1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides Sema routines for C++ exception specification testing. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Sema/SemaInternal.h" 14 #include "clang/AST/ASTMutationListener.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/StmtObjC.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Basic/Diagnostic.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 #include <optional> 25 26 namespace clang { 27 28 static const FunctionProtoType *GetUnderlyingFunction(QualType T) 29 { 30 if (const PointerType *PtrTy = T->getAs<PointerType>()) 31 T = PtrTy->getPointeeType(); 32 else if (const ReferenceType *RefTy = T->getAs<ReferenceType>()) 33 T = RefTy->getPointeeType(); 34 else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) 35 T = MPTy->getPointeeType(); 36 return T->getAs<FunctionProtoType>(); 37 } 38 39 /// HACK: 2014-11-14 libstdc++ had a bug where it shadows std::swap with a 40 /// member swap function then tries to call std::swap unqualified from the 41 /// exception specification of that function. This function detects whether 42 /// we're in such a case and turns off delay-parsing of exception 43 /// specifications. Libstdc++ 6.1 (released 2016-04-27) appears to have 44 /// resolved it as side-effect of commit ddb63209a8d (2015-06-05). 45 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) { 46 auto *RD = dyn_cast<CXXRecordDecl>(CurContext); 47 48 // All the problem cases are member functions named "swap" within class 49 // templates declared directly within namespace std or std::__debug or 50 // std::__profile. 51 if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() || 52 !D.getIdentifier() || !D.getIdentifier()->isStr("swap")) 53 return false; 54 55 auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext()); 56 if (!ND) 57 return false; 58 59 bool IsInStd = ND->isStdNamespace(); 60 if (!IsInStd) { 61 // This isn't a direct member of namespace std, but it might still be 62 // libstdc++'s std::__debug::array or std::__profile::array. 63 IdentifierInfo *II = ND->getIdentifier(); 64 if (!II || !(II->isStr("__debug") || II->isStr("__profile")) || 65 !ND->isInStdNamespace()) 66 return false; 67 } 68 69 // Only apply this hack within a system header. 70 if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc())) 71 return false; 72 73 return llvm::StringSwitch<bool>(RD->getIdentifier()->getName()) 74 .Case("array", true) 75 .Case("pair", IsInStd) 76 .Case("priority_queue", IsInStd) 77 .Case("stack", IsInStd) 78 .Case("queue", IsInStd) 79 .Default(false); 80 } 81 82 ExprResult Sema::ActOnNoexceptSpec(Expr *NoexceptExpr, 83 ExceptionSpecificationType &EST) { 84 85 if (NoexceptExpr->isTypeDependent() || 86 NoexceptExpr->containsUnexpandedParameterPack()) { 87 EST = EST_DependentNoexcept; 88 return NoexceptExpr; 89 } 90 91 llvm::APSInt Result; 92 ExprResult Converted = CheckConvertedConstantExpression( 93 NoexceptExpr, Context.BoolTy, Result, CCEK_Noexcept); 94 95 if (Converted.isInvalid()) { 96 EST = EST_NoexceptFalse; 97 // Fill in an expression of 'false' as a fixup. 98 auto *BoolExpr = new (Context) 99 CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc()); 100 llvm::APSInt Value{1}; 101 Value = 0; 102 return ConstantExpr::Create(Context, BoolExpr, APValue{Value}); 103 } 104 105 if (Converted.get()->isValueDependent()) { 106 EST = EST_DependentNoexcept; 107 return Converted; 108 } 109 110 if (!Converted.isInvalid()) 111 EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue; 112 return Converted; 113 } 114 115 /// CheckSpecifiedExceptionType - Check if the given type is valid in an 116 /// exception specification. Incomplete types, or pointers to incomplete types 117 /// other than void are not allowed. 118 /// 119 /// \param[in,out] T The exception type. This will be decayed to a pointer type 120 /// when the input is an array or a function type. 121 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) { 122 // C++11 [except.spec]p2: 123 // A type cv T, "array of T", or "function returning T" denoted 124 // in an exception-specification is adjusted to type T, "pointer to T", or 125 // "pointer to function returning T", respectively. 126 // 127 // We also apply this rule in C++98. 128 if (T->isArrayType()) 129 T = Context.getArrayDecayedType(T); 130 else if (T->isFunctionType()) 131 T = Context.getPointerType(T); 132 133 int Kind = 0; 134 QualType PointeeT = T; 135 if (const PointerType *PT = T->getAs<PointerType>()) { 136 PointeeT = PT->getPointeeType(); 137 Kind = 1; 138 139 // cv void* is explicitly permitted, despite being a pointer to an 140 // incomplete type. 141 if (PointeeT->isVoidType()) 142 return false; 143 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 144 PointeeT = RT->getPointeeType(); 145 Kind = 2; 146 147 if (RT->isRValueReferenceType()) { 148 // C++11 [except.spec]p2: 149 // A type denoted in an exception-specification shall not denote [...] 150 // an rvalue reference type. 151 Diag(Range.getBegin(), diag::err_rref_in_exception_spec) 152 << T << Range; 153 return true; 154 } 155 } 156 157 // C++11 [except.spec]p2: 158 // A type denoted in an exception-specification shall not denote an 159 // incomplete type other than a class currently being defined [...]. 160 // A type denoted in an exception-specification shall not denote a 161 // pointer or reference to an incomplete type, other than (cv) void* or a 162 // pointer or reference to a class currently being defined. 163 // In Microsoft mode, downgrade this to a warning. 164 unsigned DiagID = diag::err_incomplete_in_exception_spec; 165 bool ReturnValueOnError = true; 166 if (getLangOpts().MSVCCompat) { 167 DiagID = diag::ext_incomplete_in_exception_spec; 168 ReturnValueOnError = false; 169 } 170 if (!(PointeeT->isRecordType() && 171 PointeeT->castAs<RecordType>()->isBeingDefined()) && 172 RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range)) 173 return ReturnValueOnError; 174 175 // The MSVC compatibility mode doesn't extend to sizeless types, 176 // so diagnose them separately. 177 if (PointeeT->isSizelessType() && Kind != 1) { 178 Diag(Range.getBegin(), diag::err_sizeless_in_exception_spec) 179 << (Kind == 2 ? 1 : 0) << PointeeT << Range; 180 return true; 181 } 182 183 return false; 184 } 185 186 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer 187 /// to member to a function with an exception specification. This means that 188 /// it is invalid to add another level of indirection. 189 bool Sema::CheckDistantExceptionSpec(QualType T) { 190 // C++17 removes this rule in favor of putting exception specifications into 191 // the type system. 192 if (getLangOpts().CPlusPlus17) 193 return false; 194 195 if (const PointerType *PT = T->getAs<PointerType>()) 196 T = PT->getPointeeType(); 197 else if (const MemberPointerType *PT = T->getAs<MemberPointerType>()) 198 T = PT->getPointeeType(); 199 else 200 return false; 201 202 const FunctionProtoType *FnT = T->getAs<FunctionProtoType>(); 203 if (!FnT) 204 return false; 205 206 return FnT->hasExceptionSpec(); 207 } 208 209 const FunctionProtoType * 210 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) { 211 if (FPT->getExceptionSpecType() == EST_Unparsed) { 212 Diag(Loc, diag::err_exception_spec_not_parsed); 213 return nullptr; 214 } 215 216 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) 217 return FPT; 218 219 FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl(); 220 const FunctionProtoType *SourceFPT = 221 SourceDecl->getType()->castAs<FunctionProtoType>(); 222 223 // If the exception specification has already been resolved, just return it. 224 if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType())) 225 return SourceFPT; 226 227 // Compute or instantiate the exception specification now. 228 if (SourceFPT->getExceptionSpecType() == EST_Unevaluated) 229 EvaluateImplicitExceptionSpec(Loc, SourceDecl); 230 else 231 InstantiateExceptionSpec(Loc, SourceDecl); 232 233 const FunctionProtoType *Proto = 234 SourceDecl->getType()->castAs<FunctionProtoType>(); 235 if (Proto->getExceptionSpecType() == clang::EST_Unparsed) { 236 Diag(Loc, diag::err_exception_spec_not_parsed); 237 Proto = nullptr; 238 } 239 return Proto; 240 } 241 242 void 243 Sema::UpdateExceptionSpec(FunctionDecl *FD, 244 const FunctionProtoType::ExceptionSpecInfo &ESI) { 245 // If we've fully resolved the exception specification, notify listeners. 246 if (!isUnresolvedExceptionSpec(ESI.Type)) 247 if (auto *Listener = getASTMutationListener()) 248 Listener->ResolvedExceptionSpec(FD); 249 250 for (FunctionDecl *Redecl : FD->redecls()) 251 Context.adjustExceptionSpec(Redecl, ESI); 252 } 253 254 static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) { 255 auto *MD = dyn_cast<CXXMethodDecl>(FD); 256 if (!MD) 257 return false; 258 259 auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType(); 260 return EST == EST_Unparsed || 261 (EST == EST_Unevaluated && MD->getParent()->isBeingDefined()); 262 } 263 264 static bool CheckEquivalentExceptionSpecImpl( 265 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 266 const FunctionProtoType *Old, SourceLocation OldLoc, 267 const FunctionProtoType *New, SourceLocation NewLoc, 268 bool *MissingExceptionSpecification = nullptr, 269 bool *MissingEmptyExceptionSpecification = nullptr, 270 bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false); 271 272 /// Determine whether a function has an implicitly-generated exception 273 /// specification. 274 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) { 275 if (!isa<CXXDestructorDecl>(Decl) && 276 Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete && 277 Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 278 return false; 279 280 // For a function that the user didn't declare: 281 // - if this is a destructor, its exception specification is implicit. 282 // - if this is 'operator delete' or 'operator delete[]', the exception 283 // specification is as-if an explicit exception specification was given 284 // (per [basic.stc.dynamic]p2). 285 if (!Decl->getTypeSourceInfo()) 286 return isa<CXXDestructorDecl>(Decl); 287 288 auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); 289 return !Ty->hasExceptionSpec(); 290 } 291 292 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) { 293 // Just completely ignore this under -fno-exceptions prior to C++17. 294 // In C++17 onwards, the exception specification is part of the type and 295 // we will diagnose mismatches anyway, so it's better to check for them here. 296 if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17) 297 return false; 298 299 OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator(); 300 bool IsOperatorNew = OO == OO_New || OO == OO_Array_New; 301 bool MissingExceptionSpecification = false; 302 bool MissingEmptyExceptionSpecification = false; 303 304 unsigned DiagID = diag::err_mismatched_exception_spec; 305 bool ReturnValueOnError = true; 306 if (getLangOpts().MSVCCompat) { 307 DiagID = diag::ext_mismatched_exception_spec; 308 ReturnValueOnError = false; 309 } 310 311 // If we're befriending a member function of a class that's currently being 312 // defined, we might not be able to work out its exception specification yet. 313 // If not, defer the check until later. 314 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) { 315 DelayedEquivalentExceptionSpecChecks.push_back({New, Old}); 316 return false; 317 } 318 319 // Check the types as written: they must match before any exception 320 // specification adjustment is applied. 321 if (!CheckEquivalentExceptionSpecImpl( 322 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 323 Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(), 324 New->getType()->getAs<FunctionProtoType>(), New->getLocation(), 325 &MissingExceptionSpecification, &MissingEmptyExceptionSpecification, 326 /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) { 327 // C++11 [except.spec]p4 [DR1492]: 328 // If a declaration of a function has an implicit 329 // exception-specification, other declarations of the function shall 330 // not specify an exception-specification. 331 if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions && 332 hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) { 333 Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch) 334 << hasImplicitExceptionSpec(Old); 335 if (Old->getLocation().isValid()) 336 Diag(Old->getLocation(), diag::note_previous_declaration); 337 } 338 return false; 339 } 340 341 // The failure was something other than an missing exception 342 // specification; return an error, except in MS mode where this is a warning. 343 if (!MissingExceptionSpecification) 344 return ReturnValueOnError; 345 346 const auto *NewProto = New->getType()->castAs<FunctionProtoType>(); 347 348 // The new function declaration is only missing an empty exception 349 // specification "throw()". If the throw() specification came from a 350 // function in a system header that has C linkage, just add an empty 351 // exception specification to the "new" declaration. Note that C library 352 // implementations are permitted to add these nothrow exception 353 // specifications. 354 // 355 // Likewise if the old function is a builtin. 356 if (MissingEmptyExceptionSpecification && 357 (Old->getLocation().isInvalid() || 358 Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 359 Old->getBuiltinID()) && 360 Old->isExternC()) { 361 New->setType(Context.getFunctionType( 362 NewProto->getReturnType(), NewProto->getParamTypes(), 363 NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone))); 364 return false; 365 } 366 367 const auto *OldProto = Old->getType()->castAs<FunctionProtoType>(); 368 369 FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType(); 370 if (ESI.Type == EST_Dynamic) { 371 // FIXME: What if the exceptions are described in terms of the old 372 // prototype's parameters? 373 ESI.Exceptions = OldProto->exceptions(); 374 } 375 376 if (ESI.Type == EST_NoexceptFalse) 377 ESI.Type = EST_None; 378 if (ESI.Type == EST_NoexceptTrue) 379 ESI.Type = EST_BasicNoexcept; 380 381 // For dependent noexcept, we can't just take the expression from the old 382 // prototype. It likely contains references to the old prototype's parameters. 383 if (ESI.Type == EST_DependentNoexcept) { 384 New->setInvalidDecl(); 385 } else { 386 // Update the type of the function with the appropriate exception 387 // specification. 388 New->setType(Context.getFunctionType( 389 NewProto->getReturnType(), NewProto->getParamTypes(), 390 NewProto->getExtProtoInfo().withExceptionSpec(ESI))); 391 } 392 393 if (getLangOpts().MSVCCompat && isDynamicExceptionSpec(ESI.Type)) { 394 DiagID = diag::ext_missing_exception_specification; 395 ReturnValueOnError = false; 396 } else if (New->isReplaceableGlobalAllocationFunction() && 397 ESI.Type != EST_DependentNoexcept) { 398 // Allow missing exception specifications in redeclarations as an extension, 399 // when declaring a replaceable global allocation function. 400 DiagID = diag::ext_missing_exception_specification; 401 ReturnValueOnError = false; 402 } else if (ESI.Type == EST_NoThrow) { 403 // Don't emit any warning for missing 'nothrow' in MSVC. 404 if (getLangOpts().MSVCCompat) { 405 return false; 406 } 407 // Allow missing attribute 'nothrow' in redeclarations, since this is a very 408 // common omission. 409 DiagID = diag::ext_missing_exception_specification; 410 ReturnValueOnError = false; 411 } else { 412 DiagID = diag::err_missing_exception_specification; 413 ReturnValueOnError = true; 414 } 415 416 // Warn about the lack of exception specification. 417 SmallString<128> ExceptionSpecString; 418 llvm::raw_svector_ostream OS(ExceptionSpecString); 419 switch (OldProto->getExceptionSpecType()) { 420 case EST_DynamicNone: 421 OS << "throw()"; 422 break; 423 424 case EST_Dynamic: { 425 OS << "throw("; 426 bool OnFirstException = true; 427 for (const auto &E : OldProto->exceptions()) { 428 if (OnFirstException) 429 OnFirstException = false; 430 else 431 OS << ", "; 432 433 OS << E.getAsString(getPrintingPolicy()); 434 } 435 OS << ")"; 436 break; 437 } 438 439 case EST_BasicNoexcept: 440 OS << "noexcept"; 441 break; 442 443 case EST_DependentNoexcept: 444 case EST_NoexceptFalse: 445 case EST_NoexceptTrue: 446 OS << "noexcept("; 447 assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr"); 448 OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy()); 449 OS << ")"; 450 break; 451 case EST_NoThrow: 452 OS <<"__attribute__((nothrow))"; 453 break; 454 case EST_None: 455 case EST_MSAny: 456 case EST_Unevaluated: 457 case EST_Uninstantiated: 458 case EST_Unparsed: 459 llvm_unreachable("This spec type is compatible with none."); 460 } 461 462 SourceLocation FixItLoc; 463 if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) { 464 TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens(); 465 // FIXME: Preserve enough information so that we can produce a correct fixit 466 // location when there is a trailing return type. 467 if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>()) 468 if (!FTLoc.getTypePtr()->hasTrailingReturn()) 469 FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd()); 470 } 471 472 if (FixItLoc.isInvalid()) 473 Diag(New->getLocation(), DiagID) 474 << New << OS.str(); 475 else { 476 Diag(New->getLocation(), DiagID) 477 << New << OS.str() 478 << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str()); 479 } 480 481 if (Old->getLocation().isValid()) 482 Diag(Old->getLocation(), diag::note_previous_declaration); 483 484 return ReturnValueOnError; 485 } 486 487 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent 488 /// exception specifications. Exception specifications are equivalent if 489 /// they allow exactly the same set of exception types. It does not matter how 490 /// that is achieved. See C++ [except.spec]p2. 491 bool Sema::CheckEquivalentExceptionSpec( 492 const FunctionProtoType *Old, SourceLocation OldLoc, 493 const FunctionProtoType *New, SourceLocation NewLoc) { 494 if (!getLangOpts().CXXExceptions) 495 return false; 496 497 unsigned DiagID = diag::err_mismatched_exception_spec; 498 if (getLangOpts().MSVCCompat) 499 DiagID = diag::ext_mismatched_exception_spec; 500 bool Result = CheckEquivalentExceptionSpecImpl( 501 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 502 Old, OldLoc, New, NewLoc); 503 504 // In Microsoft mode, mismatching exception specifications just cause a warning. 505 if (getLangOpts().MSVCCompat) 506 return false; 507 return Result; 508 } 509 510 /// CheckEquivalentExceptionSpec - Check if the two types have compatible 511 /// exception specifications. See C++ [except.spec]p3. 512 /// 513 /// \return \c false if the exception specifications match, \c true if there is 514 /// a problem. If \c true is returned, either a diagnostic has already been 515 /// produced or \c *MissingExceptionSpecification is set to \c true. 516 static bool CheckEquivalentExceptionSpecImpl( 517 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 518 const FunctionProtoType *Old, SourceLocation OldLoc, 519 const FunctionProtoType *New, SourceLocation NewLoc, 520 bool *MissingExceptionSpecification, 521 bool *MissingEmptyExceptionSpecification, 522 bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) { 523 if (MissingExceptionSpecification) 524 *MissingExceptionSpecification = false; 525 526 if (MissingEmptyExceptionSpecification) 527 *MissingEmptyExceptionSpecification = false; 528 529 Old = S.ResolveExceptionSpec(NewLoc, Old); 530 if (!Old) 531 return false; 532 New = S.ResolveExceptionSpec(NewLoc, New); 533 if (!New) 534 return false; 535 536 // C++0x [except.spec]p3: Two exception-specifications are compatible if: 537 // - both are non-throwing, regardless of their form, 538 // - both have the form noexcept(constant-expression) and the constant- 539 // expressions are equivalent, 540 // - both are dynamic-exception-specifications that have the same set of 541 // adjusted types. 542 // 543 // C++0x [except.spec]p12: An exception-specification is non-throwing if it is 544 // of the form throw(), noexcept, or noexcept(constant-expression) where the 545 // constant-expression yields true. 546 // 547 // C++0x [except.spec]p4: If any declaration of a function has an exception- 548 // specifier that is not a noexcept-specification allowing all exceptions, 549 // all declarations [...] of that function shall have a compatible 550 // exception-specification. 551 // 552 // That last point basically means that noexcept(false) matches no spec. 553 // It's considered when AllowNoexceptAllMatchWithNoSpec is true. 554 555 ExceptionSpecificationType OldEST = Old->getExceptionSpecType(); 556 ExceptionSpecificationType NewEST = New->getExceptionSpecType(); 557 558 assert(!isUnresolvedExceptionSpec(OldEST) && 559 !isUnresolvedExceptionSpec(NewEST) && 560 "Shouldn't see unknown exception specifications here"); 561 562 CanThrowResult OldCanThrow = Old->canThrow(); 563 CanThrowResult NewCanThrow = New->canThrow(); 564 565 // Any non-throwing specifications are compatible. 566 if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot) 567 return false; 568 569 // Any throws-anything specifications are usually compatible. 570 if (OldCanThrow == CT_Can && OldEST != EST_Dynamic && 571 NewCanThrow == CT_Can && NewEST != EST_Dynamic) { 572 // The exception is that the absence of an exception specification only 573 // matches noexcept(false) for functions, as described above. 574 if (!AllowNoexceptAllMatchWithNoSpec && 575 ((OldEST == EST_None && NewEST == EST_NoexceptFalse) || 576 (OldEST == EST_NoexceptFalse && NewEST == EST_None))) { 577 // This is the disallowed case. 578 } else { 579 return false; 580 } 581 } 582 583 // C++14 [except.spec]p3: 584 // Two exception-specifications are compatible if [...] both have the form 585 // noexcept(constant-expression) and the constant-expressions are equivalent 586 if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) { 587 llvm::FoldingSetNodeID OldFSN, NewFSN; 588 Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true); 589 New->getNoexceptExpr()->Profile(NewFSN, S.Context, true); 590 if (OldFSN == NewFSN) 591 return false; 592 } 593 594 // Dynamic exception specifications with the same set of adjusted types 595 // are compatible. 596 if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) { 597 bool Success = true; 598 // Both have a dynamic exception spec. Collect the first set, then compare 599 // to the second. 600 llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes; 601 for (const auto &I : Old->exceptions()) 602 OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType()); 603 604 for (const auto &I : New->exceptions()) { 605 CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType(); 606 if (OldTypes.count(TypePtr)) 607 NewTypes.insert(TypePtr); 608 else { 609 Success = false; 610 break; 611 } 612 } 613 614 if (Success && OldTypes.size() == NewTypes.size()) 615 return false; 616 } 617 618 // As a special compatibility feature, under C++0x we accept no spec and 619 // throw(std::bad_alloc) as equivalent for operator new and operator new[]. 620 // This is because the implicit declaration changed, but old code would break. 621 if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) { 622 const FunctionProtoType *WithExceptions = nullptr; 623 if (OldEST == EST_None && NewEST == EST_Dynamic) 624 WithExceptions = New; 625 else if (OldEST == EST_Dynamic && NewEST == EST_None) 626 WithExceptions = Old; 627 if (WithExceptions && WithExceptions->getNumExceptions() == 1) { 628 // One has no spec, the other throw(something). If that something is 629 // std::bad_alloc, all conditions are met. 630 QualType Exception = *WithExceptions->exception_begin(); 631 if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) { 632 IdentifierInfo* Name = ExRecord->getIdentifier(); 633 if (Name && Name->getName() == "bad_alloc") { 634 // It's called bad_alloc, but is it in std? 635 if (ExRecord->isInStdNamespace()) { 636 return false; 637 } 638 } 639 } 640 } 641 } 642 643 // If the caller wants to handle the case that the new function is 644 // incompatible due to a missing exception specification, let it. 645 if (MissingExceptionSpecification && OldEST != EST_None && 646 NewEST == EST_None) { 647 // The old type has an exception specification of some sort, but 648 // the new type does not. 649 *MissingExceptionSpecification = true; 650 651 if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) { 652 // The old type has a throw() or noexcept(true) exception specification 653 // and the new type has no exception specification, and the caller asked 654 // to handle this itself. 655 *MissingEmptyExceptionSpecification = true; 656 } 657 658 return true; 659 } 660 661 S.Diag(NewLoc, DiagID); 662 if (NoteID.getDiagID() != 0 && OldLoc.isValid()) 663 S.Diag(OldLoc, NoteID); 664 return true; 665 } 666 667 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID, 668 const PartialDiagnostic &NoteID, 669 const FunctionProtoType *Old, 670 SourceLocation OldLoc, 671 const FunctionProtoType *New, 672 SourceLocation NewLoc) { 673 if (!getLangOpts().CXXExceptions) 674 return false; 675 return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc, 676 New, NewLoc); 677 } 678 679 bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) { 680 // [except.handle]p3: 681 // A handler is a match for an exception object of type E if: 682 683 // HandlerType must be ExceptionType or derived from it, or pointer or 684 // reference to such types. 685 const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>(); 686 if (RefTy) 687 HandlerType = RefTy->getPointeeType(); 688 689 // -- the handler is of type cv T or cv T& and E and T are the same type 690 if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType)) 691 return true; 692 693 // FIXME: ObjC pointer types? 694 if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) { 695 if (RefTy && (!HandlerType.isConstQualified() || 696 HandlerType.isVolatileQualified())) 697 return false; 698 699 // -- the handler is of type cv T or const T& where T is a pointer or 700 // pointer to member type and E is std::nullptr_t 701 if (ExceptionType->isNullPtrType()) 702 return true; 703 704 // -- the handler is of type cv T or const T& where T is a pointer or 705 // pointer to member type and E is a pointer or pointer to member type 706 // that can be converted to T by one or more of 707 // -- a qualification conversion 708 // -- a function pointer conversion 709 bool LifetimeConv; 710 QualType Result; 711 // FIXME: Should we treat the exception as catchable if a lifetime 712 // conversion is required? 713 if (IsQualificationConversion(ExceptionType, HandlerType, false, 714 LifetimeConv) || 715 IsFunctionConversion(ExceptionType, HandlerType, Result)) 716 return true; 717 718 // -- a standard pointer conversion [...] 719 if (!ExceptionType->isPointerType() || !HandlerType->isPointerType()) 720 return false; 721 722 // Handle the "qualification conversion" portion. 723 Qualifiers EQuals, HQuals; 724 ExceptionType = Context.getUnqualifiedArrayType( 725 ExceptionType->getPointeeType(), EQuals); 726 HandlerType = Context.getUnqualifiedArrayType( 727 HandlerType->getPointeeType(), HQuals); 728 if (!HQuals.compatiblyIncludes(EQuals)) 729 return false; 730 731 if (HandlerType->isVoidType() && ExceptionType->isObjectType()) 732 return true; 733 734 // The only remaining case is a derived-to-base conversion. 735 } 736 737 // -- the handler is of type cg T or cv T& and T is an unambiguous public 738 // base class of E 739 if (!ExceptionType->isRecordType() || !HandlerType->isRecordType()) 740 return false; 741 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 742 /*DetectVirtual=*/false); 743 if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) || 744 Paths.isAmbiguous(Context.getCanonicalType(HandlerType))) 745 return false; 746 747 // Do this check from a context without privileges. 748 switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType, 749 Paths.front(), 750 /*Diagnostic*/ 0, 751 /*ForceCheck*/ true, 752 /*ForceUnprivileged*/ true)) { 753 case AR_accessible: return true; 754 case AR_inaccessible: return false; 755 case AR_dependent: 756 llvm_unreachable("access check dependent for unprivileged context"); 757 case AR_delayed: 758 llvm_unreachable("access check delayed in non-declaration"); 759 } 760 llvm_unreachable("unexpected access check result"); 761 } 762 763 /// CheckExceptionSpecSubset - Check whether the second function type's 764 /// exception specification is a subset (or equivalent) of the first function 765 /// type. This is used by override and pointer assignment checks. 766 bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID, 767 const PartialDiagnostic &NestedDiagID, 768 const PartialDiagnostic &NoteID, 769 const PartialDiagnostic &NoThrowDiagID, 770 const FunctionProtoType *Superset, 771 SourceLocation SuperLoc, 772 const FunctionProtoType *Subset, 773 SourceLocation SubLoc) { 774 775 // Just auto-succeed under -fno-exceptions. 776 if (!getLangOpts().CXXExceptions) 777 return false; 778 779 // FIXME: As usual, we could be more specific in our error messages, but 780 // that better waits until we've got types with source locations. 781 782 if (!SubLoc.isValid()) 783 SubLoc = SuperLoc; 784 785 // Resolve the exception specifications, if needed. 786 Superset = ResolveExceptionSpec(SuperLoc, Superset); 787 if (!Superset) 788 return false; 789 Subset = ResolveExceptionSpec(SubLoc, Subset); 790 if (!Subset) 791 return false; 792 793 ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType(); 794 ExceptionSpecificationType SubEST = Subset->getExceptionSpecType(); 795 assert(!isUnresolvedExceptionSpec(SuperEST) && 796 !isUnresolvedExceptionSpec(SubEST) && 797 "Shouldn't see unknown exception specifications here"); 798 799 // If there are dependent noexcept specs, assume everything is fine. Unlike 800 // with the equivalency check, this is safe in this case, because we don't 801 // want to merge declarations. Checks after instantiation will catch any 802 // omissions we make here. 803 if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept) 804 return false; 805 806 CanThrowResult SuperCanThrow = Superset->canThrow(); 807 CanThrowResult SubCanThrow = Subset->canThrow(); 808 809 // If the superset contains everything or the subset contains nothing, we're 810 // done. 811 if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) || 812 SubCanThrow == CT_Cannot) 813 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 814 Subset, SubLoc); 815 816 // Allow __declspec(nothrow) to be missing on redeclaration as an extension in 817 // some cases. 818 if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can && 819 SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) { 820 Diag(SubLoc, NoThrowDiagID); 821 if (NoteID.getDiagID() != 0) 822 Diag(SuperLoc, NoteID); 823 return true; 824 } 825 826 // If the subset contains everything or the superset contains nothing, we've 827 // failed. 828 if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) || 829 SuperCanThrow == CT_Cannot) { 830 Diag(SubLoc, DiagID); 831 if (NoteID.getDiagID() != 0) 832 Diag(SuperLoc, NoteID); 833 return true; 834 } 835 836 assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic && 837 "Exception spec subset: non-dynamic case slipped through."); 838 839 // Neither contains everything or nothing. Do a proper comparison. 840 for (QualType SubI : Subset->exceptions()) { 841 if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>()) 842 SubI = RefTy->getPointeeType(); 843 844 // Make sure it's in the superset. 845 bool Contained = false; 846 for (QualType SuperI : Superset->exceptions()) { 847 // [except.spec]p5: 848 // the target entity shall allow at least the exceptions allowed by the 849 // source 850 // 851 // We interpret this as meaning that a handler for some target type would 852 // catch an exception of each source type. 853 if (handlerCanCatch(SuperI, SubI)) { 854 Contained = true; 855 break; 856 } 857 } 858 if (!Contained) { 859 Diag(SubLoc, DiagID); 860 if (NoteID.getDiagID() != 0) 861 Diag(SuperLoc, NoteID); 862 return true; 863 } 864 } 865 // We've run half the gauntlet. 866 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 867 Subset, SubLoc); 868 } 869 870 static bool 871 CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID, 872 const PartialDiagnostic &NoteID, QualType Target, 873 SourceLocation TargetLoc, QualType Source, 874 SourceLocation SourceLoc) { 875 const FunctionProtoType *TFunc = GetUnderlyingFunction(Target); 876 if (!TFunc) 877 return false; 878 const FunctionProtoType *SFunc = GetUnderlyingFunction(Source); 879 if (!SFunc) 880 return false; 881 882 return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc, 883 SFunc, SourceLoc); 884 } 885 886 /// CheckParamExceptionSpec - Check if the parameter and return types of the 887 /// two functions have equivalent exception specs. This is part of the 888 /// assignment and override compatibility check. We do not check the parameters 889 /// of parameter function pointers recursively, as no sane programmer would 890 /// even be able to write such a function type. 891 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID, 892 const PartialDiagnostic &NoteID, 893 const FunctionProtoType *Target, 894 SourceLocation TargetLoc, 895 const FunctionProtoType *Source, 896 SourceLocation SourceLoc) { 897 auto RetDiag = DiagID; 898 RetDiag << 0; 899 if (CheckSpecForTypesEquivalent( 900 *this, RetDiag, PDiag(), 901 Target->getReturnType(), TargetLoc, Source->getReturnType(), 902 SourceLoc)) 903 return true; 904 905 // We shouldn't even be testing this unless the arguments are otherwise 906 // compatible. 907 assert(Target->getNumParams() == Source->getNumParams() && 908 "Functions have different argument counts."); 909 for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) { 910 auto ParamDiag = DiagID; 911 ParamDiag << 1; 912 if (CheckSpecForTypesEquivalent( 913 *this, ParamDiag, PDiag(), 914 Target->getParamType(i), TargetLoc, Source->getParamType(i), 915 SourceLoc)) 916 return true; 917 } 918 return false; 919 } 920 921 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) { 922 // First we check for applicability. 923 // Target type must be a function, function pointer or function reference. 924 const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType); 925 if (!ToFunc || ToFunc->hasDependentExceptionSpec()) 926 return false; 927 928 // SourceType must be a function or function pointer. 929 const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType()); 930 if (!FromFunc || FromFunc->hasDependentExceptionSpec()) 931 return false; 932 933 unsigned DiagID = diag::err_incompatible_exception_specs; 934 unsigned NestedDiagID = diag::err_deep_exception_specs_differ; 935 // This is not an error in C++17 onwards, unless the noexceptness doesn't 936 // match, but in that case we have a full-on type mismatch, not just a 937 // type sugar mismatch. 938 if (getLangOpts().CPlusPlus17) { 939 DiagID = diag::warn_incompatible_exception_specs; 940 NestedDiagID = diag::warn_deep_exception_specs_differ; 941 } 942 943 // Now we've got the correct types on both sides, check their compatibility. 944 // This means that the source of the conversion can only throw a subset of 945 // the exceptions of the target, and any exception specs on arguments or 946 // return types must be equivalent. 947 // 948 // FIXME: If there is a nested dependent exception specification, we should 949 // not be checking it here. This is fine: 950 // template<typename T> void f() { 951 // void (*p)(void (*) throw(T)); 952 // void (*q)(void (*) throw(int)) = p; 953 // } 954 // ... because it might be instantiated with T=int. 955 return CheckExceptionSpecSubset( 956 PDiag(DiagID), PDiag(NestedDiagID), PDiag(), PDiag(), ToFunc, 957 From->getSourceRange().getBegin(), FromFunc, SourceLocation()) && 958 !getLangOpts().CPlusPlus17; 959 } 960 961 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, 962 const CXXMethodDecl *Old) { 963 // If the new exception specification hasn't been parsed yet, skip the check. 964 // We'll get called again once it's been parsed. 965 if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() == 966 EST_Unparsed) 967 return false; 968 969 // Don't check uninstantiated template destructors at all. We can only 970 // synthesize correct specs after the template is instantiated. 971 if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType()) 972 return false; 973 974 // If the old exception specification hasn't been parsed yet, or the new 975 // exception specification can't be computed yet, remember that we need to 976 // perform this check when we get to the end of the outermost 977 // lexically-surrounding class. 978 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) { 979 DelayedOverridingExceptionSpecChecks.push_back({New, Old}); 980 return false; 981 } 982 983 unsigned DiagID = diag::err_override_exception_spec; 984 if (getLangOpts().MSVCCompat) 985 DiagID = diag::ext_override_exception_spec; 986 return CheckExceptionSpecSubset(PDiag(DiagID), 987 PDiag(diag::err_deep_exception_specs_differ), 988 PDiag(diag::note_overridden_virtual_function), 989 PDiag(diag::ext_override_exception_spec), 990 Old->getType()->castAs<FunctionProtoType>(), 991 Old->getLocation(), 992 New->getType()->castAs<FunctionProtoType>(), 993 New->getLocation()); 994 } 995 996 static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) { 997 CanThrowResult R = CT_Cannot; 998 for (const Stmt *SubStmt : S->children()) { 999 if (!SubStmt) 1000 continue; 1001 R = mergeCanThrow(R, Self.canThrow(SubStmt)); 1002 if (R == CT_Can) 1003 break; 1004 } 1005 return R; 1006 } 1007 1008 CanThrowResult Sema::canCalleeThrow(Sema &S, const Expr *E, const Decl *D, 1009 SourceLocation Loc) { 1010 // As an extension, we assume that __attribute__((nothrow)) functions don't 1011 // throw. 1012 if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) 1013 return CT_Cannot; 1014 1015 QualType T; 1016 1017 // In C++1z, just look at the function type of the callee. 1018 if (S.getLangOpts().CPlusPlus17 && E && isa<CallExpr>(E)) { 1019 E = cast<CallExpr>(E)->getCallee(); 1020 T = E->getType(); 1021 if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1022 // Sadly we don't preserve the actual type as part of the "bound member" 1023 // placeholder, so we need to reconstruct it. 1024 E = E->IgnoreParenImpCasts(); 1025 1026 // Could be a call to a pointer-to-member or a plain member access. 1027 if (auto *Op = dyn_cast<BinaryOperator>(E)) { 1028 assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI); 1029 T = Op->getRHS()->getType() 1030 ->castAs<MemberPointerType>()->getPointeeType(); 1031 } else { 1032 T = cast<MemberExpr>(E)->getMemberDecl()->getType(); 1033 } 1034 } 1035 } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D)) 1036 T = VD->getType(); 1037 else 1038 // If we have no clue what we're calling, assume the worst. 1039 return CT_Can; 1040 1041 const FunctionProtoType *FT; 1042 if ((FT = T->getAs<FunctionProtoType>())) { 1043 } else if (const PointerType *PT = T->getAs<PointerType>()) 1044 FT = PT->getPointeeType()->getAs<FunctionProtoType>(); 1045 else if (const ReferenceType *RT = T->getAs<ReferenceType>()) 1046 FT = RT->getPointeeType()->getAs<FunctionProtoType>(); 1047 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) 1048 FT = MT->getPointeeType()->getAs<FunctionProtoType>(); 1049 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) 1050 FT = BT->getPointeeType()->getAs<FunctionProtoType>(); 1051 1052 if (!FT) 1053 return CT_Can; 1054 1055 if (Loc.isValid() || (Loc.isInvalid() && E)) 1056 FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT); 1057 if (!FT) 1058 return CT_Can; 1059 1060 return FT->canThrow(); 1061 } 1062 1063 static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) { 1064 CanThrowResult CT = CT_Cannot; 1065 1066 // Initialization might throw. 1067 if (!VD->isUsableInConstantExpressions(Self.Context)) 1068 if (const Expr *Init = VD->getInit()) 1069 CT = mergeCanThrow(CT, Self.canThrow(Init)); 1070 1071 // Destructor might throw. 1072 if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) { 1073 if (auto *RD = 1074 VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) { 1075 if (auto *Dtor = RD->getDestructor()) { 1076 CT = mergeCanThrow( 1077 CT, Sema::canCalleeThrow(Self, nullptr, Dtor, VD->getLocation())); 1078 } 1079 } 1080 } 1081 1082 // If this is a decomposition declaration, bindings might throw. 1083 if (auto *DD = dyn_cast<DecompositionDecl>(VD)) 1084 for (auto *B : DD->bindings()) 1085 if (auto *HD = B->getHoldingVar()) 1086 CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD)); 1087 1088 return CT; 1089 } 1090 1091 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) { 1092 if (DC->isTypeDependent()) 1093 return CT_Dependent; 1094 1095 if (!DC->getTypeAsWritten()->isReferenceType()) 1096 return CT_Cannot; 1097 1098 if (DC->getSubExpr()->isTypeDependent()) 1099 return CT_Dependent; 1100 1101 return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot; 1102 } 1103 1104 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) { 1105 if (DC->isTypeOperand()) 1106 return CT_Cannot; 1107 1108 Expr *Op = DC->getExprOperand(); 1109 if (Op->isTypeDependent()) 1110 return CT_Dependent; 1111 1112 const RecordType *RT = Op->getType()->getAs<RecordType>(); 1113 if (!RT) 1114 return CT_Cannot; 1115 1116 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic()) 1117 return CT_Cannot; 1118 1119 if (Op->Classify(S.Context).isPRValue()) 1120 return CT_Cannot; 1121 1122 return CT_Can; 1123 } 1124 1125 CanThrowResult Sema::canThrow(const Stmt *S) { 1126 // C++ [expr.unary.noexcept]p3: 1127 // [Can throw] if in a potentially-evaluated context the expression would 1128 // contain: 1129 switch (S->getStmtClass()) { 1130 case Expr::ConstantExprClass: 1131 return canThrow(cast<ConstantExpr>(S)->getSubExpr()); 1132 1133 case Expr::CXXThrowExprClass: 1134 // - a potentially evaluated throw-expression 1135 return CT_Can; 1136 1137 case Expr::CXXDynamicCastExprClass: { 1138 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), 1139 // where T is a reference type, that requires a run-time check 1140 auto *CE = cast<CXXDynamicCastExpr>(S); 1141 // FIXME: Properly determine whether a variably-modified type can throw. 1142 if (CE->getType()->isVariablyModifiedType()) 1143 return CT_Can; 1144 CanThrowResult CT = canDynamicCastThrow(CE); 1145 if (CT == CT_Can) 1146 return CT; 1147 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1148 } 1149 1150 case Expr::CXXTypeidExprClass: 1151 // - a potentially evaluated typeid expression applied to a glvalue 1152 // expression whose type is a polymorphic class type 1153 return canTypeidThrow(*this, cast<CXXTypeidExpr>(S)); 1154 1155 // - a potentially evaluated call to a function, member function, function 1156 // pointer, or member function pointer that does not have a non-throwing 1157 // exception-specification 1158 case Expr::CallExprClass: 1159 case Expr::CXXMemberCallExprClass: 1160 case Expr::CXXOperatorCallExprClass: 1161 case Expr::UserDefinedLiteralClass: { 1162 const CallExpr *CE = cast<CallExpr>(S); 1163 CanThrowResult CT; 1164 if (CE->isTypeDependent()) 1165 CT = CT_Dependent; 1166 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) 1167 CT = CT_Cannot; 1168 else 1169 CT = canCalleeThrow(*this, CE, CE->getCalleeDecl()); 1170 if (CT == CT_Can) 1171 return CT; 1172 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1173 } 1174 1175 case Expr::CXXConstructExprClass: 1176 case Expr::CXXTemporaryObjectExprClass: { 1177 auto *CE = cast<CXXConstructExpr>(S); 1178 // FIXME: Properly determine whether a variably-modified type can throw. 1179 if (CE->getType()->isVariablyModifiedType()) 1180 return CT_Can; 1181 CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor()); 1182 if (CT == CT_Can) 1183 return CT; 1184 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1185 } 1186 1187 case Expr::CXXInheritedCtorInitExprClass: { 1188 auto *ICIE = cast<CXXInheritedCtorInitExpr>(S); 1189 return canCalleeThrow(*this, ICIE, ICIE->getConstructor()); 1190 } 1191 1192 case Expr::LambdaExprClass: { 1193 const LambdaExpr *Lambda = cast<LambdaExpr>(S); 1194 CanThrowResult CT = CT_Cannot; 1195 for (LambdaExpr::const_capture_init_iterator 1196 Cap = Lambda->capture_init_begin(), 1197 CapEnd = Lambda->capture_init_end(); 1198 Cap != CapEnd; ++Cap) 1199 CT = mergeCanThrow(CT, canThrow(*Cap)); 1200 return CT; 1201 } 1202 1203 case Expr::CXXNewExprClass: { 1204 auto *NE = cast<CXXNewExpr>(S); 1205 CanThrowResult CT; 1206 if (NE->isTypeDependent()) 1207 CT = CT_Dependent; 1208 else 1209 CT = canCalleeThrow(*this, NE, NE->getOperatorNew()); 1210 if (CT == CT_Can) 1211 return CT; 1212 return mergeCanThrow(CT, canSubStmtsThrow(*this, NE)); 1213 } 1214 1215 case Expr::CXXDeleteExprClass: { 1216 auto *DE = cast<CXXDeleteExpr>(S); 1217 CanThrowResult CT; 1218 QualType DTy = DE->getDestroyedType(); 1219 if (DTy.isNull() || DTy->isDependentType()) { 1220 CT = CT_Dependent; 1221 } else { 1222 CT = canCalleeThrow(*this, DE, DE->getOperatorDelete()); 1223 if (const RecordType *RT = DTy->getAs<RecordType>()) { 1224 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1225 const CXXDestructorDecl *DD = RD->getDestructor(); 1226 if (DD) 1227 CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD)); 1228 } 1229 if (CT == CT_Can) 1230 return CT; 1231 } 1232 return mergeCanThrow(CT, canSubStmtsThrow(*this, DE)); 1233 } 1234 1235 case Expr::CXXBindTemporaryExprClass: { 1236 auto *BTE = cast<CXXBindTemporaryExpr>(S); 1237 // The bound temporary has to be destroyed again, which might throw. 1238 CanThrowResult CT = 1239 canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor()); 1240 if (CT == CT_Can) 1241 return CT; 1242 return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE)); 1243 } 1244 1245 case Expr::PseudoObjectExprClass: { 1246 auto *POE = cast<PseudoObjectExpr>(S); 1247 CanThrowResult CT = CT_Cannot; 1248 for (const Expr *E : POE->semantics()) { 1249 CT = mergeCanThrow(CT, canThrow(E)); 1250 if (CT == CT_Can) 1251 break; 1252 } 1253 return CT; 1254 } 1255 1256 // ObjC message sends are like function calls, but never have exception 1257 // specs. 1258 case Expr::ObjCMessageExprClass: 1259 case Expr::ObjCPropertyRefExprClass: 1260 case Expr::ObjCSubscriptRefExprClass: 1261 return CT_Can; 1262 1263 // All the ObjC literals that are implemented as calls are 1264 // potentially throwing unless we decide to close off that 1265 // possibility. 1266 case Expr::ObjCArrayLiteralClass: 1267 case Expr::ObjCDictionaryLiteralClass: 1268 case Expr::ObjCBoxedExprClass: 1269 return CT_Can; 1270 1271 // Many other things have subexpressions, so we have to test those. 1272 // Some are simple: 1273 case Expr::CoawaitExprClass: 1274 case Expr::ConditionalOperatorClass: 1275 case Expr::CoyieldExprClass: 1276 case Expr::CXXRewrittenBinaryOperatorClass: 1277 case Expr::CXXStdInitializerListExprClass: 1278 case Expr::DesignatedInitExprClass: 1279 case Expr::DesignatedInitUpdateExprClass: 1280 case Expr::ExprWithCleanupsClass: 1281 case Expr::ExtVectorElementExprClass: 1282 case Expr::InitListExprClass: 1283 case Expr::ArrayInitLoopExprClass: 1284 case Expr::MemberExprClass: 1285 case Expr::ObjCIsaExprClass: 1286 case Expr::ObjCIvarRefExprClass: 1287 case Expr::ParenExprClass: 1288 case Expr::ParenListExprClass: 1289 case Expr::ShuffleVectorExprClass: 1290 case Expr::StmtExprClass: 1291 case Expr::ConvertVectorExprClass: 1292 case Expr::VAArgExprClass: 1293 case Expr::CXXParenListInitExprClass: 1294 return canSubStmtsThrow(*this, S); 1295 1296 case Expr::CompoundLiteralExprClass: 1297 case Expr::CXXConstCastExprClass: 1298 case Expr::CXXAddrspaceCastExprClass: 1299 case Expr::CXXReinterpretCastExprClass: 1300 case Expr::BuiltinBitCastExprClass: 1301 // FIXME: Properly determine whether a variably-modified type can throw. 1302 if (cast<Expr>(S)->getType()->isVariablyModifiedType()) 1303 return CT_Can; 1304 return canSubStmtsThrow(*this, S); 1305 1306 // Some might be dependent for other reasons. 1307 case Expr::ArraySubscriptExprClass: 1308 case Expr::MatrixSubscriptExprClass: 1309 case Expr::OMPArraySectionExprClass: 1310 case Expr::OMPArrayShapingExprClass: 1311 case Expr::OMPIteratorExprClass: 1312 case Expr::BinaryOperatorClass: 1313 case Expr::DependentCoawaitExprClass: 1314 case Expr::CompoundAssignOperatorClass: 1315 case Expr::CStyleCastExprClass: 1316 case Expr::CXXStaticCastExprClass: 1317 case Expr::CXXFunctionalCastExprClass: 1318 case Expr::ImplicitCastExprClass: 1319 case Expr::MaterializeTemporaryExprClass: 1320 case Expr::UnaryOperatorClass: { 1321 // FIXME: Properly determine whether a variably-modified type can throw. 1322 if (auto *CE = dyn_cast<CastExpr>(S)) 1323 if (CE->getType()->isVariablyModifiedType()) 1324 return CT_Can; 1325 CanThrowResult CT = 1326 cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot; 1327 return mergeCanThrow(CT, canSubStmtsThrow(*this, S)); 1328 } 1329 1330 case Expr::CXXDefaultArgExprClass: 1331 return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr()); 1332 1333 case Expr::CXXDefaultInitExprClass: 1334 return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr()); 1335 1336 case Expr::ChooseExprClass: { 1337 auto *CE = cast<ChooseExpr>(S); 1338 if (CE->isTypeDependent() || CE->isValueDependent()) 1339 return CT_Dependent; 1340 return canThrow(CE->getChosenSubExpr()); 1341 } 1342 1343 case Expr::GenericSelectionExprClass: 1344 if (cast<GenericSelectionExpr>(S)->isResultDependent()) 1345 return CT_Dependent; 1346 return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr()); 1347 1348 // Some expressions are always dependent. 1349 case Expr::CXXDependentScopeMemberExprClass: 1350 case Expr::CXXUnresolvedConstructExprClass: 1351 case Expr::DependentScopeDeclRefExprClass: 1352 case Expr::CXXFoldExprClass: 1353 case Expr::RecoveryExprClass: 1354 return CT_Dependent; 1355 1356 case Expr::AsTypeExprClass: 1357 case Expr::BinaryConditionalOperatorClass: 1358 case Expr::BlockExprClass: 1359 case Expr::CUDAKernelCallExprClass: 1360 case Expr::DeclRefExprClass: 1361 case Expr::ObjCBridgedCastExprClass: 1362 case Expr::ObjCIndirectCopyRestoreExprClass: 1363 case Expr::ObjCProtocolExprClass: 1364 case Expr::ObjCSelectorExprClass: 1365 case Expr::ObjCAvailabilityCheckExprClass: 1366 case Expr::OffsetOfExprClass: 1367 case Expr::PackExpansionExprClass: 1368 case Expr::SubstNonTypeTemplateParmExprClass: 1369 case Expr::SubstNonTypeTemplateParmPackExprClass: 1370 case Expr::FunctionParmPackExprClass: 1371 case Expr::UnaryExprOrTypeTraitExprClass: 1372 case Expr::UnresolvedLookupExprClass: 1373 case Expr::UnresolvedMemberExprClass: 1374 case Expr::TypoExprClass: 1375 // FIXME: Many of the above can throw. 1376 return CT_Cannot; 1377 1378 case Expr::AddrLabelExprClass: 1379 case Expr::ArrayTypeTraitExprClass: 1380 case Expr::AtomicExprClass: 1381 case Expr::TypeTraitExprClass: 1382 case Expr::CXXBoolLiteralExprClass: 1383 case Expr::CXXNoexceptExprClass: 1384 case Expr::CXXNullPtrLiteralExprClass: 1385 case Expr::CXXPseudoDestructorExprClass: 1386 case Expr::CXXScalarValueInitExprClass: 1387 case Expr::CXXThisExprClass: 1388 case Expr::CXXUuidofExprClass: 1389 case Expr::CharacterLiteralClass: 1390 case Expr::ExpressionTraitExprClass: 1391 case Expr::FloatingLiteralClass: 1392 case Expr::GNUNullExprClass: 1393 case Expr::ImaginaryLiteralClass: 1394 case Expr::ImplicitValueInitExprClass: 1395 case Expr::IntegerLiteralClass: 1396 case Expr::FixedPointLiteralClass: 1397 case Expr::ArrayInitIndexExprClass: 1398 case Expr::NoInitExprClass: 1399 case Expr::ObjCEncodeExprClass: 1400 case Expr::ObjCStringLiteralClass: 1401 case Expr::ObjCBoolLiteralExprClass: 1402 case Expr::OpaqueValueExprClass: 1403 case Expr::PredefinedExprClass: 1404 case Expr::SizeOfPackExprClass: 1405 case Expr::StringLiteralClass: 1406 case Expr::SourceLocExprClass: 1407 case Expr::ConceptSpecializationExprClass: 1408 case Expr::RequiresExprClass: 1409 // These expressions can never throw. 1410 return CT_Cannot; 1411 1412 case Expr::MSPropertyRefExprClass: 1413 case Expr::MSPropertySubscriptExprClass: 1414 llvm_unreachable("Invalid class for expression"); 1415 1416 // Most statements can throw if any substatement can throw. 1417 case Stmt::AttributedStmtClass: 1418 case Stmt::BreakStmtClass: 1419 case Stmt::CapturedStmtClass: 1420 case Stmt::CaseStmtClass: 1421 case Stmt::CompoundStmtClass: 1422 case Stmt::ContinueStmtClass: 1423 case Stmt::CoreturnStmtClass: 1424 case Stmt::CoroutineBodyStmtClass: 1425 case Stmt::CXXCatchStmtClass: 1426 case Stmt::CXXForRangeStmtClass: 1427 case Stmt::DefaultStmtClass: 1428 case Stmt::DoStmtClass: 1429 case Stmt::ForStmtClass: 1430 case Stmt::GCCAsmStmtClass: 1431 case Stmt::GotoStmtClass: 1432 case Stmt::IndirectGotoStmtClass: 1433 case Stmt::LabelStmtClass: 1434 case Stmt::MSAsmStmtClass: 1435 case Stmt::MSDependentExistsStmtClass: 1436 case Stmt::NullStmtClass: 1437 case Stmt::ObjCAtCatchStmtClass: 1438 case Stmt::ObjCAtFinallyStmtClass: 1439 case Stmt::ObjCAtSynchronizedStmtClass: 1440 case Stmt::ObjCAutoreleasePoolStmtClass: 1441 case Stmt::ObjCForCollectionStmtClass: 1442 case Stmt::OMPAtomicDirectiveClass: 1443 case Stmt::OMPBarrierDirectiveClass: 1444 case Stmt::OMPCancelDirectiveClass: 1445 case Stmt::OMPCancellationPointDirectiveClass: 1446 case Stmt::OMPCriticalDirectiveClass: 1447 case Stmt::OMPDistributeDirectiveClass: 1448 case Stmt::OMPDistributeParallelForDirectiveClass: 1449 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 1450 case Stmt::OMPDistributeSimdDirectiveClass: 1451 case Stmt::OMPFlushDirectiveClass: 1452 case Stmt::OMPDepobjDirectiveClass: 1453 case Stmt::OMPScanDirectiveClass: 1454 case Stmt::OMPForDirectiveClass: 1455 case Stmt::OMPForSimdDirectiveClass: 1456 case Stmt::OMPMasterDirectiveClass: 1457 case Stmt::OMPMasterTaskLoopDirectiveClass: 1458 case Stmt::OMPMaskedTaskLoopDirectiveClass: 1459 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 1460 case Stmt::OMPMaskedTaskLoopSimdDirectiveClass: 1461 case Stmt::OMPOrderedDirectiveClass: 1462 case Stmt::OMPCanonicalLoopClass: 1463 case Stmt::OMPParallelDirectiveClass: 1464 case Stmt::OMPParallelForDirectiveClass: 1465 case Stmt::OMPParallelForSimdDirectiveClass: 1466 case Stmt::OMPParallelMasterDirectiveClass: 1467 case Stmt::OMPParallelMaskedDirectiveClass: 1468 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 1469 case Stmt::OMPParallelMaskedTaskLoopDirectiveClass: 1470 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 1471 case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass: 1472 case Stmt::OMPParallelSectionsDirectiveClass: 1473 case Stmt::OMPSectionDirectiveClass: 1474 case Stmt::OMPSectionsDirectiveClass: 1475 case Stmt::OMPSimdDirectiveClass: 1476 case Stmt::OMPTileDirectiveClass: 1477 case Stmt::OMPUnrollDirectiveClass: 1478 case Stmt::OMPSingleDirectiveClass: 1479 case Stmt::OMPTargetDataDirectiveClass: 1480 case Stmt::OMPTargetDirectiveClass: 1481 case Stmt::OMPTargetEnterDataDirectiveClass: 1482 case Stmt::OMPTargetExitDataDirectiveClass: 1483 case Stmt::OMPTargetParallelDirectiveClass: 1484 case Stmt::OMPTargetParallelForDirectiveClass: 1485 case Stmt::OMPTargetParallelForSimdDirectiveClass: 1486 case Stmt::OMPTargetSimdDirectiveClass: 1487 case Stmt::OMPTargetTeamsDirectiveClass: 1488 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 1489 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 1490 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 1491 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 1492 case Stmt::OMPTargetUpdateDirectiveClass: 1493 case Stmt::OMPTaskDirectiveClass: 1494 case Stmt::OMPTaskgroupDirectiveClass: 1495 case Stmt::OMPTaskLoopDirectiveClass: 1496 case Stmt::OMPTaskLoopSimdDirectiveClass: 1497 case Stmt::OMPTaskwaitDirectiveClass: 1498 case Stmt::OMPTaskyieldDirectiveClass: 1499 case Stmt::OMPErrorDirectiveClass: 1500 case Stmt::OMPTeamsDirectiveClass: 1501 case Stmt::OMPTeamsDistributeDirectiveClass: 1502 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 1503 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 1504 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 1505 case Stmt::OMPInteropDirectiveClass: 1506 case Stmt::OMPDispatchDirectiveClass: 1507 case Stmt::OMPMaskedDirectiveClass: 1508 case Stmt::OMPMetaDirectiveClass: 1509 case Stmt::OMPGenericLoopDirectiveClass: 1510 case Stmt::OMPTeamsGenericLoopDirectiveClass: 1511 case Stmt::OMPTargetTeamsGenericLoopDirectiveClass: 1512 case Stmt::OMPParallelGenericLoopDirectiveClass: 1513 case Stmt::OMPTargetParallelGenericLoopDirectiveClass: 1514 case Stmt::ReturnStmtClass: 1515 case Stmt::SEHExceptStmtClass: 1516 case Stmt::SEHFinallyStmtClass: 1517 case Stmt::SEHLeaveStmtClass: 1518 case Stmt::SEHTryStmtClass: 1519 case Stmt::SwitchStmtClass: 1520 case Stmt::WhileStmtClass: 1521 return canSubStmtsThrow(*this, S); 1522 1523 case Stmt::DeclStmtClass: { 1524 CanThrowResult CT = CT_Cannot; 1525 for (const Decl *D : cast<DeclStmt>(S)->decls()) { 1526 if (auto *VD = dyn_cast<VarDecl>(D)) 1527 CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD)); 1528 1529 // FIXME: Properly determine whether a variably-modified type can throw. 1530 if (auto *TND = dyn_cast<TypedefNameDecl>(D)) 1531 if (TND->getUnderlyingType()->isVariablyModifiedType()) 1532 return CT_Can; 1533 if (auto *VD = dyn_cast<ValueDecl>(D)) 1534 if (VD->getType()->isVariablyModifiedType()) 1535 return CT_Can; 1536 } 1537 return CT; 1538 } 1539 1540 case Stmt::IfStmtClass: { 1541 auto *IS = cast<IfStmt>(S); 1542 CanThrowResult CT = CT_Cannot; 1543 if (const Stmt *Init = IS->getInit()) 1544 CT = mergeCanThrow(CT, canThrow(Init)); 1545 if (const Stmt *CondDS = IS->getConditionVariableDeclStmt()) 1546 CT = mergeCanThrow(CT, canThrow(CondDS)); 1547 CT = mergeCanThrow(CT, canThrow(IS->getCond())); 1548 1549 // For 'if constexpr', consider only the non-discarded case. 1550 // FIXME: We should add a DiscardedStmt marker to the AST. 1551 if (std::optional<const Stmt *> Case = IS->getNondiscardedCase(Context)) 1552 return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT; 1553 1554 CanThrowResult Then = canThrow(IS->getThen()); 1555 CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot; 1556 if (Then == Else) 1557 return mergeCanThrow(CT, Then); 1558 1559 // For a dependent 'if constexpr', the result is dependent if it depends on 1560 // the value of the condition. 1561 return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent 1562 : mergeCanThrow(Then, Else)); 1563 } 1564 1565 case Stmt::CXXTryStmtClass: { 1566 auto *TS = cast<CXXTryStmt>(S); 1567 // try /*...*/ catch (...) { H } can throw only if H can throw. 1568 // Any other try-catch can throw if any substatement can throw. 1569 const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1); 1570 if (!FinalHandler->getExceptionDecl()) 1571 return canThrow(FinalHandler->getHandlerBlock()); 1572 return canSubStmtsThrow(*this, S); 1573 } 1574 1575 case Stmt::ObjCAtThrowStmtClass: 1576 return CT_Can; 1577 1578 case Stmt::ObjCAtTryStmtClass: { 1579 auto *TS = cast<ObjCAtTryStmt>(S); 1580 1581 // @catch(...) need not be last in Objective-C. Walk backwards until we 1582 // see one or hit the @try. 1583 CanThrowResult CT = CT_Cannot; 1584 if (const Stmt *Finally = TS->getFinallyStmt()) 1585 CT = mergeCanThrow(CT, canThrow(Finally)); 1586 for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) { 1587 const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1); 1588 CT = mergeCanThrow(CT, canThrow(Catch)); 1589 // If we reach a @catch(...), no earlier exceptions can escape. 1590 if (Catch->hasEllipsis()) 1591 return CT; 1592 } 1593 1594 // Didn't find an @catch(...). Exceptions from the @try body can escape. 1595 return mergeCanThrow(CT, canThrow(TS->getTryBody())); 1596 } 1597 1598 case Stmt::SYCLUniqueStableNameExprClass: 1599 return CT_Cannot; 1600 case Stmt::NoStmtClass: 1601 llvm_unreachable("Invalid class for statement"); 1602 } 1603 llvm_unreachable("Bogus StmtClass"); 1604 } 1605 1606 } // end namespace clang 1607