit conversion to a narrower type, and the value is not a constant
12474     // expression.
12475   case NK_Type_Narrowing:
12476     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
12477         << /*Constant*/ 0 << FromType << ToType;
12478     // TODO: It's not a constant expression, but what if the user intended it
12479     // to be? Can we produce notes to help them figure out why it isn't?
12480     return true;
12481   }
12482   llvm_unreachable("unhandled case in switch");
12483 }
12484 
12485 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
12486                                                          ExprResult &LHS,
12487                                                          ExprResult &RHS,
12488                                                          SourceLocation Loc) {
12489   QualType LHSType = LHS.get()->getType();
12490   QualType RHSType = RHS.get()->getType();
12491   // Dig out the original argument type and expression before implicit casts
12492   // were applied. These are the types/expressions we need to check the
12493   // [expr.spaceship] requirements against.
12494   ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
12495   ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
12496   QualType LHSStrippedType = LHSStripped.get()->getType();
12497   QualType RHSStrippedType = RHSStripped.get()->getType();
12498 
12499   // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
12500   // other is not, the program is ill-formed.
12501   if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
12502     S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12503     return QualType();
12504   }
12505 
12506   // FIXME: Consider combining this with checkEnumArithmeticConversions.
12507   int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
12508                     RHSStrippedType->isEnumeralType();
12509   if (NumEnumArgs == 1) {
12510     bool LHSIsEnum = LHSStrippedType->isEnumeralType();
12511     QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
12512     if (OtherTy->hasFloatingRepresentation()) {
12513       S.InvalidOperands(Loc, LHSStripped, RHSStripped);
12514       return QualType();
12515     }
12516   }
12517   if (NumEnumArgs == 2) {
12518     // C++2a [expr.spaceship]p5: If both operands have the same enumeration
12519     // type E, the operator yields the result of converting the operands
12520     // to the underlying type of E and applying <=> to the converted operands.
12521     if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
12522       S.InvalidOperands(Loc, LHS, RHS);
12523       return QualType();
12524     }
12525     QualType IntType =
12526         LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
12527     assert(IntType->isArithmeticType());
12528 
12529     // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
12530     // promote the boolean type, and all other promotable integer types, to
12531     // avoid this.
12532     if (S.Context.isPromotableIntegerType(IntType))
12533       IntType = S.Context.getPromotedIntegerType(IntType);
12534 
12535     LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
12536     RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
12537     LHSType = RHSType = IntType;
12538   }
12539 
12540   // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
12541   // usual arithmetic conversions are applied to the operands.
12542   QualType Type =
12543       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12544   if (LHS.isInvalid() || RHS.isInvalid())
12545     return QualType();
12546   if (Type.isNull())
12547     return S.InvalidOperands(Loc, LHS, RHS);
12548 
12549   std::optional<ComparisonCategoryType> CCT =
12550       getComparisonCategoryForBuiltinCmp(Type);
12551   if (!CCT)
12552     return S.InvalidOperands(Loc, LHS, RHS);
12553 
12554   bool HasNarrowing = checkThreeWayNarrowingConversion(
12555       S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
12556   HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
12557                                                    RHS.get()->getBeginLoc());
12558   if (HasNarrowing)
12559     return QualType();
12560 
12561   assert(!Type.isNull() && "composite type for <=> has not been set");
12562 
12563   return S.CheckComparisonCategoryType(
12564       *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
12565 }
12566 
12567 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
12568                                                  ExprResult &RHS,
12569                                                  SourceLocation Loc,
12570                                                  BinaryOperatorKind Opc) {
12571   if (Opc == BO_Cmp)
12572     return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
12573 
12574   // C99 6.5.8p3 / C99 6.5.9p4
12575   QualType Type =
12576       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
12577   if (LHS.isInvalid() || RHS.isInvalid())
12578     return QualType();
12579   if (Type.isNull())
12580     return S.InvalidOperands(Loc, LHS, RHS);
12581   assert(Type->isArithmeticType() || Type->isEnumeralType());
12582 
12583   if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
12584     return S.InvalidOperands(Loc, LHS, RHS);
12585 
12586   // Check for comparisons of floating point operands using != and ==.
12587   if (Type->hasFloatingRepresentation())
12588     S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12589 
12590   // The result of comparisons is 'bool' in C++, 'int' in C.
12591   return S.Context.getLogicalOperationType();
12592 }
12593 
12594 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
12595   if (!NullE.get()->getType()->isAnyPointerType())
12596     return;
12597   int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
12598   if (!E.get()->getType()->isAnyPointerType() &&
12599       E.get()->isNullPointerConstant(Context,
12600                                      Expr::NPC_ValueDependentIsNotNull) ==
12601         Expr::NPCK_ZeroExpression) {
12602     if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
12603       if (CL->getValue() == 0)
12604         Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12605             << NullValue
12606             << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12607                                             NullValue ? "NULL" : "(void *)0");
12608     } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
12609         TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
12610         QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
12611         if (T == Context.CharTy)
12612           Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12613               << NullValue
12614               << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12615                                               NullValue ? "NULL" : "(void *)0");
12616       }
12617   }
12618 }
12619 
12620 // C99 6.5.8, C++ [expr.rel]
12621 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
12622                                     SourceLocation Loc,
12623                                     BinaryOperatorKind Opc) {
12624   bool IsRelational = BinaryOperator::isRelationalOp(Opc);
12625   bool IsThreeWay = Opc == BO_Cmp;
12626   bool IsOrdered = IsRelational || IsThreeWay;
12627   auto IsAnyPointerType = [](ExprResult E) {
12628     QualType Ty = E.get()->getType();
12629     return Ty->isPointerType() || Ty->isMemberPointerType();
12630   };
12631 
12632   // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
12633   // type, array-to-pointer, ..., conversions are performed on both operands to
12634   // bring them to their composite type.
12635   // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
12636   // any type-related checks.
12637   if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
12638     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12639     if (LHS.isInvalid())
12640       return QualType();
12641     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12642     if (RHS.isInvalid())
12643       return QualType();
12644   } else {
12645     LHS = DefaultLvalueConversion(LHS.get());
12646     if (LHS.isInvalid())
12647       return QualType();
12648     RHS = DefaultLvalueConversion(RHS.get());
12649     if (RHS.isInvalid())
12650       return QualType();
12651   }
12652 
12653   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
12654   if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
12655     CheckPtrComparisonWithNullChar(LHS, RHS);
12656     CheckPtrComparisonWithNullChar(RHS, LHS);
12657   }
12658 
12659   // Handle vector comparisons separately.
12660   if (LHS.get()->getType()->isVectorType() ||
12661       RHS.get()->getType()->isVectorType())
12662     return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
12663 
12664   if (LHS.get()->getType()->isVLSTBuiltinType() ||
12665       RHS.get()->getType()->isVLSTBuiltinType())
12666     return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
12667 
12668   diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12669   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12670 
12671   QualType LHSType = LHS.get()->getType();
12672   QualType RHSType = RHS.get()->getType();
12673   if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
12674       (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
12675     return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
12676 
12677   const Expr::NullPointerConstantKind LHSNullKind =
12678       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12679   const Expr::NullPointerConstantKind RHSNullKind =
12680       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12681   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
12682   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
12683 
12684   auto computeResultTy = [&]() {
12685     if (Opc != BO_Cmp)
12686       return Context.getLogicalOperationType();
12687     assert(getLangOpts().CPlusPlus);
12688     assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
12689 
12690     QualType CompositeTy = LHS.get()->getType();
12691     assert(!CompositeTy->isReferenceType());
12692 
12693     std::optional<ComparisonCategoryType> CCT =
12694         getComparisonCategoryForBuiltinCmp(CompositeTy);
12695     if (!CCT)
12696       return InvalidOperands(Loc, LHS, RHS);
12697 
12698     if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
12699       // P0946R0: Comparisons between a null pointer constant and an object
12700       // pointer result in std::strong_equality, which is ill-formed under
12701       // P1959R0.
12702       Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
12703           << (LHSIsNull ? LHS.get()->getSourceRange()
12704                         : RHS.get()->getSourceRange());
12705       return QualType();
12706     }
12707 
12708     return CheckComparisonCategoryType(
12709         *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
12710   };
12711 
12712   if (!IsOrdered && LHSIsNull != RHSIsNull) {
12713     bool IsEquality = Opc == BO_EQ;
12714     if (RHSIsNull)
12715       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
12716                                    RHS.get()->getSourceRange());
12717     else
12718       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
12719                                    LHS.get()->getSourceRange());
12720   }
12721 
12722   if (IsOrdered && LHSType->isFunctionPointerType() &&
12723       RHSType->isFunctionPointerType()) {
12724     // Valid unless a relational comparison of function pointers
12725     bool IsError = Opc == BO_Cmp;
12726     auto DiagID =
12727         IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
12728         : getLangOpts().CPlusPlus
12729             ? diag::warn_typecheck_ordered_comparison_of_function_pointers
12730             : diag::ext_typecheck_ordered_comparison_of_function_pointers;
12731     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
12732                       << RHS.get()->getSourceRange();
12733     if (IsError)
12734       return QualType();
12735   }
12736 
12737   if ((LHSType->isIntegerType() && !LHSIsNull) ||
12738       (RHSType->isIntegerType() && !RHSIsNull)) {
12739     // Skip normal pointer conversion checks in this case; we have better
12740     // diagnostics for this below.
12741   } else if (getLangOpts().CPlusPlus) {
12742     // Equality comparison of a function pointer to a void pointer is invalid,
12743     // but we allow it as an extension.
12744     // FIXME: If we really want to allow this, should it be part of composite
12745     // pointer type computation so it works in conditionals too?
12746     if (!IsOrdered &&
12747         ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
12748          (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
12749       // This is a gcc extension compatibility comparison.
12750       // In a SFINAE context, we treat this as a hard error to maintain
12751       // conformance with the C++ standard.
12752       diagnoseFunctionPointerToVoidComparison(
12753           *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
12754 
12755       if (isSFINAEContext())
12756         return QualType();
12757 
12758       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12759       return computeResultTy();
12760     }
12761 
12762     // C++ [expr.eq]p2:
12763     //   If at least one operand is a pointer [...] bring them to their
12764     //   composite pointer type.
12765     // C++ [expr.spaceship]p6
12766     //  If at least one of the operands is of pointer type, [...] bring them
12767     //  to their composite pointer type.
12768     // C++ [expr.rel]p2:
12769     //   If both operands are pointers, [...] bring them to their composite
12770     //   pointer type.
12771     // For <=>, the only valid non-pointer types are arrays and functions, and
12772     // we already decayed those, so this is really the same as the relational
12773     // comparison rule.
12774     if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
12775             (IsOrdered ? 2 : 1) &&
12776         (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
12777                                          RHSType->isObjCObjectPointerType()))) {
12778       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12779         return QualType();
12780       return computeResultTy();
12781     }
12782   } else if (LHSType->isPointerType() &&
12783              RHSType->isPointerType()) { // C99 6.5.8p2
12784     // All of the following pointer-related warnings are GCC extensions, except
12785     // when handling null pointer constants.
12786     QualType LCanPointeeTy =
12787       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12788     QualType RCanPointeeTy =
12789       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12790 
12791     // C99 6.5.9p2 and C99 6.5.8p2
12792     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
12793                                    RCanPointeeTy.getUnqualifiedType())) {
12794       if (IsRelational) {
12795         // Pointers both need to point to complete or incomplete types
12796         if ((LCanPointeeTy->isIncompleteType() !=
12797              RCanPointeeTy->isIncompleteType()) &&
12798             !getLangOpts().C11) {
12799           Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
12800               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
12801               << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
12802               << RCanPointeeTy->isIncompleteType();
12803         }
12804       }
12805     } else if (!IsRelational &&
12806                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
12807       // Valid unless comparison between non-null pointer and function pointer
12808       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
12809           && !LHSIsNull && !RHSIsNull)
12810         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
12811                                                 /*isError*/false);
12812     } else {
12813       // Invalid
12814       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
12815     }
12816     if (LCanPointeeTy != RCanPointeeTy) {
12817       // Treat NULL constant as a special case in OpenCL.
12818       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
12819         if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
12820           Diag(Loc,
12821                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
12822               << LHSType << RHSType << 0 /* comparison */
12823               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12824         }
12825       }
12826       LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
12827       LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
12828       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
12829                                                : CK_BitCast;
12830       if (LHSIsNull && !RHSIsNull)
12831         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
12832       else
12833         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
12834     }
12835     return computeResultTy();
12836   }
12837 
12838 
12839   // C++ [expr.eq]p4:
12840   //   Two operands of type std::nullptr_t or one operand of type
12841   //   std::nullptr_t and the other a null pointer constant compare
12842   //   equal.
12843   // C2x 6.5.9p5:
12844   //   If both operands have type nullptr_t or one operand has type nullptr_t
12845   //   and the other is a null pointer constant, they compare equal.
12846   if (!IsOrdered && LHSIsNull && RHSIsNull) {
12847     if (LHSType->isNullPtrType()) {
12848       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12849       return computeResultTy();
12850     }
12851     if (RHSType->isNullPtrType()) {
12852       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12853       return computeResultTy();
12854     }
12855   }
12856 
12857   if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) {
12858     // C2x 6.5.9p6:
12859     //   Otherwise, at least one operand is a pointer. If one is a pointer and
12860     //   the other is a null pointer constant, the null pointer constant is
12861     //   converted to the type of the pointer.
12862     if (LHSIsNull && RHSType->isPointerType()) {
12863       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12864       return computeResultTy();
12865     }
12866     if (RHSIsNull && LHSType->isPointerType()) {
12867       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12868       return computeResultTy();
12869     }
12870   }
12871 
12872   // Comparison of Objective-C pointers and block pointers against nullptr_t.
12873   // These aren't covered by the composite pointer type rules.
12874   if (!IsOrdered && RHSType->isNullPtrType() &&
12875       (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
12876     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12877     return computeResultTy();
12878   }
12879   if (!IsOrdered && LHSType->isNullPtrType() &&
12880       (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
12881     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12882     return computeResultTy();
12883   }
12884 
12885   if (getLangOpts().CPlusPlus) {
12886     if (IsRelational &&
12887         ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
12888          (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
12889       // HACK: Relational comparison of nullptr_t against a pointer type is
12890       // invalid per DR583, but we allow it within std::less<> and friends,
12891       // since otherwise common uses of it break.
12892       // FIXME: Consider removing this hack once LWG fixes std::less<> and
12893       // friends to have std::nullptr_t overload candidates.
12894       DeclContext *DC = CurContext;
12895       if (isa<FunctionDecl>(DC))
12896         DC = DC->getParent();
12897       if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
12898         if (CTSD->isInStdNamespace() &&
12899             llvm::StringSwitch<bool>(CTSD->getName())
12900                 .Cases("less", "less_equal", "greater", "greater_equal", true)
12901                 .Default(false)) {
12902           if (RHSType->isNullPtrType())
12903             RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12904           else
12905             LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12906           return computeResultTy();
12907         }
12908       }
12909     }
12910 
12911     // C++ [expr.eq]p2:
12912     //   If at least one operand is a pointer to member, [...] bring them to
12913     //   their composite pointer type.
12914     if (!IsOrdered &&
12915         (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
12916       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12917         return QualType();
12918       else
12919         return computeResultTy();
12920     }
12921   }
12922 
12923   // Handle block pointer types.
12924   if (!IsOrdered && LHSType->isBlockPointerType() &&
12925       RHSType->isBlockPointerType()) {
12926     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
12927     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
12928 
12929     if (!LHSIsNull && !RHSIsNull &&
12930         !Context.typesAreCompatible(lpointee, rpointee)) {
12931       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12932         << LHSType << RHSType << LHS.get()->getSourceRange()
12933         << RHS.get()->getSourceRange();
12934     }
12935     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12936     return computeResultTy();
12937   }
12938 
12939   // Allow block pointers to be compared with null pointer constants.
12940   if (!IsOrdered
12941       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
12942           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
12943     if (!LHSIsNull && !RHSIsNull) {
12944       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
12945              ->getPointeeType()->isVoidType())
12946             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
12947                 ->getPointeeType()->isVoidType())))
12948         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12949           << LHSType << RHSType << LHS.get()->getSourceRange()
12950           << RHS.get()->getSourceRange();
12951     }
12952     if (LHSIsNull && !RHSIsNull)
12953       LHS = ImpCastExprToType(LHS.get(), RHSType,
12954                               RHSType->isPointerType() ? CK_BitCast
12955                                 : CK_AnyPointerToBlockPointerCast);
12956     else
12957       RHS = ImpCastExprToType(RHS.get(), LHSType,
12958                               LHSType->isPointerType() ? CK_BitCast
12959                                 : CK_AnyPointerToBlockPointerCast);
12960     return computeResultTy();
12961   }
12962 
12963   if (LHSType->isObjCObjectPointerType() ||
12964       RHSType->isObjCObjectPointerType()) {
12965     const PointerType *LPT = LHSType->getAs<PointerType>();
12966     const PointerType *RPT = RHSType->getAs<PointerType>();
12967     if (LPT || RPT) {
12968       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
12969       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
12970 
12971       if (!LPtrToVoid && !RPtrToVoid &&
12972           !Context.typesAreCompatible(LHSType, RHSType)) {
12973         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12974                                           /*isError*/false);
12975       }
12976       // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
12977       // the RHS, but we have test coverage for this behavior.
12978       // FIXME: Consider using convertPointersToCompositeType in C++.
12979       if (LHSIsNull && !RHSIsNull) {
12980         Expr *E = LHS.get();
12981         if (getLangOpts().ObjCAutoRefCount)
12982           CheckObjCConversion(SourceRange(), RHSType, E,
12983                               CCK_ImplicitConversion);
12984         LHS = ImpCastExprToType(E, RHSType,
12985                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12986       }
12987       else {
12988         Expr *E = RHS.get();
12989         if (getLangOpts().ObjCAutoRefCount)
12990           CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
12991                               /*Diagnose=*/true,
12992                               /*DiagnoseCFAudited=*/false, Opc);
12993         RHS = ImpCastExprToType(E, LHSType,
12994                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12995       }
12996       return computeResultTy();
12997     }
12998     if (LHSType->isObjCObjectPointerType() &&
12999         RHSType->isObjCObjectPointerType()) {
13000       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
13001         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
13002                                           /*isError*/false);
13003       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
13004         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
13005 
13006       if (LHSIsNull && !RHSIsNull)
13007         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
13008       else
13009         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
13010       return computeResultTy();
13011     }
13012 
13013     if (!IsOrdered && LHSType->isBlockPointerType() &&
13014         RHSType->isBlockCompatibleObjCPointerType(Context)) {
13015       LHS = ImpCastExprToType(LHS.get(), RHSType,
13016                               CK_BlockPointerToObjCPointerCast);
13017       return computeResultTy();
13018     } else if (!IsOrdered &&
13019                LHSType->isBlockCompatibleObjCPointerType(Context) &&
13020                RHSType->isBlockPointerType()) {
13021       RHS = ImpCastExprToType(RHS.get(), LHSType,
13022                               CK_BlockPointerToObjCPointerCast);
13023       return computeResultTy();
13024     }
13025   }
13026   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
13027       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
13028     unsigned DiagID = 0;
13029     bool isError = false;
13030     if (LangOpts.DebuggerSupport) {
13031       // Under a debugger, allow the comparison of pointers to integers,
13032       // since users tend to want to compare addresses.
13033     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
13034                (RHSIsNull && RHSType->isIntegerType())) {
13035       if (IsOrdered) {
13036         isError = getLangOpts().CPlusPlus;
13037         DiagID =
13038           isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
13039                   : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
13040       }
13041     } else if (getLangOpts().CPlusPlus) {
13042       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
13043       isError = true;
13044     } else if (IsOrdered)
13045       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
13046     else
13047       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
13048 
13049     if (DiagID) {
13050       Diag(Loc, DiagID)
13051         << LHSType << RHSType << LHS.get()->getSourceRange()
13052         << RHS.get()->getSourceRange();
13053       if (isError)
13054         return QualType();
13055     }
13056 
13057     if (LHSType->isIntegerType())
13058       LHS = ImpCastExprToType(LHS.get(), RHSType,
13059                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13060     else
13061       RHS = ImpCastExprToType(RHS.get(), LHSType,
13062                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
13063     return computeResultTy();
13064   }
13065 
13066   // Handle block pointers.
13067   if (!IsOrdered && RHSIsNull
13068       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
13069     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13070     return computeResultTy();
13071   }
13072   if (!IsOrdered && LHSIsNull
13073       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
13074     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13075     return computeResultTy();
13076   }
13077 
13078   if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
13079     if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
13080       return computeResultTy();
13081     }
13082 
13083     if (LHSType->isQueueT() && RHSType->isQueueT()) {
13084       return computeResultTy();
13085     }
13086 
13087     if (LHSIsNull && RHSType->isQueueT()) {
13088       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
13089       return computeResultTy();
13090     }
13091 
13092     if (LHSType->isQueueT() && RHSIsNull) {
13093       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
13094       return computeResultTy();
13095     }
13096   }
13097 
13098   return InvalidOperands(Loc, LHS, RHS);
13099 }
13100 
13101 // Return a signed ext_vector_type that is of identical size and number of
13102 // elements. For floating point vectors, return an integer type of identical
13103 // size and number of elements. In the non ext_vector_type case, search from
13104 // the largest type to the smallest type to avoid cases where long long == long,
13105 // where long gets picked over long long.
13106 QualType Sema::GetSignedVectorType(QualType V) {
13107   const VectorType *VTy = V->castAs<VectorType>();
13108   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
13109 
13110   if (isa<ExtVectorType>(VTy)) {
13111     if (VTy->isExtVectorBoolType())
13112       return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements());
13113     if (TypeSize == Context.getTypeSize(Context.CharTy))
13114       return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
13115     if (TypeSize == Context.getTypeSize(Context.ShortTy))
13116       return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
13117     if (TypeSize == Context.getTypeSize(Context.IntTy))
13118       return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
13119     if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13120       return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
13121     if (TypeSize == Context.getTypeSize(Context.LongTy))
13122       return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
13123     assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
13124            "Unhandled vector element size in vector compare");
13125     return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
13126   }
13127 
13128   if (TypeSize == Context.getTypeSize(Context.Int128Ty))
13129     return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
13130                                  VectorType::GenericVector);
13131   if (TypeSize == Context.getTypeSize(Context.LongLongTy))
13132     return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
13133                                  VectorType::GenericVector);
13134   if (TypeSize == Context.getTypeSize(Context.LongTy))
13135     return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
13136                                  VectorType::GenericVector);
13137   if (TypeSize == Context.getTypeSize(Context.IntTy))
13138     return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
13139                                  VectorType::GenericVector);
13140   if (TypeSize == Context.getTypeSize(Context.ShortTy))
13141     return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
13142                                  VectorType::GenericVector);
13143   assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
13144          "Unhandled vector element size in vector compare");
13145   return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
13146                                VectorType::GenericVector);
13147 }
13148 
13149 QualType Sema::GetSignedSizelessVectorType(QualType V) {
13150   const BuiltinType *VTy = V->castAs<BuiltinType>();
13151   assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
13152 
13153   const QualType ETy = V->getSveEltType(Context);
13154   const auto TypeSize = Context.getTypeSize(ETy);
13155 
13156   const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true);
13157   const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC;
13158   return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue());
13159 }
13160 
13161 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
13162 /// operates on extended vector types.  Instead of producing an IntTy result,
13163 /// like a scalar comparison, a vector comparison produces a vector of integer
13164 /// types.
13165 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
13166                                           SourceLocation Loc,
13167                                           BinaryOperatorKind Opc) {
13168   if (Opc == BO_Cmp) {
13169     Diag(Loc, diag::err_three_way_vector_comparison);
13170     return QualType();
13171   }
13172 
13173   // Check to make sure we're operating on vectors of the same type and width,
13174   // Allowing one side to be a scalar of element type.
13175   QualType vType =
13176       CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false,
13177                           /*AllowBothBool*/ true,
13178                           /*AllowBoolConversions*/ getLangOpts().ZVector,
13179                           /*AllowBooleanOperation*/ true,
13180                           /*ReportInvalid*/ true);
13181   if (vType.isNull())
13182     return vType;
13183 
13184   QualType LHSType = LHS.get()->getType();
13185 
13186   // Determine the return type of a vector compare. By default clang will return
13187   // a scalar for all vector compares except vector bool and vector pixel.
13188   // With the gcc compiler we will always return a vector type and with the xl
13189   // compiler we will always return a scalar type. This switch allows choosing
13190   // which behavior is prefered.
13191   if (getLangOpts().AltiVec) {
13192     switch (getLangOpts().getAltivecSrcCompat()) {
13193     case LangOptions::AltivecSrcCompatKind::Mixed:
13194       // If AltiVec, the comparison results in a numeric type, i.e.
13195       // bool for C++, int for C
13196       if (vType->castAs<VectorType>()->getVectorKind() ==
13197           VectorType::AltiVecVector)
13198         return Context.getLogicalOperationType();
13199       else
13200         Diag(Loc, diag::warn_deprecated_altivec_src_compat);
13201       break;
13202     case LangOptions::AltivecSrcCompatKind::GCC:
13203       // For GCC we always return the vector type.
13204       break;
13205     case LangOptions::AltivecSrcCompatKind::XL:
13206       return Context.getLogicalOperationType();
13207       break;
13208     }
13209   }
13210 
13211   // For non-floating point types, check for self-comparisons of the form
13212   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
13213   // often indicate logic errors in the program.
13214   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13215 
13216   // Check for comparisons of floating point operands using != and ==.
13217   if (LHSType->hasFloatingRepresentation()) {
13218     assert(RHS.get()->getType()->hasFloatingRepresentation());
13219     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13220   }
13221 
13222   // Return a signed type for the vector.
13223   return GetSignedVectorType(vType);
13224 }
13225 
13226 QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
13227                                                   ExprResult &RHS,
13228                                                   SourceLocation Loc,
13229                                                   BinaryOperatorKind Opc) {
13230   if (Opc == BO_Cmp) {
13231     Diag(Loc, diag::err_three_way_vector_comparison);
13232     return QualType();
13233   }
13234 
13235   // Check to make sure we're operating on vectors of the same type and width,
13236   // Allowing one side to be a scalar of element type.
13237   QualType vType = CheckSizelessVectorOperands(
13238       LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison);
13239 
13240   if (vType.isNull())
13241     return vType;
13242 
13243   QualType LHSType = LHS.get()->getType();
13244 
13245   // For non-floating point types, check for self-comparisons of the form
13246   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
13247   // often indicate logic errors in the program.
13248   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
13249 
13250   // Check for comparisons of floating point operands using != and ==.
13251   if (LHSType->hasFloatingRepresentation()) {
13252     assert(RHS.get()->getType()->hasFloatingRepresentation());
13253     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
13254   }
13255 
13256   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
13257   const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
13258 
13259   if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
13260       RHSBuiltinTy->isSVEBool())
13261     return LHSType;
13262 
13263   // Return a signed type for the vector.
13264   return GetSignedSizelessVectorType(vType);
13265 }
13266 
13267 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
13268                                     const ExprResult &XorRHS,
13269                                     const SourceLocation Loc) {
13270   // Do not diagnose macros.
13271   if (Loc.isMacroID())
13272     return;
13273 
13274   // Do not diagnose if both LHS and RHS are macros.
13275   if (XorLHS.get()->getExprLoc().isMacroID() &&
13276       XorRHS.get()->getExprLoc().isMacroID())
13277     return;
13278 
13279   bool Negative = false;
13280   bool ExplicitPlus = false;
13281   const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
13282   const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
13283 
13284   if (!LHSInt)
13285     return;
13286   if (!RHSInt) {
13287     // Check negative literals.
13288     if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
13289       UnaryOperatorKind Opc = UO->getOpcode();
13290       if (Opc != UO_Minus && Opc != UO_Plus)
13291         return;
13292       RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
13293       if (!RHSInt)
13294         return;
13295       Negative = (Opc == UO_Minus);
13296       ExplicitPlus = !Negative;
13297     } else {
13298       return;
13299     }
13300   }
13301 
13302   const llvm::APInt &LeftSideValue = LHSInt->getValue();
13303   llvm::APInt RightSideValue = RHSInt->getValue();
13304   if (LeftSideValue != 2 && LeftSideValue != 10)
13305     return;
13306 
13307   if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
13308     return;
13309 
13310   CharSourceRange ExprRange = CharSourceRange::getCharRange(
13311       LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
13312   llvm::StringRef ExprStr =
13313       Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
13314 
13315   CharSourceRange XorRange =
13316       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
13317   llvm::StringRef XorStr =
13318       Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
13319   // Do not diagnose if xor keyword/macro is used.
13320   if (XorStr == "xor")
13321     return;
13322 
13323   std::string LHSStr = std::string(Lexer::getSourceText(
13324       CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
13325       S.getSourceManager(), S.getLangOpts()));
13326   std::string RHSStr = std::string(Lexer::getSourceText(
13327       CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
13328       S.getSourceManager(), S.getLangOpts()));
13329 
13330   if (Negative) {
13331     RightSideValue = -RightSideValue;
13332     RHSStr = "-" + RHSStr;
13333   } else if (ExplicitPlus) {
13334     RHSStr = "+" + RHSStr;
13335   }
13336 
13337   StringRef LHSStrRef = LHSStr;
13338   StringRef RHSStrRef = RHSStr;
13339   // Do not diagnose literals with digit separators, binary, hexadecimal, octal
13340   // literals.
13341   if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
13342       RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
13343       LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
13344       RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
13345       (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
13346       (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
13347       LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
13348     return;
13349 
13350   bool SuggestXor =
13351       S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
13352   const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
13353   int64_t RightSideIntValue = RightSideValue.getSExtValue();
13354   if (LeftSideValue == 2 && RightSideIntValue >= 0) {
13355     std::string SuggestedExpr = "1 << " + RHSStr;
13356     bool Overflow = false;
13357     llvm::APInt One = (LeftSideValue - 1);
13358     llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
13359     if (Overflow) {
13360       if (RightSideIntValue < 64)
13361         S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13362             << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
13363             << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
13364       else if (RightSideIntValue == 64)
13365         S.Diag(Loc, diag::warn_xor_used_as_pow)
13366             << ExprStr << toString(XorValue, 10, true);
13367       else
13368         return;
13369     } else {
13370       S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
13371           << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
13372           << toString(PowValue, 10, true)
13373           << FixItHint::CreateReplacement(
13374                  ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
13375     }
13376 
13377     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13378         << ("0x2 ^ " + RHSStr) << SuggestXor;
13379   } else if (LeftSideValue == 10) {
13380     std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
13381     S.Diag(Loc, diag::warn_xor_used_as_pow_base)
13382         << ExprStr << toString(XorValue, 10, true) << SuggestedValue
13383         << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
13384     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
13385         << ("0xA ^ " + RHSStr) << SuggestXor;
13386   }
13387 }
13388 
13389 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13390                                           SourceLocation Loc) {
13391   // Ensure that either both operands are of the same vector type, or
13392   // one operand is of a vector type and the other is of its element type.
13393   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
13394                                        /*AllowBothBool*/ true,
13395                                        /*AllowBoolConversions*/ false,
13396                                        /*AllowBooleanOperation*/ false,
13397                                        /*ReportInvalid*/ false);
13398   if (vType.isNull())
13399     return InvalidOperands(Loc, LHS, RHS);
13400   if (getLangOpts().OpenCL &&
13401       getLangOpts().getOpenCLCompatibleVersion() < 120 &&
13402       vType->hasFloatingRepresentation())
13403     return InvalidOperands(Loc, LHS, RHS);
13404   // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
13405   //        usage of the logical operators && and || with vectors in C. This
13406   //        check could be notionally dropped.
13407   if (!getLangOpts().CPlusPlus &&
13408       !(isa<ExtVectorType>(vType->getAs<VectorType>())))
13409     return InvalidLogicalVectorOperands(Loc, LHS, RHS);
13410 
13411   return GetSignedVectorType(LHS.get()->getType());
13412 }
13413 
13414 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
13415                                               SourceLocation Loc,
13416                                               bool IsCompAssign) {
13417   if (!IsCompAssign) {
13418     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13419     if (LHS.isInvalid())
13420       return QualType();
13421   }
13422   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13423   if (RHS.isInvalid())
13424     return QualType();
13425 
13426   // For conversion purposes, we ignore any qualifiers.
13427   // For example, "const float" and "float" are equivalent.
13428   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
13429   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
13430 
13431   const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
13432   const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
13433   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13434 
13435   if (Context.hasSameType(LHSType, RHSType))
13436     return Context.getCommonSugaredType(LHSType, RHSType);
13437 
13438   // Type conversion may change LHS/RHS. Keep copies to the original results, in
13439   // case we have to return InvalidOperands.
13440   ExprResult OriginalLHS = LHS;
13441   ExprResult OriginalRHS = RHS;
13442   if (LHSMatType && !RHSMatType) {
13443     RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
13444     if (!RHS.isInvalid())
13445       return LHSType;
13446 
13447     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13448   }
13449 
13450   if (!LHSMatType && RHSMatType) {
13451     LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
13452     if (!LHS.isInvalid())
13453       return RHSType;
13454     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
13455   }
13456 
13457   return InvalidOperands(Loc, LHS, RHS);
13458 }
13459 
13460 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
13461                                            SourceLocation Loc,
13462                                            bool IsCompAssign) {
13463   if (!IsCompAssign) {
13464     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
13465     if (LHS.isInvalid())
13466       return QualType();
13467   }
13468   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
13469   if (RHS.isInvalid())
13470     return QualType();
13471 
13472   auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
13473   auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
13474   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
13475 
13476   if (LHSMatType && RHSMatType) {
13477     if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
13478       return InvalidOperands(Loc, LHS, RHS);
13479 
13480     if (Context.hasSameType(LHSMatType, RHSMatType))
13481       return Context.getCommonSugaredType(
13482           LHS.get()->getType().getUnqualifiedType(),
13483           RHS.get()->getType().getUnqualifiedType());
13484 
13485     QualType LHSELTy = LHSMatType->getElementType(),
13486              RHSELTy = RHSMatType->getElementType();
13487     if (!Context.hasSameType(LHSELTy, RHSELTy))
13488       return InvalidOperands(Loc, LHS, RHS);
13489 
13490     return Context.getConstantMatrixType(
13491         Context.getCommonSugaredType(LHSELTy, RHSELTy),
13492         LHSMatType->getNumRows(), RHSMatType->getNumColumns());
13493   }
13494   return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
13495 }
13496 
13497 static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
13498   switch (Opc) {
13499   default:
13500     return false;
13501   case BO_And:
13502   case BO_AndAssign:
13503   case BO_Or:
13504   case BO_OrAssign:
13505   case BO_Xor:
13506   case BO_XorAssign:
13507     return true;
13508   }
13509 }
13510 
13511 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
13512                                            SourceLocation Loc,
13513                                            BinaryOperatorKind Opc) {
13514   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
13515 
13516   bool IsCompAssign =
13517       Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
13518 
13519   bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
13520 
13521   if (LHS.get()->getType()->isVectorType() ||
13522       RHS.get()->getType()->isVectorType()) {
13523     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13524         RHS.get()->getType()->hasIntegerRepresentation())
13525       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
13526                                  /*AllowBothBool*/ true,
13527                                  /*AllowBoolConversions*/ getLangOpts().ZVector,
13528                                  /*AllowBooleanOperation*/ LegalBoolVecOperator,
13529                                  /*ReportInvalid*/ true);
13530     return InvalidOperands(Loc, LHS, RHS);
13531   }
13532 
13533   if (LHS.get()->getType()->isVLSTBuiltinType() ||
13534       RHS.get()->getType()->isVLSTBuiltinType()) {
13535     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13536         RHS.get()->getType()->hasIntegerRepresentation())
13537       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13538                                          ACK_BitwiseOp);
13539     return InvalidOperands(Loc, LHS, RHS);
13540   }
13541 
13542   if (LHS.get()->getType()->isVLSTBuiltinType() ||
13543       RHS.get()->getType()->isVLSTBuiltinType()) {
13544     if (LHS.get()->getType()->hasIntegerRepresentation() &&
13545         RHS.get()->getType()->hasIntegerRepresentation())
13546       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
13547                                          ACK_BitwiseOp);
13548     return InvalidOperands(Loc, LHS, RHS);
13549   }
13550 
13551   if (Opc == BO_And)
13552     diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
13553 
13554   if (LHS.get()->getType()->hasFloatingRepresentation() ||
13555       RHS.get()->getType()->hasFloatingRepresentation())
13556     return InvalidOperands(Loc, LHS, RHS);
13557 
13558   ExprResult LHSResult = LHS, RHSResult = RHS;
13559   QualType compType = UsualArithmeticConversions(
13560       LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
13561   if (LHSResult.isInvalid() || RHSResult.isInvalid())
13562     return QualType();
13563   LHS = LHSResult.get();
13564   RHS = RHSResult.get();
13565 
13566   if (Opc == BO_Xor)
13567     diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
13568 
13569   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
13570     return compType;
13571   return InvalidOperands(Loc, LHS, RHS);
13572 }
13573 
13574 // C99 6.5.[13,14]
13575 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
13576                                            SourceLocation Loc,
13577                                            BinaryOperatorKind Opc) {
13578   // Check vector operands differently.
13579   if (LHS.get()->getType()->isVectorType() ||
13580       RHS.get()->getType()->isVectorType())
13581     return CheckVectorLogicalOperands(LHS, RHS, Loc);
13582 
13583   bool EnumConstantInBoolContext = false;
13584   for (const ExprResult &HS : {LHS, RHS}) {
13585     if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
13586       const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
13587       if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
13588         EnumConstantInBoolContext = true;
13589     }
13590   }
13591 
13592   if (EnumConstantInBoolContext)
13593     Diag(Loc, diag::warn_enum_constant_in_bool_context);
13594 
13595   // Diagnose cases where the user write a logical and/or but probably meant a
13596   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
13597   // is a constant.
13598   if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
13599       !LHS.get()->getType()->isBooleanType() &&
13600       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
13601       // Don't warn in macros or template instantiations.
13602       !Loc.isMacroID() && !inTemplateInstantiation()) {
13603     // If the RHS can be constant folded, and if it constant folds to something
13604     // that isn't 0 or 1 (which indicate a potential logical operation that
13605     // happened to fold to true/false) then warn.
13606     // Parens on the RHS are ignored.
13607     Expr::EvalResult EVResult;
13608     if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
13609       llvm::APSInt Result = EVResult.Val.getInt();
13610       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
13611            !RHS.get()->getExprLoc().isMacroID()) ||
13612           (Result != 0 && Result != 1)) {
13613         Diag(Loc, diag::warn_logical_instead_of_bitwise)
13614             << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
13615         // Suggest replacing the logical operator with the bitwise version
13616         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
13617             << (Opc == BO_LAnd ? "&" : "|")
13618             << FixItHint::CreateReplacement(
13619                    SourceRange(Loc, getLocForEndOfToken(Loc)),
13620                    Opc == BO_LAnd ? "&" : "|");
13621         if (Opc == BO_LAnd)
13622           // Suggest replacing "Foo() && kNonZero" with "Foo()"
13623           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
13624               << FixItHint::CreateRemoval(
13625                      SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
13626                                  RHS.get()->getEndLoc()));
13627       }
13628     }
13629   }
13630 
13631   if (!Context.getLangOpts().CPlusPlus) {
13632     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
13633     // not operate on the built-in scalar and vector float types.
13634     if (Context.getLangOpts().OpenCL &&
13635         Context.getLangOpts().OpenCLVersion < 120) {
13636       if (LHS.get()->getType()->isFloatingType() ||
13637           RHS.get()->getType()->isFloatingType())
13638         return InvalidOperands(Loc, LHS, RHS);
13639     }
13640 
13641     LHS = UsualUnaryConversions(LHS.get());
13642     if (LHS.isInvalid())
13643       return QualType();
13644 
13645     RHS = UsualUnaryConversions(RHS.get());
13646     if (RHS.isInvalid())
13647       return QualType();
13648 
13649     if (!LHS.get()->getType()->isScalarType() ||
13650         !RHS.get()->getType()->isScalarType())
13651       return InvalidOperands(Loc, LHS, RHS);
13652 
13653     return Context.IntTy;
13654   }
13655 
13656   // The following is safe because we only use this method for
13657   // non-overloadable operands.
13658 
13659   // C++ [expr.log.and]p1
13660   // C++ [expr.log.or]p1
13661   // The operands are both contextually converted to type bool.
13662   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
13663   if (LHSRes.isInvalid())
13664     return InvalidOperands(Loc, LHS, RHS);
13665   LHS = LHSRes;
13666 
13667   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
13668   if (RHSRes.isInvalid())
13669     return InvalidOperands(Loc, LHS, RHS);
13670   RHS = RHSRes;
13671 
13672   // C++ [expr.log.and]p2
13673   // C++ [expr.log.or]p2
13674   // The result is a bool.
13675   return Context.BoolTy;
13676 }
13677 
13678 static bool IsReadonlyMessage(Expr *E, Sema &S) {
13679   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
13680   if (!ME) return false;
13681   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
13682   ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
13683       ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
13684   if (!Base) return false;
13685   return Base->getMethodDecl() != nullptr;
13686 }
13687 
13688 /// Is the given expression (which must be 'const') a reference to a
13689 /// variable which was originally non-const, but which has become
13690 /// 'const' due to being captured within a block?
13691 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
13692 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
13693   assert(E->isLValue() && E->getType().isConstQualified());
13694   E = E->IgnoreParens();
13695 
13696   // Must be a reference to a declaration from an enclosing scope.
13697   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
13698   if (!DRE) return NCCK_None;
13699   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
13700 
13701   // The declaration must be a variable which is not declared 'const'.
13702   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
13703   if (!var) return NCCK_None;
13704   if (var->getType().isConstQualified()) return NCCK_None;
13705   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
13706 
13707   // Decide whether the first capture was for a block or a lambda.
13708   DeclContext *DC = S.CurContext, *Prev = nullptr;
13709   // Decide whether the first capture was for a block or a lambda.
13710   while (DC) {
13711     // For init-capture, it is possible that the variable belongs to the
13712     // template pattern of the current context.
13713     if (auto *FD = dyn_cast<FunctionDecl>(DC))
13714       if (var->isInitCapture() &&
13715           FD->getTemplateInstantiationPattern() == var->getDeclContext())
13716         break;
13717     if (DC == var->getDeclContext())
13718       break;
13719     Prev = DC;
13720     DC = DC->getParent();
13721   }
13722   // Unless we have an init-capture, we've gone one step too far.
13723   if (!var->isInitCapture())
13724     DC = Prev;
13725   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
13726 }
13727 
13728 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
13729   Ty = Ty.getNonReferenceType();
13730   if (IsDereference && Ty->isPointerType())
13731     Ty = Ty->getPointeeType();
13732   return !Ty.isConstQualified();
13733 }
13734 
13735 // Update err_typecheck_assign_const and note_typecheck_assign_const
13736 // when this enum is changed.
13737 enum {
13738   ConstFunction,
13739   ConstVariable,
13740   ConstMember,
13741   ConstMethod,
13742   NestedConstMember,
13743   ConstUnknown,  // Keep as last element
13744 };
13745 
13746 /// Emit the "read-only variable not assignable" error and print notes to give
13747 /// more information about why the variable is not assignable, such as pointing
13748 /// to the declaration of a const variable, showing that a method is const, or
13749 /// that the function is returning a const reference.
13750 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
13751                                     SourceLocation Loc) {
13752   SourceRange ExprRange = E->getSourceRange();
13753 
13754   // Only emit one error on the first const found.  All other consts will emit
13755   // a note to the error.
13756   bool DiagnosticEmitted = false;
13757 
13758   // Track if the current expression is the result of a dereference, and if the
13759   // next checked expression is the result of a dereference.
13760   bool IsDereference = false;
13761   bool NextIsDereference = false;
13762 
13763   // Loop to process MemberExpr chains.
13764   while (true) {
13765     IsDereference = NextIsDereference;
13766 
13767     E = E->IgnoreImplicit()->IgnoreParenImpCasts();
13768     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13769       NextIsDereference = ME->isArrow();
13770       const ValueDecl *VD = ME->getMemberDecl();
13771       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
13772         // Mutable fields can be modified even if the class is const.
13773         if (Field->isMutable()) {
13774           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
13775           break;
13776         }
13777 
13778         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
13779           if (!DiagnosticEmitted) {
13780             S.Diag(Loc, diag::err_typecheck_assign_const)
13781                 << ExprRange << ConstMember << false /*static*/ << Field
13782                 << Field->getType();
13783             DiagnosticEmitted = true;
13784           }
13785           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13786               << ConstMember << false /*static*/ << Field << Field->getType()
13787               << Field->getSourceRange();
13788         }
13789         E = ME->getBase();
13790         continue;
13791       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
13792         if (VDecl->getType().isConstQualified()) {
13793           if (!DiagnosticEmitted) {
13794             S.Diag(Loc, diag::err_typecheck_assign_const)
13795                 << ExprRange << ConstMember << true /*static*/ << VDecl
13796                 << VDecl->getType();
13797             DiagnosticEmitted = true;
13798           }
13799           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13800               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
13801               << VDecl->getSourceRange();
13802         }
13803         // Static fields do not inherit constness from parents.
13804         break;
13805       }
13806       break; // End MemberExpr
13807     } else if (const ArraySubscriptExpr *ASE =
13808                    dyn_cast<ArraySubscriptExpr>(E)) {
13809       E = ASE->getBase()->IgnoreParenImpCasts();
13810       continue;
13811     } else if (const ExtVectorElementExpr *EVE =
13812                    dyn_cast<ExtVectorElementExpr>(E)) {
13813       E = EVE->getBase()->IgnoreParenImpCasts();
13814       continue;
13815     }
13816     break;
13817   }
13818 
13819   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
13820     // Function calls
13821     const FunctionDecl *FD = CE->getDirectCallee();
13822     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
13823       if (!DiagnosticEmitted) {
13824         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13825                                                       << ConstFunction << FD;
13826         DiagnosticEmitted = true;
13827       }
13828       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
13829              diag::note_typecheck_assign_const)
13830           << ConstFunction << FD << FD->getReturnType()
13831           << FD->getReturnTypeSourceRange();
13832     }
13833   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13834     // Point to variable declaration.
13835     if (const ValueDecl *VD = DRE->getDecl()) {
13836       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
13837         if (!DiagnosticEmitted) {
13838           S.Diag(Loc, diag::err_typecheck_assign_const)
13839               << ExprRange << ConstVariable << VD << VD->getType();
13840           DiagnosticEmitted = true;
13841         }
13842         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13843             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
13844       }
13845     }
13846   } else if (isa<CXXThisExpr>(E)) {
13847     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
13848       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
13849         if (MD->isConst()) {
13850           if (!DiagnosticEmitted) {
13851             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13852                                                           << ConstMethod << MD;
13853             DiagnosticEmitted = true;
13854           }
13855           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
13856               << ConstMethod << MD << MD->getSourceRange();
13857         }
13858       }
13859     }
13860   }
13861 
13862   if (DiagnosticEmitted)
13863     return;
13864 
13865   // Can't determine a more specific message, so display the generic error.
13866   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
13867 }
13868 
13869 enum OriginalExprKind {
13870   OEK_Variable,
13871   OEK_Member,
13872   OEK_LValue
13873 };
13874 
13875 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
13876                                          const RecordType *Ty,
13877                                          SourceLocation Loc, SourceRange Range,
13878                                          OriginalExprKind OEK,
13879                                          bool &DiagnosticEmitted) {
13880   std::vector<const RecordType *> RecordTypeList;
13881   RecordTypeList.push_back(Ty);
13882   unsigned NextToCheckIndex = 0;
13883   // We walk the record hierarchy breadth-first to ensure that we print
13884   // diagnostics in field nesting order.
13885   while (RecordTypeList.size() > NextToCheckIndex) {
13886     bool IsNested = NextToCheckIndex > 0;
13887     for (const FieldDecl *Field :
13888          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
13889       // First, check every field for constness.
13890       QualType FieldTy = Field->getType();
13891       if (FieldTy.isConstQualified()) {
13892         if (!DiagnosticEmitted) {
13893           S.Diag(Loc, diag::err_typecheck_assign_const)
13894               << Range << NestedConstMember << OEK << VD
13895               << IsNested << Field;
13896           DiagnosticEmitted = true;
13897         }
13898         S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
13899             << NestedConstMember << IsNested << Field
13900             << FieldTy << Field->getSourceRange();
13901       }
13902 
13903       // Then we append it to the list to check next in order.
13904       FieldTy = FieldTy.getCanonicalType();
13905       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
13906         if (!llvm::is_contained(RecordTypeList, FieldRecTy))
13907           RecordTypeList.push_back(FieldRecTy);
13908       }
13909     }
13910     ++NextToCheckIndex;
13911   }
13912 }
13913 
13914 /// Emit an error for the case where a record we are trying to assign to has a
13915 /// const-qualified field somewhere in its hierarchy.
13916 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
13917                                          SourceLocation Loc) {
13918   QualType Ty = E->getType();
13919   assert(Ty->isRecordType() && "lvalue was not record?");
13920   SourceRange Range = E->getSourceRange();
13921   const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
13922   bool DiagEmitted = false;
13923 
13924   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
13925     DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
13926             Range, OEK_Member, DiagEmitted);
13927   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13928     DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
13929             Range, OEK_Variable, DiagEmitted);
13930   else
13931     DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
13932             Range, OEK_LValue, DiagEmitted);
13933   if (!DiagEmitted)
13934     DiagnoseConstAssignment(S, E, Loc);
13935 }
13936 
13937 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
13938 /// emit an error and return true.  If so, return false.
13939 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
13940   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
13941 
13942   S.CheckShadowingDeclModification(E, Loc);
13943 
13944   SourceLocation OrigLoc = Loc;
13945   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
13946                                                               &Loc);
13947   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
13948     IsLV = Expr::MLV_InvalidMessageExpression;
13949   if (IsLV == Expr::MLV_Valid)
13950     return false;
13951 
13952   unsigned DiagID = 0;
13953   bool NeedType = false;
13954   switch (IsLV) { // C99 6.5.16p2
13955   case Expr::MLV_ConstQualified:
13956     // Use a specialized diagnostic when we're assigning to an object
13957     // from an enclosing function or block.
13958     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
13959       if (NCCK == NCCK_Block)
13960         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
13961       else
13962         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
13963       break;
13964     }
13965 
13966     // In ARC, use some specialized diagnostics for occasions where we
13967     // infer 'const'.  These are always pseudo-strong variables.
13968     if (S.getLangOpts().ObjCAutoRefCount) {
13969       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
13970       if (declRef && isa<VarDecl>(declRef->getDecl())) {
13971         VarDecl *var = cast<VarDecl>(declRef->getDecl());
13972 
13973         // Use the normal diagnostic if it's pseudo-__strong but the
13974         // user actually wrote 'const'.
13975         if (var->isARCPseudoStrong() &&
13976             (!var->getTypeSourceInfo() ||
13977              !var->getTypeSourceInfo()->getType().isConstQualified())) {
13978           // There are three pseudo-strong cases:
13979           //  - self
13980           ObjCMethodDecl *method = S.getCurMethodDecl();
13981           if (method && var == method->getSelfDecl()) {
13982             DiagID = method->isClassMethod()
13983               ? diag::err_typecheck_arc_assign_self_class_method
13984               : diag::err_typecheck_arc_assign_self;
13985 
13986           //  - Objective-C externally_retained attribute.
13987           } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
13988                      isa<ParmVarDecl>(var)) {
13989             DiagID = diag::err_typecheck_arc_assign_externally_retained;
13990 
13991           //  - fast enumeration variables
13992           } else {
13993             DiagID = diag::err_typecheck_arr_assign_enumeration;
13994           }
13995 
13996           SourceRange Assign;
13997           if (Loc != OrigLoc)
13998             Assign = SourceRange(OrigLoc, OrigLoc);
13999           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14000           // We need to preserve the AST regardless, so migration tool
14001           // can do its job.
14002           return false;
14003         }
14004       }
14005     }
14006 
14007     // If none of the special cases above are triggered, then this is a
14008     // simple const assignment.
14009     if (DiagID == 0) {
14010       DiagnoseConstAssignment(S, E, Loc);
14011       return true;
14012     }
14013 
14014     break;
14015   case Expr::MLV_ConstAddrSpace:
14016     DiagnoseConstAssignment(S, E, Loc);
14017     return true;
14018   case Expr::MLV_ConstQualifiedField:
14019     DiagnoseRecursiveConstFields(S, E, Loc);
14020     return true;
14021   case Expr::MLV_ArrayType:
14022   case Expr::MLV_ArrayTemporary:
14023     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
14024     NeedType = true;
14025     break;
14026   case Expr::MLV_NotObjectType:
14027     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
14028     NeedType = true;
14029     break;
14030   case Expr::MLV_LValueCast:
14031     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
14032     break;
14033   case Expr::MLV_Valid:
14034     llvm_unreachable("did not take early return for MLV_Valid");
14035   case Expr::MLV_InvalidExpression:
14036   case Expr::MLV_MemberFunction:
14037   case Expr::MLV_ClassTemporary:
14038     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
14039     break;
14040   case Expr::MLV_IncompleteType:
14041   case Expr::MLV_IncompleteVoidType:
14042     return S.RequireCompleteType(Loc, E->getType(),
14043              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
14044   case Expr::MLV_DuplicateVectorComponents:
14045     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
14046     break;
14047   case Expr::MLV_NoSetterProperty:
14048     llvm_unreachable("readonly properties should be processed differently");
14049   case Expr::MLV_InvalidMessageExpression:
14050     DiagID = diag::err_readonly_message_assignment;
14051     break;
14052   case Expr::MLV_SubObjCPropertySetting:
14053     DiagID = diag::err_no_subobject_property_setting;
14054     break;
14055   }
14056 
14057   SourceRange Assign;
14058   if (Loc != OrigLoc)
14059     Assign = SourceRange(OrigLoc, OrigLoc);
14060   if (NeedType)
14061     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
14062   else
14063     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
14064   return true;
14065 }
14066 
14067 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
14068                                          SourceLocation Loc,
14069                                          Sema &Sema) {
14070   if (Sema.inTemplateInstantiation())
14071     return;
14072   if (Sema.isUnevaluatedContext())
14073     return;
14074   if (Loc.isInvalid() || Loc.isMacroID())
14075     return;
14076   if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
14077     return;
14078 
14079   // C / C++ fields
14080   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
14081   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
14082   if (ML && MR) {
14083     if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
14084       return;
14085     const ValueDecl *LHSDecl =
14086         cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
14087     const ValueDecl *RHSDecl =
14088         cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
14089     if (LHSDecl != RHSDecl)
14090       return;
14091     if (LHSDecl->getType().isVolatileQualified())
14092       return;
14093     if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14094       if (RefTy->getPointeeType().isVolatileQualified())
14095         return;
14096 
14097     Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
14098   }
14099 
14100   // Objective-C instance variables
14101   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
14102   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
14103   if (OL && OR && OL->getDecl() == OR->getDecl()) {
14104     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
14105     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
14106     if (RL && RR && RL->getDecl() == RR->getDecl())
14107       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
14108   }
14109 }
14110 
14111 // C99 6.5.16.1
14112 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
14113                                        SourceLocation Loc,
14114                                        QualType CompoundType,
14115                                        BinaryOperatorKind Opc) {
14116   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
14117 
14118   // Verify that LHS is a modifiable lvalue, and emit error if not.
14119   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
14120     return QualType();
14121 
14122   QualType LHSType = LHSExpr->getType();
14123   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
14124                                              CompoundType;
14125   // OpenCL v1.2 s6.1.1.1 p2:
14126   // The half data type can only be used to declare a pointer to a buffer that
14127   // contains half values
14128   if (getLangOpts().OpenCL &&
14129       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
14130       LHSType->isHalfType()) {
14131     Diag(Loc, diag::err_opencl_half_load_store) << 1
14132         << LHSType.getUnqualifiedType();
14133     return QualType();
14134   }
14135 
14136   AssignConvertType ConvTy;
14137   if (CompoundType.isNull()) {
14138     Expr *RHSCheck = RHS.get();
14139 
14140     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
14141 
14142     QualType LHSTy(LHSType);
14143     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
14144     if (RHS.isInvalid())
14145       return QualType();
14146     // Special case of NSObject attributes on c-style pointer types.
14147     if (ConvTy == IncompatiblePointer &&
14148         ((Context.isObjCNSObjectType(LHSType) &&
14149           RHSType->isObjCObjectPointerType()) ||
14150          (Context.isObjCNSObjectType(RHSType) &&
14151           LHSType->isObjCObjectPointerType())))
14152       ConvTy = Compatible;
14153 
14154     if (ConvTy == Compatible &&
14155         LHSType->isObjCObjectType())
14156         Diag(Loc, diag::err_objc_object_assignment)
14157           << LHSType;
14158 
14159     // If the RHS is a unary plus or minus, check to see if they = and + are
14160     // right next to each other.  If so, the user may have typo'd "x =+ 4"
14161     // instead of "x += 4".
14162     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
14163       RHSCheck = ICE->getSubExpr();
14164     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
14165       if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
14166           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
14167           // Only if the two operators are exactly adjacent.
14168           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
14169           // And there is a space or other character before the subexpr of the
14170           // unary +/-.  We don't want to warn on "x=-1".
14171           Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
14172           UO->getSubExpr()->getBeginLoc().isFileID()) {
14173         Diag(Loc, diag::warn_not_compound_assign)
14174           << (UO->getOpcode() == UO_Plus ? "+" : "-")
14175           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
14176       }
14177     }
14178 
14179     if (ConvTy == Compatible) {
14180       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
14181         // Warn about retain cycles where a block captures the LHS, but
14182         // not if the LHS is a simple variable into which the block is
14183         // being stored...unless that variable can be captured by reference!
14184         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
14185         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
14186         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
14187           checkRetainCycles(LHSExpr, RHS.get());
14188       }
14189 
14190       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
14191           LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
14192         // It is safe to assign a weak reference into a strong variable.
14193         // Although this code can still have problems:
14194         //   id x = self.weakProp;
14195         //   id y = self.weakProp;
14196         // we do not warn to warn spuriously when 'x' and 'y' are on separate
14197         // paths through the function. This should be revisited if
14198         // -Wrepeated-use-of-weak is made flow-sensitive.
14199         // For ObjCWeak only, we do not warn if the assign is to a non-weak
14200         // variable, which will be valid for the current autorelease scope.
14201         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
14202                              RHS.get()->getBeginLoc()))
14203           getCurFunction()->markSafeWeakUse(RHS.get());
14204 
14205       } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
14206         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
14207       }
14208     }
14209   } else {
14210     // Compound assignment "x += y"
14211     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
14212   }
14213 
14214   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
14215                                RHS.get(), AA_Assigning))
14216     return QualType();
14217 
14218   CheckForNullPointerDereference(*this, LHSExpr);
14219 
14220   if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
14221     if (CompoundType.isNull()) {
14222       // C++2a [expr.ass]p5:
14223       //   A simple-assignment whose left operand is of a volatile-qualified
14224       //   type is deprecated unless the assignment is either a discarded-value
14225       //   expression or an unevaluated operand
14226       ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
14227     }
14228   }
14229 
14230   // C11 6.5.16p3: The type of an assignment expression is the type of the
14231   // left operand would have after lvalue conversion.
14232   // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
14233   // qualified type, the value has the unqualified version of the type of the
14234   // lvalue; additionally, if the lvalue has atomic type, the value has the
14235   // non-atomic version of the type of the lvalue.
14236   // C++ 5.17p1: the type of the assignment expression is that of its left
14237   // operand.
14238   return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
14239 }
14240 
14241 // Scenarios to ignore if expression E is:
14242 // 1. an explicit cast expression into void
14243 // 2. a function call expression that returns void
14244 static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
14245   E = E->IgnoreParens();
14246 
14247   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
14248     if (CE->getCastKind() == CK_ToVoid) {
14249       return true;
14250     }
14251 
14252     // static_cast<void> on a dependent type will not show up as CK_ToVoid.
14253     if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
14254         CE->getSubExpr()->getType()->isDependentType()) {
14255       return true;
14256     }
14257   }
14258 
14259   if (const auto *CE = dyn_cast<CallExpr>(E))
14260     return CE->getCallReturnType(Context)->isVoidType();
14261   return false;
14262 }
14263 
14264 // Look for instances where it is likely the comma operator is confused with
14265 // another operator.  There is an explicit list of acceptable expressions for
14266 // the left hand side of the comma operator, otherwise emit a warning.
14267 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
14268   // No warnings in macros
14269   if (Loc.isMacroID())
14270     return;
14271 
14272   // Don't warn in template instantiations.
14273   if (inTemplateInstantiation())
14274     return;
14275 
14276   // Scope isn't fine-grained enough to explicitly list the specific cases, so
14277   // instead, skip more than needed, then call back into here with the
14278   // CommaVisitor in SemaStmt.cpp.
14279   // The listed locations are the initialization and increment portions
14280   // of a for loop.  The additional checks are on the condition of
14281   // if statements, do/while loops, and for loops.
14282   // Differences in scope flags for C89 mode requires the extra logic.
14283   const unsigned ForIncrementFlags =
14284       getLangOpts().C99 || getLangOpts().CPlusPlus
14285           ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
14286           : Scope::ContinueScope | Scope::BreakScope;
14287   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
14288   const unsigned ScopeFlags = getCurScope()->getFlags();
14289   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
14290       (ScopeFlags & ForInitFlags) == ForInitFlags)
14291     return;
14292 
14293   // If there are multiple comma operators used together, get the RHS of the
14294   // of the comma operator as the LHS.
14295   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
14296     if (BO->getOpcode() != BO_Comma)
14297       break;
14298     LHS = BO->getRHS();
14299   }
14300 
14301   // Only allow some expressions on LHS to not warn.
14302   if (IgnoreCommaOperand(LHS, Context))
14303     return;
14304 
14305   Diag(Loc, diag::warn_comma_operator);
14306   Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
14307       << LHS->getSourceRange()
14308       << FixItHint::CreateInsertion(LHS->getBeginLoc(),
14309                                     LangOpts.CPlusPlus ? "static_cast<void>("
14310                                                        : "(void)(")
14311       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
14312                                     ")");
14313 }
14314 
14315 // C99 6.5.17
14316 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
14317                                    SourceLocation Loc) {
14318   LHS = S.CheckPlaceholderExpr(LHS.get());
14319   RHS = S.CheckPlaceholderExpr(RHS.get());
14320   if (LHS.isInvalid() || RHS.isInvalid())
14321     return QualType();
14322 
14323   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
14324   // operands, but not unary promotions.
14325   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
14326 
14327   // So we treat the LHS as a ignored value, and in C++ we allow the
14328   // containing site to determine what should be done with the RHS.
14329   LHS = S.IgnoredValueConversions(LHS.get());
14330   if (LHS.isInvalid())
14331     return QualType();
14332 
14333   S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
14334 
14335   if (!S.getLangOpts().CPlusPlus) {
14336     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
14337     if (RHS.isInvalid())
14338       return QualType();
14339     if (!RHS.get()->getType()->isVoidType())
14340       S.RequireCompleteType(Loc, RHS.get()->getType(),
14341                             diag::err_incomplete_type);
14342   }
14343 
14344   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
14345     S.DiagnoseCommaOperator(LHS.get(), Loc);
14346 
14347   return RHS.get()->getType();
14348 }
14349 
14350 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
14351 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
14352 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
14353                                                ExprValueKind &VK,
14354                                                ExprObjectKind &OK,
14355                                                SourceLocation OpLoc,
14356                                                bool IsInc, bool IsPrefix) {
14357   if (Op->isTypeDependent())
14358     return S.Context.DependentTy;
14359 
14360   QualType ResType = Op->getType();
14361   // Atomic types can be used for increment / decrement where the non-atomic
14362   // versions can, so ignore the _Atomic() specifier for the purpose of
14363   // checking.
14364   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
14365     ResType = ResAtomicType->getValueType();
14366 
14367   assert(!ResType.isNull() && "no type for increment/decrement expression");
14368 
14369   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
14370     // Decrement of bool is not allowed.
14371     if (!IsInc) {
14372       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
14373       return QualType();
14374     }
14375     // Increment of bool sets it to true, but is deprecated.
14376     S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
14377                                               : diag::warn_increment_bool)
14378       << Op->getSourceRange();
14379   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
14380     // Error on enum increments and decrements in C++ mode
14381     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
14382     return QualType();
14383   } else if (ResType->isRealType()) {
14384     // OK!
14385   } else if (ResType->isPointerType()) {
14386     // C99 6.5.2.4p2, 6.5.6p2
14387     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
14388       return QualType();
14389   } else if (ResType->isObjCObjectPointerType()) {
14390     // On modern runtimes, ObjC pointer arithmetic is forbidden.
14391     // Otherwise, we just need a complete type.
14392     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
14393         checkArithmeticOnObjCPointer(S, OpLoc, Op))
14394       return QualType();
14395   } else if (ResType->isAnyComplexType()) {
14396     // C99 does not support ++/-- on complex types, we allow as an extension.
14397     S.Diag(OpLoc, diag::ext_integer_increment_complex)
14398       << ResType << Op->getSourceRange();
14399   } else if (ResType->isPlaceholderType()) {
14400     ExprResult PR = S.CheckPlaceholderExpr(Op);
14401     if (PR.isInvalid()) return QualType();
14402     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
14403                                           IsInc, IsPrefix);
14404   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
14405     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
14406   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
14407              (ResType->castAs<VectorType>()->getVectorKind() !=
14408               VectorType::AltiVecBool)) {
14409     // The z vector extensions allow ++ and -- for non-bool vectors.
14410   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
14411             ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
14412     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
14413   } else {
14414     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
14415       << ResType << int(IsInc) << Op->getSourceRange();
14416     return QualType();
14417   }
14418   // At this point, we know we have a real, complex or pointer type.
14419   // Now make sure the operand is a modifiable lvalue.
14420   if (CheckForModifiableLvalue(Op, OpLoc, S))
14421     return QualType();
14422   if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
14423     // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
14424     //   An operand with volatile-qualified type is deprecated
14425     S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
14426         << IsInc << ResType;
14427   }
14428   // In C++, a prefix increment is the same type as the operand. Otherwise
14429   // (in C or with postfix), the increment is the unqualified type of the
14430   // operand.
14431   if (IsPrefix && S.getLangOpts().CPlusPlus) {
14432     VK = VK_LValue;
14433     OK = Op->getObjectKind();
14434     return ResType;
14435   } else {
14436     VK = VK_PRValue;
14437     return ResType.getUnqualifiedType();
14438   }
14439 }
14440 
14441 
14442 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
14443 /// This routine allows us to typecheck complex/recursive expressions
14444 /// where the declaration is needed for type checking. We only need to
14445 /// handle cases when the expression references a function designator
14446 /// or is an lvalue. Here are some examples:
14447 ///  - &(x) => x
14448 ///  - &*****f => f for f a function designator.
14449 ///  - &s.xx => s
14450 ///  - &s.zz[1].yy -> s, if zz is an array
14451 ///  - *(x + 1) -> x, if x is an array
14452 ///  - &"123"[2] -> 0
14453 ///  - & __real__ x -> x
14454 ///
14455 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
14456 /// members.
14457 static ValueDecl *getPrimaryDecl(Expr *E) {
14458   switch (E->getStmtClass()) {
14459   case Stmt::DeclRefExprClass:
14460     return cast<DeclRefExpr>(E)->getDecl();
14461   case Stmt::MemberExprClass:
14462     // If this is an arrow operator, the address is an offset from
14463     // the base's value, so the object the base refers to is
14464     // irrelevant.
14465     if (cast<MemberExpr>(E)->isArrow())
14466       return nullptr;
14467     // Otherwise, the expression refers to a part of the base
14468     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
14469   case Stmt::ArraySubscriptExprClass: {
14470     // FIXME: This code shouldn't be necessary!  We should catch the implicit
14471     // promotion of register arrays earlier.
14472     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
14473     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
14474       if (ICE->getSubExpr()->getType()->isArrayType())
14475         return getPrimaryDecl(ICE->getSubExpr());
14476     }
14477     return nullptr;
14478   }
14479   case Stmt::UnaryOperatorClass: {
14480     UnaryOperator *UO = cast<UnaryOperator>(E);
14481 
14482     switch(UO->getOpcode()) {
14483     case UO_Real:
14484     case UO_Imag:
14485     case UO_Extension:
14486       return getPrimaryDecl(UO->getSubExpr());
14487     default:
14488       return nullptr;
14489     }
14490   }
14491   case Stmt::ParenExprClass:
14492     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
14493   case Stmt::ImplicitCastExprClass:
14494     // If the result of an implicit cast is an l-value, we care about
14495     // the sub-expression; otherwise, the result here doesn't matter.
14496     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
14497   case Stmt::CXXUuidofExprClass:
14498     return cast<CXXUuidofExpr>(E)->getGuidDecl();
14499   default:
14500     return nullptr;
14501   }
14502 }
14503 
14504 namespace {
14505 enum {
14506   AO_Bit_Field = 0,
14507   AO_Vector_Element = 1,
14508   AO_Property_Expansion = 2,
14509   AO_Register_Variable = 3,
14510   AO_Matrix_Element = 4,
14511   AO_No_Error = 5
14512 };
14513 }
14514 /// Diagnose invalid operand for address of operations.
14515 ///
14516 /// \param Type The type of operand which cannot have its address taken.
14517 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
14518                                          Expr *E, unsigned Type) {
14519   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
14520 }
14521 
14522 /// CheckAddressOfOperand - The operand of & must be either a function
14523 /// designator or an lvalue designating an object. If it is an lvalue, the
14524 /// object cannot be declared with storage class register or be a bit field.
14525 /// Note: The usual conversions are *not* applied to the operand of the &
14526 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
14527 /// In C++, the operand might be an overloaded function name, in which case
14528 /// we allow the '&' but retain the overloaded-function type.
14529 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
14530   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
14531     if (PTy->getKind() == BuiltinType::Overload) {
14532       Expr *E = OrigOp.get()->IgnoreParens();
14533       if (!isa<OverloadExpr>(E)) {
14534         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
14535         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
14536           << OrigOp.get()->getSourceRange();
14537         return QualType();
14538       }
14539 
14540       OverloadExpr *Ovl = cast<OverloadExpr>(E);
14541       if (isa<UnresolvedMemberExpr>(Ovl))
14542         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
14543           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14544             << OrigOp.get()->getSourceRange();
14545           return QualType();
14546         }
14547 
14548       return Context.OverloadTy;
14549     }
14550 
14551     if (PTy->getKind() == BuiltinType::UnknownAny)
14552       return Context.UnknownAnyTy;
14553 
14554     if (PTy->getKind() == BuiltinType::BoundMember) {
14555       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14556         << OrigOp.get()->getSourceRange();
14557       return QualType();
14558     }
14559 
14560     OrigOp = CheckPlaceholderExpr(OrigOp.get());
14561     if (OrigOp.isInvalid()) return QualType();
14562   }
14563 
14564   if (OrigOp.get()->isTypeDependent())
14565     return Context.DependentTy;
14566 
14567   assert(!OrigOp.get()->hasPlaceholderType());
14568 
14569   // Make sure to ignore parentheses in subsequent checks
14570   Expr *op = OrigOp.get()->IgnoreParens();
14571 
14572   // In OpenCL captures for blocks called as lambda functions
14573   // are located in the private address space. Blocks used in
14574   // enqueue_kernel can be located in a different address space
14575   // depending on a vendor implementation. Thus preventing
14576   // taking an address of the capture to avoid invalid AS casts.
14577   if (LangOpts.OpenCL) {
14578     auto* VarRef = dyn_cast<DeclRefExpr>(op);
14579     if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
14580       Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
14581       return QualType();
14582     }
14583   }
14584 
14585   if (getLangOpts().C99) {
14586     // Implement C99-only parts of addressof rules.
14587     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
14588       if (uOp->getOpcode() == UO_Deref)
14589         // Per C99 6.5.3.2, the address of a deref always returns a valid result
14590         // (assuming the deref expression is valid).
14591         return uOp->getSubExpr()->getType();
14592     }
14593     // Technically, there should be a check for array subscript
14594     // expressions here, but the result of one is always an lvalue anyway.
14595   }
14596   ValueDecl *dcl = getPrimaryDecl(op);
14597 
14598   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
14599     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
14600                                            op->getBeginLoc()))
14601       return QualType();
14602 
14603   Expr::LValueClassification lval = op->ClassifyLValue(Context);
14604   unsigned AddressOfError = AO_No_Error;
14605 
14606   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
14607     bool sfinae = (bool)isSFINAEContext();
14608     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
14609                                   : diag::ext_typecheck_addrof_temporary)
14610       << op->getType() << op->getSourceRange();
14611     if (sfinae)
14612       return QualType();
14613     // Materialize the temporary as an lvalue so that we can take its address.
14614     OrigOp = op =
14615         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
14616   } else if (isa<ObjCSelectorExpr>(op)) {
14617     return Context.getPointerType(op->getType());
14618   } else if (lval == Expr::LV_MemberFunction) {
14619     // If it's an instance method, make a member pointer.
14620     // The expression must have exactly the form &A::foo.
14621 
14622     // If the underlying expression isn't a decl ref, give up.
14623     if (!isa<DeclRefExpr>(op)) {
14624       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14625         << OrigOp.get()->getSourceRange();
14626       return QualType();
14627     }
14628     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
14629     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
14630 
14631     // The id-expression was parenthesized.
14632     if (OrigOp.get() != DRE) {
14633       Diag(OpLoc, diag::err_parens_pointer_member_function)
14634         << OrigOp.get()->getSourceRange();
14635 
14636     // The method was named without a qualifier.
14637     } else if (!DRE->getQualifier()) {
14638       if (MD->getParent()->getName().empty())
14639         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14640           << op->getSourceRange();
14641       else {
14642         SmallString<32> Str;
14643         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
14644         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
14645           << op->getSourceRange()
14646           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
14647       }
14648     }
14649 
14650     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
14651     if (isa<CXXDestructorDecl>(MD))
14652       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
14653 
14654     QualType MPTy = Context.getMemberPointerType(
14655         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
14656     // Under the MS ABI, lock down the inheritance model now.
14657     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14658       (void)isCompleteType(OpLoc, MPTy);
14659     return MPTy;
14660   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
14661     // C99 6.5.3.2p1
14662     // The operand must be either an l-value or a function designator
14663     if (!op->getType()->isFunctionType()) {
14664       // Use a special diagnostic for loads from property references.
14665       if (isa<PseudoObjectExpr>(op)) {
14666         AddressOfError = AO_Property_Expansion;
14667       } else {
14668         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
14669           << op->getType() << op->getSourceRange();
14670         return QualType();
14671       }
14672     }
14673   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
14674     // The operand cannot be a bit-field
14675     AddressOfError = AO_Bit_Field;
14676   } else if (op->getObjectKind() == OK_VectorComponent) {
14677     // The operand cannot be an element of a vector
14678     AddressOfError = AO_Vector_Element;
14679   } else if (op->getObjectKind() == OK_MatrixComponent) {
14680     // The operand cannot be an element of a matrix.
14681     AddressOfError = AO_Matrix_Element;
14682   } else if (dcl) { // C99 6.5.3.2p1
14683     // We have an lvalue with a decl. Make sure the decl is not declared
14684     // with the register storage-class specifier.
14685     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
14686       // in C++ it is not error to take address of a register
14687       // variable (c++03 7.1.1P3)
14688       if (vd->getStorageClass() == SC_Register &&
14689           !getLangOpts().CPlusPlus) {
14690         AddressOfError = AO_Register_Variable;
14691       }
14692     } else if (isa<MSPropertyDecl>(dcl)) {
14693       AddressOfError = AO_Property_Expansion;
14694     } else if (isa<FunctionTemplateDecl>(dcl)) {
14695       return Context.OverloadTy;
14696     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
14697       // Okay: we can take the address of a field.
14698       // Could be a pointer to member, though, if there is an explicit
14699       // scope qualifier for the class.
14700       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
14701         DeclContext *Ctx = dcl->getDeclContext();
14702         if (Ctx && Ctx->isRecord()) {
14703           if (dcl->getType()->isReferenceType()) {
14704             Diag(OpLoc,
14705                  diag::err_cannot_form_pointer_to_member_of_reference_type)
14706               << dcl->getDeclName() << dcl->getType();
14707             return QualType();
14708           }
14709 
14710           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
14711             Ctx = Ctx->getParent();
14712 
14713           QualType MPTy = Context.getMemberPointerType(
14714               op->getType(),
14715               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
14716           // Under the MS ABI, lock down the inheritance model now.
14717           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14718             (void)isCompleteType(OpLoc, MPTy);
14719           return MPTy;
14720         }
14721       }
14722     } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
14723                     MSGuidDecl, UnnamedGlobalConstantDecl>(dcl))
14724       llvm_unreachable("Unknown/unexpected decl type");
14725   }
14726 
14727   if (AddressOfError != AO_No_Error) {
14728     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
14729     return QualType();
14730   }
14731 
14732   if (lval == Expr::LV_IncompleteVoidType) {
14733     // Taking the address of a void variable is technically illegal, but we
14734     // allow it in cases which are otherwise valid.
14735     // Example: "extern void x; void* y = &x;".
14736     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
14737   }
14738 
14739   // If the operand has type "type", the result has type "pointer to type".
14740   if (op->getType()->isObjCObjectType())
14741     return Context.getObjCObjectPointerType(op->getType());
14742 
14743   CheckAddressOfPackedMember(op);
14744 
14745   return Context.getPointerType(op->getType());
14746 }
14747 
14748 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
14749   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
14750   if (!DRE)
14751     return;
14752   const Decl *D = DRE->getDecl();
14753   if (!D)
14754     return;
14755   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
14756   if (!Param)
14757     return;
14758   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
14759     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
14760       return;
14761   if (FunctionScopeInfo *FD = S.getCurFunction())
14762     FD->ModifiedNonNullParams.insert(Param);
14763 }
14764 
14765 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
14766 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
14767                                         SourceLocation OpLoc,
14768                                         bool IsAfterAmp = false) {
14769   if (Op->isTypeDependent())
14770     return S.Context.DependentTy;
14771 
14772   ExprResult ConvResult = S.UsualUnaryConversions(Op);
14773   if (ConvResult.isInvalid())
14774     return QualType();
14775   Op = ConvResult.get();
14776   QualType OpTy = Op->getType();
14777   QualType Result;
14778 
14779   if (isa<CXXReinterpretCastExpr>(Op)) {
14780     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
14781     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
14782                                      Op->getSourceRange());
14783   }
14784 
14785   if (const PointerType *PT = OpTy->getAs<PointerType>())
14786   {
14787     Result = PT->getPointeeType();
14788   }
14789   else if (const ObjCObjectPointerType *OPT =
14790              OpTy->getAs<ObjCObjectPointerType>())
14791     Result = OPT->getPointeeType();
14792   else {
14793     ExprResult PR = S.CheckPlaceholderExpr(Op);
14794     if (PR.isInvalid()) return QualType();
14795     if (PR.get() != Op)
14796       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
14797   }
14798 
14799   if (Result.isNull()) {
14800     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
14801       << OpTy << Op->getSourceRange();
14802     return QualType();
14803   }
14804 
14805   if (Result->isVoidType()) {
14806     // C++ [expr.unary.op]p1:
14807     //   [...] the expression to which [the unary * operator] is applied shall
14808     //   be a pointer to an object type, or a pointer to a function type
14809     LangOptions LO = S.getLangOpts();
14810     if (LO.CPlusPlus)
14811       S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer_cpp)
14812           << OpTy << Op->getSourceRange();
14813     else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext())
14814       S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
14815           << OpTy << Op->getSourceRange();
14816   }
14817 
14818   // Dereferences are usually l-values...
14819   VK = VK_LValue;
14820 
14821   // ...except that certain expressions are never l-values in C.
14822   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
14823     VK = VK_PRValue;
14824 
14825   return Result;
14826 }
14827 
14828 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
14829   BinaryOperatorKind Opc;
14830   switch (Kind) {
14831   default: llvm_unreachable("Unknown binop!");
14832   case tok::periodstar:           Opc = BO_PtrMemD; break;
14833   case tok::arrowstar:            Opc = BO_PtrMemI; break;
14834   case tok::star:                 Opc = BO_Mul; break;
14835   case tok::slash:                Opc = BO_Div; break;
14836   case tok::percent:              Opc = BO_Rem; break;
14837   case tok::plus:                 Opc = BO_Add; break;
14838   case tok::minus:                Opc = BO_Sub; break;
14839   case tok::lessless:             Opc = BO_Shl; break;
14840   case tok::greatergreater:       Opc = BO_Shr; break;
14841   case tok::lessequal:            Opc = BO_LE; break;
14842   case tok::less:                 Opc = BO_LT; break;
14843   case tok::greaterequal:         Opc = BO_GE; break;
14844   case tok::greater:              Opc = BO_GT; break;
14845   case tok::exclaimequal:         Opc = BO_NE; break;
14846   case tok::equalequal:           Opc = BO_EQ; break;
14847   case tok::spaceship:            Opc = BO_Cmp; break;
14848   case tok::amp:                  Opc = BO_And; break;
14849   case tok::caret:                Opc = BO_Xor; break;
14850   case tok::pipe:                 Opc = BO_Or; break;
14851   case tok::ampamp:               Opc = BO_LAnd; break;
14852   case tok::pipepipe:             Opc = BO_LOr; break;
14853   case tok::equal:                Opc = BO_Assign; break;
14854   case tok::starequal:            Opc = BO_MulAssign; break;
14855   case tok::slashequal:           Opc = BO_DivAssign; break;
14856   case tok::percentequal:         Opc = BO_RemAssign; break;
14857   case tok::plusequal:            Opc = BO_AddAssign; break;
14858   case tok::minusequal:           Opc = BO_SubAssign; break;
14859   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
14860   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
14861   case tok::ampequal:             Opc = BO_AndAssign; break;
14862   case tok::caretequal:           Opc = BO_XorAssign; break;
14863   case tok::pipeequal:            Opc = BO_OrAssign; break;
14864   case tok::comma:                Opc = BO_Comma; break;
14865   }
14866   return Opc;
14867 }
14868 
14869 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
14870   tok::TokenKind Kind) {
14871   UnaryOperatorKind Opc;
14872   switch (Kind) {
14873   default: llvm_unreachable("Unknown unary op!");
14874   case tok::plusplus:     Opc = UO_PreInc; break;
14875   case tok::minusminus:   Opc = UO_PreDec; break;
14876   case tok::amp:          Opc = UO_AddrOf; break;
14877   case tok::star:         Opc = UO_Deref; break;
14878   case tok::plus:         Opc = UO_Plus; break;
14879   case tok::minus:        Opc = UO_Minus; break;
14880   case tok::tilde:        Opc = UO_Not; break;
14881   case tok::exclaim:      Opc = UO_LNot; break;
14882   case tok::kw___real:    Opc = UO_Real; break;
14883   case tok::kw___imag:    Opc = UO_Imag; break;
14884   case tok::kw___extension__: Opc = UO_Extension; break;
14885   }
14886   return Opc;
14887 }
14888 
14889 const FieldDecl *
14890 Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
14891   // Explore the case for adding 'this->' to the LHS of a self assignment, very
14892   // common for setters.
14893   // struct A {
14894   // int X;
14895   // -void setX(int X) { X = X; }
14896   // +void setX(int X) { this->X = X; }
14897   // };
14898 
14899   // Only consider parameters for self assignment fixes.
14900   if (!isa<ParmVarDecl>(SelfAssigned))
14901     return nullptr;
14902   const auto *Method =
14903       dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true));
14904   if (!Method)
14905     return nullptr;
14906 
14907   const CXXRecordDecl *Parent = Method->getParent();
14908   // In theory this is fixable if the lambda explicitly captures this, but
14909   // that's added complexity that's rarely going to be used.
14910   if (Parent->isLambda())
14911     return nullptr;
14912 
14913   // FIXME: Use an actual Lookup operation instead of just traversing fields
14914   // in order to get base class fields.
14915   auto Field =
14916       llvm::find_if(Parent->fields(),
14917                     [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
14918                       return F->getDeclName() == Name;
14919                     });
14920   return (Field != Parent->field_end()) ? *Field : nullptr;
14921 }
14922 
14923 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
14924 /// This warning suppressed in the event of macro expansions.
14925 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
14926                                    SourceLocation OpLoc, bool IsBuiltin) {
14927   if (S.inTemplateInstantiation())
14928     return;
14929   if (S.isUnevaluatedContext())
14930     return;
14931   if (OpLoc.isInvalid() || OpLoc.isMacroID())
14932     return;
14933   LHSExpr = LHSExpr->IgnoreParenImpCasts();
14934   RHSExpr = RHSExpr->IgnoreParenImpCasts();
14935   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
14936   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
14937   if (!LHSDeclRef || !RHSDeclRef ||
14938       LHSDeclRef->getLocation().isMacroID() ||
14939       RHSDeclRef->getLocation().isMacroID())
14940     return;
14941   const ValueDecl *LHSDecl =
14942     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
14943   const ValueDecl *RHSDecl =
14944     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
14945   if (LHSDecl != RHSDecl)
14946     return;
14947   if (LHSDecl->getType().isVolatileQualified())
14948     return;
14949   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14950     if (RefTy->getPointeeType().isVolatileQualified())
14951       return;
14952 
14953   auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
14954                                       : diag::warn_self_assignment_overloaded)
14955               << LHSDeclRef->getType() << LHSExpr->getSourceRange()
14956               << RHSExpr->getSourceRange();
14957   if (const FieldDecl *SelfAssignField =
14958           S.getSelfAssignmentClassMemberCandidate(RHSDecl))
14959     Diag << 1 << SelfAssignField
14960          << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
14961   else
14962     Diag << 0;
14963 }
14964 
14965 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
14966 /// is usually indicative of introspection within the Objective-C pointer.
14967 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
14968                                           SourceLocation OpLoc) {
14969   if (!S.getLangOpts().ObjC)
14970     return;
14971 
14972   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
14973   const Expr *LHS = L.get();
14974   const Expr *RHS = R.get();
14975 
14976   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14977     ObjCPointerExpr = LHS;
14978     OtherExpr = RHS;
14979   }
14980   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14981     ObjCPointerExpr = RHS;
14982     OtherExpr = LHS;
14983   }
14984 
14985   // This warning is deliberately made very specific to reduce false
14986   // positives with logic that uses '&' for hashing.  This logic mainly
14987   // looks for code trying to introspect into tagged pointers, which
14988   // code should generally never do.
14989   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
14990     unsigned Diag = diag::warn_objc_pointer_masking;
14991     // Determine if we are introspecting the result of performSelectorXXX.
14992     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
14993     // Special case messages to -performSelector and friends, which
14994     // can return non-pointer values boxed in a pointer value.
14995     // Some clients may wish to silence warnings in this subcase.
14996     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
14997       Selector S = ME->getSelector();
14998       StringRef SelArg0 = S.getNameForSlot(0);
14999       if (SelArg0.startswith("performSelector"))
15000         Diag = diag::warn_objc_pointer_masking_performSelector;
15001     }
15002 
15003     S.Diag(OpLoc, Diag)
15004       << ObjCPointerExpr->getSourceRange();
15005   }
15006 }
15007 
15008 static NamedDecl *getDeclFromExpr(Expr *E) {
15009   if (!E)
15010     return nullptr;
15011   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
15012     return DRE->getDecl();
15013   if (auto *ME = dyn_cast<MemberExpr>(E))
15014     return ME->getMemberDecl();
15015   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
15016     return IRE->getDecl();
15017   return nullptr;
15018 }
15019 
15020 // This helper function promotes a binary operator's operands (which are of a
15021 // half vector type) to a vector of floats and then truncates the result to
15022 // a vector of either half or short.
15023 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
15024                                       BinaryOperatorKind Opc, QualType ResultTy,
15025                                       ExprValueKind VK, ExprObjectKind OK,
15026                                       bool IsCompAssign, SourceLocation OpLoc,
15027                                       FPOptionsOverride FPFeatures) {
15028   auto &Context = S.getASTContext();
15029   assert((isVector(ResultTy, Context.HalfTy) ||
15030           isVector(ResultTy, Context.ShortTy)) &&
15031          "Result must be a vector of half or short");
15032   assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
15033          isVector(RHS.get()->getType(), Context.HalfTy) &&
15034          "both operands expected to be a half vector");
15035 
15036   RHS = convertVector(RHS.get(), Context.FloatTy, S);
15037   QualType BinOpResTy = RHS.get()->getType();
15038 
15039   // If Opc is a comparison, ResultType is a vector of shorts. In that case,
15040   // change BinOpResTy to a vector of ints.
15041   if (isVector(ResultTy, Context.ShortTy))
15042     BinOpResTy = S.GetSignedVectorType(BinOpResTy);
15043 
15044   if (IsCompAssign)
15045     return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15046                                           ResultTy, VK, OK, OpLoc, FPFeatures,
15047                                           BinOpResTy, BinOpResTy);
15048 
15049   LHS = convertVector(LHS.get(), Context.FloatTy, S);
15050   auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
15051                                     BinOpResTy, VK, OK, OpLoc, FPFeatures);
15052   return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
15053 }
15054 
15055 static std::pair<ExprResult, ExprResult>
15056 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
15057                            Expr *RHSExpr) {
15058   ExprResult LHS = LHSExpr, RHS = RHSExpr;
15059   if (!S.Context.isDependenceAllowed()) {
15060     // C cannot handle TypoExpr nodes on either side of a binop because it
15061     // doesn't handle dependent types properly, so make sure any TypoExprs have
15062     // been dealt with before checking the operands.
15063     LHS = S.CorrectDelayedTyposInExpr(LHS);
15064     RHS = S.CorrectDelayedTyposInExpr(
15065         RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
15066         [Opc, LHS](Expr *E) {
15067           if (Opc != BO_Assign)
15068             return ExprResult(E);
15069           // Avoid correcting the RHS to the same Expr as the LHS.
15070           Decl *D = getDeclFromExpr(E);
15071           return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
15072         });
15073   }
15074   return std::make_pair(LHS, RHS);
15075 }
15076 
15077 /// Returns true if conversion between vectors of halfs and vectors of floats
15078 /// is needed.
15079 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
15080                                      Expr *E0, Expr *E1 = nullptr) {
15081   if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
15082       Ctx.getTargetInfo().useFP16ConversionIntrinsics())
15083     return false;
15084 
15085   auto HasVectorOfHalfType = [&Ctx](Expr *E) {
15086     QualType Ty = E->IgnoreImplicit()->getType();
15087 
15088     // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
15089     // to vectors of floats. Although the element type of the vectors is __fp16,
15090     // the vectors shouldn't be treated as storage-only types. See the
15091     // discussion here: https://reviews.llvm.org/rG825235c140e7
15092     if (const VectorType *VT = Ty->getAs<VectorType>()) {
15093       if (VT->getVectorKind() == VectorType::NeonVector)
15094         return false;
15095       return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
15096     }
15097     return false;
15098   };
15099 
15100   return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
15101 }
15102 
15103 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
15104 /// operator @p Opc at location @c TokLoc. This routine only supports
15105 /// built-in operations; ActOnBinOp handles overloaded operators.
15106 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
15107                                     BinaryOperatorKind Opc,
15108                                     Expr *LHSExpr, Expr *RHSExpr) {
15109   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
15110     // The syntax only allows initializer lists on the RHS of assignment,
15111     // so we don't need to worry about accepting invalid code for
15112     // non-assignment operators.
15113     // C++11 5.17p9:
15114     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
15115     //   of x = {} is x = T().
15116     InitializationKind Kind = InitializationKind::CreateDirectList(
15117         RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15118     InitializedEntity Entity =
15119         InitializedEntity::InitializeTemporary(LHSExpr->getType());
15120     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
15121     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
15122     if (Init.isInvalid())
15123       return Init;
15124     RHSExpr = Init.get();
15125   }
15126 
15127   ExprResult LHS = LHSExpr, RHS = RHSExpr;
15128   QualType ResultTy;     // Result type of the binary operator.
15129   // The following two variables are used for compound assignment operators
15130   QualType CompLHSTy;    // Type of LHS after promotions for computation
15131   QualType CompResultTy; // Type of computation result
15132   ExprValueKind VK = VK_PRValue;
15133   ExprObjectKind OK = OK_Ordinary;
15134   bool ConvertHalfVec = false;
15135 
15136   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15137   if (!LHS.isUsable() || !RHS.isUsable())
15138     return ExprError();
15139 
15140   if (getLangOpts().OpenCL) {
15141     QualType LHSTy = LHSExpr->getType();
15142     QualType RHSTy = RHSExpr->getType();
15143     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
15144     // the ATOMIC_VAR_INIT macro.
15145     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
15146       SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
15147       if (BO_Assign == Opc)
15148         Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
15149       else
15150         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15151       return ExprError();
15152     }
15153 
15154     // OpenCL special types - image, sampler, pipe, and blocks are to be used
15155     // only with a builtin functions and therefore should be disallowed here.
15156     if (LHSTy->isImageType() || RHSTy->isImageType() ||
15157         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
15158         LHSTy->isPipeType() || RHSTy->isPipeType() ||
15159         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
15160       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
15161       return ExprError();
15162     }
15163   }
15164 
15165   checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15166   checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
15167 
15168   switch (Opc) {
15169   case BO_Assign:
15170     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc);
15171     if (getLangOpts().CPlusPlus &&
15172         LHS.get()->getObjectKind() != OK_ObjCProperty) {
15173       VK = LHS.get()->getValueKind();
15174       OK = LHS.get()->getObjectKind();
15175     }
15176     if (!ResultTy.isNull()) {
15177       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15178       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
15179 
15180       // Avoid copying a block to the heap if the block is assigned to a local
15181       // auto variable that is declared in the same scope as the block. This
15182       // optimization is unsafe if the local variable is declared in an outer
15183       // scope. For example:
15184       //
15185       // BlockTy b;
15186       // {
15187       //   b = ^{...};
15188       // }
15189       // // It is unsafe to invoke the block here if it wasn't copied to the
15190       // // heap.
15191       // b();
15192 
15193       if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
15194         if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
15195           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
15196             if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
15197               BE->getBlockDecl()->setCanAvoidCopyToHeap();
15198 
15199       if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
15200         checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
15201                               NTCUC_Assignment, NTCUK_Copy);
15202     }
15203     RecordModifiableNonNullParam(*this, LHS.get());
15204     break;
15205   case BO_PtrMemD:
15206   case BO_PtrMemI:
15207     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
15208                                             Opc == BO_PtrMemI);
15209     break;
15210   case BO_Mul:
15211   case BO_Div:
15212     ConvertHalfVec = true;
15213     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
15214                                            Opc == BO_Div);
15215     break;
15216   case BO_Rem:
15217     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
15218     break;
15219   case BO_Add:
15220     ConvertHalfVec = true;
15221     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
15222     break;
15223   case BO_Sub:
15224     ConvertHalfVec = true;
15225     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
15226     break;
15227   case BO_Shl:
15228   case BO_Shr:
15229     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
15230     break;
15231   case BO_LE:
15232   case BO_LT:
15233   case BO_GE:
15234   case BO_GT:
15235     ConvertHalfVec = true;
15236     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15237     break;
15238   case BO_EQ:
15239   case BO_NE:
15240     ConvertHalfVec = true;
15241     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15242     break;
15243   case BO_Cmp:
15244     ConvertHalfVec = true;
15245     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
15246     assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
15247     break;
15248   case BO_And:
15249     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
15250     [[fallthrough]];
15251   case BO_Xor:
15252   case BO_Or:
15253     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15254     break;
15255   case BO_LAnd:
15256   case BO_LOr:
15257     ConvertHalfVec = true;
15258     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
15259     break;
15260   case BO_MulAssign:
15261   case BO_DivAssign:
15262     ConvertHalfVec = true;
15263     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
15264                                                Opc == BO_DivAssign);
15265     CompLHSTy = CompResultTy;
15266     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15267       ResultTy =
15268           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15269     break;
15270   case BO_RemAssign:
15271     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
15272     CompLHSTy = CompResultTy;
15273     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15274       ResultTy =
15275           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15276     break;
15277   case BO_AddAssign:
15278     ConvertHalfVec = true;
15279     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
15280     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15281       ResultTy =
15282           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15283     break;
15284   case BO_SubAssign:
15285     ConvertHalfVec = true;
15286     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
15287     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15288       ResultTy =
15289           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15290     break;
15291   case BO_ShlAssign:
15292   case BO_ShrAssign:
15293     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
15294     CompLHSTy = CompResultTy;
15295     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15296       ResultTy =
15297           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15298     break;
15299   case BO_AndAssign:
15300   case BO_OrAssign: // fallthrough
15301     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
15302     [[fallthrough]];
15303   case BO_XorAssign:
15304     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
15305     CompLHSTy = CompResultTy;
15306     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
15307       ResultTy =
15308           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
15309     break;
15310   case BO_Comma:
15311     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
15312     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
15313       VK = RHS.get()->getValueKind();
15314       OK = RHS.get()->getObjectKind();
15315     }
15316     break;
15317   }
15318   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
15319     return ExprError();
15320 
15321   // Some of the binary operations require promoting operands of half vector to
15322   // float vectors and truncating the result back to half vector. For now, we do
15323   // this only when HalfArgsAndReturn is set (that is, when the target is arm or
15324   // arm64).
15325   assert(
15326       (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
15327                               isVector(LHS.get()->getType(), Context.HalfTy)) &&
15328       "both sides are half vectors or neither sides are");
15329   ConvertHalfVec =
15330       needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
15331 
15332   // Check for array bounds violations for both sides of the BinaryOperator
15333   CheckArrayAccess(LHS.get());
15334   CheckArrayAccess(RHS.get());
15335 
15336   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
15337     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
15338                                                  &Context.Idents.get("object_setClass"),
15339                                                  SourceLocation(), LookupOrdinaryName);
15340     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
15341       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
15342       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
15343           << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
15344                                         "object_setClass(")
15345           << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
15346                                           ",")
15347           << FixItHint::CreateInsertion(RHSLocEnd, ")");
15348     }
15349     else
15350       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
15351   }
15352   else if (const ObjCIvarRefExpr *OIRE =
15353            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
15354     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
15355 
15356   // Opc is not a compound assignment if CompResultTy is null.
15357   if (CompResultTy.isNull()) {
15358     if (ConvertHalfVec)
15359       return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
15360                                  OpLoc, CurFPFeatureOverrides());
15361     return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
15362                                   VK, OK, OpLoc, CurFPFeatureOverrides());
15363   }
15364 
15365   // Handle compound assignments.
15366   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
15367       OK_ObjCProperty) {
15368     VK = VK_LValue;
15369     OK = LHS.get()->getObjectKind();
15370   }
15371 
15372   // The LHS is not converted to the result type for fixed-point compound
15373   // assignment as the common type is computed on demand. Reset the CompLHSTy
15374   // to the LHS type we would have gotten after unary conversions.
15375   if (CompResultTy->isFixedPointType())
15376     CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
15377 
15378   if (ConvertHalfVec)
15379     return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
15380                                OpLoc, CurFPFeatureOverrides());
15381 
15382   return CompoundAssignOperator::Create(
15383       Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
15384       CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
15385 }
15386 
15387 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
15388 /// operators are mixed in a way that suggests that the programmer forgot that
15389 /// comparison operators have higher precedence. The most typical example of
15390 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
15391 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
15392                                       SourceLocation OpLoc, Expr *LHSExpr,
15393                                       Expr *RHSExpr) {
15394   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
15395   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
15396 
15397   // Check that one of the sides is a comparison operator and the other isn't.
15398   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
15399   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
15400   if (isLeftComp == isRightComp)
15401     return;
15402 
15403   // Bitwise operations are sometimes used as eager logical ops.
15404   // Don't diagnose this.
15405   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
15406   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
15407   if (isLeftBitwise || isRightBitwise)
15408     return;
15409 
15410   SourceRange DiagRange = isLeftComp
15411                               ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
15412                               : SourceRange(OpLoc, RHSExpr->getEndLoc());
15413   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
15414   SourceRange ParensRange =
15415       isLeftComp
15416           ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
15417           : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
15418 
15419   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
15420     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
15421   SuggestParentheses(Self, OpLoc,
15422     Self.PDiag(diag::note_precedence_silence) << OpStr,
15423     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
15424   SuggestParentheses(Self, OpLoc,
15425     Self.PDiag(diag::note_precedence_bitwise_first)
15426       << BinaryOperator::getOpcodeStr(Opc),
15427     ParensRange);
15428 }
15429 
15430 /// It accepts a '&&' expr that is inside a '||' one.
15431 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
15432 /// in parentheses.
15433 static void
15434 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
15435                                        BinaryOperator *Bop) {
15436   assert(Bop->getOpcode() == BO_LAnd);
15437   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
15438       << Bop->getSourceRange() << OpLoc;
15439   SuggestParentheses(Self, Bop->getOperatorLoc(),
15440     Self.PDiag(diag::note_precedence_silence)
15441       << Bop->getOpcodeStr(),
15442     Bop->getSourceRange());
15443 }
15444 
15445 /// Look for '&&' in the left hand of a '||' expr.
15446 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
15447                                              Expr *LHSExpr, Expr *RHSExpr) {
15448   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
15449     if (Bop->getOpcode() == BO_LAnd) {
15450       // If it's "string_literal && a || b" don't warn since the precedence
15451       // doesn't matter.
15452       if (!isa<StringLiteral>(Bop->getLHS()->IgnoreParenImpCasts()))
15453         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15454     } else if (Bop->getOpcode() == BO_LOr) {
15455       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
15456         // If it's "a || b && string_literal || c" we didn't warn earlier for
15457         // "a || b && string_literal", but warn now.
15458         if (RBop->getOpcode() == BO_LAnd &&
15459             isa<StringLiteral>(RBop->getRHS()->IgnoreParenImpCasts()))
15460           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
15461       }
15462     }
15463   }
15464 }
15465 
15466 /// Look for '&&' in the right hand of a '||' expr.
15467 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
15468                                              Expr *LHSExpr, Expr *RHSExpr) {
15469   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
15470     if (Bop->getOpcode() == BO_LAnd) {
15471       // If it's "a || b && string_literal" don't warn since the precedence
15472       // doesn't matter.
15473       if (!isa<StringLiteral>(Bop->getRHS()->IgnoreParenImpCasts()))
15474         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
15475     }
15476   }
15477 }
15478 
15479 /// Look for bitwise op in the left or right hand of a bitwise op with
15480 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
15481 /// the '&' expression in parentheses.
15482 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
15483                                          SourceLocation OpLoc, Expr *SubExpr) {
15484   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15485     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
15486       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
15487         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
15488         << Bop->getSourceRange() << OpLoc;
15489       SuggestParentheses(S, Bop->getOperatorLoc(),
15490         S.PDiag(diag::note_precedence_silence)
15491           << Bop->getOpcodeStr(),
15492         Bop->getSourceRange());
15493     }
15494   }
15495 }
15496 
15497 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
15498                                     Expr *SubExpr, StringRef Shift) {
15499   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
15500     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
15501       StringRef Op = Bop->getOpcodeStr();
15502       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
15503           << Bop->getSourceRange() << OpLoc << Shift << Op;
15504       SuggestParentheses(S, Bop->getOperatorLoc(),
15505           S.PDiag(diag::note_precedence_silence) << Op,
15506           Bop->getSourceRange());
15507     }
15508   }
15509 }
15510 
15511 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15512                                  Expr *LHSExpr, Expr *RHSExpr) {
15513   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
15514   if (!OCE)
15515     return;
15516 
15517   FunctionDecl *FD = OCE->getDirectCallee();
15518   if (!FD || !FD->isOverloadedOperator())
15519     return;
15520 
15521   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
15522   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
15523     return;
15524 
15525   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
15526       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
15527       << (Kind == OO_LessLess);
15528   SuggestParentheses(S, OCE->getOperatorLoc(),
15529                      S.PDiag(diag::note_precedence_silence)
15530                          << (Kind == OO_LessLess ? "<<" : ">>"),
15531                      OCE->getSourceRange());
15532   SuggestParentheses(
15533       S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
15534       SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
15535 }
15536 
15537 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
15538 /// precedence.
15539 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
15540                                     SourceLocation OpLoc, Expr *LHSExpr,
15541                                     Expr *RHSExpr){
15542   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
15543   if (BinaryOperator::isBitwiseOp(Opc))
15544     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
15545 
15546   // Diagnose "arg1 & arg2 | arg3"
15547   if ((Opc == BO_Or || Opc == BO_Xor) &&
15548       !OpLoc.isMacroID()/* Don't warn in macros. */) {
15549     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
15550     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
15551   }
15552 
15553   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
15554   // We don't warn for 'assert(a || b && "bad")' since this is safe.
15555   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
15556     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
15557     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
15558   }
15559 
15560   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
15561       || Opc == BO_Shr) {
15562     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
15563     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
15564     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
15565   }
15566 
15567   // Warn on overloaded shift operators and comparisons, such as:
15568   // cout << 5 == 4;
15569   if (BinaryOperator::isComparisonOp(Opc))
15570     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
15571 }
15572 
15573 // Binary Operators.  'Tok' is the token for the operator.
15574 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
15575                             tok::TokenKind Kind,
15576                             Expr *LHSExpr, Expr *RHSExpr) {
15577   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
15578   assert(LHSExpr && "ActOnBinOp(): missing left expression");
15579   assert(RHSExpr && "ActOnBinOp(): missing right expression");
15580 
15581   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
15582   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
15583 
15584   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
15585 }
15586 
15587 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
15588                        UnresolvedSetImpl &Functions) {
15589   OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
15590   if (OverOp != OO_None && OverOp != OO_Equal)
15591     LookupOverloadedOperatorName(OverOp, S, Functions);
15592 
15593   // In C++20 onwards, we may have a second operator to look up.
15594   if (getLangOpts().CPlusPlus20) {
15595     if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
15596       LookupOverloadedOperatorName(ExtraOp, S, Functions);
15597   }
15598 }
15599 
15600 /// Build an overloaded binary operator expression in the given scope.
15601 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
15602                                        BinaryOperatorKind Opc,
15603                                        Expr *LHS, Expr *RHS) {
15604   switch (Opc) {
15605   case BO_Assign:
15606   case BO_DivAssign:
15607   case BO_RemAssign:
15608   case BO_SubAssign:
15609   case BO_AndAssign:
15610   case BO_OrAssign:
15611   case BO_XorAssign:
15612     DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
15613     CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
15614     break;
15615   default:
15616     break;
15617   }
15618 
15619   // Find all of the overloaded operators visible from this point.
15620   UnresolvedSet<16> Functions;
15621   S.LookupBinOp(Sc, OpLoc, Opc, Functions);
15622 
15623   // Build the (potentially-overloaded, potentially-dependent)
15624   // binary operation.
15625   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
15626 }
15627 
15628 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
15629                             BinaryOperatorKind Opc,
15630                             Expr *LHSExpr, Expr *RHSExpr) {
15631   ExprResult LHS, RHS;
15632   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15633   if (!LHS.isUsable() || !RHS.isUsable())
15634     return ExprError();
15635   LHSExpr = LHS.get();
15636   RHSExpr = RHS.get();
15637 
15638   // We want to end up calling one of checkPseudoObjectAssignment
15639   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
15640   // both expressions are overloadable or either is type-dependent),
15641   // or CreateBuiltinBinOp (in any other case).  We also want to get
15642   // any placeholder types out of the way.
15643 
15644   // Handle pseudo-objects in the LHS.
15645   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
15646     // Assignments with a pseudo-object l-value need special analysis.
15647     if (pty->getKind() == BuiltinType::PseudoObject &&
15648         BinaryOperator::isAssignmentOp(Opc))
15649       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
15650 
15651     // Don't resolve overloads if the other type is overloadable.
15652     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
15653       // We can't actually test that if we still have a placeholder,
15654       // though.  Fortunately, none of the exceptions we see in that
15655       // code below are valid when the LHS is an overload set.  Note
15656       // that an overload set can be dependently-typed, but it never
15657       // instantiates to having an overloadable type.
15658       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15659       if (resolvedRHS.isInvalid()) return ExprError();
15660       RHSExpr = resolvedRHS.get();
15661 
15662       if (RHSExpr->isTypeDependent() ||
15663           RHSExpr->getType()->isOverloadableType())
15664         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15665     }
15666 
15667     // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
15668     // template, diagnose the missing 'template' keyword instead of diagnosing
15669     // an invalid use of a bound member function.
15670     //
15671     // Note that "A::x < b" might be valid if 'b' has an overloadable type due
15672     // to C++1z [over.over]/1.4, but we already checked for that case above.
15673     if (Opc == BO_LT && inTemplateInstantiation() &&
15674         (pty->getKind() == BuiltinType::BoundMember ||
15675          pty->getKind() == BuiltinType::Overload)) {
15676       auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
15677       if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
15678           llvm::any_of(OE->decls(), [](NamedDecl *ND) {
15679             return isa<FunctionTemplateDecl>(ND);
15680           })) {
15681         Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
15682                                 : OE->getNameLoc(),
15683              diag::err_template_kw_missing)
15684           << OE->getName().getAsString() << "";
15685         return ExprError();
15686       }
15687     }
15688 
15689     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
15690     if (LHS.isInvalid()) return ExprError();
15691     LHSExpr = LHS.get();
15692   }
15693 
15694   // Handle pseudo-objects in the RHS.
15695   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
15696     // An overload in the RHS can potentially be resolved by the type
15697     // being assigned to.
15698     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
15699       if (getLangOpts().CPlusPlus &&
15700           (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15701            LHSExpr->getType()->isOverloadableType()))
15702         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15703 
15704       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15705     }
15706 
15707     // Don't resolve overloads if the other type is overloadable.
15708     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
15709         LHSExpr->getType()->isOverloadableType())
15710       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15711 
15712     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15713     if (!resolvedRHS.isUsable()) return ExprError();
15714     RHSExpr = resolvedRHS.get();
15715   }
15716 
15717   if (getLangOpts().CPlusPlus) {
15718     // If either expression is type-dependent, always build an
15719     // overloaded op.
15720     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
15721       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15722 
15723     // Otherwise, build an overloaded op if either expression has an
15724     // overloadable type.
15725     if (LHSExpr->getType()->isOverloadableType() ||
15726         RHSExpr->getType()->isOverloadableType())
15727       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15728   }
15729 
15730   if (getLangOpts().RecoveryAST &&
15731       (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
15732     assert(!getLangOpts().CPlusPlus);
15733     assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
15734            "Should only occur in error-recovery path.");
15735     if (BinaryOperator::isCompoundAssignmentOp(Opc))
15736       // C [6.15.16] p3:
15737       // An assignment expression has the value of the left operand after the
15738       // assignment, but is not an lvalue.
15739       return CompoundAssignOperator::Create(
15740           Context, LHSExpr, RHSExpr, Opc,
15741           LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
15742           OpLoc, CurFPFeatureOverrides());
15743     QualType ResultType;
15744     switch (Opc) {
15745     case BO_Assign:
15746       ResultType = LHSExpr->getType().getUnqualifiedType();
15747       break;
15748     case BO_LT:
15749     case BO_GT:
15750     case BO_LE:
15751     case BO_GE:
15752     case BO_EQ:
15753     case BO_NE:
15754     case BO_LAnd:
15755     case BO_LOr:
15756       // These operators have a fixed result type regardless of operands.
15757       ResultType = Context.IntTy;
15758       break;
15759     case BO_Comma:
15760       ResultType = RHSExpr->getType();
15761       break;
15762     default:
15763       ResultType = Context.DependentTy;
15764       break;
15765     }
15766     return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
15767                                   VK_PRValue, OK_Ordinary, OpLoc,
15768                                   CurFPFeatureOverrides());
15769   }
15770 
15771   // Build a built-in binary operation.
15772   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15773 }
15774 
15775 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
15776   if (T.isNull() || T->isDependentType())
15777     return false;
15778 
15779   if (!Ctx.isPromotableIntegerType(T))
15780     return true;
15781 
15782   return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
15783 }
15784 
15785 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
15786                                       UnaryOperatorKind Opc, Expr *InputExpr,
15787                                       bool IsAfterAmp) {
15788   ExprResult Input = InputExpr;
15789   ExprValueKind VK = VK_PRValue;
15790   ExprObjectKind OK = OK_Ordinary;
15791   QualType resultType;
15792   bool CanOverflow = false;
15793 
15794   bool ConvertHalfVec = false;
15795   if (getLangOpts().OpenCL) {
15796     QualType Ty = InputExpr->getType();
15797     // The only legal unary operation for atomics is '&'.
15798     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
15799     // OpenCL special types - image, sampler, pipe, and blocks are to be used
15800     // only with a builtin functions and therefore should be disallowed here.
15801         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
15802         || Ty->isBlockPointerType())) {
15803       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15804                        << InputExpr->getType()
15805                        << Input.get()->getSourceRange());
15806     }
15807   }
15808 
15809   if (getLangOpts().HLSL && OpLoc.isValid()) {
15810     if (Opc == UO_AddrOf)
15811       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
15812     if (Opc == UO_Deref)
15813       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
15814   }
15815 
15816   switch (Opc) {
15817   case UO_PreInc:
15818   case UO_PreDec:
15819   case UO_PostInc:
15820   case UO_PostDec:
15821     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
15822                                                 OpLoc,
15823                                                 Opc == UO_PreInc ||
15824                                                 Opc == UO_PostInc,
15825                                                 Opc == UO_PreInc ||
15826                                                 Opc == UO_PreDec);
15827     CanOverflow = isOverflowingIntegerType(Context, resultType);
15828     break;
15829   case UO_AddrOf:
15830     resultType = CheckAddressOfOperand(Input, OpLoc);
15831     CheckAddressOfNoDeref(InputExpr);
15832     RecordModifiableNonNullParam(*this, InputExpr);
15833     break;
15834   case UO_Deref: {
15835     Input = DefaultFunctionArrayLvalueConversion(Input.get());
15836     if (Input.isInvalid()) return ExprError();
15837     resultType =
15838         CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp);
15839     break;
15840   }
15841   case UO_Plus:
15842   case UO_Minus:
15843     CanOverflow = Opc == UO_Minus &&
15844                   isOverflowingIntegerType(Context, Input.get()->getType());
15845     Input = UsualUnaryConversions(Input.get());
15846     if (Input.isInvalid()) return ExprError();
15847     // Unary plus and minus require promoting an operand of half vector to a
15848     // float vector and truncating the result back to a half vector. For now, we
15849     // do this only when HalfArgsAndReturns is set (that is, when the target is
15850     // arm or arm64).
15851     ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
15852 
15853     // If the operand is a half vector, promote it to a float vector.
15854     if (ConvertHalfVec)
15855       Input = convertVector(Input.get(), Context.FloatTy, *this);
15856     resultType = Input.get()->getType();
15857     if (resultType->isDependentType())
15858       break;
15859     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
15860       break;
15861     else if (resultType->isVectorType() &&
15862              // The z vector extensions don't allow + or - with bool vectors.
15863              (!Context.getLangOpts().ZVector ||
15864               resultType->castAs<VectorType>()->getVectorKind() !=
15865               VectorType::AltiVecBool))
15866       break;
15867     else if (resultType->isVLSTBuiltinType()) // SVE vectors allow + and -
15868       break;
15869     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
15870              Opc == UO_Plus &&
15871              resultType->isPointerType())
15872       break;
15873 
15874     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15875       << resultType << Input.get()->getSourceRange());
15876 
15877   case UO_Not: // bitwise complement
15878     Input = UsualUnaryConversions(Input.get());
15879     if (Input.isInvalid())
15880       return ExprError();
15881     resultType = Input.get()->getType();
15882     if (resultType->isDependentType())
15883       break;
15884     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
15885     if (resultType->isComplexType() || resultType->isComplexIntegerType())
15886       // C99 does not support '~' for complex conjugation.
15887       Diag(OpLoc, diag::ext_integer_complement_complex)
15888           << resultType << Input.get()->getSourceRange();
15889     else if (resultType->hasIntegerRepresentation())
15890       break;
15891     else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
15892       // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
15893       // on vector float types.
15894       QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15895       if (!T->isIntegerType())
15896         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15897                           << resultType << Input.get()->getSourceRange());
15898     } else {
15899       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15900                        << resultType << Input.get()->getSourceRange());
15901     }
15902     break;
15903 
15904   case UO_LNot: // logical negation
15905     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
15906     Input = DefaultFunctionArrayLvalueConversion(Input.get());
15907     if (Input.isInvalid()) return ExprError();
15908     resultType = Input.get()->getType();
15909 
15910     // Though we still have to promote half FP to float...
15911     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
15912       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
15913       resultType = Context.FloatTy;
15914     }
15915 
15916     if (resultType->isDependentType())
15917       break;
15918     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
15919       // C99 6.5.3.3p1: ok, fallthrough;
15920       if (Context.getLangOpts().CPlusPlus) {
15921         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
15922         // operand contextually converted to bool.
15923         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
15924                                   ScalarTypeToBooleanCastKind(resultType));
15925       } else if (Context.getLangOpts().OpenCL &&
15926                  Context.getLangOpts().OpenCLVersion < 120) {
15927         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15928         // operate on scalar float types.
15929         if (!resultType->isIntegerType() && !resultType->isPointerType())
15930           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15931                            << resultType << Input.get()->getSourceRange());
15932       }
15933     } else if (resultType->isExtVectorType()) {
15934       if (Context.getLangOpts().OpenCL &&
15935           Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
15936         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15937         // operate on vector float types.
15938         QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15939         if (!T->isIntegerType())
15940           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15941                            << resultType << Input.get()->getSourceRange());
15942       }
15943       // Vector logical not returns the signed variant of the operand type.
15944       resultType = GetSignedVectorType(resultType);
15945       break;
15946     } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
15947       const VectorType *VTy = resultType->castAs<VectorType>();
15948       if (VTy->getVectorKind() != VectorType::GenericVector)
15949         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15950                          << resultType << Input.get()->getSourceRange());
15951 
15952       // Vector logical not returns the signed variant of the operand type.
15953       resultType = GetSignedVectorType(resultType);
15954       break;
15955     } else {
15956       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15957         << resultType << Input.get()->getSourceRange());
15958     }
15959 
15960     // LNot always has type int. C99 6.5.3.3p5.
15961     // In C++, it's bool. C++ 5.3.1p8
15962     resultType = Context.getLogicalOperationType();
15963     break;
15964   case UO_Real:
15965   case UO_Imag:
15966     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
15967     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
15968     // complex l-values to ordinary l-values and all other values to r-values.
15969     if (Input.isInvalid()) return ExprError();
15970     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
15971       if (Input.get()->isGLValue() &&
15972           Input.get()->getObjectKind() == OK_Ordinary)
15973         VK = Input.get()->getValueKind();
15974     } else if (!getLangOpts().CPlusPlus) {
15975       // In C, a volatile scalar is read by __imag. In C++, it is not.
15976       Input = DefaultLvalueConversion(Input.get());
15977     }
15978     break;
15979   case UO_Extension:
15980     resultType = Input.get()->getType();
15981     VK = Input.get()->getValueKind();
15982     OK = Input.get()->getObjectKind();
15983     break;
15984   case UO_Coawait:
15985     // It's unnecessary to represent the pass-through operator co_await in the
15986     // AST; just return the input expression instead.
15987     assert(!Input.get()->getType()->isDependentType() &&
15988                    "the co_await expression must be non-dependant before "
15989                    "building operator co_await");
15990     return Input;
15991   }
15992   if (resultType.isNull() || Input.isInvalid())
15993     return ExprError();
15994 
15995   // Check for array bounds violations in the operand of the UnaryOperator,
15996   // except for the '*' and '&' operators that have to be handled specially
15997   // by CheckArrayAccess (as there are special cases like &array[arraysize]
15998   // that are explicitly defined as valid by the standard).
15999   if (Opc != UO_AddrOf && Opc != UO_Deref)
16000     CheckArrayAccess(Input.get());
16001 
16002   auto *UO =
16003       UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
16004                             OpLoc, CanOverflow, CurFPFeatureOverrides());
16005 
16006   if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
16007       !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
16008       !isUnevaluatedContext())
16009     ExprEvalContexts.back().PossibleDerefs.insert(UO);
16010 
16011   // Convert the result back to a half vector.
16012   if (ConvertHalfVec)
16013     return convertVector(UO, Context.HalfTy, *this);
16014   return UO;
16015 }
16016 
16017 /// Determine whether the given expression is a qualified member
16018 /// access expression, of a form that could be turned into a pointer to member
16019 /// with the address-of operator.
16020 bool Sema::isQualifiedMemberAccess(Expr *E) {
16021   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
16022     if (!DRE->getQualifier())
16023       return false;
16024 
16025     ValueDecl *VD = DRE->getDecl();
16026     if (!VD->isCXXClassMember())
16027       return false;
16028 
16029     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
16030       return true;
16031     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
16032       return Method->isInstance();
16033 
16034     return false;
16035   }
16036 
16037   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
16038     if (!ULE->getQualifier())
16039       return false;
16040 
16041     for (NamedDecl *D : ULE->decls()) {
16042       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
16043         if (Method->isInstance())
16044           return true;
16045       } else {
16046         // Overload set does not contain methods.
16047         break;
16048       }
16049     }
16050 
16051     return false;
16052   }
16053 
16054   return false;
16055 }
16056 
16057 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
16058                               UnaryOperatorKind Opc, Expr *Input,
16059                               bool IsAfterAmp) {
16060   // First things first: handle placeholders so that the
16061   // overloaded-operator check considers the right type.
16062   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
16063     // Increment and decrement of pseudo-object references.
16064     if (pty->getKind() == BuiltinType::PseudoObject &&
16065         UnaryOperator::isIncrementDecrementOp(Opc))
16066       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
16067 
16068     // extension is always a builtin operator.
16069     if (Opc == UO_Extension)
16070       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16071 
16072     // & gets special logic for several kinds of placeholder.
16073     // The builtin code knows what to do.
16074     if (Opc == UO_AddrOf &&
16075         (pty->getKind() == BuiltinType::Overload ||
16076          pty->getKind() == BuiltinType::UnknownAny ||
16077          pty->getKind() == BuiltinType::BoundMember))
16078       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
16079 
16080     // Anything else needs to be handled now.
16081     ExprResult Result = CheckPlaceholderExpr(Input);
16082     if (Result.isInvalid()) return ExprError();
16083     Input = Result.get();
16084   }
16085 
16086   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
16087       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
16088       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
16089     // Find all of the overloaded operators visible from this point.
16090     UnresolvedSet<16> Functions;
16091     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
16092     if (S && OverOp != OO_None)
16093       LookupOverloadedOperatorName(OverOp, S, Functions);
16094 
16095     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
16096   }
16097 
16098   return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp);
16099 }
16100 
16101 // Unary Operators.  'Tok' is the token for the operator.
16102 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
16103                               Expr *Input, bool IsAfterAmp) {
16104   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input,
16105                       IsAfterAmp);
16106 }
16107 
16108 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
16109 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
16110                                 LabelDecl *TheDecl) {
16111   TheDecl->markUsed(Context);
16112   // Create the AST node.  The address of a label always has type 'void*'.
16113   auto *Res = new (Context) AddrLabelExpr(
16114       OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy));
16115 
16116   if (getCurFunction())
16117     getCurFunction()->AddrLabels.push_back(Res);
16118 
16119   return Res;
16120 }
16121 
16122 void Sema::ActOnStartStmtExpr() {
16123   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
16124 }
16125 
16126 void Sema::ActOnStmtExprError() {
16127   // Note that function is also called by TreeTransform when leaving a
16128   // StmtExpr scope without rebuilding anything.
16129 
16130   DiscardCleanupsInEvaluationContext();
16131   PopExpressionEvaluationContext();
16132 }
16133 
16134 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
16135                                SourceLocation RPLoc) {
16136   return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
16137 }
16138 
16139 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
16140                                SourceLocation RPLoc, unsigned TemplateDepth) {
16141   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
16142   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
16143 
16144   if (hasAnyUnrecoverableErrorsInThisFunction())
16145     DiscardCleanupsInEvaluationContext();
16146   assert(!Cleanup.exprNeedsCleanups() &&
16147          "cleanups within StmtExpr not correctly bound!");
16148   PopExpressionEvaluationContext();
16149 
16150   // FIXME: there are a variety of strange constraints to enforce here, for
16151   // example, it is not possible to goto into a stmt expression apparently.
16152   // More semantic analysis is needed.
16153 
16154   // If there are sub-stmts in the compound stmt, take the type of the last one
16155   // as the type of the stmtexpr.
16156   QualType Ty = Context.VoidTy;
16157   bool StmtExprMayBindToTemp = false;
16158   if (!Compound->body_empty()) {
16159     // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
16160     if (const auto *LastStmt =
16161             dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
16162       if (const Expr *Value = LastStmt->getExprStmt()) {
16163         StmtExprMayBindToTemp = true;
16164         Ty = Value->getType();
16165       }
16166     }
16167   }
16168 
16169   // FIXME: Check that expression type is complete/non-abstract; statement
16170   // expressions are not lvalues.
16171   Expr *ResStmtExpr =
16172       new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
16173   if (StmtExprMayBindToTemp)
16174     return MaybeBindToTemporary(ResStmtExpr);
16175   return ResStmtExpr;
16176 }
16177 
16178 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
16179   if (ER.isInvalid())
16180     return ExprError();
16181 
16182   // Do function/array conversion on the last expression, but not
16183   // lvalue-to-rvalue.  However, initialize an unqualified type.
16184   ER = DefaultFunctionArrayConversion(ER.get());
16185   if (ER.isInvalid())
16186     return ExprError();
16187   Expr *E = ER.get();
16188 
16189   if (E->isTypeDependent())
16190     return E;
16191 
16192   // In ARC, if the final expression ends in a consume, splice
16193   // the consume out and bind it later.  In the alternate case
16194   // (when dealing with a retainable type), the result
16195   // initialization will create a produce.  In both cases the
16196   // result will be +1, and we'll need to balance that out with
16197   // a bind.
16198   auto *Cast = dyn_cast<ImplicitCastExpr>(E);
16199   if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
16200     return Cast->getSubExpr();
16201 
16202   // FIXME: Provide a better location for the initialization.
16203   return PerformCopyInitialization(
16204       InitializedEntity::InitializeStmtExprResult(
16205           E->getBeginLoc(), E->getType().getUnqualifiedType()),
16206       SourceLocation(), E);
16207 }
16208 
16209 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
16210                                       TypeSourceInfo *TInfo,
16211                                       ArrayRef<OffsetOfComponent> Components,
16212                                       SourceLocation RParenLoc) {
16213   QualType ArgTy = TInfo->getType();
16214   bool Dependent = ArgTy->isDependentType();
16215   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
16216 
16217   // We must have at least one component that refers to the type, and the first
16218   // one is known to be a field designator.  Verify that the ArgTy represents
16219   // a struct/union/class.
16220   if (!Dependent && !ArgTy->isRecordType())
16221     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
16222                        << ArgTy << TypeRange);
16223 
16224   // Type must be complete per C99 7.17p3 because a declaring a variable
16225   // with an incomplete type would be ill-formed.
16226   if (!Dependent
16227       && RequireCompleteType(BuiltinLoc, ArgTy,
16228                              diag::err_offsetof_incomplete_type, TypeRange))
16229     return ExprError();
16230 
16231   bool DidWarnAboutNonPOD = false;
16232   QualType CurrentType = ArgTy;
16233   SmallVector<OffsetOfNode, 4> Comps;
16234   SmallVector<Expr*, 4> Exprs;
16235   for (const OffsetOfComponent &OC : Components) {
16236     if (OC.isBrackets) {
16237       // Offset of an array sub-field.  TODO: Should we allow vector elements?
16238       if (!CurrentType->isDependentType()) {
16239         const ArrayType *AT = Context.getAsArrayType(CurrentType);
16240         if(!AT)
16241           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
16242                            << CurrentType);
16243         CurrentType = AT->getElementType();
16244       } else
16245         CurrentType = Context.DependentTy;
16246 
16247       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
16248       if (IdxRval.isInvalid())
16249         return ExprError();
16250       Expr *Idx = IdxRval.get();
16251 
16252       // The expression must be an integral expression.
16253       // FIXME: An integral constant expression?
16254       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
16255           !Idx->getType()->isIntegerType())
16256         return ExprError(
16257             Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
16258             << Idx->getSourceRange());
16259 
16260       // Record this array index.
16261       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
16262       Exprs.push_back(Idx);
16263       continue;
16264     }
16265 
16266     // Offset of a field.
16267     if (CurrentType->isDependentType()) {
16268       // We have the offset of a field, but we can't look into the dependent
16269       // type. Just record the identifier of the field.
16270       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
16271       CurrentType = Context.DependentTy;
16272       continue;
16273     }
16274 
16275     // We need to have a complete type to look into.
16276     if (RequireCompleteType(OC.LocStart, CurrentType,
16277                             diag::err_offsetof_incomplete_type))
16278       return ExprError();
16279 
16280     // Look for the designated field.
16281     const RecordType *RC = CurrentType->getAs<RecordType>();
16282     if (!RC)
16283       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
16284                        << CurrentType);
16285     RecordDecl *RD = RC->getDecl();
16286 
16287     // C++ [lib.support.types]p5:
16288     //   The macro offsetof accepts a restricted set of type arguments in this
16289     //   International Standard. type shall be a POD structure or a POD union
16290     //   (clause 9).
16291     // C++11 [support.types]p4:
16292     //   If type is not a standard-layout class (Clause 9), the results are
16293     //   undefined.
16294     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
16295       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
16296       unsigned DiagID =
16297         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
16298                             : diag::ext_offsetof_non_pod_type;
16299 
16300       if (!IsSafe && !DidWarnAboutNonPOD &&
16301           DiagRuntimeBehavior(BuiltinLoc, nullptr,
16302                               PDiag(DiagID)
16303                               << SourceRange(Components[0].LocStart, OC.LocEnd)
16304                               << CurrentType))
16305         DidWarnAboutNonPOD = true;
16306     }
16307 
16308     // Look for the field.
16309     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
16310     LookupQualifiedName(R, RD);
16311     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
16312     IndirectFieldDecl *IndirectMemberDecl = nullptr;
16313     if (!MemberDecl) {
16314       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
16315         MemberDecl = IndirectMemberDecl->getAnonField();
16316     }
16317 
16318     if (!MemberDecl)
16319       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
16320                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
16321                                                               OC.LocEnd));
16322 
16323     // C99 7.17p3:
16324     //   (If the specified member is a bit-field, the behavior is undefined.)
16325     //
16326     // We diagnose this as an error.
16327     if (MemberDecl->isBitField()) {
16328       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
16329         << MemberDecl->getDeclName()
16330         << SourceRange(BuiltinLoc, RParenLoc);
16331       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
16332       return ExprError();
16333     }
16334 
16335     RecordDecl *Parent = MemberDecl->getParent();
16336     if (IndirectMemberDecl)
16337       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
16338 
16339     // If the member was found in a base class, introduce OffsetOfNodes for
16340     // the base class indirections.
16341     CXXBasePaths Paths;
16342     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
16343                       Paths)) {
16344       if (Paths.getDetectedVirtual()) {
16345         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
16346           << MemberDecl->getDeclName()
16347           << SourceRange(BuiltinLoc, RParenLoc);
16348         return ExprError();
16349       }
16350 
16351       CXXBasePath &Path = Paths.front();
16352       for (const CXXBasePathElement &B : Path)
16353         Comps.push_back(OffsetOfNode(B.Base));
16354     }
16355 
16356     if (IndirectMemberDecl) {
16357       for (auto *FI : IndirectMemberDecl->chain()) {
16358         assert(isa<FieldDecl>(FI));
16359         Comps.push_back(OffsetOfNode(OC.LocStart,
16360                                      cast<FieldDecl>(FI), OC.LocEnd));
16361       }
16362     } else
16363       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
16364 
16365     CurrentType = MemberDecl->getType().getNonReferenceType();
16366   }
16367 
16368   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
16369                               Comps, Exprs, RParenLoc);
16370 }
16371 
16372 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
16373                                       SourceLocation BuiltinLoc,
16374                                       SourceLocation TypeLoc,
16375                                       ParsedType ParsedArgTy,
16376                                       ArrayRef<OffsetOfComponent> Components,
16377                                       SourceLocation RParenLoc) {
16378 
16379   TypeSourceInfo *ArgTInfo;
16380   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
16381   if (ArgTy.isNull())
16382     return ExprError();
16383 
16384   if (!ArgTInfo)
16385     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
16386 
16387   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
16388 }
16389 
16390 
16391 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
16392                                  Expr *CondExpr,
16393                                  Expr *LHSExpr, Expr *RHSExpr,
16394                                  SourceLocation RPLoc) {
16395   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
16396 
16397   ExprValueKind VK = VK_PRValue;
16398   ExprObjectKind OK = OK_Ordinary;
16399   QualType resType;
16400   bool CondIsTrue = false;
16401   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
16402     resType = Context.DependentTy;
16403   } else {
16404     // The conditional expression is required to be a constant expression.
16405     llvm::APSInt condEval(32);
16406     ExprResult CondICE = VerifyIntegerConstantExpression(
16407         CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
16408     if (CondICE.isInvalid())
16409       return ExprError();
16410     CondExpr = CondICE.get();
16411     CondIsTrue = condEval.getZExtValue();
16412 
16413     // If the condition is > zero, then the AST type is the same as the LHSExpr.
16414     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
16415 
16416     resType = ActiveExpr->getType();
16417     VK = ActiveExpr->getValueKind();
16418     OK = ActiveExpr->getObjectKind();
16419   }
16420 
16421   return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
16422                                   resType, VK, OK, RPLoc, CondIsTrue);
16423 }
16424 
16425 //===----------------------------------------------------------------------===//
16426 // Clang Extensions.
16427 //===----------------------------------------------------------------------===//
16428 
16429 /// ActOnBlockStart - This callback is invoked when a block literal is started.
16430 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
16431   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
16432 
16433   if (LangOpts.CPlusPlus) {
16434     MangleNumberingContext *MCtx;
16435     Decl *ManglingContextDecl;
16436     std::tie(MCtx, ManglingContextDecl) =
16437         getCurrentMangleNumberContext(Block->getDeclContext());
16438     if (MCtx) {
16439       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
16440       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
16441     }
16442   }
16443 
16444   PushBlockScope(CurScope, Block);
16445   CurContext->addDecl(Block);
16446   if (CurScope)
16447     PushDeclContext(CurScope, Block);
16448   else
16449     CurContext = Block;
16450 
16451   getCurBlock()->HasImplicitReturnType = true;
16452 
16453   // Enter a new evaluation context to insulate the block from any
16454   // cleanups from the enclosing full-expression.
16455   PushExpressionEvaluationContext(
16456       ExpressionEvaluationContext::PotentiallyEvaluated);
16457 }
16458 
16459 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
16460                                Scope *CurScope) {
16461   assert(ParamInfo.getIdentifier() == nullptr &&
16462          "block-id should have no identifier!");
16463   assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
16464   BlockScopeInfo *CurBlock = getCurBlock();
16465 
16466   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
16467   QualType T = Sig->getType();
16468 
16469   // FIXME: We should allow unexpanded parameter packs here, but that would,
16470   // in turn, make the block expression contain unexpanded parameter packs.
16471   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
16472     // Drop the parameters.
16473     FunctionProtoType::ExtProtoInfo EPI;
16474     EPI.HasTrailingReturn = false;
16475     EPI.TypeQuals.addConst();
16476     T = Context.getFunctionType(Context.DependentTy, std::nullopt, EPI);
16477     Sig = Context.getTrivialTypeSourceInfo(T);
16478   }
16479 
16480   // GetTypeForDeclarator always produces a function type for a block
16481   // literal signature.  Furthermore, it is always a FunctionProtoType
16482   // unless the function was written with a typedef.
16483   assert(T->isFunctionType() &&
16484          "GetTypeForDeclarator made a non-function block signature");
16485 
16486   // Look for an explicit signature in that function type.
16487   FunctionProtoTypeLoc ExplicitSignature;
16488 
16489   if ((ExplicitSignature = Sig->getTypeLoc()
16490                                .getAsAdjusted<FunctionProtoTypeLoc>())) {
16491 
16492     // Check whether that explicit signature was synthesized by
16493     // GetTypeForDeclarator.  If so, don't save that as part of the
16494     // written signature.
16495     if (ExplicitSignature.getLocalRangeBegin() ==
16496         ExplicitSignature.getLocalRangeEnd()) {
16497       // This would be much cheaper if we stored TypeLocs instead of
16498       // TypeSourceInfos.
16499       TypeLoc Result = ExplicitSignature.getReturnLoc();
16500       unsigned Size = Result.getFullDataSize();
16501       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
16502       Sig->getTypeLoc().initializeFullCopy(Result, Size);
16503 
16504       ExplicitSignature = FunctionProtoTypeLoc();
16505     }
16506   }
16507 
16508   CurBlock->TheDecl->setSignatureAsWritten(Sig);
16509   CurBlock->FunctionType = T;
16510 
16511   const auto *Fn = T->castAs<FunctionType>();
16512   QualType RetTy = Fn->getReturnType();
16513   bool isVariadic =
16514       (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
16515 
16516   CurBlock->TheDecl->setIsVariadic(isVariadic);
16517 
16518   // Context.DependentTy is used as a placeholder for a missing block
16519   // return type.  TODO:  what should we do with declarators like:
16520   //   ^ * { ... }
16521   // If the answer is "apply template argument deduction"....
16522   if (RetTy != Context.DependentTy) {
16523     CurBlock->ReturnType = RetTy;
16524     CurBlock->TheDecl->setBlockMissingReturnType(false);
16525     CurBlock->HasImplicitReturnType = false;
16526   }
16527 
16528   // Push block parameters from the declarator if we had them.
16529   SmallVector<ParmVarDecl*, 8> Params;
16530   if (ExplicitSignature) {
16531     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
16532       ParmVarDecl *Param = ExplicitSignature.getParam(I);
16533       if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
16534           !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
16535         // Diagnose this as an extension in C17 and earlier.
16536         if (!getLangOpts().C2x)
16537           Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
16538       }
16539       Params.push_back(Param);
16540     }
16541 
16542   // Fake up parameter variables if we have a typedef, like
16543   //   ^ fntype { ... }
16544   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
16545     for (const auto &I : Fn->param_types()) {
16546       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
16547           CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
16548       Params.push_back(Param);
16549     }
16550   }
16551 
16552   // Set the parameters on the block decl.
16553   if (!Params.empty()) {
16554     CurBlock->TheDecl->setParams(Params);
16555     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
16556                              /*CheckParameterNames=*/false);
16557   }
16558 
16559   // Finally we can process decl attributes.
16560   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
16561 
16562   // Put the parameter variables in scope.
16563   for (auto *AI : CurBlock->TheDecl->parameters()) {
16564     AI->setOwningFunction(CurBlock->TheDecl);
16565 
16566     // If this has an identifier, add it to the scope stack.
16567     if (AI->getIdentifier()) {
16568       CheckShadow(CurBlock->TheScope, AI);
16569 
16570       PushOnScopeChains(AI, CurBlock->TheScope);
16571     }
16572   }
16573 }
16574 
16575 /// ActOnBlockError - If there is an error parsing a block, this callback
16576 /// is invoked to pop the information about the block from the action impl.
16577 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
16578   // Leave the expression-evaluation context.
16579   DiscardCleanupsInEvaluationContext();
16580   PopExpressionEvaluationContext();
16581 
16582   // Pop off CurBlock, handle nested blocks.
16583   PopDeclContext();
16584   PopFunctionScopeInfo();
16585 }
16586 
16587 /// ActOnBlockStmtExpr - This is called when the body of a block statement
16588 /// literal was successfully completed.  ^(int x){...}
16589 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
16590                                     Stmt *Body, Scope *CurScope) {
16591   // If blocks are disabled, emit an error.
16592   if (!LangOpts.Blocks)
16593     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
16594 
16595   // Leave the expression-evaluation context.
16596   if (hasAnyUnrecoverableErrorsInThisFunction())
16597     DiscardCleanupsInEvaluationContext();
16598   assert(!Cleanup.exprNeedsCleanups() &&
16599          "cleanups within block not correctly bound!");
16600   PopExpressionEvaluationContext();
16601 
16602   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
16603   BlockDecl *BD = BSI->TheDecl;
16604 
16605   if (BSI->HasImplicitReturnType)
16606     deduceClosureReturnType(*BSI);
16607 
16608   QualType RetTy = Context.VoidTy;
16609   if (!BSI->ReturnType.isNull())
16610     RetTy = BSI->ReturnType;
16611 
16612   bool NoReturn = BD->hasAttr<NoReturnAttr>();
16613   QualType BlockTy;
16614 
16615   // If the user wrote a function type in some form, try to use that.
16616   if (!BSI->FunctionType.isNull()) {
16617     const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
16618 
16619     FunctionType::ExtInfo Ext = FTy->getExtInfo();
16620     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
16621 
16622     // Turn protoless block types into nullary block types.
16623     if (isa<FunctionNoProtoType>(FTy)) {
16624       FunctionProtoType::ExtProtoInfo EPI;
16625       EPI.ExtInfo = Ext;
16626       BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
16627 
16628       // Otherwise, if we don't need to change anything about the function type,
16629       // preserve its sugar structure.
16630     } else if (FTy->getReturnType() == RetTy &&
16631                (!NoReturn || FTy->getNoReturnAttr())) {
16632       BlockTy = BSI->FunctionType;
16633 
16634     // Otherwise, make the minimal modifications to the function type.
16635     } else {
16636       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
16637       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
16638       EPI.TypeQuals = Qualifiers();
16639       EPI.ExtInfo = Ext;
16640       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
16641     }
16642 
16643   // If we don't have a function type, just build one from nothing.
16644   } else {
16645     FunctionProtoType::ExtProtoInfo EPI;
16646     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
16647     BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
16648   }
16649 
16650   DiagnoseUnusedParameters(BD->parameters());
16651   BlockTy = Context.getBlockPointerType(BlockTy);
16652 
16653   // If needed, diagnose invalid gotos and switches in the block.
16654   if (getCurFunction()->NeedsScopeChecking() &&
16655       !PP.isCodeCompletionEnabled())
16656     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
16657 
16658   BD->setBody(cast<CompoundStmt>(Body));
16659 
16660   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
16661     DiagnoseUnguardedAvailabilityViolations(BD);
16662 
16663   // Try to apply the named return value optimization. We have to check again
16664   // if we can do this, though, because blocks keep return statements around
16665   // to deduce an implicit return type.
16666   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
16667       !BD->isDependentContext())
16668     computeNRVO(Body, BSI);
16669 
16670   if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
16671       RetTy.hasNonTrivialToPrimitiveCopyCUnion())
16672     checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
16673                           NTCUK_Destruct|NTCUK_Copy);
16674 
16675   PopDeclContext();
16676 
16677   // Set the captured variables on the block.
16678   SmallVector<BlockDecl::Capture, 4> Captures;
16679   for (Capture &Cap : BSI->Captures) {
16680     if (Cap.isInvalid() || Cap.isThisCapture())
16681       continue;
16682     // Cap.getVariable() is always a VarDecl because
16683     // blocks cannot capture structured bindings or other ValueDecl kinds.
16684     auto *Var = cast<VarDecl>(Cap.getVariable());
16685     Expr *CopyExpr = nullptr;
16686     if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
16687       if (const RecordType *Record =
16688               Cap.getCaptureType()->getAs<RecordType>()) {
16689         // The capture logic needs the destructor, so make sure we mark it.
16690         // Usually this is unnecessary because most local variables have
16691         // their destructors marked at declaration time, but parameters are
16692         // an exception because it's technically only the call site that
16693         // actually requires the destructor.
16694         if (isa<ParmVarDecl>(Var))
16695           FinalizeVarWithDestructor(Var, Record);
16696 
16697         // Enter a separate potentially-evaluated context while building block
16698         // initializers to isolate their cleanups from those of the block
16699         // itself.
16700         // FIXME: Is this appropriate even when the block itself occurs in an
16701         // unevaluated operand?
16702         EnterExpressionEvaluationContext EvalContext(
16703             *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16704 
16705         SourceLocation Loc = Cap.getLocation();
16706 
16707         ExprResult Result = BuildDeclarationNameExpr(
16708             CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
16709 
16710         // According to the blocks spec, the capture of a variable from
16711         // the stack requires a const copy constructor.  This is not true
16712         // of the copy/move done to move a __block variable to the heap.
16713         if (!Result.isInvalid() &&
16714             !Result.get()->getType().isConstQualified()) {
16715           Result = ImpCastExprToType(Result.get(),
16716                                      Result.get()->getType().withConst(),
16717                                      CK_NoOp, VK_LValue);
16718         }
16719 
16720         if (!Result.isInvalid()) {
16721           Result = PerformCopyInitialization(
16722               InitializedEntity::InitializeBlock(Var->getLocation(),
16723                                                  Cap.getCaptureType()),
16724               Loc, Result.get());
16725         }
16726 
16727         // Build a full-expression copy expression if initialization
16728         // succeeded and used a non-trivial constructor.  Recover from
16729         // errors by pretending that the copy isn't necessary.
16730         if (!Result.isInvalid() &&
16731             !cast<CXXConstructExpr>(Result.get())->getConstructor()
16732                 ->isTrivial()) {
16733           Result = MaybeCreateExprWithCleanups(Result);
16734           CopyExpr = Result.get();
16735         }
16736       }
16737     }
16738 
16739     BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
16740                               CopyExpr);
16741     Captures.push_back(NewCap);
16742   }
16743   BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
16744 
16745   // Pop the block scope now but keep it alive to the end of this function.
16746   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
16747   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
16748 
16749   BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
16750 
16751   // If the block isn't obviously global, i.e. it captures anything at
16752   // all, then we need to do a few things in the surrounding context:
16753   if (Result->getBlockDecl()->hasCaptures()) {
16754     // First, this expression has a new cleanup object.
16755     ExprCleanupObjects.push_back(Result->getBlockDecl());
16756     Cleanup.setExprNeedsCleanups(true);
16757 
16758     // It also gets a branch-protected scope if any of the captured
16759     // variables needs destruction.
16760     for (const auto &CI : Result->getBlockDecl()->captures()) {
16761       const VarDecl *var = CI.getVariable();
16762       if (var->getType().isDestructedType() != QualType::DK_none) {
16763         setFunctionHasBranchProtectedScope();
16764         break;
16765       }
16766     }
16767   }
16768 
16769   if (getCurFunction())
16770     getCurFunction()->addBlock(BD);
16771 
16772   return Result;
16773 }
16774 
16775 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
16776                             SourceLocation RPLoc) {
16777   TypeSourceInfo *TInfo;
16778   GetTypeFromParser(Ty, &TInfo);
16779   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
16780 }
16781 
16782 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
16783                                 Expr *E, TypeSourceInfo *TInfo,
16784                                 SourceLocation RPLoc) {
16785   Expr *OrigExpr = E;
16786   bool IsMS = false;
16787 
16788   // CUDA device code does not support varargs.
16789   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
16790     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
16791       CUDAFunctionTarget T = IdentifyCUDATarget(F);
16792       if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
16793         return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
16794     }
16795   }
16796 
16797   // NVPTX does not support va_arg expression.
16798   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
16799       Context.getTargetInfo().getTriple().isNVPTX())
16800     targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
16801 
16802   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
16803   // as Microsoft ABI on an actual Microsoft platform, where
16804   // __builtin_ms_va_list and __builtin_va_list are the same.)
16805   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
16806       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
16807     QualType MSVaListType = Context.getBuiltinMSVaListType();
16808     if (Context.hasSameType(MSVaListType, E->getType())) {
16809       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
16810         return ExprError();
16811       IsMS = true;
16812     }
16813   }
16814 
16815   // Get the va_list type
16816   QualType VaListType = Context.getBuiltinVaListType();
16817   if (!IsMS) {
16818     if (VaListType->isArrayType()) {
16819       // Deal with implicit array decay; for example, on x86-64,
16820       // va_list is an array, but it's supposed to decay to
16821       // a pointer for va_arg.
16822       VaListType = Context.getArrayDecayedType(VaListType);
16823       // Make sure the input expression also decays appropriately.
16824       ExprResult Result = UsualUnaryConversions(E);
16825       if (Result.isInvalid())
16826         return ExprError();
16827       E = Result.get();
16828     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
16829       // If va_list is a record type and we are compiling in C++ mode,
16830       // check the argument using reference binding.
16831       InitializedEntity Entity = InitializedEntity::InitializeParameter(
16832           Context, Context.getLValueReferenceType(VaListType), false);
16833       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
16834       if (Init.isInvalid())
16835         return ExprError();
16836       E = Init.getAs<Expr>();
16837     } else {
16838       // Otherwise, the va_list argument must be an l-value because
16839       // it is modified by va_arg.
16840       if (!E->isTypeDependent() &&
16841           CheckForModifiableLvalue(E, BuiltinLoc, *this))
16842         return ExprError();
16843     }
16844   }
16845 
16846   if (!IsMS && !E->isTypeDependent() &&
16847       !Context.hasSameType(VaListType, E->getType()))
16848     return ExprError(
16849         Diag(E->getBeginLoc(),
16850              diag::err_first_argument_to_va_arg_not_of_type_va_list)
16851         << OrigExpr->getType() << E->getSourceRange());
16852 
16853   if (!TInfo->getType()->isDependentType()) {
16854     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
16855                             diag::err_second_parameter_to_va_arg_incomplete,
16856                             TInfo->getTypeLoc()))
16857       return ExprError();
16858 
16859     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
16860                                TInfo->getType(),
16861                                diag::err_second_parameter_to_va_arg_abstract,
16862                                TInfo->getTypeLoc()))
16863       return ExprError();
16864 
16865     if (!TInfo->getType().isPODType(Context)) {
16866       Diag(TInfo->getTypeLoc().getBeginLoc(),
16867            TInfo->getType()->isObjCLifetimeType()
16868              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
16869              : diag::warn_second_parameter_to_va_arg_not_pod)
16870         << TInfo->getType()
16871         << TInfo->getTypeLoc().getSourceRange();
16872     }
16873 
16874     // Check for va_arg where arguments of the given type will be promoted
16875     // (i.e. this va_arg is guaranteed to have undefined behavior).
16876     QualType PromoteType;
16877     if (Context.isPromotableIntegerType(TInfo->getType())) {
16878       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
16879       // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
16880       // and C2x 7.16.1.1p2 says, in part:
16881       //   If type is not compatible with the type of the actual next argument
16882       //   (as promoted according to the default argument promotions), the
16883       //   behavior is undefined, except for the following cases:
16884       //     - both types are pointers to qualified or unqualified versions of
16885       //       compatible types;
16886       //     - one type is a signed integer type, the other type is the
16887       //       corresponding unsigned integer type, and the value is
16888       //       representable in both types;
16889       //     - one type is pointer to qualified or unqualified void and the
16890       //       other is a pointer to a qualified or unqualified character type.
16891       // Given that type compatibility is the primary requirement (ignoring
16892       // qualifications), you would think we could call typesAreCompatible()
16893       // directly to test this. However, in C++, that checks for *same type*,
16894       // which causes false positives when passing an enumeration type to
16895       // va_arg. Instead, get the underlying type of the enumeration and pass
16896       // that.
16897       QualType UnderlyingType = TInfo->getType();
16898       if (const auto *ET = UnderlyingType->getAs<EnumType>())
16899         UnderlyingType = ET->getDecl()->getIntegerType();
16900       if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16901                                      /*CompareUnqualified*/ true))
16902         PromoteType = QualType();
16903 
16904       // If the types are still not compatible, we need to test whether the
16905       // promoted type and the underlying type are the same except for
16906       // signedness. Ask the AST for the correctly corresponding type and see
16907       // if that's compatible.
16908       if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
16909           PromoteType->isUnsignedIntegerType() !=
16910               UnderlyingType->isUnsignedIntegerType()) {
16911         UnderlyingType =
16912             UnderlyingType->isUnsignedIntegerType()
16913                 ? Context.getCorrespondingSignedType(UnderlyingType)
16914                 : Context.getCorrespondingUnsignedType(UnderlyingType);
16915         if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16916                                        /*CompareUnqualified*/ true))
16917           PromoteType = QualType();
16918       }
16919     }
16920     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
16921       PromoteType = Context.DoubleTy;
16922     if (!PromoteType.isNull())
16923       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
16924                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
16925                           << TInfo->getType()
16926                           << PromoteType
16927                           << TInfo->getTypeLoc().getSourceRange());
16928   }
16929 
16930   QualType T = TInfo->getType().getNonLValueExprType(Context);
16931   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
16932 }
16933 
16934 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
16935   // The type of __null will be int or long, depending on the size of
16936   // pointers on the target.
16937   QualType Ty;
16938   unsigned pw = Context.getTargetInfo().getPointerWidth(LangAS::Default);
16939   if (pw == Context.getTargetInfo().getIntWidth())
16940     Ty = Context.IntTy;
16941   else if (pw == Context.getTargetInfo().getLongWidth())
16942     Ty = Context.LongTy;
16943   else if (pw == Context.getTargetInfo().getLongLongWidth())
16944     Ty = Context.LongLongTy;
16945   else {
16946     llvm_unreachable("I don't know size of pointer!");
16947   }
16948 
16949   return new (Context) GNUNullExpr(Ty, TokenLoc);
16950 }
16951 
16952 static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
16953   CXXRecordDecl *ImplDecl = nullptr;
16954 
16955   // Fetch the std::source_location::__impl decl.
16956   if (NamespaceDecl *Std = S.getStdNamespace()) {
16957     LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"),
16958                           Loc, Sema::LookupOrdinaryName);
16959     if (S.LookupQualifiedName(ResultSL, Std)) {
16960       if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
16961         LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"),
16962                                 Loc, Sema::LookupOrdinaryName);
16963         if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
16964             S.LookupQualifiedName(ResultImpl, SLDecl)) {
16965           ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
16966         }
16967       }
16968     }
16969   }
16970 
16971   if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
16972     S.Diag(Loc, diag::err_std_source_location_impl_not_found);
16973     return nullptr;
16974   }
16975 
16976   // Verify that __impl is a trivial struct type, with no base classes, and with
16977   // only the four expected fields.
16978   if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
16979       ImplDecl->getNumBases() != 0) {
16980     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16981     return nullptr;
16982   }
16983 
16984   unsigned Count = 0;
16985   for (FieldDecl *F : ImplDecl->fields()) {
16986     StringRef Name = F->getName();
16987 
16988     if (Name == "_M_file_name") {
16989       if (F->getType() !=
16990           S.Context.getPointerType(S.Context.CharTy.withConst()))
16991         break;
16992       Count++;
16993     } else if (Name == "_M_function_name") {
16994       if (F->getType() !=
16995           S.Context.getPointerType(S.Context.CharTy.withConst()))
16996         break;
16997       Count++;
16998     } else if (Name == "_M_line") {
16999       if (!F->getType()->isIntegerType())
17000         break;
17001       Count++;
17002     } else if (Name == "_M_column") {
17003       if (!F->getType()->isIntegerType())
17004         break;
17005       Count++;
17006     } else {
17007       Count = 100; // invalid
17008       break;
17009     }
17010   }
17011   if (Count != 4) {
17012     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
17013     return nullptr;
17014   }
17015 
17016   return ImplDecl;
17017 }
17018 
17019 ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
17020                                     SourceLocation BuiltinLoc,
17021                                     SourceLocation RPLoc) {
17022   QualType ResultTy;
17023   switch (Kind) {
17024   case SourceLocExpr::File:
17025   case SourceLocExpr::Function: {
17026     QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0);
17027     ResultTy =
17028         Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
17029     break;
17030   }
17031   case SourceLocExpr::Line:
17032   case SourceLocExpr::Column:
17033     ResultTy = Context.UnsignedIntTy;
17034     break;
17035   case SourceLocExpr::SourceLocStruct:
17036     if (!StdSourceLocationImplDecl) {
17037       StdSourceLocationImplDecl =
17038           LookupStdSourceLocationImpl(*this, BuiltinLoc);
17039       if (!StdSourceLocationImplDecl)
17040         return ExprError();
17041     }
17042     ResultTy = Context.getPointerType(
17043         Context.getRecordType(StdSourceLocationImplDecl).withConst());
17044     break;
17045   }
17046 
17047   return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext);
17048 }
17049 
17050 ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
17051                                     QualType ResultTy,
17052                                     SourceLocation BuiltinLoc,
17053                                     SourceLocation RPLoc,
17054                                     DeclContext *ParentContext) {
17055   return new (Context)
17056       SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
17057 }
17058 
17059 bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
17060                                         bool Diagnose) {
17061   if (!getLangOpts().ObjC)
17062     return false;
17063 
17064   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
17065   if (!PT)
17066     return false;
17067   const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
17068 
17069   // Ignore any parens, implicit casts (should only be
17070   // array-to-pointer decays), and not-so-opaque values.  The last is
17071   // important for making this trigger for property assignments.
17072   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
17073   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
17074     if (OV->getSourceExpr())
17075       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
17076 
17077   if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
17078     if (!PT->isObjCIdType() &&
17079         !(ID && ID->getIdentifier()->isStr("NSString")))
17080       return false;
17081     if (!SL->isOrdinary())
17082       return false;
17083 
17084     if (Diagnose) {
17085       Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
17086           << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
17087       Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
17088     }
17089     return true;
17090   }
17091 
17092   if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
17093       isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
17094       isa<CXXBoolLiteralExpr>(SrcExpr)) &&
17095       !SrcExpr->isNullPointerConstant(
17096           getASTContext(), Expr::NPC_NeverValueDependent)) {
17097     if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
17098       return false;
17099     if (Diagnose) {
17100       Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
17101           << /*number*/1
17102           << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
17103       Expr *NumLit =
17104           BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
17105       if (NumLit)
17106         Exp = NumLit;
17107     }
17108     return true;
17109   }
17110 
17111   return false;
17112 }
17113 
17114 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
17115                                               const Expr *SrcExpr) {
17116   if (!DstType->isFunctionPointerType() ||
17117       !SrcExpr->getType()->isFunctionType())
17118     return false;
17119 
17120   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
17121   if (!DRE)
17122     return false;
17123 
17124   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
17125   if (!FD)
17126     return false;
17127 
17128   return !S.checkAddressOfFunctionIsAvailable(FD,
17129                                               /*Complain=*/true,
17130                                               SrcExpr->getBeginLoc());
17131 }
17132 
17133 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
17134                                     SourceLocation Loc,
17135                                     QualType DstType, QualType SrcType,
17136                                     Expr *SrcExpr, AssignmentAction Action,
17137                                     bool *Complained) {
17138   if (Complained)
17139     *Complained = false;
17140 
17141   // Decode the result (notice that AST's are still created for extensions).
17142   bool CheckInferredResultType = false;
17143   bool isInvalid = false;
17144   unsigned DiagKind = 0;
17145   ConversionFixItGenerator ConvHints;
17146   bool MayHaveConvFixit = false;
17147   bool MayHaveFunctionDiff = false;
17148   const ObjCInterfaceDecl *IFace = nullptr;
17149   const ObjCProtocolDecl *PDecl = nullptr;
17150 
17151   switch (ConvTy) {
17152   case Compatible:
17153       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
17154       return false;
17155 
17156   case PointerToInt:
17157     if (getLangOpts().CPlusPlus) {
17158       DiagKind = diag::err_typecheck_convert_pointer_int;
17159       isInvalid = true;
17160     } else {
17161       DiagKind = diag::ext_typecheck_convert_pointer_int;
17162     }
17163     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17164     MayHaveConvFixit = true;
17165     break;
17166   case IntToPointer:
17167     if (getLangOpts().CPlusPlus) {
17168       DiagKind = diag::err_typecheck_convert_int_pointer;
17169       isInvalid = true;
17170     } else {
17171       DiagKind = diag::ext_typecheck_convert_int_pointer;
17172     }
17173     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17174     MayHaveConvFixit = true;
17175     break;
17176   case IncompatibleFunctionPointerStrict:
17177     DiagKind =
17178         diag::warn_typecheck_convert_incompatible_function_pointer_strict;
17179     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17180     MayHaveConvFixit = true;
17181     break;
17182   case IncompatibleFunctionPointer:
17183     if (getLangOpts().CPlusPlus) {
17184       DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
17185       isInvalid = true;
17186     } else {
17187       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
17188     }
17189     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17190     MayHaveConvFixit = true;
17191     break;
17192   case IncompatiblePointer:
17193     if (Action == AA_Passing_CFAudited) {
17194       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
17195     } else if (getLangOpts().CPlusPlus) {
17196       DiagKind = diag::err_typecheck_convert_incompatible_pointer;
17197       isInvalid = true;
17198     } else {
17199       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
17200     }
17201     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
17202       SrcType->isObjCObjectPointerType();
17203     if (!CheckInferredResultType) {
17204       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17205     } else if (CheckInferredResultType) {
17206       SrcType = SrcType.getUnqualifiedType();
17207       DstType = DstType.getUnqualifiedType();
17208     }
17209     MayHaveConvFixit = true;
17210     break;
17211   case IncompatiblePointerSign:
17212     if (getLangOpts().CPlusPlus) {
17213       DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
17214       isInvalid = true;
17215     } else {
17216       DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
17217     }
17218     break;
17219   case FunctionVoidPointer:
17220     if (getLangOpts().CPlusPlus) {
17221       DiagKind = diag::err_typecheck_convert_pointer_void_func;
17222       isInvalid = true;
17223     } else {
17224       DiagKind = diag::ext_typecheck_convert_pointer_void_func;
17225     }
17226     break;
17227   case IncompatiblePointerDiscardsQualifiers: {
17228     // Perform array-to-pointer decay if necessary.
17229     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
17230 
17231     isInvalid = true;
17232 
17233     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
17234     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
17235     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
17236       DiagKind = diag::err_typecheck_incompatible_address_space;
17237       break;
17238 
17239     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
17240       DiagKind = diag::err_typecheck_incompatible_ownership;
17241       break;
17242     }
17243 
17244     llvm_unreachable("unknown error case for discarding qualifiers!");
17245     // fallthrough
17246   }
17247   case CompatiblePointerDiscardsQualifiers:
17248     // If the qualifiers lost were because we were applying the
17249     // (deprecated) C++ conversion from a string literal to a char*
17250     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
17251     // Ideally, this check would be performed in
17252     // checkPointerTypesForAssignment. However, that would require a
17253     // bit of refactoring (so that the second argument is an
17254     // expression, rather than a type), which should be done as part
17255     // of a larger effort to fix checkPointerTypesForAssignment for
17256     // C++ semantics.
17257     if (getLangOpts().CPlusPlus &&
17258         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
17259       return false;
17260     if (getLangOpts().CPlusPlus) {
17261       DiagKind =  diag::err_typecheck_convert_discards_qualifiers;
17262       isInvalid = true;
17263     } else {
17264       DiagKind =  diag::ext_typecheck_convert_discards_qualifiers;
17265     }
17266 
17267     break;
17268   case IncompatibleNestedPointerQualifiers:
17269     if (getLangOpts().CPlusPlus) {
17270       isInvalid = true;
17271       DiagKind = diag::err_nested_pointer_qualifier_mismatch;
17272     } else {
17273       DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
17274     }
17275     break;
17276   case IncompatibleNestedPointerAddressSpaceMismatch:
17277     DiagKind = diag::err_typecheck_incompatible_nested_address_space;
17278     isInvalid = true;
17279     break;
17280   case IntToBlockPointer:
17281     DiagKind = diag::err_int_to_block_pointer;
17282     isInvalid = true;
17283     break;
17284   case IncompatibleBlockPointer:
17285     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
17286     isInvalid = true;
17287     break;
17288   case IncompatibleObjCQualifiedId: {
17289     if (SrcType->isObjCQualifiedIdType()) {
17290       const ObjCObjectPointerType *srcOPT =
17291                 SrcType->castAs<ObjCObjectPointerType>();
17292       for (auto *srcProto : srcOPT->quals()) {
17293         PDecl = srcProto;
17294         break;
17295       }
17296       if (const ObjCInterfaceType *IFaceT =
17297             DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17298         IFace = IFaceT->getDecl();
17299     }
17300     else if (DstType->isObjCQualifiedIdType()) {
17301       const ObjCObjectPointerType *dstOPT =
17302         DstType->castAs<ObjCObjectPointerType>();
17303       for (auto *dstProto : dstOPT->quals()) {
17304         PDecl = dstProto;
17305         break;
17306       }
17307       if (const ObjCInterfaceType *IFaceT =
17308             SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
17309         IFace = IFaceT->getDecl();
17310     }
17311     if (getLangOpts().CPlusPlus) {
17312       DiagKind = diag::err_incompatible_qualified_id;
17313       isInvalid = true;
17314     } else {
17315       DiagKind = diag::warn_incompatible_qualified_id;
17316     }
17317     break;
17318   }
17319   case IncompatibleVectors:
17320     if (getLangOpts().CPlusPlus) {
17321       DiagKind = diag::err_incompatible_vectors;
17322       isInvalid = true;
17323     } else {
17324       DiagKind = diag::warn_incompatible_vectors;
17325     }
17326     break;
17327   case IncompatibleObjCWeakRef:
17328     DiagKind = diag::err_arc_weak_unavailable_assign;
17329     isInvalid = true;
17330     break;
17331   case Incompatible:
17332     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
17333       if (Complained)
17334         *Complained = true;
17335       return true;
17336     }
17337 
17338     DiagKind = diag::err_typecheck_convert_incompatible;
17339     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
17340     MayHaveConvFixit = true;
17341     isInvalid = true;
17342     MayHaveFunctionDiff = true;
17343     break;
17344   }
17345 
17346   QualType FirstType, SecondType;
17347   switch (Action) {
17348   case AA_Assigning:
17349   case AA_Initializing:
17350     // The destination type comes first.
17351     FirstType = DstType;
17352     SecondType = SrcType;
17353     break;
17354 
17355   case AA_Returning:
17356   case AA_Passing:
17357   case AA_Passing_CFAudited:
17358   case AA_Converting:
17359   case AA_Sending:
17360   case AA_Casting:
17361     // The source type comes first.
17362     FirstType = SrcType;
17363     SecondType = DstType;
17364     break;
17365   }
17366 
17367   PartialDiagnostic FDiag = PDiag(DiagKind);
17368   AssignmentAction ActionForDiag = Action;
17369   if (Action == AA_Passing_CFAudited)
17370     ActionForDiag = AA_Passing;
17371 
17372   FDiag << FirstType << SecondType << ActionForDiag
17373         << SrcExpr->getSourceRange();
17374 
17375   if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
17376       DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
17377     auto isPlainChar = [](const clang::Type *Type) {
17378       return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
17379              Type->isSpecificBuiltinType(BuiltinType::Char_U);
17380     };
17381     FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
17382               isPlainChar(SecondType->getPointeeOrArrayElementType()));
17383   }
17384 
17385   // If we can fix the conversion, suggest the FixIts.
17386   if (!ConvHints.isNull()) {
17387     for (FixItHint &H : ConvHints.Hints)
17388       FDiag << H;
17389   }
17390 
17391   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
17392 
17393   if (MayHaveFunctionDiff)
17394     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
17395 
17396   Diag(Loc, FDiag);
17397   if ((DiagKind == diag::warn_incompatible_qualified_id ||
17398        DiagKind == diag::err_incompatible_qualified_id) &&
17399       PDecl && IFace && !IFace->hasDefinition())
17400     Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
17401         << IFace << PDecl;
17402 
17403   if (SecondType == Context.OverloadTy)
17404     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
17405                               FirstType, /*TakingAddress=*/true);
17406 
17407   if (CheckInferredResultType)
17408     EmitRelatedResultTypeNote(SrcExpr);
17409 
17410   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
17411     EmitRelatedResultTypeNoteForReturn(DstType);
17412 
17413   if (Complained)
17414     *Complained = true;
17415   return isInvalid;
17416 }
17417 
17418 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17419                                                  llvm::APSInt *Result,
17420                                                  AllowFoldKind CanFold) {
17421   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
17422   public:
17423     SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
17424                                              QualType T) override {
17425       return S.Diag(Loc, diag::err_ice_not_integral)
17426              << T << S.LangOpts.CPlusPlus;
17427     }
17428     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17429       return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
17430     }
17431   } Diagnoser;
17432 
17433   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17434 }
17435 
17436 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
17437                                                  llvm::APSInt *Result,
17438                                                  unsigned DiagID,
17439                                                  AllowFoldKind CanFold) {
17440   class IDDiagnoser : public VerifyICEDiagnoser {
17441     unsigned DiagID;
17442 
17443   public:
17444     IDDiagnoser(unsigned DiagID)
17445       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
17446 
17447     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
17448       return S.Diag(Loc, DiagID);
17449     }
17450   } Diagnoser(DiagID);
17451 
17452   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
17453 }
17454 
17455 Sema::SemaDiagnosticBuilder
17456 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
17457                                              QualType T) {
17458   return diagnoseNotICE(S, Loc);
17459 }
17460 
17461 Sema::SemaDiagnosticBuilder
17462 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
17463   return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
17464 }
17465 
17466 ExprResult
17467 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
17468                                       VerifyICEDiagnoser &Diagnoser,
17469                                       AllowFoldKind CanFold) {
17470   SourceLocation DiagLoc = E->getBeginLoc();
17471 
17472   if (getLangOpts().CPlusPlus11) {
17473     // C++11 [expr.const]p5:
17474     //   If an expression of literal class type is used in a context where an
17475     //   integral constant expression is required, then that class type shall
17476     //   have a single non-explicit conversion function to an integral or
17477     //   unscoped enumeration type
17478     ExprResult Converted;
17479     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
17480       VerifyICEDiagnoser &BaseDiagnoser;
17481     public:
17482       CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
17483           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
17484                                 BaseDiagnoser.Suppress, true),
17485             BaseDiagnoser(BaseDiagnoser) {}
17486 
17487       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
17488                                            QualType T) override {
17489         return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
17490       }
17491 
17492       SemaDiagnosticBuilder diagnoseIncomplete(
17493           Sema &S, SourceLocation Loc, QualType T) override {
17494         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
17495       }
17496 
17497       SemaDiagnosticBuilder diagnoseExplicitConv(
17498           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17499         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
17500       }
17501 
17502       SemaDiagnosticBuilder noteExplicitConv(
17503           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17504         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17505                  << ConvTy->isEnumeralType() << ConvTy;
17506       }
17507 
17508       SemaDiagnosticBuilder diagnoseAmbiguous(
17509           Sema &S, SourceLocation Loc, QualType T) override {
17510         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
17511       }
17512 
17513       SemaDiagnosticBuilder noteAmbiguous(
17514           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
17515         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
17516                  << ConvTy->isEnumeralType() << ConvTy;
17517       }
17518 
17519       SemaDiagnosticBuilder diagnoseConversion(
17520           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
17521         llvm_unreachable("conversion functions are permitted");
17522       }
17523     } ConvertDiagnoser(Diagnoser);
17524 
17525     Converted = PerformContextualImplicitConversion(DiagLoc, E,
17526                                                     ConvertDiagnoser);
17527     if (Converted.isInvalid())
17528       return Converted;
17529     E = Converted.get();
17530     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
17531       return ExprError();
17532   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
17533     // An ICE must be of integral or unscoped enumeration type.
17534     if (!Diagnoser.Suppress)
17535       Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
17536           << E->getSourceRange();
17537     return ExprError();
17538   }
17539 
17540   ExprResult RValueExpr = DefaultLvalueConversion(E);
17541   if (RValueExpr.isInvalid())
17542     return ExprError();
17543 
17544   E = RValueExpr.get();
17545 
17546   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
17547   // in the non-ICE case.
17548   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
17549     if (Result)
17550       *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
17551     if (!isa<ConstantExpr>(E))
17552       E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
17553                  : ConstantExpr::Create(Context, E);
17554     return E;
17555   }
17556 
17557   Expr::EvalResult EvalResult;
17558   SmallVector<PartialDiagnosticAt, 8> Notes;
17559   EvalResult.Diag = &Notes;
17560 
17561   // Try to evaluate the expression, and produce diagnostics explaining why it's
17562   // not a constant expression as a side-effect.
17563   bool Folded =
17564       E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
17565       EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
17566 
17567   if (!isa<ConstantExpr>(E))
17568     E = ConstantExpr::Create(Context, E, EvalResult.Val);
17569 
17570   // In C++11, we can rely on diagnostics being produced for any expression
17571   // which is not a constant expression. If no diagnostics were produced, then
17572   // this is a constant expression.
17573   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
17574     if (Result)
17575       *Result = EvalResult.Val.getInt();
17576     return E;
17577   }
17578 
17579   // If our only note is the usual "invalid subexpression" note, just point
17580   // the caret at its location rather than producing an essentially
17581   // redundant note.
17582   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17583         diag::note_invalid_subexpr_in_const_expr) {
17584     DiagLoc = Notes[0].first;
17585     Notes.clear();
17586   }
17587 
17588   if (!Folded || !CanFold) {
17589     if (!Diagnoser.Suppress) {
17590       Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
17591       for (const PartialDiagnosticAt &Note : Notes)
17592         Diag(Note.first, Note.second);
17593     }
17594 
17595     return ExprError();
17596   }
17597 
17598   Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
17599   for (const PartialDiagnosticAt &Note : Notes)
17600     Diag(Note.first, Note.second);
17601 
17602   if (Result)
17603     *Result = EvalResult.Val.getInt();
17604   return E;
17605 }
17606 
17607 namespace {
17608   // Handle the case where we conclude a expression which we speculatively
17609   // considered to be unevaluated is actually evaluated.
17610   class TransformToPE : public TreeTransform<TransformToPE> {
17611     typedef TreeTransform<TransformToPE> BaseTransform;
17612 
17613   public:
17614     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
17615 
17616     // Make sure we redo semantic analysis
17617     bool AlwaysRebuild() { return true; }
17618     bool ReplacingOriginal() { return true; }
17619 
17620     // We need to special-case DeclRefExprs referring to FieldDecls which
17621     // are not part of a member pointer formation; normal TreeTransforming
17622     // doesn't catch this case because of the way we represent them in the AST.
17623     // FIXME: This is a bit ugly; is it really the best way to handle this
17624     // case?
17625     //
17626     // Error on DeclRefExprs referring to FieldDecls.
17627     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17628       if (isa<FieldDecl>(E->getDecl()) &&
17629           !SemaRef.isUnevaluatedContext())
17630         return SemaRef.Diag(E->getLocation(),
17631                             diag::err_invalid_non_static_member_use)
17632             << E->getDecl() << E->getSourceRange();
17633 
17634       return BaseTransform::TransformDeclRefExpr(E);
17635     }
17636 
17637     // Exception: filter out member pointer formation
17638     ExprResult TransformUnaryOperator(UnaryOperator *E) {
17639       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
17640         return E;
17641 
17642       return BaseTransform::TransformUnaryOperator(E);
17643     }
17644 
17645     // The body of a lambda-expression is in a separate expression evaluation
17646     // context so never needs to be transformed.
17647     // FIXME: Ideally we wouldn't transform the closure type either, and would
17648     // just recreate the capture expressions and lambda expression.
17649     StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
17650       return SkipLambdaBody(E, Body);
17651     }
17652   };
17653 }
17654 
17655 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
17656   assert(isUnevaluatedContext() &&
17657          "Should only transform unevaluated expressions");
17658   ExprEvalContexts.back().Context =
17659       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
17660   if (isUnevaluatedContext())
17661     return E;
17662   return TransformToPE(*this).TransformExpr(E);
17663 }
17664 
17665 TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
17666   assert(isUnevaluatedContext() &&
17667          "Should only transform unevaluated expressions");
17668   ExprEvalContexts.back().Context =
17669       ExprEvalContexts[ExprEvalContexts.size() - 2].Context;
17670   if (isUnevaluatedContext())
17671     return TInfo;
17672   return TransformToPE(*this).TransformType(TInfo);
17673 }
17674 
17675 void
17676 Sema::PushExpressionEvaluationContext(
17677     ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
17678     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17679   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
17680                                 LambdaContextDecl, ExprContext);
17681 
17682   // Discarded statements and immediate contexts nested in other
17683   // discarded statements or immediate context are themselves
17684   // a discarded statement or an immediate context, respectively.
17685   ExprEvalContexts.back().InDiscardedStatement =
17686       ExprEvalContexts[ExprEvalContexts.size() - 2]
17687           .isDiscardedStatementContext();
17688   ExprEvalContexts.back().InImmediateFunctionContext =
17689       ExprEvalContexts[ExprEvalContexts.size() - 2]
17690           .isImmediateFunctionContext();
17691 
17692   Cleanup.reset();
17693   if (!MaybeODRUseExprs.empty())
17694     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
17695 }
17696 
17697 void
17698 Sema::PushExpressionEvaluationContext(
17699     ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
17700     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17701   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
17702   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
17703 }
17704 
17705 namespace {
17706 
17707 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
17708   PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
17709   if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
17710     if (E->getOpcode() == UO_Deref)
17711       return CheckPossibleDeref(S, E->getSubExpr());
17712   } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
17713     return CheckPossibleDeref(S, E->getBase());
17714   } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
17715     return CheckPossibleDeref(S, E->getBase());
17716   } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
17717     QualType Inner;
17718     QualType Ty = E->getType();
17719     if (const auto *Ptr = Ty->getAs<PointerType>())
17720       Inner = Ptr->getPointeeType();
17721     else if (const auto *Arr = S.Context.getAsArrayType(Ty))
17722       Inner = Arr->getElementType();
17723     else
17724       return nullptr;
17725 
17726     if (Inner->hasAttr(attr::NoDeref))
17727       return E;
17728   }
17729   return nullptr;
17730 }
17731 
17732 } // namespace
17733 
17734 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
17735   for (const Expr *E : Rec.PossibleDerefs) {
17736     const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
17737     if (DeclRef) {
17738       const ValueDecl *Decl = DeclRef->getDecl();
17739       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
17740           << Decl->getName() << E->getSourceRange();
17741       Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
17742     } else {
17743       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
17744           << E->getSourceRange();
17745     }
17746   }
17747   Rec.PossibleDerefs.clear();
17748 }
17749 
17750 /// Check whether E, which is either a discarded-value expression or an
17751 /// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
17752 /// and if so, remove it from the list of volatile-qualified assignments that
17753 /// we are going to warn are deprecated.
17754 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
17755   if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
17756     return;
17757 
17758   // Note: ignoring parens here is not justified by the standard rules, but
17759   // ignoring parentheses seems like a more reasonable approach, and this only
17760   // drives a deprecation warning so doesn't affect conformance.
17761   if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
17762     if (BO->getOpcode() == BO_Assign) {
17763       auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
17764       llvm::erase_value(LHSs, BO->getLHS());
17765     }
17766   }
17767 }
17768 
17769 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
17770   if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
17771       !Decl->isConsteval() || isConstantEvaluated() ||
17772       isCheckingDefaultArgumentOrInitializer() ||
17773       RebuildingImmediateInvocation || isImmediateFunctionContext())
17774     return E;
17775 
17776   /// Opportunistically remove the callee from ReferencesToConsteval if we can.
17777   /// It's OK if this fails; we'll also remove this in
17778   /// HandleImmediateInvocations, but catching it here allows us to avoid
17779   /// walking the AST looking for it in simple cases.
17780   if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
17781     if (auto *DeclRef =
17782             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
17783       ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
17784 
17785   E = MaybeCreateExprWithCleanups(E);
17786 
17787   ConstantExpr *Res = ConstantExpr::Create(
17788       getASTContext(), E.get(),
17789       ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
17790                                    getASTContext()),
17791       /*IsImmediateInvocation*/ true);
17792   /// Value-dependent constant expressions should not be immediately
17793   /// evaluated until they are instantiated.
17794   if (!Res->isValueDependent())
17795     ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
17796   return Res;
17797 }
17798 
17799 static void EvaluateAndDiagnoseImmediateInvocation(
17800     Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
17801   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17802   Expr::EvalResult Eval;
17803   Eval.Diag = &Notes;
17804   ConstantExpr *CE = Candidate.getPointer();
17805   bool Result = CE->EvaluateAsConstantExpr(
17806       Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
17807   if (!Result || !Notes.empty()) {
17808     SemaRef.FailedImmediateInvocations.insert(CE);
17809     Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
17810     if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
17811       InnerExpr = FunctionalCast->getSubExpr();
17812     FunctionDecl *FD = nullptr;
17813     if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
17814       FD = cast<FunctionDecl>(Call->getCalleeDecl());
17815     else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
17816       FD = Call->getConstructor();
17817     else
17818       llvm_unreachable("unhandled decl kind");
17819     assert(FD && FD->isConsteval());
17820     SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD;
17821     if (auto Context =
17822             SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
17823       SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
17824           << Context->Decl;
17825       SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
17826     }
17827     for (auto &Note : Notes)
17828       SemaRef.Diag(Note.first, Note.second);
17829     return;
17830   }
17831   CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
17832 }
17833 
17834 static void RemoveNestedImmediateInvocation(
17835     Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
17836     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
17837   struct ComplexRemove : TreeTransform<ComplexRemove> {
17838     using Base = TreeTransform<ComplexRemove>;
17839     llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17840     SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
17841     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
17842         CurrentII;
17843     ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
17844                   SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
17845                   SmallVector<Sema::ImmediateInvocationCandidate,
17846                               4>::reverse_iterator Current)
17847         : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
17848     void RemoveImmediateInvocation(ConstantExpr* E) {
17849       auto It = std::find_if(CurrentII, IISet.rend(),
17850                              [E](Sema::ImmediateInvocationCandidate Elem) {
17851                                return Elem.getPointer() == E;
17852                              });
17853       // It is possible that some subexpression of the current immediate
17854       // invocation was handled from another expression evaluation context. Do
17855       // not handle the current immediate invocation if some of its
17856       // subexpressions failed before.
17857       if (It == IISet.rend()) {
17858         if (SemaRef.FailedImmediateInvocations.contains(E))
17859           CurrentII->setInt(1);
17860       } else {
17861         It->setInt(1); // Mark as deleted
17862       }
17863     }
17864     ExprResult TransformConstantExpr(ConstantExpr *E) {
17865       if (!E->isImmediateInvocation())
17866         return Base::TransformConstantExpr(E);
17867       RemoveImmediateInvocation(E);
17868       return Base::TransformExpr(E->getSubExpr());
17869     }
17870     /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
17871     /// we need to remove its DeclRefExpr from the DRSet.
17872     ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
17873       DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
17874       return Base::TransformCXXOperatorCallExpr(E);
17875     }
17876     /// Base::TransformInitializer skip ConstantExpr so we need to visit them
17877     /// here.
17878     ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
17879       if (!Init)
17880         return Init;
17881       /// ConstantExpr are the first layer of implicit node to be removed so if
17882       /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
17883       if (auto *CE = dyn_cast<ConstantExpr>(Init))
17884         if (CE->isImmediateInvocation())
17885           RemoveImmediateInvocation(CE);
17886       return Base::TransformInitializer(Init, NotCopyInit);
17887     }
17888     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17889       DRSet.erase(E);
17890       return E;
17891     }
17892     ExprResult TransformLambdaExpr(LambdaExpr *E) {
17893       // Do not rebuild lambdas to avoid creating a new type.
17894       // Lambdas have already been processed inside their eval context.
17895       return E;
17896     }
17897     bool AlwaysRebuild() { return false; }
17898     bool ReplacingOriginal() { return true; }
17899     bool AllowSkippingCXXConstructExpr() {
17900       bool Res = AllowSkippingFirstCXXConstructExpr;
17901       AllowSkippingFirstCXXConstructExpr = true;
17902       return Res;
17903     }
17904     bool AllowSkippingFirstCXXConstructExpr = true;
17905   } Transformer(SemaRef, Rec.ReferenceToConsteval,
17906                 Rec.ImmediateInvocationCandidates, It);
17907 
17908   /// CXXConstructExpr with a single argument are getting skipped by
17909   /// TreeTransform in some situtation because they could be implicit. This
17910   /// can only occur for the top-level CXXConstructExpr because it is used
17911   /// nowhere in the expression being transformed therefore will not be rebuilt.
17912   /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
17913   /// skipping the first CXXConstructExpr.
17914   if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
17915     Transformer.AllowSkippingFirstCXXConstructExpr = false;
17916 
17917   ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
17918   // The result may not be usable in case of previous compilation errors.
17919   // In this case evaluation of the expression may result in crash so just
17920   // don't do anything further with the result.
17921   if (Res.isUsable()) {
17922     Res = SemaRef.MaybeCreateExprWithCleanups(Res);
17923     It->getPointer()->setSubExpr(Res.get());
17924   }
17925 }
17926 
17927 static void
17928 HandleImmediateInvocations(Sema &SemaRef,
17929                            Sema::ExpressionEvaluationContextRecord &Rec) {
17930   if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
17931        Rec.ReferenceToConsteval.size() == 0) ||
17932       SemaRef.RebuildingImmediateInvocation)
17933     return;
17934 
17935   /// When we have more than 1 ImmediateInvocationCandidates or previously
17936   /// failed immediate invocations, we need to check for nested
17937   /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
17938   /// Otherwise we only need to remove ReferenceToConsteval in the immediate
17939   /// invocation.
17940   if (Rec.ImmediateInvocationCandidates.size() > 1 ||
17941       !SemaRef.FailedImmediateInvocations.empty()) {
17942 
17943     /// Prevent sema calls during the tree transform from adding pointers that
17944     /// are already in the sets.
17945     llvm::SaveAndRestore DisableIITracking(
17946         SemaRef.RebuildingImmediateInvocation, true);
17947 
17948     /// Prevent diagnostic during tree transfrom as they are duplicates
17949     Sema::TentativeAnalysisScope DisableDiag(SemaRef);
17950 
17951     for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
17952          It != Rec.ImmediateInvocationCandidates.rend(); It++)
17953       if (!It->getInt())
17954         RemoveNestedImmediateInvocation(SemaRef, Rec, It);
17955   } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
17956              Rec.ReferenceToConsteval.size()) {
17957     struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
17958       llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17959       SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
17960       bool VisitDeclRefExpr(DeclRefExpr *E) {
17961         DRSet.erase(E);
17962         return DRSet.size();
17963       }
17964     } Visitor(Rec.ReferenceToConsteval);
17965     Visitor.TraverseStmt(
17966         Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
17967   }
17968   for (auto CE : Rec.ImmediateInvocationCandidates)
17969     if (!CE.getInt())
17970       EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
17971   for (auto *DR : Rec.ReferenceToConsteval) {
17972     auto *FD = cast<FunctionDecl>(DR->getDecl());
17973     SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
17974         << FD;
17975     SemaRef.Diag(FD->getLocation(), diag::note_declared_at);
17976   }
17977 }
17978 
17979 void Sema::PopExpressionEvaluationContext() {
17980   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
17981   unsigned NumTypos = Rec.NumTypos;
17982 
17983   if (!Rec.Lambdas.empty()) {
17984     using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
17985     if (!getLangOpts().CPlusPlus20 &&
17986         (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
17987          Rec.isUnevaluated() ||
17988          (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
17989       unsigned D;
17990       if (Rec.isUnevaluated()) {
17991         // C++11 [expr.prim.lambda]p2:
17992         //   A lambda-expression shall not appear in an unevaluated operand
17993         //   (Clause 5).
17994         D = diag::err_lambda_unevaluated_operand;
17995       } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
17996         // C++1y [expr.const]p2:
17997         //   A conditional-expression e is a core constant expression unless the
17998         //   evaluation of e, following the rules of the abstract machine, would
17999         //   evaluate [...] a lambda-expression.
18000         D = diag::err_lambda_in_constant_expression;
18001       } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
18002         // C++17 [expr.prim.lamda]p2:
18003         // A lambda-expression shall not appear [...] in a template-argument.
18004         D = diag::err_lambda_in_invalid_context;
18005       } else
18006         llvm_unreachable("Couldn't infer lambda error message.");
18007 
18008       for (const auto *L : Rec.Lambdas)
18009         Diag(L->getBeginLoc(), D);
18010     }
18011   }
18012 
18013   WarnOnPendingNoDerefs(Rec);
18014   HandleImmediateInvocations(*this, Rec);
18015 
18016   // Warn on any volatile-qualified simple-assignments that are not discarded-
18017   // value expressions nor unevaluated operands (those cases get removed from
18018   // this list by CheckUnusedVolatileAssignment).
18019   for (auto *BO : Rec.VolatileAssignmentLHSs)
18020     Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
18021         << BO->getType();
18022 
18023   // When are coming out of an unevaluated context, clear out any
18024   // temporaries that we may have created as part of the evaluation of
18025   // the expression in that context: they aren't relevant because they
18026   // will never be constructed.
18027   if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
18028     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
18029                              ExprCleanupObjects.end());
18030     Cleanup = Rec.ParentCleanup;
18031     CleanupVarDeclMarking();
18032     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
18033   // Otherwise, merge the contexts together.
18034   } else {
18035     Cleanup.mergeFrom(Rec.ParentCleanup);
18036     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
18037                             Rec.SavedMaybeODRUseExprs.end());
18038   }
18039 
18040   // Pop the current expression evaluation context off the stack.
18041   ExprEvalContexts.pop_back();
18042 
18043   // The global expression evaluation context record is never popped.
18044   ExprEvalContexts.back().NumTypos += NumTypos;
18045 }
18046 
18047 void Sema::DiscardCleanupsInEvaluationContext() {
18048   ExprCleanupObjects.erase(
18049          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
18050          ExprCleanupObjects.end());
18051   Cleanup.reset();
18052   MaybeODRUseExprs.clear();
18053 }
18054 
18055 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
18056   ExprResult Result = CheckPlaceholderExpr(E);
18057   if (Result.isInvalid())
18058     return ExprError();
18059   E = Result.get();
18060   if (!E->getType()->isVariablyModifiedType())
18061     return E;
18062   return TransformToPotentiallyEvaluated(E);
18063 }
18064 
18065 /// Are we in a context that is potentially constant evaluated per C++20
18066 /// [expr.const]p12?
18067 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
18068   /// C++2a [expr.const]p12:
18069   //   An expression or conversion is potentially constant evaluated if it is
18070   switch (SemaRef.ExprEvalContexts.back().Context) {
18071     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18072     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18073 
18074       // -- a manifestly constant-evaluated expression,
18075     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18076     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18077     case Sema::ExpressionEvaluationContext::DiscardedStatement:
18078       // -- a potentially-evaluated expression,
18079     case Sema::ExpressionEvaluationContext::UnevaluatedList:
18080       // -- an immediate subexpression of a braced-init-list,
18081 
18082       // -- [FIXME] an expression of the form & cast-expression that occurs
18083       //    within a templated entity
18084       // -- a subexpression of one of the above that is not a subexpression of
18085       // a nested unevaluated operand.
18086       return true;
18087 
18088     case Sema::ExpressionEvaluationContext::Unevaluated:
18089     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18090       // Expressions in this context are never evaluated.
18091       return false;
18092   }
18093   llvm_unreachable("Invalid context");
18094 }
18095 
18096 /// Return true if this function has a calling convention that requires mangling
18097 /// in the size of the parameter pack.
18098 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
18099   // These manglings don't do anything on non-Windows or non-x86 platforms, so
18100   // we don't need parameter type sizes.
18101   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
18102   if (!TT.isOSWindows() || !TT.isX86())
18103     return false;
18104 
18105   // If this is C++ and this isn't an extern "C" function, parameters do not
18106   // need to be complete. In this case, C++ mangling will apply, which doesn't
18107   // use the size of the parameters.
18108   if (S.getLangOpts().CPlusPlus && !FD->isExternC())
18109     return false;
18110 
18111   // Stdcall, fastcall, and vectorcall need this special treatment.
18112   CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18113   switch (CC) {
18114   case CC_X86StdCall:
18115   case CC_X86FastCall:
18116   case CC_X86VectorCall:
18117     return true;
18118   default:
18119     break;
18120   }
18121   return false;
18122 }
18123 
18124 /// Require that all of the parameter types of function be complete. Normally,
18125 /// parameter types are only required to be complete when a function is called
18126 /// or defined, but to mangle functions with certain calling conventions, the
18127 /// mangler needs to know the size of the parameter list. In this situation,
18128 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
18129 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
18130 /// result in a linker error. Clang doesn't implement this behavior, and instead
18131 /// attempts to error at compile time.
18132 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
18133                                                   SourceLocation Loc) {
18134   class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
18135     FunctionDecl *FD;
18136     ParmVarDecl *Param;
18137 
18138   public:
18139     ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
18140         : FD(FD), Param(Param) {}
18141 
18142     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
18143       CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
18144       StringRef CCName;
18145       switch (CC) {
18146       case CC_X86StdCall:
18147         CCName = "stdcall";
18148         break;
18149       case CC_X86FastCall:
18150         CCName = "fastcall";
18151         break;
18152       case CC_X86VectorCall:
18153         CCName = "vectorcall";
18154         break;
18155       default:
18156         llvm_unreachable("CC does not need mangling");
18157       }
18158 
18159       S.Diag(Loc, diag::err_cconv_incomplete_param_type)
18160           << Param->getDeclName() << FD->getDeclName() << CCName;
18161     }
18162   };
18163 
18164   for (ParmVarDecl *Param : FD->parameters()) {
18165     ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
18166     S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
18167   }
18168 }
18169 
18170 namespace {
18171 enum class OdrUseContext {
18172   /// Declarations in this context are not odr-used.
18173   None,
18174   /// Declarations in this context are formally odr-used, but this is a
18175   /// dependent context.
18176   Dependent,
18177   /// Declarations in this context are odr-used but not actually used (yet).
18178   FormallyOdrUsed,
18179   /// Declarations in this context are used.
18180   Used
18181 };
18182 }
18183 
18184 /// Are we within a context in which references to resolved functions or to
18185 /// variables result in odr-use?
18186 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
18187   OdrUseContext Result;
18188 
18189   switch (SemaRef.ExprEvalContexts.back().Context) {
18190     case Sema::ExpressionEvaluationContext::Unevaluated:
18191     case Sema::ExpressionEvaluationContext::UnevaluatedList:
18192     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
18193       return OdrUseContext::None;
18194 
18195     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
18196     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
18197     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
18198       Result = OdrUseContext::Used;
18199       break;
18200 
18201     case Sema::ExpressionEvaluationContext::DiscardedStatement:
18202       Result = OdrUseContext::FormallyOdrUsed;
18203       break;
18204 
18205     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18206       // A default argument formally results in odr-use, but doesn't actually
18207       // result in a use in any real sense until it itself is used.
18208       Result = OdrUseContext::FormallyOdrUsed;
18209       break;
18210   }
18211 
18212   if (SemaRef.CurContext->isDependentContext())
18213     return OdrUseContext::Dependent;
18214 
18215   return Result;
18216 }
18217 
18218 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
18219   if (!Func->isConstexpr())
18220     return false;
18221 
18222   if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
18223     return true;
18224   auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
18225   return CCD && CCD->getInheritedConstructor();
18226 }
18227 
18228 /// Mark a function referenced, and check whether it is odr-used
18229 /// (C++ [basic.def.odr]p2, C99 6.9p3)
18230 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
18231                                   bool MightBeOdrUse) {
18232   assert(Func && "No function?");
18233 
18234   Func->setReferenced();
18235 
18236   // Recursive functions aren't really used until they're used from some other
18237   // context.
18238   bool IsRecursiveCall = CurContext == Func;
18239 
18240   // C++11 [basic.def.odr]p3:
18241   //   A function whose name appears as a potentially-evaluated expression is
18242   //   odr-used if it is the unique lookup result or the selected member of a
18243   //   set of overloaded functions [...].
18244   //
18245   // We (incorrectly) mark overload resolution as an unevaluated context, so we
18246   // can just check that here.
18247   OdrUseContext OdrUse =
18248       MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
18249   if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
18250     OdrUse = OdrUseContext::FormallyOdrUsed;
18251 
18252   // Trivial default constructors and destructors are never actually used.
18253   // FIXME: What about other special members?
18254   if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
18255       OdrUse == OdrUseContext::Used) {
18256     if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
18257       if (Constructor->isDefaultConstructor())
18258         OdrUse = OdrUseContext::FormallyOdrUsed;
18259     if (isa<CXXDestructorDecl>(Func))
18260       OdrUse = OdrUseContext::FormallyOdrUsed;
18261   }
18262 
18263   // C++20 [expr.const]p12:
18264   //   A function [...] is needed for constant evaluation if it is [...] a
18265   //   constexpr function that is named by an expression that is potentially
18266   //   constant evaluated
18267   bool NeededForConstantEvaluation =
18268       isPotentiallyConstantEvaluatedContext(*this) &&
18269       isImplicitlyDefinableConstexprFunction(Func);
18270 
18271   // Determine whether we require a function definition to exist, per
18272   // C++11 [temp.inst]p3:
18273   //   Unless a function template specialization has been explicitly
18274   //   instantiated or explicitly specialized, the function template
18275   //   specialization is implicitly instantiated when the specialization is
18276   //   referenced in a context that requires a function definition to exist.
18277   // C++20 [temp.inst]p7:
18278   //   The existence of a definition of a [...] function is considered to
18279   //   affect the semantics of the program if the [...] function is needed for
18280   //   constant evaluation by an expression
18281   // C++20 [basic.def.odr]p10:
18282   //   Every program shall contain exactly one definition of every non-inline
18283   //   function or variable that is odr-used in that program outside of a
18284   //   discarded statement
18285   // C++20 [special]p1:
18286   //   The implementation will implicitly define [defaulted special members]
18287   //   if they are odr-used or needed for constant evaluation.
18288   //
18289   // Note that we skip the implicit instantiation of templates that are only
18290   // used in unused default arguments or by recursive calls to themselves.
18291   // This is formally non-conforming, but seems reasonable in practice.
18292   bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
18293                                              NeededForConstantEvaluation);
18294 
18295   // C++14 [temp.expl.spec]p6:
18296   //   If a template [...] is explicitly specialized then that specialization
18297   //   shall be declared before the first use of that specialization that would
18298   //   cause an implicit instantiation to take place, in every translation unit
18299   //   in which such a use occurs
18300   if (NeedDefinition &&
18301       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
18302        Func->getMemberSpecializationInfo()))
18303     checkSpecializationReachability(Loc, Func);
18304 
18305   if (getLangOpts().CUDA)
18306     CheckCUDACall(Loc, Func);
18307 
18308   if (getLangOpts().SYCLIsDevice)
18309     checkSYCLDeviceFunction(Loc, Func);
18310 
18311   // If we need a definition, try to create one.
18312   if (NeedDefinition && !Func->getBody()) {
18313     runWithSufficientStackSpace(Loc, [&] {
18314       if (CXXConstructorDecl *Constructor =
18315               dyn_cast<CXXConstructorDecl>(Func)) {
18316         Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
18317         if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
18318           if (Constructor->isDefaultConstructor()) {
18319             if (Constructor->isTrivial() &&
18320                 !Constructor->hasAttr<DLLExportAttr>())
18321               return;
18322             DefineImplicitDefaultConstructor(Loc, Constructor);
18323           } else if (Constructor->isCopyConstructor()) {
18324             DefineImplicitCopyConstructor(Loc, Constructor);
18325           } else if (Constructor->isMoveConstructor()) {
18326             DefineImplicitMoveConstructor(Loc, Constructor);
18327           }
18328         } else if (Constructor->getInheritedConstructor()) {
18329           DefineInheritingConstructor(Loc, Constructor);
18330         }
18331       } else if (CXXDestructorDecl *Destructor =
18332                      dyn_cast<CXXDestructorDecl>(Func)) {
18333         Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
18334         if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
18335           if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
18336             return;
18337           DefineImplicitDestructor(Loc, Destructor);
18338         }
18339         if (Destructor->isVirtual() && getLangOpts().AppleKext)
18340           MarkVTableUsed(Loc, Destructor->getParent());
18341       } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
18342         if (MethodDecl->isOverloadedOperator() &&
18343             MethodDecl->getOverloadedOperator() == OO_Equal) {
18344           MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
18345           if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
18346             if (MethodDecl->isCopyAssignmentOperator())
18347               DefineImplicitCopyAssignment(Loc, MethodDecl);
18348             else if (MethodDecl->isMoveAssignmentOperator())
18349               DefineImplicitMoveAssignment(Loc, MethodDecl);
18350           }
18351         } else if (isa<CXXConversionDecl>(MethodDecl) &&
18352                    MethodDecl->getParent()->isLambda()) {
18353           CXXConversionDecl *Conversion =
18354               cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
18355           if (Conversion->isLambdaToBlockPointerConversion())
18356             DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
18357           else
18358             DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
18359         } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
18360           MarkVTableUsed(Loc, MethodDecl->getParent());
18361       }
18362 
18363       if (Func->isDefaulted() && !Func->isDeleted()) {
18364         DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
18365         if (DCK != DefaultedComparisonKind::None)
18366           DefineDefaultedComparison(Loc, Func, DCK);
18367       }
18368 
18369       // Implicit instantiation of function templates and member functions of
18370       // class templates.
18371       if (Func->isImplicitlyInstantiable()) {
18372         TemplateSpecializationKind TSK =
18373             Func->getTemplateSpecializationKindForInstantiation();
18374         SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
18375         bool FirstInstantiation = PointOfInstantiation.isInvalid();
18376         if (FirstInstantiation) {
18377           PointOfInstantiation = Loc;
18378           if (auto *MSI = Func->getMemberSpecializationInfo())
18379             MSI->setPointOfInstantiation(Loc);
18380             // FIXME: Notify listener.
18381           else
18382             Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18383         } else if (TSK != TSK_ImplicitInstantiation) {
18384           // Use the point of use as the point of instantiation, instead of the
18385           // point of explicit instantiation (which we track as the actual point
18386           // of instantiation). This gives better backtraces in diagnostics.
18387           PointOfInstantiation = Loc;
18388         }
18389 
18390         if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
18391             Func->isConstexpr()) {
18392           if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
18393               cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
18394               CodeSynthesisContexts.size())
18395             PendingLocalImplicitInstantiations.push_back(
18396                 std::make_pair(Func, PointOfInstantiation));
18397           else if (Func->isConstexpr())
18398             // Do not defer instantiations of constexpr functions, to avoid the
18399             // expression evaluator needing to call back into Sema if it sees a
18400             // call to such a function.
18401             InstantiateFunctionDefinition(PointOfInstantiation, Func);
18402           else {
18403             Func->setInstantiationIsPending(true);
18404             PendingInstantiations.push_back(
18405                 std::make_pair(Func, PointOfInstantiation));
18406             // Notify the consumer that a function was implicitly instantiated.
18407             Consumer.HandleCXXImplicitFunctionInstantiation(Func);
18408           }
18409         }
18410       } else {
18411         // Walk redefinitions, as some of them may be instantiable.
18412         for (auto *i : Func->redecls()) {
18413           if (!i->isUsed(false) && i->isImplicitlyInstantiable())
18414             MarkFunctionReferenced(Loc, i, MightBeOdrUse);
18415         }
18416       }
18417     });
18418   }
18419 
18420   // If a constructor was defined in the context of a default parameter
18421   // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
18422   // context), its initializers may not be referenced yet.
18423   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
18424     for (CXXCtorInitializer *Init : Constructor->inits()) {
18425       if (Init->isInClassMemberInitializer())
18426         MarkDeclarationsReferencedInExpr(Init->getInit());
18427     }
18428   }
18429 
18430   // C++14 [except.spec]p17:
18431   //   An exception-specification is considered to be needed when:
18432   //   - the function is odr-used or, if it appears in an unevaluated operand,
18433   //     would be odr-used if the expression were potentially-evaluated;
18434   //
18435   // Note, we do this even if MightBeOdrUse is false. That indicates that the
18436   // function is a pure virtual function we're calling, and in that case the
18437   // function was selected by overload resolution and we need to resolve its
18438   // exception specification for a different reason.
18439   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
18440   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
18441     ResolveExceptionSpec(Loc, FPT);
18442 
18443   // If this is the first "real" use, act on that.
18444   if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
18445     // Keep track of used but undefined functions.
18446     if (!Func->isDefined()) {
18447       if (mightHaveNonExternalLinkage(Func))
18448         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18449       else if (Func->getMostRecentDecl()->isInlined() &&
18450                !LangOpts.GNUInline &&
18451                !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
18452         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18453       else if (isExternalWithNoLinkageType(Func))
18454         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18455     }
18456 
18457     // Some x86 Windows calling conventions mangle the size of the parameter
18458     // pack into the name. Computing the size of the parameters requires the
18459     // parameter types to be complete. Check that now.
18460     if (funcHasParameterSizeMangling(*this, Func))
18461       CheckCompleteParameterTypesForMangler(*this, Func, Loc);
18462 
18463     // In the MS C++ ABI, the compiler emits destructor variants where they are
18464     // used. If the destructor is used here but defined elsewhere, mark the
18465     // virtual base destructors referenced. If those virtual base destructors
18466     // are inline, this will ensure they are defined when emitting the complete
18467     // destructor variant. This checking may be redundant if the destructor is
18468     // provided later in this TU.
18469     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
18470       if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
18471         CXXRecordDecl *Parent = Dtor->getParent();
18472         if (Parent->getNumVBases() > 0 && !Dtor->getBody())
18473           CheckCompleteDestructorVariant(Loc, Dtor);
18474       }
18475     }
18476 
18477     Func->markUsed(Context);
18478   }
18479 }
18480 
18481 /// Directly mark a variable odr-used. Given a choice, prefer to use
18482 /// MarkVariableReferenced since it does additional checks and then
18483 /// calls MarkVarDeclODRUsed.
18484 /// If the variable must be captured:
18485 ///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
18486 ///  - else capture it in the DeclContext that maps to the
18487 ///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
18488 static void
18489 MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef,
18490                    const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
18491   // Keep track of used but undefined variables.
18492   // FIXME: We shouldn't suppress this warning for static data members.
18493   VarDecl *Var = V->getPotentiallyDecomposedVarDecl();
18494   assert(Var && "expected a capturable variable");
18495 
18496   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
18497       (!Var->isExternallyVisible() || Var->isInline() ||
18498        SemaRef.isExternalWithNoLinkageType(Var)) &&
18499       !(Var->isStaticDataMember() && Var->hasInit())) {
18500     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
18501     if (old.isInvalid())
18502       old = Loc;
18503   }
18504   QualType CaptureType, DeclRefType;
18505   if (SemaRef.LangOpts.OpenMP)
18506     SemaRef.tryCaptureOpenMPLambdas(V);
18507   SemaRef.tryCaptureVariable(V, Loc, Sema::TryCapture_Implicit,
18508                              /*EllipsisLoc*/ SourceLocation(),
18509                              /*BuildAndDiagnose*/ true, CaptureType,
18510                              DeclRefType, FunctionScopeIndexToStopAt);
18511 
18512   if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
18513     auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
18514     auto VarTarget = SemaRef.IdentifyCUDATarget(Var);
18515     auto UserTarget = SemaRef.IdentifyCUDATarget(FD);
18516     if (VarTarget == Sema::CVT_Host &&
18517         (UserTarget == Sema::CFT_Device || UserTarget == Sema::CFT_HostDevice ||
18518          UserTarget == Sema::CFT_Global)) {
18519       // Diagnose ODR-use of host global variables in device functions.
18520       // Reference of device global variables in host functions is allowed
18521       // through shadow variables therefore it is not diagnosed.
18522       if (SemaRef.LangOpts.CUDAIsDevice) {
18523         SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
18524             << /*host*/ 2 << /*variable*/ 1 << Var << UserTarget;
18525         SemaRef.targetDiag(Var->getLocation(),
18526                            Var->getType().isConstQualified()
18527                                ? diag::note_cuda_const_var_unpromoted
18528                                : diag::note_cuda_host_var);
18529       }
18530     } else if (VarTarget == Sema::CVT_Device &&
18531                (UserTarget == Sema::CFT_Host ||
18532                 UserTarget == Sema::CFT_HostDevice)) {
18533       // Record a CUDA/HIP device side variable if it is ODR-used
18534       // by host code. This is done conservatively, when the variable is
18535       // referenced in any of the following contexts:
18536       //   - a non-function context
18537       //   - a host function
18538       //   - a host device function
18539       // This makes the ODR-use of the device side variable by host code to
18540       // be visible in the device compilation for the compiler to be able to
18541       // emit template variables instantiated by host code only and to
18542       // externalize the static device side variable ODR-used by host code.
18543       if (!Var->hasExternalStorage())
18544         SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
18545       else if (SemaRef.LangOpts.GPURelocatableDeviceCode)
18546         SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
18547     }
18548   }
18549 
18550   V->markUsed(SemaRef.Context);
18551 }
18552 
18553 void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture,
18554                                              SourceLocation Loc,
18555                                              unsigned CapturingScopeIndex) {
18556   MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
18557 }
18558 
18559 void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
18560                                                  ValueDecl *var) {
18561   DeclContext *VarDC = var->getDeclContext();
18562 
18563   //  If the parameter still belongs to the translation unit, then
18564   //  we're actually just using one parameter in the declaration of
18565   //  the next.
18566   if (isa<ParmVarDecl>(var) &&
18567       isa<TranslationUnitDecl>(VarDC))
18568     return;
18569 
18570   // For C code, don't diagnose about capture if we're not actually in code
18571   // right now; it's impossible to write a non-constant expression outside of
18572   // function context, so we'll get other (more useful) diagnostics later.
18573   //
18574   // For C++, things get a bit more nasty... it would be nice to suppress this
18575   // diagnostic for certain cases like using a local variable in an array bound
18576   // for a member of a local class, but the correct predicate is not obvious.
18577   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
18578     return;
18579 
18580   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
18581   unsigned ContextKind = 3; // unknown
18582   if (isa<CXXMethodDecl>(VarDC) &&
18583       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
18584     ContextKind = 2;
18585   } else if (isa<FunctionDecl>(VarDC)) {
18586     ContextKind = 0;
18587   } else if (isa<BlockDecl>(VarDC)) {
18588     ContextKind = 1;
18589   }
18590 
18591   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
18592     << var << ValueKind << ContextKind << VarDC;
18593   S.Diag(var->getLocation(), diag::note_entity_declared_at)
18594       << var;
18595 
18596   // FIXME: Add additional diagnostic info about class etc. which prevents
18597   // capture.
18598 }
18599 
18600 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
18601                                                  ValueDecl *Var,
18602                                                  bool &SubCapturesAreNested,
18603                                                  QualType &CaptureType,
18604                                                  QualType &DeclRefType) {
18605   // Check whether we've already captured it.
18606   if (CSI->CaptureMap.count(Var)) {
18607     // If we found a capture, any subcaptures are nested.
18608     SubCapturesAreNested = true;
18609 
18610     // Retrieve the capture type for this variable.
18611     CaptureType = CSI->getCapture(Var).getCaptureType();
18612 
18613     // Compute the type of an expression that refers to this variable.
18614     DeclRefType = CaptureType.getNonReferenceType();
18615 
18616     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
18617     // are mutable in the sense that user can change their value - they are
18618     // private instances of the captured declarations.
18619     const Capture &Cap = CSI->getCapture(Var);
18620     if (Cap.isCopyCapture() &&
18621         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
18622         !(isa<CapturedRegionScopeInfo>(CSI) &&
18623           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
18624       DeclRefType.addConst();
18625     return true;
18626   }
18627   return false;
18628 }
18629 
18630 // Only block literals, captured statements, and lambda expressions can
18631 // capture; other scopes don't work.
18632 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
18633                                                       ValueDecl *Var,
18634                                                       SourceLocation Loc,
18635                                                       const bool Diagnose,
18636                                                       Sema &S) {
18637   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
18638     return getLambdaAwareParentOfDeclContext(DC);
18639 
18640   VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
18641   if (Underlying) {
18642     if (Underlying->hasLocalStorage() && Diagnose)
18643       diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
18644   }
18645   return nullptr;
18646 }
18647 
18648 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18649 // certain types of variables (unnamed, variably modified types etc.)
18650 // so check for eligibility.
18651 static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
18652                                  SourceLocation Loc, const bool Diagnose,
18653                                  Sema &S) {
18654 
18655   assert((isa<VarDecl, BindingDecl>(Var)) &&
18656          "Only variables and structured bindings can be captured");
18657 
18658   bool IsBlock = isa<BlockScopeInfo>(CSI);
18659   bool IsLambda = isa<LambdaScopeInfo>(CSI);
18660 
18661   // Lambdas are not allowed to capture unnamed variables
18662   // (e.g. anonymous unions).
18663   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
18664   // assuming that's the intent.
18665   if (IsLambda && !Var->getDeclName()) {
18666     if (Diagnose) {
18667       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
18668       S.Diag(Var->getLocation(), diag::note_declared_at);
18669     }
18670     return false;
18671   }
18672 
18673   // Prohibit variably-modified types in blocks; they're difficult to deal with.
18674   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
18675     if (Diagnose) {
18676       S.Diag(Loc, diag::err_ref_vm_type);
18677       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18678     }
18679     return false;
18680   }
18681   // Prohibit structs with flexible array members too.
18682   // We cannot capture what is in the tail end of the struct.
18683   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
18684     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
18685       if (Diagnose) {
18686         if (IsBlock)
18687           S.Diag(Loc, diag::err_ref_flexarray_type);
18688         else
18689           S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
18690         S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18691       }
18692       return false;
18693     }
18694   }
18695   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18696   // Lambdas and captured statements are not allowed to capture __block
18697   // variables; they don't support the expected semantics.
18698   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
18699     if (Diagnose) {
18700       S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
18701       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18702     }
18703     return false;
18704   }
18705   // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
18706   if (S.getLangOpts().OpenCL && IsBlock &&
18707       Var->getType()->isBlockPointerType()) {
18708     if (Diagnose)
18709       S.Diag(Loc, diag::err_opencl_block_ref_block);
18710     return false;
18711   }
18712 
18713   if (isa<BindingDecl>(Var)) {
18714     if (!IsLambda || !S.getLangOpts().CPlusPlus) {
18715       if (Diagnose)
18716         diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
18717       return false;
18718     } else if (Diagnose && S.getLangOpts().CPlusPlus) {
18719       S.Diag(Loc, S.LangOpts.CPlusPlus20
18720                       ? diag::warn_cxx17_compat_capture_binding
18721                       : diag::ext_capture_binding)
18722           << Var;
18723       S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
18724     }
18725   }
18726 
18727   return true;
18728 }
18729 
18730 // Returns true if the capture by block was successful.
18731 static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
18732                            SourceLocation Loc, const bool BuildAndDiagnose,
18733                            QualType &CaptureType, QualType &DeclRefType,
18734                            const bool Nested, Sema &S, bool Invalid) {
18735   bool ByRef = false;
18736 
18737   // Blocks are not allowed to capture arrays, excepting OpenCL.
18738   // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
18739   // (decayed to pointers).
18740   if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
18741     if (BuildAndDiagnose) {
18742       S.Diag(Loc, diag::err_ref_array_type);
18743       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18744       Invalid = true;
18745     } else {
18746       return false;
18747     }
18748   }
18749 
18750   // Forbid the block-capture of autoreleasing variables.
18751   if (!Invalid &&
18752       CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18753     if (BuildAndDiagnose) {
18754       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
18755         << /*block*/ 0;
18756       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18757       Invalid = true;
18758     } else {
18759       return false;
18760     }
18761   }
18762 
18763   // Warn about implicitly autoreleasing indirect parameters captured by blocks.
18764   if (const auto *PT = CaptureType->getAs<PointerType>()) {
18765     QualType PointeeTy = PT->getPointeeType();
18766 
18767     if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
18768         PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
18769         !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
18770       if (BuildAndDiagnose) {
18771         SourceLocation VarLoc = Var->getLocation();
18772         S.Diag(Loc, diag::warn_block_capture_autoreleasing);
18773         S.Diag(VarLoc, diag::note_declare_parameter_strong);
18774       }
18775     }
18776   }
18777 
18778   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18779   if (HasBlocksAttr || CaptureType->isReferenceType() ||
18780       (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
18781     // Block capture by reference does not change the capture or
18782     // declaration reference types.
18783     ByRef = true;
18784   } else {
18785     // Block capture by copy introduces 'const'.
18786     CaptureType = CaptureType.getNonReferenceType().withConst();
18787     DeclRefType = CaptureType;
18788   }
18789 
18790   // Actually capture the variable.
18791   if (BuildAndDiagnose)
18792     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
18793                     CaptureType, Invalid);
18794 
18795   return !Invalid;
18796 }
18797 
18798 /// Capture the given variable in the captured region.
18799 static bool captureInCapturedRegion(
18800     CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
18801     const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
18802     const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
18803     bool IsTopScope, Sema &S, bool Invalid) {
18804   // By default, capture variables by reference.
18805   bool ByRef = true;
18806   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18807     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18808   } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
18809     // Using an LValue reference type is consistent with Lambdas (see below).
18810     if (S.isOpenMPCapturedDecl(Var)) {
18811       bool HasConst = DeclRefType.isConstQualified();
18812       DeclRefType = DeclRefType.getUnqualifiedType();
18813       // Don't lose diagnostics about assignments to const.
18814       if (HasConst)
18815         DeclRefType.addConst();
18816     }
18817     // Do not capture firstprivates in tasks.
18818     if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
18819         OMPC_unknown)
18820       return true;
18821     ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
18822                                     RSI->OpenMPCaptureLevel);
18823   }
18824 
18825   if (ByRef)
18826     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18827   else
18828     CaptureType = DeclRefType;
18829 
18830   // Actually capture the variable.
18831   if (BuildAndDiagnose)
18832     RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
18833                     Loc, SourceLocation(), CaptureType, Invalid);
18834 
18835   return !Invalid;
18836 }
18837 
18838 /// Capture the given variable in the lambda.
18839 static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
18840                             SourceLocation Loc, const bool BuildAndDiagnose,
18841                             QualType &CaptureType, QualType &DeclRefType,
18842                             const bool RefersToCapturedVariable,
18843                             const Sema::TryCaptureKind Kind,
18844                             SourceLocation EllipsisLoc, const bool IsTopScope,
18845                             Sema &S, bool Invalid) {
18846   // Determine whether we are capturing by reference or by value.
18847   bool ByRef = false;
18848   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18849     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18850   } else {
18851     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
18852   }
18853 
18854   BindingDecl *BD = dyn_cast<BindingDecl>(Var);
18855   // FIXME: We should support capturing structured bindings in OpenMP.
18856   if (!Invalid && BD && S.LangOpts.OpenMP) {
18857     if (BuildAndDiagnose) {
18858       S.Diag(Loc, diag::err_capture_binding_openmp) << Var;
18859       S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
18860     }
18861     Invalid = true;
18862   }
18863 
18864   // Compute the type of the field that will capture this variable.
18865   if (ByRef) {
18866     // C++11 [expr.prim.lambda]p15:
18867     //   An entity is captured by reference if it is implicitly or
18868     //   explicitly captured but not captured by copy. It is
18869     //   unspecified whether additional unnamed non-static data
18870     //   members are declared in the closure type for entities
18871     //   captured by reference.
18872     //
18873     // FIXME: It is not clear whether we want to build an lvalue reference
18874     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
18875     // to do the former, while EDG does the latter. Core issue 1249 will
18876     // clarify, but for now we follow GCC because it's a more permissive and
18877     // easily defensible position.
18878     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18879   } else {
18880     // C++11 [expr.prim.lambda]p14:
18881     //   For each entity captured by copy, an unnamed non-static
18882     //   data member is declared in the closure type. The
18883     //   declaration order of these members is unspecified. The type
18884     //   of such a data member is the type of the corresponding
18885     //   captured entity if the entity is not a reference to an
18886     //   object, or the referenced type otherwise. [Note: If the
18887     //   captured entity is a reference to a function, the
18888     //   corresponding data member is also a reference to a
18889     //   function. - end note ]
18890     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
18891       if (!RefType->getPointeeType()->isFunctionType())
18892         CaptureType = RefType->getPointeeType();
18893     }
18894 
18895     // Forbid the lambda copy-capture of autoreleasing variables.
18896     if (!Invalid &&
18897         CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18898       if (BuildAndDiagnose) {
18899         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
18900         S.Diag(Var->getLocation(), diag::note_previous_decl)
18901           << Var->getDeclName();
18902         Invalid = true;
18903       } else {
18904         return false;
18905       }
18906     }
18907 
18908     // Make sure that by-copy captures are of a complete and non-abstract type.
18909     if (!Invalid && BuildAndDiagnose) {
18910       if (!CaptureType->isDependentType() &&
18911           S.RequireCompleteSizedType(
18912               Loc, CaptureType,
18913               diag::err_capture_of_incomplete_or_sizeless_type,
18914               Var->getDeclName()))
18915         Invalid = true;
18916       else if (S.RequireNonAbstractType(Loc, CaptureType,
18917                                         diag::err_capture_of_abstract_type))
18918         Invalid = true;
18919     }
18920   }
18921 
18922   // Compute the type of a reference to this captured variable.
18923   if (ByRef)
18924     DeclRefType = CaptureType.getNonReferenceType();
18925   else {
18926     // C++ [expr.prim.lambda]p5:
18927     //   The closure type for a lambda-expression has a public inline
18928     //   function call operator [...]. This function call operator is
18929     //   declared const (9.3.1) if and only if the lambda-expression's
18930     //   parameter-declaration-clause is not followed by mutable.
18931     DeclRefType = CaptureType.getNonReferenceType();
18932     if (!LSI->Mutable && !CaptureType->isReferenceType())
18933       DeclRefType.addConst();
18934   }
18935 
18936   // Add the capture.
18937   if (BuildAndDiagnose)
18938     LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
18939                     Loc, EllipsisLoc, CaptureType, Invalid);
18940 
18941   return !Invalid;
18942 }
18943 
18944 static bool canCaptureVariableByCopy(ValueDecl *Var,
18945                                      const ASTContext &Context) {
18946   // Offer a Copy fix even if the type is dependent.
18947   if (Var->getType()->isDependentType())
18948     return true;
18949   QualType T = Var->getType().getNonReferenceType();
18950   if (T.isTriviallyCopyableType(Context))
18951     return true;
18952   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
18953 
18954     if (!(RD = RD->getDefinition()))
18955       return false;
18956     if (RD->hasSimpleCopyConstructor())
18957       return true;
18958     if (RD->hasUserDeclaredCopyConstructor())
18959       for (CXXConstructorDecl *Ctor : RD->ctors())
18960         if (Ctor->isCopyConstructor())
18961           return !Ctor->isDeleted();
18962   }
18963   return false;
18964 }
18965 
18966 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
18967 /// default capture. Fixes may be omitted if they aren't allowed by the
18968 /// standard, for example we can't emit a default copy capture fix-it if we
18969 /// already explicitly copy capture capture another variable.
18970 static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
18971                                     ValueDecl *Var) {
18972   assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
18973   // Don't offer Capture by copy of default capture by copy fixes if Var is
18974   // known not to be copy constructible.
18975   bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
18976 
18977   SmallString<32> FixBuffer;
18978   StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
18979   if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
18980     SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
18981     if (ShouldOfferCopyFix) {
18982       // Offer fixes to insert an explicit capture for the variable.
18983       // [] -> [VarName]
18984       // [OtherCapture] -> [OtherCapture, VarName]
18985       FixBuffer.assign({Separator, Var->getName()});
18986       Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18987           << Var << /*value*/ 0
18988           << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18989     }
18990     // As above but capture by reference.
18991     FixBuffer.assign({Separator, "&", Var->getName()});
18992     Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18993         << Var << /*reference*/ 1
18994         << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18995   }
18996 
18997   // Only try to offer default capture if there are no captures excluding this
18998   // and init captures.
18999   // [this]: OK.
19000   // [X = Y]: OK.
19001   // [&A, &B]: Don't offer.
19002   // [A, B]: Don't offer.
19003   if (llvm::any_of(LSI->Captures, [](Capture &C) {
19004         return !C.isThisCapture() && !C.isInitCapture();
19005       }))
19006     return;
19007 
19008   // The default capture specifiers, '=' or '&', must appear first in the
19009   // capture body.
19010   SourceLocation DefaultInsertLoc =
19011       LSI->IntroducerRange.getBegin().getLocWithOffset(1);
19012 
19013   if (ShouldOfferCopyFix) {
19014     bool CanDefaultCopyCapture = true;
19015     // [=, *this] OK since c++17
19016     // [=, this] OK since c++20
19017     if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
19018       CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
19019                                   ? LSI->getCXXThisCapture().isCopyCapture()
19020                                   : false;
19021     // We can't use default capture by copy if any captures already specified
19022     // capture by copy.
19023     if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
19024           return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
19025         })) {
19026       FixBuffer.assign({"=", Separator});
19027       Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19028           << /*value*/ 0
19029           << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19030     }
19031   }
19032 
19033   // We can't use default capture by reference if any captures already specified
19034   // capture by reference.
19035   if (llvm::none_of(LSI->Captures, [](Capture &C) {
19036         return !C.isInitCapture() && C.isReferenceCapture() &&
19037                !C.isThisCapture();
19038       })) {
19039     FixBuffer.assign({"&", Separator});
19040     Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
19041         << /*reference*/ 1
19042         << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
19043   }
19044 }
19045 
19046 bool Sema::tryCaptureVariable(
19047     ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
19048     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
19049     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
19050   // An init-capture is notionally from the context surrounding its
19051   // declaration, but its parent DC is the lambda class.
19052   DeclContext *VarDC = Var->getDeclContext();
19053   const auto *VD = dyn_cast<VarDecl>(Var);
19054   if (VD) {
19055     if (VD->isInitCapture())
19056       VarDC = VarDC->getParent();
19057   } else {
19058     VD = Var->getPotentiallyDecomposedVarDecl();
19059   }
19060   assert(VD && "Cannot capture a null variable");
19061 
19062   DeclContext *DC = CurContext;
19063   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
19064       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
19065   // We need to sync up the Declaration Context with the
19066   // FunctionScopeIndexToStopAt
19067   if (FunctionScopeIndexToStopAt) {
19068     unsigned FSIndex = FunctionScopes.size() - 1;
19069     while (FSIndex != MaxFunctionScopesIndex) {
19070       DC = getLambdaAwareParentOfDeclContext(DC);
19071       --FSIndex;
19072     }
19073   }
19074 
19075 
19076   // If the variable is declared in the current context, there is no need to
19077   // capture it.
19078   if (VarDC == DC) return true;
19079 
19080   // Capture global variables if it is required to use private copy of this
19081   // variable.
19082   bool IsGlobal = !VD->hasLocalStorage();
19083   if (IsGlobal &&
19084       !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
19085                                                 MaxFunctionScopesIndex)))
19086     return true;
19087 
19088   if (isa<VarDecl>(Var))
19089     Var = cast<VarDecl>(Var->getCanonicalDecl());
19090 
19091   // Walk up the stack to determine whether we can capture the variable,
19092   // performing the "simple" checks that don't depend on type. We stop when
19093   // we've either hit the declared scope of the variable or find an existing
19094   // capture of that variable.  We start from the innermost capturing-entity
19095   // (the DC) and ensure that all intervening capturing-entities
19096   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
19097   // declcontext can either capture the variable or have already captured
19098   // the variable.
19099   CaptureType = Var->getType();
19100   DeclRefType = CaptureType.getNonReferenceType();
19101   bool Nested = false;
19102   bool Explicit = (Kind != TryCapture_Implicit);
19103   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
19104   do {
19105     // Only block literals, captured statements, and lambda expressions can
19106     // capture; other scopes don't work.
19107     DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
19108                                                               ExprLoc,
19109                                                               BuildAndDiagnose,
19110                                                               *this);
19111     // We need to check for the parent *first* because, if we *have*
19112     // private-captured a global variable, we need to recursively capture it in
19113     // intermediate blocks, lambdas, etc.
19114     if (!ParentDC) {
19115       if (IsGlobal) {
19116         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
19117         break;
19118       }
19119       return true;
19120     }
19121 
19122     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
19123     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
19124 
19125 
19126     // Check whether we've already captured it.
19127     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
19128                                              DeclRefType)) {
19129       CSI->getCapture(Var).markUsed(BuildAndDiagnose);
19130       break;
19131     }
19132     // If we are instantiating a generic lambda call operator body,
19133     // we do not want to capture new variables.  What was captured
19134     // during either a lambdas transformation or initial parsing
19135     // should be used.
19136     if (isGenericLambdaCallOperatorSpecialization(DC)) {
19137       if (BuildAndDiagnose) {
19138         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19139         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
19140           Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19141           Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19142           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19143           buildLambdaCaptureFixit(*this, LSI, Var);
19144         } else
19145           diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var);
19146       }
19147       return true;
19148     }
19149 
19150     // Try to capture variable-length arrays types.
19151     if (Var->getType()->isVariablyModifiedType()) {
19152       // We're going to walk down into the type and look for VLA
19153       // expressions.
19154       QualType QTy = Var->getType();
19155       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19156         QTy = PVD->getOriginalType();
19157       captureVariablyModifiedType(Context, QTy, CSI);
19158     }
19159 
19160     if (getLangOpts().OpenMP) {
19161       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19162         // OpenMP private variables should not be captured in outer scope, so
19163         // just break here. Similarly, global variables that are captured in a
19164         // target region should not be captured outside the scope of the region.
19165         if (RSI->CapRegionKind == CR_OpenMP) {
19166           OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
19167               Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
19168           // If the variable is private (i.e. not captured) and has variably
19169           // modified type, we still need to capture the type for correct
19170           // codegen in all regions, associated with the construct. Currently,
19171           // it is captured in the innermost captured region only.
19172           if (IsOpenMPPrivateDecl != OMPC_unknown &&
19173               Var->getType()->isVariablyModifiedType()) {
19174             QualType QTy = Var->getType();
19175             if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
19176               QTy = PVD->getOriginalType();
19177             for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
19178                  I < E; ++I) {
19179               auto *OuterRSI = cast<CapturedRegionScopeInfo>(
19180                   FunctionScopes[FunctionScopesIndex - I]);
19181               assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
19182                      "Wrong number of captured regions associated with the "
19183                      "OpenMP construct.");
19184               captureVariablyModifiedType(Context, QTy, OuterRSI);
19185             }
19186           }
19187           bool IsTargetCap =
19188               IsOpenMPPrivateDecl != OMPC_private &&
19189               isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
19190                                          RSI->OpenMPCaptureLevel);
19191           // Do not capture global if it is not privatized in outer regions.
19192           bool IsGlobalCap =
19193               IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
19194                                                      RSI->OpenMPCaptureLevel);
19195 
19196           // When we detect target captures we are looking from inside the
19197           // target region, therefore we need to propagate the capture from the
19198           // enclosing region. Therefore, the capture is not initially nested.
19199           if (IsTargetCap)
19200             adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
19201 
19202           if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
19203               (IsGlobal && !IsGlobalCap)) {
19204             Nested = !IsTargetCap;
19205             bool HasConst = DeclRefType.isConstQualified();
19206             DeclRefType = DeclRefType.getUnqualifiedType();
19207             // Don't lose diagnostics about assignments to const.
19208             if (HasConst)
19209               DeclRefType.addConst();
19210             CaptureType = Context.getLValueReferenceType(DeclRefType);
19211             break;
19212           }
19213         }
19214       }
19215     }
19216     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
19217       // No capture-default, and this is not an explicit capture
19218       // so cannot capture this variable.
19219       if (BuildAndDiagnose) {
19220         Diag(ExprLoc, diag::err_lambda_impcap) << Var;
19221         Diag(Var->getLocation(), diag::note_previous_decl) << Var;
19222         auto *LSI = cast<LambdaScopeInfo>(CSI);
19223         if (LSI->Lambda) {
19224           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
19225           buildLambdaCaptureFixit(*this, LSI, Var);
19226         }
19227         // FIXME: If we error out because an outer lambda can not implicitly
19228         // capture a variable that an inner lambda explicitly captures, we
19229         // should have the inner lambda do the explicit capture - because
19230         // it makes for cleaner diagnostics later.  This would purely be done
19231         // so that the diagnostic does not misleadingly claim that a variable
19232         // can not be captured by a lambda implicitly even though it is captured
19233         // explicitly.  Suggestion:
19234         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
19235         //    at the function head
19236         //  - cache the StartingDeclContext - this must be a lambda
19237         //  - captureInLambda in the innermost lambda the variable.
19238       }
19239       return true;
19240     }
19241 
19242     FunctionScopesIndex--;
19243     DC = ParentDC;
19244     Explicit = false;
19245   } while (!VarDC->Equals(DC));
19246 
19247   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
19248   // computing the type of the capture at each step, checking type-specific
19249   // requirements, and adding captures if requested.
19250   // If the variable had already been captured previously, we start capturing
19251   // at the lambda nested within that one.
19252   bool Invalid = false;
19253   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
19254        ++I) {
19255     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
19256 
19257     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
19258     // certain types of variables (unnamed, variably modified types etc.)
19259     // so check for eligibility.
19260     if (!Invalid)
19261       Invalid =
19262           !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
19263 
19264     // After encountering an error, if we're actually supposed to capture, keep
19265     // capturing in nested contexts to suppress any follow-on diagnostics.
19266     if (Invalid && !BuildAndDiagnose)
19267       return true;
19268 
19269     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
19270       Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19271                                DeclRefType, Nested, *this, Invalid);
19272       Nested = true;
19273     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
19274       Invalid = !captureInCapturedRegion(
19275           RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
19276           Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
19277       Nested = true;
19278     } else {
19279       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
19280       Invalid =
19281           !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
19282                            DeclRefType, Nested, Kind, EllipsisLoc,
19283                            /*IsTopScope*/ I == N - 1, *this, Invalid);
19284       Nested = true;
19285     }
19286 
19287     if (Invalid && !BuildAndDiagnose)
19288       return true;
19289   }
19290   return Invalid;
19291 }
19292 
19293 bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
19294                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
19295   QualType CaptureType;
19296   QualType DeclRefType;
19297   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
19298                             /*BuildAndDiagnose=*/true, CaptureType,
19299                             DeclRefType, nullptr);
19300 }
19301 
19302 bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
19303   QualType CaptureType;
19304   QualType DeclRefType;
19305   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
19306                              /*BuildAndDiagnose=*/false, CaptureType,
19307                              DeclRefType, nullptr);
19308 }
19309 
19310 QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
19311   QualType CaptureType;
19312   QualType DeclRefType;
19313 
19314   // Determine whether we can capture this variable.
19315   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
19316                          /*BuildAndDiagnose=*/false, CaptureType,
19317                          DeclRefType, nullptr))
19318     return QualType();
19319 
19320   return DeclRefType;
19321 }
19322 
19323 namespace {
19324 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
19325 // The produced TemplateArgumentListInfo* points to data stored within this
19326 // object, so should only be used in contexts where the pointer will not be
19327 // used after the CopiedTemplateArgs object is destroyed.
19328 class CopiedTemplateArgs {
19329   bool HasArgs;
19330   TemplateArgumentListInfo TemplateArgStorage;
19331 public:
19332   template<typename RefExpr>
19333   CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
19334     if (HasArgs)
19335       E->copyTemplateArgumentsInto(TemplateArgStorage);
19336   }
19337   operator TemplateArgumentListInfo*()
19338 #ifdef __has_cpp_attribute
19339 #if __has_cpp_attribute(clang::lifetimebound)
19340   [[clang::lifetimebound]]
19341 #endif
19342 #endif
19343   {
19344     return HasArgs ? &TemplateArgStorage : nullptr;
19345   }
19346 };
19347 }
19348 
19349 /// Walk the set of potential results of an expression and mark them all as
19350 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
19351 ///
19352 /// \return A new expression if we found any potential results, ExprEmpty() if
19353 ///         not, and ExprError() if we diagnosed an error.
19354 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
19355                                                       NonOdrUseReason NOUR) {
19356   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
19357   // an object that satisfies the requirements for appearing in a
19358   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
19359   // is immediately applied."  This function handles the lvalue-to-rvalue
19360   // conversion part.
19361   //
19362   // If we encounter a node that claims to be an odr-use but shouldn't be, we
19363   // transform it into the relevant kind of non-odr-use node and rebuild the
19364   // tree of nodes leading to it.
19365   //
19366   // This is a mini-TreeTransform that only transforms a restricted subset of
19367   // nodes (and only certain operands of them).
19368 
19369   // Rebuild a subexpression.
19370   auto Rebuild = [&](Expr *Sub) {
19371     return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
19372   };
19373 
19374   // Check whether a potential result satisfies the requirements of NOUR.
19375   auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
19376     // Any entity other than a VarDecl is always odr-used whenever it's named
19377     // in a potentially-evaluated expression.
19378     auto *VD = dyn_cast<VarDecl>(D);
19379     if (!VD)
19380       return true;
19381 
19382     // C++2a [basic.def.odr]p4:
19383     //   A variable x whose name appears as a potentially-evalauted expression
19384     //   e is odr-used by e unless
19385     //   -- x is a reference that is usable in constant expressions, or
19386     //   -- x is a variable of non-reference type that is usable in constant
19387     //      expressions and has no mutable subobjects, and e is an element of
19388     //      the set of potential results of an expression of
19389     //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
19390     //      conversion is applied, or
19391     //   -- x is a variable of non-reference type, and e is an element of the
19392     //      set of potential results of a discarded-value expression to which
19393     //      the lvalue-to-rvalue conversion is not applied
19394     //
19395     // We check the first bullet and the "potentially-evaluated" condition in
19396     // BuildDeclRefExpr. We check the type requirements in the second bullet
19397     // in CheckLValueToRValueConversionOperand below.
19398     switch (NOUR) {
19399     case NOUR_None:
19400     case NOUR_Unevaluated:
19401       llvm_unreachable("unexpected non-odr-use-reason");
19402 
19403     case NOUR_Constant:
19404       // Constant references were handled when they were built.
19405       if (VD->getType()->isReferenceType())
19406         return true;
19407       if (auto *RD = VD->getType()->getAsCXXRecordDecl())
19408         if (RD->hasMutableFields())
19409           return true;
19410       if (!VD->isUsableInConstantExpressions(S.Context))
19411         return true;
19412       break;
19413 
19414     case NOUR_Discarded:
19415       if (VD->getType()->isReferenceType())
19416         return true;
19417       break;
19418     }
19419     return false;
19420   };
19421 
19422   // Mark that this expression does not constitute an odr-use.
19423   auto MarkNotOdrUsed = [&] {
19424     S.MaybeODRUseExprs.remove(E);
19425     if (LambdaScopeInfo *LSI = S.getCurLambda())
19426       LSI->markVariableExprAsNonODRUsed(E);
19427   };
19428 
19429   // C++2a [basic.def.odr]p2:
19430   //   The set of potential results of an expression e is defined as follows:
19431   switch (E->getStmtClass()) {
19432   //   -- If e is an id-expression, ...
19433   case Expr::DeclRefExprClass: {
19434     auto *DRE = cast<DeclRefExpr>(E);
19435     if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
19436       break;
19437 
19438     // Rebuild as a non-odr-use DeclRefExpr.
19439     MarkNotOdrUsed();
19440     return DeclRefExpr::Create(
19441         S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
19442         DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
19443         DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
19444         DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
19445   }
19446 
19447   case Expr::FunctionParmPackExprClass: {
19448     auto *FPPE = cast<FunctionParmPackExpr>(E);
19449     // If any of the declarations in the pack is odr-used, then the expression
19450     // as a whole constitutes an odr-use.
19451     for (VarDecl *D : *FPPE)
19452       if (IsPotentialResultOdrUsed(D))
19453         return ExprEmpty();
19454 
19455     // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
19456     // nothing cares about whether we marked this as an odr-use, but it might
19457     // be useful for non-compiler tools.
19458     MarkNotOdrUsed();
19459     break;
19460   }
19461 
19462   //   -- If e is a subscripting operation with an array operand...
19463   case Expr::ArraySubscriptExprClass: {
19464     auto *ASE = cast<ArraySubscriptExpr>(E);
19465     Expr *OldBase = ASE->getBase()->IgnoreImplicit();
19466     if (!OldBase->getType()->isArrayType())
19467       break;
19468     ExprResult Base = Rebuild(OldBase);
19469     if (!Base.isUsable())
19470       return Base;
19471     Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
19472     Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
19473     SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
19474     return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
19475                                      ASE->getRBracketLoc());
19476   }
19477 
19478   case Expr::MemberExprClass: {
19479     auto *ME = cast<MemberExpr>(E);
19480     // -- If e is a class member access expression [...] naming a non-static
19481     //    data member...
19482     if (isa<FieldDecl>(ME->getMemberDecl())) {
19483       ExprResult Base = Rebuild(ME->getBase());
19484       if (!Base.isUsable())
19485         return Base;
19486       return MemberExpr::Create(
19487           S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
19488           ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
19489           ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
19490           CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
19491           ME->getObjectKind(), ME->isNonOdrUse());
19492     }
19493 
19494     if (ME->getMemberDecl()->isCXXInstanceMember())
19495       break;
19496 
19497     // -- If e is a class member access expression naming a static data member,
19498     //    ...
19499     if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
19500       break;
19501 
19502     // Rebuild as a non-odr-use MemberExpr.
19503     MarkNotOdrUsed();
19504     return MemberExpr::Create(
19505         S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
19506         ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
19507         ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
19508         ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
19509   }
19510 
19511   case Expr::BinaryOperatorClass: {
19512     auto *BO = cast<BinaryOperator>(E);
19513     Expr *LHS = BO->getLHS();
19514     Expr *RHS = BO->getRHS();
19515     // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
19516     if (BO->getOpcode() == BO_PtrMemD) {
19517       ExprResult Sub = Rebuild(LHS);
19518       if (!Sub.isUsable())
19519         return Sub;
19520       LHS = Sub.get();
19521     //   -- If e is a comma expression, ...
19522     } else if (BO->getOpcode() == BO_Comma) {
19523       ExprResult Sub = Rebuild(RHS);
19524       if (!Sub.isUsable())
19525         return Sub;
19526       RHS = Sub.get();
19527     } else {
19528       break;
19529     }
19530     return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
19531                         LHS, RHS);
19532   }
19533 
19534   //   -- If e has the form (e1)...
19535   case Expr::ParenExprClass: {
19536     auto *PE = cast<ParenExpr>(E);
19537     ExprResult Sub = Rebuild(PE->getSubExpr());
19538     if (!Sub.isUsable())
19539       return Sub;
19540     return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
19541   }
19542 
19543   //   -- If e is a glvalue conditional expression, ...
19544   // We don't apply this to a binary conditional operator. FIXME: Should we?
19545   case Expr::ConditionalOperatorClass: {
19546     auto *CO = cast<ConditionalOperator>(E);
19547     ExprResult LHS = Rebuild(CO->getLHS());
19548     if (LHS.isInvalid())
19549       return ExprError();
19550     ExprResult RHS = Rebuild(CO->getRHS());
19551     if (RHS.isInvalid())
19552       return ExprError();
19553     if (!LHS.isUsable() && !RHS.isUsable())
19554       return ExprEmpty();
19555     if (!LHS.isUsable())
19556       LHS = CO->getLHS();
19557     if (!RHS.isUsable())
19558       RHS = CO->getRHS();
19559     return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
19560                                 CO->getCond(), LHS.get(), RHS.get());
19561   }
19562 
19563   // [Clang extension]
19564   //   -- If e has the form __extension__ e1...
19565   case Expr::UnaryOperatorClass: {
19566     auto *UO = cast<UnaryOperator>(E);
19567     if (UO->getOpcode() != UO_Extension)
19568       break;
19569     ExprResult Sub = Rebuild(UO->getSubExpr());
19570     if (!Sub.isUsable())
19571       return Sub;
19572     return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
19573                           Sub.get());
19574   }
19575 
19576   // [Clang extension]
19577   //   -- If e has the form _Generic(...), the set of potential results is the
19578   //      union of the sets of potential results of the associated expressions.
19579   case Expr::GenericSelectionExprClass: {
19580     auto *GSE = cast<GenericSelectionExpr>(E);
19581 
19582     SmallVector<Expr *, 4> AssocExprs;
19583     bool AnyChanged = false;
19584     for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
19585       ExprResult AssocExpr = Rebuild(OrigAssocExpr);
19586       if (AssocExpr.isInvalid())
19587         return ExprError();
19588       if (AssocExpr.isUsable()) {
19589         AssocExprs.push_back(AssocExpr.get());
19590         AnyChanged = true;
19591       } else {
19592         AssocExprs.push_back(OrigAssocExpr);
19593       }
19594     }
19595 
19596     return AnyChanged ? S.CreateGenericSelectionExpr(
19597                             GSE->getGenericLoc(), GSE->getDefaultLoc(),
19598                             GSE->getRParenLoc(), GSE->getControllingExpr(),
19599                             GSE->getAssocTypeSourceInfos(), AssocExprs)
19600                       : ExprEmpty();
19601   }
19602 
19603   // [Clang extension]
19604   //   -- If e has the form __builtin_choose_expr(...), the set of potential
19605   //      results is the union of the sets of potential results of the
19606   //      second and third subexpressions.
19607   case Expr::ChooseExprClass: {
19608     auto *CE = cast<ChooseExpr>(E);
19609 
19610     ExprResult LHS = Rebuild(CE->getLHS());
19611     if (LHS.isInvalid())
19612       return ExprError();
19613 
19614     ExprResult RHS = Rebuild(CE->getLHS());
19615     if (RHS.isInvalid())
19616       return ExprError();
19617 
19618     if (!LHS.get() && !RHS.get())
19619       return ExprEmpty();
19620     if (!LHS.isUsable())
19621       LHS = CE->getLHS();
19622     if (!RHS.isUsable())
19623       RHS = CE->getRHS();
19624 
19625     return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
19626                              RHS.get(), CE->getRParenLoc());
19627   }
19628 
19629   // Step through non-syntactic nodes.
19630   case Expr::ConstantExprClass: {
19631     auto *CE = cast<ConstantExpr>(E);
19632     ExprResult Sub = Rebuild(CE->getSubExpr());
19633     if (!Sub.isUsable())
19634       return Sub;
19635     return ConstantExpr::Create(S.Context, Sub.get());
19636   }
19637 
19638   // We could mostly rely on the recursive rebuilding to rebuild implicit
19639   // casts, but not at the top level, so rebuild them here.
19640   case Expr::ImplicitCastExprClass: {
19641     auto *ICE = cast<ImplicitCastExpr>(E);
19642     // Only step through the narrow set of cast kinds we expect to encounter.
19643     // Anything else suggests we've left the region in which potential results
19644     // can be found.
19645     switch (ICE->getCastKind()) {
19646     case CK_NoOp:
19647     case CK_DerivedToBase:
19648     case CK_UncheckedDerivedToBase: {
19649       ExprResult Sub = Rebuild(ICE->getSubExpr());
19650       if (!Sub.isUsable())
19651         return Sub;
19652       CXXCastPath Path(ICE->path());
19653       return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
19654                                  ICE->getValueKind(), &Path);
19655     }
19656 
19657     default:
19658       break;
19659     }
19660     break;
19661   }
19662 
19663   default:
19664     break;
19665   }
19666 
19667   // Can't traverse through this node. Nothing to do.
19668   return ExprEmpty();
19669 }
19670 
19671 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
19672   // Check whether the operand is or contains an object of non-trivial C union
19673   // type.
19674   if (E->getType().isVolatileQualified() &&
19675       (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
19676        E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
19677     checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
19678                           Sema::NTCUC_LValueToRValueVolatile,
19679                           NTCUK_Destruct|NTCUK_Copy);
19680 
19681   // C++2a [basic.def.odr]p4:
19682   //   [...] an expression of non-volatile-qualified non-class type to which
19683   //   the lvalue-to-rvalue conversion is applied [...]
19684   if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
19685     return E;
19686 
19687   ExprResult Result =
19688       rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
19689   if (Result.isInvalid())
19690     return ExprError();
19691   return Result.get() ? Result : E;
19692 }
19693 
19694 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
19695   Res = CorrectDelayedTyposInExpr(Res);
19696 
19697   if (!Res.isUsable())
19698     return Res;
19699 
19700   // If a constant-expression is a reference to a variable where we delay
19701   // deciding whether it is an odr-use, just assume we will apply the
19702   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
19703   // (a non-type template argument), we have special handling anyway.
19704   return CheckLValueToRValueConversionOperand(Res.get());
19705 }
19706 
19707 void Sema::CleanupVarDeclMarking() {
19708   // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
19709   // call.
19710   MaybeODRUseExprSet LocalMaybeODRUseExprs;
19711   std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
19712 
19713   for (Expr *E : LocalMaybeODRUseExprs) {
19714     if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
19715       MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
19716                          DRE->getLocation(), *this);
19717     } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
19718       MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
19719                          *this);
19720     } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
19721       for (VarDecl *VD : *FP)
19722         MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
19723     } else {
19724       llvm_unreachable("Unexpected expression");
19725     }
19726   }
19727 
19728   assert(MaybeODRUseExprs.empty() &&
19729          "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
19730 }
19731 
19732 static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc,
19733                                    ValueDecl *Var, Expr *E) {
19734   VarDecl *VD = Var->getPotentiallyDecomposedVarDecl();
19735   if (!VD)
19736     return;
19737 
19738   const bool RefersToEnclosingScope =
19739       (SemaRef.CurContext != VD->getDeclContext() &&
19740        VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage());
19741   if (RefersToEnclosingScope) {
19742     LambdaScopeInfo *const LSI =
19743         SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
19744     if (LSI && (!LSI->CallOperator ||
19745                 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
19746       // If a variable could potentially be odr-used, defer marking it so
19747       // until we finish analyzing the full expression for any
19748       // lvalue-to-rvalue
19749       // or discarded value conversions that would obviate odr-use.
19750       // Add it to the list of potential captures that will be analyzed
19751       // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
19752       // unless the variable is a reference that was initialized by a constant
19753       // expression (this will never need to be captured or odr-used).
19754       //
19755       // FIXME: We can simplify this a lot after implementing P0588R1.
19756       assert(E && "Capture variable should be used in an expression.");
19757       if (!Var->getType()->isReferenceType() ||
19758           !VD->isUsableInConstantExpressions(SemaRef.Context))
19759         LSI->addPotentialCapture(E->IgnoreParens());
19760     }
19761   }
19762 }
19763 
19764 static void DoMarkVarDeclReferenced(
19765     Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
19766     llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19767   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
19768           isa<FunctionParmPackExpr>(E)) &&
19769          "Invalid Expr argument to DoMarkVarDeclReferenced");
19770   Var->setReferenced();
19771 
19772   if (Var->isInvalidDecl())
19773     return;
19774 
19775   auto *MSI = Var->getMemberSpecializationInfo();
19776   TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
19777                                        : Var->getTemplateSpecializationKind();
19778 
19779   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19780   bool UsableInConstantExpr =
19781       Var->mightBeUsableInConstantExpressions(SemaRef.Context);
19782 
19783   if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
19784     RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
19785   }
19786 
19787   // C++20 [expr.const]p12:
19788   //   A variable [...] is needed for constant evaluation if it is [...] a
19789   //   variable whose name appears as a potentially constant evaluated
19790   //   expression that is either a contexpr variable or is of non-volatile
19791   //   const-qualified integral type or of reference type
19792   bool NeededForConstantEvaluation =
19793       isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
19794 
19795   bool NeedDefinition =
19796       OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
19797 
19798   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
19799          "Can't instantiate a partial template specialization.");
19800 
19801   // If this might be a member specialization of a static data member, check
19802   // the specialization is visible. We already did the checks for variable
19803   // template specializations when we created them.
19804   if (NeedDefinition && TSK != TSK_Undeclared &&
19805       !isa<VarTemplateSpecializationDecl>(Var))
19806     SemaRef.checkSpecializationVisibility(Loc, Var);
19807 
19808   // Perform implicit instantiation of static data members, static data member
19809   // templates of class templates, and variable template specializations. Delay
19810   // instantiations of variable templates, except for those that could be used
19811   // in a constant expression.
19812   if (NeedDefinition && isTemplateInstantiation(TSK)) {
19813     // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
19814     // instantiation declaration if a variable is usable in a constant
19815     // expression (among other cases).
19816     bool TryInstantiating =
19817         TSK == TSK_ImplicitInstantiation ||
19818         (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
19819 
19820     if (TryInstantiating) {
19821       SourceLocation PointOfInstantiation =
19822           MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
19823       bool FirstInstantiation = PointOfInstantiation.isInvalid();
19824       if (FirstInstantiation) {
19825         PointOfInstantiation = Loc;
19826         if (MSI)
19827           MSI->setPointOfInstantiation(PointOfInstantiation);
19828           // FIXME: Notify listener.
19829         else
19830           Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19831       }
19832 
19833       if (UsableInConstantExpr) {
19834         // Do not defer instantiations of variables that could be used in a
19835         // constant expression.
19836         SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
19837           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
19838         });
19839 
19840         // Re-set the member to trigger a recomputation of the dependence bits
19841         // for the expression.
19842         if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19843           DRE->setDecl(DRE->getDecl());
19844         else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
19845           ME->setMemberDecl(ME->getMemberDecl());
19846       } else if (FirstInstantiation ||
19847                  isa<VarTemplateSpecializationDecl>(Var)) {
19848         // FIXME: For a specialization of a variable template, we don't
19849         // distinguish between "declaration and type implicitly instantiated"
19850         // and "implicit instantiation of definition requested", so we have
19851         // no direct way to avoid enqueueing the pending instantiation
19852         // multiple times.
19853         SemaRef.PendingInstantiations
19854             .push_back(std::make_pair(Var, PointOfInstantiation));
19855       }
19856     }
19857   }
19858 
19859   // C++2a [basic.def.odr]p4:
19860   //   A variable x whose name appears as a potentially-evaluated expression e
19861   //   is odr-used by e unless
19862   //   -- x is a reference that is usable in constant expressions
19863   //   -- x is a variable of non-reference type that is usable in constant
19864   //      expressions and has no mutable subobjects [FIXME], and e is an
19865   //      element of the set of potential results of an expression of
19866   //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
19867   //      conversion is applied
19868   //   -- x is a variable of non-reference type, and e is an element of the set
19869   //      of potential results of a discarded-value expression to which the
19870   //      lvalue-to-rvalue conversion is not applied [FIXME]
19871   //
19872   // We check the first part of the second bullet here, and
19873   // Sema::CheckLValueToRValueConversionOperand deals with the second part.
19874   // FIXME: To get the third bullet right, we need to delay this even for
19875   // variables that are not usable in constant expressions.
19876 
19877   // If we already know this isn't an odr-use, there's nothing more to do.
19878   if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19879     if (DRE->isNonOdrUse())
19880       return;
19881   if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
19882     if (ME->isNonOdrUse())
19883       return;
19884 
19885   switch (OdrUse) {
19886   case OdrUseContext::None:
19887     // In some cases, a variable may not have been marked unevaluated, if it
19888     // appears in a defaukt initializer.
19889     assert((!E || isa<FunctionParmPackExpr>(E) ||
19890             SemaRef.isUnevaluatedContext()) &&
19891            "missing non-odr-use marking for unevaluated decl ref");
19892     break;
19893 
19894   case OdrUseContext::FormallyOdrUsed:
19895     // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
19896     // behavior.
19897     break;
19898 
19899   case OdrUseContext::Used:
19900     // If we might later find that this expression isn't actually an odr-use,
19901     // delay the marking.
19902     if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
19903       SemaRef.MaybeODRUseExprs.insert(E);
19904     else
19905       MarkVarDeclODRUsed(Var, Loc, SemaRef);
19906     break;
19907 
19908   case OdrUseContext::Dependent:
19909     // If this is a dependent context, we don't need to mark variables as
19910     // odr-used, but we may still need to track them for lambda capture.
19911     // FIXME: Do we also need to do this inside dependent typeid expressions
19912     // (which are modeled as unevaluated at this point)?
19913     DoMarkPotentialCapture(SemaRef, Loc, Var, E);
19914     break;
19915   }
19916 }
19917 
19918 static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
19919                                         BindingDecl *BD, Expr *E) {
19920   BD->setReferenced();
19921 
19922   if (BD->isInvalidDecl())
19923     return;
19924 
19925   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19926   if (OdrUse == OdrUseContext::Used) {
19927     QualType CaptureType, DeclRefType;
19928     SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit,
19929                                /*EllipsisLoc*/ SourceLocation(),
19930                                /*BuildAndDiagnose*/ true, CaptureType,
19931                                DeclRefType,
19932                                /*FunctionScopeIndexToStopAt*/ nullptr);
19933   } else if (OdrUse == OdrUseContext::Dependent) {
19934     DoMarkPotentialCapture(SemaRef, Loc, BD, E);
19935   }
19936 }
19937 
19938 /// Mark a variable referenced, and check whether it is odr-used
19939 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
19940 /// used directly for normal expressions referring to VarDecl.
19941 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
19942   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
19943 }
19944 
19945 static void
19946 MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
19947                    bool MightBeOdrUse,
19948                    llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19949   if (SemaRef.isInOpenMPDeclareTargetContext())
19950     SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
19951 
19952   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
19953     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
19954     return;
19955   }
19956 
19957   if (BindingDecl *Decl = dyn_cast<BindingDecl>(D)) {
19958     DoMarkBindingDeclReferenced(SemaRef, Loc, Decl, E);
19959     return;
19960   }
19961 
19962   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
19963 
19964   // If this is a call to a method via a cast, also mark the method in the
19965   // derived class used in case codegen can devirtualize the call.
19966   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
19967   if (!ME)
19968     return;
19969   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
19970   if (!MD)
19971     return;
19972   // Only attempt to devirtualize if this is truly a virtual call.
19973   bool IsVirtualCall = MD->isVirtual() &&
19974                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
19975   if (!IsVirtualCall)
19976     return;
19977 
19978   // If it's possible to devirtualize the call, mark the called function
19979   // referenced.
19980   CXXMethodDecl *DM = MD->getDevirtualizedMethod(
19981       ME->getBase(), SemaRef.getLangOpts().AppleKext);
19982   if (DM)
19983     SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
19984 }
19985 
19986 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
19987 ///
19988 /// Note, this may change the dependence of the DeclRefExpr, and so needs to be
19989 /// handled with care if the DeclRefExpr is not newly-created.
19990 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
19991   // TODO: update this with DR# once a defect report is filed.
19992   // C++11 defect. The address of a pure member should not be an ODR use, even
19993   // if it's a qualified reference.
19994   bool OdrUse = true;
19995   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
19996     if (Method->isVirtual() &&
19997         !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
19998       OdrUse = false;
19999 
20000   if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl()))
20001     if (!isUnevaluatedContext() && !isConstantEvaluated() &&
20002         !isImmediateFunctionContext() &&
20003         !isCheckingDefaultArgumentOrInitializer() && FD->isConsteval() &&
20004         !RebuildingImmediateInvocation && !FD->isDependentContext())
20005       ExprEvalContexts.back().ReferenceToConsteval.insert(E);
20006   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
20007                      RefsMinusAssignments);
20008 }
20009 
20010 /// Perform reference-marking and odr-use handling for a MemberExpr.
20011 void Sema::MarkMemberReferenced(MemberExpr *E) {
20012   // C++11 [basic.def.odr]p2:
20013   //   A non-overloaded function whose name appears as a potentially-evaluated
20014   //   expression or a member of a set of candidate functions, if selected by
20015   //   overload resolution when referred to from a potentially-evaluated
20016   //   expression, is odr-used, unless it is a pure virtual function and its
20017   //   name is not explicitly qualified.
20018   bool MightBeOdrUse = true;
20019   if (E->performsVirtualDispatch(getLangOpts())) {
20020     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
20021       if (Method->isPure())
20022         MightBeOdrUse = false;
20023   }
20024   SourceLocation Loc =
20025       E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
20026   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
20027                      RefsMinusAssignments);
20028 }
20029 
20030 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
20031 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
20032   for (VarDecl *VD : *E)
20033     MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
20034                        RefsMinusAssignments);
20035 }
20036 
20037 /// Perform marking for a reference to an arbitrary declaration.  It
20038 /// marks the declaration referenced, and performs odr-use checking for
20039 /// functions and variables. This method should not be used when building a
20040 /// normal expression which refers to a variable.
20041 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
20042                                  bool MightBeOdrUse) {
20043   if (MightBeOdrUse) {
20044     if (auto *VD = dyn_cast<VarDecl>(D)) {
20045       MarkVariableReferenced(Loc, VD);
20046       return;
20047     }
20048   }
20049   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
20050     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
20051     return;
20052   }
20053   D->setReferenced();
20054 }
20055 
20056 namespace {
20057   // Mark all of the declarations used by a type as referenced.
20058   // FIXME: Not fully implemented yet! We need to have a better understanding
20059   // of when we're entering a context we should not recurse into.
20060   // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
20061   // TreeTransforms rebuilding the type in a new context. Rather than
20062   // duplicating the TreeTransform logic, we should consider reusing it here.
20063   // Currently that causes problems when rebuilding LambdaExprs.
20064   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
20065     Sema &S;
20066     SourceLocation Loc;
20067 
20068   public:
20069     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
20070 
20071     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
20072 
20073     bool TraverseTemplateArgument(const TemplateArgument &Arg);
20074   };
20075 }
20076 
20077 bool MarkReferencedDecls::TraverseTemplateArgument(
20078     const TemplateArgument &Arg) {
20079   {
20080     // A non-type template argument is a constant-evaluated context.
20081     EnterExpressionEvaluationContext Evaluated(
20082         S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
20083     if (Arg.getKind() == TemplateArgument::Declaration) {
20084       if (Decl *D = Arg.getAsDecl())
20085         S.MarkAnyDeclReferenced(Loc, D, true);
20086     } else if (Arg.getKind() == TemplateArgument::Expression) {
20087       S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
20088     }
20089   }
20090 
20091   return Inherited::TraverseTemplateArgument(Arg);
20092 }
20093 
20094 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
20095   MarkReferencedDecls Marker(*this, Loc);
20096   Marker.TraverseType(T);
20097 }
20098 
20099 namespace {
20100 /// Helper class that marks all of the declarations referenced by
20101 /// potentially-evaluated subexpressions as "referenced".
20102 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
20103 public:
20104   typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
20105   bool SkipLocalVariables;
20106   ArrayRef<const Expr *> StopAt;
20107 
20108   EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
20109                       ArrayRef<const Expr *> StopAt)
20110       : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
20111 
20112   void visitUsedDecl(SourceLocation Loc, Decl *D) {
20113     S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
20114   }
20115 
20116   void Visit(Expr *E) {
20117     if (llvm::is_contained(StopAt, E))
20118       return;
20119     Inherited::Visit(E);
20120   }
20121 
20122   void VisitConstantExpr(ConstantExpr *E) {
20123     // Don't mark declarations within a ConstantExpression, as this expression
20124     // will be evaluated and folded to a value.
20125   }
20126 
20127   void VisitDeclRefExpr(DeclRefExpr *E) {
20128     // If we were asked not to visit local variables, don't.
20129     if (SkipLocalVariables) {
20130       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
20131         if (VD->hasLocalStorage())
20132           return;
20133     }
20134 
20135     // FIXME: This can trigger the instantiation of the initializer of a
20136     // variable, which can cause the expression to become value-dependent
20137     // or error-dependent. Do we need to propagate the new dependence bits?
20138     S.MarkDeclRefReferenced(E);
20139   }
20140 
20141   void VisitMemberExpr(MemberExpr *E) {
20142     S.MarkMemberReferenced(E);
20143     Visit(E->getBase());
20144   }
20145 };
20146 } // namespace
20147 
20148 /// Mark any declarations that appear within this expression or any
20149 /// potentially-evaluated subexpressions as "referenced".
20150 ///
20151 /// \param SkipLocalVariables If true, don't mark local variables as
20152 /// 'referenced'.
20153 /// \param StopAt Subexpressions that we shouldn't recurse into.
20154 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
20155                                             bool SkipLocalVariables,
20156                                             ArrayRef<const Expr*> StopAt) {
20157   EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
20158 }
20159 
20160 /// Emit a diagnostic when statements are reachable.
20161 /// FIXME: check for reachability even in expressions for which we don't build a
20162 ///        CFG (eg, in the initializer of a global or in a constant expression).
20163 ///        For example,
20164 ///        namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
20165 bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
20166                            const PartialDiagnostic &PD) {
20167   if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
20168     if (!FunctionScopes.empty())
20169       FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
20170           sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
20171     return true;
20172   }
20173 
20174   // The initializer of a constexpr variable or of the first declaration of a
20175   // static data member is not syntactically a constant evaluated constant,
20176   // but nonetheless is always required to be a constant expression, so we
20177   // can skip diagnosing.
20178   // FIXME: Using the mangling context here is a hack.
20179   if (auto *VD = dyn_cast_or_null<VarDecl>(
20180           ExprEvalContexts.back().ManglingContextDecl)) {
20181     if (VD->isConstexpr() ||
20182         (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
20183       return false;
20184     // FIXME: For any other kind of variable, we should build a CFG for its
20185     // initializer and check whether the context in question is reachable.
20186   }
20187 
20188   Diag(Loc, PD);
20189   return true;
20190 }
20191 
20192 /// Emit a diagnostic that describes an effect on the run-time behavior
20193 /// of the program being compiled.
20194 ///
20195 /// This routine emits the given diagnostic when the code currently being
20196 /// type-checked is "potentially evaluated", meaning that there is a
20197 /// possibility that the code will actually be executable. Code in sizeof()
20198 /// expressions, code used only during overload resolution, etc., are not
20199 /// potentially evaluated. This routine will suppress such diagnostics or,
20200 /// in the absolutely nutty case of potentially potentially evaluated
20201 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
20202 /// later.
20203 ///
20204 /// This routine should be used for all diagnostics that describe the run-time
20205 /// behavior of a program, such as passing a non-POD value through an ellipsis.
20206 /// Failure to do so will likely result in spurious diagnostics or failures
20207 /// during overload resolution or within sizeof/alignof/typeof/typeid.
20208 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
20209                                const PartialDiagnostic &PD) {
20210 
20211   if (ExprEvalContexts.back().isDiscardedStatementContext())
20212     return false;
20213 
20214   switch (ExprEvalContexts.back().Context) {
20215   case ExpressionEvaluationContext::Unevaluated:
20216   case ExpressionEvaluationContext::UnevaluatedList:
20217   case ExpressionEvaluationContext::UnevaluatedAbstract:
20218   case ExpressionEvaluationContext::DiscardedStatement:
20219     // The argument will never be evaluated, so don't complain.
20220     break;
20221 
20222   case ExpressionEvaluationContext::ConstantEvaluated:
20223   case ExpressionEvaluationContext::ImmediateFunctionContext:
20224     // Relevant diagnostics should be produced by constant evaluation.
20225     break;
20226 
20227   case ExpressionEvaluationContext::PotentiallyEvaluated:
20228   case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
20229     return DiagIfReachable(Loc, Stmts, PD);
20230   }
20231 
20232   return false;
20233 }
20234 
20235 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
20236                                const PartialDiagnostic &PD) {
20237   return DiagRuntimeBehavior(
20238       Loc, Statement ? llvm::ArrayRef(Statement) : std::nullopt, PD);
20239 }
20240 
20241 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
20242                                CallExpr *CE, FunctionDecl *FD) {
20243   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
20244     return false;
20245 
20246   // If we're inside a decltype's expression, don't check for a valid return
20247   // type or construct temporaries until we know whether this is the last call.
20248   if (ExprEvalContexts.back().ExprContext ==
20249       ExpressionEvaluationContextRecord::EK_Decltype) {
20250     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
20251     return false;
20252   }
20253 
20254   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
20255     FunctionDecl *FD;
20256     CallExpr *CE;
20257 
20258   public:
20259     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
20260       : FD(FD), CE(CE) { }
20261 
20262     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
20263       if (!FD) {
20264         S.Diag(Loc, diag::err_call_incomplete_return)
20265           << T << CE->getSourceRange();
20266         return;
20267       }
20268 
20269       S.Diag(Loc, diag::err_call_function_incomplete_return)
20270           << CE->getSourceRange() << FD << T;
20271       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
20272           << FD->getDeclName();
20273     }
20274   } Diagnoser(FD, CE);
20275 
20276   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
20277     return true;
20278 
20279   return false;
20280 }
20281 
20282 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
20283 // will prevent this condition from triggering, which is what we want.
20284 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
20285   SourceLocation Loc;
20286 
20287   unsigned diagnostic = diag::warn_condition_is_assignment;
20288   bool IsOrAssign = false;
20289 
20290   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
20291     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
20292       return;
20293 
20294     IsOrAssign = Op->getOpcode() == BO_OrAssign;
20295 
20296     // Greylist some idioms by putting them into a warning subcategory.
20297     if (ObjCMessageExpr *ME
20298           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
20299       Selector Sel = ME->getSelector();
20300 
20301       // self = [<foo> init...]
20302       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
20303         diagnostic = diag::warn_condition_is_idiomatic_assignment;
20304 
20305       // <foo> = [<bar> nextObject]
20306       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
20307         diagnostic = diag::warn_condition_is_idiomatic_assignment;
20308     }
20309 
20310     Loc = Op->getOperatorLoc();
20311   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
20312     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
20313       return;
20314 
20315     IsOrAssign = Op->getOperator() == OO_PipeEqual;
20316     Loc = Op->getOperatorLoc();
20317   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
20318     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
20319   else {
20320     // Not an assignment.
20321     return;
20322   }
20323 
20324   Diag(Loc, diagnostic) << E->getSourceRange();
20325 
20326   SourceLocation Open = E->getBeginLoc();
20327   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
20328   Diag(Loc, diag::note_condition_assign_silence)
20329         << FixItHint::CreateInsertion(Open, "(")
20330         << FixItHint::CreateInsertion(Close, ")");
20331 
20332   if (IsOrAssign)
20333     Diag(Loc, diag::note_condition_or_assign_to_comparison)
20334       << FixItHint::CreateReplacement(Loc, "!=");
20335   else
20336     Diag(Loc, diag::note_condition_assign_to_comparison)
20337       << FixItHint::CreateReplacement(Loc, "==");
20338 }
20339 
20340 /// Redundant parentheses over an equality comparison can indicate
20341 /// that the user intended an assignment used as condition.
20342 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
20343   // Don't warn if the parens came from a macro.
20344   SourceLocation parenLoc = ParenE->getBeginLoc();
20345   if (parenLoc.isInvalid() || parenLoc.isMacroID())
20346     return;
20347   // Don't warn for dependent expressions.
20348   if (ParenE->isTypeDependent())
20349     return;
20350 
20351   Expr *E = ParenE->IgnoreParens();
20352 
20353   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
20354     if (opE->getOpcode() == BO_EQ &&
20355         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
20356                                                            == Expr::MLV_Valid) {
20357       SourceLocation Loc = opE->getOperatorLoc();
20358 
20359       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
20360       SourceRange ParenERange = ParenE->getSourceRange();
20361       Diag(Loc, diag::note_equality_comparison_silence)
20362         << FixItHint::CreateRemoval(ParenERange.getBegin())
20363         << FixItHint::CreateRemoval(ParenERange.getEnd());
20364       Diag(Loc, diag::note_equality_comparison_to_assign)
20365         << FixItHint::CreateReplacement(Loc, "=");
20366     }
20367 }
20368 
20369 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
20370                                        bool IsConstexpr) {
20371   DiagnoseAssignmentAsCondition(E);
20372   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
20373     DiagnoseEqualityWithExtraParens(parenE);
20374 
20375   ExprResult result = CheckPlaceholderExpr(E);
20376   if (result.isInvalid()) return ExprError();
20377   E = result.get();
20378 
20379   if (!E->isTypeDependent()) {
20380     if (getLangOpts().CPlusPlus)
20381       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
20382 
20383     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
20384     if (ERes.isInvalid())
20385       return ExprError();
20386     E = ERes.get();
20387 
20388     QualType T = E->getType();
20389     if (!T->isScalarType()) { // C99 6.8.4.1p1
20390       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
20391         << T << E->getSourceRange();
20392       return ExprError();
20393     }
20394     CheckBoolLikeConversion(E, Loc);
20395   }
20396 
20397   return E;
20398 }
20399 
20400 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
20401                                            Expr *SubExpr, ConditionKind CK,
20402                                            bool MissingOK) {
20403   // MissingOK indicates whether having no condition expression is valid
20404   // (for loop) or invalid (e.g. while loop).
20405   if (!SubExpr)
20406     return MissingOK ? ConditionResult() : ConditionError();
20407 
20408   ExprResult Cond;
20409   switch (CK) {
20410   case ConditionKind::Boolean:
20411     Cond = CheckBooleanCondition(Loc, SubExpr);
20412     break;
20413 
20414   case ConditionKind::ConstexprIf:
20415     Cond = CheckBooleanCondition(Loc, SubExpr, true);
20416     break;
20417 
20418   case ConditionKind::Switch:
20419     Cond = CheckSwitchCondition(Loc, SubExpr);
20420     break;
20421   }
20422   if (Cond.isInvalid()) {
20423     Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
20424                               {SubExpr}, PreferredConditionType(CK));
20425     if (!Cond.get())
20426       return ConditionError();
20427   }
20428   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
20429   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
20430   if (!FullExpr.get())
20431     return ConditionError();
20432 
20433   return ConditionResult(*this, nullptr, FullExpr,
20434                          CK == ConditionKind::ConstexprIf);
20435 }
20436 
20437 namespace {
20438   /// A visitor for rebuilding a call to an __unknown_any expression
20439   /// to have an appropriate type.
20440   struct RebuildUnknownAnyFunction
20441     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
20442 
20443     Sema &S;
20444 
20445     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
20446 
20447     ExprResult VisitStmt(Stmt *S) {
20448       llvm_unreachable("unexpected statement!");
20449     }
20450 
20451     ExprResult VisitExpr(Expr *E) {
20452       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
20453         << E->getSourceRange();
20454       return ExprError();
20455     }
20456 
20457     /// Rebuild an expression which simply semantically wraps another
20458     /// expression which it shares the type and value kind of.
20459     template <class T> ExprResult rebuildSugarExpr(T *E) {
20460       ExprResult SubResult = Visit(E->getSubExpr());
20461       if (SubResult.isInvalid()) return ExprError();
20462 
20463       Expr *SubExpr = SubResult.get();
20464       E->setSubExpr(SubExpr);
20465       E->setType(SubExpr->getType());
20466       E->setValueKind(SubExpr->getValueKind());
20467       assert(E->getObjectKind() == OK_Ordinary);
20468       return E;
20469     }
20470 
20471     ExprResult VisitParenExpr(ParenExpr *E) {
20472       return rebuildSugarExpr(E);
20473     }
20474 
20475     ExprResult VisitUnaryExtension(UnaryOperator *E) {
20476       return rebuildSugarExpr(E);
20477     }
20478 
20479     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20480       ExprResult SubResult = Visit(E->getSubExpr());
20481       if (SubResult.isInvalid()) return ExprError();
20482 
20483       Expr *SubExpr = SubResult.get();
20484       E->setSubExpr(SubExpr);
20485       E->setType(S.Context.getPointerType(SubExpr->getType()));
20486       assert(E->isPRValue());
20487       assert(E->getObjectKind() == OK_Ordinary);
20488       return E;
20489     }
20490 
20491     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
20492       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
20493 
20494       E->setType(VD->getType());
20495 
20496       assert(E->isPRValue());
20497       if (S.getLangOpts().CPlusPlus &&
20498           !(isa<CXXMethodDecl>(VD) &&
20499             cast<CXXMethodDecl>(VD)->isInstance()))
20500         E->setValueKind(VK_LValue);
20501 
20502       return E;
20503     }
20504 
20505     ExprResult VisitMemberExpr(MemberExpr *E) {
20506       return resolveDecl(E, E->getMemberDecl());
20507     }
20508 
20509     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20510       return resolveDecl(E, E->getDecl());
20511     }
20512   };
20513 }
20514 
20515 /// Given a function expression of unknown-any type, try to rebuild it
20516 /// to have a function type.
20517 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
20518   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
20519   if (Result.isInvalid()) return ExprError();
20520   return S.DefaultFunctionArrayConversion(Result.get());
20521 }
20522 
20523 namespace {
20524   /// A visitor for rebuilding an expression of type __unknown_anytype
20525   /// into one which resolves the type directly on the referring
20526   /// expression.  Strict preservation of the original source
20527   /// structure is not a goal.
20528   struct RebuildUnknownAnyExpr
20529     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
20530 
20531     Sema &S;
20532 
20533     /// The current destination type.
20534     QualType DestType;
20535 
20536     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
20537       : S(S), DestType(CastType) {}
20538 
20539     ExprResult VisitStmt(Stmt *S) {
20540       llvm_unreachable("unexpected statement!");
20541     }
20542 
20543     ExprResult VisitExpr(Expr *E) {
20544       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20545         << E->getSourceRange();
20546       return ExprError();
20547     }
20548 
20549     ExprResult VisitCallExpr(CallExpr *E);
20550     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
20551 
20552     /// Rebuild an expression which simply semantically wraps another
20553     /// expression which it shares the type and value kind of.
20554     template <class T> ExprResult rebuildSugarExpr(T *E) {
20555       ExprResult SubResult = Visit(E->getSubExpr());
20556       if (SubResult.isInvalid()) return ExprError();
20557       Expr *SubExpr = SubResult.get();
20558       E->setSubExpr(SubExpr);
20559       E->setType(SubExpr->getType());
20560       E->setValueKind(SubExpr->getValueKind());
20561       assert(E->getObjectKind() == OK_Ordinary);
20562       return E;
20563     }
20564 
20565     ExprResult VisitParenExpr(ParenExpr *E) {
20566       return rebuildSugarExpr(E);
20567     }
20568 
20569     ExprResult VisitUnaryExtension(UnaryOperator *E) {
20570       return rebuildSugarExpr(E);
20571     }
20572 
20573     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20574       const PointerType *Ptr = DestType->getAs<PointerType>();
20575       if (!Ptr) {
20576         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
20577           << E->getSourceRange();
20578         return ExprError();
20579       }
20580 
20581       if (isa<CallExpr>(E->getSubExpr())) {
20582         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
20583           << E->getSourceRange();
20584         return ExprError();
20585       }
20586 
20587       assert(E->isPRValue());
20588       assert(E->getObjectKind() == OK_Ordinary);
20589       E->setType(DestType);
20590 
20591       // Build the sub-expression as if it were an object of the pointee type.
20592       DestType = Ptr->getPointeeType();
20593       ExprResult SubResult = Visit(E->getSubExpr());
20594       if (SubResult.isInvalid()) return ExprError();
20595       E->setSubExpr(SubResult.get());
20596       return E;
20597     }
20598 
20599     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
20600 
20601     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
20602 
20603     ExprResult VisitMemberExpr(MemberExpr *E) {
20604       return resolveDecl(E, E->getMemberDecl());
20605     }
20606 
20607     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20608       return resolveDecl(E, E->getDecl());
20609     }
20610   };
20611 }
20612 
20613 /// Rebuilds a call expression which yielded __unknown_anytype.
20614 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
20615   Expr *CalleeExpr = E->getCallee();
20616 
20617   enum FnKind {
20618     FK_MemberFunction,
20619     FK_FunctionPointer,
20620     FK_BlockPointer
20621   };
20622 
20623   FnKind Kind;
20624   QualType CalleeType = CalleeExpr->getType();
20625   if (CalleeType == S.Context.BoundMemberTy) {
20626     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
20627     Kind = FK_MemberFunction;
20628     CalleeType = Expr::findBoundMemberType(CalleeExpr);
20629   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
20630     CalleeType = Ptr->getPointeeType();
20631     Kind = FK_FunctionPointer;
20632   } else {
20633     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
20634     Kind = FK_BlockPointer;
20635   }
20636   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
20637 
20638   // Verify that this is a legal result type of a function.
20639   if (DestType->isArrayType() || DestType->isFunctionType()) {
20640     unsigned diagID = diag::err_func_returning_array_function;
20641     if (Kind == FK_BlockPointer)
20642       diagID = diag::err_block_returning_array_function;
20643 
20644     S.Diag(E->getExprLoc(), diagID)
20645       << DestType->isFunctionType() << DestType;
20646     return ExprError();
20647   }
20648 
20649   // Otherwise, go ahead and set DestType as the call's result.
20650   E->setType(DestType.getNonLValueExprType(S.Context));
20651   E->setValueKind(Expr::getValueKindForType(DestType));
20652   assert(E->getObjectKind() == OK_Ordinary);
20653 
20654   // Rebuild the function type, replacing the result type with DestType.
20655   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
20656   if (Proto) {
20657     // __unknown_anytype(...) is a special case used by the debugger when
20658     // it has no idea what a function's signature is.
20659     //
20660     // We want to build this call essentially under the K&R
20661     // unprototyped rules, but making a FunctionNoProtoType in C++
20662     // would foul up all sorts of assumptions.  However, we cannot
20663     // simply pass all arguments as variadic arguments, nor can we
20664     // portably just call the function under a non-variadic type; see
20665     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
20666     // However, it turns out that in practice it is generally safe to
20667     // call a function declared as "A foo(B,C,D);" under the prototype
20668     // "A foo(B,C,D,...);".  The only known exception is with the
20669     // Windows ABI, where any variadic function is implicitly cdecl
20670     // regardless of its normal CC.  Therefore we change the parameter
20671     // types to match the types of the arguments.
20672     //
20673     // This is a hack, but it is far superior to moving the
20674     // corresponding target-specific code from IR-gen to Sema/AST.
20675 
20676     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
20677     SmallVector<QualType, 8> ArgTypes;
20678     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
20679       ArgTypes.reserve(E->getNumArgs());
20680       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
20681         ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
20682       }
20683       ParamTypes = ArgTypes;
20684     }
20685     DestType = S.Context.getFunctionType(DestType, ParamTypes,
20686                                          Proto->getExtProtoInfo());
20687   } else {
20688     DestType = S.Context.getFunctionNoProtoType(DestType,
20689                                                 FnType->getExtInfo());
20690   }
20691 
20692   // Rebuild the appropriate pointer-to-function type.
20693   switch (Kind) {
20694   case FK_MemberFunction:
20695     // Nothing to do.
20696     break;
20697 
20698   case FK_FunctionPointer:
20699     DestType = S.Context.getPointerType(DestType);
20700     break;
20701 
20702   case FK_BlockPointer:
20703     DestType = S.Context.getBlockPointerType(DestType);
20704     break;
20705   }
20706 
20707   // Finally, we can recurse.
20708   ExprResult CalleeResult = Visit(CalleeExpr);
20709   if (!CalleeResult.isUsable()) return ExprError();
20710   E->setCallee(CalleeResult.get());
20711 
20712   // Bind a temporary if necessary.
20713   return S.MaybeBindToTemporary(E);
20714 }
20715 
20716 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
20717   // Verify that this is a legal result type of a call.
20718   if (DestType->isArrayType() || DestType->isFunctionType()) {
20719     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
20720       << DestType->isFunctionType() << DestType;
20721     return ExprError();
20722   }
20723 
20724   // Rewrite the method result type if available.
20725   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
20726     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
20727     Method->setReturnType(DestType);
20728   }
20729 
20730   // Change the type of the message.
20731   E->setType(DestType.getNonReferenceType());
20732   E->setValueKind(Expr::getValueKindForType(DestType));
20733 
20734   return S.MaybeBindToTemporary(E);
20735 }
20736 
20737 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
20738   // The only case we should ever see here is a function-to-pointer decay.
20739   if (E->getCastKind() == CK_FunctionToPointerDecay) {
20740     assert(E->isPRValue());
20741     assert(E->getObjectKind() == OK_Ordinary);
20742 
20743     E->setType(DestType);
20744 
20745     // Rebuild the sub-expression as the pointee (function) type.
20746     DestType = DestType->castAs<PointerType>()->getPointeeType();
20747 
20748     ExprResult Result = Visit(E->getSubExpr());
20749     if (!Result.isUsable()) return ExprError();
20750 
20751     E->setSubExpr(Result.get());
20752     return E;
20753   } else if (E->getCastKind() == CK_LValueToRValue) {
20754     assert(E->isPRValue());
20755     assert(E->getObjectKind() == OK_Ordinary);
20756 
20757     assert(isa<BlockPointerType>(E->getType()));
20758 
20759     E->setType(DestType);
20760 
20761     // The sub-expression has to be a lvalue reference, so rebuild it as such.
20762     DestType = S.Context.getLValueReferenceType(DestType);
20763 
20764     ExprResult Result = Visit(E->getSubExpr());
20765     if (!Result.isUsable()) return ExprError();
20766 
20767     E->setSubExpr(Result.get());
20768     return E;
20769   } else {
20770     llvm_unreachable("Unhandled cast type!");
20771   }
20772 }
20773 
20774 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
20775   ExprValueKind ValueKind = VK_LValue;
20776   QualType Type = DestType;
20777 
20778   // We know how to make this work for certain kinds of decls:
20779 
20780   //  - functions
20781   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
20782     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
20783       DestType = Ptr->getPointeeType();
20784       ExprResult Result = resolveDecl(E, VD);
20785       if (Result.isInvalid()) return ExprError();
20786       return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
20787                                  VK_PRValue);
20788     }
20789 
20790     if (!Type->isFunctionType()) {
20791       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
20792         << VD << E->getSourceRange();
20793       return ExprError();
20794     }
20795     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
20796       // We must match the FunctionDecl's type to the hack introduced in
20797       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
20798       // type. See the lengthy commentary in that routine.
20799       QualType FDT = FD->getType();
20800       const FunctionType *FnType = FDT->castAs<FunctionType>();
20801       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
20802       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
20803       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
20804         SourceLocation Loc = FD->getLocation();
20805         FunctionDecl *NewFD = FunctionDecl::Create(
20806             S.Context, FD->getDeclContext(), Loc, Loc,
20807             FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
20808             SC_None, S.getCurFPFeatures().isFPConstrained(),
20809             false /*isInlineSpecified*/, FD->hasPrototype(),
20810             /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
20811 
20812         if (FD->getQualifier())
20813           NewFD->setQualifierInfo(FD->getQualifierLoc());
20814 
20815         SmallVector<ParmVarDecl*, 16> Params;
20816         for (const auto &AI : FT->param_types()) {
20817           ParmVarDecl *Param =
20818             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
20819           Param->setScopeInfo(0, Params.size());
20820           Params.push_back(Param);
20821         }
20822         NewFD->setParams(Params);
20823         DRE->setDecl(NewFD);
20824         VD = DRE->getDecl();
20825       }
20826     }
20827 
20828     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
20829       if (MD->isInstance()) {
20830         ValueKind = VK_PRValue;
20831         Type = S.Context.BoundMemberTy;
20832       }
20833 
20834     // Function references aren't l-values in C.
20835     if (!S.getLangOpts().CPlusPlus)
20836       ValueKind = VK_PRValue;
20837 
20838   //  - variables
20839   } else if (isa<VarDecl>(VD)) {
20840     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
20841       Type = RefTy->getPointeeType();
20842     } else if (Type->isFunctionType()) {
20843       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
20844         << VD << E->getSourceRange();
20845       return ExprError();
20846     }
20847 
20848   //  - nothing else
20849   } else {
20850     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
20851       << VD << E->getSourceRange();
20852     return ExprError();
20853   }
20854 
20855   // Modifying the declaration like this is friendly to IR-gen but
20856   // also really dangerous.
20857   VD->setType(DestType);
20858   E->setType(Type);
20859   E->setValueKind(ValueKind);
20860   return E;
20861 }
20862 
20863 /// Check a cast of an unknown-any type.  We intentionally only
20864 /// trigger this for C-style casts.
20865 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
20866                                      Expr *CastExpr, CastKind &CastKind,
20867                                      ExprValueKind &VK, CXXCastPath &Path) {
20868   // The type we're casting to must be either void or complete.
20869   if (!CastType->isVoidType() &&
20870       RequireCompleteType(TypeRange.getBegin(), CastType,
20871                           diag::err_typecheck_cast_to_incomplete))
20872     return ExprError();
20873 
20874   // Rewrite the casted expression from scratch.
20875   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
20876   if (!result.isUsable()) return ExprError();
20877 
20878   CastExpr = result.get();
20879   VK = CastExpr->getValueKind();
20880   CastKind = CK_NoOp;
20881 
20882   return CastExpr;
20883 }
20884 
20885 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
20886   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
20887 }
20888 
20889 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
20890                                     Expr *arg, QualType &paramType) {
20891   // If the syntactic form of the argument is not an explicit cast of
20892   // any sort, just do default argument promotion.
20893   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
20894   if (!castArg) {
20895     ExprResult result = DefaultArgumentPromotion(arg);
20896     if (result.isInvalid()) return ExprError();
20897     paramType = result.get()->getType();
20898     return result;
20899   }
20900 
20901   // Otherwise, use the type that was written in the explicit cast.
20902   assert(!arg->hasPlaceholderType());
20903   paramType = castArg->getTypeAsWritten();
20904 
20905   // Copy-initialize a parameter of that type.
20906   InitializedEntity entity =
20907     InitializedEntity::InitializeParameter(Context, paramType,
20908                                            /*consumed*/ false);
20909   return PerformCopyInitialization(entity, callLoc, arg);
20910 }
20911 
20912 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
20913   Expr *orig = E;
20914   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
20915   while (true) {
20916     E = E->IgnoreParenImpCasts();
20917     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
20918       E = call->getCallee();
20919       diagID = diag::err_uncasted_call_of_unknown_any;
20920     } else {
20921       break;
20922     }
20923   }
20924 
20925   SourceLocation loc;
20926   NamedDecl *d;
20927   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
20928     loc = ref->getLocation();
20929     d = ref->getDecl();
20930   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
20931     loc = mem->getMemberLoc();
20932     d = mem->getMemberDecl();
20933   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
20934     diagID = diag::err_uncasted_call_of_unknown_any;
20935     loc = msg->getSelectorStartLoc();
20936     d = msg->getMethodDecl();
20937     if (!d) {
20938       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
20939         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
20940         << orig->getSourceRange();
20941       return ExprError();
20942     }
20943   } else {
20944     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20945       << E->getSourceRange();
20946     return ExprError();
20947   }
20948 
20949   S.Diag(loc, diagID) << d << orig->getSourceRange();
20950 
20951   // Never recoverable.
20952   return ExprError();
20953 }
20954 
20955 /// Check for operands with placeholder types and complain if found.
20956 /// Returns ExprError() if there was an error and no recovery was possible.
20957 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
20958   if (!Context.isDependenceAllowed()) {
20959     // C cannot handle TypoExpr nodes on either side of a binop because it
20960     // doesn't handle dependent types properly, so make sure any TypoExprs have
20961     // been dealt with before checking the operands.
20962     ExprResult Result = CorrectDelayedTyposInExpr(E);
20963     if (!Result.isUsable()) return ExprError();
20964     E = Result.get();
20965   }
20966 
20967   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
20968   if (!placeholderType) return E;
20969 
20970   switch (placeholderType->getKind()) {
20971 
20972   // Overloaded expressions.
20973   case BuiltinType::Overload: {
20974     // Try to resolve a single function template specialization.
20975     // This is obligatory.
20976     ExprResult Result = E;
20977     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
20978       return Result;
20979 
20980     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
20981     // leaves Result unchanged on failure.
20982     Result = E;
20983     if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
20984       return Result;
20985 
20986     // If that failed, try to recover with a call.
20987     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
20988                          /*complain*/ true);
20989     return Result;
20990   }
20991 
20992   // Bound member functions.
20993   case BuiltinType::BoundMember: {
20994     ExprResult result = E;
20995     const Expr *BME = E->IgnoreParens();
20996     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
20997     // Try to give a nicer diagnostic if it is a bound member that we recognize.
20998     if (isa<CXXPseudoDestructorExpr>(BME)) {
20999       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
21000     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
21001       if (ME->getMemberNameInfo().getName().getNameKind() ==
21002           DeclarationName::CXXDestructorName)
21003         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
21004     }
21005     tryToRecoverWithCall(result, PD,
21006                          /*complain*/ true);
21007     return result;
21008   }
21009 
21010   // ARC unbridged casts.
21011   case BuiltinType::ARCUnbridgedCast: {
21012     Expr *realCast = stripARCUnbridgedCast(E);
21013     diagnoseARCUnbridgedCast(realCast);
21014     return realCast;
21015   }
21016 
21017   // Expressions of unknown type.
21018   case BuiltinType::UnknownAny:
21019     return diagnoseUnknownAnyExpr(*this, E);
21020 
21021   // Pseudo-objects.
21022   case BuiltinType::PseudoObject:
21023     return checkPseudoObjectRValue(E);
21024 
21025   case BuiltinType::BuiltinFn: {
21026     // Accept __noop without parens by implicitly converting it to a call expr.
21027     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
21028     if (DRE) {
21029       auto *FD = cast<FunctionDecl>(DRE->getDecl());
21030       unsigned BuiltinID = FD->getBuiltinID();
21031       if (BuiltinID == Builtin::BI__noop) {
21032         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
21033                               CK_BuiltinFnToFnPtr)
21034                 .get();
21035         return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
21036                                 VK_PRValue, SourceLocation(),
21037                                 FPOptionsOverride());
21038       }
21039 
21040       if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) {
21041         // Any use of these other than a direct call is ill-formed as of C++20,
21042         // because they are not addressable functions. In earlier language
21043         // modes, warn and force an instantiation of the real body.
21044         Diag(E->getBeginLoc(),
21045              getLangOpts().CPlusPlus20
21046                  ? diag::err_use_of_unaddressable_function
21047                  : diag::warn_cxx20_compat_use_of_unaddressable_function);
21048         if (FD->isImplicitlyInstantiable()) {
21049           // Require a definition here because a normal attempt at
21050           // instantiation for a builtin will be ignored, and we won't try
21051           // again later. We assume that the definition of the template
21052           // precedes this use.
21053           InstantiateFunctionDefinition(E->getBeginLoc(), FD,
21054                                         /*Recursive=*/false,
21055                                         /*DefinitionRequired=*/true,
21056                                         /*AtEndOfTU=*/false);
21057         }
21058         // Produce a properly-typed reference to the function.
21059         CXXScopeSpec SS;
21060         SS.Adopt(DRE->getQualifierLoc());
21061         TemplateArgumentListInfo TemplateArgs;
21062         DRE->copyTemplateArgumentsInto(TemplateArgs);
21063         return BuildDeclRefExpr(
21064             FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
21065             DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
21066             DRE->getTemplateKeywordLoc(),
21067             DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
21068       }
21069     }
21070 
21071     Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
21072     return ExprError();
21073   }
21074 
21075   case BuiltinType::IncompleteMatrixIdx:
21076     Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
21077              ->getRowIdx()
21078              ->getBeginLoc(),
21079          diag::err_matrix_incomplete_index);
21080     return ExprError();
21081 
21082   // Expressions of unknown type.
21083   case BuiltinType::OMPArraySection:
21084     Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
21085     return ExprError();
21086 
21087   // Expressions of unknown type.
21088   case BuiltinType::OMPArrayShaping:
21089     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
21090 
21091   case BuiltinType::OMPIterator:
21092     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
21093 
21094   // Everything else should be impossible.
21095 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
21096   case BuiltinType::Id:
21097 #include "clang/Basic/OpenCLImageTypes.def"
21098 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
21099   case BuiltinType::Id:
21100 #include "clang/Basic/OpenCLExtensionTypes.def"
21101 #define SVE_TYPE(Name, Id, SingletonId) \
21102   case BuiltinType::Id:
21103 #include "clang/Basic/AArch64SVEACLETypes.def"
21104 #define PPC_VECTOR_TYPE(Name, Id, Size) \
21105   case BuiltinType::Id:
21106 #include "clang/Basic/PPCTypes.def"
21107 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
21108 #include "clang/Basic/RISCVVTypes.def"
21109 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
21110 #define PLACEHOLDER_TYPE(Id, SingletonId)
21111 #include "clang/AST/BuiltinTypes.def"
21112     break;
21113   }
21114 
21115   llvm_unreachable("invalid placeholder type!");
21116 }
21117 
21118 bool Sema::CheckCaseExpression(Expr *E) {
21119   if (E->isTypeDependent())
21120     return true;
21121   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
21122     return E->getType()->isIntegralOrEnumerationType();
21123   return false;
21124 }
21125 
21126 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
21127 ExprResult
21128 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
21129   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
21130          "Unknown Objective-C Boolean value!");
21131   QualType BoolT = Context.ObjCBuiltinBoolTy;
21132   if (!Context.getBOOLDecl()) {
21133     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
21134                         Sema::LookupOrdinaryName);
21135     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
21136       NamedDecl *ND = Result.getFoundDecl();
21137       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
21138         Context.setBOOLDecl(TD);
21139     }
21140   }
21141   if (Context.getBOOLDecl())
21142     BoolT = Context.getBOOLType();
21143   return new (Context)
21144       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
21145 }
21146 
21147 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
21148     llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
21149     SourceLocation RParen) {
21150   auto FindSpecVersion =
21151       [&](StringRef Platform) -> std::optional<VersionTuple> {
21152     auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21153       return Spec.getPlatform() == Platform;
21154     });
21155     // Transcribe the "ios" availability check to "maccatalyst" when compiling
21156     // for "maccatalyst" if "maccatalyst" is not specified.
21157     if (Spec == AvailSpecs.end() && Platform == "maccatalyst") {
21158       Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
21159         return Spec.getPlatform() == "ios";
21160       });
21161     }
21162     if (Spec == AvailSpecs.end())
21163       return std::nullopt;
21164     return Spec->getVersion();
21165   };
21166 
21167   VersionTuple Version;
21168   if (auto MaybeVersion =
21169           FindSpecVersion(Context.getTargetInfo().getPlatformName()))
21170     Version = *MaybeVersion;
21171 
21172   // The use of `@available` in the enclosing context should be analyzed to
21173   // warn when it's used inappropriately (i.e. not if(@available)).
21174   if (FunctionScopeInfo *Context = getCurFunctionAvailabilityContext())
21175     Context->HasPotentialAvailabilityViolations = true;
21176 
21177   return new (Context)
21178       ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
21179 }
21180 
21181 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
21182                                     ArrayRef<Expr *> SubExprs, QualType T) {
21183   if (!Context.getLangOpts().RecoveryAST)
21184     return ExprError();
21185 
21186   if (isSFINAEContext())
21187     return ExprError();
21188 
21189   if (T.isNull() || T->isUndeducedType() ||
21190       !Context.getLangOpts().RecoveryASTType)
21191     // We don't know the concrete type, fallback to dependent type.
21192     T = Context.DependentTy;
21193 
21194   return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
21195 }
21196