xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaExpr.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for expressions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CheckExprLifetime.h"
14 #include "TreeTransform.h"
15 #include "UsedDeclVisitor.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/ASTMutationListener.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/ExprOpenMP.h"
28 #include "clang/AST/OperationKinds.h"
29 #include "clang/AST/ParentMapContext.h"
30 #include "clang/AST/RecursiveASTVisitor.h"
31 #include "clang/AST/Type.h"
32 #include "clang/AST/TypeLoc.h"
33 #include "clang/Basic/Builtins.h"
34 #include "clang/Basic/DiagnosticSema.h"
35 #include "clang/Basic/PartialDiagnostic.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/Basic/TargetInfo.h"
39 #include "clang/Basic/TypeTraits.h"
40 #include "clang/Lex/LiteralSupport.h"
41 #include "clang/Lex/Preprocessor.h"
42 #include "clang/Sema/AnalysisBasedWarnings.h"
43 #include "clang/Sema/DeclSpec.h"
44 #include "clang/Sema/DelayedDiagnostic.h"
45 #include "clang/Sema/Designator.h"
46 #include "clang/Sema/EnterExpressionEvaluationContext.h"
47 #include "clang/Sema/Initialization.h"
48 #include "clang/Sema/Lookup.h"
49 #include "clang/Sema/Overload.h"
50 #include "clang/Sema/ParsedTemplate.h"
51 #include "clang/Sema/Scope.h"
52 #include "clang/Sema/ScopeInfo.h"
53 #include "clang/Sema/SemaCUDA.h"
54 #include "clang/Sema/SemaFixItUtils.h"
55 #include "clang/Sema/SemaInternal.h"
56 #include "clang/Sema/SemaObjC.h"
57 #include "clang/Sema/SemaOpenMP.h"
58 #include "clang/Sema/SemaPseudoObject.h"
59 #include "clang/Sema/Template.h"
60 #include "llvm/ADT/STLExtras.h"
61 #include "llvm/ADT/STLForwardCompat.h"
62 #include "llvm/ADT/StringExtras.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/ConvertUTF.h"
65 #include "llvm/Support/SaveAndRestore.h"
66 #include "llvm/Support/TypeSize.h"
67 #include <optional>
68 
69 using namespace clang;
70 using namespace sema;
71 
72 bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
73   // See if this is an auto-typed variable whose initializer we are parsing.
74   if (ParsingInitForAutoVars.count(D))
75     return false;
76 
77   // See if this is a deleted function.
78   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
79     if (FD->isDeleted())
80       return false;
81 
82     // If the function has a deduced return type, and we can't deduce it,
83     // then we can't use it either.
84     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
85         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
86       return false;
87 
88     // See if this is an aligned allocation/deallocation function that is
89     // unavailable.
90     if (TreatUnavailableAsInvalid &&
91         isUnavailableAlignedAllocationFunction(*FD))
92       return false;
93   }
94 
95   // See if this function is unavailable.
96   if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
97       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
98     return false;
99 
100   if (isa<UnresolvedUsingIfExistsDecl>(D))
101     return false;
102 
103   return true;
104 }
105 
106 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
107   // Warn if this is used but marked unused.
108   if (const auto *A = D->getAttr<UnusedAttr>()) {
109     // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
110     // should diagnose them.
111     if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
112         A->getSemanticSpelling() != UnusedAttr::C23_maybe_unused) {
113       const Decl *DC = cast_or_null<Decl>(S.ObjC().getCurObjCLexicalContext());
114       if (DC && !DC->hasAttr<UnusedAttr>())
115         S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
116     }
117   }
118 }
119 
120 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
121   assert(Decl && Decl->isDeleted());
122 
123   if (Decl->isDefaulted()) {
124     // If the method was explicitly defaulted, point at that declaration.
125     if (!Decl->isImplicit())
126       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
127 
128     // Try to diagnose why this special member function was implicitly
129     // deleted. This might fail, if that reason no longer applies.
130     DiagnoseDeletedDefaultedFunction(Decl);
131     return;
132   }
133 
134   auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
135   if (Ctor && Ctor->isInheritingConstructor())
136     return NoteDeletedInheritingConstructor(Ctor);
137 
138   Diag(Decl->getLocation(), diag::note_availability_specified_here)
139     << Decl << 1;
140 }
141 
142 /// Determine whether a FunctionDecl was ever declared with an
143 /// explicit storage class.
144 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
145   for (auto *I : D->redecls()) {
146     if (I->getStorageClass() != SC_None)
147       return true;
148   }
149   return false;
150 }
151 
152 /// Check whether we're in an extern inline function and referring to a
153 /// variable or function with internal linkage (C11 6.7.4p3).
154 ///
155 /// This is only a warning because we used to silently accept this code, but
156 /// in many cases it will not behave correctly. This is not enabled in C++ mode
157 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
158 /// and so while there may still be user mistakes, most of the time we can't
159 /// prove that there are errors.
160 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
161                                                       const NamedDecl *D,
162                                                       SourceLocation Loc) {
163   // This is disabled under C++; there are too many ways for this to fire in
164   // contexts where the warning is a false positive, or where it is technically
165   // correct but benign.
166   if (S.getLangOpts().CPlusPlus)
167     return;
168 
169   // Check if this is an inlined function or method.
170   FunctionDecl *Current = S.getCurFunctionDecl();
171   if (!Current)
172     return;
173   if (!Current->isInlined())
174     return;
175   if (!Current->isExternallyVisible())
176     return;
177 
178   // Check if the decl has internal linkage.
179   if (D->getFormalLinkage() != Linkage::Internal)
180     return;
181 
182   // Downgrade from ExtWarn to Extension if
183   //  (1) the supposedly external inline function is in the main file,
184   //      and probably won't be included anywhere else.
185   //  (2) the thing we're referencing is a pure function.
186   //  (3) the thing we're referencing is another inline function.
187   // This last can give us false negatives, but it's better than warning on
188   // wrappers for simple C library functions.
189   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
190   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
191   if (!DowngradeWarning && UsedFn)
192     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
193 
194   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
195                                : diag::ext_internal_in_extern_inline)
196     << /*IsVar=*/!UsedFn << D;
197 
198   S.MaybeSuggestAddingStaticToDecl(Current);
199 
200   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
201       << D;
202 }
203 
204 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
205   const FunctionDecl *First = Cur->getFirstDecl();
206 
207   // Suggest "static" on the function, if possible.
208   if (!hasAnyExplicitStorageClass(First)) {
209     SourceLocation DeclBegin = First->getSourceRange().getBegin();
210     Diag(DeclBegin, diag::note_convert_inline_to_static)
211       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
212   }
213 }
214 
215 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
216                              const ObjCInterfaceDecl *UnknownObjCClass,
217                              bool ObjCPropertyAccess,
218                              bool AvoidPartialAvailabilityChecks,
219                              ObjCInterfaceDecl *ClassReceiver,
220                              bool SkipTrailingRequiresClause) {
221   SourceLocation Loc = Locs.front();
222   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
223     // If there were any diagnostics suppressed by template argument deduction,
224     // emit them now.
225     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
226     if (Pos != SuppressedDiagnostics.end()) {
227       for (const PartialDiagnosticAt &Suppressed : Pos->second)
228         Diag(Suppressed.first, Suppressed.second);
229 
230       // Clear out the list of suppressed diagnostics, so that we don't emit
231       // them again for this specialization. However, we don't obsolete this
232       // entry from the table, because we want to avoid ever emitting these
233       // diagnostics again.
234       Pos->second.clear();
235     }
236 
237     // C++ [basic.start.main]p3:
238     //   The function 'main' shall not be used within a program.
239     if (cast<FunctionDecl>(D)->isMain())
240       Diag(Loc, diag::ext_main_used);
241 
242     diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
243   }
244 
245   // See if this is an auto-typed variable whose initializer we are parsing.
246   if (ParsingInitForAutoVars.count(D)) {
247     if (isa<BindingDecl>(D)) {
248       Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
249         << D->getDeclName();
250     } else {
251       Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
252         << D->getDeclName() << cast<VarDecl>(D)->getType();
253     }
254     return true;
255   }
256 
257   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
258     // See if this is a deleted function.
259     if (FD->isDeleted()) {
260       auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
261       if (Ctor && Ctor->isInheritingConstructor())
262         Diag(Loc, diag::err_deleted_inherited_ctor_use)
263             << Ctor->getParent()
264             << Ctor->getInheritedConstructor().getConstructor()->getParent();
265       else {
266         StringLiteral *Msg = FD->getDeletedMessage();
267         Diag(Loc, diag::err_deleted_function_use)
268             << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef());
269       }
270       NoteDeletedFunction(FD);
271       return true;
272     }
273 
274     // [expr.prim.id]p4
275     //   A program that refers explicitly or implicitly to a function with a
276     //   trailing requires-clause whose constraint-expression is not satisfied,
277     //   other than to declare it, is ill-formed. [...]
278     //
279     // See if this is a function with constraints that need to be satisfied.
280     // Check this before deducing the return type, as it might instantiate the
281     // definition.
282     if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) {
283       ConstraintSatisfaction Satisfaction;
284       if (CheckFunctionConstraints(FD, Satisfaction, Loc,
285                                    /*ForOverloadResolution*/ true))
286         // A diagnostic will have already been generated (non-constant
287         // constraint expression, for example)
288         return true;
289       if (!Satisfaction.IsSatisfied) {
290         Diag(Loc,
291              diag::err_reference_to_function_with_unsatisfied_constraints)
292             << D;
293         DiagnoseUnsatisfiedConstraint(Satisfaction);
294         return true;
295       }
296     }
297 
298     // If the function has a deduced return type, and we can't deduce it,
299     // then we can't use it either.
300     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
301         DeduceReturnType(FD, Loc))
302       return true;
303 
304     if (getLangOpts().CUDA && !CUDA().CheckCall(Loc, FD))
305       return true;
306 
307   }
308 
309   if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
310     // Lambdas are only default-constructible or assignable in C++2a onwards.
311     if (MD->getParent()->isLambda() &&
312         ((isa<CXXConstructorDecl>(MD) &&
313           cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
314          MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
315       Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
316         << !isa<CXXConstructorDecl>(MD);
317     }
318   }
319 
320   auto getReferencedObjCProp = [](const NamedDecl *D) ->
321                                       const ObjCPropertyDecl * {
322     if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
323       return MD->findPropertyDecl();
324     return nullptr;
325   };
326   if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
327     if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
328       return true;
329   } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
330       return true;
331   }
332 
333   // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
334   // Only the variables omp_in and omp_out are allowed in the combiner.
335   // Only the variables omp_priv and omp_orig are allowed in the
336   // initializer-clause.
337   auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
338   if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
339       isa<VarDecl>(D)) {
340     Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
341         << getCurFunction()->HasOMPDeclareReductionCombiner;
342     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
343     return true;
344   }
345 
346   // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
347   //  List-items in map clauses on this construct may only refer to the declared
348   //  variable var and entities that could be referenced by a procedure defined
349   //  at the same location.
350   // [OpenMP 5.2] Also allow iterator declared variables.
351   if (LangOpts.OpenMP && isa<VarDecl>(D) &&
352       !OpenMP().isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
353     Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
354         << OpenMP().getOpenMPDeclareMapperVarName();
355     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
356     return true;
357   }
358 
359   if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(D)) {
360     Diag(Loc, diag::err_use_of_empty_using_if_exists);
361     Diag(EmptyD->getLocation(), diag::note_empty_using_if_exists_here);
362     return true;
363   }
364 
365   DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
366                              AvoidPartialAvailabilityChecks, ClassReceiver);
367 
368   DiagnoseUnusedOfDecl(*this, D, Loc);
369 
370   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
371 
372   if (D->hasAttr<AvailableOnlyInDefaultEvalMethodAttr>()) {
373     if (getLangOpts().getFPEvalMethod() !=
374             LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine &&
375         PP.getLastFPEvalPragmaLocation().isValid() &&
376         PP.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod())
377       Diag(D->getLocation(),
378            diag::err_type_available_only_in_default_eval_method)
379           << D->getName();
380   }
381 
382   if (auto *VD = dyn_cast<ValueDecl>(D))
383     checkTypeSupport(VD->getType(), Loc, VD);
384 
385   if (LangOpts.SYCLIsDevice ||
386       (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)) {
387     if (!Context.getTargetInfo().isTLSSupported())
388       if (const auto *VD = dyn_cast<VarDecl>(D))
389         if (VD->getTLSKind() != VarDecl::TLS_None)
390           targetDiag(*Locs.begin(), diag::err_thread_unsupported);
391   }
392 
393   if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
394       !isUnevaluatedContext()) {
395     // C++ [expr.prim.req.nested] p3
396     //   A local parameter shall only appear as an unevaluated operand
397     //   (Clause 8) within the constraint-expression.
398     Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
399         << D;
400     Diag(D->getLocation(), diag::note_entity_declared_at) << D;
401     return true;
402   }
403 
404   return false;
405 }
406 
407 void Sema::DiagnoseSentinelCalls(const NamedDecl *D, SourceLocation Loc,
408                                  ArrayRef<Expr *> Args) {
409   const SentinelAttr *Attr = D->getAttr<SentinelAttr>();
410   if (!Attr)
411     return;
412 
413   // The number of formal parameters of the declaration.
414   unsigned NumFormalParams;
415 
416   // The kind of declaration.  This is also an index into a %select in
417   // the diagnostic.
418   enum { CK_Function, CK_Method, CK_Block } CalleeKind;
419 
420   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
421     NumFormalParams = MD->param_size();
422     CalleeKind = CK_Method;
423   } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
424     NumFormalParams = FD->param_size();
425     CalleeKind = CK_Function;
426   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
427     QualType Ty = VD->getType();
428     const FunctionType *Fn = nullptr;
429     if (const auto *PtrTy = Ty->getAs<PointerType>()) {
430       Fn = PtrTy->getPointeeType()->getAs<FunctionType>();
431       if (!Fn)
432         return;
433       CalleeKind = CK_Function;
434     } else if (const auto *PtrTy = Ty->getAs<BlockPointerType>()) {
435       Fn = PtrTy->getPointeeType()->castAs<FunctionType>();
436       CalleeKind = CK_Block;
437     } else {
438       return;
439     }
440 
441     if (const auto *proto = dyn_cast<FunctionProtoType>(Fn))
442       NumFormalParams = proto->getNumParams();
443     else
444       NumFormalParams = 0;
445   } else {
446     return;
447   }
448 
449   // "NullPos" is the number of formal parameters at the end which
450   // effectively count as part of the variadic arguments.  This is
451   // useful if you would prefer to not have *any* formal parameters,
452   // but the language forces you to have at least one.
453   unsigned NullPos = Attr->getNullPos();
454   assert((NullPos == 0 || NullPos == 1) && "invalid null position on sentinel");
455   NumFormalParams = (NullPos > NumFormalParams ? 0 : NumFormalParams - NullPos);
456 
457   // The number of arguments which should follow the sentinel.
458   unsigned NumArgsAfterSentinel = Attr->getSentinel();
459 
460   // If there aren't enough arguments for all the formal parameters,
461   // the sentinel, and the args after the sentinel, complain.
462   if (Args.size() < NumFormalParams + NumArgsAfterSentinel + 1) {
463     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
464     Diag(D->getLocation(), diag::note_sentinel_here) << int(CalleeKind);
465     return;
466   }
467 
468   // Otherwise, find the sentinel expression.
469   const Expr *SentinelExpr = Args[Args.size() - NumArgsAfterSentinel - 1];
470   if (!SentinelExpr)
471     return;
472   if (SentinelExpr->isValueDependent())
473     return;
474   if (Context.isSentinelNullExpr(SentinelExpr))
475     return;
476 
477   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
478   // or 'NULL' if those are actually defined in the context.  Only use
479   // 'nil' for ObjC methods, where it's much more likely that the
480   // variadic arguments form a list of object pointers.
481   SourceLocation MissingNilLoc = getLocForEndOfToken(SentinelExpr->getEndLoc());
482   std::string NullValue;
483   if (CalleeKind == CK_Method && PP.isMacroDefined("nil"))
484     NullValue = "nil";
485   else if (getLangOpts().CPlusPlus11)
486     NullValue = "nullptr";
487   else if (PP.isMacroDefined("NULL"))
488     NullValue = "NULL";
489   else
490     NullValue = "(void*) 0";
491 
492   if (MissingNilLoc.isInvalid())
493     Diag(Loc, diag::warn_missing_sentinel) << int(CalleeKind);
494   else
495     Diag(MissingNilLoc, diag::warn_missing_sentinel)
496         << int(CalleeKind)
497         << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
498   Diag(D->getLocation(), diag::note_sentinel_here)
499       << int(CalleeKind) << Attr->getRange();
500 }
501 
502 SourceRange Sema::getExprRange(Expr *E) const {
503   return E ? E->getSourceRange() : SourceRange();
504 }
505 
506 //===----------------------------------------------------------------------===//
507 //  Standard Promotions and Conversions
508 //===----------------------------------------------------------------------===//
509 
510 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
511 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
512   // Handle any placeholder expressions which made it here.
513   if (E->hasPlaceholderType()) {
514     ExprResult result = CheckPlaceholderExpr(E);
515     if (result.isInvalid()) return ExprError();
516     E = result.get();
517   }
518 
519   QualType Ty = E->getType();
520   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
521 
522   if (Ty->isFunctionType()) {
523     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
524       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
525         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
526           return ExprError();
527 
528     E = ImpCastExprToType(E, Context.getPointerType(Ty),
529                           CK_FunctionToPointerDecay).get();
530   } else if (Ty->isArrayType()) {
531     // In C90 mode, arrays only promote to pointers if the array expression is
532     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
533     // type 'array of type' is converted to an expression that has type 'pointer
534     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
535     // that has type 'array of type' ...".  The relevant change is "an lvalue"
536     // (C90) to "an expression" (C99).
537     //
538     // C++ 4.2p1:
539     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
540     // T" can be converted to an rvalue of type "pointer to T".
541     //
542     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
543       ExprResult Res = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
544                                          CK_ArrayToPointerDecay);
545       if (Res.isInvalid())
546         return ExprError();
547       E = Res.get();
548     }
549   }
550   return E;
551 }
552 
553 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
554   // Check to see if we are dereferencing a null pointer.  If so,
555   // and if not volatile-qualified, this is undefined behavior that the
556   // optimizer will delete, so warn about it.  People sometimes try to use this
557   // to get a deterministic trap and are surprised by clang's behavior.  This
558   // only handles the pattern "*null", which is a very syntactic check.
559   const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
560   if (UO && UO->getOpcode() == UO_Deref &&
561       UO->getSubExpr()->getType()->isPointerType()) {
562     const LangAS AS =
563         UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
564     if ((!isTargetAddressSpace(AS) ||
565          (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
566         UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
567             S.Context, Expr::NPC_ValueDependentIsNotNull) &&
568         !UO->getType().isVolatileQualified()) {
569       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
570                             S.PDiag(diag::warn_indirection_through_null)
571                                 << UO->getSubExpr()->getSourceRange());
572       S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
573                             S.PDiag(diag::note_indirection_through_null));
574     }
575   }
576 }
577 
578 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
579                                     SourceLocation AssignLoc,
580                                     const Expr* RHS) {
581   const ObjCIvarDecl *IV = OIRE->getDecl();
582   if (!IV)
583     return;
584 
585   DeclarationName MemberName = IV->getDeclName();
586   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
587   if (!Member || !Member->isStr("isa"))
588     return;
589 
590   const Expr *Base = OIRE->getBase();
591   QualType BaseType = Base->getType();
592   if (OIRE->isArrow())
593     BaseType = BaseType->getPointeeType();
594   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
595     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
596       ObjCInterfaceDecl *ClassDeclared = nullptr;
597       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
598       if (!ClassDeclared->getSuperClass()
599           && (*ClassDeclared->ivar_begin()) == IV) {
600         if (RHS) {
601           NamedDecl *ObjectSetClass =
602             S.LookupSingleName(S.TUScope,
603                                &S.Context.Idents.get("object_setClass"),
604                                SourceLocation(), S.LookupOrdinaryName);
605           if (ObjectSetClass) {
606             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
607             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
608                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
609                                               "object_setClass(")
610                 << FixItHint::CreateReplacement(
611                        SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
612                 << FixItHint::CreateInsertion(RHSLocEnd, ")");
613           }
614           else
615             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
616         } else {
617           NamedDecl *ObjectGetClass =
618             S.LookupSingleName(S.TUScope,
619                                &S.Context.Idents.get("object_getClass"),
620                                SourceLocation(), S.LookupOrdinaryName);
621           if (ObjectGetClass)
622             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
623                 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
624                                               "object_getClass(")
625                 << FixItHint::CreateReplacement(
626                        SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
627           else
628             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
629         }
630         S.Diag(IV->getLocation(), diag::note_ivar_decl);
631       }
632     }
633 }
634 
635 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
636   // Handle any placeholder expressions which made it here.
637   if (E->hasPlaceholderType()) {
638     ExprResult result = CheckPlaceholderExpr(E);
639     if (result.isInvalid()) return ExprError();
640     E = result.get();
641   }
642 
643   // C++ [conv.lval]p1:
644   //   A glvalue of a non-function, non-array type T can be
645   //   converted to a prvalue.
646   if (!E->isGLValue()) return E;
647 
648   QualType T = E->getType();
649   assert(!T.isNull() && "r-value conversion on typeless expression?");
650 
651   // lvalue-to-rvalue conversion cannot be applied to types that decay to
652   // pointers (i.e. function or array types).
653   if (T->canDecayToPointerType())
654     return E;
655 
656   // We don't want to throw lvalue-to-rvalue casts on top of
657   // expressions of certain types in C++.
658   if (getLangOpts().CPlusPlus) {
659     if (T == Context.OverloadTy || T->isRecordType() ||
660         (T->isDependentType() && !T->isAnyPointerType() &&
661          !T->isMemberPointerType()))
662       return E;
663   }
664 
665   // The C standard is actually really unclear on this point, and
666   // DR106 tells us what the result should be but not why.  It's
667   // generally best to say that void types just doesn't undergo
668   // lvalue-to-rvalue at all.  Note that expressions of unqualified
669   // 'void' type are never l-values, but qualified void can be.
670   if (T->isVoidType())
671     return E;
672 
673   // OpenCL usually rejects direct accesses to values of 'half' type.
674   if (getLangOpts().OpenCL &&
675       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
676       T->isHalfType()) {
677     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
678       << 0 << T;
679     return ExprError();
680   }
681 
682   CheckForNullPointerDereference(*this, E);
683   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
684     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
685                                      &Context.Idents.get("object_getClass"),
686                                      SourceLocation(), LookupOrdinaryName);
687     if (ObjectGetClass)
688       Diag(E->getExprLoc(), diag::warn_objc_isa_use)
689           << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
690           << FixItHint::CreateReplacement(
691                  SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
692     else
693       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
694   }
695   else if (const ObjCIvarRefExpr *OIRE =
696             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
697     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
698 
699   // C++ [conv.lval]p1:
700   //   [...] If T is a non-class type, the type of the prvalue is the
701   //   cv-unqualified version of T. Otherwise, the type of the
702   //   rvalue is T.
703   //
704   // C99 6.3.2.1p2:
705   //   If the lvalue has qualified type, the value has the unqualified
706   //   version of the type of the lvalue; otherwise, the value has the
707   //   type of the lvalue.
708   if (T.hasQualifiers())
709     T = T.getUnqualifiedType();
710 
711   // Under the MS ABI, lock down the inheritance model now.
712   if (T->isMemberPointerType() &&
713       Context.getTargetInfo().getCXXABI().isMicrosoft())
714     (void)isCompleteType(E->getExprLoc(), T);
715 
716   ExprResult Res = CheckLValueToRValueConversionOperand(E);
717   if (Res.isInvalid())
718     return Res;
719   E = Res.get();
720 
721   // Loading a __weak object implicitly retains the value, so we need a cleanup to
722   // balance that.
723   if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
724     Cleanup.setExprNeedsCleanups(true);
725 
726   if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
727     Cleanup.setExprNeedsCleanups(true);
728 
729   // C++ [conv.lval]p3:
730   //   If T is cv std::nullptr_t, the result is a null pointer constant.
731   CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
732   Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_PRValue,
733                                  CurFPFeatureOverrides());
734 
735   // C11 6.3.2.1p2:
736   //   ... if the lvalue has atomic type, the value has the non-atomic version
737   //   of the type of the lvalue ...
738   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
739     T = Atomic->getValueType().getUnqualifiedType();
740     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
741                                    nullptr, VK_PRValue, FPOptionsOverride());
742   }
743 
744   return Res;
745 }
746 
747 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
748   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
749   if (Res.isInvalid())
750     return ExprError();
751   Res = DefaultLvalueConversion(Res.get());
752   if (Res.isInvalid())
753     return ExprError();
754   return Res;
755 }
756 
757 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
758   QualType Ty = E->getType();
759   ExprResult Res = E;
760   // Only do implicit cast for a function type, but not for a pointer
761   // to function type.
762   if (Ty->isFunctionType()) {
763     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
764                             CK_FunctionToPointerDecay);
765     if (Res.isInvalid())
766       return ExprError();
767   }
768   Res = DefaultLvalueConversion(Res.get());
769   if (Res.isInvalid())
770     return ExprError();
771   return Res.get();
772 }
773 
774 /// UsualUnaryConversions - Performs various conversions that are common to most
775 /// operators (C99 6.3). The conversions of array and function types are
776 /// sometimes suppressed. For example, the array->pointer conversion doesn't
777 /// apply if the array is an argument to the sizeof or address (&) operators.
778 /// In these instances, this routine should *not* be called.
779 ExprResult Sema::UsualUnaryConversions(Expr *E) {
780   // First, convert to an r-value.
781   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
782   if (Res.isInvalid())
783     return ExprError();
784   E = Res.get();
785 
786   QualType Ty = E->getType();
787   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
788 
789   LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
790   if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
791       (getLangOpts().getFPEvalMethod() !=
792            LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
793        PP.getLastFPEvalPragmaLocation().isValid())) {
794     switch (EvalMethod) {
795     default:
796       llvm_unreachable("Unrecognized float evaluation method");
797       break;
798     case LangOptions::FEM_UnsetOnCommandLine:
799       llvm_unreachable("Float evaluation method should be set by now");
800       break;
801     case LangOptions::FEM_Double:
802       if (Context.getFloatingTypeOrder(Context.DoubleTy, Ty) > 0)
803         // Widen the expression to double.
804         return Ty->isComplexType()
805                    ? ImpCastExprToType(E,
806                                        Context.getComplexType(Context.DoubleTy),
807                                        CK_FloatingComplexCast)
808                    : ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast);
809       break;
810     case LangOptions::FEM_Extended:
811       if (Context.getFloatingTypeOrder(Context.LongDoubleTy, Ty) > 0)
812         // Widen the expression to long double.
813         return Ty->isComplexType()
814                    ? ImpCastExprToType(
815                          E, Context.getComplexType(Context.LongDoubleTy),
816                          CK_FloatingComplexCast)
817                    : ImpCastExprToType(E, Context.LongDoubleTy,
818                                        CK_FloatingCast);
819       break;
820     }
821   }
822 
823   // Half FP have to be promoted to float unless it is natively supported
824   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
825     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
826 
827   // Try to perform integral promotions if the object has a theoretically
828   // promotable type.
829   if (Ty->isIntegralOrUnscopedEnumerationType()) {
830     // C99 6.3.1.1p2:
831     //
832     //   The following may be used in an expression wherever an int or
833     //   unsigned int may be used:
834     //     - an object or expression with an integer type whose integer
835     //       conversion rank is less than or equal to the rank of int
836     //       and unsigned int.
837     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
838     //
839     //   If an int can represent all values of the original type, the
840     //   value is converted to an int; otherwise, it is converted to an
841     //   unsigned int. These are called the integer promotions. All
842     //   other types are unchanged by the integer promotions.
843 
844     QualType PTy = Context.isPromotableBitField(E);
845     if (!PTy.isNull()) {
846       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
847       return E;
848     }
849     if (Context.isPromotableIntegerType(Ty)) {
850       QualType PT = Context.getPromotedIntegerType(Ty);
851       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
852       return E;
853     }
854   }
855   return E;
856 }
857 
858 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
859 /// do not have a prototype. Arguments that have type float or __fp16
860 /// are promoted to double. All other argument types are converted by
861 /// UsualUnaryConversions().
862 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
863   QualType Ty = E->getType();
864   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
865 
866   ExprResult Res = UsualUnaryConversions(E);
867   if (Res.isInvalid())
868     return ExprError();
869   E = Res.get();
870 
871   // If this is a 'float'  or '__fp16' (CVR qualified or typedef)
872   // promote to double.
873   // Note that default argument promotion applies only to float (and
874   // half/fp16); it does not apply to _Float16.
875   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
876   if (BTy && (BTy->getKind() == BuiltinType::Half ||
877               BTy->getKind() == BuiltinType::Float)) {
878     if (getLangOpts().OpenCL &&
879         !getOpenCLOptions().isAvailableOption("cl_khr_fp64", getLangOpts())) {
880       if (BTy->getKind() == BuiltinType::Half) {
881         E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
882       }
883     } else {
884       E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
885     }
886   }
887   if (BTy &&
888       getLangOpts().getExtendIntArgs() ==
889           LangOptions::ExtendArgsKind::ExtendTo64 &&
890       Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
891       Context.getTypeSizeInChars(BTy) <
892           Context.getTypeSizeInChars(Context.LongLongTy)) {
893     E = (Ty->isUnsignedIntegerType())
894             ? ImpCastExprToType(E, Context.UnsignedLongLongTy, CK_IntegralCast)
895                   .get()
896             : ImpCastExprToType(E, Context.LongLongTy, CK_IntegralCast).get();
897     assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
898            "Unexpected typesize for LongLongTy");
899   }
900 
901   // C++ performs lvalue-to-rvalue conversion as a default argument
902   // promotion, even on class types, but note:
903   //   C++11 [conv.lval]p2:
904   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
905   //     operand or a subexpression thereof the value contained in the
906   //     referenced object is not accessed. Otherwise, if the glvalue
907   //     has a class type, the conversion copy-initializes a temporary
908   //     of type T from the glvalue and the result of the conversion
909   //     is a prvalue for the temporary.
910   // FIXME: add some way to gate this entire thing for correctness in
911   // potentially potentially evaluated contexts.
912   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
913     ExprResult Temp = PerformCopyInitialization(
914                        InitializedEntity::InitializeTemporary(E->getType()),
915                                                 E->getExprLoc(), E);
916     if (Temp.isInvalid())
917       return ExprError();
918     E = Temp.get();
919   }
920 
921   return E;
922 }
923 
924 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
925   if (Ty->isIncompleteType()) {
926     // C++11 [expr.call]p7:
927     //   After these conversions, if the argument does not have arithmetic,
928     //   enumeration, pointer, pointer to member, or class type, the program
929     //   is ill-formed.
930     //
931     // Since we've already performed array-to-pointer and function-to-pointer
932     // decay, the only such type in C++ is cv void. This also handles
933     // initializer lists as variadic arguments.
934     if (Ty->isVoidType())
935       return VAK_Invalid;
936 
937     if (Ty->isObjCObjectType())
938       return VAK_Invalid;
939     return VAK_Valid;
940   }
941 
942   if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
943     return VAK_Invalid;
944 
945   if (Context.getTargetInfo().getTriple().isWasm() &&
946       Ty.isWebAssemblyReferenceType()) {
947     return VAK_Invalid;
948   }
949 
950   if (Ty.isCXX98PODType(Context))
951     return VAK_Valid;
952 
953   // C++11 [expr.call]p7:
954   //   Passing a potentially-evaluated argument of class type (Clause 9)
955   //   having a non-trivial copy constructor, a non-trivial move constructor,
956   //   or a non-trivial destructor, with no corresponding parameter,
957   //   is conditionally-supported with implementation-defined semantics.
958   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
959     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
960       if (!Record->hasNonTrivialCopyConstructor() &&
961           !Record->hasNonTrivialMoveConstructor() &&
962           !Record->hasNonTrivialDestructor())
963         return VAK_ValidInCXX11;
964 
965   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
966     return VAK_Valid;
967 
968   if (Ty->isObjCObjectType())
969     return VAK_Invalid;
970 
971   if (getLangOpts().MSVCCompat)
972     return VAK_MSVCUndefined;
973 
974   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
975   // permitted to reject them. We should consider doing so.
976   return VAK_Undefined;
977 }
978 
979 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
980   // Don't allow one to pass an Objective-C interface to a vararg.
981   const QualType &Ty = E->getType();
982   VarArgKind VAK = isValidVarArgType(Ty);
983 
984   // Complain about passing non-POD types through varargs.
985   switch (VAK) {
986   case VAK_ValidInCXX11:
987     DiagRuntimeBehavior(
988         E->getBeginLoc(), nullptr,
989         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
990     [[fallthrough]];
991   case VAK_Valid:
992     if (Ty->isRecordType()) {
993       // This is unlikely to be what the user intended. If the class has a
994       // 'c_str' member function, the user probably meant to call that.
995       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
996                           PDiag(diag::warn_pass_class_arg_to_vararg)
997                               << Ty << CT << hasCStrMethod(E) << ".c_str()");
998     }
999     break;
1000 
1001   case VAK_Undefined:
1002   case VAK_MSVCUndefined:
1003     DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1004                         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
1005                             << getLangOpts().CPlusPlus11 << Ty << CT);
1006     break;
1007 
1008   case VAK_Invalid:
1009     if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1010       Diag(E->getBeginLoc(),
1011            diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1012           << Ty << CT;
1013     else if (Ty->isObjCObjectType())
1014       DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
1015                           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
1016                               << Ty << CT);
1017     else
1018       Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
1019           << isa<InitListExpr>(E) << Ty << CT;
1020     break;
1021   }
1022 }
1023 
1024 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1025                                                   FunctionDecl *FDecl) {
1026   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1027     // Strip the unbridged-cast placeholder expression off, if applicable.
1028     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1029         (CT == VariadicMethod ||
1030          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1031       E = ObjC().stripARCUnbridgedCast(E);
1032 
1033       // Otherwise, do normal placeholder checking.
1034     } else {
1035       ExprResult ExprRes = CheckPlaceholderExpr(E);
1036       if (ExprRes.isInvalid())
1037         return ExprError();
1038       E = ExprRes.get();
1039     }
1040   }
1041 
1042   ExprResult ExprRes = DefaultArgumentPromotion(E);
1043   if (ExprRes.isInvalid())
1044     return ExprError();
1045 
1046   // Copy blocks to the heap.
1047   if (ExprRes.get()->getType()->isBlockPointerType())
1048     maybeExtendBlockObject(ExprRes);
1049 
1050   E = ExprRes.get();
1051 
1052   // Diagnostics regarding non-POD argument types are
1053   // emitted along with format string checking in Sema::CheckFunctionCall().
1054   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
1055     // Turn this into a trap.
1056     CXXScopeSpec SS;
1057     SourceLocation TemplateKWLoc;
1058     UnqualifiedId Name;
1059     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1060                        E->getBeginLoc());
1061     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1062                                           /*HasTrailingLParen=*/true,
1063                                           /*IsAddressOfOperand=*/false);
1064     if (TrapFn.isInvalid())
1065       return ExprError();
1066 
1067     ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1068                                     std::nullopt, E->getEndLoc());
1069     if (Call.isInvalid())
1070       return ExprError();
1071 
1072     ExprResult Comma =
1073         ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1074     if (Comma.isInvalid())
1075       return ExprError();
1076     return Comma.get();
1077   }
1078 
1079   if (!getLangOpts().CPlusPlus &&
1080       RequireCompleteType(E->getExprLoc(), E->getType(),
1081                           diag::err_call_incomplete_argument))
1082     return ExprError();
1083 
1084   return E;
1085 }
1086 
1087 /// Convert complex integers to complex floats and real integers to
1088 /// real floats as required for complex arithmetic. Helper function of
1089 /// UsualArithmeticConversions()
1090 ///
1091 /// \return false if the integer expression is an integer type and is
1092 /// successfully converted to the (complex) float type.
1093 static bool handleComplexIntegerToFloatConversion(Sema &S, ExprResult &IntExpr,
1094                                                   ExprResult &ComplexExpr,
1095                                                   QualType IntTy,
1096                                                   QualType ComplexTy,
1097                                                   bool SkipCast) {
1098   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1099   if (SkipCast) return false;
1100   if (IntTy->isIntegerType()) {
1101     QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1102     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1103   } else {
1104     assert(IntTy->isComplexIntegerType());
1105     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1106                                   CK_IntegralComplexToFloatingComplex);
1107   }
1108   return false;
1109 }
1110 
1111 // This handles complex/complex, complex/float, or float/complex.
1112 // When both operands are complex, the shorter operand is converted to the
1113 // type of the longer, and that is the type of the result. This corresponds
1114 // to what is done when combining two real floating-point operands.
1115 // The fun begins when size promotion occur across type domains.
1116 // From H&S 6.3.4: When one operand is complex and the other is a real
1117 // floating-point type, the less precise type is converted, within it's
1118 // real or complex domain, to the precision of the other type. For example,
1119 // when combining a "long double" with a "double _Complex", the
1120 // "double _Complex" is promoted to "long double _Complex".
1121 static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1122                                              QualType ShorterType,
1123                                              QualType LongerType,
1124                                              bool PromotePrecision) {
1125   bool LongerIsComplex = isa<ComplexType>(LongerType.getCanonicalType());
1126   QualType Result =
1127       LongerIsComplex ? LongerType : S.Context.getComplexType(LongerType);
1128 
1129   if (PromotePrecision) {
1130     if (isa<ComplexType>(ShorterType.getCanonicalType())) {
1131       Shorter =
1132           S.ImpCastExprToType(Shorter.get(), Result, CK_FloatingComplexCast);
1133     } else {
1134       if (LongerIsComplex)
1135         LongerType = LongerType->castAs<ComplexType>()->getElementType();
1136       Shorter = S.ImpCastExprToType(Shorter.get(), LongerType, CK_FloatingCast);
1137     }
1138   }
1139   return Result;
1140 }
1141 
1142 /// Handle arithmetic conversion with complex types.  Helper function of
1143 /// UsualArithmeticConversions()
1144 static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1145                                         ExprResult &RHS, QualType LHSType,
1146                                         QualType RHSType, bool IsCompAssign) {
1147   // Handle (complex) integer types.
1148   if (!handleComplexIntegerToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1149                                              /*SkipCast=*/false))
1150     return LHSType;
1151   if (!handleComplexIntegerToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1152                                              /*SkipCast=*/IsCompAssign))
1153     return RHSType;
1154 
1155   // Compute the rank of the two types, regardless of whether they are complex.
1156   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1157   if (Order < 0)
1158     // Promote the precision of the LHS if not an assignment.
1159     return handleComplexFloatConversion(S, LHS, LHSType, RHSType,
1160                                         /*PromotePrecision=*/!IsCompAssign);
1161   // Promote the precision of the RHS unless it is already the same as the LHS.
1162   return handleComplexFloatConversion(S, RHS, RHSType, LHSType,
1163                                       /*PromotePrecision=*/Order > 0);
1164 }
1165 
1166 /// Handle arithmetic conversion from integer to float.  Helper function
1167 /// of UsualArithmeticConversions()
1168 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1169                                            ExprResult &IntExpr,
1170                                            QualType FloatTy, QualType IntTy,
1171                                            bool ConvertFloat, bool ConvertInt) {
1172   if (IntTy->isIntegerType()) {
1173     if (ConvertInt)
1174       // Convert intExpr to the lhs floating point type.
1175       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1176                                     CK_IntegralToFloating);
1177     return FloatTy;
1178   }
1179 
1180   // Convert both sides to the appropriate complex float.
1181   assert(IntTy->isComplexIntegerType());
1182   QualType result = S.Context.getComplexType(FloatTy);
1183 
1184   // _Complex int -> _Complex float
1185   if (ConvertInt)
1186     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1187                                   CK_IntegralComplexToFloatingComplex);
1188 
1189   // float -> _Complex float
1190   if (ConvertFloat)
1191     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1192                                     CK_FloatingRealToComplex);
1193 
1194   return result;
1195 }
1196 
1197 /// Handle arithmethic conversion with floating point types.  Helper
1198 /// function of UsualArithmeticConversions()
1199 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1200                                       ExprResult &RHS, QualType LHSType,
1201                                       QualType RHSType, bool IsCompAssign) {
1202   bool LHSFloat = LHSType->isRealFloatingType();
1203   bool RHSFloat = RHSType->isRealFloatingType();
1204 
1205   // N1169 4.1.4: If one of the operands has a floating type and the other
1206   //              operand has a fixed-point type, the fixed-point operand
1207   //              is converted to the floating type [...]
1208   if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1209     if (LHSFloat)
1210       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1211     else if (!IsCompAssign)
1212       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1213     return LHSFloat ? LHSType : RHSType;
1214   }
1215 
1216   // If we have two real floating types, convert the smaller operand
1217   // to the bigger result.
1218   if (LHSFloat && RHSFloat) {
1219     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1220     if (order > 0) {
1221       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1222       return LHSType;
1223     }
1224 
1225     assert(order < 0 && "illegal float comparison");
1226     if (!IsCompAssign)
1227       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1228     return RHSType;
1229   }
1230 
1231   if (LHSFloat) {
1232     // Half FP has to be promoted to float unless it is natively supported
1233     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1234       LHSType = S.Context.FloatTy;
1235 
1236     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1237                                       /*ConvertFloat=*/!IsCompAssign,
1238                                       /*ConvertInt=*/ true);
1239   }
1240   assert(RHSFloat);
1241   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1242                                     /*ConvertFloat=*/ true,
1243                                     /*ConvertInt=*/!IsCompAssign);
1244 }
1245 
1246 /// Diagnose attempts to convert between __float128, __ibm128 and
1247 /// long double if there is no support for such conversion.
1248 /// Helper function of UsualArithmeticConversions().
1249 static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1250                                       QualType RHSType) {
1251   // No issue if either is not a floating point type.
1252   if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1253     return false;
1254 
1255   // No issue if both have the same 128-bit float semantics.
1256   auto *LHSComplex = LHSType->getAs<ComplexType>();
1257   auto *RHSComplex = RHSType->getAs<ComplexType>();
1258 
1259   QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1260   QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1261 
1262   const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(LHSElem);
1263   const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(RHSElem);
1264 
1265   if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1266        &RHSSem != &llvm::APFloat::IEEEquad()) &&
1267       (&LHSSem != &llvm::APFloat::IEEEquad() ||
1268        &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1269     return false;
1270 
1271   return true;
1272 }
1273 
1274 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1275 
1276 namespace {
1277 /// These helper callbacks are placed in an anonymous namespace to
1278 /// permit their use as function template parameters.
1279 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1280   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1281 }
1282 
1283 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1284   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1285                              CK_IntegralComplexCast);
1286 }
1287 }
1288 
1289 /// Handle integer arithmetic conversions.  Helper function of
1290 /// UsualArithmeticConversions()
1291 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1292 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1293                                         ExprResult &RHS, QualType LHSType,
1294                                         QualType RHSType, bool IsCompAssign) {
1295   // The rules for this case are in C99 6.3.1.8
1296   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1297   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1298   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1299   if (LHSSigned == RHSSigned) {
1300     // Same signedness; use the higher-ranked type
1301     if (order >= 0) {
1302       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1303       return LHSType;
1304     } else if (!IsCompAssign)
1305       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1306     return RHSType;
1307   } else if (order != (LHSSigned ? 1 : -1)) {
1308     // The unsigned type has greater than or equal rank to the
1309     // signed type, so use the unsigned type
1310     if (RHSSigned) {
1311       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1312       return LHSType;
1313     } else if (!IsCompAssign)
1314       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1315     return RHSType;
1316   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1317     // The two types are different widths; if we are here, that
1318     // means the signed type is larger than the unsigned type, so
1319     // use the signed type.
1320     if (LHSSigned) {
1321       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1322       return LHSType;
1323     } else if (!IsCompAssign)
1324       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1325     return RHSType;
1326   } else {
1327     // The signed type is higher-ranked than the unsigned type,
1328     // but isn't actually any bigger (like unsigned int and long
1329     // on most 32-bit systems).  Use the unsigned type corresponding
1330     // to the signed type.
1331     QualType result =
1332       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1333     RHS = (*doRHSCast)(S, RHS.get(), result);
1334     if (!IsCompAssign)
1335       LHS = (*doLHSCast)(S, LHS.get(), result);
1336     return result;
1337   }
1338 }
1339 
1340 /// Handle conversions with GCC complex int extension.  Helper function
1341 /// of UsualArithmeticConversions()
1342 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1343                                            ExprResult &RHS, QualType LHSType,
1344                                            QualType RHSType,
1345                                            bool IsCompAssign) {
1346   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1347   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1348 
1349   if (LHSComplexInt && RHSComplexInt) {
1350     QualType LHSEltType = LHSComplexInt->getElementType();
1351     QualType RHSEltType = RHSComplexInt->getElementType();
1352     QualType ScalarType =
1353       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1354         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1355 
1356     return S.Context.getComplexType(ScalarType);
1357   }
1358 
1359   if (LHSComplexInt) {
1360     QualType LHSEltType = LHSComplexInt->getElementType();
1361     QualType ScalarType =
1362       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1363         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1364     QualType ComplexType = S.Context.getComplexType(ScalarType);
1365     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1366                               CK_IntegralRealToComplex);
1367 
1368     return ComplexType;
1369   }
1370 
1371   assert(RHSComplexInt);
1372 
1373   QualType RHSEltType = RHSComplexInt->getElementType();
1374   QualType ScalarType =
1375     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1376       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1377   QualType ComplexType = S.Context.getComplexType(ScalarType);
1378 
1379   if (!IsCompAssign)
1380     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1381                               CK_IntegralRealToComplex);
1382   return ComplexType;
1383 }
1384 
1385 /// Return the rank of a given fixed point or integer type. The value itself
1386 /// doesn't matter, but the values must be increasing with proper increasing
1387 /// rank as described in N1169 4.1.1.
1388 static unsigned GetFixedPointRank(QualType Ty) {
1389   const auto *BTy = Ty->getAs<BuiltinType>();
1390   assert(BTy && "Expected a builtin type.");
1391 
1392   switch (BTy->getKind()) {
1393   case BuiltinType::ShortFract:
1394   case BuiltinType::UShortFract:
1395   case BuiltinType::SatShortFract:
1396   case BuiltinType::SatUShortFract:
1397     return 1;
1398   case BuiltinType::Fract:
1399   case BuiltinType::UFract:
1400   case BuiltinType::SatFract:
1401   case BuiltinType::SatUFract:
1402     return 2;
1403   case BuiltinType::LongFract:
1404   case BuiltinType::ULongFract:
1405   case BuiltinType::SatLongFract:
1406   case BuiltinType::SatULongFract:
1407     return 3;
1408   case BuiltinType::ShortAccum:
1409   case BuiltinType::UShortAccum:
1410   case BuiltinType::SatShortAccum:
1411   case BuiltinType::SatUShortAccum:
1412     return 4;
1413   case BuiltinType::Accum:
1414   case BuiltinType::UAccum:
1415   case BuiltinType::SatAccum:
1416   case BuiltinType::SatUAccum:
1417     return 5;
1418   case BuiltinType::LongAccum:
1419   case BuiltinType::ULongAccum:
1420   case BuiltinType::SatLongAccum:
1421   case BuiltinType::SatULongAccum:
1422     return 6;
1423   default:
1424     if (BTy->isInteger())
1425       return 0;
1426     llvm_unreachable("Unexpected fixed point or integer type");
1427   }
1428 }
1429 
1430 /// handleFixedPointConversion - Fixed point operations between fixed
1431 /// point types and integers or other fixed point types do not fall under
1432 /// usual arithmetic conversion since these conversions could result in loss
1433 /// of precsision (N1169 4.1.4). These operations should be calculated with
1434 /// the full precision of their result type (N1169 4.1.6.2.1).
1435 static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1436                                            QualType RHSTy) {
1437   assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1438          "Expected at least one of the operands to be a fixed point type");
1439   assert((LHSTy->isFixedPointOrIntegerType() ||
1440           RHSTy->isFixedPointOrIntegerType()) &&
1441          "Special fixed point arithmetic operation conversions are only "
1442          "applied to ints or other fixed point types");
1443 
1444   // If one operand has signed fixed-point type and the other operand has
1445   // unsigned fixed-point type, then the unsigned fixed-point operand is
1446   // converted to its corresponding signed fixed-point type and the resulting
1447   // type is the type of the converted operand.
1448   if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1449     LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1450   else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1451     RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1452 
1453   // The result type is the type with the highest rank, whereby a fixed-point
1454   // conversion rank is always greater than an integer conversion rank; if the
1455   // type of either of the operands is a saturating fixedpoint type, the result
1456   // type shall be the saturating fixed-point type corresponding to the type
1457   // with the highest rank; the resulting value is converted (taking into
1458   // account rounding and overflow) to the precision of the resulting type.
1459   // Same ranks between signed and unsigned types are resolved earlier, so both
1460   // types are either signed or both unsigned at this point.
1461   unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1462   unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1463 
1464   QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1465 
1466   if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1467     ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1468 
1469   return ResultTy;
1470 }
1471 
1472 /// Check that the usual arithmetic conversions can be performed on this pair of
1473 /// expressions that might be of enumeration type.
1474 static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1475                                            SourceLocation Loc,
1476                                            Sema::ArithConvKind ACK) {
1477   // C++2a [expr.arith.conv]p1:
1478   //   If one operand is of enumeration type and the other operand is of a
1479   //   different enumeration type or a floating-point type, this behavior is
1480   //   deprecated ([depr.arith.conv.enum]).
1481   //
1482   // Warn on this in all language modes. Produce a deprecation warning in C++20.
1483   // Eventually we will presumably reject these cases (in C++23 onwards?).
1484   QualType L = LHS->getEnumCoercedType(S.Context),
1485            R = RHS->getEnumCoercedType(S.Context);
1486   bool LEnum = L->isUnscopedEnumerationType(),
1487        REnum = R->isUnscopedEnumerationType();
1488   bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1489   if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1490       (REnum && L->isFloatingType())) {
1491     S.Diag(Loc, S.getLangOpts().CPlusPlus26
1492                     ? diag::err_arith_conv_enum_float_cxx26
1493                 : S.getLangOpts().CPlusPlus20
1494                     ? diag::warn_arith_conv_enum_float_cxx20
1495                     : diag::warn_arith_conv_enum_float)
1496         << LHS->getSourceRange() << RHS->getSourceRange() << (int)ACK << LEnum
1497         << L << R;
1498   } else if (!IsCompAssign && LEnum && REnum &&
1499              !S.Context.hasSameUnqualifiedType(L, R)) {
1500     unsigned DiagID;
1501     // In C++ 26, usual arithmetic conversions between 2 different enum types
1502     // are ill-formed.
1503     if (S.getLangOpts().CPlusPlus26)
1504       DiagID = diag::err_conv_mixed_enum_types_cxx26;
1505     else if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1506              !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1507       // If either enumeration type is unnamed, it's less likely that the
1508       // user cares about this, but this situation is still deprecated in
1509       // C++2a. Use a different warning group.
1510       DiagID = S.getLangOpts().CPlusPlus20
1511                     ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1512                     : diag::warn_arith_conv_mixed_anon_enum_types;
1513     } else if (ACK == Sema::ACK_Conditional) {
1514       // Conditional expressions are separated out because they have
1515       // historically had a different warning flag.
1516       DiagID = S.getLangOpts().CPlusPlus20
1517                    ? diag::warn_conditional_mixed_enum_types_cxx20
1518                    : diag::warn_conditional_mixed_enum_types;
1519     } else if (ACK == Sema::ACK_Comparison) {
1520       // Comparison expressions are separated out because they have
1521       // historically had a different warning flag.
1522       DiagID = S.getLangOpts().CPlusPlus20
1523                    ? diag::warn_comparison_mixed_enum_types_cxx20
1524                    : diag::warn_comparison_mixed_enum_types;
1525     } else {
1526       DiagID = S.getLangOpts().CPlusPlus20
1527                    ? diag::warn_arith_conv_mixed_enum_types_cxx20
1528                    : diag::warn_arith_conv_mixed_enum_types;
1529     }
1530     S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1531                         << (int)ACK << L << R;
1532   }
1533 }
1534 
1535 /// UsualArithmeticConversions - Performs various conversions that are common to
1536 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1537 /// routine returns the first non-arithmetic type found. The client is
1538 /// responsible for emitting appropriate error diagnostics.
1539 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1540                                           SourceLocation Loc,
1541                                           ArithConvKind ACK) {
1542   checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1543 
1544   if (ACK != ACK_CompAssign) {
1545     LHS = UsualUnaryConversions(LHS.get());
1546     if (LHS.isInvalid())
1547       return QualType();
1548   }
1549 
1550   RHS = UsualUnaryConversions(RHS.get());
1551   if (RHS.isInvalid())
1552     return QualType();
1553 
1554   // For conversion purposes, we ignore any qualifiers.
1555   // For example, "const float" and "float" are equivalent.
1556   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1557   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1558 
1559   // For conversion purposes, we ignore any atomic qualifier on the LHS.
1560   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1561     LHSType = AtomicLHS->getValueType();
1562 
1563   // If both types are identical, no conversion is needed.
1564   if (Context.hasSameType(LHSType, RHSType))
1565     return Context.getCommonSugaredType(LHSType, RHSType);
1566 
1567   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1568   // The caller can deal with this (e.g. pointer + int).
1569   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1570     return QualType();
1571 
1572   // Apply unary and bitfield promotions to the LHS's type.
1573   QualType LHSUnpromotedType = LHSType;
1574   if (Context.isPromotableIntegerType(LHSType))
1575     LHSType = Context.getPromotedIntegerType(LHSType);
1576   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1577   if (!LHSBitfieldPromoteTy.isNull())
1578     LHSType = LHSBitfieldPromoteTy;
1579   if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1580     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1581 
1582   // If both types are identical, no conversion is needed.
1583   if (Context.hasSameType(LHSType, RHSType))
1584     return Context.getCommonSugaredType(LHSType, RHSType);
1585 
1586   // At this point, we have two different arithmetic types.
1587 
1588   // Diagnose attempts to convert between __ibm128, __float128 and long double
1589   // where such conversions currently can't be handled.
1590   if (unsupportedTypeConversion(*this, LHSType, RHSType))
1591     return QualType();
1592 
1593   // Handle complex types first (C99 6.3.1.8p1).
1594   if (LHSType->isComplexType() || RHSType->isComplexType())
1595     return handleComplexConversion(*this, LHS, RHS, LHSType, RHSType,
1596                                    ACK == ACK_CompAssign);
1597 
1598   // Now handle "real" floating types (i.e. float, double, long double).
1599   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1600     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1601                                  ACK == ACK_CompAssign);
1602 
1603   // Handle GCC complex int extension.
1604   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1605     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1606                                       ACK == ACK_CompAssign);
1607 
1608   if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1609     return handleFixedPointConversion(*this, LHSType, RHSType);
1610 
1611   // Finally, we have two differing integer types.
1612   return handleIntegerConversion<doIntegralCast, doIntegralCast>
1613            (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1614 }
1615 
1616 //===----------------------------------------------------------------------===//
1617 //  Semantic Analysis for various Expression Types
1618 //===----------------------------------------------------------------------===//
1619 
1620 
1621 ExprResult Sema::ActOnGenericSelectionExpr(
1622     SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1623     bool PredicateIsExpr, void *ControllingExprOrType,
1624     ArrayRef<ParsedType> ArgTypes, ArrayRef<Expr *> ArgExprs) {
1625   unsigned NumAssocs = ArgTypes.size();
1626   assert(NumAssocs == ArgExprs.size());
1627 
1628   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1629   for (unsigned i = 0; i < NumAssocs; ++i) {
1630     if (ArgTypes[i])
1631       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1632     else
1633       Types[i] = nullptr;
1634   }
1635 
1636   // If we have a controlling type, we need to convert it from a parsed type
1637   // into a semantic type and then pass that along.
1638   if (!PredicateIsExpr) {
1639     TypeSourceInfo *ControllingType;
1640     (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(ControllingExprOrType),
1641                             &ControllingType);
1642     assert(ControllingType && "couldn't get the type out of the parser");
1643     ControllingExprOrType = ControllingType;
1644   }
1645 
1646   ExprResult ER = CreateGenericSelectionExpr(
1647       KeyLoc, DefaultLoc, RParenLoc, PredicateIsExpr, ControllingExprOrType,
1648       llvm::ArrayRef(Types, NumAssocs), ArgExprs);
1649   delete [] Types;
1650   return ER;
1651 }
1652 
1653 ExprResult Sema::CreateGenericSelectionExpr(
1654     SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1655     bool PredicateIsExpr, void *ControllingExprOrType,
1656     ArrayRef<TypeSourceInfo *> Types, ArrayRef<Expr *> Exprs) {
1657   unsigned NumAssocs = Types.size();
1658   assert(NumAssocs == Exprs.size());
1659   assert(ControllingExprOrType &&
1660          "Must have either a controlling expression or a controlling type");
1661 
1662   Expr *ControllingExpr = nullptr;
1663   TypeSourceInfo *ControllingType = nullptr;
1664   if (PredicateIsExpr) {
1665     // Decay and strip qualifiers for the controlling expression type, and
1666     // handle placeholder type replacement. See committee discussion from WG14
1667     // DR423.
1668     EnterExpressionEvaluationContext Unevaluated(
1669         *this, Sema::ExpressionEvaluationContext::Unevaluated);
1670     ExprResult R = DefaultFunctionArrayLvalueConversion(
1671         reinterpret_cast<Expr *>(ControllingExprOrType));
1672     if (R.isInvalid())
1673       return ExprError();
1674     ControllingExpr = R.get();
1675   } else {
1676     // The extension form uses the type directly rather than converting it.
1677     ControllingType = reinterpret_cast<TypeSourceInfo *>(ControllingExprOrType);
1678     if (!ControllingType)
1679       return ExprError();
1680   }
1681 
1682   bool TypeErrorFound = false,
1683        IsResultDependent = ControllingExpr
1684                                ? ControllingExpr->isTypeDependent()
1685                                : ControllingType->getType()->isDependentType(),
1686        ContainsUnexpandedParameterPack =
1687            ControllingExpr
1688                ? ControllingExpr->containsUnexpandedParameterPack()
1689                : ControllingType->getType()->containsUnexpandedParameterPack();
1690 
1691   // The controlling expression is an unevaluated operand, so side effects are
1692   // likely unintended.
1693   if (!inTemplateInstantiation() && !IsResultDependent && ControllingExpr &&
1694       ControllingExpr->HasSideEffects(Context, false))
1695     Diag(ControllingExpr->getExprLoc(),
1696          diag::warn_side_effects_unevaluated_context);
1697 
1698   for (unsigned i = 0; i < NumAssocs; ++i) {
1699     if (Exprs[i]->containsUnexpandedParameterPack())
1700       ContainsUnexpandedParameterPack = true;
1701 
1702     if (Types[i]) {
1703       if (Types[i]->getType()->containsUnexpandedParameterPack())
1704         ContainsUnexpandedParameterPack = true;
1705 
1706       if (Types[i]->getType()->isDependentType()) {
1707         IsResultDependent = true;
1708       } else {
1709         // We relax the restriction on use of incomplete types and non-object
1710         // types with the type-based extension of _Generic. Allowing incomplete
1711         // objects means those can be used as "tags" for a type-safe way to map
1712         // to a value. Similarly, matching on function types rather than
1713         // function pointer types can be useful. However, the restriction on VM
1714         // types makes sense to retain as there are open questions about how
1715         // the selection can be made at compile time.
1716         //
1717         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1718         // complete object type other than a variably modified type."
1719         unsigned D = 0;
1720         if (ControllingExpr && Types[i]->getType()->isIncompleteType())
1721           D = diag::err_assoc_type_incomplete;
1722         else if (ControllingExpr && !Types[i]->getType()->isObjectType())
1723           D = diag::err_assoc_type_nonobject;
1724         else if (Types[i]->getType()->isVariablyModifiedType())
1725           D = diag::err_assoc_type_variably_modified;
1726         else if (ControllingExpr) {
1727           // Because the controlling expression undergoes lvalue conversion,
1728           // array conversion, and function conversion, an association which is
1729           // of array type, function type, or is qualified can never be
1730           // reached. We will warn about this so users are less surprised by
1731           // the unreachable association. However, we don't have to handle
1732           // function types; that's not an object type, so it's handled above.
1733           //
1734           // The logic is somewhat different for C++ because C++ has different
1735           // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1736           // If T is a non-class type, the type of the prvalue is the cv-
1737           // unqualified version of T. Otherwise, the type of the prvalue is T.
1738           // The result of these rules is that all qualified types in an
1739           // association in C are unreachable, and in C++, only qualified non-
1740           // class types are unreachable.
1741           //
1742           // NB: this does not apply when the first operand is a type rather
1743           // than an expression, because the type form does not undergo
1744           // conversion.
1745           unsigned Reason = 0;
1746           QualType QT = Types[i]->getType();
1747           if (QT->isArrayType())
1748             Reason = 1;
1749           else if (QT.hasQualifiers() &&
1750                    (!LangOpts.CPlusPlus || !QT->isRecordType()))
1751             Reason = 2;
1752 
1753           if (Reason)
1754             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1755                  diag::warn_unreachable_association)
1756                 << QT << (Reason - 1);
1757         }
1758 
1759         if (D != 0) {
1760           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1761             << Types[i]->getTypeLoc().getSourceRange()
1762             << Types[i]->getType();
1763           TypeErrorFound = true;
1764         }
1765 
1766         // C11 6.5.1.1p2 "No two generic associations in the same generic
1767         // selection shall specify compatible types."
1768         for (unsigned j = i+1; j < NumAssocs; ++j)
1769           if (Types[j] && !Types[j]->getType()->isDependentType() &&
1770               Context.typesAreCompatible(Types[i]->getType(),
1771                                          Types[j]->getType())) {
1772             Diag(Types[j]->getTypeLoc().getBeginLoc(),
1773                  diag::err_assoc_compatible_types)
1774               << Types[j]->getTypeLoc().getSourceRange()
1775               << Types[j]->getType()
1776               << Types[i]->getType();
1777             Diag(Types[i]->getTypeLoc().getBeginLoc(),
1778                  diag::note_compat_assoc)
1779               << Types[i]->getTypeLoc().getSourceRange()
1780               << Types[i]->getType();
1781             TypeErrorFound = true;
1782           }
1783       }
1784     }
1785   }
1786   if (TypeErrorFound)
1787     return ExprError();
1788 
1789   // If we determined that the generic selection is result-dependent, don't
1790   // try to compute the result expression.
1791   if (IsResultDependent) {
1792     if (ControllingExpr)
1793       return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr,
1794                                           Types, Exprs, DefaultLoc, RParenLoc,
1795                                           ContainsUnexpandedParameterPack);
1796     return GenericSelectionExpr::Create(Context, KeyLoc, ControllingType, Types,
1797                                         Exprs, DefaultLoc, RParenLoc,
1798                                         ContainsUnexpandedParameterPack);
1799   }
1800 
1801   SmallVector<unsigned, 1> CompatIndices;
1802   unsigned DefaultIndex = -1U;
1803   // Look at the canonical type of the controlling expression in case it was a
1804   // deduced type like __auto_type. However, when issuing diagnostics, use the
1805   // type the user wrote in source rather than the canonical one.
1806   for (unsigned i = 0; i < NumAssocs; ++i) {
1807     if (!Types[i])
1808       DefaultIndex = i;
1809     else if (ControllingExpr &&
1810              Context.typesAreCompatible(
1811                  ControllingExpr->getType().getCanonicalType(),
1812                  Types[i]->getType()))
1813       CompatIndices.push_back(i);
1814     else if (ControllingType &&
1815              Context.typesAreCompatible(
1816                  ControllingType->getType().getCanonicalType(),
1817                  Types[i]->getType()))
1818       CompatIndices.push_back(i);
1819   }
1820 
1821   auto GetControllingRangeAndType = [](Expr *ControllingExpr,
1822                                        TypeSourceInfo *ControllingType) {
1823     // We strip parens here because the controlling expression is typically
1824     // parenthesized in macro definitions.
1825     if (ControllingExpr)
1826       ControllingExpr = ControllingExpr->IgnoreParens();
1827 
1828     SourceRange SR = ControllingExpr
1829                          ? ControllingExpr->getSourceRange()
1830                          : ControllingType->getTypeLoc().getSourceRange();
1831     QualType QT = ControllingExpr ? ControllingExpr->getType()
1832                                   : ControllingType->getType();
1833 
1834     return std::make_pair(SR, QT);
1835   };
1836 
1837   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1838   // type compatible with at most one of the types named in its generic
1839   // association list."
1840   if (CompatIndices.size() > 1) {
1841     auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1842     SourceRange SR = P.first;
1843     Diag(SR.getBegin(), diag::err_generic_sel_multi_match)
1844         << SR << P.second << (unsigned)CompatIndices.size();
1845     for (unsigned I : CompatIndices) {
1846       Diag(Types[I]->getTypeLoc().getBeginLoc(),
1847            diag::note_compat_assoc)
1848         << Types[I]->getTypeLoc().getSourceRange()
1849         << Types[I]->getType();
1850     }
1851     return ExprError();
1852   }
1853 
1854   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1855   // its controlling expression shall have type compatible with exactly one of
1856   // the types named in its generic association list."
1857   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1858     auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1859     SourceRange SR = P.first;
1860     Diag(SR.getBegin(), diag::err_generic_sel_no_match) << SR << P.second;
1861     return ExprError();
1862   }
1863 
1864   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1865   // type name that is compatible with the type of the controlling expression,
1866   // then the result expression of the generic selection is the expression
1867   // in that generic association. Otherwise, the result expression of the
1868   // generic selection is the expression in the default generic association."
1869   unsigned ResultIndex =
1870     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1871 
1872   if (ControllingExpr) {
1873     return GenericSelectionExpr::Create(
1874         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1875         ContainsUnexpandedParameterPack, ResultIndex);
1876   }
1877   return GenericSelectionExpr::Create(
1878       Context, KeyLoc, ControllingType, Types, Exprs, DefaultLoc, RParenLoc,
1879       ContainsUnexpandedParameterPack, ResultIndex);
1880 }
1881 
1882 static PredefinedIdentKind getPredefinedExprKind(tok::TokenKind Kind) {
1883   switch (Kind) {
1884   default:
1885     llvm_unreachable("unexpected TokenKind");
1886   case tok::kw___func__:
1887     return PredefinedIdentKind::Func; // [C99 6.4.2.2]
1888   case tok::kw___FUNCTION__:
1889     return PredefinedIdentKind::Function;
1890   case tok::kw___FUNCDNAME__:
1891     return PredefinedIdentKind::FuncDName; // [MS]
1892   case tok::kw___FUNCSIG__:
1893     return PredefinedIdentKind::FuncSig; // [MS]
1894   case tok::kw_L__FUNCTION__:
1895     return PredefinedIdentKind::LFunction; // [MS]
1896   case tok::kw_L__FUNCSIG__:
1897     return PredefinedIdentKind::LFuncSig; // [MS]
1898   case tok::kw___PRETTY_FUNCTION__:
1899     return PredefinedIdentKind::PrettyFunction; // [GNU]
1900   }
1901 }
1902 
1903 /// getPredefinedExprDecl - Returns Decl of a given DeclContext that can be used
1904 /// to determine the value of a PredefinedExpr. This can be either a
1905 /// block, lambda, captured statement, function, otherwise a nullptr.
1906 static Decl *getPredefinedExprDecl(DeclContext *DC) {
1907   while (DC && !isa<BlockDecl, CapturedDecl, FunctionDecl, ObjCMethodDecl>(DC))
1908     DC = DC->getParent();
1909   return cast_or_null<Decl>(DC);
1910 }
1911 
1912 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1913 /// location of the token and the offset of the ud-suffix within it.
1914 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1915                                      unsigned Offset) {
1916   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1917                                         S.getLangOpts());
1918 }
1919 
1920 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1921 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
1922 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1923                                                  IdentifierInfo *UDSuffix,
1924                                                  SourceLocation UDSuffixLoc,
1925                                                  ArrayRef<Expr*> Args,
1926                                                  SourceLocation LitEndLoc) {
1927   assert(Args.size() <= 2 && "too many arguments for literal operator");
1928 
1929   QualType ArgTy[2];
1930   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1931     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1932     if (ArgTy[ArgIdx]->isArrayType())
1933       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1934   }
1935 
1936   DeclarationName OpName =
1937     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1938   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1939   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1940 
1941   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1942   if (S.LookupLiteralOperator(Scope, R, llvm::ArrayRef(ArgTy, Args.size()),
1943                               /*AllowRaw*/ false, /*AllowTemplate*/ false,
1944                               /*AllowStringTemplatePack*/ false,
1945                               /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1946     return ExprError();
1947 
1948   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1949 }
1950 
1951 ExprResult Sema::ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks) {
1952   // StringToks needs backing storage as it doesn't hold array elements itself
1953   std::vector<Token> ExpandedToks;
1954   if (getLangOpts().MicrosoftExt)
1955     StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
1956 
1957   StringLiteralParser Literal(StringToks, PP,
1958                               StringLiteralEvalMethod::Unevaluated);
1959   if (Literal.hadError)
1960     return ExprError();
1961 
1962   SmallVector<SourceLocation, 4> StringTokLocs;
1963   for (const Token &Tok : StringToks)
1964     StringTokLocs.push_back(Tok.getLocation());
1965 
1966   StringLiteral *Lit = StringLiteral::Create(
1967       Context, Literal.GetString(), StringLiteralKind::Unevaluated, false, {},
1968       &StringTokLocs[0], StringTokLocs.size());
1969 
1970   if (!Literal.getUDSuffix().empty()) {
1971     SourceLocation UDSuffixLoc =
1972         getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1973                        Literal.getUDSuffixOffset());
1974     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1975   }
1976 
1977   return Lit;
1978 }
1979 
1980 std::vector<Token>
1981 Sema::ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks) {
1982   // MSVC treats some predefined identifiers (e.g. __FUNCTION__) as function
1983   // local macros that expand to string literals that may be concatenated.
1984   // These macros are expanded here (in Sema), because StringLiteralParser
1985   // (in Lex) doesn't know the enclosing function (because it hasn't been
1986   // parsed yet).
1987   assert(getLangOpts().MicrosoftExt);
1988 
1989   // Note: Although function local macros are defined only inside functions,
1990   // we ensure a valid `CurrentDecl` even outside of a function. This allows
1991   // expansion of macros into empty string literals without additional checks.
1992   Decl *CurrentDecl = getPredefinedExprDecl(CurContext);
1993   if (!CurrentDecl)
1994     CurrentDecl = Context.getTranslationUnitDecl();
1995 
1996   std::vector<Token> ExpandedToks;
1997   ExpandedToks.reserve(Toks.size());
1998   for (const Token &Tok : Toks) {
1999     if (!isFunctionLocalStringLiteralMacro(Tok.getKind(), getLangOpts())) {
2000       assert(tok::isStringLiteral(Tok.getKind()));
2001       ExpandedToks.emplace_back(Tok);
2002       continue;
2003     }
2004     if (isa<TranslationUnitDecl>(CurrentDecl))
2005       Diag(Tok.getLocation(), diag::ext_predef_outside_function);
2006     // Stringify predefined expression
2007     Diag(Tok.getLocation(), diag::ext_string_literal_from_predefined)
2008         << Tok.getKind();
2009     SmallString<64> Str;
2010     llvm::raw_svector_ostream OS(Str);
2011     Token &Exp = ExpandedToks.emplace_back();
2012     Exp.startToken();
2013     if (Tok.getKind() == tok::kw_L__FUNCTION__ ||
2014         Tok.getKind() == tok::kw_L__FUNCSIG__) {
2015       OS << 'L';
2016       Exp.setKind(tok::wide_string_literal);
2017     } else {
2018       Exp.setKind(tok::string_literal);
2019     }
2020     OS << '"'
2021        << Lexer::Stringify(PredefinedExpr::ComputeName(
2022               getPredefinedExprKind(Tok.getKind()), CurrentDecl))
2023        << '"';
2024     PP.CreateString(OS.str(), Exp, Tok.getLocation(), Tok.getEndLoc());
2025   }
2026   return ExpandedToks;
2027 }
2028 
2029 ExprResult
2030 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
2031   assert(!StringToks.empty() && "Must have at least one string!");
2032 
2033   // StringToks needs backing storage as it doesn't hold array elements itself
2034   std::vector<Token> ExpandedToks;
2035   if (getLangOpts().MicrosoftExt)
2036     StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(StringToks);
2037 
2038   StringLiteralParser Literal(StringToks, PP);
2039   if (Literal.hadError)
2040     return ExprError();
2041 
2042   SmallVector<SourceLocation, 4> StringTokLocs;
2043   for (const Token &Tok : StringToks)
2044     StringTokLocs.push_back(Tok.getLocation());
2045 
2046   QualType CharTy = Context.CharTy;
2047   StringLiteralKind Kind = StringLiteralKind::Ordinary;
2048   if (Literal.isWide()) {
2049     CharTy = Context.getWideCharType();
2050     Kind = StringLiteralKind::Wide;
2051   } else if (Literal.isUTF8()) {
2052     if (getLangOpts().Char8)
2053       CharTy = Context.Char8Ty;
2054     else if (getLangOpts().C23)
2055       CharTy = Context.UnsignedCharTy;
2056     Kind = StringLiteralKind::UTF8;
2057   } else if (Literal.isUTF16()) {
2058     CharTy = Context.Char16Ty;
2059     Kind = StringLiteralKind::UTF16;
2060   } else if (Literal.isUTF32()) {
2061     CharTy = Context.Char32Ty;
2062     Kind = StringLiteralKind::UTF32;
2063   } else if (Literal.isPascal()) {
2064     CharTy = Context.UnsignedCharTy;
2065   }
2066 
2067   // Warn on u8 string literals before C++20 and C23, whose type
2068   // was an array of char before but becomes an array of char8_t.
2069   // In C++20, it cannot be used where a pointer to char is expected.
2070   // In C23, it might have an unexpected value if char was signed.
2071   if (Kind == StringLiteralKind::UTF8 &&
2072       (getLangOpts().CPlusPlus
2073            ? !getLangOpts().CPlusPlus20 && !getLangOpts().Char8
2074            : !getLangOpts().C23)) {
2075     Diag(StringTokLocs.front(), getLangOpts().CPlusPlus
2076                                     ? diag::warn_cxx20_compat_utf8_string
2077                                     : diag::warn_c23_compat_utf8_string);
2078 
2079     // Create removals for all 'u8' prefixes in the string literal(s). This
2080     // ensures C++20/C23 compatibility (but may change the program behavior when
2081     // built by non-Clang compilers for which the execution character set is
2082     // not always UTF-8).
2083     auto RemovalDiag = PDiag(diag::note_cxx20_c23_compat_utf8_string_remove_u8);
2084     SourceLocation RemovalDiagLoc;
2085     for (const Token &Tok : StringToks) {
2086       if (Tok.getKind() == tok::utf8_string_literal) {
2087         if (RemovalDiagLoc.isInvalid())
2088           RemovalDiagLoc = Tok.getLocation();
2089         RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
2090             Tok.getLocation(),
2091             Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
2092                                            getSourceManager(), getLangOpts())));
2093       }
2094     }
2095     Diag(RemovalDiagLoc, RemovalDiag);
2096   }
2097 
2098   QualType StrTy =
2099       Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
2100 
2101   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
2102   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
2103                                              Kind, Literal.Pascal, StrTy,
2104                                              &StringTokLocs[0],
2105                                              StringTokLocs.size());
2106   if (Literal.getUDSuffix().empty())
2107     return Lit;
2108 
2109   // We're building a user-defined literal.
2110   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
2111   SourceLocation UDSuffixLoc =
2112     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
2113                    Literal.getUDSuffixOffset());
2114 
2115   // Make sure we're allowed user-defined literals here.
2116   if (!UDLScope)
2117     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
2118 
2119   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
2120   //   operator "" X (str, len)
2121   QualType SizeType = Context.getSizeType();
2122 
2123   DeclarationName OpName =
2124     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
2125   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2126   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2127 
2128   QualType ArgTy[] = {
2129     Context.getArrayDecayedType(StrTy), SizeType
2130   };
2131 
2132   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2133   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
2134                                 /*AllowRaw*/ false, /*AllowTemplate*/ true,
2135                                 /*AllowStringTemplatePack*/ true,
2136                                 /*DiagnoseMissing*/ true, Lit)) {
2137 
2138   case LOLR_Cooked: {
2139     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
2140     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
2141                                                     StringTokLocs[0]);
2142     Expr *Args[] = { Lit, LenArg };
2143 
2144     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
2145   }
2146 
2147   case LOLR_Template: {
2148     TemplateArgumentListInfo ExplicitArgs;
2149     TemplateArgument Arg(Lit);
2150     TemplateArgumentLocInfo ArgInfo(Lit);
2151     ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2152     return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2153                                     StringTokLocs.back(), &ExplicitArgs);
2154   }
2155 
2156   case LOLR_StringTemplatePack: {
2157     TemplateArgumentListInfo ExplicitArgs;
2158 
2159     unsigned CharBits = Context.getIntWidth(CharTy);
2160     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
2161     llvm::APSInt Value(CharBits, CharIsUnsigned);
2162 
2163     TemplateArgument TypeArg(CharTy);
2164     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
2165     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
2166 
2167     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
2168       Value = Lit->getCodeUnit(I);
2169       TemplateArgument Arg(Context, Value, CharTy);
2170       TemplateArgumentLocInfo ArgInfo;
2171       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
2172     }
2173     return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt,
2174                                     StringTokLocs.back(), &ExplicitArgs);
2175   }
2176   case LOLR_Raw:
2177   case LOLR_ErrorNoDiagnostic:
2178     llvm_unreachable("unexpected literal operator lookup result");
2179   case LOLR_Error:
2180     return ExprError();
2181   }
2182   llvm_unreachable("unexpected literal operator lookup result");
2183 }
2184 
2185 DeclRefExpr *
2186 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2187                        SourceLocation Loc,
2188                        const CXXScopeSpec *SS) {
2189   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2190   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2191 }
2192 
2193 DeclRefExpr *
2194 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2195                        const DeclarationNameInfo &NameInfo,
2196                        const CXXScopeSpec *SS, NamedDecl *FoundD,
2197                        SourceLocation TemplateKWLoc,
2198                        const TemplateArgumentListInfo *TemplateArgs) {
2199   NestedNameSpecifierLoc NNS =
2200       SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2201   return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2202                           TemplateArgs);
2203 }
2204 
2205 // CUDA/HIP: Check whether a captured reference variable is referencing a
2206 // host variable in a device or host device lambda.
2207 static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2208                                                             VarDecl *VD) {
2209   if (!S.getLangOpts().CUDA || !VD->hasInit())
2210     return false;
2211   assert(VD->getType()->isReferenceType());
2212 
2213   // Check whether the reference variable is referencing a host variable.
2214   auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
2215   if (!DRE)
2216     return false;
2217   auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
2218   if (!Referee || !Referee->hasGlobalStorage() ||
2219       Referee->hasAttr<CUDADeviceAttr>())
2220     return false;
2221 
2222   // Check whether the current function is a device or host device lambda.
2223   // Check whether the reference variable is a capture by getDeclContext()
2224   // since refersToEnclosingVariableOrCapture() is not ready at this point.
2225   auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
2226   if (MD && MD->getParent()->isLambda() &&
2227       MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2228       VD->getDeclContext() != MD)
2229     return true;
2230 
2231   return false;
2232 }
2233 
2234 NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2235   // A declaration named in an unevaluated operand never constitutes an odr-use.
2236   if (isUnevaluatedContext())
2237     return NOUR_Unevaluated;
2238 
2239   // C++2a [basic.def.odr]p4:
2240   //   A variable x whose name appears as a potentially-evaluated expression e
2241   //   is odr-used by e unless [...] x is a reference that is usable in
2242   //   constant expressions.
2243   // CUDA/HIP:
2244   //   If a reference variable referencing a host variable is captured in a
2245   //   device or host device lambda, the value of the referee must be copied
2246   //   to the capture and the reference variable must be treated as odr-use
2247   //   since the value of the referee is not known at compile time and must
2248   //   be loaded from the captured.
2249   if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2250     if (VD->getType()->isReferenceType() &&
2251         !(getLangOpts().OpenMP && OpenMP().isOpenMPCapturedDecl(D)) &&
2252         !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2253         VD->isUsableInConstantExpressions(Context))
2254       return NOUR_Constant;
2255   }
2256 
2257   // All remaining non-variable cases constitute an odr-use. For variables, we
2258   // need to wait and see how the expression is used.
2259   return NOUR_None;
2260 }
2261 
2262 DeclRefExpr *
2263 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2264                        const DeclarationNameInfo &NameInfo,
2265                        NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2266                        SourceLocation TemplateKWLoc,
2267                        const TemplateArgumentListInfo *TemplateArgs) {
2268   bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(D) &&
2269                                   NeedToCaptureVariable(D, NameInfo.getLoc());
2270 
2271   DeclRefExpr *E = DeclRefExpr::Create(
2272       Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2273       VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2274   MarkDeclRefReferenced(E);
2275 
2276   // C++ [except.spec]p17:
2277   //   An exception-specification is considered to be needed when:
2278   //   - in an expression, the function is the unique lookup result or
2279   //     the selected member of a set of overloaded functions.
2280   //
2281   // We delay doing this until after we've built the function reference and
2282   // marked it as used so that:
2283   //  a) if the function is defaulted, we get errors from defining it before /
2284   //     instead of errors from computing its exception specification, and
2285   //  b) if the function is a defaulted comparison, we can use the body we
2286   //     build when defining it as input to the exception specification
2287   //     computation rather than computing a new body.
2288   if (const auto *FPT = Ty->getAs<FunctionProtoType>()) {
2289     if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2290       if (const auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2291         E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2292     }
2293   }
2294 
2295   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2296       Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2297       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2298     getCurFunction()->recordUseOfWeak(E);
2299 
2300   const auto *FD = dyn_cast<FieldDecl>(D);
2301   if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D))
2302     FD = IFD->getAnonField();
2303   if (FD) {
2304     UnusedPrivateFields.remove(FD);
2305     // Just in case we're building an illegal pointer-to-member.
2306     if (FD->isBitField())
2307       E->setObjectKind(OK_BitField);
2308   }
2309 
2310   // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2311   // designates a bit-field.
2312   if (const auto *BD = dyn_cast<BindingDecl>(D))
2313     if (const auto *BE = BD->getBinding())
2314       E->setObjectKind(BE->getObjectKind());
2315 
2316   return E;
2317 }
2318 
2319 void
2320 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2321                              TemplateArgumentListInfo &Buffer,
2322                              DeclarationNameInfo &NameInfo,
2323                              const TemplateArgumentListInfo *&TemplateArgs) {
2324   if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2325     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2326     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2327 
2328     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2329                                        Id.TemplateId->NumArgs);
2330     translateTemplateArguments(TemplateArgsPtr, Buffer);
2331 
2332     TemplateName TName = Id.TemplateId->Template.get();
2333     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2334     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2335     TemplateArgs = &Buffer;
2336   } else {
2337     NameInfo = GetNameFromUnqualifiedId(Id);
2338     TemplateArgs = nullptr;
2339   }
2340 }
2341 
2342 static void emitEmptyLookupTypoDiagnostic(
2343     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2344     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2345     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2346   DeclContext *Ctx =
2347       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2348   if (!TC) {
2349     // Emit a special diagnostic for failed member lookups.
2350     // FIXME: computing the declaration context might fail here (?)
2351     if (Ctx)
2352       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2353                                                  << SS.getRange();
2354     else
2355       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2356     return;
2357   }
2358 
2359   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2360   bool DroppedSpecifier =
2361       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2362   unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2363                         ? diag::note_implicit_param_decl
2364                         : diag::note_previous_decl;
2365   if (!Ctx)
2366     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2367                          SemaRef.PDiag(NoteID));
2368   else
2369     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2370                                  << Typo << Ctx << DroppedSpecifier
2371                                  << SS.getRange(),
2372                          SemaRef.PDiag(NoteID));
2373 }
2374 
2375 bool Sema::DiagnoseDependentMemberLookup(const LookupResult &R) {
2376   // During a default argument instantiation the CurContext points
2377   // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2378   // function parameter list, hence add an explicit check.
2379   bool isDefaultArgument =
2380       !CodeSynthesisContexts.empty() &&
2381       CodeSynthesisContexts.back().Kind ==
2382           CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2383   const auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2384   bool isInstance = CurMethod && CurMethod->isInstance() &&
2385                     R.getNamingClass() == CurMethod->getParent() &&
2386                     !isDefaultArgument;
2387 
2388   // There are two ways we can find a class-scope declaration during template
2389   // instantiation that we did not find in the template definition: if it is a
2390   // member of a dependent base class, or if it is declared after the point of
2391   // use in the same class. Distinguish these by comparing the class in which
2392   // the member was found to the naming class of the lookup.
2393   unsigned DiagID = diag::err_found_in_dependent_base;
2394   unsigned NoteID = diag::note_member_declared_at;
2395   if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2396     DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2397                                       : diag::err_found_later_in_class;
2398   } else if (getLangOpts().MSVCCompat) {
2399     DiagID = diag::ext_found_in_dependent_base;
2400     NoteID = diag::note_dependent_member_use;
2401   }
2402 
2403   if (isInstance) {
2404     // Give a code modification hint to insert 'this->'.
2405     Diag(R.getNameLoc(), DiagID)
2406         << R.getLookupName()
2407         << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2408     CheckCXXThisCapture(R.getNameLoc());
2409   } else {
2410     // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2411     // they're not shadowed).
2412     Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2413   }
2414 
2415   for (const NamedDecl *D : R)
2416     Diag(D->getLocation(), NoteID);
2417 
2418   // Return true if we are inside a default argument instantiation
2419   // and the found name refers to an instance member function, otherwise
2420   // the caller will try to create an implicit member call and this is wrong
2421   // for default arguments.
2422   //
2423   // FIXME: Is this special case necessary? We could allow the caller to
2424   // diagnose this.
2425   if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2426     Diag(R.getNameLoc(), diag::err_member_call_without_object) << 0;
2427     return true;
2428   }
2429 
2430   // Tell the callee to try to recover.
2431   return false;
2432 }
2433 
2434 bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2435                                CorrectionCandidateCallback &CCC,
2436                                TemplateArgumentListInfo *ExplicitTemplateArgs,
2437                                ArrayRef<Expr *> Args, DeclContext *LookupCtx,
2438                                TypoExpr **Out) {
2439   DeclarationName Name = R.getLookupName();
2440 
2441   unsigned diagnostic = diag::err_undeclared_var_use;
2442   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2443   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2444       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2445       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2446     diagnostic = diag::err_undeclared_use;
2447     diagnostic_suggest = diag::err_undeclared_use_suggest;
2448   }
2449 
2450   // If the original lookup was an unqualified lookup, fake an
2451   // unqualified lookup.  This is useful when (for example) the
2452   // original lookup would not have found something because it was a
2453   // dependent name.
2454   DeclContext *DC =
2455       LookupCtx ? LookupCtx : (SS.isEmpty() ? CurContext : nullptr);
2456   while (DC) {
2457     if (isa<CXXRecordDecl>(DC)) {
2458       LookupQualifiedName(R, DC);
2459 
2460       if (!R.empty()) {
2461         // Don't give errors about ambiguities in this lookup.
2462         R.suppressDiagnostics();
2463 
2464         // If there's a best viable function among the results, only mention
2465         // that one in the notes.
2466         OverloadCandidateSet Candidates(R.getNameLoc(),
2467                                         OverloadCandidateSet::CSK_Normal);
2468         AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2469         OverloadCandidateSet::iterator Best;
2470         if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2471             OR_Success) {
2472           R.clear();
2473           R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2474           R.resolveKind();
2475         }
2476 
2477         return DiagnoseDependentMemberLookup(R);
2478       }
2479 
2480       R.clear();
2481     }
2482 
2483     DC = DC->getLookupParent();
2484   }
2485 
2486   // We didn't find anything, so try to correct for a typo.
2487   TypoCorrection Corrected;
2488   if (S && Out) {
2489     SourceLocation TypoLoc = R.getNameLoc();
2490     assert(!ExplicitTemplateArgs &&
2491            "Diagnosing an empty lookup with explicit template args!");
2492     *Out = CorrectTypoDelayed(
2493         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2494         [=](const TypoCorrection &TC) {
2495           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2496                                         diagnostic, diagnostic_suggest);
2497         },
2498         nullptr, CTK_ErrorRecovery, LookupCtx);
2499     if (*Out)
2500       return true;
2501   } else if (S && (Corrected =
2502                        CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
2503                                    &SS, CCC, CTK_ErrorRecovery, LookupCtx))) {
2504     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2505     bool DroppedSpecifier =
2506         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2507     R.setLookupName(Corrected.getCorrection());
2508 
2509     bool AcceptableWithRecovery = false;
2510     bool AcceptableWithoutRecovery = false;
2511     NamedDecl *ND = Corrected.getFoundDecl();
2512     if (ND) {
2513       if (Corrected.isOverloaded()) {
2514         OverloadCandidateSet OCS(R.getNameLoc(),
2515                                  OverloadCandidateSet::CSK_Normal);
2516         OverloadCandidateSet::iterator Best;
2517         for (NamedDecl *CD : Corrected) {
2518           if (FunctionTemplateDecl *FTD =
2519                    dyn_cast<FunctionTemplateDecl>(CD))
2520             AddTemplateOverloadCandidate(
2521                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2522                 Args, OCS);
2523           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2524             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2525               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2526                                    Args, OCS);
2527         }
2528         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2529         case OR_Success:
2530           ND = Best->FoundDecl;
2531           Corrected.setCorrectionDecl(ND);
2532           break;
2533         default:
2534           // FIXME: Arbitrarily pick the first declaration for the note.
2535           Corrected.setCorrectionDecl(ND);
2536           break;
2537         }
2538       }
2539       R.addDecl(ND);
2540       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2541         CXXRecordDecl *Record = nullptr;
2542         if (Corrected.getCorrectionSpecifier()) {
2543           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2544           Record = Ty->getAsCXXRecordDecl();
2545         }
2546         if (!Record)
2547           Record = cast<CXXRecordDecl>(
2548               ND->getDeclContext()->getRedeclContext());
2549         R.setNamingClass(Record);
2550       }
2551 
2552       auto *UnderlyingND = ND->getUnderlyingDecl();
2553       AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2554                                isa<FunctionTemplateDecl>(UnderlyingND);
2555       // FIXME: If we ended up with a typo for a type name or
2556       // Objective-C class name, we're in trouble because the parser
2557       // is in the wrong place to recover. Suggest the typo
2558       // correction, but don't make it a fix-it since we're not going
2559       // to recover well anyway.
2560       AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2561                                   getAsTypeTemplateDecl(UnderlyingND) ||
2562                                   isa<ObjCInterfaceDecl>(UnderlyingND);
2563     } else {
2564       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2565       // because we aren't able to recover.
2566       AcceptableWithoutRecovery = true;
2567     }
2568 
2569     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2570       unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2571                             ? diag::note_implicit_param_decl
2572                             : diag::note_previous_decl;
2573       if (SS.isEmpty())
2574         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2575                      PDiag(NoteID), AcceptableWithRecovery);
2576       else
2577         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2578                                   << Name << computeDeclContext(SS, false)
2579                                   << DroppedSpecifier << SS.getRange(),
2580                      PDiag(NoteID), AcceptableWithRecovery);
2581 
2582       // Tell the callee whether to try to recover.
2583       return !AcceptableWithRecovery;
2584     }
2585   }
2586   R.clear();
2587 
2588   // Emit a special diagnostic for failed member lookups.
2589   // FIXME: computing the declaration context might fail here (?)
2590   if (!SS.isEmpty()) {
2591     Diag(R.getNameLoc(), diag::err_no_member)
2592       << Name << computeDeclContext(SS, false)
2593       << SS.getRange();
2594     return true;
2595   }
2596 
2597   // Give up, we can't recover.
2598   Diag(R.getNameLoc(), diagnostic) << Name;
2599   return true;
2600 }
2601 
2602 /// In Microsoft mode, if we are inside a template class whose parent class has
2603 /// dependent base classes, and we can't resolve an unqualified identifier, then
2604 /// assume the identifier is a member of a dependent base class.  We can only
2605 /// recover successfully in static methods, instance methods, and other contexts
2606 /// where 'this' is available.  This doesn't precisely match MSVC's
2607 /// instantiation model, but it's close enough.
2608 static Expr *
2609 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2610                                DeclarationNameInfo &NameInfo,
2611                                SourceLocation TemplateKWLoc,
2612                                const TemplateArgumentListInfo *TemplateArgs) {
2613   // Only try to recover from lookup into dependent bases in static methods or
2614   // contexts where 'this' is available.
2615   QualType ThisType = S.getCurrentThisType();
2616   const CXXRecordDecl *RD = nullptr;
2617   if (!ThisType.isNull())
2618     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2619   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2620     RD = MD->getParent();
2621   if (!RD || !RD->hasDefinition() || !RD->hasAnyDependentBases())
2622     return nullptr;
2623 
2624   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
2625   // is available, suggest inserting 'this->' as a fixit.
2626   SourceLocation Loc = NameInfo.getLoc();
2627   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2628   DB << NameInfo.getName() << RD;
2629 
2630   if (!ThisType.isNull()) {
2631     DB << FixItHint::CreateInsertion(Loc, "this->");
2632     return CXXDependentScopeMemberExpr::Create(
2633         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2634         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2635         /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2636   }
2637 
2638   // Synthesize a fake NNS that points to the derived class.  This will
2639   // perform name lookup during template instantiation.
2640   CXXScopeSpec SS;
2641   auto *NNS =
2642       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2643   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2644   return DependentScopeDeclRefExpr::Create(
2645       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2646       TemplateArgs);
2647 }
2648 
2649 ExprResult
2650 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2651                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2652                         bool HasTrailingLParen, bool IsAddressOfOperand,
2653                         CorrectionCandidateCallback *CCC,
2654                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2655   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2656          "cannot be direct & operand and have a trailing lparen");
2657   if (SS.isInvalid())
2658     return ExprError();
2659 
2660   TemplateArgumentListInfo TemplateArgsBuffer;
2661 
2662   // Decompose the UnqualifiedId into the following data.
2663   DeclarationNameInfo NameInfo;
2664   const TemplateArgumentListInfo *TemplateArgs;
2665   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2666 
2667   DeclarationName Name = NameInfo.getName();
2668   IdentifierInfo *II = Name.getAsIdentifierInfo();
2669   SourceLocation NameLoc = NameInfo.getLoc();
2670 
2671   if (II && II->isEditorPlaceholder()) {
2672     // FIXME: When typed placeholders are supported we can create a typed
2673     // placeholder expression node.
2674     return ExprError();
2675   }
2676 
2677   // This specially handles arguments of attributes appertains to a type of C
2678   // struct field such that the name lookup within a struct finds the member
2679   // name, which is not the case for other contexts in C.
2680   if (isAttrContext() && !getLangOpts().CPlusPlus && S->isClassScope()) {
2681     // See if this is reference to a field of struct.
2682     LookupResult R(*this, NameInfo, LookupMemberName);
2683     // LookupName handles a name lookup from within anonymous struct.
2684     if (LookupName(R, S)) {
2685       if (auto *VD = dyn_cast<ValueDecl>(R.getFoundDecl())) {
2686         QualType type = VD->getType().getNonReferenceType();
2687         // This will eventually be translated into MemberExpr upon
2688         // the use of instantiated struct fields.
2689         return BuildDeclRefExpr(VD, type, VK_LValue, NameLoc);
2690       }
2691     }
2692   }
2693 
2694   // Perform the required lookup.
2695   LookupResult R(*this, NameInfo,
2696                  (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2697                      ? LookupObjCImplicitSelfParam
2698                      : LookupOrdinaryName);
2699   if (TemplateKWLoc.isValid() || TemplateArgs) {
2700     // Lookup the template name again to correctly establish the context in
2701     // which it was found. This is really unfortunate as we already did the
2702     // lookup to determine that it was a template name in the first place. If
2703     // this becomes a performance hit, we can work harder to preserve those
2704     // results until we get here but it's likely not worth it.
2705     AssumedTemplateKind AssumedTemplate;
2706     if (LookupTemplateName(R, S, SS, /*ObjectType=*/QualType(),
2707                            /*EnteringContext=*/false, TemplateKWLoc,
2708                            &AssumedTemplate))
2709       return ExprError();
2710 
2711     if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2712       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2713                                         IsAddressOfOperand, TemplateArgs);
2714   } else {
2715     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2716     LookupParsedName(R, S, &SS, /*ObjectType=*/QualType(),
2717                      /*AllowBuiltinCreation=*/!IvarLookupFollowUp);
2718 
2719     // If the result might be in a dependent base class, this is a dependent
2720     // id-expression.
2721     if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2722       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2723                                         IsAddressOfOperand, TemplateArgs);
2724 
2725     // If this reference is in an Objective-C method, then we need to do
2726     // some special Objective-C lookup, too.
2727     if (IvarLookupFollowUp) {
2728       ExprResult E(ObjC().LookupInObjCMethod(R, S, II, true));
2729       if (E.isInvalid())
2730         return ExprError();
2731 
2732       if (Expr *Ex = E.getAs<Expr>())
2733         return Ex;
2734     }
2735   }
2736 
2737   if (R.isAmbiguous())
2738     return ExprError();
2739 
2740   // This could be an implicitly declared function reference if the language
2741   // mode allows it as a feature.
2742   if (R.empty() && HasTrailingLParen && II &&
2743       getLangOpts().implicitFunctionsAllowed()) {
2744     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2745     if (D) R.addDecl(D);
2746   }
2747 
2748   // Determine whether this name might be a candidate for
2749   // argument-dependent lookup.
2750   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2751 
2752   if (R.empty() && !ADL) {
2753     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2754       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2755                                                    TemplateKWLoc, TemplateArgs))
2756         return E;
2757     }
2758 
2759     // Don't diagnose an empty lookup for inline assembly.
2760     if (IsInlineAsmIdentifier)
2761       return ExprError();
2762 
2763     // If this name wasn't predeclared and if this is not a function
2764     // call, diagnose the problem.
2765     TypoExpr *TE = nullptr;
2766     DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2767                                                        : nullptr);
2768     DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2769     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2770            "Typo correction callback misconfigured");
2771     if (CCC) {
2772       // Make sure the callback knows what the typo being diagnosed is.
2773       CCC->setTypoName(II);
2774       if (SS.isValid())
2775         CCC->setTypoNNS(SS.getScopeRep());
2776     }
2777     // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2778     // a template name, but we happen to have always already looked up the name
2779     // before we get here if it must be a template name.
2780     if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2781                             std::nullopt, nullptr, &TE)) {
2782       if (TE && KeywordReplacement) {
2783         auto &State = getTypoExprState(TE);
2784         auto BestTC = State.Consumer->getNextCorrection();
2785         if (BestTC.isKeyword()) {
2786           auto *II = BestTC.getCorrectionAsIdentifierInfo();
2787           if (State.DiagHandler)
2788             State.DiagHandler(BestTC);
2789           KeywordReplacement->startToken();
2790           KeywordReplacement->setKind(II->getTokenID());
2791           KeywordReplacement->setIdentifierInfo(II);
2792           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2793           // Clean up the state associated with the TypoExpr, since it has
2794           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2795           clearDelayedTypo(TE);
2796           // Signal that a correction to a keyword was performed by returning a
2797           // valid-but-null ExprResult.
2798           return (Expr*)nullptr;
2799         }
2800         State.Consumer->resetCorrectionStream();
2801       }
2802       return TE ? TE : ExprError();
2803     }
2804 
2805     assert(!R.empty() &&
2806            "DiagnoseEmptyLookup returned false but added no results");
2807 
2808     // If we found an Objective-C instance variable, let
2809     // LookupInObjCMethod build the appropriate expression to
2810     // reference the ivar.
2811     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2812       R.clear();
2813       ExprResult E(ObjC().LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2814       // In a hopelessly buggy code, Objective-C instance variable
2815       // lookup fails and no expression will be built to reference it.
2816       if (!E.isInvalid() && !E.get())
2817         return ExprError();
2818       return E;
2819     }
2820   }
2821 
2822   // This is guaranteed from this point on.
2823   assert(!R.empty() || ADL);
2824 
2825   // Check whether this might be a C++ implicit instance member access.
2826   // C++ [class.mfct.non-static]p3:
2827   //   When an id-expression that is not part of a class member access
2828   //   syntax and not used to form a pointer to member is used in the
2829   //   body of a non-static member function of class X, if name lookup
2830   //   resolves the name in the id-expression to a non-static non-type
2831   //   member of some class C, the id-expression is transformed into a
2832   //   class member access expression using (*this) as the
2833   //   postfix-expression to the left of the . operator.
2834   //
2835   // But we don't actually need to do this for '&' operands if R
2836   // resolved to a function or overloaded function set, because the
2837   // expression is ill-formed if it actually works out to be a
2838   // non-static member function:
2839   //
2840   // C++ [expr.ref]p4:
2841   //   Otherwise, if E1.E2 refers to a non-static member function. . .
2842   //   [t]he expression can be used only as the left-hand operand of a
2843   //   member function call.
2844   //
2845   // There are other safeguards against such uses, but it's important
2846   // to get this right here so that we don't end up making a
2847   // spuriously dependent expression if we're inside a dependent
2848   // instance method.
2849   if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
2850     return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs,
2851                                            S);
2852 
2853   if (TemplateArgs || TemplateKWLoc.isValid()) {
2854 
2855     // In C++1y, if this is a variable template id, then check it
2856     // in BuildTemplateIdExpr().
2857     // The single lookup result must be a variable template declaration.
2858     if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2859         Id.TemplateId->Kind == TNK_Var_template) {
2860       assert(R.getAsSingle<VarTemplateDecl>() &&
2861              "There should only be one declaration found.");
2862     }
2863 
2864     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2865   }
2866 
2867   return BuildDeclarationNameExpr(SS, R, ADL);
2868 }
2869 
2870 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2871     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2872     bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI) {
2873   LookupResult R(*this, NameInfo, LookupOrdinaryName);
2874   LookupParsedName(R, /*S=*/nullptr, &SS, /*ObjectType=*/QualType());
2875 
2876   if (R.isAmbiguous())
2877     return ExprError();
2878 
2879   if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2880     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2881                                      NameInfo, /*TemplateArgs=*/nullptr);
2882 
2883   if (R.empty()) {
2884     // Don't diagnose problems with invalid record decl, the secondary no_member
2885     // diagnostic during template instantiation is likely bogus, e.g. if a class
2886     // is invalid because it's derived from an invalid base class, then missing
2887     // members were likely supposed to be inherited.
2888     DeclContext *DC = computeDeclContext(SS);
2889     if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2890       if (CD->isInvalidDecl())
2891         return ExprError();
2892     Diag(NameInfo.getLoc(), diag::err_no_member)
2893       << NameInfo.getName() << DC << SS.getRange();
2894     return ExprError();
2895   }
2896 
2897   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2898     // Diagnose a missing typename if this resolved unambiguously to a type in
2899     // a dependent context.  If we can recover with a type, downgrade this to
2900     // a warning in Microsoft compatibility mode.
2901     unsigned DiagID = diag::err_typename_missing;
2902     if (RecoveryTSI && getLangOpts().MSVCCompat)
2903       DiagID = diag::ext_typename_missing;
2904     SourceLocation Loc = SS.getBeginLoc();
2905     auto D = Diag(Loc, DiagID);
2906     D << SS.getScopeRep() << NameInfo.getName().getAsString()
2907       << SourceRange(Loc, NameInfo.getEndLoc());
2908 
2909     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2910     // context.
2911     if (!RecoveryTSI)
2912       return ExprError();
2913 
2914     // Only issue the fixit if we're prepared to recover.
2915     D << FixItHint::CreateInsertion(Loc, "typename ");
2916 
2917     // Recover by pretending this was an elaborated type.
2918     QualType Ty = Context.getTypeDeclType(TD);
2919     TypeLocBuilder TLB;
2920     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2921 
2922     QualType ET = getElaboratedType(ElaboratedTypeKeyword::None, SS, Ty);
2923     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2924     QTL.setElaboratedKeywordLoc(SourceLocation());
2925     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2926 
2927     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2928 
2929     return ExprEmpty();
2930   }
2931 
2932   // If necessary, build an implicit class member access.
2933   if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
2934     return BuildPossibleImplicitMemberExpr(SS,
2935                                            /*TemplateKWLoc=*/SourceLocation(),
2936                                            R, /*TemplateArgs=*/nullptr,
2937                                            /*S=*/nullptr);
2938 
2939   return BuildDeclarationNameExpr(SS, R, /*ADL=*/false);
2940 }
2941 
2942 ExprResult
2943 Sema::PerformObjectMemberConversion(Expr *From,
2944                                     NestedNameSpecifier *Qualifier,
2945                                     NamedDecl *FoundDecl,
2946                                     NamedDecl *Member) {
2947   const auto *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2948   if (!RD)
2949     return From;
2950 
2951   QualType DestRecordType;
2952   QualType DestType;
2953   QualType FromRecordType;
2954   QualType FromType = From->getType();
2955   bool PointerConversions = false;
2956   if (isa<FieldDecl>(Member)) {
2957     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2958     auto FromPtrType = FromType->getAs<PointerType>();
2959     DestRecordType = Context.getAddrSpaceQualType(
2960         DestRecordType, FromPtrType
2961                             ? FromType->getPointeeType().getAddressSpace()
2962                             : FromType.getAddressSpace());
2963 
2964     if (FromPtrType) {
2965       DestType = Context.getPointerType(DestRecordType);
2966       FromRecordType = FromPtrType->getPointeeType();
2967       PointerConversions = true;
2968     } else {
2969       DestType = DestRecordType;
2970       FromRecordType = FromType;
2971     }
2972   } else if (const auto *Method = dyn_cast<CXXMethodDecl>(Member)) {
2973     if (!Method->isImplicitObjectMemberFunction())
2974       return From;
2975 
2976     DestType = Method->getThisType().getNonReferenceType();
2977     DestRecordType = Method->getFunctionObjectParameterType();
2978 
2979     if (FromType->getAs<PointerType>()) {
2980       FromRecordType = FromType->getPointeeType();
2981       PointerConversions = true;
2982     } else {
2983       FromRecordType = FromType;
2984       DestType = DestRecordType;
2985     }
2986 
2987     LangAS FromAS = FromRecordType.getAddressSpace();
2988     LangAS DestAS = DestRecordType.getAddressSpace();
2989     if (FromAS != DestAS) {
2990       QualType FromRecordTypeWithoutAS =
2991           Context.removeAddrSpaceQualType(FromRecordType);
2992       QualType FromTypeWithDestAS =
2993           Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
2994       if (PointerConversions)
2995         FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
2996       From = ImpCastExprToType(From, FromTypeWithDestAS,
2997                                CK_AddressSpaceConversion, From->getValueKind())
2998                  .get();
2999     }
3000   } else {
3001     // No conversion necessary.
3002     return From;
3003   }
3004 
3005   if (DestType->isDependentType() || FromType->isDependentType())
3006     return From;
3007 
3008   // If the unqualified types are the same, no conversion is necessary.
3009   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3010     return From;
3011 
3012   SourceRange FromRange = From->getSourceRange();
3013   SourceLocation FromLoc = FromRange.getBegin();
3014 
3015   ExprValueKind VK = From->getValueKind();
3016 
3017   // C++ [class.member.lookup]p8:
3018   //   [...] Ambiguities can often be resolved by qualifying a name with its
3019   //   class name.
3020   //
3021   // If the member was a qualified name and the qualified referred to a
3022   // specific base subobject type, we'll cast to that intermediate type
3023   // first and then to the object in which the member is declared. That allows
3024   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3025   //
3026   //   class Base { public: int x; };
3027   //   class Derived1 : public Base { };
3028   //   class Derived2 : public Base { };
3029   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
3030   //
3031   //   void VeryDerived::f() {
3032   //     x = 17; // error: ambiguous base subobjects
3033   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
3034   //   }
3035   if (Qualifier && Qualifier->getAsType()) {
3036     QualType QType = QualType(Qualifier->getAsType(), 0);
3037     assert(QType->isRecordType() && "lookup done with non-record type");
3038 
3039     QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3040 
3041     // In C++98, the qualifier type doesn't actually have to be a base
3042     // type of the object type, in which case we just ignore it.
3043     // Otherwise build the appropriate casts.
3044     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3045       CXXCastPath BasePath;
3046       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3047                                        FromLoc, FromRange, &BasePath))
3048         return ExprError();
3049 
3050       if (PointerConversions)
3051         QType = Context.getPointerType(QType);
3052       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3053                                VK, &BasePath).get();
3054 
3055       FromType = QType;
3056       FromRecordType = QRecordType;
3057 
3058       // If the qualifier type was the same as the destination type,
3059       // we're done.
3060       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3061         return From;
3062     }
3063   }
3064 
3065   CXXCastPath BasePath;
3066   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3067                                    FromLoc, FromRange, &BasePath,
3068                                    /*IgnoreAccess=*/true))
3069     return ExprError();
3070 
3071   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3072                            VK, &BasePath);
3073 }
3074 
3075 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3076                                       const LookupResult &R,
3077                                       bool HasTrailingLParen) {
3078   // Only when used directly as the postfix-expression of a call.
3079   if (!HasTrailingLParen)
3080     return false;
3081 
3082   // Never if a scope specifier was provided.
3083   if (SS.isNotEmpty())
3084     return false;
3085 
3086   // Only in C++ or ObjC++.
3087   if (!getLangOpts().CPlusPlus)
3088     return false;
3089 
3090   // Turn off ADL when we find certain kinds of declarations during
3091   // normal lookup:
3092   for (const NamedDecl *D : R) {
3093     // C++0x [basic.lookup.argdep]p3:
3094     //     -- a declaration of a class member
3095     // Since using decls preserve this property, we check this on the
3096     // original decl.
3097     if (D->isCXXClassMember())
3098       return false;
3099 
3100     // C++0x [basic.lookup.argdep]p3:
3101     //     -- a block-scope function declaration that is not a
3102     //        using-declaration
3103     // NOTE: we also trigger this for function templates (in fact, we
3104     // don't check the decl type at all, since all other decl types
3105     // turn off ADL anyway).
3106     if (isa<UsingShadowDecl>(D))
3107       D = cast<UsingShadowDecl>(D)->getTargetDecl();
3108     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3109       return false;
3110 
3111     // C++0x [basic.lookup.argdep]p3:
3112     //     -- a declaration that is neither a function or a function
3113     //        template
3114     // And also for builtin functions.
3115     if (const auto *FDecl = dyn_cast<FunctionDecl>(D)) {
3116       // But also builtin functions.
3117       if (FDecl->getBuiltinID() && FDecl->isImplicit())
3118         return false;
3119     } else if (!isa<FunctionTemplateDecl>(D))
3120       return false;
3121   }
3122 
3123   return true;
3124 }
3125 
3126 
3127 /// Diagnoses obvious problems with the use of the given declaration
3128 /// as an expression.  This is only actually called for lookups that
3129 /// were not overloaded, and it doesn't promise that the declaration
3130 /// will in fact be used.
3131 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3132                             bool AcceptInvalid) {
3133   if (D->isInvalidDecl() && !AcceptInvalid)
3134     return true;
3135 
3136   if (isa<TypedefNameDecl>(D)) {
3137     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3138     return true;
3139   }
3140 
3141   if (isa<ObjCInterfaceDecl>(D)) {
3142     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3143     return true;
3144   }
3145 
3146   if (isa<NamespaceDecl>(D)) {
3147     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3148     return true;
3149   }
3150 
3151   return false;
3152 }
3153 
3154 // Certain multiversion types should be treated as overloaded even when there is
3155 // only one result.
3156 static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3157   assert(R.isSingleResult() && "Expected only a single result");
3158   const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3159   return FD &&
3160          (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3161 }
3162 
3163 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3164                                           LookupResult &R, bool NeedsADL,
3165                                           bool AcceptInvalidDecl) {
3166   // If this is a single, fully-resolved result and we don't need ADL,
3167   // just build an ordinary singleton decl ref.
3168   if (!NeedsADL && R.isSingleResult() &&
3169       !R.getAsSingle<FunctionTemplateDecl>() &&
3170       !ShouldLookupResultBeMultiVersionOverload(R))
3171     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3172                                     R.getRepresentativeDecl(), nullptr,
3173                                     AcceptInvalidDecl);
3174 
3175   // We only need to check the declaration if there's exactly one
3176   // result, because in the overloaded case the results can only be
3177   // functions and function templates.
3178   if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3179       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl(),
3180                       AcceptInvalidDecl))
3181     return ExprError();
3182 
3183   // Otherwise, just build an unresolved lookup expression.  Suppress
3184   // any lookup-related diagnostics; we'll hash these out later, when
3185   // we've picked a target.
3186   R.suppressDiagnostics();
3187 
3188   UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(
3189       Context, R.getNamingClass(), SS.getWithLocInContext(Context),
3190       R.getLookupNameInfo(), NeedsADL, R.begin(), R.end(),
3191       /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false);
3192 
3193   return ULE;
3194 }
3195 
3196 static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3197                                                         SourceLocation loc,
3198                                                         ValueDecl *var);
3199 
3200 ExprResult Sema::BuildDeclarationNameExpr(
3201     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3202     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3203     bool AcceptInvalidDecl) {
3204   assert(D && "Cannot refer to a NULL declaration");
3205   assert(!isa<FunctionTemplateDecl>(D) &&
3206          "Cannot refer unambiguously to a function template");
3207 
3208   SourceLocation Loc = NameInfo.getLoc();
3209   if (CheckDeclInExpr(*this, Loc, D, AcceptInvalidDecl)) {
3210     // Recovery from invalid cases (e.g. D is an invalid Decl).
3211     // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3212     // diagnostics, as invalid decls use int as a fallback type.
3213     return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
3214   }
3215 
3216   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
3217     // Specifically diagnose references to class templates that are missing
3218     // a template argument list.
3219     diagnoseMissingTemplateArguments(SS, /*TemplateKeyword=*/false, TD, Loc);
3220     return ExprError();
3221   }
3222 
3223   // Make sure that we're referring to a value.
3224   if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(D)) {
3225     Diag(Loc, diag::err_ref_non_value) << D << SS.getRange();
3226     Diag(D->getLocation(), diag::note_declared_at);
3227     return ExprError();
3228   }
3229 
3230   // Check whether this declaration can be used. Note that we suppress
3231   // this check when we're going to perform argument-dependent lookup
3232   // on this function name, because this might not be the function
3233   // that overload resolution actually selects.
3234   if (DiagnoseUseOfDecl(D, Loc))
3235     return ExprError();
3236 
3237   auto *VD = cast<ValueDecl>(D);
3238 
3239   // Only create DeclRefExpr's for valid Decl's.
3240   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3241     return ExprError();
3242 
3243   // Handle members of anonymous structs and unions.  If we got here,
3244   // and the reference is to a class member indirect field, then this
3245   // must be the subject of a pointer-to-member expression.
3246   if (auto *IndirectField = dyn_cast<IndirectFieldDecl>(VD);
3247       IndirectField && !IndirectField->isCXXClassMember())
3248     return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3249                                                     IndirectField);
3250 
3251   QualType type = VD->getType();
3252   if (type.isNull())
3253     return ExprError();
3254   ExprValueKind valueKind = VK_PRValue;
3255 
3256   // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3257   // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3258   // is expanded by some outer '...' in the context of the use.
3259   type = type.getNonPackExpansionType();
3260 
3261   switch (D->getKind()) {
3262     // Ignore all the non-ValueDecl kinds.
3263 #define ABSTRACT_DECL(kind)
3264 #define VALUE(type, base)
3265 #define DECL(type, base) case Decl::type:
3266 #include "clang/AST/DeclNodes.inc"
3267     llvm_unreachable("invalid value decl kind");
3268 
3269   // These shouldn't make it here.
3270   case Decl::ObjCAtDefsField:
3271     llvm_unreachable("forming non-member reference to ivar?");
3272 
3273   // Enum constants are always r-values and never references.
3274   // Unresolved using declarations are dependent.
3275   case Decl::EnumConstant:
3276   case Decl::UnresolvedUsingValue:
3277   case Decl::OMPDeclareReduction:
3278   case Decl::OMPDeclareMapper:
3279     valueKind = VK_PRValue;
3280     break;
3281 
3282   // Fields and indirect fields that got here must be for
3283   // pointer-to-member expressions; we just call them l-values for
3284   // internal consistency, because this subexpression doesn't really
3285   // exist in the high-level semantics.
3286   case Decl::Field:
3287   case Decl::IndirectField:
3288   case Decl::ObjCIvar:
3289     assert((getLangOpts().CPlusPlus || isAttrContext()) &&
3290            "building reference to field in C?");
3291 
3292     // These can't have reference type in well-formed programs, but
3293     // for internal consistency we do this anyway.
3294     type = type.getNonReferenceType();
3295     valueKind = VK_LValue;
3296     break;
3297 
3298   // Non-type template parameters are either l-values or r-values
3299   // depending on the type.
3300   case Decl::NonTypeTemplateParm: {
3301     if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3302       type = reftype->getPointeeType();
3303       valueKind = VK_LValue; // even if the parameter is an r-value reference
3304       break;
3305     }
3306 
3307     // [expr.prim.id.unqual]p2:
3308     //   If the entity is a template parameter object for a template
3309     //   parameter of type T, the type of the expression is const T.
3310     //   [...] The expression is an lvalue if the entity is a [...] template
3311     //   parameter object.
3312     if (type->isRecordType()) {
3313       type = type.getUnqualifiedType().withConst();
3314       valueKind = VK_LValue;
3315       break;
3316     }
3317 
3318     // For non-references, we need to strip qualifiers just in case
3319     // the template parameter was declared as 'const int' or whatever.
3320     valueKind = VK_PRValue;
3321     type = type.getUnqualifiedType();
3322     break;
3323   }
3324 
3325   case Decl::Var:
3326   case Decl::VarTemplateSpecialization:
3327   case Decl::VarTemplatePartialSpecialization:
3328   case Decl::Decomposition:
3329   case Decl::OMPCapturedExpr:
3330     // In C, "extern void blah;" is valid and is an r-value.
3331     if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3332         type->isVoidType()) {
3333       valueKind = VK_PRValue;
3334       break;
3335     }
3336     [[fallthrough]];
3337 
3338   case Decl::ImplicitParam:
3339   case Decl::ParmVar: {
3340     // These are always l-values.
3341     valueKind = VK_LValue;
3342     type = type.getNonReferenceType();
3343 
3344     // FIXME: Does the addition of const really only apply in
3345     // potentially-evaluated contexts? Since the variable isn't actually
3346     // captured in an unevaluated context, it seems that the answer is no.
3347     if (!isUnevaluatedContext()) {
3348       QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3349       if (!CapturedType.isNull())
3350         type = CapturedType;
3351     }
3352 
3353     break;
3354   }
3355 
3356   case Decl::Binding:
3357     // These are always lvalues.
3358     valueKind = VK_LValue;
3359     type = type.getNonReferenceType();
3360     break;
3361 
3362   case Decl::Function: {
3363     if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3364       if (!Context.BuiltinInfo.isDirectlyAddressable(BID)) {
3365         type = Context.BuiltinFnTy;
3366         valueKind = VK_PRValue;
3367         break;
3368       }
3369     }
3370 
3371     const FunctionType *fty = type->castAs<FunctionType>();
3372 
3373     // If we're referring to a function with an __unknown_anytype
3374     // result type, make the entire expression __unknown_anytype.
3375     if (fty->getReturnType() == Context.UnknownAnyTy) {
3376       type = Context.UnknownAnyTy;
3377       valueKind = VK_PRValue;
3378       break;
3379     }
3380 
3381     // Functions are l-values in C++.
3382     if (getLangOpts().CPlusPlus) {
3383       valueKind = VK_LValue;
3384       break;
3385     }
3386 
3387     // C99 DR 316 says that, if a function type comes from a
3388     // function definition (without a prototype), that type is only
3389     // used for checking compatibility. Therefore, when referencing
3390     // the function, we pretend that we don't have the full function
3391     // type.
3392     if (!cast<FunctionDecl>(VD)->hasPrototype() && isa<FunctionProtoType>(fty))
3393       type = Context.getFunctionNoProtoType(fty->getReturnType(),
3394                                             fty->getExtInfo());
3395 
3396     // Functions are r-values in C.
3397     valueKind = VK_PRValue;
3398     break;
3399   }
3400 
3401   case Decl::CXXDeductionGuide:
3402     llvm_unreachable("building reference to deduction guide");
3403 
3404   case Decl::MSProperty:
3405   case Decl::MSGuid:
3406   case Decl::TemplateParamObject:
3407     // FIXME: Should MSGuidDecl and template parameter objects be subject to
3408     // capture in OpenMP, or duplicated between host and device?
3409     valueKind = VK_LValue;
3410     break;
3411 
3412   case Decl::UnnamedGlobalConstant:
3413     valueKind = VK_LValue;
3414     break;
3415 
3416   case Decl::CXXMethod:
3417     // If we're referring to a method with an __unknown_anytype
3418     // result type, make the entire expression __unknown_anytype.
3419     // This should only be possible with a type written directly.
3420     if (const FunctionProtoType *proto =
3421             dyn_cast<FunctionProtoType>(VD->getType()))
3422       if (proto->getReturnType() == Context.UnknownAnyTy) {
3423         type = Context.UnknownAnyTy;
3424         valueKind = VK_PRValue;
3425         break;
3426       }
3427 
3428     // C++ methods are l-values if static, r-values if non-static.
3429     if (cast<CXXMethodDecl>(VD)->isStatic()) {
3430       valueKind = VK_LValue;
3431       break;
3432     }
3433     [[fallthrough]];
3434 
3435   case Decl::CXXConversion:
3436   case Decl::CXXDestructor:
3437   case Decl::CXXConstructor:
3438     valueKind = VK_PRValue;
3439     break;
3440   }
3441 
3442   auto *E =
3443       BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3444                        /*FIXME: TemplateKWLoc*/ SourceLocation(), TemplateArgs);
3445   // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3446   // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3447   // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3448   // diagnostics).
3449   if (VD->isInvalidDecl() && E)
3450     return CreateRecoveryExpr(E->getBeginLoc(), E->getEndLoc(), {E});
3451   return E;
3452 }
3453 
3454 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3455                                     SmallString<32> &Target) {
3456   Target.resize(CharByteWidth * (Source.size() + 1));
3457   char *ResultPtr = &Target[0];
3458   const llvm::UTF8 *ErrorPtr;
3459   bool success =
3460       llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3461   (void)success;
3462   assert(success);
3463   Target.resize(ResultPtr - &Target[0]);
3464 }
3465 
3466 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3467                                      PredefinedIdentKind IK) {
3468   Decl *currentDecl = getPredefinedExprDecl(CurContext);
3469   if (!currentDecl) {
3470     Diag(Loc, diag::ext_predef_outside_function);
3471     currentDecl = Context.getTranslationUnitDecl();
3472   }
3473 
3474   QualType ResTy;
3475   StringLiteral *SL = nullptr;
3476   if (cast<DeclContext>(currentDecl)->isDependentContext())
3477     ResTy = Context.DependentTy;
3478   else {
3479     // Pre-defined identifiers are of type char[x], where x is the length of
3480     // the string.
3481     bool ForceElaboratedPrinting =
3482         IK == PredefinedIdentKind::Function && getLangOpts().MSVCCompat;
3483     auto Str =
3484         PredefinedExpr::ComputeName(IK, currentDecl, ForceElaboratedPrinting);
3485     unsigned Length = Str.length();
3486 
3487     llvm::APInt LengthI(32, Length + 1);
3488     if (IK == PredefinedIdentKind::LFunction ||
3489         IK == PredefinedIdentKind::LFuncSig) {
3490       ResTy =
3491           Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3492       SmallString<32> RawChars;
3493       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3494                               Str, RawChars);
3495       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3496                                            ArraySizeModifier::Normal,
3497                                            /*IndexTypeQuals*/ 0);
3498       SL = StringLiteral::Create(Context, RawChars, StringLiteralKind::Wide,
3499                                  /*Pascal*/ false, ResTy, Loc);
3500     } else {
3501       ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3502       ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3503                                            ArraySizeModifier::Normal,
3504                                            /*IndexTypeQuals*/ 0);
3505       SL = StringLiteral::Create(Context, Str, StringLiteralKind::Ordinary,
3506                                  /*Pascal*/ false, ResTy, Loc);
3507     }
3508   }
3509 
3510   return PredefinedExpr::Create(Context, Loc, ResTy, IK, LangOpts.MicrosoftExt,
3511                                 SL);
3512 }
3513 
3514 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3515   return BuildPredefinedExpr(Loc, getPredefinedExprKind(Kind));
3516 }
3517 
3518 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3519   SmallString<16> CharBuffer;
3520   bool Invalid = false;
3521   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3522   if (Invalid)
3523     return ExprError();
3524 
3525   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3526                             PP, Tok.getKind());
3527   if (Literal.hadError())
3528     return ExprError();
3529 
3530   QualType Ty;
3531   if (Literal.isWide())
3532     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3533   else if (Literal.isUTF8() && getLangOpts().C23)
3534     Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C23
3535   else if (Literal.isUTF8() && getLangOpts().Char8)
3536     Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3537   else if (Literal.isUTF16())
3538     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3539   else if (Literal.isUTF32())
3540     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3541   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3542     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
3543   else
3544     Ty = Context.CharTy; // 'x' -> char in C++;
3545                          // u8'x' -> char in C11-C17 and in C++ without char8_t.
3546 
3547   CharacterLiteralKind Kind = CharacterLiteralKind::Ascii;
3548   if (Literal.isWide())
3549     Kind = CharacterLiteralKind::Wide;
3550   else if (Literal.isUTF16())
3551     Kind = CharacterLiteralKind::UTF16;
3552   else if (Literal.isUTF32())
3553     Kind = CharacterLiteralKind::UTF32;
3554   else if (Literal.isUTF8())
3555     Kind = CharacterLiteralKind::UTF8;
3556 
3557   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3558                                              Tok.getLocation());
3559 
3560   if (Literal.getUDSuffix().empty())
3561     return Lit;
3562 
3563   // We're building a user-defined literal.
3564   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3565   SourceLocation UDSuffixLoc =
3566     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3567 
3568   // Make sure we're allowed user-defined literals here.
3569   if (!UDLScope)
3570     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3571 
3572   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3573   //   operator "" X (ch)
3574   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3575                                         Lit, Tok.getLocation());
3576 }
3577 
3578 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3579   unsigned IntSize = Context.getTargetInfo().getIntWidth();
3580   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3581                                 Context.IntTy, Loc);
3582 }
3583 
3584 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3585                                   QualType Ty, SourceLocation Loc) {
3586   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3587 
3588   using llvm::APFloat;
3589   APFloat Val(Format);
3590 
3591   llvm::RoundingMode RM = S.CurFPFeatures.getRoundingMode();
3592   if (RM == llvm::RoundingMode::Dynamic)
3593     RM = llvm::RoundingMode::NearestTiesToEven;
3594   APFloat::opStatus result = Literal.GetFloatValue(Val, RM);
3595 
3596   // Overflow is always an error, but underflow is only an error if
3597   // we underflowed to zero (APFloat reports denormals as underflow).
3598   if ((result & APFloat::opOverflow) ||
3599       ((result & APFloat::opUnderflow) && Val.isZero())) {
3600     unsigned diagnostic;
3601     SmallString<20> buffer;
3602     if (result & APFloat::opOverflow) {
3603       diagnostic = diag::warn_float_overflow;
3604       APFloat::getLargest(Format).toString(buffer);
3605     } else {
3606       diagnostic = diag::warn_float_underflow;
3607       APFloat::getSmallest(Format).toString(buffer);
3608     }
3609 
3610     S.Diag(Loc, diagnostic) << Ty << buffer.str();
3611   }
3612 
3613   bool isExact = (result == APFloat::opOK);
3614   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3615 }
3616 
3617 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc, bool AllowZero) {
3618   assert(E && "Invalid expression");
3619 
3620   if (E->isValueDependent())
3621     return false;
3622 
3623   QualType QT = E->getType();
3624   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3625     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3626     return true;
3627   }
3628 
3629   llvm::APSInt ValueAPS;
3630   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3631 
3632   if (R.isInvalid())
3633     return true;
3634 
3635   // GCC allows the value of unroll count to be 0.
3636   // https://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html says
3637   // "The values of 0 and 1 block any unrolling of the loop."
3638   // The values doesn't have to be strictly positive in '#pragma GCC unroll' and
3639   // '#pragma unroll' cases.
3640   bool ValueIsPositive =
3641       AllowZero ? ValueAPS.isNonNegative() : ValueAPS.isStrictlyPositive();
3642   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3643     Diag(E->getExprLoc(), diag::err_requires_positive_value)
3644         << toString(ValueAPS, 10) << ValueIsPositive;
3645     return true;
3646   }
3647 
3648   return false;
3649 }
3650 
3651 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3652   // Fast path for a single digit (which is quite common).  A single digit
3653   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3654   if (Tok.getLength() == 1 || Tok.getKind() == tok::binary_data) {
3655     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3656     return ActOnIntegerConstant(Tok.getLocation(), Val);
3657   }
3658 
3659   SmallString<128> SpellingBuffer;
3660   // NumericLiteralParser wants to overread by one character.  Add padding to
3661   // the buffer in case the token is copied to the buffer.  If getSpelling()
3662   // returns a StringRef to the memory buffer, it should have a null char at
3663   // the EOF, so it is also safe.
3664   SpellingBuffer.resize(Tok.getLength() + 1);
3665 
3666   // Get the spelling of the token, which eliminates trigraphs, etc.
3667   bool Invalid = false;
3668   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3669   if (Invalid)
3670     return ExprError();
3671 
3672   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3673                                PP.getSourceManager(), PP.getLangOpts(),
3674                                PP.getTargetInfo(), PP.getDiagnostics());
3675   if (Literal.hadError)
3676     return ExprError();
3677 
3678   if (Literal.hasUDSuffix()) {
3679     // We're building a user-defined literal.
3680     const IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3681     SourceLocation UDSuffixLoc =
3682       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3683 
3684     // Make sure we're allowed user-defined literals here.
3685     if (!UDLScope)
3686       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3687 
3688     QualType CookedTy;
3689     if (Literal.isFloatingLiteral()) {
3690       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3691       // long double, the literal is treated as a call of the form
3692       //   operator "" X (f L)
3693       CookedTy = Context.LongDoubleTy;
3694     } else {
3695       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3696       // unsigned long long, the literal is treated as a call of the form
3697       //   operator "" X (n ULL)
3698       CookedTy = Context.UnsignedLongLongTy;
3699     }
3700 
3701     DeclarationName OpName =
3702       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3703     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3704     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3705 
3706     SourceLocation TokLoc = Tok.getLocation();
3707 
3708     // Perform literal operator lookup to determine if we're building a raw
3709     // literal or a cooked one.
3710     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3711     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3712                                   /*AllowRaw*/ true, /*AllowTemplate*/ true,
3713                                   /*AllowStringTemplatePack*/ false,
3714                                   /*DiagnoseMissing*/ !Literal.isImaginary)) {
3715     case LOLR_ErrorNoDiagnostic:
3716       // Lookup failure for imaginary constants isn't fatal, there's still the
3717       // GNU extension producing _Complex types.
3718       break;
3719     case LOLR_Error:
3720       return ExprError();
3721     case LOLR_Cooked: {
3722       Expr *Lit;
3723       if (Literal.isFloatingLiteral()) {
3724         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3725       } else {
3726         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3727         if (Literal.GetIntegerValue(ResultVal))
3728           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3729               << /* Unsigned */ 1;
3730         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3731                                      Tok.getLocation());
3732       }
3733       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3734     }
3735 
3736     case LOLR_Raw: {
3737       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3738       // literal is treated as a call of the form
3739       //   operator "" X ("n")
3740       unsigned Length = Literal.getUDSuffixOffset();
3741       QualType StrTy = Context.getConstantArrayType(
3742           Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3743           llvm::APInt(32, Length + 1), nullptr, ArraySizeModifier::Normal, 0);
3744       Expr *Lit =
3745           StringLiteral::Create(Context, StringRef(TokSpelling.data(), Length),
3746                                 StringLiteralKind::Ordinary,
3747                                 /*Pascal*/ false, StrTy, &TokLoc, 1);
3748       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3749     }
3750 
3751     case LOLR_Template: {
3752       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3753       // template), L is treated as a call fo the form
3754       //   operator "" X <'c1', 'c2', ... 'ck'>()
3755       // where n is the source character sequence c1 c2 ... ck.
3756       TemplateArgumentListInfo ExplicitArgs;
3757       unsigned CharBits = Context.getIntWidth(Context.CharTy);
3758       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3759       llvm::APSInt Value(CharBits, CharIsUnsigned);
3760       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3761         Value = TokSpelling[I];
3762         TemplateArgument Arg(Context, Value, Context.CharTy);
3763         TemplateArgumentLocInfo ArgInfo;
3764         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3765       }
3766       return BuildLiteralOperatorCall(R, OpNameInfo, std::nullopt, TokLoc,
3767                                       &ExplicitArgs);
3768     }
3769     case LOLR_StringTemplatePack:
3770       llvm_unreachable("unexpected literal operator lookup result");
3771     }
3772   }
3773 
3774   Expr *Res;
3775 
3776   if (Literal.isFixedPointLiteral()) {
3777     QualType Ty;
3778 
3779     if (Literal.isAccum) {
3780       if (Literal.isHalf) {
3781         Ty = Context.ShortAccumTy;
3782       } else if (Literal.isLong) {
3783         Ty = Context.LongAccumTy;
3784       } else {
3785         Ty = Context.AccumTy;
3786       }
3787     } else if (Literal.isFract) {
3788       if (Literal.isHalf) {
3789         Ty = Context.ShortFractTy;
3790       } else if (Literal.isLong) {
3791         Ty = Context.LongFractTy;
3792       } else {
3793         Ty = Context.FractTy;
3794       }
3795     }
3796 
3797     if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3798 
3799     bool isSigned = !Literal.isUnsigned;
3800     unsigned scale = Context.getFixedPointScale(Ty);
3801     unsigned bit_width = Context.getTypeInfo(Ty).Width;
3802 
3803     llvm::APInt Val(bit_width, 0, isSigned);
3804     bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3805     bool ValIsZero = Val.isZero() && !Overflowed;
3806 
3807     auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3808     if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3809       // Clause 6.4.4 - The value of a constant shall be in the range of
3810       // representable values for its type, with exception for constants of a
3811       // fract type with a value of exactly 1; such a constant shall denote
3812       // the maximal value for the type.
3813       --Val;
3814     else if (Val.ugt(MaxVal) || Overflowed)
3815       Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3816 
3817     Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3818                                               Tok.getLocation(), scale);
3819   } else if (Literal.isFloatingLiteral()) {
3820     QualType Ty;
3821     if (Literal.isHalf){
3822       if (getLangOpts().HLSL ||
3823           getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()))
3824         Ty = Context.HalfTy;
3825       else {
3826         Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3827         return ExprError();
3828       }
3829     } else if (Literal.isFloat)
3830       Ty = Context.FloatTy;
3831     else if (Literal.isLong)
3832       Ty = !getLangOpts().HLSL ? Context.LongDoubleTy : Context.DoubleTy;
3833     else if (Literal.isFloat16)
3834       Ty = Context.Float16Ty;
3835     else if (Literal.isFloat128)
3836       Ty = Context.Float128Ty;
3837     else if (getLangOpts().HLSL)
3838       Ty = Context.FloatTy;
3839     else
3840       Ty = Context.DoubleTy;
3841 
3842     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3843 
3844     if (Ty == Context.DoubleTy) {
3845       if (getLangOpts().SinglePrecisionConstants) {
3846         if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3847           Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3848         }
3849       } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3850                                              "cl_khr_fp64", getLangOpts())) {
3851         // Impose single-precision float type when cl_khr_fp64 is not enabled.
3852         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64)
3853             << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
3854         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3855       }
3856     }
3857   } else if (!Literal.isIntegerLiteral()) {
3858     return ExprError();
3859   } else {
3860     QualType Ty;
3861 
3862     // 'z/uz' literals are a C++23 feature.
3863     if (Literal.isSizeT)
3864       Diag(Tok.getLocation(), getLangOpts().CPlusPlus
3865                                   ? getLangOpts().CPlusPlus23
3866                                         ? diag::warn_cxx20_compat_size_t_suffix
3867                                         : diag::ext_cxx23_size_t_suffix
3868                                   : diag::err_cxx23_size_t_suffix);
3869 
3870     // 'wb/uwb' literals are a C23 feature. We support _BitInt as a type in C++,
3871     // but we do not currently support the suffix in C++ mode because it's not
3872     // entirely clear whether WG21 will prefer this suffix to return a library
3873     // type such as std::bit_int instead of returning a _BitInt. '__wb/__uwb'
3874     // literals are a C++ extension.
3875     if (Literal.isBitInt)
3876       PP.Diag(Tok.getLocation(),
3877               getLangOpts().CPlusPlus ? diag::ext_cxx_bitint_suffix
3878               : getLangOpts().C23     ? diag::warn_c23_compat_bitint_suffix
3879                                       : diag::ext_c23_bitint_suffix);
3880 
3881     // Get the value in the widest-possible width. What is "widest" depends on
3882     // whether the literal is a bit-precise integer or not. For a bit-precise
3883     // integer type, try to scan the source to determine how many bits are
3884     // needed to represent the value. This may seem a bit expensive, but trying
3885     // to get the integer value from an overly-wide APInt is *extremely*
3886     // expensive, so the naive approach of assuming
3887     // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
3888     unsigned BitsNeeded =
3889         Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
3890                                Literal.getLiteralDigits(), Literal.getRadix())
3891                          : Context.getTargetInfo().getIntMaxTWidth();
3892     llvm::APInt ResultVal(BitsNeeded, 0);
3893 
3894     if (Literal.GetIntegerValue(ResultVal)) {
3895       // If this value didn't fit into uintmax_t, error and force to ull.
3896       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3897           << /* Unsigned */ 1;
3898       Ty = Context.UnsignedLongLongTy;
3899       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3900              "long long is not intmax_t?");
3901     } else {
3902       // If this value fits into a ULL, try to figure out what else it fits into
3903       // according to the rules of C99 6.4.4.1p5.
3904 
3905       // Octal, Hexadecimal, and integers with a U suffix are allowed to
3906       // be an unsigned int.
3907       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3908 
3909       // HLSL doesn't really have `long` or `long long`. We support the `ll`
3910       // suffix for portability of code with C++, but both `l` and `ll` are
3911       // 64-bit integer types, and we want the type of `1l` and `1ll` to be the
3912       // same.
3913       if (getLangOpts().HLSL && !Literal.isLong && Literal.isLongLong) {
3914         Literal.isLong = true;
3915         Literal.isLongLong = false;
3916       }
3917 
3918       // Check from smallest to largest, picking the smallest type we can.
3919       unsigned Width = 0;
3920 
3921       // Microsoft specific integer suffixes are explicitly sized.
3922       if (Literal.MicrosoftInteger) {
3923         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3924           Width = 8;
3925           Ty = Context.CharTy;
3926         } else {
3927           Width = Literal.MicrosoftInteger;
3928           Ty = Context.getIntTypeForBitwidth(Width,
3929                                              /*Signed=*/!Literal.isUnsigned);
3930         }
3931       }
3932 
3933       // Bit-precise integer literals are automagically-sized based on the
3934       // width required by the literal.
3935       if (Literal.isBitInt) {
3936         // The signed version has one more bit for the sign value. There are no
3937         // zero-width bit-precise integers, even if the literal value is 0.
3938         Width = std::max(ResultVal.getActiveBits(), 1u) +
3939                 (Literal.isUnsigned ? 0u : 1u);
3940 
3941         // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
3942         // and reset the type to the largest supported width.
3943         unsigned int MaxBitIntWidth =
3944             Context.getTargetInfo().getMaxBitIntWidth();
3945         if (Width > MaxBitIntWidth) {
3946           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3947               << Literal.isUnsigned;
3948           Width = MaxBitIntWidth;
3949         }
3950 
3951         // Reset the result value to the smaller APInt and select the correct
3952         // type to be used. Note, we zext even for signed values because the
3953         // literal itself is always an unsigned value (a preceeding - is a
3954         // unary operator, not part of the literal).
3955         ResultVal = ResultVal.zextOrTrunc(Width);
3956         Ty = Context.getBitIntType(Literal.isUnsigned, Width);
3957       }
3958 
3959       // Check C++23 size_t literals.
3960       if (Literal.isSizeT) {
3961         assert(!Literal.MicrosoftInteger &&
3962                "size_t literals can't be Microsoft literals");
3963         unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
3964             Context.getTargetInfo().getSizeType());
3965 
3966         // Does it fit in size_t?
3967         if (ResultVal.isIntN(SizeTSize)) {
3968           // Does it fit in ssize_t?
3969           if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
3970             Ty = Context.getSignedSizeType();
3971           else if (AllowUnsigned)
3972             Ty = Context.getSizeType();
3973           Width = SizeTSize;
3974         }
3975       }
3976 
3977       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
3978           !Literal.isSizeT) {
3979         // Are int/unsigned possibilities?
3980         unsigned IntSize = Context.getTargetInfo().getIntWidth();
3981 
3982         // Does it fit in a unsigned int?
3983         if (ResultVal.isIntN(IntSize)) {
3984           // Does it fit in a signed int?
3985           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3986             Ty = Context.IntTy;
3987           else if (AllowUnsigned)
3988             Ty = Context.UnsignedIntTy;
3989           Width = IntSize;
3990         }
3991       }
3992 
3993       // Are long/unsigned long possibilities?
3994       if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
3995         unsigned LongSize = Context.getTargetInfo().getLongWidth();
3996 
3997         // Does it fit in a unsigned long?
3998         if (ResultVal.isIntN(LongSize)) {
3999           // Does it fit in a signed long?
4000           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4001             Ty = Context.LongTy;
4002           else if (AllowUnsigned)
4003             Ty = Context.UnsignedLongTy;
4004           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4005           // is compatible.
4006           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4007             const unsigned LongLongSize =
4008                 Context.getTargetInfo().getLongLongWidth();
4009             Diag(Tok.getLocation(),
4010                  getLangOpts().CPlusPlus
4011                      ? Literal.isLong
4012                            ? diag::warn_old_implicitly_unsigned_long_cxx
4013                            : /*C++98 UB*/ diag::
4014                                  ext_old_implicitly_unsigned_long_cxx
4015                      : diag::warn_old_implicitly_unsigned_long)
4016                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4017                                             : /*will be ill-formed*/ 1);
4018             Ty = Context.UnsignedLongTy;
4019           }
4020           Width = LongSize;
4021         }
4022       }
4023 
4024       // Check long long if needed.
4025       if (Ty.isNull() && !Literal.isSizeT) {
4026         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4027 
4028         // Does it fit in a unsigned long long?
4029         if (ResultVal.isIntN(LongLongSize)) {
4030           // Does it fit in a signed long long?
4031           // To be compatible with MSVC, hex integer literals ending with the
4032           // LL or i64 suffix are always signed in Microsoft mode.
4033           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4034               (getLangOpts().MSVCCompat && Literal.isLongLong)))
4035             Ty = Context.LongLongTy;
4036           else if (AllowUnsigned)
4037             Ty = Context.UnsignedLongLongTy;
4038           Width = LongLongSize;
4039 
4040           // 'long long' is a C99 or C++11 feature, whether the literal
4041           // explicitly specified 'long long' or we needed the extra width.
4042           if (getLangOpts().CPlusPlus)
4043             Diag(Tok.getLocation(), getLangOpts().CPlusPlus11
4044                                         ? diag::warn_cxx98_compat_longlong
4045                                         : diag::ext_cxx11_longlong);
4046           else if (!getLangOpts().C99)
4047             Diag(Tok.getLocation(), diag::ext_c99_longlong);
4048         }
4049       }
4050 
4051       // If we still couldn't decide a type, we either have 'size_t' literal
4052       // that is out of range, or a decimal literal that does not fit in a
4053       // signed long long and has no U suffix.
4054       if (Ty.isNull()) {
4055         if (Literal.isSizeT)
4056           Diag(Tok.getLocation(), diag::err_size_t_literal_too_large)
4057               << Literal.isUnsigned;
4058         else
4059           Diag(Tok.getLocation(),
4060                diag::ext_integer_literal_too_large_for_signed);
4061         Ty = Context.UnsignedLongLongTy;
4062         Width = Context.getTargetInfo().getLongLongWidth();
4063       }
4064 
4065       if (ResultVal.getBitWidth() != Width)
4066         ResultVal = ResultVal.trunc(Width);
4067     }
4068     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
4069   }
4070 
4071   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4072   if (Literal.isImaginary) {
4073     Res = new (Context) ImaginaryLiteral(Res,
4074                                         Context.getComplexType(Res->getType()));
4075 
4076     Diag(Tok.getLocation(), diag::ext_imaginary_constant);
4077   }
4078   return Res;
4079 }
4080 
4081 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4082   assert(E && "ActOnParenExpr() missing expr");
4083   QualType ExprTy = E->getType();
4084   if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4085       !E->isLValue() && ExprTy->hasFloatingRepresentation())
4086     return BuildBuiltinCallExpr(R, Builtin::BI__arithmetic_fence, E);
4087   return new (Context) ParenExpr(L, R, E);
4088 }
4089 
4090 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4091                                          SourceLocation Loc,
4092                                          SourceRange ArgRange) {
4093   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4094   // scalar or vector data type argument..."
4095   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4096   // type (C99 6.2.5p18) or void.
4097   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4098     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4099       << T << ArgRange;
4100     return true;
4101   }
4102 
4103   assert((T->isVoidType() || !T->isIncompleteType()) &&
4104          "Scalar types should always be complete");
4105   return false;
4106 }
4107 
4108 static bool CheckVectorElementsTraitOperandType(Sema &S, QualType T,
4109                                                 SourceLocation Loc,
4110                                                 SourceRange ArgRange) {
4111   // builtin_vectorelements supports both fixed-sized and scalable vectors.
4112   if (!T->isVectorType() && !T->isSizelessVectorType())
4113     return S.Diag(Loc, diag::err_builtin_non_vector_type)
4114            << ""
4115            << "__builtin_vectorelements" << T << ArgRange;
4116 
4117   return false;
4118 }
4119 
4120 static bool checkPtrAuthTypeDiscriminatorOperandType(Sema &S, QualType T,
4121                                                      SourceLocation Loc,
4122                                                      SourceRange ArgRange) {
4123   if (S.checkPointerAuthEnabled(Loc, ArgRange))
4124     return true;
4125 
4126   if (!T->isFunctionType() && !T->isFunctionPointerType() &&
4127       !T->isFunctionReferenceType() && !T->isMemberFunctionPointerType()) {
4128     S.Diag(Loc, diag::err_ptrauth_type_disc_undiscriminated) << T << ArgRange;
4129     return true;
4130   }
4131 
4132   return false;
4133 }
4134 
4135 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4136                                            SourceLocation Loc,
4137                                            SourceRange ArgRange,
4138                                            UnaryExprOrTypeTrait TraitKind) {
4139   // Invalid types must be hard errors for SFINAE in C++.
4140   if (S.LangOpts.CPlusPlus)
4141     return true;
4142 
4143   // C99 6.5.3.4p1:
4144   if (T->isFunctionType() &&
4145       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4146        TraitKind == UETT_PreferredAlignOf)) {
4147     // sizeof(function)/alignof(function) is allowed as an extension.
4148     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4149         << getTraitSpelling(TraitKind) << ArgRange;
4150     return false;
4151   }
4152 
4153   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4154   // this is an error (OpenCL v1.1 s6.3.k)
4155   if (T->isVoidType()) {
4156     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4157                                         : diag::ext_sizeof_alignof_void_type;
4158     S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4159     return false;
4160   }
4161 
4162   return true;
4163 }
4164 
4165 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4166                                              SourceLocation Loc,
4167                                              SourceRange ArgRange,
4168                                              UnaryExprOrTypeTrait TraitKind) {
4169   // Reject sizeof(interface) and sizeof(interface<proto>) if the
4170   // runtime doesn't allow it.
4171   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4172     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4173       << T << (TraitKind == UETT_SizeOf)
4174       << ArgRange;
4175     return true;
4176   }
4177 
4178   return false;
4179 }
4180 
4181 /// Check whether E is a pointer from a decayed array type (the decayed
4182 /// pointer type is equal to T) and emit a warning if it is.
4183 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4184                                      const Expr *E) {
4185   // Don't warn if the operation changed the type.
4186   if (T != E->getType())
4187     return;
4188 
4189   // Now look for array decays.
4190   const auto *ICE = dyn_cast<ImplicitCastExpr>(E);
4191   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4192     return;
4193 
4194   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4195                                              << ICE->getType()
4196                                              << ICE->getSubExpr()->getType();
4197 }
4198 
4199 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4200                                             UnaryExprOrTypeTrait ExprKind) {
4201   QualType ExprTy = E->getType();
4202   assert(!ExprTy->isReferenceType());
4203 
4204   bool IsUnevaluatedOperand =
4205       (ExprKind == UETT_SizeOf || ExprKind == UETT_DataSizeOf ||
4206        ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4207        ExprKind == UETT_VecStep);
4208   if (IsUnevaluatedOperand) {
4209     ExprResult Result = CheckUnevaluatedOperand(E);
4210     if (Result.isInvalid())
4211       return true;
4212     E = Result.get();
4213   }
4214 
4215   // The operand for sizeof and alignof is in an unevaluated expression context,
4216   // so side effects could result in unintended consequences.
4217   // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4218   // used to build SFINAE gadgets.
4219   // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4220   if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4221       !E->isInstantiationDependent() &&
4222       !E->getType()->isVariableArrayType() &&
4223       E->HasSideEffects(Context, false))
4224     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4225 
4226   if (ExprKind == UETT_VecStep)
4227     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4228                                         E->getSourceRange());
4229 
4230   if (ExprKind == UETT_VectorElements)
4231     return CheckVectorElementsTraitOperandType(*this, ExprTy, E->getExprLoc(),
4232                                                E->getSourceRange());
4233 
4234   // Explicitly list some types as extensions.
4235   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4236                                       E->getSourceRange(), ExprKind))
4237     return false;
4238 
4239   // WebAssembly tables are always illegal operands to unary expressions and
4240   // type traits.
4241   if (Context.getTargetInfo().getTriple().isWasm() &&
4242       E->getType()->isWebAssemblyTableType()) {
4243     Diag(E->getExprLoc(), diag::err_wasm_table_invalid_uett_operand)
4244         << getTraitSpelling(ExprKind);
4245     return true;
4246   }
4247 
4248   // 'alignof' applied to an expression only requires the base element type of
4249   // the expression to be complete. 'sizeof' requires the expression's type to
4250   // be complete (and will attempt to complete it if it's an array of unknown
4251   // bound).
4252   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4253     if (RequireCompleteSizedType(
4254             E->getExprLoc(), Context.getBaseElementType(E->getType()),
4255             diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4256             getTraitSpelling(ExprKind), E->getSourceRange()))
4257       return true;
4258   } else {
4259     if (RequireCompleteSizedExprType(
4260             E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4261             getTraitSpelling(ExprKind), E->getSourceRange()))
4262       return true;
4263   }
4264 
4265   // Completing the expression's type may have changed it.
4266   ExprTy = E->getType();
4267   assert(!ExprTy->isReferenceType());
4268 
4269   if (ExprTy->isFunctionType()) {
4270     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4271         << getTraitSpelling(ExprKind) << E->getSourceRange();
4272     return true;
4273   }
4274 
4275   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4276                                        E->getSourceRange(), ExprKind))
4277     return true;
4278 
4279   if (ExprKind == UETT_SizeOf) {
4280     if (const auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4281       if (const auto *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4282         QualType OType = PVD->getOriginalType();
4283         QualType Type = PVD->getType();
4284         if (Type->isPointerType() && OType->isArrayType()) {
4285           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4286             << Type << OType;
4287           Diag(PVD->getLocation(), diag::note_declared_at);
4288         }
4289       }
4290     }
4291 
4292     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4293     // decays into a pointer and returns an unintended result. This is most
4294     // likely a typo for "sizeof(array) op x".
4295     if (const auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4296       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4297                                BO->getLHS());
4298       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4299                                BO->getRHS());
4300     }
4301   }
4302 
4303   return false;
4304 }
4305 
4306 static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4307   // Cannot know anything else if the expression is dependent.
4308   if (E->isTypeDependent())
4309     return false;
4310 
4311   if (E->getObjectKind() == OK_BitField) {
4312     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4313        << 1 << E->getSourceRange();
4314     return true;
4315   }
4316 
4317   ValueDecl *D = nullptr;
4318   Expr *Inner = E->IgnoreParens();
4319   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4320     D = DRE->getDecl();
4321   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4322     D = ME->getMemberDecl();
4323   }
4324 
4325   // If it's a field, require the containing struct to have a
4326   // complete definition so that we can compute the layout.
4327   //
4328   // This can happen in C++11 onwards, either by naming the member
4329   // in a way that is not transformed into a member access expression
4330   // (in an unevaluated operand, for instance), or by naming the member
4331   // in a trailing-return-type.
4332   //
4333   // For the record, since __alignof__ on expressions is a GCC
4334   // extension, GCC seems to permit this but always gives the
4335   // nonsensical answer 0.
4336   //
4337   // We don't really need the layout here --- we could instead just
4338   // directly check for all the appropriate alignment-lowing
4339   // attributes --- but that would require duplicating a lot of
4340   // logic that just isn't worth duplicating for such a marginal
4341   // use-case.
4342   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4343     // Fast path this check, since we at least know the record has a
4344     // definition if we can find a member of it.
4345     if (!FD->getParent()->isCompleteDefinition()) {
4346       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4347         << E->getSourceRange();
4348       return true;
4349     }
4350 
4351     // Otherwise, if it's a field, and the field doesn't have
4352     // reference type, then it must have a complete type (or be a
4353     // flexible array member, which we explicitly want to
4354     // white-list anyway), which makes the following checks trivial.
4355     if (!FD->getType()->isReferenceType())
4356       return false;
4357   }
4358 
4359   return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4360 }
4361 
4362 bool Sema::CheckVecStepExpr(Expr *E) {
4363   E = E->IgnoreParens();
4364 
4365   // Cannot know anything else if the expression is dependent.
4366   if (E->isTypeDependent())
4367     return false;
4368 
4369   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4370 }
4371 
4372 static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4373                                         CapturingScopeInfo *CSI) {
4374   assert(T->isVariablyModifiedType());
4375   assert(CSI != nullptr);
4376 
4377   // We're going to walk down into the type and look for VLA expressions.
4378   do {
4379     const Type *Ty = T.getTypePtr();
4380     switch (Ty->getTypeClass()) {
4381 #define TYPE(Class, Base)
4382 #define ABSTRACT_TYPE(Class, Base)
4383 #define NON_CANONICAL_TYPE(Class, Base)
4384 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
4385 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4386 #include "clang/AST/TypeNodes.inc"
4387       T = QualType();
4388       break;
4389     // These types are never variably-modified.
4390     case Type::Builtin:
4391     case Type::Complex:
4392     case Type::Vector:
4393     case Type::ExtVector:
4394     case Type::ConstantMatrix:
4395     case Type::Record:
4396     case Type::Enum:
4397     case Type::TemplateSpecialization:
4398     case Type::ObjCObject:
4399     case Type::ObjCInterface:
4400     case Type::ObjCObjectPointer:
4401     case Type::ObjCTypeParam:
4402     case Type::Pipe:
4403     case Type::BitInt:
4404       llvm_unreachable("type class is never variably-modified!");
4405     case Type::Elaborated:
4406       T = cast<ElaboratedType>(Ty)->getNamedType();
4407       break;
4408     case Type::Adjusted:
4409       T = cast<AdjustedType>(Ty)->getOriginalType();
4410       break;
4411     case Type::Decayed:
4412       T = cast<DecayedType>(Ty)->getPointeeType();
4413       break;
4414     case Type::ArrayParameter:
4415       T = cast<ArrayParameterType>(Ty)->getElementType();
4416       break;
4417     case Type::Pointer:
4418       T = cast<PointerType>(Ty)->getPointeeType();
4419       break;
4420     case Type::BlockPointer:
4421       T = cast<BlockPointerType>(Ty)->getPointeeType();
4422       break;
4423     case Type::LValueReference:
4424     case Type::RValueReference:
4425       T = cast<ReferenceType>(Ty)->getPointeeType();
4426       break;
4427     case Type::MemberPointer:
4428       T = cast<MemberPointerType>(Ty)->getPointeeType();
4429       break;
4430     case Type::ConstantArray:
4431     case Type::IncompleteArray:
4432       // Losing element qualification here is fine.
4433       T = cast<ArrayType>(Ty)->getElementType();
4434       break;
4435     case Type::VariableArray: {
4436       // Losing element qualification here is fine.
4437       const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4438 
4439       // Unknown size indication requires no size computation.
4440       // Otherwise, evaluate and record it.
4441       auto Size = VAT->getSizeExpr();
4442       if (Size && !CSI->isVLATypeCaptured(VAT) &&
4443           (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4444         CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4445 
4446       T = VAT->getElementType();
4447       break;
4448     }
4449     case Type::FunctionProto:
4450     case Type::FunctionNoProto:
4451       T = cast<FunctionType>(Ty)->getReturnType();
4452       break;
4453     case Type::Paren:
4454     case Type::TypeOf:
4455     case Type::UnaryTransform:
4456     case Type::Attributed:
4457     case Type::BTFTagAttributed:
4458     case Type::SubstTemplateTypeParm:
4459     case Type::MacroQualified:
4460     case Type::CountAttributed:
4461       // Keep walking after single level desugaring.
4462       T = T.getSingleStepDesugaredType(Context);
4463       break;
4464     case Type::Typedef:
4465       T = cast<TypedefType>(Ty)->desugar();
4466       break;
4467     case Type::Decltype:
4468       T = cast<DecltypeType>(Ty)->desugar();
4469       break;
4470     case Type::PackIndexing:
4471       T = cast<PackIndexingType>(Ty)->desugar();
4472       break;
4473     case Type::Using:
4474       T = cast<UsingType>(Ty)->desugar();
4475       break;
4476     case Type::Auto:
4477     case Type::DeducedTemplateSpecialization:
4478       T = cast<DeducedType>(Ty)->getDeducedType();
4479       break;
4480     case Type::TypeOfExpr:
4481       T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4482       break;
4483     case Type::Atomic:
4484       T = cast<AtomicType>(Ty)->getValueType();
4485       break;
4486     }
4487   } while (!T.isNull() && T->isVariablyModifiedType());
4488 }
4489 
4490 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4491                                             SourceLocation OpLoc,
4492                                             SourceRange ExprRange,
4493                                             UnaryExprOrTypeTrait ExprKind,
4494                                             StringRef KWName) {
4495   if (ExprType->isDependentType())
4496     return false;
4497 
4498   // C++ [expr.sizeof]p2:
4499   //     When applied to a reference or a reference type, the result
4500   //     is the size of the referenced type.
4501   // C++11 [expr.alignof]p3:
4502   //     When alignof is applied to a reference type, the result
4503   //     shall be the alignment of the referenced type.
4504   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4505     ExprType = Ref->getPointeeType();
4506 
4507   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4508   //   When alignof or _Alignof is applied to an array type, the result
4509   //   is the alignment of the element type.
4510   if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4511       ExprKind == UETT_OpenMPRequiredSimdAlign) {
4512     // If the trait is 'alignof' in C before C2y, the ability to apply the
4513     // trait to an incomplete array is an extension.
4514     if (ExprKind == UETT_AlignOf && !getLangOpts().CPlusPlus &&
4515         ExprType->isIncompleteArrayType())
4516       Diag(OpLoc, getLangOpts().C2y
4517                       ? diag::warn_c2y_compat_alignof_incomplete_array
4518                       : diag::ext_c2y_alignof_incomplete_array);
4519     ExprType = Context.getBaseElementType(ExprType);
4520   }
4521 
4522   if (ExprKind == UETT_VecStep)
4523     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4524 
4525   if (ExprKind == UETT_VectorElements)
4526     return CheckVectorElementsTraitOperandType(*this, ExprType, OpLoc,
4527                                                ExprRange);
4528 
4529   if (ExprKind == UETT_PtrAuthTypeDiscriminator)
4530     return checkPtrAuthTypeDiscriminatorOperandType(*this, ExprType, OpLoc,
4531                                                     ExprRange);
4532 
4533   // Explicitly list some types as extensions.
4534   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4535                                       ExprKind))
4536     return false;
4537 
4538   if (RequireCompleteSizedType(
4539           OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4540           KWName, ExprRange))
4541     return true;
4542 
4543   if (ExprType->isFunctionType()) {
4544     Diag(OpLoc, diag::err_sizeof_alignof_function_type) << KWName << ExprRange;
4545     return true;
4546   }
4547 
4548   // WebAssembly tables are always illegal operands to unary expressions and
4549   // type traits.
4550   if (Context.getTargetInfo().getTriple().isWasm() &&
4551       ExprType->isWebAssemblyTableType()) {
4552     Diag(OpLoc, diag::err_wasm_table_invalid_uett_operand)
4553         << getTraitSpelling(ExprKind);
4554     return true;
4555   }
4556 
4557   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4558                                        ExprKind))
4559     return true;
4560 
4561   if (ExprType->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4562     if (auto *TT = ExprType->getAs<TypedefType>()) {
4563       for (auto I = FunctionScopes.rbegin(),
4564                 E = std::prev(FunctionScopes.rend());
4565            I != E; ++I) {
4566         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4567         if (CSI == nullptr)
4568           break;
4569         DeclContext *DC = nullptr;
4570         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4571           DC = LSI->CallOperator;
4572         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4573           DC = CRSI->TheCapturedDecl;
4574         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4575           DC = BSI->TheDecl;
4576         if (DC) {
4577           if (DC->containsDecl(TT->getDecl()))
4578             break;
4579           captureVariablyModifiedType(Context, ExprType, CSI);
4580         }
4581       }
4582     }
4583   }
4584 
4585   return false;
4586 }
4587 
4588 ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4589                                                 SourceLocation OpLoc,
4590                                                 UnaryExprOrTypeTrait ExprKind,
4591                                                 SourceRange R) {
4592   if (!TInfo)
4593     return ExprError();
4594 
4595   QualType T = TInfo->getType();
4596 
4597   if (!T->isDependentType() &&
4598       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind,
4599                                        getTraitSpelling(ExprKind)))
4600     return ExprError();
4601 
4602   // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to
4603   // properly deal with VLAs in nested calls of sizeof and typeof.
4604   if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4605       TInfo->getType()->isVariablyModifiedType())
4606     TInfo = TransformToPotentiallyEvaluated(TInfo);
4607 
4608   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4609   return new (Context) UnaryExprOrTypeTraitExpr(
4610       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4611 }
4612 
4613 ExprResult
4614 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4615                                      UnaryExprOrTypeTrait ExprKind) {
4616   ExprResult PE = CheckPlaceholderExpr(E);
4617   if (PE.isInvalid())
4618     return ExprError();
4619 
4620   E = PE.get();
4621 
4622   // Verify that the operand is valid.
4623   bool isInvalid = false;
4624   if (E->isTypeDependent()) {
4625     // Delay type-checking for type-dependent expressions.
4626   } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4627     isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4628   } else if (ExprKind == UETT_VecStep) {
4629     isInvalid = CheckVecStepExpr(E);
4630   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4631       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4632       isInvalid = true;
4633   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
4634     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4635     isInvalid = true;
4636   } else if (ExprKind == UETT_VectorElements) {
4637     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_VectorElements);
4638   } else {
4639     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4640   }
4641 
4642   if (isInvalid)
4643     return ExprError();
4644 
4645   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4646     PE = TransformToPotentiallyEvaluated(E);
4647     if (PE.isInvalid()) return ExprError();
4648     E = PE.get();
4649   }
4650 
4651   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4652   return new (Context) UnaryExprOrTypeTraitExpr(
4653       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4654 }
4655 
4656 ExprResult
4657 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4658                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
4659                                     void *TyOrEx, SourceRange ArgRange) {
4660   // If error parsing type, ignore.
4661   if (!TyOrEx) return ExprError();
4662 
4663   if (IsType) {
4664     TypeSourceInfo *TInfo;
4665     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4666     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4667   }
4668 
4669   Expr *ArgEx = (Expr *)TyOrEx;
4670   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4671   return Result;
4672 }
4673 
4674 bool Sema::CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo,
4675                                     SourceLocation OpLoc, SourceRange R) {
4676   if (!TInfo)
4677     return true;
4678   return CheckUnaryExprOrTypeTraitOperand(TInfo->getType(), OpLoc, R,
4679                                           UETT_AlignOf, KWName);
4680 }
4681 
4682 bool Sema::ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty,
4683                                     SourceLocation OpLoc, SourceRange R) {
4684   TypeSourceInfo *TInfo;
4685   (void)GetTypeFromParser(ParsedType::getFromOpaquePtr(Ty.getAsOpaquePtr()),
4686                           &TInfo);
4687   return CheckAlignasTypeArgument(KWName, TInfo, OpLoc, R);
4688 }
4689 
4690 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4691                                      bool IsReal) {
4692   if (V.get()->isTypeDependent())
4693     return S.Context.DependentTy;
4694 
4695   // _Real and _Imag are only l-values for normal l-values.
4696   if (V.get()->getObjectKind() != OK_Ordinary) {
4697     V = S.DefaultLvalueConversion(V.get());
4698     if (V.isInvalid())
4699       return QualType();
4700   }
4701 
4702   // These operators return the element type of a complex type.
4703   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4704     return CT->getElementType();
4705 
4706   // Otherwise they pass through real integer and floating point types here.
4707   if (V.get()->getType()->isArithmeticType())
4708     return V.get()->getType();
4709 
4710   // Test for placeholders.
4711   ExprResult PR = S.CheckPlaceholderExpr(V.get());
4712   if (PR.isInvalid()) return QualType();
4713   if (PR.get() != V.get()) {
4714     V = PR;
4715     return CheckRealImagOperand(S, V, Loc, IsReal);
4716   }
4717 
4718   // Reject anything else.
4719   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4720     << (IsReal ? "__real" : "__imag");
4721   return QualType();
4722 }
4723 
4724 
4725 
4726 ExprResult
4727 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4728                           tok::TokenKind Kind, Expr *Input) {
4729   UnaryOperatorKind Opc;
4730   switch (Kind) {
4731   default: llvm_unreachable("Unknown unary op!");
4732   case tok::plusplus:   Opc = UO_PostInc; break;
4733   case tok::minusminus: Opc = UO_PostDec; break;
4734   }
4735 
4736   // Since this might is a postfix expression, get rid of ParenListExprs.
4737   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4738   if (Result.isInvalid()) return ExprError();
4739   Input = Result.get();
4740 
4741   return BuildUnaryOp(S, OpLoc, Opc, Input);
4742 }
4743 
4744 /// Diagnose if arithmetic on the given ObjC pointer is illegal.
4745 ///
4746 /// \return true on error
4747 static bool checkArithmeticOnObjCPointer(Sema &S,
4748                                          SourceLocation opLoc,
4749                                          Expr *op) {
4750   assert(op->getType()->isObjCObjectPointerType());
4751   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4752       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4753     return false;
4754 
4755   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4756     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4757     << op->getSourceRange();
4758   return true;
4759 }
4760 
4761 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4762   auto *BaseNoParens = Base->IgnoreParens();
4763   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4764     return MSProp->getPropertyDecl()->getType()->isArrayType();
4765   return isa<MSPropertySubscriptExpr>(BaseNoParens);
4766 }
4767 
4768 // Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
4769 // Typically this is DependentTy, but can sometimes be more precise.
4770 //
4771 // There are cases when we could determine a non-dependent type:
4772 //  - LHS and RHS may have non-dependent types despite being type-dependent
4773 //    (e.g. unbounded array static members of the current instantiation)
4774 //  - one may be a dependent-sized array with known element type
4775 //  - one may be a dependent-typed valid index (enum in current instantiation)
4776 //
4777 // We *always* return a dependent type, in such cases it is DependentTy.
4778 // This avoids creating type-dependent expressions with non-dependent types.
4779 // FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
4780 static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
4781                                                const ASTContext &Ctx) {
4782   assert(LHS->isTypeDependent() || RHS->isTypeDependent());
4783   QualType LTy = LHS->getType(), RTy = RHS->getType();
4784   QualType Result = Ctx.DependentTy;
4785   if (RTy->isIntegralOrUnscopedEnumerationType()) {
4786     if (const PointerType *PT = LTy->getAs<PointerType>())
4787       Result = PT->getPointeeType();
4788     else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
4789       Result = AT->getElementType();
4790   } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
4791     if (const PointerType *PT = RTy->getAs<PointerType>())
4792       Result = PT->getPointeeType();
4793     else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
4794       Result = AT->getElementType();
4795   }
4796   // Ensure we return a dependent type.
4797   return Result->isDependentType() ? Result : Ctx.DependentTy;
4798 }
4799 
4800 ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
4801                                          SourceLocation lbLoc,
4802                                          MultiExprArg ArgExprs,
4803                                          SourceLocation rbLoc) {
4804 
4805   if (base && !base->getType().isNull() &&
4806       base->hasPlaceholderType(BuiltinType::ArraySection)) {
4807     auto *AS = cast<ArraySectionExpr>(base);
4808     if (AS->isOMPArraySection())
4809       return OpenMP().ActOnOMPArraySectionExpr(
4810           base, lbLoc, ArgExprs.front(), SourceLocation(), SourceLocation(),
4811           /*Length*/ nullptr,
4812           /*Stride=*/nullptr, rbLoc);
4813 
4814     return OpenACC().ActOnArraySectionExpr(base, lbLoc, ArgExprs.front(),
4815                                            SourceLocation(), /*Length*/ nullptr,
4816                                            rbLoc);
4817   }
4818 
4819   // Since this might be a postfix expression, get rid of ParenListExprs.
4820   if (isa<ParenListExpr>(base)) {
4821     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4822     if (result.isInvalid())
4823       return ExprError();
4824     base = result.get();
4825   }
4826 
4827   // Check if base and idx form a MatrixSubscriptExpr.
4828   //
4829   // Helper to check for comma expressions, which are not allowed as indices for
4830   // matrix subscript expressions.
4831   auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4832     if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4833       Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4834           << SourceRange(base->getBeginLoc(), rbLoc);
4835       return true;
4836     }
4837     return false;
4838   };
4839   // The matrix subscript operator ([][])is considered a single operator.
4840   // Separating the index expressions by parenthesis is not allowed.
4841   if (base && !base->getType().isNull() &&
4842       base->hasPlaceholderType(BuiltinType::IncompleteMatrixIdx) &&
4843       !isa<MatrixSubscriptExpr>(base)) {
4844     Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4845         << SourceRange(base->getBeginLoc(), rbLoc);
4846     return ExprError();
4847   }
4848   // If the base is a MatrixSubscriptExpr, try to create a new
4849   // MatrixSubscriptExpr.
4850   auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4851   if (matSubscriptE) {
4852     assert(ArgExprs.size() == 1);
4853     if (CheckAndReportCommaError(ArgExprs.front()))
4854       return ExprError();
4855 
4856     assert(matSubscriptE->isIncomplete() &&
4857            "base has to be an incomplete matrix subscript");
4858     return CreateBuiltinMatrixSubscriptExpr(matSubscriptE->getBase(),
4859                                             matSubscriptE->getRowIdx(),
4860                                             ArgExprs.front(), rbLoc);
4861   }
4862   if (base->getType()->isWebAssemblyTableType()) {
4863     Diag(base->getExprLoc(), diag::err_wasm_table_art)
4864         << SourceRange(base->getBeginLoc(), rbLoc) << 3;
4865     return ExprError();
4866   }
4867 
4868   // Handle any non-overload placeholder types in the base and index
4869   // expressions.  We can't handle overloads here because the other
4870   // operand might be an overloadable type, in which case the overload
4871   // resolution for the operator overload should get the first crack
4872   // at the overload.
4873   bool IsMSPropertySubscript = false;
4874   if (base->getType()->isNonOverloadPlaceholderType()) {
4875     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4876     if (!IsMSPropertySubscript) {
4877       ExprResult result = CheckPlaceholderExpr(base);
4878       if (result.isInvalid())
4879         return ExprError();
4880       base = result.get();
4881     }
4882   }
4883 
4884   // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4885   if (base->getType()->isMatrixType()) {
4886     assert(ArgExprs.size() == 1);
4887     if (CheckAndReportCommaError(ArgExprs.front()))
4888       return ExprError();
4889 
4890     return CreateBuiltinMatrixSubscriptExpr(base, ArgExprs.front(), nullptr,
4891                                             rbLoc);
4892   }
4893 
4894   if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
4895     Expr *idx = ArgExprs[0];
4896     if ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4897         (isa<CXXOperatorCallExpr>(idx) &&
4898          cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma)) {
4899       Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4900           << SourceRange(base->getBeginLoc(), rbLoc);
4901     }
4902   }
4903 
4904   if (ArgExprs.size() == 1 &&
4905       ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
4906     ExprResult result = CheckPlaceholderExpr(ArgExprs[0]);
4907     if (result.isInvalid())
4908       return ExprError();
4909     ArgExprs[0] = result.get();
4910   } else {
4911     if (CheckArgsForPlaceholders(ArgExprs))
4912       return ExprError();
4913   }
4914 
4915   // Build an unanalyzed expression if either operand is type-dependent.
4916   if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
4917       (base->isTypeDependent() ||
4918        Expr::hasAnyTypeDependentArguments(ArgExprs)) &&
4919       !isa<PackExpansionExpr>(ArgExprs[0])) {
4920     return new (Context) ArraySubscriptExpr(
4921         base, ArgExprs.front(),
4922         getDependentArraySubscriptType(base, ArgExprs.front(), getASTContext()),
4923         VK_LValue, OK_Ordinary, rbLoc);
4924   }
4925 
4926   // MSDN, property (C++)
4927   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4928   // This attribute can also be used in the declaration of an empty array in a
4929   // class or structure definition. For example:
4930   // __declspec(property(get=GetX, put=PutX)) int x[];
4931   // The above statement indicates that x[] can be used with one or more array
4932   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4933   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4934   if (IsMSPropertySubscript) {
4935     assert(ArgExprs.size() == 1);
4936     // Build MS property subscript expression if base is MS property reference
4937     // or MS property subscript.
4938     return new (Context)
4939         MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
4940                                 VK_LValue, OK_Ordinary, rbLoc);
4941   }
4942 
4943   // Use C++ overloaded-operator rules if either operand has record
4944   // type.  The spec says to do this if either type is *overloadable*,
4945   // but enum types can't declare subscript operators or conversion
4946   // operators, so there's nothing interesting for overload resolution
4947   // to do if there aren't any record types involved.
4948   //
4949   // ObjC pointers have their own subscripting logic that is not tied
4950   // to overload resolution and so should not take this path.
4951   if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
4952       ((base->getType()->isRecordType() ||
4953         (ArgExprs.size() != 1 || isa<PackExpansionExpr>(ArgExprs[0]) ||
4954          ArgExprs[0]->getType()->isRecordType())))) {
4955     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, ArgExprs);
4956   }
4957 
4958   ExprResult Res =
4959       CreateBuiltinArraySubscriptExpr(base, lbLoc, ArgExprs.front(), rbLoc);
4960 
4961   if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4962     CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4963 
4964   return Res;
4965 }
4966 
4967 ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
4968   InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
4969   InitializationKind Kind =
4970       InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
4971   InitializationSequence InitSeq(*this, Entity, Kind, E);
4972   return InitSeq.Perform(*this, Entity, Kind, E);
4973 }
4974 
4975 ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
4976                                                   Expr *ColumnIdx,
4977                                                   SourceLocation RBLoc) {
4978   ExprResult BaseR = CheckPlaceholderExpr(Base);
4979   if (BaseR.isInvalid())
4980     return BaseR;
4981   Base = BaseR.get();
4982 
4983   ExprResult RowR = CheckPlaceholderExpr(RowIdx);
4984   if (RowR.isInvalid())
4985     return RowR;
4986   RowIdx = RowR.get();
4987 
4988   if (!ColumnIdx)
4989     return new (Context) MatrixSubscriptExpr(
4990         Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
4991 
4992   // Build an unanalyzed expression if any of the operands is type-dependent.
4993   if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
4994       ColumnIdx->isTypeDependent())
4995     return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4996                                              Context.DependentTy, RBLoc);
4997 
4998   ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
4999   if (ColumnR.isInvalid())
5000     return ColumnR;
5001   ColumnIdx = ColumnR.get();
5002 
5003   // Check that IndexExpr is an integer expression. If it is a constant
5004   // expression, check that it is less than Dim (= the number of elements in the
5005   // corresponding dimension).
5006   auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5007                           bool IsColumnIdx) -> Expr * {
5008     if (!IndexExpr->getType()->isIntegerType() &&
5009         !IndexExpr->isTypeDependent()) {
5010       Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
5011           << IsColumnIdx;
5012       return nullptr;
5013     }
5014 
5015     if (std::optional<llvm::APSInt> Idx =
5016             IndexExpr->getIntegerConstantExpr(Context)) {
5017       if ((*Idx < 0 || *Idx >= Dim)) {
5018         Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
5019             << IsColumnIdx << Dim;
5020         return nullptr;
5021       }
5022     }
5023 
5024     ExprResult ConvExpr =
5025         tryConvertExprToType(IndexExpr, Context.getSizeType());
5026     assert(!ConvExpr.isInvalid() &&
5027            "should be able to convert any integer type to size type");
5028     return ConvExpr.get();
5029   };
5030 
5031   auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5032   RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5033   ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5034   if (!RowIdx || !ColumnIdx)
5035     return ExprError();
5036 
5037   return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5038                                            MTy->getElementType(), RBLoc);
5039 }
5040 
5041 void Sema::CheckAddressOfNoDeref(const Expr *E) {
5042   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5043   const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5044 
5045   // For expressions like `&(*s).b`, the base is recorded and what should be
5046   // checked.
5047   const MemberExpr *Member = nullptr;
5048   while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
5049     StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5050 
5051   LastRecord.PossibleDerefs.erase(StrippedExpr);
5052 }
5053 
5054 void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5055   if (isUnevaluatedContext())
5056     return;
5057 
5058   QualType ResultTy = E->getType();
5059   ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5060 
5061   // Bail if the element is an array since it is not memory access.
5062   if (isa<ArrayType>(ResultTy))
5063     return;
5064 
5065   if (ResultTy->hasAttr(attr::NoDeref)) {
5066     LastRecord.PossibleDerefs.insert(E);
5067     return;
5068   }
5069 
5070   // Check if the base type is a pointer to a member access of a struct
5071   // marked with noderef.
5072   const Expr *Base = E->getBase();
5073   QualType BaseTy = Base->getType();
5074   if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
5075     // Not a pointer access
5076     return;
5077 
5078   const MemberExpr *Member = nullptr;
5079   while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
5080          Member->isArrow())
5081     Base = Member->getBase();
5082 
5083   if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
5084     if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
5085       LastRecord.PossibleDerefs.insert(E);
5086   }
5087 }
5088 
5089 ExprResult
5090 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5091                                       Expr *Idx, SourceLocation RLoc) {
5092   Expr *LHSExp = Base;
5093   Expr *RHSExp = Idx;
5094 
5095   ExprValueKind VK = VK_LValue;
5096   ExprObjectKind OK = OK_Ordinary;
5097 
5098   // Per C++ core issue 1213, the result is an xvalue if either operand is
5099   // a non-lvalue array, and an lvalue otherwise.
5100   if (getLangOpts().CPlusPlus11) {
5101     for (auto *Op : {LHSExp, RHSExp}) {
5102       Op = Op->IgnoreImplicit();
5103       if (Op->getType()->isArrayType() && !Op->isLValue())
5104         VK = VK_XValue;
5105     }
5106   }
5107 
5108   // Perform default conversions.
5109   if (!LHSExp->getType()->isSubscriptableVectorType()) {
5110     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5111     if (Result.isInvalid())
5112       return ExprError();
5113     LHSExp = Result.get();
5114   }
5115   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5116   if (Result.isInvalid())
5117     return ExprError();
5118   RHSExp = Result.get();
5119 
5120   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5121 
5122   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5123   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5124   // in the subscript position. As a result, we need to derive the array base
5125   // and index from the expression types.
5126   Expr *BaseExpr, *IndexExpr;
5127   QualType ResultType;
5128   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5129     BaseExpr = LHSExp;
5130     IndexExpr = RHSExp;
5131     ResultType =
5132         getDependentArraySubscriptType(LHSExp, RHSExp, getASTContext());
5133   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5134     BaseExpr = LHSExp;
5135     IndexExpr = RHSExp;
5136     ResultType = PTy->getPointeeType();
5137   } else if (const ObjCObjectPointerType *PTy =
5138                LHSTy->getAs<ObjCObjectPointerType>()) {
5139     BaseExpr = LHSExp;
5140     IndexExpr = RHSExp;
5141 
5142     // Use custom logic if this should be the pseudo-object subscript
5143     // expression.
5144     if (!LangOpts.isSubscriptPointerArithmetic())
5145       return ObjC().BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr,
5146                                                  nullptr, nullptr);
5147 
5148     ResultType = PTy->getPointeeType();
5149   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5150      // Handle the uncommon case of "123[Ptr]".
5151     BaseExpr = RHSExp;
5152     IndexExpr = LHSExp;
5153     ResultType = PTy->getPointeeType();
5154   } else if (const ObjCObjectPointerType *PTy =
5155                RHSTy->getAs<ObjCObjectPointerType>()) {
5156      // Handle the uncommon case of "123[Ptr]".
5157     BaseExpr = RHSExp;
5158     IndexExpr = LHSExp;
5159     ResultType = PTy->getPointeeType();
5160     if (!LangOpts.isSubscriptPointerArithmetic()) {
5161       Diag(LLoc, diag::err_subscript_nonfragile_interface)
5162         << ResultType << BaseExpr->getSourceRange();
5163       return ExprError();
5164     }
5165   } else if (LHSTy->isSubscriptableVectorType()) {
5166     if (LHSTy->isBuiltinType() &&
5167         LHSTy->getAs<BuiltinType>()->isSveVLSBuiltinType()) {
5168       const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5169       if (BTy->isSVEBool())
5170         return ExprError(Diag(LLoc, diag::err_subscript_svbool_t)
5171                          << LHSExp->getSourceRange()
5172                          << RHSExp->getSourceRange());
5173       ResultType = BTy->getSveEltType(Context);
5174     } else {
5175       const VectorType *VTy = LHSTy->getAs<VectorType>();
5176       ResultType = VTy->getElementType();
5177     }
5178     BaseExpr = LHSExp; // vectors: V[123]
5179     IndexExpr = RHSExp;
5180     // We apply C++ DR1213 to vector subscripting too.
5181     if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5182       ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5183       if (Materialized.isInvalid())
5184         return ExprError();
5185       LHSExp = Materialized.get();
5186     }
5187     VK = LHSExp->getValueKind();
5188     if (VK != VK_PRValue)
5189       OK = OK_VectorComponent;
5190 
5191     QualType BaseType = BaseExpr->getType();
5192     Qualifiers BaseQuals = BaseType.getQualifiers();
5193     Qualifiers MemberQuals = ResultType.getQualifiers();
5194     Qualifiers Combined = BaseQuals + MemberQuals;
5195     if (Combined != MemberQuals)
5196       ResultType = Context.getQualifiedType(ResultType, Combined);
5197   } else if (LHSTy->isArrayType()) {
5198     // If we see an array that wasn't promoted by
5199     // DefaultFunctionArrayLvalueConversion, it must be an array that
5200     // wasn't promoted because of the C90 rule that doesn't
5201     // allow promoting non-lvalue arrays.  Warn, then
5202     // force the promotion here.
5203     Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5204         << LHSExp->getSourceRange();
5205     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5206                                CK_ArrayToPointerDecay).get();
5207     LHSTy = LHSExp->getType();
5208 
5209     BaseExpr = LHSExp;
5210     IndexExpr = RHSExp;
5211     ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5212   } else if (RHSTy->isArrayType()) {
5213     // Same as previous, except for 123[f().a] case
5214     Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5215         << RHSExp->getSourceRange();
5216     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5217                                CK_ArrayToPointerDecay).get();
5218     RHSTy = RHSExp->getType();
5219 
5220     BaseExpr = RHSExp;
5221     IndexExpr = LHSExp;
5222     ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5223   } else {
5224     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5225        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5226   }
5227   // C99 6.5.2.1p1
5228   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5229     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5230                      << IndexExpr->getSourceRange());
5231 
5232   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5233        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) &&
5234       !IndexExpr->isTypeDependent()) {
5235     std::optional<llvm::APSInt> IntegerContantExpr =
5236         IndexExpr->getIntegerConstantExpr(getASTContext());
5237     if (!IntegerContantExpr.has_value() ||
5238         IntegerContantExpr.value().isNegative())
5239       Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5240   }
5241 
5242   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5243   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5244   // type. Note that Functions are not objects, and that (in C99 parlance)
5245   // incomplete types are not object types.
5246   if (ResultType->isFunctionType()) {
5247     Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5248         << ResultType << BaseExpr->getSourceRange();
5249     return ExprError();
5250   }
5251 
5252   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5253     // GNU extension: subscripting on pointer to void
5254     Diag(LLoc, diag::ext_gnu_subscript_void_type)
5255       << BaseExpr->getSourceRange();
5256 
5257     // C forbids expressions of unqualified void type from being l-values.
5258     // See IsCForbiddenLValueType.
5259     if (!ResultType.hasQualifiers())
5260       VK = VK_PRValue;
5261   } else if (!ResultType->isDependentType() &&
5262              !ResultType.isWebAssemblyReferenceType() &&
5263              RequireCompleteSizedType(
5264                  LLoc, ResultType,
5265                  diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5266     return ExprError();
5267 
5268   assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
5269          !ResultType.isCForbiddenLValueType());
5270 
5271   if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5272       FunctionScopes.size() > 1) {
5273     if (auto *TT =
5274             LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5275       for (auto I = FunctionScopes.rbegin(),
5276                 E = std::prev(FunctionScopes.rend());
5277            I != E; ++I) {
5278         auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5279         if (CSI == nullptr)
5280           break;
5281         DeclContext *DC = nullptr;
5282         if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5283           DC = LSI->CallOperator;
5284         else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5285           DC = CRSI->TheCapturedDecl;
5286         else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5287           DC = BSI->TheDecl;
5288         if (DC) {
5289           if (DC->containsDecl(TT->getDecl()))
5290             break;
5291           captureVariablyModifiedType(
5292               Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5293         }
5294       }
5295     }
5296   }
5297 
5298   return new (Context)
5299       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5300 }
5301 
5302 bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5303                                   ParmVarDecl *Param, Expr *RewrittenInit,
5304                                   bool SkipImmediateInvocations) {
5305   if (Param->hasUnparsedDefaultArg()) {
5306     assert(!RewrittenInit && "Should not have a rewritten init expression yet");
5307     // If we've already cleared out the location for the default argument,
5308     // that means we're parsing it right now.
5309     if (!UnparsedDefaultArgLocs.count(Param)) {
5310       Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5311       Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5312       Param->setInvalidDecl();
5313       return true;
5314     }
5315 
5316     Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5317         << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5318     Diag(UnparsedDefaultArgLocs[Param],
5319          diag::note_default_argument_declared_here);
5320     return true;
5321   }
5322 
5323   if (Param->hasUninstantiatedDefaultArg()) {
5324     assert(!RewrittenInit && "Should not have a rewitten init expression yet");
5325     if (InstantiateDefaultArgument(CallLoc, FD, Param))
5326       return true;
5327   }
5328 
5329   Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit();
5330   assert(Init && "default argument but no initializer?");
5331 
5332   // If the default expression creates temporaries, we need to
5333   // push them to the current stack of expression temporaries so they'll
5334   // be properly destroyed.
5335   // FIXME: We should really be rebuilding the default argument with new
5336   // bound temporaries; see the comment in PR5810.
5337   // We don't need to do that with block decls, though, because
5338   // blocks in default argument expression can never capture anything.
5339   if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Init)) {
5340     // Set the "needs cleanups" bit regardless of whether there are
5341     // any explicit objects.
5342     Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects());
5343     // Append all the objects to the cleanup list.  Right now, this
5344     // should always be a no-op, because blocks in default argument
5345     // expressions should never be able to capture anything.
5346     assert(!InitWithCleanup->getNumObjects() &&
5347            "default argument expression has capturing blocks?");
5348   }
5349   // C++ [expr.const]p15.1:
5350   //   An expression or conversion is in an immediate function context if it is
5351   //   potentially evaluated and [...] its innermost enclosing non-block scope
5352   //   is a function parameter scope of an immediate function.
5353   EnterExpressionEvaluationContext EvalContext(
5354       *this,
5355       FD->isImmediateFunction()
5356           ? ExpressionEvaluationContext::ImmediateFunctionContext
5357           : ExpressionEvaluationContext::PotentiallyEvaluated,
5358       Param);
5359   ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5360       SkipImmediateInvocations;
5361   runWithSufficientStackSpace(CallLoc, [&] {
5362     MarkDeclarationsReferencedInExpr(Init, /*SkipLocalVariables=*/true);
5363   });
5364   return false;
5365 }
5366 
5367 struct ImmediateCallVisitor : public RecursiveASTVisitor<ImmediateCallVisitor> {
5368   const ASTContext &Context;
5369   ImmediateCallVisitor(const ASTContext &Ctx) : Context(Ctx) {}
5370 
5371   bool HasImmediateCalls = false;
5372   bool shouldVisitImplicitCode() const { return true; }
5373 
5374   bool VisitCallExpr(CallExpr *E) {
5375     if (const FunctionDecl *FD = E->getDirectCallee())
5376       HasImmediateCalls |= FD->isImmediateFunction();
5377     return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
5378   }
5379 
5380   bool VisitCXXConstructExpr(CXXConstructExpr *E) {
5381     if (const FunctionDecl *FD = E->getConstructor())
5382       HasImmediateCalls |= FD->isImmediateFunction();
5383     return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
5384   }
5385 
5386   // SourceLocExpr are not immediate invocations
5387   // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
5388   // need to be rebuilt so that they refer to the correct SourceLocation and
5389   // DeclContext.
5390   bool VisitSourceLocExpr(SourceLocExpr *E) {
5391     HasImmediateCalls = true;
5392     return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(E);
5393   }
5394 
5395   // A nested lambda might have parameters with immediate invocations
5396   // in their default arguments.
5397   // The compound statement is not visited (as it does not constitute a
5398   // subexpression).
5399   // FIXME: We should consider visiting and transforming captures
5400   // with init expressions.
5401   bool VisitLambdaExpr(LambdaExpr *E) {
5402     return VisitCXXMethodDecl(E->getCallOperator());
5403   }
5404 
5405   bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
5406     return TraverseStmt(E->getExpr());
5407   }
5408 
5409   bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
5410     return TraverseStmt(E->getExpr());
5411   }
5412 };
5413 
5414 struct EnsureImmediateInvocationInDefaultArgs
5415     : TreeTransform<EnsureImmediateInvocationInDefaultArgs> {
5416   EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef)
5417       : TreeTransform(SemaRef) {}
5418 
5419   // Lambda can only have immediate invocations in the default
5420   // args of their parameters, which is transformed upon calling the closure.
5421   // The body is not a subexpression, so we have nothing to do.
5422   // FIXME: Immediate calls in capture initializers should be transformed.
5423   ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; }
5424   ExprResult TransformBlockExpr(BlockExpr *E) { return E; }
5425 
5426   // Make sure we don't rebuild the this pointer as it would
5427   // cause it to incorrectly point it to the outermost class
5428   // in the case of nested struct initialization.
5429   ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; }
5430 
5431   // Rewrite to source location to refer to the context in which they are used.
5432   ExprResult TransformSourceLocExpr(SourceLocExpr *E) {
5433     DeclContext *DC = E->getParentContext();
5434     if (DC == SemaRef.CurContext)
5435       return E;
5436 
5437     // FIXME: During instantiation, because the rebuild of defaults arguments
5438     // is not always done in the context of the template instantiator,
5439     // we run the risk of producing a dependent source location
5440     // that would never be rebuilt.
5441     // This usually happens during overload resolution, or in contexts
5442     // where the value of the source location does not matter.
5443     // However, we should find a better way to deal with source location
5444     // of function templates.
5445     if (!SemaRef.CurrentInstantiationScope ||
5446         !SemaRef.CurContext->isDependentContext() || DC->isDependentContext())
5447       DC = SemaRef.CurContext;
5448 
5449     return getDerived().RebuildSourceLocExpr(
5450         E->getIdentKind(), E->getType(), E->getBeginLoc(), E->getEndLoc(), DC);
5451   }
5452 };
5453 
5454 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5455                                         FunctionDecl *FD, ParmVarDecl *Param,
5456                                         Expr *Init) {
5457   assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
5458 
5459   bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5460   bool InLifetimeExtendingContext = isInLifetimeExtendingContext();
5461   std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5462       InitializationContext =
5463           OutermostDeclarationWithDelayedImmediateInvocations();
5464   if (!InitializationContext.has_value())
5465     InitializationContext.emplace(CallLoc, Param, CurContext);
5466 
5467   if (!Init && !Param->hasUnparsedDefaultArg()) {
5468     // Mark that we are replacing a default argument first.
5469     // If we are instantiating a template we won't have to
5470     // retransform immediate calls.
5471     // C++ [expr.const]p15.1:
5472     //   An expression or conversion is in an immediate function context if it
5473     //   is potentially evaluated and [...] its innermost enclosing non-block
5474     //   scope is a function parameter scope of an immediate function.
5475     EnterExpressionEvaluationContext EvalContext(
5476         *this,
5477         FD->isImmediateFunction()
5478             ? ExpressionEvaluationContext::ImmediateFunctionContext
5479             : ExpressionEvaluationContext::PotentiallyEvaluated,
5480         Param);
5481 
5482     if (Param->hasUninstantiatedDefaultArg()) {
5483       if (InstantiateDefaultArgument(CallLoc, FD, Param))
5484         return ExprError();
5485     }
5486     // CWG2631
5487     // An immediate invocation that is not evaluated where it appears is
5488     // evaluated and checked for whether it is a constant expression at the
5489     // point where the enclosing initializer is used in a function call.
5490     ImmediateCallVisitor V(getASTContext());
5491     if (!NestedDefaultChecking)
5492       V.TraverseDecl(Param);
5493 
5494     // Rewrite the call argument that was created from the corresponding
5495     // parameter's default argument.
5496     if (V.HasImmediateCalls || InLifetimeExtendingContext) {
5497       if (V.HasImmediateCalls)
5498         ExprEvalContexts.back().DelayedDefaultInitializationContext = {
5499             CallLoc, Param, CurContext};
5500       // Pass down lifetime extending flag, and collect temporaries in
5501       // CreateMaterializeTemporaryExpr when we rewrite the call argument.
5502       keepInLifetimeExtendingContext();
5503       EnsureImmediateInvocationInDefaultArgs Immediate(*this);
5504       ExprResult Res;
5505       runWithSufficientStackSpace(CallLoc, [&] {
5506         Res = Immediate.TransformInitializer(Param->getInit(),
5507                                              /*NotCopy=*/false);
5508       });
5509       if (Res.isInvalid())
5510         return ExprError();
5511       Res = ConvertParamDefaultArgument(Param, Res.get(),
5512                                         Res.get()->getBeginLoc());
5513       if (Res.isInvalid())
5514         return ExprError();
5515       Init = Res.get();
5516     }
5517   }
5518 
5519   if (CheckCXXDefaultArgExpr(
5520           CallLoc, FD, Param, Init,
5521           /*SkipImmediateInvocations=*/NestedDefaultChecking))
5522     return ExprError();
5523 
5524   return CXXDefaultArgExpr::Create(Context, InitializationContext->Loc, Param,
5525                                    Init, InitializationContext->Context);
5526 }
5527 
5528 ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
5529   assert(Field->hasInClassInitializer());
5530 
5531   // If we might have already tried and failed to instantiate, don't try again.
5532   if (Field->isInvalidDecl())
5533     return ExprError();
5534 
5535   CXXThisScopeRAII This(*this, Field->getParent(), Qualifiers());
5536 
5537   auto *ParentRD = cast<CXXRecordDecl>(Field->getParent());
5538 
5539   std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5540       InitializationContext =
5541           OutermostDeclarationWithDelayedImmediateInvocations();
5542   if (!InitializationContext.has_value())
5543     InitializationContext.emplace(Loc, Field, CurContext);
5544 
5545   Expr *Init = nullptr;
5546 
5547   bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5548 
5549   EnterExpressionEvaluationContext EvalContext(
5550       *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field);
5551 
5552   if (!Field->getInClassInitializer()) {
5553     // Maybe we haven't instantiated the in-class initializer. Go check the
5554     // pattern FieldDecl to see if it has one.
5555     if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
5556       CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
5557       DeclContext::lookup_result Lookup =
5558           ClassPattern->lookup(Field->getDeclName());
5559 
5560       FieldDecl *Pattern = nullptr;
5561       for (auto *L : Lookup) {
5562         if ((Pattern = dyn_cast<FieldDecl>(L)))
5563           break;
5564       }
5565       assert(Pattern && "We must have set the Pattern!");
5566       if (!Pattern->hasInClassInitializer() ||
5567           InstantiateInClassInitializer(Loc, Field, Pattern,
5568                                         getTemplateInstantiationArgs(Field))) {
5569         Field->setInvalidDecl();
5570         return ExprError();
5571       }
5572     }
5573   }
5574 
5575   // CWG2631
5576   // An immediate invocation that is not evaluated where it appears is
5577   // evaluated and checked for whether it is a constant expression at the
5578   // point where the enclosing initializer is used in a [...] a constructor
5579   // definition, or an aggregate initialization.
5580   ImmediateCallVisitor V(getASTContext());
5581   if (!NestedDefaultChecking)
5582     V.TraverseDecl(Field);
5583   if (V.HasImmediateCalls) {
5584     ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field,
5585                                                                    CurContext};
5586     ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5587         NestedDefaultChecking;
5588 
5589     EnsureImmediateInvocationInDefaultArgs Immediate(*this);
5590     ExprResult Res;
5591     runWithSufficientStackSpace(Loc, [&] {
5592       Res = Immediate.TransformInitializer(Field->getInClassInitializer(),
5593                                            /*CXXDirectInit=*/false);
5594     });
5595     if (!Res.isInvalid())
5596       Res = ConvertMemberDefaultInitExpression(Field, Res.get(), Loc);
5597     if (Res.isInvalid()) {
5598       Field->setInvalidDecl();
5599       return ExprError();
5600     }
5601     Init = Res.get();
5602   }
5603 
5604   if (Field->getInClassInitializer()) {
5605     Expr *E = Init ? Init : Field->getInClassInitializer();
5606     if (!NestedDefaultChecking)
5607       runWithSufficientStackSpace(Loc, [&] {
5608         MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false);
5609       });
5610     // C++11 [class.base.init]p7:
5611     //   The initialization of each base and member constitutes a
5612     //   full-expression.
5613     ExprResult Res = ActOnFinishFullExpr(E, /*DiscardedValue=*/false);
5614     if (Res.isInvalid()) {
5615       Field->setInvalidDecl();
5616       return ExprError();
5617     }
5618     Init = Res.get();
5619 
5620     return CXXDefaultInitExpr::Create(Context, InitializationContext->Loc,
5621                                       Field, InitializationContext->Context,
5622                                       Init);
5623   }
5624 
5625   // DR1351:
5626   //   If the brace-or-equal-initializer of a non-static data member
5627   //   invokes a defaulted default constructor of its class or of an
5628   //   enclosing class in a potentially evaluated subexpression, the
5629   //   program is ill-formed.
5630   //
5631   // This resolution is unworkable: the exception specification of the
5632   // default constructor can be needed in an unevaluated context, in
5633   // particular, in the operand of a noexcept-expression, and we can be
5634   // unable to compute an exception specification for an enclosed class.
5635   //
5636   // Any attempt to resolve the exception specification of a defaulted default
5637   // constructor before the initializer is lexically complete will ultimately
5638   // come here at which point we can diagnose it.
5639   RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
5640   Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
5641       << OutermostClass << Field;
5642   Diag(Field->getEndLoc(),
5643        diag::note_default_member_initializer_not_yet_parsed);
5644   // Recover by marking the field invalid, unless we're in a SFINAE context.
5645   if (!isSFINAEContext())
5646     Field->setInvalidDecl();
5647   return ExprError();
5648 }
5649 
5650 Sema::VariadicCallType
5651 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5652                           Expr *Fn) {
5653   if (Proto && Proto->isVariadic()) {
5654     if (isa_and_nonnull<CXXConstructorDecl>(FDecl))
5655       return VariadicConstructor;
5656     else if (Fn && Fn->getType()->isBlockPointerType())
5657       return VariadicBlock;
5658     else if (FDecl) {
5659       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5660         if (Method->isInstance())
5661           return VariadicMethod;
5662     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5663       return VariadicMethod;
5664     return VariadicFunction;
5665   }
5666   return VariadicDoesNotApply;
5667 }
5668 
5669 namespace {
5670 class FunctionCallCCC final : public FunctionCallFilterCCC {
5671 public:
5672   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5673                   unsigned NumArgs, MemberExpr *ME)
5674       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5675         FunctionName(FuncName) {}
5676 
5677   bool ValidateCandidate(const TypoCorrection &candidate) override {
5678     if (!candidate.getCorrectionSpecifier() ||
5679         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5680       return false;
5681     }
5682 
5683     return FunctionCallFilterCCC::ValidateCandidate(candidate);
5684   }
5685 
5686   std::unique_ptr<CorrectionCandidateCallback> clone() override {
5687     return std::make_unique<FunctionCallCCC>(*this);
5688   }
5689 
5690 private:
5691   const IdentifierInfo *const FunctionName;
5692 };
5693 }
5694 
5695 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5696                                                FunctionDecl *FDecl,
5697                                                ArrayRef<Expr *> Args) {
5698   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5699   DeclarationName FuncName = FDecl->getDeclName();
5700   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5701 
5702   FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5703   if (TypoCorrection Corrected = S.CorrectTypo(
5704           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5705           S.getScopeForContext(S.CurContext), nullptr, CCC,
5706           Sema::CTK_ErrorRecovery)) {
5707     if (NamedDecl *ND = Corrected.getFoundDecl()) {
5708       if (Corrected.isOverloaded()) {
5709         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5710         OverloadCandidateSet::iterator Best;
5711         for (NamedDecl *CD : Corrected) {
5712           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5713             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5714                                    OCS);
5715         }
5716         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5717         case OR_Success:
5718           ND = Best->FoundDecl;
5719           Corrected.setCorrectionDecl(ND);
5720           break;
5721         default:
5722           break;
5723         }
5724       }
5725       ND = ND->getUnderlyingDecl();
5726       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5727         return Corrected;
5728     }
5729   }
5730   return TypoCorrection();
5731 }
5732 
5733 // [C++26][[expr.unary.op]/p4
5734 // A pointer to member is only formed when an explicit &
5735 // is used and its operand is a qualified-id not enclosed in parentheses.
5736 static bool isParenthetizedAndQualifiedAddressOfExpr(Expr *Fn) {
5737   if (!isa<ParenExpr>(Fn))
5738     return false;
5739 
5740   Fn = Fn->IgnoreParens();
5741 
5742   auto *UO = dyn_cast<UnaryOperator>(Fn);
5743   if (!UO || UO->getOpcode() != clang::UO_AddrOf)
5744     return false;
5745   if (auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr()->IgnoreParens())) {
5746     return DRE->hasQualifier();
5747   }
5748   if (auto *OVL = dyn_cast<OverloadExpr>(UO->getSubExpr()->IgnoreParens()))
5749     return OVL->getQualifier();
5750   return false;
5751 }
5752 
5753 bool
5754 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5755                               FunctionDecl *FDecl,
5756                               const FunctionProtoType *Proto,
5757                               ArrayRef<Expr *> Args,
5758                               SourceLocation RParenLoc,
5759                               bool IsExecConfig) {
5760   // Bail out early if calling a builtin with custom typechecking.
5761   if (FDecl)
5762     if (unsigned ID = FDecl->getBuiltinID())
5763       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5764         return false;
5765 
5766   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5767   // assignment, to the types of the corresponding parameter, ...
5768 
5769   bool AddressOf = isParenthetizedAndQualifiedAddressOfExpr(Fn);
5770   bool HasExplicitObjectParameter =
5771       !AddressOf && FDecl && FDecl->hasCXXExplicitFunctionObjectParameter();
5772   unsigned ExplicitObjectParameterOffset = HasExplicitObjectParameter ? 1 : 0;
5773   unsigned NumParams = Proto->getNumParams();
5774   bool Invalid = false;
5775   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5776   unsigned FnKind = Fn->getType()->isBlockPointerType()
5777                        ? 1 /* block */
5778                        : (IsExecConfig ? 3 /* kernel function (exec config) */
5779                                        : 0 /* function */);
5780 
5781   // If too few arguments are available (and we don't have default
5782   // arguments for the remaining parameters), don't make the call.
5783   if (Args.size() < NumParams) {
5784     if (Args.size() < MinArgs) {
5785       TypoCorrection TC;
5786       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5787         unsigned diag_id =
5788             MinArgs == NumParams && !Proto->isVariadic()
5789                 ? diag::err_typecheck_call_too_few_args_suggest
5790                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5791         diagnoseTypo(
5792             TC, PDiag(diag_id)
5793                     << FnKind << MinArgs - ExplicitObjectParameterOffset
5794                     << static_cast<unsigned>(Args.size()) -
5795                            ExplicitObjectParameterOffset
5796                     << HasExplicitObjectParameter << TC.getCorrectionRange());
5797       } else if (MinArgs - ExplicitObjectParameterOffset == 1 && FDecl &&
5798                  FDecl->getParamDecl(ExplicitObjectParameterOffset)
5799                      ->getDeclName())
5800         Diag(RParenLoc,
5801              MinArgs == NumParams && !Proto->isVariadic()
5802                  ? diag::err_typecheck_call_too_few_args_one
5803                  : diag::err_typecheck_call_too_few_args_at_least_one)
5804             << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
5805             << HasExplicitObjectParameter << Fn->getSourceRange();
5806       else
5807         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
5808                             ? diag::err_typecheck_call_too_few_args
5809                             : diag::err_typecheck_call_too_few_args_at_least)
5810             << FnKind << MinArgs - ExplicitObjectParameterOffset
5811             << static_cast<unsigned>(Args.size()) -
5812                    ExplicitObjectParameterOffset
5813             << HasExplicitObjectParameter << Fn->getSourceRange();
5814 
5815       // Emit the location of the prototype.
5816       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5817         Diag(FDecl->getLocation(), diag::note_callee_decl)
5818             << FDecl << FDecl->getParametersSourceRange();
5819 
5820       return true;
5821     }
5822     // We reserve space for the default arguments when we create
5823     // the call expression, before calling ConvertArgumentsForCall.
5824     assert((Call->getNumArgs() == NumParams) &&
5825            "We should have reserved space for the default arguments before!");
5826   }
5827 
5828   // If too many are passed and not variadic, error on the extras and drop
5829   // them.
5830   if (Args.size() > NumParams) {
5831     if (!Proto->isVariadic()) {
5832       TypoCorrection TC;
5833       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5834         unsigned diag_id =
5835             MinArgs == NumParams && !Proto->isVariadic()
5836                 ? diag::err_typecheck_call_too_many_args_suggest
5837                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5838         diagnoseTypo(
5839             TC, PDiag(diag_id)
5840                     << FnKind << NumParams - ExplicitObjectParameterOffset
5841                     << static_cast<unsigned>(Args.size()) -
5842                            ExplicitObjectParameterOffset
5843                     << HasExplicitObjectParameter << TC.getCorrectionRange());
5844       } else if (NumParams - ExplicitObjectParameterOffset == 1 && FDecl &&
5845                  FDecl->getParamDecl(ExplicitObjectParameterOffset)
5846                      ->getDeclName())
5847         Diag(Args[NumParams]->getBeginLoc(),
5848              MinArgs == NumParams
5849                  ? diag::err_typecheck_call_too_many_args_one
5850                  : diag::err_typecheck_call_too_many_args_at_most_one)
5851             << FnKind << FDecl->getParamDecl(ExplicitObjectParameterOffset)
5852             << static_cast<unsigned>(Args.size()) -
5853                    ExplicitObjectParameterOffset
5854             << HasExplicitObjectParameter << Fn->getSourceRange()
5855             << SourceRange(Args[NumParams]->getBeginLoc(),
5856                            Args.back()->getEndLoc());
5857       else
5858         Diag(Args[NumParams]->getBeginLoc(),
5859              MinArgs == NumParams
5860                  ? diag::err_typecheck_call_too_many_args
5861                  : diag::err_typecheck_call_too_many_args_at_most)
5862             << FnKind << NumParams - ExplicitObjectParameterOffset
5863             << static_cast<unsigned>(Args.size()) -
5864                    ExplicitObjectParameterOffset
5865             << HasExplicitObjectParameter << Fn->getSourceRange()
5866             << SourceRange(Args[NumParams]->getBeginLoc(),
5867                            Args.back()->getEndLoc());
5868 
5869       // Emit the location of the prototype.
5870       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5871         Diag(FDecl->getLocation(), diag::note_callee_decl)
5872             << FDecl << FDecl->getParametersSourceRange();
5873 
5874       // This deletes the extra arguments.
5875       Call->shrinkNumArgs(NumParams);
5876       return true;
5877     }
5878   }
5879   SmallVector<Expr *, 8> AllArgs;
5880   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5881 
5882   Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
5883                                    AllArgs, CallType);
5884   if (Invalid)
5885     return true;
5886   unsigned TotalNumArgs = AllArgs.size();
5887   for (unsigned i = 0; i < TotalNumArgs; ++i)
5888     Call->setArg(i, AllArgs[i]);
5889 
5890   Call->computeDependence();
5891   return false;
5892 }
5893 
5894 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5895                                   const FunctionProtoType *Proto,
5896                                   unsigned FirstParam, ArrayRef<Expr *> Args,
5897                                   SmallVectorImpl<Expr *> &AllArgs,
5898                                   VariadicCallType CallType, bool AllowExplicit,
5899                                   bool IsListInitialization) {
5900   unsigned NumParams = Proto->getNumParams();
5901   bool Invalid = false;
5902   size_t ArgIx = 0;
5903   // Continue to check argument types (even if we have too few/many args).
5904   for (unsigned i = FirstParam; i < NumParams; i++) {
5905     QualType ProtoArgType = Proto->getParamType(i);
5906 
5907     Expr *Arg;
5908     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5909     if (ArgIx < Args.size()) {
5910       Arg = Args[ArgIx++];
5911 
5912       if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
5913                               diag::err_call_incomplete_argument, Arg))
5914         return true;
5915 
5916       // Strip the unbridged-cast placeholder expression off, if applicable.
5917       bool CFAudited = false;
5918       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5919           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5920           (!Param || !Param->hasAttr<CFConsumedAttr>()))
5921         Arg = ObjC().stripARCUnbridgedCast(Arg);
5922       else if (getLangOpts().ObjCAutoRefCount &&
5923                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5924                (!Param || !Param->hasAttr<CFConsumedAttr>()))
5925         CFAudited = true;
5926 
5927       if (Proto->getExtParameterInfo(i).isNoEscape() &&
5928           ProtoArgType->isBlockPointerType())
5929         if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
5930           BE->getBlockDecl()->setDoesNotEscape();
5931 
5932       InitializedEntity Entity =
5933           Param ? InitializedEntity::InitializeParameter(Context, Param,
5934                                                          ProtoArgType)
5935                 : InitializedEntity::InitializeParameter(
5936                       Context, ProtoArgType, Proto->isParamConsumed(i));
5937 
5938       // Remember that parameter belongs to a CF audited API.
5939       if (CFAudited)
5940         Entity.setParameterCFAudited();
5941 
5942       ExprResult ArgE = PerformCopyInitialization(
5943           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
5944       if (ArgE.isInvalid())
5945         return true;
5946 
5947       Arg = ArgE.getAs<Expr>();
5948     } else {
5949       assert(Param && "can't use default arguments without a known callee");
5950 
5951       ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
5952       if (ArgExpr.isInvalid())
5953         return true;
5954 
5955       Arg = ArgExpr.getAs<Expr>();
5956     }
5957 
5958     // Check for array bounds violations for each argument to the call. This
5959     // check only triggers warnings when the argument isn't a more complex Expr
5960     // with its own checking, such as a BinaryOperator.
5961     CheckArrayAccess(Arg);
5962 
5963     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
5964     CheckStaticArrayArgument(CallLoc, Param, Arg);
5965 
5966     AllArgs.push_back(Arg);
5967   }
5968 
5969   // If this is a variadic call, handle args passed through "...".
5970   if (CallType != VariadicDoesNotApply) {
5971     // Assume that extern "C" functions with variadic arguments that
5972     // return __unknown_anytype aren't *really* variadic.
5973     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
5974         FDecl->isExternC()) {
5975       for (Expr *A : Args.slice(ArgIx)) {
5976         QualType paramType; // ignored
5977         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
5978         Invalid |= arg.isInvalid();
5979         AllArgs.push_back(arg.get());
5980       }
5981 
5982     // Otherwise do argument promotion, (C99 6.5.2.2p7).
5983     } else {
5984       for (Expr *A : Args.slice(ArgIx)) {
5985         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
5986         Invalid |= Arg.isInvalid();
5987         AllArgs.push_back(Arg.get());
5988       }
5989     }
5990 
5991     // Check for array bounds violations.
5992     for (Expr *A : Args.slice(ArgIx))
5993       CheckArrayAccess(A);
5994   }
5995   return Invalid;
5996 }
5997 
5998 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
5999   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6000   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6001     TL = DTL.getOriginalLoc();
6002   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6003     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
6004       << ATL.getLocalSourceRange();
6005 }
6006 
6007 void
6008 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6009                                ParmVarDecl *Param,
6010                                const Expr *ArgExpr) {
6011   // Static array parameters are not supported in C++.
6012   if (!Param || getLangOpts().CPlusPlus)
6013     return;
6014 
6015   QualType OrigTy = Param->getOriginalType();
6016 
6017   const ArrayType *AT = Context.getAsArrayType(OrigTy);
6018   if (!AT || AT->getSizeModifier() != ArraySizeModifier::Static)
6019     return;
6020 
6021   if (ArgExpr->isNullPointerConstant(Context,
6022                                      Expr::NPC_NeverValueDependent)) {
6023     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6024     DiagnoseCalleeStaticArrayParam(*this, Param);
6025     return;
6026   }
6027 
6028   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6029   if (!CAT)
6030     return;
6031 
6032   const ConstantArrayType *ArgCAT =
6033     Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6034   if (!ArgCAT)
6035     return;
6036 
6037   if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6038                                              ArgCAT->getElementType())) {
6039     if (ArgCAT->getSize().ult(CAT->getSize())) {
6040       Diag(CallLoc, diag::warn_static_array_too_small)
6041           << ArgExpr->getSourceRange() << (unsigned)ArgCAT->getZExtSize()
6042           << (unsigned)CAT->getZExtSize() << 0;
6043       DiagnoseCalleeStaticArrayParam(*this, Param);
6044     }
6045     return;
6046   }
6047 
6048   std::optional<CharUnits> ArgSize =
6049       getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6050   std::optional<CharUnits> ParmSize =
6051       getASTContext().getTypeSizeInCharsIfKnown(CAT);
6052   if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6053     Diag(CallLoc, diag::warn_static_array_too_small)
6054         << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6055         << (unsigned)ParmSize->getQuantity() << 1;
6056     DiagnoseCalleeStaticArrayParam(*this, Param);
6057   }
6058 }
6059 
6060 /// Given a function expression of unknown-any type, try to rebuild it
6061 /// to have a function type.
6062 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6063 
6064 /// Is the given type a placeholder that we need to lower out
6065 /// immediately during argument processing?
6066 static bool isPlaceholderToRemoveAsArg(QualType type) {
6067   // Placeholders are never sugared.
6068   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6069   if (!placeholder) return false;
6070 
6071   switch (placeholder->getKind()) {
6072   // Ignore all the non-placeholder types.
6073 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6074   case BuiltinType::Id:
6075 #include "clang/Basic/OpenCLImageTypes.def"
6076 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6077   case BuiltinType::Id:
6078 #include "clang/Basic/OpenCLExtensionTypes.def"
6079   // In practice we'll never use this, since all SVE types are sugared
6080   // via TypedefTypes rather than exposed directly as BuiltinTypes.
6081 #define SVE_TYPE(Name, Id, SingletonId) \
6082   case BuiltinType::Id:
6083 #include "clang/Basic/AArch64SVEACLETypes.def"
6084 #define PPC_VECTOR_TYPE(Name, Id, Size) \
6085   case BuiltinType::Id:
6086 #include "clang/Basic/PPCTypes.def"
6087 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6088 #include "clang/Basic/RISCVVTypes.def"
6089 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6090 #include "clang/Basic/WebAssemblyReferenceTypes.def"
6091 #define AMDGPU_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6092 #include "clang/Basic/AMDGPUTypes.def"
6093 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6094 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6095 #include "clang/AST/BuiltinTypes.def"
6096     return false;
6097 
6098   case BuiltinType::UnresolvedTemplate:
6099   // We cannot lower out overload sets; they might validly be resolved
6100   // by the call machinery.
6101   case BuiltinType::Overload:
6102     return false;
6103 
6104   // Unbridged casts in ARC can be handled in some call positions and
6105   // should be left in place.
6106   case BuiltinType::ARCUnbridgedCast:
6107     return false;
6108 
6109   // Pseudo-objects should be converted as soon as possible.
6110   case BuiltinType::PseudoObject:
6111     return true;
6112 
6113   // The debugger mode could theoretically but currently does not try
6114   // to resolve unknown-typed arguments based on known parameter types.
6115   case BuiltinType::UnknownAny:
6116     return true;
6117 
6118   // These are always invalid as call arguments and should be reported.
6119   case BuiltinType::BoundMember:
6120   case BuiltinType::BuiltinFn:
6121   case BuiltinType::IncompleteMatrixIdx:
6122   case BuiltinType::ArraySection:
6123   case BuiltinType::OMPArrayShaping:
6124   case BuiltinType::OMPIterator:
6125     return true;
6126 
6127   }
6128   llvm_unreachable("bad builtin type kind");
6129 }
6130 
6131 bool Sema::CheckArgsForPlaceholders(MultiExprArg args) {
6132   // Apply this processing to all the arguments at once instead of
6133   // dying at the first failure.
6134   bool hasInvalid = false;
6135   for (size_t i = 0, e = args.size(); i != e; i++) {
6136     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6137       ExprResult result = CheckPlaceholderExpr(args[i]);
6138       if (result.isInvalid()) hasInvalid = true;
6139       else args[i] = result.get();
6140     }
6141   }
6142   return hasInvalid;
6143 }
6144 
6145 /// If a builtin function has a pointer argument with no explicit address
6146 /// space, then it should be able to accept a pointer to any address
6147 /// space as input.  In order to do this, we need to replace the
6148 /// standard builtin declaration with one that uses the same address space
6149 /// as the call.
6150 ///
6151 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6152 ///                  it does not contain any pointer arguments without
6153 ///                  an address space qualifer.  Otherwise the rewritten
6154 ///                  FunctionDecl is returned.
6155 /// TODO: Handle pointer return types.
6156 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6157                                                 FunctionDecl *FDecl,
6158                                                 MultiExprArg ArgExprs) {
6159 
6160   QualType DeclType = FDecl->getType();
6161   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6162 
6163   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6164       ArgExprs.size() < FT->getNumParams())
6165     return nullptr;
6166 
6167   bool NeedsNewDecl = false;
6168   unsigned i = 0;
6169   SmallVector<QualType, 8> OverloadParams;
6170 
6171   for (QualType ParamType : FT->param_types()) {
6172 
6173     // Convert array arguments to pointer to simplify type lookup.
6174     ExprResult ArgRes =
6175         Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6176     if (ArgRes.isInvalid())
6177       return nullptr;
6178     Expr *Arg = ArgRes.get();
6179     QualType ArgType = Arg->getType();
6180     if (!ParamType->isPointerType() || ParamType.hasAddressSpace() ||
6181         !ArgType->isPointerType() ||
6182         !ArgType->getPointeeType().hasAddressSpace() ||
6183         isPtrSizeAddressSpace(ArgType->getPointeeType().getAddressSpace())) {
6184       OverloadParams.push_back(ParamType);
6185       continue;
6186     }
6187 
6188     QualType PointeeType = ParamType->getPointeeType();
6189     if (PointeeType.hasAddressSpace())
6190       continue;
6191 
6192     NeedsNewDecl = true;
6193     LangAS AS = ArgType->getPointeeType().getAddressSpace();
6194 
6195     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6196     OverloadParams.push_back(Context.getPointerType(PointeeType));
6197   }
6198 
6199   if (!NeedsNewDecl)
6200     return nullptr;
6201 
6202   FunctionProtoType::ExtProtoInfo EPI;
6203   EPI.Variadic = FT->isVariadic();
6204   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6205                                                 OverloadParams, EPI);
6206   DeclContext *Parent = FDecl->getParent();
6207   FunctionDecl *OverloadDecl = FunctionDecl::Create(
6208       Context, Parent, FDecl->getLocation(), FDecl->getLocation(),
6209       FDecl->getIdentifier(), OverloadTy,
6210       /*TInfo=*/nullptr, SC_Extern, Sema->getCurFPFeatures().isFPConstrained(),
6211       false,
6212       /*hasPrototype=*/true);
6213   SmallVector<ParmVarDecl*, 16> Params;
6214   FT = cast<FunctionProtoType>(OverloadTy);
6215   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6216     QualType ParamType = FT->getParamType(i);
6217     ParmVarDecl *Parm =
6218         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6219                                 SourceLocation(), nullptr, ParamType,
6220                                 /*TInfo=*/nullptr, SC_None, nullptr);
6221     Parm->setScopeInfo(0, i);
6222     Params.push_back(Parm);
6223   }
6224   OverloadDecl->setParams(Params);
6225   Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6226   return OverloadDecl;
6227 }
6228 
6229 static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6230                                     FunctionDecl *Callee,
6231                                     MultiExprArg ArgExprs) {
6232   // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6233   // similar attributes) really don't like it when functions are called with an
6234   // invalid number of args.
6235   if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6236                          /*PartialOverloading=*/false) &&
6237       !Callee->isVariadic())
6238     return;
6239   if (Callee->getMinRequiredArguments() > ArgExprs.size())
6240     return;
6241 
6242   if (const EnableIfAttr *Attr =
6243           S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6244     S.Diag(Fn->getBeginLoc(),
6245            isa<CXXMethodDecl>(Callee)
6246                ? diag::err_ovl_no_viable_member_function_in_call
6247                : diag::err_ovl_no_viable_function_in_call)
6248         << Callee << Callee->getSourceRange();
6249     S.Diag(Callee->getLocation(),
6250            diag::note_ovl_candidate_disabled_by_function_cond_attr)
6251         << Attr->getCond()->getSourceRange() << Attr->getMessage();
6252     return;
6253   }
6254 }
6255 
6256 static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6257     const UnresolvedMemberExpr *const UME, Sema &S) {
6258 
6259   const auto GetFunctionLevelDCIfCXXClass =
6260       [](Sema &S) -> const CXXRecordDecl * {
6261     const DeclContext *const DC = S.getFunctionLevelDeclContext();
6262     if (!DC || !DC->getParent())
6263       return nullptr;
6264 
6265     // If the call to some member function was made from within a member
6266     // function body 'M' return return 'M's parent.
6267     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6268       return MD->getParent()->getCanonicalDecl();
6269     // else the call was made from within a default member initializer of a
6270     // class, so return the class.
6271     if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6272       return RD->getCanonicalDecl();
6273     return nullptr;
6274   };
6275   // If our DeclContext is neither a member function nor a class (in the
6276   // case of a lambda in a default member initializer), we can't have an
6277   // enclosing 'this'.
6278 
6279   const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6280   if (!CurParentClass)
6281     return false;
6282 
6283   // The naming class for implicit member functions call is the class in which
6284   // name lookup starts.
6285   const CXXRecordDecl *const NamingClass =
6286       UME->getNamingClass()->getCanonicalDecl();
6287   assert(NamingClass && "Must have naming class even for implicit access");
6288 
6289   // If the unresolved member functions were found in a 'naming class' that is
6290   // related (either the same or derived from) to the class that contains the
6291   // member function that itself contained the implicit member access.
6292 
6293   return CurParentClass == NamingClass ||
6294          CurParentClass->isDerivedFrom(NamingClass);
6295 }
6296 
6297 static void
6298 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6299     Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6300 
6301   if (!UME)
6302     return;
6303 
6304   LambdaScopeInfo *const CurLSI = S.getCurLambda();
6305   // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6306   // already been captured, or if this is an implicit member function call (if
6307   // it isn't, an attempt to capture 'this' should already have been made).
6308   if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6309       !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6310     return;
6311 
6312   // Check if the naming class in which the unresolved members were found is
6313   // related (same as or is a base of) to the enclosing class.
6314 
6315   if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6316     return;
6317 
6318 
6319   DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6320   // If the enclosing function is not dependent, then this lambda is
6321   // capture ready, so if we can capture this, do so.
6322   if (!EnclosingFunctionCtx->isDependentContext()) {
6323     // If the current lambda and all enclosing lambdas can capture 'this' -
6324     // then go ahead and capture 'this' (since our unresolved overload set
6325     // contains at least one non-static member function).
6326     if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6327       S.CheckCXXThisCapture(CallLoc);
6328   } else if (S.CurContext->isDependentContext()) {
6329     // ... since this is an implicit member reference, that might potentially
6330     // involve a 'this' capture, mark 'this' for potential capture in
6331     // enclosing lambdas.
6332     if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6333       CurLSI->addPotentialThisCapture(CallLoc);
6334   }
6335 }
6336 
6337 // Once a call is fully resolved, warn for unqualified calls to specific
6338 // C++ standard functions, like move and forward.
6339 static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S,
6340                                                     const CallExpr *Call) {
6341   // We are only checking unary move and forward so exit early here.
6342   if (Call->getNumArgs() != 1)
6343     return;
6344 
6345   const Expr *E = Call->getCallee()->IgnoreParenImpCasts();
6346   if (!E || isa<UnresolvedLookupExpr>(E))
6347     return;
6348   const DeclRefExpr *DRE = dyn_cast_if_present<DeclRefExpr>(E);
6349   if (!DRE || !DRE->getLocation().isValid())
6350     return;
6351 
6352   if (DRE->getQualifier())
6353     return;
6354 
6355   const FunctionDecl *FD = Call->getDirectCallee();
6356   if (!FD)
6357     return;
6358 
6359   // Only warn for some functions deemed more frequent or problematic.
6360   unsigned BuiltinID = FD->getBuiltinID();
6361   if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
6362     return;
6363 
6364   S.Diag(DRE->getLocation(), diag::warn_unqualified_call_to_std_cast_function)
6365       << FD->getQualifiedNameAsString()
6366       << FixItHint::CreateInsertion(DRE->getLocation(), "std::");
6367 }
6368 
6369 ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6370                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6371                                Expr *ExecConfig) {
6372   ExprResult Call =
6373       BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6374                     /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6375   if (Call.isInvalid())
6376     return Call;
6377 
6378   // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6379   // language modes.
6380   if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn);
6381       ULE && ULE->hasExplicitTemplateArgs() &&
6382       ULE->decls_begin() == ULE->decls_end()) {
6383     Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6384                                ? diag::warn_cxx17_compat_adl_only_template_id
6385                                : diag::ext_adl_only_template_id)
6386         << ULE->getName();
6387   }
6388 
6389   if (LangOpts.OpenMP)
6390     Call = OpenMP().ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6391                                     ExecConfig);
6392   if (LangOpts.CPlusPlus) {
6393     if (const auto *CE = dyn_cast<CallExpr>(Call.get()))
6394       DiagnosedUnqualifiedCallsToStdFunctions(*this, CE);
6395 
6396     // If we previously found that the id-expression of this call refers to a
6397     // consteval function but the call is dependent, we should not treat is an
6398     // an invalid immediate call.
6399     if (auto *DRE = dyn_cast<DeclRefExpr>(Fn->IgnoreParens());
6400         DRE && Call.get()->isValueDependent()) {
6401       currentEvaluationContext().ReferenceToConsteval.erase(DRE);
6402     }
6403   }
6404   return Call;
6405 }
6406 
6407 ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6408                                MultiExprArg ArgExprs, SourceLocation RParenLoc,
6409                                Expr *ExecConfig, bool IsExecConfig,
6410                                bool AllowRecovery) {
6411   // Since this might be a postfix expression, get rid of ParenListExprs.
6412   ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6413   if (Result.isInvalid()) return ExprError();
6414   Fn = Result.get();
6415 
6416   if (CheckArgsForPlaceholders(ArgExprs))
6417     return ExprError();
6418 
6419   if (getLangOpts().CPlusPlus) {
6420     // If this is a pseudo-destructor expression, build the call immediately.
6421     if (isa<CXXPseudoDestructorExpr>(Fn)) {
6422       if (!ArgExprs.empty()) {
6423         // Pseudo-destructor calls should not have any arguments.
6424         Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6425             << FixItHint::CreateRemoval(
6426                    SourceRange(ArgExprs.front()->getBeginLoc(),
6427                                ArgExprs.back()->getEndLoc()));
6428       }
6429 
6430       return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6431                               VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6432     }
6433     if (Fn->getType() == Context.PseudoObjectTy) {
6434       ExprResult result = CheckPlaceholderExpr(Fn);
6435       if (result.isInvalid()) return ExprError();
6436       Fn = result.get();
6437     }
6438 
6439     // Determine whether this is a dependent call inside a C++ template,
6440     // in which case we won't do any semantic analysis now.
6441     if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6442       if (ExecConfig) {
6443         return CUDAKernelCallExpr::Create(Context, Fn,
6444                                           cast<CallExpr>(ExecConfig), ArgExprs,
6445                                           Context.DependentTy, VK_PRValue,
6446                                           RParenLoc, CurFPFeatureOverrides());
6447       } else {
6448 
6449         tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6450             *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6451             Fn->getBeginLoc());
6452 
6453         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6454                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6455       }
6456     }
6457 
6458     // Determine whether this is a call to an object (C++ [over.call.object]).
6459     if (Fn->getType()->isRecordType())
6460       return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6461                                           RParenLoc);
6462 
6463     if (Fn->getType() == Context.UnknownAnyTy) {
6464       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6465       if (result.isInvalid()) return ExprError();
6466       Fn = result.get();
6467     }
6468 
6469     if (Fn->getType() == Context.BoundMemberTy) {
6470       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6471                                        RParenLoc, ExecConfig, IsExecConfig,
6472                                        AllowRecovery);
6473     }
6474   }
6475 
6476   // Check for overloaded calls.  This can happen even in C due to extensions.
6477   if (Fn->getType() == Context.OverloadTy) {
6478     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6479 
6480     // We aren't supposed to apply this logic if there's an '&' involved.
6481     if (!find.HasFormOfMemberPointer || find.IsAddressOfOperandWithParen) {
6482       if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6483         return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6484                                 VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6485       OverloadExpr *ovl = find.Expression;
6486       if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6487         return BuildOverloadedCallExpr(
6488             Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6489             /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6490       return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6491                                        RParenLoc, ExecConfig, IsExecConfig,
6492                                        AllowRecovery);
6493     }
6494   }
6495 
6496   // If we're directly calling a function, get the appropriate declaration.
6497   if (Fn->getType() == Context.UnknownAnyTy) {
6498     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6499     if (result.isInvalid()) return ExprError();
6500     Fn = result.get();
6501   }
6502 
6503   Expr *NakedFn = Fn->IgnoreParens();
6504 
6505   bool CallingNDeclIndirectly = false;
6506   NamedDecl *NDecl = nullptr;
6507   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6508     if (UnOp->getOpcode() == UO_AddrOf) {
6509       CallingNDeclIndirectly = true;
6510       NakedFn = UnOp->getSubExpr()->IgnoreParens();
6511     }
6512   }
6513 
6514   if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6515     NDecl = DRE->getDecl();
6516 
6517     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6518     if (FDecl && FDecl->getBuiltinID()) {
6519       // Rewrite the function decl for this builtin by replacing parameters
6520       // with no explicit address space with the address space of the arguments
6521       // in ArgExprs.
6522       if ((FDecl =
6523                rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6524         NDecl = FDecl;
6525         Fn = DeclRefExpr::Create(
6526             Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
6527             SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
6528             nullptr, DRE->isNonOdrUse());
6529       }
6530     }
6531   } else if (auto *ME = dyn_cast<MemberExpr>(NakedFn))
6532     NDecl = ME->getMemberDecl();
6533 
6534   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
6535     if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6536                                       FD, /*Complain=*/true, Fn->getBeginLoc()))
6537       return ExprError();
6538 
6539     checkDirectCallValidity(*this, Fn, FD, ArgExprs);
6540 
6541     // If this expression is a call to a builtin function in HIP device
6542     // compilation, allow a pointer-type argument to default address space to be
6543     // passed as a pointer-type parameter to a non-default address space.
6544     // If Arg is declared in the default address space and Param is declared
6545     // in a non-default address space, perform an implicit address space cast to
6546     // the parameter type.
6547     if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
6548         FD->getBuiltinID()) {
6549       for (unsigned Idx = 0; Idx < ArgExprs.size() && Idx < FD->param_size();
6550           ++Idx) {
6551         ParmVarDecl *Param = FD->getParamDecl(Idx);
6552         if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
6553             !ArgExprs[Idx]->getType()->isPointerType())
6554           continue;
6555 
6556         auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
6557         auto ArgTy = ArgExprs[Idx]->getType();
6558         auto ArgPtTy = ArgTy->getPointeeType();
6559         auto ArgAS = ArgPtTy.getAddressSpace();
6560 
6561         // Add address space cast if target address spaces are different
6562         bool NeedImplicitASC =
6563           ParamAS != LangAS::Default &&       // Pointer params in generic AS don't need special handling.
6564           ( ArgAS == LangAS::Default  ||      // We do allow implicit conversion from generic AS
6565                                               // or from specific AS which has target AS matching that of Param.
6566           getASTContext().getTargetAddressSpace(ArgAS) == getASTContext().getTargetAddressSpace(ParamAS));
6567         if (!NeedImplicitASC)
6568           continue;
6569 
6570         // First, ensure that the Arg is an RValue.
6571         if (ArgExprs[Idx]->isGLValue()) {
6572           ArgExprs[Idx] = ImplicitCastExpr::Create(
6573               Context, ArgExprs[Idx]->getType(), CK_NoOp, ArgExprs[Idx],
6574               nullptr, VK_PRValue, FPOptionsOverride());
6575         }
6576 
6577         // Construct a new arg type with address space of Param
6578         Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
6579         ArgPtQuals.setAddressSpace(ParamAS);
6580         auto NewArgPtTy =
6581             Context.getQualifiedType(ArgPtTy.getUnqualifiedType(), ArgPtQuals);
6582         auto NewArgTy =
6583             Context.getQualifiedType(Context.getPointerType(NewArgPtTy),
6584                                      ArgTy.getQualifiers());
6585 
6586         // Finally perform an implicit address space cast
6587         ArgExprs[Idx] = ImpCastExprToType(ArgExprs[Idx], NewArgTy,
6588                                           CK_AddressSpaceConversion)
6589                             .get();
6590       }
6591     }
6592   }
6593 
6594   if (Context.isDependenceAllowed() &&
6595       (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
6596     assert(!getLangOpts().CPlusPlus);
6597     assert((Fn->containsErrors() ||
6598             llvm::any_of(ArgExprs,
6599                          [](clang::Expr *E) { return E->containsErrors(); })) &&
6600            "should only occur in error-recovery path.");
6601     return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6602                             VK_PRValue, RParenLoc, CurFPFeatureOverrides());
6603   }
6604   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
6605                                ExecConfig, IsExecConfig);
6606 }
6607 
6608 Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
6609                                  MultiExprArg CallArgs) {
6610   StringRef Name = Context.BuiltinInfo.getName(Id);
6611   LookupResult R(*this, &Context.Idents.get(Name), Loc,
6612                  Sema::LookupOrdinaryName);
6613   LookupName(R, TUScope, /*AllowBuiltinCreation=*/true);
6614 
6615   auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
6616   assert(BuiltInDecl && "failed to find builtin declaration");
6617 
6618   ExprResult DeclRef =
6619       BuildDeclRefExpr(BuiltInDecl, BuiltInDecl->getType(), VK_LValue, Loc);
6620   assert(DeclRef.isUsable() && "Builtin reference cannot fail");
6621 
6622   ExprResult Call =
6623       BuildCallExpr(/*Scope=*/nullptr, DeclRef.get(), Loc, CallArgs, Loc);
6624 
6625   assert(!Call.isInvalid() && "Call to builtin cannot fail!");
6626   return Call.get();
6627 }
6628 
6629 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6630                                  SourceLocation BuiltinLoc,
6631                                  SourceLocation RParenLoc) {
6632   QualType DstTy = GetTypeFromParser(ParsedDestTy);
6633   return BuildAsTypeExpr(E, DstTy, BuiltinLoc, RParenLoc);
6634 }
6635 
6636 ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
6637                                  SourceLocation BuiltinLoc,
6638                                  SourceLocation RParenLoc) {
6639   ExprValueKind VK = VK_PRValue;
6640   ExprObjectKind OK = OK_Ordinary;
6641   QualType SrcTy = E->getType();
6642   if (!SrcTy->isDependentType() &&
6643       Context.getTypeSize(DestTy) != Context.getTypeSize(SrcTy))
6644     return ExprError(
6645         Diag(BuiltinLoc, diag::err_invalid_astype_of_different_size)
6646         << DestTy << SrcTy << E->getSourceRange());
6647   return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
6648 }
6649 
6650 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6651                                         SourceLocation BuiltinLoc,
6652                                         SourceLocation RParenLoc) {
6653   TypeSourceInfo *TInfo;
6654   GetTypeFromParser(ParsedDestTy, &TInfo);
6655   return ConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6656 }
6657 
6658 ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6659                                        SourceLocation LParenLoc,
6660                                        ArrayRef<Expr *> Args,
6661                                        SourceLocation RParenLoc, Expr *Config,
6662                                        bool IsExecConfig, ADLCallKind UsesADL) {
6663   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
6664   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
6665 
6666   // Functions with 'interrupt' attribute cannot be called directly.
6667   if (FDecl) {
6668     if (FDecl->hasAttr<AnyX86InterruptAttr>()) {
6669       Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
6670       return ExprError();
6671     }
6672     if (FDecl->hasAttr<ARMInterruptAttr>()) {
6673       Diag(Fn->getExprLoc(), diag::err_arm_interrupt_called);
6674       return ExprError();
6675     }
6676   }
6677 
6678   // X86 interrupt handlers may only call routines with attribute
6679   // no_caller_saved_registers since there is no efficient way to
6680   // save and restore the non-GPR state.
6681   if (auto *Caller = getCurFunctionDecl()) {
6682     if (Caller->hasAttr<AnyX86InterruptAttr>() ||
6683         Caller->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) {
6684       const TargetInfo &TI = Context.getTargetInfo();
6685       bool HasNonGPRRegisters =
6686           TI.hasFeature("sse") || TI.hasFeature("x87") || TI.hasFeature("mmx");
6687       if (HasNonGPRRegisters &&
6688           (!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())) {
6689         Diag(Fn->getExprLoc(), diag::warn_anyx86_excessive_regsave)
6690             << (Caller->hasAttr<AnyX86InterruptAttr>() ? 0 : 1);
6691         if (FDecl)
6692           Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
6693       }
6694     }
6695   }
6696 
6697   // Promote the function operand.
6698   // We special-case function promotion here because we only allow promoting
6699   // builtin functions to function pointers in the callee of a call.
6700   ExprResult Result;
6701   QualType ResultTy;
6702   if (BuiltinID &&
6703       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
6704     // Extract the return type from the (builtin) function pointer type.
6705     // FIXME Several builtins still have setType in
6706     // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6707     // Builtins.td to ensure they are correct before removing setType calls.
6708     QualType FnPtrTy = Context.getPointerType(FDecl->getType());
6709     Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
6710     ResultTy = FDecl->getCallResultType();
6711   } else {
6712     Result = CallExprUnaryConversions(Fn);
6713     ResultTy = Context.BoolTy;
6714   }
6715   if (Result.isInvalid())
6716     return ExprError();
6717   Fn = Result.get();
6718 
6719   // Check for a valid function type, but only if it is not a builtin which
6720   // requires custom type checking. These will be handled by
6721   // CheckBuiltinFunctionCall below just after creation of the call expression.
6722   const FunctionType *FuncT = nullptr;
6723   if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6724   retry:
6725     if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
6726       // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6727       // have type pointer to function".
6728       FuncT = PT->getPointeeType()->getAs<FunctionType>();
6729       if (!FuncT)
6730         return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6731                          << Fn->getType() << Fn->getSourceRange());
6732     } else if (const BlockPointerType *BPT =
6733                    Fn->getType()->getAs<BlockPointerType>()) {
6734       FuncT = BPT->getPointeeType()->castAs<FunctionType>();
6735     } else {
6736       // Handle calls to expressions of unknown-any type.
6737       if (Fn->getType() == Context.UnknownAnyTy) {
6738         ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
6739         if (rewrite.isInvalid())
6740           return ExprError();
6741         Fn = rewrite.get();
6742         goto retry;
6743       }
6744 
6745       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6746                        << Fn->getType() << Fn->getSourceRange());
6747     }
6748   }
6749 
6750   // Get the number of parameters in the function prototype, if any.
6751   // We will allocate space for max(Args.size(), NumParams) arguments
6752   // in the call expression.
6753   const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
6754   unsigned NumParams = Proto ? Proto->getNumParams() : 0;
6755 
6756   CallExpr *TheCall;
6757   if (Config) {
6758     assert(UsesADL == ADLCallKind::NotADL &&
6759            "CUDAKernelCallExpr should not use ADL");
6760     TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
6761                                          Args, ResultTy, VK_PRValue, RParenLoc,
6762                                          CurFPFeatureOverrides(), NumParams);
6763   } else {
6764     TheCall =
6765         CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
6766                          CurFPFeatureOverrides(), NumParams, UsesADL);
6767   }
6768 
6769   if (!Context.isDependenceAllowed()) {
6770     // Forget about the nulled arguments since typo correction
6771     // do not handle them well.
6772     TheCall->shrinkNumArgs(Args.size());
6773     // C cannot always handle TypoExpr nodes in builtin calls and direct
6774     // function calls as their argument checking don't necessarily handle
6775     // dependent types properly, so make sure any TypoExprs have been
6776     // dealt with.
6777     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
6778     if (!Result.isUsable()) return ExprError();
6779     CallExpr *TheOldCall = TheCall;
6780     TheCall = dyn_cast<CallExpr>(Result.get());
6781     bool CorrectedTypos = TheCall != TheOldCall;
6782     if (!TheCall) return Result;
6783     Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
6784 
6785     // A new call expression node was created if some typos were corrected.
6786     // However it may not have been constructed with enough storage. In this
6787     // case, rebuild the node with enough storage. The waste of space is
6788     // immaterial since this only happens when some typos were corrected.
6789     if (CorrectedTypos && Args.size() < NumParams) {
6790       if (Config)
6791         TheCall = CUDAKernelCallExpr::Create(
6792             Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_PRValue,
6793             RParenLoc, CurFPFeatureOverrides(), NumParams);
6794       else
6795         TheCall =
6796             CallExpr::Create(Context, Fn, Args, ResultTy, VK_PRValue, RParenLoc,
6797                              CurFPFeatureOverrides(), NumParams, UsesADL);
6798     }
6799     // We can now handle the nulled arguments for the default arguments.
6800     TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
6801   }
6802 
6803   // Bail out early if calling a builtin with custom type checking.
6804   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6805     ExprResult E = CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6806     if (!E.isInvalid() && Context.BuiltinInfo.isImmediate(BuiltinID))
6807       E = CheckForImmediateInvocation(E, FDecl);
6808     return E;
6809   }
6810 
6811   if (getLangOpts().CUDA) {
6812     if (Config) {
6813       // CUDA: Kernel calls must be to global functions
6814       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
6815         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
6816             << FDecl << Fn->getSourceRange());
6817 
6818       // CUDA: Kernel function must have 'void' return type
6819       if (!FuncT->getReturnType()->isVoidType() &&
6820           !FuncT->getReturnType()->getAs<AutoType>() &&
6821           !FuncT->getReturnType()->isInstantiationDependentType())
6822         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
6823             << Fn->getType() << Fn->getSourceRange());
6824     } else {
6825       // CUDA: Calls to global functions must be configured
6826       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
6827         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
6828             << FDecl << Fn->getSourceRange());
6829     }
6830   }
6831 
6832   // Check for a valid return type
6833   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
6834                           FDecl))
6835     return ExprError();
6836 
6837   // We know the result type of the call, set it.
6838   TheCall->setType(FuncT->getCallResultType(Context));
6839   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
6840 
6841   // WebAssembly tables can't be used as arguments.
6842   if (Context.getTargetInfo().getTriple().isWasm()) {
6843     for (const Expr *Arg : Args) {
6844       if (Arg && Arg->getType()->isWebAssemblyTableType()) {
6845         return ExprError(Diag(Arg->getExprLoc(),
6846                               diag::err_wasm_table_as_function_parameter));
6847       }
6848     }
6849   }
6850 
6851   if (Proto) {
6852     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
6853                                 IsExecConfig))
6854       return ExprError();
6855   } else {
6856     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
6857 
6858     if (FDecl) {
6859       // Check if we have too few/too many template arguments, based
6860       // on our knowledge of the function definition.
6861       const FunctionDecl *Def = nullptr;
6862       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
6863         Proto = Def->getType()->getAs<FunctionProtoType>();
6864        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
6865           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
6866           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
6867       }
6868 
6869       // If the function we're calling isn't a function prototype, but we have
6870       // a function prototype from a prior declaratiom, use that prototype.
6871       if (!FDecl->hasPrototype())
6872         Proto = FDecl->getType()->getAs<FunctionProtoType>();
6873     }
6874 
6875     // If we still haven't found a prototype to use but there are arguments to
6876     // the call, diagnose this as calling a function without a prototype.
6877     // However, if we found a function declaration, check to see if
6878     // -Wdeprecated-non-prototype was disabled where the function was declared.
6879     // If so, we will silence the diagnostic here on the assumption that this
6880     // interface is intentional and the user knows what they're doing. We will
6881     // also silence the diagnostic if there is a function declaration but it
6882     // was implicitly defined (the user already gets diagnostics about the
6883     // creation of the implicit function declaration, so the additional warning
6884     // is not helpful).
6885     if (!Proto && !Args.empty() &&
6886         (!FDecl || (!FDecl->isImplicit() &&
6887                     !Diags.isIgnored(diag::warn_strict_uses_without_prototype,
6888                                      FDecl->getLocation()))))
6889       Diag(LParenLoc, diag::warn_strict_uses_without_prototype)
6890           << (FDecl != nullptr) << FDecl;
6891 
6892     // Promote the arguments (C99 6.5.2.2p6).
6893     for (unsigned i = 0, e = Args.size(); i != e; i++) {
6894       Expr *Arg = Args[i];
6895 
6896       if (Proto && i < Proto->getNumParams()) {
6897         InitializedEntity Entity = InitializedEntity::InitializeParameter(
6898             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
6899         ExprResult ArgE =
6900             PerformCopyInitialization(Entity, SourceLocation(), Arg);
6901         if (ArgE.isInvalid())
6902           return true;
6903 
6904         Arg = ArgE.getAs<Expr>();
6905 
6906       } else {
6907         ExprResult ArgE = DefaultArgumentPromotion(Arg);
6908 
6909         if (ArgE.isInvalid())
6910           return true;
6911 
6912         Arg = ArgE.getAs<Expr>();
6913       }
6914 
6915       if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
6916                               diag::err_call_incomplete_argument, Arg))
6917         return ExprError();
6918 
6919       TheCall->setArg(i, Arg);
6920     }
6921     TheCall->computeDependence();
6922   }
6923 
6924   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6925     if (Method->isImplicitObjectMemberFunction())
6926       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
6927                        << Fn->getSourceRange() << 0);
6928 
6929   // Check for sentinels
6930   if (NDecl)
6931     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
6932 
6933   // Warn for unions passing across security boundary (CMSE).
6934   if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
6935     for (unsigned i = 0, e = Args.size(); i != e; i++) {
6936       if (const auto *RT =
6937               dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
6938         if (RT->getDecl()->isOrContainsUnion())
6939           Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
6940               << 0 << i;
6941       }
6942     }
6943   }
6944 
6945   // Do special checking on direct calls to functions.
6946   if (FDecl) {
6947     if (CheckFunctionCall(FDecl, TheCall, Proto))
6948       return ExprError();
6949 
6950     checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
6951 
6952     if (BuiltinID)
6953       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6954   } else if (NDecl) {
6955     if (CheckPointerCall(NDecl, TheCall, Proto))
6956       return ExprError();
6957   } else {
6958     if (CheckOtherCall(TheCall, Proto))
6959       return ExprError();
6960   }
6961 
6962   return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
6963 }
6964 
6965 ExprResult
6966 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
6967                            SourceLocation RParenLoc, Expr *InitExpr) {
6968   assert(Ty && "ActOnCompoundLiteral(): missing type");
6969   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
6970 
6971   TypeSourceInfo *TInfo;
6972   QualType literalType = GetTypeFromParser(Ty, &TInfo);
6973   if (!TInfo)
6974     TInfo = Context.getTrivialTypeSourceInfo(literalType);
6975 
6976   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
6977 }
6978 
6979 ExprResult
6980 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
6981                                SourceLocation RParenLoc, Expr *LiteralExpr) {
6982   QualType literalType = TInfo->getType();
6983 
6984   if (literalType->isArrayType()) {
6985     if (RequireCompleteSizedType(
6986             LParenLoc, Context.getBaseElementType(literalType),
6987             diag::err_array_incomplete_or_sizeless_type,
6988             SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6989       return ExprError();
6990     if (literalType->isVariableArrayType()) {
6991       // C23 6.7.10p4: An entity of variable length array type shall not be
6992       // initialized except by an empty initializer.
6993       //
6994       // The C extension warnings are issued from ParseBraceInitializer() and
6995       // do not need to be issued here. However, we continue to issue an error
6996       // in the case there are initializers or we are compiling C++. We allow
6997       // use of VLAs in C++, but it's not clear we want to allow {} to zero
6998       // init a VLA in C++ in all cases (such as with non-trivial constructors).
6999       // FIXME: should we allow this construct in C++ when it makes sense to do
7000       // so?
7001       //
7002       // But: C99-C23 6.5.2.5 Compound literals constraint 1: The type name
7003       // shall specify an object type or an array of unknown size, but not a
7004       // variable length array type. This seems odd, as it allows 'int a[size] =
7005       // {}', but forbids 'int *a = (int[size]){}'. As this is what the standard
7006       // says, this is what's implemented here for C (except for the extension
7007       // that permits constant foldable size arrays)
7008 
7009       auto diagID = LangOpts.CPlusPlus
7010                         ? diag::err_variable_object_no_init
7011                         : diag::err_compound_literal_with_vla_type;
7012       if (!tryToFixVariablyModifiedVarType(TInfo, literalType, LParenLoc,
7013                                            diagID))
7014         return ExprError();
7015     }
7016   } else if (!literalType->isDependentType() &&
7017              RequireCompleteType(LParenLoc, literalType,
7018                diag::err_typecheck_decl_incomplete_type,
7019                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7020     return ExprError();
7021 
7022   InitializedEntity Entity
7023     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
7024   InitializationKind Kind
7025     = InitializationKind::CreateCStyleCast(LParenLoc,
7026                                            SourceRange(LParenLoc, RParenLoc),
7027                                            /*InitList=*/true);
7028   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7029   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
7030                                       &literalType);
7031   if (Result.isInvalid())
7032     return ExprError();
7033   LiteralExpr = Result.get();
7034 
7035   bool isFileScope = !CurContext->isFunctionOrMethod();
7036 
7037   // In C, compound literals are l-values for some reason.
7038   // For GCC compatibility, in C++, file-scope array compound literals with
7039   // constant initializers are also l-values, and compound literals are
7040   // otherwise prvalues.
7041   //
7042   // (GCC also treats C++ list-initialized file-scope array prvalues with
7043   // constant initializers as l-values, but that's non-conforming, so we don't
7044   // follow it there.)
7045   //
7046   // FIXME: It would be better to handle the lvalue cases as materializing and
7047   // lifetime-extending a temporary object, but our materialized temporaries
7048   // representation only supports lifetime extension from a variable, not "out
7049   // of thin air".
7050   // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7051   // is bound to the result of applying array-to-pointer decay to the compound
7052   // literal.
7053   // FIXME: GCC supports compound literals of reference type, which should
7054   // obviously have a value kind derived from the kind of reference involved.
7055   ExprValueKind VK =
7056       (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7057           ? VK_PRValue
7058           : VK_LValue;
7059 
7060   if (isFileScope)
7061     if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
7062       for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7063         Expr *Init = ILE->getInit(i);
7064         ILE->setInit(i, ConstantExpr::Create(Context, Init));
7065       }
7066 
7067   auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7068                                               VK, LiteralExpr, isFileScope);
7069   if (isFileScope) {
7070     if (!LiteralExpr->isTypeDependent() &&
7071         !LiteralExpr->isValueDependent() &&
7072         !literalType->isDependentType()) // C99 6.5.2.5p3
7073       if (CheckForConstantInitializer(LiteralExpr))
7074         return ExprError();
7075   } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7076              literalType.getAddressSpace() != LangAS::Default) {
7077     // Embedded-C extensions to C99 6.5.2.5:
7078     //   "If the compound literal occurs inside the body of a function, the
7079     //   type name shall not be qualified by an address-space qualifier."
7080     Diag(LParenLoc, diag::err_compound_literal_with_address_space)
7081       << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7082     return ExprError();
7083   }
7084 
7085   if (!isFileScope && !getLangOpts().CPlusPlus) {
7086     // Compound literals that have automatic storage duration are destroyed at
7087     // the end of the scope in C; in C++, they're just temporaries.
7088 
7089     // Emit diagnostics if it is or contains a C union type that is non-trivial
7090     // to destruct.
7091     if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7092       checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
7093                             NTCUC_CompoundLiteral, NTCUK_Destruct);
7094 
7095     // Diagnose jumps that enter or exit the lifetime of the compound literal.
7096     if (literalType.isDestructedType()) {
7097       Cleanup.setExprNeedsCleanups(true);
7098       ExprCleanupObjects.push_back(E);
7099       getCurFunction()->setHasBranchProtectedScope();
7100     }
7101   }
7102 
7103   if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7104       E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7105     checkNonTrivialCUnionInInitializer(E->getInitializer(),
7106                                        E->getInitializer()->getExprLoc());
7107 
7108   return MaybeBindToTemporary(E);
7109 }
7110 
7111 ExprResult
7112 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7113                     SourceLocation RBraceLoc) {
7114   // Only produce each kind of designated initialization diagnostic once.
7115   SourceLocation FirstDesignator;
7116   bool DiagnosedArrayDesignator = false;
7117   bool DiagnosedNestedDesignator = false;
7118   bool DiagnosedMixedDesignator = false;
7119 
7120   // Check that any designated initializers are syntactically valid in the
7121   // current language mode.
7122   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7123     if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
7124       if (FirstDesignator.isInvalid())
7125         FirstDesignator = DIE->getBeginLoc();
7126 
7127       if (!getLangOpts().CPlusPlus)
7128         break;
7129 
7130       if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7131         DiagnosedNestedDesignator = true;
7132         Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
7133           << DIE->getDesignatorsSourceRange();
7134       }
7135 
7136       for (auto &Desig : DIE->designators()) {
7137         if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7138           DiagnosedArrayDesignator = true;
7139           Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
7140             << Desig.getSourceRange();
7141         }
7142       }
7143 
7144       if (!DiagnosedMixedDesignator &&
7145           !isa<DesignatedInitExpr>(InitArgList[0])) {
7146         DiagnosedMixedDesignator = true;
7147         Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7148           << DIE->getSourceRange();
7149         Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
7150           << InitArgList[0]->getSourceRange();
7151       }
7152     } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7153                isa<DesignatedInitExpr>(InitArgList[0])) {
7154       DiagnosedMixedDesignator = true;
7155       auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
7156       Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
7157         << DIE->getSourceRange();
7158       Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
7159         << InitArgList[I]->getSourceRange();
7160     }
7161   }
7162 
7163   if (FirstDesignator.isValid()) {
7164     // Only diagnose designated initiaization as a C++20 extension if we didn't
7165     // already diagnose use of (non-C++20) C99 designator syntax.
7166     if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7167         !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7168       Diag(FirstDesignator, getLangOpts().CPlusPlus20
7169                                 ? diag::warn_cxx17_compat_designated_init
7170                                 : diag::ext_cxx_designated_init);
7171     } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7172       Diag(FirstDesignator, diag::ext_designated_init);
7173     }
7174   }
7175 
7176   return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7177 }
7178 
7179 ExprResult
7180 Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7181                     SourceLocation RBraceLoc) {
7182   // Semantic analysis for initializers is done by ActOnDeclarator() and
7183   // CheckInitializer() - it requires knowledge of the object being initialized.
7184 
7185   // Immediately handle non-overload placeholders.  Overloads can be
7186   // resolved contextually, but everything else here can't.
7187   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7188     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7189       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7190 
7191       // Ignore failures; dropping the entire initializer list because
7192       // of one failure would be terrible for indexing/etc.
7193       if (result.isInvalid()) continue;
7194 
7195       InitArgList[I] = result.get();
7196     }
7197   }
7198 
7199   InitListExpr *E =
7200       new (Context) InitListExpr(Context, LBraceLoc, InitArgList, RBraceLoc);
7201   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7202   return E;
7203 }
7204 
7205 void Sema::maybeExtendBlockObject(ExprResult &E) {
7206   assert(E.get()->getType()->isBlockPointerType());
7207   assert(E.get()->isPRValue());
7208 
7209   // Only do this in an r-value context.
7210   if (!getLangOpts().ObjCAutoRefCount) return;
7211 
7212   E = ImplicitCastExpr::Create(
7213       Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7214       /*base path*/ nullptr, VK_PRValue, FPOptionsOverride());
7215   Cleanup.setExprNeedsCleanups(true);
7216 }
7217 
7218 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7219   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7220   // Also, callers should have filtered out the invalid cases with
7221   // pointers.  Everything else should be possible.
7222 
7223   QualType SrcTy = Src.get()->getType();
7224   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7225     return CK_NoOp;
7226 
7227   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7228   case Type::STK_MemberPointer:
7229     llvm_unreachable("member pointer type in C");
7230 
7231   case Type::STK_CPointer:
7232   case Type::STK_BlockPointer:
7233   case Type::STK_ObjCObjectPointer:
7234     switch (DestTy->getScalarTypeKind()) {
7235     case Type::STK_CPointer: {
7236       LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7237       LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7238       if (SrcAS != DestAS)
7239         return CK_AddressSpaceConversion;
7240       if (Context.hasCvrSimilarType(SrcTy, DestTy))
7241         return CK_NoOp;
7242       return CK_BitCast;
7243     }
7244     case Type::STK_BlockPointer:
7245       return (SrcKind == Type::STK_BlockPointer
7246                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7247     case Type::STK_ObjCObjectPointer:
7248       if (SrcKind == Type::STK_ObjCObjectPointer)
7249         return CK_BitCast;
7250       if (SrcKind == Type::STK_CPointer)
7251         return CK_CPointerToObjCPointerCast;
7252       maybeExtendBlockObject(Src);
7253       return CK_BlockPointerToObjCPointerCast;
7254     case Type::STK_Bool:
7255       return CK_PointerToBoolean;
7256     case Type::STK_Integral:
7257       return CK_PointerToIntegral;
7258     case Type::STK_Floating:
7259     case Type::STK_FloatingComplex:
7260     case Type::STK_IntegralComplex:
7261     case Type::STK_MemberPointer:
7262     case Type::STK_FixedPoint:
7263       llvm_unreachable("illegal cast from pointer");
7264     }
7265     llvm_unreachable("Should have returned before this");
7266 
7267   case Type::STK_FixedPoint:
7268     switch (DestTy->getScalarTypeKind()) {
7269     case Type::STK_FixedPoint:
7270       return CK_FixedPointCast;
7271     case Type::STK_Bool:
7272       return CK_FixedPointToBoolean;
7273     case Type::STK_Integral:
7274       return CK_FixedPointToIntegral;
7275     case Type::STK_Floating:
7276       return CK_FixedPointToFloating;
7277     case Type::STK_IntegralComplex:
7278     case Type::STK_FloatingComplex:
7279       Diag(Src.get()->getExprLoc(),
7280            diag::err_unimplemented_conversion_with_fixed_point_type)
7281           << DestTy;
7282       return CK_IntegralCast;
7283     case Type::STK_CPointer:
7284     case Type::STK_ObjCObjectPointer:
7285     case Type::STK_BlockPointer:
7286     case Type::STK_MemberPointer:
7287       llvm_unreachable("illegal cast to pointer type");
7288     }
7289     llvm_unreachable("Should have returned before this");
7290 
7291   case Type::STK_Bool: // casting from bool is like casting from an integer
7292   case Type::STK_Integral:
7293     switch (DestTy->getScalarTypeKind()) {
7294     case Type::STK_CPointer:
7295     case Type::STK_ObjCObjectPointer:
7296     case Type::STK_BlockPointer:
7297       if (Src.get()->isNullPointerConstant(Context,
7298                                            Expr::NPC_ValueDependentIsNull))
7299         return CK_NullToPointer;
7300       return CK_IntegralToPointer;
7301     case Type::STK_Bool:
7302       return CK_IntegralToBoolean;
7303     case Type::STK_Integral:
7304       return CK_IntegralCast;
7305     case Type::STK_Floating:
7306       return CK_IntegralToFloating;
7307     case Type::STK_IntegralComplex:
7308       Src = ImpCastExprToType(Src.get(),
7309                       DestTy->castAs<ComplexType>()->getElementType(),
7310                       CK_IntegralCast);
7311       return CK_IntegralRealToComplex;
7312     case Type::STK_FloatingComplex:
7313       Src = ImpCastExprToType(Src.get(),
7314                       DestTy->castAs<ComplexType>()->getElementType(),
7315                       CK_IntegralToFloating);
7316       return CK_FloatingRealToComplex;
7317     case Type::STK_MemberPointer:
7318       llvm_unreachable("member pointer type in C");
7319     case Type::STK_FixedPoint:
7320       return CK_IntegralToFixedPoint;
7321     }
7322     llvm_unreachable("Should have returned before this");
7323 
7324   case Type::STK_Floating:
7325     switch (DestTy->getScalarTypeKind()) {
7326     case Type::STK_Floating:
7327       return CK_FloatingCast;
7328     case Type::STK_Bool:
7329       return CK_FloatingToBoolean;
7330     case Type::STK_Integral:
7331       return CK_FloatingToIntegral;
7332     case Type::STK_FloatingComplex:
7333       Src = ImpCastExprToType(Src.get(),
7334                               DestTy->castAs<ComplexType>()->getElementType(),
7335                               CK_FloatingCast);
7336       return CK_FloatingRealToComplex;
7337     case Type::STK_IntegralComplex:
7338       Src = ImpCastExprToType(Src.get(),
7339                               DestTy->castAs<ComplexType>()->getElementType(),
7340                               CK_FloatingToIntegral);
7341       return CK_IntegralRealToComplex;
7342     case Type::STK_CPointer:
7343     case Type::STK_ObjCObjectPointer:
7344     case Type::STK_BlockPointer:
7345       llvm_unreachable("valid float->pointer cast?");
7346     case Type::STK_MemberPointer:
7347       llvm_unreachable("member pointer type in C");
7348     case Type::STK_FixedPoint:
7349       return CK_FloatingToFixedPoint;
7350     }
7351     llvm_unreachable("Should have returned before this");
7352 
7353   case Type::STK_FloatingComplex:
7354     switch (DestTy->getScalarTypeKind()) {
7355     case Type::STK_FloatingComplex:
7356       return CK_FloatingComplexCast;
7357     case Type::STK_IntegralComplex:
7358       return CK_FloatingComplexToIntegralComplex;
7359     case Type::STK_Floating: {
7360       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7361       if (Context.hasSameType(ET, DestTy))
7362         return CK_FloatingComplexToReal;
7363       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7364       return CK_FloatingCast;
7365     }
7366     case Type::STK_Bool:
7367       return CK_FloatingComplexToBoolean;
7368     case Type::STK_Integral:
7369       Src = ImpCastExprToType(Src.get(),
7370                               SrcTy->castAs<ComplexType>()->getElementType(),
7371                               CK_FloatingComplexToReal);
7372       return CK_FloatingToIntegral;
7373     case Type::STK_CPointer:
7374     case Type::STK_ObjCObjectPointer:
7375     case Type::STK_BlockPointer:
7376       llvm_unreachable("valid complex float->pointer cast?");
7377     case Type::STK_MemberPointer:
7378       llvm_unreachable("member pointer type in C");
7379     case Type::STK_FixedPoint:
7380       Diag(Src.get()->getExprLoc(),
7381            diag::err_unimplemented_conversion_with_fixed_point_type)
7382           << SrcTy;
7383       return CK_IntegralCast;
7384     }
7385     llvm_unreachable("Should have returned before this");
7386 
7387   case Type::STK_IntegralComplex:
7388     switch (DestTy->getScalarTypeKind()) {
7389     case Type::STK_FloatingComplex:
7390       return CK_IntegralComplexToFloatingComplex;
7391     case Type::STK_IntegralComplex:
7392       return CK_IntegralComplexCast;
7393     case Type::STK_Integral: {
7394       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7395       if (Context.hasSameType(ET, DestTy))
7396         return CK_IntegralComplexToReal;
7397       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7398       return CK_IntegralCast;
7399     }
7400     case Type::STK_Bool:
7401       return CK_IntegralComplexToBoolean;
7402     case Type::STK_Floating:
7403       Src = ImpCastExprToType(Src.get(),
7404                               SrcTy->castAs<ComplexType>()->getElementType(),
7405                               CK_IntegralComplexToReal);
7406       return CK_IntegralToFloating;
7407     case Type::STK_CPointer:
7408     case Type::STK_ObjCObjectPointer:
7409     case Type::STK_BlockPointer:
7410       llvm_unreachable("valid complex int->pointer cast?");
7411     case Type::STK_MemberPointer:
7412       llvm_unreachable("member pointer type in C");
7413     case Type::STK_FixedPoint:
7414       Diag(Src.get()->getExprLoc(),
7415            diag::err_unimplemented_conversion_with_fixed_point_type)
7416           << SrcTy;
7417       return CK_IntegralCast;
7418     }
7419     llvm_unreachable("Should have returned before this");
7420   }
7421 
7422   llvm_unreachable("Unhandled scalar cast");
7423 }
7424 
7425 static bool breakDownVectorType(QualType type, uint64_t &len,
7426                                 QualType &eltType) {
7427   // Vectors are simple.
7428   if (const VectorType *vecType = type->getAs<VectorType>()) {
7429     len = vecType->getNumElements();
7430     eltType = vecType->getElementType();
7431     assert(eltType->isScalarType());
7432     return true;
7433   }
7434 
7435   // We allow lax conversion to and from non-vector types, but only if
7436   // they're real types (i.e. non-complex, non-pointer scalar types).
7437   if (!type->isRealType()) return false;
7438 
7439   len = 1;
7440   eltType = type;
7441   return true;
7442 }
7443 
7444 bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7445   assert(srcTy->isVectorType() || destTy->isVectorType());
7446 
7447   auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7448     if (!FirstType->isSVESizelessBuiltinType())
7449       return false;
7450 
7451     const auto *VecTy = SecondType->getAs<VectorType>();
7452     return VecTy && VecTy->getVectorKind() == VectorKind::SveFixedLengthData;
7453   };
7454 
7455   return ValidScalableConversion(srcTy, destTy) ||
7456          ValidScalableConversion(destTy, srcTy);
7457 }
7458 
7459 bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7460   if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7461     return false;
7462 
7463   const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7464   const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7465 
7466   return matSrcType->getNumRows() == matDestType->getNumRows() &&
7467          matSrcType->getNumColumns() == matDestType->getNumColumns();
7468 }
7469 
7470 bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7471   assert(DestTy->isVectorType() || SrcTy->isVectorType());
7472 
7473   uint64_t SrcLen, DestLen;
7474   QualType SrcEltTy, DestEltTy;
7475   if (!breakDownVectorType(SrcTy, SrcLen, SrcEltTy))
7476     return false;
7477   if (!breakDownVectorType(DestTy, DestLen, DestEltTy))
7478     return false;
7479 
7480   // ASTContext::getTypeSize will return the size rounded up to a
7481   // power of 2, so instead of using that, we need to use the raw
7482   // element size multiplied by the element count.
7483   uint64_t SrcEltSize = Context.getTypeSize(SrcEltTy);
7484   uint64_t DestEltSize = Context.getTypeSize(DestEltTy);
7485 
7486   return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7487 }
7488 
7489 bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
7490   assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
7491          "expected at least one type to be a vector here");
7492 
7493   bool IsSrcTyAltivec =
7494       SrcTy->isVectorType() && ((SrcTy->castAs<VectorType>()->getVectorKind() ==
7495                                  VectorKind::AltiVecVector) ||
7496                                 (SrcTy->castAs<VectorType>()->getVectorKind() ==
7497                                  VectorKind::AltiVecBool) ||
7498                                 (SrcTy->castAs<VectorType>()->getVectorKind() ==
7499                                  VectorKind::AltiVecPixel));
7500 
7501   bool IsDestTyAltivec = DestTy->isVectorType() &&
7502                          ((DestTy->castAs<VectorType>()->getVectorKind() ==
7503                            VectorKind::AltiVecVector) ||
7504                           (DestTy->castAs<VectorType>()->getVectorKind() ==
7505                            VectorKind::AltiVecBool) ||
7506                           (DestTy->castAs<VectorType>()->getVectorKind() ==
7507                            VectorKind::AltiVecPixel));
7508 
7509   return (IsSrcTyAltivec || IsDestTyAltivec);
7510 }
7511 
7512 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7513   assert(destTy->isVectorType() || srcTy->isVectorType());
7514 
7515   // Disallow lax conversions between scalars and ExtVectors (these
7516   // conversions are allowed for other vector types because common headers
7517   // depend on them).  Most scalar OP ExtVector cases are handled by the
7518   // splat path anyway, which does what we want (convert, not bitcast).
7519   // What this rules out for ExtVectors is crazy things like char4*float.
7520   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7521   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7522 
7523   return areVectorTypesSameSize(srcTy, destTy);
7524 }
7525 
7526 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7527   assert(destTy->isVectorType() || srcTy->isVectorType());
7528 
7529   switch (Context.getLangOpts().getLaxVectorConversions()) {
7530   case LangOptions::LaxVectorConversionKind::None:
7531     return false;
7532 
7533   case LangOptions::LaxVectorConversionKind::Integer:
7534     if (!srcTy->isIntegralOrEnumerationType()) {
7535       auto *Vec = srcTy->getAs<VectorType>();
7536       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7537         return false;
7538     }
7539     if (!destTy->isIntegralOrEnumerationType()) {
7540       auto *Vec = destTy->getAs<VectorType>();
7541       if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7542         return false;
7543     }
7544     // OK, integer (vector) -> integer (vector) bitcast.
7545     break;
7546 
7547     case LangOptions::LaxVectorConversionKind::All:
7548     break;
7549   }
7550 
7551   return areLaxCompatibleVectorTypes(srcTy, destTy);
7552 }
7553 
7554 bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
7555                            CastKind &Kind) {
7556   if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
7557     if (!areMatrixTypesOfTheSameDimension(SrcTy, DestTy)) {
7558       return Diag(R.getBegin(), diag::err_invalid_conversion_between_matrixes)
7559              << DestTy << SrcTy << R;
7560     }
7561   } else if (SrcTy->isMatrixType()) {
7562     return Diag(R.getBegin(),
7563                 diag::err_invalid_conversion_between_matrix_and_type)
7564            << SrcTy << DestTy << R;
7565   } else if (DestTy->isMatrixType()) {
7566     return Diag(R.getBegin(),
7567                 diag::err_invalid_conversion_between_matrix_and_type)
7568            << DestTy << SrcTy << R;
7569   }
7570 
7571   Kind = CK_MatrixCast;
7572   return false;
7573 }
7574 
7575 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7576                            CastKind &Kind) {
7577   assert(VectorTy->isVectorType() && "Not a vector type!");
7578 
7579   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
7580     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
7581       return Diag(R.getBegin(),
7582                   Ty->isVectorType() ?
7583                   diag::err_invalid_conversion_between_vectors :
7584                   diag::err_invalid_conversion_between_vector_and_integer)
7585         << VectorTy << Ty << R;
7586   } else
7587     return Diag(R.getBegin(),
7588                 diag::err_invalid_conversion_between_vector_and_scalar)
7589       << VectorTy << Ty << R;
7590 
7591   Kind = CK_BitCast;
7592   return false;
7593 }
7594 
7595 ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7596   QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7597 
7598   if (DestElemTy == SplattedExpr->getType())
7599     return SplattedExpr;
7600 
7601   assert(DestElemTy->isFloatingType() ||
7602          DestElemTy->isIntegralOrEnumerationType());
7603 
7604   CastKind CK;
7605   if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7606     // OpenCL requires that we convert `true` boolean expressions to -1, but
7607     // only when splatting vectors.
7608     if (DestElemTy->isFloatingType()) {
7609       // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7610       // in two steps: boolean to signed integral, then to floating.
7611       ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
7612                                                  CK_BooleanToSignedIntegral);
7613       SplattedExpr = CastExprRes.get();
7614       CK = CK_IntegralToFloating;
7615     } else {
7616       CK = CK_BooleanToSignedIntegral;
7617     }
7618   } else {
7619     ExprResult CastExprRes = SplattedExpr;
7620     CK = PrepareScalarCast(CastExprRes, DestElemTy);
7621     if (CastExprRes.isInvalid())
7622       return ExprError();
7623     SplattedExpr = CastExprRes.get();
7624   }
7625   return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
7626 }
7627 
7628 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7629                                     Expr *CastExpr, CastKind &Kind) {
7630   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
7631 
7632   QualType SrcTy = CastExpr->getType();
7633 
7634   // If SrcTy is a VectorType, the total size must match to explicitly cast to
7635   // an ExtVectorType.
7636   // In OpenCL, casts between vectors of different types are not allowed.
7637   // (See OpenCL 6.2).
7638   if (SrcTy->isVectorType()) {
7639     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
7640         (getLangOpts().OpenCL &&
7641          !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
7642       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
7643         << DestTy << SrcTy << R;
7644       return ExprError();
7645     }
7646     Kind = CK_BitCast;
7647     return CastExpr;
7648   }
7649 
7650   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
7651   // conversion will take place first from scalar to elt type, and then
7652   // splat from elt type to vector.
7653   if (SrcTy->isPointerType())
7654     return Diag(R.getBegin(),
7655                 diag::err_invalid_conversion_between_vector_and_scalar)
7656       << DestTy << SrcTy << R;
7657 
7658   Kind = CK_VectorSplat;
7659   return prepareVectorSplat(DestTy, CastExpr);
7660 }
7661 
7662 ExprResult
7663 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7664                     Declarator &D, ParsedType &Ty,
7665                     SourceLocation RParenLoc, Expr *CastExpr) {
7666   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
7667          "ActOnCastExpr(): missing type or expr");
7668 
7669   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
7670   if (D.isInvalidType())
7671     return ExprError();
7672 
7673   if (getLangOpts().CPlusPlus) {
7674     // Check that there are no default arguments (C++ only).
7675     CheckExtraCXXDefaultArguments(D);
7676   } else {
7677     // Make sure any TypoExprs have been dealt with.
7678     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
7679     if (!Res.isUsable())
7680       return ExprError();
7681     CastExpr = Res.get();
7682   }
7683 
7684   checkUnusedDeclAttributes(D);
7685 
7686   QualType castType = castTInfo->getType();
7687   Ty = CreateParsedType(castType, castTInfo);
7688 
7689   bool isVectorLiteral = false;
7690 
7691   // Check for an altivec or OpenCL literal,
7692   // i.e. all the elements are integer constants.
7693   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
7694   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
7695   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7696        && castType->isVectorType() && (PE || PLE)) {
7697     if (PLE && PLE->getNumExprs() == 0) {
7698       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
7699       return ExprError();
7700     }
7701     if (PE || PLE->getNumExprs() == 1) {
7702       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
7703       if (!E->isTypeDependent() && !E->getType()->isVectorType())
7704         isVectorLiteral = true;
7705     }
7706     else
7707       isVectorLiteral = true;
7708   }
7709 
7710   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7711   // then handle it as such.
7712   if (isVectorLiteral)
7713     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
7714 
7715   // If the Expr being casted is a ParenListExpr, handle it specially.
7716   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7717   // sequence of BinOp comma operators.
7718   if (isa<ParenListExpr>(CastExpr)) {
7719     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
7720     if (Result.isInvalid()) return ExprError();
7721     CastExpr = Result.get();
7722   }
7723 
7724   if (getLangOpts().CPlusPlus && !castType->isVoidType())
7725     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
7726 
7727   ObjC().CheckTollFreeBridgeCast(castType, CastExpr);
7728 
7729   ObjC().CheckObjCBridgeRelatedCast(castType, CastExpr);
7730 
7731   DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
7732 
7733   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
7734 }
7735 
7736 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
7737                                     SourceLocation RParenLoc, Expr *E,
7738                                     TypeSourceInfo *TInfo) {
7739   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
7740          "Expected paren or paren list expression");
7741 
7742   Expr **exprs;
7743   unsigned numExprs;
7744   Expr *subExpr;
7745   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
7746   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
7747     LiteralLParenLoc = PE->getLParenLoc();
7748     LiteralRParenLoc = PE->getRParenLoc();
7749     exprs = PE->getExprs();
7750     numExprs = PE->getNumExprs();
7751   } else { // isa<ParenExpr> by assertion at function entrance
7752     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
7753     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
7754     subExpr = cast<ParenExpr>(E)->getSubExpr();
7755     exprs = &subExpr;
7756     numExprs = 1;
7757   }
7758 
7759   QualType Ty = TInfo->getType();
7760   assert(Ty->isVectorType() && "Expected vector type");
7761 
7762   SmallVector<Expr *, 8> initExprs;
7763   const VectorType *VTy = Ty->castAs<VectorType>();
7764   unsigned numElems = VTy->getNumElements();
7765 
7766   // '(...)' form of vector initialization in AltiVec: the number of
7767   // initializers must be one or must match the size of the vector.
7768   // If a single value is specified in the initializer then it will be
7769   // replicated to all the components of the vector
7770   if (CheckAltivecInitFromScalar(E->getSourceRange(), Ty,
7771                                  VTy->getElementType()))
7772     return ExprError();
7773   if (ShouldSplatAltivecScalarInCast(VTy)) {
7774     // The number of initializers must be one or must match the size of the
7775     // vector. If a single value is specified in the initializer then it will
7776     // be replicated to all the components of the vector
7777     if (numExprs == 1) {
7778       QualType ElemTy = VTy->getElementType();
7779       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7780       if (Literal.isInvalid())
7781         return ExprError();
7782       Literal = ImpCastExprToType(Literal.get(), ElemTy,
7783                                   PrepareScalarCast(Literal, ElemTy));
7784       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7785     }
7786     else if (numExprs < numElems) {
7787       Diag(E->getExprLoc(),
7788            diag::err_incorrect_number_of_vector_initializers);
7789       return ExprError();
7790     }
7791     else
7792       initExprs.append(exprs, exprs + numExprs);
7793   }
7794   else {
7795     // For OpenCL, when the number of initializers is a single value,
7796     // it will be replicated to all components of the vector.
7797     if (getLangOpts().OpenCL && VTy->getVectorKind() == VectorKind::Generic &&
7798         numExprs == 1) {
7799       QualType ElemTy = VTy->getElementType();
7800       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7801       if (Literal.isInvalid())
7802         return ExprError();
7803       Literal = ImpCastExprToType(Literal.get(), ElemTy,
7804                                   PrepareScalarCast(Literal, ElemTy));
7805       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7806     }
7807 
7808     initExprs.append(exprs, exprs + numExprs);
7809   }
7810   // FIXME: This means that pretty-printing the final AST will produce curly
7811   // braces instead of the original commas.
7812   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
7813                                                    initExprs, LiteralRParenLoc);
7814   initE->setType(Ty);
7815   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
7816 }
7817 
7818 ExprResult
7819 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
7820   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
7821   if (!E)
7822     return OrigExpr;
7823 
7824   ExprResult Result(E->getExpr(0));
7825 
7826   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
7827     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
7828                         E->getExpr(i));
7829 
7830   if (Result.isInvalid()) return ExprError();
7831 
7832   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
7833 }
7834 
7835 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
7836                                     SourceLocation R,
7837                                     MultiExprArg Val) {
7838   return ParenListExpr::Create(Context, L, Val, R);
7839 }
7840 
7841 bool Sema::DiagnoseConditionalForNull(const Expr *LHSExpr, const Expr *RHSExpr,
7842                                       SourceLocation QuestionLoc) {
7843   const Expr *NullExpr = LHSExpr;
7844   const Expr *NonPointerExpr = RHSExpr;
7845   Expr::NullPointerConstantKind NullKind =
7846       NullExpr->isNullPointerConstant(Context,
7847                                       Expr::NPC_ValueDependentIsNotNull);
7848 
7849   if (NullKind == Expr::NPCK_NotNull) {
7850     NullExpr = RHSExpr;
7851     NonPointerExpr = LHSExpr;
7852     NullKind =
7853         NullExpr->isNullPointerConstant(Context,
7854                                         Expr::NPC_ValueDependentIsNotNull);
7855   }
7856 
7857   if (NullKind == Expr::NPCK_NotNull)
7858     return false;
7859 
7860   if (NullKind == Expr::NPCK_ZeroExpression)
7861     return false;
7862 
7863   if (NullKind == Expr::NPCK_ZeroLiteral) {
7864     // In this case, check to make sure that we got here from a "NULL"
7865     // string in the source code.
7866     NullExpr = NullExpr->IgnoreParenImpCasts();
7867     SourceLocation loc = NullExpr->getExprLoc();
7868     if (!findMacroSpelling(loc, "NULL"))
7869       return false;
7870   }
7871 
7872   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
7873   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
7874       << NonPointerExpr->getType() << DiagType
7875       << NonPointerExpr->getSourceRange();
7876   return true;
7877 }
7878 
7879 /// Return false if the condition expression is valid, true otherwise.
7880 static bool checkCondition(Sema &S, const Expr *Cond,
7881                            SourceLocation QuestionLoc) {
7882   QualType CondTy = Cond->getType();
7883 
7884   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
7885   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
7886     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
7887       << CondTy << Cond->getSourceRange();
7888     return true;
7889   }
7890 
7891   // C99 6.5.15p2
7892   if (CondTy->isScalarType()) return false;
7893 
7894   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
7895     << CondTy << Cond->getSourceRange();
7896   return true;
7897 }
7898 
7899 /// Return false if the NullExpr can be promoted to PointerTy,
7900 /// true otherwise.
7901 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
7902                                         QualType PointerTy) {
7903   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
7904       !NullExpr.get()->isNullPointerConstant(S.Context,
7905                                             Expr::NPC_ValueDependentIsNull))
7906     return true;
7907 
7908   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
7909   return false;
7910 }
7911 
7912 /// Checks compatibility between two pointers and return the resulting
7913 /// type.
7914 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
7915                                                      ExprResult &RHS,
7916                                                      SourceLocation Loc) {
7917   QualType LHSTy = LHS.get()->getType();
7918   QualType RHSTy = RHS.get()->getType();
7919 
7920   if (S.Context.hasSameType(LHSTy, RHSTy)) {
7921     // Two identical pointers types are always compatible.
7922     return S.Context.getCommonSugaredType(LHSTy, RHSTy);
7923   }
7924 
7925   QualType lhptee, rhptee;
7926 
7927   // Get the pointee types.
7928   bool IsBlockPointer = false;
7929   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
7930     lhptee = LHSBTy->getPointeeType();
7931     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
7932     IsBlockPointer = true;
7933   } else {
7934     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7935     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7936   }
7937 
7938   // C99 6.5.15p6: If both operands are pointers to compatible types or to
7939   // differently qualified versions of compatible types, the result type is
7940   // a pointer to an appropriately qualified version of the composite
7941   // type.
7942 
7943   // Only CVR-qualifiers exist in the standard, and the differently-qualified
7944   // clause doesn't make sense for our extensions. E.g. address space 2 should
7945   // be incompatible with address space 3: they may live on different devices or
7946   // anything.
7947   Qualifiers lhQual = lhptee.getQualifiers();
7948   Qualifiers rhQual = rhptee.getQualifiers();
7949 
7950   LangAS ResultAddrSpace = LangAS::Default;
7951   LangAS LAddrSpace = lhQual.getAddressSpace();
7952   LangAS RAddrSpace = rhQual.getAddressSpace();
7953 
7954   // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
7955   // spaces is disallowed.
7956   if (lhQual.isAddressSpaceSupersetOf(rhQual))
7957     ResultAddrSpace = LAddrSpace;
7958   else if (rhQual.isAddressSpaceSupersetOf(lhQual))
7959     ResultAddrSpace = RAddrSpace;
7960   else {
7961     S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
7962         << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
7963         << RHS.get()->getSourceRange();
7964     return QualType();
7965   }
7966 
7967   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
7968   auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
7969   lhQual.removeCVRQualifiers();
7970   rhQual.removeCVRQualifiers();
7971 
7972   // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
7973   // (C99 6.7.3) for address spaces. We assume that the check should behave in
7974   // the same manner as it's defined for CVR qualifiers, so for OpenCL two
7975   // qual types are compatible iff
7976   //  * corresponded types are compatible
7977   //  * CVR qualifiers are equal
7978   //  * address spaces are equal
7979   // Thus for conditional operator we merge CVR and address space unqualified
7980   // pointees and if there is a composite type we return a pointer to it with
7981   // merged qualifiers.
7982   LHSCastKind =
7983       LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7984   RHSCastKind =
7985       RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7986   lhQual.removeAddressSpace();
7987   rhQual.removeAddressSpace();
7988 
7989   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
7990   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
7991 
7992   QualType CompositeTy = S.Context.mergeTypes(
7993       lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false,
7994       /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
7995 
7996   if (CompositeTy.isNull()) {
7997     // In this situation, we assume void* type. No especially good
7998     // reason, but this is what gcc does, and we do have to pick
7999     // to get a consistent AST.
8000     QualType incompatTy;
8001     incompatTy = S.Context.getPointerType(
8002         S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
8003     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
8004     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
8005 
8006     // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8007     // for casts between types with incompatible address space qualifiers.
8008     // For the following code the compiler produces casts between global and
8009     // local address spaces of the corresponded innermost pointees:
8010     // local int *global *a;
8011     // global int *global *b;
8012     // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8013     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
8014         << LHSTy << RHSTy << LHS.get()->getSourceRange()
8015         << RHS.get()->getSourceRange();
8016 
8017     return incompatTy;
8018   }
8019 
8020   // The pointer types are compatible.
8021   // In case of OpenCL ResultTy should have the address space qualifier
8022   // which is a superset of address spaces of both the 2nd and the 3rd
8023   // operands of the conditional operator.
8024   QualType ResultTy = [&, ResultAddrSpace]() {
8025     if (S.getLangOpts().OpenCL) {
8026       Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8027       CompositeQuals.setAddressSpace(ResultAddrSpace);
8028       return S.Context
8029           .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
8030           .withCVRQualifiers(MergedCVRQual);
8031     }
8032     return CompositeTy.withCVRQualifiers(MergedCVRQual);
8033   }();
8034   if (IsBlockPointer)
8035     ResultTy = S.Context.getBlockPointerType(ResultTy);
8036   else
8037     ResultTy = S.Context.getPointerType(ResultTy);
8038 
8039   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
8040   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
8041   return ResultTy;
8042 }
8043 
8044 /// Return the resulting type when the operands are both block pointers.
8045 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8046                                                           ExprResult &LHS,
8047                                                           ExprResult &RHS,
8048                                                           SourceLocation Loc) {
8049   QualType LHSTy = LHS.get()->getType();
8050   QualType RHSTy = RHS.get()->getType();
8051 
8052   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8053     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8054       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
8055       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8056       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8057       return destType;
8058     }
8059     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
8060       << LHSTy << RHSTy << LHS.get()->getSourceRange()
8061       << RHS.get()->getSourceRange();
8062     return QualType();
8063   }
8064 
8065   // We have 2 block pointer types.
8066   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8067 }
8068 
8069 /// Return the resulting type when the operands are both pointers.
8070 static QualType
8071 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8072                                             ExprResult &RHS,
8073                                             SourceLocation Loc) {
8074   // get the pointer types
8075   QualType LHSTy = LHS.get()->getType();
8076   QualType RHSTy = RHS.get()->getType();
8077 
8078   // get the "pointed to" types
8079   QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8080   QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8081 
8082   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8083   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8084     // Figure out necessary qualifiers (C99 6.5.15p6)
8085     QualType destPointee
8086       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8087     QualType destType = S.Context.getPointerType(destPointee);
8088     // Add qualifiers if necessary.
8089     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8090     // Promote to void*.
8091     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8092     return destType;
8093   }
8094   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8095     QualType destPointee
8096       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8097     QualType destType = S.Context.getPointerType(destPointee);
8098     // Add qualifiers if necessary.
8099     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8100     // Promote to void*.
8101     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8102     return destType;
8103   }
8104 
8105   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8106 }
8107 
8108 /// Return false if the first expression is not an integer and the second
8109 /// expression is not a pointer, true otherwise.
8110 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8111                                         Expr* PointerExpr, SourceLocation Loc,
8112                                         bool IsIntFirstExpr) {
8113   if (!PointerExpr->getType()->isPointerType() ||
8114       !Int.get()->getType()->isIntegerType())
8115     return false;
8116 
8117   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8118   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8119 
8120   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
8121     << Expr1->getType() << Expr2->getType()
8122     << Expr1->getSourceRange() << Expr2->getSourceRange();
8123   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
8124                             CK_IntegralToPointer);
8125   return true;
8126 }
8127 
8128 /// Simple conversion between integer and floating point types.
8129 ///
8130 /// Used when handling the OpenCL conditional operator where the
8131 /// condition is a vector while the other operands are scalar.
8132 ///
8133 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8134 /// types are either integer or floating type. Between the two
8135 /// operands, the type with the higher rank is defined as the "result
8136 /// type". The other operand needs to be promoted to the same type. No
8137 /// other type promotion is allowed. We cannot use
8138 /// UsualArithmeticConversions() for this purpose, since it always
8139 /// promotes promotable types.
8140 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8141                                             ExprResult &RHS,
8142                                             SourceLocation QuestionLoc) {
8143   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
8144   if (LHS.isInvalid())
8145     return QualType();
8146   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
8147   if (RHS.isInvalid())
8148     return QualType();
8149 
8150   // For conversion purposes, we ignore any qualifiers.
8151   // For example, "const float" and "float" are equivalent.
8152   QualType LHSType =
8153     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
8154   QualType RHSType =
8155     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
8156 
8157   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8158     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8159       << LHSType << LHS.get()->getSourceRange();
8160     return QualType();
8161   }
8162 
8163   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8164     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
8165       << RHSType << RHS.get()->getSourceRange();
8166     return QualType();
8167   }
8168 
8169   // If both types are identical, no conversion is needed.
8170   if (LHSType == RHSType)
8171     return LHSType;
8172 
8173   // Now handle "real" floating types (i.e. float, double, long double).
8174   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8175     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8176                                  /*IsCompAssign = */ false);
8177 
8178   // Finally, we have two differing integer types.
8179   return handleIntegerConversion<doIntegralCast, doIntegralCast>
8180   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8181 }
8182 
8183 /// Convert scalar operands to a vector that matches the
8184 ///        condition in length.
8185 ///
8186 /// Used when handling the OpenCL conditional operator where the
8187 /// condition is a vector while the other operands are scalar.
8188 ///
8189 /// We first compute the "result type" for the scalar operands
8190 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8191 /// into a vector of that type where the length matches the condition
8192 /// vector type. s6.11.6 requires that the element types of the result
8193 /// and the condition must have the same number of bits.
8194 static QualType
8195 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8196                               QualType CondTy, SourceLocation QuestionLoc) {
8197   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8198   if (ResTy.isNull()) return QualType();
8199 
8200   const VectorType *CV = CondTy->getAs<VectorType>();
8201   assert(CV);
8202 
8203   // Determine the vector result type
8204   unsigned NumElements = CV->getNumElements();
8205   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
8206 
8207   // Ensure that all types have the same number of bits
8208   if (S.Context.getTypeSize(CV->getElementType())
8209       != S.Context.getTypeSize(ResTy)) {
8210     // Since VectorTy is created internally, it does not pretty print
8211     // with an OpenCL name. Instead, we just print a description.
8212     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8213     SmallString<64> Str;
8214     llvm::raw_svector_ostream OS(Str);
8215     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8216     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8217       << CondTy << OS.str();
8218     return QualType();
8219   }
8220 
8221   // Convert operands to the vector result type
8222   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8223   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8224 
8225   return VectorTy;
8226 }
8227 
8228 /// Return false if this is a valid OpenCL condition vector
8229 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8230                                        SourceLocation QuestionLoc) {
8231   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8232   // integral type.
8233   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8234   assert(CondTy);
8235   QualType EleTy = CondTy->getElementType();
8236   if (EleTy->isIntegerType()) return false;
8237 
8238   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8239     << Cond->getType() << Cond->getSourceRange();
8240   return true;
8241 }
8242 
8243 /// Return false if the vector condition type and the vector
8244 ///        result type are compatible.
8245 ///
8246 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8247 /// number of elements, and their element types have the same number
8248 /// of bits.
8249 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8250                               SourceLocation QuestionLoc) {
8251   const VectorType *CV = CondTy->getAs<VectorType>();
8252   const VectorType *RV = VecResTy->getAs<VectorType>();
8253   assert(CV && RV);
8254 
8255   if (CV->getNumElements() != RV->getNumElements()) {
8256     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8257       << CondTy << VecResTy;
8258     return true;
8259   }
8260 
8261   QualType CVE = CV->getElementType();
8262   QualType RVE = RV->getElementType();
8263 
8264   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8265     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8266       << CondTy << VecResTy;
8267     return true;
8268   }
8269 
8270   return false;
8271 }
8272 
8273 /// Return the resulting type for the conditional operator in
8274 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
8275 ///        s6.3.i) when the condition is a vector type.
8276 static QualType
8277 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8278                              ExprResult &LHS, ExprResult &RHS,
8279                              SourceLocation QuestionLoc) {
8280   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8281   if (Cond.isInvalid())
8282     return QualType();
8283   QualType CondTy = Cond.get()->getType();
8284 
8285   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8286     return QualType();
8287 
8288   // If either operand is a vector then find the vector type of the
8289   // result as specified in OpenCL v1.1 s6.3.i.
8290   if (LHS.get()->getType()->isVectorType() ||
8291       RHS.get()->getType()->isVectorType()) {
8292     bool IsBoolVecLang =
8293         !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
8294     QualType VecResTy =
8295         S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8296                               /*isCompAssign*/ false,
8297                               /*AllowBothBool*/ true,
8298                               /*AllowBoolConversions*/ false,
8299                               /*AllowBooleanOperation*/ IsBoolVecLang,
8300                               /*ReportInvalid*/ true);
8301     if (VecResTy.isNull())
8302       return QualType();
8303     // The result type must match the condition type as specified in
8304     // OpenCL v1.1 s6.11.6.
8305     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8306       return QualType();
8307     return VecResTy;
8308   }
8309 
8310   // Both operands are scalar.
8311   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8312 }
8313 
8314 /// Return true if the Expr is block type
8315 static bool checkBlockType(Sema &S, const Expr *E) {
8316   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8317     QualType Ty = CE->getCallee()->getType();
8318     if (Ty->isBlockPointerType()) {
8319       S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8320       return true;
8321     }
8322   }
8323   return false;
8324 }
8325 
8326 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8327 /// In that case, LHS = cond.
8328 /// C99 6.5.15
8329 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8330                                         ExprResult &RHS, ExprValueKind &VK,
8331                                         ExprObjectKind &OK,
8332                                         SourceLocation QuestionLoc) {
8333 
8334   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8335   if (!LHSResult.isUsable()) return QualType();
8336   LHS = LHSResult;
8337 
8338   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8339   if (!RHSResult.isUsable()) return QualType();
8340   RHS = RHSResult;
8341 
8342   // C++ is sufficiently different to merit its own checker.
8343   if (getLangOpts().CPlusPlus)
8344     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8345 
8346   VK = VK_PRValue;
8347   OK = OK_Ordinary;
8348 
8349   if (Context.isDependenceAllowed() &&
8350       (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8351        RHS.get()->isTypeDependent())) {
8352     assert(!getLangOpts().CPlusPlus);
8353     assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
8354             RHS.get()->containsErrors()) &&
8355            "should only occur in error-recovery path.");
8356     return Context.DependentTy;
8357   }
8358 
8359   // The OpenCL operator with a vector condition is sufficiently
8360   // different to merit its own checker.
8361   if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8362       Cond.get()->getType()->isExtVectorType())
8363     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8364 
8365   // First, check the condition.
8366   Cond = UsualUnaryConversions(Cond.get());
8367   if (Cond.isInvalid())
8368     return QualType();
8369   if (checkCondition(*this, Cond.get(), QuestionLoc))
8370     return QualType();
8371 
8372   // Handle vectors.
8373   if (LHS.get()->getType()->isVectorType() ||
8374       RHS.get()->getType()->isVectorType())
8375     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false,
8376                                /*AllowBothBool*/ true,
8377                                /*AllowBoolConversions*/ false,
8378                                /*AllowBooleanOperation*/ false,
8379                                /*ReportInvalid*/ true);
8380 
8381   QualType ResTy =
8382       UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8383   if (LHS.isInvalid() || RHS.isInvalid())
8384     return QualType();
8385 
8386   // WebAssembly tables are not allowed as conditional LHS or RHS.
8387   QualType LHSTy = LHS.get()->getType();
8388   QualType RHSTy = RHS.get()->getType();
8389   if (LHSTy->isWebAssemblyTableType() || RHSTy->isWebAssemblyTableType()) {
8390     Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
8391         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8392     return QualType();
8393   }
8394 
8395   // Diagnose attempts to convert between __ibm128, __float128 and long double
8396   // where such conversions currently can't be handled.
8397   if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8398     Diag(QuestionLoc,
8399          diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8400       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8401     return QualType();
8402   }
8403 
8404   // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8405   // selection operator (?:).
8406   if (getLangOpts().OpenCL &&
8407       ((int)checkBlockType(*this, LHS.get()) | (int)checkBlockType(*this, RHS.get()))) {
8408     return QualType();
8409   }
8410 
8411   // If both operands have arithmetic type, do the usual arithmetic conversions
8412   // to find a common type: C99 6.5.15p3,5.
8413   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8414     // Disallow invalid arithmetic conversions, such as those between bit-
8415     // precise integers types of different sizes, or between a bit-precise
8416     // integer and another type.
8417     if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
8418       Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8419           << LHSTy << RHSTy << LHS.get()->getSourceRange()
8420           << RHS.get()->getSourceRange();
8421       return QualType();
8422     }
8423 
8424     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8425     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8426 
8427     return ResTy;
8428   }
8429 
8430   // If both operands are the same structure or union type, the result is that
8431   // type.
8432   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
8433     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8434       if (LHSRT->getDecl() == RHSRT->getDecl())
8435         // "If both the operands have structure or union type, the result has
8436         // that type."  This implies that CV qualifiers are dropped.
8437         return Context.getCommonSugaredType(LHSTy.getUnqualifiedType(),
8438                                             RHSTy.getUnqualifiedType());
8439     // FIXME: Type of conditional expression must be complete in C mode.
8440   }
8441 
8442   // C99 6.5.15p5: "If both operands have void type, the result has void type."
8443   // The following || allows only one side to be void (a GCC-ism).
8444   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8445     QualType ResTy;
8446     if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
8447       ResTy = Context.getCommonSugaredType(LHSTy, RHSTy);
8448     } else if (RHSTy->isVoidType()) {
8449       ResTy = RHSTy;
8450       Diag(RHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8451           << RHS.get()->getSourceRange();
8452     } else {
8453       ResTy = LHSTy;
8454       Diag(LHS.get()->getBeginLoc(), diag::ext_typecheck_cond_one_void)
8455           << LHS.get()->getSourceRange();
8456     }
8457     LHS = ImpCastExprToType(LHS.get(), ResTy, CK_ToVoid);
8458     RHS = ImpCastExprToType(RHS.get(), ResTy, CK_ToVoid);
8459     return ResTy;
8460   }
8461 
8462   // C23 6.5.15p7:
8463   //   ... if both the second and third operands have nullptr_t type, the
8464   //   result also has that type.
8465   if (LHSTy->isNullPtrType() && Context.hasSameType(LHSTy, RHSTy))
8466     return ResTy;
8467 
8468   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8469   // the type of the other operand."
8470   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8471   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8472 
8473   // All objective-c pointer type analysis is done here.
8474   QualType compositeType =
8475       ObjC().FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
8476   if (LHS.isInvalid() || RHS.isInvalid())
8477     return QualType();
8478   if (!compositeType.isNull())
8479     return compositeType;
8480 
8481 
8482   // Handle block pointer types.
8483   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8484     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8485                                                      QuestionLoc);
8486 
8487   // Check constraints for C object pointers types (C99 6.5.15p3,6).
8488   if (LHSTy->isPointerType() && RHSTy->isPointerType())
8489     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8490                                                        QuestionLoc);
8491 
8492   // GCC compatibility: soften pointer/integer mismatch.  Note that
8493   // null pointers have been filtered out by this point.
8494   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
8495       /*IsIntFirstExpr=*/true))
8496     return RHSTy;
8497   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
8498       /*IsIntFirstExpr=*/false))
8499     return LHSTy;
8500 
8501   // Emit a better diagnostic if one of the expressions is a null pointer
8502   // constant and the other is not a pointer type. In this case, the user most
8503   // likely forgot to take the address of the other expression.
8504   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
8505     return QualType();
8506 
8507   // Finally, if the LHS and RHS types are canonically the same type, we can
8508   // use the common sugared type.
8509   if (Context.hasSameType(LHSTy, RHSTy))
8510     return Context.getCommonSugaredType(LHSTy, RHSTy);
8511 
8512   // Otherwise, the operands are not compatible.
8513   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8514     << LHSTy << RHSTy << LHS.get()->getSourceRange()
8515     << RHS.get()->getSourceRange();
8516   return QualType();
8517 }
8518 
8519 /// SuggestParentheses - Emit a note with a fixit hint that wraps
8520 /// ParenRange in parentheses.
8521 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8522                                const PartialDiagnostic &Note,
8523                                SourceRange ParenRange) {
8524   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
8525   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8526       EndLoc.isValid()) {
8527     Self.Diag(Loc, Note)
8528       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
8529       << FixItHint::CreateInsertion(EndLoc, ")");
8530   } else {
8531     // We can't display the parentheses, so just show the bare note.
8532     Self.Diag(Loc, Note) << ParenRange;
8533   }
8534 }
8535 
8536 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8537   return BinaryOperator::isAdditiveOp(Opc) ||
8538          BinaryOperator::isMultiplicativeOp(Opc) ||
8539          BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8540   // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8541   // not any of the logical operators.  Bitwise-xor is commonly used as a
8542   // logical-xor because there is no logical-xor operator.  The logical
8543   // operators, including uses of xor, have a high false positive rate for
8544   // precedence warnings.
8545 }
8546 
8547 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8548 /// expression, either using a built-in or overloaded operator,
8549 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8550 /// expression.
8551 static bool IsArithmeticBinaryExpr(const Expr *E, BinaryOperatorKind *Opcode,
8552                                    const Expr **RHSExprs) {
8553   // Don't strip parenthesis: we should not warn if E is in parenthesis.
8554   E = E->IgnoreImpCasts();
8555   E = E->IgnoreConversionOperatorSingleStep();
8556   E = E->IgnoreImpCasts();
8557   if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
8558     E = MTE->getSubExpr();
8559     E = E->IgnoreImpCasts();
8560   }
8561 
8562   // Built-in binary operator.
8563   if (const auto *OP = dyn_cast<BinaryOperator>(E);
8564       OP && IsArithmeticOp(OP->getOpcode())) {
8565     *Opcode = OP->getOpcode();
8566     *RHSExprs = OP->getRHS();
8567     return true;
8568   }
8569 
8570   // Overloaded operator.
8571   if (const auto *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
8572     if (Call->getNumArgs() != 2)
8573       return false;
8574 
8575     // Make sure this is really a binary operator that is safe to pass into
8576     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8577     OverloadedOperatorKind OO = Call->getOperator();
8578     if (OO < OO_Plus || OO > OO_Arrow ||
8579         OO == OO_PlusPlus || OO == OO_MinusMinus)
8580       return false;
8581 
8582     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8583     if (IsArithmeticOp(OpKind)) {
8584       *Opcode = OpKind;
8585       *RHSExprs = Call->getArg(1);
8586       return true;
8587     }
8588   }
8589 
8590   return false;
8591 }
8592 
8593 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8594 /// or is a logical expression such as (x==y) which has int type, but is
8595 /// commonly interpreted as boolean.
8596 static bool ExprLooksBoolean(const Expr *E) {
8597   E = E->IgnoreParenImpCasts();
8598 
8599   if (E->getType()->isBooleanType())
8600     return true;
8601   if (const auto *OP = dyn_cast<BinaryOperator>(E))
8602     return OP->isComparisonOp() || OP->isLogicalOp();
8603   if (const auto *OP = dyn_cast<UnaryOperator>(E))
8604     return OP->getOpcode() == UO_LNot;
8605   if (E->getType()->isPointerType())
8606     return true;
8607   // FIXME: What about overloaded operator calls returning "unspecified boolean
8608   // type"s (commonly pointer-to-members)?
8609 
8610   return false;
8611 }
8612 
8613 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
8614 /// and binary operator are mixed in a way that suggests the programmer assumed
8615 /// the conditional operator has higher precedence, for example:
8616 /// "int x = a + someBinaryCondition ? 1 : 2".
8617 static void DiagnoseConditionalPrecedence(Sema &Self, SourceLocation OpLoc,
8618                                           Expr *Condition, const Expr *LHSExpr,
8619                                           const Expr *RHSExpr) {
8620   BinaryOperatorKind CondOpcode;
8621   const Expr *CondRHS;
8622 
8623   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
8624     return;
8625   if (!ExprLooksBoolean(CondRHS))
8626     return;
8627 
8628   // The condition is an arithmetic binary expression, with a right-
8629   // hand side that looks boolean, so warn.
8630 
8631   unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
8632                         ? diag::warn_precedence_bitwise_conditional
8633                         : diag::warn_precedence_conditional;
8634 
8635   Self.Diag(OpLoc, DiagID)
8636       << Condition->getSourceRange()
8637       << BinaryOperator::getOpcodeStr(CondOpcode);
8638 
8639   SuggestParentheses(
8640       Self, OpLoc,
8641       Self.PDiag(diag::note_precedence_silence)
8642           << BinaryOperator::getOpcodeStr(CondOpcode),
8643       SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
8644 
8645   SuggestParentheses(Self, OpLoc,
8646                      Self.PDiag(diag::note_precedence_conditional_first),
8647                      SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
8648 }
8649 
8650 /// Compute the nullability of a conditional expression.
8651 static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
8652                                               QualType LHSTy, QualType RHSTy,
8653                                               ASTContext &Ctx) {
8654   if (!ResTy->isAnyPointerType())
8655     return ResTy;
8656 
8657   auto GetNullability = [](QualType Ty) {
8658     std::optional<NullabilityKind> Kind = Ty->getNullability();
8659     if (Kind) {
8660       // For our purposes, treat _Nullable_result as _Nullable.
8661       if (*Kind == NullabilityKind::NullableResult)
8662         return NullabilityKind::Nullable;
8663       return *Kind;
8664     }
8665     return NullabilityKind::Unspecified;
8666   };
8667 
8668   auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
8669   NullabilityKind MergedKind;
8670 
8671   // Compute nullability of a binary conditional expression.
8672   if (IsBin) {
8673     if (LHSKind == NullabilityKind::NonNull)
8674       MergedKind = NullabilityKind::NonNull;
8675     else
8676       MergedKind = RHSKind;
8677   // Compute nullability of a normal conditional expression.
8678   } else {
8679     if (LHSKind == NullabilityKind::Nullable ||
8680         RHSKind == NullabilityKind::Nullable)
8681       MergedKind = NullabilityKind::Nullable;
8682     else if (LHSKind == NullabilityKind::NonNull)
8683       MergedKind = RHSKind;
8684     else if (RHSKind == NullabilityKind::NonNull)
8685       MergedKind = LHSKind;
8686     else
8687       MergedKind = NullabilityKind::Unspecified;
8688   }
8689 
8690   // Return if ResTy already has the correct nullability.
8691   if (GetNullability(ResTy) == MergedKind)
8692     return ResTy;
8693 
8694   // Strip all nullability from ResTy.
8695   while (ResTy->getNullability())
8696     ResTy = ResTy.getSingleStepDesugaredType(Ctx);
8697 
8698   // Create a new AttributedType with the new nullability kind.
8699   auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
8700   return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
8701 }
8702 
8703 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
8704                                     SourceLocation ColonLoc,
8705                                     Expr *CondExpr, Expr *LHSExpr,
8706                                     Expr *RHSExpr) {
8707   if (!Context.isDependenceAllowed()) {
8708     // C cannot handle TypoExpr nodes in the condition because it
8709     // doesn't handle dependent types properly, so make sure any TypoExprs have
8710     // been dealt with before checking the operands.
8711     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
8712     ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
8713     ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
8714 
8715     if (!CondResult.isUsable())
8716       return ExprError();
8717 
8718     if (LHSExpr) {
8719       if (!LHSResult.isUsable())
8720         return ExprError();
8721     }
8722 
8723     if (!RHSResult.isUsable())
8724       return ExprError();
8725 
8726     CondExpr = CondResult.get();
8727     LHSExpr = LHSResult.get();
8728     RHSExpr = RHSResult.get();
8729   }
8730 
8731   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
8732   // was the condition.
8733   OpaqueValueExpr *opaqueValue = nullptr;
8734   Expr *commonExpr = nullptr;
8735   if (!LHSExpr) {
8736     commonExpr = CondExpr;
8737     // Lower out placeholder types first.  This is important so that we don't
8738     // try to capture a placeholder. This happens in few cases in C++; such
8739     // as Objective-C++'s dictionary subscripting syntax.
8740     if (commonExpr->hasPlaceholderType()) {
8741       ExprResult result = CheckPlaceholderExpr(commonExpr);
8742       if (!result.isUsable()) return ExprError();
8743       commonExpr = result.get();
8744     }
8745     // We usually want to apply unary conversions *before* saving, except
8746     // in the special case of a C++ l-value conditional.
8747     if (!(getLangOpts().CPlusPlus
8748           && !commonExpr->isTypeDependent()
8749           && commonExpr->getValueKind() == RHSExpr->getValueKind()
8750           && commonExpr->isGLValue()
8751           && commonExpr->isOrdinaryOrBitFieldObject()
8752           && RHSExpr->isOrdinaryOrBitFieldObject()
8753           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
8754       ExprResult commonRes = UsualUnaryConversions(commonExpr);
8755       if (commonRes.isInvalid())
8756         return ExprError();
8757       commonExpr = commonRes.get();
8758     }
8759 
8760     // If the common expression is a class or array prvalue, materialize it
8761     // so that we can safely refer to it multiple times.
8762     if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
8763                                     commonExpr->getType()->isArrayType())) {
8764       ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
8765       if (MatExpr.isInvalid())
8766         return ExprError();
8767       commonExpr = MatExpr.get();
8768     }
8769 
8770     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
8771                                                 commonExpr->getType(),
8772                                                 commonExpr->getValueKind(),
8773                                                 commonExpr->getObjectKind(),
8774                                                 commonExpr);
8775     LHSExpr = CondExpr = opaqueValue;
8776   }
8777 
8778   QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
8779   ExprValueKind VK = VK_PRValue;
8780   ExprObjectKind OK = OK_Ordinary;
8781   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
8782   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
8783                                              VK, OK, QuestionLoc);
8784   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
8785       RHS.isInvalid())
8786     return ExprError();
8787 
8788   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
8789                                 RHS.get());
8790 
8791   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
8792 
8793   result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
8794                                          Context);
8795 
8796   if (!commonExpr)
8797     return new (Context)
8798         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
8799                             RHS.get(), result, VK, OK);
8800 
8801   return new (Context) BinaryConditionalOperator(
8802       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
8803       ColonLoc, result, VK, OK);
8804 }
8805 
8806 bool Sema::IsInvalidSMECallConversion(QualType FromType, QualType ToType) {
8807   unsigned FromAttributes = 0, ToAttributes = 0;
8808   if (const auto *FromFn =
8809           dyn_cast<FunctionProtoType>(Context.getCanonicalType(FromType)))
8810     FromAttributes =
8811         FromFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
8812   if (const auto *ToFn =
8813           dyn_cast<FunctionProtoType>(Context.getCanonicalType(ToType)))
8814     ToAttributes =
8815         ToFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
8816 
8817   return FromAttributes != ToAttributes;
8818 }
8819 
8820 // Check if we have a conversion between incompatible cmse function pointer
8821 // types, that is, a conversion between a function pointer with the
8822 // cmse_nonsecure_call attribute and one without.
8823 static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
8824                                           QualType ToType) {
8825   if (const auto *ToFn =
8826           dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
8827     if (const auto *FromFn =
8828             dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
8829       FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
8830       FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
8831 
8832       return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
8833     }
8834   }
8835   return false;
8836 }
8837 
8838 // checkPointerTypesForAssignment - This is a very tricky routine (despite
8839 // being closely modeled after the C99 spec:-). The odd characteristic of this
8840 // routine is it effectively iqnores the qualifiers on the top level pointee.
8841 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
8842 // FIXME: add a couple examples in this comment.
8843 static Sema::AssignConvertType
8844 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType,
8845                                SourceLocation Loc) {
8846   assert(LHSType.isCanonical() && "LHS not canonicalized!");
8847   assert(RHSType.isCanonical() && "RHS not canonicalized!");
8848 
8849   // get the "pointed to" type (ignoring qualifiers at the top level)
8850   const Type *lhptee, *rhptee;
8851   Qualifiers lhq, rhq;
8852   std::tie(lhptee, lhq) =
8853       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
8854   std::tie(rhptee, rhq) =
8855       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
8856 
8857   Sema::AssignConvertType ConvTy = Sema::Compatible;
8858 
8859   // C99 6.5.16.1p1: This following citation is common to constraints
8860   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
8861   // qualifiers of the type *pointed to* by the right;
8862 
8863   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
8864   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
8865       lhq.compatiblyIncludesObjCLifetime(rhq)) {
8866     // Ignore lifetime for further calculation.
8867     lhq.removeObjCLifetime();
8868     rhq.removeObjCLifetime();
8869   }
8870 
8871   if (!lhq.compatiblyIncludes(rhq)) {
8872     // Treat address-space mismatches as fatal.
8873     if (!lhq.isAddressSpaceSupersetOf(rhq))
8874       return Sema::IncompatiblePointerDiscardsQualifiers;
8875 
8876     // It's okay to add or remove GC or lifetime qualifiers when converting to
8877     // and from void*.
8878     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
8879                         .compatiblyIncludes(
8880                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
8881              && (lhptee->isVoidType() || rhptee->isVoidType()))
8882       ; // keep old
8883 
8884     // Treat lifetime mismatches as fatal.
8885     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
8886       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
8887 
8888     // For GCC/MS compatibility, other qualifier mismatches are treated
8889     // as still compatible in C.
8890     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8891   }
8892 
8893   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
8894   // incomplete type and the other is a pointer to a qualified or unqualified
8895   // version of void...
8896   if (lhptee->isVoidType()) {
8897     if (rhptee->isIncompleteOrObjectType())
8898       return ConvTy;
8899 
8900     // As an extension, we allow cast to/from void* to function pointer.
8901     assert(rhptee->isFunctionType());
8902     return Sema::FunctionVoidPointer;
8903   }
8904 
8905   if (rhptee->isVoidType()) {
8906     if (lhptee->isIncompleteOrObjectType())
8907       return ConvTy;
8908 
8909     // As an extension, we allow cast to/from void* to function pointer.
8910     assert(lhptee->isFunctionType());
8911     return Sema::FunctionVoidPointer;
8912   }
8913 
8914   if (!S.Diags.isIgnored(
8915           diag::warn_typecheck_convert_incompatible_function_pointer_strict,
8916           Loc) &&
8917       RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() &&
8918       !S.IsFunctionConversion(RHSType, LHSType, RHSType))
8919     return Sema::IncompatibleFunctionPointerStrict;
8920 
8921   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
8922   // unqualified versions of compatible types, ...
8923   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
8924   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
8925     // Check if the pointee types are compatible ignoring the sign.
8926     // We explicitly check for char so that we catch "char" vs
8927     // "unsigned char" on systems where "char" is unsigned.
8928     if (lhptee->isCharType())
8929       ltrans = S.Context.UnsignedCharTy;
8930     else if (lhptee->hasSignedIntegerRepresentation())
8931       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
8932 
8933     if (rhptee->isCharType())
8934       rtrans = S.Context.UnsignedCharTy;
8935     else if (rhptee->hasSignedIntegerRepresentation())
8936       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
8937 
8938     if (ltrans == rtrans) {
8939       // Types are compatible ignoring the sign. Qualifier incompatibility
8940       // takes priority over sign incompatibility because the sign
8941       // warning can be disabled.
8942       if (ConvTy != Sema::Compatible)
8943         return ConvTy;
8944 
8945       return Sema::IncompatiblePointerSign;
8946     }
8947 
8948     // If we are a multi-level pointer, it's possible that our issue is simply
8949     // one of qualification - e.g. char ** -> const char ** is not allowed. If
8950     // the eventual target type is the same and the pointers have the same
8951     // level of indirection, this must be the issue.
8952     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
8953       do {
8954         std::tie(lhptee, lhq) =
8955           cast<PointerType>(lhptee)->getPointeeType().split().asPair();
8956         std::tie(rhptee, rhq) =
8957           cast<PointerType>(rhptee)->getPointeeType().split().asPair();
8958 
8959         // Inconsistent address spaces at this point is invalid, even if the
8960         // address spaces would be compatible.
8961         // FIXME: This doesn't catch address space mismatches for pointers of
8962         // different nesting levels, like:
8963         //   __local int *** a;
8964         //   int ** b = a;
8965         // It's not clear how to actually determine when such pointers are
8966         // invalidly incompatible.
8967         if (lhq.getAddressSpace() != rhq.getAddressSpace())
8968           return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
8969 
8970       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
8971 
8972       if (lhptee == rhptee)
8973         return Sema::IncompatibleNestedPointerQualifiers;
8974     }
8975 
8976     // General pointer incompatibility takes priority over qualifiers.
8977     if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
8978       return Sema::IncompatibleFunctionPointer;
8979     return Sema::IncompatiblePointer;
8980   }
8981   if (!S.getLangOpts().CPlusPlus &&
8982       S.IsFunctionConversion(ltrans, rtrans, ltrans))
8983     return Sema::IncompatibleFunctionPointer;
8984   if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
8985     return Sema::IncompatibleFunctionPointer;
8986   if (S.IsInvalidSMECallConversion(rtrans, ltrans))
8987     return Sema::IncompatibleFunctionPointer;
8988   return ConvTy;
8989 }
8990 
8991 /// checkBlockPointerTypesForAssignment - This routine determines whether two
8992 /// block pointer types are compatible or whether a block and normal pointer
8993 /// are compatible. It is more restrict than comparing two function pointer
8994 // types.
8995 static Sema::AssignConvertType
8996 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
8997                                     QualType RHSType) {
8998   assert(LHSType.isCanonical() && "LHS not canonicalized!");
8999   assert(RHSType.isCanonical() && "RHS not canonicalized!");
9000 
9001   QualType lhptee, rhptee;
9002 
9003   // get the "pointed to" type (ignoring qualifiers at the top level)
9004   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
9005   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
9006 
9007   // In C++, the types have to match exactly.
9008   if (S.getLangOpts().CPlusPlus)
9009     return Sema::IncompatibleBlockPointer;
9010 
9011   Sema::AssignConvertType ConvTy = Sema::Compatible;
9012 
9013   // For blocks we enforce that qualifiers are identical.
9014   Qualifiers LQuals = lhptee.getLocalQualifiers();
9015   Qualifiers RQuals = rhptee.getLocalQualifiers();
9016   if (S.getLangOpts().OpenCL) {
9017     LQuals.removeAddressSpace();
9018     RQuals.removeAddressSpace();
9019   }
9020   if (LQuals != RQuals)
9021     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9022 
9023   // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9024   // assignment.
9025   // The current behavior is similar to C++ lambdas. A block might be
9026   // assigned to a variable iff its return type and parameters are compatible
9027   // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9028   // an assignment. Presumably it should behave in way that a function pointer
9029   // assignment does in C, so for each parameter and return type:
9030   //  * CVR and address space of LHS should be a superset of CVR and address
9031   //  space of RHS.
9032   //  * unqualified types should be compatible.
9033   if (S.getLangOpts().OpenCL) {
9034     if (!S.Context.typesAreBlockPointerCompatible(
9035             S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
9036             S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
9037       return Sema::IncompatibleBlockPointer;
9038   } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9039     return Sema::IncompatibleBlockPointer;
9040 
9041   return ConvTy;
9042 }
9043 
9044 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9045 /// for assignment compatibility.
9046 static Sema::AssignConvertType
9047 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
9048                                    QualType RHSType) {
9049   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
9050   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
9051 
9052   if (LHSType->isObjCBuiltinType()) {
9053     // Class is not compatible with ObjC object pointers.
9054     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9055         !RHSType->isObjCQualifiedClassType())
9056       return Sema::IncompatiblePointer;
9057     return Sema::Compatible;
9058   }
9059   if (RHSType->isObjCBuiltinType()) {
9060     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9061         !LHSType->isObjCQualifiedClassType())
9062       return Sema::IncompatiblePointer;
9063     return Sema::Compatible;
9064   }
9065   QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9066   QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9067 
9068   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
9069       // make an exception for id<P>
9070       !LHSType->isObjCQualifiedIdType())
9071     return Sema::CompatiblePointerDiscardsQualifiers;
9072 
9073   if (S.Context.typesAreCompatible(LHSType, RHSType))
9074     return Sema::Compatible;
9075   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9076     return Sema::IncompatibleObjCQualifiedId;
9077   return Sema::IncompatiblePointer;
9078 }
9079 
9080 Sema::AssignConvertType
9081 Sema::CheckAssignmentConstraints(SourceLocation Loc,
9082                                  QualType LHSType, QualType RHSType) {
9083   // Fake up an opaque expression.  We don't actually care about what
9084   // cast operations are required, so if CheckAssignmentConstraints
9085   // adds casts to this they'll be wasted, but fortunately that doesn't
9086   // usually happen on valid code.
9087   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9088   ExprResult RHSPtr = &RHSExpr;
9089   CastKind K;
9090 
9091   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
9092 }
9093 
9094 /// This helper function returns true if QT is a vector type that has element
9095 /// type ElementType.
9096 static bool isVector(QualType QT, QualType ElementType) {
9097   if (const VectorType *VT = QT->getAs<VectorType>())
9098     return VT->getElementType().getCanonicalType() == ElementType;
9099   return false;
9100 }
9101 
9102 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9103 /// has code to accommodate several GCC extensions when type checking
9104 /// pointers. Here are some objectionable examples that GCC considers warnings:
9105 ///
9106 ///  int a, *pint;
9107 ///  short *pshort;
9108 ///  struct foo *pfoo;
9109 ///
9110 ///  pint = pshort; // warning: assignment from incompatible pointer type
9111 ///  a = pint; // warning: assignment makes integer from pointer without a cast
9112 ///  pint = a; // warning: assignment makes pointer from integer without a cast
9113 ///  pint = pfoo; // warning: assignment from incompatible pointer type
9114 ///
9115 /// As a result, the code for dealing with pointers is more complex than the
9116 /// C99 spec dictates.
9117 ///
9118 /// Sets 'Kind' for any result kind except Incompatible.
9119 Sema::AssignConvertType
9120 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9121                                  CastKind &Kind, bool ConvertRHS) {
9122   QualType RHSType = RHS.get()->getType();
9123   QualType OrigLHSType = LHSType;
9124 
9125   // Get canonical types.  We're not formatting these types, just comparing
9126   // them.
9127   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9128   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9129 
9130   // Common case: no conversion required.
9131   if (LHSType == RHSType) {
9132     Kind = CK_NoOp;
9133     return Compatible;
9134   }
9135 
9136   // If the LHS has an __auto_type, there are no additional type constraints
9137   // to be worried about.
9138   if (const auto *AT = dyn_cast<AutoType>(LHSType)) {
9139     if (AT->isGNUAutoType()) {
9140       Kind = CK_NoOp;
9141       return Compatible;
9142     }
9143   }
9144 
9145   // If we have an atomic type, try a non-atomic assignment, then just add an
9146   // atomic qualification step.
9147   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
9148     Sema::AssignConvertType result =
9149       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
9150     if (result != Compatible)
9151       return result;
9152     if (Kind != CK_NoOp && ConvertRHS)
9153       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
9154     Kind = CK_NonAtomicToAtomic;
9155     return Compatible;
9156   }
9157 
9158   // If the left-hand side is a reference type, then we are in a
9159   // (rare!) case where we've allowed the use of references in C,
9160   // e.g., as a parameter type in a built-in function. In this case,
9161   // just make sure that the type referenced is compatible with the
9162   // right-hand side type. The caller is responsible for adjusting
9163   // LHSType so that the resulting expression does not have reference
9164   // type.
9165   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9166     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
9167       Kind = CK_LValueBitCast;
9168       return Compatible;
9169     }
9170     return Incompatible;
9171   }
9172 
9173   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9174   // to the same ExtVector type.
9175   if (LHSType->isExtVectorType()) {
9176     if (RHSType->isExtVectorType())
9177       return Incompatible;
9178     if (RHSType->isArithmeticType()) {
9179       // CK_VectorSplat does T -> vector T, so first cast to the element type.
9180       if (ConvertRHS)
9181         RHS = prepareVectorSplat(LHSType, RHS.get());
9182       Kind = CK_VectorSplat;
9183       return Compatible;
9184     }
9185   }
9186 
9187   // Conversions to or from vector type.
9188   if (LHSType->isVectorType() || RHSType->isVectorType()) {
9189     if (LHSType->isVectorType() && RHSType->isVectorType()) {
9190       // Allow assignments of an AltiVec vector type to an equivalent GCC
9191       // vector type and vice versa
9192       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9193         Kind = CK_BitCast;
9194         return Compatible;
9195       }
9196 
9197       // If we are allowing lax vector conversions, and LHS and RHS are both
9198       // vectors, the total size only needs to be the same. This is a bitcast;
9199       // no bits are changed but the result type is different.
9200       if (isLaxVectorConversion(RHSType, LHSType)) {
9201         // The default for lax vector conversions with Altivec vectors will
9202         // change, so if we are converting between vector types where
9203         // at least one is an Altivec vector, emit a warning.
9204         if (Context.getTargetInfo().getTriple().isPPC() &&
9205             anyAltivecTypes(RHSType, LHSType) &&
9206             !Context.areCompatibleVectorTypes(RHSType, LHSType))
9207           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9208               << RHSType << LHSType;
9209         Kind = CK_BitCast;
9210         return IncompatibleVectors;
9211       }
9212     }
9213 
9214     // When the RHS comes from another lax conversion (e.g. binops between
9215     // scalars and vectors) the result is canonicalized as a vector. When the
9216     // LHS is also a vector, the lax is allowed by the condition above. Handle
9217     // the case where LHS is a scalar.
9218     if (LHSType->isScalarType()) {
9219       const VectorType *VecType = RHSType->getAs<VectorType>();
9220       if (VecType && VecType->getNumElements() == 1 &&
9221           isLaxVectorConversion(RHSType, LHSType)) {
9222         if (Context.getTargetInfo().getTriple().isPPC() &&
9223             (VecType->getVectorKind() == VectorKind::AltiVecVector ||
9224              VecType->getVectorKind() == VectorKind::AltiVecBool ||
9225              VecType->getVectorKind() == VectorKind::AltiVecPixel))
9226           Diag(RHS.get()->getExprLoc(), diag::warn_deprecated_lax_vec_conv_all)
9227               << RHSType << LHSType;
9228         ExprResult *VecExpr = &RHS;
9229         *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
9230         Kind = CK_BitCast;
9231         return Compatible;
9232       }
9233     }
9234 
9235     // Allow assignments between fixed-length and sizeless SVE vectors.
9236     if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) ||
9237         (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType()))
9238       if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
9239           Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
9240         Kind = CK_BitCast;
9241         return Compatible;
9242       }
9243 
9244     // Allow assignments between fixed-length and sizeless RVV vectors.
9245     if ((LHSType->isRVVSizelessBuiltinType() && RHSType->isVectorType()) ||
9246         (LHSType->isVectorType() && RHSType->isRVVSizelessBuiltinType())) {
9247       if (Context.areCompatibleRVVTypes(LHSType, RHSType) ||
9248           Context.areLaxCompatibleRVVTypes(LHSType, RHSType)) {
9249         Kind = CK_BitCast;
9250         return Compatible;
9251       }
9252     }
9253 
9254     return Incompatible;
9255   }
9256 
9257   // Diagnose attempts to convert between __ibm128, __float128 and long double
9258   // where such conversions currently can't be handled.
9259   if (unsupportedTypeConversion(*this, LHSType, RHSType))
9260     return Incompatible;
9261 
9262   // Disallow assigning a _Complex to a real type in C++ mode since it simply
9263   // discards the imaginary part.
9264   if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9265       !LHSType->getAs<ComplexType>())
9266     return Incompatible;
9267 
9268   // Arithmetic conversions.
9269   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9270       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9271     if (ConvertRHS)
9272       Kind = PrepareScalarCast(RHS, LHSType);
9273     return Compatible;
9274   }
9275 
9276   // Conversions to normal pointers.
9277   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
9278     // U* -> T*
9279     if (isa<PointerType>(RHSType)) {
9280       LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9281       LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9282       if (AddrSpaceL != AddrSpaceR)
9283         Kind = CK_AddressSpaceConversion;
9284       else if (Context.hasCvrSimilarType(RHSType, LHSType))
9285         Kind = CK_NoOp;
9286       else
9287         Kind = CK_BitCast;
9288       return checkPointerTypesForAssignment(*this, LHSType, RHSType,
9289                                             RHS.get()->getBeginLoc());
9290     }
9291 
9292     // int -> T*
9293     if (RHSType->isIntegerType()) {
9294       Kind = CK_IntegralToPointer; // FIXME: null?
9295       return IntToPointer;
9296     }
9297 
9298     // C pointers are not compatible with ObjC object pointers,
9299     // with two exceptions:
9300     if (isa<ObjCObjectPointerType>(RHSType)) {
9301       //  - conversions to void*
9302       if (LHSPointer->getPointeeType()->isVoidType()) {
9303         Kind = CK_BitCast;
9304         return Compatible;
9305       }
9306 
9307       //  - conversions from 'Class' to the redefinition type
9308       if (RHSType->isObjCClassType() &&
9309           Context.hasSameType(LHSType,
9310                               Context.getObjCClassRedefinitionType())) {
9311         Kind = CK_BitCast;
9312         return Compatible;
9313       }
9314 
9315       Kind = CK_BitCast;
9316       return IncompatiblePointer;
9317     }
9318 
9319     // U^ -> void*
9320     if (RHSType->getAs<BlockPointerType>()) {
9321       if (LHSPointer->getPointeeType()->isVoidType()) {
9322         LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9323         LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9324                                 ->getPointeeType()
9325                                 .getAddressSpace();
9326         Kind =
9327             AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9328         return Compatible;
9329       }
9330     }
9331 
9332     return Incompatible;
9333   }
9334 
9335   // Conversions to block pointers.
9336   if (isa<BlockPointerType>(LHSType)) {
9337     // U^ -> T^
9338     if (RHSType->isBlockPointerType()) {
9339       LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9340                               ->getPointeeType()
9341                               .getAddressSpace();
9342       LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9343                               ->getPointeeType()
9344                               .getAddressSpace();
9345       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9346       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9347     }
9348 
9349     // int or null -> T^
9350     if (RHSType->isIntegerType()) {
9351       Kind = CK_IntegralToPointer; // FIXME: null
9352       return IntToBlockPointer;
9353     }
9354 
9355     // id -> T^
9356     if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9357       Kind = CK_AnyPointerToBlockPointerCast;
9358       return Compatible;
9359     }
9360 
9361     // void* -> T^
9362     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9363       if (RHSPT->getPointeeType()->isVoidType()) {
9364         Kind = CK_AnyPointerToBlockPointerCast;
9365         return Compatible;
9366       }
9367 
9368     return Incompatible;
9369   }
9370 
9371   // Conversions to Objective-C pointers.
9372   if (isa<ObjCObjectPointerType>(LHSType)) {
9373     // A* -> B*
9374     if (RHSType->isObjCObjectPointerType()) {
9375       Kind = CK_BitCast;
9376       Sema::AssignConvertType result =
9377         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
9378       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9379           result == Compatible &&
9380           !ObjC().CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
9381         result = IncompatibleObjCWeakRef;
9382       return result;
9383     }
9384 
9385     // int or null -> A*
9386     if (RHSType->isIntegerType()) {
9387       Kind = CK_IntegralToPointer; // FIXME: null
9388       return IntToPointer;
9389     }
9390 
9391     // In general, C pointers are not compatible with ObjC object pointers,
9392     // with two exceptions:
9393     if (isa<PointerType>(RHSType)) {
9394       Kind = CK_CPointerToObjCPointerCast;
9395 
9396       //  - conversions from 'void*'
9397       if (RHSType->isVoidPointerType()) {
9398         return Compatible;
9399       }
9400 
9401       //  - conversions to 'Class' from its redefinition type
9402       if (LHSType->isObjCClassType() &&
9403           Context.hasSameType(RHSType,
9404                               Context.getObjCClassRedefinitionType())) {
9405         return Compatible;
9406       }
9407 
9408       return IncompatiblePointer;
9409     }
9410 
9411     // Only under strict condition T^ is compatible with an Objective-C pointer.
9412     if (RHSType->isBlockPointerType() &&
9413         LHSType->isBlockCompatibleObjCPointerType(Context)) {
9414       if (ConvertRHS)
9415         maybeExtendBlockObject(RHS);
9416       Kind = CK_BlockPointerToObjCPointerCast;
9417       return Compatible;
9418     }
9419 
9420     return Incompatible;
9421   }
9422 
9423   // Conversion to nullptr_t (C23 only)
9424   if (getLangOpts().C23 && LHSType->isNullPtrType() &&
9425       RHS.get()->isNullPointerConstant(Context,
9426                                        Expr::NPC_ValueDependentIsNull)) {
9427     // null -> nullptr_t
9428     Kind = CK_NullToPointer;
9429     return Compatible;
9430   }
9431 
9432   // Conversions from pointers that are not covered by the above.
9433   if (isa<PointerType>(RHSType)) {
9434     // T* -> _Bool
9435     if (LHSType == Context.BoolTy) {
9436       Kind = CK_PointerToBoolean;
9437       return Compatible;
9438     }
9439 
9440     // T* -> int
9441     if (LHSType->isIntegerType()) {
9442       Kind = CK_PointerToIntegral;
9443       return PointerToInt;
9444     }
9445 
9446     return Incompatible;
9447   }
9448 
9449   // Conversions from Objective-C pointers that are not covered by the above.
9450   if (isa<ObjCObjectPointerType>(RHSType)) {
9451     // T* -> _Bool
9452     if (LHSType == Context.BoolTy) {
9453       Kind = CK_PointerToBoolean;
9454       return Compatible;
9455     }
9456 
9457     // T* -> int
9458     if (LHSType->isIntegerType()) {
9459       Kind = CK_PointerToIntegral;
9460       return PointerToInt;
9461     }
9462 
9463     return Incompatible;
9464   }
9465 
9466   // struct A -> struct B
9467   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
9468     if (Context.typesAreCompatible(LHSType, RHSType)) {
9469       Kind = CK_NoOp;
9470       return Compatible;
9471     }
9472   }
9473 
9474   if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9475     Kind = CK_IntToOCLSampler;
9476     return Compatible;
9477   }
9478 
9479   return Incompatible;
9480 }
9481 
9482 /// Constructs a transparent union from an expression that is
9483 /// used to initialize the transparent union.
9484 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9485                                       ExprResult &EResult, QualType UnionType,
9486                                       FieldDecl *Field) {
9487   // Build an initializer list that designates the appropriate member
9488   // of the transparent union.
9489   Expr *E = EResult.get();
9490   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9491                                                    E, SourceLocation());
9492   Initializer->setType(UnionType);
9493   Initializer->setInitializedFieldInUnion(Field);
9494 
9495   // Build a compound literal constructing a value of the transparent
9496   // union type from this initializer list.
9497   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
9498   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9499                                         VK_PRValue, Initializer, false);
9500 }
9501 
9502 Sema::AssignConvertType
9503 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9504                                                ExprResult &RHS) {
9505   QualType RHSType = RHS.get()->getType();
9506 
9507   // If the ArgType is a Union type, we want to handle a potential
9508   // transparent_union GCC extension.
9509   const RecordType *UT = ArgType->getAsUnionType();
9510   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9511     return Incompatible;
9512 
9513   // The field to initialize within the transparent union.
9514   RecordDecl *UD = UT->getDecl();
9515   FieldDecl *InitField = nullptr;
9516   // It's compatible if the expression matches any of the fields.
9517   for (auto *it : UD->fields()) {
9518     if (it->getType()->isPointerType()) {
9519       // If the transparent union contains a pointer type, we allow:
9520       // 1) void pointer
9521       // 2) null pointer constant
9522       if (RHSType->isPointerType())
9523         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9524           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
9525           InitField = it;
9526           break;
9527         }
9528 
9529       if (RHS.get()->isNullPointerConstant(Context,
9530                                            Expr::NPC_ValueDependentIsNull)) {
9531         RHS = ImpCastExprToType(RHS.get(), it->getType(),
9532                                 CK_NullToPointer);
9533         InitField = it;
9534         break;
9535       }
9536     }
9537 
9538     CastKind Kind;
9539     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
9540           == Compatible) {
9541       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
9542       InitField = it;
9543       break;
9544     }
9545   }
9546 
9547   if (!InitField)
9548     return Incompatible;
9549 
9550   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
9551   return Compatible;
9552 }
9553 
9554 Sema::AssignConvertType
9555 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
9556                                        bool Diagnose,
9557                                        bool DiagnoseCFAudited,
9558                                        bool ConvertRHS) {
9559   // We need to be able to tell the caller whether we diagnosed a problem, if
9560   // they ask us to issue diagnostics.
9561   assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
9562 
9563   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9564   // we can't avoid *all* modifications at the moment, so we need some somewhere
9565   // to put the updated value.
9566   ExprResult LocalRHS = CallerRHS;
9567   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9568 
9569   if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9570     if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9571       if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
9572           !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
9573         Diag(RHS.get()->getExprLoc(),
9574              diag::warn_noderef_to_dereferenceable_pointer)
9575             << RHS.get()->getSourceRange();
9576       }
9577     }
9578   }
9579 
9580   if (getLangOpts().CPlusPlus) {
9581     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9582       // C++ 5.17p3: If the left operand is not of class type, the
9583       // expression is implicitly converted (C++ 4) to the
9584       // cv-unqualified type of the left operand.
9585       QualType RHSType = RHS.get()->getType();
9586       if (Diagnose) {
9587         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9588                                         AA_Assigning);
9589       } else {
9590         ImplicitConversionSequence ICS =
9591             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9592                                   /*SuppressUserConversions=*/false,
9593                                   AllowedExplicit::None,
9594                                   /*InOverloadResolution=*/false,
9595                                   /*CStyle=*/false,
9596                                   /*AllowObjCWritebackConversion=*/false);
9597         if (ICS.isFailure())
9598           return Incompatible;
9599         RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9600                                         ICS, AA_Assigning);
9601       }
9602       if (RHS.isInvalid())
9603         return Incompatible;
9604       Sema::AssignConvertType result = Compatible;
9605       if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9606           !ObjC().CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
9607         result = IncompatibleObjCWeakRef;
9608       return result;
9609     }
9610 
9611     // FIXME: Currently, we fall through and treat C++ classes like C
9612     // structures.
9613     // FIXME: We also fall through for atomics; not sure what should
9614     // happen there, though.
9615   } else if (RHS.get()->getType() == Context.OverloadTy) {
9616     // As a set of extensions to C, we support overloading on functions. These
9617     // functions need to be resolved here.
9618     DeclAccessPair DAP;
9619     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9620             RHS.get(), LHSType, /*Complain=*/false, DAP))
9621       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
9622     else
9623       return Incompatible;
9624   }
9625 
9626   // This check seems unnatural, however it is necessary to ensure the proper
9627   // conversion of functions/arrays. If the conversion were done for all
9628   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
9629   // expressions that suppress this implicit conversion (&, sizeof). This needs
9630   // to happen before we check for null pointer conversions because C does not
9631   // undergo the same implicit conversions as C++ does above (by the calls to
9632   // TryImplicitConversion() and PerformImplicitConversion()) which insert the
9633   // lvalue to rvalue cast before checking for null pointer constraints. This
9634   // addresses code like: nullptr_t val; int *ptr; ptr = val;
9635   //
9636   // Suppress this for references: C++ 8.5.3p5.
9637   if (!LHSType->isReferenceType()) {
9638     // FIXME: We potentially allocate here even if ConvertRHS is false.
9639     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
9640     if (RHS.isInvalid())
9641       return Incompatible;
9642   }
9643 
9644   // The constraints are expressed in terms of the atomic, qualified, or
9645   // unqualified type of the LHS.
9646   QualType LHSTypeAfterConversion = LHSType.getAtomicUnqualifiedType();
9647 
9648   // C99 6.5.16.1p1: the left operand is a pointer and the right is
9649   // a null pointer constant <C23>or its type is nullptr_t;</C23>.
9650   if ((LHSTypeAfterConversion->isPointerType() ||
9651        LHSTypeAfterConversion->isObjCObjectPointerType() ||
9652        LHSTypeAfterConversion->isBlockPointerType()) &&
9653       ((getLangOpts().C23 && RHS.get()->getType()->isNullPtrType()) ||
9654        RHS.get()->isNullPointerConstant(Context,
9655                                         Expr::NPC_ValueDependentIsNull))) {
9656     if (Diagnose || ConvertRHS) {
9657       CastKind Kind;
9658       CXXCastPath Path;
9659       CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
9660                              /*IgnoreBaseAccess=*/false, Diagnose);
9661       if (ConvertRHS)
9662         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_PRValue, &Path);
9663     }
9664     return Compatible;
9665   }
9666   // C23 6.5.16.1p1: the left operand has type atomic, qualified, or
9667   // unqualified bool, and the right operand is a pointer or its type is
9668   // nullptr_t.
9669   if (getLangOpts().C23 && LHSType->isBooleanType() &&
9670       RHS.get()->getType()->isNullPtrType()) {
9671     // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only
9672     // only handles nullptr -> _Bool due to needing an extra conversion
9673     // step.
9674     // We model this by converting from nullptr -> void * and then let the
9675     // conversion from void * -> _Bool happen naturally.
9676     if (Diagnose || ConvertRHS) {
9677       CastKind Kind;
9678       CXXCastPath Path;
9679       CheckPointerConversion(RHS.get(), Context.VoidPtrTy, Kind, Path,
9680                              /*IgnoreBaseAccess=*/false, Diagnose);
9681       if (ConvertRHS)
9682         RHS = ImpCastExprToType(RHS.get(), Context.VoidPtrTy, Kind, VK_PRValue,
9683                                 &Path);
9684     }
9685   }
9686 
9687   // OpenCL queue_t type assignment.
9688   if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
9689                                  Context, Expr::NPC_ValueDependentIsNull)) {
9690     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
9691     return Compatible;
9692   }
9693 
9694   CastKind Kind;
9695   Sema::AssignConvertType result =
9696     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
9697 
9698   // C99 6.5.16.1p2: The value of the right operand is converted to the
9699   // type of the assignment expression.
9700   // CheckAssignmentConstraints allows the left-hand side to be a reference,
9701   // so that we can use references in built-in functions even in C.
9702   // The getNonReferenceType() call makes sure that the resulting expression
9703   // does not have reference type.
9704   if (result != Incompatible && RHS.get()->getType() != LHSType) {
9705     QualType Ty = LHSType.getNonLValueExprType(Context);
9706     Expr *E = RHS.get();
9707 
9708     // Check for various Objective-C errors. If we are not reporting
9709     // diagnostics and just checking for errors, e.g., during overload
9710     // resolution, return Incompatible to indicate the failure.
9711     if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9712         ObjC().CheckObjCConversion(SourceRange(), Ty, E,
9713                                    CheckedConversionKind::Implicit, Diagnose,
9714                                    DiagnoseCFAudited) != SemaObjC::ACR_okay) {
9715       if (!Diagnose)
9716         return Incompatible;
9717     }
9718     if (getLangOpts().ObjC &&
9719         (ObjC().CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
9720                                                   E->getType(), E, Diagnose) ||
9721          ObjC().CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
9722       if (!Diagnose)
9723         return Incompatible;
9724       // Replace the expression with a corrected version and continue so we
9725       // can find further errors.
9726       RHS = E;
9727       return Compatible;
9728     }
9729 
9730     if (ConvertRHS)
9731       RHS = ImpCastExprToType(E, Ty, Kind);
9732   }
9733 
9734   return result;
9735 }
9736 
9737 namespace {
9738 /// The original operand to an operator, prior to the application of the usual
9739 /// arithmetic conversions and converting the arguments of a builtin operator
9740 /// candidate.
9741 struct OriginalOperand {
9742   explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
9743     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
9744       Op = MTE->getSubExpr();
9745     if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
9746       Op = BTE->getSubExpr();
9747     if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
9748       Orig = ICE->getSubExprAsWritten();
9749       Conversion = ICE->getConversionFunction();
9750     }
9751   }
9752 
9753   QualType getType() const { return Orig->getType(); }
9754 
9755   Expr *Orig;
9756   NamedDecl *Conversion;
9757 };
9758 }
9759 
9760 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
9761                                ExprResult &RHS) {
9762   OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
9763 
9764   Diag(Loc, diag::err_typecheck_invalid_operands)
9765     << OrigLHS.getType() << OrigRHS.getType()
9766     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9767 
9768   // If a user-defined conversion was applied to either of the operands prior
9769   // to applying the built-in operator rules, tell the user about it.
9770   if (OrigLHS.Conversion) {
9771     Diag(OrigLHS.Conversion->getLocation(),
9772          diag::note_typecheck_invalid_operands_converted)
9773       << 0 << LHS.get()->getType();
9774   }
9775   if (OrigRHS.Conversion) {
9776     Diag(OrigRHS.Conversion->getLocation(),
9777          diag::note_typecheck_invalid_operands_converted)
9778       << 1 << RHS.get()->getType();
9779   }
9780 
9781   return QualType();
9782 }
9783 
9784 QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
9785                                             ExprResult &RHS) {
9786   QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
9787   QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
9788 
9789   bool LHSNatVec = LHSType->isVectorType();
9790   bool RHSNatVec = RHSType->isVectorType();
9791 
9792   if (!(LHSNatVec && RHSNatVec)) {
9793     Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
9794     Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
9795     Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9796         << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
9797         << Vector->getSourceRange();
9798     return QualType();
9799   }
9800 
9801   Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9802       << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
9803       << RHS.get()->getSourceRange();
9804 
9805   return QualType();
9806 }
9807 
9808 /// Try to convert a value of non-vector type to a vector type by converting
9809 /// the type to the element type of the vector and then performing a splat.
9810 /// If the language is OpenCL, we only use conversions that promote scalar
9811 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
9812 /// for float->int.
9813 ///
9814 /// OpenCL V2.0 6.2.6.p2:
9815 /// An error shall occur if any scalar operand type has greater rank
9816 /// than the type of the vector element.
9817 ///
9818 /// \param scalar - if non-null, actually perform the conversions
9819 /// \return true if the operation fails (but without diagnosing the failure)
9820 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
9821                                      QualType scalarTy,
9822                                      QualType vectorEltTy,
9823                                      QualType vectorTy,
9824                                      unsigned &DiagID) {
9825   // The conversion to apply to the scalar before splatting it,
9826   // if necessary.
9827   CastKind scalarCast = CK_NoOp;
9828 
9829   if (vectorEltTy->isIntegralType(S.Context)) {
9830     if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
9831         (scalarTy->isIntegerType() &&
9832          S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
9833       DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9834       return true;
9835     }
9836     if (!scalarTy->isIntegralType(S.Context))
9837       return true;
9838     scalarCast = CK_IntegralCast;
9839   } else if (vectorEltTy->isRealFloatingType()) {
9840     if (scalarTy->isRealFloatingType()) {
9841       if (S.getLangOpts().OpenCL &&
9842           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
9843         DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9844         return true;
9845       }
9846       scalarCast = CK_FloatingCast;
9847     }
9848     else if (scalarTy->isIntegralType(S.Context))
9849       scalarCast = CK_IntegralToFloating;
9850     else
9851       return true;
9852   } else {
9853     return true;
9854   }
9855 
9856   // Adjust scalar if desired.
9857   if (scalar) {
9858     if (scalarCast != CK_NoOp)
9859       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
9860     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
9861   }
9862   return false;
9863 }
9864 
9865 /// Convert vector E to a vector with the same number of elements but different
9866 /// element type.
9867 static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
9868   const auto *VecTy = E->getType()->getAs<VectorType>();
9869   assert(VecTy && "Expression E must be a vector");
9870   QualType NewVecTy =
9871       VecTy->isExtVectorType()
9872           ? S.Context.getExtVectorType(ElementType, VecTy->getNumElements())
9873           : S.Context.getVectorType(ElementType, VecTy->getNumElements(),
9874                                     VecTy->getVectorKind());
9875 
9876   // Look through the implicit cast. Return the subexpression if its type is
9877   // NewVecTy.
9878   if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
9879     if (ICE->getSubExpr()->getType() == NewVecTy)
9880       return ICE->getSubExpr();
9881 
9882   auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
9883   return S.ImpCastExprToType(E, NewVecTy, Cast);
9884 }
9885 
9886 /// Test if a (constant) integer Int can be casted to another integer type
9887 /// IntTy without losing precision.
9888 static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
9889                                       QualType OtherIntTy) {
9890   QualType IntTy = Int->get()->getType().getUnqualifiedType();
9891 
9892   // Reject cases where the value of the Int is unknown as that would
9893   // possibly cause truncation, but accept cases where the scalar can be
9894   // demoted without loss of precision.
9895   Expr::EvalResult EVResult;
9896   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9897   int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
9898   bool IntSigned = IntTy->hasSignedIntegerRepresentation();
9899   bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
9900 
9901   if (CstInt) {
9902     // If the scalar is constant and is of a higher order and has more active
9903     // bits that the vector element type, reject it.
9904     llvm::APSInt Result = EVResult.Val.getInt();
9905     unsigned NumBits = IntSigned
9906                            ? (Result.isNegative() ? Result.getSignificantBits()
9907                                                   : Result.getActiveBits())
9908                            : Result.getActiveBits();
9909     if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
9910       return true;
9911 
9912     // If the signedness of the scalar type and the vector element type
9913     // differs and the number of bits is greater than that of the vector
9914     // element reject it.
9915     return (IntSigned != OtherIntSigned &&
9916             NumBits > S.Context.getIntWidth(OtherIntTy));
9917   }
9918 
9919   // Reject cases where the value of the scalar is not constant and it's
9920   // order is greater than that of the vector element type.
9921   return (Order < 0);
9922 }
9923 
9924 /// Test if a (constant) integer Int can be casted to floating point type
9925 /// FloatTy without losing precision.
9926 static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
9927                                      QualType FloatTy) {
9928   QualType IntTy = Int->get()->getType().getUnqualifiedType();
9929 
9930   // Determine if the integer constant can be expressed as a floating point
9931   // number of the appropriate type.
9932   Expr::EvalResult EVResult;
9933   bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9934 
9935   uint64_t Bits = 0;
9936   if (CstInt) {
9937     // Reject constants that would be truncated if they were converted to
9938     // the floating point type. Test by simple to/from conversion.
9939     // FIXME: Ideally the conversion to an APFloat and from an APFloat
9940     //        could be avoided if there was a convertFromAPInt method
9941     //        which could signal back if implicit truncation occurred.
9942     llvm::APSInt Result = EVResult.Val.getInt();
9943     llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
9944     Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
9945                            llvm::APFloat::rmTowardZero);
9946     llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
9947                              !IntTy->hasSignedIntegerRepresentation());
9948     bool Ignored = false;
9949     Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
9950                            &Ignored);
9951     if (Result != ConvertBack)
9952       return true;
9953   } else {
9954     // Reject types that cannot be fully encoded into the mantissa of
9955     // the float.
9956     Bits = S.Context.getTypeSize(IntTy);
9957     unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
9958         S.Context.getFloatTypeSemantics(FloatTy));
9959     if (Bits > FloatPrec)
9960       return true;
9961   }
9962 
9963   return false;
9964 }
9965 
9966 /// Attempt to convert and splat Scalar into a vector whose types matches
9967 /// Vector following GCC conversion rules. The rule is that implicit
9968 /// conversion can occur when Scalar can be casted to match Vector's element
9969 /// type without causing truncation of Scalar.
9970 static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
9971                                         ExprResult *Vector) {
9972   QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
9973   QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
9974   QualType VectorEltTy;
9975 
9976   if (const auto *VT = VectorTy->getAs<VectorType>()) {
9977     assert(!isa<ExtVectorType>(VT) &&
9978            "ExtVectorTypes should not be handled here!");
9979     VectorEltTy = VT->getElementType();
9980   } else if (VectorTy->isSveVLSBuiltinType()) {
9981     VectorEltTy =
9982         VectorTy->castAs<BuiltinType>()->getSveEltType(S.getASTContext());
9983   } else {
9984     llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
9985   }
9986 
9987   // Reject cases where the vector element type or the scalar element type are
9988   // not integral or floating point types.
9989   if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
9990     return true;
9991 
9992   // The conversion to apply to the scalar before splatting it,
9993   // if necessary.
9994   CastKind ScalarCast = CK_NoOp;
9995 
9996   // Accept cases where the vector elements are integers and the scalar is
9997   // an integer.
9998   // FIXME: Notionally if the scalar was a floating point value with a precise
9999   //        integral representation, we could cast it to an appropriate integer
10000   //        type and then perform the rest of the checks here. GCC will perform
10001   //        this conversion in some cases as determined by the input language.
10002   //        We should accept it on a language independent basis.
10003   if (VectorEltTy->isIntegralType(S.Context) &&
10004       ScalarTy->isIntegralType(S.Context) &&
10005       S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
10006 
10007     if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
10008       return true;
10009 
10010     ScalarCast = CK_IntegralCast;
10011   } else if (VectorEltTy->isIntegralType(S.Context) &&
10012              ScalarTy->isRealFloatingType()) {
10013     if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
10014       ScalarCast = CK_FloatingToIntegral;
10015     else
10016       return true;
10017   } else if (VectorEltTy->isRealFloatingType()) {
10018     if (ScalarTy->isRealFloatingType()) {
10019 
10020       // Reject cases where the scalar type is not a constant and has a higher
10021       // Order than the vector element type.
10022       llvm::APFloat Result(0.0);
10023 
10024       // Determine whether this is a constant scalar. In the event that the
10025       // value is dependent (and thus cannot be evaluated by the constant
10026       // evaluator), skip the evaluation. This will then diagnose once the
10027       // expression is instantiated.
10028       bool CstScalar = Scalar->get()->isValueDependent() ||
10029                        Scalar->get()->EvaluateAsFloat(Result, S.Context);
10030       int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
10031       if (!CstScalar && Order < 0)
10032         return true;
10033 
10034       // If the scalar cannot be safely casted to the vector element type,
10035       // reject it.
10036       if (CstScalar) {
10037         bool Truncated = false;
10038         Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
10039                        llvm::APFloat::rmNearestTiesToEven, &Truncated);
10040         if (Truncated)
10041           return true;
10042       }
10043 
10044       ScalarCast = CK_FloatingCast;
10045     } else if (ScalarTy->isIntegralType(S.Context)) {
10046       if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
10047         return true;
10048 
10049       ScalarCast = CK_IntegralToFloating;
10050     } else
10051       return true;
10052   } else if (ScalarTy->isEnumeralType())
10053     return true;
10054 
10055   // Adjust scalar if desired.
10056   if (ScalarCast != CK_NoOp)
10057     *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
10058   *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
10059   return false;
10060 }
10061 
10062 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10063                                    SourceLocation Loc, bool IsCompAssign,
10064                                    bool AllowBothBool,
10065                                    bool AllowBoolConversions,
10066                                    bool AllowBoolOperation,
10067                                    bool ReportInvalid) {
10068   if (!IsCompAssign) {
10069     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10070     if (LHS.isInvalid())
10071       return QualType();
10072   }
10073   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10074   if (RHS.isInvalid())
10075     return QualType();
10076 
10077   // For conversion purposes, we ignore any qualifiers.
10078   // For example, "const float" and "float" are equivalent.
10079   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10080   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10081 
10082   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
10083   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
10084   assert(LHSVecType || RHSVecType);
10085 
10086   // AltiVec-style "vector bool op vector bool" combinations are allowed
10087   // for some operators but not others.
10088   if (!AllowBothBool && LHSVecType &&
10089       LHSVecType->getVectorKind() == VectorKind::AltiVecBool && RHSVecType &&
10090       RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
10091     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10092 
10093   // This operation may not be performed on boolean vectors.
10094   if (!AllowBoolOperation &&
10095       (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
10096     return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10097 
10098   // If the vector types are identical, return.
10099   if (Context.hasSameType(LHSType, RHSType))
10100     return Context.getCommonSugaredType(LHSType, RHSType);
10101 
10102   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10103   if (LHSVecType && RHSVecType &&
10104       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
10105     if (isa<ExtVectorType>(LHSVecType)) {
10106       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10107       return LHSType;
10108     }
10109 
10110     if (!IsCompAssign)
10111       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10112     return RHSType;
10113   }
10114 
10115   // AllowBoolConversions says that bool and non-bool AltiVec vectors
10116   // can be mixed, with the result being the non-bool type.  The non-bool
10117   // operand must have integer element type.
10118   if (AllowBoolConversions && LHSVecType && RHSVecType &&
10119       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10120       (Context.getTypeSize(LHSVecType->getElementType()) ==
10121        Context.getTypeSize(RHSVecType->getElementType()))) {
10122     if (LHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
10123         LHSVecType->getElementType()->isIntegerType() &&
10124         RHSVecType->getVectorKind() == VectorKind::AltiVecBool) {
10125       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
10126       return LHSType;
10127     }
10128     if (!IsCompAssign &&
10129         LHSVecType->getVectorKind() == VectorKind::AltiVecBool &&
10130         RHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
10131         RHSVecType->getElementType()->isIntegerType()) {
10132       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
10133       return RHSType;
10134     }
10135   }
10136 
10137   // Expressions containing fixed-length and sizeless SVE/RVV vectors are
10138   // invalid since the ambiguity can affect the ABI.
10139   auto IsSveRVVConversion = [](QualType FirstType, QualType SecondType,
10140                                unsigned &SVEorRVV) {
10141     const VectorType *VecType = SecondType->getAs<VectorType>();
10142     SVEorRVV = 0;
10143     if (FirstType->isSizelessBuiltinType() && VecType) {
10144       if (VecType->getVectorKind() == VectorKind::SveFixedLengthData ||
10145           VecType->getVectorKind() == VectorKind::SveFixedLengthPredicate)
10146         return true;
10147       if (VecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
10148           VecType->getVectorKind() == VectorKind::RVVFixedLengthMask) {
10149         SVEorRVV = 1;
10150         return true;
10151       }
10152     }
10153 
10154     return false;
10155   };
10156 
10157   unsigned SVEorRVV;
10158   if (IsSveRVVConversion(LHSType, RHSType, SVEorRVV) ||
10159       IsSveRVVConversion(RHSType, LHSType, SVEorRVV)) {
10160     Diag(Loc, diag::err_typecheck_sve_rvv_ambiguous)
10161         << SVEorRVV << LHSType << RHSType;
10162     return QualType();
10163   }
10164 
10165   // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are
10166   // invalid since the ambiguity can affect the ABI.
10167   auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType,
10168                                   unsigned &SVEorRVV) {
10169     const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10170     const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10171 
10172     SVEorRVV = 0;
10173     if (FirstVecType && SecondVecType) {
10174       if (FirstVecType->getVectorKind() == VectorKind::Generic) {
10175         if (SecondVecType->getVectorKind() == VectorKind::SveFixedLengthData ||
10176             SecondVecType->getVectorKind() ==
10177                 VectorKind::SveFixedLengthPredicate)
10178           return true;
10179         if (SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
10180             SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthMask) {
10181           SVEorRVV = 1;
10182           return true;
10183         }
10184       }
10185       return false;
10186     }
10187 
10188     if (SecondVecType &&
10189         SecondVecType->getVectorKind() == VectorKind::Generic) {
10190       if (FirstType->isSVESizelessBuiltinType())
10191         return true;
10192       if (FirstType->isRVVSizelessBuiltinType()) {
10193         SVEorRVV = 1;
10194         return true;
10195       }
10196     }
10197 
10198     return false;
10199   };
10200 
10201   if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) ||
10202       IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) {
10203     Diag(Loc, diag::err_typecheck_sve_rvv_gnu_ambiguous)
10204         << SVEorRVV << LHSType << RHSType;
10205     return QualType();
10206   }
10207 
10208   // If there's a vector type and a scalar, try to convert the scalar to
10209   // the vector element type and splat.
10210   unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10211   if (!RHSVecType) {
10212     if (isa<ExtVectorType>(LHSVecType)) {
10213       if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
10214                                     LHSVecType->getElementType(), LHSType,
10215                                     DiagID))
10216         return LHSType;
10217     } else {
10218       if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10219         return LHSType;
10220     }
10221   }
10222   if (!LHSVecType) {
10223     if (isa<ExtVectorType>(RHSVecType)) {
10224       if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
10225                                     LHSType, RHSVecType->getElementType(),
10226                                     RHSType, DiagID))
10227         return RHSType;
10228     } else {
10229       if (LHS.get()->isLValue() ||
10230           !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10231         return RHSType;
10232     }
10233   }
10234 
10235   // FIXME: The code below also handles conversion between vectors and
10236   // non-scalars, we should break this down into fine grained specific checks
10237   // and emit proper diagnostics.
10238   QualType VecType = LHSVecType ? LHSType : RHSType;
10239   const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10240   QualType OtherType = LHSVecType ? RHSType : LHSType;
10241   ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10242   if (isLaxVectorConversion(OtherType, VecType)) {
10243     if (Context.getTargetInfo().getTriple().isPPC() &&
10244         anyAltivecTypes(RHSType, LHSType) &&
10245         !Context.areCompatibleVectorTypes(RHSType, LHSType))
10246       Diag(Loc, diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
10247     // If we're allowing lax vector conversions, only the total (data) size
10248     // needs to be the same. For non compound assignment, if one of the types is
10249     // scalar, the result is always the vector type.
10250     if (!IsCompAssign) {
10251       *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
10252       return VecType;
10253     // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10254     // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10255     // type. Note that this is already done by non-compound assignments in
10256     // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10257     // <1 x T> -> T. The result is also a vector type.
10258     } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10259                (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10260       ExprResult *RHSExpr = &RHS;
10261       *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
10262       return VecType;
10263     }
10264   }
10265 
10266   // Okay, the expression is invalid.
10267 
10268   // If there's a non-vector, non-real operand, diagnose that.
10269   if ((!RHSVecType && !RHSType->isRealType()) ||
10270       (!LHSVecType && !LHSType->isRealType())) {
10271     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10272       << LHSType << RHSType
10273       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10274     return QualType();
10275   }
10276 
10277   // OpenCL V1.1 6.2.6.p1:
10278   // If the operands are of more than one vector type, then an error shall
10279   // occur. Implicit conversions between vector types are not permitted, per
10280   // section 6.2.1.
10281   if (getLangOpts().OpenCL &&
10282       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
10283       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
10284     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10285                                                            << RHSType;
10286     return QualType();
10287   }
10288 
10289 
10290   // If there is a vector type that is not a ExtVector and a scalar, we reach
10291   // this point if scalar could not be converted to the vector's element type
10292   // without truncation.
10293   if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
10294       (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
10295     QualType Scalar = LHSVecType ? RHSType : LHSType;
10296     QualType Vector = LHSVecType ? LHSType : RHSType;
10297     unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10298     Diag(Loc,
10299          diag::err_typecheck_vector_not_convertable_implict_truncation)
10300         << ScalarOrVector << Scalar << Vector;
10301 
10302     return QualType();
10303   }
10304 
10305   // Otherwise, use the generic diagnostic.
10306   Diag(Loc, DiagID)
10307     << LHSType << RHSType
10308     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10309   return QualType();
10310 }
10311 
10312 QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
10313                                            SourceLocation Loc,
10314                                            bool IsCompAssign,
10315                                            ArithConvKind OperationKind) {
10316   if (!IsCompAssign) {
10317     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
10318     if (LHS.isInvalid())
10319       return QualType();
10320   }
10321   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
10322   if (RHS.isInvalid())
10323     return QualType();
10324 
10325   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10326   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10327 
10328   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
10329   const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
10330 
10331   unsigned DiagID = diag::err_typecheck_invalid_operands;
10332   if ((OperationKind == ACK_Arithmetic) &&
10333       ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
10334        (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
10335     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10336                       << RHS.get()->getSourceRange();
10337     return QualType();
10338   }
10339 
10340   if (Context.hasSameType(LHSType, RHSType))
10341     return LHSType;
10342 
10343   if (LHSType->isSveVLSBuiltinType() && !RHSType->isSveVLSBuiltinType()) {
10344     if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
10345       return LHSType;
10346   }
10347   if (RHSType->isSveVLSBuiltinType() && !LHSType->isSveVLSBuiltinType()) {
10348     if (LHS.get()->isLValue() ||
10349         !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10350       return RHSType;
10351   }
10352 
10353   if ((!LHSType->isSveVLSBuiltinType() && !LHSType->isRealType()) ||
10354       (!RHSType->isSveVLSBuiltinType() && !RHSType->isRealType())) {
10355     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10356         << LHSType << RHSType << LHS.get()->getSourceRange()
10357         << RHS.get()->getSourceRange();
10358     return QualType();
10359   }
10360 
10361   if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
10362       Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
10363           Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC) {
10364     Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10365         << LHSType << RHSType << LHS.get()->getSourceRange()
10366         << RHS.get()->getSourceRange();
10367     return QualType();
10368   }
10369 
10370   if (LHSType->isSveVLSBuiltinType() || RHSType->isSveVLSBuiltinType()) {
10371     QualType Scalar = LHSType->isSveVLSBuiltinType() ? RHSType : LHSType;
10372     QualType Vector = LHSType->isSveVLSBuiltinType() ? LHSType : RHSType;
10373     bool ScalarOrVector =
10374         LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType();
10375 
10376     Diag(Loc, diag::err_typecheck_vector_not_convertable_implict_truncation)
10377         << ScalarOrVector << Scalar << Vector;
10378 
10379     return QualType();
10380   }
10381 
10382   Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10383                     << RHS.get()->getSourceRange();
10384   return QualType();
10385 }
10386 
10387 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
10388 // expression.  These are mainly cases where the null pointer is used as an
10389 // integer instead of a pointer.
10390 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10391                                 SourceLocation Loc, bool IsCompare) {
10392   // The canonical way to check for a GNU null is with isNullPointerConstant,
10393   // but we use a bit of a hack here for speed; this is a relatively
10394   // hot path, and isNullPointerConstant is slow.
10395   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
10396   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
10397 
10398   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10399 
10400   // Avoid analyzing cases where the result will either be invalid (and
10401   // diagnosed as such) or entirely valid and not something to warn about.
10402   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10403       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10404     return;
10405 
10406   // Comparison operations would not make sense with a null pointer no matter
10407   // what the other expression is.
10408   if (!IsCompare) {
10409     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10410         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10411         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10412     return;
10413   }
10414 
10415   // The rest of the operations only make sense with a null pointer
10416   // if the other expression is a pointer.
10417   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10418       NonNullType->canDecayToPointerType())
10419     return;
10420 
10421   S.Diag(Loc, diag::warn_null_in_comparison_operation)
10422       << LHSNull /* LHS is NULL */ << NonNullType
10423       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10424 }
10425 
10426 static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10427                                           SourceLocation Loc) {
10428   const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
10429   const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
10430   if (!LUE || !RUE)
10431     return;
10432   if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10433       RUE->getKind() != UETT_SizeOf)
10434     return;
10435 
10436   const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10437   QualType LHSTy = LHSArg->getType();
10438   QualType RHSTy;
10439 
10440   if (RUE->isArgumentType())
10441     RHSTy = RUE->getArgumentType().getNonReferenceType();
10442   else
10443     RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10444 
10445   if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10446     if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
10447       return;
10448 
10449     S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10450     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10451       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10452         S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
10453             << LHSArgDecl;
10454     }
10455   } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
10456     QualType ArrayElemTy = ArrayTy->getElementType();
10457     if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
10458         ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10459         RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10460         S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
10461       return;
10462     S.Diag(Loc, diag::warn_division_sizeof_array)
10463         << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10464     if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10465       if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10466         S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
10467             << LHSArgDecl;
10468     }
10469 
10470     S.Diag(Loc, diag::note_precedence_silence) << RHS;
10471   }
10472 }
10473 
10474 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10475                                                ExprResult &RHS,
10476                                                SourceLocation Loc, bool IsDiv) {
10477   // Check for division/remainder by zero.
10478   Expr::EvalResult RHSValue;
10479   if (!RHS.get()->isValueDependent() &&
10480       RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
10481       RHSValue.Val.getInt() == 0)
10482     S.DiagRuntimeBehavior(Loc, RHS.get(),
10483                           S.PDiag(diag::warn_remainder_division_by_zero)
10484                             << IsDiv << RHS.get()->getSourceRange());
10485 }
10486 
10487 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10488                                            SourceLocation Loc,
10489                                            bool IsCompAssign, bool IsDiv) {
10490   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10491 
10492   QualType LHSTy = LHS.get()->getType();
10493   QualType RHSTy = RHS.get()->getType();
10494   if (LHSTy->isVectorType() || RHSTy->isVectorType())
10495     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10496                                /*AllowBothBool*/ getLangOpts().AltiVec,
10497                                /*AllowBoolConversions*/ false,
10498                                /*AllowBooleanOperation*/ false,
10499                                /*ReportInvalid*/ true);
10500   if (LHSTy->isSveVLSBuiltinType() || RHSTy->isSveVLSBuiltinType())
10501     return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10502                                        ACK_Arithmetic);
10503   if (!IsDiv &&
10504       (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
10505     return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10506   // For division, only matrix-by-scalar is supported. Other combinations with
10507   // matrix types are invalid.
10508   if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
10509     return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
10510 
10511   QualType compType = UsualArithmeticConversions(
10512       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10513   if (LHS.isInvalid() || RHS.isInvalid())
10514     return QualType();
10515 
10516 
10517   if (compType.isNull() || !compType->isArithmeticType())
10518     return InvalidOperands(Loc, LHS, RHS);
10519   if (IsDiv) {
10520     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
10521     DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
10522   }
10523   return compType;
10524 }
10525 
10526 QualType Sema::CheckRemainderOperands(
10527   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10528   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10529 
10530   if (LHS.get()->getType()->isVectorType() ||
10531       RHS.get()->getType()->isVectorType()) {
10532     if (LHS.get()->getType()->hasIntegerRepresentation() &&
10533         RHS.get()->getType()->hasIntegerRepresentation())
10534       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10535                                  /*AllowBothBool*/ getLangOpts().AltiVec,
10536                                  /*AllowBoolConversions*/ false,
10537                                  /*AllowBooleanOperation*/ false,
10538                                  /*ReportInvalid*/ true);
10539     return InvalidOperands(Loc, LHS, RHS);
10540   }
10541 
10542   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
10543       RHS.get()->getType()->isSveVLSBuiltinType()) {
10544     if (LHS.get()->getType()->hasIntegerRepresentation() &&
10545         RHS.get()->getType()->hasIntegerRepresentation())
10546       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10547                                          ACK_Arithmetic);
10548 
10549     return InvalidOperands(Loc, LHS, RHS);
10550   }
10551 
10552   QualType compType = UsualArithmeticConversions(
10553       LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10554   if (LHS.isInvalid() || RHS.isInvalid())
10555     return QualType();
10556 
10557   if (compType.isNull() || !compType->isIntegerType())
10558     return InvalidOperands(Loc, LHS, RHS);
10559   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
10560   return compType;
10561 }
10562 
10563 /// Diagnose invalid arithmetic on two void pointers.
10564 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10565                                                 Expr *LHSExpr, Expr *RHSExpr) {
10566   S.Diag(Loc, S.getLangOpts().CPlusPlus
10567                 ? diag::err_typecheck_pointer_arith_void_type
10568                 : diag::ext_gnu_void_ptr)
10569     << 1 /* two pointers */ << LHSExpr->getSourceRange()
10570                             << RHSExpr->getSourceRange();
10571 }
10572 
10573 /// Diagnose invalid arithmetic on a void pointer.
10574 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10575                                             Expr *Pointer) {
10576   S.Diag(Loc, S.getLangOpts().CPlusPlus
10577                 ? diag::err_typecheck_pointer_arith_void_type
10578                 : diag::ext_gnu_void_ptr)
10579     << 0 /* one pointer */ << Pointer->getSourceRange();
10580 }
10581 
10582 /// Diagnose invalid arithmetic on a null pointer.
10583 ///
10584 /// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10585 /// idiom, which we recognize as a GNU extension.
10586 ///
10587 static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10588                                             Expr *Pointer, bool IsGNUIdiom) {
10589   if (IsGNUIdiom)
10590     S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
10591       << Pointer->getSourceRange();
10592   else
10593     S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
10594       << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10595 }
10596 
10597 /// Diagnose invalid subraction on a null pointer.
10598 ///
10599 static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
10600                                              Expr *Pointer, bool BothNull) {
10601   // Null - null is valid in C++ [expr.add]p7
10602   if (BothNull && S.getLangOpts().CPlusPlus)
10603     return;
10604 
10605   // Is this s a macro from a system header?
10606   if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(Loc))
10607     return;
10608 
10609   S.DiagRuntimeBehavior(Loc, Pointer,
10610                         S.PDiag(diag::warn_pointer_sub_null_ptr)
10611                             << S.getLangOpts().CPlusPlus
10612                             << Pointer->getSourceRange());
10613 }
10614 
10615 /// Diagnose invalid arithmetic on two function pointers.
10616 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10617                                                     Expr *LHS, Expr *RHS) {
10618   assert(LHS->getType()->isAnyPointerType());
10619   assert(RHS->getType()->isAnyPointerType());
10620   S.Diag(Loc, S.getLangOpts().CPlusPlus
10621                 ? diag::err_typecheck_pointer_arith_function_type
10622                 : diag::ext_gnu_ptr_func_arith)
10623     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10624     // We only show the second type if it differs from the first.
10625     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
10626                                                    RHS->getType())
10627     << RHS->getType()->getPointeeType()
10628     << LHS->getSourceRange() << RHS->getSourceRange();
10629 }
10630 
10631 /// Diagnose invalid arithmetic on a function pointer.
10632 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10633                                                 Expr *Pointer) {
10634   assert(Pointer->getType()->isAnyPointerType());
10635   S.Diag(Loc, S.getLangOpts().CPlusPlus
10636                 ? diag::err_typecheck_pointer_arith_function_type
10637                 : diag::ext_gnu_ptr_func_arith)
10638     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10639     << 0 /* one pointer, so only one type */
10640     << Pointer->getSourceRange();
10641 }
10642 
10643 /// Emit error if Operand is incomplete pointer type
10644 ///
10645 /// \returns True if pointer has incomplete type
10646 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10647                                                  Expr *Operand) {
10648   QualType ResType = Operand->getType();
10649   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10650     ResType = ResAtomicType->getValueType();
10651 
10652   assert(ResType->isAnyPointerType());
10653   QualType PointeeTy = ResType->getPointeeType();
10654   return S.RequireCompleteSizedType(
10655       Loc, PointeeTy,
10656       diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10657       Operand->getSourceRange());
10658 }
10659 
10660 /// Check the validity of an arithmetic pointer operand.
10661 ///
10662 /// If the operand has pointer type, this code will check for pointer types
10663 /// which are invalid in arithmetic operations. These will be diagnosed
10664 /// appropriately, including whether or not the use is supported as an
10665 /// extension.
10666 ///
10667 /// \returns True when the operand is valid to use (even if as an extension).
10668 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10669                                             Expr *Operand) {
10670   QualType ResType = Operand->getType();
10671   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10672     ResType = ResAtomicType->getValueType();
10673 
10674   if (!ResType->isAnyPointerType()) return true;
10675 
10676   QualType PointeeTy = ResType->getPointeeType();
10677   if (PointeeTy->isVoidType()) {
10678     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
10679     return !S.getLangOpts().CPlusPlus;
10680   }
10681   if (PointeeTy->isFunctionType()) {
10682     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
10683     return !S.getLangOpts().CPlusPlus;
10684   }
10685 
10686   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10687 
10688   return true;
10689 }
10690 
10691 /// Check the validity of a binary arithmetic operation w.r.t. pointer
10692 /// operands.
10693 ///
10694 /// This routine will diagnose any invalid arithmetic on pointer operands much
10695 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
10696 /// for emitting a single diagnostic even for operations where both LHS and RHS
10697 /// are (potentially problematic) pointers.
10698 ///
10699 /// \returns True when the operand is valid to use (even if as an extension).
10700 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
10701                                                 Expr *LHSExpr, Expr *RHSExpr) {
10702   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
10703   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
10704   if (!isLHSPointer && !isRHSPointer) return true;
10705 
10706   QualType LHSPointeeTy, RHSPointeeTy;
10707   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
10708   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
10709 
10710   // if both are pointers check if operation is valid wrt address spaces
10711   if (isLHSPointer && isRHSPointer) {
10712     if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
10713       S.Diag(Loc,
10714              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10715           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
10716           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10717       return false;
10718     }
10719   }
10720 
10721   // Check for arithmetic on pointers to incomplete types.
10722   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
10723   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
10724   if (isLHSVoidPtr || isRHSVoidPtr) {
10725     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
10726     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
10727     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
10728 
10729     return !S.getLangOpts().CPlusPlus;
10730   }
10731 
10732   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
10733   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
10734   if (isLHSFuncPtr || isRHSFuncPtr) {
10735     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
10736     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
10737                                                                 RHSExpr);
10738     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
10739 
10740     return !S.getLangOpts().CPlusPlus;
10741   }
10742 
10743   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
10744     return false;
10745   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
10746     return false;
10747 
10748   return true;
10749 }
10750 
10751 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
10752 /// literal.
10753 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
10754                                   Expr *LHSExpr, Expr *RHSExpr) {
10755   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
10756   Expr* IndexExpr = RHSExpr;
10757   if (!StrExpr) {
10758     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
10759     IndexExpr = LHSExpr;
10760   }
10761 
10762   bool IsStringPlusInt = StrExpr &&
10763       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
10764   if (!IsStringPlusInt || IndexExpr->isValueDependent())
10765     return;
10766 
10767   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10768   Self.Diag(OpLoc, diag::warn_string_plus_int)
10769       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
10770 
10771   // Only print a fixit for "str" + int, not for int + "str".
10772   if (IndexExpr == RHSExpr) {
10773     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10774     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10775         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10776         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10777         << FixItHint::CreateInsertion(EndLoc, "]");
10778   } else
10779     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10780 }
10781 
10782 /// Emit a warning when adding a char literal to a string.
10783 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
10784                                    Expr *LHSExpr, Expr *RHSExpr) {
10785   const Expr *StringRefExpr = LHSExpr;
10786   const CharacterLiteral *CharExpr =
10787       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
10788 
10789   if (!CharExpr) {
10790     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
10791     StringRefExpr = RHSExpr;
10792   }
10793 
10794   if (!CharExpr || !StringRefExpr)
10795     return;
10796 
10797   const QualType StringType = StringRefExpr->getType();
10798 
10799   // Return if not a PointerType.
10800   if (!StringType->isAnyPointerType())
10801     return;
10802 
10803   // Return if not a CharacterType.
10804   if (!StringType->getPointeeType()->isAnyCharacterType())
10805     return;
10806 
10807   ASTContext &Ctx = Self.getASTContext();
10808   SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10809 
10810   const QualType CharType = CharExpr->getType();
10811   if (!CharType->isAnyCharacterType() &&
10812       CharType->isIntegerType() &&
10813       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
10814     Self.Diag(OpLoc, diag::warn_string_plus_char)
10815         << DiagRange << Ctx.CharTy;
10816   } else {
10817     Self.Diag(OpLoc, diag::warn_string_plus_char)
10818         << DiagRange << CharExpr->getType();
10819   }
10820 
10821   // Only print a fixit for str + char, not for char + str.
10822   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
10823     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10824     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10825         << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10826         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10827         << FixItHint::CreateInsertion(EndLoc, "]");
10828   } else {
10829     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10830   }
10831 }
10832 
10833 /// Emit error when two pointers are incompatible.
10834 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
10835                                            Expr *LHSExpr, Expr *RHSExpr) {
10836   assert(LHSExpr->getType()->isAnyPointerType());
10837   assert(RHSExpr->getType()->isAnyPointerType());
10838   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
10839     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
10840     << RHSExpr->getSourceRange();
10841 }
10842 
10843 // C99 6.5.6
10844 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
10845                                      SourceLocation Loc, BinaryOperatorKind Opc,
10846                                      QualType* CompLHSTy) {
10847   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10848 
10849   if (LHS.get()->getType()->isVectorType() ||
10850       RHS.get()->getType()->isVectorType()) {
10851     QualType compType =
10852         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
10853                             /*AllowBothBool*/ getLangOpts().AltiVec,
10854                             /*AllowBoolConversions*/ getLangOpts().ZVector,
10855                             /*AllowBooleanOperation*/ false,
10856                             /*ReportInvalid*/ true);
10857     if (CompLHSTy) *CompLHSTy = compType;
10858     return compType;
10859   }
10860 
10861   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
10862       RHS.get()->getType()->isSveVLSBuiltinType()) {
10863     QualType compType =
10864         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
10865     if (CompLHSTy)
10866       *CompLHSTy = compType;
10867     return compType;
10868   }
10869 
10870   if (LHS.get()->getType()->isConstantMatrixType() ||
10871       RHS.get()->getType()->isConstantMatrixType()) {
10872     QualType compType =
10873         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10874     if (CompLHSTy)
10875       *CompLHSTy = compType;
10876     return compType;
10877   }
10878 
10879   QualType compType = UsualArithmeticConversions(
10880       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10881   if (LHS.isInvalid() || RHS.isInvalid())
10882     return QualType();
10883 
10884   // Diagnose "string literal" '+' int and string '+' "char literal".
10885   if (Opc == BO_Add) {
10886     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
10887     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
10888   }
10889 
10890   // handle the common case first (both operands are arithmetic).
10891   if (!compType.isNull() && compType->isArithmeticType()) {
10892     if (CompLHSTy) *CompLHSTy = compType;
10893     return compType;
10894   }
10895 
10896   // Type-checking.  Ultimately the pointer's going to be in PExp;
10897   // note that we bias towards the LHS being the pointer.
10898   Expr *PExp = LHS.get(), *IExp = RHS.get();
10899 
10900   bool isObjCPointer;
10901   if (PExp->getType()->isPointerType()) {
10902     isObjCPointer = false;
10903   } else if (PExp->getType()->isObjCObjectPointerType()) {
10904     isObjCPointer = true;
10905   } else {
10906     std::swap(PExp, IExp);
10907     if (PExp->getType()->isPointerType()) {
10908       isObjCPointer = false;
10909     } else if (PExp->getType()->isObjCObjectPointerType()) {
10910       isObjCPointer = true;
10911     } else {
10912       return InvalidOperands(Loc, LHS, RHS);
10913     }
10914   }
10915   assert(PExp->getType()->isAnyPointerType());
10916 
10917   if (!IExp->getType()->isIntegerType())
10918     return InvalidOperands(Loc, LHS, RHS);
10919 
10920   // Adding to a null pointer results in undefined behavior.
10921   if (PExp->IgnoreParenCasts()->isNullPointerConstant(
10922           Context, Expr::NPC_ValueDependentIsNotNull)) {
10923     // In C++ adding zero to a null pointer is defined.
10924     Expr::EvalResult KnownVal;
10925     if (!getLangOpts().CPlusPlus ||
10926         (!IExp->isValueDependent() &&
10927          (!IExp->EvaluateAsInt(KnownVal, Context) ||
10928           KnownVal.Val.getInt() != 0))) {
10929       // Check the conditions to see if this is the 'p = nullptr + n' idiom.
10930       bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
10931           Context, BO_Add, PExp, IExp);
10932       diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
10933     }
10934   }
10935 
10936   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
10937     return QualType();
10938 
10939   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
10940     return QualType();
10941 
10942   // Arithmetic on label addresses is normally allowed, except when we add
10943   // a ptrauth signature to the addresses.
10944   if (isa<AddrLabelExpr>(PExp) && getLangOpts().PointerAuthIndirectGotos) {
10945     Diag(Loc, diag::err_ptrauth_indirect_goto_addrlabel_arithmetic)
10946         << /*addition*/ 1;
10947     return QualType();
10948   }
10949 
10950   // Check array bounds for pointer arithemtic
10951   CheckArrayAccess(PExp, IExp);
10952 
10953   if (CompLHSTy) {
10954     QualType LHSTy = Context.isPromotableBitField(LHS.get());
10955     if (LHSTy.isNull()) {
10956       LHSTy = LHS.get()->getType();
10957       if (Context.isPromotableIntegerType(LHSTy))
10958         LHSTy = Context.getPromotedIntegerType(LHSTy);
10959     }
10960     *CompLHSTy = LHSTy;
10961   }
10962 
10963   return PExp->getType();
10964 }
10965 
10966 // C99 6.5.6
10967 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
10968                                         SourceLocation Loc,
10969                                         QualType* CompLHSTy) {
10970   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10971 
10972   if (LHS.get()->getType()->isVectorType() ||
10973       RHS.get()->getType()->isVectorType()) {
10974     QualType compType =
10975         CheckVectorOperands(LHS, RHS, Loc, CompLHSTy,
10976                             /*AllowBothBool*/ getLangOpts().AltiVec,
10977                             /*AllowBoolConversions*/ getLangOpts().ZVector,
10978                             /*AllowBooleanOperation*/ false,
10979                             /*ReportInvalid*/ true);
10980     if (CompLHSTy) *CompLHSTy = compType;
10981     return compType;
10982   }
10983 
10984   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
10985       RHS.get()->getType()->isSveVLSBuiltinType()) {
10986     QualType compType =
10987         CheckSizelessVectorOperands(LHS, RHS, Loc, CompLHSTy, ACK_Arithmetic);
10988     if (CompLHSTy)
10989       *CompLHSTy = compType;
10990     return compType;
10991   }
10992 
10993   if (LHS.get()->getType()->isConstantMatrixType() ||
10994       RHS.get()->getType()->isConstantMatrixType()) {
10995     QualType compType =
10996         CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10997     if (CompLHSTy)
10998       *CompLHSTy = compType;
10999     return compType;
11000   }
11001 
11002   QualType compType = UsualArithmeticConversions(
11003       LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11004   if (LHS.isInvalid() || RHS.isInvalid())
11005     return QualType();
11006 
11007   // Enforce type constraints: C99 6.5.6p3.
11008 
11009   // Handle the common case first (both operands are arithmetic).
11010   if (!compType.isNull() && compType->isArithmeticType()) {
11011     if (CompLHSTy) *CompLHSTy = compType;
11012     return compType;
11013   }
11014 
11015   // Either ptr - int   or   ptr - ptr.
11016   if (LHS.get()->getType()->isAnyPointerType()) {
11017     QualType lpointee = LHS.get()->getType()->getPointeeType();
11018 
11019     // Diagnose bad cases where we step over interface counts.
11020     if (LHS.get()->getType()->isObjCObjectPointerType() &&
11021         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
11022       return QualType();
11023 
11024     // Arithmetic on label addresses is normally allowed, except when we add
11025     // a ptrauth signature to the addresses.
11026     if (isa<AddrLabelExpr>(LHS.get()) &&
11027         getLangOpts().PointerAuthIndirectGotos) {
11028       Diag(Loc, diag::err_ptrauth_indirect_goto_addrlabel_arithmetic)
11029           << /*subtraction*/ 0;
11030       return QualType();
11031     }
11032 
11033     // The result type of a pointer-int computation is the pointer type.
11034     if (RHS.get()->getType()->isIntegerType()) {
11035       // Subtracting from a null pointer should produce a warning.
11036       // The last argument to the diagnose call says this doesn't match the
11037       // GNU int-to-pointer idiom.
11038       if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
11039                                            Expr::NPC_ValueDependentIsNotNull)) {
11040         // In C++ adding zero to a null pointer is defined.
11041         Expr::EvalResult KnownVal;
11042         if (!getLangOpts().CPlusPlus ||
11043             (!RHS.get()->isValueDependent() &&
11044              (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
11045               KnownVal.Val.getInt() != 0))) {
11046           diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
11047         }
11048       }
11049 
11050       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
11051         return QualType();
11052 
11053       // Check array bounds for pointer arithemtic
11054       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
11055                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
11056 
11057       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11058       return LHS.get()->getType();
11059     }
11060 
11061     // Handle pointer-pointer subtractions.
11062     if (const PointerType *RHSPTy
11063           = RHS.get()->getType()->getAs<PointerType>()) {
11064       QualType rpointee = RHSPTy->getPointeeType();
11065 
11066       if (getLangOpts().CPlusPlus) {
11067         // Pointee types must be the same: C++ [expr.add]
11068         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
11069           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11070         }
11071       } else {
11072         // Pointee types must be compatible C99 6.5.6p3
11073         if (!Context.typesAreCompatible(
11074                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
11075                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
11076           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
11077           return QualType();
11078         }
11079       }
11080 
11081       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
11082                                                LHS.get(), RHS.get()))
11083         return QualType();
11084 
11085       bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11086           Context, Expr::NPC_ValueDependentIsNotNull);
11087       bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11088           Context, Expr::NPC_ValueDependentIsNotNull);
11089 
11090       // Subtracting nullptr or from nullptr is suspect
11091       if (LHSIsNullPtr)
11092         diagnoseSubtractionOnNullPointer(*this, Loc, LHS.get(), RHSIsNullPtr);
11093       if (RHSIsNullPtr)
11094         diagnoseSubtractionOnNullPointer(*this, Loc, RHS.get(), LHSIsNullPtr);
11095 
11096       // The pointee type may have zero size.  As an extension, a structure or
11097       // union may have zero size or an array may have zero length.  In this
11098       // case subtraction does not make sense.
11099       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
11100         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
11101         if (ElementSize.isZero()) {
11102           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
11103             << rpointee.getUnqualifiedType()
11104             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11105         }
11106       }
11107 
11108       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11109       return Context.getPointerDiffType();
11110     }
11111   }
11112 
11113   return InvalidOperands(Loc, LHS, RHS);
11114 }
11115 
11116 static bool isScopedEnumerationType(QualType T) {
11117   if (const EnumType *ET = T->getAs<EnumType>())
11118     return ET->getDecl()->isScoped();
11119   return false;
11120 }
11121 
11122 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
11123                                    SourceLocation Loc, BinaryOperatorKind Opc,
11124                                    QualType LHSType) {
11125   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
11126   // so skip remaining warnings as we don't want to modify values within Sema.
11127   if (S.getLangOpts().OpenCL)
11128     return;
11129 
11130   // Check right/shifter operand
11131   Expr::EvalResult RHSResult;
11132   if (RHS.get()->isValueDependent() ||
11133       !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
11134     return;
11135   llvm::APSInt Right = RHSResult.Val.getInt();
11136 
11137   if (Right.isNegative()) {
11138     S.DiagRuntimeBehavior(Loc, RHS.get(),
11139                           S.PDiag(diag::warn_shift_negative)
11140                               << RHS.get()->getSourceRange());
11141     return;
11142   }
11143 
11144   QualType LHSExprType = LHS.get()->getType();
11145   uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
11146   if (LHSExprType->isBitIntType())
11147     LeftSize = S.Context.getIntWidth(LHSExprType);
11148   else if (LHSExprType->isFixedPointType()) {
11149     auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
11150     LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
11151   }
11152   if (Right.uge(LeftSize)) {
11153     S.DiagRuntimeBehavior(Loc, RHS.get(),
11154                           S.PDiag(diag::warn_shift_gt_typewidth)
11155                               << RHS.get()->getSourceRange());
11156     return;
11157   }
11158 
11159   // FIXME: We probably need to handle fixed point types specially here.
11160   if (Opc != BO_Shl || LHSExprType->isFixedPointType())
11161     return;
11162 
11163   // When left shifting an ICE which is signed, we can check for overflow which
11164   // according to C++ standards prior to C++2a has undefined behavior
11165   // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
11166   // more than the maximum value representable in the result type, so never
11167   // warn for those. (FIXME: Unsigned left-shift overflow in a constant
11168   // expression is still probably a bug.)
11169   Expr::EvalResult LHSResult;
11170   if (LHS.get()->isValueDependent() ||
11171       LHSType->hasUnsignedIntegerRepresentation() ||
11172       !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
11173     return;
11174   llvm::APSInt Left = LHSResult.Val.getInt();
11175 
11176   // Don't warn if signed overflow is defined, then all the rest of the
11177   // diagnostics will not be triggered because the behavior is defined.
11178   // Also don't warn in C++20 mode (and newer), as signed left shifts
11179   // always wrap and never overflow.
11180   if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
11181     return;
11182 
11183   // If LHS does not have a non-negative value then, the
11184   // behavior is undefined before C++2a. Warn about it.
11185   if (Left.isNegative()) {
11186     S.DiagRuntimeBehavior(Loc, LHS.get(),
11187                           S.PDiag(diag::warn_shift_lhs_negative)
11188                               << LHS.get()->getSourceRange());
11189     return;
11190   }
11191 
11192   llvm::APInt ResultBits =
11193       static_cast<llvm::APInt &>(Right) + Left.getSignificantBits();
11194   if (ResultBits.ule(LeftSize))
11195     return;
11196   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
11197   Result = Result.shl(Right);
11198 
11199   // Print the bit representation of the signed integer as an unsigned
11200   // hexadecimal number.
11201   SmallString<40> HexResult;
11202   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
11203 
11204   // If we are only missing a sign bit, this is less likely to result in actual
11205   // bugs -- if the result is cast back to an unsigned type, it will have the
11206   // expected value. Thus we place this behind a different warning that can be
11207   // turned off separately if needed.
11208   if (ResultBits - 1 == LeftSize) {
11209     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
11210         << HexResult << LHSType
11211         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11212     return;
11213   }
11214 
11215   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
11216       << HexResult.str() << Result.getSignificantBits() << LHSType
11217       << Left.getBitWidth() << LHS.get()->getSourceRange()
11218       << RHS.get()->getSourceRange();
11219 }
11220 
11221 /// Return the resulting type when a vector is shifted
11222 ///        by a scalar or vector shift amount.
11223 static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
11224                                  SourceLocation Loc, bool IsCompAssign) {
11225   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
11226   if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
11227       !LHS.get()->getType()->isVectorType()) {
11228     S.Diag(Loc, diag::err_shift_rhs_only_vector)
11229       << RHS.get()->getType() << LHS.get()->getType()
11230       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11231     return QualType();
11232   }
11233 
11234   if (!IsCompAssign) {
11235     LHS = S.UsualUnaryConversions(LHS.get());
11236     if (LHS.isInvalid()) return QualType();
11237   }
11238 
11239   RHS = S.UsualUnaryConversions(RHS.get());
11240   if (RHS.isInvalid()) return QualType();
11241 
11242   QualType LHSType = LHS.get()->getType();
11243   // Note that LHS might be a scalar because the routine calls not only in
11244   // OpenCL case.
11245   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
11246   QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
11247 
11248   // Note that RHS might not be a vector.
11249   QualType RHSType = RHS.get()->getType();
11250   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
11251   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
11252 
11253   // Do not allow shifts for boolean vectors.
11254   if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
11255       (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
11256     S.Diag(Loc, diag::err_typecheck_invalid_operands)
11257         << LHS.get()->getType() << RHS.get()->getType()
11258         << LHS.get()->getSourceRange();
11259     return QualType();
11260   }
11261 
11262   // The operands need to be integers.
11263   if (!LHSEleType->isIntegerType()) {
11264     S.Diag(Loc, diag::err_typecheck_expect_int)
11265       << LHS.get()->getType() << LHS.get()->getSourceRange();
11266     return QualType();
11267   }
11268 
11269   if (!RHSEleType->isIntegerType()) {
11270     S.Diag(Loc, diag::err_typecheck_expect_int)
11271       << RHS.get()->getType() << RHS.get()->getSourceRange();
11272     return QualType();
11273   }
11274 
11275   if (!LHSVecTy) {
11276     assert(RHSVecTy);
11277     if (IsCompAssign)
11278       return RHSType;
11279     if (LHSEleType != RHSEleType) {
11280       LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
11281       LHSEleType = RHSEleType;
11282     }
11283     QualType VecTy =
11284         S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
11285     LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
11286     LHSType = VecTy;
11287   } else if (RHSVecTy) {
11288     // OpenCL v1.1 s6.3.j says that for vector types, the operators
11289     // are applied component-wise. So if RHS is a vector, then ensure
11290     // that the number of elements is the same as LHS...
11291     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
11292       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11293         << LHS.get()->getType() << RHS.get()->getType()
11294         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11295       return QualType();
11296     }
11297     if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
11298       const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
11299       const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
11300       if (LHSBT != RHSBT &&
11301           S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
11302         S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
11303             << LHS.get()->getType() << RHS.get()->getType()
11304             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11305       }
11306     }
11307   } else {
11308     // ...else expand RHS to match the number of elements in LHS.
11309     QualType VecTy =
11310       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
11311     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11312   }
11313 
11314   return LHSType;
11315 }
11316 
11317 static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
11318                                          ExprResult &RHS, SourceLocation Loc,
11319                                          bool IsCompAssign) {
11320   if (!IsCompAssign) {
11321     LHS = S.UsualUnaryConversions(LHS.get());
11322     if (LHS.isInvalid())
11323       return QualType();
11324   }
11325 
11326   RHS = S.UsualUnaryConversions(RHS.get());
11327   if (RHS.isInvalid())
11328     return QualType();
11329 
11330   QualType LHSType = LHS.get()->getType();
11331   const BuiltinType *LHSBuiltinTy = LHSType->castAs<BuiltinType>();
11332   QualType LHSEleType = LHSType->isSveVLSBuiltinType()
11333                             ? LHSBuiltinTy->getSveEltType(S.getASTContext())
11334                             : LHSType;
11335 
11336   // Note that RHS might not be a vector
11337   QualType RHSType = RHS.get()->getType();
11338   const BuiltinType *RHSBuiltinTy = RHSType->castAs<BuiltinType>();
11339   QualType RHSEleType = RHSType->isSveVLSBuiltinType()
11340                             ? RHSBuiltinTy->getSveEltType(S.getASTContext())
11341                             : RHSType;
11342 
11343   if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11344       (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
11345     S.Diag(Loc, diag::err_typecheck_invalid_operands)
11346         << LHSType << RHSType << LHS.get()->getSourceRange();
11347     return QualType();
11348   }
11349 
11350   if (!LHSEleType->isIntegerType()) {
11351     S.Diag(Loc, diag::err_typecheck_expect_int)
11352         << LHS.get()->getType() << LHS.get()->getSourceRange();
11353     return QualType();
11354   }
11355 
11356   if (!RHSEleType->isIntegerType()) {
11357     S.Diag(Loc, diag::err_typecheck_expect_int)
11358         << RHS.get()->getType() << RHS.get()->getSourceRange();
11359     return QualType();
11360   }
11361 
11362   if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
11363       (S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC !=
11364        S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC)) {
11365     S.Diag(Loc, diag::err_typecheck_invalid_operands)
11366         << LHSType << RHSType << LHS.get()->getSourceRange()
11367         << RHS.get()->getSourceRange();
11368     return QualType();
11369   }
11370 
11371   if (!LHSType->isSveVLSBuiltinType()) {
11372     assert(RHSType->isSveVLSBuiltinType());
11373     if (IsCompAssign)
11374       return RHSType;
11375     if (LHSEleType != RHSEleType) {
11376       LHS = S.ImpCastExprToType(LHS.get(), RHSEleType, clang::CK_IntegralCast);
11377       LHSEleType = RHSEleType;
11378     }
11379     const llvm::ElementCount VecSize =
11380         S.Context.getBuiltinVectorTypeInfo(RHSBuiltinTy).EC;
11381     QualType VecTy =
11382         S.Context.getScalableVectorType(LHSEleType, VecSize.getKnownMinValue());
11383     LHS = S.ImpCastExprToType(LHS.get(), VecTy, clang::CK_VectorSplat);
11384     LHSType = VecTy;
11385   } else if (RHSBuiltinTy && RHSBuiltinTy->isSveVLSBuiltinType()) {
11386     if (S.Context.getTypeSize(RHSBuiltinTy) !=
11387         S.Context.getTypeSize(LHSBuiltinTy)) {
11388       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
11389           << LHSType << RHSType << LHS.get()->getSourceRange()
11390           << RHS.get()->getSourceRange();
11391       return QualType();
11392     }
11393   } else {
11394     const llvm::ElementCount VecSize =
11395         S.Context.getBuiltinVectorTypeInfo(LHSBuiltinTy).EC;
11396     if (LHSEleType != RHSEleType) {
11397       RHS = S.ImpCastExprToType(RHS.get(), LHSEleType, clang::CK_IntegralCast);
11398       RHSEleType = LHSEleType;
11399     }
11400     QualType VecTy =
11401         S.Context.getScalableVectorType(RHSEleType, VecSize.getKnownMinValue());
11402     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
11403   }
11404 
11405   return LHSType;
11406 }
11407 
11408 // C99 6.5.7
11409 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11410                                   SourceLocation Loc, BinaryOperatorKind Opc,
11411                                   bool IsCompAssign) {
11412   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
11413 
11414   // Vector shifts promote their scalar inputs to vector type.
11415   if (LHS.get()->getType()->isVectorType() ||
11416       RHS.get()->getType()->isVectorType()) {
11417     if (LangOpts.ZVector) {
11418       // The shift operators for the z vector extensions work basically
11419       // like general shifts, except that neither the LHS nor the RHS is
11420       // allowed to be a "vector bool".
11421       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11422         if (LHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11423           return InvalidOperands(Loc, LHS, RHS);
11424       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11425         if (RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11426           return InvalidOperands(Loc, LHS, RHS);
11427     }
11428     return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11429   }
11430 
11431   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11432       RHS.get()->getType()->isSveVLSBuiltinType())
11433     return checkSizelessVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
11434 
11435   // Shifts don't perform usual arithmetic conversions, they just do integer
11436   // promotions on each operand. C99 6.5.7p3
11437 
11438   // For the LHS, do usual unary conversions, but then reset them away
11439   // if this is a compound assignment.
11440   ExprResult OldLHS = LHS;
11441   LHS = UsualUnaryConversions(LHS.get());
11442   if (LHS.isInvalid())
11443     return QualType();
11444   QualType LHSType = LHS.get()->getType();
11445   if (IsCompAssign) LHS = OldLHS;
11446 
11447   // The RHS is simpler.
11448   RHS = UsualUnaryConversions(RHS.get());
11449   if (RHS.isInvalid())
11450     return QualType();
11451   QualType RHSType = RHS.get()->getType();
11452 
11453   // C99 6.5.7p2: Each of the operands shall have integer type.
11454   // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
11455   if ((!LHSType->isFixedPointOrIntegerType() &&
11456        !LHSType->hasIntegerRepresentation()) ||
11457       !RHSType->hasIntegerRepresentation())
11458     return InvalidOperands(Loc, LHS, RHS);
11459 
11460   // C++0x: Don't allow scoped enums. FIXME: Use something better than
11461   // hasIntegerRepresentation() above instead of this.
11462   if (isScopedEnumerationType(LHSType) ||
11463       isScopedEnumerationType(RHSType)) {
11464     return InvalidOperands(Loc, LHS, RHS);
11465   }
11466   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
11467 
11468   // "The type of the result is that of the promoted left operand."
11469   return LHSType;
11470 }
11471 
11472 /// Diagnose bad pointer comparisons.
11473 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
11474                                               ExprResult &LHS, ExprResult &RHS,
11475                                               bool IsError) {
11476   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
11477                       : diag::ext_typecheck_comparison_of_distinct_pointers)
11478     << LHS.get()->getType() << RHS.get()->getType()
11479     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11480 }
11481 
11482 /// Returns false if the pointers are converted to a composite type,
11483 /// true otherwise.
11484 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
11485                                            ExprResult &LHS, ExprResult &RHS) {
11486   // C++ [expr.rel]p2:
11487   //   [...] Pointer conversions (4.10) and qualification
11488   //   conversions (4.4) are performed on pointer operands (or on
11489   //   a pointer operand and a null pointer constant) to bring
11490   //   them to their composite pointer type. [...]
11491   //
11492   // C++ [expr.eq]p1 uses the same notion for (in)equality
11493   // comparisons of pointers.
11494 
11495   QualType LHSType = LHS.get()->getType();
11496   QualType RHSType = RHS.get()->getType();
11497   assert(LHSType->isPointerType() || RHSType->isPointerType() ||
11498          LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
11499 
11500   QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
11501   if (T.isNull()) {
11502     if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
11503         (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
11504       diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
11505     else
11506       S.InvalidOperands(Loc, LHS, RHS);
11507     return true;
11508   }
11509 
11510   return false;
11511 }
11512 
11513 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11514                                                     ExprResult &LHS,
11515                                                     ExprResult &RHS,
11516                                                     bool IsError) {
11517   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11518                       : diag::ext_typecheck_comparison_of_fptr_to_void)
11519     << LHS.get()->getType() << RHS.get()->getType()
11520     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11521 }
11522 
11523 static bool isObjCObjectLiteral(ExprResult &E) {
11524   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11525   case Stmt::ObjCArrayLiteralClass:
11526   case Stmt::ObjCDictionaryLiteralClass:
11527   case Stmt::ObjCStringLiteralClass:
11528   case Stmt::ObjCBoxedExprClass:
11529     return true;
11530   default:
11531     // Note that ObjCBoolLiteral is NOT an object literal!
11532     return false;
11533   }
11534 }
11535 
11536 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11537   const ObjCObjectPointerType *Type =
11538     LHS->getType()->getAs<ObjCObjectPointerType>();
11539 
11540   // If this is not actually an Objective-C object, bail out.
11541   if (!Type)
11542     return false;
11543 
11544   // Get the LHS object's interface type.
11545   QualType InterfaceType = Type->getPointeeType();
11546 
11547   // If the RHS isn't an Objective-C object, bail out.
11548   if (!RHS->getType()->isObjCObjectPointerType())
11549     return false;
11550 
11551   // Try to find the -isEqual: method.
11552   Selector IsEqualSel = S.ObjC().NSAPIObj->getIsEqualSelector();
11553   ObjCMethodDecl *Method =
11554       S.ObjC().LookupMethodInObjectType(IsEqualSel, InterfaceType,
11555                                         /*IsInstance=*/true);
11556   if (!Method) {
11557     if (Type->isObjCIdType()) {
11558       // For 'id', just check the global pool.
11559       Method =
11560           S.ObjC().LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
11561                                                     /*receiverId=*/true);
11562     } else {
11563       // Check protocols.
11564       Method = S.ObjC().LookupMethodInQualifiedType(IsEqualSel, Type,
11565                                                     /*IsInstance=*/true);
11566     }
11567   }
11568 
11569   if (!Method)
11570     return false;
11571 
11572   QualType T = Method->parameters()[0]->getType();
11573   if (!T->isObjCObjectPointerType())
11574     return false;
11575 
11576   QualType R = Method->getReturnType();
11577   if (!R->isScalarType())
11578     return false;
11579 
11580   return true;
11581 }
11582 
11583 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
11584                                           ExprResult &LHS, ExprResult &RHS,
11585                                           BinaryOperator::Opcode Opc){
11586   Expr *Literal;
11587   Expr *Other;
11588   if (isObjCObjectLiteral(LHS)) {
11589     Literal = LHS.get();
11590     Other = RHS.get();
11591   } else {
11592     Literal = RHS.get();
11593     Other = LHS.get();
11594   }
11595 
11596   // Don't warn on comparisons against nil.
11597   Other = Other->IgnoreParenCasts();
11598   if (Other->isNullPointerConstant(S.getASTContext(),
11599                                    Expr::NPC_ValueDependentIsNotNull))
11600     return;
11601 
11602   // This should be kept in sync with warn_objc_literal_comparison.
11603   // LK_String should always be after the other literals, since it has its own
11604   // warning flag.
11605   SemaObjC::ObjCLiteralKind LiteralKind = S.ObjC().CheckLiteralKind(Literal);
11606   assert(LiteralKind != SemaObjC::LK_Block);
11607   if (LiteralKind == SemaObjC::LK_None) {
11608     llvm_unreachable("Unknown Objective-C object literal kind");
11609   }
11610 
11611   if (LiteralKind == SemaObjC::LK_String)
11612     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
11613       << Literal->getSourceRange();
11614   else
11615     S.Diag(Loc, diag::warn_objc_literal_comparison)
11616       << LiteralKind << Literal->getSourceRange();
11617 
11618   if (BinaryOperator::isEqualityOp(Opc) &&
11619       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
11620     SourceLocation Start = LHS.get()->getBeginLoc();
11621     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
11622     CharSourceRange OpRange =
11623       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11624 
11625     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
11626       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
11627       << FixItHint::CreateReplacement(OpRange, " isEqual:")
11628       << FixItHint::CreateInsertion(End, "]");
11629   }
11630 }
11631 
11632 /// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
11633 static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11634                                            ExprResult &RHS, SourceLocation Loc,
11635                                            BinaryOperatorKind Opc) {
11636   // Check that left hand side is !something.
11637   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
11638   if (!UO || UO->getOpcode() != UO_LNot) return;
11639 
11640   // Only check if the right hand side is non-bool arithmetic type.
11641   if (RHS.get()->isKnownToHaveBooleanValue()) return;
11642 
11643   // Make sure that the something in !something is not bool.
11644   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11645   if (SubExpr->isKnownToHaveBooleanValue()) return;
11646 
11647   // Emit warning.
11648   bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11649   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
11650       << Loc << IsBitwiseOp;
11651 
11652   // First note suggest !(x < y)
11653   SourceLocation FirstOpen = SubExpr->getBeginLoc();
11654   SourceLocation FirstClose = RHS.get()->getEndLoc();
11655   FirstClose = S.getLocForEndOfToken(FirstClose);
11656   if (FirstClose.isInvalid())
11657     FirstOpen = SourceLocation();
11658   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
11659       << IsBitwiseOp
11660       << FixItHint::CreateInsertion(FirstOpen, "(")
11661       << FixItHint::CreateInsertion(FirstClose, ")");
11662 
11663   // Second note suggests (!x) < y
11664   SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11665   SourceLocation SecondClose = LHS.get()->getEndLoc();
11666   SecondClose = S.getLocForEndOfToken(SecondClose);
11667   if (SecondClose.isInvalid())
11668     SecondOpen = SourceLocation();
11669   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
11670       << FixItHint::CreateInsertion(SecondOpen, "(")
11671       << FixItHint::CreateInsertion(SecondClose, ")");
11672 }
11673 
11674 // Returns true if E refers to a non-weak array.
11675 static bool checkForArray(const Expr *E) {
11676   const ValueDecl *D = nullptr;
11677   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
11678     D = DR->getDecl();
11679   } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
11680     if (Mem->isImplicitAccess())
11681       D = Mem->getMemberDecl();
11682   }
11683   if (!D)
11684     return false;
11685   return D->getType()->isArrayType() && !D->isWeak();
11686 }
11687 
11688 /// Diagnose some forms of syntactically-obvious tautological comparison.
11689 static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
11690                                            Expr *LHS, Expr *RHS,
11691                                            BinaryOperatorKind Opc) {
11692   Expr *LHSStripped = LHS->IgnoreParenImpCasts();
11693   Expr *RHSStripped = RHS->IgnoreParenImpCasts();
11694 
11695   QualType LHSType = LHS->getType();
11696   QualType RHSType = RHS->getType();
11697   if (LHSType->hasFloatingRepresentation() ||
11698       (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
11699       S.inTemplateInstantiation())
11700     return;
11701 
11702   // WebAssembly Tables cannot be compared, therefore shouldn't emit
11703   // Tautological diagnostics.
11704   if (LHSType->isWebAssemblyTableType() || RHSType->isWebAssemblyTableType())
11705     return;
11706 
11707   // Comparisons between two array types are ill-formed for operator<=>, so
11708   // we shouldn't emit any additional warnings about it.
11709   if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
11710     return;
11711 
11712   // For non-floating point types, check for self-comparisons of the form
11713   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
11714   // often indicate logic errors in the program.
11715   //
11716   // NOTE: Don't warn about comparison expressions resulting from macro
11717   // expansion. Also don't warn about comparisons which are only self
11718   // comparisons within a template instantiation. The warnings should catch
11719   // obvious cases in the definition of the template anyways. The idea is to
11720   // warn when the typed comparison operator will always evaluate to the same
11721   // result.
11722 
11723   // Used for indexing into %select in warn_comparison_always
11724   enum {
11725     AlwaysConstant,
11726     AlwaysTrue,
11727     AlwaysFalse,
11728     AlwaysEqual, // std::strong_ordering::equal from operator<=>
11729   };
11730 
11731   // C++2a [depr.array.comp]:
11732   //   Equality and relational comparisons ([expr.eq], [expr.rel]) between two
11733   //   operands of array type are deprecated.
11734   if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
11735       RHSStripped->getType()->isArrayType()) {
11736     S.Diag(Loc, diag::warn_depr_array_comparison)
11737         << LHS->getSourceRange() << RHS->getSourceRange()
11738         << LHSStripped->getType() << RHSStripped->getType();
11739     // Carry on to produce the tautological comparison warning, if this
11740     // expression is potentially-evaluated, we can resolve the array to a
11741     // non-weak declaration, and so on.
11742   }
11743 
11744   if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
11745     if (Expr::isSameComparisonOperand(LHS, RHS)) {
11746       unsigned Result;
11747       switch (Opc) {
11748       case BO_EQ:
11749       case BO_LE:
11750       case BO_GE:
11751         Result = AlwaysTrue;
11752         break;
11753       case BO_NE:
11754       case BO_LT:
11755       case BO_GT:
11756         Result = AlwaysFalse;
11757         break;
11758       case BO_Cmp:
11759         Result = AlwaysEqual;
11760         break;
11761       default:
11762         Result = AlwaysConstant;
11763         break;
11764       }
11765       S.DiagRuntimeBehavior(Loc, nullptr,
11766                             S.PDiag(diag::warn_comparison_always)
11767                                 << 0 /*self-comparison*/
11768                                 << Result);
11769     } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
11770       // What is it always going to evaluate to?
11771       unsigned Result;
11772       switch (Opc) {
11773       case BO_EQ: // e.g. array1 == array2
11774         Result = AlwaysFalse;
11775         break;
11776       case BO_NE: // e.g. array1 != array2
11777         Result = AlwaysTrue;
11778         break;
11779       default: // e.g. array1 <= array2
11780         // The best we can say is 'a constant'
11781         Result = AlwaysConstant;
11782         break;
11783       }
11784       S.DiagRuntimeBehavior(Loc, nullptr,
11785                             S.PDiag(diag::warn_comparison_always)
11786                                 << 1 /*array comparison*/
11787                                 << Result);
11788     }
11789   }
11790 
11791   if (isa<CastExpr>(LHSStripped))
11792     LHSStripped = LHSStripped->IgnoreParenCasts();
11793   if (isa<CastExpr>(RHSStripped))
11794     RHSStripped = RHSStripped->IgnoreParenCasts();
11795 
11796   // Warn about comparisons against a string constant (unless the other
11797   // operand is null); the user probably wants string comparison function.
11798   Expr *LiteralString = nullptr;
11799   Expr *LiteralStringStripped = nullptr;
11800   if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
11801       !RHSStripped->isNullPointerConstant(S.Context,
11802                                           Expr::NPC_ValueDependentIsNull)) {
11803     LiteralString = LHS;
11804     LiteralStringStripped = LHSStripped;
11805   } else if ((isa<StringLiteral>(RHSStripped) ||
11806               isa<ObjCEncodeExpr>(RHSStripped)) &&
11807              !LHSStripped->isNullPointerConstant(S.Context,
11808                                           Expr::NPC_ValueDependentIsNull)) {
11809     LiteralString = RHS;
11810     LiteralStringStripped = RHSStripped;
11811   }
11812 
11813   if (LiteralString) {
11814     S.DiagRuntimeBehavior(Loc, nullptr,
11815                           S.PDiag(diag::warn_stringcompare)
11816                               << isa<ObjCEncodeExpr>(LiteralStringStripped)
11817                               << LiteralString->getSourceRange());
11818   }
11819 }
11820 
11821 static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
11822   switch (CK) {
11823   default: {
11824 #ifndef NDEBUG
11825     llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
11826                  << "\n";
11827 #endif
11828     llvm_unreachable("unhandled cast kind");
11829   }
11830   case CK_UserDefinedConversion:
11831     return ICK_Identity;
11832   case CK_LValueToRValue:
11833     return ICK_Lvalue_To_Rvalue;
11834   case CK_ArrayToPointerDecay:
11835     return ICK_Array_To_Pointer;
11836   case CK_FunctionToPointerDecay:
11837     return ICK_Function_To_Pointer;
11838   case CK_IntegralCast:
11839     return ICK_Integral_Conversion;
11840   case CK_FloatingCast:
11841     return ICK_Floating_Conversion;
11842   case CK_IntegralToFloating:
11843   case CK_FloatingToIntegral:
11844     return ICK_Floating_Integral;
11845   case CK_IntegralComplexCast:
11846   case CK_FloatingComplexCast:
11847   case CK_FloatingComplexToIntegralComplex:
11848   case CK_IntegralComplexToFloatingComplex:
11849     return ICK_Complex_Conversion;
11850   case CK_FloatingComplexToReal:
11851   case CK_FloatingRealToComplex:
11852   case CK_IntegralComplexToReal:
11853   case CK_IntegralRealToComplex:
11854     return ICK_Complex_Real;
11855   case CK_HLSLArrayRValue:
11856     return ICK_HLSL_Array_RValue;
11857   }
11858 }
11859 
11860 static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
11861                                              QualType FromType,
11862                                              SourceLocation Loc) {
11863   // Check for a narrowing implicit conversion.
11864   StandardConversionSequence SCS;
11865   SCS.setAsIdentityConversion();
11866   SCS.setToType(0, FromType);
11867   SCS.setToType(1, ToType);
11868   if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
11869     SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
11870 
11871   APValue PreNarrowingValue;
11872   QualType PreNarrowingType;
11873   switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
11874                                PreNarrowingType,
11875                                /*IgnoreFloatToIntegralConversion*/ true)) {
11876   case NK_Dependent_Narrowing:
11877     // Implicit conversion to a narrower type, but the expression is
11878     // value-dependent so we can't tell whether it's actually narrowing.
11879   case NK_Not_Narrowing:
11880     return false;
11881 
11882   case NK_Constant_Narrowing:
11883     // Implicit conversion to a narrower type, and the value is not a constant
11884     // expression.
11885     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11886         << /*Constant*/ 1
11887         << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
11888     return true;
11889 
11890   case NK_Variable_Narrowing:
11891     // Implicit conversion to a narrower type, and the value is not a constant
11892     // expression.
11893   case NK_Type_Narrowing:
11894     S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11895         << /*Constant*/ 0 << FromType << ToType;
11896     // TODO: It's not a constant expression, but what if the user intended it
11897     // to be? Can we produce notes to help them figure out why it isn't?
11898     return true;
11899   }
11900   llvm_unreachable("unhandled case in switch");
11901 }
11902 
11903 static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
11904                                                          ExprResult &LHS,
11905                                                          ExprResult &RHS,
11906                                                          SourceLocation Loc) {
11907   QualType LHSType = LHS.get()->getType();
11908   QualType RHSType = RHS.get()->getType();
11909   // Dig out the original argument type and expression before implicit casts
11910   // were applied. These are the types/expressions we need to check the
11911   // [expr.spaceship] requirements against.
11912   ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
11913   ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
11914   QualType LHSStrippedType = LHSStripped.get()->getType();
11915   QualType RHSStrippedType = RHSStripped.get()->getType();
11916 
11917   // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
11918   // other is not, the program is ill-formed.
11919   if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
11920     S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11921     return QualType();
11922   }
11923 
11924   // FIXME: Consider combining this with checkEnumArithmeticConversions.
11925   int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
11926                     RHSStrippedType->isEnumeralType();
11927   if (NumEnumArgs == 1) {
11928     bool LHSIsEnum = LHSStrippedType->isEnumeralType();
11929     QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
11930     if (OtherTy->hasFloatingRepresentation()) {
11931       S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11932       return QualType();
11933     }
11934   }
11935   if (NumEnumArgs == 2) {
11936     // C++2a [expr.spaceship]p5: If both operands have the same enumeration
11937     // type E, the operator yields the result of converting the operands
11938     // to the underlying type of E and applying <=> to the converted operands.
11939     if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
11940       S.InvalidOperands(Loc, LHS, RHS);
11941       return QualType();
11942     }
11943     QualType IntType =
11944         LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
11945     assert(IntType->isArithmeticType());
11946 
11947     // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
11948     // promote the boolean type, and all other promotable integer types, to
11949     // avoid this.
11950     if (S.Context.isPromotableIntegerType(IntType))
11951       IntType = S.Context.getPromotedIntegerType(IntType);
11952 
11953     LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
11954     RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
11955     LHSType = RHSType = IntType;
11956   }
11957 
11958   // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
11959   // usual arithmetic conversions are applied to the operands.
11960   QualType Type =
11961       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11962   if (LHS.isInvalid() || RHS.isInvalid())
11963     return QualType();
11964   if (Type.isNull())
11965     return S.InvalidOperands(Loc, LHS, RHS);
11966 
11967   std::optional<ComparisonCategoryType> CCT =
11968       getComparisonCategoryForBuiltinCmp(Type);
11969   if (!CCT)
11970     return S.InvalidOperands(Loc, LHS, RHS);
11971 
11972   bool HasNarrowing = checkThreeWayNarrowingConversion(
11973       S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
11974   HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
11975                                                    RHS.get()->getBeginLoc());
11976   if (HasNarrowing)
11977     return QualType();
11978 
11979   assert(!Type.isNull() && "composite type for <=> has not been set");
11980 
11981   return S.CheckComparisonCategoryType(
11982       *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
11983 }
11984 
11985 static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
11986                                                  ExprResult &RHS,
11987                                                  SourceLocation Loc,
11988                                                  BinaryOperatorKind Opc) {
11989   if (Opc == BO_Cmp)
11990     return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
11991 
11992   // C99 6.5.8p3 / C99 6.5.9p4
11993   QualType Type =
11994       S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11995   if (LHS.isInvalid() || RHS.isInvalid())
11996     return QualType();
11997   if (Type.isNull())
11998     return S.InvalidOperands(Loc, LHS, RHS);
11999   assert(Type->isArithmeticType() || Type->isEnumeralType());
12000 
12001   if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
12002     return S.InvalidOperands(Loc, LHS, RHS);
12003 
12004   // Check for comparisons of floating point operands using != and ==.
12005   if (Type->hasFloatingRepresentation())
12006     S.CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12007 
12008   // The result of comparisons is 'bool' in C++, 'int' in C.
12009   return S.Context.getLogicalOperationType();
12010 }
12011 
12012 void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
12013   if (!NullE.get()->getType()->isAnyPointerType())
12014     return;
12015   int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
12016   if (!E.get()->getType()->isAnyPointerType() &&
12017       E.get()->isNullPointerConstant(Context,
12018                                      Expr::NPC_ValueDependentIsNotNull) ==
12019         Expr::NPCK_ZeroExpression) {
12020     if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
12021       if (CL->getValue() == 0)
12022         Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12023             << NullValue
12024             << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12025                                             NullValue ? "NULL" : "(void *)0");
12026     } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
12027         TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
12028         QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
12029         if (T == Context.CharTy)
12030           Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
12031               << NullValue
12032               << FixItHint::CreateReplacement(E.get()->getExprLoc(),
12033                                               NullValue ? "NULL" : "(void *)0");
12034       }
12035   }
12036 }
12037 
12038 // C99 6.5.8, C++ [expr.rel]
12039 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
12040                                     SourceLocation Loc,
12041                                     BinaryOperatorKind Opc) {
12042   bool IsRelational = BinaryOperator::isRelationalOp(Opc);
12043   bool IsThreeWay = Opc == BO_Cmp;
12044   bool IsOrdered = IsRelational || IsThreeWay;
12045   auto IsAnyPointerType = [](ExprResult E) {
12046     QualType Ty = E.get()->getType();
12047     return Ty->isPointerType() || Ty->isMemberPointerType();
12048   };
12049 
12050   // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
12051   // type, array-to-pointer, ..., conversions are performed on both operands to
12052   // bring them to their composite type.
12053   // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
12054   // any type-related checks.
12055   if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
12056     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12057     if (LHS.isInvalid())
12058       return QualType();
12059     RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12060     if (RHS.isInvalid())
12061       return QualType();
12062   } else {
12063     LHS = DefaultLvalueConversion(LHS.get());
12064     if (LHS.isInvalid())
12065       return QualType();
12066     RHS = DefaultLvalueConversion(RHS.get());
12067     if (RHS.isInvalid())
12068       return QualType();
12069   }
12070 
12071   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
12072   if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
12073     CheckPtrComparisonWithNullChar(LHS, RHS);
12074     CheckPtrComparisonWithNullChar(RHS, LHS);
12075   }
12076 
12077   // Handle vector comparisons separately.
12078   if (LHS.get()->getType()->isVectorType() ||
12079       RHS.get()->getType()->isVectorType())
12080     return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
12081 
12082   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12083       RHS.get()->getType()->isSveVLSBuiltinType())
12084     return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
12085 
12086   diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12087   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12088 
12089   QualType LHSType = LHS.get()->getType();
12090   QualType RHSType = RHS.get()->getType();
12091   if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
12092       (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
12093     return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
12094 
12095   if ((LHSType->isPointerType() &&
12096        LHSType->getPointeeType().isWebAssemblyReferenceType()) ||
12097       (RHSType->isPointerType() &&
12098        RHSType->getPointeeType().isWebAssemblyReferenceType()))
12099     return InvalidOperands(Loc, LHS, RHS);
12100 
12101   const Expr::NullPointerConstantKind LHSNullKind =
12102       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12103   const Expr::NullPointerConstantKind RHSNullKind =
12104       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
12105   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
12106   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
12107 
12108   auto computeResultTy = [&]() {
12109     if (Opc != BO_Cmp)
12110       return Context.getLogicalOperationType();
12111     assert(getLangOpts().CPlusPlus);
12112     assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
12113 
12114     QualType CompositeTy = LHS.get()->getType();
12115     assert(!CompositeTy->isReferenceType());
12116 
12117     std::optional<ComparisonCategoryType> CCT =
12118         getComparisonCategoryForBuiltinCmp(CompositeTy);
12119     if (!CCT)
12120       return InvalidOperands(Loc, LHS, RHS);
12121 
12122     if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
12123       // P0946R0: Comparisons between a null pointer constant and an object
12124       // pointer result in std::strong_equality, which is ill-formed under
12125       // P1959R0.
12126       Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
12127           << (LHSIsNull ? LHS.get()->getSourceRange()
12128                         : RHS.get()->getSourceRange());
12129       return QualType();
12130     }
12131 
12132     return CheckComparisonCategoryType(
12133         *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
12134   };
12135 
12136   if (!IsOrdered && LHSIsNull != RHSIsNull) {
12137     bool IsEquality = Opc == BO_EQ;
12138     if (RHSIsNull)
12139       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
12140                                    RHS.get()->getSourceRange());
12141     else
12142       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
12143                                    LHS.get()->getSourceRange());
12144   }
12145 
12146   if (IsOrdered && LHSType->isFunctionPointerType() &&
12147       RHSType->isFunctionPointerType()) {
12148     // Valid unless a relational comparison of function pointers
12149     bool IsError = Opc == BO_Cmp;
12150     auto DiagID =
12151         IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
12152         : getLangOpts().CPlusPlus
12153             ? diag::warn_typecheck_ordered_comparison_of_function_pointers
12154             : diag::ext_typecheck_ordered_comparison_of_function_pointers;
12155     Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
12156                       << RHS.get()->getSourceRange();
12157     if (IsError)
12158       return QualType();
12159   }
12160 
12161   if ((LHSType->isIntegerType() && !LHSIsNull) ||
12162       (RHSType->isIntegerType() && !RHSIsNull)) {
12163     // Skip normal pointer conversion checks in this case; we have better
12164     // diagnostics for this below.
12165   } else if (getLangOpts().CPlusPlus) {
12166     // Equality comparison of a function pointer to a void pointer is invalid,
12167     // but we allow it as an extension.
12168     // FIXME: If we really want to allow this, should it be part of composite
12169     // pointer type computation so it works in conditionals too?
12170     if (!IsOrdered &&
12171         ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
12172          (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
12173       // This is a gcc extension compatibility comparison.
12174       // In a SFINAE context, we treat this as a hard error to maintain
12175       // conformance with the C++ standard.
12176       diagnoseFunctionPointerToVoidComparison(
12177           *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
12178 
12179       if (isSFINAEContext())
12180         return QualType();
12181 
12182       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12183       return computeResultTy();
12184     }
12185 
12186     // C++ [expr.eq]p2:
12187     //   If at least one operand is a pointer [...] bring them to their
12188     //   composite pointer type.
12189     // C++ [expr.spaceship]p6
12190     //  If at least one of the operands is of pointer type, [...] bring them
12191     //  to their composite pointer type.
12192     // C++ [expr.rel]p2:
12193     //   If both operands are pointers, [...] bring them to their composite
12194     //   pointer type.
12195     // For <=>, the only valid non-pointer types are arrays and functions, and
12196     // we already decayed those, so this is really the same as the relational
12197     // comparison rule.
12198     if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
12199             (IsOrdered ? 2 : 1) &&
12200         (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
12201                                          RHSType->isObjCObjectPointerType()))) {
12202       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12203         return QualType();
12204       return computeResultTy();
12205     }
12206   } else if (LHSType->isPointerType() &&
12207              RHSType->isPointerType()) { // C99 6.5.8p2
12208     // All of the following pointer-related warnings are GCC extensions, except
12209     // when handling null pointer constants.
12210     QualType LCanPointeeTy =
12211       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12212     QualType RCanPointeeTy =
12213       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12214 
12215     // C99 6.5.9p2 and C99 6.5.8p2
12216     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
12217                                    RCanPointeeTy.getUnqualifiedType())) {
12218       if (IsRelational) {
12219         // Pointers both need to point to complete or incomplete types
12220         if ((LCanPointeeTy->isIncompleteType() !=
12221              RCanPointeeTy->isIncompleteType()) &&
12222             !getLangOpts().C11) {
12223           Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
12224               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
12225               << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
12226               << RCanPointeeTy->isIncompleteType();
12227         }
12228       }
12229     } else if (!IsRelational &&
12230                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
12231       // Valid unless comparison between non-null pointer and function pointer
12232       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
12233           && !LHSIsNull && !RHSIsNull)
12234         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
12235                                                 /*isError*/false);
12236     } else {
12237       // Invalid
12238       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
12239     }
12240     if (LCanPointeeTy != RCanPointeeTy) {
12241       // Treat NULL constant as a special case in OpenCL.
12242       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
12243         if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
12244           Diag(Loc,
12245                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
12246               << LHSType << RHSType << 0 /* comparison */
12247               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12248         }
12249       }
12250       LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
12251       LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
12252       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
12253                                                : CK_BitCast;
12254       if (LHSIsNull && !RHSIsNull)
12255         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
12256       else
12257         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
12258     }
12259     return computeResultTy();
12260   }
12261 
12262 
12263   // C++ [expr.eq]p4:
12264   //   Two operands of type std::nullptr_t or one operand of type
12265   //   std::nullptr_t and the other a null pointer constant compare
12266   //   equal.
12267   // C23 6.5.9p5:
12268   //   If both operands have type nullptr_t or one operand has type nullptr_t
12269   //   and the other is a null pointer constant, they compare equal if the
12270   //   former is a null pointer.
12271   if (!IsOrdered && LHSIsNull && RHSIsNull) {
12272     if (LHSType->isNullPtrType()) {
12273       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12274       return computeResultTy();
12275     }
12276     if (RHSType->isNullPtrType()) {
12277       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12278       return computeResultTy();
12279     }
12280   }
12281 
12282   if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) {
12283     // C23 6.5.9p6:
12284     //   Otherwise, at least one operand is a pointer. If one is a pointer and
12285     //   the other is a null pointer constant or has type nullptr_t, they
12286     //   compare equal
12287     if (LHSIsNull && RHSType->isPointerType()) {
12288       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12289       return computeResultTy();
12290     }
12291     if (RHSIsNull && LHSType->isPointerType()) {
12292       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12293       return computeResultTy();
12294     }
12295   }
12296 
12297   // Comparison of Objective-C pointers and block pointers against nullptr_t.
12298   // These aren't covered by the composite pointer type rules.
12299   if (!IsOrdered && RHSType->isNullPtrType() &&
12300       (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
12301     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12302     return computeResultTy();
12303   }
12304   if (!IsOrdered && LHSType->isNullPtrType() &&
12305       (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
12306     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12307     return computeResultTy();
12308   }
12309 
12310   if (getLangOpts().CPlusPlus) {
12311     if (IsRelational &&
12312         ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
12313          (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
12314       // HACK: Relational comparison of nullptr_t against a pointer type is
12315       // invalid per DR583, but we allow it within std::less<> and friends,
12316       // since otherwise common uses of it break.
12317       // FIXME: Consider removing this hack once LWG fixes std::less<> and
12318       // friends to have std::nullptr_t overload candidates.
12319       DeclContext *DC = CurContext;
12320       if (isa<FunctionDecl>(DC))
12321         DC = DC->getParent();
12322       if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
12323         if (CTSD->isInStdNamespace() &&
12324             llvm::StringSwitch<bool>(CTSD->getName())
12325                 .Cases("less", "less_equal", "greater", "greater_equal", true)
12326                 .Default(false)) {
12327           if (RHSType->isNullPtrType())
12328             RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12329           else
12330             LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12331           return computeResultTy();
12332         }
12333       }
12334     }
12335 
12336     // C++ [expr.eq]p2:
12337     //   If at least one operand is a pointer to member, [...] bring them to
12338     //   their composite pointer type.
12339     if (!IsOrdered &&
12340         (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
12341       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
12342         return QualType();
12343       else
12344         return computeResultTy();
12345     }
12346   }
12347 
12348   // Handle block pointer types.
12349   if (!IsOrdered && LHSType->isBlockPointerType() &&
12350       RHSType->isBlockPointerType()) {
12351     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
12352     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
12353 
12354     if (!LHSIsNull && !RHSIsNull &&
12355         !Context.typesAreCompatible(lpointee, rpointee)) {
12356       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12357         << LHSType << RHSType << LHS.get()->getSourceRange()
12358         << RHS.get()->getSourceRange();
12359     }
12360     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12361     return computeResultTy();
12362   }
12363 
12364   // Allow block pointers to be compared with null pointer constants.
12365   if (!IsOrdered
12366       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
12367           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
12368     if (!LHSIsNull && !RHSIsNull) {
12369       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
12370              ->getPointeeType()->isVoidType())
12371             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
12372                 ->getPointeeType()->isVoidType())))
12373         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
12374           << LHSType << RHSType << LHS.get()->getSourceRange()
12375           << RHS.get()->getSourceRange();
12376     }
12377     if (LHSIsNull && !RHSIsNull)
12378       LHS = ImpCastExprToType(LHS.get(), RHSType,
12379                               RHSType->isPointerType() ? CK_BitCast
12380                                 : CK_AnyPointerToBlockPointerCast);
12381     else
12382       RHS = ImpCastExprToType(RHS.get(), LHSType,
12383                               LHSType->isPointerType() ? CK_BitCast
12384                                 : CK_AnyPointerToBlockPointerCast);
12385     return computeResultTy();
12386   }
12387 
12388   if (LHSType->isObjCObjectPointerType() ||
12389       RHSType->isObjCObjectPointerType()) {
12390     const PointerType *LPT = LHSType->getAs<PointerType>();
12391     const PointerType *RPT = RHSType->getAs<PointerType>();
12392     if (LPT || RPT) {
12393       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
12394       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
12395 
12396       if (!LPtrToVoid && !RPtrToVoid &&
12397           !Context.typesAreCompatible(LHSType, RHSType)) {
12398         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12399                                           /*isError*/false);
12400       }
12401       // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
12402       // the RHS, but we have test coverage for this behavior.
12403       // FIXME: Consider using convertPointersToCompositeType in C++.
12404       if (LHSIsNull && !RHSIsNull) {
12405         Expr *E = LHS.get();
12406         if (getLangOpts().ObjCAutoRefCount)
12407           ObjC().CheckObjCConversion(SourceRange(), RHSType, E,
12408                                      CheckedConversionKind::Implicit);
12409         LHS = ImpCastExprToType(E, RHSType,
12410                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12411       }
12412       else {
12413         Expr *E = RHS.get();
12414         if (getLangOpts().ObjCAutoRefCount)
12415           ObjC().CheckObjCConversion(SourceRange(), LHSType, E,
12416                                      CheckedConversionKind::Implicit,
12417                                      /*Diagnose=*/true,
12418                                      /*DiagnoseCFAudited=*/false, Opc);
12419         RHS = ImpCastExprToType(E, LHSType,
12420                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12421       }
12422       return computeResultTy();
12423     }
12424     if (LHSType->isObjCObjectPointerType() &&
12425         RHSType->isObjCObjectPointerType()) {
12426       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
12427         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
12428                                           /*isError*/false);
12429       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
12430         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
12431 
12432       if (LHSIsNull && !RHSIsNull)
12433         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
12434       else
12435         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
12436       return computeResultTy();
12437     }
12438 
12439     if (!IsOrdered && LHSType->isBlockPointerType() &&
12440         RHSType->isBlockCompatibleObjCPointerType(Context)) {
12441       LHS = ImpCastExprToType(LHS.get(), RHSType,
12442                               CK_BlockPointerToObjCPointerCast);
12443       return computeResultTy();
12444     } else if (!IsOrdered &&
12445                LHSType->isBlockCompatibleObjCPointerType(Context) &&
12446                RHSType->isBlockPointerType()) {
12447       RHS = ImpCastExprToType(RHS.get(), LHSType,
12448                               CK_BlockPointerToObjCPointerCast);
12449       return computeResultTy();
12450     }
12451   }
12452   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
12453       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
12454     unsigned DiagID = 0;
12455     bool isError = false;
12456     if (LangOpts.DebuggerSupport) {
12457       // Under a debugger, allow the comparison of pointers to integers,
12458       // since users tend to want to compare addresses.
12459     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
12460                (RHSIsNull && RHSType->isIntegerType())) {
12461       if (IsOrdered) {
12462         isError = getLangOpts().CPlusPlus;
12463         DiagID =
12464           isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
12465                   : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
12466       }
12467     } else if (getLangOpts().CPlusPlus) {
12468       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
12469       isError = true;
12470     } else if (IsOrdered)
12471       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
12472     else
12473       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
12474 
12475     if (DiagID) {
12476       Diag(Loc, DiagID)
12477         << LHSType << RHSType << LHS.get()->getSourceRange()
12478         << RHS.get()->getSourceRange();
12479       if (isError)
12480         return QualType();
12481     }
12482 
12483     if (LHSType->isIntegerType())
12484       LHS = ImpCastExprToType(LHS.get(), RHSType,
12485                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12486     else
12487       RHS = ImpCastExprToType(RHS.get(), LHSType,
12488                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12489     return computeResultTy();
12490   }
12491 
12492   // Handle block pointers.
12493   if (!IsOrdered && RHSIsNull
12494       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
12495     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12496     return computeResultTy();
12497   }
12498   if (!IsOrdered && LHSIsNull
12499       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
12500     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12501     return computeResultTy();
12502   }
12503 
12504   if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
12505     if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
12506       return computeResultTy();
12507     }
12508 
12509     if (LHSType->isQueueT() && RHSType->isQueueT()) {
12510       return computeResultTy();
12511     }
12512 
12513     if (LHSIsNull && RHSType->isQueueT()) {
12514       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12515       return computeResultTy();
12516     }
12517 
12518     if (LHSType->isQueueT() && RHSIsNull) {
12519       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12520       return computeResultTy();
12521     }
12522   }
12523 
12524   return InvalidOperands(Loc, LHS, RHS);
12525 }
12526 
12527 QualType Sema::GetSignedVectorType(QualType V) {
12528   const VectorType *VTy = V->castAs<VectorType>();
12529   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
12530 
12531   if (isa<ExtVectorType>(VTy)) {
12532     if (VTy->isExtVectorBoolType())
12533       return Context.getExtVectorType(Context.BoolTy, VTy->getNumElements());
12534     if (TypeSize == Context.getTypeSize(Context.CharTy))
12535       return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
12536     if (TypeSize == Context.getTypeSize(Context.ShortTy))
12537       return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
12538     if (TypeSize == Context.getTypeSize(Context.IntTy))
12539       return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
12540     if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12541       return Context.getExtVectorType(Context.Int128Ty, VTy->getNumElements());
12542     if (TypeSize == Context.getTypeSize(Context.LongTy))
12543       return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
12544     assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
12545            "Unhandled vector element size in vector compare");
12546     return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
12547   }
12548 
12549   if (TypeSize == Context.getTypeSize(Context.Int128Ty))
12550     return Context.getVectorType(Context.Int128Ty, VTy->getNumElements(),
12551                                  VectorKind::Generic);
12552   if (TypeSize == Context.getTypeSize(Context.LongLongTy))
12553     return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
12554                                  VectorKind::Generic);
12555   if (TypeSize == Context.getTypeSize(Context.LongTy))
12556     return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
12557                                  VectorKind::Generic);
12558   if (TypeSize == Context.getTypeSize(Context.IntTy))
12559     return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
12560                                  VectorKind::Generic);
12561   if (TypeSize == Context.getTypeSize(Context.ShortTy))
12562     return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
12563                                  VectorKind::Generic);
12564   assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
12565          "Unhandled vector element size in vector compare");
12566   return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
12567                                VectorKind::Generic);
12568 }
12569 
12570 QualType Sema::GetSignedSizelessVectorType(QualType V) {
12571   const BuiltinType *VTy = V->castAs<BuiltinType>();
12572   assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
12573 
12574   const QualType ETy = V->getSveEltType(Context);
12575   const auto TypeSize = Context.getTypeSize(ETy);
12576 
12577   const QualType IntTy = Context.getIntTypeForBitwidth(TypeSize, true);
12578   const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VTy).EC;
12579   return Context.getScalableVectorType(IntTy, VecSize.getKnownMinValue());
12580 }
12581 
12582 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
12583                                           SourceLocation Loc,
12584                                           BinaryOperatorKind Opc) {
12585   if (Opc == BO_Cmp) {
12586     Diag(Loc, diag::err_three_way_vector_comparison);
12587     return QualType();
12588   }
12589 
12590   // Check to make sure we're operating on vectors of the same type and width,
12591   // Allowing one side to be a scalar of element type.
12592   QualType vType =
12593       CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ false,
12594                           /*AllowBothBool*/ true,
12595                           /*AllowBoolConversions*/ getLangOpts().ZVector,
12596                           /*AllowBooleanOperation*/ true,
12597                           /*ReportInvalid*/ true);
12598   if (vType.isNull())
12599     return vType;
12600 
12601   QualType LHSType = LHS.get()->getType();
12602 
12603   // Determine the return type of a vector compare. By default clang will return
12604   // a scalar for all vector compares except vector bool and vector pixel.
12605   // With the gcc compiler we will always return a vector type and with the xl
12606   // compiler we will always return a scalar type. This switch allows choosing
12607   // which behavior is prefered.
12608   if (getLangOpts().AltiVec) {
12609     switch (getLangOpts().getAltivecSrcCompat()) {
12610     case LangOptions::AltivecSrcCompatKind::Mixed:
12611       // If AltiVec, the comparison results in a numeric type, i.e.
12612       // bool for C++, int for C
12613       if (vType->castAs<VectorType>()->getVectorKind() ==
12614           VectorKind::AltiVecVector)
12615         return Context.getLogicalOperationType();
12616       else
12617         Diag(Loc, diag::warn_deprecated_altivec_src_compat);
12618       break;
12619     case LangOptions::AltivecSrcCompatKind::GCC:
12620       // For GCC we always return the vector type.
12621       break;
12622     case LangOptions::AltivecSrcCompatKind::XL:
12623       return Context.getLogicalOperationType();
12624       break;
12625     }
12626   }
12627 
12628   // For non-floating point types, check for self-comparisons of the form
12629   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12630   // often indicate logic errors in the program.
12631   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12632 
12633   // Check for comparisons of floating point operands using != and ==.
12634   if (LHSType->hasFloatingRepresentation()) {
12635     assert(RHS.get()->getType()->hasFloatingRepresentation());
12636     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12637   }
12638 
12639   // Return a signed type for the vector.
12640   return GetSignedVectorType(vType);
12641 }
12642 
12643 QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
12644                                                   ExprResult &RHS,
12645                                                   SourceLocation Loc,
12646                                                   BinaryOperatorKind Opc) {
12647   if (Opc == BO_Cmp) {
12648     Diag(Loc, diag::err_three_way_vector_comparison);
12649     return QualType();
12650   }
12651 
12652   // Check to make sure we're operating on vectors of the same type and width,
12653   // Allowing one side to be a scalar of element type.
12654   QualType vType = CheckSizelessVectorOperands(
12655       LHS, RHS, Loc, /*isCompAssign*/ false, ACK_Comparison);
12656 
12657   if (vType.isNull())
12658     return vType;
12659 
12660   QualType LHSType = LHS.get()->getType();
12661 
12662   // For non-floating point types, check for self-comparisons of the form
12663   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
12664   // often indicate logic errors in the program.
12665   diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12666 
12667   // Check for comparisons of floating point operands using != and ==.
12668   if (LHSType->hasFloatingRepresentation()) {
12669     assert(RHS.get()->getType()->hasFloatingRepresentation());
12670     CheckFloatComparison(Loc, LHS.get(), RHS.get(), Opc);
12671   }
12672 
12673   const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
12674   const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
12675 
12676   if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
12677       RHSBuiltinTy->isSVEBool())
12678     return LHSType;
12679 
12680   // Return a signed type for the vector.
12681   return GetSignedSizelessVectorType(vType);
12682 }
12683 
12684 static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
12685                                     const ExprResult &XorRHS,
12686                                     const SourceLocation Loc) {
12687   // Do not diagnose macros.
12688   if (Loc.isMacroID())
12689     return;
12690 
12691   // Do not diagnose if both LHS and RHS are macros.
12692   if (XorLHS.get()->getExprLoc().isMacroID() &&
12693       XorRHS.get()->getExprLoc().isMacroID())
12694     return;
12695 
12696   bool Negative = false;
12697   bool ExplicitPlus = false;
12698   const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
12699   const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
12700 
12701   if (!LHSInt)
12702     return;
12703   if (!RHSInt) {
12704     // Check negative literals.
12705     if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
12706       UnaryOperatorKind Opc = UO->getOpcode();
12707       if (Opc != UO_Minus && Opc != UO_Plus)
12708         return;
12709       RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
12710       if (!RHSInt)
12711         return;
12712       Negative = (Opc == UO_Minus);
12713       ExplicitPlus = !Negative;
12714     } else {
12715       return;
12716     }
12717   }
12718 
12719   const llvm::APInt &LeftSideValue = LHSInt->getValue();
12720   llvm::APInt RightSideValue = RHSInt->getValue();
12721   if (LeftSideValue != 2 && LeftSideValue != 10)
12722     return;
12723 
12724   if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
12725     return;
12726 
12727   CharSourceRange ExprRange = CharSourceRange::getCharRange(
12728       LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
12729   llvm::StringRef ExprStr =
12730       Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
12731 
12732   CharSourceRange XorRange =
12733       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12734   llvm::StringRef XorStr =
12735       Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
12736   // Do not diagnose if xor keyword/macro is used.
12737   if (XorStr == "xor")
12738     return;
12739 
12740   std::string LHSStr = std::string(Lexer::getSourceText(
12741       CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
12742       S.getSourceManager(), S.getLangOpts()));
12743   std::string RHSStr = std::string(Lexer::getSourceText(
12744       CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
12745       S.getSourceManager(), S.getLangOpts()));
12746 
12747   if (Negative) {
12748     RightSideValue = -RightSideValue;
12749     RHSStr = "-" + RHSStr;
12750   } else if (ExplicitPlus) {
12751     RHSStr = "+" + RHSStr;
12752   }
12753 
12754   StringRef LHSStrRef = LHSStr;
12755   StringRef RHSStrRef = RHSStr;
12756   // Do not diagnose literals with digit separators, binary, hexadecimal, octal
12757   // literals.
12758   if (LHSStrRef.starts_with("0b") || LHSStrRef.starts_with("0B") ||
12759       RHSStrRef.starts_with("0b") || RHSStrRef.starts_with("0B") ||
12760       LHSStrRef.starts_with("0x") || LHSStrRef.starts_with("0X") ||
12761       RHSStrRef.starts_with("0x") || RHSStrRef.starts_with("0X") ||
12762       (LHSStrRef.size() > 1 && LHSStrRef.starts_with("0")) ||
12763       (RHSStrRef.size() > 1 && RHSStrRef.starts_with("0")) ||
12764       LHSStrRef.contains('\'') || RHSStrRef.contains('\''))
12765     return;
12766 
12767   bool SuggestXor =
12768       S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
12769   const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
12770   int64_t RightSideIntValue = RightSideValue.getSExtValue();
12771   if (LeftSideValue == 2 && RightSideIntValue >= 0) {
12772     std::string SuggestedExpr = "1 << " + RHSStr;
12773     bool Overflow = false;
12774     llvm::APInt One = (LeftSideValue - 1);
12775     llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
12776     if (Overflow) {
12777       if (RightSideIntValue < 64)
12778         S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12779             << ExprStr << toString(XorValue, 10, true) << ("1LL << " + RHSStr)
12780             << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
12781       else if (RightSideIntValue == 64)
12782         S.Diag(Loc, diag::warn_xor_used_as_pow)
12783             << ExprStr << toString(XorValue, 10, true);
12784       else
12785         return;
12786     } else {
12787       S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
12788           << ExprStr << toString(XorValue, 10, true) << SuggestedExpr
12789           << toString(PowValue, 10, true)
12790           << FixItHint::CreateReplacement(
12791                  ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
12792     }
12793 
12794     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
12795         << ("0x2 ^ " + RHSStr) << SuggestXor;
12796   } else if (LeftSideValue == 10) {
12797     std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
12798     S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12799         << ExprStr << toString(XorValue, 10, true) << SuggestedValue
12800         << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
12801     S.Diag(Loc, diag::note_xor_used_as_pow_silence)
12802         << ("0xA ^ " + RHSStr) << SuggestXor;
12803   }
12804 }
12805 
12806 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12807                                           SourceLocation Loc) {
12808   // Ensure that either both operands are of the same vector type, or
12809   // one operand is of a vector type and the other is of its element type.
12810   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
12811                                        /*AllowBothBool*/ true,
12812                                        /*AllowBoolConversions*/ false,
12813                                        /*AllowBooleanOperation*/ false,
12814                                        /*ReportInvalid*/ false);
12815   if (vType.isNull())
12816     return InvalidOperands(Loc, LHS, RHS);
12817   if (getLangOpts().OpenCL &&
12818       getLangOpts().getOpenCLCompatibleVersion() < 120 &&
12819       vType->hasFloatingRepresentation())
12820     return InvalidOperands(Loc, LHS, RHS);
12821   // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
12822   //        usage of the logical operators && and || with vectors in C. This
12823   //        check could be notionally dropped.
12824   if (!getLangOpts().CPlusPlus &&
12825       !(isa<ExtVectorType>(vType->getAs<VectorType>())))
12826     return InvalidLogicalVectorOperands(Loc, LHS, RHS);
12827 
12828   return GetSignedVectorType(LHS.get()->getType());
12829 }
12830 
12831 QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
12832                                               SourceLocation Loc,
12833                                               bool IsCompAssign) {
12834   if (!IsCompAssign) {
12835     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12836     if (LHS.isInvalid())
12837       return QualType();
12838   }
12839   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12840   if (RHS.isInvalid())
12841     return QualType();
12842 
12843   // For conversion purposes, we ignore any qualifiers.
12844   // For example, "const float" and "float" are equivalent.
12845   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
12846   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
12847 
12848   const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
12849   const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
12850   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
12851 
12852   if (Context.hasSameType(LHSType, RHSType))
12853     return Context.getCommonSugaredType(LHSType, RHSType);
12854 
12855   // Type conversion may change LHS/RHS. Keep copies to the original results, in
12856   // case we have to return InvalidOperands.
12857   ExprResult OriginalLHS = LHS;
12858   ExprResult OriginalRHS = RHS;
12859   if (LHSMatType && !RHSMatType) {
12860     RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
12861     if (!RHS.isInvalid())
12862       return LHSType;
12863 
12864     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12865   }
12866 
12867   if (!LHSMatType && RHSMatType) {
12868     LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
12869     if (!LHS.isInvalid())
12870       return RHSType;
12871     return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12872   }
12873 
12874   return InvalidOperands(Loc, LHS, RHS);
12875 }
12876 
12877 QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
12878                                            SourceLocation Loc,
12879                                            bool IsCompAssign) {
12880   if (!IsCompAssign) {
12881     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12882     if (LHS.isInvalid())
12883       return QualType();
12884   }
12885   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12886   if (RHS.isInvalid())
12887     return QualType();
12888 
12889   auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
12890   auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
12891   assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
12892 
12893   if (LHSMatType && RHSMatType) {
12894     if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
12895       return InvalidOperands(Loc, LHS, RHS);
12896 
12897     if (Context.hasSameType(LHSMatType, RHSMatType))
12898       return Context.getCommonSugaredType(
12899           LHS.get()->getType().getUnqualifiedType(),
12900           RHS.get()->getType().getUnqualifiedType());
12901 
12902     QualType LHSELTy = LHSMatType->getElementType(),
12903              RHSELTy = RHSMatType->getElementType();
12904     if (!Context.hasSameType(LHSELTy, RHSELTy))
12905       return InvalidOperands(Loc, LHS, RHS);
12906 
12907     return Context.getConstantMatrixType(
12908         Context.getCommonSugaredType(LHSELTy, RHSELTy),
12909         LHSMatType->getNumRows(), RHSMatType->getNumColumns());
12910   }
12911   return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
12912 }
12913 
12914 static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
12915   switch (Opc) {
12916   default:
12917     return false;
12918   case BO_And:
12919   case BO_AndAssign:
12920   case BO_Or:
12921   case BO_OrAssign:
12922   case BO_Xor:
12923   case BO_XorAssign:
12924     return true;
12925   }
12926 }
12927 
12928 inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
12929                                            SourceLocation Loc,
12930                                            BinaryOperatorKind Opc) {
12931   checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
12932 
12933   bool IsCompAssign =
12934       Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
12935 
12936   bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
12937 
12938   if (LHS.get()->getType()->isVectorType() ||
12939       RHS.get()->getType()->isVectorType()) {
12940     if (LHS.get()->getType()->hasIntegerRepresentation() &&
12941         RHS.get()->getType()->hasIntegerRepresentation())
12942       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
12943                                  /*AllowBothBool*/ true,
12944                                  /*AllowBoolConversions*/ getLangOpts().ZVector,
12945                                  /*AllowBooleanOperation*/ LegalBoolVecOperator,
12946                                  /*ReportInvalid*/ true);
12947     return InvalidOperands(Loc, LHS, RHS);
12948   }
12949 
12950   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12951       RHS.get()->getType()->isSveVLSBuiltinType()) {
12952     if (LHS.get()->getType()->hasIntegerRepresentation() &&
12953         RHS.get()->getType()->hasIntegerRepresentation())
12954       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
12955                                          ACK_BitwiseOp);
12956     return InvalidOperands(Loc, LHS, RHS);
12957   }
12958 
12959   if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12960       RHS.get()->getType()->isSveVLSBuiltinType()) {
12961     if (LHS.get()->getType()->hasIntegerRepresentation() &&
12962         RHS.get()->getType()->hasIntegerRepresentation())
12963       return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
12964                                          ACK_BitwiseOp);
12965     return InvalidOperands(Loc, LHS, RHS);
12966   }
12967 
12968   if (Opc == BO_And)
12969     diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12970 
12971   if (LHS.get()->getType()->hasFloatingRepresentation() ||
12972       RHS.get()->getType()->hasFloatingRepresentation())
12973     return InvalidOperands(Loc, LHS, RHS);
12974 
12975   ExprResult LHSResult = LHS, RHSResult = RHS;
12976   QualType compType = UsualArithmeticConversions(
12977       LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
12978   if (LHSResult.isInvalid() || RHSResult.isInvalid())
12979     return QualType();
12980   LHS = LHSResult.get();
12981   RHS = RHSResult.get();
12982 
12983   if (Opc == BO_Xor)
12984     diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
12985 
12986   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
12987     return compType;
12988   return InvalidOperands(Loc, LHS, RHS);
12989 }
12990 
12991 // C99 6.5.[13,14]
12992 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12993                                            SourceLocation Loc,
12994                                            BinaryOperatorKind Opc) {
12995   // Check vector operands differently.
12996   if (LHS.get()->getType()->isVectorType() ||
12997       RHS.get()->getType()->isVectorType())
12998     return CheckVectorLogicalOperands(LHS, RHS, Loc);
12999 
13000   bool EnumConstantInBoolContext = false;
13001   for (const ExprResult &HS : {LHS, RHS}) {
13002     if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
13003       const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
13004       if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
13005         EnumConstantInBoolContext = true;
13006     }
13007   }
13008 
13009   if (EnumConstantInBoolContext)
13010     Diag(Loc, diag::warn_enum_constant_in_bool_context);
13011 
13012   // WebAssembly tables can't be used with logical operators.
13013   QualType LHSTy = LHS.get()->getType();
13014   QualType RHSTy = RHS.get()->getType();
13015   const auto *LHSATy = dyn_cast<ArrayType>(LHSTy);
13016   const auto *RHSATy = dyn_cast<ArrayType>(RHSTy);
13017   if ((LHSATy && LHSATy->getElementType().isWebAssemblyReferenceType()) ||
13018       (RHSATy && RHSATy->getElementType().isWebAssemblyReferenceType())) {
13019     return InvalidOperands(Loc, LHS, RHS);
13020   }
13021 
13022   // Diagnose cases where the user write a logical and/or but probably meant a
13023   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
13024   // is a constant.
13025   if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
13026       !LHS.get()->getType()->isBooleanType() &&
13027       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
13028       // Don't warn in macros or template instantiations.
13029       !Loc.isMacroID() && !inTemplateInstantiation()) {
13030     // If the RHS can be constant folded, and if it constant folds to something
13031     // that isn't 0 or 1 (which indicate a potential logical operation that
13032     // happened to fold to true/false) then warn.
13033     // Parens on the RHS are ignored.
13034     Expr::EvalResult EVResult;
13035     if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
13036       llvm::APSInt Result = EVResult.Val.getInt();
13037       if ((getLangOpts().CPlusPlus && !RHS.get()->getType()->isBooleanType() &&
13038            !RHS.get()->getExprLoc().isMacroID()) ||
13039           (Result != 0 && Result != 1)) {
13040         Diag(Loc, diag::warn_logical_instead_of_bitwise)
13041             << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
13042         // Suggest replacing the logical operator with the bitwise version
13043         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
13044             << (Opc == BO_LAnd ? "&" : "|")
13045             << FixItHint::CreateReplacement(
13046                    SourceRange(Loc, getLocForEndOfToken(Loc)),
13047                    Opc == BO_LAnd ? "&" : "|");
13048         if (Opc == BO_LAnd)
13049           // Suggest replacing "Foo() && kNonZero" with "Foo()"
13050           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
13051               << FixItHint::CreateRemoval(
13052                      SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
13053                                  RHS.get()->getEndLoc()));
13054       }
13055     }
13056   }
13057 
13058   if (!Context.getLangOpts().CPlusPlus) {
13059     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
13060     // not operate on the built-in scalar and vector float types.
13061     if (Context.getLangOpts().OpenCL &&
13062         Context.getLangOpts().OpenCLVersion < 120) {
13063       if (LHS.get()->getType()->isFloatingType() ||
13064           RHS.get()->getType()->isFloatingType())
13065         return InvalidOperands(Loc, LHS, RHS);
13066     }
13067 
13068     LHS = UsualUnaryConversions(LHS.get());
13069     if (LHS.isInvalid())
13070       return QualType();
13071 
13072     RHS = UsualUnaryConversions(RHS.get());
13073     if (RHS.isInvalid())
13074       return QualType();
13075 
13076     if (!LHS.get()->getType()->isScalarType() ||
13077         !RHS.get()->getType()->isScalarType())
13078       return InvalidOperands(Loc, LHS, RHS);
13079 
13080     return Context.IntTy;
13081   }
13082 
13083   // The following is safe because we only use this method for
13084   // non-overloadable operands.
13085 
13086   // C++ [expr.log.and]p1
13087   // C++ [expr.log.or]p1
13088   // The operands are both contextually converted to type bool.
13089   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
13090   if (LHSRes.isInvalid())
13091     return InvalidOperands(Loc, LHS, RHS);
13092   LHS = LHSRes;
13093 
13094   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
13095   if (RHSRes.isInvalid())
13096     return InvalidOperands(Loc, LHS, RHS);
13097   RHS = RHSRes;
13098 
13099   // C++ [expr.log.and]p2
13100   // C++ [expr.log.or]p2
13101   // The result is a bool.
13102   return Context.BoolTy;
13103 }
13104 
13105 static bool IsReadonlyMessage(Expr *E, Sema &S) {
13106   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
13107   if (!ME) return false;
13108   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
13109   ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
13110       ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
13111   if (!Base) return false;
13112   return Base->getMethodDecl() != nullptr;
13113 }
13114 
13115 /// Is the given expression (which must be 'const') a reference to a
13116 /// variable which was originally non-const, but which has become
13117 /// 'const' due to being captured within a block?
13118 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
13119 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
13120   assert(E->isLValue() && E->getType().isConstQualified());
13121   E = E->IgnoreParens();
13122 
13123   // Must be a reference to a declaration from an enclosing scope.
13124   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
13125   if (!DRE) return NCCK_None;
13126   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
13127 
13128   // The declaration must be a variable which is not declared 'const'.
13129   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
13130   if (!var) return NCCK_None;
13131   if (var->getType().isConstQualified()) return NCCK_None;
13132   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
13133 
13134   // Decide whether the first capture was for a block or a lambda.
13135   DeclContext *DC = S.CurContext, *Prev = nullptr;
13136   // Decide whether the first capture was for a block or a lambda.
13137   while (DC) {
13138     // For init-capture, it is possible that the variable belongs to the
13139     // template pattern of the current context.
13140     if (auto *FD = dyn_cast<FunctionDecl>(DC))
13141       if (var->isInitCapture() &&
13142           FD->getTemplateInstantiationPattern() == var->getDeclContext())
13143         break;
13144     if (DC == var->getDeclContext())
13145       break;
13146     Prev = DC;
13147     DC = DC->getParent();
13148   }
13149   // Unless we have an init-capture, we've gone one step too far.
13150   if (!var->isInitCapture())
13151     DC = Prev;
13152   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
13153 }
13154 
13155 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
13156   Ty = Ty.getNonReferenceType();
13157   if (IsDereference && Ty->isPointerType())
13158     Ty = Ty->getPointeeType();
13159   return !Ty.isConstQualified();
13160 }
13161 
13162 // Update err_typecheck_assign_const and note_typecheck_assign_const
13163 // when this enum is changed.
13164 enum {
13165   ConstFunction,
13166   ConstVariable,
13167   ConstMember,
13168   ConstMethod,
13169   NestedConstMember,
13170   ConstUnknown,  // Keep as last element
13171 };
13172 
13173 /// Emit the "read-only variable not assignable" error and print notes to give
13174 /// more information about why the variable is not assignable, such as pointing
13175 /// to the declaration of a const variable, showing that a method is const, or
13176 /// that the function is returning a const reference.
13177 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
13178                                     SourceLocation Loc) {
13179   SourceRange ExprRange = E->getSourceRange();
13180 
13181   // Only emit one error on the first const found.  All other consts will emit
13182   // a note to the error.
13183   bool DiagnosticEmitted = false;
13184 
13185   // Track if the current expression is the result of a dereference, and if the
13186   // next checked expression is the result of a dereference.
13187   bool IsDereference = false;
13188   bool NextIsDereference = false;
13189 
13190   // Loop to process MemberExpr chains.
13191   while (true) {
13192     IsDereference = NextIsDereference;
13193 
13194     E = E->IgnoreImplicit()->IgnoreParenImpCasts();
13195     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13196       NextIsDereference = ME->isArrow();
13197       const ValueDecl *VD = ME->getMemberDecl();
13198       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
13199         // Mutable fields can be modified even if the class is const.
13200         if (Field->isMutable()) {
13201           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
13202           break;
13203         }
13204 
13205         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
13206           if (!DiagnosticEmitted) {
13207             S.Diag(Loc, diag::err_typecheck_assign_const)
13208                 << ExprRange << ConstMember << false /*static*/ << Field
13209                 << Field->getType();
13210             DiagnosticEmitted = true;
13211           }
13212           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13213               << ConstMember << false /*static*/ << Field << Field->getType()
13214               << Field->getSourceRange();
13215         }
13216         E = ME->getBase();
13217         continue;
13218       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
13219         if (VDecl->getType().isConstQualified()) {
13220           if (!DiagnosticEmitted) {
13221             S.Diag(Loc, diag::err_typecheck_assign_const)
13222                 << ExprRange << ConstMember << true /*static*/ << VDecl
13223                 << VDecl->getType();
13224             DiagnosticEmitted = true;
13225           }
13226           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13227               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
13228               << VDecl->getSourceRange();
13229         }
13230         // Static fields do not inherit constness from parents.
13231         break;
13232       }
13233       break; // End MemberExpr
13234     } else if (const ArraySubscriptExpr *ASE =
13235                    dyn_cast<ArraySubscriptExpr>(E)) {
13236       E = ASE->getBase()->IgnoreParenImpCasts();
13237       continue;
13238     } else if (const ExtVectorElementExpr *EVE =
13239                    dyn_cast<ExtVectorElementExpr>(E)) {
13240       E = EVE->getBase()->IgnoreParenImpCasts();
13241       continue;
13242     }
13243     break;
13244   }
13245 
13246   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
13247     // Function calls
13248     const FunctionDecl *FD = CE->getDirectCallee();
13249     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
13250       if (!DiagnosticEmitted) {
13251         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13252                                                       << ConstFunction << FD;
13253         DiagnosticEmitted = true;
13254       }
13255       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
13256              diag::note_typecheck_assign_const)
13257           << ConstFunction << FD << FD->getReturnType()
13258           << FD->getReturnTypeSourceRange();
13259     }
13260   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
13261     // Point to variable declaration.
13262     if (const ValueDecl *VD = DRE->getDecl()) {
13263       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
13264         if (!DiagnosticEmitted) {
13265           S.Diag(Loc, diag::err_typecheck_assign_const)
13266               << ExprRange << ConstVariable << VD << VD->getType();
13267           DiagnosticEmitted = true;
13268         }
13269         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
13270             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
13271       }
13272     }
13273   } else if (isa<CXXThisExpr>(E)) {
13274     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
13275       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
13276         if (MD->isConst()) {
13277           if (!DiagnosticEmitted) {
13278             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
13279                                                           << ConstMethod << MD;
13280             DiagnosticEmitted = true;
13281           }
13282           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
13283               << ConstMethod << MD << MD->getSourceRange();
13284         }
13285       }
13286     }
13287   }
13288 
13289   if (DiagnosticEmitted)
13290     return;
13291 
13292   // Can't determine a more specific message, so display the generic error.
13293   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
13294 }
13295 
13296 enum OriginalExprKind {
13297   OEK_Variable,
13298   OEK_Member,
13299   OEK_LValue
13300 };
13301 
13302 static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
13303                                          const RecordType *Ty,
13304                                          SourceLocation Loc, SourceRange Range,
13305                                          OriginalExprKind OEK,
13306                                          bool &DiagnosticEmitted) {
13307   std::vector<const RecordType *> RecordTypeList;
13308   RecordTypeList.push_back(Ty);
13309   unsigned NextToCheckIndex = 0;
13310   // We walk the record hierarchy breadth-first to ensure that we print
13311   // diagnostics in field nesting order.
13312   while (RecordTypeList.size() > NextToCheckIndex) {
13313     bool IsNested = NextToCheckIndex > 0;
13314     for (const FieldDecl *Field :
13315          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
13316       // First, check every field for constness.
13317       QualType FieldTy = Field->getType();
13318       if (FieldTy.isConstQualified()) {
13319         if (!DiagnosticEmitted) {
13320           S.Diag(Loc, diag::err_typecheck_assign_const)
13321               << Range << NestedConstMember << OEK << VD
13322               << IsNested << Field;
13323           DiagnosticEmitted = true;
13324         }
13325         S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
13326             << NestedConstMember << IsNested << Field
13327             << FieldTy << Field->getSourceRange();
13328       }
13329 
13330       // Then we append it to the list to check next in order.
13331       FieldTy = FieldTy.getCanonicalType();
13332       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
13333         if (!llvm::is_contained(RecordTypeList, FieldRecTy))
13334           RecordTypeList.push_back(FieldRecTy);
13335       }
13336     }
13337     ++NextToCheckIndex;
13338   }
13339 }
13340 
13341 /// Emit an error for the case where a record we are trying to assign to has a
13342 /// const-qualified field somewhere in its hierarchy.
13343 static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
13344                                          SourceLocation Loc) {
13345   QualType Ty = E->getType();
13346   assert(Ty->isRecordType() && "lvalue was not record?");
13347   SourceRange Range = E->getSourceRange();
13348   const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
13349   bool DiagEmitted = false;
13350 
13351   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
13352     DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
13353             Range, OEK_Member, DiagEmitted);
13354   else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13355     DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
13356             Range, OEK_Variable, DiagEmitted);
13357   else
13358     DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
13359             Range, OEK_LValue, DiagEmitted);
13360   if (!DiagEmitted)
13361     DiagnoseConstAssignment(S, E, Loc);
13362 }
13363 
13364 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
13365 /// emit an error and return true.  If so, return false.
13366 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
13367   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
13368 
13369   S.CheckShadowingDeclModification(E, Loc);
13370 
13371   SourceLocation OrigLoc = Loc;
13372   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
13373                                                               &Loc);
13374   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
13375     IsLV = Expr::MLV_InvalidMessageExpression;
13376   if (IsLV == Expr::MLV_Valid)
13377     return false;
13378 
13379   unsigned DiagID = 0;
13380   bool NeedType = false;
13381   switch (IsLV) { // C99 6.5.16p2
13382   case Expr::MLV_ConstQualified:
13383     // Use a specialized diagnostic when we're assigning to an object
13384     // from an enclosing function or block.
13385     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
13386       if (NCCK == NCCK_Block)
13387         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
13388       else
13389         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
13390       break;
13391     }
13392 
13393     // In ARC, use some specialized diagnostics for occasions where we
13394     // infer 'const'.  These are always pseudo-strong variables.
13395     if (S.getLangOpts().ObjCAutoRefCount) {
13396       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
13397       if (declRef && isa<VarDecl>(declRef->getDecl())) {
13398         VarDecl *var = cast<VarDecl>(declRef->getDecl());
13399 
13400         // Use the normal diagnostic if it's pseudo-__strong but the
13401         // user actually wrote 'const'.
13402         if (var->isARCPseudoStrong() &&
13403             (!var->getTypeSourceInfo() ||
13404              !var->getTypeSourceInfo()->getType().isConstQualified())) {
13405           // There are three pseudo-strong cases:
13406           //  - self
13407           ObjCMethodDecl *method = S.getCurMethodDecl();
13408           if (method && var == method->getSelfDecl()) {
13409             DiagID = method->isClassMethod()
13410               ? diag::err_typecheck_arc_assign_self_class_method
13411               : diag::err_typecheck_arc_assign_self;
13412 
13413           //  - Objective-C externally_retained attribute.
13414           } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
13415                      isa<ParmVarDecl>(var)) {
13416             DiagID = diag::err_typecheck_arc_assign_externally_retained;
13417 
13418           //  - fast enumeration variables
13419           } else {
13420             DiagID = diag::err_typecheck_arr_assign_enumeration;
13421           }
13422 
13423           SourceRange Assign;
13424           if (Loc != OrigLoc)
13425             Assign = SourceRange(OrigLoc, OrigLoc);
13426           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13427           // We need to preserve the AST regardless, so migration tool
13428           // can do its job.
13429           return false;
13430         }
13431       }
13432     }
13433 
13434     // If none of the special cases above are triggered, then this is a
13435     // simple const assignment.
13436     if (DiagID == 0) {
13437       DiagnoseConstAssignment(S, E, Loc);
13438       return true;
13439     }
13440 
13441     break;
13442   case Expr::MLV_ConstAddrSpace:
13443     DiagnoseConstAssignment(S, E, Loc);
13444     return true;
13445   case Expr::MLV_ConstQualifiedField:
13446     DiagnoseRecursiveConstFields(S, E, Loc);
13447     return true;
13448   case Expr::MLV_ArrayType:
13449   case Expr::MLV_ArrayTemporary:
13450     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
13451     NeedType = true;
13452     break;
13453   case Expr::MLV_NotObjectType:
13454     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
13455     NeedType = true;
13456     break;
13457   case Expr::MLV_LValueCast:
13458     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
13459     break;
13460   case Expr::MLV_Valid:
13461     llvm_unreachable("did not take early return for MLV_Valid");
13462   case Expr::MLV_InvalidExpression:
13463   case Expr::MLV_MemberFunction:
13464   case Expr::MLV_ClassTemporary:
13465     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
13466     break;
13467   case Expr::MLV_IncompleteType:
13468   case Expr::MLV_IncompleteVoidType:
13469     return S.RequireCompleteType(Loc, E->getType(),
13470              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
13471   case Expr::MLV_DuplicateVectorComponents:
13472     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
13473     break;
13474   case Expr::MLV_NoSetterProperty:
13475     llvm_unreachable("readonly properties should be processed differently");
13476   case Expr::MLV_InvalidMessageExpression:
13477     DiagID = diag::err_readonly_message_assignment;
13478     break;
13479   case Expr::MLV_SubObjCPropertySetting:
13480     DiagID = diag::err_no_subobject_property_setting;
13481     break;
13482   }
13483 
13484   SourceRange Assign;
13485   if (Loc != OrigLoc)
13486     Assign = SourceRange(OrigLoc, OrigLoc);
13487   if (NeedType)
13488     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
13489   else
13490     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13491   return true;
13492 }
13493 
13494 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
13495                                          SourceLocation Loc,
13496                                          Sema &Sema) {
13497   if (Sema.inTemplateInstantiation())
13498     return;
13499   if (Sema.isUnevaluatedContext())
13500     return;
13501   if (Loc.isInvalid() || Loc.isMacroID())
13502     return;
13503   if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
13504     return;
13505 
13506   // C / C++ fields
13507   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
13508   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
13509   if (ML && MR) {
13510     if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
13511       return;
13512     const ValueDecl *LHSDecl =
13513         cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
13514     const ValueDecl *RHSDecl =
13515         cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
13516     if (LHSDecl != RHSDecl)
13517       return;
13518     if (LHSDecl->getType().isVolatileQualified())
13519       return;
13520     if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13521       if (RefTy->getPointeeType().isVolatileQualified())
13522         return;
13523 
13524     Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
13525   }
13526 
13527   // Objective-C instance variables
13528   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
13529   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
13530   if (OL && OR && OL->getDecl() == OR->getDecl()) {
13531     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
13532     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
13533     if (RL && RR && RL->getDecl() == RR->getDecl())
13534       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
13535   }
13536 }
13537 
13538 // C99 6.5.16.1
13539 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
13540                                        SourceLocation Loc,
13541                                        QualType CompoundType,
13542                                        BinaryOperatorKind Opc) {
13543   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
13544 
13545   // Verify that LHS is a modifiable lvalue, and emit error if not.
13546   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
13547     return QualType();
13548 
13549   QualType LHSType = LHSExpr->getType();
13550   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
13551                                              CompoundType;
13552   // OpenCL v1.2 s6.1.1.1 p2:
13553   // The half data type can only be used to declare a pointer to a buffer that
13554   // contains half values
13555   if (getLangOpts().OpenCL &&
13556       !getOpenCLOptions().isAvailableOption("cl_khr_fp16", getLangOpts()) &&
13557       LHSType->isHalfType()) {
13558     Diag(Loc, diag::err_opencl_half_load_store) << 1
13559         << LHSType.getUnqualifiedType();
13560     return QualType();
13561   }
13562 
13563   // WebAssembly tables can't be used on RHS of an assignment expression.
13564   if (RHSType->isWebAssemblyTableType()) {
13565     Diag(Loc, diag::err_wasm_table_art) << 0;
13566     return QualType();
13567   }
13568 
13569   AssignConvertType ConvTy;
13570   if (CompoundType.isNull()) {
13571     Expr *RHSCheck = RHS.get();
13572 
13573     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
13574 
13575     QualType LHSTy(LHSType);
13576     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
13577     if (RHS.isInvalid())
13578       return QualType();
13579     // Special case of NSObject attributes on c-style pointer types.
13580     if (ConvTy == IncompatiblePointer &&
13581         ((Context.isObjCNSObjectType(LHSType) &&
13582           RHSType->isObjCObjectPointerType()) ||
13583          (Context.isObjCNSObjectType(RHSType) &&
13584           LHSType->isObjCObjectPointerType())))
13585       ConvTy = Compatible;
13586 
13587     if (ConvTy == Compatible &&
13588         LHSType->isObjCObjectType())
13589         Diag(Loc, diag::err_objc_object_assignment)
13590           << LHSType;
13591 
13592     // If the RHS is a unary plus or minus, check to see if they = and + are
13593     // right next to each other.  If so, the user may have typo'd "x =+ 4"
13594     // instead of "x += 4".
13595     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
13596       RHSCheck = ICE->getSubExpr();
13597     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
13598       if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
13599           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
13600           // Only if the two operators are exactly adjacent.
13601           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
13602           // And there is a space or other character before the subexpr of the
13603           // unary +/-.  We don't want to warn on "x=-1".
13604           Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
13605           UO->getSubExpr()->getBeginLoc().isFileID()) {
13606         Diag(Loc, diag::warn_not_compound_assign)
13607           << (UO->getOpcode() == UO_Plus ? "+" : "-")
13608           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
13609       }
13610     }
13611 
13612     if (ConvTy == Compatible) {
13613       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
13614         // Warn about retain cycles where a block captures the LHS, but
13615         // not if the LHS is a simple variable into which the block is
13616         // being stored...unless that variable can be captured by reference!
13617         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
13618         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
13619         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
13620           ObjC().checkRetainCycles(LHSExpr, RHS.get());
13621       }
13622 
13623       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
13624           LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
13625         // It is safe to assign a weak reference into a strong variable.
13626         // Although this code can still have problems:
13627         //   id x = self.weakProp;
13628         //   id y = self.weakProp;
13629         // we do not warn to warn spuriously when 'x' and 'y' are on separate
13630         // paths through the function. This should be revisited if
13631         // -Wrepeated-use-of-weak is made flow-sensitive.
13632         // For ObjCWeak only, we do not warn if the assign is to a non-weak
13633         // variable, which will be valid for the current autorelease scope.
13634         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13635                              RHS.get()->getBeginLoc()))
13636           getCurFunction()->markSafeWeakUse(RHS.get());
13637 
13638       } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
13639         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
13640       }
13641     }
13642   } else {
13643     // Compound assignment "x += y"
13644     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
13645   }
13646 
13647   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
13648                                RHS.get(), AA_Assigning))
13649     return QualType();
13650 
13651   CheckForNullPointerDereference(*this, LHSExpr);
13652 
13653   AssignedEntity AE{LHSExpr};
13654   checkExprLifetime(*this, AE, RHS.get());
13655 
13656   if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
13657     if (CompoundType.isNull()) {
13658       // C++2a [expr.ass]p5:
13659       //   A simple-assignment whose left operand is of a volatile-qualified
13660       //   type is deprecated unless the assignment is either a discarded-value
13661       //   expression or an unevaluated operand
13662       ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
13663     }
13664   }
13665 
13666   // C11 6.5.16p3: The type of an assignment expression is the type of the
13667   // left operand would have after lvalue conversion.
13668   // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
13669   // qualified type, the value has the unqualified version of the type of the
13670   // lvalue; additionally, if the lvalue has atomic type, the value has the
13671   // non-atomic version of the type of the lvalue.
13672   // C++ 5.17p1: the type of the assignment expression is that of its left
13673   // operand.
13674   return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
13675 }
13676 
13677 // Scenarios to ignore if expression E is:
13678 // 1. an explicit cast expression into void
13679 // 2. a function call expression that returns void
13680 static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
13681   E = E->IgnoreParens();
13682 
13683   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
13684     if (CE->getCastKind() == CK_ToVoid) {
13685       return true;
13686     }
13687 
13688     // static_cast<void> on a dependent type will not show up as CK_ToVoid.
13689     if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
13690         CE->getSubExpr()->getType()->isDependentType()) {
13691       return true;
13692     }
13693   }
13694 
13695   if (const auto *CE = dyn_cast<CallExpr>(E))
13696     return CE->getCallReturnType(Context)->isVoidType();
13697   return false;
13698 }
13699 
13700 void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
13701   // No warnings in macros
13702   if (Loc.isMacroID())
13703     return;
13704 
13705   // Don't warn in template instantiations.
13706   if (inTemplateInstantiation())
13707     return;
13708 
13709   // Scope isn't fine-grained enough to explicitly list the specific cases, so
13710   // instead, skip more than needed, then call back into here with the
13711   // CommaVisitor in SemaStmt.cpp.
13712   // The listed locations are the initialization and increment portions
13713   // of a for loop.  The additional checks are on the condition of
13714   // if statements, do/while loops, and for loops.
13715   // Differences in scope flags for C89 mode requires the extra logic.
13716   const unsigned ForIncrementFlags =
13717       getLangOpts().C99 || getLangOpts().CPlusPlus
13718           ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
13719           : Scope::ContinueScope | Scope::BreakScope;
13720   const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
13721   const unsigned ScopeFlags = getCurScope()->getFlags();
13722   if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
13723       (ScopeFlags & ForInitFlags) == ForInitFlags)
13724     return;
13725 
13726   // If there are multiple comma operators used together, get the RHS of the
13727   // of the comma operator as the LHS.
13728   while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
13729     if (BO->getOpcode() != BO_Comma)
13730       break;
13731     LHS = BO->getRHS();
13732   }
13733 
13734   // Only allow some expressions on LHS to not warn.
13735   if (IgnoreCommaOperand(LHS, Context))
13736     return;
13737 
13738   Diag(Loc, diag::warn_comma_operator);
13739   Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
13740       << LHS->getSourceRange()
13741       << FixItHint::CreateInsertion(LHS->getBeginLoc(),
13742                                     LangOpts.CPlusPlus ? "static_cast<void>("
13743                                                        : "(void)(")
13744       << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
13745                                     ")");
13746 }
13747 
13748 // C99 6.5.17
13749 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
13750                                    SourceLocation Loc) {
13751   LHS = S.CheckPlaceholderExpr(LHS.get());
13752   RHS = S.CheckPlaceholderExpr(RHS.get());
13753   if (LHS.isInvalid() || RHS.isInvalid())
13754     return QualType();
13755 
13756   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
13757   // operands, but not unary promotions.
13758   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
13759 
13760   // So we treat the LHS as a ignored value, and in C++ we allow the
13761   // containing site to determine what should be done with the RHS.
13762   LHS = S.IgnoredValueConversions(LHS.get());
13763   if (LHS.isInvalid())
13764     return QualType();
13765 
13766   S.DiagnoseUnusedExprResult(LHS.get(), diag::warn_unused_comma_left_operand);
13767 
13768   if (!S.getLangOpts().CPlusPlus) {
13769     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
13770     if (RHS.isInvalid())
13771       return QualType();
13772     if (!RHS.get()->getType()->isVoidType())
13773       S.RequireCompleteType(Loc, RHS.get()->getType(),
13774                             diag::err_incomplete_type);
13775   }
13776 
13777   if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
13778     S.DiagnoseCommaOperator(LHS.get(), Loc);
13779 
13780   return RHS.get()->getType();
13781 }
13782 
13783 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
13784 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
13785 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
13786                                                ExprValueKind &VK,
13787                                                ExprObjectKind &OK,
13788                                                SourceLocation OpLoc, bool IsInc,
13789                                                bool IsPrefix) {
13790   QualType ResType = Op->getType();
13791   // Atomic types can be used for increment / decrement where the non-atomic
13792   // versions can, so ignore the _Atomic() specifier for the purpose of
13793   // checking.
13794   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
13795     ResType = ResAtomicType->getValueType();
13796 
13797   assert(!ResType.isNull() && "no type for increment/decrement expression");
13798 
13799   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
13800     // Decrement of bool is not allowed.
13801     if (!IsInc) {
13802       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
13803       return QualType();
13804     }
13805     // Increment of bool sets it to true, but is deprecated.
13806     S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
13807                                               : diag::warn_increment_bool)
13808       << Op->getSourceRange();
13809   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
13810     // Error on enum increments and decrements in C++ mode
13811     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
13812     return QualType();
13813   } else if (ResType->isRealType()) {
13814     // OK!
13815   } else if (ResType->isPointerType()) {
13816     // C99 6.5.2.4p2, 6.5.6p2
13817     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
13818       return QualType();
13819   } else if (ResType->isObjCObjectPointerType()) {
13820     // On modern runtimes, ObjC pointer arithmetic is forbidden.
13821     // Otherwise, we just need a complete type.
13822     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
13823         checkArithmeticOnObjCPointer(S, OpLoc, Op))
13824       return QualType();
13825   } else if (ResType->isAnyComplexType()) {
13826     // C99 does not support ++/-- on complex types, we allow as an extension.
13827     S.Diag(OpLoc, S.getLangOpts().C2y ? diag::warn_c2y_compat_increment_complex
13828                                       : diag::ext_c2y_increment_complex)
13829         << IsInc << Op->getSourceRange();
13830   } else if (ResType->isPlaceholderType()) {
13831     ExprResult PR = S.CheckPlaceholderExpr(Op);
13832     if (PR.isInvalid()) return QualType();
13833     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
13834                                           IsInc, IsPrefix);
13835   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
13836     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
13837   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
13838              (ResType->castAs<VectorType>()->getVectorKind() !=
13839               VectorKind::AltiVecBool)) {
13840     // The z vector extensions allow ++ and -- for non-bool vectors.
13841   } else if (S.getLangOpts().OpenCL && ResType->isVectorType() &&
13842              ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
13843     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
13844   } else {
13845     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
13846       << ResType << int(IsInc) << Op->getSourceRange();
13847     return QualType();
13848   }
13849   // At this point, we know we have a real, complex or pointer type.
13850   // Now make sure the operand is a modifiable lvalue.
13851   if (CheckForModifiableLvalue(Op, OpLoc, S))
13852     return QualType();
13853   if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
13854     // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
13855     //   An operand with volatile-qualified type is deprecated
13856     S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
13857         << IsInc << ResType;
13858   }
13859   // In C++, a prefix increment is the same type as the operand. Otherwise
13860   // (in C or with postfix), the increment is the unqualified type of the
13861   // operand.
13862   if (IsPrefix && S.getLangOpts().CPlusPlus) {
13863     VK = VK_LValue;
13864     OK = Op->getObjectKind();
13865     return ResType;
13866   } else {
13867     VK = VK_PRValue;
13868     return ResType.getUnqualifiedType();
13869   }
13870 }
13871 
13872 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
13873 /// This routine allows us to typecheck complex/recursive expressions
13874 /// where the declaration is needed for type checking. We only need to
13875 /// handle cases when the expression references a function designator
13876 /// or is an lvalue. Here are some examples:
13877 ///  - &(x) => x
13878 ///  - &*****f => f for f a function designator.
13879 ///  - &s.xx => s
13880 ///  - &s.zz[1].yy -> s, if zz is an array
13881 ///  - *(x + 1) -> x, if x is an array
13882 ///  - &"123"[2] -> 0
13883 ///  - & __real__ x -> x
13884 ///
13885 /// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
13886 /// members.
13887 static ValueDecl *getPrimaryDecl(Expr *E) {
13888   switch (E->getStmtClass()) {
13889   case Stmt::DeclRefExprClass:
13890     return cast<DeclRefExpr>(E)->getDecl();
13891   case Stmt::MemberExprClass:
13892     // If this is an arrow operator, the address is an offset from
13893     // the base's value, so the object the base refers to is
13894     // irrelevant.
13895     if (cast<MemberExpr>(E)->isArrow())
13896       return nullptr;
13897     // Otherwise, the expression refers to a part of the base
13898     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
13899   case Stmt::ArraySubscriptExprClass: {
13900     // FIXME: This code shouldn't be necessary!  We should catch the implicit
13901     // promotion of register arrays earlier.
13902     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
13903     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
13904       if (ICE->getSubExpr()->getType()->isArrayType())
13905         return getPrimaryDecl(ICE->getSubExpr());
13906     }
13907     return nullptr;
13908   }
13909   case Stmt::UnaryOperatorClass: {
13910     UnaryOperator *UO = cast<UnaryOperator>(E);
13911 
13912     switch(UO->getOpcode()) {
13913     case UO_Real:
13914     case UO_Imag:
13915     case UO_Extension:
13916       return getPrimaryDecl(UO->getSubExpr());
13917     default:
13918       return nullptr;
13919     }
13920   }
13921   case Stmt::ParenExprClass:
13922     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
13923   case Stmt::ImplicitCastExprClass:
13924     // If the result of an implicit cast is an l-value, we care about
13925     // the sub-expression; otherwise, the result here doesn't matter.
13926     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
13927   case Stmt::CXXUuidofExprClass:
13928     return cast<CXXUuidofExpr>(E)->getGuidDecl();
13929   default:
13930     return nullptr;
13931   }
13932 }
13933 
13934 namespace {
13935 enum {
13936   AO_Bit_Field = 0,
13937   AO_Vector_Element = 1,
13938   AO_Property_Expansion = 2,
13939   AO_Register_Variable = 3,
13940   AO_Matrix_Element = 4,
13941   AO_No_Error = 5
13942 };
13943 }
13944 /// Diagnose invalid operand for address of operations.
13945 ///
13946 /// \param Type The type of operand which cannot have its address taken.
13947 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
13948                                          Expr *E, unsigned Type) {
13949   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
13950 }
13951 
13952 bool Sema::CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,
13953                                                  const Expr *Op,
13954                                                  const CXXMethodDecl *MD) {
13955   const auto *DRE = cast<DeclRefExpr>(Op->IgnoreParens());
13956 
13957   if (Op != DRE)
13958     return Diag(OpLoc, diag::err_parens_pointer_member_function)
13959            << Op->getSourceRange();
13960 
13961   // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
13962   if (isa<CXXDestructorDecl>(MD))
13963     return Diag(OpLoc, diag::err_typecheck_addrof_dtor)
13964            << DRE->getSourceRange();
13965 
13966   if (DRE->getQualifier())
13967     return false;
13968 
13969   if (MD->getParent()->getName().empty())
13970     return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13971            << DRE->getSourceRange();
13972 
13973   SmallString<32> Str;
13974   StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
13975   return Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13976          << DRE->getSourceRange()
13977          << FixItHint::CreateInsertion(DRE->getSourceRange().getBegin(), Qual);
13978 }
13979 
13980 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
13981   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
13982     if (PTy->getKind() == BuiltinType::Overload) {
13983       Expr *E = OrigOp.get()->IgnoreParens();
13984       if (!isa<OverloadExpr>(E)) {
13985         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
13986         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
13987           << OrigOp.get()->getSourceRange();
13988         return QualType();
13989       }
13990 
13991       OverloadExpr *Ovl = cast<OverloadExpr>(E);
13992       if (isa<UnresolvedMemberExpr>(Ovl))
13993         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
13994           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13995             << OrigOp.get()->getSourceRange();
13996           return QualType();
13997         }
13998 
13999       return Context.OverloadTy;
14000     }
14001 
14002     if (PTy->getKind() == BuiltinType::UnknownAny)
14003       return Context.UnknownAnyTy;
14004 
14005     if (PTy->getKind() == BuiltinType::BoundMember) {
14006       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14007         << OrigOp.get()->getSourceRange();
14008       return QualType();
14009     }
14010 
14011     OrigOp = CheckPlaceholderExpr(OrigOp.get());
14012     if (OrigOp.isInvalid()) return QualType();
14013   }
14014 
14015   if (OrigOp.get()->isTypeDependent())
14016     return Context.DependentTy;
14017 
14018   assert(!OrigOp.get()->hasPlaceholderType());
14019 
14020   // Make sure to ignore parentheses in subsequent checks
14021   Expr *op = OrigOp.get()->IgnoreParens();
14022 
14023   // In OpenCL captures for blocks called as lambda functions
14024   // are located in the private address space. Blocks used in
14025   // enqueue_kernel can be located in a different address space
14026   // depending on a vendor implementation. Thus preventing
14027   // taking an address of the capture to avoid invalid AS casts.
14028   if (LangOpts.OpenCL) {
14029     auto* VarRef = dyn_cast<DeclRefExpr>(op);
14030     if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
14031       Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
14032       return QualType();
14033     }
14034   }
14035 
14036   if (getLangOpts().C99) {
14037     // Implement C99-only parts of addressof rules.
14038     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
14039       if (uOp->getOpcode() == UO_Deref)
14040         // Per C99 6.5.3.2, the address of a deref always returns a valid result
14041         // (assuming the deref expression is valid).
14042         return uOp->getSubExpr()->getType();
14043     }
14044     // Technically, there should be a check for array subscript
14045     // expressions here, but the result of one is always an lvalue anyway.
14046   }
14047   ValueDecl *dcl = getPrimaryDecl(op);
14048 
14049   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
14050     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
14051                                            op->getBeginLoc()))
14052       return QualType();
14053 
14054   Expr::LValueClassification lval = op->ClassifyLValue(Context);
14055   unsigned AddressOfError = AO_No_Error;
14056 
14057   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
14058     bool sfinae = (bool)isSFINAEContext();
14059     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
14060                                   : diag::ext_typecheck_addrof_temporary)
14061       << op->getType() << op->getSourceRange();
14062     if (sfinae)
14063       return QualType();
14064     // Materialize the temporary as an lvalue so that we can take its address.
14065     OrigOp = op =
14066         CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
14067   } else if (isa<ObjCSelectorExpr>(op)) {
14068     return Context.getPointerType(op->getType());
14069   } else if (lval == Expr::LV_MemberFunction) {
14070     // If it's an instance method, make a member pointer.
14071     // The expression must have exactly the form &A::foo.
14072 
14073     // If the underlying expression isn't a decl ref, give up.
14074     if (!isa<DeclRefExpr>(op)) {
14075       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
14076         << OrigOp.get()->getSourceRange();
14077       return QualType();
14078     }
14079     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
14080     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
14081 
14082     CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
14083 
14084     QualType MPTy = Context.getMemberPointerType(
14085         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
14086 
14087     if (getLangOpts().PointerAuthCalls && MD->isVirtual() &&
14088         !isUnevaluatedContext() && !MPTy->isDependentType()) {
14089       // When pointer authentication is enabled, argument and return types of
14090       // vitual member functions must be complete. This is because vitrual
14091       // member function pointers are implemented using virtual dispatch
14092       // thunks and the thunks cannot be emitted if the argument or return
14093       // types are incomplete.
14094       auto ReturnOrParamTypeIsIncomplete = [&](QualType T,
14095                                                SourceLocation DeclRefLoc,
14096                                                SourceLocation RetArgTypeLoc) {
14097         if (RequireCompleteType(DeclRefLoc, T, diag::err_incomplete_type)) {
14098           Diag(DeclRefLoc,
14099                diag::note_ptrauth_virtual_function_pointer_incomplete_arg_ret);
14100           Diag(RetArgTypeLoc,
14101                diag::note_ptrauth_virtual_function_incomplete_arg_ret_type)
14102               << T;
14103           return true;
14104         }
14105         return false;
14106       };
14107       QualType RetTy = MD->getReturnType();
14108       bool IsIncomplete =
14109           !RetTy->isVoidType() &&
14110           ReturnOrParamTypeIsIncomplete(
14111               RetTy, OpLoc, MD->getReturnTypeSourceRange().getBegin());
14112       for (auto *PVD : MD->parameters())
14113         IsIncomplete |= ReturnOrParamTypeIsIncomplete(PVD->getType(), OpLoc,
14114                                                       PVD->getBeginLoc());
14115       if (IsIncomplete)
14116         return QualType();
14117     }
14118 
14119     // Under the MS ABI, lock down the inheritance model now.
14120     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14121       (void)isCompleteType(OpLoc, MPTy);
14122     return MPTy;
14123   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
14124     // C99 6.5.3.2p1
14125     // The operand must be either an l-value or a function designator
14126     if (!op->getType()->isFunctionType()) {
14127       // Use a special diagnostic for loads from property references.
14128       if (isa<PseudoObjectExpr>(op)) {
14129         AddressOfError = AO_Property_Expansion;
14130       } else {
14131         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
14132           << op->getType() << op->getSourceRange();
14133         return QualType();
14134       }
14135     } else if (const auto *DRE = dyn_cast<DeclRefExpr>(op)) {
14136       if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(DRE->getDecl()))
14137         CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, OrigOp.get(), MD);
14138     }
14139 
14140   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
14141     // The operand cannot be a bit-field
14142     AddressOfError = AO_Bit_Field;
14143   } else if (op->getObjectKind() == OK_VectorComponent) {
14144     // The operand cannot be an element of a vector
14145     AddressOfError = AO_Vector_Element;
14146   } else if (op->getObjectKind() == OK_MatrixComponent) {
14147     // The operand cannot be an element of a matrix.
14148     AddressOfError = AO_Matrix_Element;
14149   } else if (dcl) { // C99 6.5.3.2p1
14150     // We have an lvalue with a decl. Make sure the decl is not declared
14151     // with the register storage-class specifier.
14152     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
14153       // in C++ it is not error to take address of a register
14154       // variable (c++03 7.1.1P3)
14155       if (vd->getStorageClass() == SC_Register &&
14156           !getLangOpts().CPlusPlus) {
14157         AddressOfError = AO_Register_Variable;
14158       }
14159     } else if (isa<MSPropertyDecl>(dcl)) {
14160       AddressOfError = AO_Property_Expansion;
14161     } else if (isa<FunctionTemplateDecl>(dcl)) {
14162       return Context.OverloadTy;
14163     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
14164       // Okay: we can take the address of a field.
14165       // Could be a pointer to member, though, if there is an explicit
14166       // scope qualifier for the class.
14167 
14168       // [C++26] [expr.prim.id.general]
14169       // If an id-expression E denotes a non-static non-type member
14170       // of some class C [...] and if E is a qualified-id, E is
14171       // not the un-parenthesized operand of the unary & operator [...]
14172       // the id-expression is transformed into a class member access expression.
14173       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier() &&
14174           !isa<ParenExpr>(OrigOp.get())) {
14175         DeclContext *Ctx = dcl->getDeclContext();
14176         if (Ctx && Ctx->isRecord()) {
14177           if (dcl->getType()->isReferenceType()) {
14178             Diag(OpLoc,
14179                  diag::err_cannot_form_pointer_to_member_of_reference_type)
14180               << dcl->getDeclName() << dcl->getType();
14181             return QualType();
14182           }
14183 
14184           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
14185             Ctx = Ctx->getParent();
14186 
14187           QualType MPTy = Context.getMemberPointerType(
14188               op->getType(),
14189               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
14190           // Under the MS ABI, lock down the inheritance model now.
14191           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14192             (void)isCompleteType(OpLoc, MPTy);
14193           return MPTy;
14194         }
14195       }
14196     } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
14197                     MSGuidDecl, UnnamedGlobalConstantDecl>(dcl))
14198       llvm_unreachable("Unknown/unexpected decl type");
14199   }
14200 
14201   if (AddressOfError != AO_No_Error) {
14202     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
14203     return QualType();
14204   }
14205 
14206   if (lval == Expr::LV_IncompleteVoidType) {
14207     // Taking the address of a void variable is technically illegal, but we
14208     // allow it in cases which are otherwise valid.
14209     // Example: "extern void x; void* y = &x;".
14210     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
14211   }
14212 
14213   // If the operand has type "type", the result has type "pointer to type".
14214   if (op->getType()->isObjCObjectType())
14215     return Context.getObjCObjectPointerType(op->getType());
14216 
14217   // Cannot take the address of WebAssembly references or tables.
14218   if (Context.getTargetInfo().getTriple().isWasm()) {
14219     QualType OpTy = op->getType();
14220     if (OpTy.isWebAssemblyReferenceType()) {
14221       Diag(OpLoc, diag::err_wasm_ca_reference)
14222           << 1 << OrigOp.get()->getSourceRange();
14223       return QualType();
14224     }
14225     if (OpTy->isWebAssemblyTableType()) {
14226       Diag(OpLoc, diag::err_wasm_table_pr)
14227           << 1 << OrigOp.get()->getSourceRange();
14228       return QualType();
14229     }
14230   }
14231 
14232   CheckAddressOfPackedMember(op);
14233 
14234   return Context.getPointerType(op->getType());
14235 }
14236 
14237 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
14238   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
14239   if (!DRE)
14240     return;
14241   const Decl *D = DRE->getDecl();
14242   if (!D)
14243     return;
14244   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
14245   if (!Param)
14246     return;
14247   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
14248     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
14249       return;
14250   if (FunctionScopeInfo *FD = S.getCurFunction())
14251     FD->ModifiedNonNullParams.insert(Param);
14252 }
14253 
14254 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
14255 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
14256                                         SourceLocation OpLoc,
14257                                         bool IsAfterAmp = false) {
14258   ExprResult ConvResult = S.UsualUnaryConversions(Op);
14259   if (ConvResult.isInvalid())
14260     return QualType();
14261   Op = ConvResult.get();
14262   QualType OpTy = Op->getType();
14263   QualType Result;
14264 
14265   if (isa<CXXReinterpretCastExpr>(Op)) {
14266     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
14267     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
14268                                      Op->getSourceRange());
14269   }
14270 
14271   if (const PointerType *PT = OpTy->getAs<PointerType>())
14272   {
14273     Result = PT->getPointeeType();
14274   }
14275   else if (const ObjCObjectPointerType *OPT =
14276              OpTy->getAs<ObjCObjectPointerType>())
14277     Result = OPT->getPointeeType();
14278   else {
14279     ExprResult PR = S.CheckPlaceholderExpr(Op);
14280     if (PR.isInvalid()) return QualType();
14281     if (PR.get() != Op)
14282       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
14283   }
14284 
14285   if (Result.isNull()) {
14286     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
14287       << OpTy << Op->getSourceRange();
14288     return QualType();
14289   }
14290 
14291   if (Result->isVoidType()) {
14292     // C++ [expr.unary.op]p1:
14293     //   [...] the expression to which [the unary * operator] is applied shall
14294     //   be a pointer to an object type, or a pointer to a function type
14295     LangOptions LO = S.getLangOpts();
14296     if (LO.CPlusPlus)
14297       S.Diag(OpLoc, diag::err_typecheck_indirection_through_void_pointer_cpp)
14298           << OpTy << Op->getSourceRange();
14299     else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext())
14300       S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
14301           << OpTy << Op->getSourceRange();
14302   }
14303 
14304   // Dereferences are usually l-values...
14305   VK = VK_LValue;
14306 
14307   // ...except that certain expressions are never l-values in C.
14308   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
14309     VK = VK_PRValue;
14310 
14311   return Result;
14312 }
14313 
14314 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
14315   BinaryOperatorKind Opc;
14316   switch (Kind) {
14317   default: llvm_unreachable("Unknown binop!");
14318   case tok::periodstar:           Opc = BO_PtrMemD; break;
14319   case tok::arrowstar:            Opc = BO_PtrMemI; break;
14320   case tok::star:                 Opc = BO_Mul; break;
14321   case tok::slash:                Opc = BO_Div; break;
14322   case tok::percent:              Opc = BO_Rem; break;
14323   case tok::plus:                 Opc = BO_Add; break;
14324   case tok::minus:                Opc = BO_Sub; break;
14325   case tok::lessless:             Opc = BO_Shl; break;
14326   case tok::greatergreater:       Opc = BO_Shr; break;
14327   case tok::lessequal:            Opc = BO_LE; break;
14328   case tok::less:                 Opc = BO_LT; break;
14329   case tok::greaterequal:         Opc = BO_GE; break;
14330   case tok::greater:              Opc = BO_GT; break;
14331   case tok::exclaimequal:         Opc = BO_NE; break;
14332   case tok::equalequal:           Opc = BO_EQ; break;
14333   case tok::spaceship:            Opc = BO_Cmp; break;
14334   case tok::amp:                  Opc = BO_And; break;
14335   case tok::caret:                Opc = BO_Xor; break;
14336   case tok::pipe:                 Opc = BO_Or; break;
14337   case tok::ampamp:               Opc = BO_LAnd; break;
14338   case tok::pipepipe:             Opc = BO_LOr; break;
14339   case tok::equal:                Opc = BO_Assign; break;
14340   case tok::starequal:            Opc = BO_MulAssign; break;
14341   case tok::slashequal:           Opc = BO_DivAssign; break;
14342   case tok::percentequal:         Opc = BO_RemAssign; break;
14343   case tok::plusequal:            Opc = BO_AddAssign; break;
14344   case tok::minusequal:           Opc = BO_SubAssign; break;
14345   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
14346   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
14347   case tok::ampequal:             Opc = BO_AndAssign; break;
14348   case tok::caretequal:           Opc = BO_XorAssign; break;
14349   case tok::pipeequal:            Opc = BO_OrAssign; break;
14350   case tok::comma:                Opc = BO_Comma; break;
14351   }
14352   return Opc;
14353 }
14354 
14355 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
14356   tok::TokenKind Kind) {
14357   UnaryOperatorKind Opc;
14358   switch (Kind) {
14359   default: llvm_unreachable("Unknown unary op!");
14360   case tok::plusplus:     Opc = UO_PreInc; break;
14361   case tok::minusminus:   Opc = UO_PreDec; break;
14362   case tok::amp:          Opc = UO_AddrOf; break;
14363   case tok::star:         Opc = UO_Deref; break;
14364   case tok::plus:         Opc = UO_Plus; break;
14365   case tok::minus:        Opc = UO_Minus; break;
14366   case tok::tilde:        Opc = UO_Not; break;
14367   case tok::exclaim:      Opc = UO_LNot; break;
14368   case tok::kw___real:    Opc = UO_Real; break;
14369   case tok::kw___imag:    Opc = UO_Imag; break;
14370   case tok::kw___extension__: Opc = UO_Extension; break;
14371   }
14372   return Opc;
14373 }
14374 
14375 const FieldDecl *
14376 Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
14377   // Explore the case for adding 'this->' to the LHS of a self assignment, very
14378   // common for setters.
14379   // struct A {
14380   // int X;
14381   // -void setX(int X) { X = X; }
14382   // +void setX(int X) { this->X = X; }
14383   // };
14384 
14385   // Only consider parameters for self assignment fixes.
14386   if (!isa<ParmVarDecl>(SelfAssigned))
14387     return nullptr;
14388   const auto *Method =
14389       dyn_cast_or_null<CXXMethodDecl>(getCurFunctionDecl(true));
14390   if (!Method)
14391     return nullptr;
14392 
14393   const CXXRecordDecl *Parent = Method->getParent();
14394   // In theory this is fixable if the lambda explicitly captures this, but
14395   // that's added complexity that's rarely going to be used.
14396   if (Parent->isLambda())
14397     return nullptr;
14398 
14399   // FIXME: Use an actual Lookup operation instead of just traversing fields
14400   // in order to get base class fields.
14401   auto Field =
14402       llvm::find_if(Parent->fields(),
14403                     [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
14404                       return F->getDeclName() == Name;
14405                     });
14406   return (Field != Parent->field_end()) ? *Field : nullptr;
14407 }
14408 
14409 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
14410 /// This warning suppressed in the event of macro expansions.
14411 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
14412                                    SourceLocation OpLoc, bool IsBuiltin) {
14413   if (S.inTemplateInstantiation())
14414     return;
14415   if (S.isUnevaluatedContext())
14416     return;
14417   if (OpLoc.isInvalid() || OpLoc.isMacroID())
14418     return;
14419   LHSExpr = LHSExpr->IgnoreParenImpCasts();
14420   RHSExpr = RHSExpr->IgnoreParenImpCasts();
14421   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
14422   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
14423   if (!LHSDeclRef || !RHSDeclRef ||
14424       LHSDeclRef->getLocation().isMacroID() ||
14425       RHSDeclRef->getLocation().isMacroID())
14426     return;
14427   const ValueDecl *LHSDecl =
14428     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
14429   const ValueDecl *RHSDecl =
14430     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
14431   if (LHSDecl != RHSDecl)
14432     return;
14433   if (LHSDecl->getType().isVolatileQualified())
14434     return;
14435   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14436     if (RefTy->getPointeeType().isVolatileQualified())
14437       return;
14438 
14439   auto Diag = S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
14440                                       : diag::warn_self_assignment_overloaded)
14441               << LHSDeclRef->getType() << LHSExpr->getSourceRange()
14442               << RHSExpr->getSourceRange();
14443   if (const FieldDecl *SelfAssignField =
14444           S.getSelfAssignmentClassMemberCandidate(RHSDecl))
14445     Diag << 1 << SelfAssignField
14446          << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
14447   else
14448     Diag << 0;
14449 }
14450 
14451 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
14452 /// is usually indicative of introspection within the Objective-C pointer.
14453 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
14454                                           SourceLocation OpLoc) {
14455   if (!S.getLangOpts().ObjC)
14456     return;
14457 
14458   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
14459   const Expr *LHS = L.get();
14460   const Expr *RHS = R.get();
14461 
14462   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14463     ObjCPointerExpr = LHS;
14464     OtherExpr = RHS;
14465   }
14466   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14467     ObjCPointerExpr = RHS;
14468     OtherExpr = LHS;
14469   }
14470 
14471   // This warning is deliberately made very specific to reduce false
14472   // positives with logic that uses '&' for hashing.  This logic mainly
14473   // looks for code trying to introspect into tagged pointers, which
14474   // code should generally never do.
14475   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
14476     unsigned Diag = diag::warn_objc_pointer_masking;
14477     // Determine if we are introspecting the result of performSelectorXXX.
14478     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
14479     // Special case messages to -performSelector and friends, which
14480     // can return non-pointer values boxed in a pointer value.
14481     // Some clients may wish to silence warnings in this subcase.
14482     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
14483       Selector S = ME->getSelector();
14484       StringRef SelArg0 = S.getNameForSlot(0);
14485       if (SelArg0.starts_with("performSelector"))
14486         Diag = diag::warn_objc_pointer_masking_performSelector;
14487     }
14488 
14489     S.Diag(OpLoc, Diag)
14490       << ObjCPointerExpr->getSourceRange();
14491   }
14492 }
14493 
14494 static NamedDecl *getDeclFromExpr(Expr *E) {
14495   if (!E)
14496     return nullptr;
14497   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
14498     return DRE->getDecl();
14499   if (auto *ME = dyn_cast<MemberExpr>(E))
14500     return ME->getMemberDecl();
14501   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
14502     return IRE->getDecl();
14503   return nullptr;
14504 }
14505 
14506 // This helper function promotes a binary operator's operands (which are of a
14507 // half vector type) to a vector of floats and then truncates the result to
14508 // a vector of either half or short.
14509 static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
14510                                       BinaryOperatorKind Opc, QualType ResultTy,
14511                                       ExprValueKind VK, ExprObjectKind OK,
14512                                       bool IsCompAssign, SourceLocation OpLoc,
14513                                       FPOptionsOverride FPFeatures) {
14514   auto &Context = S.getASTContext();
14515   assert((isVector(ResultTy, Context.HalfTy) ||
14516           isVector(ResultTy, Context.ShortTy)) &&
14517          "Result must be a vector of half or short");
14518   assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
14519          isVector(RHS.get()->getType(), Context.HalfTy) &&
14520          "both operands expected to be a half vector");
14521 
14522   RHS = convertVector(RHS.get(), Context.FloatTy, S);
14523   QualType BinOpResTy = RHS.get()->getType();
14524 
14525   // If Opc is a comparison, ResultType is a vector of shorts. In that case,
14526   // change BinOpResTy to a vector of ints.
14527   if (isVector(ResultTy, Context.ShortTy))
14528     BinOpResTy = S.GetSignedVectorType(BinOpResTy);
14529 
14530   if (IsCompAssign)
14531     return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14532                                           ResultTy, VK, OK, OpLoc, FPFeatures,
14533                                           BinOpResTy, BinOpResTy);
14534 
14535   LHS = convertVector(LHS.get(), Context.FloatTy, S);
14536   auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
14537                                     BinOpResTy, VK, OK, OpLoc, FPFeatures);
14538   return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
14539 }
14540 
14541 static std::pair<ExprResult, ExprResult>
14542 CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
14543                            Expr *RHSExpr) {
14544   ExprResult LHS = LHSExpr, RHS = RHSExpr;
14545   if (!S.Context.isDependenceAllowed()) {
14546     // C cannot handle TypoExpr nodes on either side of a binop because it
14547     // doesn't handle dependent types properly, so make sure any TypoExprs have
14548     // been dealt with before checking the operands.
14549     LHS = S.CorrectDelayedTyposInExpr(LHS);
14550     RHS = S.CorrectDelayedTyposInExpr(
14551         RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
14552         [Opc, LHS](Expr *E) {
14553           if (Opc != BO_Assign)
14554             return ExprResult(E);
14555           // Avoid correcting the RHS to the same Expr as the LHS.
14556           Decl *D = getDeclFromExpr(E);
14557           return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
14558         });
14559   }
14560   return std::make_pair(LHS, RHS);
14561 }
14562 
14563 /// Returns true if conversion between vectors of halfs and vectors of floats
14564 /// is needed.
14565 static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
14566                                      Expr *E0, Expr *E1 = nullptr) {
14567   if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
14568       Ctx.getTargetInfo().useFP16ConversionIntrinsics())
14569     return false;
14570 
14571   auto HasVectorOfHalfType = [&Ctx](Expr *E) {
14572     QualType Ty = E->IgnoreImplicit()->getType();
14573 
14574     // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
14575     // to vectors of floats. Although the element type of the vectors is __fp16,
14576     // the vectors shouldn't be treated as storage-only types. See the
14577     // discussion here: https://reviews.llvm.org/rG825235c140e7
14578     if (const VectorType *VT = Ty->getAs<VectorType>()) {
14579       if (VT->getVectorKind() == VectorKind::Neon)
14580         return false;
14581       return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
14582     }
14583     return false;
14584   };
14585 
14586   return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
14587 }
14588 
14589 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
14590                                     BinaryOperatorKind Opc,
14591                                     Expr *LHSExpr, Expr *RHSExpr) {
14592   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
14593     // The syntax only allows initializer lists on the RHS of assignment,
14594     // so we don't need to worry about accepting invalid code for
14595     // non-assignment operators.
14596     // C++11 5.17p9:
14597     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
14598     //   of x = {} is x = T().
14599     InitializationKind Kind = InitializationKind::CreateDirectList(
14600         RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14601     InitializedEntity Entity =
14602         InitializedEntity::InitializeTemporary(LHSExpr->getType());
14603     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
14604     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
14605     if (Init.isInvalid())
14606       return Init;
14607     RHSExpr = Init.get();
14608   }
14609 
14610   ExprResult LHS = LHSExpr, RHS = RHSExpr;
14611   QualType ResultTy;     // Result type of the binary operator.
14612   // The following two variables are used for compound assignment operators
14613   QualType CompLHSTy;    // Type of LHS after promotions for computation
14614   QualType CompResultTy; // Type of computation result
14615   ExprValueKind VK = VK_PRValue;
14616   ExprObjectKind OK = OK_Ordinary;
14617   bool ConvertHalfVec = false;
14618 
14619   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14620   if (!LHS.isUsable() || !RHS.isUsable())
14621     return ExprError();
14622 
14623   if (getLangOpts().OpenCL) {
14624     QualType LHSTy = LHSExpr->getType();
14625     QualType RHSTy = RHSExpr->getType();
14626     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
14627     // the ATOMIC_VAR_INIT macro.
14628     if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
14629       SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14630       if (BO_Assign == Opc)
14631         Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
14632       else
14633         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14634       return ExprError();
14635     }
14636 
14637     // OpenCL special types - image, sampler, pipe, and blocks are to be used
14638     // only with a builtin functions and therefore should be disallowed here.
14639     if (LHSTy->isImageType() || RHSTy->isImageType() ||
14640         LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
14641         LHSTy->isPipeType() || RHSTy->isPipeType() ||
14642         LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
14643       ResultTy = InvalidOperands(OpLoc, LHS, RHS);
14644       return ExprError();
14645     }
14646   }
14647 
14648   checkTypeSupport(LHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14649   checkTypeSupport(RHSExpr->getType(), OpLoc, /*ValueDecl*/ nullptr);
14650 
14651   switch (Opc) {
14652   case BO_Assign:
14653     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType(), Opc);
14654     if (getLangOpts().CPlusPlus &&
14655         LHS.get()->getObjectKind() != OK_ObjCProperty) {
14656       VK = LHS.get()->getValueKind();
14657       OK = LHS.get()->getObjectKind();
14658     }
14659     if (!ResultTy.isNull()) {
14660       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14661       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
14662 
14663       // Avoid copying a block to the heap if the block is assigned to a local
14664       // auto variable that is declared in the same scope as the block. This
14665       // optimization is unsafe if the local variable is declared in an outer
14666       // scope. For example:
14667       //
14668       // BlockTy b;
14669       // {
14670       //   b = ^{...};
14671       // }
14672       // // It is unsafe to invoke the block here if it wasn't copied to the
14673       // // heap.
14674       // b();
14675 
14676       if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
14677         if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
14678           if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
14679             if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
14680               BE->getBlockDecl()->setCanAvoidCopyToHeap();
14681 
14682       if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
14683         checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
14684                               NTCUC_Assignment, NTCUK_Copy);
14685     }
14686     RecordModifiableNonNullParam(*this, LHS.get());
14687     break;
14688   case BO_PtrMemD:
14689   case BO_PtrMemI:
14690     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
14691                                             Opc == BO_PtrMemI);
14692     break;
14693   case BO_Mul:
14694   case BO_Div:
14695     ConvertHalfVec = true;
14696     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
14697                                            Opc == BO_Div);
14698     break;
14699   case BO_Rem:
14700     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
14701     break;
14702   case BO_Add:
14703     ConvertHalfVec = true;
14704     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
14705     break;
14706   case BO_Sub:
14707     ConvertHalfVec = true;
14708     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
14709     break;
14710   case BO_Shl:
14711   case BO_Shr:
14712     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
14713     break;
14714   case BO_LE:
14715   case BO_LT:
14716   case BO_GE:
14717   case BO_GT:
14718     ConvertHalfVec = true;
14719     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14720 
14721     if (const auto *BI = dyn_cast<BinaryOperator>(LHSExpr);
14722         BI && BI->isComparisonOp())
14723       Diag(OpLoc, diag::warn_consecutive_comparison);
14724 
14725     break;
14726   case BO_EQ:
14727   case BO_NE:
14728     ConvertHalfVec = true;
14729     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14730     break;
14731   case BO_Cmp:
14732     ConvertHalfVec = true;
14733     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
14734     assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
14735     break;
14736   case BO_And:
14737     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
14738     [[fallthrough]];
14739   case BO_Xor:
14740   case BO_Or:
14741     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14742     break;
14743   case BO_LAnd:
14744   case BO_LOr:
14745     ConvertHalfVec = true;
14746     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
14747     break;
14748   case BO_MulAssign:
14749   case BO_DivAssign:
14750     ConvertHalfVec = true;
14751     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
14752                                                Opc == BO_DivAssign);
14753     CompLHSTy = CompResultTy;
14754     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14755       ResultTy =
14756           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14757     break;
14758   case BO_RemAssign:
14759     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
14760     CompLHSTy = CompResultTy;
14761     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14762       ResultTy =
14763           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14764     break;
14765   case BO_AddAssign:
14766     ConvertHalfVec = true;
14767     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
14768     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14769       ResultTy =
14770           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14771     break;
14772   case BO_SubAssign:
14773     ConvertHalfVec = true;
14774     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
14775     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14776       ResultTy =
14777           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14778     break;
14779   case BO_ShlAssign:
14780   case BO_ShrAssign:
14781     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
14782     CompLHSTy = CompResultTy;
14783     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14784       ResultTy =
14785           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14786     break;
14787   case BO_AndAssign:
14788   case BO_OrAssign: // fallthrough
14789     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14790     [[fallthrough]];
14791   case BO_XorAssign:
14792     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14793     CompLHSTy = CompResultTy;
14794     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14795       ResultTy =
14796           CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy, Opc);
14797     break;
14798   case BO_Comma:
14799     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
14800     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
14801       VK = RHS.get()->getValueKind();
14802       OK = RHS.get()->getObjectKind();
14803     }
14804     break;
14805   }
14806   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
14807     return ExprError();
14808 
14809   // Some of the binary operations require promoting operands of half vector to
14810   // float vectors and truncating the result back to half vector. For now, we do
14811   // this only when HalfArgsAndReturn is set (that is, when the target is arm or
14812   // arm64).
14813   assert(
14814       (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
14815                               isVector(LHS.get()->getType(), Context.HalfTy)) &&
14816       "both sides are half vectors or neither sides are");
14817   ConvertHalfVec =
14818       needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
14819 
14820   // Check for array bounds violations for both sides of the BinaryOperator
14821   CheckArrayAccess(LHS.get());
14822   CheckArrayAccess(RHS.get());
14823 
14824   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
14825     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
14826                                                  &Context.Idents.get("object_setClass"),
14827                                                  SourceLocation(), LookupOrdinaryName);
14828     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
14829       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
14830       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
14831           << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
14832                                         "object_setClass(")
14833           << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
14834                                           ",")
14835           << FixItHint::CreateInsertion(RHSLocEnd, ")");
14836     }
14837     else
14838       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
14839   }
14840   else if (const ObjCIvarRefExpr *OIRE =
14841            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
14842     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
14843 
14844   // Opc is not a compound assignment if CompResultTy is null.
14845   if (CompResultTy.isNull()) {
14846     if (ConvertHalfVec)
14847       return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
14848                                  OpLoc, CurFPFeatureOverrides());
14849     return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
14850                                   VK, OK, OpLoc, CurFPFeatureOverrides());
14851   }
14852 
14853   // Handle compound assignments.
14854   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
14855       OK_ObjCProperty) {
14856     VK = VK_LValue;
14857     OK = LHS.get()->getObjectKind();
14858   }
14859 
14860   // The LHS is not converted to the result type for fixed-point compound
14861   // assignment as the common type is computed on demand. Reset the CompLHSTy
14862   // to the LHS type we would have gotten after unary conversions.
14863   if (CompResultTy->isFixedPointType())
14864     CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
14865 
14866   if (ConvertHalfVec)
14867     return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
14868                                OpLoc, CurFPFeatureOverrides());
14869 
14870   return CompoundAssignOperator::Create(
14871       Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
14872       CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
14873 }
14874 
14875 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
14876 /// operators are mixed in a way that suggests that the programmer forgot that
14877 /// comparison operators have higher precedence. The most typical example of
14878 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
14879 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
14880                                       SourceLocation OpLoc, Expr *LHSExpr,
14881                                       Expr *RHSExpr) {
14882   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
14883   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
14884 
14885   // Check that one of the sides is a comparison operator and the other isn't.
14886   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
14887   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
14888   if (isLeftComp == isRightComp)
14889     return;
14890 
14891   // Bitwise operations are sometimes used as eager logical ops.
14892   // Don't diagnose this.
14893   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
14894   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
14895   if (isLeftBitwise || isRightBitwise)
14896     return;
14897 
14898   SourceRange DiagRange = isLeftComp
14899                               ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
14900                               : SourceRange(OpLoc, RHSExpr->getEndLoc());
14901   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
14902   SourceRange ParensRange =
14903       isLeftComp
14904           ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
14905           : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
14906 
14907   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
14908     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
14909   SuggestParentheses(Self, OpLoc,
14910     Self.PDiag(diag::note_precedence_silence) << OpStr,
14911     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
14912   SuggestParentheses(Self, OpLoc,
14913     Self.PDiag(diag::note_precedence_bitwise_first)
14914       << BinaryOperator::getOpcodeStr(Opc),
14915     ParensRange);
14916 }
14917 
14918 /// It accepts a '&&' expr that is inside a '||' one.
14919 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
14920 /// in parentheses.
14921 static void
14922 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
14923                                        BinaryOperator *Bop) {
14924   assert(Bop->getOpcode() == BO_LAnd);
14925   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
14926       << Bop->getSourceRange() << OpLoc;
14927   SuggestParentheses(Self, Bop->getOperatorLoc(),
14928     Self.PDiag(diag::note_precedence_silence)
14929       << Bop->getOpcodeStr(),
14930     Bop->getSourceRange());
14931 }
14932 
14933 /// Look for '&&' in the left hand of a '||' expr.
14934 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
14935                                              Expr *LHSExpr, Expr *RHSExpr) {
14936   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
14937     if (Bop->getOpcode() == BO_LAnd) {
14938       // If it's "string_literal && a || b" don't warn since the precedence
14939       // doesn't matter.
14940       if (!isa<StringLiteral>(Bop->getLHS()->IgnoreParenImpCasts()))
14941         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14942     } else if (Bop->getOpcode() == BO_LOr) {
14943       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
14944         // If it's "a || b && string_literal || c" we didn't warn earlier for
14945         // "a || b && string_literal", but warn now.
14946         if (RBop->getOpcode() == BO_LAnd &&
14947             isa<StringLiteral>(RBop->getRHS()->IgnoreParenImpCasts()))
14948           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
14949       }
14950     }
14951   }
14952 }
14953 
14954 /// Look for '&&' in the right hand of a '||' expr.
14955 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
14956                                              Expr *LHSExpr, Expr *RHSExpr) {
14957   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
14958     if (Bop->getOpcode() == BO_LAnd) {
14959       // If it's "a || b && string_literal" don't warn since the precedence
14960       // doesn't matter.
14961       if (!isa<StringLiteral>(Bop->getRHS()->IgnoreParenImpCasts()))
14962         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14963     }
14964   }
14965 }
14966 
14967 /// Look for bitwise op in the left or right hand of a bitwise op with
14968 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
14969 /// the '&' expression in parentheses.
14970 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
14971                                          SourceLocation OpLoc, Expr *SubExpr) {
14972   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14973     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
14974       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
14975         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
14976         << Bop->getSourceRange() << OpLoc;
14977       SuggestParentheses(S, Bop->getOperatorLoc(),
14978         S.PDiag(diag::note_precedence_silence)
14979           << Bop->getOpcodeStr(),
14980         Bop->getSourceRange());
14981     }
14982   }
14983 }
14984 
14985 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
14986                                     Expr *SubExpr, StringRef Shift) {
14987   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14988     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
14989       StringRef Op = Bop->getOpcodeStr();
14990       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
14991           << Bop->getSourceRange() << OpLoc << Shift << Op;
14992       SuggestParentheses(S, Bop->getOperatorLoc(),
14993           S.PDiag(diag::note_precedence_silence) << Op,
14994           Bop->getSourceRange());
14995     }
14996   }
14997 }
14998 
14999 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15000                                  Expr *LHSExpr, Expr *RHSExpr) {
15001   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
15002   if (!OCE)
15003     return;
15004 
15005   FunctionDecl *FD = OCE->getDirectCallee();
15006   if (!FD || !FD->isOverloadedOperator())
15007     return;
15008 
15009   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
15010   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
15011     return;
15012 
15013   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
15014       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
15015       << (Kind == OO_LessLess);
15016   SuggestParentheses(S, OCE->getOperatorLoc(),
15017                      S.PDiag(diag::note_precedence_silence)
15018                          << (Kind == OO_LessLess ? "<<" : ">>"),
15019                      OCE->getSourceRange());
15020   SuggestParentheses(
15021       S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
15022       SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
15023 }
15024 
15025 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
15026 /// precedence.
15027 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
15028                                     SourceLocation OpLoc, Expr *LHSExpr,
15029                                     Expr *RHSExpr){
15030   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
15031   if (BinaryOperator::isBitwiseOp(Opc))
15032     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
15033 
15034   // Diagnose "arg1 & arg2 | arg3"
15035   if ((Opc == BO_Or || Opc == BO_Xor) &&
15036       !OpLoc.isMacroID()/* Don't warn in macros. */) {
15037     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
15038     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
15039   }
15040 
15041   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
15042   // We don't warn for 'assert(a || b && "bad")' since this is safe.
15043   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
15044     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
15045     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
15046   }
15047 
15048   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
15049       || Opc == BO_Shr) {
15050     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
15051     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
15052     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
15053   }
15054 
15055   // Warn on overloaded shift operators and comparisons, such as:
15056   // cout << 5 == 4;
15057   if (BinaryOperator::isComparisonOp(Opc))
15058     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
15059 }
15060 
15061 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
15062                             tok::TokenKind Kind,
15063                             Expr *LHSExpr, Expr *RHSExpr) {
15064   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
15065   assert(LHSExpr && "ActOnBinOp(): missing left expression");
15066   assert(RHSExpr && "ActOnBinOp(): missing right expression");
15067 
15068   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
15069   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
15070 
15071   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
15072 }
15073 
15074 void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
15075                        UnresolvedSetImpl &Functions) {
15076   OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
15077   if (OverOp != OO_None && OverOp != OO_Equal)
15078     LookupOverloadedOperatorName(OverOp, S, Functions);
15079 
15080   // In C++20 onwards, we may have a second operator to look up.
15081   if (getLangOpts().CPlusPlus20) {
15082     if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
15083       LookupOverloadedOperatorName(ExtraOp, S, Functions);
15084   }
15085 }
15086 
15087 /// Build an overloaded binary operator expression in the given scope.
15088 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
15089                                        BinaryOperatorKind Opc,
15090                                        Expr *LHS, Expr *RHS) {
15091   switch (Opc) {
15092   case BO_Assign:
15093     // In the non-overloaded case, we warn about self-assignment (x = x) for
15094     // both simple assignment and certain compound assignments where algebra
15095     // tells us the operation yields a constant result.  When the operator is
15096     // overloaded, we can't do the latter because we don't want to assume that
15097     // those algebraic identities still apply; for example, a path-building
15098     // library might use operator/= to append paths.  But it's still reasonable
15099     // to assume that simple assignment is just moving/copying values around
15100     // and so self-assignment is likely a bug.
15101     DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
15102     [[fallthrough]];
15103   case BO_DivAssign:
15104   case BO_RemAssign:
15105   case BO_SubAssign:
15106   case BO_AndAssign:
15107   case BO_OrAssign:
15108   case BO_XorAssign:
15109     CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
15110     break;
15111   default:
15112     break;
15113   }
15114 
15115   // Find all of the overloaded operators visible from this point.
15116   UnresolvedSet<16> Functions;
15117   S.LookupBinOp(Sc, OpLoc, Opc, Functions);
15118 
15119   // Build the (potentially-overloaded, potentially-dependent)
15120   // binary operation.
15121   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
15122 }
15123 
15124 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
15125                             BinaryOperatorKind Opc,
15126                             Expr *LHSExpr, Expr *RHSExpr) {
15127   ExprResult LHS, RHS;
15128   std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
15129   if (!LHS.isUsable() || !RHS.isUsable())
15130     return ExprError();
15131   LHSExpr = LHS.get();
15132   RHSExpr = RHS.get();
15133 
15134   // We want to end up calling one of SemaPseudoObject::checkAssignment
15135   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
15136   // both expressions are overloadable or either is type-dependent),
15137   // or CreateBuiltinBinOp (in any other case).  We also want to get
15138   // any placeholder types out of the way.
15139 
15140   // Handle pseudo-objects in the LHS.
15141   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
15142     // Assignments with a pseudo-object l-value need special analysis.
15143     if (pty->getKind() == BuiltinType::PseudoObject &&
15144         BinaryOperator::isAssignmentOp(Opc))
15145       return PseudoObject().checkAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
15146 
15147     // Don't resolve overloads if the other type is overloadable.
15148     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
15149       // We can't actually test that if we still have a placeholder,
15150       // though.  Fortunately, none of the exceptions we see in that
15151       // code below are valid when the LHS is an overload set.  Note
15152       // that an overload set can be dependently-typed, but it never
15153       // instantiates to having an overloadable type.
15154       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15155       if (resolvedRHS.isInvalid()) return ExprError();
15156       RHSExpr = resolvedRHS.get();
15157 
15158       if (RHSExpr->isTypeDependent() ||
15159           RHSExpr->getType()->isOverloadableType())
15160         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15161     }
15162 
15163     // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
15164     // template, diagnose the missing 'template' keyword instead of diagnosing
15165     // an invalid use of a bound member function.
15166     //
15167     // Note that "A::x < b" might be valid if 'b' has an overloadable type due
15168     // to C++1z [over.over]/1.4, but we already checked for that case above.
15169     if (Opc == BO_LT && inTemplateInstantiation() &&
15170         (pty->getKind() == BuiltinType::BoundMember ||
15171          pty->getKind() == BuiltinType::Overload)) {
15172       auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
15173       if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
15174           llvm::any_of(OE->decls(), [](NamedDecl *ND) {
15175             return isa<FunctionTemplateDecl>(ND);
15176           })) {
15177         Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
15178                                 : OE->getNameLoc(),
15179              diag::err_template_kw_missing)
15180           << OE->getName().getAsString() << "";
15181         return ExprError();
15182       }
15183     }
15184 
15185     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
15186     if (LHS.isInvalid()) return ExprError();
15187     LHSExpr = LHS.get();
15188   }
15189 
15190   // Handle pseudo-objects in the RHS.
15191   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
15192     // An overload in the RHS can potentially be resolved by the type
15193     // being assigned to.
15194     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
15195       if (getLangOpts().CPlusPlus &&
15196           (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15197            LHSExpr->getType()->isOverloadableType()))
15198         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15199 
15200       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15201     }
15202 
15203     // Don't resolve overloads if the other type is overloadable.
15204     if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
15205         LHSExpr->getType()->isOverloadableType())
15206       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15207 
15208     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
15209     if (!resolvedRHS.isUsable()) return ExprError();
15210     RHSExpr = resolvedRHS.get();
15211   }
15212 
15213   if (getLangOpts().CPlusPlus) {
15214     // Otherwise, build an overloaded op if either expression is type-dependent
15215     // or has an overloadable type.
15216     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15217         LHSExpr->getType()->isOverloadableType() ||
15218         RHSExpr->getType()->isOverloadableType())
15219       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
15220   }
15221 
15222   if (getLangOpts().RecoveryAST &&
15223       (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
15224     assert(!getLangOpts().CPlusPlus);
15225     assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
15226            "Should only occur in error-recovery path.");
15227     if (BinaryOperator::isCompoundAssignmentOp(Opc))
15228       // C [6.15.16] p3:
15229       // An assignment expression has the value of the left operand after the
15230       // assignment, but is not an lvalue.
15231       return CompoundAssignOperator::Create(
15232           Context, LHSExpr, RHSExpr, Opc,
15233           LHSExpr->getType().getUnqualifiedType(), VK_PRValue, OK_Ordinary,
15234           OpLoc, CurFPFeatureOverrides());
15235     QualType ResultType;
15236     switch (Opc) {
15237     case BO_Assign:
15238       ResultType = LHSExpr->getType().getUnqualifiedType();
15239       break;
15240     case BO_LT:
15241     case BO_GT:
15242     case BO_LE:
15243     case BO_GE:
15244     case BO_EQ:
15245     case BO_NE:
15246     case BO_LAnd:
15247     case BO_LOr:
15248       // These operators have a fixed result type regardless of operands.
15249       ResultType = Context.IntTy;
15250       break;
15251     case BO_Comma:
15252       ResultType = RHSExpr->getType();
15253       break;
15254     default:
15255       ResultType = Context.DependentTy;
15256       break;
15257     }
15258     return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
15259                                   VK_PRValue, OK_Ordinary, OpLoc,
15260                                   CurFPFeatureOverrides());
15261   }
15262 
15263   // Build a built-in binary operation.
15264   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15265 }
15266 
15267 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
15268   if (T.isNull() || T->isDependentType())
15269     return false;
15270 
15271   if (!Ctx.isPromotableIntegerType(T))
15272     return true;
15273 
15274   return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
15275 }
15276 
15277 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
15278                                       UnaryOperatorKind Opc, Expr *InputExpr,
15279                                       bool IsAfterAmp) {
15280   ExprResult Input = InputExpr;
15281   ExprValueKind VK = VK_PRValue;
15282   ExprObjectKind OK = OK_Ordinary;
15283   QualType resultType;
15284   bool CanOverflow = false;
15285 
15286   bool ConvertHalfVec = false;
15287   if (getLangOpts().OpenCL) {
15288     QualType Ty = InputExpr->getType();
15289     // The only legal unary operation for atomics is '&'.
15290     if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
15291     // OpenCL special types - image, sampler, pipe, and blocks are to be used
15292     // only with a builtin functions and therefore should be disallowed here.
15293         (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
15294         || Ty->isBlockPointerType())) {
15295       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15296                        << InputExpr->getType()
15297                        << Input.get()->getSourceRange());
15298     }
15299   }
15300 
15301   if (getLangOpts().HLSL && OpLoc.isValid()) {
15302     if (Opc == UO_AddrOf)
15303       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 0);
15304     if (Opc == UO_Deref)
15305       return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 1);
15306   }
15307 
15308   if (InputExpr->isTypeDependent() &&
15309       InputExpr->getType()->isSpecificBuiltinType(BuiltinType::Dependent)) {
15310     resultType = Context.DependentTy;
15311   } else {
15312     switch (Opc) {
15313     case UO_PreInc:
15314     case UO_PreDec:
15315     case UO_PostInc:
15316     case UO_PostDec:
15317       resultType =
15318           CheckIncrementDecrementOperand(*this, Input.get(), VK, OK, OpLoc,
15319                                          Opc == UO_PreInc || Opc == UO_PostInc,
15320                                          Opc == UO_PreInc || Opc == UO_PreDec);
15321       CanOverflow = isOverflowingIntegerType(Context, resultType);
15322       break;
15323     case UO_AddrOf:
15324       resultType = CheckAddressOfOperand(Input, OpLoc);
15325       CheckAddressOfNoDeref(InputExpr);
15326       RecordModifiableNonNullParam(*this, InputExpr);
15327       break;
15328     case UO_Deref: {
15329       Input = DefaultFunctionArrayLvalueConversion(Input.get());
15330       if (Input.isInvalid())
15331         return ExprError();
15332       resultType =
15333           CheckIndirectionOperand(*this, Input.get(), VK, OpLoc, IsAfterAmp);
15334       break;
15335     }
15336     case UO_Plus:
15337     case UO_Minus:
15338       CanOverflow = Opc == UO_Minus &&
15339                     isOverflowingIntegerType(Context, Input.get()->getType());
15340       Input = UsualUnaryConversions(Input.get());
15341       if (Input.isInvalid())
15342         return ExprError();
15343       // Unary plus and minus require promoting an operand of half vector to a
15344       // float vector and truncating the result back to a half vector. For now,
15345       // we do this only when HalfArgsAndReturns is set (that is, when the
15346       // target is arm or arm64).
15347       ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
15348 
15349       // If the operand is a half vector, promote it to a float vector.
15350       if (ConvertHalfVec)
15351         Input = convertVector(Input.get(), Context.FloatTy, *this);
15352       resultType = Input.get()->getType();
15353       if (resultType->isArithmeticType()) // C99 6.5.3.3p1
15354         break;
15355       else if (resultType->isVectorType() &&
15356                // The z vector extensions don't allow + or - with bool vectors.
15357                (!Context.getLangOpts().ZVector ||
15358                 resultType->castAs<VectorType>()->getVectorKind() !=
15359                     VectorKind::AltiVecBool))
15360         break;
15361       else if (resultType->isSveVLSBuiltinType()) // SVE vectors allow + and -
15362         break;
15363       else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
15364                Opc == UO_Plus && resultType->isPointerType())
15365         break;
15366 
15367       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15368                        << resultType << Input.get()->getSourceRange());
15369 
15370     case UO_Not: // bitwise complement
15371       Input = UsualUnaryConversions(Input.get());
15372       if (Input.isInvalid())
15373         return ExprError();
15374       resultType = Input.get()->getType();
15375       // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
15376       if (resultType->isComplexType() || resultType->isComplexIntegerType())
15377         // C99 does not support '~' for complex conjugation.
15378         Diag(OpLoc, diag::ext_integer_complement_complex)
15379             << resultType << Input.get()->getSourceRange();
15380       else if (resultType->hasIntegerRepresentation())
15381         break;
15382       else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
15383         // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
15384         // on vector float types.
15385         QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15386         if (!T->isIntegerType())
15387           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15388                            << resultType << Input.get()->getSourceRange());
15389       } else {
15390         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15391                          << resultType << Input.get()->getSourceRange());
15392       }
15393       break;
15394 
15395     case UO_LNot: // logical negation
15396       // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
15397       Input = DefaultFunctionArrayLvalueConversion(Input.get());
15398       if (Input.isInvalid())
15399         return ExprError();
15400       resultType = Input.get()->getType();
15401 
15402       // Though we still have to promote half FP to float...
15403       if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
15404         Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast)
15405                     .get();
15406         resultType = Context.FloatTy;
15407       }
15408 
15409       // WebAsembly tables can't be used in unary expressions.
15410       if (resultType->isPointerType() &&
15411           resultType->getPointeeType().isWebAssemblyReferenceType()) {
15412         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15413                          << resultType << Input.get()->getSourceRange());
15414       }
15415 
15416       if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
15417         // C99 6.5.3.3p1: ok, fallthrough;
15418         if (Context.getLangOpts().CPlusPlus) {
15419           // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
15420           // operand contextually converted to bool.
15421           Input = ImpCastExprToType(Input.get(), Context.BoolTy,
15422                                     ScalarTypeToBooleanCastKind(resultType));
15423         } else if (Context.getLangOpts().OpenCL &&
15424                    Context.getLangOpts().OpenCLVersion < 120) {
15425           // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15426           // operate on scalar float types.
15427           if (!resultType->isIntegerType() && !resultType->isPointerType())
15428             return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15429                              << resultType << Input.get()->getSourceRange());
15430         }
15431       } else if (resultType->isExtVectorType()) {
15432         if (Context.getLangOpts().OpenCL &&
15433             Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
15434           // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15435           // operate on vector float types.
15436           QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15437           if (!T->isIntegerType())
15438             return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15439                              << resultType << Input.get()->getSourceRange());
15440         }
15441         // Vector logical not returns the signed variant of the operand type.
15442         resultType = GetSignedVectorType(resultType);
15443         break;
15444       } else if (Context.getLangOpts().CPlusPlus &&
15445                  resultType->isVectorType()) {
15446         const VectorType *VTy = resultType->castAs<VectorType>();
15447         if (VTy->getVectorKind() != VectorKind::Generic)
15448           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15449                            << resultType << Input.get()->getSourceRange());
15450 
15451         // Vector logical not returns the signed variant of the operand type.
15452         resultType = GetSignedVectorType(resultType);
15453         break;
15454       } else {
15455         return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
15456                          << resultType << Input.get()->getSourceRange());
15457       }
15458 
15459       // LNot always has type int. C99 6.5.3.3p5.
15460       // In C++, it's bool. C++ 5.3.1p8
15461       resultType = Context.getLogicalOperationType();
15462       break;
15463     case UO_Real:
15464     case UO_Imag:
15465       resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
15466       // _Real maps ordinary l-values into ordinary l-values. _Imag maps
15467       // ordinary complex l-values to ordinary l-values and all other values to
15468       // r-values.
15469       if (Input.isInvalid())
15470         return ExprError();
15471       if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
15472         if (Input.get()->isGLValue() &&
15473             Input.get()->getObjectKind() == OK_Ordinary)
15474           VK = Input.get()->getValueKind();
15475       } else if (!getLangOpts().CPlusPlus) {
15476         // In C, a volatile scalar is read by __imag. In C++, it is not.
15477         Input = DefaultLvalueConversion(Input.get());
15478       }
15479       break;
15480     case UO_Extension:
15481       resultType = Input.get()->getType();
15482       VK = Input.get()->getValueKind();
15483       OK = Input.get()->getObjectKind();
15484       break;
15485     case UO_Coawait:
15486       // It's unnecessary to represent the pass-through operator co_await in the
15487       // AST; just return the input expression instead.
15488       assert(!Input.get()->getType()->isDependentType() &&
15489              "the co_await expression must be non-dependant before "
15490              "building operator co_await");
15491       return Input;
15492     }
15493   }
15494   if (resultType.isNull() || Input.isInvalid())
15495     return ExprError();
15496 
15497   // Check for array bounds violations in the operand of the UnaryOperator,
15498   // except for the '*' and '&' operators that have to be handled specially
15499   // by CheckArrayAccess (as there are special cases like &array[arraysize]
15500   // that are explicitly defined as valid by the standard).
15501   if (Opc != UO_AddrOf && Opc != UO_Deref)
15502     CheckArrayAccess(Input.get());
15503 
15504   auto *UO =
15505       UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
15506                             OpLoc, CanOverflow, CurFPFeatureOverrides());
15507 
15508   if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
15509       !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
15510       !isUnevaluatedContext())
15511     ExprEvalContexts.back().PossibleDerefs.insert(UO);
15512 
15513   // Convert the result back to a half vector.
15514   if (ConvertHalfVec)
15515     return convertVector(UO, Context.HalfTy, *this);
15516   return UO;
15517 }
15518 
15519 bool Sema::isQualifiedMemberAccess(Expr *E) {
15520   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
15521     if (!DRE->getQualifier())
15522       return false;
15523 
15524     ValueDecl *VD = DRE->getDecl();
15525     if (!VD->isCXXClassMember())
15526       return false;
15527 
15528     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
15529       return true;
15530     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
15531       return Method->isImplicitObjectMemberFunction();
15532 
15533     return false;
15534   }
15535 
15536   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
15537     if (!ULE->getQualifier())
15538       return false;
15539 
15540     for (NamedDecl *D : ULE->decls()) {
15541       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
15542         if (Method->isImplicitObjectMemberFunction())
15543           return true;
15544       } else {
15545         // Overload set does not contain methods.
15546         break;
15547       }
15548     }
15549 
15550     return false;
15551   }
15552 
15553   return false;
15554 }
15555 
15556 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
15557                               UnaryOperatorKind Opc, Expr *Input,
15558                               bool IsAfterAmp) {
15559   // First things first: handle placeholders so that the
15560   // overloaded-operator check considers the right type.
15561   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
15562     // Increment and decrement of pseudo-object references.
15563     if (pty->getKind() == BuiltinType::PseudoObject &&
15564         UnaryOperator::isIncrementDecrementOp(Opc))
15565       return PseudoObject().checkIncDec(S, OpLoc, Opc, Input);
15566 
15567     // extension is always a builtin operator.
15568     if (Opc == UO_Extension)
15569       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15570 
15571     // & gets special logic for several kinds of placeholder.
15572     // The builtin code knows what to do.
15573     if (Opc == UO_AddrOf &&
15574         (pty->getKind() == BuiltinType::Overload ||
15575          pty->getKind() == BuiltinType::UnknownAny ||
15576          pty->getKind() == BuiltinType::BoundMember))
15577       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
15578 
15579     // Anything else needs to be handled now.
15580     ExprResult Result = CheckPlaceholderExpr(Input);
15581     if (Result.isInvalid()) return ExprError();
15582     Input = Result.get();
15583   }
15584 
15585   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
15586       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
15587       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
15588     // Find all of the overloaded operators visible from this point.
15589     UnresolvedSet<16> Functions;
15590     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
15591     if (S && OverOp != OO_None)
15592       LookupOverloadedOperatorName(OverOp, S, Functions);
15593 
15594     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
15595   }
15596 
15597   return CreateBuiltinUnaryOp(OpLoc, Opc, Input, IsAfterAmp);
15598 }
15599 
15600 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
15601                               Expr *Input, bool IsAfterAmp) {
15602   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input,
15603                       IsAfterAmp);
15604 }
15605 
15606 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
15607                                 LabelDecl *TheDecl) {
15608   TheDecl->markUsed(Context);
15609   // Create the AST node.  The address of a label always has type 'void*'.
15610   auto *Res = new (Context) AddrLabelExpr(
15611       OpLoc, LabLoc, TheDecl, Context.getPointerType(Context.VoidTy));
15612 
15613   if (getCurFunction())
15614     getCurFunction()->AddrLabels.push_back(Res);
15615 
15616   return Res;
15617 }
15618 
15619 void Sema::ActOnStartStmtExpr() {
15620   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
15621   // Make sure we diagnose jumping into a statement expression.
15622   setFunctionHasBranchProtectedScope();
15623 }
15624 
15625 void Sema::ActOnStmtExprError() {
15626   // Note that function is also called by TreeTransform when leaving a
15627   // StmtExpr scope without rebuilding anything.
15628 
15629   DiscardCleanupsInEvaluationContext();
15630   PopExpressionEvaluationContext();
15631 }
15632 
15633 ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
15634                                SourceLocation RPLoc) {
15635   return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
15636 }
15637 
15638 ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
15639                                SourceLocation RPLoc, unsigned TemplateDepth) {
15640   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
15641   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
15642 
15643   if (hasAnyUnrecoverableErrorsInThisFunction())
15644     DiscardCleanupsInEvaluationContext();
15645   assert(!Cleanup.exprNeedsCleanups() &&
15646          "cleanups within StmtExpr not correctly bound!");
15647   PopExpressionEvaluationContext();
15648 
15649   // FIXME: there are a variety of strange constraints to enforce here, for
15650   // example, it is not possible to goto into a stmt expression apparently.
15651   // More semantic analysis is needed.
15652 
15653   // If there are sub-stmts in the compound stmt, take the type of the last one
15654   // as the type of the stmtexpr.
15655   QualType Ty = Context.VoidTy;
15656   bool StmtExprMayBindToTemp = false;
15657   if (!Compound->body_empty()) {
15658     // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
15659     if (const auto *LastStmt =
15660             dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
15661       if (const Expr *Value = LastStmt->getExprStmt()) {
15662         StmtExprMayBindToTemp = true;
15663         Ty = Value->getType();
15664       }
15665     }
15666   }
15667 
15668   // FIXME: Check that expression type is complete/non-abstract; statement
15669   // expressions are not lvalues.
15670   Expr *ResStmtExpr =
15671       new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
15672   if (StmtExprMayBindToTemp)
15673     return MaybeBindToTemporary(ResStmtExpr);
15674   return ResStmtExpr;
15675 }
15676 
15677 ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
15678   if (ER.isInvalid())
15679     return ExprError();
15680 
15681   // Do function/array conversion on the last expression, but not
15682   // lvalue-to-rvalue.  However, initialize an unqualified type.
15683   ER = DefaultFunctionArrayConversion(ER.get());
15684   if (ER.isInvalid())
15685     return ExprError();
15686   Expr *E = ER.get();
15687 
15688   if (E->isTypeDependent())
15689     return E;
15690 
15691   // In ARC, if the final expression ends in a consume, splice
15692   // the consume out and bind it later.  In the alternate case
15693   // (when dealing with a retainable type), the result
15694   // initialization will create a produce.  In both cases the
15695   // result will be +1, and we'll need to balance that out with
15696   // a bind.
15697   auto *Cast = dyn_cast<ImplicitCastExpr>(E);
15698   if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
15699     return Cast->getSubExpr();
15700 
15701   // FIXME: Provide a better location for the initialization.
15702   return PerformCopyInitialization(
15703       InitializedEntity::InitializeStmtExprResult(
15704           E->getBeginLoc(), E->getType().getUnqualifiedType()),
15705       SourceLocation(), E);
15706 }
15707 
15708 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
15709                                       TypeSourceInfo *TInfo,
15710                                       ArrayRef<OffsetOfComponent> Components,
15711                                       SourceLocation RParenLoc) {
15712   QualType ArgTy = TInfo->getType();
15713   bool Dependent = ArgTy->isDependentType();
15714   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
15715 
15716   // We must have at least one component that refers to the type, and the first
15717   // one is known to be a field designator.  Verify that the ArgTy represents
15718   // a struct/union/class.
15719   if (!Dependent && !ArgTy->isRecordType())
15720     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
15721                        << ArgTy << TypeRange);
15722 
15723   // Type must be complete per C99 7.17p3 because a declaring a variable
15724   // with an incomplete type would be ill-formed.
15725   if (!Dependent
15726       && RequireCompleteType(BuiltinLoc, ArgTy,
15727                              diag::err_offsetof_incomplete_type, TypeRange))
15728     return ExprError();
15729 
15730   bool DidWarnAboutNonPOD = false;
15731   QualType CurrentType = ArgTy;
15732   SmallVector<OffsetOfNode, 4> Comps;
15733   SmallVector<Expr*, 4> Exprs;
15734   for (const OffsetOfComponent &OC : Components) {
15735     if (OC.isBrackets) {
15736       // Offset of an array sub-field.  TODO: Should we allow vector elements?
15737       if (!CurrentType->isDependentType()) {
15738         const ArrayType *AT = Context.getAsArrayType(CurrentType);
15739         if(!AT)
15740           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
15741                            << CurrentType);
15742         CurrentType = AT->getElementType();
15743       } else
15744         CurrentType = Context.DependentTy;
15745 
15746       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
15747       if (IdxRval.isInvalid())
15748         return ExprError();
15749       Expr *Idx = IdxRval.get();
15750 
15751       // The expression must be an integral expression.
15752       // FIXME: An integral constant expression?
15753       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
15754           !Idx->getType()->isIntegerType())
15755         return ExprError(
15756             Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
15757             << Idx->getSourceRange());
15758 
15759       // Record this array index.
15760       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
15761       Exprs.push_back(Idx);
15762       continue;
15763     }
15764 
15765     // Offset of a field.
15766     if (CurrentType->isDependentType()) {
15767       // We have the offset of a field, but we can't look into the dependent
15768       // type. Just record the identifier of the field.
15769       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
15770       CurrentType = Context.DependentTy;
15771       continue;
15772     }
15773 
15774     // We need to have a complete type to look into.
15775     if (RequireCompleteType(OC.LocStart, CurrentType,
15776                             diag::err_offsetof_incomplete_type))
15777       return ExprError();
15778 
15779     // Look for the designated field.
15780     const RecordType *RC = CurrentType->getAs<RecordType>();
15781     if (!RC)
15782       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
15783                        << CurrentType);
15784     RecordDecl *RD = RC->getDecl();
15785 
15786     // C++ [lib.support.types]p5:
15787     //   The macro offsetof accepts a restricted set of type arguments in this
15788     //   International Standard. type shall be a POD structure or a POD union
15789     //   (clause 9).
15790     // C++11 [support.types]p4:
15791     //   If type is not a standard-layout class (Clause 9), the results are
15792     //   undefined.
15793     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
15794       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
15795       unsigned DiagID =
15796         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
15797                             : diag::ext_offsetof_non_pod_type;
15798 
15799       if (!IsSafe && !DidWarnAboutNonPOD && !isUnevaluatedContext()) {
15800         Diag(BuiltinLoc, DiagID)
15801             << SourceRange(Components[0].LocStart, OC.LocEnd) << CurrentType;
15802         DidWarnAboutNonPOD = true;
15803       }
15804     }
15805 
15806     // Look for the field.
15807     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
15808     LookupQualifiedName(R, RD);
15809     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
15810     IndirectFieldDecl *IndirectMemberDecl = nullptr;
15811     if (!MemberDecl) {
15812       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
15813         MemberDecl = IndirectMemberDecl->getAnonField();
15814     }
15815 
15816     if (!MemberDecl) {
15817       // Lookup could be ambiguous when looking up a placeholder variable
15818       // __builtin_offsetof(S, _).
15819       // In that case we would already have emitted a diagnostic
15820       if (!R.isAmbiguous())
15821         Diag(BuiltinLoc, diag::err_no_member)
15822             << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd);
15823       return ExprError();
15824     }
15825 
15826     // C99 7.17p3:
15827     //   (If the specified member is a bit-field, the behavior is undefined.)
15828     //
15829     // We diagnose this as an error.
15830     if (MemberDecl->isBitField()) {
15831       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
15832         << MemberDecl->getDeclName()
15833         << SourceRange(BuiltinLoc, RParenLoc);
15834       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
15835       return ExprError();
15836     }
15837 
15838     RecordDecl *Parent = MemberDecl->getParent();
15839     if (IndirectMemberDecl)
15840       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
15841 
15842     // If the member was found in a base class, introduce OffsetOfNodes for
15843     // the base class indirections.
15844     CXXBasePaths Paths;
15845     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
15846                       Paths)) {
15847       if (Paths.getDetectedVirtual()) {
15848         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
15849           << MemberDecl->getDeclName()
15850           << SourceRange(BuiltinLoc, RParenLoc);
15851         return ExprError();
15852       }
15853 
15854       CXXBasePath &Path = Paths.front();
15855       for (const CXXBasePathElement &B : Path)
15856         Comps.push_back(OffsetOfNode(B.Base));
15857     }
15858 
15859     if (IndirectMemberDecl) {
15860       for (auto *FI : IndirectMemberDecl->chain()) {
15861         assert(isa<FieldDecl>(FI));
15862         Comps.push_back(OffsetOfNode(OC.LocStart,
15863                                      cast<FieldDecl>(FI), OC.LocEnd));
15864       }
15865     } else
15866       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
15867 
15868     CurrentType = MemberDecl->getType().getNonReferenceType();
15869   }
15870 
15871   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
15872                               Comps, Exprs, RParenLoc);
15873 }
15874 
15875 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
15876                                       SourceLocation BuiltinLoc,
15877                                       SourceLocation TypeLoc,
15878                                       ParsedType ParsedArgTy,
15879                                       ArrayRef<OffsetOfComponent> Components,
15880                                       SourceLocation RParenLoc) {
15881 
15882   TypeSourceInfo *ArgTInfo;
15883   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
15884   if (ArgTy.isNull())
15885     return ExprError();
15886 
15887   if (!ArgTInfo)
15888     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
15889 
15890   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
15891 }
15892 
15893 
15894 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
15895                                  Expr *CondExpr,
15896                                  Expr *LHSExpr, Expr *RHSExpr,
15897                                  SourceLocation RPLoc) {
15898   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
15899 
15900   ExprValueKind VK = VK_PRValue;
15901   ExprObjectKind OK = OK_Ordinary;
15902   QualType resType;
15903   bool CondIsTrue = false;
15904   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
15905     resType = Context.DependentTy;
15906   } else {
15907     // The conditional expression is required to be a constant expression.
15908     llvm::APSInt condEval(32);
15909     ExprResult CondICE = VerifyIntegerConstantExpression(
15910         CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
15911     if (CondICE.isInvalid())
15912       return ExprError();
15913     CondExpr = CondICE.get();
15914     CondIsTrue = condEval.getZExtValue();
15915 
15916     // If the condition is > zero, then the AST type is the same as the LHSExpr.
15917     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
15918 
15919     resType = ActiveExpr->getType();
15920     VK = ActiveExpr->getValueKind();
15921     OK = ActiveExpr->getObjectKind();
15922   }
15923 
15924   return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
15925                                   resType, VK, OK, RPLoc, CondIsTrue);
15926 }
15927 
15928 //===----------------------------------------------------------------------===//
15929 // Clang Extensions.
15930 //===----------------------------------------------------------------------===//
15931 
15932 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
15933   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
15934 
15935   if (LangOpts.CPlusPlus) {
15936     MangleNumberingContext *MCtx;
15937     Decl *ManglingContextDecl;
15938     std::tie(MCtx, ManglingContextDecl) =
15939         getCurrentMangleNumberContext(Block->getDeclContext());
15940     if (MCtx) {
15941       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
15942       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
15943     }
15944   }
15945 
15946   PushBlockScope(CurScope, Block);
15947   CurContext->addDecl(Block);
15948   if (CurScope)
15949     PushDeclContext(CurScope, Block);
15950   else
15951     CurContext = Block;
15952 
15953   getCurBlock()->HasImplicitReturnType = true;
15954 
15955   // Enter a new evaluation context to insulate the block from any
15956   // cleanups from the enclosing full-expression.
15957   PushExpressionEvaluationContext(
15958       ExpressionEvaluationContext::PotentiallyEvaluated);
15959 }
15960 
15961 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
15962                                Scope *CurScope) {
15963   assert(ParamInfo.getIdentifier() == nullptr &&
15964          "block-id should have no identifier!");
15965   assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
15966   BlockScopeInfo *CurBlock = getCurBlock();
15967 
15968   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo);
15969   QualType T = Sig->getType();
15970 
15971   // FIXME: We should allow unexpanded parameter packs here, but that would,
15972   // in turn, make the block expression contain unexpanded parameter packs.
15973   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
15974     // Drop the parameters.
15975     FunctionProtoType::ExtProtoInfo EPI;
15976     EPI.HasTrailingReturn = false;
15977     EPI.TypeQuals.addConst();
15978     T = Context.getFunctionType(Context.DependentTy, std::nullopt, EPI);
15979     Sig = Context.getTrivialTypeSourceInfo(T);
15980   }
15981 
15982   // GetTypeForDeclarator always produces a function type for a block
15983   // literal signature.  Furthermore, it is always a FunctionProtoType
15984   // unless the function was written with a typedef.
15985   assert(T->isFunctionType() &&
15986          "GetTypeForDeclarator made a non-function block signature");
15987 
15988   // Look for an explicit signature in that function type.
15989   FunctionProtoTypeLoc ExplicitSignature;
15990 
15991   if ((ExplicitSignature = Sig->getTypeLoc()
15992                                .getAsAdjusted<FunctionProtoTypeLoc>())) {
15993 
15994     // Check whether that explicit signature was synthesized by
15995     // GetTypeForDeclarator.  If so, don't save that as part of the
15996     // written signature.
15997     if (ExplicitSignature.getLocalRangeBegin() ==
15998         ExplicitSignature.getLocalRangeEnd()) {
15999       // This would be much cheaper if we stored TypeLocs instead of
16000       // TypeSourceInfos.
16001       TypeLoc Result = ExplicitSignature.getReturnLoc();
16002       unsigned Size = Result.getFullDataSize();
16003       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
16004       Sig->getTypeLoc().initializeFullCopy(Result, Size);
16005 
16006       ExplicitSignature = FunctionProtoTypeLoc();
16007     }
16008   }
16009 
16010   CurBlock->TheDecl->setSignatureAsWritten(Sig);
16011   CurBlock->FunctionType = T;
16012 
16013   const auto *Fn = T->castAs<FunctionType>();
16014   QualType RetTy = Fn->getReturnType();
16015   bool isVariadic =
16016       (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
16017 
16018   CurBlock->TheDecl->setIsVariadic(isVariadic);
16019 
16020   // Context.DependentTy is used as a placeholder for a missing block
16021   // return type.  TODO:  what should we do with declarators like:
16022   //   ^ * { ... }
16023   // If the answer is "apply template argument deduction"....
16024   if (RetTy != Context.DependentTy) {
16025     CurBlock->ReturnType = RetTy;
16026     CurBlock->TheDecl->setBlockMissingReturnType(false);
16027     CurBlock->HasImplicitReturnType = false;
16028   }
16029 
16030   // Push block parameters from the declarator if we had them.
16031   SmallVector<ParmVarDecl*, 8> Params;
16032   if (ExplicitSignature) {
16033     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
16034       ParmVarDecl *Param = ExplicitSignature.getParam(I);
16035       if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
16036           !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
16037         // Diagnose this as an extension in C17 and earlier.
16038         if (!getLangOpts().C23)
16039           Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
16040       }
16041       Params.push_back(Param);
16042     }
16043 
16044   // Fake up parameter variables if we have a typedef, like
16045   //   ^ fntype { ... }
16046   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
16047     for (const auto &I : Fn->param_types()) {
16048       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
16049           CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
16050       Params.push_back(Param);
16051     }
16052   }
16053 
16054   // Set the parameters on the block decl.
16055   if (!Params.empty()) {
16056     CurBlock->TheDecl->setParams(Params);
16057     CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
16058                              /*CheckParameterNames=*/false);
16059   }
16060 
16061   // Finally we can process decl attributes.
16062   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
16063 
16064   // Put the parameter variables in scope.
16065   for (auto *AI : CurBlock->TheDecl->parameters()) {
16066     AI->setOwningFunction(CurBlock->TheDecl);
16067 
16068     // If this has an identifier, add it to the scope stack.
16069     if (AI->getIdentifier()) {
16070       CheckShadow(CurBlock->TheScope, AI);
16071 
16072       PushOnScopeChains(AI, CurBlock->TheScope);
16073     }
16074 
16075     if (AI->isInvalidDecl())
16076       CurBlock->TheDecl->setInvalidDecl();
16077   }
16078 }
16079 
16080 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
16081   // Leave the expression-evaluation context.
16082   DiscardCleanupsInEvaluationContext();
16083   PopExpressionEvaluationContext();
16084 
16085   // Pop off CurBlock, handle nested blocks.
16086   PopDeclContext();
16087   PopFunctionScopeInfo();
16088 }
16089 
16090 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
16091                                     Stmt *Body, Scope *CurScope) {
16092   // If blocks are disabled, emit an error.
16093   if (!LangOpts.Blocks)
16094     Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
16095 
16096   // Leave the expression-evaluation context.
16097   if (hasAnyUnrecoverableErrorsInThisFunction())
16098     DiscardCleanupsInEvaluationContext();
16099   assert(!Cleanup.exprNeedsCleanups() &&
16100          "cleanups within block not correctly bound!");
16101   PopExpressionEvaluationContext();
16102 
16103   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
16104   BlockDecl *BD = BSI->TheDecl;
16105 
16106   if (BSI->HasImplicitReturnType)
16107     deduceClosureReturnType(*BSI);
16108 
16109   QualType RetTy = Context.VoidTy;
16110   if (!BSI->ReturnType.isNull())
16111     RetTy = BSI->ReturnType;
16112 
16113   bool NoReturn = BD->hasAttr<NoReturnAttr>();
16114   QualType BlockTy;
16115 
16116   // If the user wrote a function type in some form, try to use that.
16117   if (!BSI->FunctionType.isNull()) {
16118     const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
16119 
16120     FunctionType::ExtInfo Ext = FTy->getExtInfo();
16121     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
16122 
16123     // Turn protoless block types into nullary block types.
16124     if (isa<FunctionNoProtoType>(FTy)) {
16125       FunctionProtoType::ExtProtoInfo EPI;
16126       EPI.ExtInfo = Ext;
16127       BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
16128 
16129       // Otherwise, if we don't need to change anything about the function type,
16130       // preserve its sugar structure.
16131     } else if (FTy->getReturnType() == RetTy &&
16132                (!NoReturn || FTy->getNoReturnAttr())) {
16133       BlockTy = BSI->FunctionType;
16134 
16135     // Otherwise, make the minimal modifications to the function type.
16136     } else {
16137       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
16138       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
16139       EPI.TypeQuals = Qualifiers();
16140       EPI.ExtInfo = Ext;
16141       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
16142     }
16143 
16144   // If we don't have a function type, just build one from nothing.
16145   } else {
16146     FunctionProtoType::ExtProtoInfo EPI;
16147     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
16148     BlockTy = Context.getFunctionType(RetTy, std::nullopt, EPI);
16149   }
16150 
16151   DiagnoseUnusedParameters(BD->parameters());
16152   BlockTy = Context.getBlockPointerType(BlockTy);
16153 
16154   // If needed, diagnose invalid gotos and switches in the block.
16155   if (getCurFunction()->NeedsScopeChecking() &&
16156       !PP.isCodeCompletionEnabled())
16157     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
16158 
16159   BD->setBody(cast<CompoundStmt>(Body));
16160 
16161   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
16162     DiagnoseUnguardedAvailabilityViolations(BD);
16163 
16164   // Try to apply the named return value optimization. We have to check again
16165   // if we can do this, though, because blocks keep return statements around
16166   // to deduce an implicit return type.
16167   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
16168       !BD->isDependentContext())
16169     computeNRVO(Body, BSI);
16170 
16171   if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
16172       RetTy.hasNonTrivialToPrimitiveCopyCUnion())
16173     checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
16174                           NTCUK_Destruct|NTCUK_Copy);
16175 
16176   PopDeclContext();
16177 
16178   // Set the captured variables on the block.
16179   SmallVector<BlockDecl::Capture, 4> Captures;
16180   for (Capture &Cap : BSI->Captures) {
16181     if (Cap.isInvalid() || Cap.isThisCapture())
16182       continue;
16183     // Cap.getVariable() is always a VarDecl because
16184     // blocks cannot capture structured bindings or other ValueDecl kinds.
16185     auto *Var = cast<VarDecl>(Cap.getVariable());
16186     Expr *CopyExpr = nullptr;
16187     if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
16188       if (const RecordType *Record =
16189               Cap.getCaptureType()->getAs<RecordType>()) {
16190         // The capture logic needs the destructor, so make sure we mark it.
16191         // Usually this is unnecessary because most local variables have
16192         // their destructors marked at declaration time, but parameters are
16193         // an exception because it's technically only the call site that
16194         // actually requires the destructor.
16195         if (isa<ParmVarDecl>(Var))
16196           FinalizeVarWithDestructor(Var, Record);
16197 
16198         // Enter a separate potentially-evaluated context while building block
16199         // initializers to isolate their cleanups from those of the block
16200         // itself.
16201         // FIXME: Is this appropriate even when the block itself occurs in an
16202         // unevaluated operand?
16203         EnterExpressionEvaluationContext EvalContext(
16204             *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16205 
16206         SourceLocation Loc = Cap.getLocation();
16207 
16208         ExprResult Result = BuildDeclarationNameExpr(
16209             CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
16210 
16211         // According to the blocks spec, the capture of a variable from
16212         // the stack requires a const copy constructor.  This is not true
16213         // of the copy/move done to move a __block variable to the heap.
16214         if (!Result.isInvalid() &&
16215             !Result.get()->getType().isConstQualified()) {
16216           Result = ImpCastExprToType(Result.get(),
16217                                      Result.get()->getType().withConst(),
16218                                      CK_NoOp, VK_LValue);
16219         }
16220 
16221         if (!Result.isInvalid()) {
16222           Result = PerformCopyInitialization(
16223               InitializedEntity::InitializeBlock(Var->getLocation(),
16224                                                  Cap.getCaptureType()),
16225               Loc, Result.get());
16226         }
16227 
16228         // Build a full-expression copy expression if initialization
16229         // succeeded and used a non-trivial constructor.  Recover from
16230         // errors by pretending that the copy isn't necessary.
16231         if (!Result.isInvalid() &&
16232             !cast<CXXConstructExpr>(Result.get())->getConstructor()
16233                 ->isTrivial()) {
16234           Result = MaybeCreateExprWithCleanups(Result);
16235           CopyExpr = Result.get();
16236         }
16237       }
16238     }
16239 
16240     BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
16241                               CopyExpr);
16242     Captures.push_back(NewCap);
16243   }
16244   BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
16245 
16246   // Pop the block scope now but keep it alive to the end of this function.
16247   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
16248   PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
16249 
16250   BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
16251 
16252   // If the block isn't obviously global, i.e. it captures anything at
16253   // all, then we need to do a few things in the surrounding context:
16254   if (Result->getBlockDecl()->hasCaptures()) {
16255     // First, this expression has a new cleanup object.
16256     ExprCleanupObjects.push_back(Result->getBlockDecl());
16257     Cleanup.setExprNeedsCleanups(true);
16258 
16259     // It also gets a branch-protected scope if any of the captured
16260     // variables needs destruction.
16261     for (const auto &CI : Result->getBlockDecl()->captures()) {
16262       const VarDecl *var = CI.getVariable();
16263       if (var->getType().isDestructedType() != QualType::DK_none) {
16264         setFunctionHasBranchProtectedScope();
16265         break;
16266       }
16267     }
16268   }
16269 
16270   if (getCurFunction())
16271     getCurFunction()->addBlock(BD);
16272 
16273   if (BD->isInvalidDecl())
16274     return CreateRecoveryExpr(Result->getBeginLoc(), Result->getEndLoc(),
16275                               {Result}, Result->getType());
16276   return Result;
16277 }
16278 
16279 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
16280                             SourceLocation RPLoc) {
16281   TypeSourceInfo *TInfo;
16282   GetTypeFromParser(Ty, &TInfo);
16283   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
16284 }
16285 
16286 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
16287                                 Expr *E, TypeSourceInfo *TInfo,
16288                                 SourceLocation RPLoc) {
16289   Expr *OrigExpr = E;
16290   bool IsMS = false;
16291 
16292   // CUDA device code does not support varargs.
16293   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
16294     if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
16295       CUDAFunctionTarget T = CUDA().IdentifyTarget(F);
16296       if (T == CUDAFunctionTarget::Global || T == CUDAFunctionTarget::Device ||
16297           T == CUDAFunctionTarget::HostDevice)
16298         return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
16299     }
16300   }
16301 
16302   // NVPTX does not support va_arg expression.
16303   if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
16304       Context.getTargetInfo().getTriple().isNVPTX())
16305     targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
16306 
16307   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
16308   // as Microsoft ABI on an actual Microsoft platform, where
16309   // __builtin_ms_va_list and __builtin_va_list are the same.)
16310   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
16311       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
16312     QualType MSVaListType = Context.getBuiltinMSVaListType();
16313     if (Context.hasSameType(MSVaListType, E->getType())) {
16314       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
16315         return ExprError();
16316       IsMS = true;
16317     }
16318   }
16319 
16320   // Get the va_list type
16321   QualType VaListType = Context.getBuiltinVaListType();
16322   if (!IsMS) {
16323     if (VaListType->isArrayType()) {
16324       // Deal with implicit array decay; for example, on x86-64,
16325       // va_list is an array, but it's supposed to decay to
16326       // a pointer for va_arg.
16327       VaListType = Context.getArrayDecayedType(VaListType);
16328       // Make sure the input expression also decays appropriately.
16329       ExprResult Result = UsualUnaryConversions(E);
16330       if (Result.isInvalid())
16331         return ExprError();
16332       E = Result.get();
16333     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
16334       // If va_list is a record type and we are compiling in C++ mode,
16335       // check the argument using reference binding.
16336       InitializedEntity Entity = InitializedEntity::InitializeParameter(
16337           Context, Context.getLValueReferenceType(VaListType), false);
16338       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
16339       if (Init.isInvalid())
16340         return ExprError();
16341       E = Init.getAs<Expr>();
16342     } else {
16343       // Otherwise, the va_list argument must be an l-value because
16344       // it is modified by va_arg.
16345       if (!E->isTypeDependent() &&
16346           CheckForModifiableLvalue(E, BuiltinLoc, *this))
16347         return ExprError();
16348     }
16349   }
16350 
16351   if (!IsMS && !E->isTypeDependent() &&
16352       !Context.hasSameType(VaListType, E->getType()))
16353     return ExprError(
16354         Diag(E->getBeginLoc(),
16355              diag::err_first_argument_to_va_arg_not_of_type_va_list)
16356         << OrigExpr->getType() << E->getSourceRange());
16357 
16358   if (!TInfo->getType()->isDependentType()) {
16359     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
16360                             diag::err_second_parameter_to_va_arg_incomplete,
16361                             TInfo->getTypeLoc()))
16362       return ExprError();
16363 
16364     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
16365                                TInfo->getType(),
16366                                diag::err_second_parameter_to_va_arg_abstract,
16367                                TInfo->getTypeLoc()))
16368       return ExprError();
16369 
16370     if (!TInfo->getType().isPODType(Context)) {
16371       Diag(TInfo->getTypeLoc().getBeginLoc(),
16372            TInfo->getType()->isObjCLifetimeType()
16373              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
16374              : diag::warn_second_parameter_to_va_arg_not_pod)
16375         << TInfo->getType()
16376         << TInfo->getTypeLoc().getSourceRange();
16377     }
16378 
16379     // Check for va_arg where arguments of the given type will be promoted
16380     // (i.e. this va_arg is guaranteed to have undefined behavior).
16381     QualType PromoteType;
16382     if (Context.isPromotableIntegerType(TInfo->getType())) {
16383       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
16384       // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
16385       // and C23 7.16.1.1p2 says, in part:
16386       //   If type is not compatible with the type of the actual next argument
16387       //   (as promoted according to the default argument promotions), the
16388       //   behavior is undefined, except for the following cases:
16389       //     - both types are pointers to qualified or unqualified versions of
16390       //       compatible types;
16391       //     - one type is compatible with a signed integer type, the other
16392       //       type is compatible with the corresponding unsigned integer type,
16393       //       and the value is representable in both types;
16394       //     - one type is pointer to qualified or unqualified void and the
16395       //       other is a pointer to a qualified or unqualified character type;
16396       //     - or, the type of the next argument is nullptr_t and type is a
16397       //       pointer type that has the same representation and alignment
16398       //       requirements as a pointer to a character type.
16399       // Given that type compatibility is the primary requirement (ignoring
16400       // qualifications), you would think we could call typesAreCompatible()
16401       // directly to test this. However, in C++, that checks for *same type*,
16402       // which causes false positives when passing an enumeration type to
16403       // va_arg. Instead, get the underlying type of the enumeration and pass
16404       // that.
16405       QualType UnderlyingType = TInfo->getType();
16406       if (const auto *ET = UnderlyingType->getAs<EnumType>())
16407         UnderlyingType = ET->getDecl()->getIntegerType();
16408       if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16409                                      /*CompareUnqualified*/ true))
16410         PromoteType = QualType();
16411 
16412       // If the types are still not compatible, we need to test whether the
16413       // promoted type and the underlying type are the same except for
16414       // signedness. Ask the AST for the correctly corresponding type and see
16415       // if that's compatible.
16416       if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
16417           PromoteType->isUnsignedIntegerType() !=
16418               UnderlyingType->isUnsignedIntegerType()) {
16419         UnderlyingType =
16420             UnderlyingType->isUnsignedIntegerType()
16421                 ? Context.getCorrespondingSignedType(UnderlyingType)
16422                 : Context.getCorrespondingUnsignedType(UnderlyingType);
16423         if (Context.typesAreCompatible(PromoteType, UnderlyingType,
16424                                        /*CompareUnqualified*/ true))
16425           PromoteType = QualType();
16426       }
16427     }
16428     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
16429       PromoteType = Context.DoubleTy;
16430     if (!PromoteType.isNull())
16431       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
16432                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
16433                           << TInfo->getType()
16434                           << PromoteType
16435                           << TInfo->getTypeLoc().getSourceRange());
16436   }
16437 
16438   QualType T = TInfo->getType().getNonLValueExprType(Context);
16439   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
16440 }
16441 
16442 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
16443   // The type of __null will be int or long, depending on the size of
16444   // pointers on the target.
16445   QualType Ty;
16446   unsigned pw = Context.getTargetInfo().getPointerWidth(LangAS::Default);
16447   if (pw == Context.getTargetInfo().getIntWidth())
16448     Ty = Context.IntTy;
16449   else if (pw == Context.getTargetInfo().getLongWidth())
16450     Ty = Context.LongTy;
16451   else if (pw == Context.getTargetInfo().getLongLongWidth())
16452     Ty = Context.LongLongTy;
16453   else {
16454     llvm_unreachable("I don't know size of pointer!");
16455   }
16456 
16457   return new (Context) GNUNullExpr(Ty, TokenLoc);
16458 }
16459 
16460 static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
16461   CXXRecordDecl *ImplDecl = nullptr;
16462 
16463   // Fetch the std::source_location::__impl decl.
16464   if (NamespaceDecl *Std = S.getStdNamespace()) {
16465     LookupResult ResultSL(S, &S.PP.getIdentifierTable().get("source_location"),
16466                           Loc, Sema::LookupOrdinaryName);
16467     if (S.LookupQualifiedName(ResultSL, Std)) {
16468       if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
16469         LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get("__impl"),
16470                                 Loc, Sema::LookupOrdinaryName);
16471         if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
16472             S.LookupQualifiedName(ResultImpl, SLDecl)) {
16473           ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
16474         }
16475       }
16476     }
16477   }
16478 
16479   if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
16480     S.Diag(Loc, diag::err_std_source_location_impl_not_found);
16481     return nullptr;
16482   }
16483 
16484   // Verify that __impl is a trivial struct type, with no base classes, and with
16485   // only the four expected fields.
16486   if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
16487       ImplDecl->getNumBases() != 0) {
16488     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16489     return nullptr;
16490   }
16491 
16492   unsigned Count = 0;
16493   for (FieldDecl *F : ImplDecl->fields()) {
16494     StringRef Name = F->getName();
16495 
16496     if (Name == "_M_file_name") {
16497       if (F->getType() !=
16498           S.Context.getPointerType(S.Context.CharTy.withConst()))
16499         break;
16500       Count++;
16501     } else if (Name == "_M_function_name") {
16502       if (F->getType() !=
16503           S.Context.getPointerType(S.Context.CharTy.withConst()))
16504         break;
16505       Count++;
16506     } else if (Name == "_M_line") {
16507       if (!F->getType()->isIntegerType())
16508         break;
16509       Count++;
16510     } else if (Name == "_M_column") {
16511       if (!F->getType()->isIntegerType())
16512         break;
16513       Count++;
16514     } else {
16515       Count = 100; // invalid
16516       break;
16517     }
16518   }
16519   if (Count != 4) {
16520     S.Diag(Loc, diag::err_std_source_location_impl_malformed);
16521     return nullptr;
16522   }
16523 
16524   return ImplDecl;
16525 }
16526 
16527 ExprResult Sema::ActOnSourceLocExpr(SourceLocIdentKind Kind,
16528                                     SourceLocation BuiltinLoc,
16529                                     SourceLocation RPLoc) {
16530   QualType ResultTy;
16531   switch (Kind) {
16532   case SourceLocIdentKind::File:
16533   case SourceLocIdentKind::FileName:
16534   case SourceLocIdentKind::Function:
16535   case SourceLocIdentKind::FuncSig: {
16536     QualType ArrTy = Context.getStringLiteralArrayType(Context.CharTy, 0);
16537     ResultTy =
16538         Context.getPointerType(ArrTy->getAsArrayTypeUnsafe()->getElementType());
16539     break;
16540   }
16541   case SourceLocIdentKind::Line:
16542   case SourceLocIdentKind::Column:
16543     ResultTy = Context.UnsignedIntTy;
16544     break;
16545   case SourceLocIdentKind::SourceLocStruct:
16546     if (!StdSourceLocationImplDecl) {
16547       StdSourceLocationImplDecl =
16548           LookupStdSourceLocationImpl(*this, BuiltinLoc);
16549       if (!StdSourceLocationImplDecl)
16550         return ExprError();
16551     }
16552     ResultTy = Context.getPointerType(
16553         Context.getRecordType(StdSourceLocationImplDecl).withConst());
16554     break;
16555   }
16556 
16557   return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, CurContext);
16558 }
16559 
16560 ExprResult Sema::BuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy,
16561                                     SourceLocation BuiltinLoc,
16562                                     SourceLocation RPLoc,
16563                                     DeclContext *ParentContext) {
16564   return new (Context)
16565       SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
16566 }
16567 
16568 ExprResult Sema::ActOnEmbedExpr(SourceLocation EmbedKeywordLoc,
16569                                 StringLiteral *BinaryData) {
16570   EmbedDataStorage *Data = new (Context) EmbedDataStorage;
16571   Data->BinaryData = BinaryData;
16572   return new (Context)
16573       EmbedExpr(Context, EmbedKeywordLoc, Data, /*NumOfElements=*/0,
16574                 Data->getDataElementCount());
16575 }
16576 
16577 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
16578                                               const Expr *SrcExpr) {
16579   if (!DstType->isFunctionPointerType() ||
16580       !SrcExpr->getType()->isFunctionType())
16581     return false;
16582 
16583   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
16584   if (!DRE)
16585     return false;
16586 
16587   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
16588   if (!FD)
16589     return false;
16590 
16591   return !S.checkAddressOfFunctionIsAvailable(FD,
16592                                               /*Complain=*/true,
16593                                               SrcExpr->getBeginLoc());
16594 }
16595 
16596 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
16597                                     SourceLocation Loc,
16598                                     QualType DstType, QualType SrcType,
16599                                     Expr *SrcExpr, AssignmentAction Action,
16600                                     bool *Complained) {
16601   if (Complained)
16602     *Complained = false;
16603 
16604   // Decode the result (notice that AST's are still created for extensions).
16605   bool CheckInferredResultType = false;
16606   bool isInvalid = false;
16607   unsigned DiagKind = 0;
16608   ConversionFixItGenerator ConvHints;
16609   bool MayHaveConvFixit = false;
16610   bool MayHaveFunctionDiff = false;
16611   const ObjCInterfaceDecl *IFace = nullptr;
16612   const ObjCProtocolDecl *PDecl = nullptr;
16613 
16614   switch (ConvTy) {
16615   case Compatible:
16616       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
16617       return false;
16618 
16619   case PointerToInt:
16620     if (getLangOpts().CPlusPlus) {
16621       DiagKind = diag::err_typecheck_convert_pointer_int;
16622       isInvalid = true;
16623     } else {
16624       DiagKind = diag::ext_typecheck_convert_pointer_int;
16625     }
16626     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16627     MayHaveConvFixit = true;
16628     break;
16629   case IntToPointer:
16630     if (getLangOpts().CPlusPlus) {
16631       DiagKind = diag::err_typecheck_convert_int_pointer;
16632       isInvalid = true;
16633     } else {
16634       DiagKind = diag::ext_typecheck_convert_int_pointer;
16635     }
16636     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16637     MayHaveConvFixit = true;
16638     break;
16639   case IncompatibleFunctionPointerStrict:
16640     DiagKind =
16641         diag::warn_typecheck_convert_incompatible_function_pointer_strict;
16642     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16643     MayHaveConvFixit = true;
16644     break;
16645   case IncompatibleFunctionPointer:
16646     if (getLangOpts().CPlusPlus) {
16647       DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
16648       isInvalid = true;
16649     } else {
16650       DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
16651     }
16652     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16653     MayHaveConvFixit = true;
16654     break;
16655   case IncompatiblePointer:
16656     if (Action == AA_Passing_CFAudited) {
16657       DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
16658     } else if (getLangOpts().CPlusPlus) {
16659       DiagKind = diag::err_typecheck_convert_incompatible_pointer;
16660       isInvalid = true;
16661     } else {
16662       DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
16663     }
16664     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
16665       SrcType->isObjCObjectPointerType();
16666     if (CheckInferredResultType) {
16667       SrcType = SrcType.getUnqualifiedType();
16668       DstType = DstType.getUnqualifiedType();
16669     } else {
16670       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16671     }
16672     MayHaveConvFixit = true;
16673     break;
16674   case IncompatiblePointerSign:
16675     if (getLangOpts().CPlusPlus) {
16676       DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
16677       isInvalid = true;
16678     } else {
16679       DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
16680     }
16681     break;
16682   case FunctionVoidPointer:
16683     if (getLangOpts().CPlusPlus) {
16684       DiagKind = diag::err_typecheck_convert_pointer_void_func;
16685       isInvalid = true;
16686     } else {
16687       DiagKind = diag::ext_typecheck_convert_pointer_void_func;
16688     }
16689     break;
16690   case IncompatiblePointerDiscardsQualifiers: {
16691     // Perform array-to-pointer decay if necessary.
16692     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
16693 
16694     isInvalid = true;
16695 
16696     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
16697     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
16698     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
16699       DiagKind = diag::err_typecheck_incompatible_address_space;
16700       break;
16701     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
16702       DiagKind = diag::err_typecheck_incompatible_ownership;
16703       break;
16704     }
16705 
16706     llvm_unreachable("unknown error case for discarding qualifiers!");
16707     // fallthrough
16708   }
16709   case CompatiblePointerDiscardsQualifiers:
16710     // If the qualifiers lost were because we were applying the
16711     // (deprecated) C++ conversion from a string literal to a char*
16712     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
16713     // Ideally, this check would be performed in
16714     // checkPointerTypesForAssignment. However, that would require a
16715     // bit of refactoring (so that the second argument is an
16716     // expression, rather than a type), which should be done as part
16717     // of a larger effort to fix checkPointerTypesForAssignment for
16718     // C++ semantics.
16719     if (getLangOpts().CPlusPlus &&
16720         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
16721       return false;
16722     if (getLangOpts().CPlusPlus) {
16723       DiagKind =  diag::err_typecheck_convert_discards_qualifiers;
16724       isInvalid = true;
16725     } else {
16726       DiagKind =  diag::ext_typecheck_convert_discards_qualifiers;
16727     }
16728 
16729     break;
16730   case IncompatibleNestedPointerQualifiers:
16731     if (getLangOpts().CPlusPlus) {
16732       isInvalid = true;
16733       DiagKind = diag::err_nested_pointer_qualifier_mismatch;
16734     } else {
16735       DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
16736     }
16737     break;
16738   case IncompatibleNestedPointerAddressSpaceMismatch:
16739     DiagKind = diag::err_typecheck_incompatible_nested_address_space;
16740     isInvalid = true;
16741     break;
16742   case IntToBlockPointer:
16743     DiagKind = diag::err_int_to_block_pointer;
16744     isInvalid = true;
16745     break;
16746   case IncompatibleBlockPointer:
16747     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
16748     isInvalid = true;
16749     break;
16750   case IncompatibleObjCQualifiedId: {
16751     if (SrcType->isObjCQualifiedIdType()) {
16752       const ObjCObjectPointerType *srcOPT =
16753                 SrcType->castAs<ObjCObjectPointerType>();
16754       for (auto *srcProto : srcOPT->quals()) {
16755         PDecl = srcProto;
16756         break;
16757       }
16758       if (const ObjCInterfaceType *IFaceT =
16759             DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16760         IFace = IFaceT->getDecl();
16761     }
16762     else if (DstType->isObjCQualifiedIdType()) {
16763       const ObjCObjectPointerType *dstOPT =
16764         DstType->castAs<ObjCObjectPointerType>();
16765       for (auto *dstProto : dstOPT->quals()) {
16766         PDecl = dstProto;
16767         break;
16768       }
16769       if (const ObjCInterfaceType *IFaceT =
16770             SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16771         IFace = IFaceT->getDecl();
16772     }
16773     if (getLangOpts().CPlusPlus) {
16774       DiagKind = diag::err_incompatible_qualified_id;
16775       isInvalid = true;
16776     } else {
16777       DiagKind = diag::warn_incompatible_qualified_id;
16778     }
16779     break;
16780   }
16781   case IncompatibleVectors:
16782     if (getLangOpts().CPlusPlus) {
16783       DiagKind = diag::err_incompatible_vectors;
16784       isInvalid = true;
16785     } else {
16786       DiagKind = diag::warn_incompatible_vectors;
16787     }
16788     break;
16789   case IncompatibleObjCWeakRef:
16790     DiagKind = diag::err_arc_weak_unavailable_assign;
16791     isInvalid = true;
16792     break;
16793   case Incompatible:
16794     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
16795       if (Complained)
16796         *Complained = true;
16797       return true;
16798     }
16799 
16800     DiagKind = diag::err_typecheck_convert_incompatible;
16801     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
16802     MayHaveConvFixit = true;
16803     isInvalid = true;
16804     MayHaveFunctionDiff = true;
16805     break;
16806   }
16807 
16808   QualType FirstType, SecondType;
16809   switch (Action) {
16810   case AA_Assigning:
16811   case AA_Initializing:
16812     // The destination type comes first.
16813     FirstType = DstType;
16814     SecondType = SrcType;
16815     break;
16816 
16817   case AA_Returning:
16818   case AA_Passing:
16819   case AA_Passing_CFAudited:
16820   case AA_Converting:
16821   case AA_Sending:
16822   case AA_Casting:
16823     // The source type comes first.
16824     FirstType = SrcType;
16825     SecondType = DstType;
16826     break;
16827   }
16828 
16829   PartialDiagnostic FDiag = PDiag(DiagKind);
16830   AssignmentAction ActionForDiag = Action;
16831   if (Action == AA_Passing_CFAudited)
16832     ActionForDiag = AA_Passing;
16833 
16834   FDiag << FirstType << SecondType << ActionForDiag
16835         << SrcExpr->getSourceRange();
16836 
16837   if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
16838       DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
16839     auto isPlainChar = [](const clang::Type *Type) {
16840       return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
16841              Type->isSpecificBuiltinType(BuiltinType::Char_U);
16842     };
16843     FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
16844               isPlainChar(SecondType->getPointeeOrArrayElementType()));
16845   }
16846 
16847   // If we can fix the conversion, suggest the FixIts.
16848   if (!ConvHints.isNull()) {
16849     for (FixItHint &H : ConvHints.Hints)
16850       FDiag << H;
16851   }
16852 
16853   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
16854 
16855   if (MayHaveFunctionDiff)
16856     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
16857 
16858   Diag(Loc, FDiag);
16859   if ((DiagKind == diag::warn_incompatible_qualified_id ||
16860        DiagKind == diag::err_incompatible_qualified_id) &&
16861       PDecl && IFace && !IFace->hasDefinition())
16862     Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
16863         << IFace << PDecl;
16864 
16865   if (SecondType == Context.OverloadTy)
16866     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
16867                               FirstType, /*TakingAddress=*/true);
16868 
16869   if (CheckInferredResultType)
16870     ObjC().EmitRelatedResultTypeNote(SrcExpr);
16871 
16872   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
16873     ObjC().EmitRelatedResultTypeNoteForReturn(DstType);
16874 
16875   if (Complained)
16876     *Complained = true;
16877   return isInvalid;
16878 }
16879 
16880 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16881                                                  llvm::APSInt *Result,
16882                                                  AllowFoldKind CanFold) {
16883   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
16884   public:
16885     SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
16886                                              QualType T) override {
16887       return S.Diag(Loc, diag::err_ice_not_integral)
16888              << T << S.LangOpts.CPlusPlus;
16889     }
16890     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16891       return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
16892     }
16893   } Diagnoser;
16894 
16895   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16896 }
16897 
16898 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16899                                                  llvm::APSInt *Result,
16900                                                  unsigned DiagID,
16901                                                  AllowFoldKind CanFold) {
16902   class IDDiagnoser : public VerifyICEDiagnoser {
16903     unsigned DiagID;
16904 
16905   public:
16906     IDDiagnoser(unsigned DiagID)
16907       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
16908 
16909     SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16910       return S.Diag(Loc, DiagID);
16911     }
16912   } Diagnoser(DiagID);
16913 
16914   return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16915 }
16916 
16917 Sema::SemaDiagnosticBuilder
16918 Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
16919                                              QualType T) {
16920   return diagnoseNotICE(S, Loc);
16921 }
16922 
16923 Sema::SemaDiagnosticBuilder
16924 Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
16925   return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
16926 }
16927 
16928 ExprResult
16929 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
16930                                       VerifyICEDiagnoser &Diagnoser,
16931                                       AllowFoldKind CanFold) {
16932   SourceLocation DiagLoc = E->getBeginLoc();
16933 
16934   if (getLangOpts().CPlusPlus11) {
16935     // C++11 [expr.const]p5:
16936     //   If an expression of literal class type is used in a context where an
16937     //   integral constant expression is required, then that class type shall
16938     //   have a single non-explicit conversion function to an integral or
16939     //   unscoped enumeration type
16940     ExprResult Converted;
16941     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
16942       VerifyICEDiagnoser &BaseDiagnoser;
16943     public:
16944       CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
16945           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
16946                                 BaseDiagnoser.Suppress, true),
16947             BaseDiagnoser(BaseDiagnoser) {}
16948 
16949       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
16950                                            QualType T) override {
16951         return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
16952       }
16953 
16954       SemaDiagnosticBuilder diagnoseIncomplete(
16955           Sema &S, SourceLocation Loc, QualType T) override {
16956         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
16957       }
16958 
16959       SemaDiagnosticBuilder diagnoseExplicitConv(
16960           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16961         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
16962       }
16963 
16964       SemaDiagnosticBuilder noteExplicitConv(
16965           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16966         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16967                  << ConvTy->isEnumeralType() << ConvTy;
16968       }
16969 
16970       SemaDiagnosticBuilder diagnoseAmbiguous(
16971           Sema &S, SourceLocation Loc, QualType T) override {
16972         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
16973       }
16974 
16975       SemaDiagnosticBuilder noteAmbiguous(
16976           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16977         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16978                  << ConvTy->isEnumeralType() << ConvTy;
16979       }
16980 
16981       SemaDiagnosticBuilder diagnoseConversion(
16982           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16983         llvm_unreachable("conversion functions are permitted");
16984       }
16985     } ConvertDiagnoser(Diagnoser);
16986 
16987     Converted = PerformContextualImplicitConversion(DiagLoc, E,
16988                                                     ConvertDiagnoser);
16989     if (Converted.isInvalid())
16990       return Converted;
16991     E = Converted.get();
16992     // The 'explicit' case causes us to get a RecoveryExpr.  Give up here so we
16993     // don't try to evaluate it later. We also don't want to return the
16994     // RecoveryExpr here, as it results in this call succeeding, thus callers of
16995     // this function will attempt to use 'Value'.
16996     if (isa<RecoveryExpr>(E))
16997       return ExprError();
16998     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
16999       return ExprError();
17000   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
17001     // An ICE must be of integral or unscoped enumeration type.
17002     if (!Diagnoser.Suppress)
17003       Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
17004           << E->getSourceRange();
17005     return ExprError();
17006   }
17007 
17008   ExprResult RValueExpr = DefaultLvalueConversion(E);
17009   if (RValueExpr.isInvalid())
17010     return ExprError();
17011 
17012   E = RValueExpr.get();
17013 
17014   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
17015   // in the non-ICE case.
17016   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
17017     SmallVector<PartialDiagnosticAt, 8> Notes;
17018     if (Result)
17019       *Result = E->EvaluateKnownConstIntCheckOverflow(Context, &Notes);
17020     if (!isa<ConstantExpr>(E))
17021       E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
17022                  : ConstantExpr::Create(Context, E);
17023 
17024     if (Notes.empty())
17025       return E;
17026 
17027     // If our only note is the usual "invalid subexpression" note, just point
17028     // the caret at its location rather than producing an essentially
17029     // redundant note.
17030     if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17031           diag::note_invalid_subexpr_in_const_expr) {
17032       DiagLoc = Notes[0].first;
17033       Notes.clear();
17034     }
17035 
17036     if (getLangOpts().CPlusPlus) {
17037       if (!Diagnoser.Suppress) {
17038         Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
17039         for (const PartialDiagnosticAt &Note : Notes)
17040           Diag(Note.first, Note.second);
17041       }
17042       return ExprError();
17043     }
17044 
17045     Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
17046     for (const PartialDiagnosticAt &Note : Notes)
17047       Diag(Note.first, Note.second);
17048 
17049     return E;
17050   }
17051 
17052   Expr::EvalResult EvalResult;
17053   SmallVector<PartialDiagnosticAt, 8> Notes;
17054   EvalResult.Diag = &Notes;
17055 
17056   // Try to evaluate the expression, and produce diagnostics explaining why it's
17057   // not a constant expression as a side-effect.
17058   bool Folded =
17059       E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
17060       EvalResult.Val.isInt() && !EvalResult.HasSideEffects &&
17061       (!getLangOpts().CPlusPlus || !EvalResult.HasUndefinedBehavior);
17062 
17063   if (!isa<ConstantExpr>(E))
17064     E = ConstantExpr::Create(Context, E, EvalResult.Val);
17065 
17066   // In C++11, we can rely on diagnostics being produced for any expression
17067   // which is not a constant expression. If no diagnostics were produced, then
17068   // this is a constant expression.
17069   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
17070     if (Result)
17071       *Result = EvalResult.Val.getInt();
17072     return E;
17073   }
17074 
17075   // If our only note is the usual "invalid subexpression" note, just point
17076   // the caret at its location rather than producing an essentially
17077   // redundant note.
17078   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17079         diag::note_invalid_subexpr_in_const_expr) {
17080     DiagLoc = Notes[0].first;
17081     Notes.clear();
17082   }
17083 
17084   if (!Folded || !CanFold) {
17085     if (!Diagnoser.Suppress) {
17086       Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
17087       for (const PartialDiagnosticAt &Note : Notes)
17088         Diag(Note.first, Note.second);
17089     }
17090 
17091     return ExprError();
17092   }
17093 
17094   Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
17095   for (const PartialDiagnosticAt &Note : Notes)
17096     Diag(Note.first, Note.second);
17097 
17098   if (Result)
17099     *Result = EvalResult.Val.getInt();
17100   return E;
17101 }
17102 
17103 namespace {
17104   // Handle the case where we conclude a expression which we speculatively
17105   // considered to be unevaluated is actually evaluated.
17106   class TransformToPE : public TreeTransform<TransformToPE> {
17107     typedef TreeTransform<TransformToPE> BaseTransform;
17108 
17109   public:
17110     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
17111 
17112     // Make sure we redo semantic analysis
17113     bool AlwaysRebuild() { return true; }
17114     bool ReplacingOriginal() { return true; }
17115 
17116     // We need to special-case DeclRefExprs referring to FieldDecls which
17117     // are not part of a member pointer formation; normal TreeTransforming
17118     // doesn't catch this case because of the way we represent them in the AST.
17119     // FIXME: This is a bit ugly; is it really the best way to handle this
17120     // case?
17121     //
17122     // Error on DeclRefExprs referring to FieldDecls.
17123     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17124       if (isa<FieldDecl>(E->getDecl()) &&
17125           !SemaRef.isUnevaluatedContext())
17126         return SemaRef.Diag(E->getLocation(),
17127                             diag::err_invalid_non_static_member_use)
17128             << E->getDecl() << E->getSourceRange();
17129 
17130       return BaseTransform::TransformDeclRefExpr(E);
17131     }
17132 
17133     // Exception: filter out member pointer formation
17134     ExprResult TransformUnaryOperator(UnaryOperator *E) {
17135       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
17136         return E;
17137 
17138       return BaseTransform::TransformUnaryOperator(E);
17139     }
17140 
17141     // The body of a lambda-expression is in a separate expression evaluation
17142     // context so never needs to be transformed.
17143     // FIXME: Ideally we wouldn't transform the closure type either, and would
17144     // just recreate the capture expressions and lambda expression.
17145     StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
17146       return SkipLambdaBody(E, Body);
17147     }
17148   };
17149 }
17150 
17151 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
17152   assert(isUnevaluatedContext() &&
17153          "Should only transform unevaluated expressions");
17154   ExprEvalContexts.back().Context =
17155       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
17156   if (isUnevaluatedContext())
17157     return E;
17158   return TransformToPE(*this).TransformExpr(E);
17159 }
17160 
17161 TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
17162   assert(isUnevaluatedContext() &&
17163          "Should only transform unevaluated expressions");
17164   ExprEvalContexts.back().Context = parentEvaluationContext().Context;
17165   if (isUnevaluatedContext())
17166     return TInfo;
17167   return TransformToPE(*this).TransformType(TInfo);
17168 }
17169 
17170 void
17171 Sema::PushExpressionEvaluationContext(
17172     ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
17173     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17174   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
17175                                 LambdaContextDecl, ExprContext);
17176 
17177   // Discarded statements and immediate contexts nested in other
17178   // discarded statements or immediate context are themselves
17179   // a discarded statement or an immediate context, respectively.
17180   ExprEvalContexts.back().InDiscardedStatement =
17181       parentEvaluationContext().isDiscardedStatementContext();
17182 
17183   // C++23 [expr.const]/p15
17184   // An expression or conversion is in an immediate function context if [...]
17185   // it is a subexpression of a manifestly constant-evaluated expression or
17186   // conversion.
17187   const auto &Prev = parentEvaluationContext();
17188   ExprEvalContexts.back().InImmediateFunctionContext =
17189       Prev.isImmediateFunctionContext() || Prev.isConstantEvaluated();
17190 
17191   ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
17192       Prev.InImmediateEscalatingFunctionContext;
17193 
17194   Cleanup.reset();
17195   if (!MaybeODRUseExprs.empty())
17196     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
17197 }
17198 
17199 void
17200 Sema::PushExpressionEvaluationContext(
17201     ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
17202     ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17203   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
17204   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
17205 }
17206 
17207 namespace {
17208 
17209 const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
17210   PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
17211   if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
17212     if (E->getOpcode() == UO_Deref)
17213       return CheckPossibleDeref(S, E->getSubExpr());
17214   } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
17215     return CheckPossibleDeref(S, E->getBase());
17216   } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
17217     return CheckPossibleDeref(S, E->getBase());
17218   } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
17219     QualType Inner;
17220     QualType Ty = E->getType();
17221     if (const auto *Ptr = Ty->getAs<PointerType>())
17222       Inner = Ptr->getPointeeType();
17223     else if (const auto *Arr = S.Context.getAsArrayType(Ty))
17224       Inner = Arr->getElementType();
17225     else
17226       return nullptr;
17227 
17228     if (Inner->hasAttr(attr::NoDeref))
17229       return E;
17230   }
17231   return nullptr;
17232 }
17233 
17234 } // namespace
17235 
17236 void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
17237   for (const Expr *E : Rec.PossibleDerefs) {
17238     const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
17239     if (DeclRef) {
17240       const ValueDecl *Decl = DeclRef->getDecl();
17241       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
17242           << Decl->getName() << E->getSourceRange();
17243       Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
17244     } else {
17245       Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
17246           << E->getSourceRange();
17247     }
17248   }
17249   Rec.PossibleDerefs.clear();
17250 }
17251 
17252 void Sema::CheckUnusedVolatileAssignment(Expr *E) {
17253   if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
17254     return;
17255 
17256   // Note: ignoring parens here is not justified by the standard rules, but
17257   // ignoring parentheses seems like a more reasonable approach, and this only
17258   // drives a deprecation warning so doesn't affect conformance.
17259   if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
17260     if (BO->getOpcode() == BO_Assign) {
17261       auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
17262       llvm::erase(LHSs, BO->getLHS());
17263     }
17264   }
17265 }
17266 
17267 void Sema::MarkExpressionAsImmediateEscalating(Expr *E) {
17268   assert(getLangOpts().CPlusPlus20 &&
17269          ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
17270          "Cannot mark an immediate escalating expression outside of an "
17271          "immediate escalating context");
17272   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreImplicit());
17273       Call && Call->getCallee()) {
17274     if (auto *DeclRef =
17275             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
17276       DeclRef->setIsImmediateEscalating(true);
17277   } else if (auto *Ctr = dyn_cast<CXXConstructExpr>(E->IgnoreImplicit())) {
17278     Ctr->setIsImmediateEscalating(true);
17279   } else if (auto *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreImplicit())) {
17280     DeclRef->setIsImmediateEscalating(true);
17281   } else {
17282     assert(false && "expected an immediately escalating expression");
17283   }
17284   if (FunctionScopeInfo *FI = getCurFunction())
17285     FI->FoundImmediateEscalatingExpression = true;
17286 }
17287 
17288 ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
17289   if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
17290       !Decl->isImmediateFunction() || isAlwaysConstantEvaluatedContext() ||
17291       isCheckingDefaultArgumentOrInitializer() ||
17292       RebuildingImmediateInvocation || isImmediateFunctionContext())
17293     return E;
17294 
17295   /// Opportunistically remove the callee from ReferencesToConsteval if we can.
17296   /// It's OK if this fails; we'll also remove this in
17297   /// HandleImmediateInvocations, but catching it here allows us to avoid
17298   /// walking the AST looking for it in simple cases.
17299   if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
17300     if (auto *DeclRef =
17301             dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
17302       ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
17303 
17304   // C++23 [expr.const]/p16
17305   // An expression or conversion is immediate-escalating if it is not initially
17306   // in an immediate function context and it is [...] an immediate invocation
17307   // that is not a constant expression and is not a subexpression of an
17308   // immediate invocation.
17309   APValue Cached;
17310   auto CheckConstantExpressionAndKeepResult = [&]() {
17311     llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17312     Expr::EvalResult Eval;
17313     Eval.Diag = &Notes;
17314     bool Res = E.get()->EvaluateAsConstantExpr(
17315         Eval, getASTContext(), ConstantExprKind::ImmediateInvocation);
17316     if (Res && Notes.empty()) {
17317       Cached = std::move(Eval.Val);
17318       return true;
17319     }
17320     return false;
17321   };
17322 
17323   if (!E.get()->isValueDependent() &&
17324       ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
17325       !CheckConstantExpressionAndKeepResult()) {
17326     MarkExpressionAsImmediateEscalating(E.get());
17327     return E;
17328   }
17329 
17330   if (Cleanup.exprNeedsCleanups()) {
17331     // Since an immediate invocation is a full expression itself - it requires
17332     // an additional ExprWithCleanups node, but it can participate to a bigger
17333     // full expression which actually requires cleanups to be run after so
17334     // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it
17335     // may discard cleanups for outer expression too early.
17336 
17337     // Note that ExprWithCleanups created here must always have empty cleanup
17338     // objects:
17339     // - compound literals do not create cleanup objects in C++ and immediate
17340     // invocations are C++-only.
17341     // - blocks are not allowed inside constant expressions and compiler will
17342     // issue an error if they appear there.
17343     //
17344     // Hence, in correct code any cleanup objects created inside current
17345     // evaluation context must be outside the immediate invocation.
17346     E = ExprWithCleanups::Create(getASTContext(), E.get(),
17347                                  Cleanup.cleanupsHaveSideEffects(), {});
17348   }
17349 
17350   ConstantExpr *Res = ConstantExpr::Create(
17351       getASTContext(), E.get(),
17352       ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
17353                                    getASTContext()),
17354       /*IsImmediateInvocation*/ true);
17355   if (Cached.hasValue())
17356     Res->MoveIntoResult(Cached, getASTContext());
17357   /// Value-dependent constant expressions should not be immediately
17358   /// evaluated until they are instantiated.
17359   if (!Res->isValueDependent())
17360     ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
17361   return Res;
17362 }
17363 
17364 static void EvaluateAndDiagnoseImmediateInvocation(
17365     Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
17366   llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17367   Expr::EvalResult Eval;
17368   Eval.Diag = &Notes;
17369   ConstantExpr *CE = Candidate.getPointer();
17370   bool Result = CE->EvaluateAsConstantExpr(
17371       Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
17372   if (!Result || !Notes.empty()) {
17373     SemaRef.FailedImmediateInvocations.insert(CE);
17374     Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
17375     if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
17376       InnerExpr = FunctionalCast->getSubExpr()->IgnoreImplicit();
17377     FunctionDecl *FD = nullptr;
17378     if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
17379       FD = cast<FunctionDecl>(Call->getCalleeDecl());
17380     else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
17381       FD = Call->getConstructor();
17382     else if (auto *Cast = dyn_cast<CastExpr>(InnerExpr))
17383       FD = dyn_cast_or_null<FunctionDecl>(Cast->getConversionFunction());
17384 
17385     assert(FD && FD->isImmediateFunction() &&
17386            "could not find an immediate function in this expression");
17387     if (FD->isInvalidDecl())
17388       return;
17389     SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call)
17390         << FD << FD->isConsteval();
17391     if (auto Context =
17392             SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
17393       SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
17394           << Context->Decl;
17395       SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
17396     }
17397     if (!FD->isConsteval())
17398       SemaRef.DiagnoseImmediateEscalatingReason(FD);
17399     for (auto &Note : Notes)
17400       SemaRef.Diag(Note.first, Note.second);
17401     return;
17402   }
17403   CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
17404 }
17405 
17406 static void RemoveNestedImmediateInvocation(
17407     Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
17408     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
17409   struct ComplexRemove : TreeTransform<ComplexRemove> {
17410     using Base = TreeTransform<ComplexRemove>;
17411     llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17412     SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
17413     SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
17414         CurrentII;
17415     ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
17416                   SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
17417                   SmallVector<Sema::ImmediateInvocationCandidate,
17418                               4>::reverse_iterator Current)
17419         : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
17420     void RemoveImmediateInvocation(ConstantExpr* E) {
17421       auto It = std::find_if(CurrentII, IISet.rend(),
17422                              [E](Sema::ImmediateInvocationCandidate Elem) {
17423                                return Elem.getPointer() == E;
17424                              });
17425       // It is possible that some subexpression of the current immediate
17426       // invocation was handled from another expression evaluation context. Do
17427       // not handle the current immediate invocation if some of its
17428       // subexpressions failed before.
17429       if (It == IISet.rend()) {
17430         if (SemaRef.FailedImmediateInvocations.contains(E))
17431           CurrentII->setInt(1);
17432       } else {
17433         It->setInt(1); // Mark as deleted
17434       }
17435     }
17436     ExprResult TransformConstantExpr(ConstantExpr *E) {
17437       if (!E->isImmediateInvocation())
17438         return Base::TransformConstantExpr(E);
17439       RemoveImmediateInvocation(E);
17440       return Base::TransformExpr(E->getSubExpr());
17441     }
17442     /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
17443     /// we need to remove its DeclRefExpr from the DRSet.
17444     ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
17445       DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
17446       return Base::TransformCXXOperatorCallExpr(E);
17447     }
17448     /// Base::TransformUserDefinedLiteral doesn't preserve the
17449     /// UserDefinedLiteral node.
17450     ExprResult TransformUserDefinedLiteral(UserDefinedLiteral *E) { return E; }
17451     /// Base::TransformInitializer skips ConstantExpr so we need to visit them
17452     /// here.
17453     ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
17454       if (!Init)
17455         return Init;
17456       /// ConstantExpr are the first layer of implicit node to be removed so if
17457       /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
17458       if (auto *CE = dyn_cast<ConstantExpr>(Init))
17459         if (CE->isImmediateInvocation())
17460           RemoveImmediateInvocation(CE);
17461       return Base::TransformInitializer(Init, NotCopyInit);
17462     }
17463     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17464       DRSet.erase(E);
17465       return E;
17466     }
17467     ExprResult TransformLambdaExpr(LambdaExpr *E) {
17468       // Do not rebuild lambdas to avoid creating a new type.
17469       // Lambdas have already been processed inside their eval context.
17470       return E;
17471     }
17472     bool AlwaysRebuild() { return false; }
17473     bool ReplacingOriginal() { return true; }
17474     bool AllowSkippingCXXConstructExpr() {
17475       bool Res = AllowSkippingFirstCXXConstructExpr;
17476       AllowSkippingFirstCXXConstructExpr = true;
17477       return Res;
17478     }
17479     bool AllowSkippingFirstCXXConstructExpr = true;
17480   } Transformer(SemaRef, Rec.ReferenceToConsteval,
17481                 Rec.ImmediateInvocationCandidates, It);
17482 
17483   /// CXXConstructExpr with a single argument are getting skipped by
17484   /// TreeTransform in some situtation because they could be implicit. This
17485   /// can only occur for the top-level CXXConstructExpr because it is used
17486   /// nowhere in the expression being transformed therefore will not be rebuilt.
17487   /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
17488   /// skipping the first CXXConstructExpr.
17489   if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
17490     Transformer.AllowSkippingFirstCXXConstructExpr = false;
17491 
17492   ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
17493   // The result may not be usable in case of previous compilation errors.
17494   // In this case evaluation of the expression may result in crash so just
17495   // don't do anything further with the result.
17496   if (Res.isUsable()) {
17497     Res = SemaRef.MaybeCreateExprWithCleanups(Res);
17498     It->getPointer()->setSubExpr(Res.get());
17499   }
17500 }
17501 
17502 static void
17503 HandleImmediateInvocations(Sema &SemaRef,
17504                            Sema::ExpressionEvaluationContextRecord &Rec) {
17505   if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
17506        Rec.ReferenceToConsteval.size() == 0) ||
17507       Rec.isImmediateFunctionContext() || SemaRef.RebuildingImmediateInvocation)
17508     return;
17509 
17510   /// When we have more than 1 ImmediateInvocationCandidates or previously
17511   /// failed immediate invocations, we need to check for nested
17512   /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
17513   /// Otherwise we only need to remove ReferenceToConsteval in the immediate
17514   /// invocation.
17515   if (Rec.ImmediateInvocationCandidates.size() > 1 ||
17516       !SemaRef.FailedImmediateInvocations.empty()) {
17517 
17518     /// Prevent sema calls during the tree transform from adding pointers that
17519     /// are already in the sets.
17520     llvm::SaveAndRestore DisableIITracking(
17521         SemaRef.RebuildingImmediateInvocation, true);
17522 
17523     /// Prevent diagnostic during tree transfrom as they are duplicates
17524     Sema::TentativeAnalysisScope DisableDiag(SemaRef);
17525 
17526     for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
17527          It != Rec.ImmediateInvocationCandidates.rend(); It++)
17528       if (!It->getInt())
17529         RemoveNestedImmediateInvocation(SemaRef, Rec, It);
17530   } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
17531              Rec.ReferenceToConsteval.size()) {
17532     struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
17533       llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17534       SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
17535       bool VisitDeclRefExpr(DeclRefExpr *E) {
17536         DRSet.erase(E);
17537         return DRSet.size();
17538       }
17539     } Visitor(Rec.ReferenceToConsteval);
17540     Visitor.TraverseStmt(
17541         Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
17542   }
17543   for (auto CE : Rec.ImmediateInvocationCandidates)
17544     if (!CE.getInt())
17545       EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
17546   for (auto *DR : Rec.ReferenceToConsteval) {
17547     // If the expression is immediate escalating, it is not an error;
17548     // The outer context itself becomes immediate and further errors,
17549     // if any, will be handled by DiagnoseImmediateEscalatingReason.
17550     if (DR->isImmediateEscalating())
17551       continue;
17552     auto *FD = cast<FunctionDecl>(DR->getDecl());
17553     const NamedDecl *ND = FD;
17554     if (const auto *MD = dyn_cast<CXXMethodDecl>(ND);
17555         MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD)))
17556       ND = MD->getParent();
17557 
17558     // C++23 [expr.const]/p16
17559     // An expression or conversion is immediate-escalating if it is not
17560     // initially in an immediate function context and it is [...] a
17561     // potentially-evaluated id-expression that denotes an immediate function
17562     // that is not a subexpression of an immediate invocation.
17563     bool ImmediateEscalating = false;
17564     bool IsPotentiallyEvaluated =
17565         Rec.Context ==
17566             Sema::ExpressionEvaluationContext::PotentiallyEvaluated ||
17567         Rec.Context ==
17568             Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed;
17569     if (SemaRef.inTemplateInstantiation() && IsPotentiallyEvaluated)
17570       ImmediateEscalating = Rec.InImmediateEscalatingFunctionContext;
17571 
17572     if (!Rec.InImmediateEscalatingFunctionContext ||
17573         (SemaRef.inTemplateInstantiation() && !ImmediateEscalating)) {
17574       SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
17575           << ND << isa<CXXRecordDecl>(ND) << FD->isConsteval();
17576       SemaRef.Diag(ND->getLocation(), diag::note_declared_at);
17577       if (auto Context =
17578               SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
17579         SemaRef.Diag(Context->Loc, diag::note_invalid_consteval_initializer)
17580             << Context->Decl;
17581         SemaRef.Diag(Context->Decl->getBeginLoc(), diag::note_declared_at);
17582       }
17583       if (FD->isImmediateEscalating() && !FD->isConsteval())
17584         SemaRef.DiagnoseImmediateEscalatingReason(FD);
17585 
17586     } else {
17587       SemaRef.MarkExpressionAsImmediateEscalating(DR);
17588     }
17589   }
17590 }
17591 
17592 void Sema::PopExpressionEvaluationContext() {
17593   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
17594   unsigned NumTypos = Rec.NumTypos;
17595 
17596   if (!Rec.Lambdas.empty()) {
17597     using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
17598     if (!getLangOpts().CPlusPlus20 &&
17599         (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
17600          Rec.isUnevaluated() ||
17601          (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
17602       unsigned D;
17603       if (Rec.isUnevaluated()) {
17604         // C++11 [expr.prim.lambda]p2:
17605         //   A lambda-expression shall not appear in an unevaluated operand
17606         //   (Clause 5).
17607         D = diag::err_lambda_unevaluated_operand;
17608       } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
17609         // C++1y [expr.const]p2:
17610         //   A conditional-expression e is a core constant expression unless the
17611         //   evaluation of e, following the rules of the abstract machine, would
17612         //   evaluate [...] a lambda-expression.
17613         D = diag::err_lambda_in_constant_expression;
17614       } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
17615         // C++17 [expr.prim.lamda]p2:
17616         // A lambda-expression shall not appear [...] in a template-argument.
17617         D = diag::err_lambda_in_invalid_context;
17618       } else
17619         llvm_unreachable("Couldn't infer lambda error message.");
17620 
17621       for (const auto *L : Rec.Lambdas)
17622         Diag(L->getBeginLoc(), D);
17623     }
17624   }
17625 
17626   // Append the collected materialized temporaries into previous context before
17627   // exit if the previous also is a lifetime extending context.
17628   auto &PrevRecord = parentEvaluationContext();
17629   if (getLangOpts().CPlusPlus23 && Rec.InLifetimeExtendingContext &&
17630       PrevRecord.InLifetimeExtendingContext &&
17631       !Rec.ForRangeLifetimeExtendTemps.empty()) {
17632     PrevRecord.ForRangeLifetimeExtendTemps.append(
17633         Rec.ForRangeLifetimeExtendTemps);
17634   }
17635 
17636   WarnOnPendingNoDerefs(Rec);
17637   HandleImmediateInvocations(*this, Rec);
17638 
17639   // Warn on any volatile-qualified simple-assignments that are not discarded-
17640   // value expressions nor unevaluated operands (those cases get removed from
17641   // this list by CheckUnusedVolatileAssignment).
17642   for (auto *BO : Rec.VolatileAssignmentLHSs)
17643     Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
17644         << BO->getType();
17645 
17646   // When are coming out of an unevaluated context, clear out any
17647   // temporaries that we may have created as part of the evaluation of
17648   // the expression in that context: they aren't relevant because they
17649   // will never be constructed.
17650   if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
17651     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
17652                              ExprCleanupObjects.end());
17653     Cleanup = Rec.ParentCleanup;
17654     CleanupVarDeclMarking();
17655     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
17656   // Otherwise, merge the contexts together.
17657   } else {
17658     Cleanup.mergeFrom(Rec.ParentCleanup);
17659     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
17660                             Rec.SavedMaybeODRUseExprs.end());
17661   }
17662 
17663   // Pop the current expression evaluation context off the stack.
17664   ExprEvalContexts.pop_back();
17665 
17666   // The global expression evaluation context record is never popped.
17667   ExprEvalContexts.back().NumTypos += NumTypos;
17668 }
17669 
17670 void Sema::DiscardCleanupsInEvaluationContext() {
17671   ExprCleanupObjects.erase(
17672          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
17673          ExprCleanupObjects.end());
17674   Cleanup.reset();
17675   MaybeODRUseExprs.clear();
17676 }
17677 
17678 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
17679   ExprResult Result = CheckPlaceholderExpr(E);
17680   if (Result.isInvalid())
17681     return ExprError();
17682   E = Result.get();
17683   if (!E->getType()->isVariablyModifiedType())
17684     return E;
17685   return TransformToPotentiallyEvaluated(E);
17686 }
17687 
17688 /// Are we in a context that is potentially constant evaluated per C++20
17689 /// [expr.const]p12?
17690 static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
17691   /// C++2a [expr.const]p12:
17692   //   An expression or conversion is potentially constant evaluated if it is
17693   switch (SemaRef.ExprEvalContexts.back().Context) {
17694     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17695     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17696 
17697       // -- a manifestly constant-evaluated expression,
17698     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17699     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17700     case Sema::ExpressionEvaluationContext::DiscardedStatement:
17701       // -- a potentially-evaluated expression,
17702     case Sema::ExpressionEvaluationContext::UnevaluatedList:
17703       // -- an immediate subexpression of a braced-init-list,
17704 
17705       // -- [FIXME] an expression of the form & cast-expression that occurs
17706       //    within a templated entity
17707       // -- a subexpression of one of the above that is not a subexpression of
17708       // a nested unevaluated operand.
17709       return true;
17710 
17711     case Sema::ExpressionEvaluationContext::Unevaluated:
17712     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17713       // Expressions in this context are never evaluated.
17714       return false;
17715   }
17716   llvm_unreachable("Invalid context");
17717 }
17718 
17719 /// Return true if this function has a calling convention that requires mangling
17720 /// in the size of the parameter pack.
17721 static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
17722   // These manglings don't do anything on non-Windows or non-x86 platforms, so
17723   // we don't need parameter type sizes.
17724   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
17725   if (!TT.isOSWindows() || !TT.isX86())
17726     return false;
17727 
17728   // If this is C++ and this isn't an extern "C" function, parameters do not
17729   // need to be complete. In this case, C++ mangling will apply, which doesn't
17730   // use the size of the parameters.
17731   if (S.getLangOpts().CPlusPlus && !FD->isExternC())
17732     return false;
17733 
17734   // Stdcall, fastcall, and vectorcall need this special treatment.
17735   CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17736   switch (CC) {
17737   case CC_X86StdCall:
17738   case CC_X86FastCall:
17739   case CC_X86VectorCall:
17740     return true;
17741   default:
17742     break;
17743   }
17744   return false;
17745 }
17746 
17747 /// Require that all of the parameter types of function be complete. Normally,
17748 /// parameter types are only required to be complete when a function is called
17749 /// or defined, but to mangle functions with certain calling conventions, the
17750 /// mangler needs to know the size of the parameter list. In this situation,
17751 /// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
17752 /// the function as _foo@0, i.e. zero bytes of parameters, which will usually
17753 /// result in a linker error. Clang doesn't implement this behavior, and instead
17754 /// attempts to error at compile time.
17755 static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
17756                                                   SourceLocation Loc) {
17757   class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
17758     FunctionDecl *FD;
17759     ParmVarDecl *Param;
17760 
17761   public:
17762     ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
17763         : FD(FD), Param(Param) {}
17764 
17765     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
17766       CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17767       StringRef CCName;
17768       switch (CC) {
17769       case CC_X86StdCall:
17770         CCName = "stdcall";
17771         break;
17772       case CC_X86FastCall:
17773         CCName = "fastcall";
17774         break;
17775       case CC_X86VectorCall:
17776         CCName = "vectorcall";
17777         break;
17778       default:
17779         llvm_unreachable("CC does not need mangling");
17780       }
17781 
17782       S.Diag(Loc, diag::err_cconv_incomplete_param_type)
17783           << Param->getDeclName() << FD->getDeclName() << CCName;
17784     }
17785   };
17786 
17787   for (ParmVarDecl *Param : FD->parameters()) {
17788     ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
17789     S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
17790   }
17791 }
17792 
17793 namespace {
17794 enum class OdrUseContext {
17795   /// Declarations in this context are not odr-used.
17796   None,
17797   /// Declarations in this context are formally odr-used, but this is a
17798   /// dependent context.
17799   Dependent,
17800   /// Declarations in this context are odr-used but not actually used (yet).
17801   FormallyOdrUsed,
17802   /// Declarations in this context are used.
17803   Used
17804 };
17805 }
17806 
17807 /// Are we within a context in which references to resolved functions or to
17808 /// variables result in odr-use?
17809 static OdrUseContext isOdrUseContext(Sema &SemaRef) {
17810   OdrUseContext Result;
17811 
17812   switch (SemaRef.ExprEvalContexts.back().Context) {
17813     case Sema::ExpressionEvaluationContext::Unevaluated:
17814     case Sema::ExpressionEvaluationContext::UnevaluatedList:
17815     case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17816       return OdrUseContext::None;
17817 
17818     case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17819     case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17820     case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17821       Result = OdrUseContext::Used;
17822       break;
17823 
17824     case Sema::ExpressionEvaluationContext::DiscardedStatement:
17825       Result = OdrUseContext::FormallyOdrUsed;
17826       break;
17827 
17828     case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17829       // A default argument formally results in odr-use, but doesn't actually
17830       // result in a use in any real sense until it itself is used.
17831       Result = OdrUseContext::FormallyOdrUsed;
17832       break;
17833   }
17834 
17835   if (SemaRef.CurContext->isDependentContext())
17836     return OdrUseContext::Dependent;
17837 
17838   return Result;
17839 }
17840 
17841 static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
17842   if (!Func->isConstexpr())
17843     return false;
17844 
17845   if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
17846     return true;
17847   auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
17848   return CCD && CCD->getInheritedConstructor();
17849 }
17850 
17851 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
17852                                   bool MightBeOdrUse) {
17853   assert(Func && "No function?");
17854 
17855   Func->setReferenced();
17856 
17857   // Recursive functions aren't really used until they're used from some other
17858   // context.
17859   bool IsRecursiveCall = CurContext == Func;
17860 
17861   // C++11 [basic.def.odr]p3:
17862   //   A function whose name appears as a potentially-evaluated expression is
17863   //   odr-used if it is the unique lookup result or the selected member of a
17864   //   set of overloaded functions [...].
17865   //
17866   // We (incorrectly) mark overload resolution as an unevaluated context, so we
17867   // can just check that here.
17868   OdrUseContext OdrUse =
17869       MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
17870   if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
17871     OdrUse = OdrUseContext::FormallyOdrUsed;
17872 
17873   // Trivial default constructors and destructors are never actually used.
17874   // FIXME: What about other special members?
17875   if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
17876       OdrUse == OdrUseContext::Used) {
17877     if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
17878       if (Constructor->isDefaultConstructor())
17879         OdrUse = OdrUseContext::FormallyOdrUsed;
17880     if (isa<CXXDestructorDecl>(Func))
17881       OdrUse = OdrUseContext::FormallyOdrUsed;
17882   }
17883 
17884   // C++20 [expr.const]p12:
17885   //   A function [...] is needed for constant evaluation if it is [...] a
17886   //   constexpr function that is named by an expression that is potentially
17887   //   constant evaluated
17888   bool NeededForConstantEvaluation =
17889       isPotentiallyConstantEvaluatedContext(*this) &&
17890       isImplicitlyDefinableConstexprFunction(Func);
17891 
17892   // Determine whether we require a function definition to exist, per
17893   // C++11 [temp.inst]p3:
17894   //   Unless a function template specialization has been explicitly
17895   //   instantiated or explicitly specialized, the function template
17896   //   specialization is implicitly instantiated when the specialization is
17897   //   referenced in a context that requires a function definition to exist.
17898   // C++20 [temp.inst]p7:
17899   //   The existence of a definition of a [...] function is considered to
17900   //   affect the semantics of the program if the [...] function is needed for
17901   //   constant evaluation by an expression
17902   // C++20 [basic.def.odr]p10:
17903   //   Every program shall contain exactly one definition of every non-inline
17904   //   function or variable that is odr-used in that program outside of a
17905   //   discarded statement
17906   // C++20 [special]p1:
17907   //   The implementation will implicitly define [defaulted special members]
17908   //   if they are odr-used or needed for constant evaluation.
17909   //
17910   // Note that we skip the implicit instantiation of templates that are only
17911   // used in unused default arguments or by recursive calls to themselves.
17912   // This is formally non-conforming, but seems reasonable in practice.
17913   bool NeedDefinition =
17914       !IsRecursiveCall &&
17915       (OdrUse == OdrUseContext::Used ||
17916        (NeededForConstantEvaluation && !Func->isPureVirtual()));
17917 
17918   // C++14 [temp.expl.spec]p6:
17919   //   If a template [...] is explicitly specialized then that specialization
17920   //   shall be declared before the first use of that specialization that would
17921   //   cause an implicit instantiation to take place, in every translation unit
17922   //   in which such a use occurs
17923   if (NeedDefinition &&
17924       (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
17925        Func->getMemberSpecializationInfo()))
17926     checkSpecializationReachability(Loc, Func);
17927 
17928   if (getLangOpts().CUDA)
17929     CUDA().CheckCall(Loc, Func);
17930 
17931   // If we need a definition, try to create one.
17932   if (NeedDefinition && !Func->getBody()) {
17933     runWithSufficientStackSpace(Loc, [&] {
17934       if (CXXConstructorDecl *Constructor =
17935               dyn_cast<CXXConstructorDecl>(Func)) {
17936         Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
17937         if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
17938           if (Constructor->isDefaultConstructor()) {
17939             if (Constructor->isTrivial() &&
17940                 !Constructor->hasAttr<DLLExportAttr>())
17941               return;
17942             DefineImplicitDefaultConstructor(Loc, Constructor);
17943           } else if (Constructor->isCopyConstructor()) {
17944             DefineImplicitCopyConstructor(Loc, Constructor);
17945           } else if (Constructor->isMoveConstructor()) {
17946             DefineImplicitMoveConstructor(Loc, Constructor);
17947           }
17948         } else if (Constructor->getInheritedConstructor()) {
17949           DefineInheritingConstructor(Loc, Constructor);
17950         }
17951       } else if (CXXDestructorDecl *Destructor =
17952                      dyn_cast<CXXDestructorDecl>(Func)) {
17953         Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
17954         if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
17955           if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
17956             return;
17957           DefineImplicitDestructor(Loc, Destructor);
17958         }
17959         if (Destructor->isVirtual() && getLangOpts().AppleKext)
17960           MarkVTableUsed(Loc, Destructor->getParent());
17961       } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
17962         if (MethodDecl->isOverloadedOperator() &&
17963             MethodDecl->getOverloadedOperator() == OO_Equal) {
17964           MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
17965           if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
17966             if (MethodDecl->isCopyAssignmentOperator())
17967               DefineImplicitCopyAssignment(Loc, MethodDecl);
17968             else if (MethodDecl->isMoveAssignmentOperator())
17969               DefineImplicitMoveAssignment(Loc, MethodDecl);
17970           }
17971         } else if (isa<CXXConversionDecl>(MethodDecl) &&
17972                    MethodDecl->getParent()->isLambda()) {
17973           CXXConversionDecl *Conversion =
17974               cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
17975           if (Conversion->isLambdaToBlockPointerConversion())
17976             DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
17977           else
17978             DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
17979         } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
17980           MarkVTableUsed(Loc, MethodDecl->getParent());
17981       }
17982 
17983       if (Func->isDefaulted() && !Func->isDeleted()) {
17984         DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
17985         if (DCK != DefaultedComparisonKind::None)
17986           DefineDefaultedComparison(Loc, Func, DCK);
17987       }
17988 
17989       // Implicit instantiation of function templates and member functions of
17990       // class templates.
17991       if (Func->isImplicitlyInstantiable()) {
17992         TemplateSpecializationKind TSK =
17993             Func->getTemplateSpecializationKindForInstantiation();
17994         SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
17995         bool FirstInstantiation = PointOfInstantiation.isInvalid();
17996         if (FirstInstantiation) {
17997           PointOfInstantiation = Loc;
17998           if (auto *MSI = Func->getMemberSpecializationInfo())
17999             MSI->setPointOfInstantiation(Loc);
18000             // FIXME: Notify listener.
18001           else
18002             Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18003         } else if (TSK != TSK_ImplicitInstantiation) {
18004           // Use the point of use as the point of instantiation, instead of the
18005           // point of explicit instantiation (which we track as the actual point
18006           // of instantiation). This gives better backtraces in diagnostics.
18007           PointOfInstantiation = Loc;
18008         }
18009 
18010         if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
18011             Func->isConstexpr()) {
18012           if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
18013               cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
18014               CodeSynthesisContexts.size())
18015             PendingLocalImplicitInstantiations.push_back(
18016                 std::make_pair(Func, PointOfInstantiation));
18017           else if (Func->isConstexpr())
18018             // Do not defer instantiations of constexpr functions, to avoid the
18019             // expression evaluator needing to call back into Sema if it sees a
18020             // call to such a function.
18021             InstantiateFunctionDefinition(PointOfInstantiation, Func);
18022           else {
18023             Func->setInstantiationIsPending(true);
18024             PendingInstantiations.push_back(
18025                 std::make_pair(Func, PointOfInstantiation));
18026             // Notify the consumer that a function was implicitly instantiated.
18027             Consumer.HandleCXXImplicitFunctionInstantiation(Func);
18028           }
18029         }
18030       } else {
18031         // Walk redefinitions, as some of them may be instantiable.
18032         for (auto *i : Func->redecls()) {
18033           if (!i->isUsed(false) && i->isImplicitlyInstantiable())
18034             MarkFunctionReferenced(Loc, i, MightBeOdrUse);
18035         }
18036       }
18037     });
18038   }
18039 
18040   // If a constructor was defined in the context of a default parameter
18041   // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
18042   // context), its initializers may not be referenced yet.
18043   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
18044     EnterExpressionEvaluationContext EvalContext(
18045         *this,
18046         Constructor->isImmediateFunction()
18047             ? ExpressionEvaluationContext::ImmediateFunctionContext
18048             : ExpressionEvaluationContext::PotentiallyEvaluated,
18049         Constructor);
18050     for (CXXCtorInitializer *Init : Constructor->inits()) {
18051       if (Init->isInClassMemberInitializer())
18052         runWithSufficientStackSpace(Init->getSourceLocation(), [&]() {
18053           MarkDeclarationsReferencedInExpr(Init->getInit());
18054         });
18055     }
18056   }
18057 
18058   // C++14 [except.spec]p17:
18059   //   An exception-specification is considered to be needed when:
18060   //   - the function is odr-used or, if it appears in an unevaluated operand,
18061   //     would be odr-used if the expression were potentially-evaluated;
18062   //
18063   // Note, we do this even if MightBeOdrUse is false. That indicates that the
18064   // function is a pure virtual function we're calling, and in that case the
18065   // function was selected by overload resolution and we need to resolve its
18066   // exception specification for a different reason.
18067   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
18068   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
18069     ResolveExceptionSpec(Loc, FPT);
18070 
18071   // A callee could be called by a host function then by a device function.
18072   // If we only try recording once, we will miss recording the use on device
18073   // side. Therefore keep trying until it is recorded.
18074   if (LangOpts.OffloadImplicitHostDeviceTemplates && LangOpts.CUDAIsDevice &&
18075       !getASTContext().CUDAImplicitHostDeviceFunUsedByDevice.count(Func))
18076     CUDA().RecordImplicitHostDeviceFuncUsedByDevice(Func);
18077 
18078   // If this is the first "real" use, act on that.
18079   if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
18080     // Keep track of used but undefined functions.
18081     if (!Func->isDefined()) {
18082       if (mightHaveNonExternalLinkage(Func))
18083         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18084       else if (Func->getMostRecentDecl()->isInlined() &&
18085                !LangOpts.GNUInline &&
18086                !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
18087         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18088       else if (isExternalWithNoLinkageType(Func))
18089         UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
18090     }
18091 
18092     // Some x86 Windows calling conventions mangle the size of the parameter
18093     // pack into the name. Computing the size of the parameters requires the
18094     // parameter types to be complete. Check that now.
18095     if (funcHasParameterSizeMangling(*this, Func))
18096       CheckCompleteParameterTypesForMangler(*this, Func, Loc);
18097 
18098     // In the MS C++ ABI, the compiler emits destructor variants where they are
18099     // used. If the destructor is used here but defined elsewhere, mark the
18100     // virtual base destructors referenced. If those virtual base destructors
18101     // are inline, this will ensure they are defined when emitting the complete
18102     // destructor variant. This checking may be redundant if the destructor is
18103     // provided later in this TU.
18104     if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
18105       if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
18106         CXXRecordDecl *Parent = Dtor->getParent();
18107         if (Parent->getNumVBases() > 0 && !Dtor->getBody())
18108           CheckCompleteDestructorVariant(Loc, Dtor);
18109       }
18110     }
18111 
18112     Func->markUsed(Context);
18113   }
18114 }
18115 
18116 /// Directly mark a variable odr-used. Given a choice, prefer to use
18117 /// MarkVariableReferenced since it does additional checks and then
18118 /// calls MarkVarDeclODRUsed.
18119 /// If the variable must be captured:
18120 ///  - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
18121 ///  - else capture it in the DeclContext that maps to the
18122 ///    *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
18123 static void
18124 MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef,
18125                    const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
18126   // Keep track of used but undefined variables.
18127   // FIXME: We shouldn't suppress this warning for static data members.
18128   VarDecl *Var = V->getPotentiallyDecomposedVarDecl();
18129   assert(Var && "expected a capturable variable");
18130 
18131   if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
18132       (!Var->isExternallyVisible() || Var->isInline() ||
18133        SemaRef.isExternalWithNoLinkageType(Var)) &&
18134       !(Var->isStaticDataMember() && Var->hasInit())) {
18135     SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
18136     if (old.isInvalid())
18137       old = Loc;
18138   }
18139   QualType CaptureType, DeclRefType;
18140   if (SemaRef.LangOpts.OpenMP)
18141     SemaRef.OpenMP().tryCaptureOpenMPLambdas(V);
18142   SemaRef.tryCaptureVariable(V, Loc, Sema::TryCapture_Implicit,
18143                              /*EllipsisLoc*/ SourceLocation(),
18144                              /*BuildAndDiagnose*/ true, CaptureType,
18145                              DeclRefType, FunctionScopeIndexToStopAt);
18146 
18147   if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
18148     auto *FD = dyn_cast_or_null<FunctionDecl>(SemaRef.CurContext);
18149     auto VarTarget = SemaRef.CUDA().IdentifyTarget(Var);
18150     auto UserTarget = SemaRef.CUDA().IdentifyTarget(FD);
18151     if (VarTarget == SemaCUDA::CVT_Host &&
18152         (UserTarget == CUDAFunctionTarget::Device ||
18153          UserTarget == CUDAFunctionTarget::HostDevice ||
18154          UserTarget == CUDAFunctionTarget::Global)) {
18155       // Diagnose ODR-use of host global variables in device functions.
18156       // Reference of device global variables in host functions is allowed
18157       // through shadow variables therefore it is not diagnosed.
18158       if (SemaRef.LangOpts.CUDAIsDevice && !SemaRef.LangOpts.HIPStdPar) {
18159         SemaRef.targetDiag(Loc, diag::err_ref_bad_target)
18160             << /*host*/ 2 << /*variable*/ 1 << Var
18161             << llvm::to_underlying(UserTarget);
18162         SemaRef.targetDiag(Var->getLocation(),
18163                            Var->getType().isConstQualified()
18164                                ? diag::note_cuda_const_var_unpromoted
18165                                : diag::note_cuda_host_var);
18166       }
18167     } else if (VarTarget == SemaCUDA::CVT_Device &&
18168                !Var->hasAttr<CUDASharedAttr>() &&
18169                (UserTarget == CUDAFunctionTarget::Host ||
18170                 UserTarget == CUDAFunctionTarget::HostDevice)) {
18171       // Record a CUDA/HIP device side variable if it is ODR-used
18172       // by host code. This is done conservatively, when the variable is
18173       // referenced in any of the following contexts:
18174       //   - a non-function context
18175       //   - a host function
18176       //   - a host device function
18177       // This makes the ODR-use of the device side variable by host code to
18178       // be visible in the device compilation for the compiler to be able to
18179       // emit template variables instantiated by host code only and to
18180       // externalize the static device side variable ODR-used by host code.
18181       if (!Var->hasExternalStorage())
18182         SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(Var);
18183       else if (SemaRef.LangOpts.GPURelocatableDeviceCode &&
18184                (!FD || (!FD->getDescribedFunctionTemplate() &&
18185                         SemaRef.getASTContext().GetGVALinkageForFunction(FD) ==
18186                             GVA_StrongExternal)))
18187         SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(Var);
18188     }
18189   }
18190 
18191   V->markUsed(SemaRef.Context);
18192 }
18193 
18194 void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture,
18195                                              SourceLocation Loc,
18196                                              unsigned CapturingScopeIndex) {
18197   MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
18198 }
18199 
18200 void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
18201                                                  ValueDecl *var) {
18202   DeclContext *VarDC = var->getDeclContext();
18203 
18204   //  If the parameter still belongs to the translation unit, then
18205   //  we're actually just using one parameter in the declaration of
18206   //  the next.
18207   if (isa<ParmVarDecl>(var) &&
18208       isa<TranslationUnitDecl>(VarDC))
18209     return;
18210 
18211   // For C code, don't diagnose about capture if we're not actually in code
18212   // right now; it's impossible to write a non-constant expression outside of
18213   // function context, so we'll get other (more useful) diagnostics later.
18214   //
18215   // For C++, things get a bit more nasty... it would be nice to suppress this
18216   // diagnostic for certain cases like using a local variable in an array bound
18217   // for a member of a local class, but the correct predicate is not obvious.
18218   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
18219     return;
18220 
18221   unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
18222   unsigned ContextKind = 3; // unknown
18223   if (isa<CXXMethodDecl>(VarDC) &&
18224       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
18225     ContextKind = 2;
18226   } else if (isa<FunctionDecl>(VarDC)) {
18227     ContextKind = 0;
18228   } else if (isa<BlockDecl>(VarDC)) {
18229     ContextKind = 1;
18230   }
18231 
18232   S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
18233     << var << ValueKind << ContextKind << VarDC;
18234   S.Diag(var->getLocation(), diag::note_entity_declared_at)
18235       << var;
18236 
18237   // FIXME: Add additional diagnostic info about class etc. which prevents
18238   // capture.
18239 }
18240 
18241 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
18242                                                  ValueDecl *Var,
18243                                                  bool &SubCapturesAreNested,
18244                                                  QualType &CaptureType,
18245                                                  QualType &DeclRefType) {
18246   // Check whether we've already captured it.
18247   if (CSI->CaptureMap.count(Var)) {
18248     // If we found a capture, any subcaptures are nested.
18249     SubCapturesAreNested = true;
18250 
18251     // Retrieve the capture type for this variable.
18252     CaptureType = CSI->getCapture(Var).getCaptureType();
18253 
18254     // Compute the type of an expression that refers to this variable.
18255     DeclRefType = CaptureType.getNonReferenceType();
18256 
18257     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
18258     // are mutable in the sense that user can change their value - they are
18259     // private instances of the captured declarations.
18260     const Capture &Cap = CSI->getCapture(Var);
18261     if (Cap.isCopyCapture() &&
18262         !(isa<LambdaScopeInfo>(CSI) &&
18263           !cast<LambdaScopeInfo>(CSI)->lambdaCaptureShouldBeConst()) &&
18264         !(isa<CapturedRegionScopeInfo>(CSI) &&
18265           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
18266       DeclRefType.addConst();
18267     return true;
18268   }
18269   return false;
18270 }
18271 
18272 // Only block literals, captured statements, and lambda expressions can
18273 // capture; other scopes don't work.
18274 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
18275                                                       ValueDecl *Var,
18276                                                       SourceLocation Loc,
18277                                                       const bool Diagnose,
18278                                                       Sema &S) {
18279   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
18280     return getLambdaAwareParentOfDeclContext(DC);
18281 
18282   VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
18283   if (Underlying) {
18284     if (Underlying->hasLocalStorage() && Diagnose)
18285       diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
18286   }
18287   return nullptr;
18288 }
18289 
18290 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18291 // certain types of variables (unnamed, variably modified types etc.)
18292 // so check for eligibility.
18293 static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
18294                                  SourceLocation Loc, const bool Diagnose,
18295                                  Sema &S) {
18296 
18297   assert((isa<VarDecl, BindingDecl>(Var)) &&
18298          "Only variables and structured bindings can be captured");
18299 
18300   bool IsBlock = isa<BlockScopeInfo>(CSI);
18301   bool IsLambda = isa<LambdaScopeInfo>(CSI);
18302 
18303   // Lambdas are not allowed to capture unnamed variables
18304   // (e.g. anonymous unions).
18305   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
18306   // assuming that's the intent.
18307   if (IsLambda && !Var->getDeclName()) {
18308     if (Diagnose) {
18309       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
18310       S.Diag(Var->getLocation(), diag::note_declared_at);
18311     }
18312     return false;
18313   }
18314 
18315   // Prohibit variably-modified types in blocks; they're difficult to deal with.
18316   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
18317     if (Diagnose) {
18318       S.Diag(Loc, diag::err_ref_vm_type);
18319       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18320     }
18321     return false;
18322   }
18323   // Prohibit structs with flexible array members too.
18324   // We cannot capture what is in the tail end of the struct.
18325   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
18326     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
18327       if (Diagnose) {
18328         if (IsBlock)
18329           S.Diag(Loc, diag::err_ref_flexarray_type);
18330         else
18331           S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
18332         S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18333       }
18334       return false;
18335     }
18336   }
18337   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18338   // Lambdas and captured statements are not allowed to capture __block
18339   // variables; they don't support the expected semantics.
18340   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
18341     if (Diagnose) {
18342       S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
18343       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18344     }
18345     return false;
18346   }
18347   // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
18348   if (S.getLangOpts().OpenCL && IsBlock &&
18349       Var->getType()->isBlockPointerType()) {
18350     if (Diagnose)
18351       S.Diag(Loc, diag::err_opencl_block_ref_block);
18352     return false;
18353   }
18354 
18355   if (isa<BindingDecl>(Var)) {
18356     if (!IsLambda || !S.getLangOpts().CPlusPlus) {
18357       if (Diagnose)
18358         diagnoseUncapturableValueReferenceOrBinding(S, Loc, Var);
18359       return false;
18360     } else if (Diagnose && S.getLangOpts().CPlusPlus) {
18361       S.Diag(Loc, S.LangOpts.CPlusPlus20
18362                       ? diag::warn_cxx17_compat_capture_binding
18363                       : diag::ext_capture_binding)
18364           << Var;
18365       S.Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
18366     }
18367   }
18368 
18369   return true;
18370 }
18371 
18372 // Returns true if the capture by block was successful.
18373 static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
18374                            SourceLocation Loc, const bool BuildAndDiagnose,
18375                            QualType &CaptureType, QualType &DeclRefType,
18376                            const bool Nested, Sema &S, bool Invalid) {
18377   bool ByRef = false;
18378 
18379   // Blocks are not allowed to capture arrays, excepting OpenCL.
18380   // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
18381   // (decayed to pointers).
18382   if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
18383     if (BuildAndDiagnose) {
18384       S.Diag(Loc, diag::err_ref_array_type);
18385       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18386       Invalid = true;
18387     } else {
18388       return false;
18389     }
18390   }
18391 
18392   // Forbid the block-capture of autoreleasing variables.
18393   if (!Invalid &&
18394       CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18395     if (BuildAndDiagnose) {
18396       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
18397         << /*block*/ 0;
18398       S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18399       Invalid = true;
18400     } else {
18401       return false;
18402     }
18403   }
18404 
18405   // Warn about implicitly autoreleasing indirect parameters captured by blocks.
18406   if (const auto *PT = CaptureType->getAs<PointerType>()) {
18407     QualType PointeeTy = PT->getPointeeType();
18408 
18409     if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
18410         PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
18411         !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
18412       if (BuildAndDiagnose) {
18413         SourceLocation VarLoc = Var->getLocation();
18414         S.Diag(Loc, diag::warn_block_capture_autoreleasing);
18415         S.Diag(VarLoc, diag::note_declare_parameter_strong);
18416       }
18417     }
18418   }
18419 
18420   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18421   if (HasBlocksAttr || CaptureType->isReferenceType() ||
18422       (S.getLangOpts().OpenMP && S.OpenMP().isOpenMPCapturedDecl(Var))) {
18423     // Block capture by reference does not change the capture or
18424     // declaration reference types.
18425     ByRef = true;
18426   } else {
18427     // Block capture by copy introduces 'const'.
18428     CaptureType = CaptureType.getNonReferenceType().withConst();
18429     DeclRefType = CaptureType;
18430   }
18431 
18432   // Actually capture the variable.
18433   if (BuildAndDiagnose)
18434     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
18435                     CaptureType, Invalid);
18436 
18437   return !Invalid;
18438 }
18439 
18440 /// Capture the given variable in the captured region.
18441 static bool captureInCapturedRegion(
18442     CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
18443     const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
18444     const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
18445     bool IsTopScope, Sema &S, bool Invalid) {
18446   // By default, capture variables by reference.
18447   bool ByRef = true;
18448   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18449     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18450   } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
18451     // Using an LValue reference type is consistent with Lambdas (see below).
18452     if (S.OpenMP().isOpenMPCapturedDecl(Var)) {
18453       bool HasConst = DeclRefType.isConstQualified();
18454       DeclRefType = DeclRefType.getUnqualifiedType();
18455       // Don't lose diagnostics about assignments to const.
18456       if (HasConst)
18457         DeclRefType.addConst();
18458     }
18459     // Do not capture firstprivates in tasks.
18460     if (S.OpenMP().isOpenMPPrivateDecl(Var, RSI->OpenMPLevel,
18461                                        RSI->OpenMPCaptureLevel) != OMPC_unknown)
18462       return true;
18463     ByRef = S.OpenMP().isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
18464                                              RSI->OpenMPCaptureLevel);
18465   }
18466 
18467   if (ByRef)
18468     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18469   else
18470     CaptureType = DeclRefType;
18471 
18472   // Actually capture the variable.
18473   if (BuildAndDiagnose)
18474     RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
18475                     Loc, SourceLocation(), CaptureType, Invalid);
18476 
18477   return !Invalid;
18478 }
18479 
18480 /// Capture the given variable in the lambda.
18481 static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
18482                             SourceLocation Loc, const bool BuildAndDiagnose,
18483                             QualType &CaptureType, QualType &DeclRefType,
18484                             const bool RefersToCapturedVariable,
18485                             const Sema::TryCaptureKind Kind,
18486                             SourceLocation EllipsisLoc, const bool IsTopScope,
18487                             Sema &S, bool Invalid) {
18488   // Determine whether we are capturing by reference or by value.
18489   bool ByRef = false;
18490   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18491     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18492   } else {
18493     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
18494   }
18495 
18496   if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() &&
18497       CaptureType.getNonReferenceType().isWebAssemblyReferenceType()) {
18498     S.Diag(Loc, diag::err_wasm_ca_reference) << 0;
18499     Invalid = true;
18500   }
18501 
18502   // Compute the type of the field that will capture this variable.
18503   if (ByRef) {
18504     // C++11 [expr.prim.lambda]p15:
18505     //   An entity is captured by reference if it is implicitly or
18506     //   explicitly captured but not captured by copy. It is
18507     //   unspecified whether additional unnamed non-static data
18508     //   members are declared in the closure type for entities
18509     //   captured by reference.
18510     //
18511     // FIXME: It is not clear whether we want to build an lvalue reference
18512     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
18513     // to do the former, while EDG does the latter. Core issue 1249 will
18514     // clarify, but for now we follow GCC because it's a more permissive and
18515     // easily defensible position.
18516     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
18517   } else {
18518     // C++11 [expr.prim.lambda]p14:
18519     //   For each entity captured by copy, an unnamed non-static
18520     //   data member is declared in the closure type. The
18521     //   declaration order of these members is unspecified. The type
18522     //   of such a data member is the type of the corresponding
18523     //   captured entity if the entity is not a reference to an
18524     //   object, or the referenced type otherwise. [Note: If the
18525     //   captured entity is a reference to a function, the
18526     //   corresponding data member is also a reference to a
18527     //   function. - end note ]
18528     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
18529       if (!RefType->getPointeeType()->isFunctionType())
18530         CaptureType = RefType->getPointeeType();
18531     }
18532 
18533     // Forbid the lambda copy-capture of autoreleasing variables.
18534     if (!Invalid &&
18535         CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18536       if (BuildAndDiagnose) {
18537         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
18538         S.Diag(Var->getLocation(), diag::note_previous_decl)
18539           << Var->getDeclName();
18540         Invalid = true;
18541       } else {
18542         return false;
18543       }
18544     }
18545 
18546     // Make sure that by-copy captures are of a complete and non-abstract type.
18547     if (!Invalid && BuildAndDiagnose) {
18548       if (!CaptureType->isDependentType() &&
18549           S.RequireCompleteSizedType(
18550               Loc, CaptureType,
18551               diag::err_capture_of_incomplete_or_sizeless_type,
18552               Var->getDeclName()))
18553         Invalid = true;
18554       else if (S.RequireNonAbstractType(Loc, CaptureType,
18555                                         diag::err_capture_of_abstract_type))
18556         Invalid = true;
18557     }
18558   }
18559 
18560   // Compute the type of a reference to this captured variable.
18561   if (ByRef)
18562     DeclRefType = CaptureType.getNonReferenceType();
18563   else {
18564     // C++ [expr.prim.lambda]p5:
18565     //   The closure type for a lambda-expression has a public inline
18566     //   function call operator [...]. This function call operator is
18567     //   declared const (9.3.1) if and only if the lambda-expression's
18568     //   parameter-declaration-clause is not followed by mutable.
18569     DeclRefType = CaptureType.getNonReferenceType();
18570     bool Const = LSI->lambdaCaptureShouldBeConst();
18571     if (Const && !CaptureType->isReferenceType())
18572       DeclRefType.addConst();
18573   }
18574 
18575   // Add the capture.
18576   if (BuildAndDiagnose)
18577     LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
18578                     Loc, EllipsisLoc, CaptureType, Invalid);
18579 
18580   return !Invalid;
18581 }
18582 
18583 static bool canCaptureVariableByCopy(ValueDecl *Var,
18584                                      const ASTContext &Context) {
18585   // Offer a Copy fix even if the type is dependent.
18586   if (Var->getType()->isDependentType())
18587     return true;
18588   QualType T = Var->getType().getNonReferenceType();
18589   if (T.isTriviallyCopyableType(Context))
18590     return true;
18591   if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
18592 
18593     if (!(RD = RD->getDefinition()))
18594       return false;
18595     if (RD->hasSimpleCopyConstructor())
18596       return true;
18597     if (RD->hasUserDeclaredCopyConstructor())
18598       for (CXXConstructorDecl *Ctor : RD->ctors())
18599         if (Ctor->isCopyConstructor())
18600           return !Ctor->isDeleted();
18601   }
18602   return false;
18603 }
18604 
18605 /// Create up to 4 fix-its for explicit reference and value capture of \p Var or
18606 /// default capture. Fixes may be omitted if they aren't allowed by the
18607 /// standard, for example we can't emit a default copy capture fix-it if we
18608 /// already explicitly copy capture capture another variable.
18609 static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
18610                                     ValueDecl *Var) {
18611   assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
18612   // Don't offer Capture by copy of default capture by copy fixes if Var is
18613   // known not to be copy constructible.
18614   bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Sema.getASTContext());
18615 
18616   SmallString<32> FixBuffer;
18617   StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
18618   if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
18619     SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
18620     if (ShouldOfferCopyFix) {
18621       // Offer fixes to insert an explicit capture for the variable.
18622       // [] -> [VarName]
18623       // [OtherCapture] -> [OtherCapture, VarName]
18624       FixBuffer.assign({Separator, Var->getName()});
18625       Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18626           << Var << /*value*/ 0
18627           << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18628     }
18629     // As above but capture by reference.
18630     FixBuffer.assign({Separator, "&", Var->getName()});
18631     Sema.Diag(VarInsertLoc, diag::note_lambda_variable_capture_fixit)
18632         << Var << /*reference*/ 1
18633         << FixItHint::CreateInsertion(VarInsertLoc, FixBuffer);
18634   }
18635 
18636   // Only try to offer default capture if there are no captures excluding this
18637   // and init captures.
18638   // [this]: OK.
18639   // [X = Y]: OK.
18640   // [&A, &B]: Don't offer.
18641   // [A, B]: Don't offer.
18642   if (llvm::any_of(LSI->Captures, [](Capture &C) {
18643         return !C.isThisCapture() && !C.isInitCapture();
18644       }))
18645     return;
18646 
18647   // The default capture specifiers, '=' or '&', must appear first in the
18648   // capture body.
18649   SourceLocation DefaultInsertLoc =
18650       LSI->IntroducerRange.getBegin().getLocWithOffset(1);
18651 
18652   if (ShouldOfferCopyFix) {
18653     bool CanDefaultCopyCapture = true;
18654     // [=, *this] OK since c++17
18655     // [=, this] OK since c++20
18656     if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
18657       CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
18658                                   ? LSI->getCXXThisCapture().isCopyCapture()
18659                                   : false;
18660     // We can't use default capture by copy if any captures already specified
18661     // capture by copy.
18662     if (CanDefaultCopyCapture && llvm::none_of(LSI->Captures, [](Capture &C) {
18663           return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
18664         })) {
18665       FixBuffer.assign({"=", Separator});
18666       Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
18667           << /*value*/ 0
18668           << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
18669     }
18670   }
18671 
18672   // We can't use default capture by reference if any captures already specified
18673   // capture by reference.
18674   if (llvm::none_of(LSI->Captures, [](Capture &C) {
18675         return !C.isInitCapture() && C.isReferenceCapture() &&
18676                !C.isThisCapture();
18677       })) {
18678     FixBuffer.assign({"&", Separator});
18679     Sema.Diag(DefaultInsertLoc, diag::note_lambda_default_capture_fixit)
18680         << /*reference*/ 1
18681         << FixItHint::CreateInsertion(DefaultInsertLoc, FixBuffer);
18682   }
18683 }
18684 
18685 bool Sema::tryCaptureVariable(
18686     ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
18687     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
18688     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
18689   // An init-capture is notionally from the context surrounding its
18690   // declaration, but its parent DC is the lambda class.
18691   DeclContext *VarDC = Var->getDeclContext();
18692   DeclContext *DC = CurContext;
18693 
18694   // Skip past RequiresExprBodys because they don't constitute function scopes.
18695   while (DC->isRequiresExprBody())
18696     DC = DC->getParent();
18697 
18698   // tryCaptureVariable is called every time a DeclRef is formed,
18699   // it can therefore have non-negigible impact on performances.
18700   // For local variables and when there is no capturing scope,
18701   // we can bailout early.
18702   if (CapturingFunctionScopes == 0 && (!BuildAndDiagnose || VarDC == DC))
18703     return true;
18704 
18705   // Exception: Function parameters are not tied to the function's DeclContext
18706   // until we enter the function definition. Capturing them anyway would result
18707   // in an out-of-bounds error while traversing DC and its parents.
18708   if (isa<ParmVarDecl>(Var) && !VarDC->isFunctionOrMethod())
18709     return true;
18710 
18711   const auto *VD = dyn_cast<VarDecl>(Var);
18712   if (VD) {
18713     if (VD->isInitCapture())
18714       VarDC = VarDC->getParent();
18715   } else {
18716     VD = Var->getPotentiallyDecomposedVarDecl();
18717   }
18718   assert(VD && "Cannot capture a null variable");
18719 
18720   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
18721       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
18722   // We need to sync up the Declaration Context with the
18723   // FunctionScopeIndexToStopAt
18724   if (FunctionScopeIndexToStopAt) {
18725     unsigned FSIndex = FunctionScopes.size() - 1;
18726     while (FSIndex != MaxFunctionScopesIndex) {
18727       DC = getLambdaAwareParentOfDeclContext(DC);
18728       --FSIndex;
18729     }
18730   }
18731 
18732   // Capture global variables if it is required to use private copy of this
18733   // variable.
18734   bool IsGlobal = !VD->hasLocalStorage();
18735   if (IsGlobal && !(LangOpts.OpenMP &&
18736                     OpenMP().isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
18737                                                   MaxFunctionScopesIndex)))
18738     return true;
18739 
18740   if (isa<VarDecl>(Var))
18741     Var = cast<VarDecl>(Var->getCanonicalDecl());
18742 
18743   // Walk up the stack to determine whether we can capture the variable,
18744   // performing the "simple" checks that don't depend on type. We stop when
18745   // we've either hit the declared scope of the variable or find an existing
18746   // capture of that variable.  We start from the innermost capturing-entity
18747   // (the DC) and ensure that all intervening capturing-entities
18748   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
18749   // declcontext can either capture the variable or have already captured
18750   // the variable.
18751   CaptureType = Var->getType();
18752   DeclRefType = CaptureType.getNonReferenceType();
18753   bool Nested = false;
18754   bool Explicit = (Kind != TryCapture_Implicit);
18755   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
18756   do {
18757 
18758     LambdaScopeInfo *LSI = nullptr;
18759     if (!FunctionScopes.empty())
18760       LSI = dyn_cast_or_null<LambdaScopeInfo>(
18761           FunctionScopes[FunctionScopesIndex]);
18762 
18763     bool IsInScopeDeclarationContext =
18764         !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator;
18765 
18766     if (LSI && !LSI->AfterParameterList) {
18767       // This allows capturing parameters from a default value which does not
18768       // seems correct
18769       if (isa<ParmVarDecl>(Var) && !Var->getDeclContext()->isFunctionOrMethod())
18770         return true;
18771     }
18772     // If the variable is declared in the current context, there is no need to
18773     // capture it.
18774     if (IsInScopeDeclarationContext &&
18775         FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC)
18776       return true;
18777 
18778     // Only block literals, captured statements, and lambda expressions can
18779     // capture; other scopes don't work.
18780     DeclContext *ParentDC =
18781         !IsInScopeDeclarationContext
18782             ? DC->getParent()
18783             : getParentOfCapturingContextOrNull(DC, Var, ExprLoc,
18784                                                 BuildAndDiagnose, *this);
18785     // We need to check for the parent *first* because, if we *have*
18786     // private-captured a global variable, we need to recursively capture it in
18787     // intermediate blocks, lambdas, etc.
18788     if (!ParentDC) {
18789       if (IsGlobal) {
18790         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
18791         break;
18792       }
18793       return true;
18794     }
18795 
18796     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
18797     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
18798 
18799     // Check whether we've already captured it.
18800     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
18801                                              DeclRefType)) {
18802       CSI->getCapture(Var).markUsed(BuildAndDiagnose);
18803       break;
18804     }
18805 
18806     // When evaluating some attributes (like enable_if) we might refer to a
18807     // function parameter appertaining to the same declaration as that
18808     // attribute.
18809     if (const auto *Parm = dyn_cast<ParmVarDecl>(Var);
18810         Parm && Parm->getDeclContext() == DC)
18811       return true;
18812 
18813     // If we are instantiating a generic lambda call operator body,
18814     // we do not want to capture new variables.  What was captured
18815     // during either a lambdas transformation or initial parsing
18816     // should be used.
18817     if (isGenericLambdaCallOperatorSpecialization(DC)) {
18818       if (BuildAndDiagnose) {
18819         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
18820         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
18821           Diag(ExprLoc, diag::err_lambda_impcap) << Var;
18822           Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18823           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
18824           buildLambdaCaptureFixit(*this, LSI, Var);
18825         } else
18826           diagnoseUncapturableValueReferenceOrBinding(*this, ExprLoc, Var);
18827       }
18828       return true;
18829     }
18830 
18831     // Try to capture variable-length arrays types.
18832     if (Var->getType()->isVariablyModifiedType()) {
18833       // We're going to walk down into the type and look for VLA
18834       // expressions.
18835       QualType QTy = Var->getType();
18836       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
18837         QTy = PVD->getOriginalType();
18838       captureVariablyModifiedType(Context, QTy, CSI);
18839     }
18840 
18841     if (getLangOpts().OpenMP) {
18842       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
18843         // OpenMP private variables should not be captured in outer scope, so
18844         // just break here. Similarly, global variables that are captured in a
18845         // target region should not be captured outside the scope of the region.
18846         if (RSI->CapRegionKind == CR_OpenMP) {
18847           // FIXME: We should support capturing structured bindings in OpenMP.
18848           if (isa<BindingDecl>(Var)) {
18849             if (BuildAndDiagnose) {
18850               Diag(ExprLoc, diag::err_capture_binding_openmp) << Var;
18851               Diag(Var->getLocation(), diag::note_entity_declared_at) << Var;
18852             }
18853             return true;
18854           }
18855           OpenMPClauseKind IsOpenMPPrivateDecl = OpenMP().isOpenMPPrivateDecl(
18856               Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
18857           // If the variable is private (i.e. not captured) and has variably
18858           // modified type, we still need to capture the type for correct
18859           // codegen in all regions, associated with the construct. Currently,
18860           // it is captured in the innermost captured region only.
18861           if (IsOpenMPPrivateDecl != OMPC_unknown &&
18862               Var->getType()->isVariablyModifiedType()) {
18863             QualType QTy = Var->getType();
18864             if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
18865               QTy = PVD->getOriginalType();
18866             for (int I = 1,
18867                      E = OpenMP().getNumberOfConstructScopes(RSI->OpenMPLevel);
18868                  I < E; ++I) {
18869               auto *OuterRSI = cast<CapturedRegionScopeInfo>(
18870                   FunctionScopes[FunctionScopesIndex - I]);
18871               assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
18872                      "Wrong number of captured regions associated with the "
18873                      "OpenMP construct.");
18874               captureVariablyModifiedType(Context, QTy, OuterRSI);
18875             }
18876           }
18877           bool IsTargetCap =
18878               IsOpenMPPrivateDecl != OMPC_private &&
18879               OpenMP().isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
18880                                                   RSI->OpenMPCaptureLevel);
18881           // Do not capture global if it is not privatized in outer regions.
18882           bool IsGlobalCap =
18883               IsGlobal && OpenMP().isOpenMPGlobalCapturedDecl(
18884                               Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
18885 
18886           // When we detect target captures we are looking from inside the
18887           // target region, therefore we need to propagate the capture from the
18888           // enclosing region. Therefore, the capture is not initially nested.
18889           if (IsTargetCap)
18890             OpenMP().adjustOpenMPTargetScopeIndex(FunctionScopesIndex,
18891                                                   RSI->OpenMPLevel);
18892 
18893           if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
18894               (IsGlobal && !IsGlobalCap)) {
18895             Nested = !IsTargetCap;
18896             bool HasConst = DeclRefType.isConstQualified();
18897             DeclRefType = DeclRefType.getUnqualifiedType();
18898             // Don't lose diagnostics about assignments to const.
18899             if (HasConst)
18900               DeclRefType.addConst();
18901             CaptureType = Context.getLValueReferenceType(DeclRefType);
18902             break;
18903           }
18904         }
18905       }
18906     }
18907     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
18908       // No capture-default, and this is not an explicit capture
18909       // so cannot capture this variable.
18910       if (BuildAndDiagnose) {
18911         Diag(ExprLoc, diag::err_lambda_impcap) << Var;
18912         Diag(Var->getLocation(), diag::note_previous_decl) << Var;
18913         auto *LSI = cast<LambdaScopeInfo>(CSI);
18914         if (LSI->Lambda) {
18915           Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
18916           buildLambdaCaptureFixit(*this, LSI, Var);
18917         }
18918         // FIXME: If we error out because an outer lambda can not implicitly
18919         // capture a variable that an inner lambda explicitly captures, we
18920         // should have the inner lambda do the explicit capture - because
18921         // it makes for cleaner diagnostics later.  This would purely be done
18922         // so that the diagnostic does not misleadingly claim that a variable
18923         // can not be captured by a lambda implicitly even though it is captured
18924         // explicitly.  Suggestion:
18925         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
18926         //    at the function head
18927         //  - cache the StartingDeclContext - this must be a lambda
18928         //  - captureInLambda in the innermost lambda the variable.
18929       }
18930       return true;
18931     }
18932     Explicit = false;
18933     FunctionScopesIndex--;
18934     if (IsInScopeDeclarationContext)
18935       DC = ParentDC;
18936   } while (!VarDC->Equals(DC));
18937 
18938   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
18939   // computing the type of the capture at each step, checking type-specific
18940   // requirements, and adding captures if requested.
18941   // If the variable had already been captured previously, we start capturing
18942   // at the lambda nested within that one.
18943   bool Invalid = false;
18944   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
18945        ++I) {
18946     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
18947 
18948     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18949     // certain types of variables (unnamed, variably modified types etc.)
18950     // so check for eligibility.
18951     if (!Invalid)
18952       Invalid =
18953           !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
18954 
18955     // After encountering an error, if we're actually supposed to capture, keep
18956     // capturing in nested contexts to suppress any follow-on diagnostics.
18957     if (Invalid && !BuildAndDiagnose)
18958       return true;
18959 
18960     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
18961       Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18962                                DeclRefType, Nested, *this, Invalid);
18963       Nested = true;
18964     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
18965       Invalid = !captureInCapturedRegion(
18966           RSI, Var, ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, Nested,
18967           Kind, /*IsTopScope*/ I == N - 1, *this, Invalid);
18968       Nested = true;
18969     } else {
18970       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
18971       Invalid =
18972           !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
18973                            DeclRefType, Nested, Kind, EllipsisLoc,
18974                            /*IsTopScope*/ I == N - 1, *this, Invalid);
18975       Nested = true;
18976     }
18977 
18978     if (Invalid && !BuildAndDiagnose)
18979       return true;
18980   }
18981   return Invalid;
18982 }
18983 
18984 bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
18985                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
18986   QualType CaptureType;
18987   QualType DeclRefType;
18988   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
18989                             /*BuildAndDiagnose=*/true, CaptureType,
18990                             DeclRefType, nullptr);
18991 }
18992 
18993 bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
18994   QualType CaptureType;
18995   QualType DeclRefType;
18996   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
18997                              /*BuildAndDiagnose=*/false, CaptureType,
18998                              DeclRefType, nullptr);
18999 }
19000 
19001 QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
19002   QualType CaptureType;
19003   QualType DeclRefType;
19004 
19005   // Determine whether we can capture this variable.
19006   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
19007                          /*BuildAndDiagnose=*/false, CaptureType,
19008                          DeclRefType, nullptr))
19009     return QualType();
19010 
19011   return DeclRefType;
19012 }
19013 
19014 namespace {
19015 // Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
19016 // The produced TemplateArgumentListInfo* points to data stored within this
19017 // object, so should only be used in contexts where the pointer will not be
19018 // used after the CopiedTemplateArgs object is destroyed.
19019 class CopiedTemplateArgs {
19020   bool HasArgs;
19021   TemplateArgumentListInfo TemplateArgStorage;
19022 public:
19023   template<typename RefExpr>
19024   CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
19025     if (HasArgs)
19026       E->copyTemplateArgumentsInto(TemplateArgStorage);
19027   }
19028   operator TemplateArgumentListInfo*()
19029 #ifdef __has_cpp_attribute
19030 #if __has_cpp_attribute(clang::lifetimebound)
19031   [[clang::lifetimebound]]
19032 #endif
19033 #endif
19034   {
19035     return HasArgs ? &TemplateArgStorage : nullptr;
19036   }
19037 };
19038 }
19039 
19040 /// Walk the set of potential results of an expression and mark them all as
19041 /// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
19042 ///
19043 /// \return A new expression if we found any potential results, ExprEmpty() if
19044 ///         not, and ExprError() if we diagnosed an error.
19045 static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
19046                                                       NonOdrUseReason NOUR) {
19047   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
19048   // an object that satisfies the requirements for appearing in a
19049   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
19050   // is immediately applied."  This function handles the lvalue-to-rvalue
19051   // conversion part.
19052   //
19053   // If we encounter a node that claims to be an odr-use but shouldn't be, we
19054   // transform it into the relevant kind of non-odr-use node and rebuild the
19055   // tree of nodes leading to it.
19056   //
19057   // This is a mini-TreeTransform that only transforms a restricted subset of
19058   // nodes (and only certain operands of them).
19059 
19060   // Rebuild a subexpression.
19061   auto Rebuild = [&](Expr *Sub) {
19062     return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
19063   };
19064 
19065   // Check whether a potential result satisfies the requirements of NOUR.
19066   auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
19067     // Any entity other than a VarDecl is always odr-used whenever it's named
19068     // in a potentially-evaluated expression.
19069     auto *VD = dyn_cast<VarDecl>(D);
19070     if (!VD)
19071       return true;
19072 
19073     // C++2a [basic.def.odr]p4:
19074     //   A variable x whose name appears as a potentially-evalauted expression
19075     //   e is odr-used by e unless
19076     //   -- x is a reference that is usable in constant expressions, or
19077     //   -- x is a variable of non-reference type that is usable in constant
19078     //      expressions and has no mutable subobjects, and e is an element of
19079     //      the set of potential results of an expression of
19080     //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
19081     //      conversion is applied, or
19082     //   -- x is a variable of non-reference type, and e is an element of the
19083     //      set of potential results of a discarded-value expression to which
19084     //      the lvalue-to-rvalue conversion is not applied
19085     //
19086     // We check the first bullet and the "potentially-evaluated" condition in
19087     // BuildDeclRefExpr. We check the type requirements in the second bullet
19088     // in CheckLValueToRValueConversionOperand below.
19089     switch (NOUR) {
19090     case NOUR_None:
19091     case NOUR_Unevaluated:
19092       llvm_unreachable("unexpected non-odr-use-reason");
19093 
19094     case NOUR_Constant:
19095       // Constant references were handled when they were built.
19096       if (VD->getType()->isReferenceType())
19097         return true;
19098       if (auto *RD = VD->getType()->getAsCXXRecordDecl())
19099         if (RD->hasMutableFields())
19100           return true;
19101       if (!VD->isUsableInConstantExpressions(S.Context))
19102         return true;
19103       break;
19104 
19105     case NOUR_Discarded:
19106       if (VD->getType()->isReferenceType())
19107         return true;
19108       break;
19109     }
19110     return false;
19111   };
19112 
19113   // Mark that this expression does not constitute an odr-use.
19114   auto MarkNotOdrUsed = [&] {
19115     S.MaybeODRUseExprs.remove(E);
19116     if (LambdaScopeInfo *LSI = S.getCurLambda())
19117       LSI->markVariableExprAsNonODRUsed(E);
19118   };
19119 
19120   // C++2a [basic.def.odr]p2:
19121   //   The set of potential results of an expression e is defined as follows:
19122   switch (E->getStmtClass()) {
19123   //   -- If e is an id-expression, ...
19124   case Expr::DeclRefExprClass: {
19125     auto *DRE = cast<DeclRefExpr>(E);
19126     if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
19127       break;
19128 
19129     // Rebuild as a non-odr-use DeclRefExpr.
19130     MarkNotOdrUsed();
19131     return DeclRefExpr::Create(
19132         S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
19133         DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
19134         DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
19135         DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
19136   }
19137 
19138   case Expr::FunctionParmPackExprClass: {
19139     auto *FPPE = cast<FunctionParmPackExpr>(E);
19140     // If any of the declarations in the pack is odr-used, then the expression
19141     // as a whole constitutes an odr-use.
19142     for (VarDecl *D : *FPPE)
19143       if (IsPotentialResultOdrUsed(D))
19144         return ExprEmpty();
19145 
19146     // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
19147     // nothing cares about whether we marked this as an odr-use, but it might
19148     // be useful for non-compiler tools.
19149     MarkNotOdrUsed();
19150     break;
19151   }
19152 
19153   //   -- If e is a subscripting operation with an array operand...
19154   case Expr::ArraySubscriptExprClass: {
19155     auto *ASE = cast<ArraySubscriptExpr>(E);
19156     Expr *OldBase = ASE->getBase()->IgnoreImplicit();
19157     if (!OldBase->getType()->isArrayType())
19158       break;
19159     ExprResult Base = Rebuild(OldBase);
19160     if (!Base.isUsable())
19161       return Base;
19162     Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
19163     Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
19164     SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
19165     return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
19166                                      ASE->getRBracketLoc());
19167   }
19168 
19169   case Expr::MemberExprClass: {
19170     auto *ME = cast<MemberExpr>(E);
19171     // -- If e is a class member access expression [...] naming a non-static
19172     //    data member...
19173     if (isa<FieldDecl>(ME->getMemberDecl())) {
19174       ExprResult Base = Rebuild(ME->getBase());
19175       if (!Base.isUsable())
19176         return Base;
19177       return MemberExpr::Create(
19178           S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
19179           ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
19180           ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
19181           CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
19182           ME->getObjectKind(), ME->isNonOdrUse());
19183     }
19184 
19185     if (ME->getMemberDecl()->isCXXInstanceMember())
19186       break;
19187 
19188     // -- If e is a class member access expression naming a static data member,
19189     //    ...
19190     if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
19191       break;
19192 
19193     // Rebuild as a non-odr-use MemberExpr.
19194     MarkNotOdrUsed();
19195     return MemberExpr::Create(
19196         S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
19197         ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
19198         ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
19199         ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
19200   }
19201 
19202   case Expr::BinaryOperatorClass: {
19203     auto *BO = cast<BinaryOperator>(E);
19204     Expr *LHS = BO->getLHS();
19205     Expr *RHS = BO->getRHS();
19206     // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
19207     if (BO->getOpcode() == BO_PtrMemD) {
19208       ExprResult Sub = Rebuild(LHS);
19209       if (!Sub.isUsable())
19210         return Sub;
19211       BO->setLHS(Sub.get());
19212     //   -- If e is a comma expression, ...
19213     } else if (BO->getOpcode() == BO_Comma) {
19214       ExprResult Sub = Rebuild(RHS);
19215       if (!Sub.isUsable())
19216         return Sub;
19217       BO->setRHS(Sub.get());
19218     } else {
19219       break;
19220     }
19221     return ExprResult(BO);
19222   }
19223 
19224   //   -- If e has the form (e1)...
19225   case Expr::ParenExprClass: {
19226     auto *PE = cast<ParenExpr>(E);
19227     ExprResult Sub = Rebuild(PE->getSubExpr());
19228     if (!Sub.isUsable())
19229       return Sub;
19230     return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
19231   }
19232 
19233   //   -- If e is a glvalue conditional expression, ...
19234   // We don't apply this to a binary conditional operator. FIXME: Should we?
19235   case Expr::ConditionalOperatorClass: {
19236     auto *CO = cast<ConditionalOperator>(E);
19237     ExprResult LHS = Rebuild(CO->getLHS());
19238     if (LHS.isInvalid())
19239       return ExprError();
19240     ExprResult RHS = Rebuild(CO->getRHS());
19241     if (RHS.isInvalid())
19242       return ExprError();
19243     if (!LHS.isUsable() && !RHS.isUsable())
19244       return ExprEmpty();
19245     if (!LHS.isUsable())
19246       LHS = CO->getLHS();
19247     if (!RHS.isUsable())
19248       RHS = CO->getRHS();
19249     return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
19250                                 CO->getCond(), LHS.get(), RHS.get());
19251   }
19252 
19253   // [Clang extension]
19254   //   -- If e has the form __extension__ e1...
19255   case Expr::UnaryOperatorClass: {
19256     auto *UO = cast<UnaryOperator>(E);
19257     if (UO->getOpcode() != UO_Extension)
19258       break;
19259     ExprResult Sub = Rebuild(UO->getSubExpr());
19260     if (!Sub.isUsable())
19261       return Sub;
19262     return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
19263                           Sub.get());
19264   }
19265 
19266   // [Clang extension]
19267   //   -- If e has the form _Generic(...), the set of potential results is the
19268   //      union of the sets of potential results of the associated expressions.
19269   case Expr::GenericSelectionExprClass: {
19270     auto *GSE = cast<GenericSelectionExpr>(E);
19271 
19272     SmallVector<Expr *, 4> AssocExprs;
19273     bool AnyChanged = false;
19274     for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
19275       ExprResult AssocExpr = Rebuild(OrigAssocExpr);
19276       if (AssocExpr.isInvalid())
19277         return ExprError();
19278       if (AssocExpr.isUsable()) {
19279         AssocExprs.push_back(AssocExpr.get());
19280         AnyChanged = true;
19281       } else {
19282         AssocExprs.push_back(OrigAssocExpr);
19283       }
19284     }
19285 
19286     void *ExOrTy = nullptr;
19287     bool IsExpr = GSE->isExprPredicate();
19288     if (IsExpr)
19289       ExOrTy = GSE->getControllingExpr();
19290     else
19291       ExOrTy = GSE->getControllingType();
19292     return AnyChanged ? S.CreateGenericSelectionExpr(
19293                             GSE->getGenericLoc(), GSE->getDefaultLoc(),
19294                             GSE->getRParenLoc(), IsExpr, ExOrTy,
19295                             GSE->getAssocTypeSourceInfos(), AssocExprs)
19296                       : ExprEmpty();
19297   }
19298 
19299   // [Clang extension]
19300   //   -- If e has the form __builtin_choose_expr(...), the set of potential
19301   //      results is the union of the sets of potential results of the
19302   //      second and third subexpressions.
19303   case Expr::ChooseExprClass: {
19304     auto *CE = cast<ChooseExpr>(E);
19305 
19306     ExprResult LHS = Rebuild(CE->getLHS());
19307     if (LHS.isInvalid())
19308       return ExprError();
19309 
19310     ExprResult RHS = Rebuild(CE->getLHS());
19311     if (RHS.isInvalid())
19312       return ExprError();
19313 
19314     if (!LHS.get() && !RHS.get())
19315       return ExprEmpty();
19316     if (!LHS.isUsable())
19317       LHS = CE->getLHS();
19318     if (!RHS.isUsable())
19319       RHS = CE->getRHS();
19320 
19321     return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
19322                              RHS.get(), CE->getRParenLoc());
19323   }
19324 
19325   // Step through non-syntactic nodes.
19326   case Expr::ConstantExprClass: {
19327     auto *CE = cast<ConstantExpr>(E);
19328     ExprResult Sub = Rebuild(CE->getSubExpr());
19329     if (!Sub.isUsable())
19330       return Sub;
19331     return ConstantExpr::Create(S.Context, Sub.get());
19332   }
19333 
19334   // We could mostly rely on the recursive rebuilding to rebuild implicit
19335   // casts, but not at the top level, so rebuild them here.
19336   case Expr::ImplicitCastExprClass: {
19337     auto *ICE = cast<ImplicitCastExpr>(E);
19338     // Only step through the narrow set of cast kinds we expect to encounter.
19339     // Anything else suggests we've left the region in which potential results
19340     // can be found.
19341     switch (ICE->getCastKind()) {
19342     case CK_NoOp:
19343     case CK_DerivedToBase:
19344     case CK_UncheckedDerivedToBase: {
19345       ExprResult Sub = Rebuild(ICE->getSubExpr());
19346       if (!Sub.isUsable())
19347         return Sub;
19348       CXXCastPath Path(ICE->path());
19349       return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
19350                                  ICE->getValueKind(), &Path);
19351     }
19352 
19353     default:
19354       break;
19355     }
19356     break;
19357   }
19358 
19359   default:
19360     break;
19361   }
19362 
19363   // Can't traverse through this node. Nothing to do.
19364   return ExprEmpty();
19365 }
19366 
19367 ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
19368   // Check whether the operand is or contains an object of non-trivial C union
19369   // type.
19370   if (E->getType().isVolatileQualified() &&
19371       (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
19372        E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
19373     checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
19374                           Sema::NTCUC_LValueToRValueVolatile,
19375                           NTCUK_Destruct|NTCUK_Copy);
19376 
19377   // C++2a [basic.def.odr]p4:
19378   //   [...] an expression of non-volatile-qualified non-class type to which
19379   //   the lvalue-to-rvalue conversion is applied [...]
19380   if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
19381     return E;
19382 
19383   ExprResult Result =
19384       rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
19385   if (Result.isInvalid())
19386     return ExprError();
19387   return Result.get() ? Result : E;
19388 }
19389 
19390 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
19391   Res = CorrectDelayedTyposInExpr(Res);
19392 
19393   if (!Res.isUsable())
19394     return Res;
19395 
19396   // If a constant-expression is a reference to a variable where we delay
19397   // deciding whether it is an odr-use, just assume we will apply the
19398   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
19399   // (a non-type template argument), we have special handling anyway.
19400   return CheckLValueToRValueConversionOperand(Res.get());
19401 }
19402 
19403 void Sema::CleanupVarDeclMarking() {
19404   // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
19405   // call.
19406   MaybeODRUseExprSet LocalMaybeODRUseExprs;
19407   std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
19408 
19409   for (Expr *E : LocalMaybeODRUseExprs) {
19410     if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
19411       MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
19412                          DRE->getLocation(), *this);
19413     } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
19414       MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
19415                          *this);
19416     } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
19417       for (VarDecl *VD : *FP)
19418         MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
19419     } else {
19420       llvm_unreachable("Unexpected expression");
19421     }
19422   }
19423 
19424   assert(MaybeODRUseExprs.empty() &&
19425          "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
19426 }
19427 
19428 static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc,
19429                                    ValueDecl *Var, Expr *E) {
19430   VarDecl *VD = Var->getPotentiallyDecomposedVarDecl();
19431   if (!VD)
19432     return;
19433 
19434   const bool RefersToEnclosingScope =
19435       (SemaRef.CurContext != VD->getDeclContext() &&
19436        VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage());
19437   if (RefersToEnclosingScope) {
19438     LambdaScopeInfo *const LSI =
19439         SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
19440     if (LSI && (!LSI->CallOperator ||
19441                 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
19442       // If a variable could potentially be odr-used, defer marking it so
19443       // until we finish analyzing the full expression for any
19444       // lvalue-to-rvalue
19445       // or discarded value conversions that would obviate odr-use.
19446       // Add it to the list of potential captures that will be analyzed
19447       // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
19448       // unless the variable is a reference that was initialized by a constant
19449       // expression (this will never need to be captured or odr-used).
19450       //
19451       // FIXME: We can simplify this a lot after implementing P0588R1.
19452       assert(E && "Capture variable should be used in an expression.");
19453       if (!Var->getType()->isReferenceType() ||
19454           !VD->isUsableInConstantExpressions(SemaRef.Context))
19455         LSI->addPotentialCapture(E->IgnoreParens());
19456     }
19457   }
19458 }
19459 
19460 static void DoMarkVarDeclReferenced(
19461     Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
19462     llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19463   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
19464           isa<FunctionParmPackExpr>(E)) &&
19465          "Invalid Expr argument to DoMarkVarDeclReferenced");
19466   Var->setReferenced();
19467 
19468   if (Var->isInvalidDecl())
19469     return;
19470 
19471   auto *MSI = Var->getMemberSpecializationInfo();
19472   TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
19473                                        : Var->getTemplateSpecializationKind();
19474 
19475   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19476   bool UsableInConstantExpr =
19477       Var->mightBeUsableInConstantExpressions(SemaRef.Context);
19478 
19479   if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
19480     RefsMinusAssignments.insert({Var, 0}).first->getSecond()++;
19481   }
19482 
19483   // C++20 [expr.const]p12:
19484   //   A variable [...] is needed for constant evaluation if it is [...] a
19485   //   variable whose name appears as a potentially constant evaluated
19486   //   expression that is either a contexpr variable or is of non-volatile
19487   //   const-qualified integral type or of reference type
19488   bool NeededForConstantEvaluation =
19489       isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
19490 
19491   bool NeedDefinition =
19492       OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
19493 
19494   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
19495          "Can't instantiate a partial template specialization.");
19496 
19497   // If this might be a member specialization of a static data member, check
19498   // the specialization is visible. We already did the checks for variable
19499   // template specializations when we created them.
19500   if (NeedDefinition && TSK != TSK_Undeclared &&
19501       !isa<VarTemplateSpecializationDecl>(Var))
19502     SemaRef.checkSpecializationVisibility(Loc, Var);
19503 
19504   // Perform implicit instantiation of static data members, static data member
19505   // templates of class templates, and variable template specializations. Delay
19506   // instantiations of variable templates, except for those that could be used
19507   // in a constant expression.
19508   if (NeedDefinition && isTemplateInstantiation(TSK)) {
19509     // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
19510     // instantiation declaration if a variable is usable in a constant
19511     // expression (among other cases).
19512     bool TryInstantiating =
19513         TSK == TSK_ImplicitInstantiation ||
19514         (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
19515 
19516     if (TryInstantiating) {
19517       SourceLocation PointOfInstantiation =
19518           MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
19519       bool FirstInstantiation = PointOfInstantiation.isInvalid();
19520       if (FirstInstantiation) {
19521         PointOfInstantiation = Loc;
19522         if (MSI)
19523           MSI->setPointOfInstantiation(PointOfInstantiation);
19524           // FIXME: Notify listener.
19525         else
19526           Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19527       }
19528 
19529       if (UsableInConstantExpr) {
19530         // Do not defer instantiations of variables that could be used in a
19531         // constant expression.
19532         SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
19533           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
19534         });
19535 
19536         // Re-set the member to trigger a recomputation of the dependence bits
19537         // for the expression.
19538         if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19539           DRE->setDecl(DRE->getDecl());
19540         else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
19541           ME->setMemberDecl(ME->getMemberDecl());
19542       } else if (FirstInstantiation) {
19543         SemaRef.PendingInstantiations
19544             .push_back(std::make_pair(Var, PointOfInstantiation));
19545       } else {
19546         bool Inserted = false;
19547         for (auto &I : SemaRef.SavedPendingInstantiations) {
19548           auto Iter = llvm::find_if(
19549               I, [Var](const Sema::PendingImplicitInstantiation &P) {
19550                 return P.first == Var;
19551               });
19552           if (Iter != I.end()) {
19553             SemaRef.PendingInstantiations.push_back(*Iter);
19554             I.erase(Iter);
19555             Inserted = true;
19556             break;
19557           }
19558         }
19559 
19560         // FIXME: For a specialization of a variable template, we don't
19561         // distinguish between "declaration and type implicitly instantiated"
19562         // and "implicit instantiation of definition requested", so we have
19563         // no direct way to avoid enqueueing the pending instantiation
19564         // multiple times.
19565         if (isa<VarTemplateSpecializationDecl>(Var) && !Inserted)
19566           SemaRef.PendingInstantiations
19567             .push_back(std::make_pair(Var, PointOfInstantiation));
19568       }
19569     }
19570   }
19571 
19572   // C++2a [basic.def.odr]p4:
19573   //   A variable x whose name appears as a potentially-evaluated expression e
19574   //   is odr-used by e unless
19575   //   -- x is a reference that is usable in constant expressions
19576   //   -- x is a variable of non-reference type that is usable in constant
19577   //      expressions and has no mutable subobjects [FIXME], and e is an
19578   //      element of the set of potential results of an expression of
19579   //      non-volatile-qualified non-class type to which the lvalue-to-rvalue
19580   //      conversion is applied
19581   //   -- x is a variable of non-reference type, and e is an element of the set
19582   //      of potential results of a discarded-value expression to which the
19583   //      lvalue-to-rvalue conversion is not applied [FIXME]
19584   //
19585   // We check the first part of the second bullet here, and
19586   // Sema::CheckLValueToRValueConversionOperand deals with the second part.
19587   // FIXME: To get the third bullet right, we need to delay this even for
19588   // variables that are not usable in constant expressions.
19589 
19590   // If we already know this isn't an odr-use, there's nothing more to do.
19591   if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
19592     if (DRE->isNonOdrUse())
19593       return;
19594   if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
19595     if (ME->isNonOdrUse())
19596       return;
19597 
19598   switch (OdrUse) {
19599   case OdrUseContext::None:
19600     // In some cases, a variable may not have been marked unevaluated, if it
19601     // appears in a defaukt initializer.
19602     assert((!E || isa<FunctionParmPackExpr>(E) ||
19603             SemaRef.isUnevaluatedContext()) &&
19604            "missing non-odr-use marking for unevaluated decl ref");
19605     break;
19606 
19607   case OdrUseContext::FormallyOdrUsed:
19608     // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
19609     // behavior.
19610     break;
19611 
19612   case OdrUseContext::Used:
19613     // If we might later find that this expression isn't actually an odr-use,
19614     // delay the marking.
19615     if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
19616       SemaRef.MaybeODRUseExprs.insert(E);
19617     else
19618       MarkVarDeclODRUsed(Var, Loc, SemaRef);
19619     break;
19620 
19621   case OdrUseContext::Dependent:
19622     // If this is a dependent context, we don't need to mark variables as
19623     // odr-used, but we may still need to track them for lambda capture.
19624     // FIXME: Do we also need to do this inside dependent typeid expressions
19625     // (which are modeled as unevaluated at this point)?
19626     DoMarkPotentialCapture(SemaRef, Loc, Var, E);
19627     break;
19628   }
19629 }
19630 
19631 static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
19632                                         BindingDecl *BD, Expr *E) {
19633   BD->setReferenced();
19634 
19635   if (BD->isInvalidDecl())
19636     return;
19637 
19638   OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19639   if (OdrUse == OdrUseContext::Used) {
19640     QualType CaptureType, DeclRefType;
19641     SemaRef.tryCaptureVariable(BD, Loc, Sema::TryCapture_Implicit,
19642                                /*EllipsisLoc*/ SourceLocation(),
19643                                /*BuildAndDiagnose*/ true, CaptureType,
19644                                DeclRefType,
19645                                /*FunctionScopeIndexToStopAt*/ nullptr);
19646   } else if (OdrUse == OdrUseContext::Dependent) {
19647     DoMarkPotentialCapture(SemaRef, Loc, BD, E);
19648   }
19649 }
19650 
19651 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
19652   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr, RefsMinusAssignments);
19653 }
19654 
19655 // C++ [temp.dep.expr]p3:
19656 //   An id-expression is type-dependent if it contains:
19657 //     - an identifier associated by name lookup with an entity captured by copy
19658 //       in a lambda-expression that has an explicit object parameter whose type
19659 //       is dependent ([dcl.fct]),
19660 static void FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(
19661     Sema &SemaRef, ValueDecl *D, Expr *E) {
19662   auto *ID = dyn_cast<DeclRefExpr>(E);
19663   if (!ID || ID->isTypeDependent() || !ID->refersToEnclosingVariableOrCapture())
19664     return;
19665 
19666   // If any enclosing lambda with a dependent explicit object parameter either
19667   // explicitly captures the variable by value, or has a capture default of '='
19668   // and does not capture the variable by reference, then the type of the DRE
19669   // is dependent on the type of that lambda's explicit object parameter.
19670   auto IsDependent = [&]() {
19671     for (auto *Scope : llvm::reverse(SemaRef.FunctionScopes)) {
19672       auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Scope);
19673       if (!LSI)
19674         continue;
19675 
19676       if (LSI->Lambda && !LSI->Lambda->Encloses(SemaRef.CurContext) &&
19677           LSI->AfterParameterList)
19678         return false;
19679 
19680       const auto *MD = LSI->CallOperator;
19681       if (MD->getType().isNull())
19682         continue;
19683 
19684       const auto *Ty = MD->getType()->getAs<FunctionProtoType>();
19685       if (!Ty || !MD->isExplicitObjectMemberFunction() ||
19686           !Ty->getParamType(0)->isDependentType())
19687         continue;
19688 
19689       if (auto *C = LSI->CaptureMap.count(D) ? &LSI->getCapture(D) : nullptr) {
19690         if (C->isCopyCapture())
19691           return true;
19692         continue;
19693       }
19694 
19695       if (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByval)
19696         return true;
19697     }
19698     return false;
19699   }();
19700 
19701   ID->setCapturedByCopyInLambdaWithExplicitObjectParameter(
19702       IsDependent, SemaRef.getASTContext());
19703 }
19704 
19705 static void
19706 MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
19707                    bool MightBeOdrUse,
19708                    llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19709   if (SemaRef.OpenMP().isInOpenMPDeclareTargetContext())
19710     SemaRef.OpenMP().checkDeclIsAllowedInOpenMPTarget(E, D);
19711 
19712   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
19713     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
19714     if (SemaRef.getLangOpts().CPlusPlus)
19715       FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
19716                                                                        Var, E);
19717     return;
19718   }
19719 
19720   if (BindingDecl *Decl = dyn_cast<BindingDecl>(D)) {
19721     DoMarkBindingDeclReferenced(SemaRef, Loc, Decl, E);
19722     if (SemaRef.getLangOpts().CPlusPlus)
19723       FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
19724                                                                        Decl, E);
19725     return;
19726   }
19727   SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
19728 
19729   // If this is a call to a method via a cast, also mark the method in the
19730   // derived class used in case codegen can devirtualize the call.
19731   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
19732   if (!ME)
19733     return;
19734   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
19735   if (!MD)
19736     return;
19737   // Only attempt to devirtualize if this is truly a virtual call.
19738   bool IsVirtualCall = MD->isVirtual() &&
19739                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
19740   if (!IsVirtualCall)
19741     return;
19742 
19743   // If it's possible to devirtualize the call, mark the called function
19744   // referenced.
19745   CXXMethodDecl *DM = MD->getDevirtualizedMethod(
19746       ME->getBase(), SemaRef.getLangOpts().AppleKext);
19747   if (DM)
19748     SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
19749 }
19750 
19751 void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
19752   // TODO: update this with DR# once a defect report is filed.
19753   // C++11 defect. The address of a pure member should not be an ODR use, even
19754   // if it's a qualified reference.
19755   bool OdrUse = true;
19756   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
19757     if (Method->isVirtual() &&
19758         !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
19759       OdrUse = false;
19760 
19761   if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl())) {
19762     if (!isUnevaluatedContext() && !isConstantEvaluatedContext() &&
19763         !isImmediateFunctionContext() &&
19764         !isCheckingDefaultArgumentOrInitializer() &&
19765         FD->isImmediateFunction() && !RebuildingImmediateInvocation &&
19766         !FD->isDependentContext())
19767       ExprEvalContexts.back().ReferenceToConsteval.insert(E);
19768   }
19769   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse,
19770                      RefsMinusAssignments);
19771 }
19772 
19773 void Sema::MarkMemberReferenced(MemberExpr *E) {
19774   // C++11 [basic.def.odr]p2:
19775   //   A non-overloaded function whose name appears as a potentially-evaluated
19776   //   expression or a member of a set of candidate functions, if selected by
19777   //   overload resolution when referred to from a potentially-evaluated
19778   //   expression, is odr-used, unless it is a pure virtual function and its
19779   //   name is not explicitly qualified.
19780   bool MightBeOdrUse = true;
19781   if (E->performsVirtualDispatch(getLangOpts())) {
19782     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
19783       if (Method->isPureVirtual())
19784         MightBeOdrUse = false;
19785   }
19786   SourceLocation Loc =
19787       E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
19788   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse,
19789                      RefsMinusAssignments);
19790 }
19791 
19792 void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
19793   for (VarDecl *VD : *E)
19794     MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true,
19795                        RefsMinusAssignments);
19796 }
19797 
19798 /// Perform marking for a reference to an arbitrary declaration.  It
19799 /// marks the declaration referenced, and performs odr-use checking for
19800 /// functions and variables. This method should not be used when building a
19801 /// normal expression which refers to a variable.
19802 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
19803                                  bool MightBeOdrUse) {
19804   if (MightBeOdrUse) {
19805     if (auto *VD = dyn_cast<VarDecl>(D)) {
19806       MarkVariableReferenced(Loc, VD);
19807       return;
19808     }
19809   }
19810   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
19811     MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
19812     return;
19813   }
19814   D->setReferenced();
19815 }
19816 
19817 namespace {
19818   // Mark all of the declarations used by a type as referenced.
19819   // FIXME: Not fully implemented yet! We need to have a better understanding
19820   // of when we're entering a context we should not recurse into.
19821   // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
19822   // TreeTransforms rebuilding the type in a new context. Rather than
19823   // duplicating the TreeTransform logic, we should consider reusing it here.
19824   // Currently that causes problems when rebuilding LambdaExprs.
19825   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
19826     Sema &S;
19827     SourceLocation Loc;
19828 
19829   public:
19830     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
19831 
19832     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
19833 
19834     bool TraverseTemplateArgument(const TemplateArgument &Arg);
19835   };
19836 }
19837 
19838 bool MarkReferencedDecls::TraverseTemplateArgument(
19839     const TemplateArgument &Arg) {
19840   {
19841     // A non-type template argument is a constant-evaluated context.
19842     EnterExpressionEvaluationContext Evaluated(
19843         S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
19844     if (Arg.getKind() == TemplateArgument::Declaration) {
19845       if (Decl *D = Arg.getAsDecl())
19846         S.MarkAnyDeclReferenced(Loc, D, true);
19847     } else if (Arg.getKind() == TemplateArgument::Expression) {
19848       S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
19849     }
19850   }
19851 
19852   return Inherited::TraverseTemplateArgument(Arg);
19853 }
19854 
19855 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
19856   MarkReferencedDecls Marker(*this, Loc);
19857   Marker.TraverseType(T);
19858 }
19859 
19860 namespace {
19861 /// Helper class that marks all of the declarations referenced by
19862 /// potentially-evaluated subexpressions as "referenced".
19863 class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
19864 public:
19865   typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
19866   bool SkipLocalVariables;
19867   ArrayRef<const Expr *> StopAt;
19868 
19869   EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
19870                       ArrayRef<const Expr *> StopAt)
19871       : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
19872 
19873   void visitUsedDecl(SourceLocation Loc, Decl *D) {
19874     S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
19875   }
19876 
19877   void Visit(Expr *E) {
19878     if (llvm::is_contained(StopAt, E))
19879       return;
19880     Inherited::Visit(E);
19881   }
19882 
19883   void VisitConstantExpr(ConstantExpr *E) {
19884     // Don't mark declarations within a ConstantExpression, as this expression
19885     // will be evaluated and folded to a value.
19886   }
19887 
19888   void VisitDeclRefExpr(DeclRefExpr *E) {
19889     // If we were asked not to visit local variables, don't.
19890     if (SkipLocalVariables) {
19891       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
19892         if (VD->hasLocalStorage())
19893           return;
19894     }
19895 
19896     // FIXME: This can trigger the instantiation of the initializer of a
19897     // variable, which can cause the expression to become value-dependent
19898     // or error-dependent. Do we need to propagate the new dependence bits?
19899     S.MarkDeclRefReferenced(E);
19900   }
19901 
19902   void VisitMemberExpr(MemberExpr *E) {
19903     S.MarkMemberReferenced(E);
19904     Visit(E->getBase());
19905   }
19906 };
19907 } // namespace
19908 
19909 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
19910                                             bool SkipLocalVariables,
19911                                             ArrayRef<const Expr*> StopAt) {
19912   EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
19913 }
19914 
19915 /// Emit a diagnostic when statements are reachable.
19916 /// FIXME: check for reachability even in expressions for which we don't build a
19917 ///        CFG (eg, in the initializer of a global or in a constant expression).
19918 ///        For example,
19919 ///        namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
19920 bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
19921                            const PartialDiagnostic &PD) {
19922   if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
19923     if (!FunctionScopes.empty())
19924       FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
19925           sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
19926     return true;
19927   }
19928 
19929   // The initializer of a constexpr variable or of the first declaration of a
19930   // static data member is not syntactically a constant evaluated constant,
19931   // but nonetheless is always required to be a constant expression, so we
19932   // can skip diagnosing.
19933   // FIXME: Using the mangling context here is a hack.
19934   if (auto *VD = dyn_cast_or_null<VarDecl>(
19935           ExprEvalContexts.back().ManglingContextDecl)) {
19936     if (VD->isConstexpr() ||
19937         (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
19938       return false;
19939     // FIXME: For any other kind of variable, we should build a CFG for its
19940     // initializer and check whether the context in question is reachable.
19941   }
19942 
19943   Diag(Loc, PD);
19944   return true;
19945 }
19946 
19947 /// Emit a diagnostic that describes an effect on the run-time behavior
19948 /// of the program being compiled.
19949 ///
19950 /// This routine emits the given diagnostic when the code currently being
19951 /// type-checked is "potentially evaluated", meaning that there is a
19952 /// possibility that the code will actually be executable. Code in sizeof()
19953 /// expressions, code used only during overload resolution, etc., are not
19954 /// potentially evaluated. This routine will suppress such diagnostics or,
19955 /// in the absolutely nutty case of potentially potentially evaluated
19956 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
19957 /// later.
19958 ///
19959 /// This routine should be used for all diagnostics that describe the run-time
19960 /// behavior of a program, such as passing a non-POD value through an ellipsis.
19961 /// Failure to do so will likely result in spurious diagnostics or failures
19962 /// during overload resolution or within sizeof/alignof/typeof/typeid.
19963 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
19964                                const PartialDiagnostic &PD) {
19965 
19966   if (ExprEvalContexts.back().isDiscardedStatementContext())
19967     return false;
19968 
19969   switch (ExprEvalContexts.back().Context) {
19970   case ExpressionEvaluationContext::Unevaluated:
19971   case ExpressionEvaluationContext::UnevaluatedList:
19972   case ExpressionEvaluationContext::UnevaluatedAbstract:
19973   case ExpressionEvaluationContext::DiscardedStatement:
19974     // The argument will never be evaluated, so don't complain.
19975     break;
19976 
19977   case ExpressionEvaluationContext::ConstantEvaluated:
19978   case ExpressionEvaluationContext::ImmediateFunctionContext:
19979     // Relevant diagnostics should be produced by constant evaluation.
19980     break;
19981 
19982   case ExpressionEvaluationContext::PotentiallyEvaluated:
19983   case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
19984     return DiagIfReachable(Loc, Stmts, PD);
19985   }
19986 
19987   return false;
19988 }
19989 
19990 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
19991                                const PartialDiagnostic &PD) {
19992   return DiagRuntimeBehavior(
19993       Loc, Statement ? llvm::ArrayRef(Statement) : std::nullopt, PD);
19994 }
19995 
19996 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
19997                                CallExpr *CE, FunctionDecl *FD) {
19998   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
19999     return false;
20000 
20001   // If we're inside a decltype's expression, don't check for a valid return
20002   // type or construct temporaries until we know whether this is the last call.
20003   if (ExprEvalContexts.back().ExprContext ==
20004       ExpressionEvaluationContextRecord::EK_Decltype) {
20005     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
20006     return false;
20007   }
20008 
20009   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
20010     FunctionDecl *FD;
20011     CallExpr *CE;
20012 
20013   public:
20014     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
20015       : FD(FD), CE(CE) { }
20016 
20017     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
20018       if (!FD) {
20019         S.Diag(Loc, diag::err_call_incomplete_return)
20020           << T << CE->getSourceRange();
20021         return;
20022       }
20023 
20024       S.Diag(Loc, diag::err_call_function_incomplete_return)
20025           << CE->getSourceRange() << FD << T;
20026       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
20027           << FD->getDeclName();
20028     }
20029   } Diagnoser(FD, CE);
20030 
20031   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
20032     return true;
20033 
20034   return false;
20035 }
20036 
20037 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
20038 // will prevent this condition from triggering, which is what we want.
20039 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
20040   SourceLocation Loc;
20041 
20042   unsigned diagnostic = diag::warn_condition_is_assignment;
20043   bool IsOrAssign = false;
20044 
20045   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
20046     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
20047       return;
20048 
20049     IsOrAssign = Op->getOpcode() == BO_OrAssign;
20050 
20051     // Greylist some idioms by putting them into a warning subcategory.
20052     if (ObjCMessageExpr *ME
20053           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
20054       Selector Sel = ME->getSelector();
20055 
20056       // self = [<foo> init...]
20057       if (ObjC().isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
20058         diagnostic = diag::warn_condition_is_idiomatic_assignment;
20059 
20060       // <foo> = [<bar> nextObject]
20061       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
20062         diagnostic = diag::warn_condition_is_idiomatic_assignment;
20063     }
20064 
20065     Loc = Op->getOperatorLoc();
20066   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
20067     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
20068       return;
20069 
20070     IsOrAssign = Op->getOperator() == OO_PipeEqual;
20071     Loc = Op->getOperatorLoc();
20072   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
20073     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
20074   else {
20075     // Not an assignment.
20076     return;
20077   }
20078 
20079   Diag(Loc, diagnostic) << E->getSourceRange();
20080 
20081   SourceLocation Open = E->getBeginLoc();
20082   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
20083   Diag(Loc, diag::note_condition_assign_silence)
20084         << FixItHint::CreateInsertion(Open, "(")
20085         << FixItHint::CreateInsertion(Close, ")");
20086 
20087   if (IsOrAssign)
20088     Diag(Loc, diag::note_condition_or_assign_to_comparison)
20089       << FixItHint::CreateReplacement(Loc, "!=");
20090   else
20091     Diag(Loc, diag::note_condition_assign_to_comparison)
20092       << FixItHint::CreateReplacement(Loc, "==");
20093 }
20094 
20095 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
20096   // Don't warn if the parens came from a macro.
20097   SourceLocation parenLoc = ParenE->getBeginLoc();
20098   if (parenLoc.isInvalid() || parenLoc.isMacroID())
20099     return;
20100   // Don't warn for dependent expressions.
20101   if (ParenE->isTypeDependent())
20102     return;
20103 
20104   Expr *E = ParenE->IgnoreParens();
20105 
20106   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
20107     if (opE->getOpcode() == BO_EQ &&
20108         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
20109                                                            == Expr::MLV_Valid) {
20110       SourceLocation Loc = opE->getOperatorLoc();
20111 
20112       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
20113       SourceRange ParenERange = ParenE->getSourceRange();
20114       Diag(Loc, diag::note_equality_comparison_silence)
20115         << FixItHint::CreateRemoval(ParenERange.getBegin())
20116         << FixItHint::CreateRemoval(ParenERange.getEnd());
20117       Diag(Loc, diag::note_equality_comparison_to_assign)
20118         << FixItHint::CreateReplacement(Loc, "=");
20119     }
20120 }
20121 
20122 ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
20123                                        bool IsConstexpr) {
20124   DiagnoseAssignmentAsCondition(E);
20125   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
20126     DiagnoseEqualityWithExtraParens(parenE);
20127 
20128   ExprResult result = CheckPlaceholderExpr(E);
20129   if (result.isInvalid()) return ExprError();
20130   E = result.get();
20131 
20132   if (!E->isTypeDependent()) {
20133     if (getLangOpts().CPlusPlus)
20134       return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
20135 
20136     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
20137     if (ERes.isInvalid())
20138       return ExprError();
20139     E = ERes.get();
20140 
20141     QualType T = E->getType();
20142     if (!T->isScalarType()) { // C99 6.8.4.1p1
20143       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
20144         << T << E->getSourceRange();
20145       return ExprError();
20146     }
20147     CheckBoolLikeConversion(E, Loc);
20148   }
20149 
20150   return E;
20151 }
20152 
20153 Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
20154                                            Expr *SubExpr, ConditionKind CK,
20155                                            bool MissingOK) {
20156   // MissingOK indicates whether having no condition expression is valid
20157   // (for loop) or invalid (e.g. while loop).
20158   if (!SubExpr)
20159     return MissingOK ? ConditionResult() : ConditionError();
20160 
20161   ExprResult Cond;
20162   switch (CK) {
20163   case ConditionKind::Boolean:
20164     Cond = CheckBooleanCondition(Loc, SubExpr);
20165     break;
20166 
20167   case ConditionKind::ConstexprIf:
20168     Cond = CheckBooleanCondition(Loc, SubExpr, true);
20169     break;
20170 
20171   case ConditionKind::Switch:
20172     Cond = CheckSwitchCondition(Loc, SubExpr);
20173     break;
20174   }
20175   if (Cond.isInvalid()) {
20176     Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
20177                               {SubExpr}, PreferredConditionType(CK));
20178     if (!Cond.get())
20179       return ConditionError();
20180   }
20181   // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
20182   FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
20183   if (!FullExpr.get())
20184     return ConditionError();
20185 
20186   return ConditionResult(*this, nullptr, FullExpr,
20187                          CK == ConditionKind::ConstexprIf);
20188 }
20189 
20190 namespace {
20191   /// A visitor for rebuilding a call to an __unknown_any expression
20192   /// to have an appropriate type.
20193   struct RebuildUnknownAnyFunction
20194     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
20195 
20196     Sema &S;
20197 
20198     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
20199 
20200     ExprResult VisitStmt(Stmt *S) {
20201       llvm_unreachable("unexpected statement!");
20202     }
20203 
20204     ExprResult VisitExpr(Expr *E) {
20205       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
20206         << E->getSourceRange();
20207       return ExprError();
20208     }
20209 
20210     /// Rebuild an expression which simply semantically wraps another
20211     /// expression which it shares the type and value kind of.
20212     template <class T> ExprResult rebuildSugarExpr(T *E) {
20213       ExprResult SubResult = Visit(E->getSubExpr());
20214       if (SubResult.isInvalid()) return ExprError();
20215 
20216       Expr *SubExpr = SubResult.get();
20217       E->setSubExpr(SubExpr);
20218       E->setType(SubExpr->getType());
20219       E->setValueKind(SubExpr->getValueKind());
20220       assert(E->getObjectKind() == OK_Ordinary);
20221       return E;
20222     }
20223 
20224     ExprResult VisitParenExpr(ParenExpr *E) {
20225       return rebuildSugarExpr(E);
20226     }
20227 
20228     ExprResult VisitUnaryExtension(UnaryOperator *E) {
20229       return rebuildSugarExpr(E);
20230     }
20231 
20232     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20233       ExprResult SubResult = Visit(E->getSubExpr());
20234       if (SubResult.isInvalid()) return ExprError();
20235 
20236       Expr *SubExpr = SubResult.get();
20237       E->setSubExpr(SubExpr);
20238       E->setType(S.Context.getPointerType(SubExpr->getType()));
20239       assert(E->isPRValue());
20240       assert(E->getObjectKind() == OK_Ordinary);
20241       return E;
20242     }
20243 
20244     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
20245       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
20246 
20247       E->setType(VD->getType());
20248 
20249       assert(E->isPRValue());
20250       if (S.getLangOpts().CPlusPlus &&
20251           !(isa<CXXMethodDecl>(VD) &&
20252             cast<CXXMethodDecl>(VD)->isInstance()))
20253         E->setValueKind(VK_LValue);
20254 
20255       return E;
20256     }
20257 
20258     ExprResult VisitMemberExpr(MemberExpr *E) {
20259       return resolveDecl(E, E->getMemberDecl());
20260     }
20261 
20262     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20263       return resolveDecl(E, E->getDecl());
20264     }
20265   };
20266 }
20267 
20268 /// Given a function expression of unknown-any type, try to rebuild it
20269 /// to have a function type.
20270 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
20271   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
20272   if (Result.isInvalid()) return ExprError();
20273   return S.DefaultFunctionArrayConversion(Result.get());
20274 }
20275 
20276 namespace {
20277   /// A visitor for rebuilding an expression of type __unknown_anytype
20278   /// into one which resolves the type directly on the referring
20279   /// expression.  Strict preservation of the original source
20280   /// structure is not a goal.
20281   struct RebuildUnknownAnyExpr
20282     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
20283 
20284     Sema &S;
20285 
20286     /// The current destination type.
20287     QualType DestType;
20288 
20289     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
20290       : S(S), DestType(CastType) {}
20291 
20292     ExprResult VisitStmt(Stmt *S) {
20293       llvm_unreachable("unexpected statement!");
20294     }
20295 
20296     ExprResult VisitExpr(Expr *E) {
20297       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20298         << E->getSourceRange();
20299       return ExprError();
20300     }
20301 
20302     ExprResult VisitCallExpr(CallExpr *E);
20303     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
20304 
20305     /// Rebuild an expression which simply semantically wraps another
20306     /// expression which it shares the type and value kind of.
20307     template <class T> ExprResult rebuildSugarExpr(T *E) {
20308       ExprResult SubResult = Visit(E->getSubExpr());
20309       if (SubResult.isInvalid()) return ExprError();
20310       Expr *SubExpr = SubResult.get();
20311       E->setSubExpr(SubExpr);
20312       E->setType(SubExpr->getType());
20313       E->setValueKind(SubExpr->getValueKind());
20314       assert(E->getObjectKind() == OK_Ordinary);
20315       return E;
20316     }
20317 
20318     ExprResult VisitParenExpr(ParenExpr *E) {
20319       return rebuildSugarExpr(E);
20320     }
20321 
20322     ExprResult VisitUnaryExtension(UnaryOperator *E) {
20323       return rebuildSugarExpr(E);
20324     }
20325 
20326     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20327       const PointerType *Ptr = DestType->getAs<PointerType>();
20328       if (!Ptr) {
20329         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
20330           << E->getSourceRange();
20331         return ExprError();
20332       }
20333 
20334       if (isa<CallExpr>(E->getSubExpr())) {
20335         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
20336           << E->getSourceRange();
20337         return ExprError();
20338       }
20339 
20340       assert(E->isPRValue());
20341       assert(E->getObjectKind() == OK_Ordinary);
20342       E->setType(DestType);
20343 
20344       // Build the sub-expression as if it were an object of the pointee type.
20345       DestType = Ptr->getPointeeType();
20346       ExprResult SubResult = Visit(E->getSubExpr());
20347       if (SubResult.isInvalid()) return ExprError();
20348       E->setSubExpr(SubResult.get());
20349       return E;
20350     }
20351 
20352     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
20353 
20354     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
20355 
20356     ExprResult VisitMemberExpr(MemberExpr *E) {
20357       return resolveDecl(E, E->getMemberDecl());
20358     }
20359 
20360     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20361       return resolveDecl(E, E->getDecl());
20362     }
20363   };
20364 }
20365 
20366 /// Rebuilds a call expression which yielded __unknown_anytype.
20367 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
20368   Expr *CalleeExpr = E->getCallee();
20369 
20370   enum FnKind {
20371     FK_MemberFunction,
20372     FK_FunctionPointer,
20373     FK_BlockPointer
20374   };
20375 
20376   FnKind Kind;
20377   QualType CalleeType = CalleeExpr->getType();
20378   if (CalleeType == S.Context.BoundMemberTy) {
20379     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
20380     Kind = FK_MemberFunction;
20381     CalleeType = Expr::findBoundMemberType(CalleeExpr);
20382   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
20383     CalleeType = Ptr->getPointeeType();
20384     Kind = FK_FunctionPointer;
20385   } else {
20386     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
20387     Kind = FK_BlockPointer;
20388   }
20389   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
20390 
20391   // Verify that this is a legal result type of a function.
20392   if (DestType->isArrayType() || DestType->isFunctionType()) {
20393     unsigned diagID = diag::err_func_returning_array_function;
20394     if (Kind == FK_BlockPointer)
20395       diagID = diag::err_block_returning_array_function;
20396 
20397     S.Diag(E->getExprLoc(), diagID)
20398       << DestType->isFunctionType() << DestType;
20399     return ExprError();
20400   }
20401 
20402   // Otherwise, go ahead and set DestType as the call's result.
20403   E->setType(DestType.getNonLValueExprType(S.Context));
20404   E->setValueKind(Expr::getValueKindForType(DestType));
20405   assert(E->getObjectKind() == OK_Ordinary);
20406 
20407   // Rebuild the function type, replacing the result type with DestType.
20408   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
20409   if (Proto) {
20410     // __unknown_anytype(...) is a special case used by the debugger when
20411     // it has no idea what a function's signature is.
20412     //
20413     // We want to build this call essentially under the K&R
20414     // unprototyped rules, but making a FunctionNoProtoType in C++
20415     // would foul up all sorts of assumptions.  However, we cannot
20416     // simply pass all arguments as variadic arguments, nor can we
20417     // portably just call the function under a non-variadic type; see
20418     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
20419     // However, it turns out that in practice it is generally safe to
20420     // call a function declared as "A foo(B,C,D);" under the prototype
20421     // "A foo(B,C,D,...);".  The only known exception is with the
20422     // Windows ABI, where any variadic function is implicitly cdecl
20423     // regardless of its normal CC.  Therefore we change the parameter
20424     // types to match the types of the arguments.
20425     //
20426     // This is a hack, but it is far superior to moving the
20427     // corresponding target-specific code from IR-gen to Sema/AST.
20428 
20429     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
20430     SmallVector<QualType, 8> ArgTypes;
20431     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
20432       ArgTypes.reserve(E->getNumArgs());
20433       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
20434         ArgTypes.push_back(S.Context.getReferenceQualifiedType(E->getArg(i)));
20435       }
20436       ParamTypes = ArgTypes;
20437     }
20438     DestType = S.Context.getFunctionType(DestType, ParamTypes,
20439                                          Proto->getExtProtoInfo());
20440   } else {
20441     DestType = S.Context.getFunctionNoProtoType(DestType,
20442                                                 FnType->getExtInfo());
20443   }
20444 
20445   // Rebuild the appropriate pointer-to-function type.
20446   switch (Kind) {
20447   case FK_MemberFunction:
20448     // Nothing to do.
20449     break;
20450 
20451   case FK_FunctionPointer:
20452     DestType = S.Context.getPointerType(DestType);
20453     break;
20454 
20455   case FK_BlockPointer:
20456     DestType = S.Context.getBlockPointerType(DestType);
20457     break;
20458   }
20459 
20460   // Finally, we can recurse.
20461   ExprResult CalleeResult = Visit(CalleeExpr);
20462   if (!CalleeResult.isUsable()) return ExprError();
20463   E->setCallee(CalleeResult.get());
20464 
20465   // Bind a temporary if necessary.
20466   return S.MaybeBindToTemporary(E);
20467 }
20468 
20469 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
20470   // Verify that this is a legal result type of a call.
20471   if (DestType->isArrayType() || DestType->isFunctionType()) {
20472     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
20473       << DestType->isFunctionType() << DestType;
20474     return ExprError();
20475   }
20476 
20477   // Rewrite the method result type if available.
20478   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
20479     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
20480     Method->setReturnType(DestType);
20481   }
20482 
20483   // Change the type of the message.
20484   E->setType(DestType.getNonReferenceType());
20485   E->setValueKind(Expr::getValueKindForType(DestType));
20486 
20487   return S.MaybeBindToTemporary(E);
20488 }
20489 
20490 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
20491   // The only case we should ever see here is a function-to-pointer decay.
20492   if (E->getCastKind() == CK_FunctionToPointerDecay) {
20493     assert(E->isPRValue());
20494     assert(E->getObjectKind() == OK_Ordinary);
20495 
20496     E->setType(DestType);
20497 
20498     // Rebuild the sub-expression as the pointee (function) type.
20499     DestType = DestType->castAs<PointerType>()->getPointeeType();
20500 
20501     ExprResult Result = Visit(E->getSubExpr());
20502     if (!Result.isUsable()) return ExprError();
20503 
20504     E->setSubExpr(Result.get());
20505     return E;
20506   } else if (E->getCastKind() == CK_LValueToRValue) {
20507     assert(E->isPRValue());
20508     assert(E->getObjectKind() == OK_Ordinary);
20509 
20510     assert(isa<BlockPointerType>(E->getType()));
20511 
20512     E->setType(DestType);
20513 
20514     // The sub-expression has to be a lvalue reference, so rebuild it as such.
20515     DestType = S.Context.getLValueReferenceType(DestType);
20516 
20517     ExprResult Result = Visit(E->getSubExpr());
20518     if (!Result.isUsable()) return ExprError();
20519 
20520     E->setSubExpr(Result.get());
20521     return E;
20522   } else {
20523     llvm_unreachable("Unhandled cast type!");
20524   }
20525 }
20526 
20527 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
20528   ExprValueKind ValueKind = VK_LValue;
20529   QualType Type = DestType;
20530 
20531   // We know how to make this work for certain kinds of decls:
20532 
20533   //  - functions
20534   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
20535     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
20536       DestType = Ptr->getPointeeType();
20537       ExprResult Result = resolveDecl(E, VD);
20538       if (Result.isInvalid()) return ExprError();
20539       return S.ImpCastExprToType(Result.get(), Type, CK_FunctionToPointerDecay,
20540                                  VK_PRValue);
20541     }
20542 
20543     if (!Type->isFunctionType()) {
20544       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
20545         << VD << E->getSourceRange();
20546       return ExprError();
20547     }
20548     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
20549       // We must match the FunctionDecl's type to the hack introduced in
20550       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
20551       // type. See the lengthy commentary in that routine.
20552       QualType FDT = FD->getType();
20553       const FunctionType *FnType = FDT->castAs<FunctionType>();
20554       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
20555       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
20556       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
20557         SourceLocation Loc = FD->getLocation();
20558         FunctionDecl *NewFD = FunctionDecl::Create(
20559             S.Context, FD->getDeclContext(), Loc, Loc,
20560             FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
20561             SC_None, S.getCurFPFeatures().isFPConstrained(),
20562             false /*isInlineSpecified*/, FD->hasPrototype(),
20563             /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
20564 
20565         if (FD->getQualifier())
20566           NewFD->setQualifierInfo(FD->getQualifierLoc());
20567 
20568         SmallVector<ParmVarDecl*, 16> Params;
20569         for (const auto &AI : FT->param_types()) {
20570           ParmVarDecl *Param =
20571             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
20572           Param->setScopeInfo(0, Params.size());
20573           Params.push_back(Param);
20574         }
20575         NewFD->setParams(Params);
20576         DRE->setDecl(NewFD);
20577         VD = DRE->getDecl();
20578       }
20579     }
20580 
20581     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
20582       if (MD->isInstance()) {
20583         ValueKind = VK_PRValue;
20584         Type = S.Context.BoundMemberTy;
20585       }
20586 
20587     // Function references aren't l-values in C.
20588     if (!S.getLangOpts().CPlusPlus)
20589       ValueKind = VK_PRValue;
20590 
20591   //  - variables
20592   } else if (isa<VarDecl>(VD)) {
20593     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
20594       Type = RefTy->getPointeeType();
20595     } else if (Type->isFunctionType()) {
20596       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
20597         << VD << E->getSourceRange();
20598       return ExprError();
20599     }
20600 
20601   //  - nothing else
20602   } else {
20603     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
20604       << VD << E->getSourceRange();
20605     return ExprError();
20606   }
20607 
20608   // Modifying the declaration like this is friendly to IR-gen but
20609   // also really dangerous.
20610   VD->setType(DestType);
20611   E->setType(Type);
20612   E->setValueKind(ValueKind);
20613   return E;
20614 }
20615 
20616 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
20617                                      Expr *CastExpr, CastKind &CastKind,
20618                                      ExprValueKind &VK, CXXCastPath &Path) {
20619   // The type we're casting to must be either void or complete.
20620   if (!CastType->isVoidType() &&
20621       RequireCompleteType(TypeRange.getBegin(), CastType,
20622                           diag::err_typecheck_cast_to_incomplete))
20623     return ExprError();
20624 
20625   // Rewrite the casted expression from scratch.
20626   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
20627   if (!result.isUsable()) return ExprError();
20628 
20629   CastExpr = result.get();
20630   VK = CastExpr->getValueKind();
20631   CastKind = CK_NoOp;
20632 
20633   return CastExpr;
20634 }
20635 
20636 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
20637   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
20638 }
20639 
20640 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
20641                                     Expr *arg, QualType &paramType) {
20642   // If the syntactic form of the argument is not an explicit cast of
20643   // any sort, just do default argument promotion.
20644   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
20645   if (!castArg) {
20646     ExprResult result = DefaultArgumentPromotion(arg);
20647     if (result.isInvalid()) return ExprError();
20648     paramType = result.get()->getType();
20649     return result;
20650   }
20651 
20652   // Otherwise, use the type that was written in the explicit cast.
20653   assert(!arg->hasPlaceholderType());
20654   paramType = castArg->getTypeAsWritten();
20655 
20656   // Copy-initialize a parameter of that type.
20657   InitializedEntity entity =
20658     InitializedEntity::InitializeParameter(Context, paramType,
20659                                            /*consumed*/ false);
20660   return PerformCopyInitialization(entity, callLoc, arg);
20661 }
20662 
20663 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
20664   Expr *orig = E;
20665   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
20666   while (true) {
20667     E = E->IgnoreParenImpCasts();
20668     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
20669       E = call->getCallee();
20670       diagID = diag::err_uncasted_call_of_unknown_any;
20671     } else {
20672       break;
20673     }
20674   }
20675 
20676   SourceLocation loc;
20677   NamedDecl *d;
20678   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
20679     loc = ref->getLocation();
20680     d = ref->getDecl();
20681   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
20682     loc = mem->getMemberLoc();
20683     d = mem->getMemberDecl();
20684   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
20685     diagID = diag::err_uncasted_call_of_unknown_any;
20686     loc = msg->getSelectorStartLoc();
20687     d = msg->getMethodDecl();
20688     if (!d) {
20689       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
20690         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
20691         << orig->getSourceRange();
20692       return ExprError();
20693     }
20694   } else {
20695     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
20696       << E->getSourceRange();
20697     return ExprError();
20698   }
20699 
20700   S.Diag(loc, diagID) << d << orig->getSourceRange();
20701 
20702   // Never recoverable.
20703   return ExprError();
20704 }
20705 
20706 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
20707   if (!Context.isDependenceAllowed()) {
20708     // C cannot handle TypoExpr nodes on either side of a binop because it
20709     // doesn't handle dependent types properly, so make sure any TypoExprs have
20710     // been dealt with before checking the operands.
20711     ExprResult Result = CorrectDelayedTyposInExpr(E);
20712     if (!Result.isUsable()) return ExprError();
20713     E = Result.get();
20714   }
20715 
20716   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
20717   if (!placeholderType) return E;
20718 
20719   switch (placeholderType->getKind()) {
20720   case BuiltinType::UnresolvedTemplate: {
20721     auto *ULE = cast<UnresolvedLookupExpr>(E);
20722     const DeclarationNameInfo &NameInfo = ULE->getNameInfo();
20723     // There's only one FoundDecl for UnresolvedTemplate type. See
20724     // BuildTemplateIdExpr.
20725     NamedDecl *Temp = *ULE->decls_begin();
20726     const bool IsTypeAliasTemplateDecl = isa<TypeAliasTemplateDecl>(Temp);
20727 
20728     if (NestedNameSpecifierLoc Loc = ULE->getQualifierLoc(); Loc.hasQualifier())
20729       Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template)
20730           << Loc.getNestedNameSpecifier() << NameInfo.getName().getAsString()
20731           << Loc.getSourceRange() << IsTypeAliasTemplateDecl;
20732     else
20733       Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template)
20734           << "" << NameInfo.getName().getAsString() << ULE->getSourceRange()
20735           << IsTypeAliasTemplateDecl;
20736     Diag(Temp->getLocation(), diag::note_referenced_type_template)
20737         << IsTypeAliasTemplateDecl;
20738 
20739     return CreateRecoveryExpr(NameInfo.getBeginLoc(), NameInfo.getEndLoc(), {});
20740   }
20741 
20742   // Overloaded expressions.
20743   case BuiltinType::Overload: {
20744     // Try to resolve a single function template specialization.
20745     // This is obligatory.
20746     ExprResult Result = E;
20747     if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
20748       return Result;
20749 
20750     // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
20751     // leaves Result unchanged on failure.
20752     Result = E;
20753     if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
20754       return Result;
20755 
20756     // If that failed, try to recover with a call.
20757     tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
20758                          /*complain*/ true);
20759     return Result;
20760   }
20761 
20762   // Bound member functions.
20763   case BuiltinType::BoundMember: {
20764     ExprResult result = E;
20765     const Expr *BME = E->IgnoreParens();
20766     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
20767     // Try to give a nicer diagnostic if it is a bound member that we recognize.
20768     if (isa<CXXPseudoDestructorExpr>(BME)) {
20769       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
20770     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
20771       if (ME->getMemberNameInfo().getName().getNameKind() ==
20772           DeclarationName::CXXDestructorName)
20773         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
20774     }
20775     tryToRecoverWithCall(result, PD,
20776                          /*complain*/ true);
20777     return result;
20778   }
20779 
20780   // ARC unbridged casts.
20781   case BuiltinType::ARCUnbridgedCast: {
20782     Expr *realCast = ObjC().stripARCUnbridgedCast(E);
20783     ObjC().diagnoseARCUnbridgedCast(realCast);
20784     return realCast;
20785   }
20786 
20787   // Expressions of unknown type.
20788   case BuiltinType::UnknownAny:
20789     return diagnoseUnknownAnyExpr(*this, E);
20790 
20791   // Pseudo-objects.
20792   case BuiltinType::PseudoObject:
20793     return PseudoObject().checkRValue(E);
20794 
20795   case BuiltinType::BuiltinFn: {
20796     // Accept __noop without parens by implicitly converting it to a call expr.
20797     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
20798     if (DRE) {
20799       auto *FD = cast<FunctionDecl>(DRE->getDecl());
20800       unsigned BuiltinID = FD->getBuiltinID();
20801       if (BuiltinID == Builtin::BI__noop) {
20802         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
20803                               CK_BuiltinFnToFnPtr)
20804                 .get();
20805         return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
20806                                 VK_PRValue, SourceLocation(),
20807                                 FPOptionsOverride());
20808       }
20809 
20810       if (Context.BuiltinInfo.isInStdNamespace(BuiltinID)) {
20811         // Any use of these other than a direct call is ill-formed as of C++20,
20812         // because they are not addressable functions. In earlier language
20813         // modes, warn and force an instantiation of the real body.
20814         Diag(E->getBeginLoc(),
20815              getLangOpts().CPlusPlus20
20816                  ? diag::err_use_of_unaddressable_function
20817                  : diag::warn_cxx20_compat_use_of_unaddressable_function);
20818         if (FD->isImplicitlyInstantiable()) {
20819           // Require a definition here because a normal attempt at
20820           // instantiation for a builtin will be ignored, and we won't try
20821           // again later. We assume that the definition of the template
20822           // precedes this use.
20823           InstantiateFunctionDefinition(E->getBeginLoc(), FD,
20824                                         /*Recursive=*/false,
20825                                         /*DefinitionRequired=*/true,
20826                                         /*AtEndOfTU=*/false);
20827         }
20828         // Produce a properly-typed reference to the function.
20829         CXXScopeSpec SS;
20830         SS.Adopt(DRE->getQualifierLoc());
20831         TemplateArgumentListInfo TemplateArgs;
20832         DRE->copyTemplateArgumentsInto(TemplateArgs);
20833         return BuildDeclRefExpr(
20834             FD, FD->getType(), VK_LValue, DRE->getNameInfo(),
20835             DRE->hasQualifier() ? &SS : nullptr, DRE->getFoundDecl(),
20836             DRE->getTemplateKeywordLoc(),
20837             DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
20838       }
20839     }
20840 
20841     Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
20842     return ExprError();
20843   }
20844 
20845   case BuiltinType::IncompleteMatrixIdx:
20846     Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
20847              ->getRowIdx()
20848              ->getBeginLoc(),
20849          diag::err_matrix_incomplete_index);
20850     return ExprError();
20851 
20852   // Expressions of unknown type.
20853   case BuiltinType::ArraySection:
20854     Diag(E->getBeginLoc(), diag::err_array_section_use)
20855         << cast<ArraySectionExpr>(E)->isOMPArraySection();
20856     return ExprError();
20857 
20858   // Expressions of unknown type.
20859   case BuiltinType::OMPArrayShaping:
20860     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
20861 
20862   case BuiltinType::OMPIterator:
20863     return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
20864 
20865   // Everything else should be impossible.
20866 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
20867   case BuiltinType::Id:
20868 #include "clang/Basic/OpenCLImageTypes.def"
20869 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
20870   case BuiltinType::Id:
20871 #include "clang/Basic/OpenCLExtensionTypes.def"
20872 #define SVE_TYPE(Name, Id, SingletonId) \
20873   case BuiltinType::Id:
20874 #include "clang/Basic/AArch64SVEACLETypes.def"
20875 #define PPC_VECTOR_TYPE(Name, Id, Size) \
20876   case BuiltinType::Id:
20877 #include "clang/Basic/PPCTypes.def"
20878 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
20879 #include "clang/Basic/RISCVVTypes.def"
20880 #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
20881 #include "clang/Basic/WebAssemblyReferenceTypes.def"
20882 #define AMDGPU_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
20883 #include "clang/Basic/AMDGPUTypes.def"
20884 #define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
20885 #define PLACEHOLDER_TYPE(Id, SingletonId)
20886 #include "clang/AST/BuiltinTypes.def"
20887     break;
20888   }
20889 
20890   llvm_unreachable("invalid placeholder type!");
20891 }
20892 
20893 bool Sema::CheckCaseExpression(Expr *E) {
20894   if (E->isTypeDependent())
20895     return true;
20896   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
20897     return E->getType()->isIntegralOrEnumerationType();
20898   return false;
20899 }
20900 
20901 ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
20902                                     ArrayRef<Expr *> SubExprs, QualType T) {
20903   if (!Context.getLangOpts().RecoveryAST)
20904     return ExprError();
20905 
20906   if (isSFINAEContext())
20907     return ExprError();
20908 
20909   if (T.isNull() || T->isUndeducedType() ||
20910       !Context.getLangOpts().RecoveryASTType)
20911     // We don't know the concrete type, fallback to dependent type.
20912     T = Context.DependentTy;
20913 
20914   return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
20915 }
20916