1 //===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides Sema routines for C++ exception specification testing. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Sema/SemaInternal.h" 14 #include "clang/AST/ASTMutationListener.h" 15 #include "clang/AST/CXXInheritance.h" 16 #include "clang/AST/Expr.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/StmtObjC.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Basic/Diagnostic.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallString.h" 24 25 namespace clang { 26 27 static const FunctionProtoType *GetUnderlyingFunction(QualType T) 28 { 29 if (const PointerType *PtrTy = T->getAs<PointerType>()) 30 T = PtrTy->getPointeeType(); 31 else if (const ReferenceType *RefTy = T->getAs<ReferenceType>()) 32 T = RefTy->getPointeeType(); 33 else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) 34 T = MPTy->getPointeeType(); 35 return T->getAs<FunctionProtoType>(); 36 } 37 38 /// HACK: libstdc++ has a bug where it shadows std::swap with a member 39 /// swap function then tries to call std::swap unqualified from the exception 40 /// specification of that function. This function detects whether we're in 41 /// such a case and turns off delay-parsing of exception specifications. 42 bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) { 43 auto *RD = dyn_cast<CXXRecordDecl>(CurContext); 44 45 // All the problem cases are member functions named "swap" within class 46 // templates declared directly within namespace std or std::__debug or 47 // std::__profile. 48 if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() || 49 !D.getIdentifier() || !D.getIdentifier()->isStr("swap")) 50 return false; 51 52 auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext()); 53 if (!ND) 54 return false; 55 56 bool IsInStd = ND->isStdNamespace(); 57 if (!IsInStd) { 58 // This isn't a direct member of namespace std, but it might still be 59 // libstdc++'s std::__debug::array or std::__profile::array. 60 IdentifierInfo *II = ND->getIdentifier(); 61 if (!II || !(II->isStr("__debug") || II->isStr("__profile")) || 62 !ND->isInStdNamespace()) 63 return false; 64 } 65 66 // Only apply this hack within a system header. 67 if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc())) 68 return false; 69 70 return llvm::StringSwitch<bool>(RD->getIdentifier()->getName()) 71 .Case("array", true) 72 .Case("pair", IsInStd) 73 .Case("priority_queue", IsInStd) 74 .Case("stack", IsInStd) 75 .Case("queue", IsInStd) 76 .Default(false); 77 } 78 79 ExprResult Sema::ActOnNoexceptSpec(SourceLocation NoexceptLoc, 80 Expr *NoexceptExpr, 81 ExceptionSpecificationType &EST) { 82 // FIXME: This is bogus, a noexcept expression is not a condition. 83 ExprResult Converted = CheckBooleanCondition(NoexceptLoc, NoexceptExpr); 84 if (Converted.isInvalid()) { 85 EST = EST_NoexceptFalse; 86 87 // Fill in an expression of 'false' as a fixup. 88 auto *BoolExpr = new (Context) 89 CXXBoolLiteralExpr(false, Context.BoolTy, NoexceptExpr->getBeginLoc()); 90 llvm::APSInt Value{1}; 91 Value = 0; 92 return ConstantExpr::Create(Context, BoolExpr, APValue{Value}); 93 } 94 95 if (Converted.get()->isValueDependent()) { 96 EST = EST_DependentNoexcept; 97 return Converted; 98 } 99 100 llvm::APSInt Result; 101 Converted = VerifyIntegerConstantExpression( 102 Converted.get(), &Result, 103 diag::err_noexcept_needs_constant_expression, 104 /*AllowFold*/ false); 105 if (!Converted.isInvalid()) 106 EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue; 107 return Converted; 108 } 109 110 /// CheckSpecifiedExceptionType - Check if the given type is valid in an 111 /// exception specification. Incomplete types, or pointers to incomplete types 112 /// other than void are not allowed. 113 /// 114 /// \param[in,out] T The exception type. This will be decayed to a pointer type 115 /// when the input is an array or a function type. 116 bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) { 117 // C++11 [except.spec]p2: 118 // A type cv T, "array of T", or "function returning T" denoted 119 // in an exception-specification is adjusted to type T, "pointer to T", or 120 // "pointer to function returning T", respectively. 121 // 122 // We also apply this rule in C++98. 123 if (T->isArrayType()) 124 T = Context.getArrayDecayedType(T); 125 else if (T->isFunctionType()) 126 T = Context.getPointerType(T); 127 128 int Kind = 0; 129 QualType PointeeT = T; 130 if (const PointerType *PT = T->getAs<PointerType>()) { 131 PointeeT = PT->getPointeeType(); 132 Kind = 1; 133 134 // cv void* is explicitly permitted, despite being a pointer to an 135 // incomplete type. 136 if (PointeeT->isVoidType()) 137 return false; 138 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { 139 PointeeT = RT->getPointeeType(); 140 Kind = 2; 141 142 if (RT->isRValueReferenceType()) { 143 // C++11 [except.spec]p2: 144 // A type denoted in an exception-specification shall not denote [...] 145 // an rvalue reference type. 146 Diag(Range.getBegin(), diag::err_rref_in_exception_spec) 147 << T << Range; 148 return true; 149 } 150 } 151 152 // C++11 [except.spec]p2: 153 // A type denoted in an exception-specification shall not denote an 154 // incomplete type other than a class currently being defined [...]. 155 // A type denoted in an exception-specification shall not denote a 156 // pointer or reference to an incomplete type, other than (cv) void* or a 157 // pointer or reference to a class currently being defined. 158 // In Microsoft mode, downgrade this to a warning. 159 unsigned DiagID = diag::err_incomplete_in_exception_spec; 160 bool ReturnValueOnError = true; 161 if (getLangOpts().MSVCCompat) { 162 DiagID = diag::ext_incomplete_in_exception_spec; 163 ReturnValueOnError = false; 164 } 165 if (!(PointeeT->isRecordType() && 166 PointeeT->castAs<RecordType>()->isBeingDefined()) && 167 RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range)) 168 return ReturnValueOnError; 169 170 return false; 171 } 172 173 /// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer 174 /// to member to a function with an exception specification. This means that 175 /// it is invalid to add another level of indirection. 176 bool Sema::CheckDistantExceptionSpec(QualType T) { 177 // C++17 removes this rule in favor of putting exception specifications into 178 // the type system. 179 if (getLangOpts().CPlusPlus17) 180 return false; 181 182 if (const PointerType *PT = T->getAs<PointerType>()) 183 T = PT->getPointeeType(); 184 else if (const MemberPointerType *PT = T->getAs<MemberPointerType>()) 185 T = PT->getPointeeType(); 186 else 187 return false; 188 189 const FunctionProtoType *FnT = T->getAs<FunctionProtoType>(); 190 if (!FnT) 191 return false; 192 193 return FnT->hasExceptionSpec(); 194 } 195 196 const FunctionProtoType * 197 Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) { 198 if (FPT->getExceptionSpecType() == EST_Unparsed) { 199 Diag(Loc, diag::err_exception_spec_not_parsed); 200 return nullptr; 201 } 202 203 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) 204 return FPT; 205 206 FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl(); 207 const FunctionProtoType *SourceFPT = 208 SourceDecl->getType()->castAs<FunctionProtoType>(); 209 210 // If the exception specification has already been resolved, just return it. 211 if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType())) 212 return SourceFPT; 213 214 // Compute or instantiate the exception specification now. 215 if (SourceFPT->getExceptionSpecType() == EST_Unevaluated) 216 EvaluateImplicitExceptionSpec(Loc, SourceDecl); 217 else 218 InstantiateExceptionSpec(Loc, SourceDecl); 219 220 const FunctionProtoType *Proto = 221 SourceDecl->getType()->castAs<FunctionProtoType>(); 222 if (Proto->getExceptionSpecType() == clang::EST_Unparsed) { 223 Diag(Loc, diag::err_exception_spec_not_parsed); 224 Proto = nullptr; 225 } 226 return Proto; 227 } 228 229 void 230 Sema::UpdateExceptionSpec(FunctionDecl *FD, 231 const FunctionProtoType::ExceptionSpecInfo &ESI) { 232 // If we've fully resolved the exception specification, notify listeners. 233 if (!isUnresolvedExceptionSpec(ESI.Type)) 234 if (auto *Listener = getASTMutationListener()) 235 Listener->ResolvedExceptionSpec(FD); 236 237 for (FunctionDecl *Redecl : FD->redecls()) 238 Context.adjustExceptionSpec(Redecl, ESI); 239 } 240 241 static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) { 242 auto *MD = dyn_cast<CXXMethodDecl>(FD); 243 if (!MD) 244 return false; 245 246 auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType(); 247 return EST == EST_Unparsed || 248 (EST == EST_Unevaluated && MD->getParent()->isBeingDefined()); 249 } 250 251 static bool CheckEquivalentExceptionSpecImpl( 252 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 253 const FunctionProtoType *Old, SourceLocation OldLoc, 254 const FunctionProtoType *New, SourceLocation NewLoc, 255 bool *MissingExceptionSpecification = nullptr, 256 bool *MissingEmptyExceptionSpecification = nullptr, 257 bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false); 258 259 /// Determine whether a function has an implicitly-generated exception 260 /// specification. 261 static bool hasImplicitExceptionSpec(FunctionDecl *Decl) { 262 if (!isa<CXXDestructorDecl>(Decl) && 263 Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete && 264 Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete) 265 return false; 266 267 // For a function that the user didn't declare: 268 // - if this is a destructor, its exception specification is implicit. 269 // - if this is 'operator delete' or 'operator delete[]', the exception 270 // specification is as-if an explicit exception specification was given 271 // (per [basic.stc.dynamic]p2). 272 if (!Decl->getTypeSourceInfo()) 273 return isa<CXXDestructorDecl>(Decl); 274 275 auto *Ty = Decl->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>(); 276 return !Ty->hasExceptionSpec(); 277 } 278 279 bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) { 280 // Just completely ignore this under -fno-exceptions prior to C++17. 281 // In C++17 onwards, the exception specification is part of the type and 282 // we will diagnose mismatches anyway, so it's better to check for them here. 283 if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17) 284 return false; 285 286 OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator(); 287 bool IsOperatorNew = OO == OO_New || OO == OO_Array_New; 288 bool MissingExceptionSpecification = false; 289 bool MissingEmptyExceptionSpecification = false; 290 291 unsigned DiagID = diag::err_mismatched_exception_spec; 292 bool ReturnValueOnError = true; 293 if (getLangOpts().MSVCCompat) { 294 DiagID = diag::ext_mismatched_exception_spec; 295 ReturnValueOnError = false; 296 } 297 298 // If we're befriending a member function of a class that's currently being 299 // defined, we might not be able to work out its exception specification yet. 300 // If not, defer the check until later. 301 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) { 302 DelayedEquivalentExceptionSpecChecks.push_back({New, Old}); 303 return false; 304 } 305 306 // Check the types as written: they must match before any exception 307 // specification adjustment is applied. 308 if (!CheckEquivalentExceptionSpecImpl( 309 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 310 Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(), 311 New->getType()->getAs<FunctionProtoType>(), New->getLocation(), 312 &MissingExceptionSpecification, &MissingEmptyExceptionSpecification, 313 /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) { 314 // C++11 [except.spec]p4 [DR1492]: 315 // If a declaration of a function has an implicit 316 // exception-specification, other declarations of the function shall 317 // not specify an exception-specification. 318 if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions && 319 hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) { 320 Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch) 321 << hasImplicitExceptionSpec(Old); 322 if (Old->getLocation().isValid()) 323 Diag(Old->getLocation(), diag::note_previous_declaration); 324 } 325 return false; 326 } 327 328 // The failure was something other than an missing exception 329 // specification; return an error, except in MS mode where this is a warning. 330 if (!MissingExceptionSpecification) 331 return ReturnValueOnError; 332 333 const FunctionProtoType *NewProto = 334 New->getType()->castAs<FunctionProtoType>(); 335 336 // The new function declaration is only missing an empty exception 337 // specification "throw()". If the throw() specification came from a 338 // function in a system header that has C linkage, just add an empty 339 // exception specification to the "new" declaration. Note that C library 340 // implementations are permitted to add these nothrow exception 341 // specifications. 342 // 343 // Likewise if the old function is a builtin. 344 if (MissingEmptyExceptionSpecification && NewProto && 345 (Old->getLocation().isInvalid() || 346 Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 347 Old->getBuiltinID()) && 348 Old->isExternC()) { 349 New->setType(Context.getFunctionType( 350 NewProto->getReturnType(), NewProto->getParamTypes(), 351 NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone))); 352 return false; 353 } 354 355 const FunctionProtoType *OldProto = 356 Old->getType()->castAs<FunctionProtoType>(); 357 358 FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType(); 359 if (ESI.Type == EST_Dynamic) { 360 // FIXME: What if the exceptions are described in terms of the old 361 // prototype's parameters? 362 ESI.Exceptions = OldProto->exceptions(); 363 } 364 365 if (ESI.Type == EST_NoexceptFalse) 366 ESI.Type = EST_None; 367 if (ESI.Type == EST_NoexceptTrue) 368 ESI.Type = EST_BasicNoexcept; 369 370 // For dependent noexcept, we can't just take the expression from the old 371 // prototype. It likely contains references to the old prototype's parameters. 372 if (ESI.Type == EST_DependentNoexcept) { 373 New->setInvalidDecl(); 374 } else { 375 // Update the type of the function with the appropriate exception 376 // specification. 377 New->setType(Context.getFunctionType( 378 NewProto->getReturnType(), NewProto->getParamTypes(), 379 NewProto->getExtProtoInfo().withExceptionSpec(ESI))); 380 } 381 382 if (getLangOpts().MSVCCompat && ESI.Type != EST_DependentNoexcept) { 383 // Allow missing exception specifications in redeclarations as an extension. 384 DiagID = diag::ext_ms_missing_exception_specification; 385 ReturnValueOnError = false; 386 } else if (New->isReplaceableGlobalAllocationFunction() && 387 ESI.Type != EST_DependentNoexcept) { 388 // Allow missing exception specifications in redeclarations as an extension, 389 // when declaring a replaceable global allocation function. 390 DiagID = diag::ext_missing_exception_specification; 391 ReturnValueOnError = false; 392 } else if (ESI.Type == EST_NoThrow) { 393 // Allow missing attribute 'nothrow' in redeclarations, since this is a very 394 // common omission. 395 DiagID = diag::ext_missing_exception_specification; 396 ReturnValueOnError = false; 397 } else { 398 DiagID = diag::err_missing_exception_specification; 399 ReturnValueOnError = true; 400 } 401 402 // Warn about the lack of exception specification. 403 SmallString<128> ExceptionSpecString; 404 llvm::raw_svector_ostream OS(ExceptionSpecString); 405 switch (OldProto->getExceptionSpecType()) { 406 case EST_DynamicNone: 407 OS << "throw()"; 408 break; 409 410 case EST_Dynamic: { 411 OS << "throw("; 412 bool OnFirstException = true; 413 for (const auto &E : OldProto->exceptions()) { 414 if (OnFirstException) 415 OnFirstException = false; 416 else 417 OS << ", "; 418 419 OS << E.getAsString(getPrintingPolicy()); 420 } 421 OS << ")"; 422 break; 423 } 424 425 case EST_BasicNoexcept: 426 OS << "noexcept"; 427 break; 428 429 case EST_DependentNoexcept: 430 case EST_NoexceptFalse: 431 case EST_NoexceptTrue: 432 OS << "noexcept("; 433 assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr"); 434 OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy()); 435 OS << ")"; 436 break; 437 case EST_NoThrow: 438 OS <<"__attribute__((nothrow))"; 439 break; 440 case EST_None: 441 case EST_MSAny: 442 case EST_Unevaluated: 443 case EST_Uninstantiated: 444 case EST_Unparsed: 445 llvm_unreachable("This spec type is compatible with none."); 446 } 447 448 SourceLocation FixItLoc; 449 if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) { 450 TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens(); 451 // FIXME: Preserve enough information so that we can produce a correct fixit 452 // location when there is a trailing return type. 453 if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>()) 454 if (!FTLoc.getTypePtr()->hasTrailingReturn()) 455 FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd()); 456 } 457 458 if (FixItLoc.isInvalid()) 459 Diag(New->getLocation(), DiagID) 460 << New << OS.str(); 461 else { 462 Diag(New->getLocation(), DiagID) 463 << New << OS.str() 464 << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str()); 465 } 466 467 if (Old->getLocation().isValid()) 468 Diag(Old->getLocation(), diag::note_previous_declaration); 469 470 return ReturnValueOnError; 471 } 472 473 /// CheckEquivalentExceptionSpec - Check if the two types have equivalent 474 /// exception specifications. Exception specifications are equivalent if 475 /// they allow exactly the same set of exception types. It does not matter how 476 /// that is achieved. See C++ [except.spec]p2. 477 bool Sema::CheckEquivalentExceptionSpec( 478 const FunctionProtoType *Old, SourceLocation OldLoc, 479 const FunctionProtoType *New, SourceLocation NewLoc) { 480 if (!getLangOpts().CXXExceptions) 481 return false; 482 483 unsigned DiagID = diag::err_mismatched_exception_spec; 484 if (getLangOpts().MSVCCompat) 485 DiagID = diag::ext_mismatched_exception_spec; 486 bool Result = CheckEquivalentExceptionSpecImpl( 487 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration), 488 Old, OldLoc, New, NewLoc); 489 490 // In Microsoft mode, mismatching exception specifications just cause a warning. 491 if (getLangOpts().MSVCCompat) 492 return false; 493 return Result; 494 } 495 496 /// CheckEquivalentExceptionSpec - Check if the two types have compatible 497 /// exception specifications. See C++ [except.spec]p3. 498 /// 499 /// \return \c false if the exception specifications match, \c true if there is 500 /// a problem. If \c true is returned, either a diagnostic has already been 501 /// produced or \c *MissingExceptionSpecification is set to \c true. 502 static bool CheckEquivalentExceptionSpecImpl( 503 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID, 504 const FunctionProtoType *Old, SourceLocation OldLoc, 505 const FunctionProtoType *New, SourceLocation NewLoc, 506 bool *MissingExceptionSpecification, 507 bool *MissingEmptyExceptionSpecification, 508 bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) { 509 if (MissingExceptionSpecification) 510 *MissingExceptionSpecification = false; 511 512 if (MissingEmptyExceptionSpecification) 513 *MissingEmptyExceptionSpecification = false; 514 515 Old = S.ResolveExceptionSpec(NewLoc, Old); 516 if (!Old) 517 return false; 518 New = S.ResolveExceptionSpec(NewLoc, New); 519 if (!New) 520 return false; 521 522 // C++0x [except.spec]p3: Two exception-specifications are compatible if: 523 // - both are non-throwing, regardless of their form, 524 // - both have the form noexcept(constant-expression) and the constant- 525 // expressions are equivalent, 526 // - both are dynamic-exception-specifications that have the same set of 527 // adjusted types. 528 // 529 // C++0x [except.spec]p12: An exception-specification is non-throwing if it is 530 // of the form throw(), noexcept, or noexcept(constant-expression) where the 531 // constant-expression yields true. 532 // 533 // C++0x [except.spec]p4: If any declaration of a function has an exception- 534 // specifier that is not a noexcept-specification allowing all exceptions, 535 // all declarations [...] of that function shall have a compatible 536 // exception-specification. 537 // 538 // That last point basically means that noexcept(false) matches no spec. 539 // It's considered when AllowNoexceptAllMatchWithNoSpec is true. 540 541 ExceptionSpecificationType OldEST = Old->getExceptionSpecType(); 542 ExceptionSpecificationType NewEST = New->getExceptionSpecType(); 543 544 assert(!isUnresolvedExceptionSpec(OldEST) && 545 !isUnresolvedExceptionSpec(NewEST) && 546 "Shouldn't see unknown exception specifications here"); 547 548 CanThrowResult OldCanThrow = Old->canThrow(); 549 CanThrowResult NewCanThrow = New->canThrow(); 550 551 // Any non-throwing specifications are compatible. 552 if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot) 553 return false; 554 555 // Any throws-anything specifications are usually compatible. 556 if (OldCanThrow == CT_Can && OldEST != EST_Dynamic && 557 NewCanThrow == CT_Can && NewEST != EST_Dynamic) { 558 // The exception is that the absence of an exception specification only 559 // matches noexcept(false) for functions, as described above. 560 if (!AllowNoexceptAllMatchWithNoSpec && 561 ((OldEST == EST_None && NewEST == EST_NoexceptFalse) || 562 (OldEST == EST_NoexceptFalse && NewEST == EST_None))) { 563 // This is the disallowed case. 564 } else { 565 return false; 566 } 567 } 568 569 // C++14 [except.spec]p3: 570 // Two exception-specifications are compatible if [...] both have the form 571 // noexcept(constant-expression) and the constant-expressions are equivalent 572 if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) { 573 llvm::FoldingSetNodeID OldFSN, NewFSN; 574 Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true); 575 New->getNoexceptExpr()->Profile(NewFSN, S.Context, true); 576 if (OldFSN == NewFSN) 577 return false; 578 } 579 580 // Dynamic exception specifications with the same set of adjusted types 581 // are compatible. 582 if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) { 583 bool Success = true; 584 // Both have a dynamic exception spec. Collect the first set, then compare 585 // to the second. 586 llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes; 587 for (const auto &I : Old->exceptions()) 588 OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType()); 589 590 for (const auto &I : New->exceptions()) { 591 CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType(); 592 if (OldTypes.count(TypePtr)) 593 NewTypes.insert(TypePtr); 594 else { 595 Success = false; 596 break; 597 } 598 } 599 600 if (Success && OldTypes.size() == NewTypes.size()) 601 return false; 602 } 603 604 // As a special compatibility feature, under C++0x we accept no spec and 605 // throw(std::bad_alloc) as equivalent for operator new and operator new[]. 606 // This is because the implicit declaration changed, but old code would break. 607 if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) { 608 const FunctionProtoType *WithExceptions = nullptr; 609 if (OldEST == EST_None && NewEST == EST_Dynamic) 610 WithExceptions = New; 611 else if (OldEST == EST_Dynamic && NewEST == EST_None) 612 WithExceptions = Old; 613 if (WithExceptions && WithExceptions->getNumExceptions() == 1) { 614 // One has no spec, the other throw(something). If that something is 615 // std::bad_alloc, all conditions are met. 616 QualType Exception = *WithExceptions->exception_begin(); 617 if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) { 618 IdentifierInfo* Name = ExRecord->getIdentifier(); 619 if (Name && Name->getName() == "bad_alloc") { 620 // It's called bad_alloc, but is it in std? 621 if (ExRecord->isInStdNamespace()) { 622 return false; 623 } 624 } 625 } 626 } 627 } 628 629 // If the caller wants to handle the case that the new function is 630 // incompatible due to a missing exception specification, let it. 631 if (MissingExceptionSpecification && OldEST != EST_None && 632 NewEST == EST_None) { 633 // The old type has an exception specification of some sort, but 634 // the new type does not. 635 *MissingExceptionSpecification = true; 636 637 if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) { 638 // The old type has a throw() or noexcept(true) exception specification 639 // and the new type has no exception specification, and the caller asked 640 // to handle this itself. 641 *MissingEmptyExceptionSpecification = true; 642 } 643 644 return true; 645 } 646 647 S.Diag(NewLoc, DiagID); 648 if (NoteID.getDiagID() != 0 && OldLoc.isValid()) 649 S.Diag(OldLoc, NoteID); 650 return true; 651 } 652 653 bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID, 654 const PartialDiagnostic &NoteID, 655 const FunctionProtoType *Old, 656 SourceLocation OldLoc, 657 const FunctionProtoType *New, 658 SourceLocation NewLoc) { 659 if (!getLangOpts().CXXExceptions) 660 return false; 661 return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc, 662 New, NewLoc); 663 } 664 665 bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) { 666 // [except.handle]p3: 667 // A handler is a match for an exception object of type E if: 668 669 // HandlerType must be ExceptionType or derived from it, or pointer or 670 // reference to such types. 671 const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>(); 672 if (RefTy) 673 HandlerType = RefTy->getPointeeType(); 674 675 // -- the handler is of type cv T or cv T& and E and T are the same type 676 if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType)) 677 return true; 678 679 // FIXME: ObjC pointer types? 680 if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) { 681 if (RefTy && (!HandlerType.isConstQualified() || 682 HandlerType.isVolatileQualified())) 683 return false; 684 685 // -- the handler is of type cv T or const T& where T is a pointer or 686 // pointer to member type and E is std::nullptr_t 687 if (ExceptionType->isNullPtrType()) 688 return true; 689 690 // -- the handler is of type cv T or const T& where T is a pointer or 691 // pointer to member type and E is a pointer or pointer to member type 692 // that can be converted to T by one or more of 693 // -- a qualification conversion 694 // -- a function pointer conversion 695 bool LifetimeConv; 696 QualType Result; 697 // FIXME: Should we treat the exception as catchable if a lifetime 698 // conversion is required? 699 if (IsQualificationConversion(ExceptionType, HandlerType, false, 700 LifetimeConv) || 701 IsFunctionConversion(ExceptionType, HandlerType, Result)) 702 return true; 703 704 // -- a standard pointer conversion [...] 705 if (!ExceptionType->isPointerType() || !HandlerType->isPointerType()) 706 return false; 707 708 // Handle the "qualification conversion" portion. 709 Qualifiers EQuals, HQuals; 710 ExceptionType = Context.getUnqualifiedArrayType( 711 ExceptionType->getPointeeType(), EQuals); 712 HandlerType = Context.getUnqualifiedArrayType( 713 HandlerType->getPointeeType(), HQuals); 714 if (!HQuals.compatiblyIncludes(EQuals)) 715 return false; 716 717 if (HandlerType->isVoidType() && ExceptionType->isObjectType()) 718 return true; 719 720 // The only remaining case is a derived-to-base conversion. 721 } 722 723 // -- the handler is of type cg T or cv T& and T is an unambiguous public 724 // base class of E 725 if (!ExceptionType->isRecordType() || !HandlerType->isRecordType()) 726 return false; 727 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 728 /*DetectVirtual=*/false); 729 if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) || 730 Paths.isAmbiguous(Context.getCanonicalType(HandlerType))) 731 return false; 732 733 // Do this check from a context without privileges. 734 switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType, 735 Paths.front(), 736 /*Diagnostic*/ 0, 737 /*ForceCheck*/ true, 738 /*ForceUnprivileged*/ true)) { 739 case AR_accessible: return true; 740 case AR_inaccessible: return false; 741 case AR_dependent: 742 llvm_unreachable("access check dependent for unprivileged context"); 743 case AR_delayed: 744 llvm_unreachable("access check delayed in non-declaration"); 745 } 746 llvm_unreachable("unexpected access check result"); 747 } 748 749 /// CheckExceptionSpecSubset - Check whether the second function type's 750 /// exception specification is a subset (or equivalent) of the first function 751 /// type. This is used by override and pointer assignment checks. 752 bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID, 753 const PartialDiagnostic &NestedDiagID, 754 const PartialDiagnostic &NoteID, 755 const PartialDiagnostic &NoThrowDiagID, 756 const FunctionProtoType *Superset, 757 SourceLocation SuperLoc, 758 const FunctionProtoType *Subset, 759 SourceLocation SubLoc) { 760 761 // Just auto-succeed under -fno-exceptions. 762 if (!getLangOpts().CXXExceptions) 763 return false; 764 765 // FIXME: As usual, we could be more specific in our error messages, but 766 // that better waits until we've got types with source locations. 767 768 if (!SubLoc.isValid()) 769 SubLoc = SuperLoc; 770 771 // Resolve the exception specifications, if needed. 772 Superset = ResolveExceptionSpec(SuperLoc, Superset); 773 if (!Superset) 774 return false; 775 Subset = ResolveExceptionSpec(SubLoc, Subset); 776 if (!Subset) 777 return false; 778 779 ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType(); 780 ExceptionSpecificationType SubEST = Subset->getExceptionSpecType(); 781 assert(!isUnresolvedExceptionSpec(SuperEST) && 782 !isUnresolvedExceptionSpec(SubEST) && 783 "Shouldn't see unknown exception specifications here"); 784 785 // If there are dependent noexcept specs, assume everything is fine. Unlike 786 // with the equivalency check, this is safe in this case, because we don't 787 // want to merge declarations. Checks after instantiation will catch any 788 // omissions we make here. 789 if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept) 790 return false; 791 792 CanThrowResult SuperCanThrow = Superset->canThrow(); 793 CanThrowResult SubCanThrow = Subset->canThrow(); 794 795 // If the superset contains everything or the subset contains nothing, we're 796 // done. 797 if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) || 798 SubCanThrow == CT_Cannot) 799 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 800 Subset, SubLoc); 801 802 // Allow __declspec(nothrow) to be missing on redeclaration as an extension in 803 // some cases. 804 if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can && 805 SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) { 806 Diag(SubLoc, NoThrowDiagID); 807 if (NoteID.getDiagID() != 0) 808 Diag(SuperLoc, NoteID); 809 return true; 810 } 811 812 // If the subset contains everything or the superset contains nothing, we've 813 // failed. 814 if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) || 815 SuperCanThrow == CT_Cannot) { 816 Diag(SubLoc, DiagID); 817 if (NoteID.getDiagID() != 0) 818 Diag(SuperLoc, NoteID); 819 return true; 820 } 821 822 assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic && 823 "Exception spec subset: non-dynamic case slipped through."); 824 825 // Neither contains everything or nothing. Do a proper comparison. 826 for (QualType SubI : Subset->exceptions()) { 827 if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>()) 828 SubI = RefTy->getPointeeType(); 829 830 // Make sure it's in the superset. 831 bool Contained = false; 832 for (QualType SuperI : Superset->exceptions()) { 833 // [except.spec]p5: 834 // the target entity shall allow at least the exceptions allowed by the 835 // source 836 // 837 // We interpret this as meaning that a handler for some target type would 838 // catch an exception of each source type. 839 if (handlerCanCatch(SuperI, SubI)) { 840 Contained = true; 841 break; 842 } 843 } 844 if (!Contained) { 845 Diag(SubLoc, DiagID); 846 if (NoteID.getDiagID() != 0) 847 Diag(SuperLoc, NoteID); 848 return true; 849 } 850 } 851 // We've run half the gauntlet. 852 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc, 853 Subset, SubLoc); 854 } 855 856 static bool 857 CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID, 858 const PartialDiagnostic &NoteID, QualType Target, 859 SourceLocation TargetLoc, QualType Source, 860 SourceLocation SourceLoc) { 861 const FunctionProtoType *TFunc = GetUnderlyingFunction(Target); 862 if (!TFunc) 863 return false; 864 const FunctionProtoType *SFunc = GetUnderlyingFunction(Source); 865 if (!SFunc) 866 return false; 867 868 return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc, 869 SFunc, SourceLoc); 870 } 871 872 /// CheckParamExceptionSpec - Check if the parameter and return types of the 873 /// two functions have equivalent exception specs. This is part of the 874 /// assignment and override compatibility check. We do not check the parameters 875 /// of parameter function pointers recursively, as no sane programmer would 876 /// even be able to write such a function type. 877 bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID, 878 const PartialDiagnostic &NoteID, 879 const FunctionProtoType *Target, 880 SourceLocation TargetLoc, 881 const FunctionProtoType *Source, 882 SourceLocation SourceLoc) { 883 auto RetDiag = DiagID; 884 RetDiag << 0; 885 if (CheckSpecForTypesEquivalent( 886 *this, RetDiag, PDiag(), 887 Target->getReturnType(), TargetLoc, Source->getReturnType(), 888 SourceLoc)) 889 return true; 890 891 // We shouldn't even be testing this unless the arguments are otherwise 892 // compatible. 893 assert(Target->getNumParams() == Source->getNumParams() && 894 "Functions have different argument counts."); 895 for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) { 896 auto ParamDiag = DiagID; 897 ParamDiag << 1; 898 if (CheckSpecForTypesEquivalent( 899 *this, ParamDiag, PDiag(), 900 Target->getParamType(i), TargetLoc, Source->getParamType(i), 901 SourceLoc)) 902 return true; 903 } 904 return false; 905 } 906 907 bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) { 908 // First we check for applicability. 909 // Target type must be a function, function pointer or function reference. 910 const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType); 911 if (!ToFunc || ToFunc->hasDependentExceptionSpec()) 912 return false; 913 914 // SourceType must be a function or function pointer. 915 const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType()); 916 if (!FromFunc || FromFunc->hasDependentExceptionSpec()) 917 return false; 918 919 unsigned DiagID = diag::err_incompatible_exception_specs; 920 unsigned NestedDiagID = diag::err_deep_exception_specs_differ; 921 // This is not an error in C++17 onwards, unless the noexceptness doesn't 922 // match, but in that case we have a full-on type mismatch, not just a 923 // type sugar mismatch. 924 if (getLangOpts().CPlusPlus17) { 925 DiagID = diag::warn_incompatible_exception_specs; 926 NestedDiagID = diag::warn_deep_exception_specs_differ; 927 } 928 929 // Now we've got the correct types on both sides, check their compatibility. 930 // This means that the source of the conversion can only throw a subset of 931 // the exceptions of the target, and any exception specs on arguments or 932 // return types must be equivalent. 933 // 934 // FIXME: If there is a nested dependent exception specification, we should 935 // not be checking it here. This is fine: 936 // template<typename T> void f() { 937 // void (*p)(void (*) throw(T)); 938 // void (*q)(void (*) throw(int)) = p; 939 // } 940 // ... because it might be instantiated with T=int. 941 return CheckExceptionSpecSubset( 942 PDiag(DiagID), PDiag(NestedDiagID), PDiag(), PDiag(), ToFunc, 943 From->getSourceRange().getBegin(), FromFunc, SourceLocation()) && 944 !getLangOpts().CPlusPlus17; 945 } 946 947 bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, 948 const CXXMethodDecl *Old) { 949 // If the new exception specification hasn't been parsed yet, skip the check. 950 // We'll get called again once it's been parsed. 951 if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() == 952 EST_Unparsed) 953 return false; 954 955 // Don't check uninstantiated template destructors at all. We can only 956 // synthesize correct specs after the template is instantiated. 957 if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType()) 958 return false; 959 960 // If the old exception specification hasn't been parsed yet, or the new 961 // exception specification can't be computed yet, remember that we need to 962 // perform this check when we get to the end of the outermost 963 // lexically-surrounding class. 964 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) { 965 DelayedOverridingExceptionSpecChecks.push_back({New, Old}); 966 return false; 967 } 968 969 unsigned DiagID = diag::err_override_exception_spec; 970 if (getLangOpts().MSVCCompat) 971 DiagID = diag::ext_override_exception_spec; 972 return CheckExceptionSpecSubset(PDiag(DiagID), 973 PDiag(diag::err_deep_exception_specs_differ), 974 PDiag(diag::note_overridden_virtual_function), 975 PDiag(diag::ext_override_exception_spec), 976 Old->getType()->castAs<FunctionProtoType>(), 977 Old->getLocation(), 978 New->getType()->castAs<FunctionProtoType>(), 979 New->getLocation()); 980 } 981 982 static CanThrowResult canSubStmtsThrow(Sema &Self, const Stmt *S) { 983 CanThrowResult R = CT_Cannot; 984 for (const Stmt *SubStmt : S->children()) { 985 if (!SubStmt) 986 continue; 987 R = mergeCanThrow(R, Self.canThrow(SubStmt)); 988 if (R == CT_Can) 989 break; 990 } 991 return R; 992 } 993 994 /// Determine whether the callee of a particular function call can throw. 995 /// E and D are both optional, but at least one of E and Loc must be specified. 996 static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D, 997 SourceLocation Loc = SourceLocation()) { 998 // As an extension, we assume that __attribute__((nothrow)) functions don't 999 // throw. 1000 if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>()) 1001 return CT_Cannot; 1002 1003 QualType T; 1004 1005 // In C++1z, just look at the function type of the callee. 1006 if (S.getLangOpts().CPlusPlus17 && E && isa<CallExpr>(E)) { 1007 E = cast<CallExpr>(E)->getCallee(); 1008 T = E->getType(); 1009 if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) { 1010 // Sadly we don't preserve the actual type as part of the "bound member" 1011 // placeholder, so we need to reconstruct it. 1012 E = E->IgnoreParenImpCasts(); 1013 1014 // Could be a call to a pointer-to-member or a plain member access. 1015 if (auto *Op = dyn_cast<BinaryOperator>(E)) { 1016 assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI); 1017 T = Op->getRHS()->getType() 1018 ->castAs<MemberPointerType>()->getPointeeType(); 1019 } else { 1020 T = cast<MemberExpr>(E)->getMemberDecl()->getType(); 1021 } 1022 } 1023 } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D)) 1024 T = VD->getType(); 1025 else 1026 // If we have no clue what we're calling, assume the worst. 1027 return CT_Can; 1028 1029 const FunctionProtoType *FT; 1030 if ((FT = T->getAs<FunctionProtoType>())) { 1031 } else if (const PointerType *PT = T->getAs<PointerType>()) 1032 FT = PT->getPointeeType()->getAs<FunctionProtoType>(); 1033 else if (const ReferenceType *RT = T->getAs<ReferenceType>()) 1034 FT = RT->getPointeeType()->getAs<FunctionProtoType>(); 1035 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>()) 1036 FT = MT->getPointeeType()->getAs<FunctionProtoType>(); 1037 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>()) 1038 FT = BT->getPointeeType()->getAs<FunctionProtoType>(); 1039 1040 if (!FT) 1041 return CT_Can; 1042 1043 FT = S.ResolveExceptionSpec(Loc.isInvalid() ? E->getBeginLoc() : Loc, FT); 1044 if (!FT) 1045 return CT_Can; 1046 1047 return FT->canThrow(); 1048 } 1049 1050 static CanThrowResult canVarDeclThrow(Sema &Self, const VarDecl *VD) { 1051 CanThrowResult CT = CT_Cannot; 1052 1053 // Initialization might throw. 1054 if (!VD->isUsableInConstantExpressions(Self.Context)) 1055 if (const Expr *Init = VD->getInit()) 1056 CT = mergeCanThrow(CT, Self.canThrow(Init)); 1057 1058 // Destructor might throw. 1059 if (VD->needsDestruction(Self.Context) == QualType::DK_cxx_destructor) { 1060 if (auto *RD = 1061 VD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) { 1062 if (auto *Dtor = RD->getDestructor()) { 1063 CT = mergeCanThrow( 1064 CT, canCalleeThrow(Self, nullptr, Dtor, VD->getLocation())); 1065 } 1066 } 1067 } 1068 1069 // If this is a decomposition declaration, bindings might throw. 1070 if (auto *DD = dyn_cast<DecompositionDecl>(VD)) 1071 for (auto *B : DD->bindings()) 1072 if (auto *HD = B->getHoldingVar()) 1073 CT = mergeCanThrow(CT, canVarDeclThrow(Self, HD)); 1074 1075 return CT; 1076 } 1077 1078 static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) { 1079 if (DC->isTypeDependent()) 1080 return CT_Dependent; 1081 1082 if (!DC->getTypeAsWritten()->isReferenceType()) 1083 return CT_Cannot; 1084 1085 if (DC->getSubExpr()->isTypeDependent()) 1086 return CT_Dependent; 1087 1088 return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot; 1089 } 1090 1091 static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) { 1092 if (DC->isTypeOperand()) 1093 return CT_Cannot; 1094 1095 Expr *Op = DC->getExprOperand(); 1096 if (Op->isTypeDependent()) 1097 return CT_Dependent; 1098 1099 const RecordType *RT = Op->getType()->getAs<RecordType>(); 1100 if (!RT) 1101 return CT_Cannot; 1102 1103 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic()) 1104 return CT_Cannot; 1105 1106 if (Op->Classify(S.Context).isPRValue()) 1107 return CT_Cannot; 1108 1109 return CT_Can; 1110 } 1111 1112 CanThrowResult Sema::canThrow(const Stmt *S) { 1113 // C++ [expr.unary.noexcept]p3: 1114 // [Can throw] if in a potentially-evaluated context the expression would 1115 // contain: 1116 switch (S->getStmtClass()) { 1117 case Expr::ConstantExprClass: 1118 return canThrow(cast<ConstantExpr>(S)->getSubExpr()); 1119 1120 case Expr::CXXThrowExprClass: 1121 // - a potentially evaluated throw-expression 1122 return CT_Can; 1123 1124 case Expr::CXXDynamicCastExprClass: { 1125 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v), 1126 // where T is a reference type, that requires a run-time check 1127 auto *CE = cast<CXXDynamicCastExpr>(S); 1128 // FIXME: Properly determine whether a variably-modified type can throw. 1129 if (CE->getType()->isVariablyModifiedType()) 1130 return CT_Can; 1131 CanThrowResult CT = canDynamicCastThrow(CE); 1132 if (CT == CT_Can) 1133 return CT; 1134 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1135 } 1136 1137 case Expr::CXXTypeidExprClass: 1138 // - a potentially evaluated typeid expression applied to a glvalue 1139 // expression whose type is a polymorphic class type 1140 return canTypeidThrow(*this, cast<CXXTypeidExpr>(S)); 1141 1142 // - a potentially evaluated call to a function, member function, function 1143 // pointer, or member function pointer that does not have a non-throwing 1144 // exception-specification 1145 case Expr::CallExprClass: 1146 case Expr::CXXMemberCallExprClass: 1147 case Expr::CXXOperatorCallExprClass: 1148 case Expr::UserDefinedLiteralClass: { 1149 const CallExpr *CE = cast<CallExpr>(S); 1150 CanThrowResult CT; 1151 if (CE->isTypeDependent()) 1152 CT = CT_Dependent; 1153 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) 1154 CT = CT_Cannot; 1155 else 1156 CT = canCalleeThrow(*this, CE, CE->getCalleeDecl()); 1157 if (CT == CT_Can) 1158 return CT; 1159 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1160 } 1161 1162 case Expr::CXXConstructExprClass: 1163 case Expr::CXXTemporaryObjectExprClass: { 1164 auto *CE = cast<CXXConstructExpr>(S); 1165 // FIXME: Properly determine whether a variably-modified type can throw. 1166 if (CE->getType()->isVariablyModifiedType()) 1167 return CT_Can; 1168 CanThrowResult CT = canCalleeThrow(*this, CE, CE->getConstructor()); 1169 if (CT == CT_Can) 1170 return CT; 1171 return mergeCanThrow(CT, canSubStmtsThrow(*this, CE)); 1172 } 1173 1174 case Expr::CXXInheritedCtorInitExprClass: { 1175 auto *ICIE = cast<CXXInheritedCtorInitExpr>(S); 1176 return canCalleeThrow(*this, ICIE, ICIE->getConstructor()); 1177 } 1178 1179 case Expr::LambdaExprClass: { 1180 const LambdaExpr *Lambda = cast<LambdaExpr>(S); 1181 CanThrowResult CT = CT_Cannot; 1182 for (LambdaExpr::const_capture_init_iterator 1183 Cap = Lambda->capture_init_begin(), 1184 CapEnd = Lambda->capture_init_end(); 1185 Cap != CapEnd; ++Cap) 1186 CT = mergeCanThrow(CT, canThrow(*Cap)); 1187 return CT; 1188 } 1189 1190 case Expr::CXXNewExprClass: { 1191 auto *NE = cast<CXXNewExpr>(S); 1192 CanThrowResult CT; 1193 if (NE->isTypeDependent()) 1194 CT = CT_Dependent; 1195 else 1196 CT = canCalleeThrow(*this, NE, NE->getOperatorNew()); 1197 if (CT == CT_Can) 1198 return CT; 1199 return mergeCanThrow(CT, canSubStmtsThrow(*this, NE)); 1200 } 1201 1202 case Expr::CXXDeleteExprClass: { 1203 auto *DE = cast<CXXDeleteExpr>(S); 1204 CanThrowResult CT; 1205 QualType DTy = DE->getDestroyedType(); 1206 if (DTy.isNull() || DTy->isDependentType()) { 1207 CT = CT_Dependent; 1208 } else { 1209 CT = canCalleeThrow(*this, DE, DE->getOperatorDelete()); 1210 if (const RecordType *RT = DTy->getAs<RecordType>()) { 1211 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1212 const CXXDestructorDecl *DD = RD->getDestructor(); 1213 if (DD) 1214 CT = mergeCanThrow(CT, canCalleeThrow(*this, DE, DD)); 1215 } 1216 if (CT == CT_Can) 1217 return CT; 1218 } 1219 return mergeCanThrow(CT, canSubStmtsThrow(*this, DE)); 1220 } 1221 1222 case Expr::CXXBindTemporaryExprClass: { 1223 auto *BTE = cast<CXXBindTemporaryExpr>(S); 1224 // The bound temporary has to be destroyed again, which might throw. 1225 CanThrowResult CT = 1226 canCalleeThrow(*this, BTE, BTE->getTemporary()->getDestructor()); 1227 if (CT == CT_Can) 1228 return CT; 1229 return mergeCanThrow(CT, canSubStmtsThrow(*this, BTE)); 1230 } 1231 1232 case Expr::PseudoObjectExprClass: { 1233 auto *POE = cast<PseudoObjectExpr>(S); 1234 CanThrowResult CT = CT_Cannot; 1235 for (const Expr *E : POE->semantics()) { 1236 CT = mergeCanThrow(CT, canThrow(E)); 1237 if (CT == CT_Can) 1238 break; 1239 } 1240 return CT; 1241 } 1242 1243 // ObjC message sends are like function calls, but never have exception 1244 // specs. 1245 case Expr::ObjCMessageExprClass: 1246 case Expr::ObjCPropertyRefExprClass: 1247 case Expr::ObjCSubscriptRefExprClass: 1248 return CT_Can; 1249 1250 // All the ObjC literals that are implemented as calls are 1251 // potentially throwing unless we decide to close off that 1252 // possibility. 1253 case Expr::ObjCArrayLiteralClass: 1254 case Expr::ObjCDictionaryLiteralClass: 1255 case Expr::ObjCBoxedExprClass: 1256 return CT_Can; 1257 1258 // Many other things have subexpressions, so we have to test those. 1259 // Some are simple: 1260 case Expr::CoawaitExprClass: 1261 case Expr::ConditionalOperatorClass: 1262 case Expr::CoyieldExprClass: 1263 case Expr::CXXRewrittenBinaryOperatorClass: 1264 case Expr::CXXStdInitializerListExprClass: 1265 case Expr::DesignatedInitExprClass: 1266 case Expr::DesignatedInitUpdateExprClass: 1267 case Expr::ExprWithCleanupsClass: 1268 case Expr::ExtVectorElementExprClass: 1269 case Expr::InitListExprClass: 1270 case Expr::ArrayInitLoopExprClass: 1271 case Expr::MemberExprClass: 1272 case Expr::ObjCIsaExprClass: 1273 case Expr::ObjCIvarRefExprClass: 1274 case Expr::ParenExprClass: 1275 case Expr::ParenListExprClass: 1276 case Expr::ShuffleVectorExprClass: 1277 case Expr::StmtExprClass: 1278 case Expr::ConvertVectorExprClass: 1279 case Expr::VAArgExprClass: 1280 return canSubStmtsThrow(*this, S); 1281 1282 case Expr::CompoundLiteralExprClass: 1283 case Expr::CXXConstCastExprClass: 1284 case Expr::CXXReinterpretCastExprClass: 1285 case Expr::BuiltinBitCastExprClass: 1286 // FIXME: Properly determine whether a variably-modified type can throw. 1287 if (cast<Expr>(S)->getType()->isVariablyModifiedType()) 1288 return CT_Can; 1289 return canSubStmtsThrow(*this, S); 1290 1291 // Some might be dependent for other reasons. 1292 case Expr::ArraySubscriptExprClass: 1293 case Expr::OMPArraySectionExprClass: 1294 case Expr::BinaryOperatorClass: 1295 case Expr::DependentCoawaitExprClass: 1296 case Expr::CompoundAssignOperatorClass: 1297 case Expr::CStyleCastExprClass: 1298 case Expr::CXXStaticCastExprClass: 1299 case Expr::CXXFunctionalCastExprClass: 1300 case Expr::ImplicitCastExprClass: 1301 case Expr::MaterializeTemporaryExprClass: 1302 case Expr::UnaryOperatorClass: { 1303 // FIXME: Properly determine whether a variably-modified type can throw. 1304 if (auto *CE = dyn_cast<CastExpr>(S)) 1305 if (CE->getType()->isVariablyModifiedType()) 1306 return CT_Can; 1307 CanThrowResult CT = 1308 cast<Expr>(S)->isTypeDependent() ? CT_Dependent : CT_Cannot; 1309 return mergeCanThrow(CT, canSubStmtsThrow(*this, S)); 1310 } 1311 1312 case Expr::CXXDefaultArgExprClass: 1313 return canThrow(cast<CXXDefaultArgExpr>(S)->getExpr()); 1314 1315 case Expr::CXXDefaultInitExprClass: 1316 return canThrow(cast<CXXDefaultInitExpr>(S)->getExpr()); 1317 1318 case Expr::ChooseExprClass: { 1319 auto *CE = cast<ChooseExpr>(S); 1320 if (CE->isTypeDependent() || CE->isValueDependent()) 1321 return CT_Dependent; 1322 return canThrow(CE->getChosenSubExpr()); 1323 } 1324 1325 case Expr::GenericSelectionExprClass: 1326 if (cast<GenericSelectionExpr>(S)->isResultDependent()) 1327 return CT_Dependent; 1328 return canThrow(cast<GenericSelectionExpr>(S)->getResultExpr()); 1329 1330 // Some expressions are always dependent. 1331 case Expr::CXXDependentScopeMemberExprClass: 1332 case Expr::CXXUnresolvedConstructExprClass: 1333 case Expr::DependentScopeDeclRefExprClass: 1334 case Expr::CXXFoldExprClass: 1335 return CT_Dependent; 1336 1337 case Expr::AsTypeExprClass: 1338 case Expr::BinaryConditionalOperatorClass: 1339 case Expr::BlockExprClass: 1340 case Expr::CUDAKernelCallExprClass: 1341 case Expr::DeclRefExprClass: 1342 case Expr::ObjCBridgedCastExprClass: 1343 case Expr::ObjCIndirectCopyRestoreExprClass: 1344 case Expr::ObjCProtocolExprClass: 1345 case Expr::ObjCSelectorExprClass: 1346 case Expr::ObjCAvailabilityCheckExprClass: 1347 case Expr::OffsetOfExprClass: 1348 case Expr::PackExpansionExprClass: 1349 case Expr::SubstNonTypeTemplateParmExprClass: 1350 case Expr::SubstNonTypeTemplateParmPackExprClass: 1351 case Expr::FunctionParmPackExprClass: 1352 case Expr::UnaryExprOrTypeTraitExprClass: 1353 case Expr::UnresolvedLookupExprClass: 1354 case Expr::UnresolvedMemberExprClass: 1355 case Expr::TypoExprClass: 1356 // FIXME: Many of the above can throw. 1357 return CT_Cannot; 1358 1359 case Expr::AddrLabelExprClass: 1360 case Expr::ArrayTypeTraitExprClass: 1361 case Expr::AtomicExprClass: 1362 case Expr::TypeTraitExprClass: 1363 case Expr::CXXBoolLiteralExprClass: 1364 case Expr::CXXNoexceptExprClass: 1365 case Expr::CXXNullPtrLiteralExprClass: 1366 case Expr::CXXPseudoDestructorExprClass: 1367 case Expr::CXXScalarValueInitExprClass: 1368 case Expr::CXXThisExprClass: 1369 case Expr::CXXUuidofExprClass: 1370 case Expr::CharacterLiteralClass: 1371 case Expr::ExpressionTraitExprClass: 1372 case Expr::FloatingLiteralClass: 1373 case Expr::GNUNullExprClass: 1374 case Expr::ImaginaryLiteralClass: 1375 case Expr::ImplicitValueInitExprClass: 1376 case Expr::IntegerLiteralClass: 1377 case Expr::FixedPointLiteralClass: 1378 case Expr::ArrayInitIndexExprClass: 1379 case Expr::NoInitExprClass: 1380 case Expr::ObjCEncodeExprClass: 1381 case Expr::ObjCStringLiteralClass: 1382 case Expr::ObjCBoolLiteralExprClass: 1383 case Expr::OpaqueValueExprClass: 1384 case Expr::PredefinedExprClass: 1385 case Expr::SizeOfPackExprClass: 1386 case Expr::StringLiteralClass: 1387 case Expr::SourceLocExprClass: 1388 case Expr::ConceptSpecializationExprClass: 1389 case Expr::RequiresExprClass: 1390 // These expressions can never throw. 1391 return CT_Cannot; 1392 1393 case Expr::MSPropertyRefExprClass: 1394 case Expr::MSPropertySubscriptExprClass: 1395 llvm_unreachable("Invalid class for expression"); 1396 1397 // Most statements can throw if any substatement can throw. 1398 case Stmt::AttributedStmtClass: 1399 case Stmt::BreakStmtClass: 1400 case Stmt::CapturedStmtClass: 1401 case Stmt::CaseStmtClass: 1402 case Stmt::CompoundStmtClass: 1403 case Stmt::ContinueStmtClass: 1404 case Stmt::CoreturnStmtClass: 1405 case Stmt::CoroutineBodyStmtClass: 1406 case Stmt::CXXCatchStmtClass: 1407 case Stmt::CXXForRangeStmtClass: 1408 case Stmt::DefaultStmtClass: 1409 case Stmt::DoStmtClass: 1410 case Stmt::ForStmtClass: 1411 case Stmt::GCCAsmStmtClass: 1412 case Stmt::GotoStmtClass: 1413 case Stmt::IndirectGotoStmtClass: 1414 case Stmt::LabelStmtClass: 1415 case Stmt::MSAsmStmtClass: 1416 case Stmt::MSDependentExistsStmtClass: 1417 case Stmt::NullStmtClass: 1418 case Stmt::ObjCAtCatchStmtClass: 1419 case Stmt::ObjCAtFinallyStmtClass: 1420 case Stmt::ObjCAtSynchronizedStmtClass: 1421 case Stmt::ObjCAutoreleasePoolStmtClass: 1422 case Stmt::ObjCForCollectionStmtClass: 1423 case Stmt::OMPAtomicDirectiveClass: 1424 case Stmt::OMPBarrierDirectiveClass: 1425 case Stmt::OMPCancelDirectiveClass: 1426 case Stmt::OMPCancellationPointDirectiveClass: 1427 case Stmt::OMPCriticalDirectiveClass: 1428 case Stmt::OMPDistributeDirectiveClass: 1429 case Stmt::OMPDistributeParallelForDirectiveClass: 1430 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 1431 case Stmt::OMPDistributeSimdDirectiveClass: 1432 case Stmt::OMPFlushDirectiveClass: 1433 case Stmt::OMPForDirectiveClass: 1434 case Stmt::OMPForSimdDirectiveClass: 1435 case Stmt::OMPMasterDirectiveClass: 1436 case Stmt::OMPMasterTaskLoopDirectiveClass: 1437 case Stmt::OMPMasterTaskLoopSimdDirectiveClass: 1438 case Stmt::OMPOrderedDirectiveClass: 1439 case Stmt::OMPParallelDirectiveClass: 1440 case Stmt::OMPParallelForDirectiveClass: 1441 case Stmt::OMPParallelForSimdDirectiveClass: 1442 case Stmt::OMPParallelMasterDirectiveClass: 1443 case Stmt::OMPParallelMasterTaskLoopDirectiveClass: 1444 case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: 1445 case Stmt::OMPParallelSectionsDirectiveClass: 1446 case Stmt::OMPSectionDirectiveClass: 1447 case Stmt::OMPSectionsDirectiveClass: 1448 case Stmt::OMPSimdDirectiveClass: 1449 case Stmt::OMPSingleDirectiveClass: 1450 case Stmt::OMPTargetDataDirectiveClass: 1451 case Stmt::OMPTargetDirectiveClass: 1452 case Stmt::OMPTargetEnterDataDirectiveClass: 1453 case Stmt::OMPTargetExitDataDirectiveClass: 1454 case Stmt::OMPTargetParallelDirectiveClass: 1455 case Stmt::OMPTargetParallelForDirectiveClass: 1456 case Stmt::OMPTargetParallelForSimdDirectiveClass: 1457 case Stmt::OMPTargetSimdDirectiveClass: 1458 case Stmt::OMPTargetTeamsDirectiveClass: 1459 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 1460 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 1461 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 1462 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 1463 case Stmt::OMPTargetUpdateDirectiveClass: 1464 case Stmt::OMPTaskDirectiveClass: 1465 case Stmt::OMPTaskgroupDirectiveClass: 1466 case Stmt::OMPTaskLoopDirectiveClass: 1467 case Stmt::OMPTaskLoopSimdDirectiveClass: 1468 case Stmt::OMPTaskwaitDirectiveClass: 1469 case Stmt::OMPTaskyieldDirectiveClass: 1470 case Stmt::OMPTeamsDirectiveClass: 1471 case Stmt::OMPTeamsDistributeDirectiveClass: 1472 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 1473 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 1474 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 1475 case Stmt::ReturnStmtClass: 1476 case Stmt::SEHExceptStmtClass: 1477 case Stmt::SEHFinallyStmtClass: 1478 case Stmt::SEHLeaveStmtClass: 1479 case Stmt::SEHTryStmtClass: 1480 case Stmt::SwitchStmtClass: 1481 case Stmt::WhileStmtClass: 1482 return canSubStmtsThrow(*this, S); 1483 1484 case Stmt::DeclStmtClass: { 1485 CanThrowResult CT = CT_Cannot; 1486 for (const Decl *D : cast<DeclStmt>(S)->decls()) { 1487 if (auto *VD = dyn_cast<VarDecl>(D)) 1488 CT = mergeCanThrow(CT, canVarDeclThrow(*this, VD)); 1489 1490 // FIXME: Properly determine whether a variably-modified type can throw. 1491 if (auto *TND = dyn_cast<TypedefNameDecl>(D)) 1492 if (TND->getUnderlyingType()->isVariablyModifiedType()) 1493 return CT_Can; 1494 if (auto *VD = dyn_cast<ValueDecl>(D)) 1495 if (VD->getType()->isVariablyModifiedType()) 1496 return CT_Can; 1497 } 1498 return CT; 1499 } 1500 1501 case Stmt::IfStmtClass: { 1502 auto *IS = cast<IfStmt>(S); 1503 CanThrowResult CT = CT_Cannot; 1504 if (const Stmt *Init = IS->getInit()) 1505 CT = mergeCanThrow(CT, canThrow(Init)); 1506 if (const Stmt *CondDS = IS->getConditionVariableDeclStmt()) 1507 CT = mergeCanThrow(CT, canThrow(CondDS)); 1508 CT = mergeCanThrow(CT, canThrow(IS->getCond())); 1509 1510 // For 'if constexpr', consider only the non-discarded case. 1511 // FIXME: We should add a DiscardedStmt marker to the AST. 1512 if (Optional<const Stmt *> Case = IS->getNondiscardedCase(Context)) 1513 return *Case ? mergeCanThrow(CT, canThrow(*Case)) : CT; 1514 1515 CanThrowResult Then = canThrow(IS->getThen()); 1516 CanThrowResult Else = IS->getElse() ? canThrow(IS->getElse()) : CT_Cannot; 1517 if (Then == Else) 1518 return mergeCanThrow(CT, Then); 1519 1520 // For a dependent 'if constexpr', the result is dependent if it depends on 1521 // the value of the condition. 1522 return mergeCanThrow(CT, IS->isConstexpr() ? CT_Dependent 1523 : mergeCanThrow(Then, Else)); 1524 } 1525 1526 case Stmt::CXXTryStmtClass: { 1527 auto *TS = cast<CXXTryStmt>(S); 1528 // try /*...*/ catch (...) { H } can throw only if H can throw. 1529 // Any other try-catch can throw if any substatement can throw. 1530 const CXXCatchStmt *FinalHandler = TS->getHandler(TS->getNumHandlers() - 1); 1531 if (!FinalHandler->getExceptionDecl()) 1532 return canThrow(FinalHandler->getHandlerBlock()); 1533 return canSubStmtsThrow(*this, S); 1534 } 1535 1536 case Stmt::ObjCAtThrowStmtClass: 1537 return CT_Can; 1538 1539 case Stmt::ObjCAtTryStmtClass: { 1540 auto *TS = cast<ObjCAtTryStmt>(S); 1541 1542 // @catch(...) need not be last in Objective-C. Walk backwards until we 1543 // see one or hit the @try. 1544 CanThrowResult CT = CT_Cannot; 1545 if (const Stmt *Finally = TS->getFinallyStmt()) 1546 CT = mergeCanThrow(CT, canThrow(Finally)); 1547 for (unsigned I = TS->getNumCatchStmts(); I != 0; --I) { 1548 const ObjCAtCatchStmt *Catch = TS->getCatchStmt(I - 1); 1549 CT = mergeCanThrow(CT, canThrow(Catch)); 1550 // If we reach a @catch(...), no earlier exceptions can escape. 1551 if (Catch->hasEllipsis()) 1552 return CT; 1553 } 1554 1555 // Didn't find an @catch(...). Exceptions from the @try body can escape. 1556 return mergeCanThrow(CT, canThrow(TS->getTryBody())); 1557 } 1558 1559 case Stmt::NoStmtClass: 1560 llvm_unreachable("Invalid class for statement"); 1561 } 1562 llvm_unreachable("Bogus StmtClass"); 1563 } 1564 1565 } // end namespace clang 1566