xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaExpr.cpp (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TreeTransform.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ExprOpenMP.h"
26 #include "clang/AST/RecursiveASTVisitor.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/FixedPoint.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/LiteralSupport.h"
33 #include "clang/Lex/Preprocessor.h"
34 #include "clang/Sema/AnalysisBasedWarnings.h"
35 #include "clang/Sema/DeclSpec.h"
36 #include "clang/Sema/DelayedDiagnostic.h"
37 #include "clang/Sema/Designator.h"
38 #include "clang/Sema/Initialization.h"
39 #include "clang/Sema/Lookup.h"
40 #include "clang/Sema/Overload.h"
41 #include "clang/Sema/ParsedTemplate.h"
42 #include "clang/Sema/Scope.h"
43 #include "clang/Sema/ScopeInfo.h"
44 #include "clang/Sema/SemaFixItUtils.h"
45 #include "clang/Sema/SemaInternal.h"
46 #include "clang/Sema/Template.h"
47 #include "llvm/Support/ConvertUTF.h"
48 using namespace clang;
49 using namespace sema;
50 
51 /// Determine whether the use of this declaration is valid, without
52 /// emitting diagnostics.
53 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
54   // See if this is an auto-typed variable whose initializer we are parsing.
55   if (ParsingInitForAutoVars.count(D))
56     return false;
57 
58   // See if this is a deleted function.
59   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
60     if (FD->isDeleted())
61       return false;
62 
63     // If the function has a deduced return type, and we can't deduce it,
64     // then we can't use it either.
65     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
66         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
67       return false;
68 
69     // See if this is an aligned allocation/deallocation function that is
70     // unavailable.
71     if (TreatUnavailableAsInvalid &&
72         isUnavailableAlignedAllocationFunction(*FD))
73       return false;
74   }
75 
76   // See if this function is unavailable.
77   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
78       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
79     return false;
80 
81   return true;
82 }
83 
84 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
85   // Warn if this is used but marked unused.
86   if (const auto *A = D->getAttr<UnusedAttr>()) {
87     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
88     // should diagnose them.
89     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
90         A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
91       const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
92       if (DC && !DC->hasAttr<UnusedAttr>())
93         S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
94     }
95   }
96 }
97 
98 /// Emit a note explaining that this function is deleted.
99 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
100   assert(Decl->isDeleted());
101 
102   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
103 
104   if (Method && Method->isDeleted() && Method->isDefaulted()) {
105     // If the method was explicitly defaulted, point at that declaration.
106     if (!Method->isImplicit())
107       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
108 
109     // Try to diagnose why this special member function was implicitly
110     // deleted. This might fail, if that reason no longer applies.
111     CXXSpecialMember CSM = getSpecialMember(Method);
112     if (CSM != CXXInvalid)
113       ShouldDeleteSpecialMember(Method, CSM, nullptr, /*Diagnose=*/true);
114 
115     return;
116   }
117 
118   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
119   if (Ctor && Ctor->isInheritingConstructor())
120     return NoteDeletedInheritingConstructor(Ctor);
121 
122   Diag(Decl->getLocation(), diag::note_availability_specified_here)
123     << Decl << 1;
124 }
125 
126 /// Determine whether a FunctionDecl was ever declared with an
127 /// explicit storage class.
128 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
129   for (auto I : D->redecls()) {
130     if (I->getStorageClass() != SC_None)
131       return true;
132   }
133   return false;
134 }
135 
136 /// Check whether we're in an extern inline function and referring to a
137 /// variable or function with internal linkage (C11 6.7.4p3).
138 ///
139 /// This is only a warning because we used to silently accept this code, but
140 /// in many cases it will not behave correctly. This is not enabled in C++ mode
141 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
142 /// and so while there may still be user mistakes, most of the time we can't
143 /// prove that there are errors.
144 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
145                                                       const NamedDecl *D,
146                                                       SourceLocation Loc) {
147   // This is disabled under C++; there are too many ways for this to fire in
148   // contexts where the warning is a false positive, or where it is technically
149   // correct but benign.
150   if (S.getLangOpts().CPlusPlus)
151     return;
152 
153   // Check if this is an inlined function or method.
154   FunctionDecl *Current = S.getCurFunctionDecl();
155   if (!Current)
156     return;
157   if (!Current->isInlined())
158     return;
159   if (!Current->isExternallyVisible())
160     return;
161 
162   // Check if the decl has internal linkage.
163   if (D->getFormalLinkage() != InternalLinkage)
164     return;
165 
166   // Downgrade from ExtWarn to Extension if
167   //  (1) the supposedly external inline function is in the main file,
168   //      and probably won't be included anywhere else.
169   //  (2) the thing we're referencing is a pure function.
170   //  (3) the thing we're referencing is another inline function.
171   // This last can give us false negatives, but it's better than warning on
172   // wrappers for simple C library functions.
173   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
174   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
175   if (!DowngradeWarning && UsedFn)
176     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
177 
178   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
179                                : diag::ext_internal_in_extern_inline)
180     << /*IsVar=*/!UsedFn << D;
181 
182   S.MaybeSuggestAddingStaticToDecl(Current);
183 
184   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
185       << D;
186 }
187 
188 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
189   const FunctionDecl *First = Cur->getFirstDecl();
190 
191   // Suggest "static" on the function, if possible.
192   if (!hasAnyExplicitStorageClass(First)) {
193     SourceLocation DeclBegin = First->getSourceRange().getBegin();
194     Diag(DeclBegin, diag::note_convert_inline_to_static)
195       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
196   }
197 }
198 
199 /// Determine whether the use of this declaration is valid, and
200 /// emit any corresponding diagnostics.
201 ///
202 /// This routine diagnoses various problems with referencing
203 /// declarations that can occur when using a declaration. For example,
204 /// it might warn if a deprecated or unavailable declaration is being
205 /// used, or produce an error (and return true) if a C++0x deleted
206 /// function is being used.
207 ///
208 /// \returns true if there was an error (this declaration cannot be
209 /// referenced), false otherwise.
210 ///
211 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
212                              const ObjCInterfaceDecl *UnknownObjCClass,
213                              bool ObjCPropertyAccess,
214                              bool AvoidPartialAvailabilityChecks,
215                              ObjCInterfaceDecl *ClassReceiver) {
216   SourceLocation Loc = Locs.front();
217   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
218     // If there were any diagnostics suppressed by template argument deduction,
219     // emit them now.
220     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
221     if (Pos != SuppressedDiagnostics.end()) {
222       for (const PartialDiagnosticAt &Suppressed : Pos->second)
223         Diag(Suppressed.first, Suppressed.second);
224 
225       // Clear out the list of suppressed diagnostics, so that we don't emit
226       // them again for this specialization. However, we don't obsolete this
227       // entry from the table, because we want to avoid ever emitting these
228       // diagnostics again.
229       Pos->second.clear();
230     }
231 
232     // C++ [basic.start.main]p3:
233     //   The function 'main' shall not be used within a program.
234     if (cast<FunctionDecl>(D)->isMain())
235       Diag(Loc, diag::ext_main_used);
236 
237     diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
238   }
239 
240   // See if this is an auto-typed variable whose initializer we are parsing.
241   if (ParsingInitForAutoVars.count(D)) {
242     if (isa<BindingDecl>(D)) {
243       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
244         << D->getDeclName();
245     } else {
246       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
247         << D->getDeclName() << cast<VarDecl>(D)->getType();
248     }
249     return true;
250   }
251 
252   // See if this is a deleted function.
253   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
254     if (FD->isDeleted()) {
255       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
256       if (Ctor && Ctor->isInheritingConstructor())
257         Diag(Loc, diag::err_deleted_inherited_ctor_use)
258             << Ctor->getParent()
259             << Ctor->getInheritedConstructor().getConstructor()->getParent();
260       else
261         Diag(Loc, diag::err_deleted_function_use);
262       NoteDeletedFunction(FD);
263       return true;
264     }
265 
266     // If the function has a deduced return type, and we can't deduce it,
267     // then we can't use it either.
268     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
269         DeduceReturnType(FD, Loc))
270       return true;
271 
272     if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
273       return true;
274   }
275 
276   if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
277     // Lambdas are only default-constructible or assignable in C++2a onwards.
278     if (MD->getParent()->isLambda() &&
279         ((isa<CXXConstructorDecl>(MD) &&
280           cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
281          MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
282       Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
283         << !isa<CXXConstructorDecl>(MD);
284     }
285   }
286 
287   auto getReferencedObjCProp = [](const NamedDecl *D) ->
288                                       const ObjCPropertyDecl * {
289     if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
290       return MD->findPropertyDecl();
291     return nullptr;
292   };
293   if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
294     if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
295       return true;
296   } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
297       return true;
298   }
299 
300   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
301   // Only the variables omp_in and omp_out are allowed in the combiner.
302   // Only the variables omp_priv and omp_orig are allowed in the
303   // initializer-clause.
304   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
305   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
306       isa<VarDecl>(D)) {
307     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
308         << getCurFunction()->HasOMPDeclareReductionCombiner;
309     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
310     return true;
311   }
312 
313   // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
314   //  List-items in map clauses on this construct may only refer to the declared
315   //  variable var and entities that could be referenced by a procedure defined
316   //  at the same location
317   auto *DMD = dyn_cast<OMPDeclareMapperDecl>(CurContext);
318   if (LangOpts.OpenMP && DMD && !CurContext->containsDecl(D) &&
319       isa<VarDecl>(D)) {
320     Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
321         << DMD->getVarName().getAsString();
322     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
323     return true;
324   }
325 
326   DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
327                              AvoidPartialAvailabilityChecks, ClassReceiver);
328 
329   DiagnoseUnusedOfDecl(*this, D, Loc);
330 
331   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
332 
333   return false;
334 }
335 
336 /// DiagnoseSentinelCalls - This routine checks whether a call or
337 /// message-send is to a declaration with the sentinel attribute, and
338 /// if so, it checks that the requirements of the sentinel are
339 /// satisfied.
340 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
341                                  ArrayRef<Expr *> Args) {
342   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
343   if (!attr)
344     return;
345 
346   // The number of formal parameters of the declaration.
347   unsigned numFormalParams;
348 
349   // The kind of declaration.  This is also an index into a %select in
350   // the diagnostic.
351   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
352 
353   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
354     numFormalParams = MD->param_size();
355     calleeType = CT_Method;
356   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
357     numFormalParams = FD->param_size();
358     calleeType = CT_Function;
359   } else if (isa<VarDecl>(D)) {
360     QualType type = cast<ValueDecl>(D)->getType();
361     const FunctionType *fn = nullptr;
362     if (const PointerType *ptr = type->getAs<PointerType>()) {
363       fn = ptr->getPointeeType()->getAs<FunctionType>();
364       if (!fn) return;
365       calleeType = CT_Function;
366     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
367       fn = ptr->getPointeeType()->castAs<FunctionType>();
368       calleeType = CT_Block;
369     } else {
370       return;
371     }
372 
373     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
374       numFormalParams = proto->getNumParams();
375     } else {
376       numFormalParams = 0;
377     }
378   } else {
379     return;
380   }
381 
382   // "nullPos" is the number of formal parameters at the end which
383   // effectively count as part of the variadic arguments.  This is
384   // useful if you would prefer to not have *any* formal parameters,
385   // but the language forces you to have at least one.
386   unsigned nullPos = attr->getNullPos();
387   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
388   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
389 
390   // The number of arguments which should follow the sentinel.
391   unsigned numArgsAfterSentinel = attr->getSentinel();
392 
393   // If there aren't enough arguments for all the formal parameters,
394   // the sentinel, and the args after the sentinel, complain.
395   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
396     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
397     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
398     return;
399   }
400 
401   // Otherwise, find the sentinel expression.
402   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
403   if (!sentinelExpr) return;
404   if (sentinelExpr->isValueDependent()) return;
405   if (Context.isSentinelNullExpr(sentinelExpr)) return;
406 
407   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
408   // or 'NULL' if those are actually defined in the context.  Only use
409   // 'nil' for ObjC methods, where it's much more likely that the
410   // variadic arguments form a list of object pointers.
411   SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
412   std::string NullValue;
413   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
414     NullValue = "nil";
415   else if (getLangOpts().CPlusPlus11)
416     NullValue = "nullptr";
417   else if (PP.isMacroDefined("NULL"))
418     NullValue = "NULL";
419   else
420     NullValue = "(void*) 0";
421 
422   if (MissingNilLoc.isInvalid())
423     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
424   else
425     Diag(MissingNilLoc, diag::warn_missing_sentinel)
426       << int(calleeType)
427       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
428   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
429 }
430 
431 SourceRange Sema::getExprRange(Expr *E) const {
432   return E ? E->getSourceRange() : SourceRange();
433 }
434 
435 //===----------------------------------------------------------------------===//
436 //  Standard Promotions and Conversions
437 //===----------------------------------------------------------------------===//
438 
439 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
440 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
441   // Handle any placeholder expressions which made it here.
442   if (E->getType()->isPlaceholderType()) {
443     ExprResult result = CheckPlaceholderExpr(E);
444     if (result.isInvalid()) return ExprError();
445     E = result.get();
446   }
447 
448   QualType Ty = E->getType();
449   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
450 
451   if (Ty->isFunctionType()) {
452     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
453       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
454         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
455           return ExprError();
456 
457     E = ImpCastExprToType(E, Context.getPointerType(Ty),
458                           CK_FunctionToPointerDecay).get();
459   } else if (Ty->isArrayType()) {
460     // In C90 mode, arrays only promote to pointers if the array expression is
461     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
462     // type 'array of type' is converted to an expression that has type 'pointer
463     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
464     // that has type 'array of type' ...".  The relevant change is "an lvalue"
465     // (C90) to "an expression" (C99).
466     //
467     // C++ 4.2p1:
468     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
469     // T" can be converted to an rvalue of type "pointer to T".
470     //
471     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
472       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
473                             CK_ArrayToPointerDecay).get();
474   }
475   return E;
476 }
477 
478 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
479   // Check to see if we are dereferencing a null pointer.  If so,
480   // and if not volatile-qualified, this is undefined behavior that the
481   // optimizer will delete, so warn about it.  People sometimes try to use this
482   // to get a deterministic trap and are surprised by clang's behavior.  This
483   // only handles the pattern "*null", which is a very syntactic check.
484   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
485     if (UO->getOpcode() == UO_Deref &&
486         UO->getSubExpr()->IgnoreParenCasts()->
487           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
488         !UO->getType().isVolatileQualified()) {
489     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
490                           S.PDiag(diag::warn_indirection_through_null)
491                             << UO->getSubExpr()->getSourceRange());
492     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
493                         S.PDiag(diag::note_indirection_through_null));
494   }
495 }
496 
497 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
498                                     SourceLocation AssignLoc,
499                                     const Expr* RHS) {
500   const ObjCIvarDecl *IV = OIRE->getDecl();
501   if (!IV)
502     return;
503 
504   DeclarationName MemberName = IV->getDeclName();
505   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
506   if (!Member || !Member->isStr("isa"))
507     return;
508 
509   const Expr *Base = OIRE->getBase();
510   QualType BaseType = Base->getType();
511   if (OIRE->isArrow())
512     BaseType = BaseType->getPointeeType();
513   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
514     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
515       ObjCInterfaceDecl *ClassDeclared = nullptr;
516       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
517       if (!ClassDeclared->getSuperClass()
518           && (*ClassDeclared->ivar_begin()) == IV) {
519         if (RHS) {
520           NamedDecl *ObjectSetClass =
521             S.LookupSingleName(S.TUScope,
522                                &S.Context.Idents.get("object_setClass"),
523                                SourceLocation(), S.LookupOrdinaryName);
524           if (ObjectSetClass) {
525             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
526             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
527                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
528                                               "object_setClass(")
529                 << FixItHint::CreateReplacement(
530                        SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
531                 << FixItHint::CreateInsertion(RHSLocEnd, ")");
532           }
533           else
534             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
535         } else {
536           NamedDecl *ObjectGetClass =
537             S.LookupSingleName(S.TUScope,
538                                &S.Context.Idents.get("object_getClass"),
539                                SourceLocation(), S.LookupOrdinaryName);
540           if (ObjectGetClass)
541             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
542                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
543                                               "object_getClass(")
544                 << FixItHint::CreateReplacement(
545                        SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
546           else
547             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
548         }
549         S.Diag(IV->getLocation(), diag::note_ivar_decl);
550       }
551     }
552 }
553 
554 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
555   // Handle any placeholder expressions which made it here.
556   if (E->getType()->isPlaceholderType()) {
557     ExprResult result = CheckPlaceholderExpr(E);
558     if (result.isInvalid()) return ExprError();
559     E = result.get();
560   }
561 
562   // C++ [conv.lval]p1:
563   //   A glvalue of a non-function, non-array type T can be
564   //   converted to a prvalue.
565   if (!E->isGLValue()) return E;
566 
567   QualType T = E->getType();
568   assert(!T.isNull() && "r-value conversion on typeless expression?");
569 
570   // We don't want to throw lvalue-to-rvalue casts on top of
571   // expressions of certain types in C++.
572   if (getLangOpts().CPlusPlus &&
573       (E->getType() == Context.OverloadTy ||
574        T->isDependentType() ||
575        T->isRecordType()))
576     return E;
577 
578   // The C standard is actually really unclear on this point, and
579   // DR106 tells us what the result should be but not why.  It's
580   // generally best to say that void types just doesn't undergo
581   // lvalue-to-rvalue at all.  Note that expressions of unqualified
582   // 'void' type are never l-values, but qualified void can be.
583   if (T->isVoidType())
584     return E;
585 
586   // OpenCL usually rejects direct accesses to values of 'half' type.
587   if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
588       T->isHalfType()) {
589     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
590       << 0 << T;
591     return ExprError();
592   }
593 
594   CheckForNullPointerDereference(*this, E);
595   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
596     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
597                                      &Context.Idents.get("object_getClass"),
598                                      SourceLocation(), LookupOrdinaryName);
599     if (ObjectGetClass)
600       Diag(E->getExprLoc(), diag::warn_objc_isa_use)
601           << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
602           << FixItHint::CreateReplacement(
603                  SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
604     else
605       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
606   }
607   else if (const ObjCIvarRefExpr *OIRE =
608             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
609     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
610 
611   // C++ [conv.lval]p1:
612   //   [...] If T is a non-class type, the type of the prvalue is the
613   //   cv-unqualified version of T. Otherwise, the type of the
614   //   rvalue is T.
615   //
616   // C99 6.3.2.1p2:
617   //   If the lvalue has qualified type, the value has the unqualified
618   //   version of the type of the lvalue; otherwise, the value has the
619   //   type of the lvalue.
620   if (T.hasQualifiers())
621     T = T.getUnqualifiedType();
622 
623   // Under the MS ABI, lock down the inheritance model now.
624   if (T->isMemberPointerType() &&
625       Context.getTargetInfo().getCXXABI().isMicrosoft())
626     (void)isCompleteType(E->getExprLoc(), T);
627 
628   ExprResult Res = CheckLValueToRValueConversionOperand(E);
629   if (Res.isInvalid())
630     return Res;
631   E = Res.get();
632 
633   // Loading a __weak object implicitly retains the value, so we need a cleanup to
634   // balance that.
635   if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
636     Cleanup.setExprNeedsCleanups(true);
637 
638   // C++ [conv.lval]p3:
639   //   If T is cv std::nullptr_t, the result is a null pointer constant.
640   CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
641   Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_RValue);
642 
643   // C11 6.3.2.1p2:
644   //   ... if the lvalue has atomic type, the value has the non-atomic version
645   //   of the type of the lvalue ...
646   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
647     T = Atomic->getValueType().getUnqualifiedType();
648     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
649                                    nullptr, VK_RValue);
650   }
651 
652   return Res;
653 }
654 
655 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
656   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
657   if (Res.isInvalid())
658     return ExprError();
659   Res = DefaultLvalueConversion(Res.get());
660   if (Res.isInvalid())
661     return ExprError();
662   return Res;
663 }
664 
665 /// CallExprUnaryConversions - a special case of an unary conversion
666 /// performed on a function designator of a call expression.
667 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
668   QualType Ty = E->getType();
669   ExprResult Res = E;
670   // Only do implicit cast for a function type, but not for a pointer
671   // to function type.
672   if (Ty->isFunctionType()) {
673     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
674                             CK_FunctionToPointerDecay).get();
675     if (Res.isInvalid())
676       return ExprError();
677   }
678   Res = DefaultLvalueConversion(Res.get());
679   if (Res.isInvalid())
680     return ExprError();
681   return Res.get();
682 }
683 
684 /// UsualUnaryConversions - Performs various conversions that are common to most
685 /// operators (C99 6.3). The conversions of array and function types are
686 /// sometimes suppressed. For example, the array->pointer conversion doesn't
687 /// apply if the array is an argument to the sizeof or address (&) operators.
688 /// In these instances, this routine should *not* be called.
689 ExprResult Sema::UsualUnaryConversions(Expr *E) {
690   // First, convert to an r-value.
691   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
692   if (Res.isInvalid())
693     return ExprError();
694   E = Res.get();
695 
696   QualType Ty = E->getType();
697   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
698 
699   // Half FP have to be promoted to float unless it is natively supported
700   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
701     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
702 
703   // Try to perform integral promotions if the object has a theoretically
704   // promotable type.
705   if (Ty->isIntegralOrUnscopedEnumerationType()) {
706     // C99 6.3.1.1p2:
707     //
708     //   The following may be used in an expression wherever an int or
709     //   unsigned int may be used:
710     //     - an object or expression with an integer type whose integer
711     //       conversion rank is less than or equal to the rank of int
712     //       and unsigned int.
713     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
714     //
715     //   If an int can represent all values of the original type, the
716     //   value is converted to an int; otherwise, it is converted to an
717     //   unsigned int. These are called the integer promotions. All
718     //   other types are unchanged by the integer promotions.
719 
720     QualType PTy = Context.isPromotableBitField(E);
721     if (!PTy.isNull()) {
722       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
723       return E;
724     }
725     if (Ty->isPromotableIntegerType()) {
726       QualType PT = Context.getPromotedIntegerType(Ty);
727       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
728       return E;
729     }
730   }
731   return E;
732 }
733 
734 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
735 /// do not have a prototype. Arguments that have type float or __fp16
736 /// are promoted to double. All other argument types are converted by
737 /// UsualUnaryConversions().
738 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
739   QualType Ty = E->getType();
740   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
741 
742   ExprResult Res = UsualUnaryConversions(E);
743   if (Res.isInvalid())
744     return ExprError();
745   E = Res.get();
746 
747   // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
748   // promote to double.
749   // Note that default argument promotion applies only to float (and
750   // half/fp16); it does not apply to _Float16.
751   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
752   if (BTy && (BTy->getKind() == BuiltinType::Half ||
753               BTy->getKind() == BuiltinType::Float)) {
754     if (getLangOpts().OpenCL &&
755         !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
756         if (BTy->getKind() == BuiltinType::Half) {
757             E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
758         }
759     } else {
760       E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
761     }
762   }
763 
764   // C++ performs lvalue-to-rvalue conversion as a default argument
765   // promotion, even on class types, but note:
766   //   C++11 [conv.lval]p2:
767   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
768   //     operand or a subexpression thereof the value contained in the
769   //     referenced object is not accessed. Otherwise, if the glvalue
770   //     has a class type, the conversion copy-initializes a temporary
771   //     of type T from the glvalue and the result of the conversion
772   //     is a prvalue for the temporary.
773   // FIXME: add some way to gate this entire thing for correctness in
774   // potentially potentially evaluated contexts.
775   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
776     ExprResult Temp = PerformCopyInitialization(
777                        InitializedEntity::InitializeTemporary(E->getType()),
778                                                 E->getExprLoc(), E);
779     if (Temp.isInvalid())
780       return ExprError();
781     E = Temp.get();
782   }
783 
784   return E;
785 }
786 
787 /// Determine the degree of POD-ness for an expression.
788 /// Incomplete types are considered POD, since this check can be performed
789 /// when we're in an unevaluated context.
790 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
791   if (Ty->isIncompleteType()) {
792     // C++11 [expr.call]p7:
793     //   After these conversions, if the argument does not have arithmetic,
794     //   enumeration, pointer, pointer to member, or class type, the program
795     //   is ill-formed.
796     //
797     // Since we've already performed array-to-pointer and function-to-pointer
798     // decay, the only such type in C++ is cv void. This also handles
799     // initializer lists as variadic arguments.
800     if (Ty->isVoidType())
801       return VAK_Invalid;
802 
803     if (Ty->isObjCObjectType())
804       return VAK_Invalid;
805     return VAK_Valid;
806   }
807 
808   if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
809     return VAK_Invalid;
810 
811   if (Ty.isCXX98PODType(Context))
812     return VAK_Valid;
813 
814   // C++11 [expr.call]p7:
815   //   Passing a potentially-evaluated argument of class type (Clause 9)
816   //   having a non-trivial copy constructor, a non-trivial move constructor,
817   //   or a non-trivial destructor, with no corresponding parameter,
818   //   is conditionally-supported with implementation-defined semantics.
819   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
820     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
821       if (!Record->hasNonTrivialCopyConstructor() &&
822           !Record->hasNonTrivialMoveConstructor() &&
823           !Record->hasNonTrivialDestructor())
824         return VAK_ValidInCXX11;
825 
826   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
827     return VAK_Valid;
828 
829   if (Ty->isObjCObjectType())
830     return VAK_Invalid;
831 
832   if (getLangOpts().MSVCCompat)
833     return VAK_MSVCUndefined;
834 
835   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
836   // permitted to reject them. We should consider doing so.
837   return VAK_Undefined;
838 }
839 
840 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
841   // Don't allow one to pass an Objective-C interface to a vararg.
842   const QualType &Ty = E->getType();
843   VarArgKind VAK = isValidVarArgType(Ty);
844 
845   // Complain about passing non-POD types through varargs.
846   switch (VAK) {
847   case VAK_ValidInCXX11:
848     DiagRuntimeBehavior(
849         E->getBeginLoc(), nullptr,
850         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
851     LLVM_FALLTHROUGH;
852   case VAK_Valid:
853     if (Ty->isRecordType()) {
854       // This is unlikely to be what the user intended. If the class has a
855       // 'c_str' member function, the user probably meant to call that.
856       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
857                           PDiag(diag::warn_pass_class_arg_to_vararg)
858                               << Ty << CT << hasCStrMethod(E) << ".c_str()");
859     }
860     break;
861 
862   case VAK_Undefined:
863   case VAK_MSVCUndefined:
864     DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
865                         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
866                             << getLangOpts().CPlusPlus11 << Ty << CT);
867     break;
868 
869   case VAK_Invalid:
870     if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
871       Diag(E->getBeginLoc(),
872            diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
873           << Ty << CT;
874     else if (Ty->isObjCObjectType())
875       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
876                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
877                               << Ty << CT);
878     else
879       Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
880           << isa<InitListExpr>(E) << Ty << CT;
881     break;
882   }
883 }
884 
885 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
886 /// will create a trap if the resulting type is not a POD type.
887 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
888                                                   FunctionDecl *FDecl) {
889   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
890     // Strip the unbridged-cast placeholder expression off, if applicable.
891     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
892         (CT == VariadicMethod ||
893          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
894       E = stripARCUnbridgedCast(E);
895 
896     // Otherwise, do normal placeholder checking.
897     } else {
898       ExprResult ExprRes = CheckPlaceholderExpr(E);
899       if (ExprRes.isInvalid())
900         return ExprError();
901       E = ExprRes.get();
902     }
903   }
904 
905   ExprResult ExprRes = DefaultArgumentPromotion(E);
906   if (ExprRes.isInvalid())
907     return ExprError();
908   E = ExprRes.get();
909 
910   // Diagnostics regarding non-POD argument types are
911   // emitted along with format string checking in Sema::CheckFunctionCall().
912   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
913     // Turn this into a trap.
914     CXXScopeSpec SS;
915     SourceLocation TemplateKWLoc;
916     UnqualifiedId Name;
917     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
918                        E->getBeginLoc());
919     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
920                                           /*HasTrailingLParen=*/true,
921                                           /*IsAddressOfOperand=*/false);
922     if (TrapFn.isInvalid())
923       return ExprError();
924 
925     ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
926                                     None, E->getEndLoc());
927     if (Call.isInvalid())
928       return ExprError();
929 
930     ExprResult Comma =
931         ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
932     if (Comma.isInvalid())
933       return ExprError();
934     return Comma.get();
935   }
936 
937   if (!getLangOpts().CPlusPlus &&
938       RequireCompleteType(E->getExprLoc(), E->getType(),
939                           diag::err_call_incomplete_argument))
940     return ExprError();
941 
942   return E;
943 }
944 
945 /// Converts an integer to complex float type.  Helper function of
946 /// UsualArithmeticConversions()
947 ///
948 /// \return false if the integer expression is an integer type and is
949 /// successfully converted to the complex type.
950 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
951                                                   ExprResult &ComplexExpr,
952                                                   QualType IntTy,
953                                                   QualType ComplexTy,
954                                                   bool SkipCast) {
955   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
956   if (SkipCast) return false;
957   if (IntTy->isIntegerType()) {
958     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
959     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
960     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
961                                   CK_FloatingRealToComplex);
962   } else {
963     assert(IntTy->isComplexIntegerType());
964     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
965                                   CK_IntegralComplexToFloatingComplex);
966   }
967   return false;
968 }
969 
970 /// Handle arithmetic conversion with complex types.  Helper function of
971 /// UsualArithmeticConversions()
972 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
973                                              ExprResult &RHS, QualType LHSType,
974                                              QualType RHSType,
975                                              bool IsCompAssign) {
976   // if we have an integer operand, the result is the complex type.
977   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
978                                              /*skipCast*/false))
979     return LHSType;
980   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
981                                              /*skipCast*/IsCompAssign))
982     return RHSType;
983 
984   // This handles complex/complex, complex/float, or float/complex.
985   // When both operands are complex, the shorter operand is converted to the
986   // type of the longer, and that is the type of the result. This corresponds
987   // to what is done when combining two real floating-point operands.
988   // The fun begins when size promotion occur across type domains.
989   // From H&S 6.3.4: When one operand is complex and the other is a real
990   // floating-point type, the less precise type is converted, within it's
991   // real or complex domain, to the precision of the other type. For example,
992   // when combining a "long double" with a "double _Complex", the
993   // "double _Complex" is promoted to "long double _Complex".
994 
995   // Compute the rank of the two types, regardless of whether they are complex.
996   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
997 
998   auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
999   auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1000   QualType LHSElementType =
1001       LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1002   QualType RHSElementType =
1003       RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1004 
1005   QualType ResultType = S.Context.getComplexType(LHSElementType);
1006   if (Order < 0) {
1007     // Promote the precision of the LHS if not an assignment.
1008     ResultType = S.Context.getComplexType(RHSElementType);
1009     if (!IsCompAssign) {
1010       if (LHSComplexType)
1011         LHS =
1012             S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1013       else
1014         LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1015     }
1016   } else if (Order > 0) {
1017     // Promote the precision of the RHS.
1018     if (RHSComplexType)
1019       RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1020     else
1021       RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1022   }
1023   return ResultType;
1024 }
1025 
1026 /// Handle arithmetic conversion from integer to float.  Helper function
1027 /// of UsualArithmeticConversions()
1028 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1029                                            ExprResult &IntExpr,
1030                                            QualType FloatTy, QualType IntTy,
1031                                            bool ConvertFloat, bool ConvertInt) {
1032   if (IntTy->isIntegerType()) {
1033     if (ConvertInt)
1034       // Convert intExpr to the lhs floating point type.
1035       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1036                                     CK_IntegralToFloating);
1037     return FloatTy;
1038   }
1039 
1040   // Convert both sides to the appropriate complex float.
1041   assert(IntTy->isComplexIntegerType());
1042   QualType result = S.Context.getComplexType(FloatTy);
1043 
1044   // _Complex int -> _Complex float
1045   if (ConvertInt)
1046     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1047                                   CK_IntegralComplexToFloatingComplex);
1048 
1049   // float -> _Complex float
1050   if (ConvertFloat)
1051     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1052                                     CK_FloatingRealToComplex);
1053 
1054   return result;
1055 }
1056 
1057 /// Handle arithmethic conversion with floating point types.  Helper
1058 /// function of UsualArithmeticConversions()
1059 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1060                                       ExprResult &RHS, QualType LHSType,
1061                                       QualType RHSType, bool IsCompAssign) {
1062   bool LHSFloat = LHSType->isRealFloatingType();
1063   bool RHSFloat = RHSType->isRealFloatingType();
1064 
1065   // If we have two real floating types, convert the smaller operand
1066   // to the bigger result.
1067   if (LHSFloat && RHSFloat) {
1068     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1069     if (order > 0) {
1070       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1071       return LHSType;
1072     }
1073 
1074     assert(order < 0 && "illegal float comparison");
1075     if (!IsCompAssign)
1076       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1077     return RHSType;
1078   }
1079 
1080   if (LHSFloat) {
1081     // Half FP has to be promoted to float unless it is natively supported
1082     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1083       LHSType = S.Context.FloatTy;
1084 
1085     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1086                                       /*ConvertFloat=*/!IsCompAssign,
1087                                       /*ConvertInt=*/ true);
1088   }
1089   assert(RHSFloat);
1090   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1091                                     /*convertInt=*/ true,
1092                                     /*convertFloat=*/!IsCompAssign);
1093 }
1094 
1095 /// Diagnose attempts to convert between __float128 and long double if
1096 /// there is no support for such conversion. Helper function of
1097 /// UsualArithmeticConversions().
1098 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1099                                       QualType RHSType) {
1100   /*  No issue converting if at least one of the types is not a floating point
1101       type or the two types have the same rank.
1102   */
1103   if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
1104       S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
1105     return false;
1106 
1107   assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&
1108          "The remaining types must be floating point types.");
1109 
1110   auto *LHSComplex = LHSType->getAs<ComplexType>();
1111   auto *RHSComplex = RHSType->getAs<ComplexType>();
1112 
1113   QualType LHSElemType = LHSComplex ?
1114     LHSComplex->getElementType() : LHSType;
1115   QualType RHSElemType = RHSComplex ?
1116     RHSComplex->getElementType() : RHSType;
1117 
1118   // No issue if the two types have the same representation
1119   if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
1120       &S.Context.getFloatTypeSemantics(RHSElemType))
1121     return false;
1122 
1123   bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
1124                                 RHSElemType == S.Context.LongDoubleTy);
1125   Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
1126                             RHSElemType == S.Context.Float128Ty);
1127 
1128   // We've handled the situation where __float128 and long double have the same
1129   // representation. We allow all conversions for all possible long double types
1130   // except PPC's double double.
1131   return Float128AndLongDouble &&
1132     (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1133      &llvm::APFloat::PPCDoubleDouble());
1134 }
1135 
1136 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1137 
1138 namespace {
1139 /// These helper callbacks are placed in an anonymous namespace to
1140 /// permit their use as function template parameters.
1141 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1142   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1143 }
1144 
1145 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1146   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1147                              CK_IntegralComplexCast);
1148 }
1149 }
1150 
1151 /// Handle integer arithmetic conversions.  Helper function of
1152 /// UsualArithmeticConversions()
1153 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1154 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1155                                         ExprResult &RHS, QualType LHSType,
1156                                         QualType RHSType, bool IsCompAssign) {
1157   // The rules for this case are in C99 6.3.1.8
1158   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1159   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1160   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1161   if (LHSSigned == RHSSigned) {
1162     // Same signedness; use the higher-ranked type
1163     if (order >= 0) {
1164       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1165       return LHSType;
1166     } else if (!IsCompAssign)
1167       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1168     return RHSType;
1169   } else if (order != (LHSSigned ? 1 : -1)) {
1170     // The unsigned type has greater than or equal rank to the
1171     // signed type, so use the unsigned type
1172     if (RHSSigned) {
1173       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1174       return LHSType;
1175     } else if (!IsCompAssign)
1176       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1177     return RHSType;
1178   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1179     // The two types are different widths; if we are here, that
1180     // means the signed type is larger than the unsigned type, so
1181     // use the signed type.
1182     if (LHSSigned) {
1183       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1184       return LHSType;
1185     } else if (!IsCompAssign)
1186       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1187     return RHSType;
1188   } else {
1189     // The signed type is higher-ranked than the unsigned type,
1190     // but isn't actually any bigger (like unsigned int and long
1191     // on most 32-bit systems).  Use the unsigned type corresponding
1192     // to the signed type.
1193     QualType result =
1194       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1195     RHS = (*doRHSCast)(S, RHS.get(), result);
1196     if (!IsCompAssign)
1197       LHS = (*doLHSCast)(S, LHS.get(), result);
1198     return result;
1199   }
1200 }
1201 
1202 /// Handle conversions with GCC complex int extension.  Helper function
1203 /// of UsualArithmeticConversions()
1204 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1205                                            ExprResult &RHS, QualType LHSType,
1206                                            QualType RHSType,
1207                                            bool IsCompAssign) {
1208   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1209   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1210 
1211   if (LHSComplexInt && RHSComplexInt) {
1212     QualType LHSEltType = LHSComplexInt->getElementType();
1213     QualType RHSEltType = RHSComplexInt->getElementType();
1214     QualType ScalarType =
1215       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1216         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1217 
1218     return S.Context.getComplexType(ScalarType);
1219   }
1220 
1221   if (LHSComplexInt) {
1222     QualType LHSEltType = LHSComplexInt->getElementType();
1223     QualType ScalarType =
1224       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1225         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1226     QualType ComplexType = S.Context.getComplexType(ScalarType);
1227     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1228                               CK_IntegralRealToComplex);
1229 
1230     return ComplexType;
1231   }
1232 
1233   assert(RHSComplexInt);
1234 
1235   QualType RHSEltType = RHSComplexInt->getElementType();
1236   QualType ScalarType =
1237     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1238       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1239   QualType ComplexType = S.Context.getComplexType(ScalarType);
1240 
1241   if (!IsCompAssign)
1242     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1243                               CK_IntegralRealToComplex);
1244   return ComplexType;
1245 }
1246 
1247 /// Return the rank of a given fixed point or integer type. The value itself
1248 /// doesn't matter, but the values must be increasing with proper increasing
1249 /// rank as described in N1169 4.1.1.
1250 static unsigned GetFixedPointRank(QualType Ty) {
1251   const auto *BTy = Ty->getAs<BuiltinType>();
1252   assert(BTy && "Expected a builtin type.");
1253 
1254   switch (BTy->getKind()) {
1255   case BuiltinType::ShortFract:
1256   case BuiltinType::UShortFract:
1257   case BuiltinType::SatShortFract:
1258   case BuiltinType::SatUShortFract:
1259     return 1;
1260   case BuiltinType::Fract:
1261   case BuiltinType::UFract:
1262   case BuiltinType::SatFract:
1263   case BuiltinType::SatUFract:
1264     return 2;
1265   case BuiltinType::LongFract:
1266   case BuiltinType::ULongFract:
1267   case BuiltinType::SatLongFract:
1268   case BuiltinType::SatULongFract:
1269     return 3;
1270   case BuiltinType::ShortAccum:
1271   case BuiltinType::UShortAccum:
1272   case BuiltinType::SatShortAccum:
1273   case BuiltinType::SatUShortAccum:
1274     return 4;
1275   case BuiltinType::Accum:
1276   case BuiltinType::UAccum:
1277   case BuiltinType::SatAccum:
1278   case BuiltinType::SatUAccum:
1279     return 5;
1280   case BuiltinType::LongAccum:
1281   case BuiltinType::ULongAccum:
1282   case BuiltinType::SatLongAccum:
1283   case BuiltinType::SatULongAccum:
1284     return 6;
1285   default:
1286     if (BTy->isInteger())
1287       return 0;
1288     llvm_unreachable("Unexpected fixed point or integer type");
1289   }
1290 }
1291 
1292 /// handleFixedPointConversion - Fixed point operations between fixed
1293 /// point types and integers or other fixed point types do not fall under
1294 /// usual arithmetic conversion since these conversions could result in loss
1295 /// of precsision (N1169 4.1.4). These operations should be calculated with
1296 /// the full precision of their result type (N1169 4.1.6.2.1).
1297 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1298                                            QualType RHSTy) {
1299   assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1300          "Expected at least one of the operands to be a fixed point type");
1301   assert((LHSTy->isFixedPointOrIntegerType() ||
1302           RHSTy->isFixedPointOrIntegerType()) &&
1303          "Special fixed point arithmetic operation conversions are only "
1304          "applied to ints or other fixed point types");
1305 
1306   // If one operand has signed fixed-point type and the other operand has
1307   // unsigned fixed-point type, then the unsigned fixed-point operand is
1308   // converted to its corresponding signed fixed-point type and the resulting
1309   // type is the type of the converted operand.
1310   if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1311     LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1312   else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1313     RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1314 
1315   // The result type is the type with the highest rank, whereby a fixed-point
1316   // conversion rank is always greater than an integer conversion rank; if the
1317   // type of either of the operands is a saturating fixedpoint type, the result
1318   // type shall be the saturating fixed-point type corresponding to the type
1319   // with the highest rank; the resulting value is converted (taking into
1320   // account rounding and overflow) to the precision of the resulting type.
1321   // Same ranks between signed and unsigned types are resolved earlier, so both
1322   // types are either signed or both unsigned at this point.
1323   unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1324   unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1325 
1326   QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1327 
1328   if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1329     ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1330 
1331   return ResultTy;
1332 }
1333 
1334 /// UsualArithmeticConversions - Performs various conversions that are common to
1335 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1336 /// routine returns the first non-arithmetic type found. The client is
1337 /// responsible for emitting appropriate error diagnostics.
1338 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1339                                           bool IsCompAssign) {
1340   if (!IsCompAssign) {
1341     LHS = UsualUnaryConversions(LHS.get());
1342     if (LHS.isInvalid())
1343       return QualType();
1344   }
1345 
1346   RHS = UsualUnaryConversions(RHS.get());
1347   if (RHS.isInvalid())
1348     return QualType();
1349 
1350   // For conversion purposes, we ignore any qualifiers.
1351   // For example, "const float" and "float" are equivalent.
1352   QualType LHSType =
1353     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1354   QualType RHSType =
1355     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1356 
1357   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1358   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1359     LHSType = AtomicLHS->getValueType();
1360 
1361   // If both types are identical, no conversion is needed.
1362   if (LHSType == RHSType)
1363     return LHSType;
1364 
1365   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1366   // The caller can deal with this (e.g. pointer + int).
1367   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1368     return QualType();
1369 
1370   // Apply unary and bitfield promotions to the LHS's type.
1371   QualType LHSUnpromotedType = LHSType;
1372   if (LHSType->isPromotableIntegerType())
1373     LHSType = Context.getPromotedIntegerType(LHSType);
1374   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1375   if (!LHSBitfieldPromoteTy.isNull())
1376     LHSType = LHSBitfieldPromoteTy;
1377   if (LHSType != LHSUnpromotedType && !IsCompAssign)
1378     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1379 
1380   // If both types are identical, no conversion is needed.
1381   if (LHSType == RHSType)
1382     return LHSType;
1383 
1384   // At this point, we have two different arithmetic types.
1385 
1386   // Diagnose attempts to convert between __float128 and long double where
1387   // such conversions currently can't be handled.
1388   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1389     return QualType();
1390 
1391   // Handle complex types first (C99 6.3.1.8p1).
1392   if (LHSType->isComplexType() || RHSType->isComplexType())
1393     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1394                                         IsCompAssign);
1395 
1396   // Now handle "real" floating types (i.e. float, double, long double).
1397   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1398     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1399                                  IsCompAssign);
1400 
1401   // Handle GCC complex int extension.
1402   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1403     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1404                                       IsCompAssign);
1405 
1406   if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1407     return handleFixedPointConversion(*this, LHSType, RHSType);
1408 
1409   // Finally, we have two differing integer types.
1410   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1411            (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
1412 }
1413 
1414 //===----------------------------------------------------------------------===//
1415 //  Semantic Analysis for various Expression Types
1416 //===----------------------------------------------------------------------===//
1417 
1418 
1419 ExprResult
1420 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1421                                 SourceLocation DefaultLoc,
1422                                 SourceLocation RParenLoc,
1423                                 Expr *ControllingExpr,
1424                                 ArrayRef<ParsedType> ArgTypes,
1425                                 ArrayRef<Expr *> ArgExprs) {
1426   unsigned NumAssocs = ArgTypes.size();
1427   assert(NumAssocs == ArgExprs.size());
1428 
1429   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1430   for (unsigned i = 0; i < NumAssocs; ++i) {
1431     if (ArgTypes[i])
1432       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1433     else
1434       Types[i] = nullptr;
1435   }
1436 
1437   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1438                                              ControllingExpr,
1439                                              llvm::makeArrayRef(Types, NumAssocs),
1440                                              ArgExprs);
1441   delete [] Types;
1442   return ER;
1443 }
1444 
1445 ExprResult
1446 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1447                                  SourceLocation DefaultLoc,
1448                                  SourceLocation RParenLoc,
1449                                  Expr *ControllingExpr,
1450                                  ArrayRef<TypeSourceInfo *> Types,
1451                                  ArrayRef<Expr *> Exprs) {
1452   unsigned NumAssocs = Types.size();
1453   assert(NumAssocs == Exprs.size());
1454 
1455   // Decay and strip qualifiers for the controlling expression type, and handle
1456   // placeholder type replacement. See committee discussion from WG14 DR423.
1457   {
1458     EnterExpressionEvaluationContext Unevaluated(
1459         *this, Sema::ExpressionEvaluationContext::Unevaluated);
1460     ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1461     if (R.isInvalid())
1462       return ExprError();
1463     ControllingExpr = R.get();
1464   }
1465 
1466   // The controlling expression is an unevaluated operand, so side effects are
1467   // likely unintended.
1468   if (!inTemplateInstantiation() &&
1469       ControllingExpr->HasSideEffects(Context, false))
1470     Diag(ControllingExpr->getExprLoc(),
1471          diag::warn_side_effects_unevaluated_context);
1472 
1473   bool TypeErrorFound = false,
1474        IsResultDependent = ControllingExpr->isTypeDependent(),
1475        ContainsUnexpandedParameterPack
1476          = ControllingExpr->containsUnexpandedParameterPack();
1477 
1478   for (unsigned i = 0; i < NumAssocs; ++i) {
1479     if (Exprs[i]->containsUnexpandedParameterPack())
1480       ContainsUnexpandedParameterPack = true;
1481 
1482     if (Types[i]) {
1483       if (Types[i]->getType()->containsUnexpandedParameterPack())
1484         ContainsUnexpandedParameterPack = true;
1485 
1486       if (Types[i]->getType()->isDependentType()) {
1487         IsResultDependent = true;
1488       } else {
1489         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1490         // complete object type other than a variably modified type."
1491         unsigned D = 0;
1492         if (Types[i]->getType()->isIncompleteType())
1493           D = diag::err_assoc_type_incomplete;
1494         else if (!Types[i]->getType()->isObjectType())
1495           D = diag::err_assoc_type_nonobject;
1496         else if (Types[i]->getType()->isVariablyModifiedType())
1497           D = diag::err_assoc_type_variably_modified;
1498 
1499         if (D != 0) {
1500           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1501             << Types[i]->getTypeLoc().getSourceRange()
1502             << Types[i]->getType();
1503           TypeErrorFound = true;
1504         }
1505 
1506         // C11 6.5.1.1p2 "No two generic associations in the same generic
1507         // selection shall specify compatible types."
1508         for (unsigned j = i+1; j < NumAssocs; ++j)
1509           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1510               Context.typesAreCompatible(Types[i]->getType(),
1511                                          Types[j]->getType())) {
1512             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1513                  diag::err_assoc_compatible_types)
1514               << Types[j]->getTypeLoc().getSourceRange()
1515               << Types[j]->getType()
1516               << Types[i]->getType();
1517             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1518                  diag::note_compat_assoc)
1519               << Types[i]->getTypeLoc().getSourceRange()
1520               << Types[i]->getType();
1521             TypeErrorFound = true;
1522           }
1523       }
1524     }
1525   }
1526   if (TypeErrorFound)
1527     return ExprError();
1528 
1529   // If we determined that the generic selection is result-dependent, don't
1530   // try to compute the result expression.
1531   if (IsResultDependent)
1532     return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1533                                         Exprs, DefaultLoc, RParenLoc,
1534                                         ContainsUnexpandedParameterPack);
1535 
1536   SmallVector<unsigned, 1> CompatIndices;
1537   unsigned DefaultIndex = -1U;
1538   for (unsigned i = 0; i < NumAssocs; ++i) {
1539     if (!Types[i])
1540       DefaultIndex = i;
1541     else if (Context.typesAreCompatible(ControllingExpr->getType(),
1542                                         Types[i]->getType()))
1543       CompatIndices.push_back(i);
1544   }
1545 
1546   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1547   // type compatible with at most one of the types named in its generic
1548   // association list."
1549   if (CompatIndices.size() > 1) {
1550     // We strip parens here because the controlling expression is typically
1551     // parenthesized in macro definitions.
1552     ControllingExpr = ControllingExpr->IgnoreParens();
1553     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1554         << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1555         << (unsigned)CompatIndices.size();
1556     for (unsigned I : CompatIndices) {
1557       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1558            diag::note_compat_assoc)
1559         << Types[I]->getTypeLoc().getSourceRange()
1560         << Types[I]->getType();
1561     }
1562     return ExprError();
1563   }
1564 
1565   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1566   // its controlling expression shall have type compatible with exactly one of
1567   // the types named in its generic association list."
1568   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1569     // We strip parens here because the controlling expression is typically
1570     // parenthesized in macro definitions.
1571     ControllingExpr = ControllingExpr->IgnoreParens();
1572     Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1573         << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1574     return ExprError();
1575   }
1576 
1577   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1578   // type name that is compatible with the type of the controlling expression,
1579   // then the result expression of the generic selection is the expression
1580   // in that generic association. Otherwise, the result expression of the
1581   // generic selection is the expression in the default generic association."
1582   unsigned ResultIndex =
1583     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1584 
1585   return GenericSelectionExpr::Create(
1586       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1587       ContainsUnexpandedParameterPack, ResultIndex);
1588 }
1589 
1590 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1591 /// location of the token and the offset of the ud-suffix within it.
1592 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1593                                      unsigned Offset) {
1594   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1595                                         S.getLangOpts());
1596 }
1597 
1598 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1599 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1600 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1601                                                  IdentifierInfo *UDSuffix,
1602                                                  SourceLocation UDSuffixLoc,
1603                                                  ArrayRef<Expr*> Args,
1604                                                  SourceLocation LitEndLoc) {
1605   assert(Args.size() <= 2 && "too many arguments for literal operator");
1606 
1607   QualType ArgTy[2];
1608   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1609     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1610     if (ArgTy[ArgIdx]->isArrayType())
1611       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1612   }
1613 
1614   DeclarationName OpName =
1615     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1616   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1617   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1618 
1619   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1620   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1621                               /*AllowRaw*/ false, /*AllowTemplate*/ false,
1622                               /*AllowStringTemplate*/ false,
1623                               /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1624     return ExprError();
1625 
1626   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1627 }
1628 
1629 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
1630 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
1631 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1632 /// multiple tokens.  However, the common case is that StringToks points to one
1633 /// string.
1634 ///
1635 ExprResult
1636 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1637   assert(!StringToks.empty() && "Must have at least one string!");
1638 
1639   StringLiteralParser Literal(StringToks, PP);
1640   if (Literal.hadError)
1641     return ExprError();
1642 
1643   SmallVector<SourceLocation, 4> StringTokLocs;
1644   for (const Token &Tok : StringToks)
1645     StringTokLocs.push_back(Tok.getLocation());
1646 
1647   QualType CharTy = Context.CharTy;
1648   StringLiteral::StringKind Kind = StringLiteral::Ascii;
1649   if (Literal.isWide()) {
1650     CharTy = Context.getWideCharType();
1651     Kind = StringLiteral::Wide;
1652   } else if (Literal.isUTF8()) {
1653     if (getLangOpts().Char8)
1654       CharTy = Context.Char8Ty;
1655     Kind = StringLiteral::UTF8;
1656   } else if (Literal.isUTF16()) {
1657     CharTy = Context.Char16Ty;
1658     Kind = StringLiteral::UTF16;
1659   } else if (Literal.isUTF32()) {
1660     CharTy = Context.Char32Ty;
1661     Kind = StringLiteral::UTF32;
1662   } else if (Literal.isPascal()) {
1663     CharTy = Context.UnsignedCharTy;
1664   }
1665 
1666   // Warn on initializing an array of char from a u8 string literal; this
1667   // becomes ill-formed in C++2a.
1668   if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus2a &&
1669       !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1670     Diag(StringTokLocs.front(), diag::warn_cxx2a_compat_utf8_string);
1671 
1672     // Create removals for all 'u8' prefixes in the string literal(s). This
1673     // ensures C++2a compatibility (but may change the program behavior when
1674     // built by non-Clang compilers for which the execution character set is
1675     // not always UTF-8).
1676     auto RemovalDiag = PDiag(diag::note_cxx2a_compat_utf8_string_remove_u8);
1677     SourceLocation RemovalDiagLoc;
1678     for (const Token &Tok : StringToks) {
1679       if (Tok.getKind() == tok::utf8_string_literal) {
1680         if (RemovalDiagLoc.isInvalid())
1681           RemovalDiagLoc = Tok.getLocation();
1682         RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1683             Tok.getLocation(),
1684             Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1685                                            getSourceManager(), getLangOpts())));
1686       }
1687     }
1688     Diag(RemovalDiagLoc, RemovalDiag);
1689   }
1690 
1691   QualType StrTy =
1692       Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1693 
1694   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1695   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1696                                              Kind, Literal.Pascal, StrTy,
1697                                              &StringTokLocs[0],
1698                                              StringTokLocs.size());
1699   if (Literal.getUDSuffix().empty())
1700     return Lit;
1701 
1702   // We're building a user-defined literal.
1703   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1704   SourceLocation UDSuffixLoc =
1705     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1706                    Literal.getUDSuffixOffset());
1707 
1708   // Make sure we're allowed user-defined literals here.
1709   if (!UDLScope)
1710     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1711 
1712   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1713   //   operator "" X (str, len)
1714   QualType SizeType = Context.getSizeType();
1715 
1716   DeclarationName OpName =
1717     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1718   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1719   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1720 
1721   QualType ArgTy[] = {
1722     Context.getArrayDecayedType(StrTy), SizeType
1723   };
1724 
1725   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1726   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1727                                 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1728                                 /*AllowStringTemplate*/ true,
1729                                 /*DiagnoseMissing*/ true)) {
1730 
1731   case LOLR_Cooked: {
1732     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1733     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1734                                                     StringTokLocs[0]);
1735     Expr *Args[] = { Lit, LenArg };
1736 
1737     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1738   }
1739 
1740   case LOLR_StringTemplate: {
1741     TemplateArgumentListInfo ExplicitArgs;
1742 
1743     unsigned CharBits = Context.getIntWidth(CharTy);
1744     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1745     llvm::APSInt Value(CharBits, CharIsUnsigned);
1746 
1747     TemplateArgument TypeArg(CharTy);
1748     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1749     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1750 
1751     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1752       Value = Lit->getCodeUnit(I);
1753       TemplateArgument Arg(Context, Value, CharTy);
1754       TemplateArgumentLocInfo ArgInfo;
1755       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1756     }
1757     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1758                                     &ExplicitArgs);
1759   }
1760   case LOLR_Raw:
1761   case LOLR_Template:
1762   case LOLR_ErrorNoDiagnostic:
1763     llvm_unreachable("unexpected literal operator lookup result");
1764   case LOLR_Error:
1765     return ExprError();
1766   }
1767   llvm_unreachable("unexpected literal operator lookup result");
1768 }
1769 
1770 DeclRefExpr *
1771 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1772                        SourceLocation Loc,
1773                        const CXXScopeSpec *SS) {
1774   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1775   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1776 }
1777 
1778 DeclRefExpr *
1779 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1780                        const DeclarationNameInfo &NameInfo,
1781                        const CXXScopeSpec *SS, NamedDecl *FoundD,
1782                        SourceLocation TemplateKWLoc,
1783                        const TemplateArgumentListInfo *TemplateArgs) {
1784   NestedNameSpecifierLoc NNS =
1785       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
1786   return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
1787                           TemplateArgs);
1788 }
1789 
1790 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
1791   // A declaration named in an unevaluated operand never constitutes an odr-use.
1792   if (isUnevaluatedContext())
1793     return NOUR_Unevaluated;
1794 
1795   // C++2a [basic.def.odr]p4:
1796   //   A variable x whose name appears as a potentially-evaluated expression e
1797   //   is odr-used by e unless [...] x is a reference that is usable in
1798   //   constant expressions.
1799   if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
1800     if (VD->getType()->isReferenceType() &&
1801         !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
1802         VD->isUsableInConstantExpressions(Context))
1803       return NOUR_Constant;
1804   }
1805 
1806   // All remaining non-variable cases constitute an odr-use. For variables, we
1807   // need to wait and see how the expression is used.
1808   return NOUR_None;
1809 }
1810 
1811 /// BuildDeclRefExpr - Build an expression that references a
1812 /// declaration that does not require a closure capture.
1813 DeclRefExpr *
1814 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1815                        const DeclarationNameInfo &NameInfo,
1816                        NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
1817                        SourceLocation TemplateKWLoc,
1818                        const TemplateArgumentListInfo *TemplateArgs) {
1819   bool RefersToCapturedVariable =
1820       isa<VarDecl>(D) &&
1821       NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
1822 
1823   DeclRefExpr *E = DeclRefExpr::Create(
1824       Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
1825       VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
1826   MarkDeclRefReferenced(E);
1827 
1828   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
1829       Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
1830       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
1831     getCurFunction()->recordUseOfWeak(E);
1832 
1833   FieldDecl *FD = dyn_cast<FieldDecl>(D);
1834   if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
1835     FD = IFD->getAnonField();
1836   if (FD) {
1837     UnusedPrivateFields.remove(FD);
1838     // Just in case we're building an illegal pointer-to-member.
1839     if (FD->isBitField())
1840       E->setObjectKind(OK_BitField);
1841   }
1842 
1843   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
1844   // designates a bit-field.
1845   if (auto *BD = dyn_cast<BindingDecl>(D))
1846     if (auto *BE = BD->getBinding())
1847       E->setObjectKind(BE->getObjectKind());
1848 
1849   return E;
1850 }
1851 
1852 /// Decomposes the given name into a DeclarationNameInfo, its location, and
1853 /// possibly a list of template arguments.
1854 ///
1855 /// If this produces template arguments, it is permitted to call
1856 /// DecomposeTemplateName.
1857 ///
1858 /// This actually loses a lot of source location information for
1859 /// non-standard name kinds; we should consider preserving that in
1860 /// some way.
1861 void
1862 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1863                              TemplateArgumentListInfo &Buffer,
1864                              DeclarationNameInfo &NameInfo,
1865                              const TemplateArgumentListInfo *&TemplateArgs) {
1866   if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
1867     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1868     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1869 
1870     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1871                                        Id.TemplateId->NumArgs);
1872     translateTemplateArguments(TemplateArgsPtr, Buffer);
1873 
1874     TemplateName TName = Id.TemplateId->Template.get();
1875     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1876     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1877     TemplateArgs = &Buffer;
1878   } else {
1879     NameInfo = GetNameFromUnqualifiedId(Id);
1880     TemplateArgs = nullptr;
1881   }
1882 }
1883 
1884 static void emitEmptyLookupTypoDiagnostic(
1885     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
1886     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
1887     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
1888   DeclContext *Ctx =
1889       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
1890   if (!TC) {
1891     // Emit a special diagnostic for failed member lookups.
1892     // FIXME: computing the declaration context might fail here (?)
1893     if (Ctx)
1894       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
1895                                                  << SS.getRange();
1896     else
1897       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
1898     return;
1899   }
1900 
1901   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
1902   bool DroppedSpecifier =
1903       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
1904   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
1905                         ? diag::note_implicit_param_decl
1906                         : diag::note_previous_decl;
1907   if (!Ctx)
1908     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
1909                          SemaRef.PDiag(NoteID));
1910   else
1911     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
1912                                  << Typo << Ctx << DroppedSpecifier
1913                                  << SS.getRange(),
1914                          SemaRef.PDiag(NoteID));
1915 }
1916 
1917 /// Diagnose an empty lookup.
1918 ///
1919 /// \return false if new lookup candidates were found
1920 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1921                                CorrectionCandidateCallback &CCC,
1922                                TemplateArgumentListInfo *ExplicitTemplateArgs,
1923                                ArrayRef<Expr *> Args, TypoExpr **Out) {
1924   DeclarationName Name = R.getLookupName();
1925 
1926   unsigned diagnostic = diag::err_undeclared_var_use;
1927   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1928   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1929       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1930       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1931     diagnostic = diag::err_undeclared_use;
1932     diagnostic_suggest = diag::err_undeclared_use_suggest;
1933   }
1934 
1935   // If the original lookup was an unqualified lookup, fake an
1936   // unqualified lookup.  This is useful when (for example) the
1937   // original lookup would not have found something because it was a
1938   // dependent name.
1939   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
1940   while (DC) {
1941     if (isa<CXXRecordDecl>(DC)) {
1942       LookupQualifiedName(R, DC);
1943 
1944       if (!R.empty()) {
1945         // Don't give errors about ambiguities in this lookup.
1946         R.suppressDiagnostics();
1947 
1948         // During a default argument instantiation the CurContext points
1949         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1950         // function parameter list, hence add an explicit check.
1951         bool isDefaultArgument =
1952             !CodeSynthesisContexts.empty() &&
1953             CodeSynthesisContexts.back().Kind ==
1954                 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
1955         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1956         bool isInstance = CurMethod &&
1957                           CurMethod->isInstance() &&
1958                           DC == CurMethod->getParent() && !isDefaultArgument;
1959 
1960         // Give a code modification hint to insert 'this->'.
1961         // TODO: fixit for inserting 'Base<T>::' in the other cases.
1962         // Actually quite difficult!
1963         if (getLangOpts().MSVCCompat)
1964           diagnostic = diag::ext_found_via_dependent_bases_lookup;
1965         if (isInstance) {
1966           Diag(R.getNameLoc(), diagnostic) << Name
1967             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1968           CheckCXXThisCapture(R.getNameLoc());
1969         } else {
1970           Diag(R.getNameLoc(), diagnostic) << Name;
1971         }
1972 
1973         // Do we really want to note all of these?
1974         for (NamedDecl *D : R)
1975           Diag(D->getLocation(), diag::note_dependent_var_use);
1976 
1977         // Return true if we are inside a default argument instantiation
1978         // and the found name refers to an instance member function, otherwise
1979         // the function calling DiagnoseEmptyLookup will try to create an
1980         // implicit member call and this is wrong for default argument.
1981         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1982           Diag(R.getNameLoc(), diag::err_member_call_without_object);
1983           return true;
1984         }
1985 
1986         // Tell the callee to try to recover.
1987         return false;
1988       }
1989 
1990       R.clear();
1991     }
1992 
1993     // In Microsoft mode, if we are performing lookup from within a friend
1994     // function definition declared at class scope then we must set
1995     // DC to the lexical parent to be able to search into the parent
1996     // class.
1997     if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
1998         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
1999         DC->getLexicalParent()->isRecord())
2000       DC = DC->getLexicalParent();
2001     else
2002       DC = DC->getParent();
2003   }
2004 
2005   // We didn't find anything, so try to correct for a typo.
2006   TypoCorrection Corrected;
2007   if (S && Out) {
2008     SourceLocation TypoLoc = R.getNameLoc();
2009     assert(!ExplicitTemplateArgs &&
2010            "Diagnosing an empty lookup with explicit template args!");
2011     *Out = CorrectTypoDelayed(
2012         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2013         [=](const TypoCorrection &TC) {
2014           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2015                                         diagnostic, diagnostic_suggest);
2016         },
2017         nullptr, CTK_ErrorRecovery);
2018     if (*Out)
2019       return true;
2020   } else if (S &&
2021              (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2022                                       S, &SS, CCC, CTK_ErrorRecovery))) {
2023     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2024     bool DroppedSpecifier =
2025         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2026     R.setLookupName(Corrected.getCorrection());
2027 
2028     bool AcceptableWithRecovery = false;
2029     bool AcceptableWithoutRecovery = false;
2030     NamedDecl *ND = Corrected.getFoundDecl();
2031     if (ND) {
2032       if (Corrected.isOverloaded()) {
2033         OverloadCandidateSet OCS(R.getNameLoc(),
2034                                  OverloadCandidateSet::CSK_Normal);
2035         OverloadCandidateSet::iterator Best;
2036         for (NamedDecl *CD : Corrected) {
2037           if (FunctionTemplateDecl *FTD =
2038                    dyn_cast<FunctionTemplateDecl>(CD))
2039             AddTemplateOverloadCandidate(
2040                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2041                 Args, OCS);
2042           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2043             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2044               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2045                                    Args, OCS);
2046         }
2047         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2048         case OR_Success:
2049           ND = Best->FoundDecl;
2050           Corrected.setCorrectionDecl(ND);
2051           break;
2052         default:
2053           // FIXME: Arbitrarily pick the first declaration for the note.
2054           Corrected.setCorrectionDecl(ND);
2055           break;
2056         }
2057       }
2058       R.addDecl(ND);
2059       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2060         CXXRecordDecl *Record = nullptr;
2061         if (Corrected.getCorrectionSpecifier()) {
2062           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2063           Record = Ty->getAsCXXRecordDecl();
2064         }
2065         if (!Record)
2066           Record = cast<CXXRecordDecl>(
2067               ND->getDeclContext()->getRedeclContext());
2068         R.setNamingClass(Record);
2069       }
2070 
2071       auto *UnderlyingND = ND->getUnderlyingDecl();
2072       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2073                                isa<FunctionTemplateDecl>(UnderlyingND);
2074       // FIXME: If we ended up with a typo for a type name or
2075       // Objective-C class name, we're in trouble because the parser
2076       // is in the wrong place to recover. Suggest the typo
2077       // correction, but don't make it a fix-it since we're not going
2078       // to recover well anyway.
2079       AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2080                                   getAsTypeTemplateDecl(UnderlyingND) ||
2081                                   isa<ObjCInterfaceDecl>(UnderlyingND);
2082     } else {
2083       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2084       // because we aren't able to recover.
2085       AcceptableWithoutRecovery = true;
2086     }
2087 
2088     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2089       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2090                             ? diag::note_implicit_param_decl
2091                             : diag::note_previous_decl;
2092       if (SS.isEmpty())
2093         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2094                      PDiag(NoteID), AcceptableWithRecovery);
2095       else
2096         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2097                                   << Name << computeDeclContext(SS, false)
2098                                   << DroppedSpecifier << SS.getRange(),
2099                      PDiag(NoteID), AcceptableWithRecovery);
2100 
2101       // Tell the callee whether to try to recover.
2102       return !AcceptableWithRecovery;
2103     }
2104   }
2105   R.clear();
2106 
2107   // Emit a special diagnostic for failed member lookups.
2108   // FIXME: computing the declaration context might fail here (?)
2109   if (!SS.isEmpty()) {
2110     Diag(R.getNameLoc(), diag::err_no_member)
2111       << Name << computeDeclContext(SS, false)
2112       << SS.getRange();
2113     return true;
2114   }
2115 
2116   // Give up, we can't recover.
2117   Diag(R.getNameLoc(), diagnostic) << Name;
2118   return true;
2119 }
2120 
2121 /// In Microsoft mode, if we are inside a template class whose parent class has
2122 /// dependent base classes, and we can't resolve an unqualified identifier, then
2123 /// assume the identifier is a member of a dependent base class.  We can only
2124 /// recover successfully in static methods, instance methods, and other contexts
2125 /// where 'this' is available.  This doesn't precisely match MSVC's
2126 /// instantiation model, but it's close enough.
2127 static Expr *
2128 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2129                                DeclarationNameInfo &NameInfo,
2130                                SourceLocation TemplateKWLoc,
2131                                const TemplateArgumentListInfo *TemplateArgs) {
2132   // Only try to recover from lookup into dependent bases in static methods or
2133   // contexts where 'this' is available.
2134   QualType ThisType = S.getCurrentThisType();
2135   const CXXRecordDecl *RD = nullptr;
2136   if (!ThisType.isNull())
2137     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2138   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2139     RD = MD->getParent();
2140   if (!RD || !RD->hasAnyDependentBases())
2141     return nullptr;
2142 
2143   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2144   // is available, suggest inserting 'this->' as a fixit.
2145   SourceLocation Loc = NameInfo.getLoc();
2146   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2147   DB << NameInfo.getName() << RD;
2148 
2149   if (!ThisType.isNull()) {
2150     DB << FixItHint::CreateInsertion(Loc, "this->");
2151     return CXXDependentScopeMemberExpr::Create(
2152         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2153         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2154         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2155   }
2156 
2157   // Synthesize a fake NNS that points to the derived class.  This will
2158   // perform name lookup during template instantiation.
2159   CXXScopeSpec SS;
2160   auto *NNS =
2161       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2162   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2163   return DependentScopeDeclRefExpr::Create(
2164       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2165       TemplateArgs);
2166 }
2167 
2168 ExprResult
2169 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2170                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2171                         bool HasTrailingLParen, bool IsAddressOfOperand,
2172                         CorrectionCandidateCallback *CCC,
2173                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2174   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2175          "cannot be direct & operand and have a trailing lparen");
2176   if (SS.isInvalid())
2177     return ExprError();
2178 
2179   TemplateArgumentListInfo TemplateArgsBuffer;
2180 
2181   // Decompose the UnqualifiedId into the following data.
2182   DeclarationNameInfo NameInfo;
2183   const TemplateArgumentListInfo *TemplateArgs;
2184   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2185 
2186   DeclarationName Name = NameInfo.getName();
2187   IdentifierInfo *II = Name.getAsIdentifierInfo();
2188   SourceLocation NameLoc = NameInfo.getLoc();
2189 
2190   if (II && II->isEditorPlaceholder()) {
2191     // FIXME: When typed placeholders are supported we can create a typed
2192     // placeholder expression node.
2193     return ExprError();
2194   }
2195 
2196   // C++ [temp.dep.expr]p3:
2197   //   An id-expression is type-dependent if it contains:
2198   //     -- an identifier that was declared with a dependent type,
2199   //        (note: handled after lookup)
2200   //     -- a template-id that is dependent,
2201   //        (note: handled in BuildTemplateIdExpr)
2202   //     -- a conversion-function-id that specifies a dependent type,
2203   //     -- a nested-name-specifier that contains a class-name that
2204   //        names a dependent type.
2205   // Determine whether this is a member of an unknown specialization;
2206   // we need to handle these differently.
2207   bool DependentID = false;
2208   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2209       Name.getCXXNameType()->isDependentType()) {
2210     DependentID = true;
2211   } else if (SS.isSet()) {
2212     if (DeclContext *DC = computeDeclContext(SS, false)) {
2213       if (RequireCompleteDeclContext(SS, DC))
2214         return ExprError();
2215     } else {
2216       DependentID = true;
2217     }
2218   }
2219 
2220   if (DependentID)
2221     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2222                                       IsAddressOfOperand, TemplateArgs);
2223 
2224   // Perform the required lookup.
2225   LookupResult R(*this, NameInfo,
2226                  (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2227                      ? LookupObjCImplicitSelfParam
2228                      : LookupOrdinaryName);
2229   if (TemplateKWLoc.isValid() || TemplateArgs) {
2230     // Lookup the template name again to correctly establish the context in
2231     // which it was found. This is really unfortunate as we already did the
2232     // lookup to determine that it was a template name in the first place. If
2233     // this becomes a performance hit, we can work harder to preserve those
2234     // results until we get here but it's likely not worth it.
2235     bool MemberOfUnknownSpecialization;
2236     AssumedTemplateKind AssumedTemplate;
2237     if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2238                            MemberOfUnknownSpecialization, TemplateKWLoc,
2239                            &AssumedTemplate))
2240       return ExprError();
2241 
2242     if (MemberOfUnknownSpecialization ||
2243         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2244       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2245                                         IsAddressOfOperand, TemplateArgs);
2246   } else {
2247     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2248     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2249 
2250     // If the result might be in a dependent base class, this is a dependent
2251     // id-expression.
2252     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2253       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2254                                         IsAddressOfOperand, TemplateArgs);
2255 
2256     // If this reference is in an Objective-C method, then we need to do
2257     // some special Objective-C lookup, too.
2258     if (IvarLookupFollowUp) {
2259       ExprResult E(LookupInObjCMethod(R, S, II, true));
2260       if (E.isInvalid())
2261         return ExprError();
2262 
2263       if (Expr *Ex = E.getAs<Expr>())
2264         return Ex;
2265     }
2266   }
2267 
2268   if (R.isAmbiguous())
2269     return ExprError();
2270 
2271   // This could be an implicitly declared function reference (legal in C90,
2272   // extension in C99, forbidden in C++).
2273   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2274     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2275     if (D) R.addDecl(D);
2276   }
2277 
2278   // Determine whether this name might be a candidate for
2279   // argument-dependent lookup.
2280   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2281 
2282   if (R.empty() && !ADL) {
2283     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2284       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2285                                                    TemplateKWLoc, TemplateArgs))
2286         return E;
2287     }
2288 
2289     // Don't diagnose an empty lookup for inline assembly.
2290     if (IsInlineAsmIdentifier)
2291       return ExprError();
2292 
2293     // If this name wasn't predeclared and if this is not a function
2294     // call, diagnose the problem.
2295     TypoExpr *TE = nullptr;
2296     DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2297                                                        : nullptr);
2298     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2299     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2300            "Typo correction callback misconfigured");
2301     if (CCC) {
2302       // Make sure the callback knows what the typo being diagnosed is.
2303       CCC->setTypoName(II);
2304       if (SS.isValid())
2305         CCC->setTypoNNS(SS.getScopeRep());
2306     }
2307     // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2308     // a template name, but we happen to have always already looked up the name
2309     // before we get here if it must be a template name.
2310     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2311                             None, &TE)) {
2312       if (TE && KeywordReplacement) {
2313         auto &State = getTypoExprState(TE);
2314         auto BestTC = State.Consumer->getNextCorrection();
2315         if (BestTC.isKeyword()) {
2316           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2317           if (State.DiagHandler)
2318             State.DiagHandler(BestTC);
2319           KeywordReplacement->startToken();
2320           KeywordReplacement->setKind(II->getTokenID());
2321           KeywordReplacement->setIdentifierInfo(II);
2322           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2323           // Clean up the state associated with the TypoExpr, since it has
2324           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2325           clearDelayedTypo(TE);
2326           // Signal that a correction to a keyword was performed by returning a
2327           // valid-but-null ExprResult.
2328           return (Expr*)nullptr;
2329         }
2330         State.Consumer->resetCorrectionStream();
2331       }
2332       return TE ? TE : ExprError();
2333     }
2334 
2335     assert(!R.empty() &&
2336            "DiagnoseEmptyLookup returned false but added no results");
2337 
2338     // If we found an Objective-C instance variable, let
2339     // LookupInObjCMethod build the appropriate expression to
2340     // reference the ivar.
2341     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2342       R.clear();
2343       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2344       // In a hopelessly buggy code, Objective-C instance variable
2345       // lookup fails and no expression will be built to reference it.
2346       if (!E.isInvalid() && !E.get())
2347         return ExprError();
2348       return E;
2349     }
2350   }
2351 
2352   // This is guaranteed from this point on.
2353   assert(!R.empty() || ADL);
2354 
2355   // Check whether this might be a C++ implicit instance member access.
2356   // C++ [class.mfct.non-static]p3:
2357   //   When an id-expression that is not part of a class member access
2358   //   syntax and not used to form a pointer to member is used in the
2359   //   body of a non-static member function of class X, if name lookup
2360   //   resolves the name in the id-expression to a non-static non-type
2361   //   member of some class C, the id-expression is transformed into a
2362   //   class member access expression using (*this) as the
2363   //   postfix-expression to the left of the . operator.
2364   //
2365   // But we don't actually need to do this for '&' operands if R
2366   // resolved to a function or overloaded function set, because the
2367   // expression is ill-formed if it actually works out to be a
2368   // non-static member function:
2369   //
2370   // C++ [expr.ref]p4:
2371   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2372   //   [t]he expression can be used only as the left-hand operand of a
2373   //   member function call.
2374   //
2375   // There are other safeguards against such uses, but it's important
2376   // to get this right here so that we don't end up making a
2377   // spuriously dependent expression if we're inside a dependent
2378   // instance method.
2379   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2380     bool MightBeImplicitMember;
2381     if (!IsAddressOfOperand)
2382       MightBeImplicitMember = true;
2383     else if (!SS.isEmpty())
2384       MightBeImplicitMember = false;
2385     else if (R.isOverloadedResult())
2386       MightBeImplicitMember = false;
2387     else if (R.isUnresolvableResult())
2388       MightBeImplicitMember = true;
2389     else
2390       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2391                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2392                               isa<MSPropertyDecl>(R.getFoundDecl());
2393 
2394     if (MightBeImplicitMember)
2395       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2396                                              R, TemplateArgs, S);
2397   }
2398 
2399   if (TemplateArgs || TemplateKWLoc.isValid()) {
2400 
2401     // In C++1y, if this is a variable template id, then check it
2402     // in BuildTemplateIdExpr().
2403     // The single lookup result must be a variable template declaration.
2404     if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2405         Id.TemplateId->Kind == TNK_Var_template) {
2406       assert(R.getAsSingle<VarTemplateDecl>() &&
2407              "There should only be one declaration found.");
2408     }
2409 
2410     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2411   }
2412 
2413   return BuildDeclarationNameExpr(SS, R, ADL);
2414 }
2415 
2416 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2417 /// declaration name, generally during template instantiation.
2418 /// There's a large number of things which don't need to be done along
2419 /// this path.
2420 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2421     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2422     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2423   DeclContext *DC = computeDeclContext(SS, false);
2424   if (!DC)
2425     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2426                                      NameInfo, /*TemplateArgs=*/nullptr);
2427 
2428   if (RequireCompleteDeclContext(SS, DC))
2429     return ExprError();
2430 
2431   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2432   LookupQualifiedName(R, DC);
2433 
2434   if (R.isAmbiguous())
2435     return ExprError();
2436 
2437   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2438     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2439                                      NameInfo, /*TemplateArgs=*/nullptr);
2440 
2441   if (R.empty()) {
2442     Diag(NameInfo.getLoc(), diag::err_no_member)
2443       << NameInfo.getName() << DC << SS.getRange();
2444     return ExprError();
2445   }
2446 
2447   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2448     // Diagnose a missing typename if this resolved unambiguously to a type in
2449     // a dependent context.  If we can recover with a type, downgrade this to
2450     // a warning in Microsoft compatibility mode.
2451     unsigned DiagID = diag::err_typename_missing;
2452     if (RecoveryTSI && getLangOpts().MSVCCompat)
2453       DiagID = diag::ext_typename_missing;
2454     SourceLocation Loc = SS.getBeginLoc();
2455     auto D = Diag(Loc, DiagID);
2456     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2457       << SourceRange(Loc, NameInfo.getEndLoc());
2458 
2459     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2460     // context.
2461     if (!RecoveryTSI)
2462       return ExprError();
2463 
2464     // Only issue the fixit if we're prepared to recover.
2465     D << FixItHint::CreateInsertion(Loc, "typename ");
2466 
2467     // Recover by pretending this was an elaborated type.
2468     QualType Ty = Context.getTypeDeclType(TD);
2469     TypeLocBuilder TLB;
2470     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2471 
2472     QualType ET = getElaboratedType(ETK_None, SS, Ty);
2473     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2474     QTL.setElaboratedKeywordLoc(SourceLocation());
2475     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2476 
2477     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2478 
2479     return ExprEmpty();
2480   }
2481 
2482   // Defend against this resolving to an implicit member access. We usually
2483   // won't get here if this might be a legitimate a class member (we end up in
2484   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2485   // a pointer-to-member or in an unevaluated context in C++11.
2486   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2487     return BuildPossibleImplicitMemberExpr(SS,
2488                                            /*TemplateKWLoc=*/SourceLocation(),
2489                                            R, /*TemplateArgs=*/nullptr, S);
2490 
2491   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2492 }
2493 
2494 /// LookupInObjCMethod - The parser has read a name in, and Sema has
2495 /// detected that we're currently inside an ObjC method.  Perform some
2496 /// additional lookup.
2497 ///
2498 /// Ideally, most of this would be done by lookup, but there's
2499 /// actually quite a lot of extra work involved.
2500 ///
2501 /// Returns a null sentinel to indicate trivial success.
2502 ExprResult
2503 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2504                          IdentifierInfo *II, bool AllowBuiltinCreation) {
2505   SourceLocation Loc = Lookup.getNameLoc();
2506   ObjCMethodDecl *CurMethod = getCurMethodDecl();
2507 
2508   // Check for error condition which is already reported.
2509   if (!CurMethod)
2510     return ExprError();
2511 
2512   // There are two cases to handle here.  1) scoped lookup could have failed,
2513   // in which case we should look for an ivar.  2) scoped lookup could have
2514   // found a decl, but that decl is outside the current instance method (i.e.
2515   // a global variable).  In these two cases, we do a lookup for an ivar with
2516   // this name, if the lookup sucedes, we replace it our current decl.
2517 
2518   // If we're in a class method, we don't normally want to look for
2519   // ivars.  But if we don't find anything else, and there's an
2520   // ivar, that's an error.
2521   bool IsClassMethod = CurMethod->isClassMethod();
2522 
2523   bool LookForIvars;
2524   if (Lookup.empty())
2525     LookForIvars = true;
2526   else if (IsClassMethod)
2527     LookForIvars = false;
2528   else
2529     LookForIvars = (Lookup.isSingleResult() &&
2530                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2531   ObjCInterfaceDecl *IFace = nullptr;
2532   if (LookForIvars) {
2533     IFace = CurMethod->getClassInterface();
2534     ObjCInterfaceDecl *ClassDeclared;
2535     ObjCIvarDecl *IV = nullptr;
2536     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2537       // Diagnose using an ivar in a class method.
2538       if (IsClassMethod)
2539         return ExprError(Diag(Loc, diag::err_ivar_use_in_class_method)
2540                          << IV->getDeclName());
2541 
2542       // If we're referencing an invalid decl, just return this as a silent
2543       // error node.  The error diagnostic was already emitted on the decl.
2544       if (IV->isInvalidDecl())
2545         return ExprError();
2546 
2547       // Check if referencing a field with __attribute__((deprecated)).
2548       if (DiagnoseUseOfDecl(IV, Loc))
2549         return ExprError();
2550 
2551       // Diagnose the use of an ivar outside of the declaring class.
2552       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2553           !declaresSameEntity(ClassDeclared, IFace) &&
2554           !getLangOpts().DebuggerSupport)
2555         Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2556 
2557       // FIXME: This should use a new expr for a direct reference, don't
2558       // turn this into Self->ivar, just return a BareIVarExpr or something.
2559       IdentifierInfo &II = Context.Idents.get("self");
2560       UnqualifiedId SelfName;
2561       SelfName.setIdentifier(&II, SourceLocation());
2562       SelfName.setKind(UnqualifiedIdKind::IK_ImplicitSelfParam);
2563       CXXScopeSpec SelfScopeSpec;
2564       SourceLocation TemplateKWLoc;
2565       ExprResult SelfExpr =
2566           ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2567                             /*HasTrailingLParen=*/false,
2568                             /*IsAddressOfOperand=*/false);
2569       if (SelfExpr.isInvalid())
2570         return ExprError();
2571 
2572       SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2573       if (SelfExpr.isInvalid())
2574         return ExprError();
2575 
2576       MarkAnyDeclReferenced(Loc, IV, true);
2577 
2578       ObjCMethodFamily MF = CurMethod->getMethodFamily();
2579       if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2580           !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2581         Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2582 
2583       ObjCIvarRefExpr *Result = new (Context)
2584           ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2585                           IV->getLocation(), SelfExpr.get(), true, true);
2586 
2587       if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2588         if (!isUnevaluatedContext() &&
2589             !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2590           getCurFunction()->recordUseOfWeak(Result);
2591       }
2592       if (getLangOpts().ObjCAutoRefCount)
2593         if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2594           ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2595 
2596       return Result;
2597     }
2598   } else if (CurMethod->isInstanceMethod()) {
2599     // We should warn if a local variable hides an ivar.
2600     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2601       ObjCInterfaceDecl *ClassDeclared;
2602       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2603         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2604             declaresSameEntity(IFace, ClassDeclared))
2605           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2606       }
2607     }
2608   } else if (Lookup.isSingleResult() &&
2609              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2610     // If accessing a stand-alone ivar in a class method, this is an error.
2611     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
2612       return ExprError(Diag(Loc, diag::err_ivar_use_in_class_method)
2613                        << IV->getDeclName());
2614   }
2615 
2616   if (Lookup.empty() && II && AllowBuiltinCreation) {
2617     // FIXME. Consolidate this with similar code in LookupName.
2618     if (unsigned BuiltinID = II->getBuiltinID()) {
2619       if (!(getLangOpts().CPlusPlus &&
2620             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
2621         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
2622                                            S, Lookup.isForRedeclaration(),
2623                                            Lookup.getNameLoc());
2624         if (D) Lookup.addDecl(D);
2625       }
2626     }
2627   }
2628   // Sentinel value saying that we didn't do anything special.
2629   return ExprResult((Expr *)nullptr);
2630 }
2631 
2632 /// Cast a base object to a member's actual type.
2633 ///
2634 /// Logically this happens in three phases:
2635 ///
2636 /// * First we cast from the base type to the naming class.
2637 ///   The naming class is the class into which we were looking
2638 ///   when we found the member;  it's the qualifier type if a
2639 ///   qualifier was provided, and otherwise it's the base type.
2640 ///
2641 /// * Next we cast from the naming class to the declaring class.
2642 ///   If the member we found was brought into a class's scope by
2643 ///   a using declaration, this is that class;  otherwise it's
2644 ///   the class declaring the member.
2645 ///
2646 /// * Finally we cast from the declaring class to the "true"
2647 ///   declaring class of the member.  This conversion does not
2648 ///   obey access control.
2649 ExprResult
2650 Sema::PerformObjectMemberConversion(Expr *From,
2651                                     NestedNameSpecifier *Qualifier,
2652                                     NamedDecl *FoundDecl,
2653                                     NamedDecl *Member) {
2654   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2655   if (!RD)
2656     return From;
2657 
2658   QualType DestRecordType;
2659   QualType DestType;
2660   QualType FromRecordType;
2661   QualType FromType = From->getType();
2662   bool PointerConversions = false;
2663   if (isa<FieldDecl>(Member)) {
2664     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2665     auto FromPtrType = FromType->getAs<PointerType>();
2666     DestRecordType = Context.getAddrSpaceQualType(
2667         DestRecordType, FromPtrType
2668                             ? FromType->getPointeeType().getAddressSpace()
2669                             : FromType.getAddressSpace());
2670 
2671     if (FromPtrType) {
2672       DestType = Context.getPointerType(DestRecordType);
2673       FromRecordType = FromPtrType->getPointeeType();
2674       PointerConversions = true;
2675     } else {
2676       DestType = DestRecordType;
2677       FromRecordType = FromType;
2678     }
2679   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2680     if (Method->isStatic())
2681       return From;
2682 
2683     DestType = Method->getThisType();
2684     DestRecordType = DestType->getPointeeType();
2685 
2686     if (FromType->getAs<PointerType>()) {
2687       FromRecordType = FromType->getPointeeType();
2688       PointerConversions = true;
2689     } else {
2690       FromRecordType = FromType;
2691       DestType = DestRecordType;
2692     }
2693   } else {
2694     // No conversion necessary.
2695     return From;
2696   }
2697 
2698   if (DestType->isDependentType() || FromType->isDependentType())
2699     return From;
2700 
2701   // If the unqualified types are the same, no conversion is necessary.
2702   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2703     return From;
2704 
2705   SourceRange FromRange = From->getSourceRange();
2706   SourceLocation FromLoc = FromRange.getBegin();
2707 
2708   ExprValueKind VK = From->getValueKind();
2709 
2710   // C++ [class.member.lookup]p8:
2711   //   [...] Ambiguities can often be resolved by qualifying a name with its
2712   //   class name.
2713   //
2714   // If the member was a qualified name and the qualified referred to a
2715   // specific base subobject type, we'll cast to that intermediate type
2716   // first and then to the object in which the member is declared. That allows
2717   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2718   //
2719   //   class Base { public: int x; };
2720   //   class Derived1 : public Base { };
2721   //   class Derived2 : public Base { };
2722   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
2723   //
2724   //   void VeryDerived::f() {
2725   //     x = 17; // error: ambiguous base subobjects
2726   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
2727   //   }
2728   if (Qualifier && Qualifier->getAsType()) {
2729     QualType QType = QualType(Qualifier->getAsType(), 0);
2730     assert(QType->isRecordType() && "lookup done with non-record type");
2731 
2732     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2733 
2734     // In C++98, the qualifier type doesn't actually have to be a base
2735     // type of the object type, in which case we just ignore it.
2736     // Otherwise build the appropriate casts.
2737     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
2738       CXXCastPath BasePath;
2739       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2740                                        FromLoc, FromRange, &BasePath))
2741         return ExprError();
2742 
2743       if (PointerConversions)
2744         QType = Context.getPointerType(QType);
2745       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2746                                VK, &BasePath).get();
2747 
2748       FromType = QType;
2749       FromRecordType = QRecordType;
2750 
2751       // If the qualifier type was the same as the destination type,
2752       // we're done.
2753       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2754         return From;
2755     }
2756   }
2757 
2758   bool IgnoreAccess = false;
2759 
2760   // If we actually found the member through a using declaration, cast
2761   // down to the using declaration's type.
2762   //
2763   // Pointer equality is fine here because only one declaration of a
2764   // class ever has member declarations.
2765   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2766     assert(isa<UsingShadowDecl>(FoundDecl));
2767     QualType URecordType = Context.getTypeDeclType(
2768                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2769 
2770     // We only need to do this if the naming-class to declaring-class
2771     // conversion is non-trivial.
2772     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2773       assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
2774       CXXCastPath BasePath;
2775       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2776                                        FromLoc, FromRange, &BasePath))
2777         return ExprError();
2778 
2779       QualType UType = URecordType;
2780       if (PointerConversions)
2781         UType = Context.getPointerType(UType);
2782       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2783                                VK, &BasePath).get();
2784       FromType = UType;
2785       FromRecordType = URecordType;
2786     }
2787 
2788     // We don't do access control for the conversion from the
2789     // declaring class to the true declaring class.
2790     IgnoreAccess = true;
2791   }
2792 
2793   CXXCastPath BasePath;
2794   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2795                                    FromLoc, FromRange, &BasePath,
2796                                    IgnoreAccess))
2797     return ExprError();
2798 
2799   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2800                            VK, &BasePath);
2801 }
2802 
2803 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2804                                       const LookupResult &R,
2805                                       bool HasTrailingLParen) {
2806   // Only when used directly as the postfix-expression of a call.
2807   if (!HasTrailingLParen)
2808     return false;
2809 
2810   // Never if a scope specifier was provided.
2811   if (SS.isSet())
2812     return false;
2813 
2814   // Only in C++ or ObjC++.
2815   if (!getLangOpts().CPlusPlus)
2816     return false;
2817 
2818   // Turn off ADL when we find certain kinds of declarations during
2819   // normal lookup:
2820   for (NamedDecl *D : R) {
2821     // C++0x [basic.lookup.argdep]p3:
2822     //     -- a declaration of a class member
2823     // Since using decls preserve this property, we check this on the
2824     // original decl.
2825     if (D->isCXXClassMember())
2826       return false;
2827 
2828     // C++0x [basic.lookup.argdep]p3:
2829     //     -- a block-scope function declaration that is not a
2830     //        using-declaration
2831     // NOTE: we also trigger this for function templates (in fact, we
2832     // don't check the decl type at all, since all other decl types
2833     // turn off ADL anyway).
2834     if (isa<UsingShadowDecl>(D))
2835       D = cast<UsingShadowDecl>(D)->getTargetDecl();
2836     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
2837       return false;
2838 
2839     // C++0x [basic.lookup.argdep]p3:
2840     //     -- a declaration that is neither a function or a function
2841     //        template
2842     // And also for builtin functions.
2843     if (isa<FunctionDecl>(D)) {
2844       FunctionDecl *FDecl = cast<FunctionDecl>(D);
2845 
2846       // But also builtin functions.
2847       if (FDecl->getBuiltinID() && FDecl->isImplicit())
2848         return false;
2849     } else if (!isa<FunctionTemplateDecl>(D))
2850       return false;
2851   }
2852 
2853   return true;
2854 }
2855 
2856 
2857 /// Diagnoses obvious problems with the use of the given declaration
2858 /// as an expression.  This is only actually called for lookups that
2859 /// were not overloaded, and it doesn't promise that the declaration
2860 /// will in fact be used.
2861 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2862   if (D->isInvalidDecl())
2863     return true;
2864 
2865   if (isa<TypedefNameDecl>(D)) {
2866     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2867     return true;
2868   }
2869 
2870   if (isa<ObjCInterfaceDecl>(D)) {
2871     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2872     return true;
2873   }
2874 
2875   if (isa<NamespaceDecl>(D)) {
2876     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2877     return true;
2878   }
2879 
2880   return false;
2881 }
2882 
2883 // Certain multiversion types should be treated as overloaded even when there is
2884 // only one result.
2885 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
2886   assert(R.isSingleResult() && "Expected only a single result");
2887   const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
2888   return FD &&
2889          (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
2890 }
2891 
2892 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2893                                           LookupResult &R, bool NeedsADL,
2894                                           bool AcceptInvalidDecl) {
2895   // If this is a single, fully-resolved result and we don't need ADL,
2896   // just build an ordinary singleton decl ref.
2897   if (!NeedsADL && R.isSingleResult() &&
2898       !R.getAsSingle<FunctionTemplateDecl>() &&
2899       !ShouldLookupResultBeMultiVersionOverload(R))
2900     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
2901                                     R.getRepresentativeDecl(), nullptr,
2902                                     AcceptInvalidDecl);
2903 
2904   // We only need to check the declaration if there's exactly one
2905   // result, because in the overloaded case the results can only be
2906   // functions and function templates.
2907   if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
2908       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2909     return ExprError();
2910 
2911   // Otherwise, just build an unresolved lookup expression.  Suppress
2912   // any lookup-related diagnostics; we'll hash these out later, when
2913   // we've picked a target.
2914   R.suppressDiagnostics();
2915 
2916   UnresolvedLookupExpr *ULE
2917     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2918                                    SS.getWithLocInContext(Context),
2919                                    R.getLookupNameInfo(),
2920                                    NeedsADL, R.isOverloadedResult(),
2921                                    R.begin(), R.end());
2922 
2923   return ULE;
2924 }
2925 
2926 static void
2927 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
2928                                    ValueDecl *var, DeclContext *DC);
2929 
2930 /// Complete semantic analysis for a reference to the given declaration.
2931 ExprResult Sema::BuildDeclarationNameExpr(
2932     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
2933     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
2934     bool AcceptInvalidDecl) {
2935   assert(D && "Cannot refer to a NULL declaration");
2936   assert(!isa<FunctionTemplateDecl>(D) &&
2937          "Cannot refer unambiguously to a function template");
2938 
2939   SourceLocation Loc = NameInfo.getLoc();
2940   if (CheckDeclInExpr(*this, Loc, D))
2941     return ExprError();
2942 
2943   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2944     // Specifically diagnose references to class templates that are missing
2945     // a template argument list.
2946     diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
2947     return ExprError();
2948   }
2949 
2950   // Make sure that we're referring to a value.
2951   ValueDecl *VD = dyn_cast<ValueDecl>(D);
2952   if (!VD) {
2953     Diag(Loc, diag::err_ref_non_value)
2954       << D << SS.getRange();
2955     Diag(D->getLocation(), diag::note_declared_at);
2956     return ExprError();
2957   }
2958 
2959   // Check whether this declaration can be used. Note that we suppress
2960   // this check when we're going to perform argument-dependent lookup
2961   // on this function name, because this might not be the function
2962   // that overload resolution actually selects.
2963   if (DiagnoseUseOfDecl(VD, Loc))
2964     return ExprError();
2965 
2966   // Only create DeclRefExpr's for valid Decl's.
2967   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
2968     return ExprError();
2969 
2970   // Handle members of anonymous structs and unions.  If we got here,
2971   // and the reference is to a class member indirect field, then this
2972   // must be the subject of a pointer-to-member expression.
2973   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2974     if (!indirectField->isCXXClassMember())
2975       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2976                                                       indirectField);
2977 
2978   {
2979     QualType type = VD->getType();
2980     if (type.isNull())
2981       return ExprError();
2982     if (auto *FPT = type->getAs<FunctionProtoType>()) {
2983       // C++ [except.spec]p17:
2984       //   An exception-specification is considered to be needed when:
2985       //   - in an expression, the function is the unique lookup result or
2986       //     the selected member of a set of overloaded functions.
2987       ResolveExceptionSpec(Loc, FPT);
2988       type = VD->getType();
2989     }
2990     ExprValueKind valueKind = VK_RValue;
2991 
2992     switch (D->getKind()) {
2993     // Ignore all the non-ValueDecl kinds.
2994 #define ABSTRACT_DECL(kind)
2995 #define VALUE(type, base)
2996 #define DECL(type, base) \
2997     case Decl::type:
2998 #include "clang/AST/DeclNodes.inc"
2999       llvm_unreachable("invalid value decl kind");
3000 
3001     // These shouldn't make it here.
3002     case Decl::ObjCAtDefsField:
3003       llvm_unreachable("forming non-member reference to ivar?");
3004 
3005     // Enum constants are always r-values and never references.
3006     // Unresolved using declarations are dependent.
3007     case Decl::EnumConstant:
3008     case Decl::UnresolvedUsingValue:
3009     case Decl::OMPDeclareReduction:
3010     case Decl::OMPDeclareMapper:
3011       valueKind = VK_RValue;
3012       break;
3013 
3014     // Fields and indirect fields that got here must be for
3015     // pointer-to-member expressions; we just call them l-values for
3016     // internal consistency, because this subexpression doesn't really
3017     // exist in the high-level semantics.
3018     case Decl::Field:
3019     case Decl::IndirectField:
3020     case Decl::ObjCIvar:
3021       assert(getLangOpts().CPlusPlus &&
3022              "building reference to field in C?");
3023 
3024       // These can't have reference type in well-formed programs, but
3025       // for internal consistency we do this anyway.
3026       type = type.getNonReferenceType();
3027       valueKind = VK_LValue;
3028       break;
3029 
3030     // Non-type template parameters are either l-values or r-values
3031     // depending on the type.
3032     case Decl::NonTypeTemplateParm: {
3033       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3034         type = reftype->getPointeeType();
3035         valueKind = VK_LValue; // even if the parameter is an r-value reference
3036         break;
3037       }
3038 
3039       // For non-references, we need to strip qualifiers just in case
3040       // the template parameter was declared as 'const int' or whatever.
3041       valueKind = VK_RValue;
3042       type = type.getUnqualifiedType();
3043       break;
3044     }
3045 
3046     case Decl::Var:
3047     case Decl::VarTemplateSpecialization:
3048     case Decl::VarTemplatePartialSpecialization:
3049     case Decl::Decomposition:
3050     case Decl::OMPCapturedExpr:
3051       // In C, "extern void blah;" is valid and is an r-value.
3052       if (!getLangOpts().CPlusPlus &&
3053           !type.hasQualifiers() &&
3054           type->isVoidType()) {
3055         valueKind = VK_RValue;
3056         break;
3057       }
3058       LLVM_FALLTHROUGH;
3059 
3060     case Decl::ImplicitParam:
3061     case Decl::ParmVar: {
3062       // These are always l-values.
3063       valueKind = VK_LValue;
3064       type = type.getNonReferenceType();
3065 
3066       // FIXME: Does the addition of const really only apply in
3067       // potentially-evaluated contexts? Since the variable isn't actually
3068       // captured in an unevaluated context, it seems that the answer is no.
3069       if (!isUnevaluatedContext()) {
3070         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3071         if (!CapturedType.isNull())
3072           type = CapturedType;
3073       }
3074 
3075       break;
3076     }
3077 
3078     case Decl::Binding: {
3079       // These are always lvalues.
3080       valueKind = VK_LValue;
3081       type = type.getNonReferenceType();
3082       // FIXME: Support lambda-capture of BindingDecls, once CWG actually
3083       // decides how that's supposed to work.
3084       auto *BD = cast<BindingDecl>(VD);
3085       if (BD->getDeclContext() != CurContext) {
3086         auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
3087         if (DD && DD->hasLocalStorage())
3088           diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
3089       }
3090       break;
3091     }
3092 
3093     case Decl::Function: {
3094       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3095         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
3096           type = Context.BuiltinFnTy;
3097           valueKind = VK_RValue;
3098           break;
3099         }
3100       }
3101 
3102       const FunctionType *fty = type->castAs<FunctionType>();
3103 
3104       // If we're referring to a function with an __unknown_anytype
3105       // result type, make the entire expression __unknown_anytype.
3106       if (fty->getReturnType() == Context.UnknownAnyTy) {
3107         type = Context.UnknownAnyTy;
3108         valueKind = VK_RValue;
3109         break;
3110       }
3111 
3112       // Functions are l-values in C++.
3113       if (getLangOpts().CPlusPlus) {
3114         valueKind = VK_LValue;
3115         break;
3116       }
3117 
3118       // C99 DR 316 says that, if a function type comes from a
3119       // function definition (without a prototype), that type is only
3120       // used for checking compatibility. Therefore, when referencing
3121       // the function, we pretend that we don't have the full function
3122       // type.
3123       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
3124           isa<FunctionProtoType>(fty))
3125         type = Context.getFunctionNoProtoType(fty->getReturnType(),
3126                                               fty->getExtInfo());
3127 
3128       // Functions are r-values in C.
3129       valueKind = VK_RValue;
3130       break;
3131     }
3132 
3133     case Decl::CXXDeductionGuide:
3134       llvm_unreachable("building reference to deduction guide");
3135 
3136     case Decl::MSProperty:
3137       valueKind = VK_LValue;
3138       break;
3139 
3140     case Decl::CXXMethod:
3141       // If we're referring to a method with an __unknown_anytype
3142       // result type, make the entire expression __unknown_anytype.
3143       // This should only be possible with a type written directly.
3144       if (const FunctionProtoType *proto
3145             = dyn_cast<FunctionProtoType>(VD->getType()))
3146         if (proto->getReturnType() == Context.UnknownAnyTy) {
3147           type = Context.UnknownAnyTy;
3148           valueKind = VK_RValue;
3149           break;
3150         }
3151 
3152       // C++ methods are l-values if static, r-values if non-static.
3153       if (cast<CXXMethodDecl>(VD)->isStatic()) {
3154         valueKind = VK_LValue;
3155         break;
3156       }
3157       LLVM_FALLTHROUGH;
3158 
3159     case Decl::CXXConversion:
3160     case Decl::CXXDestructor:
3161     case Decl::CXXConstructor:
3162       valueKind = VK_RValue;
3163       break;
3164     }
3165 
3166     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3167                             /*FIXME: TemplateKWLoc*/ SourceLocation(),
3168                             TemplateArgs);
3169   }
3170 }
3171 
3172 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3173                                     SmallString<32> &Target) {
3174   Target.resize(CharByteWidth * (Source.size() + 1));
3175   char *ResultPtr = &Target[0];
3176   const llvm::UTF8 *ErrorPtr;
3177   bool success =
3178       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3179   (void)success;
3180   assert(success);
3181   Target.resize(ResultPtr - &Target[0]);
3182 }
3183 
3184 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3185                                      PredefinedExpr::IdentKind IK) {
3186   // Pick the current block, lambda, captured statement or function.
3187   Decl *currentDecl = nullptr;
3188   if (const BlockScopeInfo *BSI = getCurBlock())
3189     currentDecl = BSI->TheDecl;
3190   else if (const LambdaScopeInfo *LSI = getCurLambda())
3191     currentDecl = LSI->CallOperator;
3192   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3193     currentDecl = CSI->TheCapturedDecl;
3194   else
3195     currentDecl = getCurFunctionOrMethodDecl();
3196 
3197   if (!currentDecl) {
3198     Diag(Loc, diag::ext_predef_outside_function);
3199     currentDecl = Context.getTranslationUnitDecl();
3200   }
3201 
3202   QualType ResTy;
3203   StringLiteral *SL = nullptr;
3204   if (cast<DeclContext>(currentDecl)->isDependentContext())
3205     ResTy = Context.DependentTy;
3206   else {
3207     // Pre-defined identifiers are of type char[x], where x is the length of
3208     // the string.
3209     auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3210     unsigned Length = Str.length();
3211 
3212     llvm::APInt LengthI(32, Length + 1);
3213     if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3214       ResTy =
3215           Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3216       SmallString<32> RawChars;
3217       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3218                               Str, RawChars);
3219       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
3220                                            /*IndexTypeQuals*/ 0);
3221       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3222                                  /*Pascal*/ false, ResTy, Loc);
3223     } else {
3224       ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3225       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
3226                                            /*IndexTypeQuals*/ 0);
3227       SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3228                                  /*Pascal*/ false, ResTy, Loc);
3229     }
3230   }
3231 
3232   return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3233 }
3234 
3235 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3236   PredefinedExpr::IdentKind IK;
3237 
3238   switch (Kind) {
3239   default: llvm_unreachable("Unknown simple primary expr!");
3240   case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3241   case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3242   case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3243   case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3244   case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3245   case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3246   case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3247   }
3248 
3249   return BuildPredefinedExpr(Loc, IK);
3250 }
3251 
3252 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3253   SmallString<16> CharBuffer;
3254   bool Invalid = false;
3255   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3256   if (Invalid)
3257     return ExprError();
3258 
3259   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3260                             PP, Tok.getKind());
3261   if (Literal.hadError())
3262     return ExprError();
3263 
3264   QualType Ty;
3265   if (Literal.isWide())
3266     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3267   else if (Literal.isUTF8() && getLangOpts().Char8)
3268     Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3269   else if (Literal.isUTF16())
3270     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3271   else if (Literal.isUTF32())
3272     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3273   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3274     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3275   else
3276     Ty = Context.CharTy;  // 'x' -> char in C++
3277 
3278   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3279   if (Literal.isWide())
3280     Kind = CharacterLiteral::Wide;
3281   else if (Literal.isUTF16())
3282     Kind = CharacterLiteral::UTF16;
3283   else if (Literal.isUTF32())
3284     Kind = CharacterLiteral::UTF32;
3285   else if (Literal.isUTF8())
3286     Kind = CharacterLiteral::UTF8;
3287 
3288   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3289                                              Tok.getLocation());
3290 
3291   if (Literal.getUDSuffix().empty())
3292     return Lit;
3293 
3294   // We're building a user-defined literal.
3295   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3296   SourceLocation UDSuffixLoc =
3297     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3298 
3299   // Make sure we're allowed user-defined literals here.
3300   if (!UDLScope)
3301     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3302 
3303   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3304   //   operator "" X (ch)
3305   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3306                                         Lit, Tok.getLocation());
3307 }
3308 
3309 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3310   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3311   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3312                                 Context.IntTy, Loc);
3313 }
3314 
3315 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3316                                   QualType Ty, SourceLocation Loc) {
3317   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3318 
3319   using llvm::APFloat;
3320   APFloat Val(Format);
3321 
3322   APFloat::opStatus result = Literal.GetFloatValue(Val);
3323 
3324   // Overflow is always an error, but underflow is only an error if
3325   // we underflowed to zero (APFloat reports denormals as underflow).
3326   if ((result & APFloat::opOverflow) ||
3327       ((result & APFloat::opUnderflow) && Val.isZero())) {
3328     unsigned diagnostic;
3329     SmallString<20> buffer;
3330     if (result & APFloat::opOverflow) {
3331       diagnostic = diag::warn_float_overflow;
3332       APFloat::getLargest(Format).toString(buffer);
3333     } else {
3334       diagnostic = diag::warn_float_underflow;
3335       APFloat::getSmallest(Format).toString(buffer);
3336     }
3337 
3338     S.Diag(Loc, diagnostic)
3339       << Ty
3340       << StringRef(buffer.data(), buffer.size());
3341   }
3342 
3343   bool isExact = (result == APFloat::opOK);
3344   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3345 }
3346 
3347 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3348   assert(E && "Invalid expression");
3349 
3350   if (E->isValueDependent())
3351     return false;
3352 
3353   QualType QT = E->getType();
3354   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3355     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3356     return true;
3357   }
3358 
3359   llvm::APSInt ValueAPS;
3360   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3361 
3362   if (R.isInvalid())
3363     return true;
3364 
3365   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3366   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3367     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3368         << ValueAPS.toString(10) << ValueIsPositive;
3369     return true;
3370   }
3371 
3372   return false;
3373 }
3374 
3375 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3376   // Fast path for a single digit (which is quite common).  A single digit
3377   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3378   if (Tok.getLength() == 1) {
3379     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3380     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3381   }
3382 
3383   SmallString<128> SpellingBuffer;
3384   // NumericLiteralParser wants to overread by one character.  Add padding to
3385   // the buffer in case the token is copied to the buffer.  If getSpelling()
3386   // returns a StringRef to the memory buffer, it should have a null char at
3387   // the EOF, so it is also safe.
3388   SpellingBuffer.resize(Tok.getLength() + 1);
3389 
3390   // Get the spelling of the token, which eliminates trigraphs, etc.
3391   bool Invalid = false;
3392   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3393   if (Invalid)
3394     return ExprError();
3395 
3396   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
3397   if (Literal.hadError)
3398     return ExprError();
3399 
3400   if (Literal.hasUDSuffix()) {
3401     // We're building a user-defined literal.
3402     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3403     SourceLocation UDSuffixLoc =
3404       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3405 
3406     // Make sure we're allowed user-defined literals here.
3407     if (!UDLScope)
3408       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3409 
3410     QualType CookedTy;
3411     if (Literal.isFloatingLiteral()) {
3412       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3413       // long double, the literal is treated as a call of the form
3414       //   operator "" X (f L)
3415       CookedTy = Context.LongDoubleTy;
3416     } else {
3417       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3418       // unsigned long long, the literal is treated as a call of the form
3419       //   operator "" X (n ULL)
3420       CookedTy = Context.UnsignedLongLongTy;
3421     }
3422 
3423     DeclarationName OpName =
3424       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3425     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3426     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3427 
3428     SourceLocation TokLoc = Tok.getLocation();
3429 
3430     // Perform literal operator lookup to determine if we're building a raw
3431     // literal or a cooked one.
3432     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3433     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3434                                   /*AllowRaw*/ true, /*AllowTemplate*/ true,
3435                                   /*AllowStringTemplate*/ false,
3436                                   /*DiagnoseMissing*/ !Literal.isImaginary)) {
3437     case LOLR_ErrorNoDiagnostic:
3438       // Lookup failure for imaginary constants isn't fatal, there's still the
3439       // GNU extension producing _Complex types.
3440       break;
3441     case LOLR_Error:
3442       return ExprError();
3443     case LOLR_Cooked: {
3444       Expr *Lit;
3445       if (Literal.isFloatingLiteral()) {
3446         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3447       } else {
3448         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3449         if (Literal.GetIntegerValue(ResultVal))
3450           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3451               << /* Unsigned */ 1;
3452         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3453                                      Tok.getLocation());
3454       }
3455       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3456     }
3457 
3458     case LOLR_Raw: {
3459       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3460       // literal is treated as a call of the form
3461       //   operator "" X ("n")
3462       unsigned Length = Literal.getUDSuffixOffset();
3463       QualType StrTy = Context.getConstantArrayType(
3464           Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3465           llvm::APInt(32, Length + 1), ArrayType::Normal, 0);
3466       Expr *Lit = StringLiteral::Create(
3467           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3468           /*Pascal*/false, StrTy, &TokLoc, 1);
3469       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3470     }
3471 
3472     case LOLR_Template: {
3473       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3474       // template), L is treated as a call fo the form
3475       //   operator "" X <'c1', 'c2', ... 'ck'>()
3476       // where n is the source character sequence c1 c2 ... ck.
3477       TemplateArgumentListInfo ExplicitArgs;
3478       unsigned CharBits = Context.getIntWidth(Context.CharTy);
3479       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3480       llvm::APSInt Value(CharBits, CharIsUnsigned);
3481       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3482         Value = TokSpelling[I];
3483         TemplateArgument Arg(Context, Value, Context.CharTy);
3484         TemplateArgumentLocInfo ArgInfo;
3485         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3486       }
3487       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3488                                       &ExplicitArgs);
3489     }
3490     case LOLR_StringTemplate:
3491       llvm_unreachable("unexpected literal operator lookup result");
3492     }
3493   }
3494 
3495   Expr *Res;
3496 
3497   if (Literal.isFixedPointLiteral()) {
3498     QualType Ty;
3499 
3500     if (Literal.isAccum) {
3501       if (Literal.isHalf) {
3502         Ty = Context.ShortAccumTy;
3503       } else if (Literal.isLong) {
3504         Ty = Context.LongAccumTy;
3505       } else {
3506         Ty = Context.AccumTy;
3507       }
3508     } else if (Literal.isFract) {
3509       if (Literal.isHalf) {
3510         Ty = Context.ShortFractTy;
3511       } else if (Literal.isLong) {
3512         Ty = Context.LongFractTy;
3513       } else {
3514         Ty = Context.FractTy;
3515       }
3516     }
3517 
3518     if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3519 
3520     bool isSigned = !Literal.isUnsigned;
3521     unsigned scale = Context.getFixedPointScale(Ty);
3522     unsigned bit_width = Context.getTypeInfo(Ty).Width;
3523 
3524     llvm::APInt Val(bit_width, 0, isSigned);
3525     bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3526     bool ValIsZero = Val.isNullValue() && !Overflowed;
3527 
3528     auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3529     if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3530       // Clause 6.4.4 - The value of a constant shall be in the range of
3531       // representable values for its type, with exception for constants of a
3532       // fract type with a value of exactly 1; such a constant shall denote
3533       // the maximal value for the type.
3534       --Val;
3535     else if (Val.ugt(MaxVal) || Overflowed)
3536       Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3537 
3538     Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3539                                               Tok.getLocation(), scale);
3540   } else if (Literal.isFloatingLiteral()) {
3541     QualType Ty;
3542     if (Literal.isHalf){
3543       if (getOpenCLOptions().isEnabled("cl_khr_fp16"))
3544         Ty = Context.HalfTy;
3545       else {
3546         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3547         return ExprError();
3548       }
3549     } else if (Literal.isFloat)
3550       Ty = Context.FloatTy;
3551     else if (Literal.isLong)
3552       Ty = Context.LongDoubleTy;
3553     else if (Literal.isFloat16)
3554       Ty = Context.Float16Ty;
3555     else if (Literal.isFloat128)
3556       Ty = Context.Float128Ty;
3557     else
3558       Ty = Context.DoubleTy;
3559 
3560     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3561 
3562     if (Ty == Context.DoubleTy) {
3563       if (getLangOpts().SinglePrecisionConstants) {
3564         const BuiltinType *BTy = Ty->getAs<BuiltinType>();
3565         if (BTy->getKind() != BuiltinType::Float) {
3566           Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3567         }
3568       } else if (getLangOpts().OpenCL &&
3569                  !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
3570         // Impose single-precision float type when cl_khr_fp64 is not enabled.
3571         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3572         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3573       }
3574     }
3575   } else if (!Literal.isIntegerLiteral()) {
3576     return ExprError();
3577   } else {
3578     QualType Ty;
3579 
3580     // 'long long' is a C99 or C++11 feature.
3581     if (!getLangOpts().C99 && Literal.isLongLong) {
3582       if (getLangOpts().CPlusPlus)
3583         Diag(Tok.getLocation(),
3584              getLangOpts().CPlusPlus11 ?
3585              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3586       else
3587         Diag(Tok.getLocation(), diag::ext_c99_longlong);
3588     }
3589 
3590     // Get the value in the widest-possible width.
3591     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3592     llvm::APInt ResultVal(MaxWidth, 0);
3593 
3594     if (Literal.GetIntegerValue(ResultVal)) {
3595       // If this value didn't fit into uintmax_t, error and force to ull.
3596       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3597           << /* Unsigned */ 1;
3598       Ty = Context.UnsignedLongLongTy;
3599       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3600              "long long is not intmax_t?");
3601     } else {
3602       // If this value fits into a ULL, try to figure out what else it fits into
3603       // according to the rules of C99 6.4.4.1p5.
3604 
3605       // Octal, Hexadecimal, and integers with a U suffix are allowed to
3606       // be an unsigned int.
3607       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3608 
3609       // Check from smallest to largest, picking the smallest type we can.
3610       unsigned Width = 0;
3611 
3612       // Microsoft specific integer suffixes are explicitly sized.
3613       if (Literal.MicrosoftInteger) {
3614         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3615           Width = 8;
3616           Ty = Context.CharTy;
3617         } else {
3618           Width = Literal.MicrosoftInteger;
3619           Ty = Context.getIntTypeForBitwidth(Width,
3620                                              /*Signed=*/!Literal.isUnsigned);
3621         }
3622       }
3623 
3624       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
3625         // Are int/unsigned possibilities?
3626         unsigned IntSize = Context.getTargetInfo().getIntWidth();
3627 
3628         // Does it fit in a unsigned int?
3629         if (ResultVal.isIntN(IntSize)) {
3630           // Does it fit in a signed int?
3631           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3632             Ty = Context.IntTy;
3633           else if (AllowUnsigned)
3634             Ty = Context.UnsignedIntTy;
3635           Width = IntSize;
3636         }
3637       }
3638 
3639       // Are long/unsigned long possibilities?
3640       if (Ty.isNull() && !Literal.isLongLong) {
3641         unsigned LongSize = Context.getTargetInfo().getLongWidth();
3642 
3643         // Does it fit in a unsigned long?
3644         if (ResultVal.isIntN(LongSize)) {
3645           // Does it fit in a signed long?
3646           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3647             Ty = Context.LongTy;
3648           else if (AllowUnsigned)
3649             Ty = Context.UnsignedLongTy;
3650           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
3651           // is compatible.
3652           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
3653             const unsigned LongLongSize =
3654                 Context.getTargetInfo().getLongLongWidth();
3655             Diag(Tok.getLocation(),
3656                  getLangOpts().CPlusPlus
3657                      ? Literal.isLong
3658                            ? diag::warn_old_implicitly_unsigned_long_cxx
3659                            : /*C++98 UB*/ diag::
3660                                  ext_old_implicitly_unsigned_long_cxx
3661                      : diag::warn_old_implicitly_unsigned_long)
3662                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
3663                                             : /*will be ill-formed*/ 1);
3664             Ty = Context.UnsignedLongTy;
3665           }
3666           Width = LongSize;
3667         }
3668       }
3669 
3670       // Check long long if needed.
3671       if (Ty.isNull()) {
3672         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3673 
3674         // Does it fit in a unsigned long long?
3675         if (ResultVal.isIntN(LongLongSize)) {
3676           // Does it fit in a signed long long?
3677           // To be compatible with MSVC, hex integer literals ending with the
3678           // LL or i64 suffix are always signed in Microsoft mode.
3679           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3680               (getLangOpts().MSVCCompat && Literal.isLongLong)))
3681             Ty = Context.LongLongTy;
3682           else if (AllowUnsigned)
3683             Ty = Context.UnsignedLongLongTy;
3684           Width = LongLongSize;
3685         }
3686       }
3687 
3688       // If we still couldn't decide a type, we probably have something that
3689       // does not fit in a signed long long, but has no U suffix.
3690       if (Ty.isNull()) {
3691         Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
3692         Ty = Context.UnsignedLongLongTy;
3693         Width = Context.getTargetInfo().getLongLongWidth();
3694       }
3695 
3696       if (ResultVal.getBitWidth() != Width)
3697         ResultVal = ResultVal.trunc(Width);
3698     }
3699     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3700   }
3701 
3702   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3703   if (Literal.isImaginary) {
3704     Res = new (Context) ImaginaryLiteral(Res,
3705                                         Context.getComplexType(Res->getType()));
3706 
3707     Diag(Tok.getLocation(), diag::ext_imaginary_constant);
3708   }
3709   return Res;
3710 }
3711 
3712 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3713   assert(E && "ActOnParenExpr() missing expr");
3714   return new (Context) ParenExpr(L, R, E);
3715 }
3716 
3717 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3718                                          SourceLocation Loc,
3719                                          SourceRange ArgRange) {
3720   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3721   // scalar or vector data type argument..."
3722   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3723   // type (C99 6.2.5p18) or void.
3724   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3725     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3726       << T << ArgRange;
3727     return true;
3728   }
3729 
3730   assert((T->isVoidType() || !T->isIncompleteType()) &&
3731          "Scalar types should always be complete");
3732   return false;
3733 }
3734 
3735 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3736                                            SourceLocation Loc,
3737                                            SourceRange ArgRange,
3738                                            UnaryExprOrTypeTrait TraitKind) {
3739   // Invalid types must be hard errors for SFINAE in C++.
3740   if (S.LangOpts.CPlusPlus)
3741     return true;
3742 
3743   // C99 6.5.3.4p1:
3744   if (T->isFunctionType() &&
3745       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
3746        TraitKind == UETT_PreferredAlignOf)) {
3747     // sizeof(function)/alignof(function) is allowed as an extension.
3748     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
3749       << TraitKind << ArgRange;
3750     return false;
3751   }
3752 
3753   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
3754   // this is an error (OpenCL v1.1 s6.3.k)
3755   if (T->isVoidType()) {
3756     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
3757                                         : diag::ext_sizeof_alignof_void_type;
3758     S.Diag(Loc, DiagID) << TraitKind << ArgRange;
3759     return false;
3760   }
3761 
3762   return true;
3763 }
3764 
3765 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3766                                              SourceLocation Loc,
3767                                              SourceRange ArgRange,
3768                                              UnaryExprOrTypeTrait TraitKind) {
3769   // Reject sizeof(interface) and sizeof(interface<proto>) if the
3770   // runtime doesn't allow it.
3771   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3772     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3773       << T << (TraitKind == UETT_SizeOf)
3774       << ArgRange;
3775     return true;
3776   }
3777 
3778   return false;
3779 }
3780 
3781 /// Check whether E is a pointer from a decayed array type (the decayed
3782 /// pointer type is equal to T) and emit a warning if it is.
3783 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
3784                                      Expr *E) {
3785   // Don't warn if the operation changed the type.
3786   if (T != E->getType())
3787     return;
3788 
3789   // Now look for array decays.
3790   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
3791   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
3792     return;
3793 
3794   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
3795                                              << ICE->getType()
3796                                              << ICE->getSubExpr()->getType();
3797 }
3798 
3799 /// Check the constraints on expression operands to unary type expression
3800 /// and type traits.
3801 ///
3802 /// Completes any types necessary and validates the constraints on the operand
3803 /// expression. The logic mostly mirrors the type-based overload, but may modify
3804 /// the expression as it completes the type for that expression through template
3805 /// instantiation, etc.
3806 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3807                                             UnaryExprOrTypeTrait ExprKind) {
3808   QualType ExprTy = E->getType();
3809   assert(!ExprTy->isReferenceType());
3810 
3811   if (ExprKind == UETT_VecStep)
3812     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3813                                         E->getSourceRange());
3814 
3815   // Whitelist some types as extensions
3816   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3817                                       E->getSourceRange(), ExprKind))
3818     return false;
3819 
3820   // 'alignof' applied to an expression only requires the base element type of
3821   // the expression to be complete. 'sizeof' requires the expression's type to
3822   // be complete (and will attempt to complete it if it's an array of unknown
3823   // bound).
3824   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
3825     if (RequireCompleteType(E->getExprLoc(),
3826                             Context.getBaseElementType(E->getType()),
3827                             diag::err_sizeof_alignof_incomplete_type, ExprKind,
3828                             E->getSourceRange()))
3829       return true;
3830   } else {
3831     if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
3832                                 ExprKind, E->getSourceRange()))
3833       return true;
3834   }
3835 
3836   // Completing the expression's type may have changed it.
3837   ExprTy = E->getType();
3838   assert(!ExprTy->isReferenceType());
3839 
3840   if (ExprTy->isFunctionType()) {
3841     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
3842       << ExprKind << E->getSourceRange();
3843     return true;
3844   }
3845 
3846   // The operand for sizeof and alignof is in an unevaluated expression context,
3847   // so side effects could result in unintended consequences.
3848   if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
3849        ExprKind == UETT_PreferredAlignOf) &&
3850       !inTemplateInstantiation() && E->HasSideEffects(Context, false))
3851     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
3852 
3853   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3854                                        E->getSourceRange(), ExprKind))
3855     return true;
3856 
3857   if (ExprKind == UETT_SizeOf) {
3858     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3859       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3860         QualType OType = PVD->getOriginalType();
3861         QualType Type = PVD->getType();
3862         if (Type->isPointerType() && OType->isArrayType()) {
3863           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
3864             << Type << OType;
3865           Diag(PVD->getLocation(), diag::note_declared_at);
3866         }
3867       }
3868     }
3869 
3870     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
3871     // decays into a pointer and returns an unintended result. This is most
3872     // likely a typo for "sizeof(array) op x".
3873     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
3874       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3875                                BO->getLHS());
3876       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3877                                BO->getRHS());
3878     }
3879   }
3880 
3881   return false;
3882 }
3883 
3884 /// Check the constraints on operands to unary expression and type
3885 /// traits.
3886 ///
3887 /// This will complete any types necessary, and validate the various constraints
3888 /// on those operands.
3889 ///
3890 /// The UsualUnaryConversions() function is *not* called by this routine.
3891 /// C99 6.3.2.1p[2-4] all state:
3892 ///   Except when it is the operand of the sizeof operator ...
3893 ///
3894 /// C++ [expr.sizeof]p4
3895 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3896 ///   standard conversions are not applied to the operand of sizeof.
3897 ///
3898 /// This policy is followed for all of the unary trait expressions.
3899 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3900                                             SourceLocation OpLoc,
3901                                             SourceRange ExprRange,
3902                                             UnaryExprOrTypeTrait ExprKind) {
3903   if (ExprType->isDependentType())
3904     return false;
3905 
3906   // C++ [expr.sizeof]p2:
3907   //     When applied to a reference or a reference type, the result
3908   //     is the size of the referenced type.
3909   // C++11 [expr.alignof]p3:
3910   //     When alignof is applied to a reference type, the result
3911   //     shall be the alignment of the referenced type.
3912   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3913     ExprType = Ref->getPointeeType();
3914 
3915   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
3916   //   When alignof or _Alignof is applied to an array type, the result
3917   //   is the alignment of the element type.
3918   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
3919       ExprKind == UETT_OpenMPRequiredSimdAlign)
3920     ExprType = Context.getBaseElementType(ExprType);
3921 
3922   if (ExprKind == UETT_VecStep)
3923     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3924 
3925   // Whitelist some types as extensions
3926   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3927                                       ExprKind))
3928     return false;
3929 
3930   if (RequireCompleteType(OpLoc, ExprType,
3931                           diag::err_sizeof_alignof_incomplete_type,
3932                           ExprKind, ExprRange))
3933     return true;
3934 
3935   if (ExprType->isFunctionType()) {
3936     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
3937       << ExprKind << ExprRange;
3938     return true;
3939   }
3940 
3941   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3942                                        ExprKind))
3943     return true;
3944 
3945   return false;
3946 }
3947 
3948 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
3949   E = E->IgnoreParens();
3950 
3951   // Cannot know anything else if the expression is dependent.
3952   if (E->isTypeDependent())
3953     return false;
3954 
3955   if (E->getObjectKind() == OK_BitField) {
3956     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
3957        << 1 << E->getSourceRange();
3958     return true;
3959   }
3960 
3961   ValueDecl *D = nullptr;
3962   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3963     D = DRE->getDecl();
3964   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3965     D = ME->getMemberDecl();
3966   }
3967 
3968   // If it's a field, require the containing struct to have a
3969   // complete definition so that we can compute the layout.
3970   //
3971   // This can happen in C++11 onwards, either by naming the member
3972   // in a way that is not transformed into a member access expression
3973   // (in an unevaluated operand, for instance), or by naming the member
3974   // in a trailing-return-type.
3975   //
3976   // For the record, since __alignof__ on expressions is a GCC
3977   // extension, GCC seems to permit this but always gives the
3978   // nonsensical answer 0.
3979   //
3980   // We don't really need the layout here --- we could instead just
3981   // directly check for all the appropriate alignment-lowing
3982   // attributes --- but that would require duplicating a lot of
3983   // logic that just isn't worth duplicating for such a marginal
3984   // use-case.
3985   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
3986     // Fast path this check, since we at least know the record has a
3987     // definition if we can find a member of it.
3988     if (!FD->getParent()->isCompleteDefinition()) {
3989       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
3990         << E->getSourceRange();
3991       return true;
3992     }
3993 
3994     // Otherwise, if it's a field, and the field doesn't have
3995     // reference type, then it must have a complete type (or be a
3996     // flexible array member, which we explicitly want to
3997     // white-list anyway), which makes the following checks trivial.
3998     if (!FD->getType()->isReferenceType())
3999       return false;
4000   }
4001 
4002   return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4003 }
4004 
4005 bool Sema::CheckVecStepExpr(Expr *E) {
4006   E = E->IgnoreParens();
4007 
4008   // Cannot know anything else if the expression is dependent.
4009   if (E->isTypeDependent())
4010     return false;
4011 
4012   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4013 }
4014 
4015 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4016                                         CapturingScopeInfo *CSI) {
4017   assert(T->isVariablyModifiedType());
4018   assert(CSI != nullptr);
4019 
4020   // We're going to walk down into the type and look for VLA expressions.
4021   do {
4022     const Type *Ty = T.getTypePtr();
4023     switch (Ty->getTypeClass()) {
4024 #define TYPE(Class, Base)
4025 #define ABSTRACT_TYPE(Class, Base)
4026 #define NON_CANONICAL_TYPE(Class, Base)
4027 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4028 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4029 #include "clang/AST/TypeNodes.def"
4030       T = QualType();
4031       break;
4032     // These types are never variably-modified.
4033     case Type::Builtin:
4034     case Type::Complex:
4035     case Type::Vector:
4036     case Type::ExtVector:
4037     case Type::Record:
4038     case Type::Enum:
4039     case Type::Elaborated:
4040     case Type::TemplateSpecialization:
4041     case Type::ObjCObject:
4042     case Type::ObjCInterface:
4043     case Type::ObjCObjectPointer:
4044     case Type::ObjCTypeParam:
4045     case Type::Pipe:
4046       llvm_unreachable("type class is never variably-modified!");
4047     case Type::Adjusted:
4048       T = cast<AdjustedType>(Ty)->getOriginalType();
4049       break;
4050     case Type::Decayed:
4051       T = cast<DecayedType>(Ty)->getPointeeType();
4052       break;
4053     case Type::Pointer:
4054       T = cast<PointerType>(Ty)->getPointeeType();
4055       break;
4056     case Type::BlockPointer:
4057       T = cast<BlockPointerType>(Ty)->getPointeeType();
4058       break;
4059     case Type::LValueReference:
4060     case Type::RValueReference:
4061       T = cast<ReferenceType>(Ty)->getPointeeType();
4062       break;
4063     case Type::MemberPointer:
4064       T = cast<MemberPointerType>(Ty)->getPointeeType();
4065       break;
4066     case Type::ConstantArray:
4067     case Type::IncompleteArray:
4068       // Losing element qualification here is fine.
4069       T = cast<ArrayType>(Ty)->getElementType();
4070       break;
4071     case Type::VariableArray: {
4072       // Losing element qualification here is fine.
4073       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4074 
4075       // Unknown size indication requires no size computation.
4076       // Otherwise, evaluate and record it.
4077       auto Size = VAT->getSizeExpr();
4078       if (Size && !CSI->isVLATypeCaptured(VAT) &&
4079           (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4080         CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4081 
4082       T = VAT->getElementType();
4083       break;
4084     }
4085     case Type::FunctionProto:
4086     case Type::FunctionNoProto:
4087       T = cast<FunctionType>(Ty)->getReturnType();
4088       break;
4089     case Type::Paren:
4090     case Type::TypeOf:
4091     case Type::UnaryTransform:
4092     case Type::Attributed:
4093     case Type::SubstTemplateTypeParm:
4094     case Type::PackExpansion:
4095     case Type::MacroQualified:
4096       // Keep walking after single level desugaring.
4097       T = T.getSingleStepDesugaredType(Context);
4098       break;
4099     case Type::Typedef:
4100       T = cast<TypedefType>(Ty)->desugar();
4101       break;
4102     case Type::Decltype:
4103       T = cast<DecltypeType>(Ty)->desugar();
4104       break;
4105     case Type::Auto:
4106     case Type::DeducedTemplateSpecialization:
4107       T = cast<DeducedType>(Ty)->getDeducedType();
4108       break;
4109     case Type::TypeOfExpr:
4110       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4111       break;
4112     case Type::Atomic:
4113       T = cast<AtomicType>(Ty)->getValueType();
4114       break;
4115     }
4116   } while (!T.isNull() && T->isVariablyModifiedType());
4117 }
4118 
4119 /// Build a sizeof or alignof expression given a type operand.
4120 ExprResult
4121 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4122                                      SourceLocation OpLoc,
4123                                      UnaryExprOrTypeTrait ExprKind,
4124                                      SourceRange R) {
4125   if (!TInfo)
4126     return ExprError();
4127 
4128   QualType T = TInfo->getType();
4129 
4130   if (!T->isDependentType() &&
4131       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4132     return ExprError();
4133 
4134   if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4135     if (auto *TT = T->getAs<TypedefType>()) {
4136       for (auto I = FunctionScopes.rbegin(),
4137                 E = std::prev(FunctionScopes.rend());
4138            I != E; ++I) {
4139         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4140         if (CSI == nullptr)
4141           break;
4142         DeclContext *DC = nullptr;
4143         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4144           DC = LSI->CallOperator;
4145         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4146           DC = CRSI->TheCapturedDecl;
4147         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4148           DC = BSI->TheDecl;
4149         if (DC) {
4150           if (DC->containsDecl(TT->getDecl()))
4151             break;
4152           captureVariablyModifiedType(Context, T, CSI);
4153         }
4154       }
4155     }
4156   }
4157 
4158   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4159   return new (Context) UnaryExprOrTypeTraitExpr(
4160       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4161 }
4162 
4163 /// Build a sizeof or alignof expression given an expression
4164 /// operand.
4165 ExprResult
4166 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4167                                      UnaryExprOrTypeTrait ExprKind) {
4168   ExprResult PE = CheckPlaceholderExpr(E);
4169   if (PE.isInvalid())
4170     return ExprError();
4171 
4172   E = PE.get();
4173 
4174   // Verify that the operand is valid.
4175   bool isInvalid = false;
4176   if (E->isTypeDependent()) {
4177     // Delay type-checking for type-dependent expressions.
4178   } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4179     isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4180   } else if (ExprKind == UETT_VecStep) {
4181     isInvalid = CheckVecStepExpr(E);
4182   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4183       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4184       isInvalid = true;
4185   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4186     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4187     isInvalid = true;
4188   } else {
4189     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4190   }
4191 
4192   if (isInvalid)
4193     return ExprError();
4194 
4195   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4196     PE = TransformToPotentiallyEvaluated(E);
4197     if (PE.isInvalid()) return ExprError();
4198     E = PE.get();
4199   }
4200 
4201   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4202   return new (Context) UnaryExprOrTypeTraitExpr(
4203       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4204 }
4205 
4206 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4207 /// expr and the same for @c alignof and @c __alignof
4208 /// Note that the ArgRange is invalid if isType is false.
4209 ExprResult
4210 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4211                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4212                                     void *TyOrEx, SourceRange ArgRange) {
4213   // If error parsing type, ignore.
4214   if (!TyOrEx) return ExprError();
4215 
4216   if (IsType) {
4217     TypeSourceInfo *TInfo;
4218     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4219     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4220   }
4221 
4222   Expr *ArgEx = (Expr *)TyOrEx;
4223   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4224   return Result;
4225 }
4226 
4227 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4228                                      bool IsReal) {
4229   if (V.get()->isTypeDependent())
4230     return S.Context.DependentTy;
4231 
4232   // _Real and _Imag are only l-values for normal l-values.
4233   if (V.get()->getObjectKind() != OK_Ordinary) {
4234     V = S.DefaultLvalueConversion(V.get());
4235     if (V.isInvalid())
4236       return QualType();
4237   }
4238 
4239   // These operators return the element type of a complex type.
4240   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4241     return CT->getElementType();
4242 
4243   // Otherwise they pass through real integer and floating point types here.
4244   if (V.get()->getType()->isArithmeticType())
4245     return V.get()->getType();
4246 
4247   // Test for placeholders.
4248   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4249   if (PR.isInvalid()) return QualType();
4250   if (PR.get() != V.get()) {
4251     V = PR;
4252     return CheckRealImagOperand(S, V, Loc, IsReal);
4253   }
4254 
4255   // Reject anything else.
4256   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4257     << (IsReal ? "__real" : "__imag");
4258   return QualType();
4259 }
4260 
4261 
4262 
4263 ExprResult
4264 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4265                           tok::TokenKind Kind, Expr *Input) {
4266   UnaryOperatorKind Opc;
4267   switch (Kind) {
4268   default: llvm_unreachable("Unknown unary op!");
4269   case tok::plusplus:   Opc = UO_PostInc; break;
4270   case tok::minusminus: Opc = UO_PostDec; break;
4271   }
4272 
4273   // Since this might is a postfix expression, get rid of ParenListExprs.
4274   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4275   if (Result.isInvalid()) return ExprError();
4276   Input = Result.get();
4277 
4278   return BuildUnaryOp(S, OpLoc, Opc, Input);
4279 }
4280 
4281 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4282 ///
4283 /// \return true on error
4284 static bool checkArithmeticOnObjCPointer(Sema &S,
4285                                          SourceLocation opLoc,
4286                                          Expr *op) {
4287   assert(op->getType()->isObjCObjectPointerType());
4288   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4289       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4290     return false;
4291 
4292   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4293     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4294     << op->getSourceRange();
4295   return true;
4296 }
4297 
4298 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4299   auto *BaseNoParens = Base->IgnoreParens();
4300   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4301     return MSProp->getPropertyDecl()->getType()->isArrayType();
4302   return isa<MSPropertySubscriptExpr>(BaseNoParens);
4303 }
4304 
4305 ExprResult
4306 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
4307                               Expr *idx, SourceLocation rbLoc) {
4308   if (base && !base->getType().isNull() &&
4309       base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
4310     return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
4311                                     /*Length=*/nullptr, rbLoc);
4312 
4313   // Since this might be a postfix expression, get rid of ParenListExprs.
4314   if (isa<ParenListExpr>(base)) {
4315     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4316     if (result.isInvalid()) return ExprError();
4317     base = result.get();
4318   }
4319 
4320   // Handle any non-overload placeholder types in the base and index
4321   // expressions.  We can't handle overloads here because the other
4322   // operand might be an overloadable type, in which case the overload
4323   // resolution for the operator overload should get the first crack
4324   // at the overload.
4325   bool IsMSPropertySubscript = false;
4326   if (base->getType()->isNonOverloadPlaceholderType()) {
4327     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4328     if (!IsMSPropertySubscript) {
4329       ExprResult result = CheckPlaceholderExpr(base);
4330       if (result.isInvalid())
4331         return ExprError();
4332       base = result.get();
4333     }
4334   }
4335   if (idx->getType()->isNonOverloadPlaceholderType()) {
4336     ExprResult result = CheckPlaceholderExpr(idx);
4337     if (result.isInvalid()) return ExprError();
4338     idx = result.get();
4339   }
4340 
4341   // Build an unanalyzed expression if either operand is type-dependent.
4342   if (getLangOpts().CPlusPlus &&
4343       (base->isTypeDependent() || idx->isTypeDependent())) {
4344     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
4345                                             VK_LValue, OK_Ordinary, rbLoc);
4346   }
4347 
4348   // MSDN, property (C++)
4349   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4350   // This attribute can also be used in the declaration of an empty array in a
4351   // class or structure definition. For example:
4352   // __declspec(property(get=GetX, put=PutX)) int x[];
4353   // The above statement indicates that x[] can be used with one or more array
4354   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4355   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4356   if (IsMSPropertySubscript) {
4357     // Build MS property subscript expression if base is MS property reference
4358     // or MS property subscript.
4359     return new (Context) MSPropertySubscriptExpr(
4360         base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
4361   }
4362 
4363   // Use C++ overloaded-operator rules if either operand has record
4364   // type.  The spec says to do this if either type is *overloadable*,
4365   // but enum types can't declare subscript operators or conversion
4366   // operators, so there's nothing interesting for overload resolution
4367   // to do if there aren't any record types involved.
4368   //
4369   // ObjC pointers have their own subscripting logic that is not tied
4370   // to overload resolution and so should not take this path.
4371   if (getLangOpts().CPlusPlus &&
4372       (base->getType()->isRecordType() ||
4373        (!base->getType()->isObjCObjectPointerType() &&
4374         idx->getType()->isRecordType()))) {
4375     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
4376   }
4377 
4378   ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
4379 
4380   if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4381     CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4382 
4383   return Res;
4384 }
4385 
4386 void Sema::CheckAddressOfNoDeref(const Expr *E) {
4387   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4388   const Expr *StrippedExpr = E->IgnoreParenImpCasts();
4389 
4390   // For expressions like `&(*s).b`, the base is recorded and what should be
4391   // checked.
4392   const MemberExpr *Member = nullptr;
4393   while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
4394     StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
4395 
4396   LastRecord.PossibleDerefs.erase(StrippedExpr);
4397 }
4398 
4399 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
4400   QualType ResultTy = E->getType();
4401   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4402 
4403   // Bail if the element is an array since it is not memory access.
4404   if (isa<ArrayType>(ResultTy))
4405     return;
4406 
4407   if (ResultTy->hasAttr(attr::NoDeref)) {
4408     LastRecord.PossibleDerefs.insert(E);
4409     return;
4410   }
4411 
4412   // Check if the base type is a pointer to a member access of a struct
4413   // marked with noderef.
4414   const Expr *Base = E->getBase();
4415   QualType BaseTy = Base->getType();
4416   if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
4417     // Not a pointer access
4418     return;
4419 
4420   const MemberExpr *Member = nullptr;
4421   while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
4422          Member->isArrow())
4423     Base = Member->getBase();
4424 
4425   if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
4426     if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
4427       LastRecord.PossibleDerefs.insert(E);
4428   }
4429 }
4430 
4431 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
4432                                           Expr *LowerBound,
4433                                           SourceLocation ColonLoc, Expr *Length,
4434                                           SourceLocation RBLoc) {
4435   if (Base->getType()->isPlaceholderType() &&
4436       !Base->getType()->isSpecificPlaceholderType(
4437           BuiltinType::OMPArraySection)) {
4438     ExprResult Result = CheckPlaceholderExpr(Base);
4439     if (Result.isInvalid())
4440       return ExprError();
4441     Base = Result.get();
4442   }
4443   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
4444     ExprResult Result = CheckPlaceholderExpr(LowerBound);
4445     if (Result.isInvalid())
4446       return ExprError();
4447     Result = DefaultLvalueConversion(Result.get());
4448     if (Result.isInvalid())
4449       return ExprError();
4450     LowerBound = Result.get();
4451   }
4452   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
4453     ExprResult Result = CheckPlaceholderExpr(Length);
4454     if (Result.isInvalid())
4455       return ExprError();
4456     Result = DefaultLvalueConversion(Result.get());
4457     if (Result.isInvalid())
4458       return ExprError();
4459     Length = Result.get();
4460   }
4461 
4462   // Build an unanalyzed expression if either operand is type-dependent.
4463   if (Base->isTypeDependent() ||
4464       (LowerBound &&
4465        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
4466       (Length && (Length->isTypeDependent() || Length->isValueDependent()))) {
4467     return new (Context)
4468         OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy,
4469                             VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4470   }
4471 
4472   // Perform default conversions.
4473   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
4474   QualType ResultTy;
4475   if (OriginalTy->isAnyPointerType()) {
4476     ResultTy = OriginalTy->getPointeeType();
4477   } else if (OriginalTy->isArrayType()) {
4478     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
4479   } else {
4480     return ExprError(
4481         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
4482         << Base->getSourceRange());
4483   }
4484   // C99 6.5.2.1p1
4485   if (LowerBound) {
4486     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
4487                                                       LowerBound);
4488     if (Res.isInvalid())
4489       return ExprError(Diag(LowerBound->getExprLoc(),
4490                             diag::err_omp_typecheck_section_not_integer)
4491                        << 0 << LowerBound->getSourceRange());
4492     LowerBound = Res.get();
4493 
4494     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4495         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4496       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
4497           << 0 << LowerBound->getSourceRange();
4498   }
4499   if (Length) {
4500     auto Res =
4501         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
4502     if (Res.isInvalid())
4503       return ExprError(Diag(Length->getExprLoc(),
4504                             diag::err_omp_typecheck_section_not_integer)
4505                        << 1 << Length->getSourceRange());
4506     Length = Res.get();
4507 
4508     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4509         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4510       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
4511           << 1 << Length->getSourceRange();
4512   }
4513 
4514   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4515   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4516   // type. Note that functions are not objects, and that (in C99 parlance)
4517   // incomplete types are not object types.
4518   if (ResultTy->isFunctionType()) {
4519     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
4520         << ResultTy << Base->getSourceRange();
4521     return ExprError();
4522   }
4523 
4524   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
4525                           diag::err_omp_section_incomplete_type, Base))
4526     return ExprError();
4527 
4528   if (LowerBound && !OriginalTy->isAnyPointerType()) {
4529     Expr::EvalResult Result;
4530     if (LowerBound->EvaluateAsInt(Result, Context)) {
4531       // OpenMP 4.5, [2.4 Array Sections]
4532       // The array section must be a subset of the original array.
4533       llvm::APSInt LowerBoundValue = Result.Val.getInt();
4534       if (LowerBoundValue.isNegative()) {
4535         Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
4536             << LowerBound->getSourceRange();
4537         return ExprError();
4538       }
4539     }
4540   }
4541 
4542   if (Length) {
4543     Expr::EvalResult Result;
4544     if (Length->EvaluateAsInt(Result, Context)) {
4545       // OpenMP 4.5, [2.4 Array Sections]
4546       // The length must evaluate to non-negative integers.
4547       llvm::APSInt LengthValue = Result.Val.getInt();
4548       if (LengthValue.isNegative()) {
4549         Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
4550             << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
4551             << Length->getSourceRange();
4552         return ExprError();
4553       }
4554     }
4555   } else if (ColonLoc.isValid() &&
4556              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
4557                                       !OriginalTy->isVariableArrayType()))) {
4558     // OpenMP 4.5, [2.4 Array Sections]
4559     // When the size of the array dimension is not known, the length must be
4560     // specified explicitly.
4561     Diag(ColonLoc, diag::err_omp_section_length_undefined)
4562         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
4563     return ExprError();
4564   }
4565 
4566   if (!Base->getType()->isSpecificPlaceholderType(
4567           BuiltinType::OMPArraySection)) {
4568     ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
4569     if (Result.isInvalid())
4570       return ExprError();
4571     Base = Result.get();
4572   }
4573   return new (Context)
4574       OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy,
4575                           VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4576 }
4577 
4578 ExprResult
4579 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
4580                                       Expr *Idx, SourceLocation RLoc) {
4581   Expr *LHSExp = Base;
4582   Expr *RHSExp = Idx;
4583 
4584   ExprValueKind VK = VK_LValue;
4585   ExprObjectKind OK = OK_Ordinary;
4586 
4587   // Per C++ core issue 1213, the result is an xvalue if either operand is
4588   // a non-lvalue array, and an lvalue otherwise.
4589   if (getLangOpts().CPlusPlus11) {
4590     for (auto *Op : {LHSExp, RHSExp}) {
4591       Op = Op->IgnoreImplicit();
4592       if (Op->getType()->isArrayType() && !Op->isLValue())
4593         VK = VK_XValue;
4594     }
4595   }
4596 
4597   // Perform default conversions.
4598   if (!LHSExp->getType()->getAs<VectorType>()) {
4599     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
4600     if (Result.isInvalid())
4601       return ExprError();
4602     LHSExp = Result.get();
4603   }
4604   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
4605   if (Result.isInvalid())
4606     return ExprError();
4607   RHSExp = Result.get();
4608 
4609   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
4610 
4611   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
4612   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
4613   // in the subscript position. As a result, we need to derive the array base
4614   // and index from the expression types.
4615   Expr *BaseExpr, *IndexExpr;
4616   QualType ResultType;
4617   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
4618     BaseExpr = LHSExp;
4619     IndexExpr = RHSExp;
4620     ResultType = Context.DependentTy;
4621   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
4622     BaseExpr = LHSExp;
4623     IndexExpr = RHSExp;
4624     ResultType = PTy->getPointeeType();
4625   } else if (const ObjCObjectPointerType *PTy =
4626                LHSTy->getAs<ObjCObjectPointerType>()) {
4627     BaseExpr = LHSExp;
4628     IndexExpr = RHSExp;
4629 
4630     // Use custom logic if this should be the pseudo-object subscript
4631     // expression.
4632     if (!LangOpts.isSubscriptPointerArithmetic())
4633       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
4634                                           nullptr);
4635 
4636     ResultType = PTy->getPointeeType();
4637   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
4638      // Handle the uncommon case of "123[Ptr]".
4639     BaseExpr = RHSExp;
4640     IndexExpr = LHSExp;
4641     ResultType = PTy->getPointeeType();
4642   } else if (const ObjCObjectPointerType *PTy =
4643                RHSTy->getAs<ObjCObjectPointerType>()) {
4644      // Handle the uncommon case of "123[Ptr]".
4645     BaseExpr = RHSExp;
4646     IndexExpr = LHSExp;
4647     ResultType = PTy->getPointeeType();
4648     if (!LangOpts.isSubscriptPointerArithmetic()) {
4649       Diag(LLoc, diag::err_subscript_nonfragile_interface)
4650         << ResultType << BaseExpr->getSourceRange();
4651       return ExprError();
4652     }
4653   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
4654     BaseExpr = LHSExp;    // vectors: V[123]
4655     IndexExpr = RHSExp;
4656     // We apply C++ DR1213 to vector subscripting too.
4657     if (getLangOpts().CPlusPlus11 && LHSExp->getValueKind() == VK_RValue) {
4658       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
4659       if (Materialized.isInvalid())
4660         return ExprError();
4661       LHSExp = Materialized.get();
4662     }
4663     VK = LHSExp->getValueKind();
4664     if (VK != VK_RValue)
4665       OK = OK_VectorComponent;
4666 
4667     ResultType = VTy->getElementType();
4668     QualType BaseType = BaseExpr->getType();
4669     Qualifiers BaseQuals = BaseType.getQualifiers();
4670     Qualifiers MemberQuals = ResultType.getQualifiers();
4671     Qualifiers Combined = BaseQuals + MemberQuals;
4672     if (Combined != MemberQuals)
4673       ResultType = Context.getQualifiedType(ResultType, Combined);
4674   } else if (LHSTy->isArrayType()) {
4675     // If we see an array that wasn't promoted by
4676     // DefaultFunctionArrayLvalueConversion, it must be an array that
4677     // wasn't promoted because of the C90 rule that doesn't
4678     // allow promoting non-lvalue arrays.  Warn, then
4679     // force the promotion here.
4680     Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
4681         << LHSExp->getSourceRange();
4682     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
4683                                CK_ArrayToPointerDecay).get();
4684     LHSTy = LHSExp->getType();
4685 
4686     BaseExpr = LHSExp;
4687     IndexExpr = RHSExp;
4688     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
4689   } else if (RHSTy->isArrayType()) {
4690     // Same as previous, except for 123[f().a] case
4691     Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
4692         << RHSExp->getSourceRange();
4693     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
4694                                CK_ArrayToPointerDecay).get();
4695     RHSTy = RHSExp->getType();
4696 
4697     BaseExpr = RHSExp;
4698     IndexExpr = LHSExp;
4699     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
4700   } else {
4701     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
4702        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
4703   }
4704   // C99 6.5.2.1p1
4705   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
4706     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
4707                      << IndexExpr->getSourceRange());
4708 
4709   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4710        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4711          && !IndexExpr->isTypeDependent())
4712     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
4713 
4714   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4715   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4716   // type. Note that Functions are not objects, and that (in C99 parlance)
4717   // incomplete types are not object types.
4718   if (ResultType->isFunctionType()) {
4719     Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
4720         << ResultType << BaseExpr->getSourceRange();
4721     return ExprError();
4722   }
4723 
4724   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
4725     // GNU extension: subscripting on pointer to void
4726     Diag(LLoc, diag::ext_gnu_subscript_void_type)
4727       << BaseExpr->getSourceRange();
4728 
4729     // C forbids expressions of unqualified void type from being l-values.
4730     // See IsCForbiddenLValueType.
4731     if (!ResultType.hasQualifiers()) VK = VK_RValue;
4732   } else if (!ResultType->isDependentType() &&
4733       RequireCompleteType(LLoc, ResultType,
4734                           diag::err_subscript_incomplete_type, BaseExpr))
4735     return ExprError();
4736 
4737   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
4738          !ResultType.isCForbiddenLValueType());
4739 
4740   if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
4741       FunctionScopes.size() > 1) {
4742     if (auto *TT =
4743             LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
4744       for (auto I = FunctionScopes.rbegin(),
4745                 E = std::prev(FunctionScopes.rend());
4746            I != E; ++I) {
4747         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4748         if (CSI == nullptr)
4749           break;
4750         DeclContext *DC = nullptr;
4751         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4752           DC = LSI->CallOperator;
4753         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4754           DC = CRSI->TheCapturedDecl;
4755         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4756           DC = BSI->TheDecl;
4757         if (DC) {
4758           if (DC->containsDecl(TT->getDecl()))
4759             break;
4760           captureVariablyModifiedType(
4761               Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
4762         }
4763       }
4764     }
4765   }
4766 
4767   return new (Context)
4768       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
4769 }
4770 
4771 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
4772                                   ParmVarDecl *Param) {
4773   if (Param->hasUnparsedDefaultArg()) {
4774     Diag(CallLoc,
4775          diag::err_use_of_default_argument_to_function_declared_later) <<
4776       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
4777     Diag(UnparsedDefaultArgLocs[Param],
4778          diag::note_default_argument_declared_here);
4779     return true;
4780   }
4781 
4782   if (Param->hasUninstantiatedDefaultArg()) {
4783     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
4784 
4785     EnterExpressionEvaluationContext EvalContext(
4786         *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
4787 
4788     // Instantiate the expression.
4789     //
4790     // FIXME: Pass in a correct Pattern argument, otherwise
4791     // getTemplateInstantiationArgs uses the lexical context of FD, e.g.
4792     //
4793     // template<typename T>
4794     // struct A {
4795     //   static int FooImpl();
4796     //
4797     //   template<typename Tp>
4798     //   // bug: default argument A<T>::FooImpl() is evaluated with 2-level
4799     //   // template argument list [[T], [Tp]], should be [[Tp]].
4800     //   friend A<Tp> Foo(int a);
4801     // };
4802     //
4803     // template<typename T>
4804     // A<T> Foo(int a = A<T>::FooImpl());
4805     MultiLevelTemplateArgumentList MutiLevelArgList
4806       = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
4807 
4808     InstantiatingTemplate Inst(*this, CallLoc, Param,
4809                                MutiLevelArgList.getInnermost());
4810     if (Inst.isInvalid())
4811       return true;
4812     if (Inst.isAlreadyInstantiating()) {
4813       Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
4814       Param->setInvalidDecl();
4815       return true;
4816     }
4817 
4818     ExprResult Result;
4819     {
4820       // C++ [dcl.fct.default]p5:
4821       //   The names in the [default argument] expression are bound, and
4822       //   the semantic constraints are checked, at the point where the
4823       //   default argument expression appears.
4824       ContextRAII SavedContext(*this, FD);
4825       LocalInstantiationScope Local(*this);
4826       Result = SubstInitializer(UninstExpr, MutiLevelArgList,
4827                                 /*DirectInit*/false);
4828     }
4829     if (Result.isInvalid())
4830       return true;
4831 
4832     // Check the expression as an initializer for the parameter.
4833     InitializedEntity Entity
4834       = InitializedEntity::InitializeParameter(Context, Param);
4835     InitializationKind Kind = InitializationKind::CreateCopy(
4836         Param->getLocation(),
4837         /*FIXME:EqualLoc*/ UninstExpr->getBeginLoc());
4838     Expr *ResultE = Result.getAs<Expr>();
4839 
4840     InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
4841     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
4842     if (Result.isInvalid())
4843       return true;
4844 
4845     Result =
4846         ActOnFinishFullExpr(Result.getAs<Expr>(), Param->getOuterLocStart(),
4847                             /*DiscardedValue*/ false);
4848     if (Result.isInvalid())
4849       return true;
4850 
4851     // Remember the instantiated default argument.
4852     Param->setDefaultArg(Result.getAs<Expr>());
4853     if (ASTMutationListener *L = getASTMutationListener()) {
4854       L->DefaultArgumentInstantiated(Param);
4855     }
4856   }
4857 
4858   // If the default argument expression is not set yet, we are building it now.
4859   if (!Param->hasInit()) {
4860     Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
4861     Param->setInvalidDecl();
4862     return true;
4863   }
4864 
4865   // If the default expression creates temporaries, we need to
4866   // push them to the current stack of expression temporaries so they'll
4867   // be properly destroyed.
4868   // FIXME: We should really be rebuilding the default argument with new
4869   // bound temporaries; see the comment in PR5810.
4870   // We don't need to do that with block decls, though, because
4871   // blocks in default argument expression can never capture anything.
4872   if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
4873     // Set the "needs cleanups" bit regardless of whether there are
4874     // any explicit objects.
4875     Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
4876 
4877     // Append all the objects to the cleanup list.  Right now, this
4878     // should always be a no-op, because blocks in default argument
4879     // expressions should never be able to capture anything.
4880     assert(!Init->getNumObjects() &&
4881            "default argument expression has capturing blocks?");
4882   }
4883 
4884   // We already type-checked the argument, so we know it works.
4885   // Just mark all of the declarations in this potentially-evaluated expression
4886   // as being "referenced".
4887   EnterExpressionEvaluationContext EvalContext(
4888       *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
4889   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
4890                                    /*SkipLocalVariables=*/true);
4891   return false;
4892 }
4893 
4894 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
4895                                         FunctionDecl *FD, ParmVarDecl *Param) {
4896   if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
4897     return ExprError();
4898   return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
4899 }
4900 
4901 Sema::VariadicCallType
4902 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
4903                           Expr *Fn) {
4904   if (Proto && Proto->isVariadic()) {
4905     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
4906       return VariadicConstructor;
4907     else if (Fn && Fn->getType()->isBlockPointerType())
4908       return VariadicBlock;
4909     else if (FDecl) {
4910       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4911         if (Method->isInstance())
4912           return VariadicMethod;
4913     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
4914       return VariadicMethod;
4915     return VariadicFunction;
4916   }
4917   return VariadicDoesNotApply;
4918 }
4919 
4920 namespace {
4921 class FunctionCallCCC final : public FunctionCallFilterCCC {
4922 public:
4923   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
4924                   unsigned NumArgs, MemberExpr *ME)
4925       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
4926         FunctionName(FuncName) {}
4927 
4928   bool ValidateCandidate(const TypoCorrection &candidate) override {
4929     if (!candidate.getCorrectionSpecifier() ||
4930         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
4931       return false;
4932     }
4933 
4934     return FunctionCallFilterCCC::ValidateCandidate(candidate);
4935   }
4936 
4937   std::unique_ptr<CorrectionCandidateCallback> clone() override {
4938     return llvm::make_unique<FunctionCallCCC>(*this);
4939   }
4940 
4941 private:
4942   const IdentifierInfo *const FunctionName;
4943 };
4944 }
4945 
4946 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
4947                                                FunctionDecl *FDecl,
4948                                                ArrayRef<Expr *> Args) {
4949   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
4950   DeclarationName FuncName = FDecl->getDeclName();
4951   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
4952 
4953   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
4954   if (TypoCorrection Corrected = S.CorrectTypo(
4955           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
4956           S.getScopeForContext(S.CurContext), nullptr, CCC,
4957           Sema::CTK_ErrorRecovery)) {
4958     if (NamedDecl *ND = Corrected.getFoundDecl()) {
4959       if (Corrected.isOverloaded()) {
4960         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
4961         OverloadCandidateSet::iterator Best;
4962         for (NamedDecl *CD : Corrected) {
4963           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
4964             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
4965                                    OCS);
4966         }
4967         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
4968         case OR_Success:
4969           ND = Best->FoundDecl;
4970           Corrected.setCorrectionDecl(ND);
4971           break;
4972         default:
4973           break;
4974         }
4975       }
4976       ND = ND->getUnderlyingDecl();
4977       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
4978         return Corrected;
4979     }
4980   }
4981   return TypoCorrection();
4982 }
4983 
4984 /// ConvertArgumentsForCall - Converts the arguments specified in
4985 /// Args/NumArgs to the parameter types of the function FDecl with
4986 /// function prototype Proto. Call is the call expression itself, and
4987 /// Fn is the function expression. For a C++ member function, this
4988 /// routine does not attempt to convert the object argument. Returns
4989 /// true if the call is ill-formed.
4990 bool
4991 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
4992                               FunctionDecl *FDecl,
4993                               const FunctionProtoType *Proto,
4994                               ArrayRef<Expr *> Args,
4995                               SourceLocation RParenLoc,
4996                               bool IsExecConfig) {
4997   // Bail out early if calling a builtin with custom typechecking.
4998   if (FDecl)
4999     if (unsigned ID = FDecl->getBuiltinID())
5000       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5001         return false;
5002 
5003   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5004   // assignment, to the types of the corresponding parameter, ...
5005   unsigned NumParams = Proto->getNumParams();
5006   bool Invalid = false;
5007   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5008   unsigned FnKind = Fn->getType()->isBlockPointerType()
5009                        ? 1 /* block */
5010                        : (IsExecConfig ? 3 /* kernel function (exec config) */
5011                                        : 0 /* function */);
5012 
5013   // If too few arguments are available (and we don't have default
5014   // arguments for the remaining parameters), don't make the call.
5015   if (Args.size() < NumParams) {
5016     if (Args.size() < MinArgs) {
5017       TypoCorrection TC;
5018       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5019         unsigned diag_id =
5020             MinArgs == NumParams && !Proto->isVariadic()
5021                 ? diag::err_typecheck_call_too_few_args_suggest
5022                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5023         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
5024                                         << static_cast<unsigned>(Args.size())
5025                                         << TC.getCorrectionRange());
5026       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
5027         Diag(RParenLoc,
5028              MinArgs == NumParams && !Proto->isVariadic()
5029                  ? diag::err_typecheck_call_too_few_args_one
5030                  : diag::err_typecheck_call_too_few_args_at_least_one)
5031             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
5032       else
5033         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
5034                             ? diag::err_typecheck_call_too_few_args
5035                             : diag::err_typecheck_call_too_few_args_at_least)
5036             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
5037             << Fn->getSourceRange();
5038 
5039       // Emit the location of the prototype.
5040       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5041         Diag(FDecl->getBeginLoc(), diag::note_callee_decl) << FDecl;
5042 
5043       return true;
5044     }
5045     // We reserve space for the default arguments when we create
5046     // the call expression, before calling ConvertArgumentsForCall.
5047     assert((Call->getNumArgs() == NumParams) &&
5048            "We should have reserved space for the default arguments before!");
5049   }
5050 
5051   // If too many are passed and not variadic, error on the extras and drop
5052   // them.
5053   if (Args.size() > NumParams) {
5054     if (!Proto->isVariadic()) {
5055       TypoCorrection TC;
5056       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5057         unsigned diag_id =
5058             MinArgs == NumParams && !Proto->isVariadic()
5059                 ? diag::err_typecheck_call_too_many_args_suggest
5060                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5061         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
5062                                         << static_cast<unsigned>(Args.size())
5063                                         << TC.getCorrectionRange());
5064       } else if (NumParams == 1 && FDecl &&
5065                  FDecl->getParamDecl(0)->getDeclName())
5066         Diag(Args[NumParams]->getBeginLoc(),
5067              MinArgs == NumParams
5068                  ? diag::err_typecheck_call_too_many_args_one
5069                  : diag::err_typecheck_call_too_many_args_at_most_one)
5070             << FnKind << FDecl->getParamDecl(0)
5071             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
5072             << SourceRange(Args[NumParams]->getBeginLoc(),
5073                            Args.back()->getEndLoc());
5074       else
5075         Diag(Args[NumParams]->getBeginLoc(),
5076              MinArgs == NumParams
5077                  ? diag::err_typecheck_call_too_many_args
5078                  : diag::err_typecheck_call_too_many_args_at_most)
5079             << FnKind << NumParams << static_cast<unsigned>(Args.size())
5080             << Fn->getSourceRange()
5081             << SourceRange(Args[NumParams]->getBeginLoc(),
5082                            Args.back()->getEndLoc());
5083 
5084       // Emit the location of the prototype.
5085       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5086         Diag(FDecl->getBeginLoc(), diag::note_callee_decl) << FDecl;
5087 
5088       // This deletes the extra arguments.
5089       Call->shrinkNumArgs(NumParams);
5090       return true;
5091     }
5092   }
5093   SmallVector<Expr *, 8> AllArgs;
5094   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5095 
5096   Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
5097                                    AllArgs, CallType);
5098   if (Invalid)
5099     return true;
5100   unsigned TotalNumArgs = AllArgs.size();
5101   for (unsigned i = 0; i < TotalNumArgs; ++i)
5102     Call->setArg(i, AllArgs[i]);
5103 
5104   return false;
5105 }
5106 
5107 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5108                                   const FunctionProtoType *Proto,
5109                                   unsigned FirstParam, ArrayRef<Expr *> Args,
5110                                   SmallVectorImpl<Expr *> &AllArgs,
5111                                   VariadicCallType CallType, bool AllowExplicit,
5112                                   bool IsListInitialization) {
5113   unsigned NumParams = Proto->getNumParams();
5114   bool Invalid = false;
5115   size_t ArgIx = 0;
5116   // Continue to check argument types (even if we have too few/many args).
5117   for (unsigned i = FirstParam; i < NumParams; i++) {
5118     QualType ProtoArgType = Proto->getParamType(i);
5119 
5120     Expr *Arg;
5121     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5122     if (ArgIx < Args.size()) {
5123       Arg = Args[ArgIx++];
5124 
5125       if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
5126                               diag::err_call_incomplete_argument, Arg))
5127         return true;
5128 
5129       // Strip the unbridged-cast placeholder expression off, if applicable.
5130       bool CFAudited = false;
5131       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5132           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5133           (!Param || !Param->hasAttr<CFConsumedAttr>()))
5134         Arg = stripARCUnbridgedCast(Arg);
5135       else if (getLangOpts().ObjCAutoRefCount &&
5136                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5137                (!Param || !Param->hasAttr<CFConsumedAttr>()))
5138         CFAudited = true;
5139 
5140       if (Proto->getExtParameterInfo(i).isNoEscape())
5141         if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
5142           BE->getBlockDecl()->setDoesNotEscape();
5143 
5144       InitializedEntity Entity =
5145           Param ? InitializedEntity::InitializeParameter(Context, Param,
5146                                                          ProtoArgType)
5147                 : InitializedEntity::InitializeParameter(
5148                       Context, ProtoArgType, Proto->isParamConsumed(i));
5149 
5150       // Remember that parameter belongs to a CF audited API.
5151       if (CFAudited)
5152         Entity.setParameterCFAudited();
5153 
5154       ExprResult ArgE = PerformCopyInitialization(
5155           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
5156       if (ArgE.isInvalid())
5157         return true;
5158 
5159       Arg = ArgE.getAs<Expr>();
5160     } else {
5161       assert(Param && "can't use default arguments without a known callee");
5162 
5163       ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
5164       if (ArgExpr.isInvalid())
5165         return true;
5166 
5167       Arg = ArgExpr.getAs<Expr>();
5168     }
5169 
5170     // Check for array bounds violations for each argument to the call. This
5171     // check only triggers warnings when the argument isn't a more complex Expr
5172     // with its own checking, such as a BinaryOperator.
5173     CheckArrayAccess(Arg);
5174 
5175     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
5176     CheckStaticArrayArgument(CallLoc, Param, Arg);
5177 
5178     AllArgs.push_back(Arg);
5179   }
5180 
5181   // If this is a variadic call, handle args passed through "...".
5182   if (CallType != VariadicDoesNotApply) {
5183     // Assume that extern "C" functions with variadic arguments that
5184     // return __unknown_anytype aren't *really* variadic.
5185     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
5186         FDecl->isExternC()) {
5187       for (Expr *A : Args.slice(ArgIx)) {
5188         QualType paramType; // ignored
5189         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
5190         Invalid |= arg.isInvalid();
5191         AllArgs.push_back(arg.get());
5192       }
5193 
5194     // Otherwise do argument promotion, (C99 6.5.2.2p7).
5195     } else {
5196       for (Expr *A : Args.slice(ArgIx)) {
5197         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
5198         Invalid |= Arg.isInvalid();
5199         AllArgs.push_back(Arg.get());
5200       }
5201     }
5202 
5203     // Check for array bounds violations.
5204     for (Expr *A : Args.slice(ArgIx))
5205       CheckArrayAccess(A);
5206   }
5207   return Invalid;
5208 }
5209 
5210 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
5211   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
5212   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
5213     TL = DTL.getOriginalLoc();
5214   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
5215     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
5216       << ATL.getLocalSourceRange();
5217 }
5218 
5219 /// CheckStaticArrayArgument - If the given argument corresponds to a static
5220 /// array parameter, check that it is non-null, and that if it is formed by
5221 /// array-to-pointer decay, the underlying array is sufficiently large.
5222 ///
5223 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
5224 /// array type derivation, then for each call to the function, the value of the
5225 /// corresponding actual argument shall provide access to the first element of
5226 /// an array with at least as many elements as specified by the size expression.
5227 void
5228 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
5229                                ParmVarDecl *Param,
5230                                const Expr *ArgExpr) {
5231   // Static array parameters are not supported in C++.
5232   if (!Param || getLangOpts().CPlusPlus)
5233     return;
5234 
5235   QualType OrigTy = Param->getOriginalType();
5236 
5237   const ArrayType *AT = Context.getAsArrayType(OrigTy);
5238   if (!AT || AT->getSizeModifier() != ArrayType::Static)
5239     return;
5240 
5241   if (ArgExpr->isNullPointerConstant(Context,
5242                                      Expr::NPC_NeverValueDependent)) {
5243     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
5244     DiagnoseCalleeStaticArrayParam(*this, Param);
5245     return;
5246   }
5247 
5248   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
5249   if (!CAT)
5250     return;
5251 
5252   const ConstantArrayType *ArgCAT =
5253     Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
5254   if (!ArgCAT)
5255     return;
5256 
5257   if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
5258                                              ArgCAT->getElementType())) {
5259     if (ArgCAT->getSize().ult(CAT->getSize())) {
5260       Diag(CallLoc, diag::warn_static_array_too_small)
5261           << ArgExpr->getSourceRange()
5262           << (unsigned)ArgCAT->getSize().getZExtValue()
5263           << (unsigned)CAT->getSize().getZExtValue() << 0;
5264       DiagnoseCalleeStaticArrayParam(*this, Param);
5265     }
5266     return;
5267   }
5268 
5269   Optional<CharUnits> ArgSize =
5270       getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
5271   Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
5272   if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
5273     Diag(CallLoc, diag::warn_static_array_too_small)
5274         << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
5275         << (unsigned)ParmSize->getQuantity() << 1;
5276     DiagnoseCalleeStaticArrayParam(*this, Param);
5277   }
5278 }
5279 
5280 /// Given a function expression of unknown-any type, try to rebuild it
5281 /// to have a function type.
5282 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
5283 
5284 /// Is the given type a placeholder that we need to lower out
5285 /// immediately during argument processing?
5286 static bool isPlaceholderToRemoveAsArg(QualType type) {
5287   // Placeholders are never sugared.
5288   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
5289   if (!placeholder) return false;
5290 
5291   switch (placeholder->getKind()) {
5292   // Ignore all the non-placeholder types.
5293 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
5294   case BuiltinType::Id:
5295 #include "clang/Basic/OpenCLImageTypes.def"
5296 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
5297   case BuiltinType::Id:
5298 #include "clang/Basic/OpenCLExtensionTypes.def"
5299 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
5300 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
5301 #include "clang/AST/BuiltinTypes.def"
5302     return false;
5303 
5304   // We cannot lower out overload sets; they might validly be resolved
5305   // by the call machinery.
5306   case BuiltinType::Overload:
5307     return false;
5308 
5309   // Unbridged casts in ARC can be handled in some call positions and
5310   // should be left in place.
5311   case BuiltinType::ARCUnbridgedCast:
5312     return false;
5313 
5314   // Pseudo-objects should be converted as soon as possible.
5315   case BuiltinType::PseudoObject:
5316     return true;
5317 
5318   // The debugger mode could theoretically but currently does not try
5319   // to resolve unknown-typed arguments based on known parameter types.
5320   case BuiltinType::UnknownAny:
5321     return true;
5322 
5323   // These are always invalid as call arguments and should be reported.
5324   case BuiltinType::BoundMember:
5325   case BuiltinType::BuiltinFn:
5326   case BuiltinType::OMPArraySection:
5327     return true;
5328 
5329   }
5330   llvm_unreachable("bad builtin type kind");
5331 }
5332 
5333 /// Check an argument list for placeholders that we won't try to
5334 /// handle later.
5335 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
5336   // Apply this processing to all the arguments at once instead of
5337   // dying at the first failure.
5338   bool hasInvalid = false;
5339   for (size_t i = 0, e = args.size(); i != e; i++) {
5340     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
5341       ExprResult result = S.CheckPlaceholderExpr(args[i]);
5342       if (result.isInvalid()) hasInvalid = true;
5343       else args[i] = result.get();
5344     } else if (hasInvalid) {
5345       (void)S.CorrectDelayedTyposInExpr(args[i]);
5346     }
5347   }
5348   return hasInvalid;
5349 }
5350 
5351 /// If a builtin function has a pointer argument with no explicit address
5352 /// space, then it should be able to accept a pointer to any address
5353 /// space as input.  In order to do this, we need to replace the
5354 /// standard builtin declaration with one that uses the same address space
5355 /// as the call.
5356 ///
5357 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
5358 ///                  it does not contain any pointer arguments without
5359 ///                  an address space qualifer.  Otherwise the rewritten
5360 ///                  FunctionDecl is returned.
5361 /// TODO: Handle pointer return types.
5362 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
5363                                                 FunctionDecl *FDecl,
5364                                                 MultiExprArg ArgExprs) {
5365 
5366   QualType DeclType = FDecl->getType();
5367   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
5368 
5369   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) ||
5370       !FT || FT->isVariadic() || ArgExprs.size() != FT->getNumParams())
5371     return nullptr;
5372 
5373   bool NeedsNewDecl = false;
5374   unsigned i = 0;
5375   SmallVector<QualType, 8> OverloadParams;
5376 
5377   for (QualType ParamType : FT->param_types()) {
5378 
5379     // Convert array arguments to pointer to simplify type lookup.
5380     ExprResult ArgRes =
5381         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
5382     if (ArgRes.isInvalid())
5383       return nullptr;
5384     Expr *Arg = ArgRes.get();
5385     QualType ArgType = Arg->getType();
5386     if (!ParamType->isPointerType() ||
5387         ParamType.getQualifiers().hasAddressSpace() ||
5388         !ArgType->isPointerType() ||
5389         !ArgType->getPointeeType().getQualifiers().hasAddressSpace()) {
5390       OverloadParams.push_back(ParamType);
5391       continue;
5392     }
5393 
5394     QualType PointeeType = ParamType->getPointeeType();
5395     if (PointeeType.getQualifiers().hasAddressSpace())
5396       continue;
5397 
5398     NeedsNewDecl = true;
5399     LangAS AS = ArgType->getPointeeType().getAddressSpace();
5400 
5401     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
5402     OverloadParams.push_back(Context.getPointerType(PointeeType));
5403   }
5404 
5405   if (!NeedsNewDecl)
5406     return nullptr;
5407 
5408   FunctionProtoType::ExtProtoInfo EPI;
5409   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
5410                                                 OverloadParams, EPI);
5411   DeclContext *Parent = FDecl->getParent();
5412   FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
5413                                                     FDecl->getLocation(),
5414                                                     FDecl->getLocation(),
5415                                                     FDecl->getIdentifier(),
5416                                                     OverloadTy,
5417                                                     /*TInfo=*/nullptr,
5418                                                     SC_Extern, false,
5419                                                     /*hasPrototype=*/true);
5420   SmallVector<ParmVarDecl*, 16> Params;
5421   FT = cast<FunctionProtoType>(OverloadTy);
5422   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
5423     QualType ParamType = FT->getParamType(i);
5424     ParmVarDecl *Parm =
5425         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
5426                                 SourceLocation(), nullptr, ParamType,
5427                                 /*TInfo=*/nullptr, SC_None, nullptr);
5428     Parm->setScopeInfo(0, i);
5429     Params.push_back(Parm);
5430   }
5431   OverloadDecl->setParams(Params);
5432   return OverloadDecl;
5433 }
5434 
5435 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
5436                                     FunctionDecl *Callee,
5437                                     MultiExprArg ArgExprs) {
5438   // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
5439   // similar attributes) really don't like it when functions are called with an
5440   // invalid number of args.
5441   if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
5442                          /*PartialOverloading=*/false) &&
5443       !Callee->isVariadic())
5444     return;
5445   if (Callee->getMinRequiredArguments() > ArgExprs.size())
5446     return;
5447 
5448   if (const EnableIfAttr *Attr = S.CheckEnableIf(Callee, ArgExprs, true)) {
5449     S.Diag(Fn->getBeginLoc(),
5450            isa<CXXMethodDecl>(Callee)
5451                ? diag::err_ovl_no_viable_member_function_in_call
5452                : diag::err_ovl_no_viable_function_in_call)
5453         << Callee << Callee->getSourceRange();
5454     S.Diag(Callee->getLocation(),
5455            diag::note_ovl_candidate_disabled_by_function_cond_attr)
5456         << Attr->getCond()->getSourceRange() << Attr->getMessage();
5457     return;
5458   }
5459 }
5460 
5461 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
5462     const UnresolvedMemberExpr *const UME, Sema &S) {
5463 
5464   const auto GetFunctionLevelDCIfCXXClass =
5465       [](Sema &S) -> const CXXRecordDecl * {
5466     const DeclContext *const DC = S.getFunctionLevelDeclContext();
5467     if (!DC || !DC->getParent())
5468       return nullptr;
5469 
5470     // If the call to some member function was made from within a member
5471     // function body 'M' return return 'M's parent.
5472     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
5473       return MD->getParent()->getCanonicalDecl();
5474     // else the call was made from within a default member initializer of a
5475     // class, so return the class.
5476     if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
5477       return RD->getCanonicalDecl();
5478     return nullptr;
5479   };
5480   // If our DeclContext is neither a member function nor a class (in the
5481   // case of a lambda in a default member initializer), we can't have an
5482   // enclosing 'this'.
5483 
5484   const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
5485   if (!CurParentClass)
5486     return false;
5487 
5488   // The naming class for implicit member functions call is the class in which
5489   // name lookup starts.
5490   const CXXRecordDecl *const NamingClass =
5491       UME->getNamingClass()->getCanonicalDecl();
5492   assert(NamingClass && "Must have naming class even for implicit access");
5493 
5494   // If the unresolved member functions were found in a 'naming class' that is
5495   // related (either the same or derived from) to the class that contains the
5496   // member function that itself contained the implicit member access.
5497 
5498   return CurParentClass == NamingClass ||
5499          CurParentClass->isDerivedFrom(NamingClass);
5500 }
5501 
5502 static void
5503 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
5504     Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
5505 
5506   if (!UME)
5507     return;
5508 
5509   LambdaScopeInfo *const CurLSI = S.getCurLambda();
5510   // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
5511   // already been captured, or if this is an implicit member function call (if
5512   // it isn't, an attempt to capture 'this' should already have been made).
5513   if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
5514       !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
5515     return;
5516 
5517   // Check if the naming class in which the unresolved members were found is
5518   // related (same as or is a base of) to the enclosing class.
5519 
5520   if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
5521     return;
5522 
5523 
5524   DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
5525   // If the enclosing function is not dependent, then this lambda is
5526   // capture ready, so if we can capture this, do so.
5527   if (!EnclosingFunctionCtx->isDependentContext()) {
5528     // If the current lambda and all enclosing lambdas can capture 'this' -
5529     // then go ahead and capture 'this' (since our unresolved overload set
5530     // contains at least one non-static member function).
5531     if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
5532       S.CheckCXXThisCapture(CallLoc);
5533   } else if (S.CurContext->isDependentContext()) {
5534     // ... since this is an implicit member reference, that might potentially
5535     // involve a 'this' capture, mark 'this' for potential capture in
5536     // enclosing lambdas.
5537     if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
5538       CurLSI->addPotentialThisCapture(CallLoc);
5539   }
5540 }
5541 
5542 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
5543                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
5544                                Expr *ExecConfig) {
5545   ExprResult Call =
5546       BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig);
5547   if (Call.isInvalid())
5548     return Call;
5549 
5550   // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
5551   // language modes.
5552   if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
5553     if (ULE->hasExplicitTemplateArgs() &&
5554         ULE->decls_begin() == ULE->decls_end()) {
5555       Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus2a
5556                                  ? diag::warn_cxx17_compat_adl_only_template_id
5557                                  : diag::ext_adl_only_template_id)
5558           << ULE->getName();
5559     }
5560   }
5561 
5562   return Call;
5563 }
5564 
5565 /// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
5566 /// This provides the location of the left/right parens and a list of comma
5567 /// locations.
5568 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
5569                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
5570                                Expr *ExecConfig, bool IsExecConfig) {
5571   // Since this might be a postfix expression, get rid of ParenListExprs.
5572   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
5573   if (Result.isInvalid()) return ExprError();
5574   Fn = Result.get();
5575 
5576   if (checkArgsForPlaceholders(*this, ArgExprs))
5577     return ExprError();
5578 
5579   if (getLangOpts().CPlusPlus) {
5580     // If this is a pseudo-destructor expression, build the call immediately.
5581     if (isa<CXXPseudoDestructorExpr>(Fn)) {
5582       if (!ArgExprs.empty()) {
5583         // Pseudo-destructor calls should not have any arguments.
5584         Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
5585             << FixItHint::CreateRemoval(
5586                    SourceRange(ArgExprs.front()->getBeginLoc(),
5587                                ArgExprs.back()->getEndLoc()));
5588       }
5589 
5590       return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
5591                               VK_RValue, RParenLoc);
5592     }
5593     if (Fn->getType() == Context.PseudoObjectTy) {
5594       ExprResult result = CheckPlaceholderExpr(Fn);
5595       if (result.isInvalid()) return ExprError();
5596       Fn = result.get();
5597     }
5598 
5599     // Determine whether this is a dependent call inside a C++ template,
5600     // in which case we won't do any semantic analysis now.
5601     if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
5602       if (ExecConfig) {
5603         return CUDAKernelCallExpr::Create(
5604             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
5605             Context.DependentTy, VK_RValue, RParenLoc);
5606       } else {
5607 
5608         tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
5609             *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
5610             Fn->getBeginLoc());
5611 
5612         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
5613                                 VK_RValue, RParenLoc);
5614       }
5615     }
5616 
5617     // Determine whether this is a call to an object (C++ [over.call.object]).
5618     if (Fn->getType()->isRecordType())
5619       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
5620                                           RParenLoc);
5621 
5622     if (Fn->getType() == Context.UnknownAnyTy) {
5623       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
5624       if (result.isInvalid()) return ExprError();
5625       Fn = result.get();
5626     }
5627 
5628     if (Fn->getType() == Context.BoundMemberTy) {
5629       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
5630                                        RParenLoc);
5631     }
5632   }
5633 
5634   // Check for overloaded calls.  This can happen even in C due to extensions.
5635   if (Fn->getType() == Context.OverloadTy) {
5636     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
5637 
5638     // We aren't supposed to apply this logic if there's an '&' involved.
5639     if (!find.HasFormOfMemberPointer) {
5640       if (Expr::hasAnyTypeDependentArguments(ArgExprs))
5641         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
5642                                 VK_RValue, RParenLoc);
5643       OverloadExpr *ovl = find.Expression;
5644       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
5645         return BuildOverloadedCallExpr(
5646             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
5647             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
5648       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
5649                                        RParenLoc);
5650     }
5651   }
5652 
5653   // If we're directly calling a function, get the appropriate declaration.
5654   if (Fn->getType() == Context.UnknownAnyTy) {
5655     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
5656     if (result.isInvalid()) return ExprError();
5657     Fn = result.get();
5658   }
5659 
5660   Expr *NakedFn = Fn->IgnoreParens();
5661 
5662   bool CallingNDeclIndirectly = false;
5663   NamedDecl *NDecl = nullptr;
5664   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
5665     if (UnOp->getOpcode() == UO_AddrOf) {
5666       CallingNDeclIndirectly = true;
5667       NakedFn = UnOp->getSubExpr()->IgnoreParens();
5668     }
5669   }
5670 
5671   if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
5672     NDecl = DRE->getDecl();
5673 
5674     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
5675     if (FDecl && FDecl->getBuiltinID()) {
5676       // Rewrite the function decl for this builtin by replacing parameters
5677       // with no explicit address space with the address space of the arguments
5678       // in ArgExprs.
5679       if ((FDecl =
5680                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
5681         NDecl = FDecl;
5682         Fn = DeclRefExpr::Create(
5683             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
5684             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
5685             nullptr, DRE->isNonOdrUse());
5686       }
5687     }
5688   } else if (isa<MemberExpr>(NakedFn))
5689     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
5690 
5691   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
5692     if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
5693                                       FD, /*Complain=*/true, Fn->getBeginLoc()))
5694       return ExprError();
5695 
5696     if (getLangOpts().OpenCL && checkOpenCLDisabledDecl(*FD, *Fn))
5697       return ExprError();
5698 
5699     checkDirectCallValidity(*this, Fn, FD, ArgExprs);
5700   }
5701 
5702   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
5703                                ExecConfig, IsExecConfig);
5704 }
5705 
5706 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
5707 ///
5708 /// __builtin_astype( value, dst type )
5709 ///
5710 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
5711                                  SourceLocation BuiltinLoc,
5712                                  SourceLocation RParenLoc) {
5713   ExprValueKind VK = VK_RValue;
5714   ExprObjectKind OK = OK_Ordinary;
5715   QualType DstTy = GetTypeFromParser(ParsedDestTy);
5716   QualType SrcTy = E->getType();
5717   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
5718     return ExprError(Diag(BuiltinLoc,
5719                           diag::err_invalid_astype_of_different_size)
5720                      << DstTy
5721                      << SrcTy
5722                      << E->getSourceRange());
5723   return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
5724 }
5725 
5726 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
5727 /// provided arguments.
5728 ///
5729 /// __builtin_convertvector( value, dst type )
5730 ///
5731 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
5732                                         SourceLocation BuiltinLoc,
5733                                         SourceLocation RParenLoc) {
5734   TypeSourceInfo *TInfo;
5735   GetTypeFromParser(ParsedDestTy, &TInfo);
5736   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
5737 }
5738 
5739 /// BuildResolvedCallExpr - Build a call to a resolved expression,
5740 /// i.e. an expression not of \p OverloadTy.  The expression should
5741 /// unary-convert to an expression of function-pointer or
5742 /// block-pointer type.
5743 ///
5744 /// \param NDecl the declaration being called, if available
5745 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
5746                                        SourceLocation LParenLoc,
5747                                        ArrayRef<Expr *> Args,
5748                                        SourceLocation RParenLoc, Expr *Config,
5749                                        bool IsExecConfig, ADLCallKind UsesADL) {
5750   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
5751   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
5752 
5753   // Functions with 'interrupt' attribute cannot be called directly.
5754   if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
5755     Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
5756     return ExprError();
5757   }
5758 
5759   // Interrupt handlers don't save off the VFP regs automatically on ARM,
5760   // so there's some risk when calling out to non-interrupt handler functions
5761   // that the callee might not preserve them. This is easy to diagnose here,
5762   // but can be very challenging to debug.
5763   if (auto *Caller = getCurFunctionDecl())
5764     if (Caller->hasAttr<ARMInterruptAttr>()) {
5765       bool VFP = Context.getTargetInfo().hasFeature("vfp");
5766       if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>()))
5767         Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
5768     }
5769 
5770   // Promote the function operand.
5771   // We special-case function promotion here because we only allow promoting
5772   // builtin functions to function pointers in the callee of a call.
5773   ExprResult Result;
5774   QualType ResultTy;
5775   if (BuiltinID &&
5776       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
5777     // Extract the return type from the (builtin) function pointer type.
5778     // FIXME Several builtins still have setType in
5779     // Sema::CheckBuiltinFunctionCall. One should review their definitions in
5780     // Builtins.def to ensure they are correct before removing setType calls.
5781     QualType FnPtrTy = Context.getPointerType(FDecl->getType());
5782     Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
5783     ResultTy = FDecl->getCallResultType();
5784   } else {
5785     Result = CallExprUnaryConversions(Fn);
5786     ResultTy = Context.BoolTy;
5787   }
5788   if (Result.isInvalid())
5789     return ExprError();
5790   Fn = Result.get();
5791 
5792   // Check for a valid function type, but only if it is not a builtin which
5793   // requires custom type checking. These will be handled by
5794   // CheckBuiltinFunctionCall below just after creation of the call expression.
5795   const FunctionType *FuncT = nullptr;
5796   if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
5797   retry:
5798     if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
5799       // C99 6.5.2.2p1 - "The expression that denotes the called function shall
5800       // have type pointer to function".
5801       FuncT = PT->getPointeeType()->getAs<FunctionType>();
5802       if (!FuncT)
5803         return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5804                          << Fn->getType() << Fn->getSourceRange());
5805     } else if (const BlockPointerType *BPT =
5806                    Fn->getType()->getAs<BlockPointerType>()) {
5807       FuncT = BPT->getPointeeType()->castAs<FunctionType>();
5808     } else {
5809       // Handle calls to expressions of unknown-any type.
5810       if (Fn->getType() == Context.UnknownAnyTy) {
5811         ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
5812         if (rewrite.isInvalid())
5813           return ExprError();
5814         Fn = rewrite.get();
5815         goto retry;
5816       }
5817 
5818       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5819                        << Fn->getType() << Fn->getSourceRange());
5820     }
5821   }
5822 
5823   // Get the number of parameters in the function prototype, if any.
5824   // We will allocate space for max(Args.size(), NumParams) arguments
5825   // in the call expression.
5826   const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
5827   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
5828 
5829   CallExpr *TheCall;
5830   if (Config) {
5831     assert(UsesADL == ADLCallKind::NotADL &&
5832            "CUDAKernelCallExpr should not use ADL");
5833     TheCall =
5834         CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config), Args,
5835                                    ResultTy, VK_RValue, RParenLoc, NumParams);
5836   } else {
5837     TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue,
5838                                RParenLoc, NumParams, UsesADL);
5839   }
5840 
5841   if (!getLangOpts().CPlusPlus) {
5842     // Forget about the nulled arguments since typo correction
5843     // do not handle them well.
5844     TheCall->shrinkNumArgs(Args.size());
5845     // C cannot always handle TypoExpr nodes in builtin calls and direct
5846     // function calls as their argument checking don't necessarily handle
5847     // dependent types properly, so make sure any TypoExprs have been
5848     // dealt with.
5849     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
5850     if (!Result.isUsable()) return ExprError();
5851     CallExpr *TheOldCall = TheCall;
5852     TheCall = dyn_cast<CallExpr>(Result.get());
5853     bool CorrectedTypos = TheCall != TheOldCall;
5854     if (!TheCall) return Result;
5855     Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
5856 
5857     // A new call expression node was created if some typos were corrected.
5858     // However it may not have been constructed with enough storage. In this
5859     // case, rebuild the node with enough storage. The waste of space is
5860     // immaterial since this only happens when some typos were corrected.
5861     if (CorrectedTypos && Args.size() < NumParams) {
5862       if (Config)
5863         TheCall = CUDAKernelCallExpr::Create(
5864             Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_RValue,
5865             RParenLoc, NumParams);
5866       else
5867         TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue,
5868                                    RParenLoc, NumParams, UsesADL);
5869     }
5870     // We can now handle the nulled arguments for the default arguments.
5871     TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
5872   }
5873 
5874   // Bail out early if calling a builtin with custom type checking.
5875   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
5876     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
5877 
5878   if (getLangOpts().CUDA) {
5879     if (Config) {
5880       // CUDA: Kernel calls must be to global functions
5881       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
5882         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
5883             << FDecl << Fn->getSourceRange());
5884 
5885       // CUDA: Kernel function must have 'void' return type
5886       if (!FuncT->getReturnType()->isVoidType())
5887         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
5888             << Fn->getType() << Fn->getSourceRange());
5889     } else {
5890       // CUDA: Calls to global functions must be configured
5891       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
5892         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
5893             << FDecl << Fn->getSourceRange());
5894     }
5895   }
5896 
5897   // Check for a valid return type
5898   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
5899                           FDecl))
5900     return ExprError();
5901 
5902   // We know the result type of the call, set it.
5903   TheCall->setType(FuncT->getCallResultType(Context));
5904   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
5905 
5906   if (Proto) {
5907     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
5908                                 IsExecConfig))
5909       return ExprError();
5910   } else {
5911     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
5912 
5913     if (FDecl) {
5914       // Check if we have too few/too many template arguments, based
5915       // on our knowledge of the function definition.
5916       const FunctionDecl *Def = nullptr;
5917       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
5918         Proto = Def->getType()->getAs<FunctionProtoType>();
5919        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
5920           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
5921           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
5922       }
5923 
5924       // If the function we're calling isn't a function prototype, but we have
5925       // a function prototype from a prior declaratiom, use that prototype.
5926       if (!FDecl->hasPrototype())
5927         Proto = FDecl->getType()->getAs<FunctionProtoType>();
5928     }
5929 
5930     // Promote the arguments (C99 6.5.2.2p6).
5931     for (unsigned i = 0, e = Args.size(); i != e; i++) {
5932       Expr *Arg = Args[i];
5933 
5934       if (Proto && i < Proto->getNumParams()) {
5935         InitializedEntity Entity = InitializedEntity::InitializeParameter(
5936             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
5937         ExprResult ArgE =
5938             PerformCopyInitialization(Entity, SourceLocation(), Arg);
5939         if (ArgE.isInvalid())
5940           return true;
5941 
5942         Arg = ArgE.getAs<Expr>();
5943 
5944       } else {
5945         ExprResult ArgE = DefaultArgumentPromotion(Arg);
5946 
5947         if (ArgE.isInvalid())
5948           return true;
5949 
5950         Arg = ArgE.getAs<Expr>();
5951       }
5952 
5953       if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
5954                               diag::err_call_incomplete_argument, Arg))
5955         return ExprError();
5956 
5957       TheCall->setArg(i, Arg);
5958     }
5959   }
5960 
5961   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5962     if (!Method->isStatic())
5963       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
5964         << Fn->getSourceRange());
5965 
5966   // Check for sentinels
5967   if (NDecl)
5968     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
5969 
5970   // Do special checking on direct calls to functions.
5971   if (FDecl) {
5972     if (CheckFunctionCall(FDecl, TheCall, Proto))
5973       return ExprError();
5974 
5975     checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
5976 
5977     if (BuiltinID)
5978       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
5979   } else if (NDecl) {
5980     if (CheckPointerCall(NDecl, TheCall, Proto))
5981       return ExprError();
5982   } else {
5983     if (CheckOtherCall(TheCall, Proto))
5984       return ExprError();
5985   }
5986 
5987   return MaybeBindToTemporary(TheCall);
5988 }
5989 
5990 ExprResult
5991 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
5992                            SourceLocation RParenLoc, Expr *InitExpr) {
5993   assert(Ty && "ActOnCompoundLiteral(): missing type");
5994   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
5995 
5996   TypeSourceInfo *TInfo;
5997   QualType literalType = GetTypeFromParser(Ty, &TInfo);
5998   if (!TInfo)
5999     TInfo = Context.getTrivialTypeSourceInfo(literalType);
6000 
6001   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
6002 }
6003 
6004 ExprResult
6005 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
6006                                SourceLocation RParenLoc, Expr *LiteralExpr) {
6007   QualType literalType = TInfo->getType();
6008 
6009   if (literalType->isArrayType()) {
6010     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
6011           diag::err_illegal_decl_array_incomplete_type,
6012           SourceRange(LParenLoc,
6013                       LiteralExpr->getSourceRange().getEnd())))
6014       return ExprError();
6015     if (literalType->isVariableArrayType())
6016       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
6017         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
6018   } else if (!literalType->isDependentType() &&
6019              RequireCompleteType(LParenLoc, literalType,
6020                diag::err_typecheck_decl_incomplete_type,
6021                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6022     return ExprError();
6023 
6024   InitializedEntity Entity
6025     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
6026   InitializationKind Kind
6027     = InitializationKind::CreateCStyleCast(LParenLoc,
6028                                            SourceRange(LParenLoc, RParenLoc),
6029                                            /*InitList=*/true);
6030   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
6031   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
6032                                       &literalType);
6033   if (Result.isInvalid())
6034     return ExprError();
6035   LiteralExpr = Result.get();
6036 
6037   bool isFileScope = !CurContext->isFunctionOrMethod();
6038 
6039   // In C, compound literals are l-values for some reason.
6040   // For GCC compatibility, in C++, file-scope array compound literals with
6041   // constant initializers are also l-values, and compound literals are
6042   // otherwise prvalues.
6043   //
6044   // (GCC also treats C++ list-initialized file-scope array prvalues with
6045   // constant initializers as l-values, but that's non-conforming, so we don't
6046   // follow it there.)
6047   //
6048   // FIXME: It would be better to handle the lvalue cases as materializing and
6049   // lifetime-extending a temporary object, but our materialized temporaries
6050   // representation only supports lifetime extension from a variable, not "out
6051   // of thin air".
6052   // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
6053   // is bound to the result of applying array-to-pointer decay to the compound
6054   // literal.
6055   // FIXME: GCC supports compound literals of reference type, which should
6056   // obviously have a value kind derived from the kind of reference involved.
6057   ExprValueKind VK =
6058       (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
6059           ? VK_RValue
6060           : VK_LValue;
6061 
6062   if (isFileScope)
6063     if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
6064       for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
6065         Expr *Init = ILE->getInit(i);
6066         ILE->setInit(i, ConstantExpr::Create(Context, Init));
6067       }
6068 
6069   auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
6070                                               VK, LiteralExpr, isFileScope);
6071   if (isFileScope) {
6072     if (!LiteralExpr->isTypeDependent() &&
6073         !LiteralExpr->isValueDependent() &&
6074         !literalType->isDependentType()) // C99 6.5.2.5p3
6075       if (CheckForConstantInitializer(LiteralExpr, literalType))
6076         return ExprError();
6077   } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
6078              literalType.getAddressSpace() != LangAS::Default) {
6079     // Embedded-C extensions to C99 6.5.2.5:
6080     //   "If the compound literal occurs inside the body of a function, the
6081     //   type name shall not be qualified by an address-space qualifier."
6082     Diag(LParenLoc, diag::err_compound_literal_with_address_space)
6083       << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
6084     return ExprError();
6085   }
6086 
6087   // Compound literals that have automatic storage duration are destroyed at
6088   // the end of the scope. Emit diagnostics if it is or contains a C union type
6089   // that is non-trivial to destruct.
6090   if (!isFileScope)
6091     if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
6092       checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
6093                             NTCUC_CompoundLiteral, NTCUK_Destruct);
6094 
6095   if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
6096       E->getType().hasNonTrivialToPrimitiveCopyCUnion())
6097     checkNonTrivialCUnionInInitializer(E->getInitializer(),
6098                                        E->getInitializer()->getExprLoc());
6099 
6100   return MaybeBindToTemporary(E);
6101 }
6102 
6103 ExprResult
6104 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
6105                     SourceLocation RBraceLoc) {
6106   // Immediately handle non-overload placeholders.  Overloads can be
6107   // resolved contextually, but everything else here can't.
6108   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
6109     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
6110       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
6111 
6112       // Ignore failures; dropping the entire initializer list because
6113       // of one failure would be terrible for indexing/etc.
6114       if (result.isInvalid()) continue;
6115 
6116       InitArgList[I] = result.get();
6117     }
6118   }
6119 
6120   // Semantic analysis for initializers is done by ActOnDeclarator() and
6121   // CheckInitializer() - it requires knowledge of the object being initialized.
6122 
6123   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
6124                                                RBraceLoc);
6125   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
6126   return E;
6127 }
6128 
6129 /// Do an explicit extend of the given block pointer if we're in ARC.
6130 void Sema::maybeExtendBlockObject(ExprResult &E) {
6131   assert(E.get()->getType()->isBlockPointerType());
6132   assert(E.get()->isRValue());
6133 
6134   // Only do this in an r-value context.
6135   if (!getLangOpts().ObjCAutoRefCount) return;
6136 
6137   E = ImplicitCastExpr::Create(Context, E.get()->getType(),
6138                                CK_ARCExtendBlockObject, E.get(),
6139                                /*base path*/ nullptr, VK_RValue);
6140   Cleanup.setExprNeedsCleanups(true);
6141 }
6142 
6143 /// Prepare a conversion of the given expression to an ObjC object
6144 /// pointer type.
6145 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
6146   QualType type = E.get()->getType();
6147   if (type->isObjCObjectPointerType()) {
6148     return CK_BitCast;
6149   } else if (type->isBlockPointerType()) {
6150     maybeExtendBlockObject(E);
6151     return CK_BlockPointerToObjCPointerCast;
6152   } else {
6153     assert(type->isPointerType());
6154     return CK_CPointerToObjCPointerCast;
6155   }
6156 }
6157 
6158 /// Prepares for a scalar cast, performing all the necessary stages
6159 /// except the final cast and returning the kind required.
6160 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
6161   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
6162   // Also, callers should have filtered out the invalid cases with
6163   // pointers.  Everything else should be possible.
6164 
6165   QualType SrcTy = Src.get()->getType();
6166   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
6167     return CK_NoOp;
6168 
6169   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
6170   case Type::STK_MemberPointer:
6171     llvm_unreachable("member pointer type in C");
6172 
6173   case Type::STK_CPointer:
6174   case Type::STK_BlockPointer:
6175   case Type::STK_ObjCObjectPointer:
6176     switch (DestTy->getScalarTypeKind()) {
6177     case Type::STK_CPointer: {
6178       LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
6179       LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
6180       if (SrcAS != DestAS)
6181         return CK_AddressSpaceConversion;
6182       if (Context.hasCvrSimilarType(SrcTy, DestTy))
6183         return CK_NoOp;
6184       return CK_BitCast;
6185     }
6186     case Type::STK_BlockPointer:
6187       return (SrcKind == Type::STK_BlockPointer
6188                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
6189     case Type::STK_ObjCObjectPointer:
6190       if (SrcKind == Type::STK_ObjCObjectPointer)
6191         return CK_BitCast;
6192       if (SrcKind == Type::STK_CPointer)
6193         return CK_CPointerToObjCPointerCast;
6194       maybeExtendBlockObject(Src);
6195       return CK_BlockPointerToObjCPointerCast;
6196     case Type::STK_Bool:
6197       return CK_PointerToBoolean;
6198     case Type::STK_Integral:
6199       return CK_PointerToIntegral;
6200     case Type::STK_Floating:
6201     case Type::STK_FloatingComplex:
6202     case Type::STK_IntegralComplex:
6203     case Type::STK_MemberPointer:
6204     case Type::STK_FixedPoint:
6205       llvm_unreachable("illegal cast from pointer");
6206     }
6207     llvm_unreachable("Should have returned before this");
6208 
6209   case Type::STK_FixedPoint:
6210     switch (DestTy->getScalarTypeKind()) {
6211     case Type::STK_FixedPoint:
6212       return CK_FixedPointCast;
6213     case Type::STK_Bool:
6214       return CK_FixedPointToBoolean;
6215     case Type::STK_Integral:
6216       return CK_FixedPointToIntegral;
6217     case Type::STK_Floating:
6218     case Type::STK_IntegralComplex:
6219     case Type::STK_FloatingComplex:
6220       Diag(Src.get()->getExprLoc(),
6221            diag::err_unimplemented_conversion_with_fixed_point_type)
6222           << DestTy;
6223       return CK_IntegralCast;
6224     case Type::STK_CPointer:
6225     case Type::STK_ObjCObjectPointer:
6226     case Type::STK_BlockPointer:
6227     case Type::STK_MemberPointer:
6228       llvm_unreachable("illegal cast to pointer type");
6229     }
6230     llvm_unreachable("Should have returned before this");
6231 
6232   case Type::STK_Bool: // casting from bool is like casting from an integer
6233   case Type::STK_Integral:
6234     switch (DestTy->getScalarTypeKind()) {
6235     case Type::STK_CPointer:
6236     case Type::STK_ObjCObjectPointer:
6237     case Type::STK_BlockPointer:
6238       if (Src.get()->isNullPointerConstant(Context,
6239                                            Expr::NPC_ValueDependentIsNull))
6240         return CK_NullToPointer;
6241       return CK_IntegralToPointer;
6242     case Type::STK_Bool:
6243       return CK_IntegralToBoolean;
6244     case Type::STK_Integral:
6245       return CK_IntegralCast;
6246     case Type::STK_Floating:
6247       return CK_IntegralToFloating;
6248     case Type::STK_IntegralComplex:
6249       Src = ImpCastExprToType(Src.get(),
6250                       DestTy->castAs<ComplexType>()->getElementType(),
6251                       CK_IntegralCast);
6252       return CK_IntegralRealToComplex;
6253     case Type::STK_FloatingComplex:
6254       Src = ImpCastExprToType(Src.get(),
6255                       DestTy->castAs<ComplexType>()->getElementType(),
6256                       CK_IntegralToFloating);
6257       return CK_FloatingRealToComplex;
6258     case Type::STK_MemberPointer:
6259       llvm_unreachable("member pointer type in C");
6260     case Type::STK_FixedPoint:
6261       return CK_IntegralToFixedPoint;
6262     }
6263     llvm_unreachable("Should have returned before this");
6264 
6265   case Type::STK_Floating:
6266     switch (DestTy->getScalarTypeKind()) {
6267     case Type::STK_Floating:
6268       return CK_FloatingCast;
6269     case Type::STK_Bool:
6270       return CK_FloatingToBoolean;
6271     case Type::STK_Integral:
6272       return CK_FloatingToIntegral;
6273     case Type::STK_FloatingComplex:
6274       Src = ImpCastExprToType(Src.get(),
6275                               DestTy->castAs<ComplexType>()->getElementType(),
6276                               CK_FloatingCast);
6277       return CK_FloatingRealToComplex;
6278     case Type::STK_IntegralComplex:
6279       Src = ImpCastExprToType(Src.get(),
6280                               DestTy->castAs<ComplexType>()->getElementType(),
6281                               CK_FloatingToIntegral);
6282       return CK_IntegralRealToComplex;
6283     case Type::STK_CPointer:
6284     case Type::STK_ObjCObjectPointer:
6285     case Type::STK_BlockPointer:
6286       llvm_unreachable("valid float->pointer cast?");
6287     case Type::STK_MemberPointer:
6288       llvm_unreachable("member pointer type in C");
6289     case Type::STK_FixedPoint:
6290       Diag(Src.get()->getExprLoc(),
6291            diag::err_unimplemented_conversion_with_fixed_point_type)
6292           << SrcTy;
6293       return CK_IntegralCast;
6294     }
6295     llvm_unreachable("Should have returned before this");
6296 
6297   case Type::STK_FloatingComplex:
6298     switch (DestTy->getScalarTypeKind()) {
6299     case Type::STK_FloatingComplex:
6300       return CK_FloatingComplexCast;
6301     case Type::STK_IntegralComplex:
6302       return CK_FloatingComplexToIntegralComplex;
6303     case Type::STK_Floating: {
6304       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
6305       if (Context.hasSameType(ET, DestTy))
6306         return CK_FloatingComplexToReal;
6307       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
6308       return CK_FloatingCast;
6309     }
6310     case Type::STK_Bool:
6311       return CK_FloatingComplexToBoolean;
6312     case Type::STK_Integral:
6313       Src = ImpCastExprToType(Src.get(),
6314                               SrcTy->castAs<ComplexType>()->getElementType(),
6315                               CK_FloatingComplexToReal);
6316       return CK_FloatingToIntegral;
6317     case Type::STK_CPointer:
6318     case Type::STK_ObjCObjectPointer:
6319     case Type::STK_BlockPointer:
6320       llvm_unreachable("valid complex float->pointer cast?");
6321     case Type::STK_MemberPointer:
6322       llvm_unreachable("member pointer type in C");
6323     case Type::STK_FixedPoint:
6324       Diag(Src.get()->getExprLoc(),
6325            diag::err_unimplemented_conversion_with_fixed_point_type)
6326           << SrcTy;
6327       return CK_IntegralCast;
6328     }
6329     llvm_unreachable("Should have returned before this");
6330 
6331   case Type::STK_IntegralComplex:
6332     switch (DestTy->getScalarTypeKind()) {
6333     case Type::STK_FloatingComplex:
6334       return CK_IntegralComplexToFloatingComplex;
6335     case Type::STK_IntegralComplex:
6336       return CK_IntegralComplexCast;
6337     case Type::STK_Integral: {
6338       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
6339       if (Context.hasSameType(ET, DestTy))
6340         return CK_IntegralComplexToReal;
6341       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
6342       return CK_IntegralCast;
6343     }
6344     case Type::STK_Bool:
6345       return CK_IntegralComplexToBoolean;
6346     case Type::STK_Floating:
6347       Src = ImpCastExprToType(Src.get(),
6348                               SrcTy->castAs<ComplexType>()->getElementType(),
6349                               CK_IntegralComplexToReal);
6350       return CK_IntegralToFloating;
6351     case Type::STK_CPointer:
6352     case Type::STK_ObjCObjectPointer:
6353     case Type::STK_BlockPointer:
6354       llvm_unreachable("valid complex int->pointer cast?");
6355     case Type::STK_MemberPointer:
6356       llvm_unreachable("member pointer type in C");
6357     case Type::STK_FixedPoint:
6358       Diag(Src.get()->getExprLoc(),
6359            diag::err_unimplemented_conversion_with_fixed_point_type)
6360           << SrcTy;
6361       return CK_IntegralCast;
6362     }
6363     llvm_unreachable("Should have returned before this");
6364   }
6365 
6366   llvm_unreachable("Unhandled scalar cast");
6367 }
6368 
6369 static bool breakDownVectorType(QualType type, uint64_t &len,
6370                                 QualType &eltType) {
6371   // Vectors are simple.
6372   if (const VectorType *vecType = type->getAs<VectorType>()) {
6373     len = vecType->getNumElements();
6374     eltType = vecType->getElementType();
6375     assert(eltType->isScalarType());
6376     return true;
6377   }
6378 
6379   // We allow lax conversion to and from non-vector types, but only if
6380   // they're real types (i.e. non-complex, non-pointer scalar types).
6381   if (!type->isRealType()) return false;
6382 
6383   len = 1;
6384   eltType = type;
6385   return true;
6386 }
6387 
6388 /// Are the two types lax-compatible vector types?  That is, given
6389 /// that one of them is a vector, do they have equal storage sizes,
6390 /// where the storage size is the number of elements times the element
6391 /// size?
6392 ///
6393 /// This will also return false if either of the types is neither a
6394 /// vector nor a real type.
6395 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
6396   assert(destTy->isVectorType() || srcTy->isVectorType());
6397 
6398   // Disallow lax conversions between scalars and ExtVectors (these
6399   // conversions are allowed for other vector types because common headers
6400   // depend on them).  Most scalar OP ExtVector cases are handled by the
6401   // splat path anyway, which does what we want (convert, not bitcast).
6402   // What this rules out for ExtVectors is crazy things like char4*float.
6403   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
6404   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
6405 
6406   uint64_t srcLen, destLen;
6407   QualType srcEltTy, destEltTy;
6408   if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
6409   if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;
6410 
6411   // ASTContext::getTypeSize will return the size rounded up to a
6412   // power of 2, so instead of using that, we need to use the raw
6413   // element size multiplied by the element count.
6414   uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
6415   uint64_t destEltSize = Context.getTypeSize(destEltTy);
6416 
6417   return (srcLen * srcEltSize == destLen * destEltSize);
6418 }
6419 
6420 /// Is this a legal conversion between two types, one of which is
6421 /// known to be a vector type?
6422 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
6423   assert(destTy->isVectorType() || srcTy->isVectorType());
6424 
6425   if (!Context.getLangOpts().LaxVectorConversions)
6426     return false;
6427   return areLaxCompatibleVectorTypes(srcTy, destTy);
6428 }
6429 
6430 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
6431                            CastKind &Kind) {
6432   assert(VectorTy->isVectorType() && "Not a vector type!");
6433 
6434   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
6435     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
6436       return Diag(R.getBegin(),
6437                   Ty->isVectorType() ?
6438                   diag::err_invalid_conversion_between_vectors :
6439                   diag::err_invalid_conversion_between_vector_and_integer)
6440         << VectorTy << Ty << R;
6441   } else
6442     return Diag(R.getBegin(),
6443                 diag::err_invalid_conversion_between_vector_and_scalar)
6444       << VectorTy << Ty << R;
6445 
6446   Kind = CK_BitCast;
6447   return false;
6448 }
6449 
6450 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
6451   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
6452 
6453   if (DestElemTy == SplattedExpr->getType())
6454     return SplattedExpr;
6455 
6456   assert(DestElemTy->isFloatingType() ||
6457          DestElemTy->isIntegralOrEnumerationType());
6458 
6459   CastKind CK;
6460   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
6461     // OpenCL requires that we convert `true` boolean expressions to -1, but
6462     // only when splatting vectors.
6463     if (DestElemTy->isFloatingType()) {
6464       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
6465       // in two steps: boolean to signed integral, then to floating.
6466       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
6467                                                  CK_BooleanToSignedIntegral);
6468       SplattedExpr = CastExprRes.get();
6469       CK = CK_IntegralToFloating;
6470     } else {
6471       CK = CK_BooleanToSignedIntegral;
6472     }
6473   } else {
6474     ExprResult CastExprRes = SplattedExpr;
6475     CK = PrepareScalarCast(CastExprRes, DestElemTy);
6476     if (CastExprRes.isInvalid())
6477       return ExprError();
6478     SplattedExpr = CastExprRes.get();
6479   }
6480   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
6481 }
6482 
6483 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
6484                                     Expr *CastExpr, CastKind &Kind) {
6485   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
6486 
6487   QualType SrcTy = CastExpr->getType();
6488 
6489   // If SrcTy is a VectorType, the total size must match to explicitly cast to
6490   // an ExtVectorType.
6491   // In OpenCL, casts between vectors of different types are not allowed.
6492   // (See OpenCL 6.2).
6493   if (SrcTy->isVectorType()) {
6494     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
6495         (getLangOpts().OpenCL &&
6496          !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
6497       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
6498         << DestTy << SrcTy << R;
6499       return ExprError();
6500     }
6501     Kind = CK_BitCast;
6502     return CastExpr;
6503   }
6504 
6505   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
6506   // conversion will take place first from scalar to elt type, and then
6507   // splat from elt type to vector.
6508   if (SrcTy->isPointerType())
6509     return Diag(R.getBegin(),
6510                 diag::err_invalid_conversion_between_vector_and_scalar)
6511       << DestTy << SrcTy << R;
6512 
6513   Kind = CK_VectorSplat;
6514   return prepareVectorSplat(DestTy, CastExpr);
6515 }
6516 
6517 ExprResult
6518 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
6519                     Declarator &D, ParsedType &Ty,
6520                     SourceLocation RParenLoc, Expr *CastExpr) {
6521   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
6522          "ActOnCastExpr(): missing type or expr");
6523 
6524   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
6525   if (D.isInvalidType())
6526     return ExprError();
6527 
6528   if (getLangOpts().CPlusPlus) {
6529     // Check that there are no default arguments (C++ only).
6530     CheckExtraCXXDefaultArguments(D);
6531   } else {
6532     // Make sure any TypoExprs have been dealt with.
6533     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
6534     if (!Res.isUsable())
6535       return ExprError();
6536     CastExpr = Res.get();
6537   }
6538 
6539   checkUnusedDeclAttributes(D);
6540 
6541   QualType castType = castTInfo->getType();
6542   Ty = CreateParsedType(castType, castTInfo);
6543 
6544   bool isVectorLiteral = false;
6545 
6546   // Check for an altivec or OpenCL literal,
6547   // i.e. all the elements are integer constants.
6548   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
6549   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
6550   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
6551        && castType->isVectorType() && (PE || PLE)) {
6552     if (PLE && PLE->getNumExprs() == 0) {
6553       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
6554       return ExprError();
6555     }
6556     if (PE || PLE->getNumExprs() == 1) {
6557       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
6558       if (!E->getType()->isVectorType())
6559         isVectorLiteral = true;
6560     }
6561     else
6562       isVectorLiteral = true;
6563   }
6564 
6565   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
6566   // then handle it as such.
6567   if (isVectorLiteral)
6568     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
6569 
6570   // If the Expr being casted is a ParenListExpr, handle it specially.
6571   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
6572   // sequence of BinOp comma operators.
6573   if (isa<ParenListExpr>(CastExpr)) {
6574     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
6575     if (Result.isInvalid()) return ExprError();
6576     CastExpr = Result.get();
6577   }
6578 
6579   if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
6580       !getSourceManager().isInSystemMacro(LParenLoc))
6581     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
6582 
6583   CheckTollFreeBridgeCast(castType, CastExpr);
6584 
6585   CheckObjCBridgeRelatedCast(castType, CastExpr);
6586 
6587   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
6588 
6589   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
6590 }
6591 
6592 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
6593                                     SourceLocation RParenLoc, Expr *E,
6594                                     TypeSourceInfo *TInfo) {
6595   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
6596          "Expected paren or paren list expression");
6597 
6598   Expr **exprs;
6599   unsigned numExprs;
6600   Expr *subExpr;
6601   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
6602   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
6603     LiteralLParenLoc = PE->getLParenLoc();
6604     LiteralRParenLoc = PE->getRParenLoc();
6605     exprs = PE->getExprs();
6606     numExprs = PE->getNumExprs();
6607   } else { // isa<ParenExpr> by assertion at function entrance
6608     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
6609     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
6610     subExpr = cast<ParenExpr>(E)->getSubExpr();
6611     exprs = &subExpr;
6612     numExprs = 1;
6613   }
6614 
6615   QualType Ty = TInfo->getType();
6616   assert(Ty->isVectorType() && "Expected vector type");
6617 
6618   SmallVector<Expr *, 8> initExprs;
6619   const VectorType *VTy = Ty->getAs<VectorType>();
6620   unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
6621 
6622   // '(...)' form of vector initialization in AltiVec: the number of
6623   // initializers must be one or must match the size of the vector.
6624   // If a single value is specified in the initializer then it will be
6625   // replicated to all the components of the vector
6626   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
6627     // The number of initializers must be one or must match the size of the
6628     // vector. If a single value is specified in the initializer then it will
6629     // be replicated to all the components of the vector
6630     if (numExprs == 1) {
6631       QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
6632       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
6633       if (Literal.isInvalid())
6634         return ExprError();
6635       Literal = ImpCastExprToType(Literal.get(), ElemTy,
6636                                   PrepareScalarCast(Literal, ElemTy));
6637       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
6638     }
6639     else if (numExprs < numElems) {
6640       Diag(E->getExprLoc(),
6641            diag::err_incorrect_number_of_vector_initializers);
6642       return ExprError();
6643     }
6644     else
6645       initExprs.append(exprs, exprs + numExprs);
6646   }
6647   else {
6648     // For OpenCL, when the number of initializers is a single value,
6649     // it will be replicated to all components of the vector.
6650     if (getLangOpts().OpenCL &&
6651         VTy->getVectorKind() == VectorType::GenericVector &&
6652         numExprs == 1) {
6653         QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
6654         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
6655         if (Literal.isInvalid())
6656           return ExprError();
6657         Literal = ImpCastExprToType(Literal.get(), ElemTy,
6658                                     PrepareScalarCast(Literal, ElemTy));
6659         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
6660     }
6661 
6662     initExprs.append(exprs, exprs + numExprs);
6663   }
6664   // FIXME: This means that pretty-printing the final AST will produce curly
6665   // braces instead of the original commas.
6666   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
6667                                                    initExprs, LiteralRParenLoc);
6668   initE->setType(Ty);
6669   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
6670 }
6671 
6672 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
6673 /// the ParenListExpr into a sequence of comma binary operators.
6674 ExprResult
6675 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
6676   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
6677   if (!E)
6678     return OrigExpr;
6679 
6680   ExprResult Result(E->getExpr(0));
6681 
6682   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
6683     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
6684                         E->getExpr(i));
6685 
6686   if (Result.isInvalid()) return ExprError();
6687 
6688   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
6689 }
6690 
6691 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
6692                                     SourceLocation R,
6693                                     MultiExprArg Val) {
6694   return ParenListExpr::Create(Context, L, Val, R);
6695 }
6696 
6697 /// Emit a specialized diagnostic when one expression is a null pointer
6698 /// constant and the other is not a pointer.  Returns true if a diagnostic is
6699 /// emitted.
6700 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
6701                                       SourceLocation QuestionLoc) {
6702   Expr *NullExpr = LHSExpr;
6703   Expr *NonPointerExpr = RHSExpr;
6704   Expr::NullPointerConstantKind NullKind =
6705       NullExpr->isNullPointerConstant(Context,
6706                                       Expr::NPC_ValueDependentIsNotNull);
6707 
6708   if (NullKind == Expr::NPCK_NotNull) {
6709     NullExpr = RHSExpr;
6710     NonPointerExpr = LHSExpr;
6711     NullKind =
6712         NullExpr->isNullPointerConstant(Context,
6713                                         Expr::NPC_ValueDependentIsNotNull);
6714   }
6715 
6716   if (NullKind == Expr::NPCK_NotNull)
6717     return false;
6718 
6719   if (NullKind == Expr::NPCK_ZeroExpression)
6720     return false;
6721 
6722   if (NullKind == Expr::NPCK_ZeroLiteral) {
6723     // In this case, check to make sure that we got here from a "NULL"
6724     // string in the source code.
6725     NullExpr = NullExpr->IgnoreParenImpCasts();
6726     SourceLocation loc = NullExpr->getExprLoc();
6727     if (!findMacroSpelling(loc, "NULL"))
6728       return false;
6729   }
6730 
6731   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
6732   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
6733       << NonPointerExpr->getType() << DiagType
6734       << NonPointerExpr->getSourceRange();
6735   return true;
6736 }
6737 
6738 /// Return false if the condition expression is valid, true otherwise.
6739 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
6740   QualType CondTy = Cond->getType();
6741 
6742   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
6743   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
6744     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
6745       << CondTy << Cond->getSourceRange();
6746     return true;
6747   }
6748 
6749   // C99 6.5.15p2
6750   if (CondTy->isScalarType()) return false;
6751 
6752   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
6753     << CondTy << Cond->getSourceRange();
6754   return true;
6755 }
6756 
6757 /// Handle when one or both operands are void type.
6758 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
6759                                          ExprResult &RHS) {
6760     Expr *LHSExpr = LHS.get();
6761     Expr *RHSExpr = RHS.get();
6762 
6763     if (!LHSExpr->getType()->isVoidType())
6764       S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
6765           << RHSExpr->getSourceRange();
6766     if (!RHSExpr->getType()->isVoidType())
6767       S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
6768           << LHSExpr->getSourceRange();
6769     LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
6770     RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
6771     return S.Context.VoidTy;
6772 }
6773 
6774 /// Return false if the NullExpr can be promoted to PointerTy,
6775 /// true otherwise.
6776 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
6777                                         QualType PointerTy) {
6778   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
6779       !NullExpr.get()->isNullPointerConstant(S.Context,
6780                                             Expr::NPC_ValueDependentIsNull))
6781     return true;
6782 
6783   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
6784   return false;
6785 }
6786 
6787 /// Checks compatibility between two pointers and return the resulting
6788 /// type.
6789 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
6790                                                      ExprResult &RHS,
6791                                                      SourceLocation Loc) {
6792   QualType LHSTy = LHS.get()->getType();
6793   QualType RHSTy = RHS.get()->getType();
6794 
6795   if (S.Context.hasSameType(LHSTy, RHSTy)) {
6796     // Two identical pointers types are always compatible.
6797     return LHSTy;
6798   }
6799 
6800   QualType lhptee, rhptee;
6801 
6802   // Get the pointee types.
6803   bool IsBlockPointer = false;
6804   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
6805     lhptee = LHSBTy->getPointeeType();
6806     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
6807     IsBlockPointer = true;
6808   } else {
6809     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
6810     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
6811   }
6812 
6813   // C99 6.5.15p6: If both operands are pointers to compatible types or to
6814   // differently qualified versions of compatible types, the result type is
6815   // a pointer to an appropriately qualified version of the composite
6816   // type.
6817 
6818   // Only CVR-qualifiers exist in the standard, and the differently-qualified
6819   // clause doesn't make sense for our extensions. E.g. address space 2 should
6820   // be incompatible with address space 3: they may live on different devices or
6821   // anything.
6822   Qualifiers lhQual = lhptee.getQualifiers();
6823   Qualifiers rhQual = rhptee.getQualifiers();
6824 
6825   LangAS ResultAddrSpace = LangAS::Default;
6826   LangAS LAddrSpace = lhQual.getAddressSpace();
6827   LangAS RAddrSpace = rhQual.getAddressSpace();
6828 
6829   // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
6830   // spaces is disallowed.
6831   if (lhQual.isAddressSpaceSupersetOf(rhQual))
6832     ResultAddrSpace = LAddrSpace;
6833   else if (rhQual.isAddressSpaceSupersetOf(lhQual))
6834     ResultAddrSpace = RAddrSpace;
6835   else {
6836     S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
6837         << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
6838         << RHS.get()->getSourceRange();
6839     return QualType();
6840   }
6841 
6842   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
6843   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
6844   lhQual.removeCVRQualifiers();
6845   rhQual.removeCVRQualifiers();
6846 
6847   // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
6848   // (C99 6.7.3) for address spaces. We assume that the check should behave in
6849   // the same manner as it's defined for CVR qualifiers, so for OpenCL two
6850   // qual types are compatible iff
6851   //  * corresponded types are compatible
6852   //  * CVR qualifiers are equal
6853   //  * address spaces are equal
6854   // Thus for conditional operator we merge CVR and address space unqualified
6855   // pointees and if there is a composite type we return a pointer to it with
6856   // merged qualifiers.
6857   LHSCastKind =
6858       LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
6859   RHSCastKind =
6860       RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
6861   lhQual.removeAddressSpace();
6862   rhQual.removeAddressSpace();
6863 
6864   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
6865   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
6866 
6867   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
6868 
6869   if (CompositeTy.isNull()) {
6870     // In this situation, we assume void* type. No especially good
6871     // reason, but this is what gcc does, and we do have to pick
6872     // to get a consistent AST.
6873     QualType incompatTy;
6874     incompatTy = S.Context.getPointerType(
6875         S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
6876     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
6877     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
6878 
6879     // FIXME: For OpenCL the warning emission and cast to void* leaves a room
6880     // for casts between types with incompatible address space qualifiers.
6881     // For the following code the compiler produces casts between global and
6882     // local address spaces of the corresponded innermost pointees:
6883     // local int *global *a;
6884     // global int *global *b;
6885     // a = (0 ? a : b); // see C99 6.5.16.1.p1.
6886     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
6887         << LHSTy << RHSTy << LHS.get()->getSourceRange()
6888         << RHS.get()->getSourceRange();
6889 
6890     return incompatTy;
6891   }
6892 
6893   // The pointer types are compatible.
6894   // In case of OpenCL ResultTy should have the address space qualifier
6895   // which is a superset of address spaces of both the 2nd and the 3rd
6896   // operands of the conditional operator.
6897   QualType ResultTy = [&, ResultAddrSpace]() {
6898     if (S.getLangOpts().OpenCL) {
6899       Qualifiers CompositeQuals = CompositeTy.getQualifiers();
6900       CompositeQuals.setAddressSpace(ResultAddrSpace);
6901       return S.Context
6902           .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
6903           .withCVRQualifiers(MergedCVRQual);
6904     }
6905     return CompositeTy.withCVRQualifiers(MergedCVRQual);
6906   }();
6907   if (IsBlockPointer)
6908     ResultTy = S.Context.getBlockPointerType(ResultTy);
6909   else
6910     ResultTy = S.Context.getPointerType(ResultTy);
6911 
6912   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
6913   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
6914   return ResultTy;
6915 }
6916 
6917 /// Return the resulting type when the operands are both block pointers.
6918 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
6919                                                           ExprResult &LHS,
6920                                                           ExprResult &RHS,
6921                                                           SourceLocation Loc) {
6922   QualType LHSTy = LHS.get()->getType();
6923   QualType RHSTy = RHS.get()->getType();
6924 
6925   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
6926     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
6927       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
6928       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
6929       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
6930       return destType;
6931     }
6932     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
6933       << LHSTy << RHSTy << LHS.get()->getSourceRange()
6934       << RHS.get()->getSourceRange();
6935     return QualType();
6936   }
6937 
6938   // We have 2 block pointer types.
6939   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
6940 }
6941 
6942 /// Return the resulting type when the operands are both pointers.
6943 static QualType
6944 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
6945                                             ExprResult &RHS,
6946                                             SourceLocation Loc) {
6947   // get the pointer types
6948   QualType LHSTy = LHS.get()->getType();
6949   QualType RHSTy = RHS.get()->getType();
6950 
6951   // get the "pointed to" types
6952   QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
6953   QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
6954 
6955   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
6956   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
6957     // Figure out necessary qualifiers (C99 6.5.15p6)
6958     QualType destPointee
6959       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
6960     QualType destType = S.Context.getPointerType(destPointee);
6961     // Add qualifiers if necessary.
6962     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
6963     // Promote to void*.
6964     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
6965     return destType;
6966   }
6967   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
6968     QualType destPointee
6969       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
6970     QualType destType = S.Context.getPointerType(destPointee);
6971     // Add qualifiers if necessary.
6972     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
6973     // Promote to void*.
6974     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
6975     return destType;
6976   }
6977 
6978   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
6979 }
6980 
6981 /// Return false if the first expression is not an integer and the second
6982 /// expression is not a pointer, true otherwise.
6983 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
6984                                         Expr* PointerExpr, SourceLocation Loc,
6985                                         bool IsIntFirstExpr) {
6986   if (!PointerExpr->getType()->isPointerType() ||
6987       !Int.get()->getType()->isIntegerType())
6988     return false;
6989 
6990   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
6991   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
6992 
6993   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
6994     << Expr1->getType() << Expr2->getType()
6995     << Expr1->getSourceRange() << Expr2->getSourceRange();
6996   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
6997                             CK_IntegralToPointer);
6998   return true;
6999 }
7000 
7001 /// Simple conversion between integer and floating point types.
7002 ///
7003 /// Used when handling the OpenCL conditional operator where the
7004 /// condition is a vector while the other operands are scalar.
7005 ///
7006 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
7007 /// types are either integer or floating type. Between the two
7008 /// operands, the type with the higher rank is defined as the "result
7009 /// type". The other operand needs to be promoted to the same type. No
7010 /// other type promotion is allowed. We cannot use
7011 /// UsualArithmeticConversions() for this purpose, since it always
7012 /// promotes promotable types.
7013 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
7014                                             ExprResult &RHS,
7015                                             SourceLocation QuestionLoc) {
7016   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
7017   if (LHS.isInvalid())
7018     return QualType();
7019   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
7020   if (RHS.isInvalid())
7021     return QualType();
7022 
7023   // For conversion purposes, we ignore any qualifiers.
7024   // For example, "const float" and "float" are equivalent.
7025   QualType LHSType =
7026     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
7027   QualType RHSType =
7028     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
7029 
7030   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
7031     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
7032       << LHSType << LHS.get()->getSourceRange();
7033     return QualType();
7034   }
7035 
7036   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
7037     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
7038       << RHSType << RHS.get()->getSourceRange();
7039     return QualType();
7040   }
7041 
7042   // If both types are identical, no conversion is needed.
7043   if (LHSType == RHSType)
7044     return LHSType;
7045 
7046   // Now handle "real" floating types (i.e. float, double, long double).
7047   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
7048     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
7049                                  /*IsCompAssign = */ false);
7050 
7051   // Finally, we have two differing integer types.
7052   return handleIntegerConversion<doIntegralCast, doIntegralCast>
7053   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
7054 }
7055 
7056 /// Convert scalar operands to a vector that matches the
7057 ///        condition in length.
7058 ///
7059 /// Used when handling the OpenCL conditional operator where the
7060 /// condition is a vector while the other operands are scalar.
7061 ///
7062 /// We first compute the "result type" for the scalar operands
7063 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
7064 /// into a vector of that type where the length matches the condition
7065 /// vector type. s6.11.6 requires that the element types of the result
7066 /// and the condition must have the same number of bits.
7067 static QualType
7068 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
7069                               QualType CondTy, SourceLocation QuestionLoc) {
7070   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
7071   if (ResTy.isNull()) return QualType();
7072 
7073   const VectorType *CV = CondTy->getAs<VectorType>();
7074   assert(CV);
7075 
7076   // Determine the vector result type
7077   unsigned NumElements = CV->getNumElements();
7078   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
7079 
7080   // Ensure that all types have the same number of bits
7081   if (S.Context.getTypeSize(CV->getElementType())
7082       != S.Context.getTypeSize(ResTy)) {
7083     // Since VectorTy is created internally, it does not pretty print
7084     // with an OpenCL name. Instead, we just print a description.
7085     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
7086     SmallString<64> Str;
7087     llvm::raw_svector_ostream OS(Str);
7088     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
7089     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
7090       << CondTy << OS.str();
7091     return QualType();
7092   }
7093 
7094   // Convert operands to the vector result type
7095   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
7096   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
7097 
7098   return VectorTy;
7099 }
7100 
7101 /// Return false if this is a valid OpenCL condition vector
7102 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
7103                                        SourceLocation QuestionLoc) {
7104   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
7105   // integral type.
7106   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
7107   assert(CondTy);
7108   QualType EleTy = CondTy->getElementType();
7109   if (EleTy->isIntegerType()) return false;
7110 
7111   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
7112     << Cond->getType() << Cond->getSourceRange();
7113   return true;
7114 }
7115 
7116 /// Return false if the vector condition type and the vector
7117 ///        result type are compatible.
7118 ///
7119 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
7120 /// number of elements, and their element types have the same number
7121 /// of bits.
7122 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
7123                               SourceLocation QuestionLoc) {
7124   const VectorType *CV = CondTy->getAs<VectorType>();
7125   const VectorType *RV = VecResTy->getAs<VectorType>();
7126   assert(CV && RV);
7127 
7128   if (CV->getNumElements() != RV->getNumElements()) {
7129     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
7130       << CondTy << VecResTy;
7131     return true;
7132   }
7133 
7134   QualType CVE = CV->getElementType();
7135   QualType RVE = RV->getElementType();
7136 
7137   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
7138     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
7139       << CondTy << VecResTy;
7140     return true;
7141   }
7142 
7143   return false;
7144 }
7145 
7146 /// Return the resulting type for the conditional operator in
7147 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
7148 ///        s6.3.i) when the condition is a vector type.
7149 static QualType
7150 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
7151                              ExprResult &LHS, ExprResult &RHS,
7152                              SourceLocation QuestionLoc) {
7153   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
7154   if (Cond.isInvalid())
7155     return QualType();
7156   QualType CondTy = Cond.get()->getType();
7157 
7158   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
7159     return QualType();
7160 
7161   // If either operand is a vector then find the vector type of the
7162   // result as specified in OpenCL v1.1 s6.3.i.
7163   if (LHS.get()->getType()->isVectorType() ||
7164       RHS.get()->getType()->isVectorType()) {
7165     QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
7166                                               /*isCompAssign*/false,
7167                                               /*AllowBothBool*/true,
7168                                               /*AllowBoolConversions*/false);
7169     if (VecResTy.isNull()) return QualType();
7170     // The result type must match the condition type as specified in
7171     // OpenCL v1.1 s6.11.6.
7172     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
7173       return QualType();
7174     return VecResTy;
7175   }
7176 
7177   // Both operands are scalar.
7178   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
7179 }
7180 
7181 /// Return true if the Expr is block type
7182 static bool checkBlockType(Sema &S, const Expr *E) {
7183   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
7184     QualType Ty = CE->getCallee()->getType();
7185     if (Ty->isBlockPointerType()) {
7186       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
7187       return true;
7188     }
7189   }
7190   return false;
7191 }
7192 
7193 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
7194 /// In that case, LHS = cond.
7195 /// C99 6.5.15
7196 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
7197                                         ExprResult &RHS, ExprValueKind &VK,
7198                                         ExprObjectKind &OK,
7199                                         SourceLocation QuestionLoc) {
7200 
7201   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
7202   if (!LHSResult.isUsable()) return QualType();
7203   LHS = LHSResult;
7204 
7205   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
7206   if (!RHSResult.isUsable()) return QualType();
7207   RHS = RHSResult;
7208 
7209   // C++ is sufficiently different to merit its own checker.
7210   if (getLangOpts().CPlusPlus)
7211     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
7212 
7213   VK = VK_RValue;
7214   OK = OK_Ordinary;
7215 
7216   // The OpenCL operator with a vector condition is sufficiently
7217   // different to merit its own checker.
7218   if (getLangOpts().OpenCL && Cond.get()->getType()->isVectorType())
7219     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
7220 
7221   // First, check the condition.
7222   Cond = UsualUnaryConversions(Cond.get());
7223   if (Cond.isInvalid())
7224     return QualType();
7225   if (checkCondition(*this, Cond.get(), QuestionLoc))
7226     return QualType();
7227 
7228   // Now check the two expressions.
7229   if (LHS.get()->getType()->isVectorType() ||
7230       RHS.get()->getType()->isVectorType())
7231     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
7232                                /*AllowBothBool*/true,
7233                                /*AllowBoolConversions*/false);
7234 
7235   QualType ResTy = UsualArithmeticConversions(LHS, RHS);
7236   if (LHS.isInvalid() || RHS.isInvalid())
7237     return QualType();
7238 
7239   QualType LHSTy = LHS.get()->getType();
7240   QualType RHSTy = RHS.get()->getType();
7241 
7242   // Diagnose attempts to convert between __float128 and long double where
7243   // such conversions currently can't be handled.
7244   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
7245     Diag(QuestionLoc,
7246          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
7247       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7248     return QualType();
7249   }
7250 
7251   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
7252   // selection operator (?:).
7253   if (getLangOpts().OpenCL &&
7254       (checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
7255     return QualType();
7256   }
7257 
7258   // If both operands have arithmetic type, do the usual arithmetic conversions
7259   // to find a common type: C99 6.5.15p3,5.
7260   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
7261     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
7262     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
7263 
7264     return ResTy;
7265   }
7266 
7267   // If both operands are the same structure or union type, the result is that
7268   // type.
7269   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
7270     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
7271       if (LHSRT->getDecl() == RHSRT->getDecl())
7272         // "If both the operands have structure or union type, the result has
7273         // that type."  This implies that CV qualifiers are dropped.
7274         return LHSTy.getUnqualifiedType();
7275     // FIXME: Type of conditional expression must be complete in C mode.
7276   }
7277 
7278   // C99 6.5.15p5: "If both operands have void type, the result has void type."
7279   // The following || allows only one side to be void (a GCC-ism).
7280   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
7281     return checkConditionalVoidType(*this, LHS, RHS);
7282   }
7283 
7284   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
7285   // the type of the other operand."
7286   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
7287   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
7288 
7289   // All objective-c pointer type analysis is done here.
7290   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
7291                                                         QuestionLoc);
7292   if (LHS.isInvalid() || RHS.isInvalid())
7293     return QualType();
7294   if (!compositeType.isNull())
7295     return compositeType;
7296 
7297 
7298   // Handle block pointer types.
7299   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
7300     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
7301                                                      QuestionLoc);
7302 
7303   // Check constraints for C object pointers types (C99 6.5.15p3,6).
7304   if (LHSTy->isPointerType() && RHSTy->isPointerType())
7305     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
7306                                                        QuestionLoc);
7307 
7308   // GCC compatibility: soften pointer/integer mismatch.  Note that
7309   // null pointers have been filtered out by this point.
7310   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
7311       /*IsIntFirstExpr=*/true))
7312     return RHSTy;
7313   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
7314       /*IsIntFirstExpr=*/false))
7315     return LHSTy;
7316 
7317   // Emit a better diagnostic if one of the expressions is a null pointer
7318   // constant and the other is not a pointer type. In this case, the user most
7319   // likely forgot to take the address of the other expression.
7320   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
7321     return QualType();
7322 
7323   // Otherwise, the operands are not compatible.
7324   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
7325     << LHSTy << RHSTy << LHS.get()->getSourceRange()
7326     << RHS.get()->getSourceRange();
7327   return QualType();
7328 }
7329 
7330 /// FindCompositeObjCPointerType - Helper method to find composite type of
7331 /// two objective-c pointer types of the two input expressions.
7332 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
7333                                             SourceLocation QuestionLoc) {
7334   QualType LHSTy = LHS.get()->getType();
7335   QualType RHSTy = RHS.get()->getType();
7336 
7337   // Handle things like Class and struct objc_class*.  Here we case the result
7338   // to the pseudo-builtin, because that will be implicitly cast back to the
7339   // redefinition type if an attempt is made to access its fields.
7340   if (LHSTy->isObjCClassType() &&
7341       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
7342     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
7343     return LHSTy;
7344   }
7345   if (RHSTy->isObjCClassType() &&
7346       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
7347     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
7348     return RHSTy;
7349   }
7350   // And the same for struct objc_object* / id
7351   if (LHSTy->isObjCIdType() &&
7352       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
7353     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
7354     return LHSTy;
7355   }
7356   if (RHSTy->isObjCIdType() &&
7357       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
7358     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
7359     return RHSTy;
7360   }
7361   // And the same for struct objc_selector* / SEL
7362   if (Context.isObjCSelType(LHSTy) &&
7363       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
7364     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
7365     return LHSTy;
7366   }
7367   if (Context.isObjCSelType(RHSTy) &&
7368       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
7369     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
7370     return RHSTy;
7371   }
7372   // Check constraints for Objective-C object pointers types.
7373   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
7374 
7375     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
7376       // Two identical object pointer types are always compatible.
7377       return LHSTy;
7378     }
7379     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
7380     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
7381     QualType compositeType = LHSTy;
7382 
7383     // If both operands are interfaces and either operand can be
7384     // assigned to the other, use that type as the composite
7385     // type. This allows
7386     //   xxx ? (A*) a : (B*) b
7387     // where B is a subclass of A.
7388     //
7389     // Additionally, as for assignment, if either type is 'id'
7390     // allow silent coercion. Finally, if the types are
7391     // incompatible then make sure to use 'id' as the composite
7392     // type so the result is acceptable for sending messages to.
7393 
7394     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
7395     // It could return the composite type.
7396     if (!(compositeType =
7397           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
7398       // Nothing more to do.
7399     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
7400       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
7401     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
7402       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
7403     } else if ((LHSTy->isObjCQualifiedIdType() ||
7404                 RHSTy->isObjCQualifiedIdType()) &&
7405                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
7406       // Need to handle "id<xx>" explicitly.
7407       // GCC allows qualified id and any Objective-C type to devolve to
7408       // id. Currently localizing to here until clear this should be
7409       // part of ObjCQualifiedIdTypesAreCompatible.
7410       compositeType = Context.getObjCIdType();
7411     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
7412       compositeType = Context.getObjCIdType();
7413     } else {
7414       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
7415       << LHSTy << RHSTy
7416       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7417       QualType incompatTy = Context.getObjCIdType();
7418       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
7419       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
7420       return incompatTy;
7421     }
7422     // The object pointer types are compatible.
7423     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
7424     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
7425     return compositeType;
7426   }
7427   // Check Objective-C object pointer types and 'void *'
7428   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
7429     if (getLangOpts().ObjCAutoRefCount) {
7430       // ARC forbids the implicit conversion of object pointers to 'void *',
7431       // so these types are not compatible.
7432       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
7433           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7434       LHS = RHS = true;
7435       return QualType();
7436     }
7437     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
7438     QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
7439     QualType destPointee
7440     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
7441     QualType destType = Context.getPointerType(destPointee);
7442     // Add qualifiers if necessary.
7443     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
7444     // Promote to void*.
7445     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
7446     return destType;
7447   }
7448   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
7449     if (getLangOpts().ObjCAutoRefCount) {
7450       // ARC forbids the implicit conversion of object pointers to 'void *',
7451       // so these types are not compatible.
7452       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
7453           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
7454       LHS = RHS = true;
7455       return QualType();
7456     }
7457     QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
7458     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
7459     QualType destPointee
7460     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
7461     QualType destType = Context.getPointerType(destPointee);
7462     // Add qualifiers if necessary.
7463     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
7464     // Promote to void*.
7465     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
7466     return destType;
7467   }
7468   return QualType();
7469 }
7470 
7471 /// SuggestParentheses - Emit a note with a fixit hint that wraps
7472 /// ParenRange in parentheses.
7473 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
7474                                const PartialDiagnostic &Note,
7475                                SourceRange ParenRange) {
7476   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
7477   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
7478       EndLoc.isValid()) {
7479     Self.Diag(Loc, Note)
7480       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
7481       << FixItHint::CreateInsertion(EndLoc, ")");
7482   } else {
7483     // We can't display the parentheses, so just show the bare note.
7484     Self.Diag(Loc, Note) << ParenRange;
7485   }
7486 }
7487 
7488 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
7489   return BinaryOperator::isAdditiveOp(Opc) ||
7490          BinaryOperator::isMultiplicativeOp(Opc) ||
7491          BinaryOperator::isShiftOp(Opc);
7492 }
7493 
7494 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
7495 /// expression, either using a built-in or overloaded operator,
7496 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
7497 /// expression.
7498 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
7499                                    Expr **RHSExprs) {
7500   // Don't strip parenthesis: we should not warn if E is in parenthesis.
7501   E = E->IgnoreImpCasts();
7502   E = E->IgnoreConversionOperator();
7503   E = E->IgnoreImpCasts();
7504   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
7505     E = MTE->GetTemporaryExpr();
7506     E = E->IgnoreImpCasts();
7507   }
7508 
7509   // Built-in binary operator.
7510   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
7511     if (IsArithmeticOp(OP->getOpcode())) {
7512       *Opcode = OP->getOpcode();
7513       *RHSExprs = OP->getRHS();
7514       return true;
7515     }
7516   }
7517 
7518   // Overloaded operator.
7519   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
7520     if (Call->getNumArgs() != 2)
7521       return false;
7522 
7523     // Make sure this is really a binary operator that is safe to pass into
7524     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
7525     OverloadedOperatorKind OO = Call->getOperator();
7526     if (OO < OO_Plus || OO > OO_Arrow ||
7527         OO == OO_PlusPlus || OO == OO_MinusMinus)
7528       return false;
7529 
7530     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
7531     if (IsArithmeticOp(OpKind)) {
7532       *Opcode = OpKind;
7533       *RHSExprs = Call->getArg(1);
7534       return true;
7535     }
7536   }
7537 
7538   return false;
7539 }
7540 
7541 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
7542 /// or is a logical expression such as (x==y) which has int type, but is
7543 /// commonly interpreted as boolean.
7544 static bool ExprLooksBoolean(Expr *E) {
7545   E = E->IgnoreParenImpCasts();
7546 
7547   if (E->getType()->isBooleanType())
7548     return true;
7549   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
7550     return OP->isComparisonOp() || OP->isLogicalOp();
7551   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
7552     return OP->getOpcode() == UO_LNot;
7553   if (E->getType()->isPointerType())
7554     return true;
7555   // FIXME: What about overloaded operator calls returning "unspecified boolean
7556   // type"s (commonly pointer-to-members)?
7557 
7558   return false;
7559 }
7560 
7561 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
7562 /// and binary operator are mixed in a way that suggests the programmer assumed
7563 /// the conditional operator has higher precedence, for example:
7564 /// "int x = a + someBinaryCondition ? 1 : 2".
7565 static void DiagnoseConditionalPrecedence(Sema &Self,
7566                                           SourceLocation OpLoc,
7567                                           Expr *Condition,
7568                                           Expr *LHSExpr,
7569                                           Expr *RHSExpr) {
7570   BinaryOperatorKind CondOpcode;
7571   Expr *CondRHS;
7572 
7573   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
7574     return;
7575   if (!ExprLooksBoolean(CondRHS))
7576     return;
7577 
7578   // The condition is an arithmetic binary expression, with a right-
7579   // hand side that looks boolean, so warn.
7580 
7581   Self.Diag(OpLoc, diag::warn_precedence_conditional)
7582       << Condition->getSourceRange()
7583       << BinaryOperator::getOpcodeStr(CondOpcode);
7584 
7585   SuggestParentheses(
7586       Self, OpLoc,
7587       Self.PDiag(diag::note_precedence_silence)
7588           << BinaryOperator::getOpcodeStr(CondOpcode),
7589       SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
7590 
7591   SuggestParentheses(Self, OpLoc,
7592                      Self.PDiag(diag::note_precedence_conditional_first),
7593                      SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
7594 }
7595 
7596 /// Compute the nullability of a conditional expression.
7597 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
7598                                               QualType LHSTy, QualType RHSTy,
7599                                               ASTContext &Ctx) {
7600   if (!ResTy->isAnyPointerType())
7601     return ResTy;
7602 
7603   auto GetNullability = [&Ctx](QualType Ty) {
7604     Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
7605     if (Kind)
7606       return *Kind;
7607     return NullabilityKind::Unspecified;
7608   };
7609 
7610   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
7611   NullabilityKind MergedKind;
7612 
7613   // Compute nullability of a binary conditional expression.
7614   if (IsBin) {
7615     if (LHSKind == NullabilityKind::NonNull)
7616       MergedKind = NullabilityKind::NonNull;
7617     else
7618       MergedKind = RHSKind;
7619   // Compute nullability of a normal conditional expression.
7620   } else {
7621     if (LHSKind == NullabilityKind::Nullable ||
7622         RHSKind == NullabilityKind::Nullable)
7623       MergedKind = NullabilityKind::Nullable;
7624     else if (LHSKind == NullabilityKind::NonNull)
7625       MergedKind = RHSKind;
7626     else if (RHSKind == NullabilityKind::NonNull)
7627       MergedKind = LHSKind;
7628     else
7629       MergedKind = NullabilityKind::Unspecified;
7630   }
7631 
7632   // Return if ResTy already has the correct nullability.
7633   if (GetNullability(ResTy) == MergedKind)
7634     return ResTy;
7635 
7636   // Strip all nullability from ResTy.
7637   while (ResTy->getNullability(Ctx))
7638     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
7639 
7640   // Create a new AttributedType with the new nullability kind.
7641   auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
7642   return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
7643 }
7644 
7645 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
7646 /// in the case of a the GNU conditional expr extension.
7647 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
7648                                     SourceLocation ColonLoc,
7649                                     Expr *CondExpr, Expr *LHSExpr,
7650                                     Expr *RHSExpr) {
7651   if (!getLangOpts().CPlusPlus) {
7652     // C cannot handle TypoExpr nodes in the condition because it
7653     // doesn't handle dependent types properly, so make sure any TypoExprs have
7654     // been dealt with before checking the operands.
7655     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
7656     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
7657     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
7658 
7659     if (!CondResult.isUsable())
7660       return ExprError();
7661 
7662     if (LHSExpr) {
7663       if (!LHSResult.isUsable())
7664         return ExprError();
7665     }
7666 
7667     if (!RHSResult.isUsable())
7668       return ExprError();
7669 
7670     CondExpr = CondResult.get();
7671     LHSExpr = LHSResult.get();
7672     RHSExpr = RHSResult.get();
7673   }
7674 
7675   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
7676   // was the condition.
7677   OpaqueValueExpr *opaqueValue = nullptr;
7678   Expr *commonExpr = nullptr;
7679   if (!LHSExpr) {
7680     commonExpr = CondExpr;
7681     // Lower out placeholder types first.  This is important so that we don't
7682     // try to capture a placeholder. This happens in few cases in C++; such
7683     // as Objective-C++'s dictionary subscripting syntax.
7684     if (commonExpr->hasPlaceholderType()) {
7685       ExprResult result = CheckPlaceholderExpr(commonExpr);
7686       if (!result.isUsable()) return ExprError();
7687       commonExpr = result.get();
7688     }
7689     // We usually want to apply unary conversions *before* saving, except
7690     // in the special case of a C++ l-value conditional.
7691     if (!(getLangOpts().CPlusPlus
7692           && !commonExpr->isTypeDependent()
7693           && commonExpr->getValueKind() == RHSExpr->getValueKind()
7694           && commonExpr->isGLValue()
7695           && commonExpr->isOrdinaryOrBitFieldObject()
7696           && RHSExpr->isOrdinaryOrBitFieldObject()
7697           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
7698       ExprResult commonRes = UsualUnaryConversions(commonExpr);
7699       if (commonRes.isInvalid())
7700         return ExprError();
7701       commonExpr = commonRes.get();
7702     }
7703 
7704     // If the common expression is a class or array prvalue, materialize it
7705     // so that we can safely refer to it multiple times.
7706     if (commonExpr->isRValue() && (commonExpr->getType()->isRecordType() ||
7707                                    commonExpr->getType()->isArrayType())) {
7708       ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
7709       if (MatExpr.isInvalid())
7710         return ExprError();
7711       commonExpr = MatExpr.get();
7712     }
7713 
7714     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
7715                                                 commonExpr->getType(),
7716                                                 commonExpr->getValueKind(),
7717                                                 commonExpr->getObjectKind(),
7718                                                 commonExpr);
7719     LHSExpr = CondExpr = opaqueValue;
7720   }
7721 
7722   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
7723   ExprValueKind VK = VK_RValue;
7724   ExprObjectKind OK = OK_Ordinary;
7725   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
7726   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
7727                                              VK, OK, QuestionLoc);
7728   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
7729       RHS.isInvalid())
7730     return ExprError();
7731 
7732   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
7733                                 RHS.get());
7734 
7735   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
7736 
7737   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
7738                                          Context);
7739 
7740   if (!commonExpr)
7741     return new (Context)
7742         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
7743                             RHS.get(), result, VK, OK);
7744 
7745   return new (Context) BinaryConditionalOperator(
7746       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
7747       ColonLoc, result, VK, OK);
7748 }
7749 
7750 // checkPointerTypesForAssignment - This is a very tricky routine (despite
7751 // being closely modeled after the C99 spec:-). The odd characteristic of this
7752 // routine is it effectively iqnores the qualifiers on the top level pointee.
7753 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
7754 // FIXME: add a couple examples in this comment.
7755 static Sema::AssignConvertType
7756 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
7757   assert(LHSType.isCanonical() && "LHS not canonicalized!");
7758   assert(RHSType.isCanonical() && "RHS not canonicalized!");
7759 
7760   // get the "pointed to" type (ignoring qualifiers at the top level)
7761   const Type *lhptee, *rhptee;
7762   Qualifiers lhq, rhq;
7763   std::tie(lhptee, lhq) =
7764       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
7765   std::tie(rhptee, rhq) =
7766       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
7767 
7768   Sema::AssignConvertType ConvTy = Sema::Compatible;
7769 
7770   // C99 6.5.16.1p1: This following citation is common to constraints
7771   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
7772   // qualifiers of the type *pointed to* by the right;
7773 
7774   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
7775   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
7776       lhq.compatiblyIncludesObjCLifetime(rhq)) {
7777     // Ignore lifetime for further calculation.
7778     lhq.removeObjCLifetime();
7779     rhq.removeObjCLifetime();
7780   }
7781 
7782   if (!lhq.compatiblyIncludes(rhq)) {
7783     // Treat address-space mismatches as fatal.
7784     if (!lhq.isAddressSpaceSupersetOf(rhq))
7785       return Sema::IncompatiblePointerDiscardsQualifiers;
7786 
7787     // It's okay to add or remove GC or lifetime qualifiers when converting to
7788     // and from void*.
7789     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
7790                         .compatiblyIncludes(
7791                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
7792              && (lhptee->isVoidType() || rhptee->isVoidType()))
7793       ; // keep old
7794 
7795     // Treat lifetime mismatches as fatal.
7796     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
7797       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
7798 
7799     // For GCC/MS compatibility, other qualifier mismatches are treated
7800     // as still compatible in C.
7801     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
7802   }
7803 
7804   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
7805   // incomplete type and the other is a pointer to a qualified or unqualified
7806   // version of void...
7807   if (lhptee->isVoidType()) {
7808     if (rhptee->isIncompleteOrObjectType())
7809       return ConvTy;
7810 
7811     // As an extension, we allow cast to/from void* to function pointer.
7812     assert(rhptee->isFunctionType());
7813     return Sema::FunctionVoidPointer;
7814   }
7815 
7816   if (rhptee->isVoidType()) {
7817     if (lhptee->isIncompleteOrObjectType())
7818       return ConvTy;
7819 
7820     // As an extension, we allow cast to/from void* to function pointer.
7821     assert(lhptee->isFunctionType());
7822     return Sema::FunctionVoidPointer;
7823   }
7824 
7825   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
7826   // unqualified versions of compatible types, ...
7827   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
7828   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
7829     // Check if the pointee types are compatible ignoring the sign.
7830     // We explicitly check for char so that we catch "char" vs
7831     // "unsigned char" on systems where "char" is unsigned.
7832     if (lhptee->isCharType())
7833       ltrans = S.Context.UnsignedCharTy;
7834     else if (lhptee->hasSignedIntegerRepresentation())
7835       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
7836 
7837     if (rhptee->isCharType())
7838       rtrans = S.Context.UnsignedCharTy;
7839     else if (rhptee->hasSignedIntegerRepresentation())
7840       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
7841 
7842     if (ltrans == rtrans) {
7843       // Types are compatible ignoring the sign. Qualifier incompatibility
7844       // takes priority over sign incompatibility because the sign
7845       // warning can be disabled.
7846       if (ConvTy != Sema::Compatible)
7847         return ConvTy;
7848 
7849       return Sema::IncompatiblePointerSign;
7850     }
7851 
7852     // If we are a multi-level pointer, it's possible that our issue is simply
7853     // one of qualification - e.g. char ** -> const char ** is not allowed. If
7854     // the eventual target type is the same and the pointers have the same
7855     // level of indirection, this must be the issue.
7856     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
7857       do {
7858         std::tie(lhptee, lhq) =
7859           cast<PointerType>(lhptee)->getPointeeType().split().asPair();
7860         std::tie(rhptee, rhq) =
7861           cast<PointerType>(rhptee)->getPointeeType().split().asPair();
7862 
7863         // Inconsistent address spaces at this point is invalid, even if the
7864         // address spaces would be compatible.
7865         // FIXME: This doesn't catch address space mismatches for pointers of
7866         // different nesting levels, like:
7867         //   __local int *** a;
7868         //   int ** b = a;
7869         // It's not clear how to actually determine when such pointers are
7870         // invalidly incompatible.
7871         if (lhq.getAddressSpace() != rhq.getAddressSpace())
7872           return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
7873 
7874       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
7875 
7876       if (lhptee == rhptee)
7877         return Sema::IncompatibleNestedPointerQualifiers;
7878     }
7879 
7880     // General pointer incompatibility takes priority over qualifiers.
7881     return Sema::IncompatiblePointer;
7882   }
7883   if (!S.getLangOpts().CPlusPlus &&
7884       S.IsFunctionConversion(ltrans, rtrans, ltrans))
7885     return Sema::IncompatiblePointer;
7886   return ConvTy;
7887 }
7888 
7889 /// checkBlockPointerTypesForAssignment - This routine determines whether two
7890 /// block pointer types are compatible or whether a block and normal pointer
7891 /// are compatible. It is more restrict than comparing two function pointer
7892 // types.
7893 static Sema::AssignConvertType
7894 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
7895                                     QualType RHSType) {
7896   assert(LHSType.isCanonical() && "LHS not canonicalized!");
7897   assert(RHSType.isCanonical() && "RHS not canonicalized!");
7898 
7899   QualType lhptee, rhptee;
7900 
7901   // get the "pointed to" type (ignoring qualifiers at the top level)
7902   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
7903   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
7904 
7905   // In C++, the types have to match exactly.
7906   if (S.getLangOpts().CPlusPlus)
7907     return Sema::IncompatibleBlockPointer;
7908 
7909   Sema::AssignConvertType ConvTy = Sema::Compatible;
7910 
7911   // For blocks we enforce that qualifiers are identical.
7912   Qualifiers LQuals = lhptee.getLocalQualifiers();
7913   Qualifiers RQuals = rhptee.getLocalQualifiers();
7914   if (S.getLangOpts().OpenCL) {
7915     LQuals.removeAddressSpace();
7916     RQuals.removeAddressSpace();
7917   }
7918   if (LQuals != RQuals)
7919     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
7920 
7921   // FIXME: OpenCL doesn't define the exact compile time semantics for a block
7922   // assignment.
7923   // The current behavior is similar to C++ lambdas. A block might be
7924   // assigned to a variable iff its return type and parameters are compatible
7925   // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
7926   // an assignment. Presumably it should behave in way that a function pointer
7927   // assignment does in C, so for each parameter and return type:
7928   //  * CVR and address space of LHS should be a superset of CVR and address
7929   //  space of RHS.
7930   //  * unqualified types should be compatible.
7931   if (S.getLangOpts().OpenCL) {
7932     if (!S.Context.typesAreBlockPointerCompatible(
7933             S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
7934             S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
7935       return Sema::IncompatibleBlockPointer;
7936   } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
7937     return Sema::IncompatibleBlockPointer;
7938 
7939   return ConvTy;
7940 }
7941 
7942 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
7943 /// for assignment compatibility.
7944 static Sema::AssignConvertType
7945 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
7946                                    QualType RHSType) {
7947   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
7948   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
7949 
7950   if (LHSType->isObjCBuiltinType()) {
7951     // Class is not compatible with ObjC object pointers.
7952     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
7953         !RHSType->isObjCQualifiedClassType())
7954       return Sema::IncompatiblePointer;
7955     return Sema::Compatible;
7956   }
7957   if (RHSType->isObjCBuiltinType()) {
7958     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
7959         !LHSType->isObjCQualifiedClassType())
7960       return Sema::IncompatiblePointer;
7961     return Sema::Compatible;
7962   }
7963   QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
7964   QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
7965 
7966   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
7967       // make an exception for id<P>
7968       !LHSType->isObjCQualifiedIdType())
7969     return Sema::CompatiblePointerDiscardsQualifiers;
7970 
7971   if (S.Context.typesAreCompatible(LHSType, RHSType))
7972     return Sema::Compatible;
7973   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
7974     return Sema::IncompatibleObjCQualifiedId;
7975   return Sema::IncompatiblePointer;
7976 }
7977 
7978 Sema::AssignConvertType
7979 Sema::CheckAssignmentConstraints(SourceLocation Loc,
7980                                  QualType LHSType, QualType RHSType) {
7981   // Fake up an opaque expression.  We don't actually care about what
7982   // cast operations are required, so if CheckAssignmentConstraints
7983   // adds casts to this they'll be wasted, but fortunately that doesn't
7984   // usually happen on valid code.
7985   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
7986   ExprResult RHSPtr = &RHSExpr;
7987   CastKind K;
7988 
7989   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
7990 }
7991 
7992 /// This helper function returns true if QT is a vector type that has element
7993 /// type ElementType.
7994 static bool isVector(QualType QT, QualType ElementType) {
7995   if (const VectorType *VT = QT->getAs<VectorType>())
7996     return VT->getElementType() == ElementType;
7997   return false;
7998 }
7999 
8000 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
8001 /// has code to accommodate several GCC extensions when type checking
8002 /// pointers. Here are some objectionable examples that GCC considers warnings:
8003 ///
8004 ///  int a, *pint;
8005 ///  short *pshort;
8006 ///  struct foo *pfoo;
8007 ///
8008 ///  pint = pshort; // warning: assignment from incompatible pointer type
8009 ///  a = pint; // warning: assignment makes integer from pointer without a cast
8010 ///  pint = a; // warning: assignment makes pointer from integer without a cast
8011 ///  pint = pfoo; // warning: assignment from incompatible pointer type
8012 ///
8013 /// As a result, the code for dealing with pointers is more complex than the
8014 /// C99 spec dictates.
8015 ///
8016 /// Sets 'Kind' for any result kind except Incompatible.
8017 Sema::AssignConvertType
8018 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
8019                                  CastKind &Kind, bool ConvertRHS) {
8020   QualType RHSType = RHS.get()->getType();
8021   QualType OrigLHSType = LHSType;
8022 
8023   // Get canonical types.  We're not formatting these types, just comparing
8024   // them.
8025   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
8026   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
8027 
8028   // Common case: no conversion required.
8029   if (LHSType == RHSType) {
8030     Kind = CK_NoOp;
8031     return Compatible;
8032   }
8033 
8034   // If we have an atomic type, try a non-atomic assignment, then just add an
8035   // atomic qualification step.
8036   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
8037     Sema::AssignConvertType result =
8038       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
8039     if (result != Compatible)
8040       return result;
8041     if (Kind != CK_NoOp && ConvertRHS)
8042       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
8043     Kind = CK_NonAtomicToAtomic;
8044     return Compatible;
8045   }
8046 
8047   // If the left-hand side is a reference type, then we are in a
8048   // (rare!) case where we've allowed the use of references in C,
8049   // e.g., as a parameter type in a built-in function. In this case,
8050   // just make sure that the type referenced is compatible with the
8051   // right-hand side type. The caller is responsible for adjusting
8052   // LHSType so that the resulting expression does not have reference
8053   // type.
8054   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
8055     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
8056       Kind = CK_LValueBitCast;
8057       return Compatible;
8058     }
8059     return Incompatible;
8060   }
8061 
8062   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
8063   // to the same ExtVector type.
8064   if (LHSType->isExtVectorType()) {
8065     if (RHSType->isExtVectorType())
8066       return Incompatible;
8067     if (RHSType->isArithmeticType()) {
8068       // CK_VectorSplat does T -> vector T, so first cast to the element type.
8069       if (ConvertRHS)
8070         RHS = prepareVectorSplat(LHSType, RHS.get());
8071       Kind = CK_VectorSplat;
8072       return Compatible;
8073     }
8074   }
8075 
8076   // Conversions to or from vector type.
8077   if (LHSType->isVectorType() || RHSType->isVectorType()) {
8078     if (LHSType->isVectorType() && RHSType->isVectorType()) {
8079       // Allow assignments of an AltiVec vector type to an equivalent GCC
8080       // vector type and vice versa
8081       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
8082         Kind = CK_BitCast;
8083         return Compatible;
8084       }
8085 
8086       // If we are allowing lax vector conversions, and LHS and RHS are both
8087       // vectors, the total size only needs to be the same. This is a bitcast;
8088       // no bits are changed but the result type is different.
8089       if (isLaxVectorConversion(RHSType, LHSType)) {
8090         Kind = CK_BitCast;
8091         return IncompatibleVectors;
8092       }
8093     }
8094 
8095     // When the RHS comes from another lax conversion (e.g. binops between
8096     // scalars and vectors) the result is canonicalized as a vector. When the
8097     // LHS is also a vector, the lax is allowed by the condition above. Handle
8098     // the case where LHS is a scalar.
8099     if (LHSType->isScalarType()) {
8100       const VectorType *VecType = RHSType->getAs<VectorType>();
8101       if (VecType && VecType->getNumElements() == 1 &&
8102           isLaxVectorConversion(RHSType, LHSType)) {
8103         ExprResult *VecExpr = &RHS;
8104         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
8105         Kind = CK_BitCast;
8106         return Compatible;
8107       }
8108     }
8109 
8110     return Incompatible;
8111   }
8112 
8113   // Diagnose attempts to convert between __float128 and long double where
8114   // such conversions currently can't be handled.
8115   if (unsupportedTypeConversion(*this, LHSType, RHSType))
8116     return Incompatible;
8117 
8118   // Disallow assigning a _Complex to a real type in C++ mode since it simply
8119   // discards the imaginary part.
8120   if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
8121       !LHSType->getAs<ComplexType>())
8122     return Incompatible;
8123 
8124   // Arithmetic conversions.
8125   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
8126       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
8127     if (ConvertRHS)
8128       Kind = PrepareScalarCast(RHS, LHSType);
8129     return Compatible;
8130   }
8131 
8132   // Conversions to normal pointers.
8133   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
8134     // U* -> T*
8135     if (isa<PointerType>(RHSType)) {
8136       LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
8137       LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
8138       if (AddrSpaceL != AddrSpaceR)
8139         Kind = CK_AddressSpaceConversion;
8140       else if (Context.hasCvrSimilarType(RHSType, LHSType))
8141         Kind = CK_NoOp;
8142       else
8143         Kind = CK_BitCast;
8144       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
8145     }
8146 
8147     // int -> T*
8148     if (RHSType->isIntegerType()) {
8149       Kind = CK_IntegralToPointer; // FIXME: null?
8150       return IntToPointer;
8151     }
8152 
8153     // C pointers are not compatible with ObjC object pointers,
8154     // with two exceptions:
8155     if (isa<ObjCObjectPointerType>(RHSType)) {
8156       //  - conversions to void*
8157       if (LHSPointer->getPointeeType()->isVoidType()) {
8158         Kind = CK_BitCast;
8159         return Compatible;
8160       }
8161 
8162       //  - conversions from 'Class' to the redefinition type
8163       if (RHSType->isObjCClassType() &&
8164           Context.hasSameType(LHSType,
8165                               Context.getObjCClassRedefinitionType())) {
8166         Kind = CK_BitCast;
8167         return Compatible;
8168       }
8169 
8170       Kind = CK_BitCast;
8171       return IncompatiblePointer;
8172     }
8173 
8174     // U^ -> void*
8175     if (RHSType->getAs<BlockPointerType>()) {
8176       if (LHSPointer->getPointeeType()->isVoidType()) {
8177         LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
8178         LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
8179                                 ->getPointeeType()
8180                                 .getAddressSpace();
8181         Kind =
8182             AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
8183         return Compatible;
8184       }
8185     }
8186 
8187     return Incompatible;
8188   }
8189 
8190   // Conversions to block pointers.
8191   if (isa<BlockPointerType>(LHSType)) {
8192     // U^ -> T^
8193     if (RHSType->isBlockPointerType()) {
8194       LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
8195                               ->getPointeeType()
8196                               .getAddressSpace();
8197       LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
8198                               ->getPointeeType()
8199                               .getAddressSpace();
8200       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
8201       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
8202     }
8203 
8204     // int or null -> T^
8205     if (RHSType->isIntegerType()) {
8206       Kind = CK_IntegralToPointer; // FIXME: null
8207       return IntToBlockPointer;
8208     }
8209 
8210     // id -> T^
8211     if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
8212       Kind = CK_AnyPointerToBlockPointerCast;
8213       return Compatible;
8214     }
8215 
8216     // void* -> T^
8217     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
8218       if (RHSPT->getPointeeType()->isVoidType()) {
8219         Kind = CK_AnyPointerToBlockPointerCast;
8220         return Compatible;
8221       }
8222 
8223     return Incompatible;
8224   }
8225 
8226   // Conversions to Objective-C pointers.
8227   if (isa<ObjCObjectPointerType>(LHSType)) {
8228     // A* -> B*
8229     if (RHSType->isObjCObjectPointerType()) {
8230       Kind = CK_BitCast;
8231       Sema::AssignConvertType result =
8232         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
8233       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
8234           result == Compatible &&
8235           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
8236         result = IncompatibleObjCWeakRef;
8237       return result;
8238     }
8239 
8240     // int or null -> A*
8241     if (RHSType->isIntegerType()) {
8242       Kind = CK_IntegralToPointer; // FIXME: null
8243       return IntToPointer;
8244     }
8245 
8246     // In general, C pointers are not compatible with ObjC object pointers,
8247     // with two exceptions:
8248     if (isa<PointerType>(RHSType)) {
8249       Kind = CK_CPointerToObjCPointerCast;
8250 
8251       //  - conversions from 'void*'
8252       if (RHSType->isVoidPointerType()) {
8253         return Compatible;
8254       }
8255 
8256       //  - conversions to 'Class' from its redefinition type
8257       if (LHSType->isObjCClassType() &&
8258           Context.hasSameType(RHSType,
8259                               Context.getObjCClassRedefinitionType())) {
8260         return Compatible;
8261       }
8262 
8263       return IncompatiblePointer;
8264     }
8265 
8266     // Only under strict condition T^ is compatible with an Objective-C pointer.
8267     if (RHSType->isBlockPointerType() &&
8268         LHSType->isBlockCompatibleObjCPointerType(Context)) {
8269       if (ConvertRHS)
8270         maybeExtendBlockObject(RHS);
8271       Kind = CK_BlockPointerToObjCPointerCast;
8272       return Compatible;
8273     }
8274 
8275     return Incompatible;
8276   }
8277 
8278   // Conversions from pointers that are not covered by the above.
8279   if (isa<PointerType>(RHSType)) {
8280     // T* -> _Bool
8281     if (LHSType == Context.BoolTy) {
8282       Kind = CK_PointerToBoolean;
8283       return Compatible;
8284     }
8285 
8286     // T* -> int
8287     if (LHSType->isIntegerType()) {
8288       Kind = CK_PointerToIntegral;
8289       return PointerToInt;
8290     }
8291 
8292     return Incompatible;
8293   }
8294 
8295   // Conversions from Objective-C pointers that are not covered by the above.
8296   if (isa<ObjCObjectPointerType>(RHSType)) {
8297     // T* -> _Bool
8298     if (LHSType == Context.BoolTy) {
8299       Kind = CK_PointerToBoolean;
8300       return Compatible;
8301     }
8302 
8303     // T* -> int
8304     if (LHSType->isIntegerType()) {
8305       Kind = CK_PointerToIntegral;
8306       return PointerToInt;
8307     }
8308 
8309     return Incompatible;
8310   }
8311 
8312   // struct A -> struct B
8313   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
8314     if (Context.typesAreCompatible(LHSType, RHSType)) {
8315       Kind = CK_NoOp;
8316       return Compatible;
8317     }
8318   }
8319 
8320   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
8321     Kind = CK_IntToOCLSampler;
8322     return Compatible;
8323   }
8324 
8325   return Incompatible;
8326 }
8327 
8328 /// Constructs a transparent union from an expression that is
8329 /// used to initialize the transparent union.
8330 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
8331                                       ExprResult &EResult, QualType UnionType,
8332                                       FieldDecl *Field) {
8333   // Build an initializer list that designates the appropriate member
8334   // of the transparent union.
8335   Expr *E = EResult.get();
8336   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
8337                                                    E, SourceLocation());
8338   Initializer->setType(UnionType);
8339   Initializer->setInitializedFieldInUnion(Field);
8340 
8341   // Build a compound literal constructing a value of the transparent
8342   // union type from this initializer list.
8343   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
8344   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
8345                                         VK_RValue, Initializer, false);
8346 }
8347 
8348 Sema::AssignConvertType
8349 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
8350                                                ExprResult &RHS) {
8351   QualType RHSType = RHS.get()->getType();
8352 
8353   // If the ArgType is a Union type, we want to handle a potential
8354   // transparent_union GCC extension.
8355   const RecordType *UT = ArgType->getAsUnionType();
8356   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
8357     return Incompatible;
8358 
8359   // The field to initialize within the transparent union.
8360   RecordDecl *UD = UT->getDecl();
8361   FieldDecl *InitField = nullptr;
8362   // It's compatible if the expression matches any of the fields.
8363   for (auto *it : UD->fields()) {
8364     if (it->getType()->isPointerType()) {
8365       // If the transparent union contains a pointer type, we allow:
8366       // 1) void pointer
8367       // 2) null pointer constant
8368       if (RHSType->isPointerType())
8369         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
8370           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
8371           InitField = it;
8372           break;
8373         }
8374 
8375       if (RHS.get()->isNullPointerConstant(Context,
8376                                            Expr::NPC_ValueDependentIsNull)) {
8377         RHS = ImpCastExprToType(RHS.get(), it->getType(),
8378                                 CK_NullToPointer);
8379         InitField = it;
8380         break;
8381       }
8382     }
8383 
8384     CastKind Kind;
8385     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
8386           == Compatible) {
8387       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
8388       InitField = it;
8389       break;
8390     }
8391   }
8392 
8393   if (!InitField)
8394     return Incompatible;
8395 
8396   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
8397   return Compatible;
8398 }
8399 
8400 Sema::AssignConvertType
8401 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
8402                                        bool Diagnose,
8403                                        bool DiagnoseCFAudited,
8404                                        bool ConvertRHS) {
8405   // We need to be able to tell the caller whether we diagnosed a problem, if
8406   // they ask us to issue diagnostics.
8407   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
8408 
8409   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
8410   // we can't avoid *all* modifications at the moment, so we need some somewhere
8411   // to put the updated value.
8412   ExprResult LocalRHS = CallerRHS;
8413   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
8414 
8415   if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
8416     if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
8417       if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8418           !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8419         Diag(RHS.get()->getExprLoc(),
8420              diag::warn_noderef_to_dereferenceable_pointer)
8421             << RHS.get()->getSourceRange();
8422       }
8423     }
8424   }
8425 
8426   if (getLangOpts().CPlusPlus) {
8427     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
8428       // C++ 5.17p3: If the left operand is not of class type, the
8429       // expression is implicitly converted (C++ 4) to the
8430       // cv-unqualified type of the left operand.
8431       QualType RHSType = RHS.get()->getType();
8432       if (Diagnose) {
8433         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
8434                                         AA_Assigning);
8435       } else {
8436         ImplicitConversionSequence ICS =
8437             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
8438                                   /*SuppressUserConversions=*/false,
8439                                   /*AllowExplicit=*/false,
8440                                   /*InOverloadResolution=*/false,
8441                                   /*CStyle=*/false,
8442                                   /*AllowObjCWritebackConversion=*/false);
8443         if (ICS.isFailure())
8444           return Incompatible;
8445         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
8446                                         ICS, AA_Assigning);
8447       }
8448       if (RHS.isInvalid())
8449         return Incompatible;
8450       Sema::AssignConvertType result = Compatible;
8451       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
8452           !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
8453         result = IncompatibleObjCWeakRef;
8454       return result;
8455     }
8456 
8457     // FIXME: Currently, we fall through and treat C++ classes like C
8458     // structures.
8459     // FIXME: We also fall through for atomics; not sure what should
8460     // happen there, though.
8461   } else if (RHS.get()->getType() == Context.OverloadTy) {
8462     // As a set of extensions to C, we support overloading on functions. These
8463     // functions need to be resolved here.
8464     DeclAccessPair DAP;
8465     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
8466             RHS.get(), LHSType, /*Complain=*/false, DAP))
8467       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
8468     else
8469       return Incompatible;
8470   }
8471 
8472   // C99 6.5.16.1p1: the left operand is a pointer and the right is
8473   // a null pointer constant.
8474   if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
8475        LHSType->isBlockPointerType()) &&
8476       RHS.get()->isNullPointerConstant(Context,
8477                                        Expr::NPC_ValueDependentIsNull)) {
8478     if (Diagnose || ConvertRHS) {
8479       CastKind Kind;
8480       CXXCastPath Path;
8481       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
8482                              /*IgnoreBaseAccess=*/false, Diagnose);
8483       if (ConvertRHS)
8484         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
8485     }
8486     return Compatible;
8487   }
8488 
8489   // OpenCL queue_t type assignment.
8490   if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
8491                                  Context, Expr::NPC_ValueDependentIsNull)) {
8492     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
8493     return Compatible;
8494   }
8495 
8496   // This check seems unnatural, however it is necessary to ensure the proper
8497   // conversion of functions/arrays. If the conversion were done for all
8498   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
8499   // expressions that suppress this implicit conversion (&, sizeof).
8500   //
8501   // Suppress this for references: C++ 8.5.3p5.
8502   if (!LHSType->isReferenceType()) {
8503     // FIXME: We potentially allocate here even if ConvertRHS is false.
8504     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
8505     if (RHS.isInvalid())
8506       return Incompatible;
8507   }
8508   CastKind Kind;
8509   Sema::AssignConvertType result =
8510     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
8511 
8512   // C99 6.5.16.1p2: The value of the right operand is converted to the
8513   // type of the assignment expression.
8514   // CheckAssignmentConstraints allows the left-hand side to be a reference,
8515   // so that we can use references in built-in functions even in C.
8516   // The getNonReferenceType() call makes sure that the resulting expression
8517   // does not have reference type.
8518   if (result != Incompatible && RHS.get()->getType() != LHSType) {
8519     QualType Ty = LHSType.getNonLValueExprType(Context);
8520     Expr *E = RHS.get();
8521 
8522     // Check for various Objective-C errors. If we are not reporting
8523     // diagnostics and just checking for errors, e.g., during overload
8524     // resolution, return Incompatible to indicate the failure.
8525     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
8526         CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
8527                             Diagnose, DiagnoseCFAudited) != ACR_okay) {
8528       if (!Diagnose)
8529         return Incompatible;
8530     }
8531     if (getLangOpts().ObjC &&
8532         (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
8533                                            E->getType(), E, Diagnose) ||
8534          ConversionToObjCStringLiteralCheck(LHSType, E, Diagnose))) {
8535       if (!Diagnose)
8536         return Incompatible;
8537       // Replace the expression with a corrected version and continue so we
8538       // can find further errors.
8539       RHS = E;
8540       return Compatible;
8541     }
8542 
8543     if (ConvertRHS)
8544       RHS = ImpCastExprToType(E, Ty, Kind);
8545   }
8546 
8547   return result;
8548 }
8549 
8550 namespace {
8551 /// The original operand to an operator, prior to the application of the usual
8552 /// arithmetic conversions and converting the arguments of a builtin operator
8553 /// candidate.
8554 struct OriginalOperand {
8555   explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
8556     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
8557       Op = MTE->GetTemporaryExpr();
8558     if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
8559       Op = BTE->getSubExpr();
8560     if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
8561       Orig = ICE->getSubExprAsWritten();
8562       Conversion = ICE->getConversionFunction();
8563     }
8564   }
8565 
8566   QualType getType() const { return Orig->getType(); }
8567 
8568   Expr *Orig;
8569   NamedDecl *Conversion;
8570 };
8571 }
8572 
8573 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
8574                                ExprResult &RHS) {
8575   OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
8576 
8577   Diag(Loc, diag::err_typecheck_invalid_operands)
8578     << OrigLHS.getType() << OrigRHS.getType()
8579     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8580 
8581   // If a user-defined conversion was applied to either of the operands prior
8582   // to applying the built-in operator rules, tell the user about it.
8583   if (OrigLHS.Conversion) {
8584     Diag(OrigLHS.Conversion->getLocation(),
8585          diag::note_typecheck_invalid_operands_converted)
8586       << 0 << LHS.get()->getType();
8587   }
8588   if (OrigRHS.Conversion) {
8589     Diag(OrigRHS.Conversion->getLocation(),
8590          diag::note_typecheck_invalid_operands_converted)
8591       << 1 << RHS.get()->getType();
8592   }
8593 
8594   return QualType();
8595 }
8596 
8597 // Diagnose cases where a scalar was implicitly converted to a vector and
8598 // diagnose the underlying types. Otherwise, diagnose the error
8599 // as invalid vector logical operands for non-C++ cases.
8600 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
8601                                             ExprResult &RHS) {
8602   QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
8603   QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
8604 
8605   bool LHSNatVec = LHSType->isVectorType();
8606   bool RHSNatVec = RHSType->isVectorType();
8607 
8608   if (!(LHSNatVec && RHSNatVec)) {
8609     Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
8610     Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
8611     Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
8612         << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
8613         << Vector->getSourceRange();
8614     return QualType();
8615   }
8616 
8617   Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
8618       << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
8619       << RHS.get()->getSourceRange();
8620 
8621   return QualType();
8622 }
8623 
8624 /// Try to convert a value of non-vector type to a vector type by converting
8625 /// the type to the element type of the vector and then performing a splat.
8626 /// If the language is OpenCL, we only use conversions that promote scalar
8627 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
8628 /// for float->int.
8629 ///
8630 /// OpenCL V2.0 6.2.6.p2:
8631 /// An error shall occur if any scalar operand type has greater rank
8632 /// than the type of the vector element.
8633 ///
8634 /// \param scalar - if non-null, actually perform the conversions
8635 /// \return true if the operation fails (but without diagnosing the failure)
8636 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
8637                                      QualType scalarTy,
8638                                      QualType vectorEltTy,
8639                                      QualType vectorTy,
8640                                      unsigned &DiagID) {
8641   // The conversion to apply to the scalar before splatting it,
8642   // if necessary.
8643   CastKind scalarCast = CK_NoOp;
8644 
8645   if (vectorEltTy->isIntegralType(S.Context)) {
8646     if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
8647         (scalarTy->isIntegerType() &&
8648          S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
8649       DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
8650       return true;
8651     }
8652     if (!scalarTy->isIntegralType(S.Context))
8653       return true;
8654     scalarCast = CK_IntegralCast;
8655   } else if (vectorEltTy->isRealFloatingType()) {
8656     if (scalarTy->isRealFloatingType()) {
8657       if (S.getLangOpts().OpenCL &&
8658           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
8659         DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
8660         return true;
8661       }
8662       scalarCast = CK_FloatingCast;
8663     }
8664     else if (scalarTy->isIntegralType(S.Context))
8665       scalarCast = CK_IntegralToFloating;
8666     else
8667       return true;
8668   } else {
8669     return true;
8670   }
8671 
8672   // Adjust scalar if desired.
8673   if (scalar) {
8674     if (scalarCast != CK_NoOp)
8675       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
8676     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
8677   }
8678   return false;
8679 }
8680 
8681 /// Convert vector E to a vector with the same number of elements but different
8682 /// element type.
8683 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
8684   const auto *VecTy = E->getType()->getAs<VectorType>();
8685   assert(VecTy && "Expression E must be a vector");
8686   QualType NewVecTy = S.Context.getVectorType(ElementType,
8687                                               VecTy->getNumElements(),
8688                                               VecTy->getVectorKind());
8689 
8690   // Look through the implicit cast. Return the subexpression if its type is
8691   // NewVecTy.
8692   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
8693     if (ICE->getSubExpr()->getType() == NewVecTy)
8694       return ICE->getSubExpr();
8695 
8696   auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
8697   return S.ImpCastExprToType(E, NewVecTy, Cast);
8698 }
8699 
8700 /// Test if a (constant) integer Int can be casted to another integer type
8701 /// IntTy without losing precision.
8702 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
8703                                       QualType OtherIntTy) {
8704   QualType IntTy = Int->get()->getType().getUnqualifiedType();
8705 
8706   // Reject cases where the value of the Int is unknown as that would
8707   // possibly cause truncation, but accept cases where the scalar can be
8708   // demoted without loss of precision.
8709   Expr::EvalResult EVResult;
8710   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
8711   int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
8712   bool IntSigned = IntTy->hasSignedIntegerRepresentation();
8713   bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
8714 
8715   if (CstInt) {
8716     // If the scalar is constant and is of a higher order and has more active
8717     // bits that the vector element type, reject it.
8718     llvm::APSInt Result = EVResult.Val.getInt();
8719     unsigned NumBits = IntSigned
8720                            ? (Result.isNegative() ? Result.getMinSignedBits()
8721                                                   : Result.getActiveBits())
8722                            : Result.getActiveBits();
8723     if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
8724       return true;
8725 
8726     // If the signedness of the scalar type and the vector element type
8727     // differs and the number of bits is greater than that of the vector
8728     // element reject it.
8729     return (IntSigned != OtherIntSigned &&
8730             NumBits > S.Context.getIntWidth(OtherIntTy));
8731   }
8732 
8733   // Reject cases where the value of the scalar is not constant and it's
8734   // order is greater than that of the vector element type.
8735   return (Order < 0);
8736 }
8737 
8738 /// Test if a (constant) integer Int can be casted to floating point type
8739 /// FloatTy without losing precision.
8740 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
8741                                      QualType FloatTy) {
8742   QualType IntTy = Int->get()->getType().getUnqualifiedType();
8743 
8744   // Determine if the integer constant can be expressed as a floating point
8745   // number of the appropriate type.
8746   Expr::EvalResult EVResult;
8747   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
8748 
8749   uint64_t Bits = 0;
8750   if (CstInt) {
8751     // Reject constants that would be truncated if they were converted to
8752     // the floating point type. Test by simple to/from conversion.
8753     // FIXME: Ideally the conversion to an APFloat and from an APFloat
8754     //        could be avoided if there was a convertFromAPInt method
8755     //        which could signal back if implicit truncation occurred.
8756     llvm::APSInt Result = EVResult.Val.getInt();
8757     llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
8758     Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
8759                            llvm::APFloat::rmTowardZero);
8760     llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
8761                              !IntTy->hasSignedIntegerRepresentation());
8762     bool Ignored = false;
8763     Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
8764                            &Ignored);
8765     if (Result != ConvertBack)
8766       return true;
8767   } else {
8768     // Reject types that cannot be fully encoded into the mantissa of
8769     // the float.
8770     Bits = S.Context.getTypeSize(IntTy);
8771     unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
8772         S.Context.getFloatTypeSemantics(FloatTy));
8773     if (Bits > FloatPrec)
8774       return true;
8775   }
8776 
8777   return false;
8778 }
8779 
8780 /// Attempt to convert and splat Scalar into a vector whose types matches
8781 /// Vector following GCC conversion rules. The rule is that implicit
8782 /// conversion can occur when Scalar can be casted to match Vector's element
8783 /// type without causing truncation of Scalar.
8784 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
8785                                         ExprResult *Vector) {
8786   QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
8787   QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
8788   const VectorType *VT = VectorTy->getAs<VectorType>();
8789 
8790   assert(!isa<ExtVectorType>(VT) &&
8791          "ExtVectorTypes should not be handled here!");
8792 
8793   QualType VectorEltTy = VT->getElementType();
8794 
8795   // Reject cases where the vector element type or the scalar element type are
8796   // not integral or floating point types.
8797   if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
8798     return true;
8799 
8800   // The conversion to apply to the scalar before splatting it,
8801   // if necessary.
8802   CastKind ScalarCast = CK_NoOp;
8803 
8804   // Accept cases where the vector elements are integers and the scalar is
8805   // an integer.
8806   // FIXME: Notionally if the scalar was a floating point value with a precise
8807   //        integral representation, we could cast it to an appropriate integer
8808   //        type and then perform the rest of the checks here. GCC will perform
8809   //        this conversion in some cases as determined by the input language.
8810   //        We should accept it on a language independent basis.
8811   if (VectorEltTy->isIntegralType(S.Context) &&
8812       ScalarTy->isIntegralType(S.Context) &&
8813       S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
8814 
8815     if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
8816       return true;
8817 
8818     ScalarCast = CK_IntegralCast;
8819   } else if (VectorEltTy->isRealFloatingType()) {
8820     if (ScalarTy->isRealFloatingType()) {
8821 
8822       // Reject cases where the scalar type is not a constant and has a higher
8823       // Order than the vector element type.
8824       llvm::APFloat Result(0.0);
8825       bool CstScalar = Scalar->get()->EvaluateAsFloat(Result, S.Context);
8826       int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
8827       if (!CstScalar && Order < 0)
8828         return true;
8829 
8830       // If the scalar cannot be safely casted to the vector element type,
8831       // reject it.
8832       if (CstScalar) {
8833         bool Truncated = false;
8834         Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
8835                        llvm::APFloat::rmNearestTiesToEven, &Truncated);
8836         if (Truncated)
8837           return true;
8838       }
8839 
8840       ScalarCast = CK_FloatingCast;
8841     } else if (ScalarTy->isIntegralType(S.Context)) {
8842       if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
8843         return true;
8844 
8845       ScalarCast = CK_IntegralToFloating;
8846     } else
8847       return true;
8848   }
8849 
8850   // Adjust scalar if desired.
8851   if (Scalar) {
8852     if (ScalarCast != CK_NoOp)
8853       *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
8854     *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
8855   }
8856   return false;
8857 }
8858 
8859 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
8860                                    SourceLocation Loc, bool IsCompAssign,
8861                                    bool AllowBothBool,
8862                                    bool AllowBoolConversions) {
8863   if (!IsCompAssign) {
8864     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
8865     if (LHS.isInvalid())
8866       return QualType();
8867   }
8868   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
8869   if (RHS.isInvalid())
8870     return QualType();
8871 
8872   // For conversion purposes, we ignore any qualifiers.
8873   // For example, "const float" and "float" are equivalent.
8874   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
8875   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
8876 
8877   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
8878   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
8879   assert(LHSVecType || RHSVecType);
8880 
8881   // AltiVec-style "vector bool op vector bool" combinations are allowed
8882   // for some operators but not others.
8883   if (!AllowBothBool &&
8884       LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
8885       RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
8886     return InvalidOperands(Loc, LHS, RHS);
8887 
8888   // If the vector types are identical, return.
8889   if (Context.hasSameType(LHSType, RHSType))
8890     return LHSType;
8891 
8892   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
8893   if (LHSVecType && RHSVecType &&
8894       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
8895     if (isa<ExtVectorType>(LHSVecType)) {
8896       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8897       return LHSType;
8898     }
8899 
8900     if (!IsCompAssign)
8901       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
8902     return RHSType;
8903   }
8904 
8905   // AllowBoolConversions says that bool and non-bool AltiVec vectors
8906   // can be mixed, with the result being the non-bool type.  The non-bool
8907   // operand must have integer element type.
8908   if (AllowBoolConversions && LHSVecType && RHSVecType &&
8909       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
8910       (Context.getTypeSize(LHSVecType->getElementType()) ==
8911        Context.getTypeSize(RHSVecType->getElementType()))) {
8912     if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
8913         LHSVecType->getElementType()->isIntegerType() &&
8914         RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
8915       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
8916       return LHSType;
8917     }
8918     if (!IsCompAssign &&
8919         LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
8920         RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
8921         RHSVecType->getElementType()->isIntegerType()) {
8922       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
8923       return RHSType;
8924     }
8925   }
8926 
8927   // If there's a vector type and a scalar, try to convert the scalar to
8928   // the vector element type and splat.
8929   unsigned DiagID = diag::err_typecheck_vector_not_convertable;
8930   if (!RHSVecType) {
8931     if (isa<ExtVectorType>(LHSVecType)) {
8932       if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
8933                                     LHSVecType->getElementType(), LHSType,
8934                                     DiagID))
8935         return LHSType;
8936     } else {
8937       if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
8938         return LHSType;
8939     }
8940   }
8941   if (!LHSVecType) {
8942     if (isa<ExtVectorType>(RHSVecType)) {
8943       if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
8944                                     LHSType, RHSVecType->getElementType(),
8945                                     RHSType, DiagID))
8946         return RHSType;
8947     } else {
8948       if (LHS.get()->getValueKind() == VK_LValue ||
8949           !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
8950         return RHSType;
8951     }
8952   }
8953 
8954   // FIXME: The code below also handles conversion between vectors and
8955   // non-scalars, we should break this down into fine grained specific checks
8956   // and emit proper diagnostics.
8957   QualType VecType = LHSVecType ? LHSType : RHSType;
8958   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
8959   QualType OtherType = LHSVecType ? RHSType : LHSType;
8960   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
8961   if (isLaxVectorConversion(OtherType, VecType)) {
8962     // If we're allowing lax vector conversions, only the total (data) size
8963     // needs to be the same. For non compound assignment, if one of the types is
8964     // scalar, the result is always the vector type.
8965     if (!IsCompAssign) {
8966       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
8967       return VecType;
8968     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
8969     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
8970     // type. Note that this is already done by non-compound assignments in
8971     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
8972     // <1 x T> -> T. The result is also a vector type.
8973     } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
8974                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
8975       ExprResult *RHSExpr = &RHS;
8976       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
8977       return VecType;
8978     }
8979   }
8980 
8981   // Okay, the expression is invalid.
8982 
8983   // If there's a non-vector, non-real operand, diagnose that.
8984   if ((!RHSVecType && !RHSType->isRealType()) ||
8985       (!LHSVecType && !LHSType->isRealType())) {
8986     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
8987       << LHSType << RHSType
8988       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8989     return QualType();
8990   }
8991 
8992   // OpenCL V1.1 6.2.6.p1:
8993   // If the operands are of more than one vector type, then an error shall
8994   // occur. Implicit conversions between vector types are not permitted, per
8995   // section 6.2.1.
8996   if (getLangOpts().OpenCL &&
8997       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
8998       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
8999     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
9000                                                            << RHSType;
9001     return QualType();
9002   }
9003 
9004 
9005   // If there is a vector type that is not a ExtVector and a scalar, we reach
9006   // this point if scalar could not be converted to the vector's element type
9007   // without truncation.
9008   if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
9009       (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
9010     QualType Scalar = LHSVecType ? RHSType : LHSType;
9011     QualType Vector = LHSVecType ? LHSType : RHSType;
9012     unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
9013     Diag(Loc,
9014          diag::err_typecheck_vector_not_convertable_implict_truncation)
9015         << ScalarOrVector << Scalar << Vector;
9016 
9017     return QualType();
9018   }
9019 
9020   // Otherwise, use the generic diagnostic.
9021   Diag(Loc, DiagID)
9022     << LHSType << RHSType
9023     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9024   return QualType();
9025 }
9026 
9027 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
9028 // expression.  These are mainly cases where the null pointer is used as an
9029 // integer instead of a pointer.
9030 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
9031                                 SourceLocation Loc, bool IsCompare) {
9032   // The canonical way to check for a GNU null is with isNullPointerConstant,
9033   // but we use a bit of a hack here for speed; this is a relatively
9034   // hot path, and isNullPointerConstant is slow.
9035   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
9036   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
9037 
9038   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
9039 
9040   // Avoid analyzing cases where the result will either be invalid (and
9041   // diagnosed as such) or entirely valid and not something to warn about.
9042   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
9043       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
9044     return;
9045 
9046   // Comparison operations would not make sense with a null pointer no matter
9047   // what the other expression is.
9048   if (!IsCompare) {
9049     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
9050         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
9051         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
9052     return;
9053   }
9054 
9055   // The rest of the operations only make sense with a null pointer
9056   // if the other expression is a pointer.
9057   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
9058       NonNullType->canDecayToPointerType())
9059     return;
9060 
9061   S.Diag(Loc, diag::warn_null_in_comparison_operation)
9062       << LHSNull /* LHS is NULL */ << NonNullType
9063       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9064 }
9065 
9066 static void DiagnoseDivisionSizeofPointer(Sema &S, Expr *LHS, Expr *RHS,
9067                                           SourceLocation Loc) {
9068   const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
9069   const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
9070   if (!LUE || !RUE)
9071     return;
9072   if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
9073       RUE->getKind() != UETT_SizeOf)
9074     return;
9075 
9076   QualType LHSTy = LUE->getArgumentExpr()->IgnoreParens()->getType();
9077   QualType RHSTy;
9078 
9079   if (RUE->isArgumentType())
9080     RHSTy = RUE->getArgumentType();
9081   else
9082     RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
9083 
9084   if (!LHSTy->isPointerType() || RHSTy->isPointerType())
9085     return;
9086   if (LHSTy->getPointeeType() != RHSTy)
9087     return;
9088 
9089   S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
9090 }
9091 
9092 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
9093                                                ExprResult &RHS,
9094                                                SourceLocation Loc, bool IsDiv) {
9095   // Check for division/remainder by zero.
9096   Expr::EvalResult RHSValue;
9097   if (!RHS.get()->isValueDependent() &&
9098       RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
9099       RHSValue.Val.getInt() == 0)
9100     S.DiagRuntimeBehavior(Loc, RHS.get(),
9101                           S.PDiag(diag::warn_remainder_division_by_zero)
9102                             << IsDiv << RHS.get()->getSourceRange());
9103 }
9104 
9105 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
9106                                            SourceLocation Loc,
9107                                            bool IsCompAssign, bool IsDiv) {
9108   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
9109 
9110   if (LHS.get()->getType()->isVectorType() ||
9111       RHS.get()->getType()->isVectorType())
9112     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
9113                                /*AllowBothBool*/getLangOpts().AltiVec,
9114                                /*AllowBoolConversions*/false);
9115 
9116   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
9117   if (LHS.isInvalid() || RHS.isInvalid())
9118     return QualType();
9119 
9120 
9121   if (compType.isNull() || !compType->isArithmeticType())
9122     return InvalidOperands(Loc, LHS, RHS);
9123   if (IsDiv) {
9124     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
9125     DiagnoseDivisionSizeofPointer(*this, LHS.get(), RHS.get(), Loc);
9126   }
9127   return compType;
9128 }
9129 
9130 QualType Sema::CheckRemainderOperands(
9131   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
9132   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
9133 
9134   if (LHS.get()->getType()->isVectorType() ||
9135       RHS.get()->getType()->isVectorType()) {
9136     if (LHS.get()->getType()->hasIntegerRepresentation() &&
9137         RHS.get()->getType()->hasIntegerRepresentation())
9138       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
9139                                  /*AllowBothBool*/getLangOpts().AltiVec,
9140                                  /*AllowBoolConversions*/false);
9141     return InvalidOperands(Loc, LHS, RHS);
9142   }
9143 
9144   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
9145   if (LHS.isInvalid() || RHS.isInvalid())
9146     return QualType();
9147 
9148   if (compType.isNull() || !compType->isIntegerType())
9149     return InvalidOperands(Loc, LHS, RHS);
9150   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
9151   return compType;
9152 }
9153 
9154 /// Diagnose invalid arithmetic on two void pointers.
9155 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
9156                                                 Expr *LHSExpr, Expr *RHSExpr) {
9157   S.Diag(Loc, S.getLangOpts().CPlusPlus
9158                 ? diag::err_typecheck_pointer_arith_void_type
9159                 : diag::ext_gnu_void_ptr)
9160     << 1 /* two pointers */ << LHSExpr->getSourceRange()
9161                             << RHSExpr->getSourceRange();
9162 }
9163 
9164 /// Diagnose invalid arithmetic on a void pointer.
9165 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
9166                                             Expr *Pointer) {
9167   S.Diag(Loc, S.getLangOpts().CPlusPlus
9168                 ? diag::err_typecheck_pointer_arith_void_type
9169                 : diag::ext_gnu_void_ptr)
9170     << 0 /* one pointer */ << Pointer->getSourceRange();
9171 }
9172 
9173 /// Diagnose invalid arithmetic on a null pointer.
9174 ///
9175 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
9176 /// idiom, which we recognize as a GNU extension.
9177 ///
9178 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
9179                                             Expr *Pointer, bool IsGNUIdiom) {
9180   if (IsGNUIdiom)
9181     S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
9182       << Pointer->getSourceRange();
9183   else
9184     S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
9185       << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
9186 }
9187 
9188 /// Diagnose invalid arithmetic on two function pointers.
9189 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
9190                                                     Expr *LHS, Expr *RHS) {
9191   assert(LHS->getType()->isAnyPointerType());
9192   assert(RHS->getType()->isAnyPointerType());
9193   S.Diag(Loc, S.getLangOpts().CPlusPlus
9194                 ? diag::err_typecheck_pointer_arith_function_type
9195                 : diag::ext_gnu_ptr_func_arith)
9196     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
9197     // We only show the second type if it differs from the first.
9198     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
9199                                                    RHS->getType())
9200     << RHS->getType()->getPointeeType()
9201     << LHS->getSourceRange() << RHS->getSourceRange();
9202 }
9203 
9204 /// Diagnose invalid arithmetic on a function pointer.
9205 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
9206                                                 Expr *Pointer) {
9207   assert(Pointer->getType()->isAnyPointerType());
9208   S.Diag(Loc, S.getLangOpts().CPlusPlus
9209                 ? diag::err_typecheck_pointer_arith_function_type
9210                 : diag::ext_gnu_ptr_func_arith)
9211     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
9212     << 0 /* one pointer, so only one type */
9213     << Pointer->getSourceRange();
9214 }
9215 
9216 /// Emit error if Operand is incomplete pointer type
9217 ///
9218 /// \returns True if pointer has incomplete type
9219 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
9220                                                  Expr *Operand) {
9221   QualType ResType = Operand->getType();
9222   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
9223     ResType = ResAtomicType->getValueType();
9224 
9225   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
9226   QualType PointeeTy = ResType->getPointeeType();
9227   return S.RequireCompleteType(Loc, PointeeTy,
9228                                diag::err_typecheck_arithmetic_incomplete_type,
9229                                PointeeTy, Operand->getSourceRange());
9230 }
9231 
9232 /// Check the validity of an arithmetic pointer operand.
9233 ///
9234 /// If the operand has pointer type, this code will check for pointer types
9235 /// which are invalid in arithmetic operations. These will be diagnosed
9236 /// appropriately, including whether or not the use is supported as an
9237 /// extension.
9238 ///
9239 /// \returns True when the operand is valid to use (even if as an extension).
9240 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
9241                                             Expr *Operand) {
9242   QualType ResType = Operand->getType();
9243   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
9244     ResType = ResAtomicType->getValueType();
9245 
9246   if (!ResType->isAnyPointerType()) return true;
9247 
9248   QualType PointeeTy = ResType->getPointeeType();
9249   if (PointeeTy->isVoidType()) {
9250     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
9251     return !S.getLangOpts().CPlusPlus;
9252   }
9253   if (PointeeTy->isFunctionType()) {
9254     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
9255     return !S.getLangOpts().CPlusPlus;
9256   }
9257 
9258   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
9259 
9260   return true;
9261 }
9262 
9263 /// Check the validity of a binary arithmetic operation w.r.t. pointer
9264 /// operands.
9265 ///
9266 /// This routine will diagnose any invalid arithmetic on pointer operands much
9267 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
9268 /// for emitting a single diagnostic even for operations where both LHS and RHS
9269 /// are (potentially problematic) pointers.
9270 ///
9271 /// \returns True when the operand is valid to use (even if as an extension).
9272 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
9273                                                 Expr *LHSExpr, Expr *RHSExpr) {
9274   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
9275   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
9276   if (!isLHSPointer && !isRHSPointer) return true;
9277 
9278   QualType LHSPointeeTy, RHSPointeeTy;
9279   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
9280   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
9281 
9282   // if both are pointers check if operation is valid wrt address spaces
9283   if (S.getLangOpts().OpenCL && isLHSPointer && isRHSPointer) {
9284     const PointerType *lhsPtr = LHSExpr->getType()->getAs<PointerType>();
9285     const PointerType *rhsPtr = RHSExpr->getType()->getAs<PointerType>();
9286     if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) {
9287       S.Diag(Loc,
9288              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
9289           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
9290           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
9291       return false;
9292     }
9293   }
9294 
9295   // Check for arithmetic on pointers to incomplete types.
9296   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
9297   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
9298   if (isLHSVoidPtr || isRHSVoidPtr) {
9299     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
9300     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
9301     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
9302 
9303     return !S.getLangOpts().CPlusPlus;
9304   }
9305 
9306   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
9307   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
9308   if (isLHSFuncPtr || isRHSFuncPtr) {
9309     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
9310     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
9311                                                                 RHSExpr);
9312     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
9313 
9314     return !S.getLangOpts().CPlusPlus;
9315   }
9316 
9317   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
9318     return false;
9319   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
9320     return false;
9321 
9322   return true;
9323 }
9324 
9325 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
9326 /// literal.
9327 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
9328                                   Expr *LHSExpr, Expr *RHSExpr) {
9329   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
9330   Expr* IndexExpr = RHSExpr;
9331   if (!StrExpr) {
9332     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
9333     IndexExpr = LHSExpr;
9334   }
9335 
9336   bool IsStringPlusInt = StrExpr &&
9337       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
9338   if (!IsStringPlusInt || IndexExpr->isValueDependent())
9339     return;
9340 
9341   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
9342   Self.Diag(OpLoc, diag::warn_string_plus_int)
9343       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
9344 
9345   // Only print a fixit for "str" + int, not for int + "str".
9346   if (IndexExpr == RHSExpr) {
9347     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
9348     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
9349         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
9350         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
9351         << FixItHint::CreateInsertion(EndLoc, "]");
9352   } else
9353     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
9354 }
9355 
9356 /// Emit a warning when adding a char literal to a string.
9357 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
9358                                    Expr *LHSExpr, Expr *RHSExpr) {
9359   const Expr *StringRefExpr = LHSExpr;
9360   const CharacterLiteral *CharExpr =
9361       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
9362 
9363   if (!CharExpr) {
9364     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
9365     StringRefExpr = RHSExpr;
9366   }
9367 
9368   if (!CharExpr || !StringRefExpr)
9369     return;
9370 
9371   const QualType StringType = StringRefExpr->getType();
9372 
9373   // Return if not a PointerType.
9374   if (!StringType->isAnyPointerType())
9375     return;
9376 
9377   // Return if not a CharacterType.
9378   if (!StringType->getPointeeType()->isAnyCharacterType())
9379     return;
9380 
9381   ASTContext &Ctx = Self.getASTContext();
9382   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
9383 
9384   const QualType CharType = CharExpr->getType();
9385   if (!CharType->isAnyCharacterType() &&
9386       CharType->isIntegerType() &&
9387       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
9388     Self.Diag(OpLoc, diag::warn_string_plus_char)
9389         << DiagRange << Ctx.CharTy;
9390   } else {
9391     Self.Diag(OpLoc, diag::warn_string_plus_char)
9392         << DiagRange << CharExpr->getType();
9393   }
9394 
9395   // Only print a fixit for str + char, not for char + str.
9396   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
9397     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
9398     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
9399         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
9400         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
9401         << FixItHint::CreateInsertion(EndLoc, "]");
9402   } else {
9403     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
9404   }
9405 }
9406 
9407 /// Emit error when two pointers are incompatible.
9408 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
9409                                            Expr *LHSExpr, Expr *RHSExpr) {
9410   assert(LHSExpr->getType()->isAnyPointerType());
9411   assert(RHSExpr->getType()->isAnyPointerType());
9412   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
9413     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
9414     << RHSExpr->getSourceRange();
9415 }
9416 
9417 // C99 6.5.6
9418 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
9419                                      SourceLocation Loc, BinaryOperatorKind Opc,
9420                                      QualType* CompLHSTy) {
9421   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
9422 
9423   if (LHS.get()->getType()->isVectorType() ||
9424       RHS.get()->getType()->isVectorType()) {
9425     QualType compType = CheckVectorOperands(
9426         LHS, RHS, Loc, CompLHSTy,
9427         /*AllowBothBool*/getLangOpts().AltiVec,
9428         /*AllowBoolConversions*/getLangOpts().ZVector);
9429     if (CompLHSTy) *CompLHSTy = compType;
9430     return compType;
9431   }
9432 
9433   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
9434   if (LHS.isInvalid() || RHS.isInvalid())
9435     return QualType();
9436 
9437   // Diagnose "string literal" '+' int and string '+' "char literal".
9438   if (Opc == BO_Add) {
9439     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
9440     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
9441   }
9442 
9443   // handle the common case first (both operands are arithmetic).
9444   if (!compType.isNull() && compType->isArithmeticType()) {
9445     if (CompLHSTy) *CompLHSTy = compType;
9446     return compType;
9447   }
9448 
9449   // Type-checking.  Ultimately the pointer's going to be in PExp;
9450   // note that we bias towards the LHS being the pointer.
9451   Expr *PExp = LHS.get(), *IExp = RHS.get();
9452 
9453   bool isObjCPointer;
9454   if (PExp->getType()->isPointerType()) {
9455     isObjCPointer = false;
9456   } else if (PExp->getType()->isObjCObjectPointerType()) {
9457     isObjCPointer = true;
9458   } else {
9459     std::swap(PExp, IExp);
9460     if (PExp->getType()->isPointerType()) {
9461       isObjCPointer = false;
9462     } else if (PExp->getType()->isObjCObjectPointerType()) {
9463       isObjCPointer = true;
9464     } else {
9465       return InvalidOperands(Loc, LHS, RHS);
9466     }
9467   }
9468   assert(PExp->getType()->isAnyPointerType());
9469 
9470   if (!IExp->getType()->isIntegerType())
9471     return InvalidOperands(Loc, LHS, RHS);
9472 
9473   // Adding to a null pointer results in undefined behavior.
9474   if (PExp->IgnoreParenCasts()->isNullPointerConstant(
9475           Context, Expr::NPC_ValueDependentIsNotNull)) {
9476     // In C++ adding zero to a null pointer is defined.
9477     Expr::EvalResult KnownVal;
9478     if (!getLangOpts().CPlusPlus ||
9479         (!IExp->isValueDependent() &&
9480          (!IExp->EvaluateAsInt(KnownVal, Context) ||
9481           KnownVal.Val.getInt() != 0))) {
9482       // Check the conditions to see if this is the 'p = nullptr + n' idiom.
9483       bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
9484           Context, BO_Add, PExp, IExp);
9485       diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
9486     }
9487   }
9488 
9489   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
9490     return QualType();
9491 
9492   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
9493     return QualType();
9494 
9495   // Check array bounds for pointer arithemtic
9496   CheckArrayAccess(PExp, IExp);
9497 
9498   if (CompLHSTy) {
9499     QualType LHSTy = Context.isPromotableBitField(LHS.get());
9500     if (LHSTy.isNull()) {
9501       LHSTy = LHS.get()->getType();
9502       if (LHSTy->isPromotableIntegerType())
9503         LHSTy = Context.getPromotedIntegerType(LHSTy);
9504     }
9505     *CompLHSTy = LHSTy;
9506   }
9507 
9508   return PExp->getType();
9509 }
9510 
9511 // C99 6.5.6
9512 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
9513                                         SourceLocation Loc,
9514                                         QualType* CompLHSTy) {
9515   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
9516 
9517   if (LHS.get()->getType()->isVectorType() ||
9518       RHS.get()->getType()->isVectorType()) {
9519     QualType compType = CheckVectorOperands(
9520         LHS, RHS, Loc, CompLHSTy,
9521         /*AllowBothBool*/getLangOpts().AltiVec,
9522         /*AllowBoolConversions*/getLangOpts().ZVector);
9523     if (CompLHSTy) *CompLHSTy = compType;
9524     return compType;
9525   }
9526 
9527   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
9528   if (LHS.isInvalid() || RHS.isInvalid())
9529     return QualType();
9530 
9531   // Enforce type constraints: C99 6.5.6p3.
9532 
9533   // Handle the common case first (both operands are arithmetic).
9534   if (!compType.isNull() && compType->isArithmeticType()) {
9535     if (CompLHSTy) *CompLHSTy = compType;
9536     return compType;
9537   }
9538 
9539   // Either ptr - int   or   ptr - ptr.
9540   if (LHS.get()->getType()->isAnyPointerType()) {
9541     QualType lpointee = LHS.get()->getType()->getPointeeType();
9542 
9543     // Diagnose bad cases where we step over interface counts.
9544     if (LHS.get()->getType()->isObjCObjectPointerType() &&
9545         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
9546       return QualType();
9547 
9548     // The result type of a pointer-int computation is the pointer type.
9549     if (RHS.get()->getType()->isIntegerType()) {
9550       // Subtracting from a null pointer should produce a warning.
9551       // The last argument to the diagnose call says this doesn't match the
9552       // GNU int-to-pointer idiom.
9553       if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
9554                                            Expr::NPC_ValueDependentIsNotNull)) {
9555         // In C++ adding zero to a null pointer is defined.
9556         Expr::EvalResult KnownVal;
9557         if (!getLangOpts().CPlusPlus ||
9558             (!RHS.get()->isValueDependent() &&
9559              (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
9560               KnownVal.Val.getInt() != 0))) {
9561           diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
9562         }
9563       }
9564 
9565       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
9566         return QualType();
9567 
9568       // Check array bounds for pointer arithemtic
9569       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
9570                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
9571 
9572       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
9573       return LHS.get()->getType();
9574     }
9575 
9576     // Handle pointer-pointer subtractions.
9577     if (const PointerType *RHSPTy
9578           = RHS.get()->getType()->getAs<PointerType>()) {
9579       QualType rpointee = RHSPTy->getPointeeType();
9580 
9581       if (getLangOpts().CPlusPlus) {
9582         // Pointee types must be the same: C++ [expr.add]
9583         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
9584           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
9585         }
9586       } else {
9587         // Pointee types must be compatible C99 6.5.6p3
9588         if (!Context.typesAreCompatible(
9589                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
9590                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
9591           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
9592           return QualType();
9593         }
9594       }
9595 
9596       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
9597                                                LHS.get(), RHS.get()))
9598         return QualType();
9599 
9600       // FIXME: Add warnings for nullptr - ptr.
9601 
9602       // The pointee type may have zero size.  As an extension, a structure or
9603       // union may have zero size or an array may have zero length.  In this
9604       // case subtraction does not make sense.
9605       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
9606         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
9607         if (ElementSize.isZero()) {
9608           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
9609             << rpointee.getUnqualifiedType()
9610             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9611         }
9612       }
9613 
9614       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
9615       return Context.getPointerDiffType();
9616     }
9617   }
9618 
9619   return InvalidOperands(Loc, LHS, RHS);
9620 }
9621 
9622 static bool isScopedEnumerationType(QualType T) {
9623   if (const EnumType *ET = T->getAs<EnumType>())
9624     return ET->getDecl()->isScoped();
9625   return false;
9626 }
9627 
9628 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
9629                                    SourceLocation Loc, BinaryOperatorKind Opc,
9630                                    QualType LHSType) {
9631   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
9632   // so skip remaining warnings as we don't want to modify values within Sema.
9633   if (S.getLangOpts().OpenCL)
9634     return;
9635 
9636   // Check right/shifter operand
9637   Expr::EvalResult RHSResult;
9638   if (RHS.get()->isValueDependent() ||
9639       !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
9640     return;
9641   llvm::APSInt Right = RHSResult.Val.getInt();
9642 
9643   if (Right.isNegative()) {
9644     S.DiagRuntimeBehavior(Loc, RHS.get(),
9645                           S.PDiag(diag::warn_shift_negative)
9646                             << RHS.get()->getSourceRange());
9647     return;
9648   }
9649   llvm::APInt LeftBits(Right.getBitWidth(),
9650                        S.Context.getTypeSize(LHS.get()->getType()));
9651   if (Right.uge(LeftBits)) {
9652     S.DiagRuntimeBehavior(Loc, RHS.get(),
9653                           S.PDiag(diag::warn_shift_gt_typewidth)
9654                             << RHS.get()->getSourceRange());
9655     return;
9656   }
9657   if (Opc != BO_Shl)
9658     return;
9659 
9660   // When left shifting an ICE which is signed, we can check for overflow which
9661   // according to C++ standards prior to C++2a has undefined behavior
9662   // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
9663   // more than the maximum value representable in the result type, so never
9664   // warn for those. (FIXME: Unsigned left-shift overflow in a constant
9665   // expression is still probably a bug.)
9666   Expr::EvalResult LHSResult;
9667   if (LHS.get()->isValueDependent() ||
9668       LHSType->hasUnsignedIntegerRepresentation() ||
9669       !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
9670     return;
9671   llvm::APSInt Left = LHSResult.Val.getInt();
9672 
9673   // If LHS does not have a signed type and non-negative value
9674   // then, the behavior is undefined before C++2a. Warn about it.
9675   if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() &&
9676       !S.getLangOpts().CPlusPlus2a) {
9677     S.DiagRuntimeBehavior(Loc, LHS.get(),
9678                           S.PDiag(diag::warn_shift_lhs_negative)
9679                             << LHS.get()->getSourceRange());
9680     return;
9681   }
9682 
9683   llvm::APInt ResultBits =
9684       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
9685   if (LeftBits.uge(ResultBits))
9686     return;
9687   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
9688   Result = Result.shl(Right);
9689 
9690   // Print the bit representation of the signed integer as an unsigned
9691   // hexadecimal number.
9692   SmallString<40> HexResult;
9693   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
9694 
9695   // If we are only missing a sign bit, this is less likely to result in actual
9696   // bugs -- if the result is cast back to an unsigned type, it will have the
9697   // expected value. Thus we place this behind a different warning that can be
9698   // turned off separately if needed.
9699   if (LeftBits == ResultBits - 1) {
9700     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
9701         << HexResult << LHSType
9702         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9703     return;
9704   }
9705 
9706   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
9707     << HexResult.str() << Result.getMinSignedBits() << LHSType
9708     << Left.getBitWidth() << LHS.get()->getSourceRange()
9709     << RHS.get()->getSourceRange();
9710 }
9711 
9712 /// Return the resulting type when a vector is shifted
9713 ///        by a scalar or vector shift amount.
9714 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
9715                                  SourceLocation Loc, bool IsCompAssign) {
9716   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
9717   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
9718       !LHS.get()->getType()->isVectorType()) {
9719     S.Diag(Loc, diag::err_shift_rhs_only_vector)
9720       << RHS.get()->getType() << LHS.get()->getType()
9721       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9722     return QualType();
9723   }
9724 
9725   if (!IsCompAssign) {
9726     LHS = S.UsualUnaryConversions(LHS.get());
9727     if (LHS.isInvalid()) return QualType();
9728   }
9729 
9730   RHS = S.UsualUnaryConversions(RHS.get());
9731   if (RHS.isInvalid()) return QualType();
9732 
9733   QualType LHSType = LHS.get()->getType();
9734   // Note that LHS might be a scalar because the routine calls not only in
9735   // OpenCL case.
9736   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
9737   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
9738 
9739   // Note that RHS might not be a vector.
9740   QualType RHSType = RHS.get()->getType();
9741   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
9742   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
9743 
9744   // The operands need to be integers.
9745   if (!LHSEleType->isIntegerType()) {
9746     S.Diag(Loc, diag::err_typecheck_expect_int)
9747       << LHS.get()->getType() << LHS.get()->getSourceRange();
9748     return QualType();
9749   }
9750 
9751   if (!RHSEleType->isIntegerType()) {
9752     S.Diag(Loc, diag::err_typecheck_expect_int)
9753       << RHS.get()->getType() << RHS.get()->getSourceRange();
9754     return QualType();
9755   }
9756 
9757   if (!LHSVecTy) {
9758     assert(RHSVecTy);
9759     if (IsCompAssign)
9760       return RHSType;
9761     if (LHSEleType != RHSEleType) {
9762       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
9763       LHSEleType = RHSEleType;
9764     }
9765     QualType VecTy =
9766         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
9767     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
9768     LHSType = VecTy;
9769   } else if (RHSVecTy) {
9770     // OpenCL v1.1 s6.3.j says that for vector types, the operators
9771     // are applied component-wise. So if RHS is a vector, then ensure
9772     // that the number of elements is the same as LHS...
9773     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
9774       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
9775         << LHS.get()->getType() << RHS.get()->getType()
9776         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9777       return QualType();
9778     }
9779     if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
9780       const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
9781       const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
9782       if (LHSBT != RHSBT &&
9783           S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
9784         S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
9785             << LHS.get()->getType() << RHS.get()->getType()
9786             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9787       }
9788     }
9789   } else {
9790     // ...else expand RHS to match the number of elements in LHS.
9791     QualType VecTy =
9792       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
9793     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
9794   }
9795 
9796   return LHSType;
9797 }
9798 
9799 // C99 6.5.7
9800 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
9801                                   SourceLocation Loc, BinaryOperatorKind Opc,
9802                                   bool IsCompAssign) {
9803   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
9804 
9805   // Vector shifts promote their scalar inputs to vector type.
9806   if (LHS.get()->getType()->isVectorType() ||
9807       RHS.get()->getType()->isVectorType()) {
9808     if (LangOpts.ZVector) {
9809       // The shift operators for the z vector extensions work basically
9810       // like general shifts, except that neither the LHS nor the RHS is
9811       // allowed to be a "vector bool".
9812       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
9813         if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
9814           return InvalidOperands(Loc, LHS, RHS);
9815       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
9816         if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
9817           return InvalidOperands(Loc, LHS, RHS);
9818     }
9819     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
9820   }
9821 
9822   // Shifts don't perform usual arithmetic conversions, they just do integer
9823   // promotions on each operand. C99 6.5.7p3
9824 
9825   // For the LHS, do usual unary conversions, but then reset them away
9826   // if this is a compound assignment.
9827   ExprResult OldLHS = LHS;
9828   LHS = UsualUnaryConversions(LHS.get());
9829   if (LHS.isInvalid())
9830     return QualType();
9831   QualType LHSType = LHS.get()->getType();
9832   if (IsCompAssign) LHS = OldLHS;
9833 
9834   // The RHS is simpler.
9835   RHS = UsualUnaryConversions(RHS.get());
9836   if (RHS.isInvalid())
9837     return QualType();
9838   QualType RHSType = RHS.get()->getType();
9839 
9840   // C99 6.5.7p2: Each of the operands shall have integer type.
9841   if (!LHSType->hasIntegerRepresentation() ||
9842       !RHSType->hasIntegerRepresentation())
9843     return InvalidOperands(Loc, LHS, RHS);
9844 
9845   // C++0x: Don't allow scoped enums. FIXME: Use something better than
9846   // hasIntegerRepresentation() above instead of this.
9847   if (isScopedEnumerationType(LHSType) ||
9848       isScopedEnumerationType(RHSType)) {
9849     return InvalidOperands(Loc, LHS, RHS);
9850   }
9851   // Sanity-check shift operands
9852   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
9853 
9854   // "The type of the result is that of the promoted left operand."
9855   return LHSType;
9856 }
9857 
9858 /// If two different enums are compared, raise a warning.
9859 static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
9860                                 Expr *RHS) {
9861   QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
9862   QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
9863 
9864   const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
9865   if (!LHSEnumType)
9866     return;
9867   const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
9868   if (!RHSEnumType)
9869     return;
9870 
9871   // Ignore anonymous enums.
9872   if (!LHSEnumType->getDecl()->getIdentifier() &&
9873       !LHSEnumType->getDecl()->getTypedefNameForAnonDecl())
9874     return;
9875   if (!RHSEnumType->getDecl()->getIdentifier() &&
9876       !RHSEnumType->getDecl()->getTypedefNameForAnonDecl())
9877     return;
9878 
9879   if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
9880     return;
9881 
9882   S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
9883       << LHSStrippedType << RHSStrippedType
9884       << LHS->getSourceRange() << RHS->getSourceRange();
9885 }
9886 
9887 /// Diagnose bad pointer comparisons.
9888 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
9889                                               ExprResult &LHS, ExprResult &RHS,
9890                                               bool IsError) {
9891   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
9892                       : diag::ext_typecheck_comparison_of_distinct_pointers)
9893     << LHS.get()->getType() << RHS.get()->getType()
9894     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9895 }
9896 
9897 /// Returns false if the pointers are converted to a composite type,
9898 /// true otherwise.
9899 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
9900                                            ExprResult &LHS, ExprResult &RHS) {
9901   // C++ [expr.rel]p2:
9902   //   [...] Pointer conversions (4.10) and qualification
9903   //   conversions (4.4) are performed on pointer operands (or on
9904   //   a pointer operand and a null pointer constant) to bring
9905   //   them to their composite pointer type. [...]
9906   //
9907   // C++ [expr.eq]p1 uses the same notion for (in)equality
9908   // comparisons of pointers.
9909 
9910   QualType LHSType = LHS.get()->getType();
9911   QualType RHSType = RHS.get()->getType();
9912   assert(LHSType->isPointerType() || RHSType->isPointerType() ||
9913          LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
9914 
9915   QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
9916   if (T.isNull()) {
9917     if ((LHSType->isPointerType() || LHSType->isMemberPointerType()) &&
9918         (RHSType->isPointerType() || RHSType->isMemberPointerType()))
9919       diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
9920     else
9921       S.InvalidOperands(Loc, LHS, RHS);
9922     return true;
9923   }
9924 
9925   LHS = S.ImpCastExprToType(LHS.get(), T, CK_BitCast);
9926   RHS = S.ImpCastExprToType(RHS.get(), T, CK_BitCast);
9927   return false;
9928 }
9929 
9930 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
9931                                                     ExprResult &LHS,
9932                                                     ExprResult &RHS,
9933                                                     bool IsError) {
9934   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
9935                       : diag::ext_typecheck_comparison_of_fptr_to_void)
9936     << LHS.get()->getType() << RHS.get()->getType()
9937     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9938 }
9939 
9940 static bool isObjCObjectLiteral(ExprResult &E) {
9941   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
9942   case Stmt::ObjCArrayLiteralClass:
9943   case Stmt::ObjCDictionaryLiteralClass:
9944   case Stmt::ObjCStringLiteralClass:
9945   case Stmt::ObjCBoxedExprClass:
9946     return true;
9947   default:
9948     // Note that ObjCBoolLiteral is NOT an object literal!
9949     return false;
9950   }
9951 }
9952 
9953 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
9954   const ObjCObjectPointerType *Type =
9955     LHS->getType()->getAs<ObjCObjectPointerType>();
9956 
9957   // If this is not actually an Objective-C object, bail out.
9958   if (!Type)
9959     return false;
9960 
9961   // Get the LHS object's interface type.
9962   QualType InterfaceType = Type->getPointeeType();
9963 
9964   // If the RHS isn't an Objective-C object, bail out.
9965   if (!RHS->getType()->isObjCObjectPointerType())
9966     return false;
9967 
9968   // Try to find the -isEqual: method.
9969   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
9970   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
9971                                                       InterfaceType,
9972                                                       /*IsInstance=*/true);
9973   if (!Method) {
9974     if (Type->isObjCIdType()) {
9975       // For 'id', just check the global pool.
9976       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
9977                                                   /*receiverId=*/true);
9978     } else {
9979       // Check protocols.
9980       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
9981                                              /*IsInstance=*/true);
9982     }
9983   }
9984 
9985   if (!Method)
9986     return false;
9987 
9988   QualType T = Method->parameters()[0]->getType();
9989   if (!T->isObjCObjectPointerType())
9990     return false;
9991 
9992   QualType R = Method->getReturnType();
9993   if (!R->isScalarType())
9994     return false;
9995 
9996   return true;
9997 }
9998 
9999 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
10000   FromE = FromE->IgnoreParenImpCasts();
10001   switch (FromE->getStmtClass()) {
10002     default:
10003       break;
10004     case Stmt::ObjCStringLiteralClass:
10005       // "string literal"
10006       return LK_String;
10007     case Stmt::ObjCArrayLiteralClass:
10008       // "array literal"
10009       return LK_Array;
10010     case Stmt::ObjCDictionaryLiteralClass:
10011       // "dictionary literal"
10012       return LK_Dictionary;
10013     case Stmt::BlockExprClass:
10014       return LK_Block;
10015     case Stmt::ObjCBoxedExprClass: {
10016       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
10017       switch (Inner->getStmtClass()) {
10018         case Stmt::IntegerLiteralClass:
10019         case Stmt::FloatingLiteralClass:
10020         case Stmt::CharacterLiteralClass:
10021         case Stmt::ObjCBoolLiteralExprClass:
10022         case Stmt::CXXBoolLiteralExprClass:
10023           // "numeric literal"
10024           return LK_Numeric;
10025         case Stmt::ImplicitCastExprClass: {
10026           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
10027           // Boolean literals can be represented by implicit casts.
10028           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
10029             return LK_Numeric;
10030           break;
10031         }
10032         default:
10033           break;
10034       }
10035       return LK_Boxed;
10036     }
10037   }
10038   return LK_None;
10039 }
10040 
10041 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
10042                                           ExprResult &LHS, ExprResult &RHS,
10043                                           BinaryOperator::Opcode Opc){
10044   Expr *Literal;
10045   Expr *Other;
10046   if (isObjCObjectLiteral(LHS)) {
10047     Literal = LHS.get();
10048     Other = RHS.get();
10049   } else {
10050     Literal = RHS.get();
10051     Other = LHS.get();
10052   }
10053 
10054   // Don't warn on comparisons against nil.
10055   Other = Other->IgnoreParenCasts();
10056   if (Other->isNullPointerConstant(S.getASTContext(),
10057                                    Expr::NPC_ValueDependentIsNotNull))
10058     return;
10059 
10060   // This should be kept in sync with warn_objc_literal_comparison.
10061   // LK_String should always be after the other literals, since it has its own
10062   // warning flag.
10063   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
10064   assert(LiteralKind != Sema::LK_Block);
10065   if (LiteralKind == Sema::LK_None) {
10066     llvm_unreachable("Unknown Objective-C object literal kind");
10067   }
10068 
10069   if (LiteralKind == Sema::LK_String)
10070     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
10071       << Literal->getSourceRange();
10072   else
10073     S.Diag(Loc, diag::warn_objc_literal_comparison)
10074       << LiteralKind << Literal->getSourceRange();
10075 
10076   if (BinaryOperator::isEqualityOp(Opc) &&
10077       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
10078     SourceLocation Start = LHS.get()->getBeginLoc();
10079     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
10080     CharSourceRange OpRange =
10081       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
10082 
10083     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
10084       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
10085       << FixItHint::CreateReplacement(OpRange, " isEqual:")
10086       << FixItHint::CreateInsertion(End, "]");
10087   }
10088 }
10089 
10090 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
10091 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
10092                                            ExprResult &RHS, SourceLocation Loc,
10093                                            BinaryOperatorKind Opc) {
10094   // Check that left hand side is !something.
10095   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
10096   if (!UO || UO->getOpcode() != UO_LNot) return;
10097 
10098   // Only check if the right hand side is non-bool arithmetic type.
10099   if (RHS.get()->isKnownToHaveBooleanValue()) return;
10100 
10101   // Make sure that the something in !something is not bool.
10102   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
10103   if (SubExpr->isKnownToHaveBooleanValue()) return;
10104 
10105   // Emit warning.
10106   bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
10107   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
10108       << Loc << IsBitwiseOp;
10109 
10110   // First note suggest !(x < y)
10111   SourceLocation FirstOpen = SubExpr->getBeginLoc();
10112   SourceLocation FirstClose = RHS.get()->getEndLoc();
10113   FirstClose = S.getLocForEndOfToken(FirstClose);
10114   if (FirstClose.isInvalid())
10115     FirstOpen = SourceLocation();
10116   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
10117       << IsBitwiseOp
10118       << FixItHint::CreateInsertion(FirstOpen, "(")
10119       << FixItHint::CreateInsertion(FirstClose, ")");
10120 
10121   // Second note suggests (!x) < y
10122   SourceLocation SecondOpen = LHS.get()->getBeginLoc();
10123   SourceLocation SecondClose = LHS.get()->getEndLoc();
10124   SecondClose = S.getLocForEndOfToken(SecondClose);
10125   if (SecondClose.isInvalid())
10126     SecondOpen = SourceLocation();
10127   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
10128       << FixItHint::CreateInsertion(SecondOpen, "(")
10129       << FixItHint::CreateInsertion(SecondClose, ")");
10130 }
10131 
10132 // Get the decl for a simple expression: a reference to a variable,
10133 // an implicit C++ field reference, or an implicit ObjC ivar reference.
10134 static ValueDecl *getCompareDecl(Expr *E) {
10135   if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E))
10136     return DR->getDecl();
10137   if (ObjCIvarRefExpr *Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
10138     if (Ivar->isFreeIvar())
10139       return Ivar->getDecl();
10140   }
10141   if (MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
10142     if (Mem->isImplicitAccess())
10143       return Mem->getMemberDecl();
10144   }
10145   return nullptr;
10146 }
10147 
10148 /// Diagnose some forms of syntactically-obvious tautological comparison.
10149 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
10150                                            Expr *LHS, Expr *RHS,
10151                                            BinaryOperatorKind Opc) {
10152   Expr *LHSStripped = LHS->IgnoreParenImpCasts();
10153   Expr *RHSStripped = RHS->IgnoreParenImpCasts();
10154 
10155   QualType LHSType = LHS->getType();
10156   QualType RHSType = RHS->getType();
10157   if (LHSType->hasFloatingRepresentation() ||
10158       (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
10159       LHS->getBeginLoc().isMacroID() || RHS->getBeginLoc().isMacroID() ||
10160       S.inTemplateInstantiation())
10161     return;
10162 
10163   // Comparisons between two array types are ill-formed for operator<=>, so
10164   // we shouldn't emit any additional warnings about it.
10165   if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
10166     return;
10167 
10168   // For non-floating point types, check for self-comparisons of the form
10169   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
10170   // often indicate logic errors in the program.
10171   //
10172   // NOTE: Don't warn about comparison expressions resulting from macro
10173   // expansion. Also don't warn about comparisons which are only self
10174   // comparisons within a template instantiation. The warnings should catch
10175   // obvious cases in the definition of the template anyways. The idea is to
10176   // warn when the typed comparison operator will always evaluate to the same
10177   // result.
10178   ValueDecl *DL = getCompareDecl(LHSStripped);
10179   ValueDecl *DR = getCompareDecl(RHSStripped);
10180   if (DL && DR && declaresSameEntity(DL, DR)) {
10181     StringRef Result;
10182     switch (Opc) {
10183     case BO_EQ: case BO_LE: case BO_GE:
10184       Result = "true";
10185       break;
10186     case BO_NE: case BO_LT: case BO_GT:
10187       Result = "false";
10188       break;
10189     case BO_Cmp:
10190       Result = "'std::strong_ordering::equal'";
10191       break;
10192     default:
10193       break;
10194     }
10195     S.DiagRuntimeBehavior(Loc, nullptr,
10196                           S.PDiag(diag::warn_comparison_always)
10197                               << 0 /*self-comparison*/ << !Result.empty()
10198                               << Result);
10199   } else if (DL && DR &&
10200              DL->getType()->isArrayType() && DR->getType()->isArrayType() &&
10201              !DL->isWeak() && !DR->isWeak()) {
10202     // What is it always going to evaluate to?
10203     StringRef Result;
10204     switch(Opc) {
10205     case BO_EQ: // e.g. array1 == array2
10206       Result = "false";
10207       break;
10208     case BO_NE: // e.g. array1 != array2
10209       Result = "true";
10210       break;
10211     default: // e.g. array1 <= array2
10212       // The best we can say is 'a constant'
10213       break;
10214     }
10215     S.DiagRuntimeBehavior(Loc, nullptr,
10216                           S.PDiag(diag::warn_comparison_always)
10217                               << 1 /*array comparison*/
10218                               << !Result.empty() << Result);
10219   }
10220 
10221   if (isa<CastExpr>(LHSStripped))
10222     LHSStripped = LHSStripped->IgnoreParenCasts();
10223   if (isa<CastExpr>(RHSStripped))
10224     RHSStripped = RHSStripped->IgnoreParenCasts();
10225 
10226   // Warn about comparisons against a string constant (unless the other
10227   // operand is null); the user probably wants strcmp.
10228   Expr *LiteralString = nullptr;
10229   Expr *LiteralStringStripped = nullptr;
10230   if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
10231       !RHSStripped->isNullPointerConstant(S.Context,
10232                                           Expr::NPC_ValueDependentIsNull)) {
10233     LiteralString = LHS;
10234     LiteralStringStripped = LHSStripped;
10235   } else if ((isa<StringLiteral>(RHSStripped) ||
10236               isa<ObjCEncodeExpr>(RHSStripped)) &&
10237              !LHSStripped->isNullPointerConstant(S.Context,
10238                                           Expr::NPC_ValueDependentIsNull)) {
10239     LiteralString = RHS;
10240     LiteralStringStripped = RHSStripped;
10241   }
10242 
10243   if (LiteralString) {
10244     S.DiagRuntimeBehavior(Loc, nullptr,
10245                           S.PDiag(diag::warn_stringcompare)
10246                               << isa<ObjCEncodeExpr>(LiteralStringStripped)
10247                               << LiteralString->getSourceRange());
10248   }
10249 }
10250 
10251 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
10252   switch (CK) {
10253   default: {
10254 #ifndef NDEBUG
10255     llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
10256                  << "\n";
10257 #endif
10258     llvm_unreachable("unhandled cast kind");
10259   }
10260   case CK_UserDefinedConversion:
10261     return ICK_Identity;
10262   case CK_LValueToRValue:
10263     return ICK_Lvalue_To_Rvalue;
10264   case CK_ArrayToPointerDecay:
10265     return ICK_Array_To_Pointer;
10266   case CK_FunctionToPointerDecay:
10267     return ICK_Function_To_Pointer;
10268   case CK_IntegralCast:
10269     return ICK_Integral_Conversion;
10270   case CK_FloatingCast:
10271     return ICK_Floating_Conversion;
10272   case CK_IntegralToFloating:
10273   case CK_FloatingToIntegral:
10274     return ICK_Floating_Integral;
10275   case CK_IntegralComplexCast:
10276   case CK_FloatingComplexCast:
10277   case CK_FloatingComplexToIntegralComplex:
10278   case CK_IntegralComplexToFloatingComplex:
10279     return ICK_Complex_Conversion;
10280   case CK_FloatingComplexToReal:
10281   case CK_FloatingRealToComplex:
10282   case CK_IntegralComplexToReal:
10283   case CK_IntegralRealToComplex:
10284     return ICK_Complex_Real;
10285   }
10286 }
10287 
10288 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
10289                                              QualType FromType,
10290                                              SourceLocation Loc) {
10291   // Check for a narrowing implicit conversion.
10292   StandardConversionSequence SCS;
10293   SCS.setAsIdentityConversion();
10294   SCS.setToType(0, FromType);
10295   SCS.setToType(1, ToType);
10296   if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
10297     SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
10298 
10299   APValue PreNarrowingValue;
10300   QualType PreNarrowingType;
10301   switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
10302                                PreNarrowingType,
10303                                /*IgnoreFloatToIntegralConversion*/ true)) {
10304   case NK_Dependent_Narrowing:
10305     // Implicit conversion to a narrower type, but the expression is
10306     // value-dependent so we can't tell whether it's actually narrowing.
10307   case NK_Not_Narrowing:
10308     return false;
10309 
10310   case NK_Constant_Narrowing:
10311     // Implicit conversion to a narrower type, and the value is not a constant
10312     // expression.
10313     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
10314         << /*Constant*/ 1
10315         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
10316     return true;
10317 
10318   case NK_Variable_Narrowing:
10319     // Implicit conversion to a narrower type, and the value is not a constant
10320     // expression.
10321   case NK_Type_Narrowing:
10322     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
10323         << /*Constant*/ 0 << FromType << ToType;
10324     // TODO: It's not a constant expression, but what if the user intended it
10325     // to be? Can we produce notes to help them figure out why it isn't?
10326     return true;
10327   }
10328   llvm_unreachable("unhandled case in switch");
10329 }
10330 
10331 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
10332                                                          ExprResult &LHS,
10333                                                          ExprResult &RHS,
10334                                                          SourceLocation Loc) {
10335   using CCT = ComparisonCategoryType;
10336 
10337   QualType LHSType = LHS.get()->getType();
10338   QualType RHSType = RHS.get()->getType();
10339   // Dig out the original argument type and expression before implicit casts
10340   // were applied. These are the types/expressions we need to check the
10341   // [expr.spaceship] requirements against.
10342   ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
10343   ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
10344   QualType LHSStrippedType = LHSStripped.get()->getType();
10345   QualType RHSStrippedType = RHSStripped.get()->getType();
10346 
10347   // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
10348   // other is not, the program is ill-formed.
10349   if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
10350     S.InvalidOperands(Loc, LHSStripped, RHSStripped);
10351     return QualType();
10352   }
10353 
10354   int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
10355                     RHSStrippedType->isEnumeralType();
10356   if (NumEnumArgs == 1) {
10357     bool LHSIsEnum = LHSStrippedType->isEnumeralType();
10358     QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
10359     if (OtherTy->hasFloatingRepresentation()) {
10360       S.InvalidOperands(Loc, LHSStripped, RHSStripped);
10361       return QualType();
10362     }
10363   }
10364   if (NumEnumArgs == 2) {
10365     // C++2a [expr.spaceship]p5: If both operands have the same enumeration
10366     // type E, the operator yields the result of converting the operands
10367     // to the underlying type of E and applying <=> to the converted operands.
10368     if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
10369       S.InvalidOperands(Loc, LHS, RHS);
10370       return QualType();
10371     }
10372     QualType IntType =
10373         LHSStrippedType->getAs<EnumType>()->getDecl()->getIntegerType();
10374     assert(IntType->isArithmeticType());
10375 
10376     // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
10377     // promote the boolean type, and all other promotable integer types, to
10378     // avoid this.
10379     if (IntType->isPromotableIntegerType())
10380       IntType = S.Context.getPromotedIntegerType(IntType);
10381 
10382     LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
10383     RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
10384     LHSType = RHSType = IntType;
10385   }
10386 
10387   // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
10388   // usual arithmetic conversions are applied to the operands.
10389   QualType Type = S.UsualArithmeticConversions(LHS, RHS);
10390   if (LHS.isInvalid() || RHS.isInvalid())
10391     return QualType();
10392   if (Type.isNull())
10393     return S.InvalidOperands(Loc, LHS, RHS);
10394   assert(Type->isArithmeticType() || Type->isEnumeralType());
10395 
10396   bool HasNarrowing = checkThreeWayNarrowingConversion(
10397       S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
10398   HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
10399                                                    RHS.get()->getBeginLoc());
10400   if (HasNarrowing)
10401     return QualType();
10402 
10403   assert(!Type.isNull() && "composite type for <=> has not been set");
10404 
10405   auto TypeKind = [&]() {
10406     if (const ComplexType *CT = Type->getAs<ComplexType>()) {
10407       if (CT->getElementType()->hasFloatingRepresentation())
10408         return CCT::WeakEquality;
10409       return CCT::StrongEquality;
10410     }
10411     if (Type->isIntegralOrEnumerationType())
10412       return CCT::StrongOrdering;
10413     if (Type->hasFloatingRepresentation())
10414       return CCT::PartialOrdering;
10415     llvm_unreachable("other types are unimplemented");
10416   }();
10417 
10418   return S.CheckComparisonCategoryType(TypeKind, Loc);
10419 }
10420 
10421 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
10422                                                  ExprResult &RHS,
10423                                                  SourceLocation Loc,
10424                                                  BinaryOperatorKind Opc) {
10425   if (Opc == BO_Cmp)
10426     return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
10427 
10428   // C99 6.5.8p3 / C99 6.5.9p4
10429   QualType Type = S.UsualArithmeticConversions(LHS, RHS);
10430   if (LHS.isInvalid() || RHS.isInvalid())
10431     return QualType();
10432   if (Type.isNull())
10433     return S.InvalidOperands(Loc, LHS, RHS);
10434   assert(Type->isArithmeticType() || Type->isEnumeralType());
10435 
10436   checkEnumComparison(S, Loc, LHS.get(), RHS.get());
10437 
10438   if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
10439     return S.InvalidOperands(Loc, LHS, RHS);
10440 
10441   // Check for comparisons of floating point operands using != and ==.
10442   if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc))
10443     S.CheckFloatComparison(Loc, LHS.get(), RHS.get());
10444 
10445   // The result of comparisons is 'bool' in C++, 'int' in C.
10446   return S.Context.getLogicalOperationType();
10447 }
10448 
10449 // C99 6.5.8, C++ [expr.rel]
10450 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
10451                                     SourceLocation Loc,
10452                                     BinaryOperatorKind Opc) {
10453   bool IsRelational = BinaryOperator::isRelationalOp(Opc);
10454   bool IsThreeWay = Opc == BO_Cmp;
10455   auto IsAnyPointerType = [](ExprResult E) {
10456     QualType Ty = E.get()->getType();
10457     return Ty->isPointerType() || Ty->isMemberPointerType();
10458   };
10459 
10460   // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
10461   // type, array-to-pointer, ..., conversions are performed on both operands to
10462   // bring them to their composite type.
10463   // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
10464   // any type-related checks.
10465   if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
10466     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10467     if (LHS.isInvalid())
10468       return QualType();
10469     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10470     if (RHS.isInvalid())
10471       return QualType();
10472   } else {
10473     LHS = DefaultLvalueConversion(LHS.get());
10474     if (LHS.isInvalid())
10475       return QualType();
10476     RHS = DefaultLvalueConversion(RHS.get());
10477     if (RHS.isInvalid())
10478       return QualType();
10479   }
10480 
10481   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
10482 
10483   // Handle vector comparisons separately.
10484   if (LHS.get()->getType()->isVectorType() ||
10485       RHS.get()->getType()->isVectorType())
10486     return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
10487 
10488   diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
10489   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
10490 
10491   QualType LHSType = LHS.get()->getType();
10492   QualType RHSType = RHS.get()->getType();
10493   if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
10494       (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
10495     return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
10496 
10497   const Expr::NullPointerConstantKind LHSNullKind =
10498       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
10499   const Expr::NullPointerConstantKind RHSNullKind =
10500       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
10501   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
10502   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
10503 
10504   auto computeResultTy = [&]() {
10505     if (Opc != BO_Cmp)
10506       return Context.getLogicalOperationType();
10507     assert(getLangOpts().CPlusPlus);
10508     assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
10509 
10510     QualType CompositeTy = LHS.get()->getType();
10511     assert(!CompositeTy->isReferenceType());
10512 
10513     auto buildResultTy = [&](ComparisonCategoryType Kind) {
10514       return CheckComparisonCategoryType(Kind, Loc);
10515     };
10516 
10517     // C++2a [expr.spaceship]p7: If the composite pointer type is a function
10518     // pointer type, a pointer-to-member type, or std::nullptr_t, the
10519     // result is of type std::strong_equality
10520     if (CompositeTy->isFunctionPointerType() ||
10521         CompositeTy->isMemberPointerType() || CompositeTy->isNullPtrType())
10522       // FIXME: consider making the function pointer case produce
10523       // strong_ordering not strong_equality, per P0946R0-Jax18 discussion
10524       // and direction polls
10525       return buildResultTy(ComparisonCategoryType::StrongEquality);
10526 
10527     // C++2a [expr.spaceship]p8: If the composite pointer type is an object
10528     // pointer type, p <=> q is of type std::strong_ordering.
10529     if (CompositeTy->isPointerType()) {
10530       // P0946R0: Comparisons between a null pointer constant and an object
10531       // pointer result in std::strong_equality
10532       if (LHSIsNull != RHSIsNull)
10533         return buildResultTy(ComparisonCategoryType::StrongEquality);
10534       return buildResultTy(ComparisonCategoryType::StrongOrdering);
10535     }
10536     // C++2a [expr.spaceship]p9: Otherwise, the program is ill-formed.
10537     // TODO: Extend support for operator<=> to ObjC types.
10538     return InvalidOperands(Loc, LHS, RHS);
10539   };
10540 
10541 
10542   if (!IsRelational && LHSIsNull != RHSIsNull) {
10543     bool IsEquality = Opc == BO_EQ;
10544     if (RHSIsNull)
10545       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
10546                                    RHS.get()->getSourceRange());
10547     else
10548       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
10549                                    LHS.get()->getSourceRange());
10550   }
10551 
10552   if ((LHSType->isIntegerType() && !LHSIsNull) ||
10553       (RHSType->isIntegerType() && !RHSIsNull)) {
10554     // Skip normal pointer conversion checks in this case; we have better
10555     // diagnostics for this below.
10556   } else if (getLangOpts().CPlusPlus) {
10557     // Equality comparison of a function pointer to a void pointer is invalid,
10558     // but we allow it as an extension.
10559     // FIXME: If we really want to allow this, should it be part of composite
10560     // pointer type computation so it works in conditionals too?
10561     if (!IsRelational &&
10562         ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
10563          (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
10564       // This is a gcc extension compatibility comparison.
10565       // In a SFINAE context, we treat this as a hard error to maintain
10566       // conformance with the C++ standard.
10567       diagnoseFunctionPointerToVoidComparison(
10568           *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
10569 
10570       if (isSFINAEContext())
10571         return QualType();
10572 
10573       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10574       return computeResultTy();
10575     }
10576 
10577     // C++ [expr.eq]p2:
10578     //   If at least one operand is a pointer [...] bring them to their
10579     //   composite pointer type.
10580     // C++ [expr.spaceship]p6
10581     //  If at least one of the operands is of pointer type, [...] bring them
10582     //  to their composite pointer type.
10583     // C++ [expr.rel]p2:
10584     //   If both operands are pointers, [...] bring them to their composite
10585     //   pointer type.
10586     if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
10587             (IsRelational ? 2 : 1) &&
10588         (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
10589                                          RHSType->isObjCObjectPointerType()))) {
10590       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
10591         return QualType();
10592       return computeResultTy();
10593     }
10594   } else if (LHSType->isPointerType() &&
10595              RHSType->isPointerType()) { // C99 6.5.8p2
10596     // All of the following pointer-related warnings are GCC extensions, except
10597     // when handling null pointer constants.
10598     QualType LCanPointeeTy =
10599       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
10600     QualType RCanPointeeTy =
10601       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
10602 
10603     // C99 6.5.9p2 and C99 6.5.8p2
10604     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
10605                                    RCanPointeeTy.getUnqualifiedType())) {
10606       // Valid unless a relational comparison of function pointers
10607       if (IsRelational && LCanPointeeTy->isFunctionType()) {
10608         Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
10609           << LHSType << RHSType << LHS.get()->getSourceRange()
10610           << RHS.get()->getSourceRange();
10611       }
10612     } else if (!IsRelational &&
10613                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
10614       // Valid unless comparison between non-null pointer and function pointer
10615       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
10616           && !LHSIsNull && !RHSIsNull)
10617         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
10618                                                 /*isError*/false);
10619     } else {
10620       // Invalid
10621       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
10622     }
10623     if (LCanPointeeTy != RCanPointeeTy) {
10624       // Treat NULL constant as a special case in OpenCL.
10625       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
10626         const PointerType *LHSPtr = LHSType->getAs<PointerType>();
10627         if (!LHSPtr->isAddressSpaceOverlapping(*RHSType->getAs<PointerType>())) {
10628           Diag(Loc,
10629                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10630               << LHSType << RHSType << 0 /* comparison */
10631               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10632         }
10633       }
10634       LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
10635       LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
10636       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
10637                                                : CK_BitCast;
10638       if (LHSIsNull && !RHSIsNull)
10639         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
10640       else
10641         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
10642     }
10643     return computeResultTy();
10644   }
10645 
10646   if (getLangOpts().CPlusPlus) {
10647     // C++ [expr.eq]p4:
10648     //   Two operands of type std::nullptr_t or one operand of type
10649     //   std::nullptr_t and the other a null pointer constant compare equal.
10650     if (!IsRelational && LHSIsNull && RHSIsNull) {
10651       if (LHSType->isNullPtrType()) {
10652         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10653         return computeResultTy();
10654       }
10655       if (RHSType->isNullPtrType()) {
10656         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
10657         return computeResultTy();
10658       }
10659     }
10660 
10661     // Comparison of Objective-C pointers and block pointers against nullptr_t.
10662     // These aren't covered by the composite pointer type rules.
10663     if (!IsRelational && RHSType->isNullPtrType() &&
10664         (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
10665       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10666       return computeResultTy();
10667     }
10668     if (!IsRelational && LHSType->isNullPtrType() &&
10669         (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
10670       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
10671       return computeResultTy();
10672     }
10673 
10674     if (IsRelational &&
10675         ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
10676          (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
10677       // HACK: Relational comparison of nullptr_t against a pointer type is
10678       // invalid per DR583, but we allow it within std::less<> and friends,
10679       // since otherwise common uses of it break.
10680       // FIXME: Consider removing this hack once LWG fixes std::less<> and
10681       // friends to have std::nullptr_t overload candidates.
10682       DeclContext *DC = CurContext;
10683       if (isa<FunctionDecl>(DC))
10684         DC = DC->getParent();
10685       if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
10686         if (CTSD->isInStdNamespace() &&
10687             llvm::StringSwitch<bool>(CTSD->getName())
10688                 .Cases("less", "less_equal", "greater", "greater_equal", true)
10689                 .Default(false)) {
10690           if (RHSType->isNullPtrType())
10691             RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10692           else
10693             LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
10694           return computeResultTy();
10695         }
10696       }
10697     }
10698 
10699     // C++ [expr.eq]p2:
10700     //   If at least one operand is a pointer to member, [...] bring them to
10701     //   their composite pointer type.
10702     if (!IsRelational &&
10703         (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
10704       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
10705         return QualType();
10706       else
10707         return computeResultTy();
10708     }
10709   }
10710 
10711   // Handle block pointer types.
10712   if (!IsRelational && LHSType->isBlockPointerType() &&
10713       RHSType->isBlockPointerType()) {
10714     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
10715     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
10716 
10717     if (!LHSIsNull && !RHSIsNull &&
10718         !Context.typesAreCompatible(lpointee, rpointee)) {
10719       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
10720         << LHSType << RHSType << LHS.get()->getSourceRange()
10721         << RHS.get()->getSourceRange();
10722     }
10723     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10724     return computeResultTy();
10725   }
10726 
10727   // Allow block pointers to be compared with null pointer constants.
10728   if (!IsRelational
10729       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
10730           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
10731     if (!LHSIsNull && !RHSIsNull) {
10732       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
10733              ->getPointeeType()->isVoidType())
10734             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
10735                 ->getPointeeType()->isVoidType())))
10736         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
10737           << LHSType << RHSType << LHS.get()->getSourceRange()
10738           << RHS.get()->getSourceRange();
10739     }
10740     if (LHSIsNull && !RHSIsNull)
10741       LHS = ImpCastExprToType(LHS.get(), RHSType,
10742                               RHSType->isPointerType() ? CK_BitCast
10743                                 : CK_AnyPointerToBlockPointerCast);
10744     else
10745       RHS = ImpCastExprToType(RHS.get(), LHSType,
10746                               LHSType->isPointerType() ? CK_BitCast
10747                                 : CK_AnyPointerToBlockPointerCast);
10748     return computeResultTy();
10749   }
10750 
10751   if (LHSType->isObjCObjectPointerType() ||
10752       RHSType->isObjCObjectPointerType()) {
10753     const PointerType *LPT = LHSType->getAs<PointerType>();
10754     const PointerType *RPT = RHSType->getAs<PointerType>();
10755     if (LPT || RPT) {
10756       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
10757       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
10758 
10759       if (!LPtrToVoid && !RPtrToVoid &&
10760           !Context.typesAreCompatible(LHSType, RHSType)) {
10761         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
10762                                           /*isError*/false);
10763       }
10764       if (LHSIsNull && !RHSIsNull) {
10765         Expr *E = LHS.get();
10766         if (getLangOpts().ObjCAutoRefCount)
10767           CheckObjCConversion(SourceRange(), RHSType, E,
10768                               CCK_ImplicitConversion);
10769         LHS = ImpCastExprToType(E, RHSType,
10770                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
10771       }
10772       else {
10773         Expr *E = RHS.get();
10774         if (getLangOpts().ObjCAutoRefCount)
10775           CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
10776                               /*Diagnose=*/true,
10777                               /*DiagnoseCFAudited=*/false, Opc);
10778         RHS = ImpCastExprToType(E, LHSType,
10779                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
10780       }
10781       return computeResultTy();
10782     }
10783     if (LHSType->isObjCObjectPointerType() &&
10784         RHSType->isObjCObjectPointerType()) {
10785       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
10786         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
10787                                           /*isError*/false);
10788       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
10789         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
10790 
10791       if (LHSIsNull && !RHSIsNull)
10792         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10793       else
10794         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10795       return computeResultTy();
10796     }
10797 
10798     if (!IsRelational && LHSType->isBlockPointerType() &&
10799         RHSType->isBlockCompatibleObjCPointerType(Context)) {
10800       LHS = ImpCastExprToType(LHS.get(), RHSType,
10801                               CK_BlockPointerToObjCPointerCast);
10802       return computeResultTy();
10803     } else if (!IsRelational &&
10804                LHSType->isBlockCompatibleObjCPointerType(Context) &&
10805                RHSType->isBlockPointerType()) {
10806       RHS = ImpCastExprToType(RHS.get(), LHSType,
10807                               CK_BlockPointerToObjCPointerCast);
10808       return computeResultTy();
10809     }
10810   }
10811   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
10812       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
10813     unsigned DiagID = 0;
10814     bool isError = false;
10815     if (LangOpts.DebuggerSupport) {
10816       // Under a debugger, allow the comparison of pointers to integers,
10817       // since users tend to want to compare addresses.
10818     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
10819                (RHSIsNull && RHSType->isIntegerType())) {
10820       if (IsRelational) {
10821         isError = getLangOpts().CPlusPlus;
10822         DiagID =
10823           isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
10824                   : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
10825       }
10826     } else if (getLangOpts().CPlusPlus) {
10827       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
10828       isError = true;
10829     } else if (IsRelational)
10830       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
10831     else
10832       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
10833 
10834     if (DiagID) {
10835       Diag(Loc, DiagID)
10836         << LHSType << RHSType << LHS.get()->getSourceRange()
10837         << RHS.get()->getSourceRange();
10838       if (isError)
10839         return QualType();
10840     }
10841 
10842     if (LHSType->isIntegerType())
10843       LHS = ImpCastExprToType(LHS.get(), RHSType,
10844                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
10845     else
10846       RHS = ImpCastExprToType(RHS.get(), LHSType,
10847                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
10848     return computeResultTy();
10849   }
10850 
10851   // Handle block pointers.
10852   if (!IsRelational && RHSIsNull
10853       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
10854     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10855     return computeResultTy();
10856   }
10857   if (!IsRelational && LHSIsNull
10858       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
10859     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
10860     return computeResultTy();
10861   }
10862 
10863   if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
10864     if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
10865       return computeResultTy();
10866     }
10867 
10868     if (LHSType->isQueueT() && RHSType->isQueueT()) {
10869       return computeResultTy();
10870     }
10871 
10872     if (LHSIsNull && RHSType->isQueueT()) {
10873       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
10874       return computeResultTy();
10875     }
10876 
10877     if (LHSType->isQueueT() && RHSIsNull) {
10878       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
10879       return computeResultTy();
10880     }
10881   }
10882 
10883   return InvalidOperands(Loc, LHS, RHS);
10884 }
10885 
10886 // Return a signed ext_vector_type that is of identical size and number of
10887 // elements. For floating point vectors, return an integer type of identical
10888 // size and number of elements. In the non ext_vector_type case, search from
10889 // the largest type to the smallest type to avoid cases where long long == long,
10890 // where long gets picked over long long.
10891 QualType Sema::GetSignedVectorType(QualType V) {
10892   const VectorType *VTy = V->getAs<VectorType>();
10893   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
10894 
10895   if (isa<ExtVectorType>(VTy)) {
10896     if (TypeSize == Context.getTypeSize(Context.CharTy))
10897       return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
10898     else if (TypeSize == Context.getTypeSize(Context.ShortTy))
10899       return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
10900     else if (TypeSize == Context.getTypeSize(Context.IntTy))
10901       return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
10902     else if (TypeSize == Context.getTypeSize(Context.LongTy))
10903       return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
10904     assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
10905            "Unhandled vector element size in vector compare");
10906     return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
10907   }
10908 
10909   if (TypeSize == Context.getTypeSize(Context.LongLongTy))
10910     return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
10911                                  VectorType::GenericVector);
10912   else if (TypeSize == Context.getTypeSize(Context.LongTy))
10913     return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
10914                                  VectorType::GenericVector);
10915   else if (TypeSize == Context.getTypeSize(Context.IntTy))
10916     return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
10917                                  VectorType::GenericVector);
10918   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
10919     return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
10920                                  VectorType::GenericVector);
10921   assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
10922          "Unhandled vector element size in vector compare");
10923   return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
10924                                VectorType::GenericVector);
10925 }
10926 
10927 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
10928 /// operates on extended vector types.  Instead of producing an IntTy result,
10929 /// like a scalar comparison, a vector comparison produces a vector of integer
10930 /// types.
10931 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
10932                                           SourceLocation Loc,
10933                                           BinaryOperatorKind Opc) {
10934   // Check to make sure we're operating on vectors of the same type and width,
10935   // Allowing one side to be a scalar of element type.
10936   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
10937                               /*AllowBothBool*/true,
10938                               /*AllowBoolConversions*/getLangOpts().ZVector);
10939   if (vType.isNull())
10940     return vType;
10941 
10942   QualType LHSType = LHS.get()->getType();
10943 
10944   // If AltiVec, the comparison results in a numeric type, i.e.
10945   // bool for C++, int for C
10946   if (getLangOpts().AltiVec &&
10947       vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
10948     return Context.getLogicalOperationType();
10949 
10950   // For non-floating point types, check for self-comparisons of the form
10951   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
10952   // often indicate logic errors in the program.
10953   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
10954 
10955   // Check for comparisons of floating point operands using != and ==.
10956   if (BinaryOperator::isEqualityOp(Opc) &&
10957       LHSType->hasFloatingRepresentation()) {
10958     assert(RHS.get()->getType()->hasFloatingRepresentation());
10959     CheckFloatComparison(Loc, LHS.get(), RHS.get());
10960   }
10961 
10962   // Return a signed type for the vector.
10963   return GetSignedVectorType(vType);
10964 }
10965 
10966 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
10967                                           SourceLocation Loc) {
10968   // Ensure that either both operands are of the same vector type, or
10969   // one operand is of a vector type and the other is of its element type.
10970   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
10971                                        /*AllowBothBool*/true,
10972                                        /*AllowBoolConversions*/false);
10973   if (vType.isNull())
10974     return InvalidOperands(Loc, LHS, RHS);
10975   if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
10976       !getLangOpts().OpenCLCPlusPlus && vType->hasFloatingRepresentation())
10977     return InvalidOperands(Loc, LHS, RHS);
10978   // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
10979   //        usage of the logical operators && and || with vectors in C. This
10980   //        check could be notionally dropped.
10981   if (!getLangOpts().CPlusPlus &&
10982       !(isa<ExtVectorType>(vType->getAs<VectorType>())))
10983     return InvalidLogicalVectorOperands(Loc, LHS, RHS);
10984 
10985   return GetSignedVectorType(LHS.get()->getType());
10986 }
10987 
10988 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
10989                                            SourceLocation Loc,
10990                                            BinaryOperatorKind Opc) {
10991   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10992 
10993   bool IsCompAssign =
10994       Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
10995 
10996   if (LHS.get()->getType()->isVectorType() ||
10997       RHS.get()->getType()->isVectorType()) {
10998     if (LHS.get()->getType()->hasIntegerRepresentation() &&
10999         RHS.get()->getType()->hasIntegerRepresentation())
11000       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
11001                         /*AllowBothBool*/true,
11002                         /*AllowBoolConversions*/getLangOpts().ZVector);
11003     return InvalidOperands(Loc, LHS, RHS);
11004   }
11005 
11006   if (Opc == BO_And)
11007     diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
11008 
11009   ExprResult LHSResult = LHS, RHSResult = RHS;
11010   QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
11011                                                  IsCompAssign);
11012   if (LHSResult.isInvalid() || RHSResult.isInvalid())
11013     return QualType();
11014   LHS = LHSResult.get();
11015   RHS = RHSResult.get();
11016 
11017   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
11018     return compType;
11019   return InvalidOperands(Loc, LHS, RHS);
11020 }
11021 
11022 // C99 6.5.[13,14]
11023 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
11024                                            SourceLocation Loc,
11025                                            BinaryOperatorKind Opc) {
11026   // Check vector operands differently.
11027   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
11028     return CheckVectorLogicalOperands(LHS, RHS, Loc);
11029 
11030   // Diagnose cases where the user write a logical and/or but probably meant a
11031   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
11032   // is a constant.
11033   if (LHS.get()->getType()->isIntegerType() &&
11034       !LHS.get()->getType()->isBooleanType() &&
11035       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
11036       // Don't warn in macros or template instantiations.
11037       !Loc.isMacroID() && !inTemplateInstantiation()) {
11038     // If the RHS can be constant folded, and if it constant folds to something
11039     // that isn't 0 or 1 (which indicate a potential logical operation that
11040     // happened to fold to true/false) then warn.
11041     // Parens on the RHS are ignored.
11042     Expr::EvalResult EVResult;
11043     if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
11044       llvm::APSInt Result = EVResult.Val.getInt();
11045       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
11046            !RHS.get()->getExprLoc().isMacroID()) ||
11047           (Result != 0 && Result != 1)) {
11048         Diag(Loc, diag::warn_logical_instead_of_bitwise)
11049           << RHS.get()->getSourceRange()
11050           << (Opc == BO_LAnd ? "&&" : "||");
11051         // Suggest replacing the logical operator with the bitwise version
11052         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
11053             << (Opc == BO_LAnd ? "&" : "|")
11054             << FixItHint::CreateReplacement(SourceRange(
11055                                                  Loc, getLocForEndOfToken(Loc)),
11056                                             Opc == BO_LAnd ? "&" : "|");
11057         if (Opc == BO_LAnd)
11058           // Suggest replacing "Foo() && kNonZero" with "Foo()"
11059           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
11060               << FixItHint::CreateRemoval(
11061                      SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
11062                                  RHS.get()->getEndLoc()));
11063       }
11064     }
11065   }
11066 
11067   if (!Context.getLangOpts().CPlusPlus) {
11068     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
11069     // not operate on the built-in scalar and vector float types.
11070     if (Context.getLangOpts().OpenCL &&
11071         Context.getLangOpts().OpenCLVersion < 120) {
11072       if (LHS.get()->getType()->isFloatingType() ||
11073           RHS.get()->getType()->isFloatingType())
11074         return InvalidOperands(Loc, LHS, RHS);
11075     }
11076 
11077     LHS = UsualUnaryConversions(LHS.get());
11078     if (LHS.isInvalid())
11079       return QualType();
11080 
11081     RHS = UsualUnaryConversions(RHS.get());
11082     if (RHS.isInvalid())
11083       return QualType();
11084 
11085     if (!LHS.get()->getType()->isScalarType() ||
11086         !RHS.get()->getType()->isScalarType())
11087       return InvalidOperands(Loc, LHS, RHS);
11088 
11089     return Context.IntTy;
11090   }
11091 
11092   // The following is safe because we only use this method for
11093   // non-overloadable operands.
11094 
11095   // C++ [expr.log.and]p1
11096   // C++ [expr.log.or]p1
11097   // The operands are both contextually converted to type bool.
11098   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
11099   if (LHSRes.isInvalid())
11100     return InvalidOperands(Loc, LHS, RHS);
11101   LHS = LHSRes;
11102 
11103   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
11104   if (RHSRes.isInvalid())
11105     return InvalidOperands(Loc, LHS, RHS);
11106   RHS = RHSRes;
11107 
11108   // C++ [expr.log.and]p2
11109   // C++ [expr.log.or]p2
11110   // The result is a bool.
11111   return Context.BoolTy;
11112 }
11113 
11114 static bool IsReadonlyMessage(Expr *E, Sema &S) {
11115   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
11116   if (!ME) return false;
11117   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
11118   ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
11119       ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
11120   if (!Base) return false;
11121   return Base->getMethodDecl() != nullptr;
11122 }
11123 
11124 /// Is the given expression (which must be 'const') a reference to a
11125 /// variable which was originally non-const, but which has become
11126 /// 'const' due to being captured within a block?
11127 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
11128 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
11129   assert(E->isLValue() && E->getType().isConstQualified());
11130   E = E->IgnoreParens();
11131 
11132   // Must be a reference to a declaration from an enclosing scope.
11133   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
11134   if (!DRE) return NCCK_None;
11135   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
11136 
11137   // The declaration must be a variable which is not declared 'const'.
11138   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
11139   if (!var) return NCCK_None;
11140   if (var->getType().isConstQualified()) return NCCK_None;
11141   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
11142 
11143   // Decide whether the first capture was for a block or a lambda.
11144   DeclContext *DC = S.CurContext, *Prev = nullptr;
11145   // Decide whether the first capture was for a block or a lambda.
11146   while (DC) {
11147     // For init-capture, it is possible that the variable belongs to the
11148     // template pattern of the current context.
11149     if (auto *FD = dyn_cast<FunctionDecl>(DC))
11150       if (var->isInitCapture() &&
11151           FD->getTemplateInstantiationPattern() == var->getDeclContext())
11152         break;
11153     if (DC == var->getDeclContext())
11154       break;
11155     Prev = DC;
11156     DC = DC->getParent();
11157   }
11158   // Unless we have an init-capture, we've gone one step too far.
11159   if (!var->isInitCapture())
11160     DC = Prev;
11161   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
11162 }
11163 
11164 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
11165   Ty = Ty.getNonReferenceType();
11166   if (IsDereference && Ty->isPointerType())
11167     Ty = Ty->getPointeeType();
11168   return !Ty.isConstQualified();
11169 }
11170 
11171 // Update err_typecheck_assign_const and note_typecheck_assign_const
11172 // when this enum is changed.
11173 enum {
11174   ConstFunction,
11175   ConstVariable,
11176   ConstMember,
11177   ConstMethod,
11178   NestedConstMember,
11179   ConstUnknown,  // Keep as last element
11180 };
11181 
11182 /// Emit the "read-only variable not assignable" error and print notes to give
11183 /// more information about why the variable is not assignable, such as pointing
11184 /// to the declaration of a const variable, showing that a method is const, or
11185 /// that the function is returning a const reference.
11186 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
11187                                     SourceLocation Loc) {
11188   SourceRange ExprRange = E->getSourceRange();
11189 
11190   // Only emit one error on the first const found.  All other consts will emit
11191   // a note to the error.
11192   bool DiagnosticEmitted = false;
11193 
11194   // Track if the current expression is the result of a dereference, and if the
11195   // next checked expression is the result of a dereference.
11196   bool IsDereference = false;
11197   bool NextIsDereference = false;
11198 
11199   // Loop to process MemberExpr chains.
11200   while (true) {
11201     IsDereference = NextIsDereference;
11202 
11203     E = E->IgnoreImplicit()->IgnoreParenImpCasts();
11204     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
11205       NextIsDereference = ME->isArrow();
11206       const ValueDecl *VD = ME->getMemberDecl();
11207       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
11208         // Mutable fields can be modified even if the class is const.
11209         if (Field->isMutable()) {
11210           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
11211           break;
11212         }
11213 
11214         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
11215           if (!DiagnosticEmitted) {
11216             S.Diag(Loc, diag::err_typecheck_assign_const)
11217                 << ExprRange << ConstMember << false /*static*/ << Field
11218                 << Field->getType();
11219             DiagnosticEmitted = true;
11220           }
11221           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
11222               << ConstMember << false /*static*/ << Field << Field->getType()
11223               << Field->getSourceRange();
11224         }
11225         E = ME->getBase();
11226         continue;
11227       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
11228         if (VDecl->getType().isConstQualified()) {
11229           if (!DiagnosticEmitted) {
11230             S.Diag(Loc, diag::err_typecheck_assign_const)
11231                 << ExprRange << ConstMember << true /*static*/ << VDecl
11232                 << VDecl->getType();
11233             DiagnosticEmitted = true;
11234           }
11235           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
11236               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
11237               << VDecl->getSourceRange();
11238         }
11239         // Static fields do not inherit constness from parents.
11240         break;
11241       }
11242       break; // End MemberExpr
11243     } else if (const ArraySubscriptExpr *ASE =
11244                    dyn_cast<ArraySubscriptExpr>(E)) {
11245       E = ASE->getBase()->IgnoreParenImpCasts();
11246       continue;
11247     } else if (const ExtVectorElementExpr *EVE =
11248                    dyn_cast<ExtVectorElementExpr>(E)) {
11249       E = EVE->getBase()->IgnoreParenImpCasts();
11250       continue;
11251     }
11252     break;
11253   }
11254 
11255   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
11256     // Function calls
11257     const FunctionDecl *FD = CE->getDirectCallee();
11258     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
11259       if (!DiagnosticEmitted) {
11260         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
11261                                                       << ConstFunction << FD;
11262         DiagnosticEmitted = true;
11263       }
11264       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
11265              diag::note_typecheck_assign_const)
11266           << ConstFunction << FD << FD->getReturnType()
11267           << FD->getReturnTypeSourceRange();
11268     }
11269   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
11270     // Point to variable declaration.
11271     if (const ValueDecl *VD = DRE->getDecl()) {
11272       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
11273         if (!DiagnosticEmitted) {
11274           S.Diag(Loc, diag::err_typecheck_assign_const)
11275               << ExprRange << ConstVariable << VD << VD->getType();
11276           DiagnosticEmitted = true;
11277         }
11278         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
11279             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
11280       }
11281     }
11282   } else if (isa<CXXThisExpr>(E)) {
11283     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
11284       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
11285         if (MD->isConst()) {
11286           if (!DiagnosticEmitted) {
11287             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
11288                                                           << ConstMethod << MD;
11289             DiagnosticEmitted = true;
11290           }
11291           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
11292               << ConstMethod << MD << MD->getSourceRange();
11293         }
11294       }
11295     }
11296   }
11297 
11298   if (DiagnosticEmitted)
11299     return;
11300 
11301   // Can't determine a more specific message, so display the generic error.
11302   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
11303 }
11304 
11305 enum OriginalExprKind {
11306   OEK_Variable,
11307   OEK_Member,
11308   OEK_LValue
11309 };
11310 
11311 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
11312                                          const RecordType *Ty,
11313                                          SourceLocation Loc, SourceRange Range,
11314                                          OriginalExprKind OEK,
11315                                          bool &DiagnosticEmitted) {
11316   std::vector<const RecordType *> RecordTypeList;
11317   RecordTypeList.push_back(Ty);
11318   unsigned NextToCheckIndex = 0;
11319   // We walk the record hierarchy breadth-first to ensure that we print
11320   // diagnostics in field nesting order.
11321   while (RecordTypeList.size() > NextToCheckIndex) {
11322     bool IsNested = NextToCheckIndex > 0;
11323     for (const FieldDecl *Field :
11324          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
11325       // First, check every field for constness.
11326       QualType FieldTy = Field->getType();
11327       if (FieldTy.isConstQualified()) {
11328         if (!DiagnosticEmitted) {
11329           S.Diag(Loc, diag::err_typecheck_assign_const)
11330               << Range << NestedConstMember << OEK << VD
11331               << IsNested << Field;
11332           DiagnosticEmitted = true;
11333         }
11334         S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
11335             << NestedConstMember << IsNested << Field
11336             << FieldTy << Field->getSourceRange();
11337       }
11338 
11339       // Then we append it to the list to check next in order.
11340       FieldTy = FieldTy.getCanonicalType();
11341       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
11342         if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
11343           RecordTypeList.push_back(FieldRecTy);
11344       }
11345     }
11346     ++NextToCheckIndex;
11347   }
11348 }
11349 
11350 /// Emit an error for the case where a record we are trying to assign to has a
11351 /// const-qualified field somewhere in its hierarchy.
11352 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
11353                                          SourceLocation Loc) {
11354   QualType Ty = E->getType();
11355   assert(Ty->isRecordType() && "lvalue was not record?");
11356   SourceRange Range = E->getSourceRange();
11357   const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
11358   bool DiagEmitted = false;
11359 
11360   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
11361     DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
11362             Range, OEK_Member, DiagEmitted);
11363   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
11364     DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
11365             Range, OEK_Variable, DiagEmitted);
11366   else
11367     DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
11368             Range, OEK_LValue, DiagEmitted);
11369   if (!DiagEmitted)
11370     DiagnoseConstAssignment(S, E, Loc);
11371 }
11372 
11373 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
11374 /// emit an error and return true.  If so, return false.
11375 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
11376   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
11377 
11378   S.CheckShadowingDeclModification(E, Loc);
11379 
11380   SourceLocation OrigLoc = Loc;
11381   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
11382                                                               &Loc);
11383   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
11384     IsLV = Expr::MLV_InvalidMessageExpression;
11385   if (IsLV == Expr::MLV_Valid)
11386     return false;
11387 
11388   unsigned DiagID = 0;
11389   bool NeedType = false;
11390   switch (IsLV) { // C99 6.5.16p2
11391   case Expr::MLV_ConstQualified:
11392     // Use a specialized diagnostic when we're assigning to an object
11393     // from an enclosing function or block.
11394     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
11395       if (NCCK == NCCK_Block)
11396         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
11397       else
11398         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
11399       break;
11400     }
11401 
11402     // In ARC, use some specialized diagnostics for occasions where we
11403     // infer 'const'.  These are always pseudo-strong variables.
11404     if (S.getLangOpts().ObjCAutoRefCount) {
11405       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
11406       if (declRef && isa<VarDecl>(declRef->getDecl())) {
11407         VarDecl *var = cast<VarDecl>(declRef->getDecl());
11408 
11409         // Use the normal diagnostic if it's pseudo-__strong but the
11410         // user actually wrote 'const'.
11411         if (var->isARCPseudoStrong() &&
11412             (!var->getTypeSourceInfo() ||
11413              !var->getTypeSourceInfo()->getType().isConstQualified())) {
11414           // There are three pseudo-strong cases:
11415           //  - self
11416           ObjCMethodDecl *method = S.getCurMethodDecl();
11417           if (method && var == method->getSelfDecl()) {
11418             DiagID = method->isClassMethod()
11419               ? diag::err_typecheck_arc_assign_self_class_method
11420               : diag::err_typecheck_arc_assign_self;
11421 
11422           //  - Objective-C externally_retained attribute.
11423           } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
11424                      isa<ParmVarDecl>(var)) {
11425             DiagID = diag::err_typecheck_arc_assign_externally_retained;
11426 
11427           //  - fast enumeration variables
11428           } else {
11429             DiagID = diag::err_typecheck_arr_assign_enumeration;
11430           }
11431 
11432           SourceRange Assign;
11433           if (Loc != OrigLoc)
11434             Assign = SourceRange(OrigLoc, OrigLoc);
11435           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
11436           // We need to preserve the AST regardless, so migration tool
11437           // can do its job.
11438           return false;
11439         }
11440       }
11441     }
11442 
11443     // If none of the special cases above are triggered, then this is a
11444     // simple const assignment.
11445     if (DiagID == 0) {
11446       DiagnoseConstAssignment(S, E, Loc);
11447       return true;
11448     }
11449 
11450     break;
11451   case Expr::MLV_ConstAddrSpace:
11452     DiagnoseConstAssignment(S, E, Loc);
11453     return true;
11454   case Expr::MLV_ConstQualifiedField:
11455     DiagnoseRecursiveConstFields(S, E, Loc);
11456     return true;
11457   case Expr::MLV_ArrayType:
11458   case Expr::MLV_ArrayTemporary:
11459     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
11460     NeedType = true;
11461     break;
11462   case Expr::MLV_NotObjectType:
11463     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
11464     NeedType = true;
11465     break;
11466   case Expr::MLV_LValueCast:
11467     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
11468     break;
11469   case Expr::MLV_Valid:
11470     llvm_unreachable("did not take early return for MLV_Valid");
11471   case Expr::MLV_InvalidExpression:
11472   case Expr::MLV_MemberFunction:
11473   case Expr::MLV_ClassTemporary:
11474     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
11475     break;
11476   case Expr::MLV_IncompleteType:
11477   case Expr::MLV_IncompleteVoidType:
11478     return S.RequireCompleteType(Loc, E->getType(),
11479              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
11480   case Expr::MLV_DuplicateVectorComponents:
11481     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
11482     break;
11483   case Expr::MLV_NoSetterProperty:
11484     llvm_unreachable("readonly properties should be processed differently");
11485   case Expr::MLV_InvalidMessageExpression:
11486     DiagID = diag::err_readonly_message_assignment;
11487     break;
11488   case Expr::MLV_SubObjCPropertySetting:
11489     DiagID = diag::err_no_subobject_property_setting;
11490     break;
11491   }
11492 
11493   SourceRange Assign;
11494   if (Loc != OrigLoc)
11495     Assign = SourceRange(OrigLoc, OrigLoc);
11496   if (NeedType)
11497     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
11498   else
11499     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
11500   return true;
11501 }
11502 
11503 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
11504                                          SourceLocation Loc,
11505                                          Sema &Sema) {
11506   if (Sema.inTemplateInstantiation())
11507     return;
11508   if (Sema.isUnevaluatedContext())
11509     return;
11510   if (Loc.isInvalid() || Loc.isMacroID())
11511     return;
11512   if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
11513     return;
11514 
11515   // C / C++ fields
11516   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
11517   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
11518   if (ML && MR) {
11519     if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
11520       return;
11521     const ValueDecl *LHSDecl =
11522         cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
11523     const ValueDecl *RHSDecl =
11524         cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
11525     if (LHSDecl != RHSDecl)
11526       return;
11527     if (LHSDecl->getType().isVolatileQualified())
11528       return;
11529     if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
11530       if (RefTy->getPointeeType().isVolatileQualified())
11531         return;
11532 
11533     Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
11534   }
11535 
11536   // Objective-C instance variables
11537   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
11538   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
11539   if (OL && OR && OL->getDecl() == OR->getDecl()) {
11540     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
11541     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
11542     if (RL && RR && RL->getDecl() == RR->getDecl())
11543       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
11544   }
11545 }
11546 
11547 // C99 6.5.16.1
11548 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
11549                                        SourceLocation Loc,
11550                                        QualType CompoundType) {
11551   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
11552 
11553   // Verify that LHS is a modifiable lvalue, and emit error if not.
11554   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
11555     return QualType();
11556 
11557   QualType LHSType = LHSExpr->getType();
11558   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
11559                                              CompoundType;
11560   // OpenCL v1.2 s6.1.1.1 p2:
11561   // The half data type can only be used to declare a pointer to a buffer that
11562   // contains half values
11563   if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
11564     LHSType->isHalfType()) {
11565     Diag(Loc, diag::err_opencl_half_load_store) << 1
11566         << LHSType.getUnqualifiedType();
11567     return QualType();
11568   }
11569 
11570   AssignConvertType ConvTy;
11571   if (CompoundType.isNull()) {
11572     Expr *RHSCheck = RHS.get();
11573 
11574     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
11575 
11576     QualType LHSTy(LHSType);
11577     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
11578     if (RHS.isInvalid())
11579       return QualType();
11580     // Special case of NSObject attributes on c-style pointer types.
11581     if (ConvTy == IncompatiblePointer &&
11582         ((Context.isObjCNSObjectType(LHSType) &&
11583           RHSType->isObjCObjectPointerType()) ||
11584          (Context.isObjCNSObjectType(RHSType) &&
11585           LHSType->isObjCObjectPointerType())))
11586       ConvTy = Compatible;
11587 
11588     if (ConvTy == Compatible &&
11589         LHSType->isObjCObjectType())
11590         Diag(Loc, diag::err_objc_object_assignment)
11591           << LHSType;
11592 
11593     // If the RHS is a unary plus or minus, check to see if they = and + are
11594     // right next to each other.  If so, the user may have typo'd "x =+ 4"
11595     // instead of "x += 4".
11596     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
11597       RHSCheck = ICE->getSubExpr();
11598     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
11599       if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
11600           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
11601           // Only if the two operators are exactly adjacent.
11602           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
11603           // And there is a space or other character before the subexpr of the
11604           // unary +/-.  We don't want to warn on "x=-1".
11605           Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
11606           UO->getSubExpr()->getBeginLoc().isFileID()) {
11607         Diag(Loc, diag::warn_not_compound_assign)
11608           << (UO->getOpcode() == UO_Plus ? "+" : "-")
11609           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
11610       }
11611     }
11612 
11613     if (ConvTy == Compatible) {
11614       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
11615         // Warn about retain cycles where a block captures the LHS, but
11616         // not if the LHS is a simple variable into which the block is
11617         // being stored...unless that variable can be captured by reference!
11618         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
11619         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
11620         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
11621           checkRetainCycles(LHSExpr, RHS.get());
11622       }
11623 
11624       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
11625           LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
11626         // It is safe to assign a weak reference into a strong variable.
11627         // Although this code can still have problems:
11628         //   id x = self.weakProp;
11629         //   id y = self.weakProp;
11630         // we do not warn to warn spuriously when 'x' and 'y' are on separate
11631         // paths through the function. This should be revisited if
11632         // -Wrepeated-use-of-weak is made flow-sensitive.
11633         // For ObjCWeak only, we do not warn if the assign is to a non-weak
11634         // variable, which will be valid for the current autorelease scope.
11635         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
11636                              RHS.get()->getBeginLoc()))
11637           getCurFunction()->markSafeWeakUse(RHS.get());
11638 
11639       } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
11640         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
11641       }
11642     }
11643   } else {
11644     // Compound assignment "x += y"
11645     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
11646   }
11647 
11648   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
11649                                RHS.get(), AA_Assigning))
11650     return QualType();
11651 
11652   CheckForNullPointerDereference(*this, LHSExpr);
11653 
11654   // C99 6.5.16p3: The type of an assignment expression is the type of the
11655   // left operand unless the left operand has qualified type, in which case
11656   // it is the unqualified version of the type of the left operand.
11657   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
11658   // is converted to the type of the assignment expression (above).
11659   // C++ 5.17p1: the type of the assignment expression is that of its left
11660   // operand.
11661   return (getLangOpts().CPlusPlus
11662           ? LHSType : LHSType.getUnqualifiedType());
11663 }
11664 
11665 // Only ignore explicit casts to void.
11666 static bool IgnoreCommaOperand(const Expr *E) {
11667   E = E->IgnoreParens();
11668 
11669   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
11670     if (CE->getCastKind() == CK_ToVoid) {
11671       return true;
11672     }
11673 
11674     // static_cast<void> on a dependent type will not show up as CK_ToVoid.
11675     if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
11676         CE->getSubExpr()->getType()->isDependentType()) {
11677       return true;
11678     }
11679   }
11680 
11681   return false;
11682 }
11683 
11684 // Look for instances where it is likely the comma operator is confused with
11685 // another operator.  There is a whitelist of acceptable expressions for the
11686 // left hand side of the comma operator, otherwise emit a warning.
11687 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
11688   // No warnings in macros
11689   if (Loc.isMacroID())
11690     return;
11691 
11692   // Don't warn in template instantiations.
11693   if (inTemplateInstantiation())
11694     return;
11695 
11696   // Scope isn't fine-grained enough to whitelist the specific cases, so
11697   // instead, skip more than needed, then call back into here with the
11698   // CommaVisitor in SemaStmt.cpp.
11699   // The whitelisted locations are the initialization and increment portions
11700   // of a for loop.  The additional checks are on the condition of
11701   // if statements, do/while loops, and for loops.
11702   // Differences in scope flags for C89 mode requires the extra logic.
11703   const unsigned ForIncrementFlags =
11704       getLangOpts().C99 || getLangOpts().CPlusPlus
11705           ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
11706           : Scope::ContinueScope | Scope::BreakScope;
11707   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
11708   const unsigned ScopeFlags = getCurScope()->getFlags();
11709   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
11710       (ScopeFlags & ForInitFlags) == ForInitFlags)
11711     return;
11712 
11713   // If there are multiple comma operators used together, get the RHS of the
11714   // of the comma operator as the LHS.
11715   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
11716     if (BO->getOpcode() != BO_Comma)
11717       break;
11718     LHS = BO->getRHS();
11719   }
11720 
11721   // Only allow some expressions on LHS to not warn.
11722   if (IgnoreCommaOperand(LHS))
11723     return;
11724 
11725   Diag(Loc, diag::warn_comma_operator);
11726   Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
11727       << LHS->getSourceRange()
11728       << FixItHint::CreateInsertion(LHS->getBeginLoc(),
11729                                     LangOpts.CPlusPlus ? "static_cast<void>("
11730                                                        : "(void)(")
11731       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
11732                                     ")");
11733 }
11734 
11735 // C99 6.5.17
11736 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
11737                                    SourceLocation Loc) {
11738   LHS = S.CheckPlaceholderExpr(LHS.get());
11739   RHS = S.CheckPlaceholderExpr(RHS.get());
11740   if (LHS.isInvalid() || RHS.isInvalid())
11741     return QualType();
11742 
11743   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
11744   // operands, but not unary promotions.
11745   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
11746 
11747   // So we treat the LHS as a ignored value, and in C++ we allow the
11748   // containing site to determine what should be done with the RHS.
11749   LHS = S.IgnoredValueConversions(LHS.get());
11750   if (LHS.isInvalid())
11751     return QualType();
11752 
11753   S.DiagnoseUnusedExprResult(LHS.get());
11754 
11755   if (!S.getLangOpts().CPlusPlus) {
11756     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
11757     if (RHS.isInvalid())
11758       return QualType();
11759     if (!RHS.get()->getType()->isVoidType())
11760       S.RequireCompleteType(Loc, RHS.get()->getType(),
11761                             diag::err_incomplete_type);
11762   }
11763 
11764   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
11765     S.DiagnoseCommaOperator(LHS.get(), Loc);
11766 
11767   return RHS.get()->getType();
11768 }
11769 
11770 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
11771 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
11772 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
11773                                                ExprValueKind &VK,
11774                                                ExprObjectKind &OK,
11775                                                SourceLocation OpLoc,
11776                                                bool IsInc, bool IsPrefix) {
11777   if (Op->isTypeDependent())
11778     return S.Context.DependentTy;
11779 
11780   QualType ResType = Op->getType();
11781   // Atomic types can be used for increment / decrement where the non-atomic
11782   // versions can, so ignore the _Atomic() specifier for the purpose of
11783   // checking.
11784   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
11785     ResType = ResAtomicType->getValueType();
11786 
11787   assert(!ResType.isNull() && "no type for increment/decrement expression");
11788 
11789   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
11790     // Decrement of bool is not allowed.
11791     if (!IsInc) {
11792       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
11793       return QualType();
11794     }
11795     // Increment of bool sets it to true, but is deprecated.
11796     S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
11797                                               : diag::warn_increment_bool)
11798       << Op->getSourceRange();
11799   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
11800     // Error on enum increments and decrements in C++ mode
11801     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
11802     return QualType();
11803   } else if (ResType->isRealType()) {
11804     // OK!
11805   } else if (ResType->isPointerType()) {
11806     // C99 6.5.2.4p2, 6.5.6p2
11807     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
11808       return QualType();
11809   } else if (ResType->isObjCObjectPointerType()) {
11810     // On modern runtimes, ObjC pointer arithmetic is forbidden.
11811     // Otherwise, we just need a complete type.
11812     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
11813         checkArithmeticOnObjCPointer(S, OpLoc, Op))
11814       return QualType();
11815   } else if (ResType->isAnyComplexType()) {
11816     // C99 does not support ++/-- on complex types, we allow as an extension.
11817     S.Diag(OpLoc, diag::ext_integer_increment_complex)
11818       << ResType << Op->getSourceRange();
11819   } else if (ResType->isPlaceholderType()) {
11820     ExprResult PR = S.CheckPlaceholderExpr(Op);
11821     if (PR.isInvalid()) return QualType();
11822     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
11823                                           IsInc, IsPrefix);
11824   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
11825     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
11826   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
11827              (ResType->getAs<VectorType>()->getVectorKind() !=
11828               VectorType::AltiVecBool)) {
11829     // The z vector extensions allow ++ and -- for non-bool vectors.
11830   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
11831             ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
11832     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
11833   } else {
11834     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
11835       << ResType << int(IsInc) << Op->getSourceRange();
11836     return QualType();
11837   }
11838   // At this point, we know we have a real, complex or pointer type.
11839   // Now make sure the operand is a modifiable lvalue.
11840   if (CheckForModifiableLvalue(Op, OpLoc, S))
11841     return QualType();
11842   // In C++, a prefix increment is the same type as the operand. Otherwise
11843   // (in C or with postfix), the increment is the unqualified type of the
11844   // operand.
11845   if (IsPrefix && S.getLangOpts().CPlusPlus) {
11846     VK = VK_LValue;
11847     OK = Op->getObjectKind();
11848     return ResType;
11849   } else {
11850     VK = VK_RValue;
11851     return ResType.getUnqualifiedType();
11852   }
11853 }
11854 
11855 
11856 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
11857 /// This routine allows us to typecheck complex/recursive expressions
11858 /// where the declaration is needed for type checking. We only need to
11859 /// handle cases when the expression references a function designator
11860 /// or is an lvalue. Here are some examples:
11861 ///  - &(x) => x
11862 ///  - &*****f => f for f a function designator.
11863 ///  - &s.xx => s
11864 ///  - &s.zz[1].yy -> s, if zz is an array
11865 ///  - *(x + 1) -> x, if x is an array
11866 ///  - &"123"[2] -> 0
11867 ///  - & __real__ x -> x
11868 static ValueDecl *getPrimaryDecl(Expr *E) {
11869   switch (E->getStmtClass()) {
11870   case Stmt::DeclRefExprClass:
11871     return cast<DeclRefExpr>(E)->getDecl();
11872   case Stmt::MemberExprClass:
11873     // If this is an arrow operator, the address is an offset from
11874     // the base's value, so the object the base refers to is
11875     // irrelevant.
11876     if (cast<MemberExpr>(E)->isArrow())
11877       return nullptr;
11878     // Otherwise, the expression refers to a part of the base
11879     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
11880   case Stmt::ArraySubscriptExprClass: {
11881     // FIXME: This code shouldn't be necessary!  We should catch the implicit
11882     // promotion of register arrays earlier.
11883     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
11884     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
11885       if (ICE->getSubExpr()->getType()->isArrayType())
11886         return getPrimaryDecl(ICE->getSubExpr());
11887     }
11888     return nullptr;
11889   }
11890   case Stmt::UnaryOperatorClass: {
11891     UnaryOperator *UO = cast<UnaryOperator>(E);
11892 
11893     switch(UO->getOpcode()) {
11894     case UO_Real:
11895     case UO_Imag:
11896     case UO_Extension:
11897       return getPrimaryDecl(UO->getSubExpr());
11898     default:
11899       return nullptr;
11900     }
11901   }
11902   case Stmt::ParenExprClass:
11903     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
11904   case Stmt::ImplicitCastExprClass:
11905     // If the result of an implicit cast is an l-value, we care about
11906     // the sub-expression; otherwise, the result here doesn't matter.
11907     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
11908   default:
11909     return nullptr;
11910   }
11911 }
11912 
11913 namespace {
11914   enum {
11915     AO_Bit_Field = 0,
11916     AO_Vector_Element = 1,
11917     AO_Property_Expansion = 2,
11918     AO_Register_Variable = 3,
11919     AO_No_Error = 4
11920   };
11921 }
11922 /// Diagnose invalid operand for address of operations.
11923 ///
11924 /// \param Type The type of operand which cannot have its address taken.
11925 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
11926                                          Expr *E, unsigned Type) {
11927   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
11928 }
11929 
11930 /// CheckAddressOfOperand - The operand of & must be either a function
11931 /// designator or an lvalue designating an object. If it is an lvalue, the
11932 /// object cannot be declared with storage class register or be a bit field.
11933 /// Note: The usual conversions are *not* applied to the operand of the &
11934 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
11935 /// In C++, the operand might be an overloaded function name, in which case
11936 /// we allow the '&' but retain the overloaded-function type.
11937 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
11938   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
11939     if (PTy->getKind() == BuiltinType::Overload) {
11940       Expr *E = OrigOp.get()->IgnoreParens();
11941       if (!isa<OverloadExpr>(E)) {
11942         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
11943         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
11944           << OrigOp.get()->getSourceRange();
11945         return QualType();
11946       }
11947 
11948       OverloadExpr *Ovl = cast<OverloadExpr>(E);
11949       if (isa<UnresolvedMemberExpr>(Ovl))
11950         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
11951           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
11952             << OrigOp.get()->getSourceRange();
11953           return QualType();
11954         }
11955 
11956       return Context.OverloadTy;
11957     }
11958 
11959     if (PTy->getKind() == BuiltinType::UnknownAny)
11960       return Context.UnknownAnyTy;
11961 
11962     if (PTy->getKind() == BuiltinType::BoundMember) {
11963       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
11964         << OrigOp.get()->getSourceRange();
11965       return QualType();
11966     }
11967 
11968     OrigOp = CheckPlaceholderExpr(OrigOp.get());
11969     if (OrigOp.isInvalid()) return QualType();
11970   }
11971 
11972   if (OrigOp.get()->isTypeDependent())
11973     return Context.DependentTy;
11974 
11975   assert(!OrigOp.get()->getType()->isPlaceholderType());
11976 
11977   // Make sure to ignore parentheses in subsequent checks
11978   Expr *op = OrigOp.get()->IgnoreParens();
11979 
11980   // In OpenCL captures for blocks called as lambda functions
11981   // are located in the private address space. Blocks used in
11982   // enqueue_kernel can be located in a different address space
11983   // depending on a vendor implementation. Thus preventing
11984   // taking an address of the capture to avoid invalid AS casts.
11985   if (LangOpts.OpenCL) {
11986     auto* VarRef = dyn_cast<DeclRefExpr>(op);
11987     if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
11988       Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
11989       return QualType();
11990     }
11991   }
11992 
11993   if (getLangOpts().C99) {
11994     // Implement C99-only parts of addressof rules.
11995     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
11996       if (uOp->getOpcode() == UO_Deref)
11997         // Per C99 6.5.3.2, the address of a deref always returns a valid result
11998         // (assuming the deref expression is valid).
11999         return uOp->getSubExpr()->getType();
12000     }
12001     // Technically, there should be a check for array subscript
12002     // expressions here, but the result of one is always an lvalue anyway.
12003   }
12004   ValueDecl *dcl = getPrimaryDecl(op);
12005 
12006   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
12007     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
12008                                            op->getBeginLoc()))
12009       return QualType();
12010 
12011   Expr::LValueClassification lval = op->ClassifyLValue(Context);
12012   unsigned AddressOfError = AO_No_Error;
12013 
12014   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
12015     bool sfinae = (bool)isSFINAEContext();
12016     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
12017                                   : diag::ext_typecheck_addrof_temporary)
12018       << op->getType() << op->getSourceRange();
12019     if (sfinae)
12020       return QualType();
12021     // Materialize the temporary as an lvalue so that we can take its address.
12022     OrigOp = op =
12023         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
12024   } else if (isa<ObjCSelectorExpr>(op)) {
12025     return Context.getPointerType(op->getType());
12026   } else if (lval == Expr::LV_MemberFunction) {
12027     // If it's an instance method, make a member pointer.
12028     // The expression must have exactly the form &A::foo.
12029 
12030     // If the underlying expression isn't a decl ref, give up.
12031     if (!isa<DeclRefExpr>(op)) {
12032       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
12033         << OrigOp.get()->getSourceRange();
12034       return QualType();
12035     }
12036     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
12037     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
12038 
12039     // The id-expression was parenthesized.
12040     if (OrigOp.get() != DRE) {
12041       Diag(OpLoc, diag::err_parens_pointer_member_function)
12042         << OrigOp.get()->getSourceRange();
12043 
12044     // The method was named without a qualifier.
12045     } else if (!DRE->getQualifier()) {
12046       if (MD->getParent()->getName().empty())
12047         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
12048           << op->getSourceRange();
12049       else {
12050         SmallString<32> Str;
12051         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
12052         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
12053           << op->getSourceRange()
12054           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
12055       }
12056     }
12057 
12058     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
12059     if (isa<CXXDestructorDecl>(MD))
12060       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
12061 
12062     QualType MPTy = Context.getMemberPointerType(
12063         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
12064     // Under the MS ABI, lock down the inheritance model now.
12065     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
12066       (void)isCompleteType(OpLoc, MPTy);
12067     return MPTy;
12068   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
12069     // C99 6.5.3.2p1
12070     // The operand must be either an l-value or a function designator
12071     if (!op->getType()->isFunctionType()) {
12072       // Use a special diagnostic for loads from property references.
12073       if (isa<PseudoObjectExpr>(op)) {
12074         AddressOfError = AO_Property_Expansion;
12075       } else {
12076         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
12077           << op->getType() << op->getSourceRange();
12078         return QualType();
12079       }
12080     }
12081   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
12082     // The operand cannot be a bit-field
12083     AddressOfError = AO_Bit_Field;
12084   } else if (op->getObjectKind() == OK_VectorComponent) {
12085     // The operand cannot be an element of a vector
12086     AddressOfError = AO_Vector_Element;
12087   } else if (dcl) { // C99 6.5.3.2p1
12088     // We have an lvalue with a decl. Make sure the decl is not declared
12089     // with the register storage-class specifier.
12090     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
12091       // in C++ it is not error to take address of a register
12092       // variable (c++03 7.1.1P3)
12093       if (vd->getStorageClass() == SC_Register &&
12094           !getLangOpts().CPlusPlus) {
12095         AddressOfError = AO_Register_Variable;
12096       }
12097     } else if (isa<MSPropertyDecl>(dcl)) {
12098       AddressOfError = AO_Property_Expansion;
12099     } else if (isa<FunctionTemplateDecl>(dcl)) {
12100       return Context.OverloadTy;
12101     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
12102       // Okay: we can take the address of a field.
12103       // Could be a pointer to member, though, if there is an explicit
12104       // scope qualifier for the class.
12105       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
12106         DeclContext *Ctx = dcl->getDeclContext();
12107         if (Ctx && Ctx->isRecord()) {
12108           if (dcl->getType()->isReferenceType()) {
12109             Diag(OpLoc,
12110                  diag::err_cannot_form_pointer_to_member_of_reference_type)
12111               << dcl->getDeclName() << dcl->getType();
12112             return QualType();
12113           }
12114 
12115           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
12116             Ctx = Ctx->getParent();
12117 
12118           QualType MPTy = Context.getMemberPointerType(
12119               op->getType(),
12120               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
12121           // Under the MS ABI, lock down the inheritance model now.
12122           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
12123             (void)isCompleteType(OpLoc, MPTy);
12124           return MPTy;
12125         }
12126       }
12127     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
12128                !isa<BindingDecl>(dcl))
12129       llvm_unreachable("Unknown/unexpected decl type");
12130   }
12131 
12132   if (AddressOfError != AO_No_Error) {
12133     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
12134     return QualType();
12135   }
12136 
12137   if (lval == Expr::LV_IncompleteVoidType) {
12138     // Taking the address of a void variable is technically illegal, but we
12139     // allow it in cases which are otherwise valid.
12140     // Example: "extern void x; void* y = &x;".
12141     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
12142   }
12143 
12144   // If the operand has type "type", the result has type "pointer to type".
12145   if (op->getType()->isObjCObjectType())
12146     return Context.getObjCObjectPointerType(op->getType());
12147 
12148   CheckAddressOfPackedMember(op);
12149 
12150   return Context.getPointerType(op->getType());
12151 }
12152 
12153 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
12154   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
12155   if (!DRE)
12156     return;
12157   const Decl *D = DRE->getDecl();
12158   if (!D)
12159     return;
12160   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
12161   if (!Param)
12162     return;
12163   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
12164     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
12165       return;
12166   if (FunctionScopeInfo *FD = S.getCurFunction())
12167     if (!FD->ModifiedNonNullParams.count(Param))
12168       FD->ModifiedNonNullParams.insert(Param);
12169 }
12170 
12171 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
12172 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
12173                                         SourceLocation OpLoc) {
12174   if (Op->isTypeDependent())
12175     return S.Context.DependentTy;
12176 
12177   ExprResult ConvResult = S.UsualUnaryConversions(Op);
12178   if (ConvResult.isInvalid())
12179     return QualType();
12180   Op = ConvResult.get();
12181   QualType OpTy = Op->getType();
12182   QualType Result;
12183 
12184   if (isa<CXXReinterpretCastExpr>(Op)) {
12185     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
12186     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
12187                                      Op->getSourceRange());
12188   }
12189 
12190   if (const PointerType *PT = OpTy->getAs<PointerType>())
12191   {
12192     Result = PT->getPointeeType();
12193   }
12194   else if (const ObjCObjectPointerType *OPT =
12195              OpTy->getAs<ObjCObjectPointerType>())
12196     Result = OPT->getPointeeType();
12197   else {
12198     ExprResult PR = S.CheckPlaceholderExpr(Op);
12199     if (PR.isInvalid()) return QualType();
12200     if (PR.get() != Op)
12201       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
12202   }
12203 
12204   if (Result.isNull()) {
12205     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
12206       << OpTy << Op->getSourceRange();
12207     return QualType();
12208   }
12209 
12210   // Note that per both C89 and C99, indirection is always legal, even if Result
12211   // is an incomplete type or void.  It would be possible to warn about
12212   // dereferencing a void pointer, but it's completely well-defined, and such a
12213   // warning is unlikely to catch any mistakes. In C++, indirection is not valid
12214   // for pointers to 'void' but is fine for any other pointer type:
12215   //
12216   // C++ [expr.unary.op]p1:
12217   //   [...] the expression to which [the unary * operator] is applied shall
12218   //   be a pointer to an object type, or a pointer to a function type
12219   if (S.getLangOpts().CPlusPlus && Result->isVoidType())
12220     S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
12221       << OpTy << Op->getSourceRange();
12222 
12223   // Dereferences are usually l-values...
12224   VK = VK_LValue;
12225 
12226   // ...except that certain expressions are never l-values in C.
12227   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
12228     VK = VK_RValue;
12229 
12230   return Result;
12231 }
12232 
12233 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
12234   BinaryOperatorKind Opc;
12235   switch (Kind) {
12236   default: llvm_unreachable("Unknown binop!");
12237   case tok::periodstar:           Opc = BO_PtrMemD; break;
12238   case tok::arrowstar:            Opc = BO_PtrMemI; break;
12239   case tok::star:                 Opc = BO_Mul; break;
12240   case tok::slash:                Opc = BO_Div; break;
12241   case tok::percent:              Opc = BO_Rem; break;
12242   case tok::plus:                 Opc = BO_Add; break;
12243   case tok::minus:                Opc = BO_Sub; break;
12244   case tok::lessless:             Opc = BO_Shl; break;
12245   case tok::greatergreater:       Opc = BO_Shr; break;
12246   case tok::lessequal:            Opc = BO_LE; break;
12247   case tok::less:                 Opc = BO_LT; break;
12248   case tok::greaterequal:         Opc = BO_GE; break;
12249   case tok::greater:              Opc = BO_GT; break;
12250   case tok::exclaimequal:         Opc = BO_NE; break;
12251   case tok::equalequal:           Opc = BO_EQ; break;
12252   case tok::spaceship:            Opc = BO_Cmp; break;
12253   case tok::amp:                  Opc = BO_And; break;
12254   case tok::caret:                Opc = BO_Xor; break;
12255   case tok::pipe:                 Opc = BO_Or; break;
12256   case tok::ampamp:               Opc = BO_LAnd; break;
12257   case tok::pipepipe:             Opc = BO_LOr; break;
12258   case tok::equal:                Opc = BO_Assign; break;
12259   case tok::starequal:            Opc = BO_MulAssign; break;
12260   case tok::slashequal:           Opc = BO_DivAssign; break;
12261   case tok::percentequal:         Opc = BO_RemAssign; break;
12262   case tok::plusequal:            Opc = BO_AddAssign; break;
12263   case tok::minusequal:           Opc = BO_SubAssign; break;
12264   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
12265   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
12266   case tok::ampequal:             Opc = BO_AndAssign; break;
12267   case tok::caretequal:           Opc = BO_XorAssign; break;
12268   case tok::pipeequal:            Opc = BO_OrAssign; break;
12269   case tok::comma:                Opc = BO_Comma; break;
12270   }
12271   return Opc;
12272 }
12273 
12274 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
12275   tok::TokenKind Kind) {
12276   UnaryOperatorKind Opc;
12277   switch (Kind) {
12278   default: llvm_unreachable("Unknown unary op!");
12279   case tok::plusplus:     Opc = UO_PreInc; break;
12280   case tok::minusminus:   Opc = UO_PreDec; break;
12281   case tok::amp:          Opc = UO_AddrOf; break;
12282   case tok::star:         Opc = UO_Deref; break;
12283   case tok::plus:         Opc = UO_Plus; break;
12284   case tok::minus:        Opc = UO_Minus; break;
12285   case tok::tilde:        Opc = UO_Not; break;
12286   case tok::exclaim:      Opc = UO_LNot; break;
12287   case tok::kw___real:    Opc = UO_Real; break;
12288   case tok::kw___imag:    Opc = UO_Imag; break;
12289   case tok::kw___extension__: Opc = UO_Extension; break;
12290   }
12291   return Opc;
12292 }
12293 
12294 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
12295 /// This warning suppressed in the event of macro expansions.
12296 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
12297                                    SourceLocation OpLoc, bool IsBuiltin) {
12298   if (S.inTemplateInstantiation())
12299     return;
12300   if (S.isUnevaluatedContext())
12301     return;
12302   if (OpLoc.isInvalid() || OpLoc.isMacroID())
12303     return;
12304   LHSExpr = LHSExpr->IgnoreParenImpCasts();
12305   RHSExpr = RHSExpr->IgnoreParenImpCasts();
12306   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
12307   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
12308   if (!LHSDeclRef || !RHSDeclRef ||
12309       LHSDeclRef->getLocation().isMacroID() ||
12310       RHSDeclRef->getLocation().isMacroID())
12311     return;
12312   const ValueDecl *LHSDecl =
12313     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
12314   const ValueDecl *RHSDecl =
12315     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
12316   if (LHSDecl != RHSDecl)
12317     return;
12318   if (LHSDecl->getType().isVolatileQualified())
12319     return;
12320   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
12321     if (RefTy->getPointeeType().isVolatileQualified())
12322       return;
12323 
12324   S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
12325                           : diag::warn_self_assignment_overloaded)
12326       << LHSDeclRef->getType() << LHSExpr->getSourceRange()
12327       << RHSExpr->getSourceRange();
12328 }
12329 
12330 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
12331 /// is usually indicative of introspection within the Objective-C pointer.
12332 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
12333                                           SourceLocation OpLoc) {
12334   if (!S.getLangOpts().ObjC)
12335     return;
12336 
12337   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
12338   const Expr *LHS = L.get();
12339   const Expr *RHS = R.get();
12340 
12341   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
12342     ObjCPointerExpr = LHS;
12343     OtherExpr = RHS;
12344   }
12345   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
12346     ObjCPointerExpr = RHS;
12347     OtherExpr = LHS;
12348   }
12349 
12350   // This warning is deliberately made very specific to reduce false
12351   // positives with logic that uses '&' for hashing.  This logic mainly
12352   // looks for code trying to introspect into tagged pointers, which
12353   // code should generally never do.
12354   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
12355     unsigned Diag = diag::warn_objc_pointer_masking;
12356     // Determine if we are introspecting the result of performSelectorXXX.
12357     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
12358     // Special case messages to -performSelector and friends, which
12359     // can return non-pointer values boxed in a pointer value.
12360     // Some clients may wish to silence warnings in this subcase.
12361     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
12362       Selector S = ME->getSelector();
12363       StringRef SelArg0 = S.getNameForSlot(0);
12364       if (SelArg0.startswith("performSelector"))
12365         Diag = diag::warn_objc_pointer_masking_performSelector;
12366     }
12367 
12368     S.Diag(OpLoc, Diag)
12369       << ObjCPointerExpr->getSourceRange();
12370   }
12371 }
12372 
12373 static NamedDecl *getDeclFromExpr(Expr *E) {
12374   if (!E)
12375     return nullptr;
12376   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
12377     return DRE->getDecl();
12378   if (auto *ME = dyn_cast<MemberExpr>(E))
12379     return ME->getMemberDecl();
12380   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
12381     return IRE->getDecl();
12382   return nullptr;
12383 }
12384 
12385 // This helper function promotes a binary operator's operands (which are of a
12386 // half vector type) to a vector of floats and then truncates the result to
12387 // a vector of either half or short.
12388 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
12389                                       BinaryOperatorKind Opc, QualType ResultTy,
12390                                       ExprValueKind VK, ExprObjectKind OK,
12391                                       bool IsCompAssign, SourceLocation OpLoc,
12392                                       FPOptions FPFeatures) {
12393   auto &Context = S.getASTContext();
12394   assert((isVector(ResultTy, Context.HalfTy) ||
12395           isVector(ResultTy, Context.ShortTy)) &&
12396          "Result must be a vector of half or short");
12397   assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
12398          isVector(RHS.get()->getType(), Context.HalfTy) &&
12399          "both operands expected to be a half vector");
12400 
12401   RHS = convertVector(RHS.get(), Context.FloatTy, S);
12402   QualType BinOpResTy = RHS.get()->getType();
12403 
12404   // If Opc is a comparison, ResultType is a vector of shorts. In that case,
12405   // change BinOpResTy to a vector of ints.
12406   if (isVector(ResultTy, Context.ShortTy))
12407     BinOpResTy = S.GetSignedVectorType(BinOpResTy);
12408 
12409   if (IsCompAssign)
12410     return new (Context) CompoundAssignOperator(
12411         LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, BinOpResTy, BinOpResTy,
12412         OpLoc, FPFeatures);
12413 
12414   LHS = convertVector(LHS.get(), Context.FloatTy, S);
12415   auto *BO = new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, BinOpResTy,
12416                                           VK, OK, OpLoc, FPFeatures);
12417   return convertVector(BO, ResultTy->getAs<VectorType>()->getElementType(), S);
12418 }
12419 
12420 static std::pair<ExprResult, ExprResult>
12421 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
12422                            Expr *RHSExpr) {
12423   ExprResult LHS = LHSExpr, RHS = RHSExpr;
12424   if (!S.getLangOpts().CPlusPlus) {
12425     // C cannot handle TypoExpr nodes on either side of a binop because it
12426     // doesn't handle dependent types properly, so make sure any TypoExprs have
12427     // been dealt with before checking the operands.
12428     LHS = S.CorrectDelayedTyposInExpr(LHS);
12429     RHS = S.CorrectDelayedTyposInExpr(RHS, [Opc, LHS](Expr *E) {
12430       if (Opc != BO_Assign)
12431         return ExprResult(E);
12432       // Avoid correcting the RHS to the same Expr as the LHS.
12433       Decl *D = getDeclFromExpr(E);
12434       return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
12435     });
12436   }
12437   return std::make_pair(LHS, RHS);
12438 }
12439 
12440 /// Returns true if conversion between vectors of halfs and vectors of floats
12441 /// is needed.
12442 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
12443                                      QualType SrcType) {
12444   return OpRequiresConversion && !Ctx.getLangOpts().NativeHalfType &&
12445          !Ctx.getTargetInfo().useFP16ConversionIntrinsics() &&
12446          isVector(SrcType, Ctx.HalfTy);
12447 }
12448 
12449 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
12450 /// operator @p Opc at location @c TokLoc. This routine only supports
12451 /// built-in operations; ActOnBinOp handles overloaded operators.
12452 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
12453                                     BinaryOperatorKind Opc,
12454                                     Expr *LHSExpr, Expr *RHSExpr) {
12455   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
12456     // The syntax only allows initializer lists on the RHS of assignment,
12457     // so we don't need to worry about accepting invalid code for
12458     // non-assignment operators.
12459     // C++11 5.17p9:
12460     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
12461     //   of x = {} is x = T().
12462     InitializationKind Kind = InitializationKind::CreateDirectList(
12463         RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
12464     InitializedEntity Entity =
12465         InitializedEntity::InitializeTemporary(LHSExpr->getType());
12466     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
12467     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
12468     if (Init.isInvalid())
12469       return Init;
12470     RHSExpr = Init.get();
12471   }
12472 
12473   ExprResult LHS = LHSExpr, RHS = RHSExpr;
12474   QualType ResultTy;     // Result type of the binary operator.
12475   // The following two variables are used for compound assignment operators
12476   QualType CompLHSTy;    // Type of LHS after promotions for computation
12477   QualType CompResultTy; // Type of computation result
12478   ExprValueKind VK = VK_RValue;
12479   ExprObjectKind OK = OK_Ordinary;
12480   bool ConvertHalfVec = false;
12481 
12482   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
12483   if (!LHS.isUsable() || !RHS.isUsable())
12484     return ExprError();
12485 
12486   if (getLangOpts().OpenCL) {
12487     QualType LHSTy = LHSExpr->getType();
12488     QualType RHSTy = RHSExpr->getType();
12489     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
12490     // the ATOMIC_VAR_INIT macro.
12491     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
12492       SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
12493       if (BO_Assign == Opc)
12494         Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
12495       else
12496         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
12497       return ExprError();
12498     }
12499 
12500     // OpenCL special types - image, sampler, pipe, and blocks are to be used
12501     // only with a builtin functions and therefore should be disallowed here.
12502     if (LHSTy->isImageType() || RHSTy->isImageType() ||
12503         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
12504         LHSTy->isPipeType() || RHSTy->isPipeType() ||
12505         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
12506       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
12507       return ExprError();
12508     }
12509   }
12510 
12511   // Diagnose operations on the unsupported types for OpenMP device compilation.
12512   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) {
12513     if (Opc != BO_Assign && Opc != BO_Comma) {
12514       checkOpenMPDeviceExpr(LHSExpr);
12515       checkOpenMPDeviceExpr(RHSExpr);
12516     }
12517   }
12518 
12519   switch (Opc) {
12520   case BO_Assign:
12521     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
12522     if (getLangOpts().CPlusPlus &&
12523         LHS.get()->getObjectKind() != OK_ObjCProperty) {
12524       VK = LHS.get()->getValueKind();
12525       OK = LHS.get()->getObjectKind();
12526     }
12527     if (!ResultTy.isNull()) {
12528       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
12529       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
12530 
12531       // Avoid copying a block to the heap if the block is assigned to a local
12532       // auto variable that is declared in the same scope as the block. This
12533       // optimization is unsafe if the local variable is declared in an outer
12534       // scope. For example:
12535       //
12536       // BlockTy b;
12537       // {
12538       //   b = ^{...};
12539       // }
12540       // // It is unsafe to invoke the block here if it wasn't copied to the
12541       // // heap.
12542       // b();
12543 
12544       if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
12545         if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
12546           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
12547             if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
12548               BE->getBlockDecl()->setCanAvoidCopyToHeap();
12549 
12550       if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
12551         checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
12552                               NTCUC_Assignment, NTCUK_Copy);
12553     }
12554     RecordModifiableNonNullParam(*this, LHS.get());
12555     break;
12556   case BO_PtrMemD:
12557   case BO_PtrMemI:
12558     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
12559                                             Opc == BO_PtrMemI);
12560     break;
12561   case BO_Mul:
12562   case BO_Div:
12563     ConvertHalfVec = true;
12564     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
12565                                            Opc == BO_Div);
12566     break;
12567   case BO_Rem:
12568     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
12569     break;
12570   case BO_Add:
12571     ConvertHalfVec = true;
12572     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
12573     break;
12574   case BO_Sub:
12575     ConvertHalfVec = true;
12576     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
12577     break;
12578   case BO_Shl:
12579   case BO_Shr:
12580     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
12581     break;
12582   case BO_LE:
12583   case BO_LT:
12584   case BO_GE:
12585   case BO_GT:
12586     ConvertHalfVec = true;
12587     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
12588     break;
12589   case BO_EQ:
12590   case BO_NE:
12591     ConvertHalfVec = true;
12592     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
12593     break;
12594   case BO_Cmp:
12595     ConvertHalfVec = true;
12596     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
12597     assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
12598     break;
12599   case BO_And:
12600     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
12601     LLVM_FALLTHROUGH;
12602   case BO_Xor:
12603   case BO_Or:
12604     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
12605     break;
12606   case BO_LAnd:
12607   case BO_LOr:
12608     ConvertHalfVec = true;
12609     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
12610     break;
12611   case BO_MulAssign:
12612   case BO_DivAssign:
12613     ConvertHalfVec = true;
12614     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
12615                                                Opc == BO_DivAssign);
12616     CompLHSTy = CompResultTy;
12617     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
12618       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
12619     break;
12620   case BO_RemAssign:
12621     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
12622     CompLHSTy = CompResultTy;
12623     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
12624       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
12625     break;
12626   case BO_AddAssign:
12627     ConvertHalfVec = true;
12628     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
12629     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
12630       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
12631     break;
12632   case BO_SubAssign:
12633     ConvertHalfVec = true;
12634     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
12635     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
12636       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
12637     break;
12638   case BO_ShlAssign:
12639   case BO_ShrAssign:
12640     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
12641     CompLHSTy = CompResultTy;
12642     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
12643       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
12644     break;
12645   case BO_AndAssign:
12646   case BO_OrAssign: // fallthrough
12647     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
12648     LLVM_FALLTHROUGH;
12649   case BO_XorAssign:
12650     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
12651     CompLHSTy = CompResultTy;
12652     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
12653       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
12654     break;
12655   case BO_Comma:
12656     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
12657     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
12658       VK = RHS.get()->getValueKind();
12659       OK = RHS.get()->getObjectKind();
12660     }
12661     break;
12662   }
12663   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
12664     return ExprError();
12665 
12666   // Some of the binary operations require promoting operands of half vector to
12667   // float vectors and truncating the result back to half vector. For now, we do
12668   // this only when HalfArgsAndReturn is set (that is, when the target is arm or
12669   // arm64).
12670   assert(isVector(RHS.get()->getType(), Context.HalfTy) ==
12671          isVector(LHS.get()->getType(), Context.HalfTy) &&
12672          "both sides are half vectors or neither sides are");
12673   ConvertHalfVec = needsConversionOfHalfVec(ConvertHalfVec, Context,
12674                                             LHS.get()->getType());
12675 
12676   // Check for array bounds violations for both sides of the BinaryOperator
12677   CheckArrayAccess(LHS.get());
12678   CheckArrayAccess(RHS.get());
12679 
12680   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
12681     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
12682                                                  &Context.Idents.get("object_setClass"),
12683                                                  SourceLocation(), LookupOrdinaryName);
12684     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
12685       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
12686       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
12687           << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
12688                                         "object_setClass(")
12689           << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
12690                                           ",")
12691           << FixItHint::CreateInsertion(RHSLocEnd, ")");
12692     }
12693     else
12694       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
12695   }
12696   else if (const ObjCIvarRefExpr *OIRE =
12697            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
12698     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
12699 
12700   // Opc is not a compound assignment if CompResultTy is null.
12701   if (CompResultTy.isNull()) {
12702     if (ConvertHalfVec)
12703       return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
12704                                  OpLoc, FPFeatures);
12705     return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
12706                                         OK, OpLoc, FPFeatures);
12707   }
12708 
12709   // Handle compound assignments.
12710   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
12711       OK_ObjCProperty) {
12712     VK = VK_LValue;
12713     OK = LHS.get()->getObjectKind();
12714   }
12715 
12716   if (ConvertHalfVec)
12717     return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
12718                                OpLoc, FPFeatures);
12719 
12720   return new (Context) CompoundAssignOperator(
12721       LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
12722       OpLoc, FPFeatures);
12723 }
12724 
12725 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
12726 /// operators are mixed in a way that suggests that the programmer forgot that
12727 /// comparison operators have higher precedence. The most typical example of
12728 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
12729 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
12730                                       SourceLocation OpLoc, Expr *LHSExpr,
12731                                       Expr *RHSExpr) {
12732   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
12733   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
12734 
12735   // Check that one of the sides is a comparison operator and the other isn't.
12736   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
12737   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
12738   if (isLeftComp == isRightComp)
12739     return;
12740 
12741   // Bitwise operations are sometimes used as eager logical ops.
12742   // Don't diagnose this.
12743   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
12744   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
12745   if (isLeftBitwise || isRightBitwise)
12746     return;
12747 
12748   SourceRange DiagRange = isLeftComp
12749                               ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
12750                               : SourceRange(OpLoc, RHSExpr->getEndLoc());
12751   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
12752   SourceRange ParensRange =
12753       isLeftComp
12754           ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
12755           : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
12756 
12757   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
12758     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
12759   SuggestParentheses(Self, OpLoc,
12760     Self.PDiag(diag::note_precedence_silence) << OpStr,
12761     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
12762   SuggestParentheses(Self, OpLoc,
12763     Self.PDiag(diag::note_precedence_bitwise_first)
12764       << BinaryOperator::getOpcodeStr(Opc),
12765     ParensRange);
12766 }
12767 
12768 /// It accepts a '&&' expr that is inside a '||' one.
12769 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
12770 /// in parentheses.
12771 static void
12772 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
12773                                        BinaryOperator *Bop) {
12774   assert(Bop->getOpcode() == BO_LAnd);
12775   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
12776       << Bop->getSourceRange() << OpLoc;
12777   SuggestParentheses(Self, Bop->getOperatorLoc(),
12778     Self.PDiag(diag::note_precedence_silence)
12779       << Bop->getOpcodeStr(),
12780     Bop->getSourceRange());
12781 }
12782 
12783 /// Returns true if the given expression can be evaluated as a constant
12784 /// 'true'.
12785 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
12786   bool Res;
12787   return !E->isValueDependent() &&
12788          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
12789 }
12790 
12791 /// Returns true if the given expression can be evaluated as a constant
12792 /// 'false'.
12793 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
12794   bool Res;
12795   return !E->isValueDependent() &&
12796          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
12797 }
12798 
12799 /// Look for '&&' in the left hand of a '||' expr.
12800 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
12801                                              Expr *LHSExpr, Expr *RHSExpr) {
12802   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
12803     if (Bop->getOpcode() == BO_LAnd) {
12804       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
12805       if (EvaluatesAsFalse(S, RHSExpr))
12806         return;
12807       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
12808       if (!EvaluatesAsTrue(S, Bop->getLHS()))
12809         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
12810     } else if (Bop->getOpcode() == BO_LOr) {
12811       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
12812         // If it's "a || b && 1 || c" we didn't warn earlier for
12813         // "a || b && 1", but warn now.
12814         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
12815           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
12816       }
12817     }
12818   }
12819 }
12820 
12821 /// Look for '&&' in the right hand of a '||' expr.
12822 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
12823                                              Expr *LHSExpr, Expr *RHSExpr) {
12824   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
12825     if (Bop->getOpcode() == BO_LAnd) {
12826       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
12827       if (EvaluatesAsFalse(S, LHSExpr))
12828         return;
12829       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
12830       if (!EvaluatesAsTrue(S, Bop->getRHS()))
12831         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
12832     }
12833   }
12834 }
12835 
12836 /// Look for bitwise op in the left or right hand of a bitwise op with
12837 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
12838 /// the '&' expression in parentheses.
12839 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
12840                                          SourceLocation OpLoc, Expr *SubExpr) {
12841   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
12842     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
12843       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
12844         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
12845         << Bop->getSourceRange() << OpLoc;
12846       SuggestParentheses(S, Bop->getOperatorLoc(),
12847         S.PDiag(diag::note_precedence_silence)
12848           << Bop->getOpcodeStr(),
12849         Bop->getSourceRange());
12850     }
12851   }
12852 }
12853 
12854 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
12855                                     Expr *SubExpr, StringRef Shift) {
12856   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
12857     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
12858       StringRef Op = Bop->getOpcodeStr();
12859       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
12860           << Bop->getSourceRange() << OpLoc << Shift << Op;
12861       SuggestParentheses(S, Bop->getOperatorLoc(),
12862           S.PDiag(diag::note_precedence_silence) << Op,
12863           Bop->getSourceRange());
12864     }
12865   }
12866 }
12867 
12868 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
12869                                  Expr *LHSExpr, Expr *RHSExpr) {
12870   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
12871   if (!OCE)
12872     return;
12873 
12874   FunctionDecl *FD = OCE->getDirectCallee();
12875   if (!FD || !FD->isOverloadedOperator())
12876     return;
12877 
12878   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
12879   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
12880     return;
12881 
12882   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
12883       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
12884       << (Kind == OO_LessLess);
12885   SuggestParentheses(S, OCE->getOperatorLoc(),
12886                      S.PDiag(diag::note_precedence_silence)
12887                          << (Kind == OO_LessLess ? "<<" : ">>"),
12888                      OCE->getSourceRange());
12889   SuggestParentheses(
12890       S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
12891       SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
12892 }
12893 
12894 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
12895 /// precedence.
12896 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
12897                                     SourceLocation OpLoc, Expr *LHSExpr,
12898                                     Expr *RHSExpr){
12899   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
12900   if (BinaryOperator::isBitwiseOp(Opc))
12901     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
12902 
12903   // Diagnose "arg1 & arg2 | arg3"
12904   if ((Opc == BO_Or || Opc == BO_Xor) &&
12905       !OpLoc.isMacroID()/* Don't warn in macros. */) {
12906     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
12907     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
12908   }
12909 
12910   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
12911   // We don't warn for 'assert(a || b && "bad")' since this is safe.
12912   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
12913     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
12914     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
12915   }
12916 
12917   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
12918       || Opc == BO_Shr) {
12919     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
12920     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
12921     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
12922   }
12923 
12924   // Warn on overloaded shift operators and comparisons, such as:
12925   // cout << 5 == 4;
12926   if (BinaryOperator::isComparisonOp(Opc))
12927     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
12928 }
12929 
12930 // Binary Operators.  'Tok' is the token for the operator.
12931 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
12932                             tok::TokenKind Kind,
12933                             Expr *LHSExpr, Expr *RHSExpr) {
12934   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
12935   assert(LHSExpr && "ActOnBinOp(): missing left expression");
12936   assert(RHSExpr && "ActOnBinOp(): missing right expression");
12937 
12938   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
12939   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
12940 
12941   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
12942 }
12943 
12944 /// Build an overloaded binary operator expression in the given scope.
12945 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
12946                                        BinaryOperatorKind Opc,
12947                                        Expr *LHS, Expr *RHS) {
12948   switch (Opc) {
12949   case BO_Assign:
12950   case BO_DivAssign:
12951   case BO_RemAssign:
12952   case BO_SubAssign:
12953   case BO_AndAssign:
12954   case BO_OrAssign:
12955   case BO_XorAssign:
12956     DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
12957     CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
12958     break;
12959   default:
12960     break;
12961   }
12962 
12963   // Find all of the overloaded operators visible from this
12964   // point. We perform both an operator-name lookup from the local
12965   // scope and an argument-dependent lookup based on the types of
12966   // the arguments.
12967   UnresolvedSet<16> Functions;
12968   OverloadedOperatorKind OverOp
12969     = BinaryOperator::getOverloadedOperator(Opc);
12970   if (Sc && OverOp != OO_None && OverOp != OO_Equal)
12971     S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
12972                                    RHS->getType(), Functions);
12973 
12974   // Build the (potentially-overloaded, potentially-dependent)
12975   // binary operation.
12976   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
12977 }
12978 
12979 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
12980                             BinaryOperatorKind Opc,
12981                             Expr *LHSExpr, Expr *RHSExpr) {
12982   ExprResult LHS, RHS;
12983   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
12984   if (!LHS.isUsable() || !RHS.isUsable())
12985     return ExprError();
12986   LHSExpr = LHS.get();
12987   RHSExpr = RHS.get();
12988 
12989   // We want to end up calling one of checkPseudoObjectAssignment
12990   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
12991   // both expressions are overloadable or either is type-dependent),
12992   // or CreateBuiltinBinOp (in any other case).  We also want to get
12993   // any placeholder types out of the way.
12994 
12995   // Handle pseudo-objects in the LHS.
12996   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
12997     // Assignments with a pseudo-object l-value need special analysis.
12998     if (pty->getKind() == BuiltinType::PseudoObject &&
12999         BinaryOperator::isAssignmentOp(Opc))
13000       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
13001 
13002     // Don't resolve overloads if the other type is overloadable.
13003     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
13004       // We can't actually test that if we still have a placeholder,
13005       // though.  Fortunately, none of the exceptions we see in that
13006       // code below are valid when the LHS is an overload set.  Note
13007       // that an overload set can be dependently-typed, but it never
13008       // instantiates to having an overloadable type.
13009       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
13010       if (resolvedRHS.isInvalid()) return ExprError();
13011       RHSExpr = resolvedRHS.get();
13012 
13013       if (RHSExpr->isTypeDependent() ||
13014           RHSExpr->getType()->isOverloadableType())
13015         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
13016     }
13017 
13018     // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
13019     // template, diagnose the missing 'template' keyword instead of diagnosing
13020     // an invalid use of a bound member function.
13021     //
13022     // Note that "A::x < b" might be valid if 'b' has an overloadable type due
13023     // to C++1z [over.over]/1.4, but we already checked for that case above.
13024     if (Opc == BO_LT && inTemplateInstantiation() &&
13025         (pty->getKind() == BuiltinType::BoundMember ||
13026          pty->getKind() == BuiltinType::Overload)) {
13027       auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
13028       if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
13029           std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) {
13030             return isa<FunctionTemplateDecl>(ND);
13031           })) {
13032         Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
13033                                 : OE->getNameLoc(),
13034              diag::err_template_kw_missing)
13035           << OE->getName().getAsString() << "";
13036         return ExprError();
13037       }
13038     }
13039 
13040     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
13041     if (LHS.isInvalid()) return ExprError();
13042     LHSExpr = LHS.get();
13043   }
13044 
13045   // Handle pseudo-objects in the RHS.
13046   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
13047     // An overload in the RHS can potentially be resolved by the type
13048     // being assigned to.
13049     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
13050       if (getLangOpts().CPlusPlus &&
13051           (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
13052            LHSExpr->getType()->isOverloadableType()))
13053         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
13054 
13055       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
13056     }
13057 
13058     // Don't resolve overloads if the other type is overloadable.
13059     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
13060         LHSExpr->getType()->isOverloadableType())
13061       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
13062 
13063     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
13064     if (!resolvedRHS.isUsable()) return ExprError();
13065     RHSExpr = resolvedRHS.get();
13066   }
13067 
13068   if (getLangOpts().CPlusPlus) {
13069     // If either expression is type-dependent, always build an
13070     // overloaded op.
13071     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
13072       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
13073 
13074     // Otherwise, build an overloaded op if either expression has an
13075     // overloadable type.
13076     if (LHSExpr->getType()->isOverloadableType() ||
13077         RHSExpr->getType()->isOverloadableType())
13078       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
13079   }
13080 
13081   // Build a built-in binary operation.
13082   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
13083 }
13084 
13085 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
13086   if (T.isNull() || T->isDependentType())
13087     return false;
13088 
13089   if (!T->isPromotableIntegerType())
13090     return true;
13091 
13092   return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
13093 }
13094 
13095 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
13096                                       UnaryOperatorKind Opc,
13097                                       Expr *InputExpr) {
13098   ExprResult Input = InputExpr;
13099   ExprValueKind VK = VK_RValue;
13100   ExprObjectKind OK = OK_Ordinary;
13101   QualType resultType;
13102   bool CanOverflow = false;
13103 
13104   bool ConvertHalfVec = false;
13105   if (getLangOpts().OpenCL) {
13106     QualType Ty = InputExpr->getType();
13107     // The only legal unary operation for atomics is '&'.
13108     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
13109     // OpenCL special types - image, sampler, pipe, and blocks are to be used
13110     // only with a builtin functions and therefore should be disallowed here.
13111         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
13112         || Ty->isBlockPointerType())) {
13113       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13114                        << InputExpr->getType()
13115                        << Input.get()->getSourceRange());
13116     }
13117   }
13118   // Diagnose operations on the unsupported types for OpenMP device compilation.
13119   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice) {
13120     if (UnaryOperator::isIncrementDecrementOp(Opc) ||
13121         UnaryOperator::isArithmeticOp(Opc))
13122       checkOpenMPDeviceExpr(InputExpr);
13123   }
13124 
13125   switch (Opc) {
13126   case UO_PreInc:
13127   case UO_PreDec:
13128   case UO_PostInc:
13129   case UO_PostDec:
13130     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
13131                                                 OpLoc,
13132                                                 Opc == UO_PreInc ||
13133                                                 Opc == UO_PostInc,
13134                                                 Opc == UO_PreInc ||
13135                                                 Opc == UO_PreDec);
13136     CanOverflow = isOverflowingIntegerType(Context, resultType);
13137     break;
13138   case UO_AddrOf:
13139     resultType = CheckAddressOfOperand(Input, OpLoc);
13140     CheckAddressOfNoDeref(InputExpr);
13141     RecordModifiableNonNullParam(*this, InputExpr);
13142     break;
13143   case UO_Deref: {
13144     Input = DefaultFunctionArrayLvalueConversion(Input.get());
13145     if (Input.isInvalid()) return ExprError();
13146     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
13147     break;
13148   }
13149   case UO_Plus:
13150   case UO_Minus:
13151     CanOverflow = Opc == UO_Minus &&
13152                   isOverflowingIntegerType(Context, Input.get()->getType());
13153     Input = UsualUnaryConversions(Input.get());
13154     if (Input.isInvalid()) return ExprError();
13155     // Unary plus and minus require promoting an operand of half vector to a
13156     // float vector and truncating the result back to a half vector. For now, we
13157     // do this only when HalfArgsAndReturns is set (that is, when the target is
13158     // arm or arm64).
13159     ConvertHalfVec =
13160         needsConversionOfHalfVec(true, Context, Input.get()->getType());
13161 
13162     // If the operand is a half vector, promote it to a float vector.
13163     if (ConvertHalfVec)
13164       Input = convertVector(Input.get(), Context.FloatTy, *this);
13165     resultType = Input.get()->getType();
13166     if (resultType->isDependentType())
13167       break;
13168     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
13169       break;
13170     else if (resultType->isVectorType() &&
13171              // The z vector extensions don't allow + or - with bool vectors.
13172              (!Context.getLangOpts().ZVector ||
13173               resultType->getAs<VectorType>()->getVectorKind() !=
13174               VectorType::AltiVecBool))
13175       break;
13176     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
13177              Opc == UO_Plus &&
13178              resultType->isPointerType())
13179       break;
13180 
13181     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13182       << resultType << Input.get()->getSourceRange());
13183 
13184   case UO_Not: // bitwise complement
13185     Input = UsualUnaryConversions(Input.get());
13186     if (Input.isInvalid())
13187       return ExprError();
13188     resultType = Input.get()->getType();
13189 
13190     if (resultType->isDependentType())
13191       break;
13192     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
13193     if (resultType->isComplexType() || resultType->isComplexIntegerType())
13194       // C99 does not support '~' for complex conjugation.
13195       Diag(OpLoc, diag::ext_integer_complement_complex)
13196           << resultType << Input.get()->getSourceRange();
13197     else if (resultType->hasIntegerRepresentation())
13198       break;
13199     else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
13200       // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
13201       // on vector float types.
13202       QualType T = resultType->getAs<ExtVectorType>()->getElementType();
13203       if (!T->isIntegerType())
13204         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13205                           << resultType << Input.get()->getSourceRange());
13206     } else {
13207       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13208                        << resultType << Input.get()->getSourceRange());
13209     }
13210     break;
13211 
13212   case UO_LNot: // logical negation
13213     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
13214     Input = DefaultFunctionArrayLvalueConversion(Input.get());
13215     if (Input.isInvalid()) return ExprError();
13216     resultType = Input.get()->getType();
13217 
13218     // Though we still have to promote half FP to float...
13219     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
13220       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
13221       resultType = Context.FloatTy;
13222     }
13223 
13224     if (resultType->isDependentType())
13225       break;
13226     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
13227       // C99 6.5.3.3p1: ok, fallthrough;
13228       if (Context.getLangOpts().CPlusPlus) {
13229         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
13230         // operand contextually converted to bool.
13231         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
13232                                   ScalarTypeToBooleanCastKind(resultType));
13233       } else if (Context.getLangOpts().OpenCL &&
13234                  Context.getLangOpts().OpenCLVersion < 120) {
13235         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
13236         // operate on scalar float types.
13237         if (!resultType->isIntegerType() && !resultType->isPointerType())
13238           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13239                            << resultType << Input.get()->getSourceRange());
13240       }
13241     } else if (resultType->isExtVectorType()) {
13242       if (Context.getLangOpts().OpenCL &&
13243           Context.getLangOpts().OpenCLVersion < 120 &&
13244           !Context.getLangOpts().OpenCLCPlusPlus) {
13245         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
13246         // operate on vector float types.
13247         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
13248         if (!T->isIntegerType())
13249           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13250                            << resultType << Input.get()->getSourceRange());
13251       }
13252       // Vector logical not returns the signed variant of the operand type.
13253       resultType = GetSignedVectorType(resultType);
13254       break;
13255     } else {
13256       // FIXME: GCC's vector extension permits the usage of '!' with a vector
13257       //        type in C++. We should allow that here too.
13258       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
13259         << resultType << Input.get()->getSourceRange());
13260     }
13261 
13262     // LNot always has type int. C99 6.5.3.3p5.
13263     // In C++, it's bool. C++ 5.3.1p8
13264     resultType = Context.getLogicalOperationType();
13265     break;
13266   case UO_Real:
13267   case UO_Imag:
13268     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
13269     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
13270     // complex l-values to ordinary l-values and all other values to r-values.
13271     if (Input.isInvalid()) return ExprError();
13272     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
13273       if (Input.get()->getValueKind() != VK_RValue &&
13274           Input.get()->getObjectKind() == OK_Ordinary)
13275         VK = Input.get()->getValueKind();
13276     } else if (!getLangOpts().CPlusPlus) {
13277       // In C, a volatile scalar is read by __imag. In C++, it is not.
13278       Input = DefaultLvalueConversion(Input.get());
13279     }
13280     break;
13281   case UO_Extension:
13282     resultType = Input.get()->getType();
13283     VK = Input.get()->getValueKind();
13284     OK = Input.get()->getObjectKind();
13285     break;
13286   case UO_Coawait:
13287     // It's unnecessary to represent the pass-through operator co_await in the
13288     // AST; just return the input expression instead.
13289     assert(!Input.get()->getType()->isDependentType() &&
13290                    "the co_await expression must be non-dependant before "
13291                    "building operator co_await");
13292     return Input;
13293   }
13294   if (resultType.isNull() || Input.isInvalid())
13295     return ExprError();
13296 
13297   // Check for array bounds violations in the operand of the UnaryOperator,
13298   // except for the '*' and '&' operators that have to be handled specially
13299   // by CheckArrayAccess (as there are special cases like &array[arraysize]
13300   // that are explicitly defined as valid by the standard).
13301   if (Opc != UO_AddrOf && Opc != UO_Deref)
13302     CheckArrayAccess(Input.get());
13303 
13304   auto *UO = new (Context)
13305       UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc, CanOverflow);
13306 
13307   if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
13308       !isa<ArrayType>(UO->getType().getDesugaredType(Context)))
13309     ExprEvalContexts.back().PossibleDerefs.insert(UO);
13310 
13311   // Convert the result back to a half vector.
13312   if (ConvertHalfVec)
13313     return convertVector(UO, Context.HalfTy, *this);
13314   return UO;
13315 }
13316 
13317 /// Determine whether the given expression is a qualified member
13318 /// access expression, of a form that could be turned into a pointer to member
13319 /// with the address-of operator.
13320 bool Sema::isQualifiedMemberAccess(Expr *E) {
13321   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13322     if (!DRE->getQualifier())
13323       return false;
13324 
13325     ValueDecl *VD = DRE->getDecl();
13326     if (!VD->isCXXClassMember())
13327       return false;
13328 
13329     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
13330       return true;
13331     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
13332       return Method->isInstance();
13333 
13334     return false;
13335   }
13336 
13337   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
13338     if (!ULE->getQualifier())
13339       return false;
13340 
13341     for (NamedDecl *D : ULE->decls()) {
13342       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
13343         if (Method->isInstance())
13344           return true;
13345       } else {
13346         // Overload set does not contain methods.
13347         break;
13348       }
13349     }
13350 
13351     return false;
13352   }
13353 
13354   return false;
13355 }
13356 
13357 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
13358                               UnaryOperatorKind Opc, Expr *Input) {
13359   // First things first: handle placeholders so that the
13360   // overloaded-operator check considers the right type.
13361   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
13362     // Increment and decrement of pseudo-object references.
13363     if (pty->getKind() == BuiltinType::PseudoObject &&
13364         UnaryOperator::isIncrementDecrementOp(Opc))
13365       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
13366 
13367     // extension is always a builtin operator.
13368     if (Opc == UO_Extension)
13369       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13370 
13371     // & gets special logic for several kinds of placeholder.
13372     // The builtin code knows what to do.
13373     if (Opc == UO_AddrOf &&
13374         (pty->getKind() == BuiltinType::Overload ||
13375          pty->getKind() == BuiltinType::UnknownAny ||
13376          pty->getKind() == BuiltinType::BoundMember))
13377       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13378 
13379     // Anything else needs to be handled now.
13380     ExprResult Result = CheckPlaceholderExpr(Input);
13381     if (Result.isInvalid()) return ExprError();
13382     Input = Result.get();
13383   }
13384 
13385   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
13386       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
13387       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
13388     // Find all of the overloaded operators visible from this
13389     // point. We perform both an operator-name lookup from the local
13390     // scope and an argument-dependent lookup based on the types of
13391     // the arguments.
13392     UnresolvedSet<16> Functions;
13393     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
13394     if (S && OverOp != OO_None)
13395       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
13396                                    Functions);
13397 
13398     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
13399   }
13400 
13401   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
13402 }
13403 
13404 // Unary Operators.  'Tok' is the token for the operator.
13405 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
13406                               tok::TokenKind Op, Expr *Input) {
13407   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
13408 }
13409 
13410 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
13411 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
13412                                 LabelDecl *TheDecl) {
13413   TheDecl->markUsed(Context);
13414   // Create the AST node.  The address of a label always has type 'void*'.
13415   return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
13416                                      Context.getPointerType(Context.VoidTy));
13417 }
13418 
13419 void Sema::ActOnStartStmtExpr() {
13420   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
13421 }
13422 
13423 void Sema::ActOnStmtExprError() {
13424   // Note that function is also called by TreeTransform when leaving a
13425   // StmtExpr scope without rebuilding anything.
13426 
13427   DiscardCleanupsInEvaluationContext();
13428   PopExpressionEvaluationContext();
13429 }
13430 
13431 ExprResult
13432 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
13433                     SourceLocation RPLoc) { // "({..})"
13434   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
13435   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
13436 
13437   if (hasAnyUnrecoverableErrorsInThisFunction())
13438     DiscardCleanupsInEvaluationContext();
13439   assert(!Cleanup.exprNeedsCleanups() &&
13440          "cleanups within StmtExpr not correctly bound!");
13441   PopExpressionEvaluationContext();
13442 
13443   // FIXME: there are a variety of strange constraints to enforce here, for
13444   // example, it is not possible to goto into a stmt expression apparently.
13445   // More semantic analysis is needed.
13446 
13447   // If there are sub-stmts in the compound stmt, take the type of the last one
13448   // as the type of the stmtexpr.
13449   QualType Ty = Context.VoidTy;
13450   bool StmtExprMayBindToTemp = false;
13451   if (!Compound->body_empty()) {
13452     // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
13453     if (const auto *LastStmt =
13454             dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
13455       if (const Expr *Value = LastStmt->getExprStmt()) {
13456         StmtExprMayBindToTemp = true;
13457         Ty = Value->getType();
13458       }
13459     }
13460   }
13461 
13462   // FIXME: Check that expression type is complete/non-abstract; statement
13463   // expressions are not lvalues.
13464   Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
13465   if (StmtExprMayBindToTemp)
13466     return MaybeBindToTemporary(ResStmtExpr);
13467   return ResStmtExpr;
13468 }
13469 
13470 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
13471   if (ER.isInvalid())
13472     return ExprError();
13473 
13474   // Do function/array conversion on the last expression, but not
13475   // lvalue-to-rvalue.  However, initialize an unqualified type.
13476   ER = DefaultFunctionArrayConversion(ER.get());
13477   if (ER.isInvalid())
13478     return ExprError();
13479   Expr *E = ER.get();
13480 
13481   if (E->isTypeDependent())
13482     return E;
13483 
13484   // In ARC, if the final expression ends in a consume, splice
13485   // the consume out and bind it later.  In the alternate case
13486   // (when dealing with a retainable type), the result
13487   // initialization will create a produce.  In both cases the
13488   // result will be +1, and we'll need to balance that out with
13489   // a bind.
13490   auto *Cast = dyn_cast<ImplicitCastExpr>(E);
13491   if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
13492     return Cast->getSubExpr();
13493 
13494   // FIXME: Provide a better location for the initialization.
13495   return PerformCopyInitialization(
13496       InitializedEntity::InitializeStmtExprResult(
13497           E->getBeginLoc(), E->getType().getUnqualifiedType()),
13498       SourceLocation(), E);
13499 }
13500 
13501 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
13502                                       TypeSourceInfo *TInfo,
13503                                       ArrayRef<OffsetOfComponent> Components,
13504                                       SourceLocation RParenLoc) {
13505   QualType ArgTy = TInfo->getType();
13506   bool Dependent = ArgTy->isDependentType();
13507   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
13508 
13509   // We must have at least one component that refers to the type, and the first
13510   // one is known to be a field designator.  Verify that the ArgTy represents
13511   // a struct/union/class.
13512   if (!Dependent && !ArgTy->isRecordType())
13513     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
13514                        << ArgTy << TypeRange);
13515 
13516   // Type must be complete per C99 7.17p3 because a declaring a variable
13517   // with an incomplete type would be ill-formed.
13518   if (!Dependent
13519       && RequireCompleteType(BuiltinLoc, ArgTy,
13520                              diag::err_offsetof_incomplete_type, TypeRange))
13521     return ExprError();
13522 
13523   bool DidWarnAboutNonPOD = false;
13524   QualType CurrentType = ArgTy;
13525   SmallVector<OffsetOfNode, 4> Comps;
13526   SmallVector<Expr*, 4> Exprs;
13527   for (const OffsetOfComponent &OC : Components) {
13528     if (OC.isBrackets) {
13529       // Offset of an array sub-field.  TODO: Should we allow vector elements?
13530       if (!CurrentType->isDependentType()) {
13531         const ArrayType *AT = Context.getAsArrayType(CurrentType);
13532         if(!AT)
13533           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
13534                            << CurrentType);
13535         CurrentType = AT->getElementType();
13536       } else
13537         CurrentType = Context.DependentTy;
13538 
13539       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
13540       if (IdxRval.isInvalid())
13541         return ExprError();
13542       Expr *Idx = IdxRval.get();
13543 
13544       // The expression must be an integral expression.
13545       // FIXME: An integral constant expression?
13546       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
13547           !Idx->getType()->isIntegerType())
13548         return ExprError(
13549             Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
13550             << Idx->getSourceRange());
13551 
13552       // Record this array index.
13553       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
13554       Exprs.push_back(Idx);
13555       continue;
13556     }
13557 
13558     // Offset of a field.
13559     if (CurrentType->isDependentType()) {
13560       // We have the offset of a field, but we can't look into the dependent
13561       // type. Just record the identifier of the field.
13562       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
13563       CurrentType = Context.DependentTy;
13564       continue;
13565     }
13566 
13567     // We need to have a complete type to look into.
13568     if (RequireCompleteType(OC.LocStart, CurrentType,
13569                             diag::err_offsetof_incomplete_type))
13570       return ExprError();
13571 
13572     // Look for the designated field.
13573     const RecordType *RC = CurrentType->getAs<RecordType>();
13574     if (!RC)
13575       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
13576                        << CurrentType);
13577     RecordDecl *RD = RC->getDecl();
13578 
13579     // C++ [lib.support.types]p5:
13580     //   The macro offsetof accepts a restricted set of type arguments in this
13581     //   International Standard. type shall be a POD structure or a POD union
13582     //   (clause 9).
13583     // C++11 [support.types]p4:
13584     //   If type is not a standard-layout class (Clause 9), the results are
13585     //   undefined.
13586     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
13587       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
13588       unsigned DiagID =
13589         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
13590                             : diag::ext_offsetof_non_pod_type;
13591 
13592       if (!IsSafe && !DidWarnAboutNonPOD &&
13593           DiagRuntimeBehavior(BuiltinLoc, nullptr,
13594                               PDiag(DiagID)
13595                               << SourceRange(Components[0].LocStart, OC.LocEnd)
13596                               << CurrentType))
13597         DidWarnAboutNonPOD = true;
13598     }
13599 
13600     // Look for the field.
13601     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
13602     LookupQualifiedName(R, RD);
13603     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
13604     IndirectFieldDecl *IndirectMemberDecl = nullptr;
13605     if (!MemberDecl) {
13606       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
13607         MemberDecl = IndirectMemberDecl->getAnonField();
13608     }
13609 
13610     if (!MemberDecl)
13611       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
13612                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
13613                                                               OC.LocEnd));
13614 
13615     // C99 7.17p3:
13616     //   (If the specified member is a bit-field, the behavior is undefined.)
13617     //
13618     // We diagnose this as an error.
13619     if (MemberDecl->isBitField()) {
13620       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
13621         << MemberDecl->getDeclName()
13622         << SourceRange(BuiltinLoc, RParenLoc);
13623       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
13624       return ExprError();
13625     }
13626 
13627     RecordDecl *Parent = MemberDecl->getParent();
13628     if (IndirectMemberDecl)
13629       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
13630 
13631     // If the member was found in a base class, introduce OffsetOfNodes for
13632     // the base class indirections.
13633     CXXBasePaths Paths;
13634     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
13635                       Paths)) {
13636       if (Paths.getDetectedVirtual()) {
13637         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
13638           << MemberDecl->getDeclName()
13639           << SourceRange(BuiltinLoc, RParenLoc);
13640         return ExprError();
13641       }
13642 
13643       CXXBasePath &Path = Paths.front();
13644       for (const CXXBasePathElement &B : Path)
13645         Comps.push_back(OffsetOfNode(B.Base));
13646     }
13647 
13648     if (IndirectMemberDecl) {
13649       for (auto *FI : IndirectMemberDecl->chain()) {
13650         assert(isa<FieldDecl>(FI));
13651         Comps.push_back(OffsetOfNode(OC.LocStart,
13652                                      cast<FieldDecl>(FI), OC.LocEnd));
13653       }
13654     } else
13655       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
13656 
13657     CurrentType = MemberDecl->getType().getNonReferenceType();
13658   }
13659 
13660   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
13661                               Comps, Exprs, RParenLoc);
13662 }
13663 
13664 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
13665                                       SourceLocation BuiltinLoc,
13666                                       SourceLocation TypeLoc,
13667                                       ParsedType ParsedArgTy,
13668                                       ArrayRef<OffsetOfComponent> Components,
13669                                       SourceLocation RParenLoc) {
13670 
13671   TypeSourceInfo *ArgTInfo;
13672   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
13673   if (ArgTy.isNull())
13674     return ExprError();
13675 
13676   if (!ArgTInfo)
13677     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
13678 
13679   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
13680 }
13681 
13682 
13683 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
13684                                  Expr *CondExpr,
13685                                  Expr *LHSExpr, Expr *RHSExpr,
13686                                  SourceLocation RPLoc) {
13687   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
13688 
13689   ExprValueKind VK = VK_RValue;
13690   ExprObjectKind OK = OK_Ordinary;
13691   QualType resType;
13692   bool ValueDependent = false;
13693   bool CondIsTrue = false;
13694   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
13695     resType = Context.DependentTy;
13696     ValueDependent = true;
13697   } else {
13698     // The conditional expression is required to be a constant expression.
13699     llvm::APSInt condEval(32);
13700     ExprResult CondICE
13701       = VerifyIntegerConstantExpression(CondExpr, &condEval,
13702           diag::err_typecheck_choose_expr_requires_constant, false);
13703     if (CondICE.isInvalid())
13704       return ExprError();
13705     CondExpr = CondICE.get();
13706     CondIsTrue = condEval.getZExtValue();
13707 
13708     // If the condition is > zero, then the AST type is the same as the LHSExpr.
13709     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
13710 
13711     resType = ActiveExpr->getType();
13712     ValueDependent = ActiveExpr->isValueDependent();
13713     VK = ActiveExpr->getValueKind();
13714     OK = ActiveExpr->getObjectKind();
13715   }
13716 
13717   return new (Context)
13718       ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
13719                  CondIsTrue, resType->isDependentType(), ValueDependent);
13720 }
13721 
13722 //===----------------------------------------------------------------------===//
13723 // Clang Extensions.
13724 //===----------------------------------------------------------------------===//
13725 
13726 /// ActOnBlockStart - This callback is invoked when a block literal is started.
13727 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
13728   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
13729 
13730   if (LangOpts.CPlusPlus) {
13731     Decl *ManglingContextDecl;
13732     if (MangleNumberingContext *MCtx =
13733             getCurrentMangleNumberContext(Block->getDeclContext(),
13734                                           ManglingContextDecl)) {
13735       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
13736       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
13737     }
13738   }
13739 
13740   PushBlockScope(CurScope, Block);
13741   CurContext->addDecl(Block);
13742   if (CurScope)
13743     PushDeclContext(CurScope, Block);
13744   else
13745     CurContext = Block;
13746 
13747   getCurBlock()->HasImplicitReturnType = true;
13748 
13749   // Enter a new evaluation context to insulate the block from any
13750   // cleanups from the enclosing full-expression.
13751   PushExpressionEvaluationContext(
13752       ExpressionEvaluationContext::PotentiallyEvaluated);
13753 }
13754 
13755 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
13756                                Scope *CurScope) {
13757   assert(ParamInfo.getIdentifier() == nullptr &&
13758          "block-id should have no identifier!");
13759   assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteralContext);
13760   BlockScopeInfo *CurBlock = getCurBlock();
13761 
13762   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
13763   QualType T = Sig->getType();
13764 
13765   // FIXME: We should allow unexpanded parameter packs here, but that would,
13766   // in turn, make the block expression contain unexpanded parameter packs.
13767   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
13768     // Drop the parameters.
13769     FunctionProtoType::ExtProtoInfo EPI;
13770     EPI.HasTrailingReturn = false;
13771     EPI.TypeQuals.addConst();
13772     T = Context.getFunctionType(Context.DependentTy, None, EPI);
13773     Sig = Context.getTrivialTypeSourceInfo(T);
13774   }
13775 
13776   // GetTypeForDeclarator always produces a function type for a block
13777   // literal signature.  Furthermore, it is always a FunctionProtoType
13778   // unless the function was written with a typedef.
13779   assert(T->isFunctionType() &&
13780          "GetTypeForDeclarator made a non-function block signature");
13781 
13782   // Look for an explicit signature in that function type.
13783   FunctionProtoTypeLoc ExplicitSignature;
13784 
13785   if ((ExplicitSignature = Sig->getTypeLoc()
13786                                .getAsAdjusted<FunctionProtoTypeLoc>())) {
13787 
13788     // Check whether that explicit signature was synthesized by
13789     // GetTypeForDeclarator.  If so, don't save that as part of the
13790     // written signature.
13791     if (ExplicitSignature.getLocalRangeBegin() ==
13792         ExplicitSignature.getLocalRangeEnd()) {
13793       // This would be much cheaper if we stored TypeLocs instead of
13794       // TypeSourceInfos.
13795       TypeLoc Result = ExplicitSignature.getReturnLoc();
13796       unsigned Size = Result.getFullDataSize();
13797       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
13798       Sig->getTypeLoc().initializeFullCopy(Result, Size);
13799 
13800       ExplicitSignature = FunctionProtoTypeLoc();
13801     }
13802   }
13803 
13804   CurBlock->TheDecl->setSignatureAsWritten(Sig);
13805   CurBlock->FunctionType = T;
13806 
13807   const FunctionType *Fn = T->getAs<FunctionType>();
13808   QualType RetTy = Fn->getReturnType();
13809   bool isVariadic =
13810     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
13811 
13812   CurBlock->TheDecl->setIsVariadic(isVariadic);
13813 
13814   // Context.DependentTy is used as a placeholder for a missing block
13815   // return type.  TODO:  what should we do with declarators like:
13816   //   ^ * { ... }
13817   // If the answer is "apply template argument deduction"....
13818   if (RetTy != Context.DependentTy) {
13819     CurBlock->ReturnType = RetTy;
13820     CurBlock->TheDecl->setBlockMissingReturnType(false);
13821     CurBlock->HasImplicitReturnType = false;
13822   }
13823 
13824   // Push block parameters from the declarator if we had them.
13825   SmallVector<ParmVarDecl*, 8> Params;
13826   if (ExplicitSignature) {
13827     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
13828       ParmVarDecl *Param = ExplicitSignature.getParam(I);
13829       if (Param->getIdentifier() == nullptr &&
13830           !Param->isImplicit() &&
13831           !Param->isInvalidDecl() &&
13832           !getLangOpts().CPlusPlus)
13833         Diag(Param->getLocation(), diag::err_parameter_name_omitted);
13834       Params.push_back(Param);
13835     }
13836 
13837   // Fake up parameter variables if we have a typedef, like
13838   //   ^ fntype { ... }
13839   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
13840     for (const auto &I : Fn->param_types()) {
13841       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
13842           CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
13843       Params.push_back(Param);
13844     }
13845   }
13846 
13847   // Set the parameters on the block decl.
13848   if (!Params.empty()) {
13849     CurBlock->TheDecl->setParams(Params);
13850     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
13851                              /*CheckParameterNames=*/false);
13852   }
13853 
13854   // Finally we can process decl attributes.
13855   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
13856 
13857   // Put the parameter variables in scope.
13858   for (auto AI : CurBlock->TheDecl->parameters()) {
13859     AI->setOwningFunction(CurBlock->TheDecl);
13860 
13861     // If this has an identifier, add it to the scope stack.
13862     if (AI->getIdentifier()) {
13863       CheckShadow(CurBlock->TheScope, AI);
13864 
13865       PushOnScopeChains(AI, CurBlock->TheScope);
13866     }
13867   }
13868 }
13869 
13870 /// ActOnBlockError - If there is an error parsing a block, this callback
13871 /// is invoked to pop the information about the block from the action impl.
13872 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
13873   // Leave the expression-evaluation context.
13874   DiscardCleanupsInEvaluationContext();
13875   PopExpressionEvaluationContext();
13876 
13877   // Pop off CurBlock, handle nested blocks.
13878   PopDeclContext();
13879   PopFunctionScopeInfo();
13880 }
13881 
13882 /// ActOnBlockStmtExpr - This is called when the body of a block statement
13883 /// literal was successfully completed.  ^(int x){...}
13884 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
13885                                     Stmt *Body, Scope *CurScope) {
13886   // If blocks are disabled, emit an error.
13887   if (!LangOpts.Blocks)
13888     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
13889 
13890   // Leave the expression-evaluation context.
13891   if (hasAnyUnrecoverableErrorsInThisFunction())
13892     DiscardCleanupsInEvaluationContext();
13893   assert(!Cleanup.exprNeedsCleanups() &&
13894          "cleanups within block not correctly bound!");
13895   PopExpressionEvaluationContext();
13896 
13897   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
13898   BlockDecl *BD = BSI->TheDecl;
13899 
13900   if (BSI->HasImplicitReturnType)
13901     deduceClosureReturnType(*BSI);
13902 
13903   QualType RetTy = Context.VoidTy;
13904   if (!BSI->ReturnType.isNull())
13905     RetTy = BSI->ReturnType;
13906 
13907   bool NoReturn = BD->hasAttr<NoReturnAttr>();
13908   QualType BlockTy;
13909 
13910   // If the user wrote a function type in some form, try to use that.
13911   if (!BSI->FunctionType.isNull()) {
13912     const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
13913 
13914     FunctionType::ExtInfo Ext = FTy->getExtInfo();
13915     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
13916 
13917     // Turn protoless block types into nullary block types.
13918     if (isa<FunctionNoProtoType>(FTy)) {
13919       FunctionProtoType::ExtProtoInfo EPI;
13920       EPI.ExtInfo = Ext;
13921       BlockTy = Context.getFunctionType(RetTy, None, EPI);
13922 
13923     // Otherwise, if we don't need to change anything about the function type,
13924     // preserve its sugar structure.
13925     } else if (FTy->getReturnType() == RetTy &&
13926                (!NoReturn || FTy->getNoReturnAttr())) {
13927       BlockTy = BSI->FunctionType;
13928 
13929     // Otherwise, make the minimal modifications to the function type.
13930     } else {
13931       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
13932       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
13933       EPI.TypeQuals = Qualifiers();
13934       EPI.ExtInfo = Ext;
13935       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
13936     }
13937 
13938   // If we don't have a function type, just build one from nothing.
13939   } else {
13940     FunctionProtoType::ExtProtoInfo EPI;
13941     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
13942     BlockTy = Context.getFunctionType(RetTy, None, EPI);
13943   }
13944 
13945   DiagnoseUnusedParameters(BD->parameters());
13946   BlockTy = Context.getBlockPointerType(BlockTy);
13947 
13948   // If needed, diagnose invalid gotos and switches in the block.
13949   if (getCurFunction()->NeedsScopeChecking() &&
13950       !PP.isCodeCompletionEnabled())
13951     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
13952 
13953   BD->setBody(cast<CompoundStmt>(Body));
13954 
13955   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
13956     DiagnoseUnguardedAvailabilityViolations(BD);
13957 
13958   // Try to apply the named return value optimization. We have to check again
13959   // if we can do this, though, because blocks keep return statements around
13960   // to deduce an implicit return type.
13961   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
13962       !BD->isDependentContext())
13963     computeNRVO(Body, BSI);
13964 
13965   if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
13966       RetTy.hasNonTrivialToPrimitiveCopyCUnion())
13967     checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
13968                           NTCUK_Destruct|NTCUK_Copy);
13969 
13970   PopDeclContext();
13971 
13972   // Pop the block scope now but keep it alive to the end of this function.
13973   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
13974   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
13975 
13976   // Set the captured variables on the block.
13977   SmallVector<BlockDecl::Capture, 4> Captures;
13978   for (Capture &Cap : BSI->Captures) {
13979     if (Cap.isInvalid() || Cap.isThisCapture())
13980       continue;
13981 
13982     VarDecl *Var = Cap.getVariable();
13983     Expr *CopyExpr = nullptr;
13984     if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
13985       if (const RecordType *Record =
13986               Cap.getCaptureType()->getAs<RecordType>()) {
13987         // The capture logic needs the destructor, so make sure we mark it.
13988         // Usually this is unnecessary because most local variables have
13989         // their destructors marked at declaration time, but parameters are
13990         // an exception because it's technically only the call site that
13991         // actually requires the destructor.
13992         if (isa<ParmVarDecl>(Var))
13993           FinalizeVarWithDestructor(Var, Record);
13994 
13995         // Enter a separate potentially-evaluated context while building block
13996         // initializers to isolate their cleanups from those of the block
13997         // itself.
13998         // FIXME: Is this appropriate even when the block itself occurs in an
13999         // unevaluated operand?
14000         EnterExpressionEvaluationContext EvalContext(
14001             *this, ExpressionEvaluationContext::PotentiallyEvaluated);
14002 
14003         SourceLocation Loc = Cap.getLocation();
14004 
14005         ExprResult Result = BuildDeclarationNameExpr(
14006             CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
14007 
14008         // According to the blocks spec, the capture of a variable from
14009         // the stack requires a const copy constructor.  This is not true
14010         // of the copy/move done to move a __block variable to the heap.
14011         if (!Result.isInvalid() &&
14012             !Result.get()->getType().isConstQualified()) {
14013           Result = ImpCastExprToType(Result.get(),
14014                                      Result.get()->getType().withConst(),
14015                                      CK_NoOp, VK_LValue);
14016         }
14017 
14018         if (!Result.isInvalid()) {
14019           Result = PerformCopyInitialization(
14020               InitializedEntity::InitializeBlock(Var->getLocation(),
14021                                                  Cap.getCaptureType(), false),
14022               Loc, Result.get());
14023         }
14024 
14025         // Build a full-expression copy expression if initialization
14026         // succeeded and used a non-trivial constructor.  Recover from
14027         // errors by pretending that the copy isn't necessary.
14028         if (!Result.isInvalid() &&
14029             !cast<CXXConstructExpr>(Result.get())->getConstructor()
14030                 ->isTrivial()) {
14031           Result = MaybeCreateExprWithCleanups(Result);
14032           CopyExpr = Result.get();
14033         }
14034       }
14035     }
14036 
14037     BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
14038                               CopyExpr);
14039     Captures.push_back(NewCap);
14040   }
14041   BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
14042 
14043   BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
14044 
14045   // If the block isn't obviously global, i.e. it captures anything at
14046   // all, then we need to do a few things in the surrounding context:
14047   if (Result->getBlockDecl()->hasCaptures()) {
14048     // First, this expression has a new cleanup object.
14049     ExprCleanupObjects.push_back(Result->getBlockDecl());
14050     Cleanup.setExprNeedsCleanups(true);
14051 
14052     // It also gets a branch-protected scope if any of the captured
14053     // variables needs destruction.
14054     for (const auto &CI : Result->getBlockDecl()->captures()) {
14055       const VarDecl *var = CI.getVariable();
14056       if (var->getType().isDestructedType() != QualType::DK_none) {
14057         setFunctionHasBranchProtectedScope();
14058         break;
14059       }
14060     }
14061   }
14062 
14063   if (getCurFunction())
14064     getCurFunction()->addBlock(BD);
14065 
14066   return Result;
14067 }
14068 
14069 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
14070                             SourceLocation RPLoc) {
14071   TypeSourceInfo *TInfo;
14072   GetTypeFromParser(Ty, &TInfo);
14073   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
14074 }
14075 
14076 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
14077                                 Expr *E, TypeSourceInfo *TInfo,
14078                                 SourceLocation RPLoc) {
14079   Expr *OrigExpr = E;
14080   bool IsMS = false;
14081 
14082   // CUDA device code does not support varargs.
14083   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
14084     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
14085       CUDAFunctionTarget T = IdentifyCUDATarget(F);
14086       if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
14087         return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
14088     }
14089   }
14090 
14091   // NVPTX does not support va_arg expression.
14092   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
14093       Context.getTargetInfo().getTriple().isNVPTX())
14094     targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
14095 
14096   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
14097   // as Microsoft ABI on an actual Microsoft platform, where
14098   // __builtin_ms_va_list and __builtin_va_list are the same.)
14099   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
14100       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
14101     QualType MSVaListType = Context.getBuiltinMSVaListType();
14102     if (Context.hasSameType(MSVaListType, E->getType())) {
14103       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
14104         return ExprError();
14105       IsMS = true;
14106     }
14107   }
14108 
14109   // Get the va_list type
14110   QualType VaListType = Context.getBuiltinVaListType();
14111   if (!IsMS) {
14112     if (VaListType->isArrayType()) {
14113       // Deal with implicit array decay; for example, on x86-64,
14114       // va_list is an array, but it's supposed to decay to
14115       // a pointer for va_arg.
14116       VaListType = Context.getArrayDecayedType(VaListType);
14117       // Make sure the input expression also decays appropriately.
14118       ExprResult Result = UsualUnaryConversions(E);
14119       if (Result.isInvalid())
14120         return ExprError();
14121       E = Result.get();
14122     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
14123       // If va_list is a record type and we are compiling in C++ mode,
14124       // check the argument using reference binding.
14125       InitializedEntity Entity = InitializedEntity::InitializeParameter(
14126           Context, Context.getLValueReferenceType(VaListType), false);
14127       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
14128       if (Init.isInvalid())
14129         return ExprError();
14130       E = Init.getAs<Expr>();
14131     } else {
14132       // Otherwise, the va_list argument must be an l-value because
14133       // it is modified by va_arg.
14134       if (!E->isTypeDependent() &&
14135           CheckForModifiableLvalue(E, BuiltinLoc, *this))
14136         return ExprError();
14137     }
14138   }
14139 
14140   if (!IsMS && !E->isTypeDependent() &&
14141       !Context.hasSameType(VaListType, E->getType()))
14142     return ExprError(
14143         Diag(E->getBeginLoc(),
14144              diag::err_first_argument_to_va_arg_not_of_type_va_list)
14145         << OrigExpr->getType() << E->getSourceRange());
14146 
14147   if (!TInfo->getType()->isDependentType()) {
14148     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
14149                             diag::err_second_parameter_to_va_arg_incomplete,
14150                             TInfo->getTypeLoc()))
14151       return ExprError();
14152 
14153     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
14154                                TInfo->getType(),
14155                                diag::err_second_parameter_to_va_arg_abstract,
14156                                TInfo->getTypeLoc()))
14157       return ExprError();
14158 
14159     if (!TInfo->getType().isPODType(Context)) {
14160       Diag(TInfo->getTypeLoc().getBeginLoc(),
14161            TInfo->getType()->isObjCLifetimeType()
14162              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
14163              : diag::warn_second_parameter_to_va_arg_not_pod)
14164         << TInfo->getType()
14165         << TInfo->getTypeLoc().getSourceRange();
14166     }
14167 
14168     // Check for va_arg where arguments of the given type will be promoted
14169     // (i.e. this va_arg is guaranteed to have undefined behavior).
14170     QualType PromoteType;
14171     if (TInfo->getType()->isPromotableIntegerType()) {
14172       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
14173       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
14174         PromoteType = QualType();
14175     }
14176     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
14177       PromoteType = Context.DoubleTy;
14178     if (!PromoteType.isNull())
14179       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
14180                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
14181                           << TInfo->getType()
14182                           << PromoteType
14183                           << TInfo->getTypeLoc().getSourceRange());
14184   }
14185 
14186   QualType T = TInfo->getType().getNonLValueExprType(Context);
14187   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
14188 }
14189 
14190 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
14191   // The type of __null will be int or long, depending on the size of
14192   // pointers on the target.
14193   QualType Ty;
14194   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
14195   if (pw == Context.getTargetInfo().getIntWidth())
14196     Ty = Context.IntTy;
14197   else if (pw == Context.getTargetInfo().getLongWidth())
14198     Ty = Context.LongTy;
14199   else if (pw == Context.getTargetInfo().getLongLongWidth())
14200     Ty = Context.LongLongTy;
14201   else {
14202     llvm_unreachable("I don't know size of pointer!");
14203   }
14204 
14205   return new (Context) GNUNullExpr(Ty, TokenLoc);
14206 }
14207 
14208 ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
14209                                     SourceLocation BuiltinLoc,
14210                                     SourceLocation RPLoc) {
14211   return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext);
14212 }
14213 
14214 ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
14215                                     SourceLocation BuiltinLoc,
14216                                     SourceLocation RPLoc,
14217                                     DeclContext *ParentContext) {
14218   return new (Context)
14219       SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext);
14220 }
14221 
14222 bool Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp,
14223                                               bool Diagnose) {
14224   if (!getLangOpts().ObjC)
14225     return false;
14226 
14227   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
14228   if (!PT)
14229     return false;
14230 
14231   if (!PT->isObjCIdType()) {
14232     // Check if the destination is the 'NSString' interface.
14233     const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
14234     if (!ID || !ID->getIdentifier()->isStr("NSString"))
14235       return false;
14236   }
14237 
14238   // Ignore any parens, implicit casts (should only be
14239   // array-to-pointer decays), and not-so-opaque values.  The last is
14240   // important for making this trigger for property assignments.
14241   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
14242   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
14243     if (OV->getSourceExpr())
14244       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
14245 
14246   StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
14247   if (!SL || !SL->isAscii())
14248     return false;
14249   if (Diagnose) {
14250     Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
14251         << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
14252     Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
14253   }
14254   return true;
14255 }
14256 
14257 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
14258                                               const Expr *SrcExpr) {
14259   if (!DstType->isFunctionPointerType() ||
14260       !SrcExpr->getType()->isFunctionType())
14261     return false;
14262 
14263   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
14264   if (!DRE)
14265     return false;
14266 
14267   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
14268   if (!FD)
14269     return false;
14270 
14271   return !S.checkAddressOfFunctionIsAvailable(FD,
14272                                               /*Complain=*/true,
14273                                               SrcExpr->getBeginLoc());
14274 }
14275 
14276 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
14277                                     SourceLocation Loc,
14278                                     QualType DstType, QualType SrcType,
14279                                     Expr *SrcExpr, AssignmentAction Action,
14280                                     bool *Complained) {
14281   if (Complained)
14282     *Complained = false;
14283 
14284   // Decode the result (notice that AST's are still created for extensions).
14285   bool CheckInferredResultType = false;
14286   bool isInvalid = false;
14287   unsigned DiagKind = 0;
14288   FixItHint Hint;
14289   ConversionFixItGenerator ConvHints;
14290   bool MayHaveConvFixit = false;
14291   bool MayHaveFunctionDiff = false;
14292   const ObjCInterfaceDecl *IFace = nullptr;
14293   const ObjCProtocolDecl *PDecl = nullptr;
14294 
14295   switch (ConvTy) {
14296   case Compatible:
14297       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
14298       return false;
14299 
14300   case PointerToInt:
14301     DiagKind = diag::ext_typecheck_convert_pointer_int;
14302     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
14303     MayHaveConvFixit = true;
14304     break;
14305   case IntToPointer:
14306     DiagKind = diag::ext_typecheck_convert_int_pointer;
14307     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
14308     MayHaveConvFixit = true;
14309     break;
14310   case IncompatiblePointer:
14311     if (Action == AA_Passing_CFAudited)
14312       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
14313     else if (SrcType->isFunctionPointerType() &&
14314              DstType->isFunctionPointerType())
14315       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
14316     else
14317       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
14318 
14319     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
14320       SrcType->isObjCObjectPointerType();
14321     if (Hint.isNull() && !CheckInferredResultType) {
14322       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
14323     }
14324     else if (CheckInferredResultType) {
14325       SrcType = SrcType.getUnqualifiedType();
14326       DstType = DstType.getUnqualifiedType();
14327     }
14328     MayHaveConvFixit = true;
14329     break;
14330   case IncompatiblePointerSign:
14331     DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
14332     break;
14333   case FunctionVoidPointer:
14334     DiagKind = diag::ext_typecheck_convert_pointer_void_func;
14335     break;
14336   case IncompatiblePointerDiscardsQualifiers: {
14337     // Perform array-to-pointer decay if necessary.
14338     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
14339 
14340     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
14341     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
14342     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
14343       DiagKind = diag::err_typecheck_incompatible_address_space;
14344       break;
14345 
14346     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
14347       DiagKind = diag::err_typecheck_incompatible_ownership;
14348       break;
14349     }
14350 
14351     llvm_unreachable("unknown error case for discarding qualifiers!");
14352     // fallthrough
14353   }
14354   case CompatiblePointerDiscardsQualifiers:
14355     // If the qualifiers lost were because we were applying the
14356     // (deprecated) C++ conversion from a string literal to a char*
14357     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
14358     // Ideally, this check would be performed in
14359     // checkPointerTypesForAssignment. However, that would require a
14360     // bit of refactoring (so that the second argument is an
14361     // expression, rather than a type), which should be done as part
14362     // of a larger effort to fix checkPointerTypesForAssignment for
14363     // C++ semantics.
14364     if (getLangOpts().CPlusPlus &&
14365         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
14366       return false;
14367     DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
14368     break;
14369   case IncompatibleNestedPointerQualifiers:
14370     DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
14371     break;
14372   case IncompatibleNestedPointerAddressSpaceMismatch:
14373     DiagKind = diag::err_typecheck_incompatible_nested_address_space;
14374     break;
14375   case IntToBlockPointer:
14376     DiagKind = diag::err_int_to_block_pointer;
14377     break;
14378   case IncompatibleBlockPointer:
14379     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
14380     break;
14381   case IncompatibleObjCQualifiedId: {
14382     if (SrcType->isObjCQualifiedIdType()) {
14383       const ObjCObjectPointerType *srcOPT =
14384                 SrcType->getAs<ObjCObjectPointerType>();
14385       for (auto *srcProto : srcOPT->quals()) {
14386         PDecl = srcProto;
14387         break;
14388       }
14389       if (const ObjCInterfaceType *IFaceT =
14390             DstType->getAs<ObjCObjectPointerType>()->getInterfaceType())
14391         IFace = IFaceT->getDecl();
14392     }
14393     else if (DstType->isObjCQualifiedIdType()) {
14394       const ObjCObjectPointerType *dstOPT =
14395         DstType->getAs<ObjCObjectPointerType>();
14396       for (auto *dstProto : dstOPT->quals()) {
14397         PDecl = dstProto;
14398         break;
14399       }
14400       if (const ObjCInterfaceType *IFaceT =
14401             SrcType->getAs<ObjCObjectPointerType>()->getInterfaceType())
14402         IFace = IFaceT->getDecl();
14403     }
14404     DiagKind = diag::warn_incompatible_qualified_id;
14405     break;
14406   }
14407   case IncompatibleVectors:
14408     DiagKind = diag::warn_incompatible_vectors;
14409     break;
14410   case IncompatibleObjCWeakRef:
14411     DiagKind = diag::err_arc_weak_unavailable_assign;
14412     break;
14413   case Incompatible:
14414     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
14415       if (Complained)
14416         *Complained = true;
14417       return true;
14418     }
14419 
14420     DiagKind = diag::err_typecheck_convert_incompatible;
14421     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
14422     MayHaveConvFixit = true;
14423     isInvalid = true;
14424     MayHaveFunctionDiff = true;
14425     break;
14426   }
14427 
14428   QualType FirstType, SecondType;
14429   switch (Action) {
14430   case AA_Assigning:
14431   case AA_Initializing:
14432     // The destination type comes first.
14433     FirstType = DstType;
14434     SecondType = SrcType;
14435     break;
14436 
14437   case AA_Returning:
14438   case AA_Passing:
14439   case AA_Passing_CFAudited:
14440   case AA_Converting:
14441   case AA_Sending:
14442   case AA_Casting:
14443     // The source type comes first.
14444     FirstType = SrcType;
14445     SecondType = DstType;
14446     break;
14447   }
14448 
14449   PartialDiagnostic FDiag = PDiag(DiagKind);
14450   if (Action == AA_Passing_CFAudited)
14451     FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
14452   else
14453     FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
14454 
14455   // If we can fix the conversion, suggest the FixIts.
14456   assert(ConvHints.isNull() || Hint.isNull());
14457   if (!ConvHints.isNull()) {
14458     for (FixItHint &H : ConvHints.Hints)
14459       FDiag << H;
14460   } else {
14461     FDiag << Hint;
14462   }
14463   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
14464 
14465   if (MayHaveFunctionDiff)
14466     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
14467 
14468   Diag(Loc, FDiag);
14469   if (DiagKind == diag::warn_incompatible_qualified_id &&
14470       PDecl && IFace && !IFace->hasDefinition())
14471       Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
14472         << IFace << PDecl;
14473 
14474   if (SecondType == Context.OverloadTy)
14475     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
14476                               FirstType, /*TakingAddress=*/true);
14477 
14478   if (CheckInferredResultType)
14479     EmitRelatedResultTypeNote(SrcExpr);
14480 
14481   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
14482     EmitRelatedResultTypeNoteForReturn(DstType);
14483 
14484   if (Complained)
14485     *Complained = true;
14486   return isInvalid;
14487 }
14488 
14489 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
14490                                                  llvm::APSInt *Result) {
14491   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
14492   public:
14493     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
14494       S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
14495     }
14496   } Diagnoser;
14497 
14498   return VerifyIntegerConstantExpression(E, Result, Diagnoser);
14499 }
14500 
14501 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
14502                                                  llvm::APSInt *Result,
14503                                                  unsigned DiagID,
14504                                                  bool AllowFold) {
14505   class IDDiagnoser : public VerifyICEDiagnoser {
14506     unsigned DiagID;
14507 
14508   public:
14509     IDDiagnoser(unsigned DiagID)
14510       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
14511 
14512     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
14513       S.Diag(Loc, DiagID) << SR;
14514     }
14515   } Diagnoser(DiagID);
14516 
14517   return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
14518 }
14519 
14520 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
14521                                             SourceRange SR) {
14522   S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
14523 }
14524 
14525 ExprResult
14526 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
14527                                       VerifyICEDiagnoser &Diagnoser,
14528                                       bool AllowFold) {
14529   SourceLocation DiagLoc = E->getBeginLoc();
14530 
14531   if (getLangOpts().CPlusPlus11) {
14532     // C++11 [expr.const]p5:
14533     //   If an expression of literal class type is used in a context where an
14534     //   integral constant expression is required, then that class type shall
14535     //   have a single non-explicit conversion function to an integral or
14536     //   unscoped enumeration type
14537     ExprResult Converted;
14538     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
14539     public:
14540       CXX11ConvertDiagnoser(bool Silent)
14541           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
14542                                 Silent, true) {}
14543 
14544       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
14545                                            QualType T) override {
14546         return S.Diag(Loc, diag::err_ice_not_integral) << T;
14547       }
14548 
14549       SemaDiagnosticBuilder diagnoseIncomplete(
14550           Sema &S, SourceLocation Loc, QualType T) override {
14551         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
14552       }
14553 
14554       SemaDiagnosticBuilder diagnoseExplicitConv(
14555           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
14556         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
14557       }
14558 
14559       SemaDiagnosticBuilder noteExplicitConv(
14560           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
14561         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
14562                  << ConvTy->isEnumeralType() << ConvTy;
14563       }
14564 
14565       SemaDiagnosticBuilder diagnoseAmbiguous(
14566           Sema &S, SourceLocation Loc, QualType T) override {
14567         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
14568       }
14569 
14570       SemaDiagnosticBuilder noteAmbiguous(
14571           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
14572         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
14573                  << ConvTy->isEnumeralType() << ConvTy;
14574       }
14575 
14576       SemaDiagnosticBuilder diagnoseConversion(
14577           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
14578         llvm_unreachable("conversion functions are permitted");
14579       }
14580     } ConvertDiagnoser(Diagnoser.Suppress);
14581 
14582     Converted = PerformContextualImplicitConversion(DiagLoc, E,
14583                                                     ConvertDiagnoser);
14584     if (Converted.isInvalid())
14585       return Converted;
14586     E = Converted.get();
14587     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
14588       return ExprError();
14589   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
14590     // An ICE must be of integral or unscoped enumeration type.
14591     if (!Diagnoser.Suppress)
14592       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
14593     return ExprError();
14594   }
14595 
14596   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
14597   // in the non-ICE case.
14598   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
14599     if (Result)
14600       *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
14601     if (!isa<ConstantExpr>(E))
14602       E = ConstantExpr::Create(Context, E);
14603     return E;
14604   }
14605 
14606   Expr::EvalResult EvalResult;
14607   SmallVector<PartialDiagnosticAt, 8> Notes;
14608   EvalResult.Diag = &Notes;
14609 
14610   // Try to evaluate the expression, and produce diagnostics explaining why it's
14611   // not a constant expression as a side-effect.
14612   bool Folded =
14613       E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
14614       EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
14615 
14616   if (!isa<ConstantExpr>(E))
14617     E = ConstantExpr::Create(Context, E, EvalResult.Val);
14618 
14619   // In C++11, we can rely on diagnostics being produced for any expression
14620   // which is not a constant expression. If no diagnostics were produced, then
14621   // this is a constant expression.
14622   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
14623     if (Result)
14624       *Result = EvalResult.Val.getInt();
14625     return E;
14626   }
14627 
14628   // If our only note is the usual "invalid subexpression" note, just point
14629   // the caret at its location rather than producing an essentially
14630   // redundant note.
14631   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
14632         diag::note_invalid_subexpr_in_const_expr) {
14633     DiagLoc = Notes[0].first;
14634     Notes.clear();
14635   }
14636 
14637   if (!Folded || !AllowFold) {
14638     if (!Diagnoser.Suppress) {
14639       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
14640       for (const PartialDiagnosticAt &Note : Notes)
14641         Diag(Note.first, Note.second);
14642     }
14643 
14644     return ExprError();
14645   }
14646 
14647   Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
14648   for (const PartialDiagnosticAt &Note : Notes)
14649     Diag(Note.first, Note.second);
14650 
14651   if (Result)
14652     *Result = EvalResult.Val.getInt();
14653   return E;
14654 }
14655 
14656 namespace {
14657   // Handle the case where we conclude a expression which we speculatively
14658   // considered to be unevaluated is actually evaluated.
14659   class TransformToPE : public TreeTransform<TransformToPE> {
14660     typedef TreeTransform<TransformToPE> BaseTransform;
14661 
14662   public:
14663     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
14664 
14665     // Make sure we redo semantic analysis
14666     bool AlwaysRebuild() { return true; }
14667     bool ReplacingOriginal() { return true; }
14668 
14669     // We need to special-case DeclRefExprs referring to FieldDecls which
14670     // are not part of a member pointer formation; normal TreeTransforming
14671     // doesn't catch this case because of the way we represent them in the AST.
14672     // FIXME: This is a bit ugly; is it really the best way to handle this
14673     // case?
14674     //
14675     // Error on DeclRefExprs referring to FieldDecls.
14676     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
14677       if (isa<FieldDecl>(E->getDecl()) &&
14678           !SemaRef.isUnevaluatedContext())
14679         return SemaRef.Diag(E->getLocation(),
14680                             diag::err_invalid_non_static_member_use)
14681             << E->getDecl() << E->getSourceRange();
14682 
14683       return BaseTransform::TransformDeclRefExpr(E);
14684     }
14685 
14686     // Exception: filter out member pointer formation
14687     ExprResult TransformUnaryOperator(UnaryOperator *E) {
14688       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
14689         return E;
14690 
14691       return BaseTransform::TransformUnaryOperator(E);
14692     }
14693 
14694     // The body of a lambda-expression is in a separate expression evaluation
14695     // context so never needs to be transformed.
14696     // FIXME: Ideally we wouldn't transform the closure type either, and would
14697     // just recreate the capture expressions and lambda expression.
14698     StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
14699       return SkipLambdaBody(E, Body);
14700     }
14701   };
14702 }
14703 
14704 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
14705   assert(isUnevaluatedContext() &&
14706          "Should only transform unevaluated expressions");
14707   ExprEvalContexts.back().Context =
14708       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
14709   if (isUnevaluatedContext())
14710     return E;
14711   return TransformToPE(*this).TransformExpr(E);
14712 }
14713 
14714 void
14715 Sema::PushExpressionEvaluationContext(
14716     ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
14717     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
14718   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
14719                                 LambdaContextDecl, ExprContext);
14720   Cleanup.reset();
14721   if (!MaybeODRUseExprs.empty())
14722     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
14723 }
14724 
14725 void
14726 Sema::PushExpressionEvaluationContext(
14727     ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
14728     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
14729   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
14730   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
14731 }
14732 
14733 namespace {
14734 
14735 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
14736   PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
14737   if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
14738     if (E->getOpcode() == UO_Deref)
14739       return CheckPossibleDeref(S, E->getSubExpr());
14740   } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
14741     return CheckPossibleDeref(S, E->getBase());
14742   } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
14743     return CheckPossibleDeref(S, E->getBase());
14744   } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
14745     QualType Inner;
14746     QualType Ty = E->getType();
14747     if (const auto *Ptr = Ty->getAs<PointerType>())
14748       Inner = Ptr->getPointeeType();
14749     else if (const auto *Arr = S.Context.getAsArrayType(Ty))
14750       Inner = Arr->getElementType();
14751     else
14752       return nullptr;
14753 
14754     if (Inner->hasAttr(attr::NoDeref))
14755       return E;
14756   }
14757   return nullptr;
14758 }
14759 
14760 } // namespace
14761 
14762 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
14763   for (const Expr *E : Rec.PossibleDerefs) {
14764     const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
14765     if (DeclRef) {
14766       const ValueDecl *Decl = DeclRef->getDecl();
14767       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
14768           << Decl->getName() << E->getSourceRange();
14769       Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
14770     } else {
14771       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
14772           << E->getSourceRange();
14773     }
14774   }
14775   Rec.PossibleDerefs.clear();
14776 }
14777 
14778 void Sema::PopExpressionEvaluationContext() {
14779   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
14780   unsigned NumTypos = Rec.NumTypos;
14781 
14782   if (!Rec.Lambdas.empty()) {
14783     using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
14784     if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || Rec.isUnevaluated() ||
14785         (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17)) {
14786       unsigned D;
14787       if (Rec.isUnevaluated()) {
14788         // C++11 [expr.prim.lambda]p2:
14789         //   A lambda-expression shall not appear in an unevaluated operand
14790         //   (Clause 5).
14791         D = diag::err_lambda_unevaluated_operand;
14792       } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
14793         // C++1y [expr.const]p2:
14794         //   A conditional-expression e is a core constant expression unless the
14795         //   evaluation of e, following the rules of the abstract machine, would
14796         //   evaluate [...] a lambda-expression.
14797         D = diag::err_lambda_in_constant_expression;
14798       } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
14799         // C++17 [expr.prim.lamda]p2:
14800         // A lambda-expression shall not appear [...] in a template-argument.
14801         D = diag::err_lambda_in_invalid_context;
14802       } else
14803         llvm_unreachable("Couldn't infer lambda error message.");
14804 
14805       for (const auto *L : Rec.Lambdas)
14806         Diag(L->getBeginLoc(), D);
14807     }
14808   }
14809 
14810   WarnOnPendingNoDerefs(Rec);
14811 
14812   // When are coming out of an unevaluated context, clear out any
14813   // temporaries that we may have created as part of the evaluation of
14814   // the expression in that context: they aren't relevant because they
14815   // will never be constructed.
14816   if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
14817     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
14818                              ExprCleanupObjects.end());
14819     Cleanup = Rec.ParentCleanup;
14820     CleanupVarDeclMarking();
14821     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
14822   // Otherwise, merge the contexts together.
14823   } else {
14824     Cleanup.mergeFrom(Rec.ParentCleanup);
14825     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
14826                             Rec.SavedMaybeODRUseExprs.end());
14827   }
14828 
14829   // Pop the current expression evaluation context off the stack.
14830   ExprEvalContexts.pop_back();
14831 
14832   // The global expression evaluation context record is never popped.
14833   ExprEvalContexts.back().NumTypos += NumTypos;
14834 }
14835 
14836 void Sema::DiscardCleanupsInEvaluationContext() {
14837   ExprCleanupObjects.erase(
14838          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
14839          ExprCleanupObjects.end());
14840   Cleanup.reset();
14841   MaybeODRUseExprs.clear();
14842 }
14843 
14844 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
14845   ExprResult Result = CheckPlaceholderExpr(E);
14846   if (Result.isInvalid())
14847     return ExprError();
14848   E = Result.get();
14849   if (!E->getType()->isVariablyModifiedType())
14850     return E;
14851   return TransformToPotentiallyEvaluated(E);
14852 }
14853 
14854 /// Are we in a context that is potentially constant evaluated per C++20
14855 /// [expr.const]p12?
14856 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
14857   /// C++2a [expr.const]p12:
14858   //   An expression or conversion is potentially constant evaluated if it is
14859   switch (SemaRef.ExprEvalContexts.back().Context) {
14860     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
14861       // -- a manifestly constant-evaluated expression,
14862     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
14863     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
14864     case Sema::ExpressionEvaluationContext::DiscardedStatement:
14865       // -- a potentially-evaluated expression,
14866     case Sema::ExpressionEvaluationContext::UnevaluatedList:
14867       // -- an immediate subexpression of a braced-init-list,
14868 
14869       // -- [FIXME] an expression of the form & cast-expression that occurs
14870       //    within a templated entity
14871       // -- a subexpression of one of the above that is not a subexpression of
14872       // a nested unevaluated operand.
14873       return true;
14874 
14875     case Sema::ExpressionEvaluationContext::Unevaluated:
14876     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
14877       // Expressions in this context are never evaluated.
14878       return false;
14879   }
14880   llvm_unreachable("Invalid context");
14881 }
14882 
14883 /// Return true if this function has a calling convention that requires mangling
14884 /// in the size of the parameter pack.
14885 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
14886   // These manglings don't do anything on non-Windows or non-x86 platforms, so
14887   // we don't need parameter type sizes.
14888   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
14889   if (!TT.isOSWindows() || (TT.getArch() != llvm::Triple::x86 &&
14890                             TT.getArch() != llvm::Triple::x86_64))
14891     return false;
14892 
14893   // If this is C++ and this isn't an extern "C" function, parameters do not
14894   // need to be complete. In this case, C++ mangling will apply, which doesn't
14895   // use the size of the parameters.
14896   if (S.getLangOpts().CPlusPlus && !FD->isExternC())
14897     return false;
14898 
14899   // Stdcall, fastcall, and vectorcall need this special treatment.
14900   CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
14901   switch (CC) {
14902   case CC_X86StdCall:
14903   case CC_X86FastCall:
14904   case CC_X86VectorCall:
14905     return true;
14906   default:
14907     break;
14908   }
14909   return false;
14910 }
14911 
14912 /// Require that all of the parameter types of function be complete. Normally,
14913 /// parameter types are only required to be complete when a function is called
14914 /// or defined, but to mangle functions with certain calling conventions, the
14915 /// mangler needs to know the size of the parameter list. In this situation,
14916 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
14917 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
14918 /// result in a linker error. Clang doesn't implement this behavior, and instead
14919 /// attempts to error at compile time.
14920 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
14921                                                   SourceLocation Loc) {
14922   class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
14923     FunctionDecl *FD;
14924     ParmVarDecl *Param;
14925 
14926   public:
14927     ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
14928         : FD(FD), Param(Param) {}
14929 
14930     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
14931       CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
14932       StringRef CCName;
14933       switch (CC) {
14934       case CC_X86StdCall:
14935         CCName = "stdcall";
14936         break;
14937       case CC_X86FastCall:
14938         CCName = "fastcall";
14939         break;
14940       case CC_X86VectorCall:
14941         CCName = "vectorcall";
14942         break;
14943       default:
14944         llvm_unreachable("CC does not need mangling");
14945       }
14946 
14947       S.Diag(Loc, diag::err_cconv_incomplete_param_type)
14948           << Param->getDeclName() << FD->getDeclName() << CCName;
14949     }
14950   };
14951 
14952   for (ParmVarDecl *Param : FD->parameters()) {
14953     ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
14954     S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
14955   }
14956 }
14957 
14958 namespace {
14959 enum class OdrUseContext {
14960   /// Declarations in this context are not odr-used.
14961   None,
14962   /// Declarations in this context are formally odr-used, but this is a
14963   /// dependent context.
14964   Dependent,
14965   /// Declarations in this context are odr-used but not actually used (yet).
14966   FormallyOdrUsed,
14967   /// Declarations in this context are used.
14968   Used
14969 };
14970 }
14971 
14972 /// Are we within a context in which references to resolved functions or to
14973 /// variables result in odr-use?
14974 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
14975   OdrUseContext Result;
14976 
14977   switch (SemaRef.ExprEvalContexts.back().Context) {
14978     case Sema::ExpressionEvaluationContext::Unevaluated:
14979     case Sema::ExpressionEvaluationContext::UnevaluatedList:
14980     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
14981       return OdrUseContext::None;
14982 
14983     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
14984     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
14985       Result = OdrUseContext::Used;
14986       break;
14987 
14988     case Sema::ExpressionEvaluationContext::DiscardedStatement:
14989       Result = OdrUseContext::FormallyOdrUsed;
14990       break;
14991 
14992     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
14993       // A default argument formally results in odr-use, but doesn't actually
14994       // result in a use in any real sense until it itself is used.
14995       Result = OdrUseContext::FormallyOdrUsed;
14996       break;
14997   }
14998 
14999   if (SemaRef.CurContext->isDependentContext())
15000     return OdrUseContext::Dependent;
15001 
15002   return Result;
15003 }
15004 
15005 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
15006   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
15007   return Func->isConstexpr() &&
15008          (Func->isImplicitlyInstantiable() || (MD && !MD->isUserProvided()));
15009 }
15010 
15011 /// Mark a function referenced, and check whether it is odr-used
15012 /// (C++ [basic.def.odr]p2, C99 6.9p3)
15013 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
15014                                   bool MightBeOdrUse) {
15015   assert(Func && "No function?");
15016 
15017   Func->setReferenced();
15018 
15019   // Recursive functions aren't really used until they're used from some other
15020   // context.
15021   bool IsRecursiveCall = CurContext == Func;
15022 
15023   // C++11 [basic.def.odr]p3:
15024   //   A function whose name appears as a potentially-evaluated expression is
15025   //   odr-used if it is the unique lookup result or the selected member of a
15026   //   set of overloaded functions [...].
15027   //
15028   // We (incorrectly) mark overload resolution as an unevaluated context, so we
15029   // can just check that here.
15030   OdrUseContext OdrUse =
15031       MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
15032   if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
15033     OdrUse = OdrUseContext::FormallyOdrUsed;
15034 
15035   // C++20 [expr.const]p12:
15036   //   A function [...] is needed for constant evaluation if it is [...] a
15037   //   constexpr function that is named by an expression that is potentially
15038   //   constant evaluated
15039   bool NeededForConstantEvaluation =
15040       isPotentiallyConstantEvaluatedContext(*this) &&
15041       isImplicitlyDefinableConstexprFunction(Func);
15042 
15043   // Determine whether we require a function definition to exist, per
15044   // C++11 [temp.inst]p3:
15045   //   Unless a function template specialization has been explicitly
15046   //   instantiated or explicitly specialized, the function template
15047   //   specialization is implicitly instantiated when the specialization is
15048   //   referenced in a context that requires a function definition to exist.
15049   // C++20 [temp.inst]p7:
15050   //   The existence of a definition of a [...] function is considered to
15051   //   affect the semantics of the program if the [...] function is needed for
15052   //   constant evaluation by an expression
15053   // C++20 [basic.def.odr]p10:
15054   //   Every program shall contain exactly one definition of every non-inline
15055   //   function or variable that is odr-used in that program outside of a
15056   //   discarded statement
15057   // C++20 [special]p1:
15058   //   The implementation will implicitly define [defaulted special members]
15059   //   if they are odr-used or needed for constant evaluation.
15060   //
15061   // Note that we skip the implicit instantiation of templates that are only
15062   // used in unused default arguments or by recursive calls to themselves.
15063   // This is formally non-conforming, but seems reasonable in practice.
15064   bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
15065                                              NeededForConstantEvaluation);
15066 
15067   // C++14 [temp.expl.spec]p6:
15068   //   If a template [...] is explicitly specialized then that specialization
15069   //   shall be declared before the first use of that specialization that would
15070   //   cause an implicit instantiation to take place, in every translation unit
15071   //   in which such a use occurs
15072   if (NeedDefinition &&
15073       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
15074        Func->getMemberSpecializationInfo()))
15075     checkSpecializationVisibility(Loc, Func);
15076 
15077   // C++14 [except.spec]p17:
15078   //   An exception-specification is considered to be needed when:
15079   //   - the function is odr-used or, if it appears in an unevaluated operand,
15080   //     would be odr-used if the expression were potentially-evaluated;
15081   //
15082   // Note, we do this even if MightBeOdrUse is false. That indicates that the
15083   // function is a pure virtual function we're calling, and in that case the
15084   // function was selected by overload resolution and we need to resolve its
15085   // exception specification for a different reason.
15086   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
15087   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
15088     ResolveExceptionSpec(Loc, FPT);
15089 
15090   if (getLangOpts().CUDA)
15091     CheckCUDACall(Loc, Func);
15092 
15093   // If we need a definition, try to create one.
15094   if (NeedDefinition && !Func->getBody()) {
15095     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
15096       Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
15097       if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
15098         if (Constructor->isDefaultConstructor()) {
15099           if (Constructor->isTrivial() &&
15100               !Constructor->hasAttr<DLLExportAttr>())
15101             return;
15102           DefineImplicitDefaultConstructor(Loc, Constructor);
15103         } else if (Constructor->isCopyConstructor()) {
15104           DefineImplicitCopyConstructor(Loc, Constructor);
15105         } else if (Constructor->isMoveConstructor()) {
15106           DefineImplicitMoveConstructor(Loc, Constructor);
15107         }
15108       } else if (Constructor->getInheritedConstructor()) {
15109         DefineInheritingConstructor(Loc, Constructor);
15110       }
15111     } else if (CXXDestructorDecl *Destructor =
15112                    dyn_cast<CXXDestructorDecl>(Func)) {
15113       Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
15114       if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
15115         if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
15116           return;
15117         DefineImplicitDestructor(Loc, Destructor);
15118       }
15119       if (Destructor->isVirtual() && getLangOpts().AppleKext)
15120         MarkVTableUsed(Loc, Destructor->getParent());
15121     } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
15122       if (MethodDecl->isOverloadedOperator() &&
15123           MethodDecl->getOverloadedOperator() == OO_Equal) {
15124         MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
15125         if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
15126           if (MethodDecl->isCopyAssignmentOperator())
15127             DefineImplicitCopyAssignment(Loc, MethodDecl);
15128           else if (MethodDecl->isMoveAssignmentOperator())
15129             DefineImplicitMoveAssignment(Loc, MethodDecl);
15130         }
15131       } else if (isa<CXXConversionDecl>(MethodDecl) &&
15132                  MethodDecl->getParent()->isLambda()) {
15133         CXXConversionDecl *Conversion =
15134             cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
15135         if (Conversion->isLambdaToBlockPointerConversion())
15136           DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
15137         else
15138           DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
15139       } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
15140         MarkVTableUsed(Loc, MethodDecl->getParent());
15141     }
15142 
15143     // Implicit instantiation of function templates and member functions of
15144     // class templates.
15145     if (Func->isImplicitlyInstantiable()) {
15146       TemplateSpecializationKind TSK =
15147           Func->getTemplateSpecializationKindForInstantiation();
15148       SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
15149       bool FirstInstantiation = PointOfInstantiation.isInvalid();
15150       if (FirstInstantiation) {
15151         PointOfInstantiation = Loc;
15152         Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
15153       } else if (TSK != TSK_ImplicitInstantiation) {
15154         // Use the point of use as the point of instantiation, instead of the
15155         // point of explicit instantiation (which we track as the actual point
15156         // of instantiation). This gives better backtraces in diagnostics.
15157         PointOfInstantiation = Loc;
15158       }
15159 
15160       if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
15161           Func->isConstexpr()) {
15162         if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
15163             cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
15164             CodeSynthesisContexts.size())
15165           PendingLocalImplicitInstantiations.push_back(
15166               std::make_pair(Func, PointOfInstantiation));
15167         else if (Func->isConstexpr())
15168           // Do not defer instantiations of constexpr functions, to avoid the
15169           // expression evaluator needing to call back into Sema if it sees a
15170           // call to such a function.
15171           InstantiateFunctionDefinition(PointOfInstantiation, Func);
15172         else {
15173           Func->setInstantiationIsPending(true);
15174           PendingInstantiations.push_back(
15175               std::make_pair(Func, PointOfInstantiation));
15176           // Notify the consumer that a function was implicitly instantiated.
15177           Consumer.HandleCXXImplicitFunctionInstantiation(Func);
15178         }
15179       }
15180     } else {
15181       // Walk redefinitions, as some of them may be instantiable.
15182       for (auto i : Func->redecls()) {
15183         if (!i->isUsed(false) && i->isImplicitlyInstantiable())
15184           MarkFunctionReferenced(Loc, i, MightBeOdrUse);
15185       }
15186     }
15187   }
15188 
15189   // If this is the first "real" use, act on that.
15190   if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
15191     // Keep track of used but undefined functions.
15192     if (!Func->isDefined()) {
15193       if (mightHaveNonExternalLinkage(Func))
15194         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
15195       else if (Func->getMostRecentDecl()->isInlined() &&
15196                !LangOpts.GNUInline &&
15197                !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
15198         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
15199       else if (isExternalWithNoLinkageType(Func))
15200         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
15201     }
15202 
15203     // Some x86 Windows calling conventions mangle the size of the parameter
15204     // pack into the name. Computing the size of the parameters requires the
15205     // parameter types to be complete. Check that now.
15206     if (funcHasParameterSizeMangling(*this, Func))
15207       CheckCompleteParameterTypesForMangler(*this, Func, Loc);
15208 
15209     Func->markUsed(Context);
15210 
15211     if (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)
15212       checkOpenMPDeviceFunction(Loc, Func);
15213   }
15214 }
15215 
15216 /// Directly mark a variable odr-used. Given a choice, prefer to use
15217 /// MarkVariableReferenced since it does additional checks and then
15218 /// calls MarkVarDeclODRUsed.
15219 /// If the variable must be captured:
15220 ///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
15221 ///  - else capture it in the DeclContext that maps to the
15222 ///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
15223 static void
15224 MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
15225                    const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
15226   // Keep track of used but undefined variables.
15227   // FIXME: We shouldn't suppress this warning for static data members.
15228   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
15229       (!Var->isExternallyVisible() || Var->isInline() ||
15230        SemaRef.isExternalWithNoLinkageType(Var)) &&
15231       !(Var->isStaticDataMember() && Var->hasInit())) {
15232     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
15233     if (old.isInvalid())
15234       old = Loc;
15235   }
15236   QualType CaptureType, DeclRefType;
15237   if (SemaRef.LangOpts.OpenMP)
15238     SemaRef.tryCaptureOpenMPLambdas(Var);
15239   SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
15240     /*EllipsisLoc*/ SourceLocation(),
15241     /*BuildAndDiagnose*/ true,
15242     CaptureType, DeclRefType,
15243     FunctionScopeIndexToStopAt);
15244 
15245   Var->markUsed(SemaRef.Context);
15246 }
15247 
15248 void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
15249                                              SourceLocation Loc,
15250                                              unsigned CapturingScopeIndex) {
15251   MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
15252 }
15253 
15254 static void
15255 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
15256                                    ValueDecl *var, DeclContext *DC) {
15257   DeclContext *VarDC = var->getDeclContext();
15258 
15259   //  If the parameter still belongs to the translation unit, then
15260   //  we're actually just using one parameter in the declaration of
15261   //  the next.
15262   if (isa<ParmVarDecl>(var) &&
15263       isa<TranslationUnitDecl>(VarDC))
15264     return;
15265 
15266   // For C code, don't diagnose about capture if we're not actually in code
15267   // right now; it's impossible to write a non-constant expression outside of
15268   // function context, so we'll get other (more useful) diagnostics later.
15269   //
15270   // For C++, things get a bit more nasty... it would be nice to suppress this
15271   // diagnostic for certain cases like using a local variable in an array bound
15272   // for a member of a local class, but the correct predicate is not obvious.
15273   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
15274     return;
15275 
15276   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
15277   unsigned ContextKind = 3; // unknown
15278   if (isa<CXXMethodDecl>(VarDC) &&
15279       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
15280     ContextKind = 2;
15281   } else if (isa<FunctionDecl>(VarDC)) {
15282     ContextKind = 0;
15283   } else if (isa<BlockDecl>(VarDC)) {
15284     ContextKind = 1;
15285   }
15286 
15287   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
15288     << var << ValueKind << ContextKind << VarDC;
15289   S.Diag(var->getLocation(), diag::note_entity_declared_at)
15290       << var;
15291 
15292   // FIXME: Add additional diagnostic info about class etc. which prevents
15293   // capture.
15294 }
15295 
15296 
15297 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
15298                                       bool &SubCapturesAreNested,
15299                                       QualType &CaptureType,
15300                                       QualType &DeclRefType) {
15301    // Check whether we've already captured it.
15302   if (CSI->CaptureMap.count(Var)) {
15303     // If we found a capture, any subcaptures are nested.
15304     SubCapturesAreNested = true;
15305 
15306     // Retrieve the capture type for this variable.
15307     CaptureType = CSI->getCapture(Var).getCaptureType();
15308 
15309     // Compute the type of an expression that refers to this variable.
15310     DeclRefType = CaptureType.getNonReferenceType();
15311 
15312     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
15313     // are mutable in the sense that user can change their value - they are
15314     // private instances of the captured declarations.
15315     const Capture &Cap = CSI->getCapture(Var);
15316     if (Cap.isCopyCapture() &&
15317         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
15318         !(isa<CapturedRegionScopeInfo>(CSI) &&
15319           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
15320       DeclRefType.addConst();
15321     return true;
15322   }
15323   return false;
15324 }
15325 
15326 // Only block literals, captured statements, and lambda expressions can
15327 // capture; other scopes don't work.
15328 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
15329                                  SourceLocation Loc,
15330                                  const bool Diagnose, Sema &S) {
15331   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
15332     return getLambdaAwareParentOfDeclContext(DC);
15333   else if (Var->hasLocalStorage()) {
15334     if (Diagnose)
15335        diagnoseUncapturableValueReference(S, Loc, Var, DC);
15336   }
15337   return nullptr;
15338 }
15339 
15340 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
15341 // certain types of variables (unnamed, variably modified types etc.)
15342 // so check for eligibility.
15343 static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
15344                                  SourceLocation Loc,
15345                                  const bool Diagnose, Sema &S) {
15346 
15347   bool IsBlock = isa<BlockScopeInfo>(CSI);
15348   bool IsLambda = isa<LambdaScopeInfo>(CSI);
15349 
15350   // Lambdas are not allowed to capture unnamed variables
15351   // (e.g. anonymous unions).
15352   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
15353   // assuming that's the intent.
15354   if (IsLambda && !Var->getDeclName()) {
15355     if (Diagnose) {
15356       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
15357       S.Diag(Var->getLocation(), diag::note_declared_at);
15358     }
15359     return false;
15360   }
15361 
15362   // Prohibit variably-modified types in blocks; they're difficult to deal with.
15363   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
15364     if (Diagnose) {
15365       S.Diag(Loc, diag::err_ref_vm_type);
15366       S.Diag(Var->getLocation(), diag::note_previous_decl)
15367         << Var->getDeclName();
15368     }
15369     return false;
15370   }
15371   // Prohibit structs with flexible array members too.
15372   // We cannot capture what is in the tail end of the struct.
15373   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
15374     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
15375       if (Diagnose) {
15376         if (IsBlock)
15377           S.Diag(Loc, diag::err_ref_flexarray_type);
15378         else
15379           S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
15380             << Var->getDeclName();
15381         S.Diag(Var->getLocation(), diag::note_previous_decl)
15382           << Var->getDeclName();
15383       }
15384       return false;
15385     }
15386   }
15387   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
15388   // Lambdas and captured statements are not allowed to capture __block
15389   // variables; they don't support the expected semantics.
15390   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
15391     if (Diagnose) {
15392       S.Diag(Loc, diag::err_capture_block_variable)
15393         << Var->getDeclName() << !IsLambda;
15394       S.Diag(Var->getLocation(), diag::note_previous_decl)
15395         << Var->getDeclName();
15396     }
15397     return false;
15398   }
15399   // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
15400   if (S.getLangOpts().OpenCL && IsBlock &&
15401       Var->getType()->isBlockPointerType()) {
15402     if (Diagnose)
15403       S.Diag(Loc, diag::err_opencl_block_ref_block);
15404     return false;
15405   }
15406 
15407   return true;
15408 }
15409 
15410 // Returns true if the capture by block was successful.
15411 static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
15412                                  SourceLocation Loc,
15413                                  const bool BuildAndDiagnose,
15414                                  QualType &CaptureType,
15415                                  QualType &DeclRefType,
15416                                  const bool Nested,
15417                                  Sema &S, bool Invalid) {
15418   bool ByRef = false;
15419 
15420   // Blocks are not allowed to capture arrays, excepting OpenCL.
15421   // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
15422   // (decayed to pointers).
15423   if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
15424     if (BuildAndDiagnose) {
15425       S.Diag(Loc, diag::err_ref_array_type);
15426       S.Diag(Var->getLocation(), diag::note_previous_decl)
15427       << Var->getDeclName();
15428       Invalid = true;
15429     } else {
15430       return false;
15431     }
15432   }
15433 
15434   // Forbid the block-capture of autoreleasing variables.
15435   if (!Invalid &&
15436       CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
15437     if (BuildAndDiagnose) {
15438       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
15439         << /*block*/ 0;
15440       S.Diag(Var->getLocation(), diag::note_previous_decl)
15441         << Var->getDeclName();
15442       Invalid = true;
15443     } else {
15444       return false;
15445     }
15446   }
15447 
15448   // Warn about implicitly autoreleasing indirect parameters captured by blocks.
15449   if (const auto *PT = CaptureType->getAs<PointerType>()) {
15450     // This function finds out whether there is an AttributedType of kind
15451     // attr::ObjCOwnership in Ty. The existence of AttributedType of kind
15452     // attr::ObjCOwnership implies __autoreleasing was explicitly specified
15453     // rather than being added implicitly by the compiler.
15454     auto IsObjCOwnershipAttributedType = [](QualType Ty) {
15455       while (const auto *AttrTy = Ty->getAs<AttributedType>()) {
15456         if (AttrTy->getAttrKind() == attr::ObjCOwnership)
15457           return true;
15458 
15459         // Peel off AttributedTypes that are not of kind ObjCOwnership.
15460         Ty = AttrTy->getModifiedType();
15461       }
15462 
15463       return false;
15464     };
15465 
15466     QualType PointeeTy = PT->getPointeeType();
15467 
15468     if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
15469         PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
15470         !IsObjCOwnershipAttributedType(PointeeTy)) {
15471       if (BuildAndDiagnose) {
15472         SourceLocation VarLoc = Var->getLocation();
15473         S.Diag(Loc, diag::warn_block_capture_autoreleasing);
15474         S.Diag(VarLoc, diag::note_declare_parameter_strong);
15475       }
15476     }
15477   }
15478 
15479   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
15480   if (HasBlocksAttr || CaptureType->isReferenceType() ||
15481       (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
15482     // Block capture by reference does not change the capture or
15483     // declaration reference types.
15484     ByRef = true;
15485   } else {
15486     // Block capture by copy introduces 'const'.
15487     CaptureType = CaptureType.getNonReferenceType().withConst();
15488     DeclRefType = CaptureType;
15489   }
15490 
15491   // Actually capture the variable.
15492   if (BuildAndDiagnose)
15493     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
15494                     CaptureType, Invalid);
15495 
15496   return !Invalid;
15497 }
15498 
15499 
15500 /// Capture the given variable in the captured region.
15501 static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
15502                                     VarDecl *Var,
15503                                     SourceLocation Loc,
15504                                     const bool BuildAndDiagnose,
15505                                     QualType &CaptureType,
15506                                     QualType &DeclRefType,
15507                                     const bool RefersToCapturedVariable,
15508                                     Sema &S, bool Invalid) {
15509   // By default, capture variables by reference.
15510   bool ByRef = true;
15511   // Using an LValue reference type is consistent with Lambdas (see below).
15512   if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
15513     if (S.isOpenMPCapturedDecl(Var)) {
15514       bool HasConst = DeclRefType.isConstQualified();
15515       DeclRefType = DeclRefType.getUnqualifiedType();
15516       // Don't lose diagnostics about assignments to const.
15517       if (HasConst)
15518         DeclRefType.addConst();
15519     }
15520     ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel);
15521   }
15522 
15523   if (ByRef)
15524     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
15525   else
15526     CaptureType = DeclRefType;
15527 
15528   // Actually capture the variable.
15529   if (BuildAndDiagnose)
15530     RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
15531                     Loc, SourceLocation(), CaptureType, Invalid);
15532 
15533   return !Invalid;
15534 }
15535 
15536 /// Capture the given variable in the lambda.
15537 static bool captureInLambda(LambdaScopeInfo *LSI,
15538                             VarDecl *Var,
15539                             SourceLocation Loc,
15540                             const bool BuildAndDiagnose,
15541                             QualType &CaptureType,
15542                             QualType &DeclRefType,
15543                             const bool RefersToCapturedVariable,
15544                             const Sema::TryCaptureKind Kind,
15545                             SourceLocation EllipsisLoc,
15546                             const bool IsTopScope,
15547                             Sema &S, bool Invalid) {
15548   // Determine whether we are capturing by reference or by value.
15549   bool ByRef = false;
15550   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
15551     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
15552   } else {
15553     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
15554   }
15555 
15556   // Compute the type of the field that will capture this variable.
15557   if (ByRef) {
15558     // C++11 [expr.prim.lambda]p15:
15559     //   An entity is captured by reference if it is implicitly or
15560     //   explicitly captured but not captured by copy. It is
15561     //   unspecified whether additional unnamed non-static data
15562     //   members are declared in the closure type for entities
15563     //   captured by reference.
15564     //
15565     // FIXME: It is not clear whether we want to build an lvalue reference
15566     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
15567     // to do the former, while EDG does the latter. Core issue 1249 will
15568     // clarify, but for now we follow GCC because it's a more permissive and
15569     // easily defensible position.
15570     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
15571   } else {
15572     // C++11 [expr.prim.lambda]p14:
15573     //   For each entity captured by copy, an unnamed non-static
15574     //   data member is declared in the closure type. The
15575     //   declaration order of these members is unspecified. The type
15576     //   of such a data member is the type of the corresponding
15577     //   captured entity if the entity is not a reference to an
15578     //   object, or the referenced type otherwise. [Note: If the
15579     //   captured entity is a reference to a function, the
15580     //   corresponding data member is also a reference to a
15581     //   function. - end note ]
15582     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
15583       if (!RefType->getPointeeType()->isFunctionType())
15584         CaptureType = RefType->getPointeeType();
15585     }
15586 
15587     // Forbid the lambda copy-capture of autoreleasing variables.
15588     if (!Invalid &&
15589         CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
15590       if (BuildAndDiagnose) {
15591         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
15592         S.Diag(Var->getLocation(), diag::note_previous_decl)
15593           << Var->getDeclName();
15594         Invalid = true;
15595       } else {
15596         return false;
15597       }
15598     }
15599 
15600     // Make sure that by-copy captures are of a complete and non-abstract type.
15601     if (!Invalid && BuildAndDiagnose) {
15602       if (!CaptureType->isDependentType() &&
15603           S.RequireCompleteType(Loc, CaptureType,
15604                                 diag::err_capture_of_incomplete_type,
15605                                 Var->getDeclName()))
15606         Invalid = true;
15607       else if (S.RequireNonAbstractType(Loc, CaptureType,
15608                                         diag::err_capture_of_abstract_type))
15609         Invalid = true;
15610     }
15611   }
15612 
15613   // Compute the type of a reference to this captured variable.
15614   if (ByRef)
15615     DeclRefType = CaptureType.getNonReferenceType();
15616   else {
15617     // C++ [expr.prim.lambda]p5:
15618     //   The closure type for a lambda-expression has a public inline
15619     //   function call operator [...]. This function call operator is
15620     //   declared const (9.3.1) if and only if the lambda-expression's
15621     //   parameter-declaration-clause is not followed by mutable.
15622     DeclRefType = CaptureType.getNonReferenceType();
15623     if (!LSI->Mutable && !CaptureType->isReferenceType())
15624       DeclRefType.addConst();
15625   }
15626 
15627   // Add the capture.
15628   if (BuildAndDiagnose)
15629     LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
15630                     Loc, EllipsisLoc, CaptureType, Invalid);
15631 
15632   return !Invalid;
15633 }
15634 
15635 bool Sema::tryCaptureVariable(
15636     VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
15637     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
15638     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
15639   // An init-capture is notionally from the context surrounding its
15640   // declaration, but its parent DC is the lambda class.
15641   DeclContext *VarDC = Var->getDeclContext();
15642   if (Var->isInitCapture())
15643     VarDC = VarDC->getParent();
15644 
15645   DeclContext *DC = CurContext;
15646   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
15647       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
15648   // We need to sync up the Declaration Context with the
15649   // FunctionScopeIndexToStopAt
15650   if (FunctionScopeIndexToStopAt) {
15651     unsigned FSIndex = FunctionScopes.size() - 1;
15652     while (FSIndex != MaxFunctionScopesIndex) {
15653       DC = getLambdaAwareParentOfDeclContext(DC);
15654       --FSIndex;
15655     }
15656   }
15657 
15658 
15659   // If the variable is declared in the current context, there is no need to
15660   // capture it.
15661   if (VarDC == DC) return true;
15662 
15663   // Capture global variables if it is required to use private copy of this
15664   // variable.
15665   bool IsGlobal = !Var->hasLocalStorage();
15666   if (IsGlobal &&
15667       !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
15668                                                 MaxFunctionScopesIndex)))
15669     return true;
15670   Var = Var->getCanonicalDecl();
15671 
15672   // Walk up the stack to determine whether we can capture the variable,
15673   // performing the "simple" checks that don't depend on type. We stop when
15674   // we've either hit the declared scope of the variable or find an existing
15675   // capture of that variable.  We start from the innermost capturing-entity
15676   // (the DC) and ensure that all intervening capturing-entities
15677   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
15678   // declcontext can either capture the variable or have already captured
15679   // the variable.
15680   CaptureType = Var->getType();
15681   DeclRefType = CaptureType.getNonReferenceType();
15682   bool Nested = false;
15683   bool Explicit = (Kind != TryCapture_Implicit);
15684   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
15685   do {
15686     // Only block literals, captured statements, and lambda expressions can
15687     // capture; other scopes don't work.
15688     DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
15689                                                               ExprLoc,
15690                                                               BuildAndDiagnose,
15691                                                               *this);
15692     // We need to check for the parent *first* because, if we *have*
15693     // private-captured a global variable, we need to recursively capture it in
15694     // intermediate blocks, lambdas, etc.
15695     if (!ParentDC) {
15696       if (IsGlobal) {
15697         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
15698         break;
15699       }
15700       return true;
15701     }
15702 
15703     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
15704     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
15705 
15706 
15707     // Check whether we've already captured it.
15708     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
15709                                              DeclRefType)) {
15710       CSI->getCapture(Var).markUsed(BuildAndDiagnose);
15711       break;
15712     }
15713     // If we are instantiating a generic lambda call operator body,
15714     // we do not want to capture new variables.  What was captured
15715     // during either a lambdas transformation or initial parsing
15716     // should be used.
15717     if (isGenericLambdaCallOperatorSpecialization(DC)) {
15718       if (BuildAndDiagnose) {
15719         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
15720         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
15721           Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
15722           Diag(Var->getLocation(), diag::note_previous_decl)
15723              << Var->getDeclName();
15724           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
15725         } else
15726           diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
15727       }
15728       return true;
15729     }
15730 
15731     // Try to capture variable-length arrays types.
15732     if (Var->getType()->isVariablyModifiedType()) {
15733       // We're going to walk down into the type and look for VLA
15734       // expressions.
15735       QualType QTy = Var->getType();
15736       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
15737         QTy = PVD->getOriginalType();
15738       captureVariablyModifiedType(Context, QTy, CSI);
15739     }
15740 
15741     if (getLangOpts().OpenMP) {
15742       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
15743         // OpenMP private variables should not be captured in outer scope, so
15744         // just break here. Similarly, global variables that are captured in a
15745         // target region should not be captured outside the scope of the region.
15746         if (RSI->CapRegionKind == CR_OpenMP) {
15747           bool IsOpenMPPrivateDecl = isOpenMPPrivateDecl(Var, RSI->OpenMPLevel);
15748           auto IsTargetCap = !IsOpenMPPrivateDecl &&
15749                              isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel);
15750           // When we detect target captures we are looking from inside the
15751           // target region, therefore we need to propagate the capture from the
15752           // enclosing region. Therefore, the capture is not initially nested.
15753           if (IsTargetCap)
15754             adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
15755 
15756           if (IsTargetCap || IsOpenMPPrivateDecl) {
15757             Nested = !IsTargetCap;
15758             DeclRefType = DeclRefType.getUnqualifiedType();
15759             CaptureType = Context.getLValueReferenceType(DeclRefType);
15760             break;
15761           }
15762         }
15763       }
15764     }
15765     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
15766       // No capture-default, and this is not an explicit capture
15767       // so cannot capture this variable.
15768       if (BuildAndDiagnose) {
15769         Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
15770         Diag(Var->getLocation(), diag::note_previous_decl)
15771           << Var->getDeclName();
15772         if (cast<LambdaScopeInfo>(CSI)->Lambda)
15773           Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getBeginLoc(),
15774                diag::note_lambda_decl);
15775         // FIXME: If we error out because an outer lambda can not implicitly
15776         // capture a variable that an inner lambda explicitly captures, we
15777         // should have the inner lambda do the explicit capture - because
15778         // it makes for cleaner diagnostics later.  This would purely be done
15779         // so that the diagnostic does not misleadingly claim that a variable
15780         // can not be captured by a lambda implicitly even though it is captured
15781         // explicitly.  Suggestion:
15782         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
15783         //    at the function head
15784         //  - cache the StartingDeclContext - this must be a lambda
15785         //  - captureInLambda in the innermost lambda the variable.
15786       }
15787       return true;
15788     }
15789 
15790     FunctionScopesIndex--;
15791     DC = ParentDC;
15792     Explicit = false;
15793   } while (!VarDC->Equals(DC));
15794 
15795   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
15796   // computing the type of the capture at each step, checking type-specific
15797   // requirements, and adding captures if requested.
15798   // If the variable had already been captured previously, we start capturing
15799   // at the lambda nested within that one.
15800   bool Invalid = false;
15801   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
15802        ++I) {
15803     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
15804 
15805     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
15806     // certain types of variables (unnamed, variably modified types etc.)
15807     // so check for eligibility.
15808     if (!Invalid)
15809       Invalid =
15810           !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
15811 
15812     // After encountering an error, if we're actually supposed to capture, keep
15813     // capturing in nested contexts to suppress any follow-on diagnostics.
15814     if (Invalid && !BuildAndDiagnose)
15815       return true;
15816 
15817     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
15818       Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
15819                                DeclRefType, Nested, *this, Invalid);
15820       Nested = true;
15821     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
15822       Invalid = !captureInCapturedRegion(RSI, Var, ExprLoc, BuildAndDiagnose,
15823                                          CaptureType, DeclRefType, Nested,
15824                                          *this, Invalid);
15825       Nested = true;
15826     } else {
15827       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
15828       Invalid =
15829           !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
15830                            DeclRefType, Nested, Kind, EllipsisLoc,
15831                            /*IsTopScope*/ I == N - 1, *this, Invalid);
15832       Nested = true;
15833     }
15834 
15835     if (Invalid && !BuildAndDiagnose)
15836       return true;
15837   }
15838   return Invalid;
15839 }
15840 
15841 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
15842                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
15843   QualType CaptureType;
15844   QualType DeclRefType;
15845   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
15846                             /*BuildAndDiagnose=*/true, CaptureType,
15847                             DeclRefType, nullptr);
15848 }
15849 
15850 bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
15851   QualType CaptureType;
15852   QualType DeclRefType;
15853   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
15854                              /*BuildAndDiagnose=*/false, CaptureType,
15855                              DeclRefType, nullptr);
15856 }
15857 
15858 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
15859   QualType CaptureType;
15860   QualType DeclRefType;
15861 
15862   // Determine whether we can capture this variable.
15863   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
15864                          /*BuildAndDiagnose=*/false, CaptureType,
15865                          DeclRefType, nullptr))
15866     return QualType();
15867 
15868   return DeclRefType;
15869 }
15870 
15871 namespace {
15872 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
15873 // The produced TemplateArgumentListInfo* points to data stored within this
15874 // object, so should only be used in contexts where the pointer will not be
15875 // used after the CopiedTemplateArgs object is destroyed.
15876 class CopiedTemplateArgs {
15877   bool HasArgs;
15878   TemplateArgumentListInfo TemplateArgStorage;
15879 public:
15880   template<typename RefExpr>
15881   CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
15882     if (HasArgs)
15883       E->copyTemplateArgumentsInto(TemplateArgStorage);
15884   }
15885   operator TemplateArgumentListInfo*()
15886 #ifdef __has_cpp_attribute
15887 #if __has_cpp_attribute(clang::lifetimebound)
15888   [[clang::lifetimebound]]
15889 #endif
15890 #endif
15891   {
15892     return HasArgs ? &TemplateArgStorage : nullptr;
15893   }
15894 };
15895 }
15896 
15897 /// Walk the set of potential results of an expression and mark them all as
15898 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
15899 ///
15900 /// \return A new expression if we found any potential results, ExprEmpty() if
15901 ///         not, and ExprError() if we diagnosed an error.
15902 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
15903                                                       NonOdrUseReason NOUR) {
15904   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
15905   // an object that satisfies the requirements for appearing in a
15906   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
15907   // is immediately applied."  This function handles the lvalue-to-rvalue
15908   // conversion part.
15909   //
15910   // If we encounter a node that claims to be an odr-use but shouldn't be, we
15911   // transform it into the relevant kind of non-odr-use node and rebuild the
15912   // tree of nodes leading to it.
15913   //
15914   // This is a mini-TreeTransform that only transforms a restricted subset of
15915   // nodes (and only certain operands of them).
15916 
15917   // Rebuild a subexpression.
15918   auto Rebuild = [&](Expr *Sub) {
15919     return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
15920   };
15921 
15922   // Check whether a potential result satisfies the requirements of NOUR.
15923   auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
15924     // Any entity other than a VarDecl is always odr-used whenever it's named
15925     // in a potentially-evaluated expression.
15926     auto *VD = dyn_cast<VarDecl>(D);
15927     if (!VD)
15928       return true;
15929 
15930     // C++2a [basic.def.odr]p4:
15931     //   A variable x whose name appears as a potentially-evalauted expression
15932     //   e is odr-used by e unless
15933     //   -- x is a reference that is usable in constant expressions, or
15934     //   -- x is a variable of non-reference type that is usable in constant
15935     //      expressions and has no mutable subobjects, and e is an element of
15936     //      the set of potential results of an expression of
15937     //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
15938     //      conversion is applied, or
15939     //   -- x is a variable of non-reference type, and e is an element of the
15940     //      set of potential results of a discarded-value expression to which
15941     //      the lvalue-to-rvalue conversion is not applied
15942     //
15943     // We check the first bullet and the "potentially-evaluated" condition in
15944     // BuildDeclRefExpr. We check the type requirements in the second bullet
15945     // in CheckLValueToRValueConversionOperand below.
15946     switch (NOUR) {
15947     case NOUR_None:
15948     case NOUR_Unevaluated:
15949       llvm_unreachable("unexpected non-odr-use-reason");
15950 
15951     case NOUR_Constant:
15952       // Constant references were handled when they were built.
15953       if (VD->getType()->isReferenceType())
15954         return true;
15955       if (auto *RD = VD->getType()->getAsCXXRecordDecl())
15956         if (RD->hasMutableFields())
15957           return true;
15958       if (!VD->isUsableInConstantExpressions(S.Context))
15959         return true;
15960       break;
15961 
15962     case NOUR_Discarded:
15963       if (VD->getType()->isReferenceType())
15964         return true;
15965       break;
15966     }
15967     return false;
15968   };
15969 
15970   // Mark that this expression does not constitute an odr-use.
15971   auto MarkNotOdrUsed = [&] {
15972     S.MaybeODRUseExprs.erase(E);
15973     if (LambdaScopeInfo *LSI = S.getCurLambda())
15974       LSI->markVariableExprAsNonODRUsed(E);
15975   };
15976 
15977   // C++2a [basic.def.odr]p2:
15978   //   The set of potential results of an expression e is defined as follows:
15979   switch (E->getStmtClass()) {
15980   //   -- If e is an id-expression, ...
15981   case Expr::DeclRefExprClass: {
15982     auto *DRE = cast<DeclRefExpr>(E);
15983     if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
15984       break;
15985 
15986     // Rebuild as a non-odr-use DeclRefExpr.
15987     MarkNotOdrUsed();
15988     return DeclRefExpr::Create(
15989         S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
15990         DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
15991         DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
15992         DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
15993   }
15994 
15995   case Expr::FunctionParmPackExprClass: {
15996     auto *FPPE = cast<FunctionParmPackExpr>(E);
15997     // If any of the declarations in the pack is odr-used, then the expression
15998     // as a whole constitutes an odr-use.
15999     for (VarDecl *D : *FPPE)
16000       if (IsPotentialResultOdrUsed(D))
16001         return ExprEmpty();
16002 
16003     // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
16004     // nothing cares about whether we marked this as an odr-use, but it might
16005     // be useful for non-compiler tools.
16006     MarkNotOdrUsed();
16007     break;
16008   }
16009 
16010   //   -- If e is a subscripting operation with an array operand...
16011   case Expr::ArraySubscriptExprClass: {
16012     auto *ASE = cast<ArraySubscriptExpr>(E);
16013     Expr *OldBase = ASE->getBase()->IgnoreImplicit();
16014     if (!OldBase->getType()->isArrayType())
16015       break;
16016     ExprResult Base = Rebuild(OldBase);
16017     if (!Base.isUsable())
16018       return Base;
16019     Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
16020     Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
16021     SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
16022     return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
16023                                      ASE->getRBracketLoc());
16024   }
16025 
16026   case Expr::MemberExprClass: {
16027     auto *ME = cast<MemberExpr>(E);
16028     // -- If e is a class member access expression [...] naming a non-static
16029     //    data member...
16030     if (isa<FieldDecl>(ME->getMemberDecl())) {
16031       ExprResult Base = Rebuild(ME->getBase());
16032       if (!Base.isUsable())
16033         return Base;
16034       return MemberExpr::Create(
16035           S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
16036           ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
16037           ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
16038           CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
16039           ME->getObjectKind(), ME->isNonOdrUse());
16040     }
16041 
16042     if (ME->getMemberDecl()->isCXXInstanceMember())
16043       break;
16044 
16045     // -- If e is a class member access expression naming a static data member,
16046     //    ...
16047     if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
16048       break;
16049 
16050     // Rebuild as a non-odr-use MemberExpr.
16051     MarkNotOdrUsed();
16052     return MemberExpr::Create(
16053         S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
16054         ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
16055         ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
16056         ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
16057     return ExprEmpty();
16058   }
16059 
16060   case Expr::BinaryOperatorClass: {
16061     auto *BO = cast<BinaryOperator>(E);
16062     Expr *LHS = BO->getLHS();
16063     Expr *RHS = BO->getRHS();
16064     // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
16065     if (BO->getOpcode() == BO_PtrMemD) {
16066       ExprResult Sub = Rebuild(LHS);
16067       if (!Sub.isUsable())
16068         return Sub;
16069       LHS = Sub.get();
16070     //   -- If e is a comma expression, ...
16071     } else if (BO->getOpcode() == BO_Comma) {
16072       ExprResult Sub = Rebuild(RHS);
16073       if (!Sub.isUsable())
16074         return Sub;
16075       RHS = Sub.get();
16076     } else {
16077       break;
16078     }
16079     return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
16080                         LHS, RHS);
16081   }
16082 
16083   //   -- If e has the form (e1)...
16084   case Expr::ParenExprClass: {
16085     auto *PE = cast<ParenExpr>(E);
16086     ExprResult Sub = Rebuild(PE->getSubExpr());
16087     if (!Sub.isUsable())
16088       return Sub;
16089     return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
16090   }
16091 
16092   //   -- If e is a glvalue conditional expression, ...
16093   // We don't apply this to a binary conditional operator. FIXME: Should we?
16094   case Expr::ConditionalOperatorClass: {
16095     auto *CO = cast<ConditionalOperator>(E);
16096     ExprResult LHS = Rebuild(CO->getLHS());
16097     if (LHS.isInvalid())
16098       return ExprError();
16099     ExprResult RHS = Rebuild(CO->getRHS());
16100     if (RHS.isInvalid())
16101       return ExprError();
16102     if (!LHS.isUsable() && !RHS.isUsable())
16103       return ExprEmpty();
16104     if (!LHS.isUsable())
16105       LHS = CO->getLHS();
16106     if (!RHS.isUsable())
16107       RHS = CO->getRHS();
16108     return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
16109                                 CO->getCond(), LHS.get(), RHS.get());
16110   }
16111 
16112   // [Clang extension]
16113   //   -- If e has the form __extension__ e1...
16114   case Expr::UnaryOperatorClass: {
16115     auto *UO = cast<UnaryOperator>(E);
16116     if (UO->getOpcode() != UO_Extension)
16117       break;
16118     ExprResult Sub = Rebuild(UO->getSubExpr());
16119     if (!Sub.isUsable())
16120       return Sub;
16121     return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
16122                           Sub.get());
16123   }
16124 
16125   // [Clang extension]
16126   //   -- If e has the form _Generic(...), the set of potential results is the
16127   //      union of the sets of potential results of the associated expressions.
16128   case Expr::GenericSelectionExprClass: {
16129     auto *GSE = cast<GenericSelectionExpr>(E);
16130 
16131     SmallVector<Expr *, 4> AssocExprs;
16132     bool AnyChanged = false;
16133     for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
16134       ExprResult AssocExpr = Rebuild(OrigAssocExpr);
16135       if (AssocExpr.isInvalid())
16136         return ExprError();
16137       if (AssocExpr.isUsable()) {
16138         AssocExprs.push_back(AssocExpr.get());
16139         AnyChanged = true;
16140       } else {
16141         AssocExprs.push_back(OrigAssocExpr);
16142       }
16143     }
16144 
16145     return AnyChanged ? S.CreateGenericSelectionExpr(
16146                             GSE->getGenericLoc(), GSE->getDefaultLoc(),
16147                             GSE->getRParenLoc(), GSE->getControllingExpr(),
16148                             GSE->getAssocTypeSourceInfos(), AssocExprs)
16149                       : ExprEmpty();
16150   }
16151 
16152   // [Clang extension]
16153   //   -- If e has the form __builtin_choose_expr(...), the set of potential
16154   //      results is the union of the sets of potential results of the
16155   //      second and third subexpressions.
16156   case Expr::ChooseExprClass: {
16157     auto *CE = cast<ChooseExpr>(E);
16158 
16159     ExprResult LHS = Rebuild(CE->getLHS());
16160     if (LHS.isInvalid())
16161       return ExprError();
16162 
16163     ExprResult RHS = Rebuild(CE->getLHS());
16164     if (RHS.isInvalid())
16165       return ExprError();
16166 
16167     if (!LHS.get() && !RHS.get())
16168       return ExprEmpty();
16169     if (!LHS.isUsable())
16170       LHS = CE->getLHS();
16171     if (!RHS.isUsable())
16172       RHS = CE->getRHS();
16173 
16174     return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
16175                              RHS.get(), CE->getRParenLoc());
16176   }
16177 
16178   // Step through non-syntactic nodes.
16179   case Expr::ConstantExprClass: {
16180     auto *CE = cast<ConstantExpr>(E);
16181     ExprResult Sub = Rebuild(CE->getSubExpr());
16182     if (!Sub.isUsable())
16183       return Sub;
16184     return ConstantExpr::Create(S.Context, Sub.get());
16185   }
16186 
16187   // We could mostly rely on the recursive rebuilding to rebuild implicit
16188   // casts, but not at the top level, so rebuild them here.
16189   case Expr::ImplicitCastExprClass: {
16190     auto *ICE = cast<ImplicitCastExpr>(E);
16191     // Only step through the narrow set of cast kinds we expect to encounter.
16192     // Anything else suggests we've left the region in which potential results
16193     // can be found.
16194     switch (ICE->getCastKind()) {
16195     case CK_NoOp:
16196     case CK_DerivedToBase:
16197     case CK_UncheckedDerivedToBase: {
16198       ExprResult Sub = Rebuild(ICE->getSubExpr());
16199       if (!Sub.isUsable())
16200         return Sub;
16201       CXXCastPath Path(ICE->path());
16202       return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
16203                                  ICE->getValueKind(), &Path);
16204     }
16205 
16206     default:
16207       break;
16208     }
16209     break;
16210   }
16211 
16212   default:
16213     break;
16214   }
16215 
16216   // Can't traverse through this node. Nothing to do.
16217   return ExprEmpty();
16218 }
16219 
16220 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
16221   // Check whether the operand is or contains an object of non-trivial C union
16222   // type.
16223   if (E->getType().isVolatileQualified() &&
16224       (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
16225        E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
16226     checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
16227                           Sema::NTCUC_LValueToRValueVolatile,
16228                           NTCUK_Destruct|NTCUK_Copy);
16229 
16230   // C++2a [basic.def.odr]p4:
16231   //   [...] an expression of non-volatile-qualified non-class type to which
16232   //   the lvalue-to-rvalue conversion is applied [...]
16233   if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
16234     return E;
16235 
16236   ExprResult Result =
16237       rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
16238   if (Result.isInvalid())
16239     return ExprError();
16240   return Result.get() ? Result : E;
16241 }
16242 
16243 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
16244   Res = CorrectDelayedTyposInExpr(Res);
16245 
16246   if (!Res.isUsable())
16247     return Res;
16248 
16249   // If a constant-expression is a reference to a variable where we delay
16250   // deciding whether it is an odr-use, just assume we will apply the
16251   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
16252   // (a non-type template argument), we have special handling anyway.
16253   return CheckLValueToRValueConversionOperand(Res.get());
16254 }
16255 
16256 void Sema::CleanupVarDeclMarking() {
16257   // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
16258   // call.
16259   MaybeODRUseExprSet LocalMaybeODRUseExprs;
16260   std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
16261 
16262   for (Expr *E : LocalMaybeODRUseExprs) {
16263     if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
16264       MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
16265                          DRE->getLocation(), *this);
16266     } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
16267       MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
16268                          *this);
16269     } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
16270       for (VarDecl *VD : *FP)
16271         MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
16272     } else {
16273       llvm_unreachable("Unexpected expression");
16274     }
16275   }
16276 
16277   assert(MaybeODRUseExprs.empty() &&
16278          "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
16279 }
16280 
16281 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
16282                                     VarDecl *Var, Expr *E) {
16283   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
16284           isa<FunctionParmPackExpr>(E)) &&
16285          "Invalid Expr argument to DoMarkVarDeclReferenced");
16286   Var->setReferenced();
16287 
16288   if (Var->isInvalidDecl())
16289     return;
16290 
16291   auto *MSI = Var->getMemberSpecializationInfo();
16292   TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
16293                                        : Var->getTemplateSpecializationKind();
16294 
16295   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
16296   bool UsableInConstantExpr =
16297       Var->mightBeUsableInConstantExpressions(SemaRef.Context);
16298 
16299   // C++20 [expr.const]p12:
16300   //   A variable [...] is needed for constant evaluation if it is [...] a
16301   //   variable whose name appears as a potentially constant evaluated
16302   //   expression that is either a contexpr variable or is of non-volatile
16303   //   const-qualified integral type or of reference type
16304   bool NeededForConstantEvaluation =
16305       isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
16306 
16307   bool NeedDefinition =
16308       OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
16309 
16310   VarTemplateSpecializationDecl *VarSpec =
16311       dyn_cast<VarTemplateSpecializationDecl>(Var);
16312   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
16313          "Can't instantiate a partial template specialization.");
16314 
16315   // If this might be a member specialization of a static data member, check
16316   // the specialization is visible. We already did the checks for variable
16317   // template specializations when we created them.
16318   if (NeedDefinition && TSK != TSK_Undeclared &&
16319       !isa<VarTemplateSpecializationDecl>(Var))
16320     SemaRef.checkSpecializationVisibility(Loc, Var);
16321 
16322   // Perform implicit instantiation of static data members, static data member
16323   // templates of class templates, and variable template specializations. Delay
16324   // instantiations of variable templates, except for those that could be used
16325   // in a constant expression.
16326   if (NeedDefinition && isTemplateInstantiation(TSK)) {
16327     // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
16328     // instantiation declaration if a variable is usable in a constant
16329     // expression (among other cases).
16330     bool TryInstantiating =
16331         TSK == TSK_ImplicitInstantiation ||
16332         (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
16333 
16334     if (TryInstantiating) {
16335       SourceLocation PointOfInstantiation =
16336           MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
16337       bool FirstInstantiation = PointOfInstantiation.isInvalid();
16338       if (FirstInstantiation) {
16339         PointOfInstantiation = Loc;
16340         if (MSI)
16341           MSI->setPointOfInstantiation(PointOfInstantiation);
16342         else
16343           Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
16344       }
16345 
16346       bool InstantiationDependent = false;
16347       bool IsNonDependent =
16348           VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
16349                         VarSpec->getTemplateArgsInfo(), InstantiationDependent)
16350                   : true;
16351 
16352       // Do not instantiate specializations that are still type-dependent.
16353       if (IsNonDependent) {
16354         if (UsableInConstantExpr) {
16355           // Do not defer instantiations of variables that could be used in a
16356           // constant expression.
16357           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
16358         } else if (FirstInstantiation ||
16359                    isa<VarTemplateSpecializationDecl>(Var)) {
16360           // FIXME: For a specialization of a variable template, we don't
16361           // distinguish between "declaration and type implicitly instantiated"
16362           // and "implicit instantiation of definition requested", so we have
16363           // no direct way to avoid enqueueing the pending instantiation
16364           // multiple times.
16365           SemaRef.PendingInstantiations
16366               .push_back(std::make_pair(Var, PointOfInstantiation));
16367         }
16368       }
16369     }
16370   }
16371 
16372   // C++2a [basic.def.odr]p4:
16373   //   A variable x whose name appears as a potentially-evaluated expression e
16374   //   is odr-used by e unless
16375   //   -- x is a reference that is usable in constant expressions
16376   //   -- x is a variable of non-reference type that is usable in constant
16377   //      expressions and has no mutable subobjects [FIXME], and e is an
16378   //      element of the set of potential results of an expression of
16379   //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
16380   //      conversion is applied
16381   //   -- x is a variable of non-reference type, and e is an element of the set
16382   //      of potential results of a discarded-value expression to which the
16383   //      lvalue-to-rvalue conversion is not applied [FIXME]
16384   //
16385   // We check the first part of the second bullet here, and
16386   // Sema::CheckLValueToRValueConversionOperand deals with the second part.
16387   // FIXME: To get the third bullet right, we need to delay this even for
16388   // variables that are not usable in constant expressions.
16389 
16390   // If we already know this isn't an odr-use, there's nothing more to do.
16391   if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
16392     if (DRE->isNonOdrUse())
16393       return;
16394   if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
16395     if (ME->isNonOdrUse())
16396       return;
16397 
16398   switch (OdrUse) {
16399   case OdrUseContext::None:
16400     assert((!E || isa<FunctionParmPackExpr>(E)) &&
16401            "missing non-odr-use marking for unevaluated decl ref");
16402     break;
16403 
16404   case OdrUseContext::FormallyOdrUsed:
16405     // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
16406     // behavior.
16407     break;
16408 
16409   case OdrUseContext::Used:
16410     // If we might later find that this expression isn't actually an odr-use,
16411     // delay the marking.
16412     if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
16413       SemaRef.MaybeODRUseExprs.insert(E);
16414     else
16415       MarkVarDeclODRUsed(Var, Loc, SemaRef);
16416     break;
16417 
16418   case OdrUseContext::Dependent:
16419     // If this is a dependent context, we don't need to mark variables as
16420     // odr-used, but we may still need to track them for lambda capture.
16421     // FIXME: Do we also need to do this inside dependent typeid expressions
16422     // (which are modeled as unevaluated at this point)?
16423     const bool RefersToEnclosingScope =
16424         (SemaRef.CurContext != Var->getDeclContext() &&
16425          Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
16426     if (RefersToEnclosingScope) {
16427       LambdaScopeInfo *const LSI =
16428           SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
16429       if (LSI && (!LSI->CallOperator ||
16430                   !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
16431         // If a variable could potentially be odr-used, defer marking it so
16432         // until we finish analyzing the full expression for any
16433         // lvalue-to-rvalue
16434         // or discarded value conversions that would obviate odr-use.
16435         // Add it to the list of potential captures that will be analyzed
16436         // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
16437         // unless the variable is a reference that was initialized by a constant
16438         // expression (this will never need to be captured or odr-used).
16439         //
16440         // FIXME: We can simplify this a lot after implementing P0588R1.
16441         assert(E && "Capture variable should be used in an expression.");
16442         if (!Var->getType()->isReferenceType() ||
16443             !Var->isUsableInConstantExpressions(SemaRef.Context))
16444           LSI->addPotentialCapture(E->IgnoreParens());
16445       }
16446     }
16447     break;
16448   }
16449 }
16450 
16451 /// Mark a variable referenced, and check whether it is odr-used
16452 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
16453 /// used directly for normal expressions referring to VarDecl.
16454 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
16455   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
16456 }
16457 
16458 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
16459                                Decl *D, Expr *E, bool MightBeOdrUse) {
16460   if (SemaRef.isInOpenMPDeclareTargetContext())
16461     SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
16462 
16463   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
16464     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
16465     return;
16466   }
16467 
16468   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
16469 
16470   // If this is a call to a method via a cast, also mark the method in the
16471   // derived class used in case codegen can devirtualize the call.
16472   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
16473   if (!ME)
16474     return;
16475   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
16476   if (!MD)
16477     return;
16478   // Only attempt to devirtualize if this is truly a virtual call.
16479   bool IsVirtualCall = MD->isVirtual() &&
16480                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
16481   if (!IsVirtualCall)
16482     return;
16483 
16484   // If it's possible to devirtualize the call, mark the called function
16485   // referenced.
16486   CXXMethodDecl *DM = MD->getDevirtualizedMethod(
16487       ME->getBase(), SemaRef.getLangOpts().AppleKext);
16488   if (DM)
16489     SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
16490 }
16491 
16492 /// Perform reference-marking and odr-use handling for a DeclRefExpr.
16493 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
16494   // TODO: update this with DR# once a defect report is filed.
16495   // C++11 defect. The address of a pure member should not be an ODR use, even
16496   // if it's a qualified reference.
16497   bool OdrUse = true;
16498   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
16499     if (Method->isVirtual() &&
16500         !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
16501       OdrUse = false;
16502   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
16503 }
16504 
16505 /// Perform reference-marking and odr-use handling for a MemberExpr.
16506 void Sema::MarkMemberReferenced(MemberExpr *E) {
16507   // C++11 [basic.def.odr]p2:
16508   //   A non-overloaded function whose name appears as a potentially-evaluated
16509   //   expression or a member of a set of candidate functions, if selected by
16510   //   overload resolution when referred to from a potentially-evaluated
16511   //   expression, is odr-used, unless it is a pure virtual function and its
16512   //   name is not explicitly qualified.
16513   bool MightBeOdrUse = true;
16514   if (E->performsVirtualDispatch(getLangOpts())) {
16515     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
16516       if (Method->isPure())
16517         MightBeOdrUse = false;
16518   }
16519   SourceLocation Loc =
16520       E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
16521   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse);
16522 }
16523 
16524 /// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
16525 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
16526   for (VarDecl *VD : *E)
16527     MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true);
16528 }
16529 
16530 /// Perform marking for a reference to an arbitrary declaration.  It
16531 /// marks the declaration referenced, and performs odr-use checking for
16532 /// functions and variables. This method should not be used when building a
16533 /// normal expression which refers to a variable.
16534 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
16535                                  bool MightBeOdrUse) {
16536   if (MightBeOdrUse) {
16537     if (auto *VD = dyn_cast<VarDecl>(D)) {
16538       MarkVariableReferenced(Loc, VD);
16539       return;
16540     }
16541   }
16542   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
16543     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
16544     return;
16545   }
16546   D->setReferenced();
16547 }
16548 
16549 namespace {
16550   // Mark all of the declarations used by a type as referenced.
16551   // FIXME: Not fully implemented yet! We need to have a better understanding
16552   // of when we're entering a context we should not recurse into.
16553   // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
16554   // TreeTransforms rebuilding the type in a new context. Rather than
16555   // duplicating the TreeTransform logic, we should consider reusing it here.
16556   // Currently that causes problems when rebuilding LambdaExprs.
16557   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
16558     Sema &S;
16559     SourceLocation Loc;
16560 
16561   public:
16562     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
16563 
16564     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
16565 
16566     bool TraverseTemplateArgument(const TemplateArgument &Arg);
16567   };
16568 }
16569 
16570 bool MarkReferencedDecls::TraverseTemplateArgument(
16571     const TemplateArgument &Arg) {
16572   {
16573     // A non-type template argument is a constant-evaluated context.
16574     EnterExpressionEvaluationContext Evaluated(
16575         S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
16576     if (Arg.getKind() == TemplateArgument::Declaration) {
16577       if (Decl *D = Arg.getAsDecl())
16578         S.MarkAnyDeclReferenced(Loc, D, true);
16579     } else if (Arg.getKind() == TemplateArgument::Expression) {
16580       S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
16581     }
16582   }
16583 
16584   return Inherited::TraverseTemplateArgument(Arg);
16585 }
16586 
16587 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
16588   MarkReferencedDecls Marker(*this, Loc);
16589   Marker.TraverseType(T);
16590 }
16591 
16592 namespace {
16593   /// Helper class that marks all of the declarations referenced by
16594   /// potentially-evaluated subexpressions as "referenced".
16595   class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
16596     Sema &S;
16597     bool SkipLocalVariables;
16598 
16599   public:
16600     typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
16601 
16602     EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
16603       : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
16604 
16605     void VisitDeclRefExpr(DeclRefExpr *E) {
16606       // If we were asked not to visit local variables, don't.
16607       if (SkipLocalVariables) {
16608         if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
16609           if (VD->hasLocalStorage())
16610             return;
16611       }
16612 
16613       S.MarkDeclRefReferenced(E);
16614     }
16615 
16616     void VisitMemberExpr(MemberExpr *E) {
16617       S.MarkMemberReferenced(E);
16618       Inherited::VisitMemberExpr(E);
16619     }
16620 
16621     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
16622       S.MarkFunctionReferenced(
16623           E->getBeginLoc(),
16624           const_cast<CXXDestructorDecl *>(E->getTemporary()->getDestructor()));
16625       Visit(E->getSubExpr());
16626     }
16627 
16628     void VisitCXXNewExpr(CXXNewExpr *E) {
16629       if (E->getOperatorNew())
16630         S.MarkFunctionReferenced(E->getBeginLoc(), E->getOperatorNew());
16631       if (E->getOperatorDelete())
16632         S.MarkFunctionReferenced(E->getBeginLoc(), E->getOperatorDelete());
16633       Inherited::VisitCXXNewExpr(E);
16634     }
16635 
16636     void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
16637       if (E->getOperatorDelete())
16638         S.MarkFunctionReferenced(E->getBeginLoc(), E->getOperatorDelete());
16639       QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
16640       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
16641         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
16642         S.MarkFunctionReferenced(E->getBeginLoc(), S.LookupDestructor(Record));
16643       }
16644 
16645       Inherited::VisitCXXDeleteExpr(E);
16646     }
16647 
16648     void VisitCXXConstructExpr(CXXConstructExpr *E) {
16649       S.MarkFunctionReferenced(E->getBeginLoc(), E->getConstructor());
16650       Inherited::VisitCXXConstructExpr(E);
16651     }
16652 
16653     void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
16654       Visit(E->getExpr());
16655     }
16656   };
16657 }
16658 
16659 /// Mark any declarations that appear within this expression or any
16660 /// potentially-evaluated subexpressions as "referenced".
16661 ///
16662 /// \param SkipLocalVariables If true, don't mark local variables as
16663 /// 'referenced'.
16664 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
16665                                             bool SkipLocalVariables) {
16666   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
16667 }
16668 
16669 /// Emit a diagnostic that describes an effect on the run-time behavior
16670 /// of the program being compiled.
16671 ///
16672 /// This routine emits the given diagnostic when the code currently being
16673 /// type-checked is "potentially evaluated", meaning that there is a
16674 /// possibility that the code will actually be executable. Code in sizeof()
16675 /// expressions, code used only during overload resolution, etc., are not
16676 /// potentially evaluated. This routine will suppress such diagnostics or,
16677 /// in the absolutely nutty case of potentially potentially evaluated
16678 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
16679 /// later.
16680 ///
16681 /// This routine should be used for all diagnostics that describe the run-time
16682 /// behavior of a program, such as passing a non-POD value through an ellipsis.
16683 /// Failure to do so will likely result in spurious diagnostics or failures
16684 /// during overload resolution or within sizeof/alignof/typeof/typeid.
16685 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
16686                                const PartialDiagnostic &PD) {
16687   switch (ExprEvalContexts.back().Context) {
16688   case ExpressionEvaluationContext::Unevaluated:
16689   case ExpressionEvaluationContext::UnevaluatedList:
16690   case ExpressionEvaluationContext::UnevaluatedAbstract:
16691   case ExpressionEvaluationContext::DiscardedStatement:
16692     // The argument will never be evaluated, so don't complain.
16693     break;
16694 
16695   case ExpressionEvaluationContext::ConstantEvaluated:
16696     // Relevant diagnostics should be produced by constant evaluation.
16697     break;
16698 
16699   case ExpressionEvaluationContext::PotentiallyEvaluated:
16700   case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
16701     if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
16702       FunctionScopes.back()->PossiblyUnreachableDiags.
16703         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
16704       return true;
16705     }
16706 
16707     // The initializer of a constexpr variable or of the first declaration of a
16708     // static data member is not syntactically a constant evaluated constant,
16709     // but nonetheless is always required to be a constant expression, so we
16710     // can skip diagnosing.
16711     // FIXME: Using the mangling context here is a hack.
16712     if (auto *VD = dyn_cast_or_null<VarDecl>(
16713             ExprEvalContexts.back().ManglingContextDecl)) {
16714       if (VD->isConstexpr() ||
16715           (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
16716         break;
16717       // FIXME: For any other kind of variable, we should build a CFG for its
16718       // initializer and check whether the context in question is reachable.
16719     }
16720 
16721     Diag(Loc, PD);
16722     return true;
16723   }
16724 
16725   return false;
16726 }
16727 
16728 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
16729                                const PartialDiagnostic &PD) {
16730   return DiagRuntimeBehavior(
16731       Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
16732 }
16733 
16734 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
16735                                CallExpr *CE, FunctionDecl *FD) {
16736   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
16737     return false;
16738 
16739   // If we're inside a decltype's expression, don't check for a valid return
16740   // type or construct temporaries until we know whether this is the last call.
16741   if (ExprEvalContexts.back().ExprContext ==
16742       ExpressionEvaluationContextRecord::EK_Decltype) {
16743     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
16744     return false;
16745   }
16746 
16747   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
16748     FunctionDecl *FD;
16749     CallExpr *CE;
16750 
16751   public:
16752     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
16753       : FD(FD), CE(CE) { }
16754 
16755     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
16756       if (!FD) {
16757         S.Diag(Loc, diag::err_call_incomplete_return)
16758           << T << CE->getSourceRange();
16759         return;
16760       }
16761 
16762       S.Diag(Loc, diag::err_call_function_incomplete_return)
16763         << CE->getSourceRange() << FD->getDeclName() << T;
16764       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
16765           << FD->getDeclName();
16766     }
16767   } Diagnoser(FD, CE);
16768 
16769   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
16770     return true;
16771 
16772   return false;
16773 }
16774 
16775 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
16776 // will prevent this condition from triggering, which is what we want.
16777 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
16778   SourceLocation Loc;
16779 
16780   unsigned diagnostic = diag::warn_condition_is_assignment;
16781   bool IsOrAssign = false;
16782 
16783   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
16784     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
16785       return;
16786 
16787     IsOrAssign = Op->getOpcode() == BO_OrAssign;
16788 
16789     // Greylist some idioms by putting them into a warning subcategory.
16790     if (ObjCMessageExpr *ME
16791           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
16792       Selector Sel = ME->getSelector();
16793 
16794       // self = [<foo> init...]
16795       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
16796         diagnostic = diag::warn_condition_is_idiomatic_assignment;
16797 
16798       // <foo> = [<bar> nextObject]
16799       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
16800         diagnostic = diag::warn_condition_is_idiomatic_assignment;
16801     }
16802 
16803     Loc = Op->getOperatorLoc();
16804   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
16805     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
16806       return;
16807 
16808     IsOrAssign = Op->getOperator() == OO_PipeEqual;
16809     Loc = Op->getOperatorLoc();
16810   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
16811     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
16812   else {
16813     // Not an assignment.
16814     return;
16815   }
16816 
16817   Diag(Loc, diagnostic) << E->getSourceRange();
16818 
16819   SourceLocation Open = E->getBeginLoc();
16820   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
16821   Diag(Loc, diag::note_condition_assign_silence)
16822         << FixItHint::CreateInsertion(Open, "(")
16823         << FixItHint::CreateInsertion(Close, ")");
16824 
16825   if (IsOrAssign)
16826     Diag(Loc, diag::note_condition_or_assign_to_comparison)
16827       << FixItHint::CreateReplacement(Loc, "!=");
16828   else
16829     Diag(Loc, diag::note_condition_assign_to_comparison)
16830       << FixItHint::CreateReplacement(Loc, "==");
16831 }
16832 
16833 /// Redundant parentheses over an equality comparison can indicate
16834 /// that the user intended an assignment used as condition.
16835 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
16836   // Don't warn if the parens came from a macro.
16837   SourceLocation parenLoc = ParenE->getBeginLoc();
16838   if (parenLoc.isInvalid() || parenLoc.isMacroID())
16839     return;
16840   // Don't warn for dependent expressions.
16841   if (ParenE->isTypeDependent())
16842     return;
16843 
16844   Expr *E = ParenE->IgnoreParens();
16845 
16846   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
16847     if (opE->getOpcode() == BO_EQ &&
16848         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
16849                                                            == Expr::MLV_Valid) {
16850       SourceLocation Loc = opE->getOperatorLoc();
16851 
16852       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
16853       SourceRange ParenERange = ParenE->getSourceRange();
16854       Diag(Loc, diag::note_equality_comparison_silence)
16855         << FixItHint::CreateRemoval(ParenERange.getBegin())
16856         << FixItHint::CreateRemoval(ParenERange.getEnd());
16857       Diag(Loc, diag::note_equality_comparison_to_assign)
16858         << FixItHint::CreateReplacement(Loc, "=");
16859     }
16860 }
16861 
16862 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
16863                                        bool IsConstexpr) {
16864   DiagnoseAssignmentAsCondition(E);
16865   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
16866     DiagnoseEqualityWithExtraParens(parenE);
16867 
16868   ExprResult result = CheckPlaceholderExpr(E);
16869   if (result.isInvalid()) return ExprError();
16870   E = result.get();
16871 
16872   if (!E->isTypeDependent()) {
16873     if (getLangOpts().CPlusPlus)
16874       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
16875 
16876     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
16877     if (ERes.isInvalid())
16878       return ExprError();
16879     E = ERes.get();
16880 
16881     QualType T = E->getType();
16882     if (!T->isScalarType()) { // C99 6.8.4.1p1
16883       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
16884         << T << E->getSourceRange();
16885       return ExprError();
16886     }
16887     CheckBoolLikeConversion(E, Loc);
16888   }
16889 
16890   return E;
16891 }
16892 
16893 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
16894                                            Expr *SubExpr, ConditionKind CK) {
16895   // Empty conditions are valid in for-statements.
16896   if (!SubExpr)
16897     return ConditionResult();
16898 
16899   ExprResult Cond;
16900   switch (CK) {
16901   case ConditionKind::Boolean:
16902     Cond = CheckBooleanCondition(Loc, SubExpr);
16903     break;
16904 
16905   case ConditionKind::ConstexprIf:
16906     Cond = CheckBooleanCondition(Loc, SubExpr, true);
16907     break;
16908 
16909   case ConditionKind::Switch:
16910     Cond = CheckSwitchCondition(Loc, SubExpr);
16911     break;
16912   }
16913   if (Cond.isInvalid())
16914     return ConditionError();
16915 
16916   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
16917   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
16918   if (!FullExpr.get())
16919     return ConditionError();
16920 
16921   return ConditionResult(*this, nullptr, FullExpr,
16922                          CK == ConditionKind::ConstexprIf);
16923 }
16924 
16925 namespace {
16926   /// A visitor for rebuilding a call to an __unknown_any expression
16927   /// to have an appropriate type.
16928   struct RebuildUnknownAnyFunction
16929     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
16930 
16931     Sema &S;
16932 
16933     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
16934 
16935     ExprResult VisitStmt(Stmt *S) {
16936       llvm_unreachable("unexpected statement!");
16937     }
16938 
16939     ExprResult VisitExpr(Expr *E) {
16940       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
16941         << E->getSourceRange();
16942       return ExprError();
16943     }
16944 
16945     /// Rebuild an expression which simply semantically wraps another
16946     /// expression which it shares the type and value kind of.
16947     template <class T> ExprResult rebuildSugarExpr(T *E) {
16948       ExprResult SubResult = Visit(E->getSubExpr());
16949       if (SubResult.isInvalid()) return ExprError();
16950 
16951       Expr *SubExpr = SubResult.get();
16952       E->setSubExpr(SubExpr);
16953       E->setType(SubExpr->getType());
16954       E->setValueKind(SubExpr->getValueKind());
16955       assert(E->getObjectKind() == OK_Ordinary);
16956       return E;
16957     }
16958 
16959     ExprResult VisitParenExpr(ParenExpr *E) {
16960       return rebuildSugarExpr(E);
16961     }
16962 
16963     ExprResult VisitUnaryExtension(UnaryOperator *E) {
16964       return rebuildSugarExpr(E);
16965     }
16966 
16967     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
16968       ExprResult SubResult = Visit(E->getSubExpr());
16969       if (SubResult.isInvalid()) return ExprError();
16970 
16971       Expr *SubExpr = SubResult.get();
16972       E->setSubExpr(SubExpr);
16973       E->setType(S.Context.getPointerType(SubExpr->getType()));
16974       assert(E->getValueKind() == VK_RValue);
16975       assert(E->getObjectKind() == OK_Ordinary);
16976       return E;
16977     }
16978 
16979     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
16980       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
16981 
16982       E->setType(VD->getType());
16983 
16984       assert(E->getValueKind() == VK_RValue);
16985       if (S.getLangOpts().CPlusPlus &&
16986           !(isa<CXXMethodDecl>(VD) &&
16987             cast<CXXMethodDecl>(VD)->isInstance()))
16988         E->setValueKind(VK_LValue);
16989 
16990       return E;
16991     }
16992 
16993     ExprResult VisitMemberExpr(MemberExpr *E) {
16994       return resolveDecl(E, E->getMemberDecl());
16995     }
16996 
16997     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
16998       return resolveDecl(E, E->getDecl());
16999     }
17000   };
17001 }
17002 
17003 /// Given a function expression of unknown-any type, try to rebuild it
17004 /// to have a function type.
17005 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
17006   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
17007   if (Result.isInvalid()) return ExprError();
17008   return S.DefaultFunctionArrayConversion(Result.get());
17009 }
17010 
17011 namespace {
17012   /// A visitor for rebuilding an expression of type __unknown_anytype
17013   /// into one which resolves the type directly on the referring
17014   /// expression.  Strict preservation of the original source
17015   /// structure is not a goal.
17016   struct RebuildUnknownAnyExpr
17017     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
17018 
17019     Sema &S;
17020 
17021     /// The current destination type.
17022     QualType DestType;
17023 
17024     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
17025       : S(S), DestType(CastType) {}
17026 
17027     ExprResult VisitStmt(Stmt *S) {
17028       llvm_unreachable("unexpected statement!");
17029     }
17030 
17031     ExprResult VisitExpr(Expr *E) {
17032       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
17033         << E->getSourceRange();
17034       return ExprError();
17035     }
17036 
17037     ExprResult VisitCallExpr(CallExpr *E);
17038     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
17039 
17040     /// Rebuild an expression which simply semantically wraps another
17041     /// expression which it shares the type and value kind of.
17042     template <class T> ExprResult rebuildSugarExpr(T *E) {
17043       ExprResult SubResult = Visit(E->getSubExpr());
17044       if (SubResult.isInvalid()) return ExprError();
17045       Expr *SubExpr = SubResult.get();
17046       E->setSubExpr(SubExpr);
17047       E->setType(SubExpr->getType());
17048       E->setValueKind(SubExpr->getValueKind());
17049       assert(E->getObjectKind() == OK_Ordinary);
17050       return E;
17051     }
17052 
17053     ExprResult VisitParenExpr(ParenExpr *E) {
17054       return rebuildSugarExpr(E);
17055     }
17056 
17057     ExprResult VisitUnaryExtension(UnaryOperator *E) {
17058       return rebuildSugarExpr(E);
17059     }
17060 
17061     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
17062       const PointerType *Ptr = DestType->getAs<PointerType>();
17063       if (!Ptr) {
17064         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
17065           << E->getSourceRange();
17066         return ExprError();
17067       }
17068 
17069       if (isa<CallExpr>(E->getSubExpr())) {
17070         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
17071           << E->getSourceRange();
17072         return ExprError();
17073       }
17074 
17075       assert(E->getValueKind() == VK_RValue);
17076       assert(E->getObjectKind() == OK_Ordinary);
17077       E->setType(DestType);
17078 
17079       // Build the sub-expression as if it were an object of the pointee type.
17080       DestType = Ptr->getPointeeType();
17081       ExprResult SubResult = Visit(E->getSubExpr());
17082       if (SubResult.isInvalid()) return ExprError();
17083       E->setSubExpr(SubResult.get());
17084       return E;
17085     }
17086 
17087     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
17088 
17089     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
17090 
17091     ExprResult VisitMemberExpr(MemberExpr *E) {
17092       return resolveDecl(E, E->getMemberDecl());
17093     }
17094 
17095     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
17096       return resolveDecl(E, E->getDecl());
17097     }
17098   };
17099 }
17100 
17101 /// Rebuilds a call expression which yielded __unknown_anytype.
17102 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
17103   Expr *CalleeExpr = E->getCallee();
17104 
17105   enum FnKind {
17106     FK_MemberFunction,
17107     FK_FunctionPointer,
17108     FK_BlockPointer
17109   };
17110 
17111   FnKind Kind;
17112   QualType CalleeType = CalleeExpr->getType();
17113   if (CalleeType == S.Context.BoundMemberTy) {
17114     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
17115     Kind = FK_MemberFunction;
17116     CalleeType = Expr::findBoundMemberType(CalleeExpr);
17117   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
17118     CalleeType = Ptr->getPointeeType();
17119     Kind = FK_FunctionPointer;
17120   } else {
17121     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
17122     Kind = FK_BlockPointer;
17123   }
17124   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
17125 
17126   // Verify that this is a legal result type of a function.
17127   if (DestType->isArrayType() || DestType->isFunctionType()) {
17128     unsigned diagID = diag::err_func_returning_array_function;
17129     if (Kind == FK_BlockPointer)
17130       diagID = diag::err_block_returning_array_function;
17131 
17132     S.Diag(E->getExprLoc(), diagID)
17133       << DestType->isFunctionType() << DestType;
17134     return ExprError();
17135   }
17136 
17137   // Otherwise, go ahead and set DestType as the call's result.
17138   E->setType(DestType.getNonLValueExprType(S.Context));
17139   E->setValueKind(Expr::getValueKindForType(DestType));
17140   assert(E->getObjectKind() == OK_Ordinary);
17141 
17142   // Rebuild the function type, replacing the result type with DestType.
17143   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
17144   if (Proto) {
17145     // __unknown_anytype(...) is a special case used by the debugger when
17146     // it has no idea what a function's signature is.
17147     //
17148     // We want to build this call essentially under the K&R
17149     // unprototyped rules, but making a FunctionNoProtoType in C++
17150     // would foul up all sorts of assumptions.  However, we cannot
17151     // simply pass all arguments as variadic arguments, nor can we
17152     // portably just call the function under a non-variadic type; see
17153     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
17154     // However, it turns out that in practice it is generally safe to
17155     // call a function declared as "A foo(B,C,D);" under the prototype
17156     // "A foo(B,C,D,...);".  The only known exception is with the
17157     // Windows ABI, where any variadic function is implicitly cdecl
17158     // regardless of its normal CC.  Therefore we change the parameter
17159     // types to match the types of the arguments.
17160     //
17161     // This is a hack, but it is far superior to moving the
17162     // corresponding target-specific code from IR-gen to Sema/AST.
17163 
17164     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
17165     SmallVector<QualType, 8> ArgTypes;
17166     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
17167       ArgTypes.reserve(E->getNumArgs());
17168       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
17169         Expr *Arg = E->getArg(i);
17170         QualType ArgType = Arg->getType();
17171         if (E->isLValue()) {
17172           ArgType = S.Context.getLValueReferenceType(ArgType);
17173         } else if (E->isXValue()) {
17174           ArgType = S.Context.getRValueReferenceType(ArgType);
17175         }
17176         ArgTypes.push_back(ArgType);
17177       }
17178       ParamTypes = ArgTypes;
17179     }
17180     DestType = S.Context.getFunctionType(DestType, ParamTypes,
17181                                          Proto->getExtProtoInfo());
17182   } else {
17183     DestType = S.Context.getFunctionNoProtoType(DestType,
17184                                                 FnType->getExtInfo());
17185   }
17186 
17187   // Rebuild the appropriate pointer-to-function type.
17188   switch (Kind) {
17189   case FK_MemberFunction:
17190     // Nothing to do.
17191     break;
17192 
17193   case FK_FunctionPointer:
17194     DestType = S.Context.getPointerType(DestType);
17195     break;
17196 
17197   case FK_BlockPointer:
17198     DestType = S.Context.getBlockPointerType(DestType);
17199     break;
17200   }
17201 
17202   // Finally, we can recurse.
17203   ExprResult CalleeResult = Visit(CalleeExpr);
17204   if (!CalleeResult.isUsable()) return ExprError();
17205   E->setCallee(CalleeResult.get());
17206 
17207   // Bind a temporary if necessary.
17208   return S.MaybeBindToTemporary(E);
17209 }
17210 
17211 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
17212   // Verify that this is a legal result type of a call.
17213   if (DestType->isArrayType() || DestType->isFunctionType()) {
17214     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
17215       << DestType->isFunctionType() << DestType;
17216     return ExprError();
17217   }
17218 
17219   // Rewrite the method result type if available.
17220   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
17221     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
17222     Method->setReturnType(DestType);
17223   }
17224 
17225   // Change the type of the message.
17226   E->setType(DestType.getNonReferenceType());
17227   E->setValueKind(Expr::getValueKindForType(DestType));
17228 
17229   return S.MaybeBindToTemporary(E);
17230 }
17231 
17232 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
17233   // The only case we should ever see here is a function-to-pointer decay.
17234   if (E->getCastKind() == CK_FunctionToPointerDecay) {
17235     assert(E->getValueKind() == VK_RValue);
17236     assert(E->getObjectKind() == OK_Ordinary);
17237 
17238     E->setType(DestType);
17239 
17240     // Rebuild the sub-expression as the pointee (function) type.
17241     DestType = DestType->castAs<PointerType>()->getPointeeType();
17242 
17243     ExprResult Result = Visit(E->getSubExpr());
17244     if (!Result.isUsable()) return ExprError();
17245 
17246     E->setSubExpr(Result.get());
17247     return E;
17248   } else if (E->getCastKind() == CK_LValueToRValue) {
17249     assert(E->getValueKind() == VK_RValue);
17250     assert(E->getObjectKind() == OK_Ordinary);
17251 
17252     assert(isa<BlockPointerType>(E->getType()));
17253 
17254     E->setType(DestType);
17255 
17256     // The sub-expression has to be a lvalue reference, so rebuild it as such.
17257     DestType = S.Context.getLValueReferenceType(DestType);
17258 
17259     ExprResult Result = Visit(E->getSubExpr());
17260     if (!Result.isUsable()) return ExprError();
17261 
17262     E->setSubExpr(Result.get());
17263     return E;
17264   } else {
17265     llvm_unreachable("Unhandled cast type!");
17266   }
17267 }
17268 
17269 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
17270   ExprValueKind ValueKind = VK_LValue;
17271   QualType Type = DestType;
17272 
17273   // We know how to make this work for certain kinds of decls:
17274 
17275   //  - functions
17276   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
17277     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
17278       DestType = Ptr->getPointeeType();
17279       ExprResult Result = resolveDecl(E, VD);
17280       if (Result.isInvalid()) return ExprError();
17281       return S.ImpCastExprToType(Result.get(), Type,
17282                                  CK_FunctionToPointerDecay, VK_RValue);
17283     }
17284 
17285     if (!Type->isFunctionType()) {
17286       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
17287         << VD << E->getSourceRange();
17288       return ExprError();
17289     }
17290     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
17291       // We must match the FunctionDecl's type to the hack introduced in
17292       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
17293       // type. See the lengthy commentary in that routine.
17294       QualType FDT = FD->getType();
17295       const FunctionType *FnType = FDT->castAs<FunctionType>();
17296       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
17297       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
17298       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
17299         SourceLocation Loc = FD->getLocation();
17300         FunctionDecl *NewFD = FunctionDecl::Create(
17301             S.Context, FD->getDeclContext(), Loc, Loc,
17302             FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
17303             SC_None, false /*isInlineSpecified*/, FD->hasPrototype(),
17304             /*ConstexprKind*/ CSK_unspecified);
17305 
17306         if (FD->getQualifier())
17307           NewFD->setQualifierInfo(FD->getQualifierLoc());
17308 
17309         SmallVector<ParmVarDecl*, 16> Params;
17310         for (const auto &AI : FT->param_types()) {
17311           ParmVarDecl *Param =
17312             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
17313           Param->setScopeInfo(0, Params.size());
17314           Params.push_back(Param);
17315         }
17316         NewFD->setParams(Params);
17317         DRE->setDecl(NewFD);
17318         VD = DRE->getDecl();
17319       }
17320     }
17321 
17322     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
17323       if (MD->isInstance()) {
17324         ValueKind = VK_RValue;
17325         Type = S.Context.BoundMemberTy;
17326       }
17327 
17328     // Function references aren't l-values in C.
17329     if (!S.getLangOpts().CPlusPlus)
17330       ValueKind = VK_RValue;
17331 
17332   //  - variables
17333   } else if (isa<VarDecl>(VD)) {
17334     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
17335       Type = RefTy->getPointeeType();
17336     } else if (Type->isFunctionType()) {
17337       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
17338         << VD << E->getSourceRange();
17339       return ExprError();
17340     }
17341 
17342   //  - nothing else
17343   } else {
17344     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
17345       << VD << E->getSourceRange();
17346     return ExprError();
17347   }
17348 
17349   // Modifying the declaration like this is friendly to IR-gen but
17350   // also really dangerous.
17351   VD->setType(DestType);
17352   E->setType(Type);
17353   E->setValueKind(ValueKind);
17354   return E;
17355 }
17356 
17357 /// Check a cast of an unknown-any type.  We intentionally only
17358 /// trigger this for C-style casts.
17359 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
17360                                      Expr *CastExpr, CastKind &CastKind,
17361                                      ExprValueKind &VK, CXXCastPath &Path) {
17362   // The type we're casting to must be either void or complete.
17363   if (!CastType->isVoidType() &&
17364       RequireCompleteType(TypeRange.getBegin(), CastType,
17365                           diag::err_typecheck_cast_to_incomplete))
17366     return ExprError();
17367 
17368   // Rewrite the casted expression from scratch.
17369   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
17370   if (!result.isUsable()) return ExprError();
17371 
17372   CastExpr = result.get();
17373   VK = CastExpr->getValueKind();
17374   CastKind = CK_NoOp;
17375 
17376   return CastExpr;
17377 }
17378 
17379 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
17380   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
17381 }
17382 
17383 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
17384                                     Expr *arg, QualType &paramType) {
17385   // If the syntactic form of the argument is not an explicit cast of
17386   // any sort, just do default argument promotion.
17387   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
17388   if (!castArg) {
17389     ExprResult result = DefaultArgumentPromotion(arg);
17390     if (result.isInvalid()) return ExprError();
17391     paramType = result.get()->getType();
17392     return result;
17393   }
17394 
17395   // Otherwise, use the type that was written in the explicit cast.
17396   assert(!arg->hasPlaceholderType());
17397   paramType = castArg->getTypeAsWritten();
17398 
17399   // Copy-initialize a parameter of that type.
17400   InitializedEntity entity =
17401     InitializedEntity::InitializeParameter(Context, paramType,
17402                                            /*consumed*/ false);
17403   return PerformCopyInitialization(entity, callLoc, arg);
17404 }
17405 
17406 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
17407   Expr *orig = E;
17408   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
17409   while (true) {
17410     E = E->IgnoreParenImpCasts();
17411     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
17412       E = call->getCallee();
17413       diagID = diag::err_uncasted_call_of_unknown_any;
17414     } else {
17415       break;
17416     }
17417   }
17418 
17419   SourceLocation loc;
17420   NamedDecl *d;
17421   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
17422     loc = ref->getLocation();
17423     d = ref->getDecl();
17424   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
17425     loc = mem->getMemberLoc();
17426     d = mem->getMemberDecl();
17427   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
17428     diagID = diag::err_uncasted_call_of_unknown_any;
17429     loc = msg->getSelectorStartLoc();
17430     d = msg->getMethodDecl();
17431     if (!d) {
17432       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
17433         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
17434         << orig->getSourceRange();
17435       return ExprError();
17436     }
17437   } else {
17438     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
17439       << E->getSourceRange();
17440     return ExprError();
17441   }
17442 
17443   S.Diag(loc, diagID) << d << orig->getSourceRange();
17444 
17445   // Never recoverable.
17446   return ExprError();
17447 }
17448 
17449 /// Check for operands with placeholder types and complain if found.
17450 /// Returns ExprError() if there was an error and no recovery was possible.
17451 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
17452   if (!getLangOpts().CPlusPlus) {
17453     // C cannot handle TypoExpr nodes on either side of a binop because it
17454     // doesn't handle dependent types properly, so make sure any TypoExprs have
17455     // been dealt with before checking the operands.
17456     ExprResult Result = CorrectDelayedTyposInExpr(E);
17457     if (!Result.isUsable()) return ExprError();
17458     E = Result.get();
17459   }
17460 
17461   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
17462   if (!placeholderType) return E;
17463 
17464   switch (placeholderType->getKind()) {
17465 
17466   // Overloaded expressions.
17467   case BuiltinType::Overload: {
17468     // Try to resolve a single function template specialization.
17469     // This is obligatory.
17470     ExprResult Result = E;
17471     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
17472       return Result;
17473 
17474     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
17475     // leaves Result unchanged on failure.
17476     Result = E;
17477     if (resolveAndFixAddressOfOnlyViableOverloadCandidate(Result))
17478       return Result;
17479 
17480     // If that failed, try to recover with a call.
17481     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
17482                          /*complain*/ true);
17483     return Result;
17484   }
17485 
17486   // Bound member functions.
17487   case BuiltinType::BoundMember: {
17488     ExprResult result = E;
17489     const Expr *BME = E->IgnoreParens();
17490     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
17491     // Try to give a nicer diagnostic if it is a bound member that we recognize.
17492     if (isa<CXXPseudoDestructorExpr>(BME)) {
17493       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
17494     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
17495       if (ME->getMemberNameInfo().getName().getNameKind() ==
17496           DeclarationName::CXXDestructorName)
17497         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
17498     }
17499     tryToRecoverWithCall(result, PD,
17500                          /*complain*/ true);
17501     return result;
17502   }
17503 
17504   // ARC unbridged casts.
17505   case BuiltinType::ARCUnbridgedCast: {
17506     Expr *realCast = stripARCUnbridgedCast(E);
17507     diagnoseARCUnbridgedCast(realCast);
17508     return realCast;
17509   }
17510 
17511   // Expressions of unknown type.
17512   case BuiltinType::UnknownAny:
17513     return diagnoseUnknownAnyExpr(*this, E);
17514 
17515   // Pseudo-objects.
17516   case BuiltinType::PseudoObject:
17517     return checkPseudoObjectRValue(E);
17518 
17519   case BuiltinType::BuiltinFn: {
17520     // Accept __noop without parens by implicitly converting it to a call expr.
17521     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
17522     if (DRE) {
17523       auto *FD = cast<FunctionDecl>(DRE->getDecl());
17524       if (FD->getBuiltinID() == Builtin::BI__noop) {
17525         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
17526                               CK_BuiltinFnToFnPtr)
17527                 .get();
17528         return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
17529                                 VK_RValue, SourceLocation());
17530       }
17531     }
17532 
17533     Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
17534     return ExprError();
17535   }
17536 
17537   // Expressions of unknown type.
17538   case BuiltinType::OMPArraySection:
17539     Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
17540     return ExprError();
17541 
17542   // Everything else should be impossible.
17543 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
17544   case BuiltinType::Id:
17545 #include "clang/Basic/OpenCLImageTypes.def"
17546 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
17547   case BuiltinType::Id:
17548 #include "clang/Basic/OpenCLExtensionTypes.def"
17549 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
17550 #define PLACEHOLDER_TYPE(Id, SingletonId)
17551 #include "clang/AST/BuiltinTypes.def"
17552     break;
17553   }
17554 
17555   llvm_unreachable("invalid placeholder type!");
17556 }
17557 
17558 bool Sema::CheckCaseExpression(Expr *E) {
17559   if (E->isTypeDependent())
17560     return true;
17561   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
17562     return E->getType()->isIntegralOrEnumerationType();
17563   return false;
17564 }
17565 
17566 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
17567 ExprResult
17568 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
17569   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
17570          "Unknown Objective-C Boolean value!");
17571   QualType BoolT = Context.ObjCBuiltinBoolTy;
17572   if (!Context.getBOOLDecl()) {
17573     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
17574                         Sema::LookupOrdinaryName);
17575     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
17576       NamedDecl *ND = Result.getFoundDecl();
17577       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
17578         Context.setBOOLDecl(TD);
17579     }
17580   }
17581   if (Context.getBOOLDecl())
17582     BoolT = Context.getBOOLType();
17583   return new (Context)
17584       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
17585 }
17586 
17587 ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
17588     llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
17589     SourceLocation RParen) {
17590 
17591   StringRef Platform = getASTContext().getTargetInfo().getPlatformName();
17592 
17593   auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
17594     return Spec.getPlatform() == Platform;
17595   });
17596 
17597   VersionTuple Version;
17598   if (Spec != AvailSpecs.end())
17599     Version = Spec->getVersion();
17600 
17601   // The use of `@available` in the enclosing function should be analyzed to
17602   // warn when it's used inappropriately (i.e. not if(@available)).
17603   if (getCurFunctionOrMethodDecl())
17604     getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
17605   else if (getCurBlock() || getCurLambda())
17606     getCurFunction()->HasPotentialAvailabilityViolations = true;
17607 
17608   return new (Context)
17609       ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
17610 }
17611