xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaExceptionSpec.cpp (revision a2464ee12761660f50d0b6f59f233949ebcacc87)
1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ exception specification testing.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/SemaInternal.h"
14 #include "clang/AST/ASTMutationListener.h"
15 #include "clang/AST/CXXInheritance.h"
16 #include "clang/AST/Expr.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/StmtObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/Diagnostic.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 
25 namespace clang {
26 
27 static const FunctionProtoType *GetUnderlyingFunction(QualType T)
28 {
29   if (const PointerType *PtrTy = T->getAs<PointerType>())
30     T = PtrTy->getPointeeType();
31   else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
32     T = RefTy->getPointeeType();
33   else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
34     T = MPTy->getPointeeType();
35   return T->getAs<FunctionProtoType>();
36 }
37 
38 /// HACK: 2014-11-14 libstdc++ had a bug where it shadows std::swap with a
39 /// member swap function then tries to call std::swap unqualified from the
40 /// exception specification of that function. This function detects whether
41 /// we're in such a case and turns off delay-parsing of exception
42 /// specifications. Libstdc++ 6.1 (released 2016-04-27) appears to have
43 /// resolved it as side-effect of commit ddb63209a8d (2015-06-05).
44 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
45   auto *RD = dyn_cast<CXXRecordDecl>(CurContext);
46 
47   // All the problem cases are member functions named "swap" within class
48   // templates declared directly within namespace std or std::__debug or
49   // std::__profile.
50   if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
51       !D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
52     return false;
53 
54   auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext());
55   if (!ND)
56     return false;
57 
58   bool IsInStd = ND->isStdNamespace();
59   if (!IsInStd) {
60     // This isn't a direct member of namespace std, but it might still be
61     // libstdc++'s std::__debug::array or std::__profile::array.
62     IdentifierInfo *II = ND->getIdentifier();
63     if (!II || !(II->isStr("__debug") || II->isStr("__profile")) ||
64         !ND->isInStdNamespace())
65       return false;
66   }
67 
68   // Only apply this hack within a system header.
69   if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc()))
70     return false;
71 
72   return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
73       .Case("array", true)
74       .Case("pair", IsInStd)
75       .Case("priority_queue", IsInStd)
76       .Case("stack", IsInStd)
77       .Case("queue", IsInStd)
78       .Default(false);
79 }
80 
81 ExprResult Sema::ActOnNoexceptSpec(Expr *NoexceptExpr,
82                                    ExceptionSpecificationType &EST) {
83 
84   if (NoexceptExpr->isTypeDependent() ||
85       NoexceptExpr->containsUnexpandedParameterPack()) {
86     EST = EST_DependentNoexcept;
87     return NoexceptExpr;
88   }
89 
90   llvm::APSInt Result;
91   ExprResult Converted = CheckConvertedConstantExpression(
92       NoexceptExpr, Context.BoolTy, Result, CCEK_Noexcept);
93 
94   if (Converted.isInvalid()) {
95     EST = EST_NoexceptFalse;
96     // Fill in an expression of 'false' as a fixup.
97     auto *BoolExpr = new (Context)
98         CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc());
99     llvm::APSInt Value{1};
100     Value = 0;
101     return ConstantExpr::Create(Context, BoolExpr, APValue{Value});
102   }
103 
104   if (Converted.get()->isValueDependent()) {
105     EST = EST_DependentNoexcept;
106     return Converted;
107   }
108 
109   if (!Converted.isInvalid())
110     EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue;
111   return Converted;
112 }
113 
114 /// CheckSpecifiedExceptionType - Check if the given type is valid in an
115 /// exception specification. Incomplete types, or pointers to incomplete types
116 /// other than void are not allowed.
117 ///
118 /// \param[in,out] T  The exception type. This will be decayed to a pointer type
119 ///                   when the input is an array or a function type.
120 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) {
121   // C++11 [except.spec]p2:
122   //   A type cv T, "array of T", or "function returning T" denoted
123   //   in an exception-specification is adjusted to type T, "pointer to T", or
124   //   "pointer to function returning T", respectively.
125   //
126   // We also apply this rule in C++98.
127   if (T->isArrayType())
128     T = Context.getArrayDecayedType(T);
129   else if (T->isFunctionType())
130     T = Context.getPointerType(T);
131 
132   int Kind = 0;
133   QualType PointeeT = T;
134   if (const PointerType *PT = T->getAs<PointerType>()) {
135     PointeeT = PT->getPointeeType();
136     Kind = 1;
137 
138     // cv void* is explicitly permitted, despite being a pointer to an
139     // incomplete type.
140     if (PointeeT->isVoidType())
141       return false;
142   } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
143     PointeeT = RT->getPointeeType();
144     Kind = 2;
145 
146     if (RT->isRValueReferenceType()) {
147       // C++11 [except.spec]p2:
148       //   A type denoted in an exception-specification shall not denote [...]
149       //   an rvalue reference type.
150       Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
151         << T << Range;
152       return true;
153     }
154   }
155 
156   // C++11 [except.spec]p2:
157   //   A type denoted in an exception-specification shall not denote an
158   //   incomplete type other than a class currently being defined [...].
159   //   A type denoted in an exception-specification shall not denote a
160   //   pointer or reference to an incomplete type, other than (cv) void* or a
161   //   pointer or reference to a class currently being defined.
162   // In Microsoft mode, downgrade this to a warning.
163   unsigned DiagID = diag::err_incomplete_in_exception_spec;
164   bool ReturnValueOnError = true;
165   if (getLangOpts().MSVCCompat) {
166     DiagID = diag::ext_incomplete_in_exception_spec;
167     ReturnValueOnError = false;
168   }
169   if (!(PointeeT->isRecordType() &&
170         PointeeT->castAs<RecordType>()->isBeingDefined()) &&
171       RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range))
172     return ReturnValueOnError;
173 
174   // The MSVC compatibility mode doesn't extend to sizeless types,
175   // so diagnose them separately.
176   if (PointeeT->isSizelessType() && Kind != 1) {
177     Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec)
178         << (Kind == 2 ? 1 : 0) << PointeeT << Range;
179     return true;
180   }
181 
182   return false;
183 }
184 
185 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
186 /// to member to a function with an exception specification. This means that
187 /// it is invalid to add another level of indirection.
188 bool Sema::CheckDistantExceptionSpec(QualType T) {
189   // C++17 removes this rule in favor of putting exception specifications into
190   // the type system.
191   if (getLangOpts().CPlusPlus17)
192     return false;
193 
194   if (const PointerType *PT = T->getAs<PointerType>())
195     T = PT->getPointeeType();
196   else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
197     T = PT->getPointeeType();
198   else
199     return false;
200 
201   const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
202   if (!FnT)
203     return false;
204 
205   return FnT->hasExceptionSpec();
206 }
207 
208 const FunctionProtoType *
209 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
210   if (FPT->getExceptionSpecType() == EST_Unparsed) {
211     Diag(Loc, diag::err_exception_spec_not_parsed);
212     return nullptr;
213   }
214 
215   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
216     return FPT;
217 
218   FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
219   const FunctionProtoType *SourceFPT =
220       SourceDecl->getType()->castAs<FunctionProtoType>();
221 
222   // If the exception specification has already been resolved, just return it.
223   if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
224     return SourceFPT;
225 
226   // Compute or instantiate the exception specification now.
227   if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
228     EvaluateImplicitExceptionSpec(Loc, SourceDecl);
229   else
230     InstantiateExceptionSpec(Loc, SourceDecl);
231 
232   const FunctionProtoType *Proto =
233     SourceDecl->getType()->castAs<FunctionProtoType>();
234   if (Proto->getExceptionSpecType() == clang::EST_Unparsed) {
235     Diag(Loc, diag::err_exception_spec_not_parsed);
236     Proto = nullptr;
237   }
238   return Proto;
239 }
240 
241 void
242 Sema::UpdateExceptionSpec(FunctionDecl *FD,
243                           const FunctionProtoType::ExceptionSpecInfo &ESI) {
244   // If we've fully resolved the exception specification, notify listeners.
245   if (!isUnresolvedExceptionSpec(ESI.Type))
246     if (auto *Listener = getASTMutationListener())
247       Listener->ResolvedExceptionSpec(FD);
248 
249   for (FunctionDecl *Redecl : FD->redecls())
250     Context.adjustExceptionSpec(Redecl, ESI);
251 }
252 
253 static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) {
254   auto *MD = dyn_cast<CXXMethodDecl>(FD);
255   if (!MD)
256     return false;
257 
258   auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType();
259   return EST == EST_Unparsed ||
260          (EST == EST_Unevaluated && MD->getParent()->isBeingDefined());
261 }
262 
263 static bool CheckEquivalentExceptionSpecImpl(
264     Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
265     const FunctionProtoType *Old, SourceLocation OldLoc,
266     const FunctionProtoType *New, SourceLocation NewLoc,
267     bool *MissingExceptionSpecification = nullptr,
268     bool *MissingEmptyExceptionSpecification = nullptr,
269     bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false);
270 
271 /// Determine whether a function has an implicitly-generated exception
272 /// specification.
273 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
274   if (!isa<CXXDestructorDecl>(Decl) &&
275       Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
276       Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
277     return false;
278 
279   // For a function that the user didn't declare:
280   //  - if this is a destructor, its exception specification is implicit.
281   //  - if this is 'operator delete' or 'operator delete[]', the exception
282   //    specification is as-if an explicit exception specification was given
283   //    (per [basic.stc.dynamic]p2).
284   if (!Decl->getTypeSourceInfo())
285     return isa<CXXDestructorDecl>(Decl);
286 
287   auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
288   return !Ty->hasExceptionSpec();
289 }
290 
291 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
292   // Just completely ignore this under -fno-exceptions prior to C++17.
293   // In C++17 onwards, the exception specification is part of the type and
294   // we will diagnose mismatches anyway, so it's better to check for them here.
295   if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17)
296     return false;
297 
298   OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
299   bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
300   bool MissingExceptionSpecification = false;
301   bool MissingEmptyExceptionSpecification = false;
302 
303   unsigned DiagID = diag::err_mismatched_exception_spec;
304   bool ReturnValueOnError = true;
305   if (getLangOpts().MSVCCompat) {
306     DiagID = diag::ext_mismatched_exception_spec;
307     ReturnValueOnError = false;
308   }
309 
310   // If we're befriending a member function of a class that's currently being
311   // defined, we might not be able to work out its exception specification yet.
312   // If not, defer the check until later.
313   if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
314     DelayedEquivalentExceptionSpecChecks.push_back({New, Old});
315     return false;
316   }
317 
318   // Check the types as written: they must match before any exception
319   // specification adjustment is applied.
320   if (!CheckEquivalentExceptionSpecImpl(
321         *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
322         Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
323         New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
324         &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
325         /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
326     // C++11 [except.spec]p4 [DR1492]:
327     //   If a declaration of a function has an implicit
328     //   exception-specification, other declarations of the function shall
329     //   not specify an exception-specification.
330     if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions &&
331         hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
332       Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
333         << hasImplicitExceptionSpec(Old);
334       if (Old->getLocation().isValid())
335         Diag(Old->getLocation(), diag::note_previous_declaration);
336     }
337     return false;
338   }
339 
340   // The failure was something other than an missing exception
341   // specification; return an error, except in MS mode where this is a warning.
342   if (!MissingExceptionSpecification)
343     return ReturnValueOnError;
344 
345   const FunctionProtoType *NewProto =
346     New->getType()->castAs<FunctionProtoType>();
347 
348   // The new function declaration is only missing an empty exception
349   // specification "throw()". If the throw() specification came from a
350   // function in a system header that has C linkage, just add an empty
351   // exception specification to the "new" declaration. Note that C library
352   // implementations are permitted to add these nothrow exception
353   // specifications.
354   //
355   // Likewise if the old function is a builtin.
356   if (MissingEmptyExceptionSpecification && NewProto &&
357       (Old->getLocation().isInvalid() ||
358        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
359        Old->getBuiltinID()) &&
360       Old->isExternC()) {
361     New->setType(Context.getFunctionType(
362         NewProto->getReturnType(), NewProto->getParamTypes(),
363         NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
364     return false;
365   }
366 
367   const FunctionProtoType *OldProto =
368     Old->getType()->castAs<FunctionProtoType>();
369 
370   FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
371   if (ESI.Type == EST_Dynamic) {
372     // FIXME: What if the exceptions are described in terms of the old
373     // prototype's parameters?
374     ESI.Exceptions = OldProto->exceptions();
375   }
376 
377   if (ESI.Type == EST_NoexceptFalse)
378     ESI.Type = EST_None;
379   if (ESI.Type == EST_NoexceptTrue)
380     ESI.Type = EST_BasicNoexcept;
381 
382   // For dependent noexcept, we can't just take the expression from the old
383   // prototype. It likely contains references to the old prototype's parameters.
384   if (ESI.Type == EST_DependentNoexcept) {
385     New->setInvalidDecl();
386   } else {
387     // Update the type of the function with the appropriate exception
388     // specification.
389     New->setType(Context.getFunctionType(
390         NewProto->getReturnType(), NewProto->getParamTypes(),
391         NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
392   }
393 
394   if (getLangOpts().MSVCCompat && isDynamicExceptionSpec(ESI.Type)) {
395     DiagID = diag::ext_missing_exception_specification;
396     ReturnValueOnError = false;
397   } else if (New->isReplaceableGlobalAllocationFunction() &&
398              ESI.Type != EST_DependentNoexcept) {
399     // Allow missing exception specifications in redeclarations as an extension,
400     // when declaring a replaceable global allocation function.
401     DiagID = diag::ext_missing_exception_specification;
402     ReturnValueOnError = false;
403   } else if (ESI.Type == EST_NoThrow) {
404     // Don't emit any warning for missing 'nothrow' in MSVC.
405     if (getLangOpts().MSVCCompat) {
406       return false;
407     }
408     // Allow missing attribute 'nothrow' in redeclarations, since this is a very
409     // common omission.
410     DiagID = diag::ext_missing_exception_specification;
411     ReturnValueOnError = false;
412   } else {
413     DiagID = diag::err_missing_exception_specification;
414     ReturnValueOnError = true;
415   }
416 
417   // Warn about the lack of exception specification.
418   SmallString<128> ExceptionSpecString;
419   llvm::raw_svector_ostream OS(ExceptionSpecString);
420   switch (OldProto->getExceptionSpecType()) {
421   case EST_DynamicNone:
422     OS << "throw()";
423     break;
424 
425   case EST_Dynamic: {
426     OS << "throw(";
427     bool OnFirstException = true;
428     for (const auto &E : OldProto->exceptions()) {
429       if (OnFirstException)
430         OnFirstException = false;
431       else
432         OS << ", ";
433 
434       OS << E.getAsString(getPrintingPolicy());
435     }
436     OS << ")";
437     break;
438   }
439 
440   case EST_BasicNoexcept:
441     OS << "noexcept";
442     break;
443 
444   case EST_DependentNoexcept:
445   case EST_NoexceptFalse:
446   case EST_NoexceptTrue:
447     OS << "noexcept(";
448     assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr");
449     OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
450     OS << ")";
451     break;
452   case EST_NoThrow:
453     OS <<"__attribute__((nothrow))";
454     break;
455   case EST_None:
456   case EST_MSAny:
457   case EST_Unevaluated:
458   case EST_Uninstantiated:
459   case EST_Unparsed:
460     llvm_unreachable("This spec type is compatible with none.");
461   }
462 
463   SourceLocation FixItLoc;
464   if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
465     TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
466     // FIXME: Preserve enough information so that we can produce a correct fixit
467     // location when there is a trailing return type.
468     if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>())
469       if (!FTLoc.getTypePtr()->hasTrailingReturn())
470         FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
471   }
472 
473   if (FixItLoc.isInvalid())
474     Diag(New->getLocation(), DiagID)
475       << New << OS.str();
476   else {
477     Diag(New->getLocation(), DiagID)
478       << New << OS.str()
479       << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
480   }
481 
482   if (Old->getLocation().isValid())
483     Diag(Old->getLocation(), diag::note_previous_declaration);
484 
485   return ReturnValueOnError;
486 }
487 
488 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent
489 /// exception specifications. Exception specifications are equivalent if
490 /// they allow exactly the same set of exception types. It does not matter how
491 /// that is achieved. See C++ [except.spec]p2.
492 bool Sema::CheckEquivalentExceptionSpec(
493     const FunctionProtoType *Old, SourceLocation OldLoc,
494     const FunctionProtoType *New, SourceLocation NewLoc) {
495   if (!getLangOpts().CXXExceptions)
496     return false;
497 
498   unsigned DiagID = diag::err_mismatched_exception_spec;
499   if (getLangOpts().MSVCCompat)
500     DiagID = diag::ext_mismatched_exception_spec;
501   bool Result = CheckEquivalentExceptionSpecImpl(
502       *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
503       Old, OldLoc, New, NewLoc);
504 
505   // In Microsoft mode, mismatching exception specifications just cause a warning.
506   if (getLangOpts().MSVCCompat)
507     return false;
508   return Result;
509 }
510 
511 /// CheckEquivalentExceptionSpec - Check if the two types have compatible
512 /// exception specifications. See C++ [except.spec]p3.
513 ///
514 /// \return \c false if the exception specifications match, \c true if there is
515 /// a problem. If \c true is returned, either a diagnostic has already been
516 /// produced or \c *MissingExceptionSpecification is set to \c true.
517 static bool CheckEquivalentExceptionSpecImpl(
518     Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
519     const FunctionProtoType *Old, SourceLocation OldLoc,
520     const FunctionProtoType *New, SourceLocation NewLoc,
521     bool *MissingExceptionSpecification,
522     bool *MissingEmptyExceptionSpecification,
523     bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) {
524   if (MissingExceptionSpecification)
525     *MissingExceptionSpecification = false;
526 
527   if (MissingEmptyExceptionSpecification)
528     *MissingEmptyExceptionSpecification = false;
529 
530   Old = S.ResolveExceptionSpec(NewLoc, Old);
531   if (!Old)
532     return false;
533   New = S.ResolveExceptionSpec(NewLoc, New);
534   if (!New)
535     return false;
536 
537   // C++0x [except.spec]p3: Two exception-specifications are compatible if:
538   //   - both are non-throwing, regardless of their form,
539   //   - both have the form noexcept(constant-expression) and the constant-
540   //     expressions are equivalent,
541   //   - both are dynamic-exception-specifications that have the same set of
542   //     adjusted types.
543   //
544   // C++0x [except.spec]p12: An exception-specification is non-throwing if it is
545   //   of the form throw(), noexcept, or noexcept(constant-expression) where the
546   //   constant-expression yields true.
547   //
548   // C++0x [except.spec]p4: If any declaration of a function has an exception-
549   //   specifier that is not a noexcept-specification allowing all exceptions,
550   //   all declarations [...] of that function shall have a compatible
551   //   exception-specification.
552   //
553   // That last point basically means that noexcept(false) matches no spec.
554   // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
555 
556   ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
557   ExceptionSpecificationType NewEST = New->getExceptionSpecType();
558 
559   assert(!isUnresolvedExceptionSpec(OldEST) &&
560          !isUnresolvedExceptionSpec(NewEST) &&
561          "Shouldn't see unknown exception specifications here");
562 
563   CanThrowResult OldCanThrow = Old->canThrow();
564   CanThrowResult NewCanThrow = New->canThrow();
565 
566   // Any non-throwing specifications are compatible.
567   if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot)
568     return false;
569 
570   // Any throws-anything specifications are usually compatible.
571   if (OldCanThrow == CT_Can && OldEST != EST_Dynamic &&
572       NewCanThrow == CT_Can && NewEST != EST_Dynamic) {
573     // The exception is that the absence of an exception specification only
574     // matches noexcept(false) for functions, as described above.
575     if (!AllowNoexceptAllMatchWithNoSpec &&
576         ((OldEST == EST_None && NewEST == EST_NoexceptFalse) ||
577          (OldEST == EST_NoexceptFalse && NewEST == EST_None))) {
578       // This is the disallowed case.
579     } else {
580       return false;
581     }
582   }
583 
584   // C++14 [except.spec]p3:
585   //   Two exception-specifications are compatible if [...] both have the form
586   //   noexcept(constant-expression) and the constant-expressions are equivalent
587   if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) {
588     llvm::FoldingSetNodeID OldFSN, NewFSN;
589     Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true);
590     New->getNoexceptExpr()->Profile(NewFSN, S.Context, true);
591     if (OldFSN == NewFSN)
592       return false;
593   }
594 
595   // Dynamic exception specifications with the same set of adjusted types
596   // are compatible.
597   if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) {
598     bool Success = true;
599     // Both have a dynamic exception spec. Collect the first set, then compare
600     // to the second.
601     llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
602     for (const auto &I : Old->exceptions())
603       OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType());
604 
605     for (const auto &I : New->exceptions()) {
606       CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType();
607       if (OldTypes.count(TypePtr))
608         NewTypes.insert(TypePtr);
609       else {
610         Success = false;
611         break;
612       }
613     }
614 
615     if (Success && OldTypes.size() == NewTypes.size())
616       return false;
617   }
618 
619   // As a special compatibility feature, under C++0x we accept no spec and
620   // throw(std::bad_alloc) as equivalent for operator new and operator new[].
621   // This is because the implicit declaration changed, but old code would break.
622   if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) {
623     const FunctionProtoType *WithExceptions = nullptr;
624     if (OldEST == EST_None && NewEST == EST_Dynamic)
625       WithExceptions = New;
626     else if (OldEST == EST_Dynamic && NewEST == EST_None)
627       WithExceptions = Old;
628     if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
629       // One has no spec, the other throw(something). If that something is
630       // std::bad_alloc, all conditions are met.
631       QualType Exception = *WithExceptions->exception_begin();
632       if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
633         IdentifierInfo* Name = ExRecord->getIdentifier();
634         if (Name && Name->getName() == "bad_alloc") {
635           // It's called bad_alloc, but is it in std?
636           if (ExRecord->isInStdNamespace()) {
637             return false;
638           }
639         }
640       }
641     }
642   }
643 
644   // If the caller wants to handle the case that the new function is
645   // incompatible due to a missing exception specification, let it.
646   if (MissingExceptionSpecification && OldEST != EST_None &&
647       NewEST == EST_None) {
648     // The old type has an exception specification of some sort, but
649     // the new type does not.
650     *MissingExceptionSpecification = true;
651 
652     if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) {
653       // The old type has a throw() or noexcept(true) exception specification
654       // and the new type has no exception specification, and the caller asked
655       // to handle this itself.
656       *MissingEmptyExceptionSpecification = true;
657     }
658 
659     return true;
660   }
661 
662   S.Diag(NewLoc, DiagID);
663   if (NoteID.getDiagID() != 0 && OldLoc.isValid())
664     S.Diag(OldLoc, NoteID);
665   return true;
666 }
667 
668 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
669                                         const PartialDiagnostic &NoteID,
670                                         const FunctionProtoType *Old,
671                                         SourceLocation OldLoc,
672                                         const FunctionProtoType *New,
673                                         SourceLocation NewLoc) {
674   if (!getLangOpts().CXXExceptions)
675     return false;
676   return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc,
677                                           New, NewLoc);
678 }
679 
680 bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) {
681   // [except.handle]p3:
682   //   A handler is a match for an exception object of type E if:
683 
684   // HandlerType must be ExceptionType or derived from it, or pointer or
685   // reference to such types.
686   const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>();
687   if (RefTy)
688     HandlerType = RefTy->getPointeeType();
689 
690   //   -- the handler is of type cv T or cv T& and E and T are the same type
691   if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType))
692     return true;
693 
694   // FIXME: ObjC pointer types?
695   if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) {
696     if (RefTy && (!HandlerType.isConstQualified() ||
697                   HandlerType.isVolatileQualified()))
698       return false;
699 
700     // -- the handler is of type cv T or const T& where T is a pointer or
701     //    pointer to member type and E is std::nullptr_t
702     if (ExceptionType->isNullPtrType())
703       return true;
704 
705     // -- the handler is of type cv T or const T& where T is a pointer or
706     //    pointer to member type and E is a pointer or pointer to member type
707     //    that can be converted to T by one or more of
708     //    -- a qualification conversion
709     //    -- a function pointer conversion
710     bool LifetimeConv;
711     QualType Result;
712     // FIXME: Should we treat the exception as catchable if a lifetime
713     // conversion is required?
714     if (IsQualificationConversion(ExceptionType, HandlerType, false,
715                                   LifetimeConv) ||
716         IsFunctionConversion(ExceptionType, HandlerType, Result))
717       return true;
718 
719     //    -- a standard pointer conversion [...]
720     if (!ExceptionType->isPointerType() || !HandlerType->isPointerType())
721       return false;
722 
723     // Handle the "qualification conversion" portion.
724     Qualifiers EQuals, HQuals;
725     ExceptionType = Context.getUnqualifiedArrayType(
726         ExceptionType->getPointeeType(), EQuals);
727     HandlerType = Context.getUnqualifiedArrayType(
728         HandlerType->getPointeeType(), HQuals);
729     if (!HQuals.compatiblyIncludes(EQuals))
730       return false;
731 
732     if (HandlerType->isVoidType() && ExceptionType->isObjectType())
733       return true;
734 
735     // The only remaining case is a derived-to-base conversion.
736   }
737 
738   //   -- the handler is of type cg T or cv T& and T is an unambiguous public
739   //      base class of E
740   if (!ExceptionType->isRecordType() || !HandlerType->isRecordType())
741     return false;
742   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
743                      /*DetectVirtual=*/false);
744   if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) ||
745       Paths.isAmbiguous(Context.getCanonicalType(HandlerType)))
746     return false;
747 
748   // Do this check from a context without privileges.
749   switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType,
750                                Paths.front(),
751                                /*Diagnostic*/ 0,
752                                /*ForceCheck*/ true,
753                                /*ForceUnprivileged*/ true)) {
754   case AR_accessible: return true;
755   case AR_inaccessible: return false;
756   case AR_dependent:
757     llvm_unreachable("access check dependent for unprivileged context");
758   case AR_delayed:
759     llvm_unreachable("access check delayed in non-declaration");
760   }
761   llvm_unreachable("unexpected access check result");
762 }
763 
764 /// CheckExceptionSpecSubset - Check whether the second function type's
765 /// exception specification is a subset (or equivalent) of the first function
766 /// type. This is used by override and pointer assignment checks.
767 bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
768                                     const PartialDiagnostic &NestedDiagID,
769                                     const PartialDiagnostic &NoteID,
770                                     const PartialDiagnostic &NoThrowDiagID,
771                                     const FunctionProtoType *Superset,
772                                     SourceLocation SuperLoc,
773                                     const FunctionProtoType *Subset,
774                                     SourceLocation SubLoc) {
775 
776   // Just auto-succeed under -fno-exceptions.
777   if (!getLangOpts().CXXExceptions)
778     return false;
779 
780   // FIXME: As usual, we could be more specific in our error messages, but
781   // that better waits until we've got types with source locations.
782 
783   if (!SubLoc.isValid())
784     SubLoc = SuperLoc;
785 
786   // Resolve the exception specifications, if needed.
787   Superset = ResolveExceptionSpec(SuperLoc, Superset);
788   if (!Superset)
789     return false;
790   Subset = ResolveExceptionSpec(SubLoc, Subset);
791   if (!Subset)
792     return false;
793 
794   ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
795   ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
796   assert(!isUnresolvedExceptionSpec(SuperEST) &&
797          !isUnresolvedExceptionSpec(SubEST) &&
798          "Shouldn't see unknown exception specifications here");
799 
800   // If there are dependent noexcept specs, assume everything is fine. Unlike
801   // with the equivalency check, this is safe in this case, because we don't
802   // want to merge declarations. Checks after instantiation will catch any
803   // omissions we make here.
804   if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept)
805     return false;
806 
807   CanThrowResult SuperCanThrow = Superset->canThrow();
808   CanThrowResult SubCanThrow = Subset->canThrow();
809 
810   // If the superset contains everything or the subset contains nothing, we're
811   // done.
812   if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) ||
813       SubCanThrow == CT_Cannot)
814     return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
815                                    Subset, SubLoc);
816 
817   // Allow __declspec(nothrow) to be missing on redeclaration as an extension in
818   // some cases.
819   if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can &&
820       SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) {
821     Diag(SubLoc, NoThrowDiagID);
822     if (NoteID.getDiagID() != 0)
823       Diag(SuperLoc, NoteID);
824     return true;
825   }
826 
827   // If the subset contains everything or the superset contains nothing, we've
828   // failed.
829   if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) ||
830       SuperCanThrow == CT_Cannot) {
831     Diag(SubLoc, DiagID);
832     if (NoteID.getDiagID() != 0)
833       Diag(SuperLoc, NoteID);
834     return true;
835   }
836 
837   assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
838          "Exception spec subset: non-dynamic case slipped through.");
839 
840   // Neither contains everything or nothing. Do a proper comparison.
841   for (QualType SubI : Subset->exceptions()) {
842     if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>())
843       SubI = RefTy->getPointeeType();
844 
845     // Make sure it's in the superset.
846     bool Contained = false;
847     for (QualType SuperI : Superset->exceptions()) {
848       // [except.spec]p5:
849       //   the target entity shall allow at least the exceptions allowed by the
850       //   source
851       //
852       // We interpret this as meaning that a handler for some target type would
853       // catch an exception of each source type.
854       if (handlerCanCatch(SuperI, SubI)) {
855         Contained = true;
856         break;
857       }
858     }
859     if (!Contained) {
860       Diag(SubLoc, DiagID);
861       if (NoteID.getDiagID() != 0)
862         Diag(SuperLoc, NoteID);
863       return true;
864     }
865   }
866   // We've run half the gauntlet.
867   return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
868                                  Subset, SubLoc);
869 }
870 
871 static bool
872 CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID,
873                             const PartialDiagnostic &NoteID, QualType Target,
874                             SourceLocation TargetLoc, QualType Source,
875                             SourceLocation SourceLoc) {
876   const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
877   if (!TFunc)
878     return false;
879   const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
880   if (!SFunc)
881     return false;
882 
883   return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
884                                         SFunc, SourceLoc);
885 }
886 
887 /// CheckParamExceptionSpec - Check if the parameter and return types of the
888 /// two functions have equivalent exception specs. This is part of the
889 /// assignment and override compatibility check. We do not check the parameters
890 /// of parameter function pointers recursively, as no sane programmer would
891 /// even be able to write such a function type.
892 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID,
893                                    const PartialDiagnostic &NoteID,
894                                    const FunctionProtoType *Target,
895                                    SourceLocation TargetLoc,
896                                    const FunctionProtoType *Source,
897                                    SourceLocation SourceLoc) {
898   auto RetDiag = DiagID;
899   RetDiag << 0;
900   if (CheckSpecForTypesEquivalent(
901           *this, RetDiag, PDiag(),
902           Target->getReturnType(), TargetLoc, Source->getReturnType(),
903           SourceLoc))
904     return true;
905 
906   // We shouldn't even be testing this unless the arguments are otherwise
907   // compatible.
908   assert(Target->getNumParams() == Source->getNumParams() &&
909          "Functions have different argument counts.");
910   for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
911     auto ParamDiag = DiagID;
912     ParamDiag << 1;
913     if (CheckSpecForTypesEquivalent(
914             *this, ParamDiag, PDiag(),
915             Target->getParamType(i), TargetLoc, Source->getParamType(i),
916             SourceLoc))
917       return true;
918   }
919   return false;
920 }
921 
922 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
923   // First we check for applicability.
924   // Target type must be a function, function pointer or function reference.
925   const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
926   if (!ToFunc || ToFunc->hasDependentExceptionSpec())
927     return false;
928 
929   // SourceType must be a function or function pointer.
930   const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
931   if (!FromFunc || FromFunc->hasDependentExceptionSpec())
932     return false;
933 
934   unsigned DiagID = diag::err_incompatible_exception_specs;
935   unsigned NestedDiagID = diag::err_deep_exception_specs_differ;
936   // This is not an error in C++17 onwards, unless the noexceptness doesn't
937   // match, but in that case we have a full-on type mismatch, not just a
938   // type sugar mismatch.
939   if (getLangOpts().CPlusPlus17) {
940     DiagID = diag::warn_incompatible_exception_specs;
941     NestedDiagID = diag::warn_deep_exception_specs_differ;
942   }
943 
944   // Now we've got the correct types on both sides, check their compatibility.
945   // This means that the source of the conversion can only throw a subset of
946   // the exceptions of the target, and any exception specs on arguments or
947   // return types must be equivalent.
948   //
949   // FIXME: If there is a nested dependent exception specification, we should
950   // not be checking it here. This is fine:
951   //   template<typename T> void f() {
952   //     void (*p)(void (*) throw(T));
953   //     void (*q)(void (*) throw(int)) = p;
954   //   }
955   // ... because it might be instantiated with T=int.
956   return CheckExceptionSpecSubset(
957              PDiag(DiagID), PDiag(NestedDiagID), PDiag(), PDiag(), ToFunc,
958              From->getSourceRange().getBegin(), FromFunc, SourceLocation()) &&
959          !getLangOpts().CPlusPlus17;
960 }
961 
962 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
963                                                 const CXXMethodDecl *Old) {
964   // If the new exception specification hasn't been parsed yet, skip the check.
965   // We'll get called again once it's been parsed.
966   if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
967       EST_Unparsed)
968     return false;
969 
970   // Don't check uninstantiated template destructors at all. We can only
971   // synthesize correct specs after the template is instantiated.
972   if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType())
973     return false;
974 
975   // If the old exception specification hasn't been parsed yet, or the new
976   // exception specification can't be computed yet, remember that we need to
977   // perform this check when we get to the end of the outermost
978   // lexically-surrounding class.
979   if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
980     DelayedOverridingExceptionSpecChecks.push_back({New, Old});
981     return false;
982   }
983 
984   unsigned DiagID = diag::err_override_exception_spec;
985   if (getLangOpts().MSVCCompat)
986     DiagID = diag::ext_override_exception_spec;
987   return CheckExceptionSpecSubset(PDiag(DiagID),
988                                   PDiag(diag::err_deep_exception_specs_differ),
989                                   PDiag(diag::note_overridden_virtual_function),
990                                   PDiag(diag::ext_override_exception_spec),
991                                   Old->getType()->castAs<FunctionProtoType>(),
992                                   Old->getLocation(),
993                                   New->getType()->castAs<FunctionProtoType>(),
994                                   New->getLocation());
995 }
996 
997 static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) {
998   CanThrowResult R = CT_Cannot;
999   for (const Stmt *SubStmt : S->children()) {
1000     if (!SubStmt)
1001       continue;
1002     R = mergeCanThrow(R, Self.canThrow(SubStmt));
1003     if (R == CT_Can)
1004       break;
1005   }
1006   return R;
1007 }
1008 
1009 CanThrowResult Sema::canCalleeThrow(Sema &S, const Expr *E, const Decl *D,
1010                                     SourceLocation Loc) {
1011   // As an extension, we assume that __attribute__((nothrow)) functions don't
1012   // throw.
1013   if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
1014     return CT_Cannot;
1015 
1016   QualType T;
1017 
1018   // In C++1z, just look at the function type of the callee.
1019   if (S.getLangOpts().CPlusPlus17 && E && isa<CallExpr>(E)) {
1020     E = cast<CallExpr>(E)->getCallee();
1021     T = E->getType();
1022     if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1023       // Sadly we don't preserve the actual type as part of the "bound member"
1024       // placeholder, so we need to reconstruct it.
1025       E = E->IgnoreParenImpCasts();
1026 
1027       // Could be a call to a pointer-to-member or a plain member access.
1028       if (auto *Op = dyn_cast<BinaryOperator>(E)) {
1029         assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI);
1030         T = Op->getRHS()->getType()
1031               ->castAs<MemberPointerType>()->getPointeeType();
1032       } else {
1033         T = cast<MemberExpr>(E)->getMemberDecl()->getType();
1034       }
1035     }
1036   } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D))
1037     T = VD->getType();
1038   else
1039     // If we have no clue what we're calling, assume the worst.
1040     return CT_Can;
1041 
1042   const FunctionProtoType *FT;
1043   if ((FT = T->getAs<FunctionProtoType>())) {
1044   } else if (const PointerType *PT = T->getAs<PointerType>())
1045     FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1046   else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1047     FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1048   else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1049     FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1050   else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1051     FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1052 
1053   if (!FT)
1054     return CT_Can;
1055 
1056   if (Loc.isValid() || (Loc.isInvalid() && E))
1057     FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT);
1058   if (!FT)
1059     return CT_Can;
1060 
1061   return FT->canThrow();
1062 }
1063 
1064 static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) {
1065   CanThrowResult CT = CT_Cannot;
1066 
1067   // Initialization might throw.
1068   if (!VD->isUsableInConstantExpressions(Self.Context))
1069     if (const Expr *Init = VD->getInit())
1070       CT = mergeCanThrow(CT, Self.canThrow(Init));
1071 
1072   // Destructor might throw.
1073   if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) {
1074     if (auto *RD =
1075             VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
1076       if (auto *Dtor = RD->getDestructor()) {
1077         CT = mergeCanThrow(
1078             CT, Sema::canCalleeThrow(Self, nullptr, Dtor, VD->getLocation()));
1079       }
1080     }
1081   }
1082 
1083   // If this is a decomposition declaration, bindings might throw.
1084   if (auto *DD = dyn_cast<DecompositionDecl>(VD))
1085     for (auto *B : DD->bindings())
1086       if (auto *HD = B->getHoldingVar())
1087         CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD));
1088 
1089   return CT;
1090 }
1091 
1092 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1093   if (DC->isTypeDependent())
1094     return CT_Dependent;
1095 
1096   if (!DC->getTypeAsWritten()->isReferenceType())
1097     return CT_Cannot;
1098 
1099   if (DC->getSubExpr()->isTypeDependent())
1100     return CT_Dependent;
1101 
1102   return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
1103 }
1104 
1105 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
1106   if (DC->isTypeOperand())
1107     return CT_Cannot;
1108 
1109   Expr *Op = DC->getExprOperand();
1110   if (Op->isTypeDependent())
1111     return CT_Dependent;
1112 
1113   const RecordType *RT = Op->getType()->getAs<RecordType>();
1114   if (!RT)
1115     return CT_Cannot;
1116 
1117   if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1118     return CT_Cannot;
1119 
1120   if (Op->Classify(S.Context).isPRValue())
1121     return CT_Cannot;
1122 
1123   return CT_Can;
1124 }
1125 
1126 CanThrowResult Sema::canThrow(const Stmt *S) {
1127   // C++ [expr.unary.noexcept]p3:
1128   //   [Can throw] if in a potentially-evaluated context the expression would
1129   //   contain:
1130   switch (S->getStmtClass()) {
1131   case Expr::ConstantExprClass:
1132     return canThrow(cast<ConstantExpr>(S)->getSubExpr());
1133 
1134   case Expr::CXXThrowExprClass:
1135     //   - a potentially evaluated throw-expression
1136     return CT_Can;
1137 
1138   case Expr::CXXDynamicCastExprClass: {
1139     //   - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1140     //     where T is a reference type, that requires a run-time check
1141     auto *CE = cast<CXXDynamicCastExpr>(S);
1142     // FIXME: Properly determine whether a variably-modified type can throw.
1143     if (CE->getType()->isVariablyModifiedType())
1144       return CT_Can;
1145     CanThrowResult CT = canDynamicCastThrow(CE);
1146     if (CT == CT_Can)
1147       return CT;
1148     return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1149   }
1150 
1151   case Expr::CXXTypeidExprClass:
1152     //   - a potentially evaluated typeid expression applied to a glvalue
1153     //     expression whose type is a polymorphic class type
1154     return canTypeidThrow(*this, cast<CXXTypeidExpr>(S));
1155 
1156     //   - a potentially evaluated call to a function, member function, function
1157     //     pointer, or member function pointer that does not have a non-throwing
1158     //     exception-specification
1159   case Expr::CallExprClass:
1160   case Expr::CXXMemberCallExprClass:
1161   case Expr::CXXOperatorCallExprClass:
1162   case Expr::UserDefinedLiteralClass: {
1163     const CallExpr *CE = cast<CallExpr>(S);
1164     CanThrowResult CT;
1165     if (CE->isTypeDependent())
1166       CT = CT_Dependent;
1167     else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
1168       CT = CT_Cannot;
1169     else
1170       CT = canCalleeThrow(*this, CE, CE->getCalleeDecl());
1171     if (CT == CT_Can)
1172       return CT;
1173     return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1174   }
1175 
1176   case Expr::CXXConstructExprClass:
1177   case Expr::CXXTemporaryObjectExprClass: {
1178     auto *CE = cast<CXXConstructExpr>(S);
1179     // FIXME: Properly determine whether a variably-modified type can throw.
1180     if (CE->getType()->isVariablyModifiedType())
1181       return CT_Can;
1182     CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor());
1183     if (CT == CT_Can)
1184       return CT;
1185     return mergeCanThrow(CT, canSubStmtsThrow(*this, CE));
1186   }
1187 
1188   case Expr::CXXInheritedCtorInitExprClass: {
1189     auto *ICIE = cast<CXXInheritedCtorInitExpr>(S);
1190     return canCalleeThrow(*this, ICIE, ICIE->getConstructor());
1191   }
1192 
1193   case Expr::LambdaExprClass: {
1194     const LambdaExpr *Lambda = cast<LambdaExpr>(S);
1195     CanThrowResult CT = CT_Cannot;
1196     for (LambdaExpr::const_capture_init_iterator
1197              Cap = Lambda->capture_init_begin(),
1198              CapEnd = Lambda->capture_init_end();
1199          Cap != CapEnd; ++Cap)
1200       CT = mergeCanThrow(CT, canThrow(*Cap));
1201     return CT;
1202   }
1203 
1204   case Expr::CXXNewExprClass: {
1205     auto *NE = cast<CXXNewExpr>(S);
1206     CanThrowResult CT;
1207     if (NE->isTypeDependent())
1208       CT = CT_Dependent;
1209     else
1210       CT = canCalleeThrow(*this, NE, NE->getOperatorNew());
1211     if (CT == CT_Can)
1212       return CT;
1213     return mergeCanThrow(CT, canSubStmtsThrow(*this, NE));
1214   }
1215 
1216   case Expr::CXXDeleteExprClass: {
1217     auto *DE = cast<CXXDeleteExpr>(S);
1218     CanThrowResult CT;
1219     QualType DTy = DE->getDestroyedType();
1220     if (DTy.isNull() || DTy->isDependentType()) {
1221       CT = CT_Dependent;
1222     } else {
1223       CT = canCalleeThrow(*this, DE, DE->getOperatorDelete());
1224       if (const RecordType *RT = DTy->getAs<RecordType>()) {
1225         const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1226         const CXXDestructorDecl *DD = RD->getDestructor();
1227         if (DD)
1228           CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD));
1229       }
1230       if (CT == CT_Can)
1231         return CT;
1232     }
1233     return mergeCanThrow(CT, canSubStmtsThrow(*this, DE));
1234   }
1235 
1236   case Expr::CXXBindTemporaryExprClass: {
1237     auto *BTE = cast<CXXBindTemporaryExpr>(S);
1238     // The bound temporary has to be destroyed again, which might throw.
1239     CanThrowResult CT =
1240         canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor());
1241     if (CT == CT_Can)
1242       return CT;
1243     return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE));
1244   }
1245 
1246   case Expr::PseudoObjectExprClass: {
1247     auto *POE = cast<PseudoObjectExpr>(S);
1248     CanThrowResult CT = CT_Cannot;
1249     for (const Expr *E : POE->semantics()) {
1250       CT = mergeCanThrow(CT, canThrow(E));
1251       if (CT == CT_Can)
1252         break;
1253     }
1254     return CT;
1255   }
1256 
1257     // ObjC message sends are like function calls, but never have exception
1258     // specs.
1259   case Expr::ObjCMessageExprClass:
1260   case Expr::ObjCPropertyRefExprClass:
1261   case Expr::ObjCSubscriptRefExprClass:
1262     return CT_Can;
1263 
1264     // All the ObjC literals that are implemented as calls are
1265     // potentially throwing unless we decide to close off that
1266     // possibility.
1267   case Expr::ObjCArrayLiteralClass:
1268   case Expr::ObjCDictionaryLiteralClass:
1269   case Expr::ObjCBoxedExprClass:
1270     return CT_Can;
1271 
1272     // Many other things have subexpressions, so we have to test those.
1273     // Some are simple:
1274   case Expr::CoawaitExprClass:
1275   case Expr::ConditionalOperatorClass:
1276   case Expr::CoyieldExprClass:
1277   case Expr::CXXRewrittenBinaryOperatorClass:
1278   case Expr::CXXStdInitializerListExprClass:
1279   case Expr::DesignatedInitExprClass:
1280   case Expr::DesignatedInitUpdateExprClass:
1281   case Expr::ExprWithCleanupsClass:
1282   case Expr::ExtVectorElementExprClass:
1283   case Expr::InitListExprClass:
1284   case Expr::ArrayInitLoopExprClass:
1285   case Expr::MemberExprClass:
1286   case Expr::ObjCIsaExprClass:
1287   case Expr::ObjCIvarRefExprClass:
1288   case Expr::ParenExprClass:
1289   case Expr::ParenListExprClass:
1290   case Expr::ShuffleVectorExprClass:
1291   case Expr::StmtExprClass:
1292   case Expr::ConvertVectorExprClass:
1293   case Expr::VAArgExprClass:
1294     return canSubStmtsThrow(*this, S);
1295 
1296   case Expr::CompoundLiteralExprClass:
1297   case Expr::CXXConstCastExprClass:
1298   case Expr::CXXAddrspaceCastExprClass:
1299   case Expr::CXXReinterpretCastExprClass:
1300   case Expr::BuiltinBitCastExprClass:
1301       // FIXME: Properly determine whether a variably-modified type can throw.
1302     if (cast<Expr>(S)->getType()->isVariablyModifiedType())
1303       return CT_Can;
1304     return canSubStmtsThrow(*this, S);
1305 
1306     // Some might be dependent for other reasons.
1307   case Expr::ArraySubscriptExprClass:
1308   case Expr::MatrixSubscriptExprClass:
1309   case Expr::OMPArraySectionExprClass:
1310   case Expr::OMPArrayShapingExprClass:
1311   case Expr::OMPIteratorExprClass:
1312   case Expr::BinaryOperatorClass:
1313   case Expr::DependentCoawaitExprClass:
1314   case Expr::CompoundAssignOperatorClass:
1315   case Expr::CStyleCastExprClass:
1316   case Expr::CXXStaticCastExprClass:
1317   case Expr::CXXFunctionalCastExprClass:
1318   case Expr::ImplicitCastExprClass:
1319   case Expr::MaterializeTemporaryExprClass:
1320   case Expr::UnaryOperatorClass: {
1321     // FIXME: Properly determine whether a variably-modified type can throw.
1322     if (auto *CE = dyn_cast<CastExpr>(S))
1323       if (CE->getType()->isVariablyModifiedType())
1324         return CT_Can;
1325     CanThrowResult CT =
1326         cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot;
1327     return mergeCanThrow(CT, canSubStmtsThrow(*this, S));
1328   }
1329 
1330   case Expr::CXXDefaultArgExprClass:
1331     return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr());
1332 
1333   case Expr::CXXDefaultInitExprClass:
1334     return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr());
1335 
1336   case Expr::ChooseExprClass: {
1337     auto *CE = cast<ChooseExpr>(S);
1338     if (CE->isTypeDependent() || CE->isValueDependent())
1339       return CT_Dependent;
1340     return canThrow(CE->getChosenSubExpr());
1341   }
1342 
1343   case Expr::GenericSelectionExprClass:
1344     if (cast<GenericSelectionExpr>(S)->isResultDependent())
1345       return CT_Dependent;
1346     return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr());
1347 
1348     // Some expressions are always dependent.
1349   case Expr::CXXDependentScopeMemberExprClass:
1350   case Expr::CXXUnresolvedConstructExprClass:
1351   case Expr::DependentScopeDeclRefExprClass:
1352   case Expr::CXXFoldExprClass:
1353   case Expr::RecoveryExprClass:
1354     return CT_Dependent;
1355 
1356   case Expr::AsTypeExprClass:
1357   case Expr::BinaryConditionalOperatorClass:
1358   case Expr::BlockExprClass:
1359   case Expr::CUDAKernelCallExprClass:
1360   case Expr::DeclRefExprClass:
1361   case Expr::ObjCBridgedCastExprClass:
1362   case Expr::ObjCIndirectCopyRestoreExprClass:
1363   case Expr::ObjCProtocolExprClass:
1364   case Expr::ObjCSelectorExprClass:
1365   case Expr::ObjCAvailabilityCheckExprClass:
1366   case Expr::OffsetOfExprClass:
1367   case Expr::PackExpansionExprClass:
1368   case Expr::SubstNonTypeTemplateParmExprClass:
1369   case Expr::SubstNonTypeTemplateParmPackExprClass:
1370   case Expr::FunctionParmPackExprClass:
1371   case Expr::UnaryExprOrTypeTraitExprClass:
1372   case Expr::UnresolvedLookupExprClass:
1373   case Expr::UnresolvedMemberExprClass:
1374   case Expr::TypoExprClass:
1375     // FIXME: Many of the above can throw.
1376     return CT_Cannot;
1377 
1378   case Expr::AddrLabelExprClass:
1379   case Expr::ArrayTypeTraitExprClass:
1380   case Expr::AtomicExprClass:
1381   case Expr::TypeTraitExprClass:
1382   case Expr::CXXBoolLiteralExprClass:
1383   case Expr::CXXNoexceptExprClass:
1384   case Expr::CXXNullPtrLiteralExprClass:
1385   case Expr::CXXPseudoDestructorExprClass:
1386   case Expr::CXXScalarValueInitExprClass:
1387   case Expr::CXXThisExprClass:
1388   case Expr::CXXUuidofExprClass:
1389   case Expr::CharacterLiteralClass:
1390   case Expr::ExpressionTraitExprClass:
1391   case Expr::FloatingLiteralClass:
1392   case Expr::GNUNullExprClass:
1393   case Expr::ImaginaryLiteralClass:
1394   case Expr::ImplicitValueInitExprClass:
1395   case Expr::IntegerLiteralClass:
1396   case Expr::FixedPointLiteralClass:
1397   case Expr::ArrayInitIndexExprClass:
1398   case Expr::NoInitExprClass:
1399   case Expr::ObjCEncodeExprClass:
1400   case Expr::ObjCStringLiteralClass:
1401   case Expr::ObjCBoolLiteralExprClass:
1402   case Expr::OpaqueValueExprClass:
1403   case Expr::PredefinedExprClass:
1404   case Expr::SizeOfPackExprClass:
1405   case Expr::StringLiteralClass:
1406   case Expr::SourceLocExprClass:
1407   case Expr::ConceptSpecializationExprClass:
1408   case Expr::RequiresExprClass:
1409     // These expressions can never throw.
1410     return CT_Cannot;
1411 
1412   case Expr::MSPropertyRefExprClass:
1413   case Expr::MSPropertySubscriptExprClass:
1414     llvm_unreachable("Invalid class for expression");
1415 
1416     // Most statements can throw if any substatement can throw.
1417   case Stmt::AttributedStmtClass:
1418   case Stmt::BreakStmtClass:
1419   case Stmt::CapturedStmtClass:
1420   case Stmt::CaseStmtClass:
1421   case Stmt::CompoundStmtClass:
1422   case Stmt::ContinueStmtClass:
1423   case Stmt::CoreturnStmtClass:
1424   case Stmt::CoroutineBodyStmtClass:
1425   case Stmt::CXXCatchStmtClass:
1426   case Stmt::CXXForRangeStmtClass:
1427   case Stmt::DefaultStmtClass:
1428   case Stmt::DoStmtClass:
1429   case Stmt::ForStmtClass:
1430   case Stmt::GCCAsmStmtClass:
1431   case Stmt::GotoStmtClass:
1432   case Stmt::IndirectGotoStmtClass:
1433   case Stmt::LabelStmtClass:
1434   case Stmt::MSAsmStmtClass:
1435   case Stmt::MSDependentExistsStmtClass:
1436   case Stmt::NullStmtClass:
1437   case Stmt::ObjCAtCatchStmtClass:
1438   case Stmt::ObjCAtFinallyStmtClass:
1439   case Stmt::ObjCAtSynchronizedStmtClass:
1440   case Stmt::ObjCAutoreleasePoolStmtClass:
1441   case Stmt::ObjCForCollectionStmtClass:
1442   case Stmt::OMPAtomicDirectiveClass:
1443   case Stmt::OMPBarrierDirectiveClass:
1444   case Stmt::OMPCancelDirectiveClass:
1445   case Stmt::OMPCancellationPointDirectiveClass:
1446   case Stmt::OMPCriticalDirectiveClass:
1447   case Stmt::OMPDistributeDirectiveClass:
1448   case Stmt::OMPDistributeParallelForDirectiveClass:
1449   case Stmt::OMPDistributeParallelForSimdDirectiveClass:
1450   case Stmt::OMPDistributeSimdDirectiveClass:
1451   case Stmt::OMPFlushDirectiveClass:
1452   case Stmt::OMPDepobjDirectiveClass:
1453   case Stmt::OMPScanDirectiveClass:
1454   case Stmt::OMPForDirectiveClass:
1455   case Stmt::OMPForSimdDirectiveClass:
1456   case Stmt::OMPMasterDirectiveClass:
1457   case Stmt::OMPMasterTaskLoopDirectiveClass:
1458   case Stmt::OMPMasterTaskLoopSimdDirectiveClass:
1459   case Stmt::OMPOrderedDirectiveClass:
1460   case Stmt::OMPCanonicalLoopClass:
1461   case Stmt::OMPParallelDirectiveClass:
1462   case Stmt::OMPParallelForDirectiveClass:
1463   case Stmt::OMPParallelForSimdDirectiveClass:
1464   case Stmt::OMPParallelMasterDirectiveClass:
1465   case Stmt::OMPParallelMasterTaskLoopDirectiveClass:
1466   case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass:
1467   case Stmt::OMPParallelSectionsDirectiveClass:
1468   case Stmt::OMPSectionDirectiveClass:
1469   case Stmt::OMPSectionsDirectiveClass:
1470   case Stmt::OMPSimdDirectiveClass:
1471   case Stmt::OMPTileDirectiveClass:
1472   case Stmt::OMPUnrollDirectiveClass:
1473   case Stmt::OMPSingleDirectiveClass:
1474   case Stmt::OMPTargetDataDirectiveClass:
1475   case Stmt::OMPTargetDirectiveClass:
1476   case Stmt::OMPTargetEnterDataDirectiveClass:
1477   case Stmt::OMPTargetExitDataDirectiveClass:
1478   case Stmt::OMPTargetParallelDirectiveClass:
1479   case Stmt::OMPTargetParallelForDirectiveClass:
1480   case Stmt::OMPTargetParallelForSimdDirectiveClass:
1481   case Stmt::OMPTargetSimdDirectiveClass:
1482   case Stmt::OMPTargetTeamsDirectiveClass:
1483   case Stmt::OMPTargetTeamsDistributeDirectiveClass:
1484   case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass:
1485   case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass:
1486   case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass:
1487   case Stmt::OMPTargetUpdateDirectiveClass:
1488   case Stmt::OMPTaskDirectiveClass:
1489   case Stmt::OMPTaskgroupDirectiveClass:
1490   case Stmt::OMPTaskLoopDirectiveClass:
1491   case Stmt::OMPTaskLoopSimdDirectiveClass:
1492   case Stmt::OMPTaskwaitDirectiveClass:
1493   case Stmt::OMPTaskyieldDirectiveClass:
1494   case Stmt::OMPTeamsDirectiveClass:
1495   case Stmt::OMPTeamsDistributeDirectiveClass:
1496   case Stmt::OMPTeamsDistributeParallelForDirectiveClass:
1497   case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass:
1498   case Stmt::OMPTeamsDistributeSimdDirectiveClass:
1499   case Stmt::OMPInteropDirectiveClass:
1500   case Stmt::OMPDispatchDirectiveClass:
1501   case Stmt::OMPMaskedDirectiveClass:
1502   case Stmt::OMPMetaDirectiveClass:
1503   case Stmt::OMPGenericLoopDirectiveClass:
1504   case Stmt::ReturnStmtClass:
1505   case Stmt::SEHExceptStmtClass:
1506   case Stmt::SEHFinallyStmtClass:
1507   case Stmt::SEHLeaveStmtClass:
1508   case Stmt::SEHTryStmtClass:
1509   case Stmt::SwitchStmtClass:
1510   case Stmt::WhileStmtClass:
1511     return canSubStmtsThrow(*this, S);
1512 
1513   case Stmt::DeclStmtClass: {
1514     CanThrowResult CT = CT_Cannot;
1515     for (const Decl *D : cast<DeclStmt>(S)->decls()) {
1516       if (auto *VD = dyn_cast<VarDecl>(D))
1517         CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD));
1518 
1519       // FIXME: Properly determine whether a variably-modified type can throw.
1520       if (auto *TND = dyn_cast<TypedefNameDecl>(D))
1521         if (TND->getUnderlyingType()->isVariablyModifiedType())
1522           return CT_Can;
1523       if (auto *VD = dyn_cast<ValueDecl>(D))
1524         if (VD->getType()->isVariablyModifiedType())
1525           return CT_Can;
1526     }
1527     return CT;
1528   }
1529 
1530   case Stmt::IfStmtClass: {
1531     auto *IS = cast<IfStmt>(S);
1532     CanThrowResult CT = CT_Cannot;
1533     if (const Stmt *Init = IS->getInit())
1534       CT = mergeCanThrow(CT, canThrow(Init));
1535     if (const Stmt *CondDS = IS->getConditionVariableDeclStmt())
1536       CT = mergeCanThrow(CT, canThrow(CondDS));
1537     CT = mergeCanThrow(CT, canThrow(IS->getCond()));
1538 
1539     // For 'if constexpr', consider only the non-discarded case.
1540     // FIXME: We should add a DiscardedStmt marker to the AST.
1541     if (Optional<const Stmt *> Case = IS->getNondiscardedCase(Context))
1542       return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT;
1543 
1544     CanThrowResult Then = canThrow(IS->getThen());
1545     CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot;
1546     if (Then == Else)
1547       return mergeCanThrow(CT, Then);
1548 
1549     // For a dependent 'if constexpr', the result is dependent if it depends on
1550     // the value of the condition.
1551     return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent
1552                                                : mergeCanThrow(Then, Else));
1553   }
1554 
1555   case Stmt::CXXTryStmtClass: {
1556     auto *TS = cast<CXXTryStmt>(S);
1557     // try /*...*/ catch (...) { H } can throw only if H can throw.
1558     // Any other try-catch can throw if any substatement can throw.
1559     const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1);
1560     if (!FinalHandler->getExceptionDecl())
1561       return canThrow(FinalHandler->getHandlerBlock());
1562     return canSubStmtsThrow(*this, S);
1563   }
1564 
1565   case Stmt::ObjCAtThrowStmtClass:
1566     return CT_Can;
1567 
1568   case Stmt::ObjCAtTryStmtClass: {
1569     auto *TS = cast<ObjCAtTryStmt>(S);
1570 
1571     // @catch(...) need not be last in Objective-C. Walk backwards until we
1572     // see one or hit the @try.
1573     CanThrowResult CT = CT_Cannot;
1574     if (const Stmt *Finally = TS->getFinallyStmt())
1575       CT = mergeCanThrow(CT, canThrow(Finally));
1576     for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) {
1577       const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1);
1578       CT = mergeCanThrow(CT, canThrow(Catch));
1579       // If we reach a @catch(...), no earlier exceptions can escape.
1580       if (Catch->hasEllipsis())
1581         return CT;
1582     }
1583 
1584     // Didn't find an @catch(...). Exceptions from the @try body can escape.
1585     return mergeCanThrow(CT, canThrow(TS->getTryBody()));
1586   }
1587 
1588   case Stmt::SYCLUniqueStableNameExprClass:
1589     return CT_Cannot;
1590   case Stmt::NoStmtClass:
1591     llvm_unreachable("Invalid class for statement");
1592   }
1593   llvm_unreachable("Bogus StmtClass");
1594 }
1595 
1596 } // end namespace clang
1597