1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides Sema routines for C++ exception specification testing. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Sema/SemaInternal.h" 14 #include "clang/AST/ASTMutationListener.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/StmtObjC.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Basic/Diagnostic.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 25 namespace clang { 26 27 static const FunctionProtoType *GetUnderlyingFunction(QualType T) 28 { 29 if (const PointerType *PtrTy = T->getAs<PointerType>()) 30 T = PtrTy->getPointeeType(); 31 else if (const ReferenceType *RefTy = T->getAs<ReferenceType>()) 32 T = RefTy->getPointeeType(); 33 else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) 34 T = MPTy->getPointeeType(); 35 return T->getAs<FunctionProtoType>(); 36 } 37 38 /// HACK: 2014-11-14 libstdc++ had a bug where it shadows std::swap with a 39 /// member swap function then tries to call std::swap unqualified from the 40 /// exception specification of that function. This function detects whether 41 /// we're in such a case and turns off delay-parsing of exception 42 /// specifications. Libstdc++ 6.1 (released 2016-04-27) appears to have 43 /// resolved it as side-effect of commit ddb63209a8d (2015-06-05). 44 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) { 45 auto *RD = dyn_cast<CXXRecordDecl>(CurContext); 46 47 // All the problem cases are member functions named "swap" within class 48 // templates declared directly within namespace std or std::__debug or 49 // std::__profile. 50 if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() || 51 !D.getIdentifier() || !D.getIdentifier()->isStr("swap")) 52 return false; 53 54 auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext()); 55 if (!ND) 56 return false; 57 58 bool IsInStd = ND->isStdNamespace(); 59 if (!IsInStd) { 60 // This isn't a direct member of namespace std, but it might still be 61 // libstdc++'s std::__debug::array or std::__profile::array. 62 IdentifierInfo *II = ND->getIdentifier(); 63 if (!II || !(II->isStr("__debug") || II->isStr("__profile")) || 64 !ND->isInStdNamespace()) 65 return false; 66 } 67 68 // Only apply this hack within a system header. 69 if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc())) 70 return false; 71 72 return llvm::StringSwitch<bool>(RD->getIdentifier()->getName()) 73 .Case("array", true) 74 .Case("pair", IsInStd) 75 .Case("priority_queue", IsInStd) 76 .Case("stack", IsInStd) 77 .Case("queue", IsInStd) 78 .Default(false); 79 } 80 81 ExprResult Sema::ActOnNoexceptSpec(Expr *NoexceptExpr, 82 ExceptionSpecificationType &EST) { 83 84 if (NoexceptExpr->isTypeDependent() || 85 NoexceptExpr->containsUnexpandedParameterPack()) { 86 EST = EST_DependentNoexcept; 87 return NoexceptExpr; 88 } 89 90 llvm::APSInt Result; 91 ExprResult Converted = CheckConvertedConstantExpression( 92 NoexceptExpr, Context.BoolTy, Result, CCEK_Noexcept); 93 94 if (Converted.isInvalid()) { 95 EST = EST_NoexceptFalse; 96 // Fill in an expression of 'false' as a fixup. 97 auto *BoolExpr = new (Context) 98 CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc()); 99 llvm::APSInt Value{1}; 100 Value = 0; 101 return ConstantExpr::Create(Context, BoolExpr, APValue{Value}); 102 } 103 104 if (Converted.get()->isValueDependent()) { 105 EST = EST_DependentNoexcept; 106 return Converted; 107 } 108 109 if (!Converted.isInvalid()) 110 EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue; 111 return Converted; 112 } 113 114 /// CheckSpecifiedExceptionType - Check if the given type is valid in an 115 /// exception specification. Incomplete types, or pointers to incomplete types 116 /// other than void are not allowed. 117 /// 118 /// \param[in,out] T The exception type. This will be decayed to a pointer type 119 /// when the input is an array or a function type. 120 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) { 121 // C++11 [except.spec]p2: 122 // A type cv T, "array of T", or "function returning T" denoted 123 // in an exception-specification is adjusted to type T, "pointer to T", or 124 // "pointer to function returning T", respectively. 125 // 126 // We also apply this rule in C++98. 127 if (T->isArrayType()) 128 T = Context.getArrayDecayedType(T); 129 else if (T->isFunctionType()) 130 T = Context.getPointerType(T); 131 132 int Kind = 0; 133 QualType PointeeT = T; 134 if (const PointerType *PT = T->getAs<PointerType>()) { 135 PointeeT = PT->getPointeeType(); 136 Kind = 1; 137 138 // cv void* is explicitly permitted, despite being a pointer to an 139 // incomplete type. 140 if (PointeeT->isVoidType()) 141 return false; 142 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 143 PointeeT = RT->getPointeeType(); 144 Kind = 2; 145 146 if (RT->isRValueReferenceType()) { 147 // C++11 [except.spec]p2: 148 // A type denoted in an exception-specification shall not denote [...] 149 // an rvalue reference type. 150 Diag(Range.getBegin(), diag::err_rref_in_exception_spec) 151 << T << Range; 152 return true; 153 } 154 } 155 156 // C++11 [except.spec]p2: 157 // A type denoted in an exception-specification shall not denote an 158 // incomplete type other than a class currently being defined [...]. 159 // A type denoted in an exception-specification shall not denote a 160 // pointer or reference to an incomplete type, other than (cv) void* or a 161 // pointer or reference to a class currently being defined. 162 // In Microsoft mode, downgrade this to a warning. 163 unsigned DiagID = diag::err_incomplete_in_exception_spec; 164 bool ReturnValueOnError = true; 165 if (getLangOpts().MSVCCompat) { 166 DiagID = diag::ext_incomplete_in_exception_spec; 167 ReturnValueOnError = false; 168 } 169 if (!(PointeeT->isRecordType() && 170 PointeeT->castAs<RecordType>()->isBeingDefined()) && 171 RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range)) 172 return ReturnValueOnError; 173 174 // The MSVC compatibility mode doesn't extend to sizeless types, 175 // so diagnose them separately. 176 if (PointeeT->isSizelessType() && Kind != 1) { 177 Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec) 178 << (Kind == 2 ? 1 : 0) << PointeeT << Range; 179 return true; 180 } 181 182 return false; 183 } 184 185 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer 186 /// to member to a function with an exception specification. This means that 187 /// it is invalid to add another level of indirection. 188 bool Sema::CheckDistantExceptionSpec(QualType T) { 189 // C++17 removes this rule in favor of putting exception specifications into 190 // the type system. 191 if (getLangOpts().CPlusPlus17) 192 return false; 193 194 if (const PointerType *PT = T->getAs<PointerType>()) 195 T = PT->getPointeeType(); 196 else if (const MemberPointerType *PT = T->getAs<MemberPointerType>()) 197 T = PT->getPointeeType(); 198 else 199 return false; 200 201 const FunctionProtoType *FnT = T->getAs<FunctionProtoType>(); 202 if (!FnT) 203 return false; 204 205 return FnT->hasExceptionSpec(); 206 } 207 208 const FunctionProtoType * 209 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) { 210 if (FPT->getExceptionSpecType() == EST_Unparsed) { 211 Diag(Loc, diag::err_exception_spec_not_parsed); 212 return nullptr; 213 } 214 215 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) 216 return FPT; 217 218 FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl(); 219 const FunctionProtoType *SourceFPT = 220 SourceDecl->getType()->castAs<FunctionProtoType>(); 221 222 // If the exception specification has already been resolved, just return it. 223 if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType())) 224 return SourceFPT; 225 226 // Compute or instantiate the exception specification now. 227 if (SourceFPT->getExceptionSpecType() == EST_Unevaluated) 228 EvaluateImplicitExceptionSpec(Loc, SourceDecl); 229 else 230 InstantiateExceptionSpec(Loc, SourceDecl); 231 232 const FunctionProtoType *Proto = 233 SourceDecl->getType()->castAs<FunctionProtoType>(); 234 if (Proto->getExceptionSpecType() == clang::EST_Unparsed) { 235 Diag(Loc, diag::err_exception_spec_not_parsed); 236 Proto = nullptr; 237 } 238 return Proto; 239 } 240 241 void 242 Sema::UpdateExceptionSpec(FunctionDecl *FD, 243 const FunctionProtoType::ExceptionSpecInfo &ESI) { 244 // If we've fully resolved the exception specification, notify listeners. 245 if (!isUnresolvedExceptionSpec(ESI.Type)) 246 if (auto *Listener = getASTMutationListener()) 247 Listener->ResolvedExceptionSpec(FD); 248 249 for (FunctionDecl *Redecl : FD->redecls()) 250 Context.adjustExceptionSpec(Redecl, ESI); 251 } 252 253 static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) { 254 auto *MD = dyn_cast<CXXMethodDecl>(FD); 255 if (!MD) 256 return false; 257 258 auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType(); 259 return EST == EST_Unparsed || 260 (EST == EST_Unevaluated && MD->getParent()->isBeingDefined()); 261 } 262 263 static bool CheckEquivalentExceptionSpecImpl( 264 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 265 const FunctionProtoType *Old, SourceLocation OldLoc, 266 const FunctionProtoType *New, SourceLocation NewLoc, 267 bool *MissingExceptionSpecification = nullptr, 268 bool *MissingEmptyExceptionSpecification = nullptr, 269 bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false); 270 271 /// Determine whether a function has an implicitly-generated exception 272 /// specification. 273 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) { 274 if (!isa<CXXDestructorDecl>(Decl) && 275 Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete && 276 Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 277 return false; 278 279 // For a function that the user didn't declare: 280 // - if this is a destructor, its exception specification is implicit. 281 // - if this is 'operator delete' or 'operator delete[]', the exception 282 // specification is as-if an explicit exception specification was given 283 // (per [basic.stc.dynamic]p2). 284 if (!Decl->getTypeSourceInfo()) 285 return isa<CXXDestructorDecl>(Decl); 286 287 auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); 288 return !Ty->hasExceptionSpec(); 289 } 290 291 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) { 292 // Just completely ignore this under -fno-exceptions prior to C++17. 293 // In C++17 onwards, the exception specification is part of the type and 294 // we will diagnose mismatches anyway, so it's better to check for them here. 295 if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17) 296 return false; 297 298 OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator(); 299 bool IsOperatorNew = OO == OO_New || OO == OO_Array_New; 300 bool MissingExceptionSpecification = false; 301 bool MissingEmptyExceptionSpecification = false; 302 303 unsigned DiagID = diag::err_mismatched_exception_spec; 304 bool ReturnValueOnError = true; 305 if (getLangOpts().MSVCCompat) { 306 DiagID = diag::ext_mismatched_exception_spec; 307 ReturnValueOnError = false; 308 } 309 310 // If we're befriending a member function of a class that's currently being 311 // defined, we might not be able to work out its exception specification yet. 312 // If not, defer the check until later. 313 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) { 314 DelayedEquivalentExceptionSpecChecks.push_back({New, Old}); 315 return false; 316 } 317 318 // Check the types as written: they must match before any exception 319 // specification adjustment is applied. 320 if (!CheckEquivalentExceptionSpecImpl( 321 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 322 Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(), 323 New->getType()->getAs<FunctionProtoType>(), New->getLocation(), 324 &MissingExceptionSpecification, &MissingEmptyExceptionSpecification, 325 /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) { 326 // C++11 [except.spec]p4 [DR1492]: 327 // If a declaration of a function has an implicit 328 // exception-specification, other declarations of the function shall 329 // not specify an exception-specification. 330 if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions && 331 hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) { 332 Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch) 333 << hasImplicitExceptionSpec(Old); 334 if (Old->getLocation().isValid()) 335 Diag(Old->getLocation(), diag::note_previous_declaration); 336 } 337 return false; 338 } 339 340 // The failure was something other than an missing exception 341 // specification; return an error, except in MS mode where this is a warning. 342 if (!MissingExceptionSpecification) 343 return ReturnValueOnError; 344 345 const auto *NewProto = New->getType()->castAs<FunctionProtoType>(); 346 347 // The new function declaration is only missing an empty exception 348 // specification "throw()". If the throw() specification came from a 349 // function in a system header that has C linkage, just add an empty 350 // exception specification to the "new" declaration. Note that C library 351 // implementations are permitted to add these nothrow exception 352 // specifications. 353 // 354 // Likewise if the old function is a builtin. 355 if (MissingEmptyExceptionSpecification && 356 (Old->getLocation().isInvalid() || 357 Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 358 Old->getBuiltinID()) && 359 Old->isExternC()) { 360 New->setType(Context.getFunctionType( 361 NewProto->getReturnType(), NewProto->getParamTypes(), 362 NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone))); 363 return false; 364 } 365 366 const auto *OldProto = Old->getType()->castAs<FunctionProtoType>(); 367 368 FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType(); 369 if (ESI.Type == EST_Dynamic) { 370 // FIXME: What if the exceptions are described in terms of the old 371 // prototype's parameters? 372 ESI.Exceptions = OldProto->exceptions(); 373 } 374 375 if (ESI.Type == EST_NoexceptFalse) 376 ESI.Type = EST_None; 377 if (ESI.Type == EST_NoexceptTrue) 378 ESI.Type = EST_BasicNoexcept; 379 380 // For dependent noexcept, we can't just take the expression from the old 381 // prototype. It likely contains references to the old prototype's parameters. 382 if (ESI.Type == EST_DependentNoexcept) { 383 New->setInvalidDecl(); 384 } else { 385 // Update the type of the function with the appropriate exception 386 // specification. 387 New->setType(Context.getFunctionType( 388 NewProto->getReturnType(), NewProto->getParamTypes(), 389 NewProto->getExtProtoInfo().withExceptionSpec(ESI))); 390 } 391 392 if (getLangOpts().MSVCCompat && isDynamicExceptionSpec(ESI.Type)) { 393 DiagID = diag::ext_missing_exception_specification; 394 ReturnValueOnError = false; 395 } else if (New->isReplaceableGlobalAllocationFunction() && 396 ESI.Type != EST_DependentNoexcept) { 397 // Allow missing exception specifications in redeclarations as an extension, 398 // when declaring a replaceable global allocation function. 399 DiagID = diag::ext_missing_exception_specification; 400 ReturnValueOnError = false; 401 } else if (ESI.Type == EST_NoThrow) { 402 // Don't emit any warning for missing 'nothrow' in MSVC. 403 if (getLangOpts().MSVCCompat) { 404 return false; 405 } 406 // Allow missing attribute 'nothrow' in redeclarations, since this is a very 407 // common omission. 408 DiagID = diag::ext_missing_exception_specification; 409 ReturnValueOnError = false; 410 } else { 411 DiagID = diag::err_missing_exception_specification; 412 ReturnValueOnError = true; 413 } 414 415 // Warn about the lack of exception specification. 416 SmallString<128> ExceptionSpecString; 417 llvm::raw_svector_ostream OS(ExceptionSpecString); 418 switch (OldProto->getExceptionSpecType()) { 419 case EST_DynamicNone: 420 OS << "throw()"; 421 break; 422 423 case EST_Dynamic: { 424 OS << "throw("; 425 bool OnFirstException = true; 426 for (const auto &E : OldProto->exceptions()) { 427 if (OnFirstException) 428 OnFirstException = false; 429 else 430 OS << ", "; 431 432 OS << E.getAsString(getPrintingPolicy()); 433 } 434 OS << ")"; 435 break; 436 } 437 438 case EST_BasicNoexcept: 439 OS << "noexcept"; 440 break; 441 442 case EST_DependentNoexcept: 443 case EST_NoexceptFalse: 444 case EST_NoexceptTrue: 445 OS << "noexcept("; 446 assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr"); 447 OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy()); 448 OS << ")"; 449 break; 450 case EST_NoThrow: 451 OS <<"__attribute__((nothrow))"; 452 break; 453 case EST_None: 454 case EST_MSAny: 455 case EST_Unevaluated: 456 case EST_Uninstantiated: 457 case EST_Unparsed: 458 llvm_unreachable("This spec type is compatible with none."); 459 } 460 461 SourceLocation FixItLoc; 462 if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) { 463 TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens(); 464 // FIXME: Preserve enough information so that we can produce a correct fixit 465 // location when there is a trailing return type. 466 if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>()) 467 if (!FTLoc.getTypePtr()->hasTrailingReturn()) 468 FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd()); 469 } 470 471 if (FixItLoc.isInvalid()) 472 Diag(New->getLocation(), DiagID) 473 << New << OS.str(); 474 else { 475 Diag(New->getLocation(), DiagID) 476 << New << OS.str() 477 << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str()); 478 } 479 480 if (Old->getLocation().isValid()) 481 Diag(Old->getLocation(), diag::note_previous_declaration); 482 483 return ReturnValueOnError; 484 } 485 486 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent 487 /// exception specifications. Exception specifications are equivalent if 488 /// they allow exactly the same set of exception types. It does not matter how 489 /// that is achieved. See C++ [except.spec]p2. 490 bool Sema::CheckEquivalentExceptionSpec( 491 const FunctionProtoType *Old, SourceLocation OldLoc, 492 const FunctionProtoType *New, SourceLocation NewLoc) { 493 if (!getLangOpts().CXXExceptions) 494 return false; 495 496 unsigned DiagID = diag::err_mismatched_exception_spec; 497 if (getLangOpts().MSVCCompat) 498 DiagID = diag::ext_mismatched_exception_spec; 499 bool Result = CheckEquivalentExceptionSpecImpl( 500 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 501 Old, OldLoc, New, NewLoc); 502 503 // In Microsoft mode, mismatching exception specifications just cause a warning. 504 if (getLangOpts().MSVCCompat) 505 return false; 506 return Result; 507 } 508 509 /// CheckEquivalentExceptionSpec - Check if the two types have compatible 510 /// exception specifications. See C++ [except.spec]p3. 511 /// 512 /// \return \c false if the exception specifications match, \c true if there is 513 /// a problem. If \c true is returned, either a diagnostic has already been 514 /// produced or \c *MissingExceptionSpecification is set to \c true. 515 static bool CheckEquivalentExceptionSpecImpl( 516 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 517 const FunctionProtoType *Old, SourceLocation OldLoc, 518 const FunctionProtoType *New, SourceLocation NewLoc, 519 bool *MissingExceptionSpecification, 520 bool *MissingEmptyExceptionSpecification, 521 bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) { 522 if (MissingExceptionSpecification) 523 *MissingExceptionSpecification = false; 524 525 if (MissingEmptyExceptionSpecification) 526 *MissingEmptyExceptionSpecification = false; 527 528 Old = S.ResolveExceptionSpec(NewLoc, Old); 529 if (!Old) 530 return false; 531 New = S.ResolveExceptionSpec(NewLoc, New); 532 if (!New) 533 return false; 534 535 // C++0x [except.spec]p3: Two exception-specifications are compatible if: 536 // - both are non-throwing, regardless of their form, 537 // - both have the form noexcept(constant-expression) and the constant- 538 // expressions are equivalent, 539 // - both are dynamic-exception-specifications that have the same set of 540 // adjusted types. 541 // 542 // C++0x [except.spec]p12: An exception-specification is non-throwing if it is 543 // of the form throw(), noexcept, or noexcept(constant-expression) where the 544 // constant-expression yields true. 545 // 546 // C++0x [except.spec]p4: If any declaration of a function has an exception- 547 // specifier that is not a noexcept-specification allowing all exceptions, 548 // all declarations [...] of that function shall have a compatible 549 // exception-specification. 550 // 551 // That last point basically means that noexcept(false) matches no spec. 552 // It's considered when AllowNoexceptAllMatchWithNoSpec is true. 553 554 ExceptionSpecificationType OldEST = Old->getExceptionSpecType(); 555 ExceptionSpecificationType NewEST = New->getExceptionSpecType(); 556 557 assert(!isUnresolvedExceptionSpec(OldEST) && 558 !isUnresolvedExceptionSpec(NewEST) && 559 "Shouldn't see unknown exception specifications here"); 560 561 CanThrowResult OldCanThrow = Old->canThrow(); 562 CanThrowResult NewCanThrow = New->canThrow(); 563 564 // Any non-throwing specifications are compatible. 565 if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot) 566 return false; 567 568 // Any throws-anything specifications are usually compatible. 569 if (OldCanThrow == CT_Can && OldEST != EST_Dynamic && 570 NewCanThrow == CT_Can && NewEST != EST_Dynamic) { 571 // The exception is that the absence of an exception specification only 572 // matches noexcept(false) for functions, as described above. 573 if (!AllowNoexceptAllMatchWithNoSpec && 574 ((OldEST == EST_None && NewEST == EST_NoexceptFalse) || 575 (OldEST == EST_NoexceptFalse && NewEST == EST_None))) { 576 // This is the disallowed case. 577 } else { 578 return false; 579 } 580 } 581 582 // C++14 [except.spec]p3: 583 // Two exception-specifications are compatible if [...] both have the form 584 // noexcept(constant-expression) and the constant-expressions are equivalent 585 if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) { 586 llvm::FoldingSetNodeID OldFSN, NewFSN; 587 Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true); 588 New->getNoexceptExpr()->Profile(NewFSN, S.Context, true); 589 if (OldFSN == NewFSN) 590 return false; 591 } 592 593 // Dynamic exception specifications with the same set of adjusted types 594 // are compatible. 595 if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) { 596 bool Success = true; 597 // Both have a dynamic exception spec. Collect the first set, then compare 598 // to the second. 599 llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes; 600 for (const auto &I : Old->exceptions()) 601 OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType()); 602 603 for (const auto &I : New->exceptions()) { 604 CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType(); 605 if (OldTypes.count(TypePtr)) 606 NewTypes.insert(TypePtr); 607 else { 608 Success = false; 609 break; 610 } 611 } 612 613 if (Success && OldTypes.size() == NewTypes.size()) 614 return false; 615 } 616 617 // As a special compatibility feature, under C++0x we accept no spec and 618 // throw(std::bad_alloc) as equivalent for operator new and operator new[]. 619 // This is because the implicit declaration changed, but old code would break. 620 if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) { 621 const FunctionProtoType *WithExceptions = nullptr; 622 if (OldEST == EST_None && NewEST == EST_Dynamic) 623 WithExceptions = New; 624 else if (OldEST == EST_Dynamic && NewEST == EST_None) 625 WithExceptions = Old; 626 if (WithExceptions && WithExceptions->getNumExceptions() == 1) { 627 // One has no spec, the other throw(something). If that something is 628 // std::bad_alloc, all conditions are met. 629 QualType Exception = *WithExceptions->exception_begin(); 630 if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) { 631 IdentifierInfo* Name = ExRecord->getIdentifier(); 632 if (Name && Name->getName() == "bad_alloc") { 633 // It's called bad_alloc, but is it in std? 634 if (ExRecord->isInStdNamespace()) { 635 return false; 636 } 637 } 638 } 639 } 640 } 641 642 // If the caller wants to handle the case that the new function is 643 // incompatible due to a missing exception specification, let it. 644 if (MissingExceptionSpecification && OldEST != EST_None && 645 NewEST == EST_None) { 646 // The old type has an exception specification of some sort, but 647 // the new type does not. 648 *MissingExceptionSpecification = true; 649 650 if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) { 651 // The old type has a throw() or noexcept(true) exception specification 652 // and the new type has no exception specification, and the caller asked 653 // to handle this itself. 654 *MissingEmptyExceptionSpecification = true; 655 } 656 657 return true; 658 } 659 660 S.Diag(NewLoc, DiagID); 661 if (NoteID.getDiagID() != 0 && OldLoc.isValid()) 662 S.Diag(OldLoc, NoteID); 663 return true; 664 } 665 666 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID, 667 const PartialDiagnostic &NoteID, 668 const FunctionProtoType *Old, 669 SourceLocation OldLoc, 670 const FunctionProtoType *New, 671 SourceLocation NewLoc) { 672 if (!getLangOpts().CXXExceptions) 673 return false; 674 return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc, 675 New, NewLoc); 676 } 677 678 bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) { 679 // [except.handle]p3: 680 // A handler is a match for an exception object of type E if: 681 682 // HandlerType must be ExceptionType or derived from it, or pointer or 683 // reference to such types. 684 const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>(); 685 if (RefTy) 686 HandlerType = RefTy->getPointeeType(); 687 688 // -- the handler is of type cv T or cv T& and E and T are the same type 689 if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType)) 690 return true; 691 692 // FIXME: ObjC pointer types? 693 if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) { 694 if (RefTy && (!HandlerType.isConstQualified() || 695 HandlerType.isVolatileQualified())) 696 return false; 697 698 // -- the handler is of type cv T or const T& where T is a pointer or 699 // pointer to member type and E is std::nullptr_t 700 if (ExceptionType->isNullPtrType()) 701 return true; 702 703 // -- the handler is of type cv T or const T& where T is a pointer or 704 // pointer to member type and E is a pointer or pointer to member type 705 // that can be converted to T by one or more of 706 // -- a qualification conversion 707 // -- a function pointer conversion 708 bool LifetimeConv; 709 QualType Result; 710 // FIXME: Should we treat the exception as catchable if a lifetime 711 // conversion is required? 712 if (IsQualificationConversion(ExceptionType, HandlerType, false, 713 LifetimeConv) || 714 IsFunctionConversion(ExceptionType, HandlerType, Result)) 715 return true; 716 717 // -- a standard pointer conversion [...] 718 if (!ExceptionType->isPointerType() || !HandlerType->isPointerType()) 719 return false; 720 721 // Handle the "qualification conversion" portion. 722 Qualifiers EQuals, HQuals; 723 ExceptionType = Context.getUnqualifiedArrayType( 724 ExceptionType->getPointeeType(), EQuals); 725 HandlerType = Context.getUnqualifiedArrayType( 726 HandlerType->getPointeeType(), HQuals); 727 if (!HQuals.compatiblyIncludes(EQuals)) 728 return false; 729 730 if (HandlerType->isVoidType() && ExceptionType->isObjectType()) 731 return true; 732 733 // The only remaining case is a derived-to-base conversion. 734 } 735 736 // -- the handler is of type cg T or cv T& and T is an unambiguous public 737 // base class of E 738 if (!ExceptionType->isRecordType() || !HandlerType->isRecordType()) 739 return false; 740 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 741 /*DetectVirtual=*/false); 742 if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) || 743 Paths.isAmbiguous(Context.getCanonicalType(HandlerType))) 744 return false; 745 746 // Do this check from a context without privileges. 747 switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType, 748 Paths.front(), 749 /*Diagnostic*/ 0, 750 /*ForceCheck*/ true, 751 /*ForceUnprivileged*/ true)) { 752 case AR_accessible: return true; 753 case AR_inaccessible: return false; 754 case AR_dependent: 755 llvm_unreachable("access check dependent for unprivileged context"); 756 case AR_delayed: 757 llvm_unreachable("access check delayed in non-declaration"); 758 } 759 llvm_unreachable("unexpected access check result"); 760 } 761 762 /// CheckExceptionSpecSubset - Check whether the second function type's 763 /// exception specification is a subset (or equivalent) of the first function 764 /// type. This is used by override and pointer assignment checks. 765 bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID, 766 const PartialDiagnostic &NestedDiagID, 767 const PartialDiagnostic &NoteID, 768 const PartialDiagnostic &NoThrowDiagID, 769 const FunctionProtoType *Superset, 770 SourceLocation SuperLoc, 771 const FunctionProtoType *Subset, 772 SourceLocation SubLoc) { 773 774 // Just auto-succeed under -fno-exceptions. 775 if (!getLangOpts().CXXExceptions) 776 return false; 777 778 // FIXME: As usual, we could be more specific in our error messages, but 779 // that better waits until we've got types with source locations. 780 781 if (!SubLoc.isValid()) 782 SubLoc = SuperLoc; 783 784 // Resolve the exception specifications, if needed. 785 Superset = ResolveExceptionSpec(SuperLoc, Superset); 786 if (!Superset) 787 return false; 788 Subset = ResolveExceptionSpec(SubLoc, Subset); 789 if (!Subset) 790 return false; 791 792 ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType(); 793 ExceptionSpecificationType SubEST = Subset->getExceptionSpecType(); 794 assert(!isUnresolvedExceptionSpec(SuperEST) && 795 !isUnresolvedExceptionSpec(SubEST) && 796 "Shouldn't see unknown exception specifications here"); 797 798 // If there are dependent noexcept specs, assume everything is fine. Unlike 799 // with the equivalency check, this is safe in this case, because we don't 800 // want to merge declarations. Checks after instantiation will catch any 801 // omissions we make here. 802 if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept) 803 return false; 804 805 CanThrowResult SuperCanThrow = Superset->canThrow(); 806 CanThrowResult SubCanThrow = Subset->canThrow(); 807 808 // If the superset contains everything or the subset contains nothing, we're 809 // done. 810 if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) || 811 SubCanThrow == CT_Cannot) 812 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 813 Subset, SubLoc); 814 815 // Allow __declspec(nothrow) to be missing on redeclaration as an extension in 816 // some cases. 817 if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can && 818 SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) { 819 Diag(SubLoc, NoThrowDiagID); 820 if (NoteID.getDiagID() != 0) 821 Diag(SuperLoc, NoteID); 822 return true; 823 } 824 825 // If the subset contains everything or the superset contains nothing, we've 826 // failed. 827 if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) || 828 SuperCanThrow == CT_Cannot) { 829 Diag(SubLoc, DiagID); 830 if (NoteID.getDiagID() != 0) 831 Diag(SuperLoc, NoteID); 832 return true; 833 } 834 835 assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic && 836 "Exception spec subset: non-dynamic case slipped through."); 837 838 // Neither contains everything or nothing. Do a proper comparison. 839 for (QualType SubI : Subset->exceptions()) { 840 if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>()) 841 SubI = RefTy->getPointeeType(); 842 843 // Make sure it's in the superset. 844 bool Contained = false; 845 for (QualType SuperI : Superset->exceptions()) { 846 // [except.spec]p5: 847 // the target entity shall allow at least the exceptions allowed by the 848 // source 849 // 850 // We interpret this as meaning that a handler for some target type would 851 // catch an exception of each source type. 852 if (handlerCanCatch(SuperI, SubI)) { 853 Contained = true; 854 break; 855 } 856 } 857 if (!Contained) { 858 Diag(SubLoc, DiagID); 859 if (NoteID.getDiagID() != 0) 860 Diag(SuperLoc, NoteID); 861 return true; 862 } 863 } 864 // We've run half the gauntlet. 865 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 866 Subset, SubLoc); 867 } 868 869 static bool 870 CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID, 871 const PartialDiagnostic &NoteID, QualType Target, 872 SourceLocation TargetLoc, QualType Source, 873 SourceLocation SourceLoc) { 874 const FunctionProtoType *TFunc = GetUnderlyingFunction(Target); 875 if (!TFunc) 876 return false; 877 const FunctionProtoType *SFunc = GetUnderlyingFunction(Source); 878 if (!SFunc) 879 return false; 880 881 return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc, 882 SFunc, SourceLoc); 883 } 884 885 /// CheckParamExceptionSpec - Check if the parameter and return types of the 886 /// two functions have equivalent exception specs. This is part of the 887 /// assignment and override compatibility check. We do not check the parameters 888 /// of parameter function pointers recursively, as no sane programmer would 889 /// even be able to write such a function type. 890 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID, 891 const PartialDiagnostic &NoteID, 892 const FunctionProtoType *Target, 893 SourceLocation TargetLoc, 894 const FunctionProtoType *Source, 895 SourceLocation SourceLoc) { 896 auto RetDiag = DiagID; 897 RetDiag << 0; 898 if (CheckSpecForTypesEquivalent( 899 *this, RetDiag, PDiag(), 900 Target->getReturnType(), TargetLoc, Source->getReturnType(), 901 SourceLoc)) 902 return true; 903 904 // We shouldn't even be testing this unless the arguments are otherwise 905 // compatible. 906 assert(Target->getNumParams() == Source->getNumParams() && 907 "Functions have different argument counts."); 908 for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) { 909 auto ParamDiag = DiagID; 910 ParamDiag << 1; 911 if (CheckSpecForTypesEquivalent( 912 *this, ParamDiag, PDiag(), 913 Target->getParamType(i), TargetLoc, Source->getParamType(i), 914 SourceLoc)) 915 return true; 916 } 917 return false; 918 } 919 920 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) { 921 // First we check for applicability. 922 // Target type must be a function, function pointer or function reference. 923 const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType); 924 if (!ToFunc || ToFunc->hasDependentExceptionSpec()) 925 return false; 926 927 // SourceType must be a function or function pointer. 928 const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType()); 929 if (!FromFunc || FromFunc->hasDependentExceptionSpec()) 930 return false; 931 932 unsigned DiagID = diag::err_incompatible_exception_specs; 933 unsigned NestedDiagID = diag::err_deep_exception_specs_differ; 934 // This is not an error in C++17 onwards, unless the noexceptness doesn't 935 // match, but in that case we have a full-on type mismatch, not just a 936 // type sugar mismatch. 937 if (getLangOpts().CPlusPlus17) { 938 DiagID = diag::warn_incompatible_exception_specs; 939 NestedDiagID = diag::warn_deep_exception_specs_differ; 940 } 941 942 // Now we've got the correct types on both sides, check their compatibility. 943 // This means that the source of the conversion can only throw a subset of 944 // the exceptions of the target, and any exception specs on arguments or 945 // return types must be equivalent. 946 // 947 // FIXME: If there is a nested dependent exception specification, we should 948 // not be checking it here. This is fine: 949 // template<typename T> void f() { 950 // void (*p)(void (*) throw(T)); 951 // void (*q)(void (*) throw(int)) = p; 952 // } 953 // ... because it might be instantiated with T=int. 954 return CheckExceptionSpecSubset( 955 PDiag(DiagID), PDiag(NestedDiagID), PDiag(), PDiag(), ToFunc, 956 From->getSourceRange().getBegin(), FromFunc, SourceLocation()) && 957 !getLangOpts().CPlusPlus17; 958 } 959 960 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, 961 const CXXMethodDecl *Old) { 962 // If the new exception specification hasn't been parsed yet, skip the check. 963 // We'll get called again once it's been parsed. 964 if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() == 965 EST_Unparsed) 966 return false; 967 968 // Don't check uninstantiated template destructors at all. We can only 969 // synthesize correct specs after the template is instantiated. 970 if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType()) 971 return false; 972 973 // If the old exception specification hasn't been parsed yet, or the new 974 // exception specification can't be computed yet, remember that we need to 975 // perform this check when we get to the end of the outermost 976 // lexically-surrounding class. 977 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) { 978 DelayedOverridingExceptionSpecChecks.push_back({New, Old}); 979 return false; 980 } 981 982 unsigned DiagID = diag::err_override_exception_spec; 983 if (getLangOpts().MSVCCompat) 984 DiagID = diag::ext_override_exception_spec; 985 return CheckExceptionSpecSubset(PDiag(DiagID), 986 PDiag(diag::err_deep_exception_specs_differ), 987 PDiag(diag::note_overridden_virtual_function), 988 PDiag(diag::ext_override_exception_spec), 989 Old->getType()->castAs<FunctionProtoType>(), 990 Old->getLocation(), 991 New->getType()->castAs<FunctionProtoType>(), 992 New->getLocation()); 993 } 994 995 static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) { 996 CanThrowResult R = CT_Cannot; 997 for (const Stmt *SubStmt : S->children()) { 998 if (!SubStmt) 999 continue; 1000 R = mergeCanThrow(R, Self.canThrow(SubStmt)); 1001 if (R == CT_Can) 1002 break; 1003 } 1004 return R; 1005 } 1006 1007 CanThrowResult Sema::canCalleeThrow(Sema &S, const Expr *E, const Decl *D, 1008 SourceLocation Loc) { 1009 // As an extension, we assume that __attribute__((nothrow)) functions don't 1010 // throw. 1011 if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) 1012 return CT_Cannot; 1013 1014 QualType T; 1015 1016 // In C++1z, just look at the function type of the callee. 1017 if (S.getLangOpts().CPlusPlus17 && E && isa<CallExpr>(E)) { 1018 E = cast<CallExpr>(E)->getCallee(); 1019 T = E->getType(); 1020 if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1021 // Sadly we don't preserve the actual type as part of the "bound member" 1022 // placeholder, so we need to reconstruct it. 1023 E = E->IgnoreParenImpCasts(); 1024 1025 // Could be a call to a pointer-to-member or a plain member access. 1026 if (auto *Op = dyn_cast<BinaryOperator>(E)) { 1027 assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI); 1028 T = Op->getRHS()->getType() 1029 ->castAs<MemberPointerType>()->getPointeeType(); 1030 } else { 1031 T = cast<MemberExpr>(E)->getMemberDecl()->getType(); 1032 } 1033 } 1034 } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D)) 1035 T = VD->getType(); 1036 else 1037 // If we have no clue what we're calling, assume the worst. 1038 return CT_Can; 1039 1040 const FunctionProtoType *FT; 1041 if ((FT = T->getAs<FunctionProtoType>())) { 1042 } else if (const PointerType *PT = T->getAs<PointerType>()) 1043 FT = PT->getPointeeType()->getAs<FunctionProtoType>(); 1044 else if (const ReferenceType *RT = T->getAs<ReferenceType>()) 1045 FT = RT->getPointeeType()->getAs<FunctionProtoType>(); 1046 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) 1047 FT = MT->getPointeeType()->getAs<FunctionProtoType>(); 1048 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) 1049 FT = BT->getPointeeType()->getAs<FunctionProtoType>(); 1050 1051 if (!FT) 1052 return CT_Can; 1053 1054 if (Loc.isValid() || (Loc.isInvalid() && E)) 1055 FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT); 1056 if (!FT) 1057 return CT_Can; 1058 1059 return FT->canThrow(); 1060 } 1061 1062 static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) { 1063 CanThrowResult CT = CT_Cannot; 1064 1065 // Initialization might throw. 1066 if (!VD->isUsableInConstantExpressions(Self.Context)) 1067 if (const Expr *Init = VD->getInit()) 1068 CT = mergeCanThrow(CT, Self.canThrow(Init)); 1069 1070 // Destructor might throw. 1071 if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) { 1072 if (auto *RD = 1073 VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) { 1074 if (auto *Dtor = RD->getDestructor()) { 1075 CT = mergeCanThrow( 1076 CT, Sema::canCalleeThrow(Self, nullptr, Dtor, VD->getLocation())); 1077 } 1078 } 1079 } 1080 1081 // If this is a decomposition declaration, bindings might throw. 1082 if (auto *DD = dyn_cast<DecompositionDecl>(VD)) 1083 for (auto *B : DD->bindings()) 1084 if (auto *HD = B->getHoldingVar()) 1085 CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD)); 1086 1087 return CT; 1088 } 1089 1090 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) { 1091 if (DC->isTypeDependent()) 1092 return CT_Dependent; 1093 1094 if (!DC->getTypeAsWritten()->isReferenceType()) 1095 return CT_Cannot; 1096 1097 if (DC->getSubExpr()->isTypeDependent()) 1098 return CT_Dependent; 1099 1100 return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot; 1101 } 1102 1103 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) { 1104 if (DC->isTypeOperand()) 1105 return CT_Cannot; 1106 1107 Expr *Op = DC->getExprOperand(); 1108 if (Op->isTypeDependent()) 1109 return CT_Dependent; 1110 1111 const RecordType *RT = Op->getType()->getAs<RecordType>(); 1112 if (!RT) 1113 return CT_Cannot; 1114 1115 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic()) 1116 return CT_Cannot; 1117 1118 if (Op->Classify(S.Context).isPRValue()) 1119 return CT_Cannot; 1120 1121 return CT_Can; 1122 } 1123 1124 CanThrowResult Sema::canThrow(const Stmt *S) { 1125 // C++ [expr.unary.noexcept]p3: 1126 // [Can throw] if in a potentially-evaluated context the expression would 1127 // contain: 1128 switch (S->getStmtClass()) { 1129 case Expr::ConstantExprClass: 1130 return canThrow(cast<ConstantExpr>(S)->getSubExpr()); 1131 1132 case Expr::CXXThrowExprClass: 1133 // - a potentially evaluated throw-expression 1134 return CT_Can; 1135 1136 case Expr::CXXDynamicCastExprClass: { 1137 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), 1138 // where T is a reference type, that requires a run-time check 1139 auto *CE = cast<CXXDynamicCastExpr>(S); 1140 // FIXME: Properly determine whether a variably-modified type can throw. 1141 if (CE->getType()->isVariablyModifiedType()) 1142 return CT_Can; 1143 CanThrowResult CT = canDynamicCastThrow(CE); 1144 if (CT == CT_Can) 1145 return CT; 1146 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1147 } 1148 1149 case Expr::CXXTypeidExprClass: 1150 // - a potentially evaluated typeid expression applied to a glvalue 1151 // expression whose type is a polymorphic class type 1152 return canTypeidThrow(*this, cast<CXXTypeidExpr>(S)); 1153 1154 // - a potentially evaluated call to a function, member function, function 1155 // pointer, or member function pointer that does not have a non-throwing 1156 // exception-specification 1157 case Expr::CallExprClass: 1158 case Expr::CXXMemberCallExprClass: 1159 case Expr::CXXOperatorCallExprClass: 1160 case Expr::UserDefinedLiteralClass: { 1161 const CallExpr *CE = cast<CallExpr>(S); 1162 CanThrowResult CT; 1163 if (CE->isTypeDependent()) 1164 CT = CT_Dependent; 1165 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) 1166 CT = CT_Cannot; 1167 else 1168 CT = canCalleeThrow(*this, CE, CE->getCalleeDecl()); 1169 if (CT == CT_Can) 1170 return CT; 1171 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1172 } 1173 1174 case Expr::CXXConstructExprClass: 1175 case Expr::CXXTemporaryObjectExprClass: { 1176 auto *CE = cast<CXXConstructExpr>(S); 1177 // FIXME: Properly determine whether a variably-modified type can throw. 1178 if (CE->getType()->isVariablyModifiedType()) 1179 return CT_Can; 1180 CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor()); 1181 if (CT == CT_Can) 1182 return CT; 1183 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1184 } 1185 1186 case Expr::CXXInheritedCtorInitExprClass: { 1187 auto *ICIE = cast<CXXInheritedCtorInitExpr>(S); 1188 return canCalleeThrow(*this, ICIE, ICIE->getConstructor()); 1189 } 1190 1191 case Expr::LambdaExprClass: { 1192 const LambdaExpr *Lambda = cast<LambdaExpr>(S); 1193 CanThrowResult CT = CT_Cannot; 1194 for (LambdaExpr::const_capture_init_iterator 1195 Cap = Lambda->capture_init_begin(), 1196 CapEnd = Lambda->capture_init_end(); 1197 Cap != CapEnd; ++Cap) 1198 CT = mergeCanThrow(CT, canThrow(*Cap)); 1199 return CT; 1200 } 1201 1202 case Expr::CXXNewExprClass: { 1203 auto *NE = cast<CXXNewExpr>(S); 1204 CanThrowResult CT; 1205 if (NE->isTypeDependent()) 1206 CT = CT_Dependent; 1207 else 1208 CT = canCalleeThrow(*this, NE, NE->getOperatorNew()); 1209 if (CT == CT_Can) 1210 return CT; 1211 return mergeCanThrow(CT, canSubStmtsThrow(*this, NE)); 1212 } 1213 1214 case Expr::CXXDeleteExprClass: { 1215 auto *DE = cast<CXXDeleteExpr>(S); 1216 CanThrowResult CT; 1217 QualType DTy = DE->getDestroyedType(); 1218 if (DTy.isNull() || DTy->isDependentType()) { 1219 CT = CT_Dependent; 1220 } else { 1221 CT = canCalleeThrow(*this, DE, DE->getOperatorDelete()); 1222 if (const RecordType *RT = DTy->getAs<RecordType>()) { 1223 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1224 const CXXDestructorDecl *DD = RD->getDestructor(); 1225 if (DD) 1226 CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD)); 1227 } 1228 if (CT == CT_Can) 1229 return CT; 1230 } 1231 return mergeCanThrow(CT, canSubStmtsThrow(*this, DE)); 1232 } 1233 1234 case Expr::CXXBindTemporaryExprClass: { 1235 auto *BTE = cast<CXXBindTemporaryExpr>(S); 1236 // The bound temporary has to be destroyed again, which might throw. 1237 CanThrowResult CT = 1238 canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor()); 1239 if (CT == CT_Can) 1240 return CT; 1241 return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE)); 1242 } 1243 1244 case Expr::PseudoObjectExprClass: { 1245 auto *POE = cast<PseudoObjectExpr>(S); 1246 CanThrowResult CT = CT_Cannot; 1247 for (const Expr *E : POE->semantics()) { 1248 CT = mergeCanThrow(CT, canThrow(E)); 1249 if (CT == CT_Can) 1250 break; 1251 } 1252 return CT; 1253 } 1254 1255 // ObjC message sends are like function calls, but never have exception 1256 // specs. 1257 case Expr::ObjCMessageExprClass: 1258 case Expr::ObjCPropertyRefExprClass: 1259 case Expr::ObjCSubscriptRefExprClass: 1260 return CT_Can; 1261 1262 // All the ObjC literals that are implemented as calls are 1263 // potentially throwing unless we decide to close off that 1264 // possibility. 1265 case Expr::ObjCArrayLiteralClass: 1266 case Expr::ObjCDictionaryLiteralClass: 1267 case Expr::ObjCBoxedExprClass: 1268 return CT_Can; 1269 1270 // Many other things have subexpressions, so we have to test those. 1271 // Some are simple: 1272 case Expr::CoawaitExprClass: 1273 case Expr::ConditionalOperatorClass: 1274 case Expr::CoyieldExprClass: 1275 case Expr::CXXRewrittenBinaryOperatorClass: 1276 case Expr::CXXStdInitializerListExprClass: 1277 case Expr::DesignatedInitExprClass: 1278 case Expr::DesignatedInitUpdateExprClass: 1279 case Expr::ExprWithCleanupsClass: 1280 case Expr::ExtVectorElementExprClass: 1281 case Expr::InitListExprClass: 1282 case Expr::ArrayInitLoopExprClass: 1283 case Expr::MemberExprClass: 1284 case Expr::ObjCIsaExprClass: 1285 case Expr::ObjCIvarRefExprClass: 1286 case Expr::ParenExprClass: 1287 case Expr::ParenListExprClass: 1288 case Expr::ShuffleVectorExprClass: 1289 case Expr::StmtExprClass: 1290 case Expr::ConvertVectorExprClass: 1291 case Expr::VAArgExprClass: 1292 return canSubStmtsThrow(*this, S); 1293 1294 case Expr::CompoundLiteralExprClass: 1295 case Expr::CXXConstCastExprClass: 1296 case Expr::CXXAddrspaceCastExprClass: 1297 case Expr::CXXReinterpretCastExprClass: 1298 case Expr::BuiltinBitCastExprClass: 1299 // FIXME: Properly determine whether a variably-modified type can throw. 1300 if (cast<Expr>(S)->getType()->isVariablyModifiedType()) 1301 return CT_Can; 1302 return canSubStmtsThrow(*this, S); 1303 1304 // Some might be dependent for other reasons. 1305 case Expr::ArraySubscriptExprClass: 1306 case Expr::MatrixSubscriptExprClass: 1307 case Expr::OMPArraySectionExprClass: 1308 case Expr::OMPArrayShapingExprClass: 1309 case Expr::OMPIteratorExprClass: 1310 case Expr::BinaryOperatorClass: 1311 case Expr::DependentCoawaitExprClass: 1312 case Expr::CompoundAssignOperatorClass: 1313 case Expr::CStyleCastExprClass: 1314 case Expr::CXXStaticCastExprClass: 1315 case Expr::CXXFunctionalCastExprClass: 1316 case Expr::ImplicitCastExprClass: 1317 case Expr::MaterializeTemporaryExprClass: 1318 case Expr::UnaryOperatorClass: { 1319 // FIXME: Properly determine whether a variably-modified type can throw. 1320 if (auto *CE = dyn_cast<CastExpr>(S)) 1321 if (CE->getType()->isVariablyModifiedType()) 1322 return CT_Can; 1323 CanThrowResult CT = 1324 cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot; 1325 return mergeCanThrow(CT, canSubStmtsThrow(*this, S)); 1326 } 1327 1328 case Expr::CXXDefaultArgExprClass: 1329 return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr()); 1330 1331 case Expr::CXXDefaultInitExprClass: 1332 return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr()); 1333 1334 case Expr::ChooseExprClass: { 1335 auto *CE = cast<ChooseExpr>(S); 1336 if (CE->isTypeDependent() || CE->isValueDependent()) 1337 return CT_Dependent; 1338 return canThrow(CE->getChosenSubExpr()); 1339 } 1340 1341 case Expr::GenericSelectionExprClass: 1342 if (cast<GenericSelectionExpr>(S)->isResultDependent()) 1343 return CT_Dependent; 1344 return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr()); 1345 1346 // Some expressions are always dependent. 1347 case Expr::CXXDependentScopeMemberExprClass: 1348 case Expr::CXXUnresolvedConstructExprClass: 1349 case Expr::DependentScopeDeclRefExprClass: 1350 case Expr::CXXFoldExprClass: 1351 case Expr::RecoveryExprClass: 1352 return CT_Dependent; 1353 1354 case Expr::AsTypeExprClass: 1355 case Expr::BinaryConditionalOperatorClass: 1356 case Expr::BlockExprClass: 1357 case Expr::CUDAKernelCallExprClass: 1358 case Expr::DeclRefExprClass: 1359 case Expr::ObjCBridgedCastExprClass: 1360 case Expr::ObjCIndirectCopyRestoreExprClass: 1361 case Expr::ObjCProtocolExprClass: 1362 case Expr::ObjCSelectorExprClass: 1363 case Expr::ObjCAvailabilityCheckExprClass: 1364 case Expr::OffsetOfExprClass: 1365 case Expr::PackExpansionExprClass: 1366 case Expr::SubstNonTypeTemplateParmExprClass: 1367 case Expr::SubstNonTypeTemplateParmPackExprClass: 1368 case Expr::FunctionParmPackExprClass: 1369 case Expr::UnaryExprOrTypeTraitExprClass: 1370 case Expr::UnresolvedLookupExprClass: 1371 case Expr::UnresolvedMemberExprClass: 1372 case Expr::TypoExprClass: 1373 // FIXME: Many of the above can throw. 1374 return CT_Cannot; 1375 1376 case Expr::AddrLabelExprClass: 1377 case Expr::ArrayTypeTraitExprClass: 1378 case Expr::AtomicExprClass: 1379 case Expr::TypeTraitExprClass: 1380 case Expr::CXXBoolLiteralExprClass: 1381 case Expr::CXXNoexceptExprClass: 1382 case Expr::CXXNullPtrLiteralExprClass: 1383 case Expr::CXXPseudoDestructorExprClass: 1384 case Expr::CXXScalarValueInitExprClass: 1385 case Expr::CXXThisExprClass: 1386 case Expr::CXXUuidofExprClass: 1387 case Expr::CharacterLiteralClass: 1388 case Expr::ExpressionTraitExprClass: 1389 case Expr::FloatingLiteralClass: 1390 case Expr::GNUNullExprClass: 1391 case Expr::ImaginaryLiteralClass: 1392 case Expr::ImplicitValueInitExprClass: 1393 case Expr::IntegerLiteralClass: 1394 case Expr::FixedPointLiteralClass: 1395 case Expr::ArrayInitIndexExprClass: 1396 case Expr::NoInitExprClass: 1397 case Expr::ObjCEncodeExprClass: 1398 case Expr::ObjCStringLiteralClass: 1399 case Expr::ObjCBoolLiteralExprClass: 1400 case Expr::OpaqueValueExprClass: 1401 case Expr::PredefinedExprClass: 1402 case Expr::SizeOfPackExprClass: 1403 case Expr::StringLiteralClass: 1404 case Expr::SourceLocExprClass: 1405 case Expr::ConceptSpecializationExprClass: 1406 case Expr::RequiresExprClass: 1407 // These expressions can never throw. 1408 return CT_Cannot; 1409 1410 case Expr::MSPropertyRefExprClass: 1411 case Expr::MSPropertySubscriptExprClass: 1412 llvm_unreachable("Invalid class for expression"); 1413 1414 // Most statements can throw if any substatement can throw. 1415 case Stmt::AttributedStmtClass: 1416 case Stmt::BreakStmtClass: 1417 case Stmt::CapturedStmtClass: 1418 case Stmt::CaseStmtClass: 1419 case Stmt::CompoundStmtClass: 1420 case Stmt::ContinueStmtClass: 1421 case Stmt::CoreturnStmtClass: 1422 case Stmt::CoroutineBodyStmtClass: 1423 case Stmt::CXXCatchStmtClass: 1424 case Stmt::CXXForRangeStmtClass: 1425 case Stmt::DefaultStmtClass: 1426 case Stmt::DoStmtClass: 1427 case Stmt::ForStmtClass: 1428 case Stmt::GCCAsmStmtClass: 1429 case Stmt::GotoStmtClass: 1430 case Stmt::IndirectGotoStmtClass: 1431 case Stmt::LabelStmtClass: 1432 case Stmt::MSAsmStmtClass: 1433 case Stmt::MSDependentExistsStmtClass: 1434 case Stmt::NullStmtClass: 1435 case Stmt::ObjCAtCatchStmtClass: 1436 case Stmt::ObjCAtFinallyStmtClass: 1437 case Stmt::ObjCAtSynchronizedStmtClass: 1438 case Stmt::ObjCAutoreleasePoolStmtClass: 1439 case Stmt::ObjCForCollectionStmtClass: 1440 case Stmt::OMPAtomicDirectiveClass: 1441 case Stmt::OMPBarrierDirectiveClass: 1442 case Stmt::OMPCancelDirectiveClass: 1443 case Stmt::OMPCancellationPointDirectiveClass: 1444 case Stmt::OMPCriticalDirectiveClass: 1445 case Stmt::OMPDistributeDirectiveClass: 1446 case Stmt::OMPDistributeParallelForDirectiveClass: 1447 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 1448 case Stmt::OMPDistributeSimdDirectiveClass: 1449 case Stmt::OMPFlushDirectiveClass: 1450 case Stmt::OMPDepobjDirectiveClass: 1451 case Stmt::OMPScanDirectiveClass: 1452 case Stmt::OMPForDirectiveClass: 1453 case Stmt::OMPForSimdDirectiveClass: 1454 case Stmt::OMPMasterDirectiveClass: 1455 case Stmt::OMPMasterTaskLoopDirectiveClass: 1456 case Stmt::OMPMaskedTaskLoopDirectiveClass: 1457 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 1458 case Stmt::OMPMaskedTaskLoopSimdDirectiveClass: 1459 case Stmt::OMPOrderedDirectiveClass: 1460 case Stmt::OMPCanonicalLoopClass: 1461 case Stmt::OMPParallelDirectiveClass: 1462 case Stmt::OMPParallelForDirectiveClass: 1463 case Stmt::OMPParallelForSimdDirectiveClass: 1464 case Stmt::OMPParallelMasterDirectiveClass: 1465 case Stmt::OMPParallelMaskedDirectiveClass: 1466 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 1467 case Stmt::OMPParallelMaskedTaskLoopDirectiveClass: 1468 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 1469 case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass: 1470 case Stmt::OMPParallelSectionsDirectiveClass: 1471 case Stmt::OMPSectionDirectiveClass: 1472 case Stmt::OMPSectionsDirectiveClass: 1473 case Stmt::OMPSimdDirectiveClass: 1474 case Stmt::OMPTileDirectiveClass: 1475 case Stmt::OMPUnrollDirectiveClass: 1476 case Stmt::OMPSingleDirectiveClass: 1477 case Stmt::OMPTargetDataDirectiveClass: 1478 case Stmt::OMPTargetDirectiveClass: 1479 case Stmt::OMPTargetEnterDataDirectiveClass: 1480 case Stmt::OMPTargetExitDataDirectiveClass: 1481 case Stmt::OMPTargetParallelDirectiveClass: 1482 case Stmt::OMPTargetParallelForDirectiveClass: 1483 case Stmt::OMPTargetParallelForSimdDirectiveClass: 1484 case Stmt::OMPTargetSimdDirectiveClass: 1485 case Stmt::OMPTargetTeamsDirectiveClass: 1486 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 1487 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 1488 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 1489 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 1490 case Stmt::OMPTargetUpdateDirectiveClass: 1491 case Stmt::OMPTaskDirectiveClass: 1492 case Stmt::OMPTaskgroupDirectiveClass: 1493 case Stmt::OMPTaskLoopDirectiveClass: 1494 case Stmt::OMPTaskLoopSimdDirectiveClass: 1495 case Stmt::OMPTaskwaitDirectiveClass: 1496 case Stmt::OMPTaskyieldDirectiveClass: 1497 case Stmt::OMPTeamsDirectiveClass: 1498 case Stmt::OMPTeamsDistributeDirectiveClass: 1499 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 1500 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 1501 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 1502 case Stmt::OMPInteropDirectiveClass: 1503 case Stmt::OMPDispatchDirectiveClass: 1504 case Stmt::OMPMaskedDirectiveClass: 1505 case Stmt::OMPMetaDirectiveClass: 1506 case Stmt::OMPGenericLoopDirectiveClass: 1507 case Stmt::OMPTeamsGenericLoopDirectiveClass: 1508 case Stmt::OMPTargetTeamsGenericLoopDirectiveClass: 1509 case Stmt::OMPParallelGenericLoopDirectiveClass: 1510 case Stmt::OMPTargetParallelGenericLoopDirectiveClass: 1511 case Stmt::ReturnStmtClass: 1512 case Stmt::SEHExceptStmtClass: 1513 case Stmt::SEHFinallyStmtClass: 1514 case Stmt::SEHLeaveStmtClass: 1515 case Stmt::SEHTryStmtClass: 1516 case Stmt::SwitchStmtClass: 1517 case Stmt::WhileStmtClass: 1518 return canSubStmtsThrow(*this, S); 1519 1520 case Stmt::DeclStmtClass: { 1521 CanThrowResult CT = CT_Cannot; 1522 for (const Decl *D : cast<DeclStmt>(S)->decls()) { 1523 if (auto *VD = dyn_cast<VarDecl>(D)) 1524 CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD)); 1525 1526 // FIXME: Properly determine whether a variably-modified type can throw. 1527 if (auto *TND = dyn_cast<TypedefNameDecl>(D)) 1528 if (TND->getUnderlyingType()->isVariablyModifiedType()) 1529 return CT_Can; 1530 if (auto *VD = dyn_cast<ValueDecl>(D)) 1531 if (VD->getType()->isVariablyModifiedType()) 1532 return CT_Can; 1533 } 1534 return CT; 1535 } 1536 1537 case Stmt::IfStmtClass: { 1538 auto *IS = cast<IfStmt>(S); 1539 CanThrowResult CT = CT_Cannot; 1540 if (const Stmt *Init = IS->getInit()) 1541 CT = mergeCanThrow(CT, canThrow(Init)); 1542 if (const Stmt *CondDS = IS->getConditionVariableDeclStmt()) 1543 CT = mergeCanThrow(CT, canThrow(CondDS)); 1544 CT = mergeCanThrow(CT, canThrow(IS->getCond())); 1545 1546 // For 'if constexpr', consider only the non-discarded case. 1547 // FIXME: We should add a DiscardedStmt marker to the AST. 1548 if (Optional<const Stmt *> Case = IS->getNondiscardedCase(Context)) 1549 return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT; 1550 1551 CanThrowResult Then = canThrow(IS->getThen()); 1552 CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot; 1553 if (Then == Else) 1554 return mergeCanThrow(CT, Then); 1555 1556 // For a dependent 'if constexpr', the result is dependent if it depends on 1557 // the value of the condition. 1558 return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent 1559 : mergeCanThrow(Then, Else)); 1560 } 1561 1562 case Stmt::CXXTryStmtClass: { 1563 auto *TS = cast<CXXTryStmt>(S); 1564 // try /*...*/ catch (...) { H } can throw only if H can throw. 1565 // Any other try-catch can throw if any substatement can throw. 1566 const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1); 1567 if (!FinalHandler->getExceptionDecl()) 1568 return canThrow(FinalHandler->getHandlerBlock()); 1569 return canSubStmtsThrow(*this, S); 1570 } 1571 1572 case Stmt::ObjCAtThrowStmtClass: 1573 return CT_Can; 1574 1575 case Stmt::ObjCAtTryStmtClass: { 1576 auto *TS = cast<ObjCAtTryStmt>(S); 1577 1578 // @catch(...) need not be last in Objective-C. Walk backwards until we 1579 // see one or hit the @try. 1580 CanThrowResult CT = CT_Cannot; 1581 if (const Stmt *Finally = TS->getFinallyStmt()) 1582 CT = mergeCanThrow(CT, canThrow(Finally)); 1583 for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) { 1584 const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1); 1585 CT = mergeCanThrow(CT, canThrow(Catch)); 1586 // If we reach a @catch(...), no earlier exceptions can escape. 1587 if (Catch->hasEllipsis()) 1588 return CT; 1589 } 1590 1591 // Didn't find an @catch(...). Exceptions from the @try body can escape. 1592 return mergeCanThrow(CT, canThrow(TS->getTryBody())); 1593 } 1594 1595 case Stmt::SYCLUniqueStableNameExprClass: 1596 return CT_Cannot; 1597 case Stmt::NoStmtClass: 1598 llvm_unreachable("Invalid class for statement"); 1599 } 1600 llvm_unreachable("Bogus StmtClass"); 1601 } 1602 1603 } // end namespace clang 1604